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ABSTRACT 

A point focusing x-ray monochromator was designed and 

constructed for low angle scattering studies~ The anastiinna tic 
~' 

point focus is achieved by means of two cylindrically bent 

quartz crys t als whose focal circles are mutually perpendicular. 

The beam, emanating from the copper target of an x-ray tube, is 

reflected in successi on, first from the crystal definin g the 

horizontal focal circle and, second from the crystal defining 

the vertical focal circle following which i t comes to a mono

chromatic point focus of wavelength 19537 R (Gu ~1 )o The 

sample to be studied is placed between the second crystal and 

the point focus, and the scattered beam is detected by means 

of a photographic plate placed at the point focus, at r:l.ght 

angles to the undeviated beam, the latter being suppressed by 

means of an absorbere 

Mathematical analysis, in which a ray was traced through 

the two crystal system, revealed correctly the shape and size 

of the point focus, and the possibility of reducing the latter 

in size by stopping down the beam emerging from the target. 

The instrument and its lining up procedure is described 

in detail, particularly the latter since the orientation of 

the two crystals relative to eacb other and the x-ray tube 

involve twe l ve degrees or freedom& 

Suggestions for improving the intensity of the instrument 

are made. These consist of (1) substitution of topaz crystals 

for quartz, (2) use of helium atmosphere instead of air to 

surround the x-ray beam (3 ) reorientation of the x-ray tube 

to i;Brmit smaller an gles of emergence of the beam. 



As a trial run for the instrument, the scattering 

patterns of two kinds of carbon black (good scatterers) were 

obtained from which the average particle sizes and size 

distributions were calculatede 
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PART I 

IN'I'RODUCTION 

In the past few years a good deal of interest has 

arisen in low angle x-ray diffraction studies, particularly 

among chemists and biologists. It is well known(l) that x-rays 

scattered at low angles reveal the size, and possibly the shape 

of small particles that make up the scatterer. In the case of 

fibrous substan ces, such studies ( 2) may reveal the size of large 

periodicities along the fibers. In a way, one can think of 

low angle studies as being an extension of microscopy into 

smaller sizes although the "pictures" that one obtains are by 

no means as easy to interpret. In the case of particles, the 

intensity, in general, is a function of e r/A.. where E. is the 

scattering angle, r the particle radius and A the x-ray wave

length being scattered.(l, 3 ) Theoretical curves of intensity 

versus scattering angle have been computed for particles of 

various sizes, shapes and size distributions( 4 ), so that all 

one has to do is to match the intensity distribution of the 

scattered x-rays with one of the theoretical curves in order 

to determine the physical properties of the scatterer. This 

seemingly simple procedure, h owever, is complicated by several 

factors. The intensity distribution that one obtains in practice 

is the fold (or convolution) of the spectral distribution of 

the x-rays, the beam aperture, and the scattering distribution, 

thus posing the problem of separating or unfolding the first 

two factors in order to obtain the actual scattering distri-

bution. The problem of unfolding is a very difficult one 
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particularly if one doesn't know exactly what functions 

formed the fold in the first place. 

Thus, to obtain a scattering pattern which is truly 

representative of the scattering medium, one has to try to 

minimize the instrumental effects, hy constructing an instru-

ment which will produce a monochromatic beam of high spectral 

resolution. However, as is usually the case, the price of 

high resolution is loss of intensity which in many cases is 

so serious as to defeat the whole purpose of the experiment. 

Various types of instruments have been built in the past in 

which a compromise, of some form or another, has been made 

between high resolution and low intensity. These instruments 

can be classed roughly into two types: (1) the slit type in-

strument consisting of an x-ray beam, possibly filtered, which 

is collimated by a slit system or (2) the crystal type, in 

which one or two crystals (either flat or bent) are used to 

monochromatize the beam. 

The slit type instrument is best adapted for long wave-

lengths, thus requiring vacuum methods. This is a handicap 

which is shared by an electron microscope, especially when 

scattering from liquid samples is desired. Successful use 

of such an instrument has been reported by Yudowitch( 5 ), and 

Bolduan and Bear(2,6)e 

An instrument for low angle scattering studies in which 

a curved crystal is used for monochromatization has been re

ported by Guinier{l) and later at the suggestion of DuMond, 
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has been modified by the addition of a second curved crystal 

placed in the "paralle1 11 -it- position with respect to the first::(--h· 

See Fig. 1. In the latter scheme, the sample is placed in the 

convergent beam, midway between the second crystal and the line 

focus, while the photographic plate is placed in tl:e focal plane. 

The diffraction pattern appears on the photographic plate as 

a diffuse distribution syrnmetrically disposed on either side 

of the direct beam, the latter being suppressed by means of 

an e.bsorber. It has been found that line focused beams are 

not well adapted in the study of the long chains of protein 

molecules in which the periodicities of interest are a.long 

the chain. 

The possibility of bringing a monochromatic beam of x-

rays to an anastigmatic point focus was first suggested by 

DuMond in 1949(7), however, due to lack of funds the design 

and construction of a point focusing instrument were not under-

taken until the summer of 1950. 

*The "parallel" position is the position of zero dis
persion . See Compton and Allison(8), p. 718, where the term 
is used in relation to two flat crystals. 

-lHt-The beam is focused monochromatically to a line by re
flection from the first crystal and is refocused again to a 
line by reflection from the second crystal, thus cutting down 
the incoherent scattering in the neighborhood of the line focuse 
This is not to be confused with the instrument whose development 
forms the subject matter of the present thesis in which the 
angles of deviation of' the beam in the two successive crystal 
reflections lie in planes at right angles to each other in 
such a way that the beam is brought to an anastigmatic point 
focuse 
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The advantages of a point focusing monochromator are 

two-fold: 

1. The circular symmetry of the scattered radiation 
greatly simplifies the interpretation of in
tensity distributions. In other words, the point 
focused beam may be thought of as such a fine 
tool that any diffraction pattern obtained with 
it must be . considered as purely a property of the 
scatterer.i'° 

2. The background due to incoherent scattering of 
the continuous x-ray spectrum incident on the 
first crystal will be reduced considerably after 
scattering from the second crystal, relative to 
the twice Bragg reflected line intensity, thus 
improving the sensitivity when the scattering 
power of the sample is weak. 

The intensity of the focused beam which is discussed in 

some detail later, is probably one of the factors that may 

limit the use of the instrument to relatively good scatterers. 

Several improvements, also discussed later, may increase the 

luminosity considerably. Although the intensity (power/unit 

area) of the beam at the point focus is considerable, the 

actual power in the beam is not sufficiently high at present 

to permit measurable diffusion of the beam by a scatterer 

over a large area of photographic plate. 

*The size of the point can be decreased at will by 
stopping dovm the beam emerging from the target. Without such 
stops and with our present x-ray tube (Machlett), the point 
appears slightly elongated with dimensions 0.196 by 1.40 mm. 
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PAR'I' II 

GEOMETRY OF THE POINT FOCUSING MONOCHROJ.l!lA'I'OR 

Since the point focusing monochromator consists of two 

bent crystals, each of which behaves like a line focusing 

monochromator, it will be well to review briefly the geome-

try of a single bent crystal. The numerous symbols used 

in the discussion that follows are listed alphabetically at 

the end of this part ( p. 39). 

GEOMETRY OF A SINGLE BENT CRYSTAL 

It is well known(9) that x-rays can be made to focus 

monochromatically by a crystal lamina which has been hollowed 

out, cylindrically, to a given radius and then bent elasti-

cally to half that radius. If we let the concave face of the 

crystal after bending define a cylinder, then the intersection 

of this cylinder with a plane, bisecting the crystal and perpen-

dicular to the generators , is a circle called the focal circle. 

The plane is called the focal plane. The only condition re-

quired for point focusing is that the line, about which the 

crystal planes are concentric, be one of the generators of 

the focal cylinder. 

Fig . 2 shows a single crystal with its focal circle. 

C is the center of tbB circle, Sa point-source of x-rays , F 

the vertical line focus, P some arbitrary point on the crystal , 

and ~ the vertical line about which the crystal planes are con

centric. Thus , the figure shows the projection of t:be rays 

SP and PF on the focal plane with ~p normal to the crystal 
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Fi g o 2 - Geometry of a single bent crystal~ 
cylindr ica l ly ground before bending o 
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planes at P. (SP and PF are in a plane not necessarily parallel 

to the focal plane.) "" """' If the arcs S~ and ~F are equal, then 
............... 

the angle of incidence SP ~ is equal to the angle of reflection 
~ 

~PF . This relation holds true for all points on the crystal 

surface and, furthermore, if the vertical divergence (angle 

between rays SP or PF and the focal plane) is not exces s ive, 

the angle of incidence remains fairly constant for all points 

on the crystal sur face . The above two conditions are precisely 

the ones required for refl e ction of monochromatic x-rays. The 

wavelength reflected is given by the Bragg law A= 2d sin9 

where 9 is the grazing angle wh ich is also the complement of 

the an gle of incidence. Thus, it has been shown that a beam 

emanating fr om the point S will focus mono chromatically at 

the vertical line through F . Experimentally, the position of 

point S, relative to the crystal, is such that the K~1 line of 

Gu is reflected in the monochromat or here described. 

In Fig . 2, the point on the f ocal circle diametrically 

opposite ~ ' is denoted by ~ ·, and the center of the crystal 

lamina by A. It should be clear from this figure that a much 

l arger crystal lamina (such as that indicated, partly with 

lighter lines, between the points ZZ in the figure), wi t h 

center at @' could be used to form the monochromatic image at 

F of the source S. In the present instrument only a portion ZZ' 

entirely on one side of @' is actually used. The reason why 

the center of the crystal is not at ~', but t o the left of it, 

will be evident a s soon as the two-crystal arrangement is 



discussed. 

The angle 2o<. is a measure of the angular displacement 

of point A from ~ ' • 
/""... 

Since the angle ~ AC is equal to o< , then 

o< is also the dihedral angle between the crystal plane and 

its face (or between their normals) at the point A and at 

all points lying on the generator through A. 

The reflected beam that arrives at F appears to come 

from the virtual line source F' which lies on a circle of 

radius S , ~ 1 with ~ · as center, see Fig. 3. Now let us take 

a second identical crystal with its focal plan~ perpendicular 

to the focal plane of the first crystal and place it in such 

a way that the line of intersection of the two focal planes 

is FF' o Let the center of the second crystal be denoted by 

B, then both B and A are on tbe line FF'~ If we let BF' ~ AF 

and if the point F' lies on the focal circle of the second 

crystal, then the rays striking this crystal will be reflected 

at the Bragg angle and will come t o a point focus, P.F. 

It should now be evident, ( 1) why only a part , ZZ', of 

the total conceivable crystal ZZ shown in Fig. 2 is retained, 

(2) why the center A of the crystal ZZ' is displaced angularly 

by an amount 2 o<. from the point (3 ' and (3) why the atomic re

flecting planes of the crystal are not exactly parallel to 

the face of the bent crystal slab at its center but make an 

angl e ~ therewith. All three of these requirements originate 

from the fact that the first crystal must be kept entirely on 

one side of the point ~ ' and the second crystal entirely on 
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Fiso 3 - Two bent crystals arranged to form a point 
focus ins monocbromator. 
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the other side so as to avoid interference between the t wo 

crystals or their crystal holders when the two focal circles 

are correctly mounted to avoid astigmatism. Clearly, the 

larger the angle ~ is made, the farther apart the two crystal 

clamping blocks may be placed. The distance between the centers 

A and B of the two crystals is given by 4rsino<cos9 where r 

is the radius of either focal circle. 

If the two focal circles were in t he same plane and super

imp osed on one another (without turnin g over), with point B 

coinciding with A, and with poi nt focus (P.F) coinciding with 

the point source (S) then the virtual source (F'), if we neg

lect the slight curvature, would coincide with the line focus 

(F). It is thus seen that the point focus monochromator is 

made up of two i dentical line focus monochromators placed in 

a definite way relative to one another. 

In order to examine the aberrations that occur in such 

a point focusing a rrangement, it is necessary t o take a general 

ray and trace it through the system. 

TRACING A GENERAL RAY THROUGH rnlE SYSTEM 

For convenience the unit of length is taken equal to the 

radius of one of the focal circles. Let the coordinates de

scribing the hori zontal focal circle be x, y, z, or when con

venient, cylindrical coordinates ~ ' ¢, z , where z is perpendicu

lar to the focal plane and is als o measured in units of r and 

~ is the radial distance from the axis passing through C normal 

to the focal circle. 
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In Fig. 4, S0 represents the center of the target which 

is on the focal circle, S the intersection of a beam from an 

arbitrary point on the target with the focal cylinde~•, A 

the center of the crystal, P some arbitrary point on the 

crystal with coordinates (1, ¢, z), F
0 

the focal point, and @ 

the vertical axis about which the crystal planes are concentric. 

The x-axis is in the focal plane, perpendicular to A~. In 

the calculations that follow, we will derive the relation 

between the grazing angle 9, defined on p. 15 and the Bragg 

angle 9 0 , defined below. 

S0 P represents a ray of wavelength A
0 

such t:hat the angle 

9 0 satisfies the Bragg law ~ o = 2d sin 8 0 • ~o is the wave

length at the middle of the K~1 line. 

The angle 

and the x-axis 

between the projection of 

· (lr 38 0 - 0( + ¢) ~Ht is - - - • 2 2 

S0 P on the xy plane 

The length of S0 P is 

1 

2sin 390 - 2r;X - ¢ [1 + z2/( 4sin2 390 ; o< - ¢~ 2 

and the length of its projection on the xy plane is 

2sin 390 - o< - ¢ 
2 

-:..'"11.'he plane of the target is not tangent to the focal__£ylin
der. It is oriented in such a way that the central~y S0 A 
makes approximately 60 with it. This direction of S0A is the 
direction of maximum intensity. 

-:H•The angle °' has the same significal:}Q._e explained for Pig. 2 
and the angle ¢ in Fig. 4, is the angle PCX. 



x 

Fig o 4 - hori zonta l focs l ci rc le shown wi th 
its coordlne te ax0 so 
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It will be convenient to measure angles from AC rather 
,,/"-.. 

than the x-axis. We therefore define the central angle ACP 

by 2~ and from Fig. 4 it is seen that, 

2 '>( = ¢ - 9 0 - <X ( 1) 

Because of the limited size of the crystal, ~ will never 

exceed 1/80 radians. This makes it possible to neglect terms 

of order 71..3, since tLey represent angles that are smaller than 
~one second of arc. 

Let, 
l r z2 [l+ z2 

-ot -''l)r ao ·- [1 + 390 ¢ = 4sirl2 - 0( - 4sin2(e0 2 

and 

bo 
z z = ¢ = 

2sin 380 - o< - 2sin (90 - o<. - 7[ ) 
2 

This gives S0 P = za 0 /b0 and the length of its projection on 

the xy plane is z/bo. 

The direction cosines of S0 P are therefore: 

38 - o< + rJ. r;r' 39 - o<. + ¢ £ cos( 'il - 0 YJ) - £ sin(!!. - 0 ) 
bo 2 2 , bo 2 2 __ z_ 

or by substituting (1) 

l sin ( 28 0 + 'Y( ) , 
ao ( 2) 

.;'°The half-width at half maximum of the Darwin diffraction 
pattern for Ko<.1 radiation of copper reflected from quartz in 
the 1st order of the (310) planes is about 1 second of arc and 
this, therefore, has been taken as the limit of negligibility. 
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The above ray is emitted from the point S0 whose co

ordinates are (1, 39 0 - o< , O). Suppose now, a ray is emitted 

from the neighborhood of S 0 , say the point S, whose coordinates 

relative to S0 are (ty, tz), see Fig. 5, or relative to the 

focal circle ( 1, 39 0 - o< + 2t, tz) where t = ty/2sin ( 9 0 - ex) , 

then the direction cosines of SP follow from (2) 

where 

and 

1 sin(29
0 

+ 'Yl + t), 1 cos(29 0 + 7i + t), b 
a a a 

l 

a = 
[ 

(z - tz) 2 .] "2 
l +. _4_s_i_n.,..G""'"( 8-

0
---c:X---'7'l,-+_t_,_) 

b = z - tz 
2 sin(eo - o( - rrt + tr 

( 3) 

(4) 

( 5) 

The projected target size is 1 mm. x 1 mm. at right angles 

to the central ray so that !t i = \ty/2sin(9
0 

- o< )I ~ 1/1500 

radians and ltzl ~ 1/1200 radians. 

P ~ represents the normal to the crystal planes at point 

P and its direction cosines are: 

cos ¢ + 80 - o< sin ¢ + 90 - o<. 0 ' ' 2 2 

or by subs ti tu ti on of ( 1) 

cos (eo +. '>( ), sin (9o + 71. ), 0 ( 6) 

Now let e be the grazing angle of the ray at point P, 

i.e. tbe angle that the ray makes with the crystal planes, so 
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that 1f _ 9 is the angle betvi.reen SP and P(?> , then 
2 

cos (1T - e) 
2 

= sin 9 = SP • ~ 
\ SP 11 Pr.>I 

With the help of (3) and (6), this gives 

sine= (l/a) [sin(2e 0 +. 'l( + t)cos(e 0 + 0( )-cos(29 + ~ + t)sin(9 0 +70] 
or 

sine = (l/a) sin(9 0 + t) (7) 
1 

From (4) and (5), a= (1 + b2p~·, where b2 is small, so that 

terms of order b4 in the expansion of l/a can be neglected. 

Therefore, 

(8) 

and, 

sine ~ sin(e 0 + t) - (b2/2) sin(e
0 

+ t) 

The second term on the right represents a small correction 

to the angle e, which can be expressed as follows: 

e = e0 + t - r ( 9) 

sin e = sin(eo + t - ~ ) ~ sin(eo + t) = r cos(9o + t) 

0 is identified by comparing with the preceding equation, 

and is given by 
b2 

0 = 
2 

tan(9 0 +. t) (10) 

or upon elimination of b with equation (5), by 

(z - tz) 2 tan(9 0 +. t) 0 = ___ ,, ________ _ 

8 sin 2 ( 8 0 ~ o( - 7l + t) 

z 2 tane 0 
~----

8 sin 2 (e 0-~) 
(lOa) 

Also, since z is at most 1/60 radians and the arguments of the 

tangent and sine are approximately n/4 so that o~l5 sece of 
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arc, it was therefore justifiable to omit ter~s of order o4 

in eq. ( 8) • 

We have thus obtained an expression for the grazing 

angle 9 of a ray of wavelength ,\
0

, from the point S, in terms 

of the Bragg angle 9 0 and the small angular deviations t and 

'( . 

It is now necessary to consider wavelengths that are 

sli ghtly different from A
0

, since the whole K~1 line contributes 

to the beam rather than just a small portion of it represented 

by A
0

• Let the new wavelength be A and the Bragg angle corre 

sponding to it 9B, then because of the smallness of>. -A 0 , 

it is possible to expand ElB in a power series, keeping only 

two terms, thus: 

(11) 

where 

obtained by differentiating the Bragg equation A
0 

= 2d sin9
0

• 

The intensity reflected by the crystal is a function of 

the difference between the grazing angle and the Bragg angle$ 

Subtracting (11) from (9), we get 

e - eB = t - '( - ( A - A 0 ) -2 Elo 
IT 

or upon rep]a cing '( and~ by their equivalent expressions 

z2 tan9o A- ,\o tan9 0 
8 sin2(9

0 
- <X) ..... A~ 

(12) 

(12a) 
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The intensity of the diffraction pattern of the crystal 

can be writ ten as Fq- = F:,_ ( 9 - 9B) 7'° and its shape in the case 
tr TT 

of no absorption is given by Compton and Allison(B), Figo 

VI-7. The full width at half maximum of the diffraction 

pattern~ in the case of the (310) planes of quartz, is ap

proximately 2 seconds of arc. This means that for 9 - 9B > l" 

only a small fraction of the intensity of wavelength A is re-

fleeted. In the preceding calculations angles that are less 

than the diffraction pattern ·width were neglected. 'l'he same 

will be done in the calculations that follow. It is justi-

fiable to drop terms of order 211 or less since such terms do 

not reveal anything of interest regarding the focusing properties 

of the laminae. 

Let the direction cosines of the reflected ray be k, m, n . 

These must satisfy the following three equations. 

k2 + m2 + n2 = 1 

k cos(9 0 + 'Y\_ ) + m sin(9-0 + 11'1 ) = -sin 9 

k 

cos(9 0 + '>?. ) 

sin ( 28 0 + 72 + t) 
a 

m 

sin(9 0 + "l. ) 

- c 0 s ( 28 0 + 7l. + t ) 
a 

n 

(13) 

(14) 

0 = 0 

b -a 

where eq. (14) insures that the reflected ray makes an angle 

* rr and 'tr refer to the two components of polarization; the 
former has its e~ctric vector in the plane of incidence and 
the latter at right angles to it. In the case of no absorption 
F = ID where rD are the Darwin functions for the two types of 

{I" <r ~ 
11' 1( q 

polarization, given in Compton and Allison p. 391. 
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'tl'/2 -· e with the normal to the crystal planes, Pf3 , and the 

determinant insures that it be coplanar with P~ and SP. The 

determinant reduces to: 

(15) k sin(9 0 + 7l. ) - m cos(9 0 + IJ( ) = ~ cos{9 0 + t) 

Multiplying (14) and (15) first by cos(e
0 

+trt_) and sin(e 0 + 1£) 

respectively and adding, and then by sin(e 0 + 'rt_ ) and -cos(9 0 +11) 

respectively and adding, one obtains 

k = (n/b) cos(9 0 + t) sin(9 0 + 'tt. ) -sine cos(9 0 + 7(_) (16) 

m = -(n/b) cos(e 0 + t) cos(9 0 + '>'\)-sine sin{9 0 + 'rl.) (17) 

which, when substituted in (13), gives 

b 2cos 2e 
n2 = bZ" + cos2(go +. t) 

From (7) 

Substituting (18) in the expression for n2 and taking the 

square root, we obtain 

n = b/a 

Finally upon substitution of (7) and (19) in (16) and (17), 

( 18 ) 

(19) 

the direction cos i nes k, m, n, are reduced to their simplest 

form 

k= (l/a) sin( "1_ - t) 

m = -{l/a) cos("l1, - t) 

n = b/a 

( 20) 

Note that the direction cosine in the z direction for both the 

incident and reflected ray are the same. This is obvious if 

one thinks of the crystal as being a plane mirror in the z 

direction. 



-20-

Assuming the second crystal is removed momentari ly, 

then the projection of the ray, represented by k, m, n, on 

the focal plane is the line PF where F is displaced from F0 

by an angle 2t, just as S is with respect to S0 • Since the 

position of the point F depends on the variables t and tz 

only, and not on "l , then al 1 rays from S wi 11 focus in a 

straight vertical line passing through F. Furthermore, since 

no approximations were involved in deriving the expressions 

fork, m, n, the focusing occurs without any aberrations, 

however, the line through F contains all wavelengths in the 

neighborhood of A0 • To see this, we must consider eq. (12a) 

and note that reflect ions occur only when 9 - 9B = 0, Vlh ere 

the equality holds to within the diffraction pattern Vlli.dth. 

Thus, if S and hence t is fixed, then A is a function of z, 

with 1 decreasing with increasing lzl . 

Since to each point S there corresponds a point F, this 

implies that given a sufficiently wide spectral band of wave-

lengths the width of the line focus could be essentially the 

width of the target, approximately 1 mm. However, neglecting 

the continuous x-ray spectrum, the range of wavelengths per

mitted to go through is approximately 3 times the full width 

at half maximum of the K0(1 line, so that the line focus appears 

to be about 1/3 mm. wide. 

If instead of keeping t fixed, as was done above, A is 

kept fixed, then (12a) shows the dependence of t on z. The 

dependence is such that ulines 11 of eqi al A are parabolas whose 
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branches extend in the positive t direction, i.e . toward 

the longer wavelengths . 

In order to be able to trace the ray any further, it 

is necessary to describe it in the coordinate system of the 

second crystal x', y', z'. The latter axes are oriented in 

the same manner with respect to the second crystal as x, y, z 

are with respect to the first. 

The relation between the two coordinate systems is given 

by 

x' = cos ( 9 0 + c<) - z 

y' = 2 sin ( 9 0 - o( ) 

z' = cos ( 8 0 + ~ ) - x 

y ( 21) 

where cos(8 0 + o<.) = CCp = C' CP, and 2 sin(9 - o<.) = CpCp as seen 

from Fig. 5. 

Let the direction cosines of the reflected ray in the 

primed coordinate system be k 1 , m' , n' , and in view of the 

above transformations, and eqs. (20) 

k' = -n = -b/ a 

m' = -m = cos('>1, - t)/a 

n' = -k = -sin(fYl - t)/a 

( 22) 

Let the coordinates of t he point P in t he primed s ystem 

be xl, yl, zl, then 

xJ_ = cos(9 0 + cX.) - z 

Y]_ = 2 sin ( 8 0 - o( ) - s·in ¢ 

z' = cos(9 + ri) - cos¢ 
1 0 
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Also le t the coordinates of the point P1 , where the 

ray strikes the second crystal, be x 1 , y 1 , z' which in 

terms of cylindrical coordinates are given by 

x' = cos¢' 

y' = sin¢' 

z' = z' 

so that 

cos¢ 1 - co s (9 0+ ~)+z sin¢'-2sin(8 0- ~)+sin¢ z 1 -cos(8 0+~)+cos¢ -------·- = = 
n m k 

or 

cos¢' = cos{~ +0(.) -z+ ( n/m) [ sin¢' -2s in ( 9 0 -ll\) +sin¢ ] ( 23) 

z' = cos(8 0+~)-cos¢+(k/m)[sin¢'-2sin(9 0-~)+sin¢] {24) 

It is necessary to solve eq. (23) for¢', or for i ', where 

by analogy to eq. (1), we let, 

2"\_' = ¢I - 9 0 - C>( ( 25) 
_.,..,.__ 

where 2~' is the central angle BC 1 P~ so that, 

cos¢' ~ ( 1 - 2't 2) cos ( 9 0 + D<.) -21l_1 sin( 9 0 + o() ( 26) 

sin¢' ~ sin(9 0 + c< ) +2' ' cos(9 0 + o<.) 

Similarly from (1) 

cos¢~ (1- 211_2 ) cos(9 0 +o<) -2 ?( sin(9 0 + cX.. ) 

sin¢ ~ sin(9 0 + o<) +2 '>1 cos(9 0 + o\) 

From ( 20) 

where from (5) 

n b b m = -cos{ 71 - t) ~-

bx zll +7l_cot(8 0 -°' ij -tz 
2 sin(-9 0 -· cX.) 

( 27) 

( 28) 

( 29) 
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Substituting eqs. (26 to 29) in (23), and neglecting terms 

of order higher tt.an z2, 'YL 2 or Z'>'l_, as was done above, a 

quadratic equation in 1l' is obtained, which is as follows:· 

'2 t(e "'"' ) ' z [1 z cot (Elo+oC. )+"icot(n - "') 'l"I ' c 0 0 +"" + 7l = -:-;-:::-r,-·---;:;'\ +. ~ "7 0 "' 
·L 2 sin\90 - o<i 2 sin(9 0 - « 1 

tz sino( coseo 

By substitution of tz \ '- l/60, \"11 ~ l/eo, and o(~ 1/30 

radians, it is found that the next t o the last term in the 

preceding equation is of t:t~e order of 2 11 and hence may be 

neglected. 

The quadratic equation is of the form 

whose solution is 

l 
-1 + (1 + 4AB)~ 2 '>1..' = - 2A --- ~ B - AB 

Applying the above equation to (30) the followin g result is 

obtained, 

where 

t' : tz/2 sin(Elo + o< ) 

( 30 ) 

(31) 

and plays the same role in the primed coordinate system as t 

does in the unprimed system, lt' I ~ 1/1500 radians. 
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To solve for z', we substitute k/m = -tan(~ - t) 

together with eqs. (26), (27) and (31) into (24), which 

after simplification becomes 

z' = 2'Yl sin(e 0 -o() - ~ co~(eo + o{) + 4tsin0\. cos9
0 L Sin ( 9 o - (i() (32) 

The direction cosines of the normal to the crystal planes 

at P' are given by ( 6) , with 11. ' replacing "L . They are: 

cos(8 0 +'1'\._1 ), sin(8 0 + 7l') , 0 (33) 

The direction of the ray incident on the second crystal 

k', m', n' are given in terms of b, ?t , t by eqs. (22). 

Let the angle between the above two directions be 11"/2 - 8 1 

where 9 1 is the grazing angle. 'I'herefore, 

cos(~ -8 1 ) = sin9' = k' cos(9 0 +?'\..') + m' sin(80 + "l') 

% -bcos(e0 +'l't') + (1 - b2/2)cos(?t- t)sin(9 0 +-7L') 

~ - Lb + ( ::.!l. ; t ) 
2 

tan ( e 0 + 'l'\._ ' )] cos ( e 0 + '>l' ) 

+ (1 - b2/2) sin(9 0 +'1') (34) 

where eqs. (5), (8) and (22) were used in the second step, and 

in the last step cos(11, - t) was expanded into 1 - ('It- t)2/2. 

Let 
(35) 

Since 'I' is a small quantity, it is permissible to rewrite eqo 

(34), thus: 

sine' ~ -sin ~ · cos(9 0 +11') + cos)'' sin(9 0 + ?t') 

= Sin ( 9 0 + '>t' - 'f I ) 

from which it is easily seen that 
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With the belp of (29), eq. (35) can be simplified by dropping 

higher order terms, namely those involving t. Thus, 

t'sin(e 0 + OC) 
sin ( 9 0 -ol.} 

combining the above with (31) , results in 

m 2 
8' = 80 + t' - 1t tan9 0 ( 36) 

As in the case of the first reflection, we are interested 

in the difference between the grazing angle 8' , and the Bragg 

angle 9B for the wavelength \ . Making use of (11), the final 

result is, 

9' - eB = t' - '!l.2
2

tan9o - A - Ao tane Xo 0 (37) 

The above equation can now be compared with (12a), which is, 

z2tan9 0 A- ~ o = t - - --y,-
0

- - taneo 
8 sin2( 9 0 - o() I\ 

( 38) 

The conditions that must be imposed on (9 - eB) and 

.(e 1 - 9B) in order that a ray of wavelength A be reflected by 

both crystals are, 

(39) 

where the equality is to be understood to hold to within 

the diffraction width, namely 2 11 of arc. This, incidentally , 

is another justification for dropping small order terms. 

In view of the above requirements eqs. (37) and (38) 

show some interesting properties of the crystals. For purposes 

of computation it is better to rewt>.fute the above equation in 
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numerical form by substituting 9 0 = 40.7° and 0( = 2el 0 , 

e1 - eB = t' - 0.430"1.2 - 0.860( A - ,\ 0 )/ A 
0 

El - 9B = t _, 0 .276z2 - 0.860( A - ,\ 0 )/ A0 

Subtracting (37) from (38), gives the dependence of 41and z 

on t and t' alone, 

(11.2/2) tan9 0 - z2tan9 0 /8sin2( 9 0 - o<.) = t' - t 

or 

0.4301\.2 - 0.276z2 = t' - t 

(40) 

(41) 

( 42) 

(42a) 

If the target of the x-ray tube is so small that t and t 1 

can be neglected, or if t' - t = 0 in the above equation, then 

the area of the first crystal which is contributing to the point 

focus degenerates into two lines whose widths c~ 0.01 ID.t11.) corres-

pond to the diffraction pattern widths and whose equations are 

z = + 1. 25 "l (43) 

along which the wavelength decreases with increasing lzt, as 

is given by eq. (41). By definition, 21\. is the angle measured 

at the center C of the focal circle from the center of the 

crystal to the arbitrary point P, so that z and 2"'l may be con

sidered as the coordinate axes of the crystal lamina with the 

origin at its center. If the above two lines are projected on 

a plane perpendicular to the incident (or once reflected) beam, 

then they become orthogonal and are inclined at 45° with the 

. horizontal plane. Since the reflecting portions of the crystal 

laminae were designed to admit a square beam, 3/4n x 3/4 11 , it 

is obvious that the above lines connect the opposite corners of 

the laminae. When t 1 - t is ~· negligible, eq. (42) represents 
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t' -t > 0 t' -t > 0 

Figo 6 - Cross-section of beam (3/4 11 x 3/4 11
) midway 

between the two crystals. Hyperbolas repre
sent cross-section of rays emanating from 
points in the target for which t'-t is a 
constant o 
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two families of hyperbolas whose asymptotes are eqs. (43). 

The upper and lower hyperbolas correspond to negative values 

of t 1 - te When \t' - t \ takes on all values from zero to 

some finite value, eq. { 42a) gives the four limiting hyperbolas 

within which the first crystal lamina is illuminated by x-rays. 

Eq. (42a.) also shows that in order that the whole lamina be 

illuminated t' - t must satisfy the following inequality, 

- 0.042 ~ t' - t ~ 0.042 mm. 

This inequality shows that the useful target area is a strip 

inclined at approximately 45° with the horizontal, and extend

ing fr om the upper left hand corner to the lower right hand 

corner of the target. It must be remembered that the values 

t and t' do not represent true distances from the center of 

the target as seen from the center of crystal A, but must be 

multiplied by 2sin(9 0 + o< ) and 2sin(9 0 - o<. ) respectively, to 

give tz and ty• Thus, t' - t = tz/2sin(9 0 + o()-ty/2sin(90 - o{ ) 

so that, 

-0.06 ~ tz - l.09ty ~ 0.06 mm. (43.l) 

and the actual inclination of the strip is 47 1/2° with the 

horizontal plane. 

The limits on t and t' individually are given by (40) and 

(41) in ·1J1hich the maximum value of I..\ - A0 1 can be taken arbi-

trarily as 0.30 x .. u.' i.e. the half width at half maximum of 

the KP.1 line. Hence, 

-0.10 ~ t ~ 0.14 mm. or -0.13 ~ ty ~ 0.17 mm. 

-0.10 ~ t' ~ 0.15 rn.rn. or -0.14 ~ tz ~ 0.20 mm. 
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It is seen that the useful target area is a diagonal 

strip about 0.09 rnm. \ivi.de enclosed in a rectangular area 

0.30 mm. x 0.34 mm., the sides of which are not symnetrically 

disposed about the center of the target (t = t' = 0), see 

Fig. 8a, p. 38. Note that the width of the strip is inde-

pendent of the wavelength, except through the factor 8 0 , as 

given by eq. (42). 

It is known that the curves representing the intensity 

versus wavelength of x-ray spectral lines are "wi t .ches 11 .?f- Thus, 

it is obvious that the area under that part of the witch (out 

to half-max.), ~1ich is being reflected above, is half the 

total area. If the full target, 1 mm. x 1 mm., is used in

stead, then it is not bard to show that about 83% of the area 

under the witch is being reflected. The useful area of the 

target, however, is still a diagonal strip of the same width, 

namely 0.09 mm. This width is independent of wavelength ad-

mi tted, but depends on the size of the crystal laminae only. 

Returning our attention to the ray, which was found to 

strike the second crystal with a grazing angle 9 1 at the point 

P 1 whose coordinates are ( 1, 9 0 + <J.. + 2 'l(' , z' ) , we now consider 

the twice reflected ray and follow it through to the point focus. 

Let the direction cosines of the twice reflected ray be 

k 11
, m", n" 

' 
then the conditions that they must satisfy are 

similar to those given by (13) , (14) and the determinant, with 

7~The standard equation of a 11witch 11 at the origin is 

A 
1 + x2/w2 • 
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7l_1 replacing 7l. and k' , m' , n' repJa cing the last row in the 

determinant . 

k"2 + m"2 + n"2 = 1 

k" cos(9o +71') + m11 sin(9 0 +"l.,') = -sin9' 

k" 

cos(e 0 +lfl') 

k' 

m" 

sin(e 0 +11.') 

m' 

n" 

0 

n' 

= 0 

( 44) 

(45) 

As in tbB case of the first reflection, the direction cosines 

in the z1 direction of tbB incident and reflected rays are 

equal, i.e. n" = n', so that with the help of (22) we have: 

n 11 = - ( 1/ a) sin ( ?(_ - t) ( 46) 

Subtracting the last row of the determinant from the first and 

expanding, we get 

(k" - k')sin(e 0 +"'1') = (m" - m1 )cos(e 0 +1l_') 

Eliminating sin9' from (45) by means of (34), we get 

(k 11 + k 1 ) cos(9 0 +'rt,') =-(m" + m')sin(9 0 +1l_') 

Solving the last two equations fork" and m", we obtain 

k" = -k' cos2(9 0 -f "'l ' ) -m' sin2( 9 0 + "1L. I ) 

m" = -k'sin2(90 + '>t' ) +m1 cos2( 9 0 + ?t.' ) 

which are left in the present form for convenience. 

In the ideal case the position of the point focus, 

(47) 

( 48) 

relative to the primed coordinate system, must be the same as 

that of the center of the target relative to the unprimed system. 

The coordinates of the center of the target, point S0 , are 

(1, 39 0 -0(, 0) and hence the coordinates of the point focus 

must be the same. The general ray that we are dealing with , 
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however, may not pass exactly through this point, but may 

pass close by, say through (1, 39 0 - oL + 2p, Pz) where p 

and pz are small quantities. If we let 

Py = 2p sin ( 9 0 - c{ ) , 

then Py and Pz represent the coordinates of the general ray 

in a plane perpendicular to the central ray and passing 

through the point where it touches the focal circle, the 

coordinates of the central ray being (0, 0). See Fig. 5. 

The equation of the twice reflected ray can now be 

written as: 

cos(39 0 - IX + 2p) -cos¢i sin(39 0 - o< + 2p) -sin¢' pz-z' (49) 
k" = m" = Il1' 

Substituting (47) and (48) in the first two terms above, and 

simplifying without making any approximations, we get 

tan ( p - 'Y\ 1 ) = k' / m 1 (50) 

where use has been made of ¢' = 9 0 + o< +. 27l ' • From eq~ ( 22), 

k 1 /m1 = n/m = -b/cos( 7l. - t) ~ -b, and since tan(p - ~ 1 ) '% p - ?t ', 

eq. (50) becomes, with the help of (31) and (29), 

p = 11.' - b = t 1 (51) 

or 

Py = t z sin ( 9 0 - 0( ) / s:i n ( 9 0 + oC. ) ( 52) 

To find the coordinates of the ray in the other direction , 

i .e . Pz, we consider again eq. ( 49) ' 

Pz = z' + (n"/k"') ( cos(39 0 - o<. + 2p) -cos ¢ 1
] 

where z' is given by ( 32) and n"/k 11 is given by ( 46) ' (47) 

and ( 22). The resulting equation is,_, 

Pz ~ 2tsin(9 0 + cX. ) = tysin(9o + t>I. )/sin(9o - o( ) (53) 
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Subtracting (53) from (52), we get 

Pysin ( 9 0 +oe.) /sin ( 9 0 -o<)-pz = tz-tysin( 9 0 +°') /sin ( 9 0 -0() 

or numerically 

1.09py - Pz = tz - l.09ty 

which in view of the inequality (43.1) gives 

-0.06 ~ Pz - l.09py ~ 0.06 mm. 

(54) 

(54a) 

(55) 

Eqs. (52) and (53) together with the inequ~lities imposed on 

tz and ty, for transmission of half the area under the KC(l line, 

give 

-0.13 ' Py ~ 0.18 mm. 

-0.14 ~ Pz ~ 0.18 mm. 
(56) 

The three inequalities above show that the focal spot in 

the final "point" image is a strip of width 0 .09 mm., inclined 

at 47 1/2° with the vertical focal plane. This strip is en-

closed in a rectangular area 0.31 mm. x 0 .32 mm. See Fig. 8a, 

p. 38. 

We can now come to the following conclusion. The focal 

spot is the image of the useful portion of the target, namely, 

a diagonal strip 0.09 mm .• wide. By varying the target aperture, 

it is possible to change the shape snd size of the focal spot. 

Although the focal spot is the image of the target, the reso

lution of the instrument is determined by its geometry. In 

other words, no matter what size target is used, only a diago

nal strip is useful in forming a focal spot. 'l'he length of 

the strip is determined by the width of the K«l line; beyond 

that only the continuous radiation is reflected. If the strip 
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is sufficiently long, i.e. if the target extends sufficiently 

along the length of the strip, about 1.8 mm., the Ko(2 line 

may be reflected . The latter case is shown by means of 

dotted lines in Fig. Ba, p. 38. This, however, is not desirable 

since the focal spot will then appear as two elongated dots. 

Any target area outside the diagonal strip is useless and only 

contributes to the incoherent scatt e ring which adds to the 

general background in the neighborhood of the focal spot. If 

a tube whose target area is 1 mm. x 1 mm. is used, the focal 

spot is approximately 1.4 mm. x 0.09 rmn. 

Before concluding this section, it must be pointed out 

that the intensity reflected by the two crystals is a com

plicated expression involving the inte gral Ft1"' (9-9B) :.fc1t{9'-9B) 

vvhere the arguments of the functions F are given by eqs . ( 40) 

and (41). The intensity problem will be discussed in more 

detail later. 

A BERRA '11 I 0 NS 

So far, only the ideal focusing system has been considered, 

that is, the case where the crystals have been cylindrically 

ground prior to bending. In practice, however, it is found to 

tearather difficult task to grind crystals cylindrically with 

any de gree of accuracy. Instead, the crystals are ground flat 

and then bent to twice the radius of the focal circle in order 

to obtain the proper curvature for the crystal planes. Thus, 

the concave crystal face does not everywhere hug the focal 

circle but is only tangent to it at the center of t h e crystal . 
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The use of initially flat crystals and their effect on 

the focusin g qualities of single crystal monochromators has 

been discussed extensively by Johann(lO). Herein, we shall 

designate this as the approximate focusing ~em. 

To find what happens to the focal spot when two such 

approximate focusing crystals are used in the point focusing 

arrangement, it is necessary to retrace a general ray through 

the system. Since it is neither instructive nor interesting 

to repeat the calculations in detail, only the more important 

results will be presented. 

Fig. 7 shows a flat crystal which has been bent to a 

radius equal to twice the focal radius. Point P is again 

designated as a general point on the crystal lamina, however, 

it is no longer on the focal circle. Cf is the center of curva-

ture of the crystal face and 'Tl, is measured about the point Cf• 

The difference between the grazing angle at the first 

crystal and the Bragg angle for the wavelength ~ is given by 

e - eB = t - 0.276z 2 - o.860( A - A 0 )/A 0 + 0.62s't (57) 

At the second crystal it is found that 

e - eB = t 1 - o. 430'7t,2 - o • s 60 ( A - A 0 ) /A 0 + o. 350 z 2 ( 58 ) 

Comparing these equations with (41) and (40), it is seen that 

they differ only in the last term. 

In order that a ray be reflected by both crystals, the 

two previous equations must be equated to zero as has been 

done before. Subtracting (57) from (58), we get an equation 

similar to (42), 

l.058?f - 0.626z2 = t' - t (59) 



7 -

.x 

Geometry of a single bent crys tal with fa ces 
flat prior to bendin g . 
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representing two families of hyperbolas whose asymptotes 

are 

z = + 1.30~ 

It is thus seen that, in passing from the ideal to the 

approximate focusing system, the reflecting features of the 

two crystals are not altered appreciably, although in this 

latter scheme the inequalities to be imposed on t, t' and 

t' - tare given by (57), (58) and (59). 

-0.16 ~t~0 .14 mm. or -o . 20 ~ ty ~ O • 1 7 mm. 

-0.16 ~ t' ~ 0.15 mm. or -0. 22 ~ tz ~ 0. 20 mm. (60) 

-0 e 10 ' t I - t ~ 0 • 10 mm . ., or -0.14 ~ tz - l.09ty~ 0.14 mm. 

The useful target area is again a diagonal strip, but with 

width 0 .19 mm. enclosed in a rectangular area 0.37 mm. x 0.42 mm., 

as is shown in Fig. 8b, p. 38. Although the length of the strip 

is about the same as in the ideal case, the width is doubled. 

The focal spot is again the image of the useful target 

area, namely, a strip Ool9 mm. wide inclined at 47 1/20 with the 

vertical focal plane (focal plane of the second crystal). The 

extension of the focal spot in the '1- and ~ directions (for trans-

mission of half the area under the I\c(l line) is given bv 
u ' 

-0&20 ~ Py ~ 0 •. 16 mm. 
(61) 

-0.22 ~ Pz ~ 0.19 min. 

Hence, the strip is enclosed in a rectangular area 0.36mm.x0.41mm~ 

The whole target (1 mm x 1 mm.) will transmit about 81% of the 

area under the K«l line. The focal spot will then be approxi

mately 0.19 mm. x 1.41 mm. It t ·s interesting to note that an 
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actual photograph of the focal spot reveals its size to be 

0.196 mm. x 1.40 mme when measured under a traveling micro-

scope, see Plate 9, p. 70. 

Fig. 8 shows the useful x-ray target areas and the point 

foci for both the exact and the inexact focusin g systems . The 

rectangles on the left represent targe ts of vari ous sizes, the 

smallest ones being those which transmit half the area under 

the K~ 1 line. The useful target areas are the shaded strips . 

The rectangles on the right represent the corresponding (but 

not equal) areas which enclose the point foci. The latter are 

the shaded strips with t he darker shade representing roughly 

the more intense portion of the foci. The directions of the 

coordinates ty, tz, Py and Pz are shown in Fig. 5, p. 22 . 

This concludes the ge ometrical consideration of the point 

focusin g mon ochromator. 

TABLE 0 F I~ OME:tii C.LJi TURE 

The symbols are arranged alphabetically under two headings, 

Greek Letters and Roman Letters. The page and figure where they 

first occur is gi ven in parenthesis at the end of each descriptive 

paragraph. 

GREEK LE'I'TERS 

The dihedral angle between the crystal plane 
and its face at the center of the latter (or 
between thB ir normals). (P . 9 and Fig. 2) 

'l1he generator of the focal cylinder about which 
the crystal planes are concentric. (P. 6 and 
Fig. 2) • 
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The point in the focal plane diame trically 
opposite from ~ .. ( P. 8 and Fig. 2). 

The small angle, referred to the horizontal 
focal plane, by which the grazing angle 
of incidence (9) differs from the Bragg 
angle (9 0 ), due to the vertical divergence 
of the incident ray. (The vertical divergence 
angle is the angle between the incident ray 
and the focal plane.) (P. 16). 

Small angle referred to the vertical focal 
plane and defined by Eq. (35). (P. 25). 

Half the central angle measured about the 
center of the horizontal focal circle (C), 
and in its plane, from the center of the 
first crystal (A) to the arbitrary point P. 
(P. 14 and Fig. 4 ) . (Note: See also Fig. 7 
for definition of '1l in the inexact focusing 
system.) 

Same as 't2 but referred to the vertical f ocal 
circle, the center of the second crystal (B) 
and the point P1 • (P. 23). 

The grazing angle or the angle between the 
ray and the crystal planes of the first 
crystal at the arbitrary point P. ( pp. 8, 
15 and Fi g. 2). 

9 1 The grazing angle or the angle between the 
(once reflected) ray and the crystal planes 
of the second crysta l at the point P 1 • 

¢ 

( ;:) t"\7;) t • C,v • 

The Bragg angle for the wavelength A
0 

at the 
center of the K,c1 line.. (P . 12 and Fig. 4). 

The Bragg angle for any wavelength A in the 
neighborhood of Ao • (P. 15). 

Wavelengt h at the center of the K~ l line. 
(P. 11). 

Wavelength at p oints other than the center 
of the K,n line. (P. 17). 

One of three cylindrical coordinates of the 
point P, the three being 1, ¢ and z, with 
the latter oeroendicu~ar to the horizontal 
focal circle3 ~ (P. 11 and Fig. 4). 
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¢' Same as ¢ but for point P' and the vertical 
focal circle. (P. 23). 

ROMAl'~ LET'I'ERS --------
" A Geometrical center of 1st crystal(or crystal 

with horizontal focal circle.) (P. 8 and 
Fig. 2). 

a 0 Abbreviation for expression on p. 14. 

a Abbreviation for exnression on p. 15. 

B Geometrical center of 2nd crystal (or crystal 
with verti cs.l focal circle) • (P. 10 and 
Fig. 3). 

b 0 Abbreviation for expression on p. 14. 

b Abbreviation for expression on p. 15. 

C Center of horizontal focal circle (p. 6 and 
Fig. 2). 

C' Center of vertical focal circle (p. 11 and 
Fig. 3) • 

Cp (P. 21 and Fig. 5.) 

CP (P. 21 and Fig. 5. ) 

d 

F 

Center of curvature of crystal planes in the 
inexact focusing system (p. 35 and Fig. 7). 

Grating spacing of the crysta l laminae used 
in reflection of Cu K~ 1 line (p. 8)Q 

Point on vertical line focus at which the 
reflected ray from the arbitrary point P 
on the first crystal intersects the focal 
cylinder, in the absence of the second crystal. 
(P. 20 and Fig. 4.) (Also, in the qualitative 
discussion, the line focus of a single crystal, 
or its midpoin t . (p. 6 and Fi gs. 2, 3)). 

Center of vertical line focus; also called the 
"focal ooint 11 of the horizontal focal circle. 
( P • 12 ;:,_r, d Fig. 4) • 



F'' 

l=i'l 
~ o 

k,m,n 

k' ,m' ,n' 

k 11 ,m", fl 11 

P.F. 

p 

pt 

p 

- 4 2 ·· 

Point on virtual line source (in horizontal 
p lane) from which the arbitrary ray appears 
to emanate after it is reflected from the 1st 
cry stal. ( Fi g~ 5) . (Also, in t h e qualitative 
discu ssion , the virtual line source or its 
midpoint. (p . 9 an d F'ig. 3)). 

Center of virtual line source (Fi g . 5) . 

Direction cosines of the once reflected ray 
from t he point P on t h e 1st crystal to the 
point pt on t he 2nd crystal in the coordinate 
system of t h e former . (P. 16) . 

Same as above but in the coordinate system of 
the 2nd crystal. (P. 19). 

Direction cosines of the twice reflected ray 
from the noint P' on t h e 2nd cry stal to the 
Point Focv.s. (P. 28). 

P . t ·r.i ( P 10 d F. ,.. ) oin .. .< ocus. • an i g ....... 

Arbitrary point on 1st crystal at which a ray 
from point Sis reflected. (P. 6 and Fig . 2). 

Point on second crystal where the once reflected 
ray (from point P) is a gain reflected. (P. 23). 

Small angular displacement measured about the 
center of the vertical focal circle and in the plane 
of the latter where the twice reflected ray 
pierces the focal plane. The focal plane is the 
plane t h rou gh the point P.F. and perpendicular 
to the central ray. (P. 29). 

Coordinates in the focal plan~~ of the point where 
the ray pierces the latt~r, see above. Pz is 
in a direction perpendicular to the vertical 
focal circle and Py is at ri ght angles to it . 
(P 32 and Fig. 5). 

r Radius of either focal circle. (P. 11) . 

So Point on horizontal focal circle represen ting 
center of x-ray target. (P. 12 and Fie. 4). 

S Point at which the arbitrary incident ray 
intersects the focal cylinder in the nei ghborhood 
of S 0 o (P. 15 and Fi g. 4). _______ , ___ ,._. ______ , ___ . ______ ,,.,. ________ ... ~--- ··----~-·-·--·-·------·-·-·---

.;~Pl ane passin i; thr ou .~:;h t 1;e point f o cu s at r i[ht an gles 
to the central raya 



t 

(x,y,z ) 

( x I 'Y' 'z I ) 
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Small an gular disp lacement ~easured a bou t 
t h e center of the horizontal focal circle and 
in the plane of the latter, w~nere t h e arbitrary 
ray emerges from t h e target. (P. 15, and Fig. 4). 

Coordinates in a plane at right angles to the 
central ray through the point s 9 of the ar b i tre~ry 
ray emerging from the target. \P. 15 and Fi g . 5). 

Coordinate s y stem of horizontal focal circle. 
(P. 11 and Figs. 4, 5). 

Coordinate system of the vertical focal circle. 
(P. 21 and Fig. 5 ) . 

Coordinates of point P in the primed coordinate 
system. (P . 21). 
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PART III 

THE I NTENSI'IY PROBLEM AND SUGGEST.ED I NI PROVEivIENTS 

The problem of obtaining sufficient intensity is one of 

the most difficult in connection with the point focusing mono-

chromator and one that has been the cause of a good deal of 

concern. Losses due to polarization at each reflection are 

inherent in the design of the instrument and can only be 

reduced by a decrease in the Bragg angle. (See eq. 64 below.) 

The latter can be accomplished by one of two means, increasing 

the grating spacing or decreasing t he wavelength, neither of 

whi ch lends itself to a wide variety of choice. 

Assuming the first crystal is illuminated uniformly with 

x-rays, then the intensity at the point focus is given by, 

I ; ( 1/2) 1 0 C r1-r~~ -.1.0 ) l F.,. (e - eB)F.,, (9 1 
- 9g) 

-Am.~ -8"'•~ -a',.,,a, 
+ F1r'(8 - 8B)Fcr(9' - 8B U d ~ d8d8' ( 62) 

where it must be remembered that (9 - 8B) and (8 1 - eB ) are 

gi ven by eqs. (41) and (40) respectively. 

C is a factor depending on the thickness of the crystal , 

its diffraction pattern width, radius of curvature, average 

extinction coefficient and linear absorption coefficient. 

According to the dynamical theory of x-ray reflection from 

crystals, the condition for one hundred percent reflection 

(in the absence of absorption) occurs when 8 - 83 and 8 1 - 9B 

are less than half the diffraction width. Outside that range 
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very little reflection occurs. This will be obvious as 

soon as the functions Fer and ~ are written down explicitly. 

When the condition for complete reflection is satisfied a.t 

the surface, the incident rays are said to be rapidly "ex-

tinguished 11
• In other words, they are reflected before they 

have a chance to penetrate very far into the crystal. However, 

when the condition is not sat:Lsfied at the surface as is the 

case wi th a target of finite size, the rays penetrate into the 

crystal, suffering attenuation due to absorption until they 

reach crystal planes for which the condition is satisfied, in 

which case, they are then rapidly extinguishBd. This situation 

is only possible with curved crystals in which the grazing 

angle changes as the beam penetrates the lattice. The reflect-

ing properties of bent crystals have been the subject of a 

recent doctoral thesis and have been reported in J~ App. Phys.{11) 

J ( A - A 0 ) is the s pe ct ra 1 di st r i but ion function • The 

functions Fer and Fu- , according to the theory of Darwin and 

for the case of negligible absorption, are given by, 

F/ Z 2 
when ~<- F/Z 

£2 - F2/Z2 

_ [ F:LZ ] 2 

- € + V ~ 2 - F2/z2} 
when f>F/Z 
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2 
F/Z when £< -(F/Z) cos 29 0 

- p2/z2cos2 

F (~) = 1 11' when -(F;Z)co s29 0 < f <( F/Z) cos28 0 

where 

=bt2 ~~ F/Z (..; 
when £) (F/Z) cos29 0 

-(F2/z2)cos22e 

£ = (9 - 9B) sin29 0 /2d - 1 

F is the crystal structure factor 

Z is the total number of electrons per unit cell 

r = 1 - index of refraction 

er and 11"' are defined in footnote page 18. 

It has been shown in Comp ton and Allison(B) p. 397 that 

00 

JF.- (£)dt = 8Fcf 
3Zsin29 0 

- 00 (63) 
00 

and J F-rr ( f) d f 
_ 8F&cos28o 
- 3Zsin29o 

-oo 

However, in eq. (62 ) the arguments of F11 and F-rr are not 

independent but are related through eqso (41) and (40), so that 

the above integrals do not apply. Attempts to integrate (62) 

ana l ytically have failed. 

To have some idea as to the intensity reflected by the 

two crystals, let us assume that C = 1, ,\ = A0 , z = 11.. = O, 

that is, we shall consider surface reflections fro~ the ~~nters 

of the t wo crystals for one wavelength only. Eqs. (41) and 

(40) then become, 
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where t and t 1 are independent variables ranging from 

+l/1500 rad. to -1/1500 radc or 144" to -144". Since the 

functions Fer and F 11 fall quite rapidly outside the ran ge 

of complete reflection, it is justifable to set the ranges 

of integration on t and t 1 from oo to - oo • 

Setting J( A - A 0 ) = 1, we have, therefore, 

I = ( l/2)I·I:If .. < t)F~ ( t') + F ( t ) F ( t I )1 d td t I 
'IT q- 1 

and in view of eqs. (63) 

(64) 

The loss in intensity due to polarization manifests itself 

in the term cos29 0 which is due to the functi on F'ff . Eq. (64), 

though not applicable to the crystals as a whole, nevertheless 

gives a fair indication as to the reflection ability in the 

neighborhood of their centers. This equation can be used as 

a criterion for comparison with other crystals, and suggest 

the use of a crystal for which the values of F/Z, [ and cos29 0 

are larger tGan the corresponding values in quartz. Although 

there are numerous crystals that satisfy the above conditions, 

there are very few that are sufficiently large in size and 

have the necessary elastic properties for bending. A search 

of the literature has revealed only one crystal that is compa-

rable to quartz in strength, namely topaz. It will be of 

interest to compare t:he properties of quartz and topaz. 



Formula 

Planes used 

Grating spacing, d 

Mole cules/unit cell 

Electrons/unit cell , Z 

Volume of unit cell, V 

Crystal structure 
factor, F 
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Si02 

( 310) 
0 

l.178A 

3 

90 
o~ 

112A0 

21.8 

From Comnton and Allison (B) p. 280 

S = ( z/v) e2 ,.\0 2 
2ffmc2 

Topa~ 

[Al(F,OH) ] 2Si04 

( 303) ( 006) 
0 

l.352A 1.395 

4 4 

360 360 

341. 51~3 0 
341. 5A3 

139.0 124e4 

( 65) 

where e2/mc2 is the classical radius of the electron (2o817xl0-5~), 

and A0 = 1.5372. 

The Bragg angle is given by 

9 0 = sin -1 ( A 0 / 2d) ( 66 ) 

We can now substitute numbers into (66), (65) and (64) and 

get 

Quart~ Topaz 

Planes ( 310) ( 303) (006) 

90 = 40.7° 34.6° 33.4° 

cos 290 = 0.1497 0 .3555 0.3940 

d = 0 .85xl0-5 l.l2x10-5 l.l2x10-5 

F/Z = 0.242 0.386 Oe346 

I / Io 4.6x10- 12 54xlQ-12 50x10-12 

One can, therefore, expect an increase in beam intensity 

(at the surface) by replacing the quartz crystals with topaz 
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of about 54/4.6 = 12 times or 50 /4.6 = 11 times depending 

on the planes used. 

Since it is possible to obtain reflections from planes 

within the crystals as well, it is necessary to take into 

account the function G. We shall still restrict ourselves 

to the centers of the crystals. The function C is given 

by C "' Ca-C 1!"" whe.n;2. £ "J 

C -v-,, f 1-exp [ - )LT (sin ( 9 0 +Dc' ) +sin ( 9 0 - « ) } /sin ( 9 0 + « ) s i n ( 9 0 -oOJJ • 
f 1-exp [ - Eavew~R/ cos9 0 coslX ( l+sin2oOJ} ..;- ( 67) 

{ 1-exp (-}'w~ R ( s i n ( 9 0 + Dl) +sin ( 9 0 - A) ) /sin ( 9 0 - ol) cos9 0 cos o<.( l+sin2oe il} 
where )> = linear abs orption coefficient 

T = thickness of the crystals = 0.07 

R = radius of curvature = 120 cm. 

c ave = average exti.nction coefficient 

°' = angle between crystal planes and 

w~ = diffraction pattern widths 
1f 

cm. 

faces 

Although eq. (67} is supposed t o express the area under 

a rocking curve it is applicable here . In the case of a 

rocking curve experiment, a fine parallel beam of x-rays strikes 

a crystal which is rotated a few seconds of arc at a time, the 

reflected beam being measured in each p osition. In our case, 

because of the finite size of the target, rays from different 

parts of it converge and strike the center of the crystal with 

different grazing angles so that the total intensity is equal 

to the area under the rocking curve mentioned in the previous 

case. 
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We a gain compare quartz and topaz. However, it :ts first 

necessary to compute f' ' 'ave and w {I • ,... 
)A = gLPifi where g = density of crystal 

l 
crystal/~~~ Pi = mass of element i in the 

1'-i = ,mQ.SS - absorption coefficient of 
element i 

31Te2~ 0F 
e ave = ---,.,-·- = 5o09 x l03(F/V) cm-1 

8 mct:::V 

w 6" = ('4/3)4c1( F/Z) csc29 0 

w~ = (4/3)4d(F/Z) cot29 0 

where the factor 4/3 is applied to the actual width in order to 

approximate thB actual diffraction pattern by a rectangular 

pattern of the same areae This approximation has been used in 

deriving eq. (67). 

The composition and specific gravity of the two kinds of 

crys ta1s are g iven in the followin g table: 

Composition , .,.., . 
l'l 

Specific gravity 

from which the values 

planes 

Linear absoroti on 
coefficient 

Average extinction 
coefficient 

Diffraction pattern 
1111dths 

M~st· absorption 
Quartz Top a~ coeffi cien t }'l 

Si 41.7% 
0 53.3% 

g = 2.65 

ofp can 

Quartz 

(310) 

be 

Si 15.17% Si 
0 34.67% 0 

Al 29 e 587f Al 
F 20 e 58% F 

3.53 

calculated. 

Topaz 

( 303) 

f- = 82cm-l 109cm-l 

£ ave = 990 cm-1 2070cm-l 

Wg- = i. 112x10-5 2.462xlo-5 
w'G' = 0 .166xl0-5 0 .875xlo-5 

----
60.0 
11.16 
49.0 
17.0 

(006) 

109cm- l 

1850cm-l 

2 . 254xi o-5 
O.E8 6xl0- 5 
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Substituting the above values into eq. ( 67) together 

with T = 0.07 cm. and ol.. = 2.1°, it is seen t hat the argument 

of the first exp onential term is very large, so that the first 

bracketed term is equal to unity. This indicates that our 

crystals are sufficien tly thick and that the function C does 

not depend on the i r thicknesso 

Hence, for the two kinds of crystals and two types of 

polarizati on, we have 

Ratio, Topaz 
Qua r tz Tooaz t o Quartz 

( 303) ( 006) ( 303) (006 ) 

a- polari za ti on c = rr 3.12 1.78 1.90 0.57 0.61 

'ff polarizati on c -1r - 5.19 3.65 3.61 0.70 0.70 

The above calculations are based on reflecti on s from a 

single bent crystal. When applied t o the two crystal monochrom-

ator, the above ratio s must be multiplied by one another since 

the ~ polarization for one crystal is the ff polariza tion for 

the other and vice versa. Although these ratios are unfavorable, 

the factors of 12 and 11 obtained previously, more than compen-

sate for them. When the latter are taken int o account, the 

gain in intensity with topaz is 

4.8 for the (303)planes. 

4.7 for the (006)planes. 

It must be remembered that the above calculati ons were carried 

out for the centers of the crystals only and may not be valid 

for the whole crystals. However, on the basis of experimental 

work conducted by Inc;elstam(l2), the a ctual gain in intensity 
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from bent topaz crystals is not far different from the above 

fi gurese 

Other means of increasing the intensity consist in en

closing the beam in helium, and using a beam which emerges 

with a smaller grazing angle from the target. Since the total 

path length of the beam is about 150 cm., the loss due to ab

sorption in air is considerable. The substitution of helium 

for air improves the intensity by a factor of 3.5. The beam 

intensity at a smaller angle of emergence is about 2.5 times 

as great per unit target area. However, the projected target 

area is reduced by about a factor of five. Since the useful 

target area is a strip no larger than 0.2 mm. wide, the use 

of such a beam is justifiable. Taking the above factors 

(substitution of topaz for quartz, use of helium atmosphere, 

and reorientation of x-ray tube) into consideration, one can, 

therefore, expect a gain of 42 in intensity in the case of the 

(303) planes of topaz or of 41 in the case of (006) planes over 

the intensity available before making these changes. 
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PART IV 

DESCRIPTIOI\i OF THE POI NT FOCUS ING - · -- --- - --
MONO CHROMA 'I'OR 
------.....,~~--m~----

The problem of orienting two bent crystals correctly 

in space involves twelve independent degrees of freedom. 

It is not hard to see then, that unless some method is 

devised for lining up the crystals, in a logical or system-

atic manner, the solution to the problem by cut-and-try 

adjustment is next to impossible. The instrument which we 

shall describe below was designed and built with this problem 

in mind. 

The instrument is built mainly out of steel. To avoid 

as much as possible any unpredictable lining up problems, all 

defining surfaces are surface ground with the exception of 

the pads on the triangular table . The cylindrical faces of 

the crystal cla~ping blocks (approximately 120 cm. in radius) 

are both ground and lapped by a special method described by 

DulVIond. , Lind and Cohen(l3 ). This shop method has the ad

vantages that it automatically insures : (1) that the gene r-

ators of the precision cylindrical clamping surfaces shall be 

truly normal to plane ground reference faces on the top and 

bottom of the crystal clamping blocks and, (2) that the radii 

of curvature on blocks for crysta l s A and B shall be closely 

equal. All welded parts we re heat treated to prevent dis-

tortion in time. 
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Because of its three dimensional character, the instru

ment and its lining up procedure are best described by a 

series of plates. 

PLATE 1 

This is an overall view of the instrument with the parts 

assembled for use except that the crystals and the front halves 

of the crystal clamping blocks have been removed. It consists 

of a triangular steel table mounted by means of leveling screws 

on three concrete pillars. The t&.ble is provided with a number 

of pads whi ch are welded to it and which are machined accurately 

so as to define a common reference surface. The crystal laminae 

a re cylindrically bent by clamping between pairs of steel crystal 

bending blocks of whicr1 only the rear members are shown in the 

photograph. The block with vertical generators (crystal A) is 

mounted on a horizontal radius arm (R), while the block with 

horizontal generators (crystal B) is mounted on a radius arm 

(R') in the vertical plane. The area of the rectangular hole 

in the block marked (A) is approximately the effective crystal 

area. (See Plate 6 for a close-up view of the crystal blocks 

with crystals clamped between front and back members.) The 

verti.cal structure in Plate 1 supports the detecting device 

at the top (P) and the scattering sample at the bottom (S) . 

The detecting device at present is a film hol der , but pro-

vision is made for a Geiger counter which will be used when 

a beam of sufficient intensity is attained. 



~55-

PLA TE 1 - This is an overall view of the inst rument with 
the x-ray tube X on the left, cr ystal blocks (rear halves} A 
and B at the cen ter, and the point focu s P at the top . 

PLATE 2 - For the purpose of ali gnment, crystal B, with 
i ts associated radius arms R1 and D, is mounted in t he hori= 
zont a l position as shown, R' and D, being f ree to turn i nde
uendentlv about C' ~ 
.!. v 
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The beam diverges from the x- ray tube (X) and proceeds 

to crystal A, where it is Bragg-reflected (CuKct, 1 ), so that 

in the absence of crystal B, it would come to a vertical 

line focus at F. However, crystal B intercepts the beam and 

by Bragg reflection, in the vertical plane, brings tbB twice 

reflected beam to a point focus at P. We shall refer to t h e 

centers of the reflecting surfaces of crystals A and B simply 

as the points A and B. 

The points x , A 
' 

and F lie on the horizontal focal circle 

(of crystal A), whose center is at c. The points F' 
' 

B and 

p lie on the vertical focal circle (of crystal B) ' whose 

center is at C1 • The two focal circles are congruent, with 

point F1 corresponding to F, B to A, and P to X. 

The long bar FF' pivots about a vertical axis at F, 

carrying with it the vertical structure and the assembly 

supporting crystal B. Hence the horizontal and vertical focal 

circles can be adjusted in such a way as t o maintain the points 

F', A, B, and F in a straight line which is also the line of 

intersection of the two focal planes. 

The vertical pin at F supports a film holder which allows 

first crystal B and then crystal A to be individually aligned 

photographically, while in the horizontal position. This 

alignment process is made clearer in the following plate. 

PLATE 2 

For the purpose of alignment , crystal B, with its associ

ated radius arms R1 a nd D, is mounted in the horizontal position 
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as sho~m, R' and D being free to turn independently about C'. 

Tbe top of the crystal block is made parallel to tbe reference 

surface by means of a 1/10,000 inch dial i ndicator. This ad

justment takes care of two rotational degrees of freedom of 

crystal B. 

Next, a narrow line source of light, with a microscope 

focuaed to a point right above it is placed in line with C' 

and B. Crystal B is pivoted about a vertical axis, passing 

through B, until a line image due to the reflected light from 

the crystal face, appears right above the light source and 

hence in the field of view of the microscope. The light 

source and microscope are then moved along the line C'B 

until the image appears to be the sharpest. By measuring 

the distance between the light source and the center of 

crystal B, the diameter of the focal circle is determined. 

This permits us to set cr ystal Bat the ri ght distance from 

C', namely, half the focal diameter. This concludes the two 

optical adjustments which take care of one more rotational 

degree of freedom, making a total of three. The preceding 

statement may seem to be slightly contradictory, but it will 

be shown to be true by the concluding statement of the next 

paragraph . 

The arm R1 is then pivoted about C' until the line focus, 

due to Bragg re fle cti on of the CuK oi( 1 line, appears on the 

film, in the cassette at F. The axis of the pin at F is then 

moved laterally to coincide with the line focus. Since one 
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end of the radius arm D is constrained to move with F, the 

angle between D and R1 has thus been established, and the t wo 

arms are now rigidly clamped together by means of a cross-bar. 

This assembly is then removed and placed aside to permit 

alignment of crystal A, shown on the next plate. After crystal 

A is permanently adjusted in place, there will remain only 

the three translatory degrees of freedom of crystal B relative 

to A, which f or convenience will be broken down into two ro-

tations and one translation. 

PLATE 3 

In this photograph, crystal A and its radius arm are 

shown in their normal positions. The dial indicator and 

optical instruments are again used to orient the crystal 

correctly on its radius arm. If crystal A is identical to 

B, th~n the point F should remain fixed in position and the 

only adjustment is the location of point A relative to F'~. 

This is d one photographically by moving radius arm R about C, 

until the line focus appears at F. The arm is then clamped 

permanently in place and the assembly supporting crystal B is 

then mounted as shown in the next plate. As was mentioned 

before, the correct placement of crystal A eliminates six 

more degrees of freedom, thus making a total of nine eliminated 

so far. 

*It was found, however, that the radii R and R' differed 
by about 6 mm., hence re quiring a corresponding change in the 
length CF. It is hard to say how this slight difference in 
radii actually affects the point focus. 
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PLATE 3 - Crystal A and its radius arm R are lined up 
in their normal positions as shown. 

PLATE 4 - The last adjustments consist of linins up 
points F and F1 with the center of crystal A, correcting for 
asti gmatism and ascertaining that crystal B is set at the 
3ra gg angle to accept radiation from A. 
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PLA'l'E 4 

The only adjustments left now are: (1) to line up the 

points F and F 1 with A 
' 

(2) to correct for astigmatism and, 

(3) to ascer t ain that crystal B is set at the Bragg angle to 

accept radiation from A$ Tbe latter adjustment is made by 

pivoting crystal B with its assembly about the horizontal rod 

at F'. The first adjustment is made by connecting two points 

directly above F and F 1 with a tight-line and pivoting the 

long bar FF' about the vertical rod at F until the tight

line is right above the poin t A. The actual point A is in-

accessible, so that a scratch mark on the crystal block 

directly above it is used insteads Astigmatism is corrected 

by moving the bar FF1 logitudinally, thus pulling crystal B 

toward or away from crystal A until the point P appears 

sharply defined. This adjustment is not particularly sensi-

tive. Moving the rod one centimeter one way or another 

doesn't seem to make much difference. 

The three adjustments, just described, eliminate the last 

thre e degrees of freedom thus concluding our lining up pro-

cedure .. 

PLATE 5 

This plate shows the complete instrument with the ex~ 

ception of the lead partitions, one in front of crystal A and 

one between the two crystals as well as the lead box which 

surrounds both crystals. The partitions, consisting of a lead 

sheet with 3/4" x 3/4 11 square windows to let the beam through, 



=6i-

PLATE 5 - The complete instrument with the exception of 
the lead hous i ng surrounding the two crystal blocks. 

PLATE 6 - Close-up view of' the crystal blocks shown with 
the various adjusting screwsa 
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are used to cut down the incoherent scattering as well as 

fluorescent radiation from the steel crystal blocks, thus 

reducing considerably the background in the neighborhood of 

the point focus. To prevent scattering from the steel webs 

of the crystal blocks, the latter are covered with thin lead 

foil. The lead box protects the occupants of the room from 

irradiation. The x-ray tube is a diffraction type tube made 

by the Machlett Company and is driven by a North American 

Philips basic diffraction unit which can deliver continuously 

60 PKV at a full wave rectified current rating of 50 ma. The 

optimum operation of the tube , however, is at 35 PKV and 20 maQ 

The tube that extends from the x-ray tube to crystal A is filled 

with helium, thus cutting down loss of intensity due to air 

scattering. At the top of the vertical structure one can 

observe the film holder mounted on an angle plate which can 

ride up and down on ways along the beam,thus permitting ad

justment of the x-ray film to coincide with the best point 

focus. The scattering sample is mounted on a holder, not here 

shown, which can also ride up and down along the beam. Every 

ray which passes through the sample will be partly scattered 

into a narrow cone of diffusion around said ray. The resulting 

diffraction pattern in the focal plane is the superposition of 

all such scattered rays; the undeviated rays which come to a 

point focus being suppressed by means of a thin tungsten wire 

(Oe020" in diam.) placed against the photographic plate. With 

this arrangement, every point on a circle of specified radius 
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concentric with the central focal spot in the focal plane 

receives radiation which has been scattered by every portion 

of the scatterer under approximately the same angle. Thus, 

aside from a small cosine correction coming from the fact 

that the rays are not parallel, the diffraction pattern repre

sents truly the scattering property of the sample.·~ 

THE CRYSTALS AND CRYSTAL BLOCKS 

PLATE 6 

This is a close-up view of the crystal blocks A and B. 

One can observe some of the local adjustrn.ents necessary to 

set crystals A and B correctly on their respective radius 

arms R and R1 • 

The blocks are made of a special type of stainless steel 

which is quite stable and does not distort with time . 'I'his 

is quite important since the curved surfaces must retain 

their optical properties with high precision. In order to 

insure uniformity of curvature, the two convex blocks were 

mounted on a steel plate and treated as a single unit, that 

is, they were cylindrically ground and lapped simultaneously. 

The same was done with the concave blocks. The method of 

grinding referred to on page 53 is shown in Pl ates 7 and 8. 

PLATES 7 AND 8 

The convex face (on the front half of the crystal block) 

*This statement is ideally true. However, since the point 
focus has a finite size, a small correction must be made in 
regions very close to the center of the diffraction pattern. 
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Method or generating the precision cylindrical surfaces of the c't.U"Ved 
crystal clamping blocks for the point•f'ocusing x-r,q monochromator in 
an ordinary flat surface grinder. The two stainless steel blocks are 
seen mounted on the rocking bracket under the grinder wheel. The bracket, 
mounted on a pivot, rocks to and tro as the work travels backward and 
forward on the transverse ways of the grinder. The rocking is caused b;y 
a lever arm rigidly clamped to the bracket whose tar end is provided with 
a roller which rolls along an inclined straight-edge in unison with the 
transverse carriage movement. 

View (from above) of the method of precision profiling the cylindrical 
surfaces of the above mentioned clamping blocks in a flat surf'ace grinder. 
The blocks can be seen mounted on the rocking bracket. The long lever arm 
with the small roller at its le.rt-hand end is here clearly visible. The weight 
attached to theleft end of the lever arm to hold the roller in contact with 
the plane on which it rolls can also be seeno 



forms the defining surface against which the crystal lamina 

is bent. The crystal is backed by a rubber gasket before 

the rear half of the crystal block is clamped on. Thus, only 

the convex face must be accurately lapped to an optical finish. 

At the end of the lapping procedure described in reference 13, 

the concave cast iron lap, which itself acquires a high optical 

polish, is set on an optical bench and examined optically by 

placing a line source of light at the center of curvature 

and observing its image with a microscope. A Hartman diagram 

of two zones reveals that tr.i.e focus is approximately 0 .016 mm. 

wide. This, then, indicates the degree of optical perfection 

attained by the convex crystal blocks~ 

The crystal laminae were cut frDm a single slab of quartz, 

which was ground flat and polished to approximately the final 

thickness prior to cutting. 

The angle between the ~l~ crystal planes and the faces 

of the slab was determined on the two crystal spectrometer by 

replacing crystal B thereon with the slab (set for reflection 

of the beam from the above mentioned(31G planes) and locating 

the "parallel posl ti on". Crystal A was another quartz plate 

whose reflecting planes were also the ( 310) planes. 'I'he slab 

(whose orientation on the support bracket of the crystal B 

pivot was determined by a 3-point contact between the polished 

crystal surface and three ball bearings pressed tightly into 

shallow holes in the surface of the bracket) was then rotated 

180° about an axis perpendicular to !..ts face and the "parallel 
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position" was again located. The difference in the two 

"parallel position" readings is equal to twice the angle 

between the crystal planes and its faces . This angle was re

adjusted, by grinding, to the desired value 0(. , and by keeping 

track of its direction, it was possible to clamp the crystal s , 

when finished, correctly in the crystal blocks . (See page 9 

for the requirement which fixes ct..) 

Special precautions were taken in lapping to prevent 

the development of surface stresses. Unnecessary heating in 

the lapping procedure was avoided. In the final stages of 

lapping, only the finest abrasive was used. The prolonged use 

of the fine abrasive made certain that no scratches were left 

from the coarser abrasive . Such scra t ches are invisible but 

can be revealed by etching the quartz. This is based on t he 

t heory that the scratches are actually grooves filled u p with 

minute particles of quartz which can be removed by etching . 

The minute particles wedged in the grooves contribute to the 

surface stresses . Thus, if the two faces of a lamina are not 

scratched e qually (which is usually the case), the etching 

process which relieves the strain will tend to make the 

l amina "curl" thus ruining the optical features of its faces . 

It is necessary to etch the crystals for two reasons: (1) to 

prevent breaking when being bent due to surface stresses , 

(2) to relieve the surface strains in order to be sure that 

the crystal planes are actually plane prior to bending . 
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The crystals used in the point-focusing monochromator 

were etched and found to be without a single scratch. Further

more , they were examined on an optical flat before and after 

etching and no ap preciable change was observed. The crystals 

are optically flat to within two fringes, the slight curvature 

tending to change the radius of the focal circle slightly0 
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PART V 

EXPERIMEN'I'AL RESULTS 

Having obtained a focused beam by the procedures of 

Part IV, the problem is to find some appropriate sample for 

a scattering experiment.. Since none of the improvement s of 

beam intensity suggested in Part III were made at the date 

of writing this thesis , it was necessary to limit oneself to 

a relatively good scatterer. Two different samples of carbon 

black were picked out, one with average particle radius 54 R 
0 

(carbolac 1) and the other with radius 230 A. The size and 

size distribution of the former was given by the manufacturer 

on the basis of electron microscooe measurements and the latter 

was determined from the measurement of ninety particles photo-

graphed on the electron microscope in the Chemistry Division . 

Carbon blacks, including the above, have been studied 

before(l4 ,lB,lS), so that the present s tudy does not reveal 

anything new regarding these samples. However, the purpose 

of the experiment was to check on the performance of the instru-

ment and, particularly, on the luminosity of the direct beam. 

Since there exists no simple way to measure the direct beam 

intensity, the exposures required for satisfactory diffraction 

patterns from the carbon blacks are a good measure of the per-

formance of the point focusing inst rument . 

The sample of carbon black was held in a ring 5 cm. in 

diameter and 0 .4 cm. in axial thickness, with a 0.001" thick 
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nylon sheet glued to each side (to form a shallow cylindrical 

cavity which was packed full of the carbon). It was placed 

at a distance of 655 mm. from the point focus where the photo

grapbic plate was located. 'I'he irradiated volume was approxi

mately 106 cm3. 

METHOD OF DETEC'l'ION 

As has been previously mentioned, the scattered intensity 

was recorded on x-ray film, the direct beam being blocked out 

by means of a tungsten wire. See Plate 9. 

After the diffraction pattern was obtained, it was necessary 

to measure the film density (and hence, the scattered intensity) 

versus the distance away from the center i.e. the scattering 

angle. This was done by means of a recording microphotometer. 

The light beam of the microphotometer was approximately the 

same elongated shape and size (0.89 mm. by 0.18 mm.) as the 

point focus and was oriented in the same way relative to the 

x-ray film. Th is li ght beam was allowed to scan the diffraction 

pattern along a diameter, the transmitted light being allowed to 

illuminate one junction of a thermopile which was connected to 

the coil of a d 1 Arsonval galvanometer, and the deflection 

of the latter being recorded photographically. 

We bave assumed that the following formula holds true, 

na..ine ly, 

Is = (l/kt) log(x.0 /x) ( 68) 
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(a) Point Focus (Enlarged 5.8 times) 

( b) 

( c) 

3 minute exposure at 20 PKV and 20 MA with beam 
in air. 

PLATE 9 

Diffraction Pattern of Carbon Black (Carbolac 1) 
(EnJa rged 5.8 times) 

3 hours exposure at 35 PKV and 20 \IA with beam ;i,n 
helium atmosphere. Average particle radius 54 X.~ 

Diffraction of Carbon Black ( Enlat"ged 5.8 times~ 
3 hours excosure at 35 PKV and 20 N;A with beam in0 
helium atm'os9here. Average particle radius 230 A . 
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where I 8 is the scattered x-ray intensity. 

k is some constaD t dependent on the speed of the 
x-ray film. 

t is the x-ray exposure time. 

x 0 is the maximum galvanometer deflection from totally 
dark film to clear film. 

x is the galvanometer deflection from totally dark 
film to some exposed portion of the film. 

This formula and its ran ge of validity were verified experi-

mentally. 

In the case of small particles, theoretical curves for 

various types of particle size distributions have been worked 

out( 4 ) and plotted in terms of log (Is/I 0 ). It is easily seen 

that the coefficient of the logarithmic term above appears as 

an additive constant in such a plot and is, therefore, of little 

interest. 

The microphotometer curve is treated in th~ following 

manner. It is pla ced over a sheet of ordinary graph paper and 

the values x are read off for various scattering angles on both 

sides of the maximum. The dark reading s having been taken at 

the beginning and the end of the microphotometer run are con-

nected by a strai ght line and used as a reference line from 

which x is measured. Although the thermopile drifts during the 

run due to increase in temperature, the value of x 0 remains 

almost constant since both the light and dark readings are af-

fected in the same way. 

A commercially built microphotometer with beam size 

0.01 mm. x 0.05 mm. was also used to analyze the diffraction 
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patterns but no appreciable difference was observed in the 

microphotometer runs of the two instruments. Microphotometer 

curves by the latter instrument for the two kinds of carbon 

blacks are shown in Figs. 9 and 10. 

The ratio x 0 /x is calculated and its logarithm is plotted 

versus the square of the scattering angle on log paper. Curves 

representing different exposures for a given sample are plotted 

on the same graph and are then compared with theoretical curves 

worked out by Roess and Shu11(4). The method of comparison 

is explained in the section that follows. 

LO\IV AN GLB SCNL1'I'ERIJ'\G DUE TO SMALL PARTICLES 

The above mentioned investi gators have worked out the 

intensity curves for spherical particles with different types 

of size distributions, rectangular, Maxwellian and Gaussian. 

The Maxwellian type distributions seem to be the only applicable 

ones to our carbon blacks, see Fig. 11. 

The theory upon which the above curves are based can be 

sum.~arized in t he following manner. The intensity scattered 

at a small angle e by particles whose size distribution is 

M(R), R being the radius, is given by 

I( f l = Kie~~~~(R)R3s(R,~ )dR 
0 

where 
f = (2 11"/Ao}e 

{69) 

(70) 

Ie is the Thomson scattering factor which is essentially constant 

for the small an gles we shall consider. pe is the electron densi

ty assumed uniform throughout the particle and S(H,~ ) is the 
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scattering function characteristic of the particle· size R 

and its ge ometrical shapeo M(H)dR represents the total mass 

of particles in the size range R to R+dR. K is a constant 

proportional to the total mass. 

For spherical particles Guinier(l) has shown that 

S(R;f) = exp(-r2 j 2/3) (71) 

where he identifies r with the rad i us of gyration of the particle . 

For spheres 
l 

R = ( 5/3f2r ( 72) 

The Maxwellian distribution function M 
' 

wl1ich we are inter-

ested in, can be expressed as a function of the radius of gy-

ration and the parameters r 0 and n as follows 

M( r) = 2 
(73) rnexn(-r2/r2) M'r(n + 1 ~ o r0 2 -) 

Substituting eqs. (71) and (73) into (69) and integrating , we 

get 

[ 
:i-(n+4)/2 

I(f) = I (O) r~s2/3 +:) (74) 

where I(O) is a complicated expression involving the parameters 

r
0 

and n and is of no interest here. Eq. (74) has been plotted, 

logI ( 1) /I ( 0) versus lo gr~ f 2 , for several values of n. 

Since we are interested in the average particle radius R, 

we can define the average radius of gyration r as that radius 

which divides the mass distribution M(r) in two . This has been 

worked out( 4 ) for several values of n , as follows: 

n 0 1 2 3 4 5 

r/r 0 0 .227 0 . 693 1.183 1.677 2.176 2.674 
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The experimental points are plotted l oglog(x0 /x) versus 

logf 2e By translating the experimental points horizontally 

and vertically until they match one of the theoretical curves, 

the value n is obtained immediately. If the horizontal shift 

of the experimental points relative to the theoretical cufve 

is x units, this being obtained by dividing any reading on 

the abscissa of the latter by the corresponding reading on 

the abscissa of the former, then 

logx + log~2 = l og(r~f 2) 

and in view of eq. (70) the above reduces to 

r 0 = ( Ao/2ir)x~ (75) 

To find the average particle radius, use is made of the 

above table and eqse (72) and (75), thus 

R = (5x/3)i(r/r0 ) (Ao/2 ir) (76) 

where the ratio r/r 0 must be chosen for the particular value 

of n found in matching the curves. The curves dravvn through 

the experimental points are the best matching the oretical curves. 

PAR'I'ICLE SIZE DETERMINATI ONS OF CARBON BLACKS 

The matching process described above has yielded the follow-

ing results for the two kinds of carbon black. See Fi gs. 12 

and 13. 

Carbon Black 
0 

54 A radius 

3 Hrs. in He 
A tmos·ohere 

n = O; x = 40xl04 
0 

R = 45.5 A 

20 Hrs. in Air 

n = l; x = 10xl04 
0 

R = 69.4 A 



Fig. 12 
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Carbon Black (Carbolac 1). Particle 
size - 54 R radius. 

H-H -l+H- I-Hi -+ -+ -l- + 
i--l+r -H+t +1+1 +-1+ + + 
Ht+ +HJ i1 ~ + + + 1-
1-+I+ +H H-H + + -H-



Fig. 13 -
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Carbon Bl.a ck., 

230 R radius. 

Particle size 



Exposure Time 

Carbon Black 
0 

230 A radius 

1 Er. in He 
At::nosphere 
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n=4· x=l4.5xl04 
' 

R = 262 R 

5 Hrs. in Air 

n=3· x=l4xl04 
- ' 0 
R = 197 A 

3 Hrs. in He 
Atmosphere 

n=4 •' x=l?. 4xl04 
- ' 0 
R = 286 A 

Although the discrepancies in size determination for differ-

ent exposures seem to be large at first sight, the actual ex-

perimental points, when shifted vertically to form one curve, 

fall in line quite nicely except for the end points which 

determine to a large extent the particular theoretical curve 

(and hence n) to be used. The end points on the low intensity 

side of the experimental curves are hard to determine with accu-

racy because of the rather large grain size of ordinary x-ray 

film. The grains show up in the form of "grass" on the micro-

photometer curveo At the high intensity end, and hence at 

very small scattering angle s, the discrepency is probably due 

t o either a slight amount of scattering by the tungsten wire 

(beam stop) or possibly incoherent scattering from the crystals, 

both of which may contribute to the scattered intensity at very 

low angles (i.e. ~ = 0 00015 radians). 

As one can see from the graphs, a fairly good exposure 

i.e. one that gives measurable results, can be obtained in 1 

hour of exposure at 35PKV and 20 ma. with Helium atmosphere 

surrounding the beame The direct beam can expose a film in 

about 15 seconds at 20PKV and 20 ma. with air surrounding: the 

beam. With the changes mentioned in Part III, this can be im-

proved considerably. 
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