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ABSTRACT 

The refractive index of fluid argon was measured by using 

the method of angle of minimum deviation for ANa = 5893R. The meas-

urements were carr i ed out along the coexistence curve and along 

0 0 fourteen singl e phase isotherms from 150 . 7 to 163 Kat pressures from 

40 to 90 atmospheres. 

The Lorentz-Lorenz relation was used to relate the refractive 

index data to the densities and subsequently to find the isothermal 

compressibilities along the singla phase isotherms. Following the law 

of rectilinear diameter and the simple power laws for critical 

exponents, the values of the critical temperature and exponents for 

argon were found to be 

and y = 1.170 ± 0 . 013 . 

T 
c 

150 . 725° + 0.010°K, B = 0.3574 + 0.0027, 

Also values of n = 1.08611 and 
c 

P = 47.983 atm were determined . 
c 

These values agree well with 

others reported for argon . Comparison of the values of 8 and y 

with those predicted by the classical theory and the three-dimensional 

lattice gas model suggests that the latter gives a better description 

of the critical behavior of fluid argon. 

Analysis of the reduced chemical potential differences, com-

puted from the refractive index data along the singla phase isotherms, 

has been made by using the scaled equation of state first proposed by 

Reasonable values of T and y were obtained when the 
c 

Widom. 

value of B determined above was used. 
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I. INTRODUCTION 

In recent years there have been many theoretical and experimen-

tal investigations of the thermodynamic anomalies of a fluid near its 

gas-liquid critical point. In the present study, measurements of the 

refractive index of fluid argon were carried out in the vicinity of 

critical point. Experimental data were analyzed to determine the 

critical exponents S and y , which characterize the thermodynamic 

anomalies. Comparison is made with theoretical studies. 

1. Lorentz-Lorenz Relation 

The refractive index n can be related to the density p 

through the Lorentz-Lorenz relation 

2 N 
n - 1 1 47f o -=--a. 
n2+ 2 p 3 M m 

(1) 

where a. is the molecular polarizability, M the molecular weight, 
m 

and N Avogadro's number. As was formulated by the classical method 
0 

of Lorentz(l), Equation (1) is rigorously valid for a cubic lattice of 

nonpolar spherical molecules assuming constant polarizability and 

neglecting fluctuations in local field. Expanded theories( 2 , 3 , 4) 

based on statistical mechanical analysis have taken into account the 

effect of statistical fluctuation in the induced dipole moment and the 

effect of the variation of polarizability due to molecular interaction, 

and have produced density-dependent and temperature-dependent correc­

tion terms to Equation (1). Experimental evidences(S,G, 7) showed that 

for many nonpolar fluids the density and temperature dependences of 
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the Lorentz-Lorenz function, LL (n2- l)/(n2+ 2)p , are very small 

and no more than a few percent. For argon, recent analysis(B) of 

extensive refractive index measurements indicated that there is no 

3 more than a 1.5% variation from a LL value of 4.19 cm /mole throughout 

the three states of matter and with a temperature range of 20°K to 

300°K. Hence there is probably little error introduced in relating 

the refractive index to the density by Equation (1) without correction 

terms. 

In analyses of asymptotic behavior of a fluid near its gas-

· liquid critical point, the possibility that Lorentz-Lorenz function 

might become anomalous should be taken into consideration. Teague(B) 

has measured the refractive index of argon on the gas-liquid 

coexistence curve over the temperature range from about 30°K to 

within O.Ol°K below the critical temperature. The measurements were 

combined with the density data reported by Levelt( 9) to compute the 

Lorentz-Lorenz function , which appears to show a divergence near the 

critical density. However, there is good reason to believe that this 

is the result of a discrepancy of +0.017°K between the temperature 

scales used in the two different laboratories generating the density 

and the refractive index data. A theoretical study on the validity of 

(10) . 
Equation (1) near the critical point has been made by Larsen et al • 

They pointed out that the small imaginary part of the refractive index 

undergoes an anomaly at the critical point, as is evidenced by the 

phenomenon of critical opalescence. The homogeneity of the medium 

assumed in deriving Equation (1) is not present near the critical 
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point where density fluctuations are significant. However, according 

to their estimate, for argon the effect . of density fluctuations on 

the real part of the refractive index is less than one part in 104 

near the critical point. 

Henceforth, for practical purposes, we can use Equation (1) to 

relate the refractive index of argon to its density. It is noted that 

near the critical point there has not been a precise experimental con-

firmation of the validity of Equation (1). Furthermore, using 

Equation (1), it is possible to express the isothermal compressibility, 

defined as ~ = - ~(~~)T = ~(~)T, explicitly in terms of refractive 

index and its pressure derivative as follows: 

6n 
(2) 2 2 

(n - l)(n + 2) 
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2. Critical Anomalies 

For many years, the classical equation of state of van der Waals 

has been used to describe the equilibrium behavior of fluid systems. 

Following this equation, three principal , predictions concerning the 

anomalous behavior near the gas-liquid critical point are: 

(i) that the difference between liquid and gas densities 

on the coexistence curve follows a square-root law, 

= B(T - T)
1

/ 2 
c 

(ii) that the isothermal compressibility shows a divergence 

as a simple pole along the critical isochore 

(p = p T -+ T+) 
c' c 

(iii) that the specific heat at constant volume along the 

critical isochore shows a discontinuity but not a 

divergence at the critical point 

C (T) 
v 

+ + . 
=c--n-jT-Tj 

c c 

(T >< T ' h wit 
c 

(3) 

(4) 

(5) 

where the constants B, f, C , and D 
c 

can be expressed in terms of the 

van der Waals parameters. Fisher(ll) has indicated that these predic-

tions follow from all other empirical equations of state of classical 

type, e.g., Berthelot, Beattie-Bridgeman, etc., and in fact are a 

direct consequence of the implicit or explicit assumption that the free 
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energy and the pressure can be expanded in a Taylor series in density 

and temperature at the critical· point. 

However, it has been long recognized that these classical pre-

dictions are in conflict with the observed critical anomalies of real 

fluids. Experimental evidence has shown that the density difference 

on the coexistence curve varies approximately as the cube root of the 

temperature difference (T - T) (lZ-l4 ) and that the specific heat at 
c ' 

t t 1 h k d . h i . 1 . (15-18) cons an vo ume s ows a wea 1vergence near t e er tica point • 

In order to describe the critical anomalies of real fluids, it is 

generally assumed that the various properties of the fluid near the 

critical point diverge according to simple power laws, which using 

Fisher's notation(l9) may be expressed as 

f (z) ::::: A z as z -+ o+ 

More precisely this means that 

lim {ln f(z)} = A 
O+ ln z z -+ 

and A is called the critical exponent. It is realized that 

f(z) = FzA is asymptotically valid approaching the critical point. 

Accordingly, the critical anomalies of a fluid similar to the three 

classical predictions, Equations (3)-(5), are described as follows: 

(i) density difference on the coexistence curve 

= B'(T - T)S 
c 

(ii) isothermal compressibility 

(6) 

(7) 

(8) 

(a) on the critical isochore above critical temperature 
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+ (p = p , T + T ) c c 

(b) along the coexistence curve in the one-phase 

region 

= r ' (T - T ) -y ' 
c ' 

(iii) Specific heat at constant volume 

(9) 

(10) 

(a) on the critical isochore above critical temperature 

+ (p = p , T + T ) 
c c 

(b) along the coexistence curve in the one-phase 

region 

(11) 

(12) 

These critical exponents are not completely independent. Rushbrooke( 20) 

showed that thennodynamic considerations impose the following ine-

quality on the exponents 

a' + 2B + y' > 2 (13) 

An analogous inequality 

a I + B(l + o) 2:.. 2 (14) 

has been derived by Griffiths(Zl) and Rushbrooke(ZZ), where o is the 

exponent denoting the pressure behavior along the critical isothenn. 

These inequalities become exact equalities for a fluid obeying a 

classical equation of state . 
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All classical equations of state are based on a model of a 

fluid in which attractive forces betwee~ the molecules have a very 

long range. In fact, the range of attraction in a real fluid is not 

very long and each molecule is strongly influenced by at best a few 

shells of neighboring molecules. As Fisher(ll) pointed out, the 

critical behavior of a fluid may also be studied theoretically from a 

model based on extremely short-range interaction. The most thoroughly 

examined theory of the critical behavior is the simple lattice gas 

model. In this, each molecule occupies a site of a lattice to the 

exclusion of other molecules and interacts, attractively, only with 

nearest-neighbor molecules. T.he lattice gas model is translated <i3 ) 

from the magnetic Ising model for which the numerical results have 

been obtained through a power-series expansion method( 24 , 25) for most 

two-dimensional and three-dimensional lattice structures. Rigorous 

solution for the plane square lattice gas along its critical isochore . 

has been obtained by Onsager( 26). The critical anomalies predicted 

by the lattice gas model depend on its dimensionality. The critical 

exponents found for two-dimensional models( 24 , 26- 29 ) are S = i , 
y = y' = 1 t , and a= a'= 01 (i.e., the specific heat diverges og 

logarithmically), and they satisfy the equality in Equation (13) pre­

cisely. The exponents found for three-dimensional models(3o-34) are 

S = 0.313 ~g:gg~, y = y' = 1.250 + 0.003, a = 0.125 + 0.015, and 

I 0 66 +O .160 ( ) a = log or 0.0 _0 _040 • They verify Equation 13 only within the 

numerical uncertainty. It should be noted that because the repulsive 

core of the interaction between molecules is represented merely by 

exclusion of a single lattice site, the lattict~ gas models have a 
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built-in symmetry with respect to the critical density 

(15) 

Thus, Equation (8) is equivalent to 

= B(T - T)S 
c (16) 

where B = 2B'. 

Previously, Guggenheim(l4) had shown that Equation (16) with 

a = 1/3 described the observed coexistence curve data of a wide range 

of simple fluids quite well. An analysis of the coexistence curve 

data of xenon(35) by Fisher(ll) showed that 8 = 0.345 + 0.015. 

Recently, Sengers et al(36) indicated that one can use Equation (8) 

for both the liquid and gas branches of the coexistence curve: 

f3 
p - Pc = B' (T - T) L 
L L c (17) 

f3 
Pc - PG = B' (T - T) G 

G c 
(18) 

These two equations correspond to the general coexistence curve 

equation with the leading term only, 

(19) 

where "+" refers to the liquid and 11
-

11 to the gas. This equation 

was first postulated by Van Laar<37 ) from classical theory and has 

been recently developed by Green et al(3B) from a generalization of 

the parametric representation for thennodynamic scaling. In fitting 

Equations (17) and (18) to the experimental data< 39) of co
2

, N2o, and 
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CC1F
3

, Sengers et a1< 36) demonstrated that certain symmetry features 

established by Van Laar for the classic.al case seemed to be present in 

real fluids as well, namely B' = B' = B' L G and (3 = (3 = s L G (i.e., 

B1 = -B1 and s1 = S~). Since the law of rectilinear diameter 

(20) 

is quite well obeyed by the experimental data, it is very likely that 

+ + -
B

2 
= B2 , S

2 
= !3 2 = 1 , and there is a near-cancellation of this higher-

order term on forming the difference + p - p (or Thus, the 

asymptotic expression Equation (16) can be fitted over a larger r~nge 

of (T - T) than can Equation (17) or Equation (18). The values of c 

exponent S obtained from the fit to Equation (16) are 

0.3475 ± 0.0006 for co
2

, 0.3482 + 0.0007 for N
2
o, and 

0.354 + 0.007 for CC1F
3 

• In earlier work on argon(g), Sengers(40) 

found that the liquid and gas densities on the coexistence curve could 

be fitted together to the following equation 

I P - P [ 1 + a (T - T) ] I = B (T - 'T) S c c c (21) 

with the exponent S = 0.3621 ± 0.0004 • Using the Lorentz-Lorenz 

relation, Teague(S) has related the refractive index data of argon on 

the coexistence curve to its densities which were analyzed by including 

higher order terms in Equation (16) and varying the value of T c 
over 

a slight range. It was found that, at the minimum standard deviation 

of the fit, the coefficients of the higher order terms no longer make a 

significant contribution to the fit and the exponent S has a value of 
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0.3643 + 0.0066 . 

There are relatively very few experimental studies of the 

isothermal compressibility ~ of fluid near the critical point. An 

analysis of the maximum isothermal compressibility of xenon above 

by Fisher(ll), based on the PVT measurements by Habgood and 

Schneider(4l), indicated that the critical exponent y > 1.1 and, 

T c 

rather uncertainly, y ~ 1.2 -1.3 • Since the maximum of . ~ on an 

isotherm differs from the value of ~ at p = p on the same 
c 

isotherm, the exponent determined from this analysis is not the same 

as that from Equation (9). Recently, from their PVT measurements of 

argon in the critical region, Grigor and Steele(42) have shown that 

the analysis of l<.r on the critical isochore (p = 0.530 gm/cm3) 
c 

above T gave the value of the exponent, y = 1.24 + 0.04 , and those 
c 

of l<.r in the one phase region below T at the condensation and the c 

boiling points gave 

respectively. 

YI = 1.24 + 0.04 
gas and y' = 1.22 ± 0.04, liquid 

Extensive measurements of specific heat at constant volume for 

argon and oxygen along the critical isochore have be·en made by Voronel 

1
(15-18) et a • -- They found that the specific heat could be fitted quite 

well by a logarithmic singularity of the form 

C (T) 
v 

+ + 
= -A- ln j 1- T /T I + c-

c 
(T > T ) 

< c (22) 

This is the same as Equation (11) with a = 0 , or Equation (12) with 

a' = 0. Edwards et a1<43 ) have measured the specific heat of xenon 

along the critical isochore and analyzed their data using Equation (11). 
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A value for the exponent a of about 0.08 was obtained. 

Thus, experimental evidence suggests strongly that the critical 

anomalies of real fluid are nonclassical in nature and analogous to 

those predicted by the lattice gas models. 

A different approach to the analysis of critical anomalies using 

all available data in the critical region instead of data along a pre-

£erred curve (coexistence curve, critical isochore), has been recently 

developed. Widom< 44 ) first suggested that all known critical 

anomalies of real fluids can be properly incorporated by a scaled 

equation of state which has a certain homogeneity or scaling property 

which holds asymptotically as the critical point is approached. Later, 

GriffithsC
45

)showed that this scaled equation of state is exactly 

equivalent to those proposed for the magnetic Ising model( 46- 48). This 

has the form 

= I 1
0-1 !J.p !J.p h(x) (23) 

where !J.µ = [µ(p,T) - µ(p T)]/(P /p ) is the reduced chemical poten-
c c c 

tial difference along isotherms. h(x) is a function of the scaled 

variable x = !J.T/j!J.pj 1 /B only, which ranges from the value -x on the 
0 

coexistence curve to +x> on the critical isochore. (Here 

!J.T = (T - T ) /T and !J.p = (p - p ) /p are in reduced units.) The c c c c 

main hypotheses underlying this equation of state are that (i) the 

chemical potential µ(p,T) is analytic in the vicinity of critical 

point throughout the entire one-phase region with possible exclusion 

of the phase boundary, and (ii) the chemical potential difference !J.µ 

is antisymmetric with respect to p • c These imply that µ(pc,T) is 
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analytic at all temperatures and 6µ is analytic everywhere, except 

perhaps on the phase boundary. As was shown by Griffith, these hypo-

theses lead to some general conditions which must hold for the function 

h(x), for Equation (23) to be thermodynamically acceptable and to yield 

the critical anomalies consistent with those described by Equations 

(8)-(12) for real fluids. Subsequently, the critical exponent for a 

given property is found to be the same above T 
c 

as below, and the 

inequalities of Equations (13) and (14) are fulfilled as equalities, 

that is, 

y = y' = S(o - 1) (24) 

a = a' = 2 - S(o + 1) (25) 

Recently, Vicentini-Missoni et a1<49 ,5o) showed that Equation --
(23) can successfully describe the observed critical anomalies of a 

number of fluids and ferromagnets, if proper choices are made for 

S, and o • They proposed a closed form for the function h(x) 

h(x) 

T ' c 

(26) 

where E1 and E2 are adjustable constants. This functional form of 

n(x) satisfies most conditions imposed on it except for the higher order 

terms in the series expansion of h(x) for large x • They found that 

Equation (23) with the proposed form for h(x), Equation (26), gave 

good fits to the experimental data in the critical region of co
2 

(l3), 

Xe. ( 4l), and H 4 C5l) · d · f b t +30 f e in a ensity range o a ou _ percent rom 

critical, and the determined values of critical exponents varied only 
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slightly from substance to substance. Two kinds of fit were made; 

one<49) in which B and x 
0 

were assumed to be independently known 

from an analysis of the phase boundary (Equation (16)), determining 

the rest of the four parameters by linear least-squares method; and 

the other(SO) simultaneously determining all six parameters by non-

linear least-squares method. In general, there were no significant 

differences in the parameters determined by the two methods. The 

critical exponents are found to be: 

B = 0.355, y = 1.24 · for He4 ; and 

B = 0.350, y = 1.26 for Xe; 

B = 0.352, y = 1.22 for co2• 



-14-

I I. APPARATUS 

The method of angle of minimum deviation has been used to 

measure the refractive index of fluid argon near critical state for 

ANa = 5893 R. The measurements were made by introducing the sample 

of argon in a prism-shaped cell on the table of a spectrometer. A 

sodium lamp was used as the light source and the angle of minimum 

deviation, the temperature, and the pressure were measured. The 

refractive indices were obtained by the following relation(SZ): 

n =sin t<A+D) I sin~ A 

where A is the apex angle between the prism faces of the cell. 

(27) 

The apparatus has been described previously(6 ,S,S 3), Several 

modifications and refinements have been made to improve the accuracy 

of measurements and the stability of control systems, which grow in 

importance near the critical state of the fluid studied. 
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1. Optics 

The set-up of the optical system involving the cell, cryostat, 

and spectrometer, shown in Figure 1, is the same as described by 

Teague<54>. The general procedure for the adjustments of spectrometer 

given by Houston(52) was followed. In order to check and adjust the 

position of the cell after it has been enclosed in the cryostat, a new 

small mirror was mounted on one of the outside edges of the cell. 

Details of this operation are described in Appendix A. 

The apex angle of the cell, A , was determined at room tempera-

ture both by the direct reflection method and by calibration with· 

water. Details of this determination and experimental results are 

also given in Appendix A. The final value of A used to calculate 

the refractive index for all measurements is 44° 16.14' + 0.31' , 

which is less than the value 44° 18.57' determined by Teague(S) for 

the same cell. 

An improved procedure to use the spectrometer for measuring 

angles with better accuracy was established and discussed in Appendix 

B. The experimental uncertainty in determining the angle of minimum 

deviation, D absolute, was estimated to be +0.09 minutes of arc. 

Since the cell was seated inside the cryostat which was 

-4 evacuated to a vacuum lower than 10 mm Hg during the measurement, the 

refractive index measured was the true refractive index and not rela-

tive to air. However, two small errors could occur. The first could 

be caused by the possibly imperfect parallelism of both faces of all 

the windows, and the other by the two outermost cryostat windows being 
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not exactly parallel to each other and f onning a small angle prism 

between the air outside and the vacuum inside. These errors are 

reduced significantly, if µot completely, by taking the instrument 

zero reading of the spectrometer for the evacuated cell seated inside 

the cryostat with the same al~gnment of all windows as for the filled 

cell . 
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2. Temperature 

The temperature measurement and 'control systems were much the 

same as described by Abbiss( 6) and Teague<54). 

A copper-constantan thermocouple attached to the inner shield 

was used to measure and control the shield temperature which was set 

2 to 3 degrees below the temperature at which the cell was to be con­

trolled . For the range of temperature studied, 145 to 163°K, it was 

found that the liquid nitrogen jacket used as the uniform heat sink 

needed only to be kept filled to a depth much less than l" as stated . 

before<54), and a controlled current of 0.1 ampere was sufficient. for 

the 12.5 ohms shield heater to maintain a stable shield temperature. 

A miniature platinum resistance thermometer, No. 4 in the 

series discussed by Knobler< 55) and Honeywell(56), was used to measure 

and control the temperature of the cell . It has an ice point 

(273.15°K) resistance of 100.04718 ohms and has been calibrated< 55) 

against an NBS certified strain free platinum resistance thermometer 

over the range of 75 to 300°K with an accuracy of +0.005°K. The 

miniature thermometer was embedded in a groove at the back edge of 

the cell and held in place by Wood's metal. An aluminum foil radia-

tion shield was placed over the thermometer to eliminate the radiation 

loss from the ends that extended past the edge of the cell. 

For the early runs of isotherms higher than 151°K, the conven­

tional measuring method< 54) using two potentiometers was employed. 

The current through the thermometer was determined from the potential 

drop across a 10 ohm. reference · stap.dard :resistor by a _ Leeds and _ 
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Northrup K-6 potentiometer. The potential drop across the thermometer 

corresponding to the desired resistance was set on a second Leeds and 

Northrup Wenner potentiometer. The difference in potentials between 

the thennometer and the Wenner was fed to the DC amplifier-controller 

system which supplied the necessary current, 0.005 to 0.010 amperes, 

to the cell heater and controlled the cell temperature within 

±0.001°K. 

The refractive index of the fluid near critical isothenn' 

changes very rapidly with temperature. In order to have the cell 

temperature stable within +0.001°K, it is necessary that both the 

potentiometers and the thermometer power supplies be sufficiently 

stable between standardizations and measurements. However, in prac­

tice, the complete cycle of standardizations and measurements cannot 

keep up with the normal small drift of the batteries used for power 

supplies of the circuits. 

An improved measuring method was established and is shown in 

Figure 2. It was similar to that described by Daneman and Mergner(Sl) 

and only required that the ratio of the currents, not each one 

individually, in the potentiometer and thermometer circuits be stable. 

Since the control circuit must be constantly connected for stable 

temperature control, to avoid short circui~modification was made by 

adding a 300 mfd oil-filled capacitor in which both poles were 

switched alternately to the standard resistor leads of the thennometer 

circuit and the standard cell terminals of Wenner potentiometer. A 

reference standard resistor, STD n1 , of 1000.04 ohms (at 2s0 c) was 

used in place of the original 10 ohms one. 
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At the beginning of each run, the thermometer circuit current 

was set within 0.3% of 0.001 amperes, the current used in the cali-

bration of thermometer. The current used in the Wenner potentiometer 

was standardized by balancing the potential drop across its standard 

cell terminals, set at 1.01926 volts, with the one across the STD n1 

in the thermometer circuit through the use of the capacitor. A Leeds 

and Northrup 2284C High Sensitivity Galvanometer was used as the null 

detector in capacitor circuit. During the optical measurements the 

change of current in the thermometer circuit was compensated for by 

restandardizing the potentiometer current in the same fashion as 

before. This restored the ratio of the currents in two circuits and 

kept the ratio Rt/STD n1 equal to Rw/STD n2 which stayed constant 

with fixed dial settings on the potentiometer and equal to 

E /1.01926 for the specified standard potentiometer current. 
w 

Although the thermometer calibration(SS) is considered accurate 

to +0.005°K, additional uncertainty was introduced by the comparison 

of the two potentiometers as required in the old conventional measur-

ing method. A total absolute uncertainty of +0.015°K is claimed for 

the temperature measured. For the improved method, since only one 

potentiometer was used and the uncertainty introduced by restoring the 

ratio of currents in two circuits was small, the temperature measure-

ment is considered to be accurate within +0.010°K. 

To prevent the possible freezing of the sample fluid in the 

inlet line, a current of 0.01 amperes was constantly supplied to the 

inlet heater placed on the inlet line above the inner shield chamber. 

The sample inlet line inside the shield chamber was coiled above the 
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cell to minimize heat conduction along the line to the cell. In 

addition, a new 10 ohm electrical heateF was wound around the middle 

section of the coiled line and supplied by a constant current of 

0.01 amperes to compensate the radiation and convection heat loss from 

the line to the shield. Two copper-constantan thermocouples, one 

placed at the midsection of the coiled line and the other just above 

the cell, were used to monitor the temperature. All the wires from 

inside the inner shield chamber were coiled above the cell and 

anchored to the top of the shield chamber to minimize the heat flow 

along the wires. Lucite plugs in an Edwards fitting were used to 

bring the wires out of the vacuum chamber. 

The external control circuits for both the shield and the cell 

temperature control consisted of the same type commercial Leeds and 

Northrup components: #9835B DC amplifier, Speedomax G recorder, 

Series 60 C.A.T. control unit, and a self-saturating reactor power 

package. Under most operating conditions, only proportional control 

was used. In order to limit the control current through the shield 

and the cell heaters and operate the control unit power package in the 

linear response range, external power dissipation resistors were added 

to the control circuits . The power supplies for the inlet and the 

coiled line heaters were commercial 6-volt dry batteries connected 

with a decade resistor box for current adjustment. 
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3. Pressure 

For the first three runs, Run III, IV and V, the pressure of the 

sample fluid in the cell was measured with a Texas Instruments Model 141 

precision pressure gauge connected directly to the sample line, The 

gauge containing a stainless steel Bourdon tube with a maximum pressure 

range of 5000 psi had been calibrated between 240 to 1500 psi with a 

Hart balance dead weight tester. The details of the calibration and 

the experimental data are given in Appendix C. The overall limits of 

accuracy placed on the pressure measurement by the gauge were +0.3 psi. 

As the temperature of the sample fluid approaches the crit~cal 

isotherm, higher sensitivity and precision on the pressure measurement 

and control are required for maintaining a stable thermodynamical 

state of the sample fluid in the cell . The pressure was then measured 

directly with the Hart balance dead weight tester, as shown in the 

schematic diagram of Figure 3. 

A model P3D differential pressure transducer made by Pace 

Engineering Company, North Hollywood and containing a magnetic stain­

less steel diaphragm of +O.l psi range was used as a null detector 

between the oil pressure measured by the Hart balance and the sample 

gas pressure. The pressure transducer operates on the variable reluc­

tance principle . Pressure difference across the diaphragm resulted in 

proportional deflection and consequent change in the inductance ratio 

between two pickoff coils embedded in the cases on either side of the 

diaphragm. A model CDlO miniature carrier-demodulator made by Pace 

Engineering Company was used to pick up the inductance ratio change and 
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convert it to a DC output displayed on a microampere meter. The zero 

of the whole null detecting system was established by venting both 

sides of transducer to the atmosphere. The sensitivity of the system 

was tested with a known water head pressure on gas side and adjusted 

to be 0.015 psi per division on the microampere meter. The repro­

ducibility of the null position effected by the hysteresis of the 

diaphragm and the instability of the demodulator was found to be 0.03 

psi by alternately overpressuring 50 psi on either side of diaphragm 

and then venting both sides to the atmosphere. 

The principle of operation of the Hart balance dead weight 

tester is based on the use of a differential piston loaded by known 

weights to produce an oil pressure which can be calculated from the 

constants of the instrument . The piston is placed in a very closely 

fitted cylinder to form the pressure chamber which is connected to a 

pressure bench by a steel capillary inlet. In order to eliminate the 

vertical friction between the piston and the wall of the cylinder, 

the piston must be kept rotating. The original rotating mechanism 

consists of an electric motor and a belt and pulley system which 

drives a claw connected to the axle coupled to the top end of the 

cylinder. To eliminate the possible small vertical forces associated 

with the drive linkage, the rotating mechanism must be disengaged for 

each final pressure reading. Modification has been made by replacing 

the original mechanism with a small motor and belt system which drives 

the claw directly at a lower rotating speed of 30 to 40 rpm. No 

pressure difference between engaging and disengaging the new rotating 
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mechanism can be sensed by the transducer null detecting system. 

Therefore a precise oil pressure can b~ maintained constantly without 

interruption by disengaging the rotating mechanism. 

For this study, a piston with a calibrated effective area of 

0.31096 + 0.00002 square inches at 20°c was used in the balance. The 

weights had been calibrated and converted into the mass figures which 

represented true masses minus the mass of the displaced air volumes. 

The calibrations were done for·a standard piston height in the 

measuring cylinder and a fixed static head of oil acting upon the 

underside of the lower end of the weight axle. In calculating the oil 

pressure, deviations from the above have been taken into account and 

a correction factor for local gravity has been applied. 

The absolute pressure on the sample fluid at the center of the 

cell was obtained from the sum of (1) oil pressure measured on the 

balance, (2) hydrostatic oil head from the piston inlet to the 

diaphragm, (3) gas head from the diaphragm to the cell, and, finally, 

(4) the barometric pressure measured with a Princo Fortin barometer. 

The final pressures were then reported in atmospheres. 

The reproducibility of the pressure measurement is that of the 

Hart balance, 1 in 20,000, except for a few measurements below 600 psig 

in which the reproducibility is limited to that of the null detecting 

system, + 0.03 psi. The absolute accuracy of the pressure measurement 

is that of the Hart balance, 1 in 10,000. 

Since the argon sample cylinder used only gave a pressure of 

650 psia at 70°F, the sample was first condensed in a cold trap at 

liquid nitrogen temperature and then wanned to room temperature to 
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higher pressure indicated by the Bourdon gauge as shown in Figure 3. 

Next, the sample was added to the system through a needle valve E and 

the approximate pressure was read on the· Texas Instrument pressure 

gauge. Simultaneously the oil pressure was increased with valve A closed 

using valve C (away from closed position) as a volume-displacement in­

tensifier. Great care was taken to prevent overpressure on either side 

of the diaphragm in the transducer by increasing the pressure on both 

sides very slowly and keeping them nearly equal as indicated by the 

.microampere meter close to the null position. After the desired sample 

pressure was reached, valve E was closed. The pressure balance with the 

weights corresponding to the same pressure was pressurized by the oil 

injector. The Heise gauge was employed to monitor the approximate oil 

pressure during the loading. Valve A was then opened and fine adjust­

ment of the oil pressure was made with the small weights on the pressure 

balance. During the optical measurement the pressure balance with the 

fixed weights remained connected to the oil line and provided a constant 

pressure against which the sample pressure was balanced. Since a portion 

of sample inlet line is exposed to the room temperature which may have 

small fluctuations, small variation of sample pressure may occur. Valve 

D on the sample inlet line was used (away from the closed position) as a 

small volume-displacement plunger and manually adjusted to control the 

sample pressure in balance with the constant oil pressure. 

To prevent possible accidental overpressure in the cell, a burst­

ing disc of type G made by Hoke Manufacturing Company was connected to 

the sample inlet line for safety purposes. The pressure at which the 

disc will blow out is 1800 psig. 
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4. Sample 

The argon sample used in this study was "research grade" argon 

obtained from the Linde Division of Union Carbide Corporation, which 

supplied a batch analysis for the sample showing less than 20 ppm 

impurities. 

To insure the integrity of the sample in the cell, the sample 

inlet lines were checked initially for leakage with a model MS-8 leak 

detector · made by Vacuum-Electro'nic Engineering Company, New York. 

Within the sensitivity of the detector, 1-2 ppm, there was no detect-

·able leakage found in the lines. At the beginning of each experimental 

run the sample lines were evacuated with a vacuum pump and then purged 

by alternately filling to above atmospheric pressure with the sample 

and evacuating . After purging, the lines were evacuated to a vacuum 

-3 of 1 x 10 mm Hg and then closed to the vacuum pump to check any 

leakage which might have developed due to high pressurization in the 

lines from the previous run. If the pressure in the closed lines did 

-3 ·. not rise to more than 4 or 5 x 10 mm Hg in one minute, it was consid-

ered that the poorer vacuum was a result of reaching a static pressure · 

within the lines and that no significant leakage had developed. The 

sample lines were immediately filled to above atmospheric pressure so 

that the contamination would be unlikely if small undetectable leaks 

had developed. For the same· purpose, the lines were also maintained 

under a pressure above the atmosphere after each run. 

Several attempts were made to analyze the argon sample with a 

mass spectrometer. The samples were collected from the inlet lines 
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into a glass bulb which had been evacuated and purged with the sample. 

The analysis of the sample showed about. 0.1% or 1000 ppm impurities, 

mostly air. This may be attributed to the residual air absorbed on 

the glass of the sample bulb or to contamination by the mass spectra-

meter. 
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III. EXPERIMENTAL PROCEDURE AND DATA 

The inner and outer chambers of the cryostat were evacuated 

-3 to below 10 mm Hg continuously. After the cryostat had been cooled 

down by liquid nitrogen, the level of which was appropriately con-

trolled, the shield heater was used with the L & N control unit to 

maintain the inner shield at 2 to 3 degrees below the temperature of 

the state to be studied. The cell temperature as measured by the 

platinum resistance thermometer was then controlled to the correspond-

ing set potential of the Wenner potentiometer. The instrument zero 

reading on the spectrometer was recorded for the evacuated cell. 

1. Single Phase Isotherms 

The argon sample was admitted to the cell, while the pressure 

was measured approximately by the T.I. pressure gauge. Due to the 

compression of the sample in the cell, the temperature would first 

increase. After the temperature was restored automatically by the 

control system, the sample pressure decreased. To reach the desired 

sample pressure, several fillings were needed. With the temperature 

under control, the sample pressure was found to vary slightly due to 

the portion of inlet line exposed to the room temperature . Valve D 

(shown in Figure 3) was manually adjusted to control the sample 

pressure in balance with the constant oil pressure which was measured 

with the Hart balance dead weight tester. The angle of minimum 

deviation was then measured in a time interval of 10 to 15 minutes, 

while both the cell temperature and the sample pressure were held con-

stant and the refracted light image was sharp and distinct. 
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On each isotherm, 8 to 12 data points were measured in the 

manner described above. It is desirabie to have the measurements of 

the angle of minimum deviation evenly spaced, however, this is not 

readily achieved experimentally. The pressure was increased in such 

a way that the angle measurements were also increased by approximately 

10 to 20 minutes of arc. For the isotherms of higher temperature, the 

compressibility of the sample fluid was small and the angle of minimum 

deviation- did not vary significantly over the pressure range. There-

fore, larger steps in pressure were necessary. As the compressibility 

became larger for the isotherms near the critical temperature, small 

increments in pressure were taken to have the same interval of the 

angle of minimum deviation. 

Fourteen isotherms between 163.004°K and 150.701°K were 

studied • . The experimental data are reported in Table I. As mentioned 

in Section II, the cell temperatures in Run III to Run XX were meas-

ured by the conventional method using two potentiometers and the 

sample pressures in Run III to Run V were measured with the T.I. 

pressure gauge. The improved temperature and pressure measuring 

methods were used in the later runs. 

Only one run was made for each isotherm at 163.004°, 160.003°, 

0 0 156.998 , and 153.923 K • For all other isotherms, at least two runs 

were made at the same temperature. Effort was made to have the first 

data point of each run measured at the same pressure and similarly 

for the last data point. In smoothing the data on each isotherm, the 

experimental data of different runs were plotted on a large-scale 
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graph and a flexible spline was used to draw a single smooth curve 

through the data points. In general, the data of separate runs of the 

same isotherm were consistent with one another. Run VII at 152.018°K 

and Run XX.XI at 152.999°K are two exceptions. In plotting the data 

of these runs, they fall into a separate curve from those of other 

runs at the same temperature. This discrepancy is attributed to pos­

sible errors in the temperature and pressure measurements. The data 

of these runs are excluded in the final results. For similar reasons, 

a few data points of various runs for the isotherm at 151.002°K are 

also excluded. They are indicated by * in Table I. Data points 

indicated by t in Table I are consistent with others of the same 

isotherm, however, they are excluded in the final results for smooth­

ness in the later analysis by cubic spline fit of the data (see Section 

IV.2). 

The effect of small temperature differences on the data of angle 

of minimum deviation became more prominent in approaching the critical 

temperature . For each of the isotherms at 150.899°K, 150 . 799°K, and 

150.751°K, in plotting the data of separate runs of the same isotherm, 

distinct curves can be drawn and shown to differ, in tenns of tem­

perature, by an amount equivalent to approximately 0.006°K. This may 

be attributed to the reproducibility of the temperature measurement. 

The final analysis of these data will be discussed later in Section 

IV.2. Since the compressibility near the critical density on these 

isotherms was very large, slight change on the sample pressure due to 

small fluctuations of oil pressure on the Hart balance and the 

bar ometric pressure caused a very large variation on the measurement 
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of angle of minimum deviation. The states for the middle data points 

on these isotherms were less stable than the others. The refractive 

light images, although still distinct, showed slight broadening. 

Larger experimental uncertainties on the angle measurements were 

observed for these data points. 

The data of Run XXIX at 150.701°K were single phase at lower 

and higher pressures, but coexisting gas and liquid phases were 

observed. at one pressure. This indicates that the critical temperature 

0 0 is above this temperature, 150.701 K, and below 150.751 K, the tempera-

ture of the last completely single phase isotherm. 
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2. Coexisting Gas-Liquid States 

The cell was filled with argon S9-mple fluid until the gas-liquid 

interface appeared at the center. The vapor pressure data of argon 

reported by Levelt(9) were used to check approximately the sample 

pressure in the cell as indicated by the T.I. pressure gauge. Over a 

_.,period of one or two hours when the cell temperature was controlled 

constant to +0.001°K, the relative amounts of gas and liquid phases in 

the cell changed as they approached thermal equilibrium. Small 

adjustments on the total amount of the sample in the cell were then 

made so that the gas-liquid interface reappeared at the center of the 

cell. The measurements of the angles of minimum deviation for both 

phases were recorded in an interval of one hour while the following 

criteria of equilibrium and homogeneity for the sample in the cell 

were held: (1) the cell temperature was held constant within +0.001°K, 

(2) the relative amounts of the two phases did not change (i.e., the 

interface stayed at the center of cell), (3) the light images refracted 

from the two phases were both sharp and distinct. The vapor pressure 

of the sample was then measured with the Hart balance dead weight 

tester . Measurements in this manner were carried out from 148.51°K to 

150.72°K in five experimental runs and recorded in Table II. At the 

beginning of Run 1, several readi~gs of instrument zero V , as well 
0 

as v
1 

and v
2 

(see Appendix B) were taken on the spectrometer and the 

averages of the readings were fixed and used throughout the subsequent 

runs. Relative errors in the measured angles of minimum deviation D 

were estimated from the uncertainty in the readings V (see Appendix 

B). 



-32-

At 148.513°K, which is about two degrees below the critical 

temperature, the temperature stability and the equilibrium conditions 

of the sample fluid in the cell were obtained without much difficulty. 

The measurements at this temperature were repeated as the first data 

point of each run to check the consistency in the reproducibilities of 

the temperature, pressure, and optical measurements and the integrity 

of the sample fluid in the cell. From the data recorded, no 

systematic errors could be noted. 

As the critical temperature is approached, small fluctuations 

in temperature can cause large changes of phase of the fluid in the 

cell and can decrease the stability of the system. In order to 

achieve the same stability in control as before, the temperature dif-

ference between the cell and the shield was decreased. This decreased 

the heat loss from the cell to the shield and caused the cell to 

respond more slowly and stably. At the same time the current in the 

coiled line heater was increased to prevent the condensation of the 

sample fluid along the coiled inlet line inside the inner shield. 

Near the critical state of the sample fluid, the refracted 

light images seen in the viewing telescope of the spectrometer became 

broad and indistinct, and the measurements of angle of minimum devia-

tion had larger uncertainties. It is felt that this was due to 

density gradients in the cell, which would be caused by even a very 

small fluctuation of temperature. For the measurements at 150.658°K 

and 150.675°K in Run 4 , the refracted light images showed slight 

broadening but were still quite distinct along the edges. For the 

0 measurement at 150.711 K, although a clear interface between the two 
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coexisting phase could still be seen at the center of the cell, the 

light images were much broader and less distinct. 

Run 5 of the coexisting gas-liquid states and Run :XXIX of the 

0 single phase isotherm at 150.701 K were both part of a continuous 

operation. In Run 5, the first data point of coexisting gas-liquid 

state gave the value of angle of minimum deviation for the gas phase 

only, since there was very little liquid present in the cell. For 

the next data point, great care was taken with true equilibrium con-

ditions in the cell. The angle measurements for both phases were 

recorded over a period of half an hour while the gas-liquid interface 

stayed at the center of the cell. Next, the cell temperature was 

increased to 150.720°K. Great difficulty was encountered in maintain-

ing stable conditions in the cell. Very broad and indistinct light 

images were observed in the viewing telescope. The two images would 

alternately increase or decrease in brightness (sometimes simultane-

ously) and there were also instances when there were no visible 

images. This phenomenon is very close to what occurs in the critical 

opalescence. The final angle measurements were recorded over a short 

period of 10 minutes when both images were bright and the relative 

amounts of two phases in the cell did not change appreciably. Larger 

experimental uncertainties were observed for these measurements. 

Under the same conditions and several hours later, the same measurements 

0 at this temperature, 150.720 K, were repeated to check their reproduci-

bility. Then, the cell temperature was decreased to 150.701°K. The 

angle measurements for the coexisting phases were made after the 



-34-

equilibrium was reached. The reproducibility of the measurements at 

0 0 150.701 K was better than that at 150.720 K. 
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3. Comparison of Data 

0 For coexisting gas-liquid states above 150 K, the data of 

angles of minimum deviation versus temperature, recorded in Table II, 

are plotted and shown in Figure 4. For the purpose of comparison, the 

data in the same region measured by Teague< 54 ) are also plotted in 

Figure 4. The experimental uncertainties in the temperature measure-

ments are shown by error bands for the representative points . The 

uncertainties in the angles are too small to be represented on the 

plotting scale used. In terms of temperature differences, the data 

from the present study are in general 0 . 02°K higher than those 

obtained by Teague<54 ) for the corresponding angle of minimum deviation. 

If the temperature error bands are taken into account for both sets of 

data , they agree within the uncertainty limit . It is felt that the 

data from the present study are more accurate, since the temperature 

and angle measuring methods have been improved (see Section II.3 and 

Appendix B). 

0 
For single phase fluid states , the data of Run III at 163. 004 K, 

listed in Table I , are plotted in Figure 5 and compared with the data 

0 (54) at 163 . 156 K reported by Teague • The experimental error bands of 

the angles of minimum deviation and the pressures are too small to be 

represented on the plotting scale used. A smooth curve is fitted 

through the data points of Run III at 163.004°K. In terms of the tem-

perature difference, the correspondence between the two sets of data is 

relatively good. 
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IV. RESULTS AND ANALYSES 

1. Refractive Index 

The values of refractive indices were computed by using 

Equation (27), 

n = 
1 

sin z(A+ D) 

. 1 A sin 2 

where D is the measured angle of minimum deviation recorded in 

(27) 

Tables I and II, and A is the apex angle between the prism faces of 

the cell. The value of A used was 44°16.14' + 0.31', which was 

determined by calibration with water (see Appendix A). This value 

differs from that reported by Teague(8), 44°18.57' ± 0.41', for the 

same cell. It is felt that this new value of A is more accurate, 

since the methods of measuring the angle and the temperature have been 

improved. This discrepancy in the value of A produces deviations in 

the refractive index ranging from a minimum of 0.0000232 at D = 72.28' 

to 0.001121 at D= 348.92'. 

· From the experimental uncertainties in angle A , ± 0.31' , 

and in angle D, + 0.09', the errors in refractive index n can be 

calculated from the equation, 

sin 1 D cos 1(A+ D) 
C1 = ---2-1-- OA + 1 

n 2 sin 2 A 2 sin 2 A 
(28) 

The error ranges from a minimum of 0. 0000354 at D = 72. 28' to 

0.0000475 at D= 348.92 1
• 
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The computed values of refractive indices for the coexisting 

gas-liquid states are tabulated in Table III, and plotted versus tem­

perature in Figure 6. At the state 148.513°K, the refractive indices 

shown are the averages of the measurements made during different runs. 

The refractive indices tabulated for the state 150.701°K and 150.720°K 

are averages of the repeated measurements made during Run 5. The 

errors in refractive indices for each state, as calculated from 

Equation (28), are also tabulated in Table III. 

The computed values of refractive indices for single-phase 

states along each isotherm are listed in Table IV. Figure 7 shows 

the results of refractive indices versus pressures for isotherms from 

163.004°K to 152.018°K. Figure 8 shows the similar results for iso­

therms from 151.509°K to 150.701°K. For those isotherms with multiple 

runs, as mentioned in Section III, effort was made to have the first 

data point of each run of the same isotherm measured at the same pres-

sure. The average of the results of these measurements is listed as 

the first entry of the isotherm shown in Table IV. The succeeding 

entries are shown in the order of increasing pressure by combining the 

results of separate runs. (The data points indicated by * in Table 

I are excluded.) The last entry of the isotherm is obtained in a 

manner similar to the first one. For isotherms at 150.899°K, 

0 0 150.799 K, and 150.751 K, the results of separate runs are listed 

separately as Set I, II, and III of each isotherm. 
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2 . Isothermal Compressibility 

Based on Equation (2), the isothermal compressibility KT can 

be computed from the refractive index n and its pressure derivative 

(an/aP)T. Since the experimentally measured quantity is the angle of 

minimum deviation D , it is advisable to calculate (an/aP)T from 

the following relation 

= (29) 

where (an/aP)T can be estimated directly from the experimental data. 

Using Equations (2)' (27), and (29), ~ may be expressed as follows: 

F(A,D) 
an 

(30) ~ = (ap-)T 

where 

F(A,D) 
3(1 - cos A) sin(A+D) 

= [cos A - cos (A+D)] [ 3 - cos (A+D) - 2 cos A] 

The method used for estimating the derivative (an/aP)T is 

k b . l' f' (SS) h' h . h . 1 1 f th nown as cu ic sp ine it w ic is t e numerica ana ague o e 

"draftsman's" spline with the personal bias eliminated. The method 

consists of joining the data points by sections of cubics, requiring 

that the slopes and curvature be continuous at the junction points. 

The details of the algorithm are discussed in Appendix D. As a result 

of relaxing the overall requirement of analyticity, the quality of 

derivatives obtained from this method is superior to that from poly-

nomial interpolation. 



-39-

The decision was made to fit the experimental data in the form 

of pressure versus angle D • This facilitates the direct interpola-

tion of from the value of D 
c This will be dis-

cussed in some detail in Section IV.6. For the smoothness of the 

fit, points indicated by t in Table I were not included in the fit 

and thereby not listed in Table IV. The effect of errors in the 

experimental data on the smoothness of the fit becomes more prominent 

when the critical temperature is approached. For the isotherm at 

150.899°K, separate fits for the three sets of data give comparable 

results. For the isotherm at 150.799°K, the derivatives of the middle 

points obtained from the fit of data set I are negative and physically 

insignificant. Similar results are obtained from the fits for the two 

sets of data at 150.751°K. However, by including an additional point 

interpolated from a graph of angle D versus pressure, the fit of set 

II at 150.751°K yields reasonable derivatives and isothermal compres-

sibilities for all data points. 

The estimated value of (an/aP)T and the values of ~ subse­

quently computed from Equation (30) are listed in Table IV. Figures 9 

and 10 show the isothermal compressibilities along the is.otherms 

152-163°K and 150. 75-151.5°K, respectively. For each of the isotherms 

0 0 0 at 150.899 K, 150.799 K, and 150.751 K, only data set II are shown in 

Figure 10 and used in the later analyses. No isothermal compressibility 

0 was computed along the isotherm at 150.701 Kt since there will be no 

analysis of isothermal compressibility below the critical temperature. 

The errors in (an/aP) obtained above cannot be ascertained 

easily. Comparisons have been made of these values of (an/aP)T and 
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those estirnated · visually from a graph of angle D versus pressure. In 

general, they differ by about 5-10% as is shown in Table V for selected 

isotherms. The error in (an/aP)T is considered to be +5% of the 

value of (an/aP)T • The error in ~ is estimated to be 

a~ = ±0.05 ~ , and is due mostly to the error in (an/aP)T since 

F(A,D) in Equation (30) can be established with a relatively high 

accuracy. 
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3. Data Weighting and Least Squares Fit Technique 

To analyze the experimental data· describing the critical 

anomalies, it is necessary to assign proper weights to the data to 

allow for the increasing experimental errors as the critical state is 

approached. Moreover, since analyses were made by fitting the data to 

the equations in terms of differences, e.g., T - T , etc· , with the same 
c 

experimental errors in the measured quantities p (or n) and T , the 

data points closer to the critical state will have larger errors in 

the differences p - p and T - T , and corresponding lower weights c c 

in the fit. 

There are three independent sources of experimental error: 

those in the refractive index, the temperature, and the pressure meas-

urements. As indicated in Section IV.l, the error in refractive index 

cr is calculated from the experimental uncertainties in angle A and 
n 

in angle D using Equation (28). The temperature error crT from one 

isotherm to another is the 'precision of the temperature measurement, 

0 + 0 . 010 K. The pressure error crp is 1 in 10,000, or + 0.01% P. 

In using Lorentz-Lorenz relation Equation (1) to relate the 

refractive index to the density, it is convenient to define a grouping 

2 2 ¢ = (n -1)/(n +2) • The error in ¢ due to the error in n is given 

by the following expression 

cr 
n 

(31) 

In the fits performed in the succeeding sections, various functions of 

the measured quantities are used. Variances of measured quantities are 
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obtained as the squares of the respective experimental errors, and are 

combined to give the final variance of the function used in the fit. 

The weight attributed to the function in the fit is the inverse of the 

final variance. In general, the equations to be fitted, e.g., Equations 

(8), (9), and (23), etc., are transformed into the logarithmic forms 

to facilitate ,the use of linear least-squares fit method . Care is 

taken in assigning the proper weights to the new functions in the 

logarithmic form. 

The linear least-squares fit technique developed by Williamson<59) 

is used in the analyses throughout this study. In this method, not 

only the error in the dependent variable, but also the erro.r in the 

independent variable is taken into account in the fitting. The latter 

. f 1 k d d . (36,49,50) d "b is o ten over oo e an sometimes assume to contri ute as a 

part of the former according to the form of the fitted equation . A few 

analyses were made using the nonlinear least-squares fit technique 

developed by Marquardt(60) and the method of linear regression 

analysis(6l), in neither of which weight assignment was carried out . 
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4. Rectilinear Diameter Analysis 

As discussed in Section 1.1, for practical purposes the 

Lorentz-Lorenz relation can be used to relate the refractive index to 

the density. Thus, the law of rectilinear diameter (Equation (19)) 

can be rewritten into the following form: 

or written as 

where 

¢ - dT 
0 

2 2 
¢1 = [(n - l)/(n + 2)] 1 . "d and iqui 

(32) 

(33) 

computed from the experimental values of n
1 

and nG , respectively. 

The weight attributed to (¢
1
+ ¢G)/2 or ¢' was found to be 

2 2 
4/(cr¢

1
+ cr¢G) , where a¢

1 
and a<PG were calculated from Equation (31) . 

The results of the fit to Equation (33) are presented in Table V and 

in Figure 11. The estimated error in ¢ for each point is also shown 

in Figure 11. The in T 0 is smaller than the plot-error ' aT = 0.01 K, 

ting symbol on the graph and is not shown. The fitted line fits essen-

tially all the data points within their experimental errors. The value 

of ¢ at the cr itical point ¢ may be obtained by extrapolating this 
c 

line to the best value of T to be determined in the next section . 
c 

A cur ve diameter expressed by the following equation 

(pL + pG)/2 = p + d (T - T)l-a' 
c cd c (34) 

has been recently found by Widom and Rowlinson( 6Z) in a certain con-

tinuum model which has an underlying symmetry closely analogous to 
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that of the lattice gas. It is noted that this diameter has a 

singularity comparable with that in the. specific heat C (T) (Equation 
v 

(12)). Using Equation (1), it follows from Equation (34) that 

(35) 

The same experimental data used above were fitted to Equation (35) 

with a variety of values of a' . The standard deviation of the fit 

passes through a minimum at a' = -0.09, as shown in Figure 12. 

Although Sengers et a1< 36) indicated that slightly negative values of 

a' are favored in the similar analysis using the data of co2 , N29, 

and CC1F3 , the value of a' from the present study is contrary to the 

general finding(lS-lB; 43 >, 0 < a' < 0.1 from the specific heat 

analyses. 
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5. Determination of Exponent S on the Coexistence Curve 

Using the Lorentz-Lorenz relation, equation (16) can be 

expressed in the following form 

(36) 

or 

(37) 

The experimental data of ¢1 and _ ¢G listed in Table VI were used to 

fit to Equation (37). The weights assigned to the functions 

were 2 2 2 
(¢L- ¢G) /(o¢L+ 0¢G) and ln(¢1- ¢G) and ln(Tc- T) 

(Tc- T) 2/ai , respectively . Linear least squares fits of Equation (37) 

were carried out for a sequence of assumed values of T 
c 

The best 

fit is obtained when the standard deviation of the data from the fitted 

equation reaches a minimum. The final results of the best fit are 

shown in Table VII and Figure 13 . The deviations of the experimental 

values of ln(¢1- ¢G) from the calculated values are shown in Figure 

14. In these figures, the estimated errors of the data points are 

shown by error bands . Where the error bands are not shown explicitly , 

they are smaller than the plotting symbols used . 

In a similar manner, the same experimental data of ¢
1 

and ¢G 

were used separately to fit the following equations 

. (38) 

(39) 

which were transformed from Equations (17) and (18) . Here the values 
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of ¢c for various assumed values of T used in the fits were com­
e 

puted from the fitted line of rectilin~ar diameter, i.e., Equation 

(33). The weights assigned to ln(¢L- ¢C) and 

2 2 2 2 
(¢L- ¢c) /cr¢L and (¢C- ¢G) /cr¢c' respectively. The coefficients 

obtained from the best fits to Equations (38) and (39) are presented 

in Table VIII. They do not agree with those obtained from the fit to 

Equation (37), which are included in Table VIII. Comparison of the 

values of 13 shows that Using the same value of T 
c 

· 150.725°K, as determined from the fit to Equation (37), the coeffi-

cients obtained for the fits to Equations (38) and (39) are also pre-

sented in Table VIII. The discrepancy of the values of 13 reduces 

slightly. 

The above results seem to indicate that the higher order terms 

in the general coexistence curve equation (Equation (8)) and the cor-

rection terms in the Lorentz-Lorenz relation (Equation (1)) might be 

significant . Since the available method for resolving the signifi-

cance of the higher order terms is that of linear regression analysis 

which is not suitablefor use with an equation such as Equation (8), 

Teague(8) has expanded Equation (37) into the following form: 

(40) 

Based on the same data for ¢1 and ¢G used above, the results of 

the fit to Equation (40) for various assumed values of T 
c 

are listed 

in Table IX. It is found that the standard deviation of the data from 

the fitted equation passes through a minimum at 
. 0 . 

T = 150.725 K, where c 
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simultaneously the standard error of 8 reaches its minimum and the 

coefficients of higher order terms no longer contribute to the fit at 

95% confidence level. This finding confirms that obtained by Teague(S). 

Similarly, Equations (38) and (39) can be expanded into the following 

forms: 

With the same finding as above, the best fits to Equation (41) an4 

Equation (42) yield the same values of 0 T , 150.725 K • 
c 

Also, the 

values of 8 obtained agree with that from Equation (40) within 

numerical uncertainty, as shown in Table VIII. Since no data weighting 

can be employed in the present linear regression analysis, the results 

of the fits to Equations (40)-(42) are considered less reliable than 

those from the fits to Equations (37)-(39) with proper data weighting. 

It is felt that the relation SL = BG = 8 -cannot be proved definitely 

from the experimental data of this study. 

The best values of T and 8 are those obtained from the fit 
c 

to Equation (37); namely, T = 150.725°K and 8 = 0.3574 + 0.0027 c 

The value of 8 agrees with that reported by Teague(S), 0.3643±0.0066, 

within numerical uncertainty. Since the accuracy of the temperature 

0 measurement is 0.010 K, the absolute value of T determined should be 
c 

taken as 150.725°K + 0.010°K, which is higher than that obtained by 

Teague(S)," 150.704°K + 0.015°K. This may be attributed to the fact that 
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in this study the temperatures were measured by an improved method 

and, in general, were 0.02°K higher than those measured by Teague for 

the same state (see Section III.3). 
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6. Detennination of Exponent y on the Critical lsochore 

The critical isochore is established by the value of 

2 2 ¢ = (n - l)/(n + 2) at the critical point ~ using the Lorentz­'+' c 

Lorenz relation (Equation (1)). ~ can be computed from the fitted '+'c 

line of rectilinear diameter (Equation (33)). Based on the best value 

of Tc , 150.725°K, as determined in the last section, ¢c was found 

to be 0.0564984, which yielded the values 

D = 242.626 minutes of arc. c Values of 

n = 1.08611 and 
c 45 

D = D c on each 

isotherm were interpolated from the same spline fit of pressure versus 

angle D as performed in Section IV.2. Subsequently, the values. of 

isothermal compressibility ~ were computed using Equation (30) and 

were fitted to Equation (9) in the following logarithmic form 

ln ~ = ln I' - y ln(T - T ) c (43) 

The weights assigned to the functions ln ~ and ln(T -T ) 
c 

were · 

~/(0.05 ~) 2 
and (T -T ) 2 /cr2 , respectively. 

c T The results of the 

least-squares fit are presented in Table X and Figure 15. The value 

of y determined was 1.170 + 0.013. The fitted line passes through 

most of the data points within their experimental uncertainties 

(except for the one nearest to the critical temperature) which are too 

small to show on the scale ·of the figure. 

For a similar reason as was discussed in the last section, 

Equation (43) was modified to include higher order terms 

(44) 
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Using linear regression analysis (unweighted data), the same set of 

~ data used above was fitted to Equation (44). It was found that 

the higher order terms had no significant contributions to the fit at 

95% confidence level . Essentially then, the result is the same as 

having performed a fit to Equation (43) with unweighted data. The 

value of y obtained from this fit was 1.214 + 0.028 • The fitted 

line is also shown in Figure 15. Clearly, the previous fit to 

Equation (43) with weighted data is better and the significance of the 

weighting of data cannot be ignored . 

Since the value of T of 150.725°K, as determined in the last 
c 

section, is reliable to + O.Ol0°K, the effect of variation of T 
c 

as 

a parameter on the fit to Equation .(43) was examined. Least-squares 

fit (weighted data) to Equation (43) were carried out for a sequence of 

assumed values of T 
c 

in the same manner as above for 0 T = 150. 725 K. 
c 

The results are shown in Table XI . The standard deviation of the fit, 

crf. , reaches a minimum at T = 150.731°K, where the value of y is 
it c 

found to be 1.161 + 0.013 which agrees well with that for 

T = 150.725°K within numerical uncertainty. The result of the fit at c 

T = 150.731°K is shown in Figure 16. c 
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7. Maximum Isothermal Compressibility 

Using the scaled equation of state, Equation (23), Widom< 44) 

showed that the locus of the inflection points in the pressure-density 

isotherms, i.e., (a2i>/a
2

p)T = 0, was confined entirely to the region 

p < p • As the critical point is approached, this locus in a tempera­- c 

ture-pressure plane is found to approach the curve 

p - p = -b(T - T ) 2S 
c c (45) 

Later, Sengers(40) indicated that the locus of the maximum compressi-

bility on each isotherm, i.e., (31<.r/ap)T = 0, behaved similarly. It 

follows that the compressibilities along each of these loci have the 

same exponent y as the compressibility along the critical isochore 

as the critical point is approached. 

From the same spline fit of pressure versus angle D as per-

formed on each isotherm in Section IV . 2, the interpolated values of 

(3D/3P)T and ~ at equal intervals of ~D = 2' were computed. The 

angle Dm at which ~ is a maximum was found by using the 5-point 

formula developed by Salzer< 63 ) for finding the argument for which a 

function has a given derivative, and letting the derivative 

(3K.r/3D)T = 0 • Subsequently, the values of n, $, (3D/3P)T, and ~ 

were obtained at this angle D 
m 

and are presented in Table XII. For 

comparison, the values of the maximum of l<.r estimated visually from 

large graphs of Figures 9 and 10 and the relative percentage difference 

from those obtained above numerically are also listed in Table XII. 
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In Figure 17, the temperature and the function along this locus 

of maximum compressibility are plotted. The large scattering of the 

data points is probably due to the inaccuracy inherent in locating 

the maximum. However, it is clear that these points cannot be 

accounted for by a smooth extension of the straight line characterizing 

the rectilinear diameter of coexistence curve, which was determined in 

Section IV.4. The dashed curve in Figure 17, which fits the data 

points reasonably well, was obtained from the least-squares fit to the 

equation 

¢ - ¢ = -b (T - T ) 2S 
c ¢ c 

(46) 

with T = 150.725°K and S = 0.3574. It should be noted that the c 

curve has infinite slope at the critical point. 

The maximum compressibilities obtained by the above numerical 

method were fitted to Equation (43) in the same way as the compressi-

bilities on the critical isochore discussed in the last section. The 

result of the least-squares fits (weighted data) are listed in Table 

XIII. For T = 150.725°K, the exponent y was found to be c 

1.149 + 0.012. However, rhe standard deviation of the fit reaches the 

minimum at 0 
T = 150.738 K where y = 1.131 + 0.013 • 

c 
These values 

of T and y do not agree with those obtained from the analysis of c 

the compressibility on the critical isochore. It is felt that this 

may be attributed to the inaccuracy inherent in the determination of 

maximum compressibility. 
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8. The Scaled Equation of State<44) 

A. Evaluation of the Chemical Potential Difference 6µ 

Using the Lorentz-Lorenz relation (Equation (1)) and the thermo-

dynamic relation 

µ(p,T) - µ(pc,T) (47) 

the reduced chemical potential difference along an isotherm can ·be 

evaluated by the following equation: 

cp P(cj>,T) 

llµ = pc J ~ dP 
c P(cj> ,T) 

c 

(48) 

where · 

and 

To avoid the errors which may occur due to inverse interpolation, 

the integral in Equation (48) is calculated by using the following 

relationship: 

p (<j>) 

f (49) 

p (<j> ) 
c 

The values of cp on each isotherm were calculated from the refractive 

index data presented in Table IV. A cubic spline fit of pressure 
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1 
versus (¢) was then performed. Thus, the integral J P d(__!._) can be 

¢ 

evaluated analytically for each interval between two adjacent data 

points (see Appendix D, Equation (D-11)). The value of ,i, used 'l'c 

in Equations (48)-(49) was 0.0564984, as determined earlier from the 

rectilinear diameter analysis based on T = 150.725°K. c The value 

of P used in Equation (48) was 47.983 atm, obtained from the c 

extrapolation of the vapor pressure data listed in Table III to 

T = 150.725°K. c 

The values of 6µ obtained in this way on each isotherm and 

the corresponding reduced density 6¢ = (¢- ¢ ) /¢ are listed in c c 

Table XIV and shown in Figures 18 and 19. It can be seen that th'e 

antisymmetry of 6µ below and above ¢c assumed by the scaled equa­

tion of state is well satisfied within the range of data shown in 

these figures. Data points listed in Table XIV with 6µ < -0.45 or 

M> < -o·.19 are not shown in Figure 18. The antisymmetry of these 

points cannot be tested for lack of corresponding data above ¢ . c 

However, antisymmetry is assumed for these points because of the good 

agreement obtained in the cases where such a test could be made. 

B. Analyses of the 6µ,6¢ Data 

In Equation (23), the reduced density 6p can be replaced by 

6¢ through the Lorentz-Lorenz relation and the exponent o is 

related to S and y by Equation (24). Thus, Equation (23) can be 

rewritten as 

(50) 
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where the scaled variable x = Using Equation (50) with 

h(x) given by Equation (26), the fit to the experimental 6µ,6~ data 

listed in Table XIV can be made by employing the nonlinear least­

squares technique developed by Marquardt( 60) to determine simultane-

ously the six parameters, E1 , E2• y, 6, Tc' and x 
0 

In this fitting 

an initial guess of the values of parameters must be given. It was 

found that different sets of initial guesses of the parameters con-

verged to slightly different final values but all agreed within their 

standard errors estimated from the fit. The averages of the values 

from the various fits were taken as the most probable values of the 

parameters which are as follows: 

El = 3.902 + 0.068 6 = 0.2746 + 0.0029 

E2 = 0.143 + 0.029 T = 150.651° + 0.037°K c 

x = 0.3259 + 0.0068 y = 1.101 ± 0.007 0 

The value of T determined above contradicts the experimental finding 
c 

of the liquid-gas coexistence states above this temperature. The 

value of 6 is too small compared with other experimental values found 

for argon and most theoretical predictions. It is felt that these 

values for the parameters are somewhat unreliable because of (i) a lack 

of data weighting in the nonlinear least-squares fit and (ii) the 

data all being above 

depend on information below 

T , whereas· the exponent 
c 

T c 

should 

A second approach to the analysis of 6µ,6~ data was then 
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2¢ 2B 
made using B = 0.3574 and x = (BC) i = 0.1836 the values 

0 
¢ c 

determined earlier from the analysis of the coexistence curve in 

Section IV.5. Equations (50) and (26) were combined and rearranged in 

the following form: 

For given values of 

x+x 2B 

T c 

[ 
x+x 2[3] 

1 + E2( xooJ 

and y ' 

x = (-0) 
x 

0 

Equation (51) 

can be computed from the 6µ,6¢ data and fitted to 

by using the linear least-squares technique< 59) with 

(51) 

and 

data weighting. Using propagation of errors, the weights attributed 

to G(x) and X are, respectively, 

= 

and 

= 

x+xo 2 
, <2sx ) 

x 2 t 6µ) 2 
B(x+x )] + 6µ (52) 

0 

(53) 

0.01°/T 
c , cr6¢ = cr¢/¢c with crcp computed from 

Equations (28) and (31), and a A = 2a /P = 4.168 x 10-6 P • The fits 
u}l p C 

were performed for a sequence of assumed values of T 
c 

and y until a 

minimum of standard deviation of the fit was reached. The values of 

parameters obtained at the minimum were 
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E2 = 0.218 + 0.014 
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y 

T 
c · 

1.198 

0 
= 150 .. 720 K 

"Experimental" values of h(x) can be calculated from Equation (50) 

using the experimental 6µ,6¢ data and the fitted values of exponents 

f3 and y . These values can be compared with the "fitted" function 

h(x), Equation (26), using the fitted values of all six parameters. 

These comparisons are made in Figure 20 and yield good agreement. In 

Figure 21 the relative deviation 
x+x 

[h(x)exp't - h(x)fitted] /h(x)exp't 

is plotted versus ln(~~0 ) • 
x 

There appears to be a slightly upward 
0 

trend in this deviation for larger values of 

attributed to the fact that the higher order 

x+x 
(___.:__£) • This may be 

x 
0 

terms in the series 

expansion of the function h(x) given by Equation (26) do not have 

the correct forms at large x • However, internal checks have been 

made by comparing the experimental isothermal compressibility (shown 

in Table IV) with values calculated from the fitted function h(x) 

according to 

(54) 

As shown in Figures 22 to 24 for selected isotherms, the calculated 

values of ~ agree well with the experimental values . 
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V. CONCLUSIONS 

Using refined experimental techniques in the method of angle of 

minimum deviation, the refractive indices of fluid argon near its 

critical state were measured along the coexistence curve and along 

fourteen single phase isotherms from 150.7° to 163°K for ANa =5893R. 

The measurements were carried out to within a few hundredths of a degree 

both below and above the critical temperature. The accuracy of measure-

0 ment was improved and estimated to be ±0.010 K in temperature, ±0.01% in 

pressure, and ±0.00005 in refractive index. Comparison of the measure-

ments along the coexistence curve from the present study with those ob­

tained by Teague( 8) showed consistent discrepancies of 0.02°K in the 

measured temperatures. It is felt that the measurements from the present 

study are more accurat~ since the measuring methods have been improved. 

The measured refractive index data were related to the densities 

b h L L 1 . h. h f . . . . . ( 6' 8) y t e orentz- orenz re ation, w ic rom previous investigations 

had been verified for argon over a wide range of temperature and 

pressure. Consequently, the isothermal compressibilities along the 

single phase isotherms were determined according to Equation (2), in 

which the derivatives were estimated by the method of cubic spline 

fit(SS). 

In analyzing the data to determine the critical constants and 

exponents, the significance of data weighting in both dependent and 

independent variables of the fitted equation was considered. The best 

fit is defined in the sense that the standard deviation of the data from 

the fitted equation is a minimum. 



-59-

From the analyses of the data along the coexistence curve 

according to the law of rectilinear diameter and the simple power law 

for critical exponent S , the following values of critical constants 

and exponent were identified: T = 150.7250 + O.Ol0°K, c -

S = 0.3574 ± 0.0027, P = 47.983 atm, and n = 1.0861145. From the c c 

analysis of isothermal compressibility data on the critical isochore, 

the value of exponent y was found to be 1.170 + 0.013 at 

T = 150.725°K . If the variation of T was included in the 
c c 

analysis, values of T = 150.731°K and y = 1.161 + 0.013 were 
c 

obtained at the best fit. Values of y found from the similar 

analyses of maximum isothermal compressibility on each isotherm do not 

agree with the above, probably due to the inaccuracy inherent in 

locating the maximum. It appears that the best value for y obtained 

from the present data is 1.170 + 0.013 • 

In Table XV, the values of critical constants and exponents 

determined in this study are compared with those previously reported 

f (8,40,42,64,65,66,67) or argon • For exponents S and y , the values 

determined from this study are somewhat lower than those reported 

previously, yet they are compatible when the error bands are consid-

ered. However, they are clearly different from those predicted by the 

classical theory 1 S = - and y = 1 • 
2 

They appear to correspond much 

better to those predicted by the three~dimensional lattice gas model, 

s = 0.313 + 0.004 and y = 1.250 ± o.003 • 

The value of exponent 8 for argon determined in this study is 

also compared with those reported for other fluids, as shown in Table 
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XVI. It is worthy of note that the exponent S has a nominal value 

of 0.352 ± 0.005 for a variety of both ~onpolar and polar fluids. The 

value of S for argon determined in this study is more in line with 

this nominal value than those previously reported. 

Th.e experimental data along the single phase isotherms were 

also used to compute the reduced chemical potential differences 6µ 

and the reduced densities 6~ • The antisymmetry of 6µ with respect 

to the critical density is clearly demonstrated by most of the data 

for which a test is possible. The scaled equation of state, Equation 

(23) with the form of the function h(x) recently proposed by 

V . . .. M. . 1(49) f 0 h icentini- issoni et !!..___ , its t e data and predicts 

reasonable values for the critical temperature ·' T 
c 

0 
= 150.720 K, and 

exponent y = 1.198, provided the value of exponent B determined 

along the coexistence curve is used. 

In describing the critical anomalies of a fluid, the simple 

power laws, e.g., Equations (8) and (9), and the scaled equation of 

state, Equation (23), are valid only in a neighborhood close to the 

actual critical point. They should be treated as first order approxi-

mations in the expansions of thermodynamic properties about the 

critical point, as was indicated by Green et al(38). However, the 

present data even with the improved experimental accuracy and the use 

'. of linear regression analysis (no data weighting) were insufficient to 

resolve the significance of the higher order terms in the expansions. 

To gain more insight into the critical anomalies, there is much need 

of further development of a method of nonlinear regression analysis 
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and/or nonlinear least square fit involving proper data weighting. 

(The author is not aware of these methods at the present time.) 

Further improvement in the experimental accuracy will no doubt also 

be of great value. It is believed that better agreement between the 

values of critical exponents obtained experimentally for real fluids 

and those predicted by theoretical models will be reached if the 

analysis of higher order terms in the expansions is made. 



-62-

NOMENCLATURE 

a coefficient in Equations (20)' '(21) and (32) 

A apex angle between the prism faces of the cell 

A+ coefficient in Equation (11) 

A- coefficient in Equation (12) 

+ 
(22) A- coefficient in Equation 

AlL coefficient in Equation (41) 

AlG - coefficient in Equation (42) 

A2L coefficient · in Equation (41) 

A2G coefficient in Equation (42) 

All<.r - coefficient in Equation (44) 

A ... 
21<.r 

coefficient in Equation (44) 

b coefficient in Equation (45) 

B coefficient in Equations (3)' (16), and (21) 

Bcj> coefficient in Equations (36)' (37), and (40) 

B' coefficient in Equations (8)' (17), and (18) 

B' 
<I> 

coefficient in Equations (38), (39)' (41), and (42) 

+ coefficient (19) B- in Equation 1 

B± 
2 

coefficient in Equation (19) 

+ c- coefficient in Equation (22) 

+ c- coefficient in Equation (5) 
c 

d coefficient in Equation (33) 

dcd coefficient in Equations (34) and (35) 

D angle of minimum deviation 
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D± coefficient in Equation (5) 

E1 coefficient in Equations (26) ·and (51) 

E2 coefficient in Equations (26) and (51) 

f (z) arbitrary function, Equations (6) and (7) 

2S 

G(x) scaled function ( ~ !:Iµ )y-1 
x+xo l:l<j> Ill<!> ly/S 

h(x) scaled function, Equations (23), (26), and (50) 

~ isothermal compressibility 

M - molecular weight 

n refractive index 

N - Avogadro's number 
0 

P pressure 

T temperature 

!:IT reduced temperature difference (T-T )/T 
c c 

V specific volume 

x scaled variable or 

x negative value of x on the coexistence curve 
0 

x scaled function (x+xo) 2S 
x 

0 

z arbitrary variable, Equations (6) and (7) 

Critical Exponents characterizing the anomaly of 

a specific heat at constant volume 

8 density difference on the coexistence curve 

y isothermal compressibility 

o pressure along the critical isotherm 
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Greek Letters 

a. - molecular polarizability m 
+ 

(19) 1r critical exponent in Equation 
1 
+ 

(19) rr critical exponent in Equation 
2 

A. critical exponent defined in Equation (7) 

A - wavelength of sodium D line 
Na 

p density 

~p reduced density difference (p-pc)/pc 

¢ grouping of (n2-l)/(n2+2) 

~¢ reduced density difference (¢-¢c)/¢c 

f coefficient in Equations (4), (9), . (10), (43), and (44) 

µ chemical potential 

. ~µ reduced chemical potential difference 

[µ(p,T) - µ(pc,T)J/(Pc/pc) 

<J error 

Subscripts 

c critical state value 

G gas 

L liquid 

Superscript 

denoting the critical exponent for T < T 
c 
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-2 y = 1.1.10±0.013 

LINEAR LEAST-SQUARES FIT 
WEIGHTED DATA 

-3 - - . y = I. 2 14 + o. 0 2 8 

LINEAR REGRESSION ANALYSIS 
UNWEIGHTED DATA 

-3 . -2 -I 0 2 

Figure 15. Plot of ln ~ versus ln(T -Tc) on the critical 

Isochore ¢ = 0 . 0564984 for T = 150.725°K • The c c 
slope of each fit evaluates the exponent y • 
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y = I. 16 I ± 0. 0 I 3 

c: 
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-3 -2 -I 0 2 

Figure 16. Plot of ln ~ versus ln(T - Tc) on the Critical Isochore 

¢ = 0 . 0564969 for T = 150.731°K . The slope of the 
c c 

fitted line, Equation (43) , is the exponent Y. 
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TABLE I 

EXPERIMENTAL VALUES OF ANGLE OF MINIMUM DEVIATION OF ARGON 

ALONG THE SINGLE PHASE ISOTHERMS 

Angle D Angle D 
Pressure (minute Pressure (minute 

(atm) of arc) (atm) of arc) 

RUN III 163.004°K 72.1092 300.28 

40.078a 72.28 75. 303 B 318.33 

49.8697 102.49 77. 7567 329.17 

60.1203 150. 77 RUN V 156.998°K 
62.8349 168.80 44.123 8 95.09 
65.9980 193 .49 50.1594 124.89 
69.0365 . 220.14 53.1332 146.18 
71.8701 245.07 55.3671 168.25 
74.7004 267.31 56.6871 185.62 
77. 8613 287.96 57.9434 205.54 
81.157 3 305.22 58.8654 222.74 
84.922s 321.10 59. 9615 243.38 
90.2656 338.67 60.9443 260.56 

RUN IV 160.003°K 
62.4494 282.15 

42.0936 82.13 
64.0121 298.98 

48.3958 104. 65 
66.6116 319.09 

51.3604 117.82 RUN XXXIII 155.001°K 
54.144s 132. 82 48.62735 126.146 
57.3452 154.05 53.42303 176.664 
60.1282 177. 98 55.01936 211.150 
63.0725 210.14 55 .64822 229.175 
65.8675 244.10 57.11353 269.000 
68.8900 275.75 61. 23312 322.234 

tExcluded in the final results for smoothness by cubic spline fit (see 
p. 29 and p. 39) 

*Excluded in the final results due to possible errors in the measure­
ments (see p. 29) 

#Coexisting gas-liquid state. 
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TABLE I (continued) 

Angle D Angle D 
Pressure (minute Pressure (minute 

(atm) of arc2 ~atm) · of arc) 

RUN XXXIV 155.001°K RUN XXXI 152.999°K 
t )~ 

48.62920 126.150 49.32691 152. 013 

* 50.405os 140.152 50.32991 168.835 
* 52.088so 157.672 51.02299 186.138• 
* 

54.34452 . 194.566 51.73150 215.312 

* 56 . 3191+0 248.863 52 . 12021 238.814 
* 

58.15323 288. 716 52.52017 262.161 

* 59 . 7909s 309.500 53.074os 284.186 
t * 61.23537 322.271 54.22699 308.937 

* 
' RUN VI 153.923°K 

55.22699 321.815 
* 

44.3501 105.37 
56 . 75407 335.393 

* 
49.3071 139.95 

58.93121 348.923 

50.2102 149.63 RUN XXXII 152.999°K 

51.6703 170.70 t 
49.32997 151.511 

52.5853 190.81 50.59472 173.354 

53.096s 206.14 51. 6010 5 205.575 

53.6247 226.05 52.01561+ 227 . 772 

54 . 0651 244.03 52.39426 250.876 

54.5021 260.91 52 . 89339 274.854 

55.1379 279.78 54.72095 314. 442 

56.1055 299.06 56 . 75249 334.476 

57 . 645s 318.35 RUN VII 152.018°K 

RUN XXX 152.999°K *45 . 88611+ 125 . 07 

49.329i+s 151.595 *49.97153 200.85 

51. 4503 0 199.648 *50 . 28751 228.70 
t . 

51.93329 223.623 *50.455si+ 248.81 
t . 52.296so 245.884 *50 . 57571 261.14 

52.70875 267 . 793 *50 . 8541+1 280.91 

53. 477 6 8 292. 930 
t 56.75592 334.668 
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TABLE I (continued) 

Angle D Angle D 
Pressure (minute Pressure (minute 

(atm) of arc) (atm) of arc) 

RUN VIII 152.0l8°K RUN XIV 151. 203°K 

49.97bo 200.00 48.63033 193. 91 

50.12656 210.40 48.82303 219.83 

50.39895 238.79 48.89591 245. 35 

50.85203 279.07 49.06402 280.84 

RUN IX 152.018°K RUN XV 151.203°K 

49.97197 199 . 45 48.63169 194.03 

5·0.20006 216.92 48.72859 204.04 

50.49800 250.39 48.86357 232.89 

50.85451+ 279.04 48.9491+6 261.42 

RUN X 152.0l8°K 49.00260 272. 71 

49.97236 199.95 49.0651+5 280.72 

50. 3047 3 227.54 RUN XVI 151.002°K 

50.6050s 262.02 t 48.33800 195.396 

50.70711 270.34 RUN XVII 151.002°K 
50.85451+ 279.83 

48 . 33953 195.660 

RUN XI 151.509°K t 48.47699 224.750 

49.14553 197. 92 48 . 5116 i+ 246.620 

49.37211+ 223.75 t 48.55090 265.615 

49.49510 249.32 t 48.61875 280.250 

49.87130 289.11 RUN XVIII 151.002°K 

RUN XII 151.509°K 48.34011 195. 770 

49.14629 197 .42 48.43507 · 209.845 

49.27867 210.24 * 48.49357 231. 491 

49.43861 237.38 48.52769 255.916 

49.60779 267.64 *48.57500 271. 534 

49.73855 280.53 t 48.61961+ 279.760 

49.87133 289.28 
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TABLE I (continued) 

Angle D Angle D 
Pressure (minute Pressure (minute 

(atm) of arc) (atm) of arc) 

RUN XIX 151.002°K RUN XXIII 150.899°K 

48.34051+ 195.380 48.13130 191. 270 

48.39810 202.990 48.20827 200.168 

48.45701 215.730 48.25632 210.087 

*48.51002 240.335 48.30299 239.331 

48.54603 264.180 48.31920 256.789 

48.57595 272.160 48.39633 281.484 

48.61429 278.818 48.44479 287.522 

RUN XX 151.002°K RUN XXIV 150.899°K 

48.33853 196. 036 48.13030 190.694 

t 48. 5llt+ a 245.620 48.280s6 217.314 

RUN XXI 151.002°K 48.30270 233.302 

48.34017 195.549 48.32090 254.322 

48.47897 223. 397 48. 3483 9 269.589 

48.49427 233.397 48.444a6 · 286. 762 

t 48. 51126 246.133 RUN XXV 150.799°K 
t 48.527s1 256.783 47.98861+ 191. 431 

*48.55177 266.823 48.10896 216.139 
t 48.61803 280.369 48.12473 239.383 

RUN XXII 150.899°K 48.1421s 267.014 

48.13419 190.697 48.22155 286.296 

48.2880 5 217 .472 RUN XXVI 150.799°K 

48.32003 244.662 47.9871+0 192.139 

48.35201 268.309 48.05711+ 202.026 

48.44839 286.968 48.11220 227.180 

48.12573 258. 778 

48.17872 281. 379 

48.22035 287.378 



TABLE 

Angle D 
Pressure (minute 

(atm) of arc) 

RUN XXVII 150, 751°K 

47.88901 190.634 

48.0001+7 212.639 

48.01410 246.917 

48.01591 251.197 

48. 03576 274.915 

48.12257 290.307 

RUN XXVIII 150.751°K 

47.8901+9 191. 804 

47.95550 201.431 

47.99992 221.188 

48.00437 247.512 

48.00600 260.966 

48.06652 284. 930 

48.12255 291. 609 
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I (continued) 

Angle D 
Pressure (minute 

(atm) of arc) 

RUN XXIX 150.701°K 

47.84025 192.875 

47.92102 211.898 

47.93611+ #222.430 

47.94302 

48.01502 

11262.266 

274.169 

289.305 



-98-

TABLE II 

EXPERIMENTAL VALUES OF ANGLE OF MINIMUM DEVIATION OF 

ARGON FOR THE COEXISTING GAS-LIQUID STATES 

Temperature 
(OK) 

RUN 1 

148. 513 

150. 546 

RUN 2 

148.513 

149 ~ 026 

' 149.548 

- 150; 061 

RUN 3 

148.513 

150 . 252 

150.450 

150.639 

RUN 4 

148 . 513 

150 . 658 

150. 675 

150 . 711 

RUN 5 

150 . 701 

150.701 

150. 720 

150. 720 

150.701 

* 

Pressure 
(atm) 

44.01594 

47 . 63711 

44.01634 

44 . 90722 

45.82800 · 

46 . 75590 

44 . 01930 

47 . 10800 

47 . 47595 

47 . 82422 

44.01753 

47 . 86155 

47.89375 

47.95927 

47 . 93419 

47.93614 

47 . 96940 

47 . 96940 

47 . 93154 

Angle of Minimum Deviation 
(minutes of arc) 

Dgas Dliquid 

* 145. 282 ± o. 05 

201. 37 2 o. 06 

145.390± 0.05 

153.739 0. 06 

164 . 166 0. 05 

178.217 0.07 

145. 416 ± o. 06 

185 . 405 0 . 12 

195.348 0. 12 

211. 367 0.15 

145.321 ±0 . 05 

214 . 193 0. 27 

217.124 0. 15 

227 . 454 .o.50 

221. 450 ± o. 08 

222 . 430 0. 07 

230 . 686 0.90 

231.13& o. 70 

221. 933 ± o. 05 

* 347.410 ± 0.08 

284 . 915 0 . 15 

347.424±0.04 

337.325 0.05 

325.161 0. 05 

309.475 0.05 

347 . 381 ±0 . 05 

301.751 0 . 05 

291. 05& o. 05 

274.241 0.15 

347.37& ±0 . 05 

271. 762 0. 25 

268.344 0. 15 

258 . 440 0. 50 

262. 266 ± o. 09 

255.11& 0.50 

252. 97& 0.50 

262 . 999 ± o. 07 

Relative error in D estimated from uncertainty in the readings V 
(see Appendix B) . 
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TABLE IV 

REFRACTIVE INDEX AND ISOTHERMAL COMPRESSIBILITY 

OF ARGON ALONG THE SINGLE PHASE ISOTHERMS 
* Isothermalt Angle D Derivative 

Pressure (minute Refractive (ClD/ClP)T Compressibility 
(atm) of arc) Index (min. /atm) ( atm-1) 

0 163 . 004 K Isotherm 
40.078a 72.28 1.025789 3 2. 6361 3 0. 0362241 

49.8697 102 . 49 1. 036534 7 3.65562 0.0353188 

60.1203 150. 77 1.05366s0 6 .13127 0 . 0400636 

62.8349 168 . 80 1. 060050 0 7.17407 0.0417925 

65 . 9980 193.49 1. 068780 7 8.39904 0 . 0425665 

69.036s 220.14 1. 078189 0 8.98040 0.0398773 

71. 870 l 245.07 1.0869754 8.43506 0 . 0335466 

74.7004 267.31 1.0948017 7.24562 0.0262480 

77 . 8613 287 . 96 1.10205 0 2 5 . 83771 0.0196562 

81.157 3 305 . 22 l.10811 s0 4. 70821 0.0149244 

84 . 9226 321.10 1.11368 3 0 3.77090 0.0113393 

90.2656 338 . 67 1.11983s6 2 . 88000 0.0081949 

160.003°K Isotherm 

42 . 0936 82 . 13 l.02929so 3. 17624 0.0383738 

48.3950 104 . 65 1. 03730 2 2 4 . 07929 0 . 0385902 

51. 3604 117 . 82 1. 04197 9 0 4 . 87424 0 . 0409002 

54 . 1440 . 132 . 82 1. 04 73026 5. 9lhs 0. 0439321 

57.3452 154.05 1. 0548277 7. 52502 0.0481118 

60 . 1282 177 . 98 1. 063297 0 9 . 73930 0.0537490 

63.072s 210 . 14 L 074660 6 11. 95716 0 . 0556863 

65.867s 244 . 10 1.0866330 11. 8171 0 0 . 0471896 

68.8900 275.75 1.0977600 8.95377 0 . 0315305 

72 . 1092 300.28 1.1063820 . 6 ~ 50731 0 . 0209796 

75 . 3030 318.33 1.1127123 4.87861 0.0148032 

77.7567 329.17 1.1165090 4.01163 0.0117554 

tCalculated by Equation (30) 

*obtained from the spline fit 
#rnterpolated from a large graph of angle D versus pressure 
**c · · l' · d oexisting gas- 1qu1 state 
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TABLE IV (continued) 

Angle D Derivative Isothermal 
Pressure (minute Refractive . (aD/C!P)T ComprE!.ssibility 

(atm) of arc2 Index (min . I a.tm. 2 · (.g,tm-1) 

0 156.998 K Isotherm 

44 . 1238 95.09 1 . 0339044 4.05316 0. 0422391 

50.1594 124.89 1. 0444892 6. 14470 0.0486065 

53 . 1332 .146 .18 1.0520393 8.41322 0.0567289 

55 . 3671 168 . 25 1.0598554 11.73739 0.0685967 

56 . 6871 ·185.62 1. 065999 3 14 . 50962 o. 0767137 

57.9434 205 . 54 1. 07303s 7 17 . 53451 0 . 0835326 

58 . 8654 222.74 1. 079106 o 19 . 18470 0. 0841687 

59 . 9615 243.38 1. 0863802 18 . 34605 0.0734845 

60.9443 260.56 1. 0924276 16.37057 o. 0611222 . 

62.4494 282 . 15 1.100017 5 12.40554 0 . 0426614 

64 . 0121 298.98 1.105926 6 9.33923 0.0302456 

66 . 611 6 319.09 1.11297 8 6 6. 4817} 0 . 0196187 

0 155 . 001 K Isotherm 

48 . 62736 126.146 1.0449349 6.97900 0.0546548 

50.40500 140 . 152 1. 0499026 8.94804 0.0629709 

52 . 08860 157.672 . 1. 056110 6 12 . 15571 0.0758951 

53 . 42393 176 . 664 1. 0628323 16.84191 0.0936528 

54 . 34452 194.566 1. 069160 9 22.28847 0.1123094 

55 . 01936 211 . 150 1. 075017 0 26 . 92297 0.1247700 

55 . 64822 229.175 1. 08137 5 0 29 . 79900 0 . 1269738 

56 . 31940 248.863 1. 0883110 28 : 08750 0 . 1099532 

57 .11353 269.000 1. 09539 5 9 22.44373 0.0810852 

58.15323 288.716 1.102323 7 15.91899 0.0534555 

59.79096 309.500 l.1096ls 9 10.19195 0.0318432 

61.233i2 322 . 234 1.1140803 7. 71353 0 . 0231101 
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TABLE IV (continued) 

Angle D Derivative Isothermal 
Pressure (minute Refractive (ClD/oP)T Compressibility 

(atm) of ·arc2 Index (min. /atm2 (atm-1) 

0 153.923 K Isotherm 

44.3501 105.37 1. 037 55a o 5.22427 0.0490804 

49.3071 139.95 1.0498310 9.77619 0.0689040 

50.2102 149. 63 1.0532610 11. 78462 o. 0776006 

51. 6703 170.70 1. 06072 18.06510 0.1040337 
2 t+ 

52.5853 190.81 1.06783 37 26.62863 0.1368785 

53.0960 206.14 1. 073240 6 33.79201 0.1605020 

53.6247 226.05 1. 08027 3 2 40.453 0.1748161 
86 

54.0651 244.03 1. 0866092 40.80937 0.1630125 

54.5021 260.91 1. 092550 7 35.17860 0.1311634 

55.1379 279.78 1.0991849 24.93631 0.0865051 

56.1055 299.06 1.1059547 15. 96360 0.0516849 

57.6450 318.35 1.112719 3 10.05720 0.0305148 

0 152.999 K Isotherm 

49.32940 151. 595 l.05395ao 13.11001 0.0851962 

50.59412 173.354 1. 0616614 23.26704 0.1319000 

51. 450 3 0 199.648 1. 0709561 37.85590 0.1857894 

51. 6010 5 205.575 1. 07304 91 41.87854 0.1994702 

52.01504 227. 772 1. 0808804 61. 4209 6 0.2633629 
1:, 

52.39426 250.876 1. 0890197 61. 8095 6 o. 2399637 

52.70875 267.793 1. 0949715 42.05569 0.1526469 

52.89330 274.854 1.0974539 36.28000 0.1281898 

53.477 88 292.930 1.1038032 24.57029 0.0812769 

54.72005 314.442 1.1113495 12.86710 0.0395467 

56. 75592 334.476 1.1183675 7.84299 0.0225891 
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TABLE IV (continued) 

Angle D Derivative Isothermal 
Pressure (minute Refractive (aD/aP)T Compressibility 

(atm) of arc) Index (min . I atm.) (atm-1) 

152.018°K Isotherm 

49 . 97201 199.80 1. 071009 8 57 . 6651+ 1 0 . 2827899 

50.12655 210 . 40 1. 074 752 3 81.24927 0. 3779110 

50. 200a6 216 . 92 1.0770531 93.73339 0.4225547 

50.30473 227 . 54 1. 08079 8 6 112.51321 0 . 4829430 

50.39895 238.79 1.0847634 120.47544 0 . 4921038 

50.49800 250 . 39 1. 08884 3 6 115.73039 0 . 4501993 

50.60505 262.02 1. 0929412 94 . 57032 o. 3510950 

50.707 17 270 . 34 1.0958671 71. 53032 0 . 2571033 

50 . 8539 7 279 . 31 1. 099019 8 52.68457 0 . 1830834 

151.509°K Isotherm 

49.14591 197 . 67 1.0702574 78 . 55704 0.3894877 

49 . 27857 210 . 24 1. 07469 59 116.24353 0.5410997 

49 . 37211t 223.75 1. 0794622 179.70451 0. 7847634 

49.43851 237.38 1.0842666 220 . 45745 0 . 9059986 

49 . 49510 249 . 32 1.0884719 199.99853 0.7814476 

49. 60779 267.64 1. 0949177 126.13707 0. 4581049 

. 49.73855 280 . 53 1.0994404 77 . 59695 0 . 2584426 

49 . 87132 289 . 195 1.1024919 55.56831 0 . 1862766 

151.203°K Isotherm 

48.63101 193. 97 1.068950 3 87 . 98855 0.4447584 

48 . 72859 204 . 04 1.0725071 123. 38034 0.5921940 

48 . 82303 219 . 83 1.0780797 245.23425 1. 0905246 

48.86357 232 . 89 1.0826844 392 . 37913 1. 6444934 

48 . 89591 245.35 1. 08707 40 354.52875 1. 4083196 

48.94945 261.42 1.092730 l 260. 72820 0 . 9701685 

49.00250 272.71 1. 09669 8 5 163.70420 0 . 5831351 

49.06523 280.78 1. 099536 2 103.38154 o. 3573136 
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TABLE IV (Continued) 

Angle D Derivative Isothermal 
Pressure (minute Refractive (ClD/ClP)T Compressibility 

(atm) of arc) Index · (min. I atm.) (atm-1) 

151.002°K Isotherm 

48.33953 195.660 1.0695474 106.54267 0.5337899 

48.39810 202.990 1.0721361+ 150.29220 0.7251826 

48.43507 209.845 1.074556 5 226.38056 1. 0558059 

48.45701 215.730 1.0766332 308.30750 1. 3977251 

48.47897 223.397 1.0793377 463.52211+ 2.0274672 

48.49427 233.397 1. 08286 31 822.33770 3. 4387932 

48.51161+ 246.620 1.0875212 662.49268 2.6177178 

48.52]s9 255.916 1.09079 36 511. 77120 1.9465461 

48.54603 264.180 1. 093700 9 353.50526 1. 3012142 

48.57595 272 .160 1. 0965069 215.09405 o. 7677776' 

48.61429 278.818 1.0988469 143.00153 0.4978486 

150.899°K Isotherm 

Set I 

48.13419 190.697 1. 067793 8 103.94861 0.5346480 

48.28805 217.472 1.0772470 374.5891io 1.6842730 

48.32003 244.662 1.0868317 1981.92910 7.8957454 

48.35201 268.309 1.0951530 342.76802 1. 2426528 

48.44830 286.968 1.101709 8 127.24719 0.4299878 

Set II 

48.13130 191.270 ,1.067996 3 90.58820 0.4645047 

48.20827 200.168 1.071139 8 152.90391 0.7484274 

48.25632 210.087 1.0746419 286.1641i7 1.3330548 

48.30290 239. 331 l.084951io 1321.45252 5.3851662 

48.31920 256.789 1. 091100 8 865.5181+1 3.2805038 

48.39633 281.484 1.0997836 149.86927 0. 51664 71 

48.44470 287.522 l.101901i4 105.58775 0.3560854 
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TABLE IV (continued) 

Angle D Derivative Isothermal 
Pressure (minute Refractive (8D/8P)T Compressibility 

(atm) of arc) Index (min./ atm.) (atm-1) 

150.899°K Isotherm (continued) 

Set III 

48.13030 190.694 1.0677927 98.62005 0.5072535 

48.28006 217.314 1. 0771921 434.71512 1. 9560743 

48.30276 233.302 1. 082829 6 1181. 7010 l 4.9436207 

48.32090 254.322 1. 090232 6 952.69544 3.6470329 

48.34839 269.589 1.0956030 328.56345 1.1843622 

48.44406 286.762 1.101637 5 113.45575 0.3836696 

150.799°K Isotherm 

Set I 

47.98864 191. 431 1. 06805 31 

48.10895 216.139 1.0767775 

48.12473 239. 383 1. 08497 2 3 

48.14210 267.014 1.09469 76 

48.22155 286.296 1.10147 38 

Set II 

47.98740 192.139 1. 06830 3 3 109.23655 0 .5575383 

48.05714 202.026 1.0717959 193.85821 0.9399623 

48.11220 227.180 1. 0806716 1820.90451 7.8286263 

48.12573 258. 778 1.0918006 1737 .26826 6.5324497 

48.17872 281. 379 1. 099746 7 179.04803 o. 6174 739 

48.22035 287.378 1.1018530 119.08219 0.4018026 
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TABLE IV (continued) 

Angle D Derivative Isothennal 
Pressure (minute Refractive (()D/()P)T Compressibility 

(atm) of arc) Index (min./ atm.) (atm-1) 

150.751°K Isotherm 

Set I 

47.88901 190.634 1. 0677715 

48.0001i7 212.639 1. 075542 5 

48.01410 246 . 917 1.0876250 

48.01591 251.197 1.0891327 

48.03576 274.915 1.0974753 

48.12257 290.307 1.102883 0 

Set II 

47.8901i9 191. 804 1. 058185 o 111.968 0.5725011 

47.95560 201.431 1. 07158 5 8 207.447 1.0088907 

47.99992 221.188 1.0785506 1628.915 7.1979628 

1143,00310 2 35. 000 1. 083420 0 14365.380 

48.00437 247.512 1. 087835 3 12058.666 47.4708272 

48.00600 260.966 l.0925701i 3191.075 11.8952862 

48.06652 284.930 l. 100991i 1 152.154 0.5179595 

48.12256 291. 609 l.1033391i 96.554 o. 3208939 

0 150.701 K Isotherm 

47.84026 192.875 1. 06856 3 lf 

47.92102 211. 898 1.0752810 

47.93611i **222. 430 1. 078996 7 

**262. 266 1.0930277 

47.94302 274.169 1.0972131 

48.01502 289.305 1.1025305 
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TABLE V 

COMPARISON OF THE ESTIMATED VALUES OF THE 

DERIVATIVES (a~/aP)T 

Derivative (aD/aP)T 
Percentaget Angle D (minute/atm) 

Pressure (minute Visual Numerica1(58) Difference 
(abn2 of arc) Estimate Estimate % 

0 163.004 K Isotherm 

40.079 72.28 2.760 2.636 4.70 

49.870 102.49 3.670 3.656 0.38 

60.120 150. 77 . 5.950 6.131 -2. 96 

62.835 168.80 7.270 7.175 1.32 

65.998 193.49 8.435 8.400 0.42 

69.037 220.14 8.895 8.981 -0.96 

71.870 245.07 8.455 8.435 0.24 

74.700 267.31 7.305 7.246 0.81 

77.861 287.96 5.730 5.838 -1.85 

81.157 305~22 4. 665 4.708 1.33 

84.923 321.10 3.820 3. 771 1.30 

90.266 338.67 3.070 2.881 6.56 

152.999°K Isotherm 

49. 329 151. 595 14.250 13 : 111 8.69 

50.595 173.354 22.630 23.267 -2.73 

51.450 199.648 38.750 37.856 2.36 

51. 601 205.575 44.370 41. 878 5.95 

52.016 227. 772 60.450 61.419 -1.58 

52.394 250.876 57.050 61.815 -7 . 11 

52.709 267.793 45.600 42.048 8.45 

52.893 274.854 37.150 36.296 2.35 

53.478 292.930 22.950 24.525 -6.42 

54.721 314.442 13.300 12. 920 2.94 

56.756 334.668 7.520 7.927 -5.13 
t an an an 

lOO[(aP)T . (aP)T . J / <aP)T . 
visual numerical numerical 
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TABLE V (continued) 

Derivative (6D/6P)T 
(minute/atm) 

Angle D Percentage 
Pressure (minute Visual Numerical Difference 

(atm) of arc) Estimate Estimate % 

151.203°K Isotherm 

48.631 193.970 95.100 87.989 8 . 08 

48.728 204.040 121.100 123.380 -1.85 

48 . 823 219 . 830 259 . 800 245 . 234 5 . 94 

48 . 864 232 . 890 394.800 392 . 379 0.62 

48 . 896 245 . 350 364 . 500 354 . 529 2.81 

48 . 949 261.420 257.600 260 . 728 - 1.20 

49.003 272 . 710 161. 500 163 . 704 -1.35 

49 . 065 280 . 780 118 . 400 103 . 381 14 . 53 

0 150.799 K Isotherm 

47 . 987 192.139 95 . 000 109 . 237 -13.03 

48.057 202.026 214 . 000 193 . 858 10 . 39 

48.112 227.180 1500 . 000 1820 . 905 -17.62 

48 . 126 258 . 778 1240.000 1737 . 268 -28 . 62 

48.179 281.379 210.000 179 . 048 17.28 

48.220 287 . 378 102.000 119 . 082 - 14.34 
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TABLE VIII 

COMPARISON OF THE VALUES OF Bcp' $, AND Tc OBTAINED FROM LEAST 

SQUARES FITS AND LINEAR REGRESSION ANALYSES 

Least squares f" t h . it to t e equation 

ln <j>F = ln Bq, + 13 ln(Tc - T) 

cpF B~ T (°K) crfit * 13 c 

cpL- ¢G 0.03448 0.3574 ± 0.0027 150.725 0. 3192 

¢ - ¢ If 0.01750 0.3694 ± 0.0028 150 . 728 0.5165 
II L C 

0.01699 0. 3445 ± 0.0027 150 . 721 0.2552 <Pc- ¢G 
cp - cp ** L C 0.01753 o. 3677 ± 0.0028 150 . 725 0.5475 

cp - cp ** C G 0.01696 0.3466 ± 0.0027 150 . 725 0.3546 

*** Linear regression analysis of the equation 

**** **** 2 ln ¢F = ln Bcp + 13 ln(Tc-T) +Al¢ (Tc-T)+A2¢ (Tc-T) 

0. 03452 

0.01755 

0 . 01698 

tWeighted data 

* 

0.3600 ± 0.0032 

0.3648 ± 0. 0022 

0. 3551 ± 0.0044 

150. 725 . 

150. 725 

150 . 725 

Standard deviation of the data from the fitted equation 

0.0215 

o. 0148 

0.0292 

II Computed from the fitted line of rectilinear diameter (Equation (33)) 
** Value of T fixed at 150.725°K 
*** c Unweighted data 
**** A1cp=A2¢=0 obtained for the best fit at minimum of crfit (see 

Table IX) 
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TABLE XIII 

COEFFICIENTS OF THE EQUATION ln ~ = ln f - y ln(T -Tc) OBTAINED 

FROM THE LEAST SQUARES FITS OF. THE WEIGHTED DATA OF 

MAXIMUM ISOTHERMAL COMPRESSIBILITY 

t * T r y 0 fit cry c 

150.723 0.7099 1.1524 1.1427 0.01230 

150.724 0.7080 1 . 1508 1.1172 0. 01232 . 

150 . 725 0.7062 1.1492 1. 0925 0.01235 

150.726 0.7044 1.1477 1. 0706 0.01237 

150.727 0.7027 1.1462 1. 0502 0.01239 

150 . 728 0.7009 1.1447 1. 0319 0. 01241 

150.729 0.6992 1.1432 1.0154 0. 01243 

150.730 0.6975 1.1418 1. 0009 0.01245 

150.731 0.6958 1.1404 0.9884 0.01247 

150.732 0.6942 1.1390 o. 9779 0 . 01249 

150.733 0.6925 1.1376 o. 9692 0 . 01251 

150 . 734 0. 6909 1.1363 o. 9624 0. 01252 

150. 735 0 . 6893 1.1349 0. 9573 0.01254 

150. 736 0. 6878 1.1336 0.9537 0. 01256 

150 . 737 0. 6862 1.1324 0. 9517 0.01258 

150 . 738 0.6847 1.1311 0.9510 0 . 01259 

150 . 739 0. 6832 1.1299 0. 9514 0.01261 

150 . 740 0.6818 1.1287 0. 9528 0. 01263 

tstandard deviation of the data from the fitted equation 

*Standard error of the exponent y 
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TABLE XIV 

REDUCED CHEMICAL POTENTIAL DIFFERENCE 6µ AND REDUCED DENSITY 

DIFFERENCE 6¢ COMPUTED FROM THE REFRACTIVE INDEX DATA FOR 

<Pc= 0.0564984 AND Pc= 47.983 atm 

Refractive 
Pressure Index 

(atm) n cp t 

163.004°K Isotherm 

40.078a 1. 025789 3 0.0171165 -0. 69705 -1. 288230 

49.8691 1. 036534 7 0.0242012 -0.57165 -0.719462 

60 .1203 1. 05366 5 8 0.0354354 -0.37281 -0.3031~0 

62.8349 1. 06005 0 0 0.0396023 -0.29905 -o. 217776 

65.9980 1. 068780 7 0.0452829 -0.19851 -0.129743 

69.036s 1. 078189 0 0.0513809 -0.09058 -0.055574 

71. 8701 1. 08697 54 0.0570532 0.00982 0.005982 

74.7004 1. 0948017 . o. 0620870 0.09892 0.061897 

77. 8613 1.1020502 0.0667383 0.18124 0.119624 

81.157 3 l.10811sa 0.0706091 0.24975 0.176094 

84.922s 1.11368 3 0 0.0741569 0.31255 0.237299 

90.265s l.11983ss 0.0780668 0.38175 0.319883 
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TABLE XIV (continued) 

Refractive 
Pressure Index 

¢ t !:!.µIf (atm) n !1¢* 

160.003°K Isotherm 

42 . 0936 1. 02929 5 0 0.0194310 -0.65608 -0 . 917151 

48.3950 1. 0373022 0 . 0247061 -0.56271 -0. 577911 

51. 3604 1. 04197 9 8 o. 0277802 - 0.50830 -0.444503 

54 . 1440 1.0473026 0 . 0312715 -0.44651 -0 . 333133 

57.3452 1. 0548277 0.0361946 -0 . 35937 -0 . 220890 

60.1282 1. 0632970 0.0417179 -0 . 26161 -0.136382 

63.072s 1.0746606 o. 0490968 -0 . 13101 -0.059659 

65.867s 1. 086633 8 0 . 0568331. 0 . 00592 0. 002572 

68.8900 1.0977600 0.0639907 0. 13261 0 . 061371 

72.1092 1.1063820 0.0695028 0.23017 0 . 118066 

75.3030 1.1127123 0 . 0735390 0.30161 0.170598 

77.7567 1.1165090 0 . 0759547 0.34437 0. 209222 

156 . 998°K Isotherm 

44.1230 1. 033904 4 0.0224696 -0 . 60230 -0 . 574649 

50.1594 1.0444892 0.0294270 -0.47915 -0.296667 

53.1332 1.0520393 0.0343721 -0 . 39163 -0 . 186237 

55 . 3671 1.0598554 0.0394755 -0 . 30130 -0.114612 

56 . 6871 1.0659993 0 . 0434755 -0.23050 -o . 077048 

57 . 9434 1. 073036 7 0.0480445 -0 . 14963 -0.044643 

58 . 8654 1.0791060 0 . 0519739 -0.08008 -0 . 022912 

59 . 96ls 1.0863802 0.0566696 0.00303 0.000854 

60 . 9443 1.0924276 0. 0605618 o. 07192 0.020590 

62 . 4494 1.100017 5 0. 0654318 0.15812 0. 048684 

64.0121 1.105926 6 0 . 0692115 0. 22502 0. 075984 

66.6116 1.11297 8 6 0. 0737085 0 . 30461 0. 118754 
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TABLE XIV (continued) 

Refractive 
Pressure Index 

(atm2 n ~ 6~ 6]:! 

155.001°K Isotherm 

48.62736 1. 04493 4 9 0. 0297194 -0.47398 -0.230020 

50 . 40500 1.0499026 0.0329741 -0.41637 -0.163039 

52.08860 1. 056110 6 0.0370324 - 0.34454 -0 . 106179 

53.42303 1. 0628323 0.0414149 -0 . 26697 -0.065933 

54.344s2 1. 06916 0 9 0 . 0455298 -0 . 19414 -0.040923 

55.01936 1.0750170 0 . 0493277 -0 .12692 -0.024140 

55.64822 1.08137 5 0 0. 0534402 -0 . 05413 -0.009713 

56.319110 1. 0883110 0.0579134 0. 02505 0. 004483 

57 .113 53 1. 09539 59 0.0624684 0. 10567 0. 020002 

58.15323 1.10232 3 7 0.0669081 0.18425 0. 038897 

59 . 79096 1.1096169 o. 0715666 0 . 26670 0. 066685 

61.23312 1.114080 3 0.0744097 0 . 31702 0.089934 

153 . 923°K Isotherm 

44 . 3501 1. 037 550 0 0.0248744 -0.55973 -0.343128 

49 . 3071 1.0498310 . 0 . 0329273 -0 . 41720 - 0.136918 

50 . 2102 1. 0532610 0.0351714 -0 . 37748 -0.105645 

51. 6703 1. 0607224 0 . 0400405 -0.29130 - 0.059654 

52.5853 1. 067833 7 0 . 0446678 - 0. 20940 -0.034103 

53 . 0960 1.0732406 o. 0481818 -0.14720 -0 . 021104 

53 . 6241 1. 08027 3 2 0 . 0527284 -0 . 06673 -0 . 008761 

54 . 0651 1.0866092 0.0568172 0.00564 0.000712 

54 . 5021 1.0925507 0 . 0606410 0.07332 0 . 009468 

55 . 1379 1.0991849 0.0648984 0 . 14868 0. 021377 

56 . 1055 1.1059547 0.0692294 0 . 22533 0 . 038327 

57 . 6450 1.1127193 0.0735434 0 . 30169 0 . 063686 
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TABLE XIV (continued) 

Refractive 
Pressure Index 

(atm) n [',~ llg 

152.999°K Isotherm 

49.32940 1. 05395 8 0 0.0356264 - 0.36943 -0.081351 

50. 59472 1. 0616614 ' 0.0406523 -0.28047 -0.041941 

51. 4503 0 1. 07095s 1 0.0466951 -0.17351 -0.018720 

51.60105 1.0730491 0.0480525 -0.14949 -0.014971 

52.01594 1.080880 4 0.0531207 -0.05978 -0.005280 

52.394'26 1. 089019 7 0.0583697 0.03312 0.002722 

52.70875 1. 0949715 0.0621960 0.10085 0.008852 

52.89339 1. 097453 8 0.0637887 0.12904 0.012302 

53. 477 8 8 1.1038032 0.0678545 0.20100 0.022739 

54.72005 1.1113495 0.0726710 0.28625 0.043497 

56.75592 1.118367 5 0.0771350 0.36526 0.075370 

152.018°K Isotherm 

49. 97201 ' 1.071009 8 o.0467299 -0.17290 -0.010639 

50.1265s 1.0747523 0.0491563 -0.12995 -0.006836 

50.2000s 1.0770531 0.0506459 -0.10359 -0.005083 

50.30473 1. 08079 8 6 0.0530678 -0.06072 -0.002722 

50.39895 1.0847634 0.0556272 -0.01542 -0.000680 

50.49800 1. 088840 6 0.0582596 0.03117 0.001368 

50.6050s 1. 0929412 0.0608919 o. 07776 0.003499 

50.70717 1. 0958671 0.0627708 0.11102 0.005427 

50.85397 1.0990190 0.0647926 0.14680 0.008135 
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TABLE XIV (continued) 

Refractive 
Pressure Index 

(atm) n ti<P tiµ 

151.509°K Isotherm 

49.14591 1.0702574 0.0462417 -0.18154 -0.007433 

49.27867 1.0746959 0.0491197 -0.13060 -0.004147 

49.37274 1. 0794622 0.0522042 -0.07601 -0.001955 

49.43861 1.0842666 0.0553068 -0.02109 -0.000510 

49.49510 1. 0884719 0.0580171 0.02688 0 . 000663 

49.60779 1.0949177 0.0621615 0.10023 0.002866 

49.73855 1. 09944 64 0.0650672 0.15166 0 . 005282 

49.87132 1.1024919 0.0670157 0.18615 0.007648 

151.203°K Isotherm 

48.63101 1. 068950 3 0.0453931 -0 . 19656 -0.006163 

48.72859 1. 0725071 o. 0477011 -0.15571 -0.003691 

48.82303 1.0780797 0.0513101 -0.09183 -0.001434 

48.86357 1.082684 4 0.0542858 -0.03916 -0.000528 

48.89591 1.0870740 0.0571167 0 . 01094 0.000156 

48.94946 1.0927301 0 . 0607563 0.07536 0.001224 

49.00260 1. 09669 6 5 0 . 0633043 0 . 12046 0 . 002231 

49 . 06523 1. 099536 2 0.0651235 0.15266 0.003379 

151.002°K Isotherm 

48.33953 1. 069547 4 0.0457808 -0.18970 - 0 . 003997 

48 . 39810 1.072136 4 0.0474607 -0.15996 -0.002516 

48 . 43567 1.0745565 0.0490294 -0.13220 -0.001593 

48 . 45701 1.0766332 0 . 0503742 -0.10840 -0.001073 

48.47897 1. 079337 7 0.0521237 -0 . 07743 -0.000586 

48.49427 1. 08286 31 0.0544011 -0.03712 -0.000247 

48.51164 1.0875212 0.0574048 0.01604 o. 000118 

48.52769 1. 09079 36 0.0595112 0.05333 0 . 000441 

48.54663 1. 093700 9 0 . 0613800 0 . 08640 0 . 000814 

48.57595 1.0965069 0 . 0631814 0 . 11829 0 . 001364 

48.61429 1.0988469 0.0646818 0 . 14484 0.002069 
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TABLE XIV (continued) 

Refractive 
Pressure Index 

(atm) n Licp Liµ 

150.899°K Isothenn 

48.13130 1. 06 799 6 3 0. 0447734 -0.20753 -0 . 004295 

48.20821 1.071139 8 0 . 0468143 -0 . 17141 - 0 . 002312 

48 . 25632 1.0746419 0.0490847 -0.13122 -0.001129 

48.30290 1.0849540 0.0557501 -0 . 01324 -0.000062 

48.31920 1 . 0911000 0.0597088 0.05682 0.000270 

48 . 39633 1.0997836 0.0652819 0.15547 o. 001702 

48.44410 1.1019044 o-. 0666398 0.17950 0.002567 

150 . 799°K Isothenn 

47.98740 1. 06830 3 3 0.0449729 -0.20400 -0.003273 

48 . 05714 1.0717959 0.0472399 -0 . 16387 -0.001487 

48 . 11220 1. 0806716 0.0529858 -0.06217 -0 . 000168 

48 . 12573 1. 091800 6 0.0601588 0 . 06479 0.000116 

48.17812 1. 099746 7 0.0652583 0 . 15505 0.001095 

48 . 22035 1.101853 8 0 . 0666075 0 . 17893 0 . 001838 

150 . 751°K Isothenn 

47.89049 1. 0681850 0 . 0448960 -0 . 20536 · -0.002833 

47. 95660 1. 07158 5 8 0.0471036 -0 . 16628 -0 . 001162 

47 . 99992 1.0785506 0.0516199 - 0 . 08635 -0 . 000090 

48.00310 1.0834200 0 . 0547657 - 0. 03067 -0 . 000005 

48.00437 1.0878353 0 . 0576071 0 . 01962 0 . 000009 

48 . 00600 1. 09257 0 4 0 . 0606536 0 . 07355 0.000059 

48 . 06652 1.1009941 o. 0660571 0 . 16919 o. 001146 

48.12256 1.103339 4 0 . 0675579 0 . 19575 0 . 002133 
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TABLE XVI 

COMPARISON OF THE CRITICAL EXPONENT f3 FOR VARIOUS FLUIDS 

Fluid f3 Reference 

Argon 'o. 38 ± 0 . 02 Grigor and Steele(42 ) 

o. 3643 ± 0 . 0066 ' Teague and Pings(8) 

0 . 362 ± 0.001 SengersC40) 

0.35 ± O. Olt Bale, et a1C 67 ) 

0 . 3574 ± 0 . 0027 This study 

Krypton 0.355 ± 0.004 Gulari(68) 

* et al C50) Xenon 0.350 ± 0.07 Vicentini-Missoni --
He4 * v· . . w . 1 (50) 0 . 355 ± 0 . 009 icentini- issoni et a --

* v· .. M" . 1 (50) co2 o. 352 ± 0.008 icentini- issoni et a --
0 . 3475 ± 0.0006 Sengers et al C36) 

N20 0 . 3482 ± o. 0007· Sengers et al C36) 

CClF 
3 

o. 354 ± 0.007 Sengers et al (36) 

Oxygen 0.353 ± 0.005 Weber (69 ) 

tX-ray scattering study 

* From the analysis using the scaled equation of state (Equation (23)) 
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APPENDIX A 

ALIGNMENT OF OPTICAL SYSTEM AND DETERMINATION 

OF APEX ANGLE OF CELL 

The spectrometer was first properly adjusted(S2) such that the 

optical axes of the viewing and the collimating telescopes, both 

focused for parallel light, were co-planar. This plane is called the 

optical plane of the spectrometer and is perpendicular to the axis of 

rotation of the spectrometer. 

The cryostat, with its outer vacuum jacket and both shields 

removed, was mounted on the H-beam support (see Figure 1). A square­

shaped bracket attached to the bottom of the inner vacuum jacket was 

used to hold the cell with the fluid inlet line to the cryostat. 

Using a Gauss eyepiece on the viewing telescope, the faces of 

both windows of the cell were set to be perpendicular to the optical 

plane, as shown in the sketch of Figure A. A new small front­

aluminized flat mirror was· first held in position on one of the out­

side edges of the cell such that the face of the mirror was also 

perpendicular to the optical plane and approximately parallel to the 

bisector plane of cell windows (within 30'), and then sealed to the 

cell with G.E. varnish (No. 7031). 

After the bracket was removed, the outer vacuum jacket and 

both shields were fixed to the cryostat. The cell, now seated on 

the cell support inside the inner shield, had to be adjusted in posi­

tion so that the faces of both windows of the cell were perpendicular 

to the optical plane. 
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By adjusting the set of leveling screws on top of the H-beam 

support, the face of the small mirror on the cell was set to be 

perpendicular to the optical plane using the Gauss eyepiece. In 

this way the perpendicularity of the bisector plane of cell windows 

to the optical plane was obtained. 

The telescopes were then lined up with the light beam passing 

through the evacuated cell. A horizontal reference mark was placed 

on the slit of the collimating telescope by observing the position of 

the horizontal cross hair through the viewing telescope. The cell 

was then pressurized with the sample gas such that a reasonably large 

angle of minimum deviation was observed. If the cell were tilted, 

the light passing through the cell would be refracted vertically from 

the optical plane an<l the image of the horizontal mark moved accord­

ingly. Using the set of leveling screws on top of the H-beam 

support, the cell was rotated around an axis perpendicular to its 

bisector plane until the image of the horizontal mark coincided with 

the horizontal cross hair of the viewing telescope. 

In this way the faces of both windows of the cell were set 

perpendicular to the optical plane and the cell was in proper posi­

tion for measuring the angle of minimum deviation. For each 

experimental run the cell position was rechecked and the leveling 

screws adjusted, if necessary, to restore the cell to its proper 

position. 

The apex angle of the cell can be determined indirectly by 

calibration with water, the refractive index of which is known( 70). 

The measurements were made by filling the triple distilled water 
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into the cell and measuring the angle of minimum deviation D along 

with temperature. The apex angle A of the cell can be calculated 

from the angle D and the known refractive index n of water using 

the formula: 

n = sin ;(A+D) / sin ; A 

or 
-1 1 1 

A = 2 cot [(n - cos 2 D) I sin 2 D] 

The experimental results are as follows: 

Run I Run II 

D 16° 2.69' ± 0.13 I . 16° 2.42' ± 0.13' 

t 20.822°C ± O.Ol5°C 20.928°C ±0.015°C 

n . water-air 1.3329136 ± 0.0000015 1.3329044 ± 0.0000015 

nair 1. 0002718 1. 0002717 

n water 1. 3332759 1. 3332660 

A 44° 16.42' ± 0.31 1 44° 15.86' ± 0.31' 

The average value of the apex angle A is 44° 16.14' ± 0.31' , which 

included both the experimental errors in angle D and in temperature. 

Before the cell was enclosed in the cryostat, the apex angle 

A was measured by the direct reflection method< 52) . The viewing 

telescope with Gauss eyepiece was first set to face one window until 

the direct and reflected images of the cross hairs coincided; then 

the telescope was rotated to face the other window and the images 

were made to coincide agaip. The angle through which the telescope 
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was rotated is the supplement of the apex angle between the two 

windows of the cell. However, there were two distinct reflected 

images of the cross hairs observed from each window. The readings on 

the spectrometer were ~ecorded when the telescope was at its sharpest 

focus. Coincidently, this also produced the smallest separation of 

the two images. The experimental results are as follows: 

Window I 

Window II 

Apex angle A 

Reflected Images 

1 (left) 

301° 34.80' 

165° 52.84' 

135° 41. 96' 

44° 18. 04 I 

2 (right) 

301° 33.19' 

165° 51.04' 

135° 42.15' 

44° 17.85' 

One possible explanation for the two images is that they are the 

separate reflections from the inner and outer faces of each window 

if the two faces are not exactly parallel to each other. 

The refractive index of argon was determined by the angle of 

minimum deviation measure? in the same way as that of water. Thus, 

the final value of apex angle A used to calculate the refractive 

index was the one determined by calibration with water, rather than 

the one determined by the direct reflection method. 
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Figure A. Orientation of Prism Cell 
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APPENDIX B 

ANGLE DETERMINATION ON THE SPECTROMETER 

A Gaertner spectrometer model Lll4 was used for angle 

measurements. It had a graduated circle and vernier that gave 

readings accurate to 0.33' . For angles smaller than 5°, a micrometer 

tangent screw accurate to 0.02' per degree was used. Since the 

maximum of the angle of minimum deviation to be measured in this 

study was larger than 5° but the range of variation of the angle was 

0 smaller than 5 , a special procedure described below was established 

to make use of the micrometer accuracy over this range. 

With the cell evacuated , the viewing telescope was moved 

until the image of the slit was in the field of view. The microm-

.eter was then clamped to the base of the spectrometer and used to 

move the telescope until the cross hairs on the telescope coincided 

with the left edge of the slit image . The reading on the micrometer 

was recorded as instrument zero V 
0 

Nex t , looking through a 

microscope mounted above the graduate circle and the vernier, a line 

on the vernier was marked and the micrometer was advanced approxi­

mately 2° until the marked line was exactly opposite to a line on 

the gr aduated circle, which was also marked . This second reading on 

the micrometer was recorded as v
1 

• The micrometer was then backed 

to a reading near the beginning of the micrometer scale and unclamped 

from the base . The telescope was freely moved to set the two marked 

lines on the graduated circle and the vernier approximately opposite 

to each other . The micrometer was clamped again to move the 



-131-

telescope until the two marked lines were exactly in line. 

reading on the micrometer was recorded as v2 • 

This 

After the cell was filled with the sample fluid and under 

temperature control, the refracted light image of slit was found and 

set near the cross hairs of the viewing telescope by advancing the 

micrometer. Since it was not feasible to rotate the prism cell 

seated inside the cryostat, the angle of incidence for the angle of 

minimum deviation was found by rotating the spectrometer with its 

telescopes fixed relative to each other. The viewing telescope was 

then moved until the cross hairs coincided with the left edge of the 

slit image and the reading on micrometer was recorded as V • 

The angle of minimum deviation D for the refraction of 

the fluid in the cell is the sum of the two differences (V-V2) and 

(Vl - Vo) • 

From a large number of repeated observations, the uncer-

tainties in the readings V
0

, v1 and v2 on the spectrometer were 

found to be ±0.05, ±0.03 and ±0.03 minutes of arc, respectively. 

The uncertainty in determining the reading V depended on the state 

and stability of the sample system in the cell and was found in 

general to be ±0.06 minutes of arc, except when the temperature was 

within 0.1°K of critical temperature and the stability of the sample 

system decreased. From the sum of the variances of four readings, 

the total uncertainty in determining angle D absolutely was esti­

mated to be ±0.09 minutes of arc. 

For each isotherm studied, several readings of V
0

, v
1

, and 
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v
2 

were taken at the beeinning and the averages of the readings were 

used throughout. Relative errors in the angles D determined on 

the isotherm could be estimated from the uncertainty in the readings 

of V alone. 
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APPENDIX C 

CALIBRATION OF TEXAS INSTRUMENT PRESSURE GAUGE 

A Texas Instrument model 141 precision pressure gauge monitored 

the pressure by a Bourdon tube. Attached to the free end of the tube 

was a mirror, the movement of which was followed by an optical trans­

ducer mounted on a gear concentric with the tube. The position of 

the transducer was converted to a digital readout which was then 

multiplied by a scale factor to determine the pressure. 

For this study a metallic Bourdon tube with a maximum def lec­

tion of 100 degrees at 5000 psi was used in the gauge and calibrated 

using a Hart balance dead weight tester as a primary pressure 

standard. The schematic diagram of calibration was the same as the 

one shown in Figure 3 in Section II.C. For convenience, a separate 

gas line filled with nitrogen gas direct from a high pressure cylin­

der was employed in place of the sample gas line connected to the 

cell. The calibration procedure is much the same as the one 

described in Section II.C for the precise pressure measurement. 

The experimental data for the calibration are listed in Table 

C. The pressure above the atmosphere, in the unit of psig, was cal­

culated from the oil pressure with the addition of hydrostatic oil 

and gas heads. Since the chamber around the Bourdon tube used in 

the T.I. gauge was open to . the atmosphere, at the beginning of each 

calibration test the zero readout was taken with the Bourdon tube 

vented to the atmosphere and then subtracted from the observed degree 

of deflection to indicate the pressure measured above the atmosphere 
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by the gauge. In Test No. 4 the calibration was performed after the 

Bourdon tube had been initially pressurized and vented three times as 

suggested by the manufacturer for better accuracy. Test No. 5 was 

done with the argon sample on the sample gas line connected to the 

cell. No systematic difference among the data of different tests 

could be noted. 

A tube constant of 50.1 psi per degree of deflection was 

assumed and the residual pressures of the calibration data were 

calculated from the following equation 

~ . = P - 50.l• degree psig (C-1) 

In Figure C, the residual pressures vs. degree of deflection were 

plotted for all tests. In Tests No. 1, 2, and 4, the pressures were 

first increased and then decreased. In general the residual pres-

sures for the same degree of deflection differed by 2 to 3 psi 

between the increasing and the decreasing pressures. This can be 

attributed to the hysteresis effect of the metallic Bourdon tube. To 

eliminate the hysteresis, the actual pressure measurements by the 

gauge were taken with increasing pressure only. As shown in Figure C, 

a smooth curve was drawn through those data points with increasing 

pressure. The average deviation of data points from the curve was 

estimated to be ±0.3 psi and this was used as the accurac~ of the 

pressure measurements by the gauge. 
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TABLE C 

CALIBRATION DATA OF TEXAS INSTRUMENT PRESSURE GAUGE 

fj. . psig = p - 50'. l • degree 

P(Esigl Degree * Esig P (Esigl Degree* Esig 

Test No . 1 Test Na. 2 

Up Down 

252 . 4191 4. 993 2.2698 954.7442 19 •. 037 0.9905 

426.3606 8.451 2. 9655 600.1212 11. 958 1.0254 

596.0218 11.831 3.2887 Test No . 3 

776.6552 15.439 3.1613 Up 

956.2415 19.022 3.2393 242.2108 4.798 1.8310 

1126.6220 22.436 2.5784 596.0954 11.833 3.2621 

1305. 5131 26.017 2. 0614 948.8794 18 . 889 2 ~ 5405 

1481.5739 29.547 1. 2692 1480.7971 29 . 523 1. 6954 

Down Test No. 4 
1306. 5763 26 . 062 0.8701 Up 

952.3487 18.992 0.8495 241.1507 4. 778 1. 7729 
600.6270 11. 974 o. 7296 597 . 5139 11. 864 3 . 1275 
246 . 3883 4 . 910 0.3973 950 . 1562 18 . 902 3.1660 

Test No . 2 1482 . 3578 29.546 2.1032 
Up Down 
242 . 2000 4.798 1. 8202 958 . 0878 19 . 096 1.3782 
419 . 6964 8. 322 2. 7642 599 . 9862 11. 946 1.4916 
594.6672 11.807 3. 1365 

770 . 9083 15 . 322 3. 2761 Test No . 5 

950 . 8493 18 . 918 3 . 0575 243 . 1938 4.816 1. 9122 

1125 . 8324 22 . 415 2. 8409 

1302. 3870 28 . 947 2. 4423 

1482 . 2011 29.552 1 . 6459 

* Observed degree of deflection on T. I . gauge minus the zero readout 
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APPENDIX D 

AN ALGORITHM FOR CUBIC SPLINE FIT 

The method of cubic spline fit(SS) which is essentially the 

numerical analogue of the draftsman's spline, consists of joining 

the assigned points by sections of cubics, requiring that the slopes 

and curvatures be continuous at the junction points. The marked 

superiority of the quality of the derivatives over those obtained 

from polynomials of interpolation is a consequence of the relaxation 

of the overall requirement of analyticity . 

For a set of data points (x1 ,y1),(x2 ,y2), · ··,(xm,ym) let 

z
1

,z
2

, ··· ,Zm be the values of the second derivative of the approxi­

mating function F(x) at each point. Then assume the linear 

relationship of second derivative between the points (xk,yk) and 

F" = (D-1) 

Integrating twice, we obtain a third degree polynomial as the 

equation of curve for this interval 

zk 3 2k+l 3 
F = --(x - x) +--(x- xk) + a1x + a2 6dk k+l 6dk 

(D-2) 

The constants and of integration can be evaluated 

from the fact that the curve passes through the two end points 

(xk,yk) and (xk+l'Yk+l) • Then we have the equation of the curve: 



where cl,k = 

Yk+l =T-

Zk/6dk, c2,k = 

2k+ldk 
6 
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(D-3) 

The only unknown quantities in Equation (D-3) are . Zk and 

zk-1-1 , the values of the second derivatives at the end points of the 

interval. These values can be determined from the condition that 

the slope F' at the end point (xk,yk) as determined from Equation 

(D-3) must be the same as that determined by .the corresponding equa-

tion for the interval of (xk_1 ,yk_1) and (xk,yk), i.e., the first 

derivative must be continuous, F'(x~) = F'(x~) • Thus, we obtain 

Zkdk-1 yk - yk-1 

2 + dk-1 
= 

dk-1 (Zk - 2k-l) 
6 

(D-4) 

or, rearranging , 

(D-5) 

There are (m-2) equations like Equation (D-5) for 

k=2,3, · · · ,m-l. For the very end points of the data set, there are 

several reasonable choices for these values z1 and Z , and the 
m 

particular choice for these values will influence the shape of fit, 

especially near the end points . One reasonable choice is to require 

the third derivative to be continuous at (x2 ,y2) 



or 

F"' 
2 

-139-

and also at (x y ) m-1' m-1 

2m-2 1 1 2
m 

- -d- + 2m-l (~ + -d-) - -d- = 0 
m-2 m-.i. m-1 m-1 

(D-6) 

(D-7) 

(D-8) 

Equations (D-7) and (D-8), along with Equations (D-5), con-

stitute m equations in m unknowns for the quantities 

zl ,Z2 ~. •. ,Zm and can be written in the matrix form 

RZ = b (D-9) 

where 
f -1 l+_l__ -1 

dl dl d2 d2 
0 0 0 

dl dl+ d2 d2 
0 0 0 

6 3 6 

d2 d2+d3 d . 
0 

3 0 0 
6 3 6 

R = . . . . . . . . . 
d d +d d 

0 0 
m-2 m-2 m-1 m-1 

6 3 6 

0 0 -1 1 1 -1 
d , -d--+-d--, d m-2 m-2 m-1 m-1 

and 
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Y3-Y2 

d2 

0 

0 

Making use of the special nature of the tridiagonal matrix R > 

the unknown Zk can be found by the elimination method from Equa~ion 

(D-9) and then the c . . l,J 
in Equation (D-3) can be determined. 

For interpolation we must determine between which two points 

(xk,yk) and (xk+l'Yk+l) the given value of x lies, and then find 

F from Equation (D-3) . 

For the first derivative, differentiating Equation (D-3) we 

get 

(D-10) 

Integrating Equation (D-3), we can obtain the integral as fol-

lows: 

cl k 4 c2 k 4 c3 k 2 
= - 4<xk+l- x) +f(x- xk) -2(xk+l -x) 

c 
+ i'k(x - xk)2 (D-11) 

. (71) . f It ~an be proved that the fundamental property o the spline 

fit lies in its minimization of the integral-square measure of 
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approximation to the second derivative, i.e., minimizing the nonn: 

x 
m 

N = f [y" - ~F"J 2 
dx 

xl 

(D-12) 
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PROPOSITION I 

It is proposed that the concept of residual viscosity, 

the principle of corresponding states, and the concept of an 

acentric factor can be combined to produce a new correlation 

of relatively high accuracy for the viscosity of nonpolar 

dense gases . 

1. Concept of Residual Viscosity 

The residual viscosity is defined as the difference between the 

viscosity at a given pressure and temperature, and the dilute gas 

viscosity at the same temperature. 
. (1 2) 
In general, dense gas theories ' 

predict that a relationship exists between the residual viscosity and 

the density of a gas. Experimental studies(3-l2) have also shown that 

the residual viscosity is a function of density for a number of gases. 

This can be expressed as follows: 

n - n 
0 

= ¢(p) (1) 

where n is the viscosity, no is dilute gas viscosity at the same 

temperature as n , and p is the density of the gas. However, the 

function ¢(p) was found to vary from gas to gas. 
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2. Pr i nciple of Corresponding States for Viscosity 

The principle of corresponding states has formed the basis of 

. (13-15) many semi-empirical correlations for the dense gas vis-

cosity, in which the reduced viscosity is related to the reduced 

temperature and pressure or density . All of these have used the 

critical constants as the reducing parameters. The viscosity has 

been reduced with respect to either the critical or the atmospheric 

viscosity. None of these correlations has proved to be entirely 

satisfactory. The deviations of predicted viscosities from experi-

mental values may range from about 2% to 10%. 

Using a dimensional analysis approach and the concept of 

residual viscosity, Thodos and co-workers(l6 ,ll) have developed a 

viscosity correlation for nonpolar gases, which was later modified 

by Dean and Stiel(l3) on the basis of more recent viscosity data 

and was expressed in the following generalized relationship: 

1.439 p -1.11 p1 · 858 

(n - n0 )~ = l0.8x105 (e r - e r ) (2) 

where ~ = Tl/ 6 / M112 
P

213 and p = p/p • Viscosities calcu-
c c r c 

lated with Equation (2) showed an average deviation of about 1% to 

3% from the experimental values of argon, neon, and nitrogen(l9) , 

and of the light hydrocarbons( 6 •20, 2l). 

Helfand and Rice( 22) have provided a statistical mechanical 

proof of the principle of corresponding states for viscosity. It 

is required that the intermolecular potential be of the form 
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u = £u*(r/o) , where £ and o are characteristic energy and distance 

constants, u* is a universal function of the one variable r/o , and 

r is the distance between the molecules . They found that the reduced 

viscosity is a universal function of reduced temperature and pressure : 

nR = n*(TR,PR) (3) 

where nR = n/ (o-2&) TR = k.T/£ PR = Po
3 /£ m is the mass of 

a molecule, and k. is Boltzmann's constant. In applying Equation 

(3) to the viscosity of noble gases, Trappeniers ~ a1< 23) have re-

placed the reduced pressure PR by the reduced density 

and obtained an empirical equation for the ratio nR/(n
0

)R in t~e 

form of a series expansion in TR and PR • This equation fits the 

viscosity data to within 3 to 5% over a wide range of temperatures and 

densities ~ 
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3. Concept of Acentric Factor 

In applying the principle of corresponding states to the equation 

of state of real gases, Pitzer(Z4) suggested that the compressibility 

factor of a nonpolar gas with non-spherical molecules may be expressed 

as a function of one more parameter in addition to the reduced pressure 

and reduced temperature. The additional parameter is required because 

the intermolecular forces in less simple molecules are the sum of inter-

actions between various parts of the molecules--not just their centers. 

Therefore, the compressibility factor is expressed( 2S) generally as a 

function of three variables: 

(4) 

where Tr= T/Tc, Pr= P/Pc' and the additional variable w
2 

is the 

acentric factor. The compressibility factor can be expanded in a power 

series in the acentric factor: 

Z(T ,P ,wz) r r 
z(O)(T p) + w z(l)(T p) + ... 

r' r Z r' r 
(5) 

It was found that over a wide range of temperatures and pressures, the 

first two terms were sufficient. 
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4. New Correlation of Dense Gas Viscosity 

The concept of residual viscosity and the principle of corres-

ponding states can be combined to form the following functional 

relationship: 

(6) 

where -2 L:" 
(n - n )R = (n - n )/(cr vm€) 

0 0 
and 3 PR = cr p/m • In the plot 

of (n - n
0

)R versus PR , t he separation of curves for different 

gases having nonspherical molecules is to be expected . By following 

the same technique used by Pitzer(z4) for the compressibility fa~tor, 

it is possible to reduce these separated curves to a single curve by 

introducing a third molecular parameter for each gas . The reduced 

residual viscosity can then be expressed as a function of reduced 

density and this third parameter, the acentric factor: 

f(pR, wn) can be expanded into the following form, analogous to 

Equation (5) 

f(pR wn) = f(O)(p) + w f(l)(p) 
R n R 

(7) 

(8) 

where f(O)(p) 
R 

is the reduced residual viscosity for simple gases 

with spherical molecules and is a viscosity corr ection 

function for gases with nonspherical molecules . 
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5. Experimental Data Used for the New Correlation 

As discussed by Pitzer(24), the application of Equation (4), 

and consequently Equation (7); is limited to those gases which have no · 

quantum effects. To test Equation (8), therefore, argon and nitrogen 

were selected to represent a simple gas and a diatomic linear molecule 

gas, respectively. To represent common nonpolar gases with nonspheri-

cal molecules, the light normal paraffin hydrocarbons were chosen for 

their systematic change in molecular structure. 

Measurements: of the viscosity of dense gases have been made 

by many investigators. To test the new correlation, it is advantage-

ous to use a set of viscosity data which has been obtained from one 

instrument over a wide range of temperature and pressure. 

The viscosity data used in this study were those of Flynn 

(19) (10-12) et al for argon and nitrogen, and of Sage and co-workers 

for methane, propane and n-butane. Auxiliary volumetric data were 

(26) . (27-31) those of Sage and Lacey and of Michels ~ al as used by 

Flynn et al(l9). In Figure 1, a plot of residual viscosity versus 

density has been made from these data. 

To calculate the reduced density and the reduced residual 

viscosity, the molecular force constants a and E/R based on the 

Lennard-Jones (6-12) intermolecular potential were used. Table I 

gives the va·lues of a and E/b. . for argon, nitrogen, methane, 

ethane, propane, and n-butane, as reported by different investigators 

(2,32,33) 
Different plots of reduced residual viscosity versus 
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reduced density have been prepared using the force constants of 

Hirschfelder ~ al(2), shown in Figure 2, and those of Milligan and 

Liley(32),shown in Figure 3. The curves of different gases are not 

systematically separated from each other. However, it should be 

noted that there is some doubt about the range and accuracy of the 

dilute viscosity data from which these force constants have been cal­

culated. More recently, Galloway and SageC33) recalculated these 

constants for the hydrocarbon series from methane to n-decane based on 

a wide range of experimental viscosity data of various sources. Using 

these new force constants for light hydrocarbons and those for argon 

and nitrogen in Reference (2), a new plot of reduced residual vis-

cosity versus reduced density has been made and is shown in Figure 4. 

There is a systematic separation between the argon curve and other 

curves, which is found to be proportional to the value of reduced den-

sity. This suggested that the experimental viscosity data of these 

gases could be represented by the functional form of Equation (7) . 
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6. Results 

Equation (8) can be rearranged·to evaluate f(l) from the 

experimental viscosity data: 

(9) 

A plot of versus should yield a single smooth curve 
wn 

for all gases studied . Taking the argon curve in Figure 4 as 

the actual plot using the acentric factor determined from the com­

pressibility factor correlation by Pitzer~ al( 2S) yields a family 

of curves as shown in Figure 5. This is to be expected, since the 

values of force constants cr and €/k derived from PVT data differ 

from those based on <lilute gas viscosity data( 2). Therefore, a new 

set of acentric factors for viscosity was chosen to adjust the f(l) 

versus pR into a single reasonably smoothed curve which is plotted 

in Figure 6 . The acentric factors for viscosity obtained from this 

study and those for compressibility factor by Pitzer~ al(2S) are 

tabulated and compared in Table II. The force constants used in the 

final correlation are also tabulated in Table II. 

The final values of the functions f(O) and f(l) in Equa-

tion (8) were determined from the argon curve in Figure 4 and the 

smoothed curve in Figure 6, respectively . Large graphs were used to 

interpolate the values of f(O) and f(l) , which are presented in 

Table III for the range of reduced density from 0.0 to 0. 45 . 
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7. Prediction of Dense Gas Viscosity Based on the New Correlation 

To use Table III with Equation {8) for the prediction of dense 

gas viscosity, we must have the force constants of the gas and its 

dilute gas viscosity available . A single value of dense gas viscosity 

at a high pressure is also required in order to detennine the acentric 

factor of the gas. 

We take as an example the prediction of the dense gas viscosity 

of ethane which was not used in the correlation . The force constant 

data used are those of Galloway and Sage<33). The atmospheric gas vis­

cosity result of Carmichael and Sage( 9) was used for the dilute ~as 

viscosity, since the differenc.e between the two is known to be less 

than a few tenths of 1%. The volumetric data used are those of Sage 

and Lacey(26). To obtain the acentric factor for ethane, the viscosity 

at 2000 psia and 220°F was arbitrarily selected from the viscosity data 

of Cannichael and Sage( 9) . The acentric factor fitted at this point, 

by using the values of f(O) and f(l) interpolated from Table III with 

Equation (8), is 0.083. Using this value, the viscosities at other 

pressures were calculated from Equation (8) . The calculated and the 

experimental viscosities reported by Carmichael and Sage( 9) are com-

pared in Table IV and have an average deviation of 0. 73%. 

To further illustrate the generality of new correlation, the 

same comparison was made for the viscosity of carbon dioxide, as shown 

in Table v. The experimental viscosity data used for comparison were 

those of Michels et a1<34). The acentric factor was found to be 0.199 

which was calculated from the experimental viscosity values at 107.2 
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atm and so0 c. For most data at other pressures the calculated values 

of viscosity are within +1% of the exp~rimental data . 
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8. Conclusion 

From theoretical considerations, the correlation developed in 

this study is sounder than the one obtained by Thodos and co-workers, 

Equation (2). It should be noted that in the latter the molecular 

shape effects have been implicitly accounted for, as the critical 

constants were used as reducing parameters. This can be seen in the 

correlation of second virial coefficients through potential function 

parameters, recently developed by Kunz and Kapner(3S). They have 

obtained several empirical relationships between E/k and T for 
c 

different gases, depending on molecular structure. The correlation 

developed in this study treats the shape effect separately and yet at 

very little expense in terms of complexity. It can serve as a con-

venient and accurate method for predicting the dense gas viscosity of 

nonpolar gases. 
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NOMENCLATURE 

f(O) - reduced residual viscosity ·for simple gases with spherical 

molecules 

f(l) - viscosity correction function for gases with nonspherical 

m 

M 

p 

p 
c 

p 
r 

r 

T 

T 
c 

T 
r 

u 

molecules 

- Boltzmann's constant 

- mass of molecule 

- molecular weight 

- pressure 

- critical pressure 

- reduced pressure, ~/P 
c 

3 - reduced pressure, Pcr /s 

- distance between molecules 

- temperature 

- critical temperature 

- reduced temperature, T/T 
c 

- reduced temperature, RT/s 

- intermolecular potential function 

- compressibility factor, PV/RT 

compressibility factor function in Equation (5) 

compressibility factor function in Equation (5) 

Greek Letters 

s - depth of the intermolecular potential minimum 

n - dense gas viscosity 

no - dilute gas viscosity 



p 

a 

w 
z 
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- reduced dense gas viscosity, n/(a-2~) 

- reduced dilute gas viscosity, n /(a-2/iiiE) 
. 0 

- reducing pa;rameter for viscosity, T
1

/
6 I M

112 
c 

- density 

- critical density 

- reduced density, p/pc 

- reduced density 3 a p/m 

- collision diameter of molecule 

- acentric factor for compressibility factor 

- acentric factor for viscosity 
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Figure 1. Residual Viscosity versus Density Plot 
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TABLE II 

COMPARISON OF ACENTRIC.FACTORS FOR VISCOSITY 

AND FOR COMPRESSIBILITY FACTOR 

a()\) 

3.418 124 

3.681 91.5 

3. 71 160.6 

5.05 255.4 

5.56 279 . 8 

4.45 212.6 

4.0 190 

w * n 

o.o 

0.0782 

0.0332 

0.1307 

o. 2010 

0.083 

0.199 

Determined in this study. 

-0.002 

o.ot+o 

0.013 

0..152 

0.201 

0.105 

0.225 
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TABLE III 

VALUES OF f(O) AND f (1) 

Reduced 
Density Viscosity Function 

3 
Q:_Q_ 

f (0) f (1) m 

0.01 0.0021 0.004 

0.02 0 . 0045 0.008 

0 . 03 0 . 0070 0 . 012 

0 . 04 0.0098 0 . 017 

0.05 0.0127 0 . 021 

0 . 06 o. 0160 0 . 026 

0 . 07 0.0196 0 . 031 

0.08 0.0234 0.036 

0.09 0.0272 0 . 041 

0 . 10 0.0310 0 . 046 

0.12 0.0399 0 . 057 

0.14 0.0497 0 . 068 

0.16 0 . 0601 0.079 

0 . 18 0.0712 o. 092 

0 . 20 0 . 0830 0.104 

0 . 22 0 . 0954 0 . 118 

0 . 24 0 . 1088 0 . 133 

0 . 26 0 . 1230 0 . 149 

0 . 28 0.1384 0 . 166 

0 . 30 0.1550 0 . 185 

0 . 32 0 . 1733 0 . 206 

0.34 . 0 . 1933 0 . 229 

0 . 36 0 . 2150 0 . 253 

0.38 0 . 2375 0.280 
0. 40 0.2615 0 . 309 

0 . 45 0 . 2760 0.387 
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PROPOSITION II 

It is proposed that the unsteady-state diffusion and 

conduction problem in a porous catalytic spherical pellet can 

be solved numerically by using a simple model. Thus the effects 

of the different parameters on the maximum temperature in the 

pellet can be determined and compared. 

1. Introduction 

The problem of diffusion and conduction in a porous catalytic 

pellet under steady-state conditions has been studied by Wheeler(l), 

Prater(2), and Schilson and Amundson( 3). However, there appears to be 

little published information on the unsteady-state problem of this 

kind. Wei( 4) has developed a method for solving the unsteady-state 

problem by using Green's function. He predicted a maximum transient 

temperature in the catalytic spherical pellet, which is independent of 

rate of reaction and has the following upper limit: 

Tmax .S. T
0

[1 +A+ AjL-lj (0.5 +2.1 .Q.nN)] , for L > 1 

where T is the .temperature at the external surface, 
0 

K (-b,H )CA D 
L A 

r o = 
p CD KT p 0 
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and N is the number of the molecules lying on the radius of pellet. 

The present method solves the same problem numerically by a finite 

difference method. The results obtained show the effect of different 

parameters on the maximum temperature which qualitatively confirms the 

results of Wei( 4). 

2. Nature and Model of the System 

A single exothermic chemical reaction is carried out in a porous 

catalytic spherical pellet having randomly interconnected pores and 

uniform porosity. The surface available for reaction is assumed to be 

on the walls of pores in the pellet. It is also assumed that diffusion 

through the pore structure of the pellet is the only method operating 

in supplying the reactants to and removing the products from the reac-

tion site within the pellet. It is further assumed that the heat 

produced by the reaction is transported by thermal conduction through 

the solid structure. By assuming a geometric configuration of the 

pores in the pellet, the effective diffusivity Deff and thermal con­

ductivity Keff of the whole pellet can be roughly estimated(S, 6). 

Under the above assumptions, the equation of continuity for 

reactant A and the equation of energy in the pellet can be written 

as follows: 

(1) 

K 
(pC ) _IT = eff _L(r2 3T) + (-Lrn ) • r 

p eff 3t 2 3r 3r r A 
r 

(2) 

The initial and boundary conditions are : 



at t = 0 r~R 

t > 0 r = R 

t > 0 r = 0 ; 
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T T 
0 

c = 0 
A 

For the simple case of an irreversible first order chemical reaction, 

the rate rA in Equations (1) and (2) can be expressed in Arrhenius 

form: 

(3) 

Introducing dimensionless groups and parameters, we have 

u = T/T c = CA/CA z r/R 
0 0 

Deff/R 
2 

(3 = E/RT T = t Cl.= koR /Deff 0 

Rh ("'-llH. ) CA D ff RkA 
Nu :\ · r o e Sh =-- = =--

Keff T K Deff o eff 

L 
Keff 

= 
(pCP) effD eff 

Equations (1) and (2) can be rearranged in the following dimensionles~ 

form: 

L .L(z2 E_g_) - ac expf(3(1- -u1 )J - ~ 
2 dZ dZ - dT (4) 

z 
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L -2(z2 au) + A. a c IB(l 1)J 2 dZ dZ exp - U 
1 au 

(5) =--
L dT 

z 

with the initial and boundary conditions: 

at T 0 z < 1 . u = 1 c = 0 , , 

T > 0 z = 1 ~ + Nu(U - 1) = 0 dZ 

2_g_ + Sh(C - 1) = 0 dZ 

T > 0 0 . au ac 
0 z = --=-= , dZ dZ 

3. Numerical Solution 

Equations (4) and (5) can be solved numerically by the finite 

difference method to determine the effect of each dimensionless group 

on the temperature and concentration profiles. Using the implicit 

form of time derivatives, ,the difference equations obtained are 

[L .L<z2 l_g_) c J 
2 dZ dZ - /J.T j+l 

z 

c. 1 - "tr +a cj+l exp[B(l - Uj+l)] (6) 

[L _L(z2 au) 1 au] 
2 dz dz - L /J:r j+l 

z 

1 u. 1 
- 1 if - >..acj+lexp[B(l - Uj+

1
)J (7) 

It was found that a single iteration process is sufficient to 

solve the above coupled equations. The iteration scheme is as follows: 
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No 

U' 
C. i------_...,-E_._. ~6-=--)·-~c E . 7 fUl - (_j_±! - 1) < o 

J U±!J ~ u;+1 
'-----------' 

Yes 

The numerical solution is obtained for Equations (6) and (7) 

based on the following values of six parameters: 

a 5 (3 = 20 Nu = 8 

Sh = 15 >. = 0.5 L = 1 

The effect of a parameter on the solution can be found by varying its 

value and fixing the value of all other parameters . 

The effect of the kinetics parameters A and a on the tern-

perature at the center of the pellet is shown in Figure 1. It is seen 

that the parameter ;\ has greater effect on the steady-state tempera-

ture than the parameter a • 

Figure 2 shows the effect of parameter L on the temperature 

at the center of the pellet. When L is greater than unity, there 

exists a maximum transient temperature which is higher than the steady-

state temperature and may damage the activity of the catalyst. This 

agrees qualitatively with Wei's results( 4). To avoid this temperature 
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peak, the physical properties of the solid catalyst and the pore struc­

ture of the pellet must be such that the resulting effective properties 

will make the parameter L less than unity. 
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NOMENCLATURE 

C dimensionless concentration, CA/CA 
0 

CA - concentration of reactant A inside the pellet 

CA - concentration of reactant A on the surface of the pellet 
0 

C - effective heat capacity of the pellet 
peff 

Deff - effective diffusivity of the pellet 

E - activation energy of reaction 

h - heat transfer coefficient on the surf ace of the pellet 

~H - heat of reaction 
r 

k
0 

- specific rate constant of reaction at T
0 

- mass transfer coefficient on the surface of the pellet 

- effective thermal conductivity of the pellet 

- dimensionless parameter, Keff/(peffCPeffDeff) 

Nu Nusselt number, Rh/Keff 

r - radial coordinate 

- rate of reaction 

R - radius of the spherical pellet 

Sh - Sherwood number, RkA/Deff 

t - time 

T - temperature inside the pellet 

T - temperature on the surface of the pellet 
0 

U - dimensionless temperature, T/T 
0 

Z - dimensionless radial coordinate, r/R 
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Greek Letters 

(3 

A 

- dimensionless parameter, 

- dimensionless parameter, 

- dimensionless parameter, (-6Hr)CA
0
Deff/(T

0
Keff) 

- effective density of the pellet 

T - dimensionless time, tDeff/R 
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l?ROPOSLTLON Ill 

A method similar in nature to gas chromatographic tech­

niques has been developed by Giddings and Seager(l) for measuring 

gas phase diffusion coefficients. They suggested carrying out 

experiments with both a long and a short tube in order to subtract 

out the spreading due to the apparatus. Instead of this, it is 

proposed to carry out the experiments with two different flow 

velocities which can be easily changed through the use of tandem 

proportioning pumps. Thus, the experimental procedure is simpli-

fied. 

1. Introduction 

When a thin band of sample gas is injected into a laminar 

stream of carrier gas flowing in a tube, the injected sample will 

spread out due to the axial diffusion and the lateral nonequilibrium 

introduced by the viscous nature of the flow. Giddings and Seager(l) 

have applied their general theory of gas chromatography to this system 

and obtained the following relation: 

H 

where D = 
e 

D = 

u = 

2D 
e 

-- = 
u 

2-
2D ro u 
-+--
u 24D 

Effective diffusion 

Molecular diffusion 
carrier gas 

Mean flow velocity 

coefficient 

coefficient 

in tube 

of sample gas in 
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r Radius of tube 
0 

H = Height equivalent .to a theoretical plate (as 

defined in gas chromatographic analysis) 

Levenspiel and Smith( 2) have shown that the mean concentration of 

sample gas over the cross-section of the tube at length L becomes 

approximately a Gaussian error distribution function of time, if 

D I uL is very small. Then, the quantity H for a Gaussian curve 
e 

can be determined by the formula 

where 

(2) 

L Tube length 

t = Passage time of the peak of the curve 

at Standard deviation in passage time of the peak 

of sample which is injected as a 8 function 

(thin band) 

The standard deviation a 
t 

can be related to the width w at half 

height of the Gaussian curve by the following equation: 

w 20 
t 

12 in 2 (3) 

Then Eq. (2) can be expressed by 

H 
Lw2 Lw2 

(4) = = 
8 .R,n 2t2 5.545 t2 

Since the spreading due to a number of independent or consecutive 



processes is given by 
2 

w 
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the tube alone may be obtained as follows: 

2 
wtube 

2 2 
w - w total apparatus 

the spreading due to 

Accordingly, the spreading due to the apparatus can be eliminated by 

subtracting the data of a short tube from those of a long tube with 

the same flow velocity. Thus, Equation (4) can be rewritten as fol-

lows: 

H = 

where the subscripts £ and s refer to the data for the long tube 

and the short tube, respectively. Substituting this equation into 

Equation (1), we obtain the relation between the width w at half 

height and the diffusion coefficient D as follows: 

(5) 
5.545 (ti -

However, this correction technique involves the replacement 

of tubes and dismantling part of the apparatus, which complicates the 

experimental procedure. 

It is found that the relation between w and D, similar to 

Equation (5), can also be obtained from the analysis by Aris( 3) on 

the dispersion of a solute in a flowing fluid. In this new relation, 

there is no term involving tube length and the diffusion coefficient 

D can be determined from two measurements of width w with different 
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flow velocities. 

2. Analysis 

By assuming laminar flow, a constant diffusion coefficient and 

cylindrical symmetry, the equation of continuity governing the concen-

tration of sample gas in a stream of carrier gas flowing through a 

tube is 

~~ + 2u(l 
2 

- .!:_)~ 
2 ax 

r 
0 

(6) 

Taking the origin of the coordinates moving with the mean flow velo-

city u and using the dimensionless variables : 

~ 
X . - ut 

R 
· r 

; =-
r r 

0 0 

Dt r u 
u 0 

T = = 
2 D 

r 
0 

the above equation of continuity becomes 

2_g_ + U(l OT (7) 

Initially, the sample gas is injected as a o function at the origin, 

so the initial condition is 

at T = 0 c = o(~) (8) 

00 

and J c d~ = 1 (9) 



The boundary conditions are 

at s = ±00 

and 
ac 
at= 0 

at R = 1 

c = 0 

ac 
aR = O 
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(10) 

(11) 

(12) 

Aris(3) defined a quantity C (R,T), which is called the nth 
n 

moment of the distribution of sample gas in the cylindrical element 

through radius R at time T , as follows: 

C (R,T) = 
n 

00 

J sn ccs,R,T) ds 
-oo 

The average of C (R,T) 
n 

over the cross-section of the tube is 

C (R,T) RdRdB 
n 

C (R, T) RdR 
n 

(13) 

(14) 

Integrating Equation (7) with respect to s from ....oo to +oo 

and using conditions (10) and (11), we have 

(15) 

The solution of Equation (15) can be expressed in terms of Bessel 

functions as follows: 



c 
0 

= 
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00 ->.? T 
l A.J (A.R) e i 

. .. 
0 

i o i 
i= 

(16) 

Applying the conditions (8) and (12) to this, we find J 1 (Ai) = 0 

and 

Therefore, 

A. = I 1 
i 0 

if i = 0 

if if:O 

c = 1 
0 

(17) 

Similarly, if Equation (7) is first multiplied by ~ and then inte-

grated, we obtain the solution for cl as follows: 

e 

where 

2 -A. T 
i 

Now multiplying Equation (7) by ~ 2 and integrating with 

respect to ~ from - 00 to +:>o , we have 

(18) 

(19) 

If this equation is averaged over the cross-section of the tube, the 

use of Green's theorem and the condition (12) reduces it to 

(20) 

Substituting Equations (17) and (18) into this, we find the solution 
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. 00 

128U
2 l 

i=l 

1 - e 
2 -A. T 

. l. 

(21) 

By definition, the square of the standard deviation in passage 

time of the peak of the concentration profile C(x,r,t) is 

00 

J dA J 2 C(x,r,t) x dx 
2 A -oo 

at 00 

J dA J C(x,r,t) dx 
A -00 

2r5 1 00 

0 J RdR J C(l;,R, T)~ 2 d~ -3 u 0 -00 

= 
2r3 1 00 

0 J RdR f C(l;,R, T) d~ 
u 0 -oo 

r2 1 00 

~2 
J RdR J 

2 
-2 C(t.:,R, T)~ d~ 
u 

0 -00 

2 r 
0 C2 (T) (22) = -2 u 

Experimentally, a thin .band of sample gas is injected at the origin 

and the initial concentration profile can be expressed as follows: 

at t = 0 -'>! 2\.\ lo-
0 for x < -h 

Jl C(x,r,p) 1 
-h < x < h 1 

2h 

0 x > h 
~~ 
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Then, we find 

(23) 

By combining Equations (21), (22), and (23), we obtain the 

following relation 

2 2 2 -A.. 'T 
00 h2 u2 128U2r r 1. 

2 0 0 I 1 - e = .--+ <2 + 24) O' t . -2 
3u 

. h2 
=--+ -2 3u 

Then 

- 'T --2 -2 u u 

128r4 -2 2 u r . 0 t 
(2D+24D) 2 - D2 u 

128r4 
oo 

0 

i=l 

0 

i=l A.~ 
1. 

2 2 
00 

-A..Dt /r 
1. 0 

I 1 - e 

A.~ i=l 
1. 

-A.~D/r2 
1 0 

e 

Now in the same way as before, we use Equation (3) to relate the 

standard deviation crt with the width w at half height. Then 

Equation (25) can be rewritten as follows: 

!::.w2 
5.545 = 2D ~ <\) 

u 

r
2 2 

+ 0 !::. + .!!.__ t.tl ) 
24D t 3 '-2 

u 

128r4 
00 

-A.~D/r2 
t2 tl 1. 0 

0 I e 
D2 A~ 

(e - e ) 
i=l 

1. 

(24) 

(25) 

(26) 

When the last two terms are very small as compared to the first two, 

we obtain 



6w2 

5.545 

3. Conclusion 
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2 
r 

2D ti(t 2) +24~ /::,.t 
u 

(27) 

Equation (26) or (27) can serve as a basis for determining the 

diffusion coefficient D from two measurements of the width w with 

different flow velocities, instead of different tube lengths. Through 

the use of tandem proportioning pumps, the flow velocity can be easily 

changed without any dismantling of the apparatus. Thus, the experi-

mental procedure is simplified. 
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NOMENCLATURE 

coefficient in Equation (16) 

c concentration of sample gas in a stream of carrier gas 

c 
n 

nth moment of the distribution of sample gas in the 
cylindrical element through radius R at time T 

D 

D 
e 

h 

H 

J 
0 

molecular diffusion coefficient of 

effective diffusion coefficient 

maximum height of a Gaussian curve 

height equivalent to a theoretical 

Bessel function of the first kind 

sample gas in carrier 

plate 

of zero order 

Bessel function of the first kind of order 1 

L tube length 

r radial coordinate 

r radius of tube 
0 

R dimensionless variable, r/r 
0 

t passage time 

u mean flow velocity in the tube 

U dimensionless variable, r u/D 
0 

w width at half height of a Gaussian curve 

Greek Letters 

delta function 

dimensionless variable, (x - ut)/r 
0 

gas 

standard deviation in passage time of the peak of the con­
centration C 

dimensionless variable, Dt/r2 
0 
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Superscript 

average over the cross-section of the tube 
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