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PART I. 

ABSTRAC'r 

An analysis is made of the errors which arise 

for absolute levels and fine structure separations 

from t he use, for the interaction of two electrons, 

of the nonretarded Breit expression instead of the 

true retarded interaction. The effects on the fine 

structure turn out to be too small for observation. 

The correction to t.he ground state energy may be­

come observable if t he experimental accuracy is 

increased. This is probably not the case for any 

excited level. 



PART II. 

ABSTRACT 

The exact propagation function for a Dirac 

electron in an arbitrarily intense magnetic field 

is derived in closed form as a parametric integral. 

Using the exact relativistic wave functions and 

the exact propagation function, the energy corr­

ections of order e11 , due to the emission and reab-

sorption of one virtual photon, are calculated and 

exhibited in closed form as double parametric 

integrals. These integrals are shown to possess 

an asymptotic expansion in the small parameter H/m~. 

This expansion is not a pure power s~ries but in­

volves also terms of the form H"A(ii.). The terms 

of order H agrees with the known correction to the 

magnetic moment. The terms of order Ha and H"A(1fj 

are exhibited and discussed. 
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I. INTRODUCTION 

If the nucleus is considered as an infinitely 

massive structureless point charge, the problem of 

the helium atom is a perfectly definite one from 

the viewpoint of field theory. It is the problem 

of finding .all stationary states, of total charge 

minus two, of the Dirac field in interaction with 

the nuclear potential and the radiation field. 

There is however at present no satisfactory way 

of finding these states or their energies, and 

all treatments of such systems proceed by at 

first constructing an accurate solution of the 

corresponding nonrelativistic problem, for which 

powerful methods exist, and then adding various 

relativistic corrections as perturbations. These 

corrections fall into four classes, giving the 

effects of 

(1) The well known spin-orbit inter­

action and other effects which 

appear in single-electron problems 

and carry over unchanged when more 

electrons are present. 
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(2) Interaction with externally applied 

fields. (Stark and Zeeman effects.) 

(3) Relativistic corrections to the inter­

electron interaction. 

(4) Action of the electrons on themselves 

by the emission and reabsorption of 

virtual photons. (Lamb shift, etc.) 

This thesis is primarily concerned with the 

third item above, but it will turn out to be so 

intimately related to the fourth item that it 

will be convenient to treat the two together. 

The relation arises from the fact that the inter­

electron interaction, aside from its Coulomb part, 

is due to the emission of virtual photons by one 

electron and their absorption by the other. 

II. NATURE OF BOUND STATES 

If the electromagnetic field is eliminated 

by replacing it by retarded interactions, the 

atom can be pictured in terms of an indefinitely 

extended Feynman diagram, with the two electrons 

repeatedly interacting with themselves and each 

other, and occasionally doubling back their traj­

ectories to form pairs. The effect of the central 

potential can be considered either as additional 
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interactions or as included in the propagation 

functions for the electrons. The figure shows 

a typical interval in the atom's history, adopting 

the second alternative and not 

showing interactions with the 

central field. This picture 

does not directly give a part-

icle model of the atom because 

of the possible presence of 

pairs. However, if pairs are 

"usually" absent the state is 

describable, by a '/l(xa,xb) which is the amplitude 

for electron a to be at point 'ta at time ta and 

+ electron b to be at rb at time tb with no photons 

and no pairs present. By this is meant that a 

surface can be drawn which is crossed by no photon 

lines, which intersects the world line of each 

electron exactly once (at points a,b) and which 

extends in a spacelike manner to infinity. The 

· surface is not required to be spacelike at all 

points, and the separation of points a,b need not 

be spa.celike. Once'/.' is knovm, it is possible to 

derive amplitudes for the presence of one or more 

photons or pairs. In principle, 'f can be determined 
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as the solution of an integral equation7whose kernel 

is the sum over all irreducible diagrams of the 

amplitude for propagation from a,b to a',b'. A 

diagram is irreducible if it cannot be separated 

into two parts by such a surface as just described. 

In actuality no such solutions have yet been ob-

tained. This description is useless when the inter-

action is so strong that a photon is usually present, 

for then very ·1ong chains of interlaced interactions 

make important contributions to the kernel. 

For an eigenstate, Cf involves the .mean time 

~(ta+tb) only through an exponential factor, so 
"EJ.(t t-'4,) .. + 'I':. e-( a. &. </>(ta Y1r t..-t6') where · E is the energy of 

; , . 

the state. In momentum space Y'becomes 

f, (fl! +It~ -E) h ( 1t:
1
l, k:-J:) 

so that there is a distribution of energies for 

each electron, with the total energy remaining 

definite. Nothing is known of the depende.nce of 

the wave runction on relative time or relative 

energy in any particular case. Intuitively it 

would seem probable that there should be only 

small amplitude for lka-kbf to be much larger 

than the binding energy, and in cases where the 

electron interaction energy is small compared 
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to the total binding the amplitude should be large 

only when the individual energy of each electron 

approximates the energy of some single-electron 

state. Yet this intuition is directly contradicted 

by another, for when the binding is weak and the 

velocities small, the atom is well described by a 

nonrelativistic model in which the forces are not 

retarded and only a single time need be considered. 

The nonrelativistic </I involves ta-tb only through 

a factor ~(ta-tb) so that the wave function is, 

in momentum space, independe.nt of k!-k~, correspond­

ing to an infinite spread in relative energy rather 

than a small spread comparable to the small binding. 

Evidently some care is needed in considering a single 

time description as the limit of a many time one. 

The retarded interaction between two electrons, 

which in coordinate space is e'l.c\( s!J, is in momentum 

The second term is the reta.rded transverse 

interaction. The first term, after> a gauge trans­

formation, becomes -'ffre"~Ni/k'L , the nonre t arded 

Coulomb potential. lr-. and ~"are Dirac matrices 
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referring respectively to electrons a and b, and 

k~ is the momentum of the transferred photon. If 

in the transverse interaction the photon energyw 

is neglected in comparison with k, thereby neglect­

ing the effects of retardation, the result is the 

Breit1 interaction energy, whose expectation value 

is a principal contributor to the helium fine 

structure level shifts. 

Since W vanishes in the coordinate system in 

which the center of gravity of the two electrons 

is at rest, the error in using the Breit interaction 

instead of the true retarded interaction may be 

expected to be of the order (Breit energy)(v~;c~) 

-where v~is a mean square velocity of the center of 

gravity. In the excited states of helium the outer 

electron moves slowly compared to the ls electron, 

so that v~g:tv"is = tm_(binding energy of ls electron). 

Hence vYc'I. ~ 1/(137)2 • This estimate predicts an 

error which would be unobservably small. However 

this estimate is an unreliable one for several 

reasons: 
,. 

(1) The next approximation involves F which is 

singular at k:O. This singularity must be invest-

w'" igated before an expansion in~ is justified. 
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(2} Although normally the energy of each of 

the two electrons is~ m, their interaction some­

times scatters them into a state where one of them 

has a negative energy and the energy of the other 

greatly increased in compensation. For momentum 

conserved, energy must fail of conservation by 

~ 2m, so that the life of this abnormal situation 

is correspondingly brief. Taken between this 

state and the normal one, the~ matrices give 

factors of about unity, so that the Breit inter­

action gives a matrix element of order eYlt,_ 

while the true retarded interaction is more like 

e/I""~ • It is for this reason that the Breit inter­

action is not suitable for use beyond the first 

order in perturbation theory, and even in first 

order Breit 1 found that for agreement with exper­

iment it must be used in connection with a part­

icular method of reduction to large components 

which amounts to the use of a projection elimin-

ating the negative energies. Since the non-

relativistic variational wave functions do not 

lend ther.1selves to an accurate determination of 

the magnitude of ·the negative energy parts, their 

contribution to the energy is best determined by 



-8-

choosing the initial wave functions smooth so that 

momenta as large as m are practically absent and the 

state includes no negative energies, and then con­

sidering the second order perturbation due to the 

electrons being scattered into states of very high 

momentum or negative energy and then back. 

(3) The effect of the action of the Coulomb 

potentials while the electrons are exchanging a 

transverse photon ought to be of the same magnitude 

as the Lamb shift. Though very small, this is 

still large compared to the original error estimate, 

and should be investigated. 

III. NONRELATIVISTIC APPROXIIVJATION 

The Coulomb p~rt of the electron interaction 

is accurately accounted for by the use of variational 

principles to find accurate energies. The trans­

verse part may be considered as a perturbation due 

to the emission of a virtual photon by one electron 

and its absorption by the other. So long as we 

limit the photon momenta to be(<.. m by a suitable 

cutoff, the calculation of the energy shift can be 

done using a nonrelativistic model and ordinary 

perturbation theory. This gives 
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+similar term with a and b interchanged (2) 

If the Breit interaction had been used instead, 

the only change in the result would have been the 

substitution of k for k~w~~in the energy denomin-

ator. The difference is 

(3) 

This is in the same form as Bethe's expression 

for the nonrelativistic part of the Lamb shift. The 

only difference is that the operators for emission 

and absorption of photons with momentum k and polar­

ization E refer to different electrons. If the Lamb 

shift terms, which are due to emission and reabsorp-

tion, are included, the matrix elements become 

( 4) 

Following Bethe, the factor w...-ws can be included 

in the matrix elements by commuting the emission 

operator with the Hamiltonian. Where it occurs in 

the energy denominator it can be replaced by a mean 

excitation energy. Then the sum over states is 
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easily performed by an appeal to the completeness 

property of the wave functions. With 

(5) 

the result is the expectation.of 

which has been swnrned over polarizations. The 

first three terms are single-electron effects of 

no interest here. The third term, for Vab=e'fr, 

reduces to 

(7) 

where an averaging over angles has been performed. 

The fact that it vanishes as kr•O has a very 

simple interpretation. The forced motion of a 

pair of electrons pushed around by the vacuum 

fields can be resolved into a relative motion and 

a motion of the center of gravity. The last does 

not alter the mean value of the mutual potential 

energy, 3nd first does not arise in dipole approx-

imation. 

Till now the momentum cutoff K has been left 

unspecified except that it is <<m and >> (w.._-"'i) so 
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that ("1A-Ws)/K can be neglected. Under this approx-

imation and dropping t he single-electron terms, 

the energy shift is given by the expectation of 

Q = 2elf (sin Kr cos Kr 
1\'m~r3 Klr~ - K'-~ -

Q. behaves like -e4Kfl51Ym2r for Kr and like 

-2e4/3~m2r3 for Kr large. Let us choose K as 

( 8) 

large as permissible so as to include in the non-

relativistic calculation as much as possible . of 

the total effect. Q. is an inverse cubic potential 

cut off to behave like l/r inside a radius r0~3/K . 

Since K<<m, r 0 must be large compared to the Comp­

ton wavelength, but it can still be small compared 

to the size of the atom, so t hat Ka0 >>1, where a
0 

is the helium Bohr radius l/2me2 • 

The form of Q in momentum space will be of 

importance for any attempt to join this nonrel-

ativistic calculation on to a relativistic calc-

ulation which has a low-ener gy cutoff. Let S=~K 

be t he magnitude of t he momentum vector. Q. (S) 

has a rather complex behavior for fl medi.um or 
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large, but this depends on the details of t he 

cutoff procedure and is of no interest. System­

atically dropping terms of order p or smaller, 

00 

Q(S) :: 411" f. si~r Sr Q(r )r2dr 

'° 
- se4 [sin /Jz (sin z - 1) dz 

3m2 pz z 

4 
~ ~(-1+ lnS/K) 

3m (9) 

A rough estimate of the effect of Q is easily 

worked out if the logarithm term is replaced by 

some mean value. Let us assume that t he effect 

of a relativistic calculation would be to replace 

K by something of the order of m, so the mean 

value should be about -ln(a0m)z -4.22. Then in 

coordinate space Q becomes a delta function. For 

triplet states this would give zero if the approx-

imation were good for such states. It is not, but 

it is legitimate to conclude that compared to the 

ground state the effect is quite small both for 

triplet states and for those excited singlet states 

where the wavefunctions do not greatly overlap. · 

F'or the ground state a calculation gives minus 

{8/3)(5.22)(0.17)~-2.36 cm-1 , using hydrogenie 
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wave functions. rrhis is about half the probable 

error in the experimental determination3of the 

ground state energy. Also, as will be explained 

in a later section, there is reason to believe the 

logarithmic part is cancelled by another effect 

not yet discussed. 

IV. RELATIVISTIC CORRECTIONS 

The nonrelativistic calculation must be joined 

on to a relativistic calculation which takes account 

of the effects of virtual photons with momenta above 

the cutoff. For these high momenta it is permiss-

able to treat the electrons as lightly bound: the 

coulomb potential is considered only as a perturb-

ation which acts at most once. The first term to 

be considered is of order e2 and gives the effect 

of the transverse interaction acting only once and 

the coulomb potential not at all. 

The major part of this term is the Breit inter-

action, reduced to Pauli form by assuming the small 

components to be 
..... 
p 1 0""/2m times the large components. 

This reduction is correct to order v2/c2 except that 

it acts as a projection eliminating any negative 

energy states present. These will be accounted for 

separately as part of a second term of order e4 by 

considering them to exist only in an intermediate 
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state, being created by one interaction and de-

-strayed by a second. 

Aside from these negative energy states, the 

Breit interaction has errors of order v4/c4 from 

t he reduction process, and an error of this same 

order from the difference M which expresses the 

effeqts o~ retardation. 

M = 'rre1 l(ot,J,J oc'.,)i. ( 6,."- F'~k.,)(-.iw~-1;.) 

wz * k·<f.+fi.) ( 10) 

The electrons are actually virtual, but to 

assume t hem free should be a good approximation. 

When reduced to Pauli form, M becomes (for triplet 

states and ignoring all terms independent of the 

total spin vector S) 

2.( L\l.. ( L')1./A LI)"- • ~ .... + (VM~ U·k'fL' f>tt" M = (S·,Ui l•I( - S·..i: ,,~·~ -1. S•(4>c(,.) "" 71i ) 
Z1Je1. y M V 

(11) 

An order of' magnitude estimate shows that 

t his is far too small to affect t he triplet 

splittings. The spin independent part is also 
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completely negligible. Actually M is even smaller 

than a quick estimate would indicate, for the" 

level splttings it causes are due to anisotropy 

in momentum space and the largest part of the 

momentum differences is the momentum of the ls 

electron which is nearly isotropic. The form of 

M ·is of so;_ne interest. The terms quadratic in 

S have effects proportional to(L•s) 2 and are 

interpretable as arising from something very like 

a velocity dependent tensor force in momentum 

space. The other terms have effects proportional 

to L•S and -are less easy to visualize. 

The classification of effects as being of 

various orders in v/c is justified by the very 

rgpid decline of the wave functions for large 

momenta. (Like p-4 as can be seen from the non­

relati vistic integral equation.) This rapid 

decline shows that small velocities are really 

predominant and the mean of v4 is really of the 

' same order as the square of the mean of v2. It 

also justifies the smoothing of the wave functions 

so that momenta comparable to m are absent. 
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Next to be considered must be the term of 

order e 4 which gives the effect of the transverse 

interaction acting once and the coulomb potenti~l 

also once. But here it is necessary to be careful, 

for since high velocities will be important in the 

intermediate states, it is not permiss;i.ble to con­

sider the transverse interaction small compared 

to the coulomb potential. The double transverse 

interaction due to_ exchanging two transverse photons 

is no smaller than the above, since v/c is not to 

be considered small except in the initial and final 

states. Consequently the full e 4 interactiod
0
must 

be used: all Feynman¥diagrams with two photon lines. 

The two principal diagrams are a and b. The vacuum 

polarization is given by c, while d and a number of 

others like it are best understood as radiative 

corrections to the scattering by the (retarded) 

interelectron interaction. The total effect of 

a b c d 
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the diagrams like d reduces to 

(12) 

plus a term which will be ignored which is simply 

the interaction of the anomolous part of one 

electronts m~gnetic moment with the electromagnetic 

fields generated by the charge of the other electron. 

q is the transferred momentlU11 and lambda is a photon 

rest mass introduced as a lower cutoff. A similar 

cutoff must be used for a and b. No cutoff is 

needed for d (with proper renormalization) which 

reduces to 

(13) 

The procedure here is a model to be followed 

in all cases: considering all the initial and final 

momenta as small quantities, retain only the lowest 

order term, which will be of order e4/m2 , and the 

lowest order term capable of contributing to triplet 

splittings, which will be of order e4q2/m4. Heduce 

this to Pauli form and express in terms of the total 
.... 

spin vector s. The cutoff lambda is to be assigned 
l 

q2/X2 a magnitude of approximately (20()2 m, so that 
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and )..2 /m2 are both small numbers. F1or diagram a 

there is a possibility of both electrons being onl-y-

slightly virtual, corresponding to a longlived inter-

mediate state. This is not properly a part of the 

4 e correction: from a plmb must be subtracted terms 

representing the repeated action of a potential which 

is Coulomb plus projected Breit. (The projection is 

accomplished by deleting that pole of the electron 

propagation factor which refers to negative states.) 

Actually the positive energy part of the Breit inter-

action makes little difference, its contribution being 

much smaller than that of the negative states. 

For the term of lowest order any spin factors 

are to be evaluated as for a singlet state. The 

lowest order term necessarily vanished for triplet 

states (antisymmetry). 

The rationale of this procedure requires some 

explanation. 'I1he presence of the photon rest mass 

gives to the interaction a finite range which in 

momentum space implies a behavior regular about 

the origin, so t hat an expansion in powers of the 

initial and final momenta (and hence in powers of 

q2/m2 ) is justified if these momenta are<<A. 

This regularity seems surprising since this 

calculation is to be fitted to a nonrelativistic 
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one which involves the log of q. The answer to this 

discrepancy is that there is another effect which 

should have been included in the nonrelativistic 

calculation: the effect of the exchange of two 

transverse photons. This is seemingly of a higher 

order in v/c, but only seemingly, since what should 

have been the dominant part of the calculated effect, 

the dipole approximation, in fact vanished ident­

ically, leaving only terms of a higher order in Kr. 

No attempt has been made to compute this Q'(S), but 

it is easy to show that it also is of the form e 4/m2 

times a function of S/K, and a reasonable conclusion 

is that Q and Q' are actually of the same form with 

the logarithm terms cancelling, so the sum Q plus Q, ' 

is just a const ant times e 4/m2 • Strictly this is 

right only for momenta less than the cutoff K (which 

is to be roughly identified with lambda) but if K 

is large compared to t he momenta present in the 

initial and final states this qualification can be 

dropped. The result, in coordinate space, is a delta 

function interaction. 

Since the total nonrelativistic part does not 

involve t he log of t he cutoff, the same must be 

true of t he relativistic part (at least in the limit 

of zero momenta) and in fact t he lowest order term 
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must approacn a constant as lambda approaches zero~ 

which justifies the earlier statement that it is of 
4 2 e4/)..2. similar order e /m rather than say A 

argument holds for the fine structure term, making 

use of the fact that the nonrelativistic part is 

independe.nt of the orientation of the spin vector. 

(T' f' d 4 2 I 2\. 2 ' • , bl nere are terms o or er e q rm -" wxn.cn ow up 

as lambda goes to zero, but they are the same for 

all lines of a multiplet. They represent the fail­

ure of the expansion in powers of q when q ~X.) 

Since the terms involving q2 are too small to make 

their effect on absolute levels appreciable, it is 

only necessary to retain that part which contributes 

to multiplet splittings, and for this there is no 

trouble. 

Since the major contribution to it comes from 

negative energy states (strictly, states with pairs 
4 

present) the e term must represent an interaction 

of short range. Since the intermediate states 

differ from the intial and final by about 2m, the 

interaction should have a range of about a Compton 

wavelength, w:nich makes logical an expansion in 

delta functions and their derivatives, or, in 

momentum space, in ascending powers, as stated in the 
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beginning. Since observations on level split­

tings are more precise than those on absolute 

levels, not only the lowest order term must be 

retained, but also the lowest order term which 

depends on the spin orientation. 

In the previous section it was calculated 

that in the most favorable circumstances (ground 

state) a term e4/m2 causes a level shift of only 

0.17 cm-1. This is only about 3% of the probable 

error of the experimental ground state energy, 

and the carculational accuracy is probably no 

greater. The best calculated value is 198319cm-1 

while a 1942 experimental value is 198314t5cm-1 • 

For excited states the effect is less and the 

experimental and calculational uncertainties much 

greater. So no observable effect can be expected 

unless very generous assumptions are made as to 

the probable coefficient of the e4/m2 term. 

The possibility of an appreciable effect 

on the fine structure is far more remote. The 

lowest order term which can possibly contribute 

is e4q2/m4, which is smal l er t han the above by 

a factor of roughly 4/(137)2 or 2·10-4 . 
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This is small compared to the accuracy with 

which known effects can be calculated, and quite 

beyond the possibility of experimental verification. 

Hence, the only effect of any importance is the 

shift of the lower singlet levels by the delta 

function interaction. The coefficient of this 

interaction has not been computed exactly, but 

according to a rough estimate it should not be 

greater than about ten at most. This would still 

require a refinement of the experimental accuracy 

to make it observable. 
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I. INTRODUCTION 

The purpose of this investigation is to find 

the energy, due to self action, of an electron in 

a uniform magnetic field. The quantity we wish to 

find is the value per unit time of 

M -= e~ JJ 41+(~)<r~K+C2,1.)l~ '¥(1)~( s~) Ji cR1 

where 4' is some one of the stationary states of an 

electron in a magnetic field, and K+is Feynman's 

propagation function for an electron in such a field. 

Both are expressed in a form correct for arbitrarily 

intense fields. M expresses the effect of the virtual 

emission and reabsorption of a single photon in the 

presence of the field, and gives the energy increment 

correct to order e4 in the electron charge, but to 

all orders in the field intensity. The technique 

used is to express K+ and f+ as parametric integrals, 

with the integrands simple functions of space and 

time, so that all integrations other than those 

over the parameters are easily performed. M is 

then in exact closed form as a double integral, for 

which an expansion in H, the magnetic field intensity, 

can be found. This expansion is not a pure power 

series, but contains terms of the form HklnH. 

Since the extra generality takes little trouble, 
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the preliminary developement is done for the case 

of uniform electric and magnetic fields both present. 

Without loss of generality, E and H are both taken 

in the z direction with H~ o. since any other case 

can be reduced to this by a suitable Lorentz trans-

formation. Later we specialize to E = o. The pot-

ential is chosen as 

Aac-= -fyH 

Ay-= .. i 'JCH 

A~= -fiE 
A-t=-fi-E 

Here and henceforth, 

of Feynman1 is used: 

XJ": XJ Y,l,t-: ~t ... 
A,.,_=A,A~ 

+ <s'p = po<, f3 
·~ A I • (J fr - 0.:(, :Q.·fr u.,,.11',.. - 'f y 

(' -1 ( - ( = ~ ::-J 4tt•• J 0 ,, • 4'u U 

~,,..,,().~: a.,,. 

II. PROPAGATION FUNCTIONS 

the relativistic notation 

Below, 0 denotes the origin, while i and 2 

denote arbi tra.ry space time points. -f+(s;>;_) is the 

photon propagation function, given by 

J' ) ~ [:-c.·oeX'p21X'p"' O(oc) 10< 
T+ (5~, : 11 J 

The convergence factor ~Coe) is introduced to make 
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the mass correction finite. Vfnen the mass corr-

ection has been subtracted 9CO<> will be replaced 

by 1, so that ff becomes&}S~)which is the true 

propagation function without cutoff. 

K+ is defined to be that solution of the 

inhomogeneous Dirac equation 

which shows the same behaviour as does the field 

free K+ when 2 ... 1, and also for If -*'Zero K+ 

must reduce to the field free K+• 

Because of the presence of the potentials, 

K+{2,l)~K+(2-l,O). Instead 

l<+(Z,,1) = e lpC2,1) ki-(t-!o) where pCa)1):: t X~(2)KvCl)F,_., 

This is evident since f3(1.,1) is zero and 

-/x,,.,.P(~,1)= -1 ><11<•>F,., 

(i1.-A,J2))e ipC2,t)K (1-1 o): e'PCa,,u (r..l. -A c~-•>)1<+(2·1,o) 
~~ + ~ ~)(~~ '/A 

Explicitly, 

P+C2.,'JJ = -t t1 ( >e,Y,, - X1 Y,) -t- f E: (r, t 1-la t,) 

K+ can be expressed in terms of andther 

function I by 

I satisfies 

,·s(z.,1):: [ lr,.,. (• !i/ol;A ... ~-/tl\ ]['(~( ,·~~~-A":L)+~ JI (:lJ} 

= [-l>t\~ + lc: l. _ A J'-- -t O',-rv "'" ] I (2,1) \')><pi. ,. 
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The following equations will be useful later: 

(c:~2-A',.-""H<+<~,1) = i~(2,1): -t</2,1>( <'#,+.A',+JnL) 
+ 

... !(~>1) (l Vi, +A',+ 1m) = K+(2, 1) = ( i 1'a. -~ -tl>l\) I (2,.1) 

lc.i-A )fKt(2,,1)} - ( ·L ){~(2.,1)} 
r ~x~. ,., Il2,1) - 1 '~xp.;A,..,. lIC2,.1) 

Below, I(l) means I(l,O). I(2,,1)=e'PC~i)l(2-1) 

i ~l1l= f-nri'L + (,·fxv- A.,t- f )',..~~FJ..,] 1 (1) 

Thisais satisfied by 

J( 1) • {e- •,..,.,,. Cf ( 1p.1 et.,..,. r,.."' .l ... 

--provided 

1~ ... ~F,.,: ¥,~~ H + ~J ~'IE. Note that these two terms 

commute. Assume for <f a form Cf: e~+tr(~-+v'J+cCi\t") 

Then 

_. [~a-~~: +f~Ci!~ti)+<f{tr f.t-t-tfe )]'P 

.. ,~ 

Choose solutions singular at the origin: 



t= ~e.otll~ 
'I 

c= l£ ~E,,. 
Cf 
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eo.= EH· c.ottsT 
~HfA.-.Ji.E~ 

To get a solution of the inhomogeneous equation, 

take (f': O for u~O and choose the constant such 

that 

' 

1: J <p Jr.tlvJar.ff 
t.c.:0+ 

-CONST 

So finally 
EH c' 11cotlfc.t(x1+Y .. ) + ,·& ~£~(~t.t' 

f:t:: 161flli •1tu. ~Eu. e .,_ ., 

1 ( 2,1) = {e-,,,...",..ei•,."¥,~,,~ e ~~~•>c,c2-1,t4 Ju. 

Note that I is even in space and time, as it 

should be. 

III. M IN PARAMETRIC FORM 

M can be simplified by substituting for K 

its expression in terms of I and then reducing 

the result by partwise integration and the use 

o·f various identities. 
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Alternatively 

M/e" =-ff 'f't('1)~~(IC2.,1)(<·~ .. Jt,-""'>)~,..f.,Cs~)'l'C1l 42.A1 

=2.IM ff'#' .. I 1+ 'f' - //'f 't'tp.I'I., ¥,,. 'f' (i ~.,f .J 

The backward pointing arrow means that the diff-

erential operator operates back on the function 

I before it. In performing the reduction, use 

has been made of the fact that the initial and 
.. 4 • • 

final wave functions satisfy the Dirac equation. 

Examination of the difference between the two 

expressions for M shows that it vanishes, but 

half the sum is simpler to use than either. 

Specializing to the case E=O and inserting the 

parametric expressions for I and f+ gives, after 

J, = 2-ff'f.,.c~>e-r.r..Hu.."'c11eG· .. '• tf1cl2-

Ja. = -Cfoer..ooff v. f[Y'+fa)(r1X11 +~a Ya,)'f'(1)er;0+G,JJol2 

J3= If-rt.ff 'f'+(2)ei,r..,u .... i.,t~, 'l'C1) ec•"'G1tl1c12 

Terms involving ~J have been omitted, since 

in the c~se E=o it is possible without loss of 

generality to consider only states with zero mom-

entum along the z axis, and for such states these 
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terms vanish. 

IV. THE WAVE FUNCTIONS 

Since electron states in a uniform magnetic 

field are highly degenerate, there is considerable 

freedom of cho·i .ce in selecting a set of states 

which will include each physically different case 

just once, with no redundant inclusion of states 

which differ only by having different distributions 

of the centers of the circular orbits. the states 

chosen are those (of •ero momentum along the z axis) 

which have the centers localized as much as possible 

at the origin x=y=O. There are exactly two such 

states, of opposite spin orientation, for each non­

negative value of n, where minus n is the z component 

of orbital angular momentum. The energy of these 

states depends only on the total angular momentum, 

so that state n, spin up is degenerate with stat·e 

n-1, spin dow.n. All states outside the set and 

with this same angular momentum have higher energies 

correspond,ing to greater kinetic angular momentum 

partly compensated by the vector potential. 

Because of conservation of energy and angular 

momentum, the matrix element M vanishes if taken 

between a state in the set and an outside state. 
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Within the set the only off-diagonal elements that 

do not automatically vanish from conservation are 

those that connect the two states of a degenerate 

pair. These also vanish when the states are prop-

erly chosen, so that there remain only the diagonal 

elements which are energy correations. 

Introducing x-iy: W and r'*~ x-a+ y'- and ignoring 

normalization factors, the wave functions are: 

For spin up: 

For spin down: k,,~ rl+2 (ntl )H 

cy = (:(k+~)w"')e-~ r~-iltt 
lHW"'+t 
0 

These wave functions are solutions of 

(i~-f'-,...)'I'= 0 

given by 
l#' = (l'#-6l t1m)f/> 

CIM&-(' ~-A,,.)1'] '1> ':: i'lr,ll1fff = (O'•CJ'f) Ii;= tfi; 

It is easy to verify that 1, l 1 , la,~,, l,~1 , and i,laitt, 

which are the only Dir~c matrices appearing in M, all 

give zero when taken between an up and a down state. 
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... 
When the expressions for 4" and'¥ are inserted 

into J1 ,J2. ,and J3 , the resulting integrals, though 

rather involved, are essentially of Gaussian form. 

Each breQks into a t, a z, and an x:y factor. As 

an example, J1 for spin up is 

J,:: 2m.R f J[elH~(~-t,..)"'Wtw:-'*--" w,,..,,..w:'"']e°" cbeclv, .tx.a,Ya. 

where R : ( {,; ilt t,,- •'(ot+ ;"lt~ .lt.i)(f ! C(in#;.l•!, .1,,.) 

G = ~(X,'f;,-X., Y,)+ ~(CoGtH\.\+ 1)(t~+Y~,)-~(r."-t:) 

The exponential factors are the same for each 

J and for both spin cases, though the other factors 

vary. By choosing new variables in a suitable manner , 

G can be written as .. '.a sum of squares, and the integrals 

evaluated in a strai ghtforward way. After considerable 
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A~ (A+Pl\){?+se-~"~)~1 + (i-IM)(-~+sea,·•) 
I l-Sp2 ~ 

-2(~a-•") ,:S. c.ool'~~ 
le~ 1-s11 

A :: (•+~>( i +sea~") +(A-IM)(-~+ se;ui) 1-S#, 
2 ,. 1-S/'1. 

- 2 <A ""-IMa) §. e<ro 2 '°"" ~ 
.A~ 1-spi. 

In the limiting case H.,. 0 keeping k'!.m~ constant, 

' A~ and A~ both become 2i"(l+S) and M becomes 

I Lj _,hll.,~IA. M = !.,,"£ t,c•>Js -;e (1+s) 
0 - J~ 0 . -l

~ -llM-a fkc.\ fi t(•Ul ) ¥t&. = c a I. .C«)J.« 1i e t+'I•• \ 11' H fOtfA. (1-t¥1UA)" 
~1r A o o 

M0 represents the energy correction for a particle 

of unchanged kinetic energy in a vanishing field-
, 

and is of the form of a change in the rest mass. 

I - i IC/ttoc .J.. • '• I) 0( 
Introducing 9C«) = - e I 4/Co\ - \P-

"' 

For K»m this is~~e'•L~+ 3i~in agreement with 

known results. 
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Once the mass correction has been subtracted, 

the convergence factor g can be replaced by unity. 
~ 

Introducing ~~ ~ the final result is 

V. THE ASYMP'rOTIC EXPANSION 

The usual teclmique for asymptotic expansion 

cannot be directly applied because the coefficient 

As in the exponent is not uniformly large. However, 

if the integrals are rewritten as 

"E = ~~1. r:~+s)J$ f~(e·il'sw_e·'As') +~'fJs[~e-iA'stf~Ct+s>{:::!·~A,] 
u y It 1tr J~ J.1 • • ra 

I' · 00 >: " e"t' 1'f. -i~Uf J,,,., cr.:s~.l"' A ] 
E • '!!J._~..,l(t+S),IJf~te' S•-el '*) + --J_JS j°e - i"'(ttS)+( -SA )1114•1 a. 

(\ dtlN'te- le d • ~o * \~ ftft o o I ,,~ 

where 'A'= A•, the first term is a known form and the 

bracket in the second term can be conveniently 

expanded in powers of S: 

.. ~J. ~(t) - z. f"\' 

- r=1 r Xi 
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In this developement the asymptotic expansion 

of the z integral is made possible by replacing the 

definite S integral by an indefinite integral and 

introducing the constants Cr which must be separately 

evaluated. F0 is zero and Fr is O(zr). Furthermore 

is of the form 
r _,ec.,i-~. -6-

F. <'•) : z E. p.," e (t:) r .(..:o ,, 

where the oc are integers which are all positive for 

the ground state but otherwise include some negative 

values. The coefficient·s fJ obey sufficient conditions 

bo keep the integrand finite. By evaluating 
.. 00 

r_,,.,.,{+' , [ 4f e_,;~~ Frli~) :: ,·r J~c-' 5~i~F.,f t~) 
,. ' ~S"' o ~ ~o 

' 
and then integrating (r+l) times from S to«> , 

>.' 00 )' r Js.s" ( te'Sl:f,.U~) :::: [s"' {~ Pi,Cslk.CS+oc.,l) J. s 
Jo Jo o " 

= L. -"<t+1t.,) Q,,,Ol) + Cla.,C>f) ., 

Where the P,Q are polynomials. In doing the final 

S integral it is necessary to circle around the 

points S+~~~o. This gives rise to an imaginary 

contribution to AE thati is interpretable in terms 

of a decay probability for the state. There is no 
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such imaginary contribution for the ground state. 

In the final result the logarithms can be expanded 

and everything rearranged in inverse powers of". 

This second method of calculation is much more 

laborious but has the advantage that it fixes the 

values of the Cr• 

Although it is possible in principle to carry 

out the expansions to any order in H, in practice 

the labor becomes excessive at about the third 

order. The calculation to second order is quite 

simple if both methods of calculation are used, 

the second method being used only for those terms 

which are capable of contributing to C1 in zeroeth 

order. The result is 

AEup = e;;(-t + ~"-l- t~(!f + J•"'c:)] 

AfJ°""': ~[+!+!~"'~ - !~('~+ fir.-c:+tttrt)) 

In the case of the ground state it is possible 

to investigate the convergence of the expansion. 

In this case (only) the path of z integration can 

be displaced to the negative imaginary axis so 

that 4E can be expressed in the purely real form 
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Convergence of the sum is guaranteed since 

an upper bound can be found for the sum from N 

to oo. Since l+ se-~2 

O ~ fJ ~ min ( 1, ! ) 
O ~ 1:¥ ~ min(~,'+!-) 

I I [~ ~ I :tl'S~cls !Se-as~"f by ~[~(As)Bs}Js ~o~ 0 ~ 1-S.p is bounded ... 

A = [ 06'-'i! -~s~ L"'(2-)" = (H-M-1. s o i! e t-s 2. A¥ t-s 

Bs= (we-~si:c1t-r)(~)"= ~.'(~+•) 

Hence the sum is less than 

Furthermore, examination of the exact form 

of the 1'irst N terms shows that their expansion 

in powers plus (powers) (lnff) converges if (N+l)f~ 

VI. I NTERPRETATION AND DISCUSSION 

Since in electromagnetic units t~ H· 10-1'1, 

these second and higher terms are of little 

practical interest. They are however of some 
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theoretical interest. The occurrence of logarithm 

factors shows that any attempt to arrive at these 

results by treating the magnetic field as a per-

turbation would encounter an infrared catastrophe. 

For a bound electron the binding furnishes a cut-

off, but for the free electron it would be necessary 

to use a cutoff' depending on H, which would require 

care to avoid confusing even the form of the answer . 

F'or the bound case the form of the H~ correction is 

re~dily found. Bethe's expression for the Lamb 

shift, modified for the presence of a vector pot-

The first term gives ;!:.,_ v1V , the usual Lamb 

shift. 
,..~ 

The second is ~3 • There is another 

term A·J 
,.,.1 which is dropped bec~use J, the current 

density creating the field A, presumably vanishes 

inside the atom. The final answer is 

"' .... 'L n ,..,.... Af- .2a~ ..U. JA.. -
u - 3 11' ""3 ~ 

The coefficient is the same as for the free 

electron. 
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Twice the imaginary part of 4E is the prob­

ability per unit time of radiative decay to a 

lower state. Since 

~ i e1o.' = t 'ie1 V:,,.~ ... = fe'""~ (!~)~ 
the term proportional to n agrees with the classical 

acceleration radiation. It also checks with a 

quantum mechanical calculation using the dipole 

approximation. The fact that the states extend 

indefinitely in the z direction can be ignored in 

using this approximation since the only effect of 

·this extension is to force the electron to take 

up the recoil momentum. The extra term which 

appears only for states with spin down is a 

measure of the probability of decay by turning 

over the spin. 
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