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ABSTRALCT

A point focusing x-ray monochromator was designed and
constructed for low angle scattering studies. The anastigmatic
point focus is achileved by means of two cylindrically bent
quartz crystals whose focal circles are mutually perpendicular,
The beam, emanating from the copper target of an x-ray tube, 1s
reflected in succession, first from the crystal defining the
horigontal focal circle and, second from the crystal defining
the vertical focal circle following which it comes to a mono=-
chromatic point focus of wavelength 1,537 g (Cu Kky)o The
sample to be studied is placed between the second crystal and
the point focus, and the scattered beam is detected by means
of a photographic plate placed at the point focus,at right
angles to the undeviated beam, the latter being suppressed by
means of an absorber,

Mathematical analysis, in which a ray was traced through
the two crystal system, revealed correctly the shape and size
of the point focus, and the possibility of reducing the latter
in size by stopping down the beam emerging from the target.

The instrument and its lining up procedure is described
in detail, particularly the latter since the orientation of
the two crystals relative to each other and the x-ray tube
involve twelve degrees of freedom.

Suggestions for improving the intensity of the instrument
are made, These consist of (1) substitution of topaz crystals
for quartz, (2) use of helium atmosphere instead of air to
surround the x-ray beam (3) reorientation of the x-ray tube

to cermit smaller angles of emergence of the beam,



As a trial run for the instrument, the scattering
patterns of two kinds of carbon black (good scatterers) were
obtained from which the average particle sizes and sigze

distributions were calculated,
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PART I

INTRODUCTION

In the past few years a good deal of interest has
arisen in low angle x-ray diffraction studies, particularly
among chemists and biologists. It is well known(l) that x-rays
scattered at low angles reveal the size, and possibly the shape
of small particles that make up the scatterer. In the case of
fibrous substances, such studies(2) may reveal the size of large
periodicities along the fibers. In a way, one can think of
low angle studies as being an extension of microscopy into
smaller sizes although the "plctures" that one obtains are by
no means as easy to interpret. In the case of particles, the
intensity, in general, is a function of er/\ where e is the
scattering angle, r the particle radius and A the x-ray wave-

length being scattered.(l’S)

Theoretical curves of intensity
versus scattering angle have been computed for particles of
various sizes, shapes and size distributions(4), so that all
one has to do is to match the intensity distribution of the
scattered x-rays with one of the theoretical curves in order

to determine the physical properties of the scatterer., This
seemingly simple procedure, however, is complicated by several
factors. The intensity distribution that one obtains in practice
is the fold (or convolution) of the spectral distribution of
the x-rays, the beam aperture, and the scattering distribution,
thus posing the problem of separating or unfolding the first

two factors in order to obtain the actual scattering distri-

bution. The problem of unfolding is a very difficult one



particularly i1f one doesn't know exactly what functions
formed the fold in the first place,

Thus, to obtain a scattering pattern which is truly
representative of the scattering medium, one has to try to
minimize the instrumental effects, by constructing an instru-
ment which will produce a monochromatic beam of high spectral
resolution. However, as is usually the case, the price of
high resolution is loss of intensity which in many cases 1is
so serious as to defeat the whole purpose of the experiment,
Various types of instruments have been buillt in the past in
which a compromise, of some form or another, has been made
between high resolution and low intensity. These instruments
can be classed roughly into two types: (1) the slit type in-
strument conslsting of an x-ray beam, possibly filtered, which
is collimated by a slit system or (2) the crystal type, in
which one or two crystals (either flat or bent) are used to
monochromatize the beam,

The slit type instrument is best adapted for long wave=-
lengths, thus requiring vacuum methods. This i1s a handicap
which is shared by en electron microscope, especially when
scattering from liquid samples is desired. Successful use
of such an instrument has been reported by Yudowitch(5), and
Bolduan and Eear(g’e).

An instrument for low angle scattering studies in which
a curved crystal 1s used for monochromatization has been re-

ported by Guinmr(l) and later at the suggestion of DuMond,



has been modified by the addition of a second curved crystal
placed in the "parallel"* position with respect to the first.*™
See Fig. 1. In the latter scheme, the sample 1s placed in the
convergent beam, midway between the second crystal and the line
focus, while the photographic plate is placed in the focal plane.
The diffraction pattern appears on the photographic plate as
a diffuse distribution symmetrically disposed on either side
of the direct beam, the latter being suppressed by means of
an absorber. It has been found that line focused beams are
not well adapted in the study of the long chalns of protein
molecules in which the periodicities of iInterest are along
the chain.

The possibility of bringing a monochromatic beam of x-
rays to an anastigmatic point focus was first suggested by
DulMond in 1949(7), however, due to lack of funds the design
and construction of a point focusing instrument were not under-

taken until the summer of 1950,

*The "parallel"™ position is the position of zero dis-
persion. See Compton and Allison(8), p. 718, where the term
i1s used in relation to two flat crystals.

#**¥The beam is focused monochromatically to a line by re-
flection from the first crystal and is refocused again to a
line by reflection from the second crystal, thus cutting down
the incoherent scattering in the neighborhood of the line focus.
This is not to be confused with the instrument whose development
forms the subject matter of the present thesis in which the
angles of deviation of the beam in the two successive crystal
reflections lie in planes at right angles to each other in
such a way that the beam is brought to an anastigmatic point
focuse
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The advantages of & point focusing monochromator are
two=fold:

le The circular symmetry of the scattered radiation
greatly simplifies the interpretation of in-
tensity distributions. In other words, the point
focused beam may be thought of as such a fine
tool that any diffraction pattern obtained with
it must be considered as purely a property of the
scatterer.”™

2. The background due to incoherent scattering of
the continuous x~ray spectrum incident on the
first crystal will be reduced considerably after
scattering from the second crystal, relative to
the twice Bragg reflected line intensity, thus
improving the sensitivity when the scattering
power of the sample is weak.

The intensity of the focused beam which is discussed in
some detall later, 1s probably one of the factors that may
1limit the use of the instrument to relatively good scatterers.
Several improvements, also discussed later, may increase the
luminosity considerably. Although the intensity (power/unit
area) of the beam at the point focus 1s considerable, the
actual power in the beam is not sufficlently high at present
to permit measurable diffusion of the beam by a scatterer

over a large area of photographic plate.

*The size of the point can be decreased at will by
stopping down the beam emerging from the target. Without such
stops and with our present x-ray tube (Machlett), the point
appears slightly elongated with dimensions 0.196 by 1.40 mm.
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PART II

GEOMETRY OF THE POINT FOCUSING MONOCHROMATOR

Since the point focusing monochromator consists of two
bent crystals, each of which behaves like a line focusing
monochromator, it will be well to review briefly the geome-
try of a single bent crystal. The numerous symbols used
in the discussion that follows are listed alphabetically at
the end of this part (p. ).

GEOMETRY OF A SINGLE BENT CRYSTAL

It is well known(g) that x-rays can be made to focus
monochromatically by a crystal lamina which has been hollowed
out, cylindrically, to a given radius and then bent elasti-
cally to half that radius. If we let the concave face of the
crystal after bending define a cylinder, then the intersection
of this cylinder with a plane, bisecting the crystal and perpen-
dicular to the generators, is a circle called the focal circle.
The plane is called the focal plane. The only condition re-
quired for point focusing is that the line, about which the
crystal planes are concentric, be one of the generators of
the focal cylinder,

Pig. 2 shows a single crystal with its focal circle,

C is the center of the circle, S a point-source of x-rays, F
the vertical line focus, P some arbitrary point on the crystal,
and @ the vertical line about which the crystal planes are con-
centric., Thus, the figure shows the projection of the rays

SP and PF on the focal plane with RP normal to the crystal
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planes at P, (SP and PF are in a plane not necessarily parallel
to the focal plane.) If the arcs g% and gﬁ are equal, then

the angle of 1ncidence §§b is equal to the angle of reflection
ﬁ??. This relation holds true for all points on the crystal
surface and, furthermore, if the vertical divergence (ahgle
between rays SP or PF and the focal plane) is not excessive,
the angle of incidence remains fairly constant for all points
on the crystal surface. The above two conditions are precisely
the ones required for reflection of monochromatic x~rays. The
wavelength reflected is given by the Bragg law A= 24 sine
where © is the grazing angle which is also the complement of
the angle of incidence. Thus, it has been shown that a beam
emanating from the point S will focus monochromatically at

the vertical line through F. Experimentally, the position of
point S, relatlve to the crystal, 1s such that the K«q line of
Cu is reflected in the monochromator here described.

In Fig. 2, the point on the focal circle diametrically
opposite @, is denoted by @', and the center of the crystal
lamina by A, It should be clear from this figure that a much
larger crystal lamina (such as that indicated, partly with
lighter lines, between the points 2Z7Z in the figure), with
center at @' could be used to form the monochromatic image at
F of the source S. In the present instrument only a portion ZZ!
entirely on one side of @' 1s actually used. The reason why
the center of the crystal is not at @', but to the left of it,

will be evident as soon as the two-crystal arrangement is



discussed.

The angle 2K 1s a measure of the angular displacement
of point A from @3'. Since the angle ﬁgb is equal to «, then
x is also the dihedral angle between the crystal plane and
its face (or between their normals) at the point A and at
all points lying on the generator through A,

The reflected beam that arrives at F appears to come
from the virtual line source F' which lies on a circle of
radius S @' with @' as center, see Fig. 3. Now let us take
a second identical crystal with its focal plane perpendicular
to the focal plane of the first crystal and place it in such
a way that the line of intersection of the two focal planes
is FF'. Let the center of the second crystal be denoted by
B, then both B and A are on the line FF'. If we let BF' = AF
and if the point F' lies on the focal circle of the second
crystal, then the rays striking this crystal will be reflected
at the Bragg angle and will come to a pdint focus, P.F,

It should now be evident, (1) why only a part , ZzZ', of
the total conceivable crystal ZZ shown in Fig. £ is retalined,
(2) why the center A of the crystal ZZ' is displaced angularly
by an amount 2 from the point @' and (%) why the atomic re-
flecting planes of the crystal are not exactly parallel to
the face of the bent crystal slab at its center but make én
angle « therewith. All three of these requirements originate
from the fact that the first crystal must be kept entirely on

one slde of the point @' and the second crystal entirely on
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the other side so as to avoid interference between the two
crystals or their crystal holders when the two focal circles

are correctly mounted to avoild astigmetism. Clearly, the

larger the angle « 1s made, the farther apart the two crystal
clamping blocks may be placed. The distance between the centers
A and B of the two crystals is given by 4rsinxcos€ where r

is the radius of elther focal circle.

If the two focal circles were in the same plane and super=-
imposed on one another (without turning over), with point B
coinciding with A, and with point focus (P.F) coinciding with
the point source (S) then the virtual source (F'), if we neg-
lect the slight curvature, would coincide with the line focus
(F)e It is thus seen that the point focus monochromator is
made up of two identical line focus monochromators placed in
a definite way relative to one another.

In order to examine the aberrations that occur in such
a point focusing arrangement, it 1s necessary to take a general
ray and trace it through the system,

TRACING A GENERAL RAY THROUCH THE SYSTEM

For convenience the unit of length is taken equal to the
radius of one of the focal circles, Let the coordinates de-
scribing the horizontal focal circle be x, y, 2z, or when con-
venient, cylindrical coordinates ¢, @, z, where z is perpendicu-
lar to the focal plane and is also measured in units of r and
P is the radial distance from the axis passing through C normal

to the focal circle.
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In Fige. 4, S, represents the center of the target which
is on the focal circle, S the intersection of a beam from an
arbitrary point on the target with the focal cylinder*, A
the center of the crystal, P some arbitrary point on the
crystal with coordinates (1, @, z), F_ the focal point, and ¢
the vertical axis about which the crystal planes are concentrice.
The x-axis is in the focal plane, perpendicular to AE., In
the calculations that follow, we will derive the relation
between the grazing angle ©, defined on p. 15 and the Bragg
angle ©,, defined below.

SoP represents a ray of wavelength Ao such that the angle
O, satisfies the Bragg law Xo = 2d sin ©g. Ao is the wave-
length at the middle of the Kgq line.

The angle between the projection of §;§ on the xy plane
259 ;cx+ ¢).Tw The length of S P is

1

- X - ¢)+ 22]5

2

and the x-axis is -(% -

il

|SoP|

Fsinz(seo

Ml

= 2sin590-°<-¢[1+zz/ 4sin? 390 - K= )]
2

and the length of its projection on the xy plane is

osin %90 =& = &
2

*The plane of the target is not tangent to the focal cylin-
der, It is oriented in such a way that the central ray SoA
makes approximately 6° with it. This direction of S A is the
direction of maximum intensity.

**The angle « has the same signiflcaggg explained for Fig. 2
and the angle @ in Fig. 4, is the angle PCX.
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It will be convenient to measure angles from AC rather
than the x-axis. We therefore define the central angle §g§
by‘zazand from Fig. 4 it is seen that,

en= @ - 65 - (1)

Because of the limited slze of the crystal, m will never

exceed 1/80 radians. This makes it possible to neglect terms

of order'né, since they represent angles that are smaller than

A

one second of arc..

Let, . 3 5
Z 22 =
aq = |1 + a— ¢ = +
© [ dsiné ©8g " & - 5"] [1 4sin2(e, -m-ﬂz)}
” )
and
By = z = Z
g = =
osin %90 -x- # 2sin (6, - =m)

2

This gilves S4P = zao/bO and the length of i1ts projection on
the xy plane is z/bo.

The direction cosines of SyP are therefore:

z W _ 300 =&+ @ z (i (T _ 300 =0+ @

5, o8lz 5 ),"' 5 2k — 5 ), p
Zag Zaop Zao
By By o

or by substituting (1)

bo

) — 1
gos1n(290 LK P gocos(zeo +mi, T (2]

*The half-width at half maximum of the Darwin diffraction
pattern for Key radiation of copper reflected from quartz in
the 1lst order of the (310) planes 1s about 1 second of arc and
this, therefore, has been taken as the limit of negligibility.
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The above ray is emitted from the point S, whose co-
ordinates are (1, 39, -, O). Suppose now, a ray is emitted
from the neighborhood of S,, say the point S, whose coordinates
relative to S, are (ty, t,), see Fig. 5, or relative to the
focal circle (1, 30, - X + 2t, ty) where t = ty/2sin(6, -X),

then the direction cosines of SP follow from (2)

% sin(g2e, +M+ t), % cos(26, +M+ t), § (3)
where ,
2 1°
. -t
a =1+ iz z) (4)
4 sin<(€g = =7 + t)
and
- %
b = E R (5)

2 sin(@y = o = M + t)

The projected target size is 1 mm. x 1 mm. at right angles

to the central ray so that |t} = |ty/2sin(e. - «)| < 1/1500

)
radisns and It,| £ 1/1200 radians.

P@ represents the normal to the crystal planes at point
P and its direction cosines are:

cos &+ 80 - gin @+ 8o - X , O
2 2

or by substitution of (1)
cos (85 +M), sin (645 +M), O (6)
Now let © be the grazing angle of the ray at point P,

i.e. the angle that the ray makes with the crystal planes, so
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that'gjm © is the angle between SF and P@ , then

cos (%'- 8) = sin @ = SP_. Eéa
|s? || Pal

With the help of (&) and (6), this gives
sine = (l/a)[sin(zeo +M+ t)cos(8p +M)-cos(28 +m+ t)sin(Q, +°7ﬂ
or

sine = (1/a) sin(6, + t) | (7)
From (4) and (5), a = (1 + bg)%, where b2 i1s small, so that
terms of‘order b4 in the expansion of 1/a can be neglected.
Therefore,

1/a=l - b2/2 (8)

and,

sin® ~sin(8, + t) - (b2/2) sin(e_ + t)

The second term on the right represents a small correction
to the angle &, which can be expressed as follows:
@ =8,+t ~Y (9)

sin 6 = sin(@o + t =Y¥)=xsin(0, + t) = ¥cos(8p + t)

¥ 1s identified by comparing with the preceding equation,

and is given by

¥ o= -2_ tan(@o + t) (10)

or upon elimination of b with equation (5), by

(2 - t3)% tan(6, + t) 2% tang,

~ (10a)
8 8in®(9, = =M+ t) 8 sin?(8y-&)

Also, since z is at most 1/60 radians and the arguments of the

tangent and sine are approximately T/4 so that y=15 sec. of
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arc, it was therefore justifiable to omit terms of order pd

in eg. (8).

We have thus obtained an expression for the grazing
angle © of a ray of wavelength Xo, from the point S, in terms
of the Bragg angle 8, and the small angular deviatlons t and
Y.

It is now necessary to consider wavelengths that are
slightly different from Xo’ since the whole Kg; line contributes
to the beam rather than just a small portion of 1t represented
by Ao’ Let the new wavelength be A and the Bragg angle corre-
sponding to 1t ©;, then because of the smallness of A -,AO,
it is possible to expand Oy in a power series, keeping only

two terms, thus:

O = 6, + ()\-XO) geo (11)
where

00, 1 _ tan 8,

I\  2d cos 6, T A,

obtained by differentiating the Bragg equation Ao = 2d sin@o.
The intensity reflected by the crystal is a function of
the difference between the grazing angle and the Bragg angle,

Subtracting (11) from (9), we get

0 -05=1t-§- (A=X,) 280 (12)

e

or upon replacing K’and %§?,by their equivalent expressions

2
O -6g=1t__% tan®o - 2‘_.;2\_3 tan®, (12a)

8 sin2(e, - o) Ao
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The intensity of the diffraction pattern of the crystal
can be written as Fﬁ = F (8 - QB)% and its shape in the case
of no absorption is givé; by Compton and Allison(a), Fige
VI-7. The full width at half maximum of the diffraction
pattern, in the case of the (310) planes of quartz, is ap-
proximately 2 seconds of arc. This means that for € - 8> 1"
only a small fraction of the intensity of wavelength X is re-
flected. In the preceding calculations angles that are less
than the diffraction pattern width were neglected. The same
will be done in the calculatlons that follow. It is justi=-
fiable to drop terms of order 2" or less since such terms do
not reveal anything of interest regarding the focusing properties
of the laminae,

Let the direction cosines of the reflected ray be k, m, n.

These must satisfy the following three equations.

- G - G g (13)

k cos(8g + M) + m sin(8y + m ) = -sin © (14)
k m n

cos(8, +m) sin(8g + 1) ol=o0
sin(g204 +M+ t) -cos(28g +M + t) b
a a a

where eq. (14) insures that the reflected ray makes an angle

* 0~ and W refer to the two components of polarization; the
former has its electric vector in the plane of incidence and
the latter at right angles to 1t. In the case of no absorption

F. = I? where I? are the Darwin functions for the two types of
T T 1

polarization, given in Compton and Allison p. 391,
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/2 -~ 6 with the normal to the crystal planes, Pg, and the
determinant insures that it be coplanar with Py and SP. The
determinant reduces to:

k sin(6, +7) - m cos(8, +7 ) = % cos(8y + t) (15)
Multiplying (14) and (15) first by cos(e, +7) and sin(8y +7M)
respectively and adding, and then by sin(€, +M ) and =-cos(8,+7)

respectively and adding, one obtains

k = (n/b) cos(6y + t) sin(8y +M) =-sind cos(6, +m) (16)
m = =(n/b) cos(8y + t) cos(8y +M)-sind sin(6y +M) (17)

which, when substituted in (13), gives

02 = — b2cos?e
T b + cos?(9g + t)
From (7)
2 2
cosZg = P2 * 00s%(S0 * t) (18)
al
Substituting (18) in the expression for n2 and taking the
square root, we obtain
n = b/a (19)

Finally upon substitution of (7) and (19) in (16) and (17),

the direction cosines k, m, n, are reduced to their simplest

form
k = (1/2) sin(m- t)
m = -(1/a) cos(7M - t) (20)
n = b/a

Note that the direction cosine in the z direction for both the
incident and reflected ray are the same. This is obvious if
one thinks of the crystal as being a plane mirror in the z

directione.
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Assuming the second crystal is removed momentarily,
then the projection of the ray, represented by k, m, n, on
the focal plane is the line PF where F is displaced from F,
by an angle 2t, just as S is with respect to S, Since the
position of the point F depends on the variables t and tg4
only, and not on m s then all rays from S will focus in a
straight vertical line passing through F., Furthermore, since
no approximations were involved in deriving the expressions
for k, m, n, the focusing occurs without any aberrations,.
however, the line through F contains all wavelengths in the
neighborhood of Ao' To see this, we must consider eg. (12a)
and note that reflections occur only when © - g = 0, vhere
the equality holds to within the diffraction pattern wi dth.
Thus, if S and hence t is fixed, then A is a function of z,
with A decreasing with increasing |z .

Since to each point S5 there corresponds a polint F, this
implies that given a sufficiently wide spectral band of wave=-
lengths the width of the line focus could be essentlally the
width of the target, approximately 1 mm. However, neglecting
the continuous x=ray spectrum, the range of wavelengths per-
mitted to go through is approximately & times the full width
at half maximum of the Kyg; line, so that the line focus appears
to be about 1/ mm. wide.

If instead of keeping t fixed, as was done above, A is
kept fixed, then (12a) shows the dependence of t on z. The

dependence is such that "lines" of ewmal X are parabolas whose
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branches extend in the positive t direction, i.e. toward
the longer wavelengths.

In order to be able to trace the ray any further, it
is necessary to describe it in the coordinate system of the
second crystal x', y', z'. The latter axes are oriented in
the same manner with respect to the second crystal as x, ¥y, 2
are with respect to the first.

The relation between the two coordinate systems is glven

by
x! = cos(0y +%) = z
y' = 2 sin(6, =«() - ¥ (21)
z' = cos(8y +ol) = x

where cos(@y + &) = ﬂﬁé = Erﬁg and 2 sin(e =) = CoCY as seen

from Fig. 5.

Let the direction cosines of the reflected ray in the
primed coordinate system be k', m', n', and in view of the
above transformations, and egs. (20)

k! = =n = =b/a

H

m!' = -m

cos(m - t)/a (22)

]

n' = =k -gin(m - t)/a
Let the coordinates of the point P in the primed system
be xi, yi, z}, then
x! = cos(@p +X) = z

yi = 2 sin(e, - «) - sin @

zi = cos(®_ + o) - cos g
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Also let the coordinates of the point P', where the
ray strikes the second crystal, be x', y', 2' which in

terms of cylindrical coordinates are given by

x!' = cosd’
y' = sing!
Z' - Z’

so that

cos@' -cos(Bp+)+z  sing'-2sin(6y-ol)+sing  z'-cos(8 +o)+cosd

n m k

or

i

cos@!' cos(%+d0-z+(n/m)[sinﬁ'-zsin(eo-x)+sin¢]

gl = cos(eo+w)-cos¢+(k/m)[sinﬂ'-2sin(@o~u)+sin¢]

{e5)

(24)

It is necessary to solve eq. (23) for ¢', or for'q', where

by analogy to eg. (1), we let,
em! = @' - 6, - &

where 2m' 1s the central angle §67§§ so that,
cosflaz (1 - 29' %) cos(8y +A) -2q' sin(6, + o)
sind' o sin(9g + &) +2m' cos(6, + )

Similarly from (1)
cos A~ (1 - Eq?) cos{8gy +«) -2¢1sin(90 + )
sing az sin(8, + ) +2mcos(8, + &)

From (20)

n — b

m ~ =cos(m - t)z—b

where from (5)

z[_l +M cot(6g -»o<.)] ~t,
2 sin(6, = «)

b~

Vasd

(25)

(28)

(27)

(29)
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Substituting eqgs. (26 to 29) in (23), and neglecting terms
of order higher than z2,m?% or zn, as was done above, a

quadratic equation inn' 1is obtained, which is as follows:

' 2 cot(Oorx)+n! = )+Qcot(90-«)

z 14 2 cot (Oot+d
2 Sin(GO-O() I 2 Sin(eo"O()

quin«sineo]

sTH(6,7%) (20)

Ty sincos®o
T sin(65-«)sin(05+R

By substitution of (z|<1/60, \Ml £1/80, and « =& 1/30
radians? it 1s found that the next to the last term in the
preceding equation is of the order of 2" and hence may be
neglected,

The quadratic equation is of the form

Am'2 + m' =B

whose solution is

3
- z
m = 1 + (1 + 4AB) ~B - AR®

Appolying the above equation to (30) the following result is

obtained,

i = Z [1 + mcot (6 -O():\_ 2t! sing cos8, z
mn 2 sin(0g-«) M ° sin(0,-«) (31)

where

! tz/z sin(®p + )

and plays the same role in the primed coordinate system as t

does in the unprimed system, |t'|\< 1/1500 radisns.
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To solve for z', we substitute k/m = =tan(m - t)
together with egs. (26), (27) and (31) into (24), which

after simplification becomes

zm cos(8g + o )
sin(8, - «)

z' = 2msin(@ - ) - + 4tsink cos8g (32)

The direction cosines of the normal to the crystal planes
at P' are given by (6), with 7' replacing m . They are:
cos(8y +M'), sin(ey +m'), O (33)
The direction of the ray incident on the second crystal
k', m', n' are given in terms of b,M, t by egs. (22).
Let the angle between the above two directions be w/2 - o

where ©' 1s the grazing angle. Therefore,

cos(g — 8') = sin8' = k' cos(6, +M') + m' sin(6, + ')

® =bcos(8p +M') + (1 - b2/2)cos (M- t)sin(0gy +7)
r4 -[b o+ —(—’Q—é—i—)—% tan(e, +m )] cos(84 +mM')

+ (1 - pe/2) sin(e, +m') (34)
where eqgs. (5), (8) and (22) were used in the second step, and
in the last step cos(m - t) was expanded into 1 - (M- t)2/2.

Let : o
¥' = b+ _(_fi%__’;?)__ tan(6, +’rL') (35)

Since Y' is a small quantity, it is permissible to rewrite eg.
(34), thus:
sin@' =« =sin y' cos(6, +M') + cosy!' sin(ey +m')
= sin(0q + 7' -y')
from which it is easily seen that

9‘290“"')1‘ —y'
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With the help of (29), eq. (335) can be simplified by dropping

higher order terms, namely those involving t. Thus,

2
: t'sin(0, + &
¥' = T sinle. = oLT[l + meot (8, ..o()]+'% tano, - sinl’(—‘LgOo_a) )

combining the above with (31), results in
2
o' =80 + t' =% tane, (26)

As 1In the case of the first reflection, we are interested
in the difference between the grazing angle @', and the Bragg
angle ©p for the wavelength K « Making use of (11), the final

result is,

A

112
8! - 6 = t' - 3 tane, - tan®g (37)

0

The above equation can now be compared with (12a), which is,

zztan@o A- Xo
O

B=bg St=g sin?(0g = L) N

tando (38)

The conditions that must be imposed on (8 - ©p) and
(8" = ©p) in order that a ray of wavelength X be reflected by
both crystals are,

O -6g=86'"=-6p=0 (39)

where the equality is to be understood to hold to within
the diffraction width, namely 2" of arc. This, incidentally,
is another justification for dropping small order terms.

In view of the above requirements eqgs. (37) and (38)
show some interesting properties of the crystals. For purposes

of computation it is better to rewrite the above equation in
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numerical form by substituting 65 = 40.7° and &« = 2.1°,
0! - 8p = t' - 0.450m% - 0,860(A - Ao)/ A (40)
@ =0 =t = 0.27622 = 0.860(A - z\o)/f\o (41)
Subtracting (37) from (38), gives the dependence of ” and =z
on t and t' alone,
(M2/2)ten8y - 22t2n6,/8sinB(0g =) = &' = t (42)
or
0.430M2 = 0.276z% = t' = t (42a)
If the target of the x-ray tube is so small that t and t!
can be neglected, or if t' = t = O in the above equation, then
the area of the first crystal which is contributing to the point
focus degenerates into two lines whose widths (& 0.01 mm.) correr
pond to the diffréction pattern widths and whose equations are
z =+ 1.25m (43)
along which the wavelength decreases with Increasinglzl, as
is given by eq. (41l). By definition, 2n. 1s the angle measured
at thé center C of the focal circle from the center of the
crystal to the arbltrary point P, so that z and qu may be con=-
sidered és the coordinate axes of the crystal lamina with the
origin at its center. If the above two lines are projected on
a plane perpendicular to the incident (or once reflected) bean,
then they become orthogonal and are inclined at 45° with the
horizontal plane. Since the reflecting portlions of the crystal
laminae were designed to admit a square beam, 3/4" x 3/4", it
is obvious that the above lines connect the opposite corners of

the laminae. When t' - t i1s not negligible, eq. (42) represents
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fstoey

t1 =t >0 — / t1=t>0
N/ S Z’/YL
\M—~t'-t<()
Fige 6 = Cross-section of beam (3/4" x 3/4") midway

between the two crystals. Hyperbolas repre-
sent cross=section of rays emanating from
points in the target for which t'=t 1s a
constant,
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two families of hyperbolas whose asymptotes are egs. (43).
The upper and lower hyperbolas correspond to negative values
of t' - t. When |t' = t]| takes on all values from zero to
some finite value, eq. (42a) gives the four limiting hyperbolas
within which the first crystal lamina 1s illuminated by x-rays.
Ege. (42a) also shows that in order that the whole lamina be
illuminated t' = t must satisfy the following ineqguality,
- 0,042 € t' = t £ 0,042 mm.
This inequality shows that the useful target area is a strip
inclined at approximately 45° with the horizontal, and extend-
ing from the upper left hand corner to the lower right hand
corner of the target. It must be remembered that the values
t and t' do not represent true distences from the center of
the target as seen from the center of crystal A, but must be
multiplied by 2sin(6, + &) and 2sin(6, - &K ) respectively, to
give tz and ty. Thus, t' = t = t3/2sin(8y + K)-ty/2sin(6, - )
so that,
=0,06 £ tyz = 1,09ty € 0,06 mm. (43,

and the actual inclination of the strip is 47 1/2° with the
horizontal plane.

The limits on t and t' individually are given by (40) and
(41) in which the maximum value of |A- Aol can be taken arbi-
trarily as 0.30 X.U., 1.e. the half width at half maximum of
the Kg7 line. Hence,

-0,10 € £t € 0,14 mm, or =0.,13 <t < 0,17 mm,

J
-Onlo é t' $ 0015 il e or -0014‘ < tz < 0020 MMe
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It is seen that the useful target area 1iIs a diagonal
strip about 0,09 mm. wide enclosed in a rectangular area
0,80 mme x O¢34 mm., the sides of which are not symetrically
disposed about the center of the target (t = t' = 0), see
Fig. 8a, p. 38. Note that the width of the strip is inde-
pendent of the wavelength, except through the factor 6,5, as
given by eq. (42).

It is known that the curves representing the intensity

2

versus wavelength of x~-ray spectral lines are "witches".” Thus,
it 1s obvious that the area under that part of the witch (out
to half-max.), which is being reflected above, is half the
total area. If the full target, 1 mm. x 1 mm,, is used in=-
stead, then it is not hard to show that about 83% of the area
under the witch is being reflected. The useful area of the
terget, however, is still a diagonal strip of the same width,
namely 0,00 mme This width is independent of wavelength ad-
mitted, but depends on the size of the crystal laminae onlye.
Returning our attention to the ray, which was found to
strike the second crystal with a gragzing angle ©' at the point
P' whose coordinates are (1, 65 + & + 2m', z'), we now consider
the twice reflected ray and follow 1t through to the point focus.
Let the direction cosines of the twice reflected ray be

k", m", n", then the conditions that they must satisfy are

similar to those given by (13), (14) and the determinant, with

“The standard equation of a "witch" at the origin is

A
1 + x2/we .
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mM' replacing n'and k!, m', n' repla cing the last row in the

determinant,

kng i m"2 + nng = 1 . (44)
k" cos(@o +'Qf) + m" sin(e, +4l') = =3ing! (45)
kﬂ m" nﬂ
cos(8g +M ') sin(6g +M") 0 =0
k! m! nt

As in the case of the first reflection, the direction cosines
in the z' direction of the incident and reflected rays are
equal,i.e. n" = n', so that with the help of (22) we have:
n" = =(1/a) sin(mM - t) (486)
Subtracting the last fow of the determinant from the first and
expanding, we get
(k" = k‘)sin(@o +47’) = (m" - m')cos(8, +ﬁf)
Eliminating sin®@' from (45) by means of (34), wé get
(k" + k')cos(e, +71') =-(m" + m')sin(e, +")
Solving the last two equations for k" and m", we obtain
k" = -k'cos2(8g +m') -m'sin2(8, +m ') (47)
m" = -k'sin2(6, +m') +m'cos2(8, +7N ') (48)
which are left in the present form for convenience, |
In the ideal case the position of the point focus,
relative to the primed coordinate system, must be the same as
that of the center of the target relative to the unprimed system.
The coordinates of the center of the target, point S, are
(1, 395 =&, O) and hence the coordinates of the point focus

must be the same. The general ray that we are dealing with,
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however, may not pass exactly through this point, but may
pass close by, say through (1, 38, = ol + 2p, P,) Where D
and pg are swmall guantities. If we let
Py = 2p sin(6, -~ ),

then Py and p, represent the coordinates of the general ray
in a plane perpendicular to the central ray and passing
through the point where it touches the focal circle, the
coordinates of the central ray being (0, 0). See Fig. 5.

| The equation of the twice reflected ray can now be

written as:

cos(38p =X+ 2p) =-cosff'  sin(30, -+ 2p) =-sing' pz-2'  (49)
K" = =

m" n'
Substituting (47) and (48) in the first two terms above, and
simplifying without making any approximations, we get
tan(p -M') = k' /m (50)
where use has been made of @' = 8o + X +3271'. From eq. (22),
k'/m' = n/m = =b/cos(M - t) & =b, and since tan(p -M')=p -7’
eg. (50) becomes, with the help of (31) and (29),
p=n' -b=t (51)
or
py = tzsin(8o -&)/sin(6g + &K) (52)
To find the coordinates of the ray in the other direction,
i.e. p,, we consider again eq. (49),
py, = z' + (n"/k”)[cos(ﬁ@o - o + 2p) =cos ¢q
where z' is given by (32) and n"/k" is given by (46), (47)
and (22). The resulting egquation is,

Dy & 2tsin(6, + £ ) = tysin(eo + o )/sin(8g - &) (53)



Subtracting (53) from (52), we get
pysin(8oted /sin(8o=a)=py = ty=tysin(6,+X)/sin(8o=&) (54)
or numerically
1.09py = pz = tz = 1.09ty (54a)
which in view of the inequality (43.1) gives
~0.06 € py - 1.09py < 0.06 mm, (55)
Egs. (52) and (53) together with the inequalities imposed on
ty, and ty, for transmission of half the area under the Kygp line,
give
-0.13 § py & 0.18 mm.
<0.14 S p; £0.18 mm, (5€)
The three inequalities above show that the focal spot in
the final "point" image is a strip of width 0.09 mm., inclined
at 47 1/2° with the vertical focal plane. This strip is en-
closed in a rectangular area 0.3l mme X 0.32 mm. See Fig. 8a,
De &G
| We can now come to the following conclusion. The focal
spot 1s the image of the useful portion of the target, namely,
a diagonal strip 0.09 mm. wide, By varying the target aperture,
it is possible to change the shape and size 6f the focal spot.
Although the focal spot 1s the image of the target, the reso-
lution of the instrument is determined by its geometry. 1In
other words, no matter what size target is used, only a diago=-
nal strip is useful in forming a focallspot. The length of
the strip is determined by the width of the Kgj line; beyond

that only the continuous radiation is reflected. If the strip



is sufficiently long, i.e. if the target extends sufficiently
along the length of the strip, about 1.8 mm., the Kgo line

may be reflected. The latter case 1s shown by means of

dotted lines in Fig. 8a, p. 38. This, however, is not desirable
since the focal spot will then appear as two elongated dots.

Any target area outside the diagonal strip is useless and only
contributes to the incoherent scattering which adds to the
general background in the neighborhood of the focal spot. If

a tube whose target area is 1 mm. x 1 mm. is used, the focal
spot is approximately l.4 mn. x 0,09 mm.

Before concluding this section, it must be pointed out
that the intensity reflected by the two crystals is a com-
plicated expression involving the integral Fg(©-6p) Fp(6'-6p)
where the arguments of the functions F are given by egs. (40)
and (41). The intensity problem will be discussed in more
detail later.

ABERRATIONS

S0 far,'only the ldeal focusing system has been considered,
that is, the case where the crystals have been cylindrically
ground prior to bending. In practice, however, it is found to
e arather difficult task to grind crystals cylindrically with
any degree of accuracy. Instead, The crystals are ground flat
and then bent to twice the radius of the focal circle in order
to obtain the proper curvature for the crystal planes. Thus,
the concave crystal face does not everywhere hug the focal

circle but is only tangent to it at the center of the crystal.
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The use of initially flat crystals and their effect on
the focusing qualities of single crystal monochromators has
been discussed extensively by Johann(10), Herein, we shall

designate this as the approximate focusing system.

To find what happens to the focal spot when two such
approximate focusing crystals are used in the point focusing
arrangement, it is necessary to retrace a general ray through
the system. Since it is neither instructive nor interesting
to repeat the calculations in detall, only the more important
results will be presented.

Fig. 7 shows a flat crystal which has been bent to a
radius equal to twice the focal radius. Point P is again
designated as a general point on the crystal lamina, however,
it is no longer on the focal circle., Cf is the center of curva-
ture of the crystal face and 4Lis measured about the point Cgp

The difference between the graging angle at the first
crystal and the Bragg angle for the wavelength X is given by

@ - 05 = t - 0.27622 = 0.860( A = Ng)/Ay + 0.628%° (57)
At the second crystal it is found that

o - 6p = t' - 0.4307(2 - 0.860(A - /\O)//\O + 0.3502% (58)
Comparing these equations with (41) and (40), it is seen that
they differ only in the last term.

In order that a ray be reflected by both crystals, the
two previoué equations must be equated to zero as has been
done before. Subtracting (57) from (58), we get an eguation
similar to (42),

1.058M2 - 0.626z2 = t' = t (59)



Ce

Fige 7 = Geometry of a single bent crystal with faces
flat prior to bending,
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representing two families of hyperbolas whose asymptotes
are
z = * 1.3041
It is thus seen that, in passing from the ideal to the
approximate focusing system, the reflecting features of the
two crystals are not altered appreciably, although in this
latter scheme the inequalities to be imposed on t, t' and

t' - t are given by (57), (58) and (59).

-0.16 4t <0.14 mm. or -O.QOstysO.lﬁ' MM o
~0.16 ¢t' ¢ 0.15 mm. or =0.22 gty £ 0,20 mm, (60)
-0.10 §t' = t ¢ 0,10 mm. or -0.14 { tz = 1.09ty§ 0.14 mm,

The useful target area is again a diagonal strip, but with
width 0,19 mm. enclosed in a rectangular area 0.37 mm. X 0.42 mm.,
as is shown in Fig. 8b, p. 38. Although the length of the strip
is about the same as in the ideal case, the width is doubled.

The focal spot is again the image of the useful target
area, namely, a strip 0.19 mm. wide inclined at 47 1/2° with the
vertical focal plane (focal plane of the second crystal), The
extension of the focal spot in the y and 2z directions (for trans-
mission of half the area under the K¢y line) is given by,

0,20 £ py § 0.16 mm.
(61)
=0.,22 & Pz £ 0.19 mm,
Eence, the strip is enclosed in a rectangular area 0.36mme.x0.41lmmo.
The whole target (1 mm x 1 mm.) will transmit about 81% of the

area under the K¢ line. The focal spot will then be approxi-

mately 0.19 mm, x l.41 mm. It Is interesting to note that an
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actual photograph of the focal spot reveals its size to be
0,196 mme x 1.40 mm. when measured under a traveling micro=-
scope, see Plate 9, p. 70,

Fig. 8 shows the useful x-rey target areas and the point
foci for both the exact and the inexact focusing systems. The
rectangles on the left represent targets of various sizes, the
smallest ones being those which transmit half the area under
the Ky line. The useful target areas are the shaded strips.
The rectangles on the right represent the corresponding (but
not ecual) areas which enclose the point foci. The latter are
the shaded strips with the darker shade representing roughly
the more intense portion of the foci. The directions of the
coordinates ty, tz, py and py are shown in Fig. 5, p. 22,

This concludes the geometrical consideration of the point
focusing monochromator,

TABLE OF NOMENCLATURE

The symbols are arranged alphabetically under two headings,

Greek Letters and Roman Letters. The page and figure where they

first occur is given in parenthesis at the end of each descriptive

paragraph,

% The dihedral angle between the crystal plane
and its face at the center of the latter (or
between their normals). (P. 9 and Fig. 2)

@ The generator of the focal cylinder about which
the crystal planes are concentric. (P. 6 and
Plg. 2).
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ol O

The point in the focal plane diametrically
opposite fromp o (P, 8 and Fig. 2] «

The small angle, referred to the horizontal
focal plane, by which the grazing angle

of incidence (©) differs from the Bragg
angle (85), due to the vertical divergence

of the incident ray. (The vertical divergence

angle is the angle between the incident ray
and the focal plane.) (P. 16).

Small angle referred to the vertical focal
plane and defined by Egq. (35). (P. 25).

Half the central angle measured about the
center of the horizontal focal circle (C),
and in its plane, from the center of the
first crystal (A) to the arbltrary point P.
(P, 14 and Fige. 4). (Note: See also Fig. 7
for definition of g in the inexact focusing
system,)

Same as 7 but referred to the vertical focal
circle, the center of the second crystal (B)
and the point P'. (P. 23).

The grazing angle or the angle between the
ray and the crystal planes of the first
crystal at the arbitrary point P. (po. 8,
15 and Fig. 2).

The grazing angle or the angle between the
(once reflected) ray and the crystal planes
of the second crystal at the point P'.

Ps 285)s

The Bragg angle for the wavelength Ao at the
center of the Kgq line. (P. 12 and Fig. 4).

The Bragg angle for any wavelength A in the
neighborhood of Ag. (P. 15).

Wavelength at the center of the Ky, line.
(Pe 11).

Wavelength at points other than the center
of the Kg1 line. (P. 17).

One of three cylindrical coordinates of the
point P, the three being 1, @ and z, with
the latter perpendicular to the horizontel
focal circle. (P. 11 and Fig. 4).
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Same as @ but for point P' and the vertical
focal circle. (P. 23).

ROMAN LETTERS

Geometrical center of lst crystal(or crystal
with horigzontal focal circle.) (P. & and
Fige 2).

Abbreviation for expression on p. l4.
Abbreviation for expression on p. 15.

Geometrical center of 2nd crystal (or crystal
with vertical focal circle). (P. 10 and
Flg. 3)s

Abbreviation for expression on p. l4.
Abbreviation for expression on p. 15.

Center of horigzontal focal circle (p. 6 and
Fig. 2).

Center of vertical focal circle (p. 11 and
Fige 5) ®

(P. 21 and Fig. 5.)
(P. 21 and Fig. 5.)

Center of curvature of crystal planes in the
inexact focusing system (p. 35 and Fig. 7).

Grating spacing of the crystal laminae used
in reflection of Cu Kyq line (pe 8)e

Point on vertical line focus at which the
reflected ray from the arbitrary point P
on the first crystal intersects the focal
cylinder, in the absence of the second crystal.
(P. 20 and Fig. 4.) (Also, in the qualitative
discussion, the line focus of a single crystal,
or its midpoint.{(p. 6 and Figs. 2, 3)).

Center of vertical line focus; also called the
"focal point" of the horizontal focal circle.
(P. 12 and Fig. 4).
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fj

’Qy,pz

Point on virtual line source (in horizontal
plane) from which the arbitrary ray appears

to emanate after it is reflected from the 1lst
crystal. (Fig. 5). (Also, in the gualitative
discussion, the virtual line source or 1its
midpoint. {(p. 9 and Plg. 3)).

Center of virtual line source (Fig. 5).
Direction cosines of the once reflected ray
from the point P on the 1lst crystal to the
point P' on the 2nd crystal in the coordinate
system of the former. (P. 16).

Same as above but in the coordinate system of
the 2nd crystal. (P. 19).

Direction cosines of the twice reflected ray
from the point P' on the 2nd crystal to the
Point Focus. (P. 28).

Point Focus. (P. 10 and Fig. 3).

Arbitrary point on lst crystal at which a ray
from point S is reflected. (P. 6 and Fig. 2).

Point on second crystal where the once reflected
ray (from point P) is again reflected. (P. 23).

Small angular displacement measured about the

center of the vertical focal circle and in the plane

of the latter where the twice reflected ray
pierces the focal plane. The focal plane is the
plane through the point P.¥. and perpendicular
to the central ray. (P. 29).

Coordinates in the focal plane® of the point where
the ray pierces the latter, see above. py is

in & direction perpendicular to the vertical
focal clrcle and py is at right angles to 1t.

(P 32 and Fig. 5).

Radius of either focal circle. (P.'ll).

Point on horizontal focal circle representing
center of x-ray target. (P. 12 and Fig. 4).

Point at which the arbitrary incident ray
intersects the focal cylinder in the neighborhood
of Sg. (P. 15 and Fig. 4).

*plane passing through the point focus at right angles
to the central ray.



'y’
(Xay:Z:’
(x',y',2')

X1,¥],2)

B

Small angular displacement measured about

the center of the horizontal focal circle and

in the plane of the latter, where the arbitrary
ray emerges from the target. (P. 15, and Fig. 4).

Coordinates in a plane at right angles to the
central ray through the point S, of the arbitrary
ray emerging from the target. ?P. 15 and Pig. 5).

Coordinate system of horizontal focal circle.
(P. 11 and Figs. 4, 5).

Coordinate system of the vertical focal circle,
(Pe 2l and Plge 5«

Coordinates of point P in the primed coordinate
system. (P. 21).
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PART III

THE INTENSITY PROBLEM AND SUGGESTED IMPROVEMENTS

The problem of obtaining sufficient intensity is one of
the most difficult in connection with the point focusing mono=-
chromator and one that has been the cause of a good deal of
concern. Losses due to polarization at each reflection are
inherent in the design of the instrument and can only be
reduced by a decrease in the Bragg angle. (See eg. 64 below.)
The latter can be accomplished by one of two means, increasing
the grating spacing or decreasing the wavelength, neither of
which lends itself to a wide variety of choice.

Assuming the first crystal is illuminated uniformly with
x~-rays, then the intensity at the point focus is given by,

Amax Omax Bpnay

T = (1/2)140 3(h = A[r (6 - ep)meler - op)

= ¢
Am‘x -OM‘X "Ma‘

+ Fe(0 - 0B)F, (6" - eB)] a\ aede’ (62)
where 1t must be remembered that (8 - 6y) and (' - 6p) are
given by egs. (41) and (40) respectively,

C is a factor depending on the thickness of the crystal,
its diffraction pattern width, radius of curvature, average
extinction coefficient and linear ébsorption coefficient.
According to the dynamical theory of x=-ray reflection from
crystals, the condition for one hundred percent reflection
(in the absence of absorption) occurs when © - Oy and 6' - O3

are less than half the diffraction width. Outside that range
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very little reflection occurs. This will be obvious as
soon as the functioms F, and ¥ are written down explicitly.
When the condition for complete reflection is satisfied at
the surface, the incident rays are said to be rapidly "ex-
tinguished". In other words, they are reflected before they
have a chance to penetrate very far into the crystal. However,
when the condition is not satisfied at the surface as is the
case with a target of finite size, the rays penetrate into the
crystal, suffering attenuation due to absorption until they
reach crystal planes for which the condition is satisfied, in
which case, they are then raplidly extinguished. This situation
is only possible with curved crystals in which the grazing
angle changes as the beam penetrates the lattice. The reflect-
ing properties of bent crystals have been the subject of a
recent doctoral thesis and have been reported in J. App. Phys.(ll)
J(AN = Ag) is the spectral distribution function. The
functions Fg and F , according to the theory of Darwin and

for the case of negligible absorption, are given by,

=[ /% -‘2 when 0<- ¥/7
€- Vo2 - re/z2)

|
[ =]

Fe(l) = when -F/7Z<U<F/2

when fyF/7Z
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F/7

12
- \/52 - 92/220032290J

when 2(-(F/Z)Coszeo

Fo(f) = 1 when =(F/2)c0s200<£<(7/2) cos26,

2
- B 1 when € (F/Z)cos26,
lfﬂ'Jﬂg “(FE/ZQ)COSBZQJ

where f = (o - op)sinze /2§ - 1
I is the crystal structure factor
Z is the total number of electrons per unit cell
5.= 1 - lndex of refraction
g and w are defined in footnote page 18,

It has been shown in Compton and Allison(8) Pe 397 that

0o

a _ 87§
Jﬁ"(z)de = BZsinge,
T (63)
* 8F§cos 20
sa [eq(t)at = SFfgegee.
- 00

However, in eg. (62) the arguments of Fg- and Fg are not
independent but are related through egs. (41) and (40), so that
the above integrals do not apply. Attempts to integrate (62)
analytically have failed.

To have some ldea as to the intensity reflected by the
two crystals, let us assume that C = 1, X=-Ao, z =7 =0,

that is, we shall consider surface reflections from the centers

of the two crystals for one wavelength only. XEgs. (41) and
(40) then bvecome,

Q—@th

i
c-*.

o' - op
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where t and t' are independent variables ranging from

+1/1500 rad. to =1/1500 rad. or 144" to -144". Since the
functions F,. and Fo fall quite rapidly outside the range
of complete reflection, it is justifable to set the ranges

of integration on t and t' from e to -0 ,

Setting J( A - A o) = 1, we have, therefore,

00 00
I = (1/2)IﬂJ Jt?v(t)Fﬂ(t') + Fw(t)Fw(t‘j]dtdt'

=00 0o

end in view of eqgs. (63)

e
_ 8Fd
I= 10[32sin290 cosg8, (64)

The loss in intensity due to polarization manifests itself
in the term cos20, which 1s due to the function Fgy . Eg. (64),
though not applicable to the crystals as a whole, nevertheless
gives a fair indication as to the reflection ability in the
neighborhood of their centers. This equation can be used as
a criterion for comparison with other crystals, and suggest
the use of a crystal for which the values of F/Z, § and cos29,
are larger than the corresponding values in quartz. Although
there are numerous crystals that satisfy the above conditions,
there are very few that are sufficiently large in size and
have the necessary elastic properties for bending. A search
of the literature has revealed only one crystal that 1s compa-
rable to quartz in strength, namely topaz. It will be of

interest to compare the properties of quartz and topaz.
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Quartz Topaz
Formula 8105 [41(7,08) | g5104
Planes used (310) (303) (008)
o} o

Grating spacing, d 1.17€A 1.,3524 1.395
Molecules/unit cell 3 4 4
Electrons/unit cell, Z 20 360 360

O 0z On
Volume of unit cell, V 1127 541,54 541 .5AY
Crystal structure 21.8 132.0 124.4

faetor, F
From Comnton and Allison(S) pe. 280
£ = (z/V)e? Ay2
2ffmc 2 (65)

where e2/mc2 is the classical radius of the electron (2.817x10'5ﬁ),
and A, = 1.557A.
The Bragg angle is given by

0, = sin~1( A ,/24) (66)

We can now substitute numbers into (66), (65) and (64) and

get
Quartz Topaz
Planes (310) (303) (006)
8y = 40.7° 34.6° 83.4°
cos 284 = 0.1497 0. 5556 0.3940
J = 0.85%x10-5 1.12x10-5 1.12x1079
P/Z = 0.242 0.386 0.346
I/Io 4,6x10"1% 54x10-12 50x10~12

One can, therefore, expect an increase in beam intensity

(at the surface) by replacing the quartz crystals with topaz
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of about 54/4.6 = 12 times or 50/4.6 = 11 times depending

on the planes used.
Since it 1s possible to obtain reflections from planes

within the crystals as well, 1t is necessary to take into

account the function C. We shall still restrict ourselves

to the centers of the crystals. The function C is given

by C = CoCr N L

ng {l-exp[-ﬂT(sin(eo+d)+sin(eo-d))/sin(90+x)sin(9O~dﬂ}'
{l-exp[-eavew%R/coseocosu(1+sin2dﬂ}-% (67)
{l-exp[-ﬁwgﬁ(sin(eo+a)+sin(eo—¢))/sin(@o—d)cos@ocosu(l+sinadﬂ}

where M= linear absorption coefficient

i thickness of the crystals = 0,07 cm.

R = radius of curvature = 120 cm.

€ aye = 8verage extinctlion coefficient
AL = angle between crystal planes and faces
Wo = diffraction pattern widths
1

Although eg. (67) 1s supposed to express the area under
a rocking curve it is applicable here. In the case of a
rocking curve experiment, a fine parallel beam of x-rays strikes
a crystal which is rotated a few seconds of arc at a time, the
reflected beam being measured in each position. In our case,
because of the finite size of the target, rays from different
parts of it converge and strike the center of the crystal with
different grazing angles so that the total intensity is equal
to the area under the rocking curve mentioned in the previous

caseo,
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We again compare quartz and topaz. However, i1t is first

necessary to compute Mo €ave and Wg .
w

M= gz:piﬂi where g = density of crystal
i
Py = mass of element 1 in the crystal
Ms = mass - absorption coefficient of
element i
. arell F 34 .
] B/v -
ave = FrBw 5.09 x 103(F/V) cm
we = (4/3)48(F/Z) cscglq
we = (4/3)4d8(F/Z) cotes,

where the factor 4/3 is applied to the actual width in order to
approximate the actual diffraction pattern by a rectangular
pattern of the same area. This approximation has been used in
deriving eg. (67).

The composition and specific gravity of the two kinds of

crystalsare given in the following table:

Mass absorption

Quartz Topaz coefficient M
Composition, p1 S1 41.7% Si 15.17% Si 60.0
O 53.3% 0 34.67% 0 11.16
Al 29.58% Al 49.0
F 20.58% F 17.0
Specific gravity g = 2.65 3608

from which the values of/u can be calculated.

Quartz Topaz
planes (310) (303) (006)
Linear absorotion = goem~ L | 109cm=1 109cm=1
coefficient M '
Average extinction € - 990 =7 5070 cm=1 1850 cm=1
coefficient ave ~ — . AR
Diffraction pattern We = 1.112x10-%  2,462x10-5  2,254x10~°

nh

widthg wg = 0,166x10-5  0.875x10-5 0.886x107°

total

mass
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Substituting the above values into eg. (67) together
with T = 0.07 cme. and o = 2.1°9, it is seen that the argument
of the first exponential term is very large, so that the filrst
bracketed term is equal to unity. This indicates that our
crystals are sufficiently thick and that the function C does
not depend on their thickness.

Hence, for the two kinds of crystals and two types of
polarization, we have

Ratio, Topaz

Quartz Topaz to Quartz
(303) (008) (303) (006)
o- polarization Ce= 3612 178 180 057 0«61
W polarization Cg= 5.19 5465 .61 0,70 0.70

The above calculations are based on reflectlons from a
single bent crystal. When applied to the two crystal monochrom-
ator, the above ratios must be multiplied by one another since
the @ polarigzation for one crystal is the W polarization for
the other and vice versa. Although these ratios are unfavorable,
the factors of 12 and 11 obtained previously, more than compen-
sate for them. When the latter are taken into account, the
gain in intensity with topaz is

4,8 for the (303) planes.

4,7 for the (006) planes.
It must be remembered that the above calculations were carried
out for the centers of the crystals only and may not be valid
for the whole crystals., However, on the basis of experimental

work conducted by Ingelstam(lg), the actual gain in intensity
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from bent topaz crystals is not far different from the above
figures,

Other means of increasing the intensity consist in en-
closing the beam in helium, and using a beam which emerges
with a smaller grazing angle from the target. Since the total
path length of the beam is about 150 cm., the loss due to ab-
sorption in alr is considerable. The substitution of helium
for air improves the intensity by a factor of 3.5. The beanm
intensity at a smaller angle of emergence is about 2.5 times
as great per unit target area. However, the projected target
area 1s reduced by about a factor of five. Since the useful
target area is a strip no larger than 0.2 mm. wide, the use
of such a beam 1s justifiable. Taking the above factors
(substitution of topaz for quartz, use of helium atmosphere,
and reorientation of x-ray tube) into consideration, one can,
therefore, expect a gain of 42 in intensity in the case of the
(302&) planes of topaz or of 41 in the case of (006) planes over

the intensity available before making these changes,
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PART IV

DESCRIPTION OF THE PCINT FOCUSING

MONOCHROMATOR

The problem of orienting two bent crystals correctly
in space involves twelve independent degrees of freedom.

It is not hard to see then, that unless some method 1is
devised for lining up the crystals, in a logical or system-
atic manner, the solution to the problem by cut-and=-try
adjustment is next to impossible. The instrument which we
shall describe below was designed and bullt with this problem
in mind.

The instrument is built mainly out of steel. To avoid
as much as possible any unpredictable lining up problems, all
defining surfaces are surface ground with the exception of
the pads on the triangular table. The cylindrical faces of
the crystal clamping blocks (approximately 120 cm. in radius)
are both ground and lapped by a special method described by
Dudond, Lind and Cohen(ls). This shop method has the ad-
vantages that it automstically insures: (1) that the gener-
ators of the precision cylindrical clamping surfaces shall be
truly normal to plane ground reference faces on the top and
bottom of the crystal clamping blocks and, (2) that the radii
of curvature on blocks for crystals A and B shall be closely
equal. All welded parts were heat treated to prevent dis-

tortion in time.
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Because of its three dimensional character, the instru-
ment and its lining up procedure are best described by a
series of plates.
PLATE 1

This is an overall view of the instrument with the parts
assembled for use except that the crystals and the front halves
of the crystal clamping blocks have been removed. It consists
of a triangular steel table mounted by means of leveling screws
on three concrete pillars. The table 1s provided with a number
of pads which are welded to it and which are machined accurately
so as to define a common reference surface, The crystal lasminae
are cylindrically bent by clamping between pairs of steel crystal
bending blocks of which only the rear members are shown in the
photograph. The block with vertical generators (crystal A) is
mounted on a horizontel radius arm (R), while the block with
horizontal generators (crystal B) is mounted on a radius arm
(R') in the vertical plane. The area of the rectangular hole
in the block marked (A) is approximately the effective crystal
area., (See Plate 6 for a close-up view of the crystal blocks
with crystals clamped between front and back members.) The
vertical structure in Plate 1 supports the detecting device
at the top (P) and the scattering sample at the bottom (S).
The detecting device at present is a film holder, but pro-
vision is made for a CGeiger counter which will e used when

a beam of sufficient intensity is attained,



PLATE 1 - This is an overall view of the instrument with
the x=ray tube X on the left, crystal blocks (rear halves) A
and B at the center, and the point focus P at the top.

PLATE 2 - For the purpose of alignment, crystal B, with
its associated radius arms R' and D, is mounted in the hori-
zontal position ss shown, R!' and D, being free to turn inde-

pendently about C'.
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The beam diverges from the x-ray tube (X) and proceeds
to crystal A, where 1t is Bragg-reflected (CuKg 1), so that
in the absence of crystal B, it would come to a vertical
line focus at F. However, crystal B intercepts the beam and
by Bragg reflection, in the vertical plane, brings the twice
reflected beam to a point focus at P. We shall refer to the
centers of the reflecting surfaces of crystals A and B simply
as the points A and B.

The points X, A, and F lile on the horizontal focal circle
(of crystel A), whose center is at C. The points F', B and
P lie on the vertical focal circle (of crystal B), whose
center 1is at C'. The two focal circles are congruent, with
point I'* corresponding to ¥, B to A, and P to X.

The long bar FF' pivots about a vertical axis at F,
carrying with it the vertical structure and the assembly
supporting crystal B, Hence the horizontal and vertical focal
circles can be adjusted in such a way as to maintain the points
Fty A, B, and F in a straight line which 1s also the line of
intersection of the two focal planes.

The vertical pin at F supports a film holder which allows
first crystal B and then crystal A to be individually aligned
photographically, while in the horizontal position. This
alignment process 1is made clearer in the following plate.
PLATE 2

For the purpose of alignment, crystal B, with its associ=-

ated radius arms R' and D, is mounted in the horizontal position
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as shown, R' and D being free to turn independently about C'.
The top of the crystal block is made parallel to the reference
surface by means of a'l/lo,OOO inch dial indicator. This ad-
justment takes care of two rotational degrees of freedom of
crystal Be.

Next, a narrow line source of light, with a microscope
focused to a point right above it is placed in line with C!
and B. Crystal B is pivoted about a vertical axis, passing
through B, until a line image due to the reflected light from
the crystel face, appears right above the light source and
hence in the field of view of the microscope. The light
source and microscope are then moved along the line C'B
until the image appears to be the sharpest. By measuring
the distance between the light source and the center of
crystal B, the diameter of the focal circle is determined.
This permits us to set crystal B at the right distance from
C', namely, half the focal dlameter. This concludes the two
optical adjustments which take care of one more rotational
degree of freedom, making a total of three. The preceding
statement may seem to be slightly contradictory, but it will
be shown to be true by the concluding statement of the next
paragraph.

The arm R' is then pivoted about C' until the line focus,
due to Bragg reflection of the CuK1*1 line, appears on the
film, in the cassette at F. The axis of the pin at F 1s then

moved laterally to colncide with the line focus. Since one



end of the radius arm D is constrained to move with F, the
angle between D and R' has thus been established, and the two
arms are now rigidly clamped together by means of a cross=bar.
This assembly is then removed and placed aside to permit
alignment of crystal A, shown on the next plate. After crystal
A 1s permanently adjusted in place, there will remain only

the three translatory degrees of freedom of crystal B relative
to A, which for convenlence will be broken down into two ro-
tations and one translation.

PLATE 3

In this photograph, crystal A and its radius arm are
shown in their normal positions. The dial indicator and
optical instruments are again used to orient the crystal
correctly on its radius arm. If crystal A is identical to
B, then the point ¥ should remain fixed in position and the
only adjustment is the location of point A relative to F*,
This is done photographically by moving radius arm R about C,
until the line focus appears at F« The arm is then clamped
permanently in place and the assembly supporting crystal B 1is
then mounted as shown in the next plate. As was mentioned
before, the correct placement of crystal A eliminates six
more degrees of freedom, thus making a total of nine eliminated

so far,.

*It was found, however, that the radii R and R' differed
by about 6 mm, hence requiring a corresponding change in the
length CF. It is hard to say how this slight difference in
radii actually affects the point focus,



PLATE 3 - Crystal A and its radius arm R are lined up
in their normal positions as shown.

PLATE 4 = The last adjustments consist of lining up
points F and F' with the center of crystal A, correcting for
X . :

3
astigmatism and ascertaining that crystal B is set at the
Bragg angle to accept radiation from A,



PLATE 4

The only adjustménts left now ares (1) to line up the
points P and F' with A, (2) to correct for astigmatism and,
(%) to ascertain that crystal B is set at the Bragg angle to
accept radiation from A, The latter adjustment is made by
pivoting crystal B with its assembly about the horizontal rod
at '+ The first adjustment 1s made by connecting two points
directly above F and F' with a tight-line and pivoting the
long bar FF' about the vertical rod at ¥ until the tight=-
line is right above the point A, The actual point A is in-
accessible, so that a scratch mark on the crystal block
directly above it is used instead. Astigmatism is corrected
by moving the bar FF' logitudinally, thus pulling crystal B
toward or away from crystal A until the point P appears
sharply defined. This adjustment 1s not particularly sensi-
tive. Moving the rod one centimeter one way or another
doesn't seem to make much difference.

The three adjustments, Just described, eliminate the last
three degrees of freedom thus concluding our lining up pro-
cedure.

PLATE 5

This plate shows the complete instrument with the ex-
ceotion of the lead partitions, one in“front of crystal A and
one between the two crystals as well as the lead box which
surrounds both crystals. The partitions, consisting of a lead

sheet with 3/4" x 3/4" square windows to let the beam through,



‘PIATE 5 = The complete instrument with the exception of
the lead housing surrounding the two crystal blocks.

PLATE 6 - Close-up view of the crystal blocks shown with
the various adjusting screws.
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are used to cut down the incoherent scattering as well as
fluorescent radiation from the steel crystal blocks, thus
reducing considerably the background in the neighborhood of
the point focus. To prevent scattering from the steel webs

of the crystal blocks, the latter are covered with thin lead
foil. The lead box protects the occupants of the room from
lrradiation. The x-ray tube 1s a diffraction type tube made
by the Machlett Company and is driven by a North American
Philips basic diffractioﬁ unit which can deliver continuously
60 PKV at a full wave rectified current rating of 50 ma. The
optimum operation of the tube, however, is at 35 PKV and 20 ma,
The tube that extends from the x-ray tube to crystal A is filled
with helium, thus cutting down loss of intenslty due to ailr
scattering. At the top of the vertical structure one can
observe the film holder mounted on an angle plate which can
ride up and down on ways along the beam,thus permitting ad-
justment of the x-ray film to coincide with the best point
focus. The scattering sample is mounted on a holder, not here
shown, which can also ride up and down along the beam., Every
ray which passes through the sample will be partly scattered
into a narrow cone of diffusion around said ray. The resulting
diffraction pattern in the focal plane is the superposition of
all such scattered rays; the undeviated rays which come to a
point focus being suppressed by means of a thin tungsten wire
(0,020" in diam.) placed against the photographic plate., With

this arrangement, every point on a circle of specified radius
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concentric with the central focal spot in the focal plane
receives radiation which has been scattered by every portion
of the scatterer under approximately the same angle. Thus,
aside from a small cosine correctlon coming from the fact

that the rays are not parallel, the diffraction pattern repre-

sents truly the scattering property of the sample.

THE CEYSTALS AND CRYSTAL BLOCKS

PLATE 6

This 1s a close=-up view of the crystal blocks A and B.
One can observe some of the local adjustments necessary to
set crystals A and B correctly on their respective radius
arms R and R',

The blocks are made of a special type of stainless steel
which is quite stable and does not distort with time. This
is quite important since the curved surfaces must retain
their optical properties with high precision. In order to
insure uniformity of curvature, the two convex blocks were
mounted on a steel plate and treated as a single unit, that
is, they were cylindrically ground and lapped simultaneously.
The same was done with the concave blocks. The method of

grinding referred to on page 53 is shown in Plates 7 and 8.

PLATES 7 AND 8

The convex face (on the front half of the crystal block)

*This statement is ideally true. However, since the point
focus has a finite size, a small correction must be made in
regions very close to the center of the diffraction pattern.



Method of generating the precision cylindrical surfaces of the curved
crystal clamping blocks for the point-=focusing x-ray monochromator in

an ordinary flat surface grinder. The two stainless steel blocks are
geen mounted on the rocking bracket under the grinder wheel, The bracket,
mounted on a pivot, rocks to and fro as the work travels backward and
forward on the transverse ways of the grinder. The rocking is caused by
a lever arm rigidly clamped to the bracket whose far end is provided with

a roller which rolls along an inclined straight-edge in unison with the
transverse carriage movement.

View (from above) of the method of precision profiling the cylindrical
surfaces of the above mentioned clamping blocks in a flat surface grinder,

The blocks can be seen mounted on the rocking bracket, The long lever arm
with the small roller at its left-hand end is here clearly visible, The weight
attached to theleft end of the lever arm to hold the roller in contact with
the plane on which it rolls can also be seen.
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forms the defining surface against which the crystal lamina

is bent. The crystal is backed by a rubber gasket before

the rear half of the crystal block is clamped on. Thus, only
the convex face must be accurately lapped to an optical finish.
At the end of the lapping procedure described in reference 13,
the concave cast iron lap,which itself acquires a high optical
polish, is set on an optical bench and examined optically by
placing a line source of light at the center of curvature

and observing its image with a microscope. A Hartman diagram
of two zones reveals that the focus 1s approximately 0,016 mm.
wide. This, then, indicates the degree of optical perfection
attained by the convex crystal blocks.

The crystal laminae were cut from a single slab of quartsz,
which was ground flat and polished to approximately the final
thickness prior to cutting.
The angle between the (310) crystal planes and the faces

of the slab was determined on the two crystal spectrometer by
replacing crystal B thereon with the slab (set for reflection
of the beam from the above mentioned (310 planes) and locating
the "parallel position". Crystal A was another quartz plate
whose reflecting planes were also the (310) planes. The slab
(whose orientation on the support bracket of the crystal B
pivot was determined by a 3-point contact between the polished
crystal surféce and three ball bearings pressed tightly into
shallow holes in the surface of the bracket) was then rotated

180° about an axis perpendicular to its face and the "parallel
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position" was again located. The difference in the two
"parallel position" readings 1s equal to twice the angle
between the crystal planes and its faces. This angle was re-
adjusted, by grinding, to the desired value @, and by keeping
track of its direction, it was possible to clamp the crystals,
when finished, correctly in the crystal blocks. (See page 9
for the requirement which fixes o .)

Special precautions were taken in lapping to prevent
the development of surface stresses. Unnecessary heating in’
the lapping procedure was avoided. In the flnal stages of
lapping, only the finest abrasive was used. The prolonged use
of the fine abrasive made certain that no scratches were left
from the coarser abrasive. Such scratches are invisible but
can be revealed by etching the guartz. This is based on the
theory that the scratches are actually grooves filled up with
minute particles of quartz which can be removed by etching.
The minute particles wedged in the grooves contribute to the
surface stresses. Thus, 1f the two faces of a lamina are not
scratched equally (which is usually the case), the etching
process which relieves the strain will tend to make the
lamina "curl" thus ruining the optical features of its faces.
It is necessary to etch the crystals for two reasons: (1) to
prevent breaking when being bent due to surface stresses,
(2) to relieve the surface strains in order to be sure that

the crystal planes are actually plane prior to bending,
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The crystals used in the point-focusing monochromator
were etched and found to be without a single scratch. Further-
more, they were examined on an optlcal flat before and after
etching and no appreciable change was observed. The crystals
are optically flat to within two fringes, the slight curvature

tending to change the radius of the focal circle slightly.
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PART V

EXPERIMENTAL RESULTS

Having obtained a focused beam by the procedures of
Part IV, the problem is to find some aporopriate sample for
a scattering experiment. Since none of the improvements of
beam intensity suggested in Part III were made at the date
of writing this thesis, it was necessary to limit oneself to
a relatively good scatterer. Two different samples of carbon
black were picked out, one with average particle radius 54 R
(carbolac 1) and the other with radius 230 X. The size and
size distribution of the former was given by the manufacturer
on the basis of electron microscope measurements and the latter
was determined from the measurement of ninety particles photo-
graphed on the electron microscope in the Chemistry Division.
Carbon blacks, including the above, have been studied

before(l4’15’l6)

, 80 that the present study does not reveal
anything new regarding these sample s. However, the purpoée

of the experiment was to check on the performance of the instru-
ment and, particularly, on the luminosity of the direct beam.
Since there exists no simple way to measure the direct beam
intensity, the exposures required for satisfactory diffraction
patterns from the carbon blacks are a good measure of the per-
formance of the point focusing instrument.

The sample of carbon black was held in a ring 5 cm. in

diameter and 0.4 cm. in axial thickness, with a 0.001" thick
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nylon sheet glued to each side (to form a shallow cylindrical
cavity which was packed full of the carbon). It was placed

at a distance of 655 mm. from the point focus where the photo-
graphic plate was located. The irradiated volume was approxi-
mately 1.6 cmS.

METHOD OF DETECTICON

As has been previously mentioned, the scattered intensity
was recorded on x-ray film, the direct beam being blocked out
by means of a tungsten wire. See Plate 9,

After the diffraction pattern was obtained, it was necessary
to measure the film density (and hence, the scattered intensity)
versus the distance away from the center i.e. the scattering
angle, This was done by means of a recording microphotometer,
The light beam of the microphotometer was approximately the
same elongated shape and size (0.89 mm. by 0.18 mm.) as the
polnt focus and was oriented in the same way relative to the
x-ray film. This light beam was allowed to scan the diffraction
pattern along a diameter, the transmitted light being allowed to
illuminate one junction of a thermopile which was connected to
the coil of a d'Arsonval galvanometer, and the deflection
of the latter being recorded photographically.

We have assumed that the following formula holds true,
namely,

I, = (1/kt) log(xy/%) (68)
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(a) Point Focus (Enlarged 5.8 times)
3 minute exposure at 20 PKV and 20 MA with beam
in air.

PLATE 9

(b) Diffraction Pattern of Carbon RBlack (Carbolac 1)
(Enla rged 5.8 times)
3 hours exposure at 35 PKV and 20 MA with beam in
helium atmosphere. Average particle radius 54 £,

(¢) Diffraction of Carbon Black (Enlarged 5,8 times)
% hours exposure at 35 PKV and 20 MA with beam Ing
helium atmosphere, Average particle radius 230 A,
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where I, 1s the scattered x-ray intensity.

k 1s some constant dependent on the speed of the
x=-ray film.

t 1is the x-ray exposure time.

Xo is the maximum galvanometer deflection from totally
dark film to clear film.

X 1is the galvanometer deflection from totally dark
film to some exposed portion of the film.

This formula and its range of validity were verified experi-
mentally.

In the case of small particles, theoretical curves for
various types of particle sigze distributions have been worked
out(4) ang plotted in terms of log (Ig/I,). It 1s easily seen
that the coefficient of the logarithmic term above appears as
an additive constant 1n such a plot and is, therefore, of little
interest.

The microphotometer curve is treated in the following
manner. It is placed over a sheet of ordinary graph paper and
the values x are read off for various scattering angles on both
sides of the maximum. The dark readings having been taken at
the beginning and the end of the microphotometer run are con-
nected by a straight line and used as a reference line from
which x is measured. Although the thermopile drifts during the
run due to increase in temperature, the value of x, remains
almost constant since both the light and dark readings are af-
fected in the same way.

A commercially bullt microphotometer with beam sige

0.01 mm. x 0,05 mme was also used to analyze the diffraction
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vatterns but no appreciable difference was observed in the
microphotometer runs of the two instruments. WMicrophotometer
curves by the latter instrument for the two kinds of carbon
blacks are shown in Figs. 9 and 10.

The ratio xXo/x is calculated and its logarithm is plotted
versus the square of the scattering angle on log paper. Curves
representing different exposures for a given sample are plotted
on the same graph and are then compared with theoretical curves
worked out by Roess and Shu11(4). The method of comparison
is explained in the section that follows.

LOW ANGLE SCATTERING DUE TO SMALL PARTICLES

The above mentioned investigators have worked out the
intensity curves for spherical particles with different types
of size distributions, rectangular, WMaxwellian and Gaussian.

The Maxwellian type distributions seem to be the only applicable
ones to our carbon blacks, see Fige. 1ll.

The theory upon which the above curves are based can be
summarized in the following manner. The intensity scattered
at a small angle € by particles whose size distribution is

M(R), R being the radius, is given by
-]

1(§) = Kleegji\fi(ﬁ)a5s(ﬁ,§)dﬁ (69)
where °
¢ = (2mhe (70)

Ie is the Thomson scattering factor which is essentially constant

for the small angles we shall consider., Pe is the electron densi-

ty assumed uniform throughout the particle and S(R,f) is the
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scattering function characteristic of the particle size R
and its geometrical shape. WM(R)dR represents the total mass
of particles in the size range R to R+dR. K 1is a constant
proporticnal to the total masse.
For spherical particles Guinier(l) has shown that
3(R,f) = exp(—rggz/ﬁ) (71)
where he identifies r with the radius of gyration of the particle.
For spheres
R = (5/3)%r (72)
The Maxwellian distribution function M, which we are inter-
ested in, can be expressed as a function of the radius of gy-

ration and the parameters r, and n as follows

O

M(r) = rnexp(-rg/rg) (73)

£

n+ 1
[ =)
Substituting egs. (71) and (73) into (69) and integrating, we
get

g-(n+4)/2

1(g) = 1(0)[r2g 2/ + (74)

where I(0) is a complicated expression involving the parameters
ré end n and is of no interest here. Eq. (74) has been plotted,
logI(f)/I(O) versus 1ogr§f5% for several values of n.

Since we are interested in the average particle radius R,
we can define the average radius of gyration T as that radius
which divides the mass distribution ¥(r) in two. This has been
worked out(4) for several values of n, as follows:

n 0 1 2 g 4 5
r/ro 0.227 0.693 1.183 1.877 2.176 2.674
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The experimental points are plotted loglog(xo/x) versus
log?z. By translating the experimentsl points horizontally
and vertically untlil they match one of the theoretical curves,
the value n is obtained immediately. If the horigontal shift
of the experimental points relative to the theoretical curve
is x units, this being obtained by dividing any reading on
the abscissa of the latter by the corresponding reading on
the abscissa of the former, then

logx + 1ogf2 = 1og(r§g2)
and in view of eq. (70) the above reduces to
Py = (A/2m) x5 (75)
To find the average particle radius, use is made of the
above table and eqgs. (72) and (75), thus
R = (5x/3)5(F/ry) (M/2W) (76)
where the ratio r/ro must be chosen for the particular value
of n found in matching the curves. The curves drawn through
the experimental points are the best matching theoretical curves.

PARTICLE SIZE DETERMINATIONS OF CARBON BLACKS

The matching process described above has ylelded the follow-

ing results for the two kinds of carbon black. See Figs. 12

and 13,

3 Hrs. in Hg
Exposure Time Atmosphere 20 Hrs. in Alr
Carbon Black n = 0; x = 40x104 n=1; x = 10x10%

o
= 69.4 A

=

0
45.5 A

e} -
54 A radius R
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1 Hr. in Hg & Hrs. in He
Exposure Time Atmosphere 5 Hrs. in Alr Atmosphere

Carbon Black  n=4; x=14,5x10%  n=3; x=1%x104 n=4; x:lg.4x104
20 A radius X = 262 & R = 197 & % = 286 A

Although the discrepancies in size determinatioﬁ for differ-
ent exposures seem to be large at first sight, the actual ex~
perimental points, when shifted vertically to form one curve,
fall in 1line quite nicely except for the end points which
determine to a large extent the particular theoretical curve
(and hence n) to be used. The end points on the low intensity
side of the experimental curves are hard to determine with accu-
racy because of the rather large grain size of ordinary x-ray
film. The grains show up in the form of "grass" on the micro-
photometer curve, At the high intensity end, and hence at
very small scattering angles, the discrepency 1s probably due
to either a slight amount of scattering by the tungsten wire
(beam stop) or possibly incoherent scattering from the crystals,
both of which may contribute to the scattered intensity at very
low angles (i.e.€= 0,0015 radians).

As one can see from the graphs, a fairly good exposure
i.e. one that gives measurable results, can be obtained in 1
hour of exposure at 35PKV and 20 ma. with Helium atmosphere
surrounding the beam. The direct beam can expose a film in
about 15 seconds at 20PKV and 20 ma. with air surrounding the
beam. With the changes mentioned in Part III, this can be im-

proved considerablye.
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