LAPLACE TRANSFORM IN

COMMUTATIVE BANACH ALGEBRAS

Thesis by

Robert Y, Dean

In Partial Fulfillment of the Hequirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1952



ACKNOWLEDGMENT

The author wishes to express his sincerest thanks to Professor
H, F. Bohnenblust for his most valuable suggestions and criticisms,
for his patience and understanding, and for the generous assistance

he has given during the development of this thesis,



ABSTRACT

After a brief review of the general theory of commutative complex
Banach algebras in Section I, Section IT introduces and discusses some
important facts about the generalized Léplace—Stieltjes integral,
Section IIT consists of an investigation of the regions of ordinary and
absolute convergence of the Laplace-Stieltjes integral, and is followed
by specializations to Dirichlet and power series in Section IV, Section
V contains a consideration of the analyticity of functions defined by
Laplace=Stieltjes integrals, while Section VI concludes the thesis with
some remarks on the existence and distribution of singularities of such

functions,
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Seetion I

INTRODUCTION

During the past decade and a half increasingly more and more
mathematical attention has been concentrated on the theory of those
mathematical systems which have become commonly known as normed linear
rings or Banach algebras. As early as 193L, in a generalization of
Fredholm integral equation theory, Michal and Martin (1] 12id down the
postulates and gave several infinite dimensional examples of what they
called "a special linear vector space S , o . having additional proper-
ties abstracted from those of a space of linear transformations", Their
postulates are identical with those now used for a Banach algebra with
unit element, Later, in 1936, Nagumo [2] studied the properties of
the group of regular elements and the generalized exponential function
in an abstract system which he called a linear metric ring.

The major impetus to the study of this new discipline appears
however to have begun with Gelfand in Russia who in the period from
1939 to 1941 published a series of abstracts on the subject culminating
with his now famous papers [ 3] and [ L] on Normierte Ringe.

Since that time the theory has flourished under the contributions
of a host of authors writing on the algebraic, topological, and function-
theoretic aspects of such systems, The bibliography contained herein
is by no means complete or exhaustive, & fairly comprehensive list of
references may be found in [ 5] and [6] 5

The properties of Banach algebras are such that they lend themselves
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most readily to generalizations of techniques and theories of classical
analysis, Among these generalizations, has been the extension of the
scope of analytic function theory, Here the development of the theory
possesses remarkable similarities to that taken by the classical course,
Nevertheless, there arise new and interesting phenomena which in the
classical case either do not exist or are trivial, One of these
peculiarities occurs in connection with power series, where in general
the region of comvergence is no longer a sphere, and as a consequence
the distribution of singularities of the function which the series
represents appears to be of an extremely complex nature,.

It was the latter problem == that of determining the existence and
distribution of singularities on the boundary of the region of conver-
gence of a power series —— that led to the present study.

In the case of the complex plane it has long been known that many
statements concerning the occurrence and location of singularities on
the circle of convergence of a power series are specializations of
broader results known for Dirichlet series, or more generally, Laplace-
Stieltjes integrals., ©Such statements are embodied in a class of
results usually referred to as gap and density theorems., Motivated by
this knowledge, it seemed appropriate to attack the same question for
comutative Banach algebras in an analogous mammer. Section II of this
work therefore begins with the definition of the generalized Laplace-
Stieltjes integral and concludes with several results of a general
nature concerning such integrals,

Prerequisite to studying the occurrence of singularities on the



boundary of the region of convergence of a Laplace-Stieltjes integral,
however, is the necessity of having an adequate description of the
region itself, Here a marked deviation from the classical situation
arises, The familiar half-plane of convergence is replaced by a set
considerably more complex in nature, In fact, as yet a complete
description of this set is not known., Nevertheless, a partial descrip=
tion can be given, and for several classes of Banach algebras a full
treatment is possible, It is to these matters that we devote Section
IIT,

Section IV consists of specializations of the results of Sections
II and IIT to generalized Dirichlet and Power series,

In Section V we consider functions defined by the Laplace-~Stieltjes
integral and show that they are analytic in a sense to be defined at
that time,

The thesis concludes with Section VI, in which some remarks are
made concerning the occurrence and location of singularities on the
boundary of the region of convergence, A special case is treated and
a suggested plan of attack for further research along this line is
given,

In the interest of more or less completeness, the remaining para-
graphs of this section will consist of the definition, examples, and a
brief résumé of some of the well-known and fundamental results on
Banach algebras to which it will be necessary to refer in the‘main part

of this thesis.
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Although not at all times essential, it will be convenient to
restrict our considerations to a special class of Banach algebras —
those characterized by the fact that they are commutative, complex, and
possess a unit element., It is to this special class that all ensuing

comments apply.

DEFINITION 1,1, A set of elements 13, (always denoted hereafter

by capital letters S, T, ..., X, ¥, Z) is said to be a commutative
complex Banach algebra with unit if

(a) 1B 4is a Banach Space [ 7],

(b) B, is a commutative algebra over the field of complex numbers,
the elements of which will always be denoted by small case letters a, b,
Cy ooey X3 ¥y 2o In short, this means that a multiplication is defined
in 7. which satisfies the properties:

(1) XX =X

(11) X(w) = (xY)2

(1i1)  (aX)Y = a(XY)

(iv) X(aY + bZ) = aXY + bXZ.
(¢) 7 has a unit element I satisfying IX = X,
(@) Wxxl nxinowxn o, uIn =1,

N

For illustrative purposes we include the following set of examples
which have been taken from the literature, and are among those most

frequently encountered by the analyst.
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EXAMPLES

The field of complex numbers with the norm taken as the absolute
value,
The set of all n by n diagonal matrices of complex numbers (aij),

with the norm taken as max \ai.\ .
1<i,j<n J
The set of all n by n matrices of complex numbers (aij) such that

. for j > i. The norm may be

a.. =0 for j<i, and a1 3-1 =ai3

iJ
taken as in example 2,
The ring of complex-valued functions f(x), continuous on a compact

space f , with £l = sup |£(x)| &
Xe
The ring of complex-valued functions f£(x) of bounded variation on

the interval a < x < b, with multiplication defined point-wise and

\'_a,b]f(x)'

The ring of functions analytic over a bounded domain D in the

Hell = swp |8(x)) + V
a<sx=<bh

complex plane and continuous over the closure D of D, with

-]

Nel = sup | £(2)] &
D

o

The ring of absolutely convergent Fourier series f(x) =Z a, g

e =00

with £\l = Z la,l o

The ring generated by any bounded linear operator T defined over
an arbitrary Banach space B,

The ring generated by a one-parameter group or semi=-group of linear
transformations over a Banach space,

The ring of complex=valued functions f(x) defined over the interval

a £ x < b, possessing n continuous derivatives, with
n

E DR " I S GV
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For the following list of definitions and theorems we refer the
reader to [ 5] and [6] where proofs and references to the original

papers are to be found,

DEFINITTION 1.2, An element X € 73, is said to be regular if there

is an element X"Jl called the inverse of X such that XX’Jl = X-1X = T,

A non-regular element is called singular., The resolvent set e(X) is
the set of all complex numbers z for which (2I - X) is regular., The
spectrum o(X) of X is the complement in the complex plane of Q(X),

and is a closed non-vacuous point set,

THEOREM 1.1. The set of regular elements in /3, form an open

sl
(not necessarily connected) set o , and X~ is continuous on O .

DEFINITION 1,3, The set o < ﬁ is called a non=trivial ideal if

(a) X,Yedd, A, Be 7B imply AX +BY e L,
(0) L£B,

An ideal is said to be maximal if it is not a proper subset of

another (non-trivial) ideal,

THEOREM 1.2,

(a) An ideal contains no regular elements,

(b) The closure of an ideal is an ideal.

(¢) A moximal ideal is closed,

(d) Every ideal is contained in a maximal ideal,

(e) An element X is contained in a maximal ideal if and only if it has

no inverses
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DEFINITION 1.L., The quotient algebra, Let ! be an ideal in

ﬁ, and X = o the set of all elements in 73 of the form X = Y
with Ye < , The classes X - of form an algebra denoted by ﬁ/d
according to the definitions

(1) a(X-d) =ax - A,

(i1) X =d) + T =) =X +7=-A

(111) X =T -R) =37 =X

THEOREM 1.3, If <! is a closed ideal in 2 then B/yg 1is

a commubative Banach algebra under the norm [[IX =Rl = in(_'f‘ ix -l .
Ye

THEOREM 1.h. If a commutative complex Banach algebra is a field

then it is isometrically isomorphic to the field of complex numbers.

THEOREM 1.5, If & is a commtative complex Banach algebra with
unit element and if the norm satisfies the condition NXYN =Xl )Tl

for all X, T ¢ A s then ‘B is isomorphic to the complex field,

THEOREM 1.6, Let o be a closed ideal in Z&. . Then ﬁ/og

is the complex number system if and only if < is meximal,

DEFINITION 1,5, Let )’Xl be the set of maximal ideals in 4 3

then for every X ¢ A and 770 ¥Y¥, there is a uniquely determined

complex number z such that
X = m = 2] = 77/( e
The function X(7722) on Y[, is defined by X() = z.

THEOREM 1.7, The function X(77]) has the properties:




(a) (X + X)) =X(7) +X(M)

(o) (XX)(777) = X(772)X(771)

(e) (IN(770) =1

(d) (aX)(770) = aX(71)

(e) 1x(m)| £ nxn

(£) X(77) =0 if and only if X €

(g) 1£ 77, #7??2 there exists an X such that X(777;) # X(mz)
(n) X(WG) = o (X)

(1) If z € o (X) there exists and ¥ such that X(777) =3

(3) If for given X and W , X(M ) # O, then there exists a Y8

such that Y()77) = 1/X(77).

THEOREM 1,8, For a fixed maximal ideal 777 £ ¥¥{ and X ranging
over‘ 13 , the values X(?{ ) define a linear bounded multiplicative
functional F#(X377]) on B . Conversely, if F%(X) # 0 is such a
functional on ﬁ and if 72 is the set of points in 73 vwhere
X(M7) =0, then 775)7(, and F%(X) = X(77 ) for all X,

Henceforth we shall employ the symbol 1B+ to denote either a
maximal ideal or its corresponding multiplicative functional, No con-
fusion will arise since the context will always make it clear which

interpretation is to be used,

DEFINITION 1.6, The spectral radius of X is the least upper

bound of 1z] as 2z varies over the spectrum o (X) of X, It will be

denoted by |e(X)] .
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mormd 1,9, |o(0] = sw (@) = 1m NP .
e e W0 n-> e

DEFINITION 1.7, A generalized nilpotent is an element X € B

such that lim NX") 1/n = Jo(X)] =0, The set of all generalized
n-=> o

nilpotents is called the radical of B .

THEOREM 1,10, The radical of a commutative Banach algebra is the

intersection of all maximal ideals in ﬁ o

THEOREM 1,11, Let Mz e W, €>0 and X, € B (1 =1,2,000,0)

The set of elements

U5 € 5%, Xp5000,X ) = {Msﬁd I (X)) = WX )< €, 4 = 1,2,---,%
is called a neighborhood of I‘-aIv“C;. With such a neighborhood system ¥J{,
becomes a compact Hausdorff space and the functions M#(X) are continuous

for all Mxe ¥ .

THEOREM 1,12, Let 7B be a commutative Bamach algebra and YJ,

the compact Hausdorff space of maximal ideals in B . Let 0§ ()
be the Banach algebra of conmtinuous functions on Y¥{, » Then the mapping
X -» 1+(X) is a homomorphic mapping of A  into § (W ). It will be

an isomorphic mapping if and only if ¥3. has no radical,
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Section II

THE IAPLACE-STIELTJES INTEGRAL

e begin this section with a collection of fundamental definitions
and results which we shall need later for the study of the Laplace-~

Stieltjes integral

1) F(S) = J exp(=tS)da(t).
0

DEFINITION 2,1, A function A(t) of the real variable t defined

on the closed interval [a,b] to the Banach algebra 73 is said to

be of strongly bounded variation in that interval if

sup 2. MAGs) - At il < o,
where all possible partitions of [a,b] are allowed, The supremum will

be called the strong total variation [S, page 39] é

DEFINITION 2,2, Let F(%) and A(t) be functions defined over the

closed interval [a,b] to the Banach algebra ﬁ s Let A bea
subdivision of the interval [a,b] by the points
= < =
a to < tl] < eeo tn b’

and let © = max (ti+1 - ti). If the limit (in the normed topology

of ﬁ,)

n-1
tin ;O p(a,) [ At ) - 4]

where

(i = 0,1,.00,1’1"1)
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exists independently of the manner of subdivision and of the choice

of the numbers Uss then the limit is called the Hiemann-Stieltjes

integral of F(t) with respect to A(%) from a to b and will be denoted

by b
(2) j P(5)dA(t).
a

THIOREM 2,1, If F(t) is strongly comtinuous (i.e,, continuous

in the normed topology of ) and A(t) is of strongly bounded variation,
then the Riemann~Stieltjes integral of F(t) with respect to A(t) from
a to b exists, Further, if F* is an arbitrary bounded linear functional

belonging to the conjugate space ﬁﬁ(-, then

(3) P [ f F(t)dA(t)“ = f e [ F(t)aa(e)] .
) d

a
The proof follows standard patterns, examples of which can be

found in [5, page 51] and [8, theorem 11]

DEFINITION 2.3, If A(t) is of strongly bounded variation in

a<ts b, it is said to be normalized there if
A(2) =0

A(%) = A(t+) + A(%-) (a <t < D)

2

THEOREM 2.2, A function of strongly bounded variation has right
and left hand limits everywhere and is strongly continuous except for
a countable set of discontinuities of the first kind, and hence may be

normalized, See [5, page 203] .
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As in the classical case [9, page 1h] if A(t) is not normalized,
we may do so by defining the function
Bla) =0
(1) sy <AL a0 (a<t <)

B(b) = A(b) = A(a).
Since the replacement of A(t) in (2) by the function B(t) defined
in (L4) leaves the value of the integral unchanged, we shall assume
henceforth that our functions of strongly bounded variation are always

normalized,

DEFINITION 2.h. Let A(t) be a function on [0,») to B, and let

A(t) be of strongly bounded variation over every finite interval [O,b] «

Then since exp(=tS) is strongly continuous the integral
b

(5) F(S;b) = j exp(=t3)dA(t)
0

exists for finite positive values of b, If, for a particular S¢& y=3 s

lim F(S3b) exists in the normed topology of B s we will denote the
b =»> 0
limit by
) R(s) = | em(-t3)an(s),
0
and will call F(S) the Laplace-Stieltjes transform of A(t), Further-

more, the set of S € & for which (1) converges will be denoted by & ,

and will be called the set of convergence of (1)e The open interior

of the set (o will be denoted by the symbol ('70 , and will be called

the region of convergence of (1).
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In the classical case (§ C —07’0. This statement is in general
no longer valid for Banach algebras, Example 3.2 discussed below can
easily be specialized to give an example where Gc is void, and &
is not void,.

In preparation for a discussion of the region Oc in Section II
we now include some results of a general nature concerning the integral
(1)

For a given integral it will soon become apparent that it is the
spectral properties of the element S rather than its norm which plays
the dominant role in determining whether or not it belongs to the
region of convergence., For this reason it will frequently be necessary

to make use of

THEOREM 2.3 Let ﬁ/ be a Banach algebra with unit element and

let S be an arbitrary element belonging to A s then the expression

(6) RI(S) = - lim 1n |l exp(~tS)II
t> o b

exists and is equal to

(7) min RI(z) = min RIM=(S) .
ze 6(S) M6 00,

Proof: Let S be a fixed element belonging to /& and consider

the real-valued function of t defined by
(8) h(t) = 1n [lexp(=t3)|| (0t < =),

Since Hexp [-—(t1 +t2)S—_\" & uem(-t,ls)l\ it exp(-—tzs)" , we have
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(9) h(t1+ t2) < h(t,,) + h(tz).

Equation (9) together with the fact that for arbitrary t Illexp(-tS)Il > 0

shows that h(t) is a finite-subadditive function of t [5, pages 135,

136] over any interval 0 < t< = and hence
(10) lim £(£)/6 = lim MR g,
P> o P> @ t

Letting t -+ « through integral values and comparing with theorem 1.9

we have
1 2 lop(aol | gy L MewCol ™ 50 ] ey |usfemp-sil}
n- o n n- « n Mo
= 1n { max | e-}”fx'(s)l} = 1n{ max e“Ruﬁ(s)}
B XN Mike WL

= 1n { e}?ﬁ?ﬂ R]M%(S)}

- mn R -X—(S) ’
Mee X

from which the conclusion of the theorem is evident,
The importance of theorem 2.3 lies in the fact that for large values
of 4, |lexp(~tS)l| is governed by R1(S). In this respect we have the

following

COROLLARY: Let R1(S) = a, then for arbitrary b > a there exists

a to such that

(11) Nexp(-t3)) < &% forallt > b
THEOREM 2.4, If the integral
(1) S exp(~S)dA(t)

0
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converges for S = So (L.€0, Soa é ) then it converges for any S such

that
(12) RIM%(S) > Rmx—(so) for all Wt e¥¥, .
Proof':
q q q
Jemtwaw = | em[-ussps,) aw = [ eol-wss ] oo,
P P p
where

t
B(t) = j exp(-uso)dA(u).
0

Note that B(0) = 0, B(e) exists and since B(t) is strongly continuous
there exists a constant m > O such that J|B(t)f < m for allt. 4n

integration by parts yields
a
J exp(~tS)dA(t) = B(q)exp| -q(S-So)] - B(p)exp[ ~p(5-5,)]
g q
+ (55 ) 5 exp(=t5)B(t)dt.
Y
By hypothesis RH{*(S-SO) > 0 for 21l Mxe¥¥ , hence by the Corollary

to Theorem 2,3 there exists an r > 0 and a to such that

" exp[-t(S-So)]n £ oo {(t > to).
Then
aq a
n 5 exp(=t3)da(t) || € 2me™P 4+ || S-So‘ll n j e That (to< p<a),
b p

and thus given arbitrary € > 0, a simple computation shows that if
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Q> p > max to,%ln———s'—f———-, 1In S
2m I S-S Lim

H=s

then

Qq
j exp(=tS)dA(t)|| < %+-§ = € and (1) converges.
P

COROLLARY: If S & O; and 8, is any element such that
(13) RDJI*(S,‘) > RJMK-(SO) for every M« €YY/, then Sy € @é.

_lig_)gi_‘: This follows from the fact that the spectrum of an element
is a continuous function of the norm., (See Theorem 1.7(e).)
SOE, O; implies there exists an r > O such fhat an open sphere of
radius r about So also belongs to O:::’ In particular the element

S,=8,-2/31 ¢, and

2
(14) R]LP&(SQ) = R]JVB:-(SO) - 2r/3 for every Mk e¥¥(.
Now let S be any element contained in an open sphere of radius r/3
about S1. Then for all M em,

RLM(S) > RIM(Sy) = r/3 » RIM(S ) = r/3 = R1Mx(S,) + r/3,
and therefore

(15) RUE(S) > RLMx(S,) for all ux eW, .

(15) implies an entire sphere about S, belongs to the region and
1 s

hence S5, € GJ.
1 c

THEOREM 2.5. Let O; be the region of convergence of the integral

(1) 5 exp(=tS)dA ().
0
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Then if So € @; and R is an arbitrary element belonging to the radical

of B 3 (SO+R)5 O;.

Proof:s This follows immediately from the corollary to theorem 2,k

and the fact that for all Mx ¥,

I.a[*(so + R) = M*(So).

In close analogy to a standard result of classical Laplace trans-—

form theory [10] we have

THEOREM 2.6, If the integral

<0

1) j exp(-tS)dA(t)
0

converges for S = So’ then it converges uniformly with respect to z for
all 5 of the form
S ::SO + 2zI, where ]arg(z)l £ 0 < Tl‘/2.

Proof: Define

o

B(t) = j exp(-uSo)dA(u).
t

By hypothesis, for any € > O there exists a to = to( € ) such that

hB(e)ll< €  fort > b
Now

£
2 2 2

j exp [ -5, +21)] aa(t) = j &% exp(~tS,)dA(t) = _5 " %an(1),

t

2 % 1

and an integration by parts gives
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) 22 b
j exp[—t(So + zI)J dA(t) = -e'tzB(t) ‘ -3z S e"tzB(t)dt.
3 %, t,
Consequently
2 ~6,R1(z) ~t,R1(2)
‘ St exp[-‘b(s.p—k D) au(s))f € e ° Bl +e | lIBCe)

1

b,
+ lzlj &) (o)l at.
L

2]

=t ,.R1(z) =t,R1(2)
<ee °© + B | +elz\5e"tm(z)dt

b

-t R1(z) =t,Rl(z) -t,R1(z)
= €e 2 +e | ¢ 12l o 1 }.
R1(z)
But for larg(z)l s 6 < /2, R1(z) > 0, and hence e = 1,
-tZRl(Z) 121 1
e £ 1, and < s from which we get
R1(z) cos(0)

2
\\ 3 exp [ =t(S_+ 21)] aa(t)
b

)o The conclusion of the

&
2
u ~t(S_+ 1) dA(t)” < €(2 4
St1 eXp[ 0" ? ] * cos(9)

theorem follows immediately from this inequality,
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Section IIT

REGIONS OF CONVERGENCE OF THE IAPLACE-STIELTJES INTEGRAL

It is well known in the classical case where 15, is the complex
plane, that if the function A(t) is prescribed in advance for the
integral (1), then it is possible to give specific criteria [ 9] with
which to decide whether or not a given S lies in the region of con=-
vergence CZ. Furthermore, the criteria provide a description of C?c
(if it exists) as an open half-plane., Since it will be necessary to

refer to these criteria we include

THEOREM 3.1. For the integral

(16) f e U84a(t)
0

there exists two real numbers ¢ and a such that the integral is con-
vergent for R1l(s) > ¢, but not for any s with R1(s) < ¢, and it is

absolutely convergent for R1(s) > a, but not for any s with R1l(s) < a.

We have
= £ C <L a S + ooy
and
- o=1tn Mla(®) -al)l
P> o t
. 1 th-»Vm
(18) gy Sl

t > o t
where a(e) = lim a(t) or O according as the limit exists or not, and
'b—)eo

V(o) is defined similarly for the function v(t) which denotes the total

variation of a(t) in the interval [0,t] .
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Attempts to find analogous criteria for an arbitrary Banach
algebra have not as yet been completely successful., Several special
cases can be treated in full however, and for certain classes of
Banach algebras some interesting results concerning the relation be-
tween the general shape of the region O; and functions over the
Space m of maximal ideals can be given,

As a preliminary to discussing the region of convergence of (1)

we make the following definition,

DEFINITION 3.1. Let F' # O be any bounded linear functional belong-

ing to ‘ﬁ,%, the conjugate space of y - , and let ¢ be any real number,

The set
(19) A(F se) = {scﬁ] RIF (S) > c}

will be called the half-space determined by F* and c. In particular
if the functional is multiplicative, i,e., one of those functionals
associated with some maximal ideal M*i nz s then W(M*;c) will be

called a distinguished half-space,

Because of the continuity and linearity of F*, ﬂ(F*;c) is clearly
an open convex set in 2 . In fact it is easily verified that the

set
(20) P (Fse) = {Scﬁ\ PIF" (S) =c}

defines a "hyperplane" which divides ﬁ_ into two disjoint convex
SetSo

Judging from the situation in the complex plane it might be
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supposed at this point that the region of convergence of (1) would
consist of a distinguished half-space, That this is not the case is

adequately demonstrated by a simple example,

EXAMPLE 3,1. Let ‘@, be the set of all complex diagonal matrices
of order two. One finds that there are but two maximal ideals in B .
Letting

z O u(t) 0
S = P A(t) = )
0 w 0 v(t)

where u(t) and v(t) are complex-valued functions of bounded variationm,

I _ 3% -
en 1) (S) = 3z, M2(S) w, and <f it
® e “du(t) 0
(21) 5 anp(~6A)dA(E) = 0 .

0

It is spparent that if (21) is to converge it is necessary and

sufficient that

d
|

converge in the ordinary sense, This implies that

exp(=~t3)da(t)

i

j e-thu(t) and
0

(22)

5

exp(=tS)dA(t)| = j e_mdv(t)
0

M

Py Sk

e &

R1(z) > c\-_u(t)] and

(23)
Ri(w) 7 c[v(t)] "

Stating conditions (23) in the style of definition 3.1 we have

(2l) R]lvi-).;(S) b c[M?_(A(t))] (1 =1,2)



-20m

This shows that the region of convergence consists of the intersection
of two distinguished half-spaces.

Motivated by this example we make the following definition,

DEFINITION 3.2, To every bounded, linear, multiplicative functional

W'e )’JZ) let there correspond a real number c¢(M'). The set

() Q= I\ M hen)] = {seﬁ | ruf(s) > e,
C(M) M*Cm - m}
all M e

will be called a cylindrical quadrant, Furthermore, if the numbers

¢(M') are all equal we shall say the cylindrical quadrant is diagonal,

Remark: It is to be noted that the numbers c(M*) in the above
definition define a function over the space WL of maximal ideals,
and consequently the decision as to whether a given So belongs to the
cylindrical quadrant or not depends upon the ordering of the two
functions R].M*(So) and c(M*). This does not mean however, that at all
times that the determining function c(M*) for a given quadrant is
unique, Examples of Banach algebras can be given for which the function
c(M*) can be altered by decreasing its value at one point to form a new
function d(") # c(U'), and yet Qc(bﬁ) - Qd(M%)' This follows
from the fact that for a given S the function RJM*(S) is contimuous

—

Several important properties of cylindrical quadrants are given
by

THEOREM 3.2, Let Q be a cylindrical quadrant contained in ﬁ, 5



e

then
(1) Q_ is a convex set,
(ii) If S, & Q_ and S is any element belonging to /% such
3 o %
that for every I e ¥W{ RLf(S) > RIM (S,), then S € Q .
(iii) 1Irf 5, ¢€ Q and R is an arbitrary element belonging to the

radical of 7 , then S, +R € Q.

Proof, (i) is obvious since Q is the intersection of convex
distinguished half-spaces, (ii), Let Q = {isn«f"" (8) > c(), all M*cm},
So € Q s and S be an element satisfying (ii) of the theorem., Then for
all Me WL R(S) > RU(S.) > (i), and hence S¢ Q. (iii)
follows from the fact that for all M'e Y and & belonging to the

radical Rm*(so +R) = R (s o) c().

Example 3.1 is somewhat misleading in that it may have given the

impression that (1) will converge if for each W e YXZ the integral

(26) W [ S exp(-tS)dA(t)] - j e"tM*(s)dI«z[*[_A(t)]
0 0

converges in the ordinary sense., At the risk of belaboring a point

the following example is cited to illustrate that this is not the case,

EXAMPLE 3.2, Let 722, be the set of two by two complex matrices

% W
S= ®
0 =3z

Here there is but one maximal ideal and M%(S) =z, Letting

of the form



2l

u(t) v(t)
A(t) =
0 u(t)
we have ® P 0
< 5 e"t’zdu(t) j e-tzdv(t) +w\j (-—t)e‘tzd.u(t)
(27 S exp(-tS)dA(t) = 0 0 0
0 Q0
0 5 e-tzdu('b)
0
Here

w [ je@(-tS)dA(t)] = Se’tzdu(t) s
0 0

and hemce for convergence it is necessary that
R1(z) = R]M*(S) > c[u(t)] =c M*(A(t))] .
A glance at (27) shows however that it is also necessary to have
(28) R1(z) = R (s) > ¢ [v(¢)] ,
a condition that is apparently not detectable by the use of M*. The

region of convergence can now be described as
(29) @:: = {Stﬁ, ] R]M*(S) > max [c(u(t)), C(v(t))]

which is plainly a distinguished half=space,
By choosing the functions u(t) and v(t) in (27) properly it is

easily seen that it is possible for

i [ exp(-tS)dA(t)]
)

to converge for all S € TA and yet have (27) convergent for no Se¢ 8 ,

Despite the fact that the second condition (28) of the last example
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was not predicted by use of the multiplicative functional, it is
significant that O(: is nevertheless a cylindrical quadrant, There
is considerable evidence to support the view that this is the general
situation. Although it appears impossible to give a specific formula
that will define the region q} for an arbitrary Banach algebra,

it is believed that it is always a cylindrical quadrant, and as such
is defined by an upper sani-continuous function over the space of
maximal ideals,

We state the above opinion in the form of a

CONJECTURE, Denote by &  the set of S € 1R, for which the
integral (1) converges, and by ec the interior of ?; o Then ﬁc
is a cylindrical quadrant in the sense of definition 3.2.

The following paragraphs will be devoted to the discussion of a
special case of the integral (1) for which it is possible to givé a
precise description of the region @; o This is followed by examples
of several classes of Banach algebras for which the conjecture can be
verified, In any case however, it follows from the corollary to theorem
2.4 and theorem 2,5, that q possesses properties (ii) and (iii)
given in theorem 3.2 for a cylindrical quadrant.

Before proceeding to the special cases we state

THEOREM 3.3 If for any particular Banach algebra the region
of convergence @; is a cylindrical quadrant, then it can be described

as

(30) QC(M%) = {s B | ruf(s) > e() =SingcR1M*(S), all M’"”'e)’ld .
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Proofs Let

g = Qd(M*) - {s eB | ru(s) > a), a1 M”"em}
and define

G % N s - ’,’n‘
QO(MW) = {S Cﬁl R1M (S) > C(M ) = SlélfGRm (S), all M &m}o
c

Wle show that QC(M%> = Qd(M*)'
(1) Let S ¢ QO(M%), then

R].IVI*(SO) > c(M*) > d(M%), hence So £ @; e Qd(m*) and c(M*)< Qd(M*)'
(i) TLet 5 ¢ q = Qd(m%)‘ Since Oc is open there exists a

® > O such that 5,+5 ¢ 50 for all S for which NS <9 , In

particular, if lzl< 5 s then So + 2zl & @;. Choose z such that

-$ < Rl(z) < 0, then for all ¥ ¢ WL

(31) Rm*(so) > RJ.m*(s0 + 2T) =Rm’""(so) +Rl(z) > a(™)., But

S + zI &O} and hence
o c

(32) Rmf"“(so +2I) ¥ inf RI(S) = ().

The inequalities (31) and (32) show that for every M € Y¥(U

2 3 . ) s
RIM (S,) > c(if), herce S € Qc(mw) and Qd(Mec) - QG(M(-),
We now discuss three special cases when the region of convergence
@; can be identified as a cylindrical quadrant,

Case 1: For an arbitrary commutative Banach algebra with unit

element if the function A(t) is a multiple of the identity I,

(33) A(t) = a(t)I,
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where a(t) is a complex—valued function of bounded variation, then

the integral (1) reduces to the form

@0

(3L) ~S exp(~tS)da(t).«
0

Under these conditions the region of comvergence of (3L) is a
diagonal cylindrical quadrant, and is described in

THEOREM 3.4e For the integral

(31) | ent-s)aa(e
0

there exists a real number = « £ ¢ € o given by the expression

(a7 o=1in lola®) - (=)l
ts o t

where a(e) = lim a(t) or O according as the limit exists or not, such
'b—)co
that (3L) is convergent for R1(S) > ¢, and divergent for R1(S) < c.

This describes C3; as the diagonal cylindrical quadrant

@c ” [\ 4 (1 5e) ={5e15 | RIM(S) > e, all M*aM} .
W

Proof: Bearing in mind the convention established for the meaning

of the term a(e), let

(35) i?m lnla(t) = a(m)l _—
t o> %

Bquation (35) implies that for arbitrary S > 0, there exists a tO( S)
such that

(c+3)%

(36) la(t) - a(m)l < e for t > to.

Secondly, if R1(S) =d > b > ¢, then by the corollary to theorem 2,3
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there exists a ’c.1 such that

bt

(37) fexp(=t3)ll < & for t > by,

Now
q Q
j exp(-tS)da(t) = jex;a(-ts)d [a(t) = a(e)]
b Y

hence on integrating by parts and employing the bounds (36) and (37),

we have for arbitrary € > 0

< € , provided

\ 5‘3 exp(=tS)da(t)

p
] & 1 € (c+ —b)]
by By oe— g peemimessy L f S s=ZA{ L
q>p>max{o 1 (¢ +5 = b) (H) (c+5-b)n{ nsil 4

This shows the convergence of (3li) for R1(S) > c.
On the other hand, assume that the integral (3L) comverges for some
S, such that Rl(SO) =h < ¢, By theorem 1,7(i) there exists at least
one I«i £ W such that
R (S,) =h < c.
By theorem 2,71 the strong convergence of (34) implies weak convergence,

hence for every bounded linear functional F*E ‘&,* the integral

oo

(38) jﬁ[mww]ww

0 »
is convergent., In particular for Mg

j Mi[exp(-—’oso)] da(t) = j e"tM-); (So) da(t)
0 0

converges, which by theorem 3,1 is impossible since Rmi(so) =h < ¢,
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This completes the proof of the theorem,

Note that in theorem 3.L, as in the classical case no information
is obtained about the convergence of the integral for those S5 for which
R1(3) = c.

In case 1 it was a specialization of the form of the integral for
which the conjecture was verified. We now consider two cases in which
it is the Banach algebra itself which is specialized.

Case 2: If the Banach algebra is finite dimensional it is possible
to verify the conjecture. The proof of this fact depends upon the

following lemma,

IEMMA 3.1, If B, is finite dimensional then there exist Xj
satisfying the conditions
(1) X)) = 2

(39) (1) XX, =0,

i

Proof: There are only a finite number of maximal ideals Mi, and

since they are linearly independent there exist Uj such that

kY
(40) (V) = Sij .

Clearly the elements Uin (i # 3) belong to the radical because
M”"’(Uiuj) =0 (i#3) for all ¥', But U;0; (4 #3) in the radical
implies there exists an integer nij such that

D. .
(Uin) W=0  (i#3).

Let n, = ?ag(nij) (L # 3), then
3



T

(1) (U0) ©=0 (143
Setting
o
(42) XJ. = Uj
we have
n " n n
(1) M’;(Xj) =M’“i°(uj°) = [M;(Uj)] ° = Sij) S 6ij,

n0 nO nO
(1) %%, =U,° 0.° = (u,0,) ° = 0,

1 A |
as was to be shown,.

THEOREM 3.5 Let 73 be finite dimensional. Then for the integral

(1) the region O; is the cylindrical quadrant
(L3) %y = 48eB | RUF(S) > (') = inf RUL(S), all M*em} .
Qc(M ) ‘ e Gc ’

. ) - . -
Proof: Let So q)c(m )2 then there exists a finite number of

elements 51, SpyesesS, such that

2
(1) s;e O A 3K
(LL) s % 3
(11) RIM(S.) > min RUM(S,) all Me W, .
° T<igsn +
Since there are but a finite number of maximal ideal Mk’ (K = 138 umesl)

the Si may be relabelled in such a manner that we may write
%/ o 3*
(L[.S) R].M:k(bo) > Rl:Mk(Sk)’ k= 1 ,2,0 o0 ,p-

Now by lemma 3,71 determine Xj (3 =1,2,¢04,p) such that

(L6a) M;“;(xj) 5k 5

Next choose an a such that for all i,J = 1,2,...,P
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(L7) R].Mi(Sj) +a < 0,
and construct the elements

(48) Zy =X (8, +al) - al T BB enbe

A simple computation and the use of (L47) shows
then by the corollary to theorem 2,L Zk€ dc, k=1,250005D

Finally define

P
0 z=2 |5, +an] - ol

L=

By property (L6b) for the Xk's an eagy computation yields
b

Pl o
s ) et =3, § em(-tz)any)
a k=1 a
and consequently
b P b
(52) \ Sexp(—tZ)dA(t) < Z \ Se:@(-tzk)d!&(t) o
a k=l a

]
But the Z,_ s € 60 , and hence by choosing a and b sufficiently

k
large the left side of (52) can be made less than arbitrary € > O,
This at least implies that Z € & . Since the Zk's € Oc/ , a standard
argument based on the fact that O; is open allows one to conclude
7¢ O,

c

From (50) we see that

p =
(53) Rm"i*(z) =Rl Z {Mi(Xk) [ M(Sk) + al} -a,

k=1
and using (L6a) and (47) it follows that

(5k) mﬁ@); M@&ﬁ, 1 =1,2,000,D



But (5l4) together with (L5) imply

(55) RJJ»{Z:‘:(SO) > R (2) 1 =1,2,000,p
and the corollary to theorem 2.l again implies that Soé O; as was 1o
be shown,

On the other hand, let So € q. Then there exists an r > 0 such

that 8 - »T ¢ O, Henoe
(0] (¢]
RUE(S) > R (S rI) > o),

Case 3: To discuss the second class of specialized Banach algebras

for which it is possible to verify the conjecture we make the following

DEFINITION 3.3. Two elements X, ¥ € B will be said to be equi-

valent at I’ (written X~¥ at 1Y) if 1¥(%) =1*(Y) for a1 1" in a

SE

neighborhood of }«c‘,. (See theorem 1,11 in this respect.)

We assume now that the algebra B satisfies the following two
properties,
Property 1: If 5, 515 Sps eeey S ¢ 8, and if for each e m there

exists an i such that S ~ Si at M%, then

n
(56)  NsnE ) s, 0 .

i=l
o n 3 a3t
Property 2: If So ¢ B and if for some Moé)’ll Rmo(So) > 0, then
there exists an 81 & fl such that
(1) RO(Sy) > 0 for all KeN)],
(57) ”
(ii) S,' ~ So at Mo o

It is easily verified that those Banach algebras given in examples



4, 5, 6, and 10 of Section I satisfy the above two properties.
We proceed to verify that the conjecture is true for algebras

sabisfying properties 1 and 2,

LEMMA 3.2, If for every M e¥,

RIC(S) > min  RL(S,) 1 =1,2,000,n
T£isn

then there exist elements ‘I‘1 s T2, cooy Tm with the properties
(1) for each k =1,2,,..,m, there exists an i = 1,2,..,.,0 such
that for every W e W
3* 3%
R (1) > R1(S,),
(ii) for each If € ¥ s there exists k such that

S~ T at M.

k

Proof: Choose an M:; fJYL s then there exists an i such that
. 3%
R]‘Mo(") > RlMo(Si) or
':(‘ Q
RlMO(S Ll Qi) > Qe A
By property 2, there exists an element U ¢ 3. such that for all M%&
RU(U) > 0 and U~ (S - S,) at W, Set T =U +S;, then

]
3 * st .
TM; ~ S at M and for all M e¥¥(, , Rl (TM-.;-) > RLO(8).

By this construction a collection {TM-:'r} is obtained such that

(1) given M*, there exists an i for which
RIM (TM*) > R1M (si) all ¥,
(11) given I, T~ S at o,

Since ﬁL is compact, the collection can be reduced to a finite

collection which satisfies the conditions of the lemms,

LEMMA 3.3, If for all M e¥f] RW{(S) > min le*(si) and
1=isn



SiithhenSE (3/,
c e

Proof: Determine the finite collection T,‘, T‘?,...,Tm by lemma 3.2
Then since for each k = 1,2,,.0,m and all M*em 5 RJM*(TK) > R].M%(Si)
for some i, it follows from theorem 2,L that the T, & O since the

5, ¢ O; . Furthermore if § ~ T,_at u° then

q a 5
§ - ~ eociram  w i
p p

By property 1

q m
“ \X exp(~tS)aA ()| < ZE:
o) k=1

and since Tk € O;, 8 K O;.

q
| em(=smance)
p

.

THEOREM 3.6, For each If & YW let

c(i*) = inf RLM(S),
se @

and let So be such that
3% 3¢
R (S,) > (i),

then 5 € O}.
0 c

Proof': We first note that c(M*) is an upper semi-continuous
function over m since it is the infimum of continuous functions.
Consequently, at each point M*tm there exists an SM% E Oc: such that
RIM*(SO) > R]M%(SM%). But m is compact and hence there exist
S15 Spseses S, € O such that for all i €]

Rm*(so) >  min m&*(si),

1€isn
and an application of lemma 3.3 shows that So € o)c'
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THEOREM 3.7, Let c(if') = inf BRI (S), then S e O: implies

R (S) > e(if).

Proof: S € dc implies there exists an r > 0 such that if \zl < r,

then 8 + 21 ¢ O and RIM (S + 2I) = RIM(S) + R1(z) » c(i'), hence

R (s) > (),

THEOREM 3.8, If a Banach algebra satisfies properties 1 and 2

then dc is a cylindrical gquadrant,

Proof: From theorems 3,6 and 3,7 it follows that the statement
RIM(S) > c(M') all ¥ e ¥ is equivalent to the statement S & O;
and thus O; is the cylindrical quadrant

. 3¢ . 3 3*
Qc(M") = {Stﬁ \ RIM™(S) > ¢(M) = slénf@ RIM"(S), all M zm:}.

The discussion in the previous paragraphs has concerned itself with
the question of ordinary convergence of the integral (1) and a partial
description of the region of convergence q.

The question now arises, as to what we shall mean by absolute con-
vergence, It would be desirable of course to formulate a definition
that would reduce to the already exisbing notion of absolute convergence
when '5_ is chosen as the complex field, It is immediately apparent
that this is possible in several ways., One might say that the integral
(1) converges absolutely for a given S if any one of the following

three integrals converges:

(58) j"exp(-tS)dA(t)“ ;
0
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(59)

Wexp(=ts)t  Haa(e)l]

(60) exp(=ts) Naa(e)ll .

ol—s o~

In the light of theorem 1.5 it is a priori evident that in general
the regions of convergence of (58) and (59) will not coincide, and as a
consequence there are several notions of absolute convergence,

Before discussing integrals (58), (59), and (60) we introduce some

notation, Lebt

]

{S\ integral (1) converges}

it

the interior of P P
{ S‘ integral (58) comrerges}

the interior of (L ,

]

]

mg mQ % oQ L)
i

{ S i integral (59) converges}

the interior of (A,

G

sa
U= {S \ integral (60) converges }

i

@; = the interior of 7f/ o

From the properties of the norm it is obvious that G DA D CZS
ol hemme O 3@ ST,
c a sa
As in the case of integral (1) no definite criteria have been
established with which one may describe the region (73. We state

without proof however

THEOREM 3,9: If So € G; and R is an arbitrary element belonging

to the radical of 1 , then (8, +R) ¢ @;.
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Ag a first step toward establishing criteria for the description
of the region @; g, e quote [S, jol=8 20)4] without proof the following

theorem which is analogous to theorem 3.7,

THEOREM 3,10, For the integral

(61) o b2an(t)
3

there exist two real numbers c¢ and a such that the integral is convergent
for R1(z) > ¢, but not for any z with R1(z) < c, and it is absolutely

convergent for R1(z) > a, but not for any z with Rl(z) < a. We have

(62) -—e L c < as @

and

(63) ¢ = 1im MHMQ-Aum
(6)  a=1lin 21V -TQ)

where A(w) = 1lim A(t) or O according as the limit exists or not and
'[',-—> o

V() is similarly defined for the function V(+) which denotes the
strong total variation of A(t).

We can now prove

THEOREM 3.11. For the integral

[~

(59) 'jg Nexo(=tS)Il Haace)l
0

there exists a real number = » < a s o given by the expression

(6)4) a = l1lim in Iv(t) - V(‘”)I s
t> o t

where V(+t) denotes the strong variation of A(t) in the interval [O,t] §
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and V(») = lim V(t) or O according as the limit exists or not, such
Pt o

that (59) is convergent for R1(S) > a, and is divergent for RL(S) < a.

This establishes the region O; 5 35 the diagonal cylindrical quadrant

5 [\ M sa) = {Seﬁ‘ RIM(S) > a, all M*em}.

Proof: <This is an immediate consequence of theorem 3,710 and the

corollary to theorem 2.3 concerning the relationship between R1(S) and
the rate of growth of Jlexp(=t3)|| .

In the particular case where ﬁ is the complex field @; = O;a‘
That this is not true in general is demonstrated by the following
example which shows that for a given A(t) the integral (59) may diverge
for a certain S and yet the integral (58) converges in an entire
neighborhood of S,

EXAMPLE ¢ Lét A be the Banach algebra of complex-valued

continuous functions F(x), 0 < x= 1, with the usual norm

(65) Ne)ll = sup  |F(x)] .

O<x<l

Integral (1) then assumes the form

(66) f g a(x,1)
0
Let
(67) A(x,t) = = 2a(x)e” t/2 , Wwhere
1 0<x <1/
(68) a(x) = 2-x  1/hsx < 1/2
0 1/2sx < 1 o

Then



(69) th(x,t) = a(x)e t/2 dt.
Choose
“1/4 0 <x < 1/2
(70) S(x) = 5/ - 3x 1/2¢x < 3/h
s 4 3/Lbtx < 1 .
Computation shows
() l\e-tso(x) th(x,t)“ = e b/ dt,
(72)  NaaGnll =2 at, ana
(73) )| 6=56(=) ) IEWYESRI| = o%2 at,

From (71) and (73) it follows that integral (58) converges while
integral (59) diverges for So(x). Now define a neighborhood of So(x)
by

1
W A = {s@eB | aw 300 - 5, < L.
For any S(x) € n(So(x))

15 M@ gae,u)ll « & ¥ q,
and hence integral (58) converges.

It may be pointed out however, that it is not possible for (58)
to converge and (59) to diverge for every S(x) ¢ & , for the two
integrals must agree at least for all S(x) which are a multiple of the
identity I.

Finally we come to the case of imbegral (60) for which we have

THEOREM 3,12, For the integral

(60) 5 exp(~t3) llaa(t)l
0
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there exists a real number - « £ ¢ € o given by the expression

P

(6L) ¢ = lin

‘b—*cz

In | V(1) = V()]
-b 3

where V(t) denotes the strong variation of A(t) in the interval [O,t__\ 3

and V(w) = 1im V(t) or O according as the limit exists or not, such
t > o

that (60) is convergent for R1(S) > ¢, and is divergent for R1(S) < c,

Proof: This follows immediately from theorem 3.4 since NdA(%)ll

is merely a miltiple of the identity, and shows that = G; L =

[\ 74(1,’{*;0).

St

M e



-

Section IV

DIRICHLET AND POWER SERIES

As in the case of the complex plane, a special case of the Laplace-

Stieltjes integral is the generalized Dirichlet series

L]

(76)  £(s) = ), A_ emp(~t9)
n=]
O$ 4y 2 & < t e o o lim t = o0e
1 2 3 N> w B
For if A(t) is defined by the equations
Aﬂ)=A1+A2+“.+An Ua< t <’%4)
(77) A(0) =0
A(e) = ALE) +A(s) (6 > 0)
2
we have
/
(78) j exp(-tS)ak(t) = ) A exp(=t,3)
0 n=]

whenever the integral or the series converges,
In particular if tn =n, and we set

exp(-n3) = [emp(-s)] * = 2"

then (78) reduces to

==}

(79) 5 exp(=tS)da(t) = Z A nzn.
0 n=]

It must be pointed out however, that in general a power series
cannot be represented as a Laplace-Stieltjes integral, This follows

from the fact that the equation exp(=S) = Z has a solution for a given
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Z if and only if it belongs to that component of the regular elements

of 73 which contains the identity I [5, page b,Sﬂ o Lorch [’11,12]
has shown that in a commutative Banach algebra the set of regular elements
either has one or infinitely many components, In fact the number of
components may well be non-denumerable,

The failure of power series to become completely a special case of
the Laplace-Stieltjes integral does not alter the previous theorems,
however, As is to be expected it is no longer R1(S), but the spectral
radius

1/n .

80)  le@)\ = 1im W27 = inc |W(2))
n-> o M YT,

that now plays the essential role in the convergence theory., 9Since only -

a slight revision of techniques is required, we state without proofs

the following theorems,

THEOREM L.1. If the series Z AnZn converges for Z =7 , then
0

it converges for any Z such that  |e(Z)| < {g-(Zo)\ "

THEOREM L.2. Let dc denote the interior of the set of elements

C for which the series Z AnZn converges, Then if Zo £ Gc and R
0

is an arbitrary element belonging to the radical of B , (ZO+ R)e CZ.

THEOREM L.3. For the series Z \\An\\ Nz™\ , there exists a real
n=0
muber 0 € a € + «» given by the expression

a=1/ TN i 1/n
nro00 Il
such that the series converges for all Z for which |o(Z)| < a, and

diverges for all Z for which le(Z)| > a,
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Finally, as a special case of a theorem which may be found in

[5, page 88] we have

THEOREM l.lLi. For the power series

©o

o) ), bz

n=0

there exists a real number a given by the expression
_ 1
T sm—— 3

Lim fA_H aj

n-> e

a

such that (81) converges absolutely for WZWI < a, On every spherical
surface WUZIl =1 > a there are points where the series diverges,
Moreover the series is uniformly convergent for NZll < (1- €)a, €>0,
and fails to converge uniformly on any spherical surface IZll =r < a,
The form of the conjecture stated in Section III undergoes obvious
appropriate changes and can be verified for the same classes of Banach

algebras that were treated previously.
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Section V

THE LAPLACE-STIELTJES INTEGRAL AS AN ANALYTIC FUNCTION

The problem of extending analytic function theory has been
considered in one form or another by many authors.* We refer the
reader to [5, chapters 3,L, chapter L, paragraphs 5.15-5.17, and
chapter 22, paragraph 22,9] where numerous references are to be
found.,

Particularly applicable to the case of a commutative Banach
algebra with unit element, where one desires to study functions on
the algebra to itself, is the following definition of differenti-

ability and analyticity given by Lorch [11] .

DEFINITION 5.1, Let ’732, be a commutative complex Banach algebra

with a unit element, A single-valued function F(Z) whose domain aO/
1
and range ﬁ are in ﬁ is said to have a derivative F (Zo) at
= Zo if for each €> 0 a % > 0 can be found such that for all

Hin B with JJH)l<?

1]
(82) IF@z, + 1) - F(z)) =7 ()l < e Nml.
If F(Z) has a derivative everywhere in L , then it is said to be

Lorch-analytic in A~ .

The theory of analytic function in real and complex normed linear
spaces was initiated by A. D, Michal and R, S. Martin in a seminar at
the California Institute of Technology during the years 1931-1932,

See footnote 1, page 2 of [13] .



<15

The theory of Lorche-analytic functions closely parallels the
classical course both in its methods and principal identities., In
order to develop a Cauchy theorem Lorch defined the following analogue

of the Riemann integral.

DEFINITION 5,2: Let «F be an open comnected subset of /3. Let

W =7(Z) be a function on B +to itself with domain A . Let P be
a rectifiable arc in « . By this it is meant that # is given
by an equation Z =2(t), 0 £ t s 1, where Z(t) is continuous and of
strongly bounded variation., We then define
n
(83) jF(Z)dZ = lim Z F[Z(un,k)] {Z(tn’k) - Z(tn’k_1)} :
P 0= e

where m;x (t’n,k - tn,k—’l )= 0,
If F(Z) is contimuous in A, the existence of the integral is
established in the usual manner and it has the properties of linearity

and boundedness which are to be expected.

In particular we have the following

THEOREM 5.1:

(8L) IljF(Z)dZ < max WF(Z)l R(F),
V2] T

where L (#) is the length of < , that is, the strong total
variation of Z(t) in the interval (0,1] .

A function F(Z) Lorch-analytic in a region A" cen be shown
to be continuous and Fréchet differentiable in 4 . (See [5, page 72]

for terminology and references to the literature), As such, it is but
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a matter of computation to show that F(Z) possesses derivatives of
all orders in o« which are themselves Lorch-analytic functions,
Purthermore if A denotes an interior point of L) one can establish

the formulas

(85) R j?ﬁ‘-gﬁl‘ﬁ (0 = 0y1,2,000),
2T i o5 z

where z describes any curve ¥ surrounding the origin in the complex
plane once in the positive sense and in such a manner that 12} remains
small enough to assure that (A + 2I) remains in the domain of definition
of F(Z), For the justification of the above statements, and further
details we refer to [ 5, Chapter L, especially pages 113-—11h] »

With the aid of (85) it is now possible to represent F(Z) and its
derivatives in a form more closely analogous to the classical formulas.

In fact, we have

THEOREM 5.2, Let F(Z) be Lorch—analytic in an open comnected

region < /A , then the formulas

(86) p) ey = 1 j F(z2)(z-0)" Mg (1 =0,1,2,...)

are valid for every path ' of the form Z = A + zI, where z again
describes any simple, closed, positively oriented path ¥ surrounding
the origin once in the complex plane, provided that 1zl remains small
enough to assure that (A + 2I) remains in the domain of definition of

F(Z).

Proof: Letting Z = A + 2I clearly reduces (86) to the form (85).



L7

Should the domain o) include that portion of the subspace zI
(z varying over the complex numbers) which includes the spectrum of A
considered as elements of the algebra, then an argument on the
deformation of paths will allow a restatement of the above theorem,
The path Z = 2I may now be chosen, where z surrounds the spectrum of
A in the complex plane once in the positive sense,

In the latter form, formula (86) has been used by H. Poincaré
[1&] s F. Riesz [15] , L. Fantappie [16] , and more recently
Dunford [17,18] s Lorch {j1] and A, E, Taylor [19] .

To be brief, the usual patbtern of fundamental theorems may be
déveloped, culminating with the establishment of a Taylor expansion
for a Lorch—analytic function into a power series which converges in
the largest sphere with center at the point of development in which
the function is analytic. As has already been pointed out however,
the series may converge for~points outside of this sphere = for
example, points in the radical of B . Conversely, a power series
of the form ©
F(Z) = Z 4.(z - 4)"

n=0

defines a Lorch=analytic function in the interior of its set of
convergence.
As a first step toward establishing the Lorch-analyticity of
the function -
) R(s) = | ep(-ts)aa(s)
0
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within the region @; s we prove the following analogue of the

Vitali theorem,

THEOREM 5.3, Let {Fn(S)} be a sequence of function such
that
(1) Fn(S) is Lorch-analytic in an open region O/ s D =1,2,000,
(ii) F (S) > F(S) for each S e, and
(iii) for each S ¢ & , there exists a closed sphere d(S) and
a constant m(S) such that "Fn(S)" ¢ m(3), n =1,2,..., then the

limit function F(S) is Lorch-analytic within O,

Proof: It will be sufficient to verify that F(S) is Lorch-
analytic in a neighborhood of each point S ¢ O,

Let So be an arbitrary point belonging to o o By (iii) there
exists a sphere d (So;ro) of radius r, > 0 about So contained
entirely in & s and a positive constant m, such that

”Fn(S)” £ m SE &So;ro) 5o 12,8058
Choose an rp< T, and form the sphere

Hs sry) = {s | 1s-s )l < r1} .

By (i) and theorem 5,2, for Sy and S, € d(So;r.])

2

1 : -1 1 =1
F (S,) = F.(8,) = 5F (W) (W=8,)"" av - 5 F (W) (W=S,)" aw
n*"1 n'\v2 2T 4 i n 1 2mi n 2
- (84= S,) j F_(W)(W=s )"Jl (W=S )"1dW
a3 17 °2 gy s 2 ’
T i I

where I may be chosen as

_ ie o
W~So+r0e I (08 < 27 ).
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We then have

“31'82“ s " - 3
” Fn(s’l )= Fn(Sz)ué ——T s Where d > O is the minimum distance
d%e
from I' to d(so;rﬂ. Thus given € > 0, if )|S1-82|I<-—-- =%(e),
rn
then o
“Fn(s'l) = Fn(sz)n< € n= 1,2’-00 °

This states that the Fn(S) are equi-uniformly continuous in d (Sogr1 b

Now choose Ty < and define the path P,‘ as

W:So+reieI, 08 s 2 , r,<r < rp
By the choice of r, F‘I belongs to the sphere d(so;r,’) and hence
by the preceding argument, given € > O there existsa o (€ ) > 0
such that
e ) - Fn(Wz)"< € n=1,2..
for any Wy, W, & [' forwhich [lw-w,ll <$(e ). By (i1)
Fn(W) -+ F(W), and hence
hew) -ra)ll < € for lhwy Wil < 3(e ),
Since l"1 is a compact set it is possible to choose a finite
number of points Wi (1 2T,8,0ens8) alonp P‘l such that
hw, -w, H<$ce) (1=1,2,000,m) (g =),
and for arbitrary W & [ 1 there exists at least one ".J\Ij such that
“W—Wj Il <5(e ),
Again by (ii) since Fn(W) - F(W), we have the existence of p

integers ni(Wi) i=1,2,0004p, such that, given €>0
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IF, (W) - F (%) | <€ forn, m > n,(W,) i =1,2,00.,p.
Let

o Jhe p[ni(wi)] ’

then for arbitrary W € [11

Irm-r il s« e n-r )l + NF w)-F @HN + UF (r)-F (0N
< 3€ provided n,m > n, and

Wi is chosen so that J|W - Wi“ < 5( € )

Thus the F (W) converge uniformly to F(W) for We [,

Now restricting S to the sphere

d(so;rz) = «{S \ HS-SOH < rzl ,
: é {rm-rm} ms)'ar,

2mi
1

F (S) - F () =

from which it follows
. < ET
Il 7 (8)-F ()l =, 0> 0,
But n is independent of S € J’J(So,rQ), and hence the Fn(S) converge
uniformly to F(S) in this sphere and consequently to a Lorch analytic

function, This completes the proof of the theorem,

e next establish two lemmas.

LEOA 5.1, If A(t) is a function of strongly bounded variation

in every finite interval Y_O,bl then the sequence of functions defined

by
n

B e = | et B =120
0

are Lorch analytic throughout “’gl and their k-th derivatives are
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given by the formula 7
n

(88) rl)(s) = j (=t)% exp(~tS)dA(t) n=1,2,000 .
0

Proof': The proof will be demonstrated for the case k =1 only,

From (87) and (88) we have

I F (S4)-F_(8)- wF (3)] = “jl exp(~t3) { exp(~tH) - I + tH} dA(t)“
0

n
<l anS £2 TEN pescts)l flaace b = IIHH{NHH m(n)} .
0

Then given € > O,for all H such that HWHII< £ we have
m(n)

Ir (s +m) - 7.(5) - wF ()l < € |1l . Similar proofs may be
devised for higher derivatives,

LEMMA 5,2, Let O; denote the interior of the region of con-

vergence of the integral

o0

(1) j exp(~tS)da(t) ,
0
and let
n
(1) () = | em(w9as) (=12,
0

Then if SO is an arbitrary element belonging to the region @é , there
exists a real number r(SO) > 0, and a constant m(So), such that within

the sphere d(r;so) = IlS-SO\\ < r(SO)

NE ()l < m(s)) (n=1,2,...).
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Proof: Let So be an arbitrary point belonging to O/c o =ince
Cj)c is open, there exists an open sphere of radius ?(SO) about

o

S, which also lies in O; o« In particular

8y =8,-%,1 1isin O‘c
Now we restrict © to lie in the sphere s - 80“ S (“/3 .
We have
n n
(8)  E8) = | em(-t)an(s) = | ew -t(s-s;+ 5)] an(e)
0 0
n
= j; exp('_-t(s-s1)] as(t) ,
where
%
(90) B) = | ().
0

An integration by parts yields

n
fn(S) = exp[_-—n(S--S,l )] B(n) + (S-S,]) 5 exp\'_-t(s--f‘;.1 )l B(t)at,
0

and hence

n
(91) N (N ¢ flexp [-n(s=sIl NBE@N + Ns-s)l jllexp[-t(S-s1 I
0

IB(EN at.
For each finite n, the right side of (91) exists giving a sequence of
constants: m1, m2, eoo0y mn3 Iy °
The restriction S - 5_I1<€/; implies that RL(S-5,)> % > %- > o,
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hence there exists an n, such that

(92) "exp[-n(S-S,,)]u < & §/7 (n > n).

From (90), B(t) is a continuous function of t, and since 81 lies in @é

B(w) exists, and therefore for some positive constant c
(93) IB(n)l < ¢ for all n.

Using (92) and (93) in (91) yields
n

' o 7
(9k) lan(S)" < e n 8/ +5¢ /6 Qo "exp[-t(S-S,, )]“ dt - 35¢/6 ¢ Mo ©/7
= (n > l’lo).

Setting

m(So)zma.x {m, My, My eeey mno-} 3

we have for S belonging to d(so) = { S ‘ \\S-So\\ £ €/3 = r(SO)}

Ir_s)) < m(s,) (0 =1,2,3,0000)
as was to be shown.

From the last two lemmas we see that the functions
n

(87) Fn(S) = 5 exp(=tS)dA(t) B=1 20
0

satisfy the conditions of theorem 5.3 and hence we have established

THEOREM 5.4, The function defined by the Laplace-Stieltjes

integral .
Q0

(1) F(3) = 5 exp(=t3)dA(t)
0

represents a Lorcheanalytic function within the region @: .
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A more general theory of analytic functions on one Banach Space
to another may be found summarized in [5, Chapter h] where adequate
references to an extensive literature on the subject is available,
When couched in the language of Banach algebras the definition of an

analytic function assumes the following form,

DEFINITION 5.3, A function F(Z) on A to 73, defined in the

domain <0~ is said to be analytic in A if it is single~valued,
locally bounded, and Gateaux-differentiable [5, page 72] in LA,

The question ariseé if perhaps it is not possible for a Lorch-
analytic function to be analytic in the sense of the above definition
in a more extensive domain than that in which it is Lorch-analytic,

That this is not possible is shown in

THEOREM 5.5, Let F(Z) be analytic (in the sense of definition 5.3)
in an open connected set O< ﬁ_. Let d; be a sphere, center at Zo’
contained interior to 6 in vhich F(Z) is Lorch-analytic. Then F(Z)

is a Lorch-analytic function throughout O/ .

Proof: Let W be an arbitrary point in Oj . By hypothesis we may
join Zo to W by a path i lying entirely within 01 o To each Zp
belonging to P there exists a sphere, center at Zp , with a non-
zero radius Q(ZI" ) in which F(Z) may be represented by an absolutely

convergent F-power series
cn/ n .
(95) F(Z) =Z SF(2Zp 3Z-Zp )

=T

N2zl < QGzp ).
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By standard arguments e(Zf. ) can be shown to be a continucus non-
zero function of Z.l1 on the compact set & and hence attains

its lower bound (30 > Ds

By the compactness of " owe may choose a finite number of

points Z , Zqsees,Z =W along ' such that |l Zs - Zi“< @/2

p
i =0,1,000,p-1 and cover [' with the p spheres
di = { Z ‘ ” Z-Zi" < %} i = o,1,...,po FWtheI'mOI‘e, the di
have the property that the center Z, of d is contained in d
i+l i+l i
i = O,1,...,p—1.
' . imsggn 23]
Let Z be the first one of the Zi £ P contained in L and
]
for which the sphere Nz -2zl < (70 includes a portion of (- dL’

Since A is interior to JL’ F(Z) may be expanded in a Lorch~power

series
2 (n) 1 \n

(96) F(z) =Z iR 72"l < e(z').
0 =

Simultaneously we have the F-power series

) oo, SnF(Z"Z-Z') g 5

(97) F(z) = Z n,’ Il z-z 1\ G-

n=0 °

By hypothesis, (96) and (97) agree in || Z-—Z!||< Q(Z') and for
such Z it may be shown [5, page 72] that
i ] 1 1 1 ]
(9 9% za’) = r ey wza'i< e
]
Now let Z # Z' be an arbitrary point in N2z-2 J| < @,» and set

(99) " e o Q2D 22D
2 lz-z |l
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Obviously

1
R
and hence (Z - 2') satisfies (98), that is

v ] ? "o
(100) Sz’ 52 2"y = r 2"y 2"z,
Substituting from (99) into (100) and making use of the linearity

and homogeneity of the G-differential we have
1 ?
(101) op(z' 522"y = ¥z y(zz" )2 hzz'll< .

This requires that

5 o SO PRI
(102)  F(z) = ). 3“1*‘(2',2-2) _ ) E)

o no n.

be absolutely convergent for all Z such that |l 771 < 60' Since the
right side is an absolutely convergent series of Lorch-analytic

functions for | Z-Z')l< €o and converges to F(Z) in that domain; then
F(Z) is a Lorch analytic function outside of %. Proceeding in
an analogous mamner we thus see it is possible to reach an arbitrary

point W & 6’ in a finite number of steps, at each step establishing

the Lorch-analyticity of F(Z),
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Section VI

SINGULARITIES ON THE BOUNDARY OF THE REGION @;

hen ﬁ is the complex plane it is well known that a function
defined by a lLaplace=Stieltjes integral may fail to have any singular-
ities on the abscissa of convergence of the integral., Indeed, it is
not difficult to construct examples for which the abscissa of con-
vergence is finite and yet the function represented is entire,

In the remaining paragraphs of this section the analogous situation
is considered for an arbitrary Banach algebra, A special case is dis-
cussed for which it can be asserted that there exists singularities on
the boundary of the region @;. then the term singularity is used

it will be in the following sense,

DEFINITION 6,1, A point S_ on the boundary of the region O;

will be called a singularity of the function defined by

a0

M F(S) = S exp(=~tS)dA(t)
0

if, given any neighborhood 7&(80) of So’ it is impossible to extend
the definition of F(S) into )Z(SO) in such a manner that it remains
analytic and agrees with F(S) in  27(S)) n O

It has already been pointed out that a function F(S) Lorch—analytic
in a region @ may be expanded in a power series about any point SO
in o o Furthermore, the series converges not only in the largest
sphere contained in the domain of analyticity, but for all points of

that sphere translated in the direction of the radical of ﬁ o This



—58-

serves to extend the domain of analyticity into a cylindrical set

parallel to the radical, Because of this fact we have

THEOREM 6,1, If the Lorch-analytic function F(S) defined by (1)

has a singularity at the point So on the boundary of the region 6;,

and if R is an arbitrary element belonging to the radical of =4 9

then SO + R is a singularity of F(S),

Proof: We first recall from theorem 2,5 that if S € Oc/ then

S +R E O'c for arbitrary R in the radical, so that F(S) is defined

and by theorem 5,4 is analytic in a cylinder in the direction of the
radical, It also follows that if So is a boundary point of OJC then
so is S +R. Now if 5  + R were not a singular point of F(8), it
could then be included within the inbterior of the set of comvergence
of some power series representing F(S) and agreeing with F(S) in Cjc'
But by the remarks made previous to the theorem this would imply that
F(S) could be analytically extended back to include the point S o° This
is a contradiction.

We now consider a case when the existence of singularities on the

boundary of dc can be assured,

THEOREM 6_.__2, Let the integral defining the function

o0

(16) £(s) = 5 e %da(t)
0]

have abscissa of convergence Rl(s) = c¢, and let s, be a singularity of

f(s) on R1(s) = ¢co Then the function defined by the integral
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(3L) F(S) = f exp(~tS)da( t)
0]

possesses a singularity at any point So on the boundary of (j; for

° K3 -‘“L 4 * o
which there exists an Mo E?QZ such that Mo(so) = S e

Proof, Let So be such a point., Assuming SO is not a singular
point of (3L4), then for any r > O the point S1 = S0 +rl € C?;,

Rl(S1) > ¢, and F(S) may be expanded in a power series

(103) rs) = ). (s =57,
n=0
where -
(10L) A = -1-, \S (-’c)nexp(-tsq)da(t) n=0,1,000
Ne 0

The series (103) will include the point So within its sphere of con-

vergence, This implies however that

@ YL
(105) M lrs)] = Z W (A) [M";(S) -1.,1*;(31)]
n=0

: 3*
is a convergent power series which includes the point S, = MO(SO)

within its circle of convergence, oince

ol

%
(106) ) = § 0t Ca  n=o,..
0

we see that the power series (105) represent (16) at se But this is

a contradiction to the assumption that s was a singularity of (16 )«
Theorem 6,2 implies that any of the known results concerning

singularities of the function represented by (16) apply to integral

(34) in the sense stated above., In particular we refer to [:9, page Sé],
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[20 s pages 89—92] , and [21 s Chapter h] where many of these results
are discussed.

In conclusion we sketch the proof of a generalization of a theorem
used in the theory of Dirichlet series by Cramér Y_ZZ] and Ostrowski

[23] « To do so we first need

LEMUMA 6,1, Let P(z) be a 13 -valued entire function of the
complex variable z of exponential type, i.e., there exists a non-

negative constant k such that for arbitrary €> 0

(107) Ir(2)ll < e(k"'e) |zl for |z| sufficiently large.

Let

©0

(108) P(z) = Z cnzn
n=0

be the power series expansion of P(z) and define the function
(<]

(109) Q(z) =Z n. Cn/zn+1
n=0

constructed by using the same Cn as in (108). Then P(z) and Q(z) are

related by the following formulass

<0

(110) am) = 3 & r(z)dz
0
(111) P(z) .—.__1_.. S ”"Q(w)dm,
2T 1 g =k +¢

The proof follows mutatis mutandis that of the classical case and
may be found in [ 10, pages 6] -65] .
Now let O; be the open region of convergence of the function

defined by
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(1) F(S) = j\ exp(-t5)dA(t),
0

and let P(z) be an entire function of the complex variable z satisfying
the conditions of lemma 6.1, Introduce the new function C(S) defined

by the integral

o0

(112) c(s) = S exp(=tS)P(t)dA(t).
0

By use of (107) it can be verified that the integral (112) has an open

region of convergence which at least includes the set

(113) qu {Scﬁ_‘ S=So + kI, some Soa 6{3} .

From theorem 2,1} it follows that Cjk < q.

Now let g be an open set contained in '/52 and such that
E N (jk is non-void. Further, let G(S) be an analytic function defined

in & and such that

(11h) G(S) =F(8) for Se & n .2 ?’;nﬁk,
Define the region
(1s) M= gv0O.
Since Gc and dk are open sets it is easily seen that
& Cjk implies that S + %I & (70 for all £ such that (%] < ke
Moreover, it follows that S € gnﬁk implies S + % I € M for I8l < k.

Construct within A% the set

(116) 7%k={se7w[|s+ gle#, I‘!;lsk}.
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Certainly 7‘»//1{ is non-void since it contains at least £ n O;{.
Furthermore, 7\/’k is an open set. This follows from the fact that
the minimum distance from the compact disk S + % I, ( J%)s k) to the
complement of M is definitely positive,

Now let 7?Zk be that component of #k which is connected with

Gk’ Again, 7,;[}5 is non-void since E n Gk < Wkn O;{ < 7r;zk,

Define the function

M7 J(S) = l , 5 G(S=wI) Q (w)dw ,
e lwi=k + €

where  Q (w) represents the analytic continuation of the function

defined by (110), If S is restricted to remain in ﬁk’ then €

can be chosen sufficiently small?chat as w traverses the path Iwi=k +€
S = wl remains in the domain of analyticity of G(S), and hence by a slight
modification of a standard theorem of complex variable theory [2&, page

99 ] it ¢can be shown that J(S) defines a Lorch analytic function of S

"]

in Wk‘
I
Moreover, since S is restricted to lie in 75‘1{, then by (114)

J(S) may be written as

(118) J(s) = L S F(S=wI)Q (w)dw,
27T 1
lwl =k +¢€
L g
If S is even further restricted to lie in 7’lk N O/k we may use

equation (1) as a representation of F(S), Substituting from (1) into

(118) we have

(119) J(8) = L 5 Sexp [-—t(S—wI)] dA(t) ) Q(w)dw.

WA Jwl = k +€



g

(a2
The restriction S & 7%{ N C?k and the choice of € sufficiently
small makes the inner integral in (119) uniformly convergent with
respect to w (see theorem 2.6), and an interchange of order of inte-

gration is justified. Carrying out this process yields

(120) J(8) = \S exp(=t3) L \S eth(w)dw da(t),

0 £ Iwy =k +6€

which by (111) becomes

o0

(121) J(8) = Lg exp(~tS)P(t)dA(t) = C(8).

We thus have

THEOREM 6.3, Let F(S), P(z), and G(S) be the functions described
above, and define the function C(S) as in (112). Then J(S) as defined
in (117) is an analytic extension of C(S) into i;;.

It is to be noted that J(S) need not be equal to C(S) at all
points where both are defined, since this region may not be simply
connected, This multi-valuedness of the extension can even be realized
in the classical case where Z3 is the complex plane.

The importance of the last theorem lies in the fact that in the
classical case it plays an essential role in gap and density theorems,
The function P(z) is an entire function which is associated with the
sequence of exponents of a Dirichlet series, and aids in a discussion
of the density of that sequence., Its function is essentially that of
modifying the given Dirichlet series to one with all positive

coefficients, Once the coefficients are positive the existence of
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singularities on the abscissa of convergence can then be assured,

It appears reasonable that a similar type of analysis could be
extended to those special Banach algebras cal led Banach algebras

in which there exists a notion of positiveness, It is the intention

of the author to carry out such an investigation in the near future,
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