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ABSTRACT 

After a brief reviei.v of the general theory of commutative complex 

Banach algebras in Section I, Section II introduces and discusses some 

important facts about the generalized Laplace-Stieltjes integral. 

Section III consists of an investigation of the regions of ordinary and 

absolute convergence of the Laplace-Stieltjes integral, and is followed 

by specializations to Dirichlet and p~Ner series in Section IV. Section 

V contains a consideration af' the analyticity of functions defined by 

Laplace-Stieltjes integrals, while Section VI concludes the thesis with 

some remarks on the existence and distribution of singularities of such 

functions$ 
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Section I 

INTRODUCTI ON 

During the past decade and a half increasingly more and more 

mathematical attention has been concentrated on the theory of those 

mathematical systems which have become commonly known as normed linear 

rings or Banach algebras. As early as 1934, in a generalization of 

Fredholm integral equation theory, Michal and Martin[1] laid down the 

postulates and gave several infinite dimensional examples of what they 

called "a special linear vector space S • • • having additional proper­

ties abstracted from those of a space of linear transformations". Their 

postulates are identical with those now used for a Banach algebra with 

unit element. Later, in 1936, Nagumo [2] studied the properties of 

the group of regular elements and the generalized exponential function 

in an abstract system which he cal led a linear metric ring. 

The major i..mpetus to the study of this new discipline appears 

however to have begun wi. th Gelfand in Russia who in the period from 

1939 to 1941 published a series of abstracts on the subject culminating 

with his now famous papers [ 3] and [4] on Normierte Ringe. 

Since that time the theory has flourished under the contributions 

of a host of authors writing on the algebraic, topological, and function­

theoretic aspects of such systems. The bibliography contained herein 

is by no means complete or exhaustive. A fairly comprehensive list of 

references may be found in ( 51 and [ 6] • 

The properties of Banach algebras are such that they lend themselves 
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most readily to generalizations of techniques and theories of classical 

analysis. Among these generalizations, has been the extension of the 

scope of analytic function theory. Here the development of the theory 

possesses remarkable similarities to that taken by the c.lassical course. 

Nevertheless, there arise new and interesting phenomena which in the 

classical case either do not exist or are trivial. One of these 

peculiarities occurs in connection with power series, where in general 

the region of convergence is no longer a sphere, and as a consequence 

the distribution of singularities of the function which the series 

represents appears to be of an extremely complex nature. 

It was the latter problem - that of determining the existence and 

distribution of singularities on the boundary of the region of conver­

gence of a power series - that led to the present study. 

In the case of the complex plane it has long been known that many 

statements concerning the occurrence and location of singularities on 

the circle of convergence of a power series are specializations of 

broader results known for Dirichlet series, or more generally, Laplace­

Stieltjes integrals. Such statements are embodied in a class of 

results usual]¥ referred to as gap and density theorems. Motivated by 

this knowledge, it seemed appropriate to attack the same question for 

connnutative Banach algebras in an analogous manner. Section II of this 

W"Ork therefore begins with the definition of the generalized Laplace­

Stieltjes integral and concludes with several results of a general 

nature concerning such integrals. 

Prerequisite to studying the occurrence of singularities on the 
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boundary of the region of convergence of a Laplace-Stieltjes integral, 

however, is the necessity of having an adequate description of the 

region itself. Here a marked deviation from the classical situation 

arises. The familiar half-plane of convergence is replaced by a set 

considerably more complex in nature. In fact, as yet a complete 

description of this set is not known. Nevertheless, a partial descrip­

tion can be given, and for several classes of Banach algebras a full 

treatment is possible. It is to these matters that we devote Section 

III. 

Section IV consists of specializations of the results of Sections 

II and III to generalized Dirichlet and Power series. 

In Section V we consider functions defined by the Laplace-Stieltjes 

integral and show that they are analytic in a sense to be defined at 

that time. 

The thesis concludes with Section VI, in which some remarks are 

made concerning the occurrence and location of singularities on the 

boundary of the region of convergence. A special case is treated and 

a suggested plan of attack for further research along this line is 

given. 

In the interest of more or less completeness, the remaining para­

graphs of this section will consist of the definition, examples, and a 

brief resume of soi.re of the well-known and fundamental results on 

Banach algebras to which it will be necessary to refer in the main part 

of this thesis. 
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Although not at all times essential, it will be convenient to 

restrict our considerations to a special class of Banach algebras ~ 

those characterized by the fact that they are commutative, complex, and 

possess a unit element. It is to this special class that all ensuing 

cormnents apply. 

DEFINITION 1 • 1 • A set of elements ti (always denoted hereafter 

by capital letters s, T, ••• , X, Y, Z) is said to be a commutative 

complex Banach algebra with unit if 

(a) 1ii is a Banach Space ( 7] • 

(b) t;L is a commutative algebra over the field of complex numbers, 

the elements of which will always be denoted by small case letters a, b, 

c, ••• , x, y, z. In short, this means that a multiplication is defined 

in 1?l_, Which satisfies the properties: 

(i) XY = YX 

(ii) X(IZ) = (XY)Z 

(iii) (aX)Y = a(XY) 

(iv) X(aY + bZ) = aXY + bXZ. 

( c) -a has a unit element I satisfying IX= X. 

( d) II XYll ~ 1\ XII II YI\ 
' 

II I I\ = 1. 

For illustrative purposes we include the following set of examples 

which have been taken from the literature, and are among those most 

frequently encountered by the analyst. 
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EXAMPLES 

1. The field of complex numbers ·with the norm taken as the absolute 

2. 

3. 

value. 

The set of all n by n diagonal matrices of complex numbers (a .. ) , 
l.J 

with the norm taken as max \a .. \ • 
1 ~ i,j ~ n 1 J 

The set of all n by n matrices of complex numbers (a .. ) such that 
1J 

aij = 0 for j < i, and ai_1 j-1 = aij for j ~ i. The norm may be 

taken as in example 2. 

4. The ring of complex-valued functions f(x), continuous on a compact 

space Gf , with II f l\ = SUP. I f(x) I • 
xd~J 

5. The ring of complex-valued functions f (x) of bounded variation on 

the interval a ~ x ~ b, with multiplication defined point-~-ise and 

ll f ll = sup \ f(x)\ + v, a,b,f(x). 
a ~ x ~ b 1..: ~ 

6. The ring of functions analytic over a bounded domain D in the 

7. 

complex plane and continuous over the closure D of D, with 

11 r II =sup I r(z) I • 
IT 

The 1ing of absolutely convergent Fourier series 
co 

with ll f l\ = L Ian \ • 

co 

f(x) = [ an einx, -
8. The ring generated by any bounded linear operator T defined over 

an arbitrary Banach space B. 

9. The ring generated by a one-parameter group or semi-group of linear 

transformations over a Banach space. 

1 o. The ring of complex-valued. functions f(x) defined aver the interval 

a ~ x ~ b, possessing n continuous derivatives, with 

II f ll =~a ~s~~ b I f(m)(x) / /m! 9 
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For the f ollowing list of definitions and theorems we refer the 

reader t o [ 5 ] and (6 ) where proofs and references to the ori ginal 

paper s are to be found. 

DEFINITION 1. 2. An element X E ti is said to be regular if there 

~ . ~ ~ is an element X called the inverse of X such that XX = X X = I., 

A non-regular element is called singular. The resolvent set ('(X) is 

the s et of all complex numbers z for 1mich (zI - X) is regular. The 

spectrum o-(X) of Xis the complement in the complex plane of ~(X), 

and is a closed non-vacuous point set. 

THEOREM 1.1. The set of regular elements in ~ form an open 

(not necessarily connected) set CY , and x-1 is continuous on CY • 

DEFINITION 1.3. The set ci. c ti is called a non-trivial ideal if 

(a) X, Y E. d , A, B t__ --1;3, imply AX +BY e. cl. • 

( b) cl, ;if ti. 
An ideal is said to be ~mal if it is not a proper subset of 

another (non-trivial) ideal. 

THIDREM 1. 2. 

(a) An ideal contains no regular elements. 

(b) The closure of an ideal is an ideal. 

( c) A maximal ideal is closed. 

(d) Every ideal is contained in a maximal ideal. 

(e) An element Xis contained in a maximal ideal if and onl y if it has 

no inverse. 
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DEFINITION 1.4. The quotient algebra. 

-fi and X - dl the set of all elements in 

Let ~ be an ideal in 

--J!l of the form X - Y 

with Y E d • The classes X - cJ form an algebra denoted by ~~ 

according to the definiti ons 

(i) a(X - cQ ) = aX - ~ • 

(ii) ( X - d/ ) + (Y - ~ ) = X + Y - <:::JI 

(iii) (X - ~ )(Y -~ ) = XY -~ 

THEOREM 1.3. If c:J is a closed ideal in fi 

a commutative Banach algebra. under the norm lllX - cJ 11\ 

then i3;~ is 

=inf l\ X - Y\\ • 
Yt~ 

THEOREM 1.4. If a commutative complex Banach algebra is a field 

then it is isometrically isomorphic t o the field of complex numbers. 

THEOREM 1.5. If 1fil is a comnmtative complex Banach algebra with 

unit element and if the norm satisfies the condition ll XY ll = llXll llYll 

for all X, Y £. fl , then 73 is isomorphic t o the complex field. 

THEOREM 1. 6. Let ~ be a closed ideal in 1fi • Then f3 /cl), 

is the complex number system if and only if =.SI is maximal. 

DEFINITION 1.5. Let ¥t{_, be the set of maximal ideals in £i , 

then for every X £ f3 and '77( c. Yfb the re is a uniquely determined 

complex number z such that 

X - /Jl = zI - /7( • 

The function X( /J1.. ) on Ytl is defined by X( YJ1. ) = z. 

THEOREM 1 • 7. The function X( irl. ) has the proper ti es: 
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(a) (X + Y)( 7J7_ ) = X(/?'( ) + Y( m_ ) 

(b) (XY)( 77() = X( Jn )Y( lJ( ) 

(c) (I)( 7J( ) = 1 

(d) (aX)( m. ) = aX( m ) 

( e) lxc m )I ~ ll X II 

(f) xcm ) = 0 if and only if x f: m 
(g) If n; -:j. m 2 there exists an x such that X( m 1) F X( /11_2) 

(h) X(OlG ) = <r(X) 

(i) If z E. cr- (X) there exists and )'Y{E.n(, such that X("rr{) = z 

(j) If for given x and m ' xcm ) F o, then there exists a y t 13_ 

such that Y( YY/. ) = 1/X(-m_ ). 

THEOREM 1 • 8. For a fixed maximal ideal /J1 t: Yfl and X ranging 

over 'Poi._ , the values X(/f( ) define a linear bounded multiplicative 

functional F-:i-(X; 11'l) on ti • Conversely, if F*(X) "=/= 0 is such a 

functional on ti and if l(_ is the set of points in t3.- where 

XCJ?1 .. ) = o, then 7(_ e ~ and F*(X) = X( /?._ ) for all X. 

Henceforth we shall employ the symbol Ml~ to denote either a 

maximal ideal or its corresponding multiplicative functional. No con-

fusion will arise since the context will always make it clear which 

interpretation is to be used. 

DEFINITION 1.6. The spectral radius of X is the least upper 

bound of 1z r as z varies over the spectrum o- (X) of X. It will be 

denoted by I cr(X) I • 



THEOREM 1.9. 

-9-

\ a-(X)\ = sup I ~~(x) I 
M~l- f.'a'l, 

1/n · 
= lim 1\rll . 

Il4 CD 

~ITION 1. 7. A generalized nilpotent is an element X f. 1ii 

such that lim llXnl\ 1/n = lcr( X)I = o. The set of all generalized 
n-+ co 

nilpotents is called the radical of ti . 

THED REM 1 • 1 o. The radical of a conunutati ve Banach algebra is the 

intersection of all maxi.mal ideals in ti . 

THEOREM 1. 11. 

The set of elements 

Let M-::- c. Yfl , 
0 

E- > 0 and xi ['ti (i = 1,2, ••• ,n). 

l.,{( M-'~; E ;~,x2, .... ,xn) = ~l'i* En'll l :tvHl- (Xi) - ~f'~(Xi) \< E ' i = 1,2, ••• ,~ 
is called a neighborhood of M~~. With such a neighborhood system m 

0 

becomes a compact Hausdorff space and the functions M*(X) are continuous 

for all I~~ £ btl, • 

THEOREM 1.12. Let 'ft be a corrunutative Banach algebra and ¥'il 
the compact Hausdorff space of maxi.mal ideals in 1ii • Let t;, (Dfl) 

be the Banach algebra of continuous functions on 'ftl . Then the mapping 

X-+ ~~~(X) is a homomorphic mapping of 11. into ' ('a{_). It will be 

an isomorphic mapping if and only if ti. has no radical. 
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Section II 

THE L~PLACE-STIELTJES INTEGRAL 

We begin this section with a collection of fundamental definitions 

and results which we shall need later for the study of the Laplace-

Stieltjes integral 
.., 

( 1 ) F( s) = J exp( -ts) dA ( t) • 

0 

DEFINITION 2.1. A function A(t) of the real variable t defined 

on the closed interval [a,bJ to the Banach algebra ti is said to 

be of strongly bounded variation in that interval if 

sup L \IA(t.) - A(t. 1)1\ < ""' 1 1-

where all possible partitions of l a,b] are allONed. The supremu.m will 

be called the strong total variation [ S, page 39] • 

DEFINITION 2. 2. Let F( t) and A( t) be functions defined over the 

closed interval [ a,b] to the Banach algebra ii . Let b. .be a 

subdivision of the interval [a,b] by the poin-ts 

a = t
0 

<. t 1 <. ••• < t = b , n 

and let S = max ( ti+1 - ti). If the limit (in the normed topology 

of -fi ) n-1 
lim L F(u.) [ A(t. ") - A(t. )] 

~ -+ 0 i=O ]. J.+1 1 

where 

( i = 0, 1 , ••• , n-1 ) 
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exists independently of the manner of subdivision and of the choice 

of the numbers u ., then the limit is called the Riemann- Stieltjes 
l. 

integr al of F(t) with respect to A(t) from a to b and will be denoted 

by 

( 2) J F( t)dA( t) . 

a 

THIDREM 2. 1 • If F(t) is strongly continuous (i. e., continuous 

in the normed topology of tfL ) and A( t) is of strongly b:mnded variation, 

then the Riemann-Stieltjes integral of F(t) with respect to A(t) from 

a to b exists. Further, if F-~ is an arbitrary bounded linear f unctional 

belonging to the conjugate space ti_* then 
' 

F* [ J b F( t)dA( t~ 
a -

(3) = f F-i~ [ F(t)dA(t)] • 
a 

The proof follows standard patterns , examples of which can be 

found in [ 5, page 51] and [ 8, theorem 11] • 

DEFINITION 2.3 . If A(t) is of strongly bounded variation in 

a ~ t ~ b , it is said to be normalized there if 

A(a) = 0 

A ( t) = A ( t+) + A ( t-) 

2 
(a < t < b) . 

THEOREM 2. 2. A function of strongly bounded variation has right 

and left hand limits everywhere and is strongly continuous except for 

a countable set of discontinuities of t he first kind, and hence may be 

normalized. See [ 5, page 203] • 
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As in the classical case [ 9, page 14] if A(t) is not normalized, 

we may do s o by defining the function 

(4) 

B(a) = 0 

B(t) =A(t+) +A(t-) -A(a) 
2 

B(b) = A(b) - A(a). 

(a <- t <. b) 

Since the replacement of A(t) in (2) by the function B(t) defined 

in (4) leaves the value of the integral unchanged, we shall assume 

henceforth that our functions of strongly bounded variation are always 

normalized. 

DEFINITION 2.4. Let A( t) be a function on [ o,C)) to ti, and let 

A(t) be of strongly bounded variation over every finite interval [o,b] • 

Then stnce exp(-tS) is strongly continuous the integral 
b 

(5) F(S;b) = s exp(-tS)dA(t) 

0 

exists for finite positive values of b. If, for a particular S ( -tJ.._, , 

lim F(S;b) exists in the nonned topology of 11. , we will denote the 
b-+ C) 
limit by 

(1) 

C) 

F(S) = ~ exp(-tS)dA(t), 

0 

and will call F(S) the LapJace-Stieltjes transform of A(t). Further-

more, the set of s E. 1fj_ f or which (1) converges will be denoted by ro ' 
and -will be called the~ of convergence of (1 ) . The open interior 

of the set ~ will be denoted by the symbol 

the region £f_ convergence of (1). 

cr ' and will be called c 
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In the classical case <: C CTc• This statement is in general 

no longer valid for Banach algebras. Example J. 2 discussed below can 

easily be specialized to give an example where 

is not void. 

CT is void, and C:, c 

In preparation for a discussion of the region CJ in S.ection II c 

we now include some results of a general nature concerning the integral 

(1). 

For a given integral it will soon become apparent that it is the 

spectral properties of the element S rather than its nonu which plays 

the dominant role in detennining whether or not it belongs to the 

region of convergence. For this reason it will frequently be necessary 

to make use of 

THEOREM 2.3. Let 1l, be a Banach algebra with unit element and 

let S be an arbitrary element belonging to ti , then the expression 

(6) R1 (S) - - lim 1n II exp(-tS) ll 
t-+0> t 

exists and is equal to 

(7) min R1(z) = min R1M*(S) • 
z t u( S) M~..i- E)){_, 

Proof: Let S be a fixed element belonging to and consider 

the real-valued function of t defined by 

( 8) h( t) = ln l\ exp(-tS) II (0 ~ t < cxo). 
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(9) 

Equation (9) together with the fact that for arbitrary t llexp( -tS) ll > 0 

shows that h( t) is a finite-subadditive function of t [ 5, pages 135, 

136] over any interval 0 ~ t < co 

(10) lim f(t)/t = lim 
t-+cio t-+co 

and hence 

ln II exp(-ts) ll 

t 
exists. 

Letting t -+ co through integral values and comparing with theorem 1 • 9 

we have 

lim 
n-+ oo 

ln lle.xp( -nS) Jl = lim ln I\ [exp( -s)J nu = ln l max I M7~ [exp(-s)J\) 
n n -+ oo n M->-t- t YI(_ 

= 1 { -min RllS~(s)} 
n ~)l-t:m 

= ln{ max e-Rll\11-l~(s)l 
Mi:-em J 

= - min RlM*(S) 1 
M*em 

from which the conclusion of the theorem is evident. 

The importance of theorem 2.3 lies in the fact that for large values 

of t, II exp(-ts)ll is governed by Rl(S) . In this respect vre have the 

foll01Ning 

COROLLARY: Let Rl(S) = a, then for arbitrary b ) a there exists 

a t such that 
0 

( 11 ) II exp( -ts) I\ <- -bt e 

THIDREM 2.4. If the integral 

(1) s exp(-tS)dA(t) 

0 

for all t > t
0

• 
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converges for S = S 
0 

(i.e., S 
0 

L <;; ) then it converges for any S such 

that 

(12) 

Proof: 

q 

RlM*(S) > RlM*(S ) for all Ml~ t Yi/., • 
0 

q q J exp(-ts)dA(t) = 
p 

S exp [ -t( S-S 
0 

+S 
0 
D dA ( t) 

p 

= s exp [ -t(S-S0~d.B(t), 
p 

where 
t 

B(t) = J exp(-u3
0

)dA(u). 

0 

Note that B(O) = o, B(®) exists and since B(t) is strongly continuous 

there exists a constant m > 0 such that /I B( t) ll <. m for all t. An 

integration by parts yields 

q 

j exp(-tS)dA(t) = B(q)exp [ -q(S-S
0
tl 

p q 

+ (S-S
0

) ~ exp(-tS)B(t)dt. 

p 

By hypothesis RlM*(S-S ) > 0 for all Ml\- f.."'i'/l.. , hence by the Corollary 
0 

to Theorem 2.3 there exists an r > 0 and a t
0 

such that 

II exp [ -t( s-s 0~ JI < 

Then 

-rt e 

I\ s exp(-tS)dA(t) ll <; 

q 

2me-rp + II S-S 
0 

II m J e-rtdt 

p p 

(t < p < q)' 
0 

and thus given arbitrary E ) o, a simple computation shows that if 
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E- r 

2m llS-S II 
0 

\\ J exp(-tS)dA(t) < and ( 1 ) converges. 

p 

COROIJ..ARY: If S f. ~ and s1 is any e lanent such that 
0 c 

~: This follows from the fact that the spectrum of an element 

is a continuous function of the norm. (See Theorem 1.7(e).) 

S
0 

e ~ implies there exists an r > 0 such that an open sphere of 

radius r about S
0 

also belongs to 

s2 = s - 2r/3 I e. (j , and 
0 c 

(J • In particular the element 
c 

(14) RlM'.t-(S2) = RlMl:-(S
0

) - 2r/3 for every M"'A- E. ~. 

Now let S be any element contained in an open sphere of radius r/3 

about s1 • Then for all M* E Of(_, 

RlM•'t-(S) > Rll?A-(S1 ) - r/3 ~ Rll?A-(S
0

) - r/3 = RJ.Ml:-(S 2) + r/3, 

and therefore 

( 1 5) implies an entire sphere about s1 belongs to the region C, , and 

(1) 

O'. 
c 

THEOREM 2.5. Let (j be the region of convergence of the integral c 

~~ exp(-tS)dA(t). 
0 
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Then if S f CT and R is an arbitrary element belonging to the radical 
0 c 

of fiL , (S +R) e <J'. 
0 c 

Proof: This follows immediately from the corollary to theorem 2.4 

and the fact that for all M'A- t. 0/0 

M*(S + R) = M*(S ). 
0 0 

In close analogy to a standard result of classical Laplace trans­

f orrn theory [10] we have 

(1) 

THEDRErv1 2.6. If the integral 

J"° exp(-tS)dA( t) 

0 

converges f or S = S
0

, then it converges uniformly with respect to z for 

all S of the form 

S = S + zI, where 
0 

Proof: Define 

\ arg( z) I ~ e < 1i/2. 

B(t) ~ ~~ exp(-uS
0
)dA(u). 

t 

By hypothesis, for any E: > 0 there exists a t = t ( f ) such that 
0 0 

l\ B(t) I\< E 

Now 

and an integration by parts gives 
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Consequently 

t2 

\ exp [ -t(S. + zI~ dA( t) ~ j t 0 
1 

t2 
+ \Z ) j e-tRl( z ) ll B( t) ll dt. 

t1 

<E- e- 2 + E- e 1 + El z \ e-tfil(z)dt 
t Rl(z) -t Rl(z) 500 

t1 

{
-t2Rl(z) -t1Rl(z) Jz l -t1Rl(z1 

= E e +e +-e • 
Rl(z) 

~ -t1Rl(z) 
11/2, Rl( z) > o, and hence e ~ 1, 

1 --- , from which we get 
cos(e) 

But for larg(z) I ~ 8 < 
-t2Rl(z) \ Z\ 

e ~ 1, and 
Rl(z) 

\ ~t2 exp ( -t(S + zI)] dA(t) ll < Ee (2 + 1 ), 
t 1 ° cos(e ) 

The conclusion of the 

theorem follows immediately from this inequality. 
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Section III 

REGIONS OF CONVERGENCE OF THE LA.PLACE-STIELTJES INTEGRAL 

It is well lmown in the classical case where 1fi is the complex 

plane, that if the function A(t) is prescribed in advance for the 

integral (1 ), then it is possible to give specific criteria [ 9] with 

which to decide whether or not a given S lies in the region of con­

vergence ~· Furthermore, the criteria provide a description of (jc 

(if it exists) as an open half- plane. Since it will be necessary to 

refer to these criteria we include 

THEORE1'1 3.1. For the integral 

(16) 

there exists t1~o real numbers c and a such that the integral is con-

vergent for Rl(s) > c, but not for any s with Rl(s) < c, and it is 

absolutely convergent for Rl( s) > a, but not for any s with Rl(s) <. a. 

We have 

and 

(17) c = lim ln \ a( t) - a(°') I , 
t ~co t 

a= lim 
ln I v( t) - v( ro) I 

' 
(18) 

t ~ ClO t 

where a(~) = lim a(t) or 0 according as the limit exists or not, and 
t ~ a; 

v(ro) is defined similarly for the function v(t) which denotes the total 

variation of a( t) in the interval (o, t ] • 
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Attempts to find analogous criteria for an arbitrary Banach 

algebra have not as yet been completely successful. Several special 

cases can be treated in full however, and for certain classes of 

Banach algebras some interesting results concerning the relation be-

tween the general shape of the region Lf and functions over the c 

space "O/L of maximal ideals can be given. 

As a preliminary to discussing the region of convergence of (1) 

we make the f ollowing definition. 

DEFINITION 3.1. Let F* '/= 0 be any bounded linear functional belong­

ing to ~~, the conjugate space of 1/i , and let c be any real number. 

The set 

(19) M(F~;c) = S t:'ti RlF (S) > c ~ { I * } 
. * will be called the half-space determined by F and c. In particular 

if the functional is multiplicative, i.e., one of those functionals 

associated with some maximal ideal tf~ f. 'Dfl , then * 7f(M ;c) will be 

called a distinguished half-space. 

Because of the rontinui ty and linearity of F*, rt(F~'" ;c ) is clearly 

an open convex set in id • In fact it is easily verified that the 

set 

( 20) 

defines a "hyperplane" which divides into two disjoint convex 

sets. 

Judging from the situation in the complex plane it might be 
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supposed at this point that the region of convergence of (1) would 

consist of a distinguished half-space. That this is not the case is 

adequately demonstrated by a simple exampl e. 

EXl\J\iPLE J.1. Let 'ti be the set of all complex diagonal ma trices 

of order two. One finds that there are but two maximal ideals in ~ . 

Letting 

( u(t) 

A(t) ~ \i :J ' 
where u(t) and v(t) are complex-valued functions of bounded variation, 

then w~(S) = z, M~(S) =w, and 

"" j exp(-tS)dA(t ) = 
0 

0 
( 21) 

0 

It is apparent that if (21) is to converge it is necessary and 

sufficient that 

~ r ~ exp( -tS )dA ( t ~ = J"' e-ztdu(t) 

( 22) 0 

exp(-ts)dA( t)] Q) 

M; L1 = S e-wtdv(t) 

0 0 

converge in the ordinary sense. This implies that 

( 23) 
J Rl(z) > c l_u(t)] 

L Rl(w) I c [v( t)] . 
and 

and 

Stating conditions ( 23) in the style of definition 3.1 we have 

( 24) Rlll~(S) > c ( M1(A( t) ~ (i = 1, 2) • 

• 
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This shows that the region of convergence consists of the intersection 

of two distinguished half-spaces. 

Motivated by this example we make the following definition. 

DEFINITION 3.2. To every bounded, linear, multiplicative functional 

M~~ t. 'otG let th ere correspond a real number c(M~-). The set 

( 25) { st i;t I RlM'\s) > c(M-1' .. ), 

all M*f. "ftL} 
will be cal led a cylindrical quadrant. Furthermore, if the numbers 

* c(M ) are all equal we shall say the cylindrical quadrant is diagonal. 

Ramrk: It is to be noted that the numbers c(M-l$) in the above 

definition define a function over the space m of maximal ideals, 

and consequently the decision as to whether a given S belongs to the 
0 

cylindrical quadrant or not depends upon the ordering of the two 

functions Rlli*(s ) and c(]t°). This does not mean however, that at all 
0 

.>< 

times that the determining function c(Mn) for a given quadrant is 

unique. Examples of Banach algebras can be given for which the function 
.)~ 

c (M" ) can be altered by decreasing its value at one point to form a new 

function d0f) -/; c(M*), and yet 

from the fact that for a given S the fuLC ti on Rlll (S) is continuous 

over m . 
Several important properties of cylindrical quadrants are given 

by 

THEOREM 3. 2. Let Q.. be a cylindrical quadrant contcrl,.ned in ti , 
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( i) Q__ is a convex set. 

(ii) If S E. Q and S is any element belonging to 1J. such 
0 

that for every 1f E Of( 

(iii) If S f. Q_ and B. is an arbitrary element belonging to the 
0 

radical of ~ , then S 
0 

+ R E. Q . 

Proof. (i) is obvious since ({_ is the intersection of convex 

distinguished half-spaces. (ii). Let Q_ = { s lR11{(S) > c(M·:~), all M*tDJZ.} , 
S0 ~ ~ ,and S be an element satisfying (ii) of the theorem. Then for 

all M* t:. YfL Rlll(s) ~ RU{(s
0

) > c(M*), and hence S t'\_ . (iii) 

follows from the fact that for all ~i\. 41(_ and R. belonging to the 

radical RlM*(s + R) = "n:ul(s ) > c(11.t). 
0 0 

Example 3.1 is somewhat misleading in that it may have given the 

impression that (1) will converge if for each M* t. Yfl the integral 

M* [ 5 ru<p(-tS)dA(t )] = 

0 

( 26) 

co j e-tM*(s)dl,t [ A(t)] 

0 

converges in the ordinary sense. At the risk of belaboring a point 

the following example is cited to illustrate that this is not the case. 

EXAMPLE 3. 2. Let -a be the set of two by two complex matrices 

of the form 

s = G :) . 
~~ 

Here there is but one maximal ideal and M~ (S) = z. Letting 



A(t) = ( :(t) 

we have 

(27) 

Here 

ClO 5 exp(-tS)dA( t) = 
0 

M* [ j exp(-ts)dA( t)] 

0 
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v(t)) 
u( t) 

<lO 

J"° j e-tzdu(t) 
0 0 

0 

and hence for convergence it is necessary that 

e-tzdv(t) 

"" 

50 

, 

Rl(z) = ro..M'~(S) > c [ u(t)] = c LM~~(A(t))] 

co J ) -tz + w (-t e du(t) 
0 

e-tzdu(t) 

• 

A glance at ( 27) shows however that it is also necessary to have 

(28) Rl(z) = RlM*(s) > c ( v(t)] , 

a condition that is apparently not detectable by the use of :rlA-. The 

region of convergence can now be described as 

(29) ~ = { S t iL ) Rll.ir*(s) > max [ c(u(t)), c(v(t) )] 

which is plainly a distinguished half-space. 

By choosing the functions u(t) and v(t) in ( 27) properly it is 

easily seen that it is possible for 

M* [ s exp(-tS)dA(t~ 
0 

to converge for all S f.. ti and yet have ( 27) convergent for no S E. ti . 

Despite the fact that the second condition (28) of the last example 
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was not predicted by use of the multiplicative functional, it is 

significant that (j_ is nevertheless a cylindrical quadrant. There c 

is considerable evidence to support the view that this is the general 

situation. Although it appears impossible to give a specific formula 

t hat will define the region (J for an arbitrary Banach algebra, c 
it is believed that it is always a cylindrical quadrant, and as such 

is defined by an upper seni-continuous function over the space of 

maximal ideals. 

We state the above opinion in the form of a 

CONJECTURE. Denote by i;: the set of S (.ti for which the 

integral (1) converges, and by (Jc the interior of ~ • 

is a cylindrical quadrant in the sense of definition 3. 2. 

Then ~ '-'c 

The following paragraphs will be devoted to the discussion of a 

special case of the integral (1) for which it is possible to give a 

precise description of the region ~c• This is followed by examples 

of several classes of Banach algebras for which t he conjecture can be 

verified. I n any case however, it follows from the corollary to theorem 

2.4 and theorem 2.5, that d possesses properties (ii) and (iii) c 

given in theorem 3.2 for a cylindrical quadrant. 

Before proceeding to the special cases we state 

THEOREM 3.3. 

of convergence 

as 

(JO) 

If for any particular Banach algebra the regi on 

d is a cylindrical quadrant, then it can be described c-
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Proof: Let 

and define 

We show that 

(i) Let S0 t. '(c(Ii.f)' then 

RJJl(s
0

) > c(M->.:-) ~ d(M*), hence S
0 

t ~ = '\)dOl) and Qc(M-l'~) C'\_)d(M-r.-). 

(ii) Let S
0 

£. ~ = 9d(M*r Since (j
0 

is open there exists a 

~ > 0 such that s + s E.. cr for all s for whi ch llS II ..:::. ~ • In 
0 c 

particular. if I z I .t:.. '2>' , then S + zI E e'. Choos e z such that 
" 0 c 

- ~ <. Rl(z) <. o, then for al l M~~ f.. bit 

(31) Rl.M-ll-(S ) > Rllx*(s + zI) = Rlll(s ) + Rl(z) > d(Tuf"). But 
0 0 0 

S + zI (. cY and hence 
0 c 

(3 2) Rllt'°(s + zI) ~ inf RlM*(s) = c(M-1~). 
0 

The inequalities (31) and (32) show that for every M* €. ¥tl 

Rllt(s0 ) > cOt), heme s0 t. ~c(M*) and qd(M~) C. 'tccM7~). 

We now discuss three sp ecial cases when the region of c onvergence 

(]_ can be identified as a cylindrical quadrant. c 

Case 1: For an arbitrary commutative Banach algebra with unit 

element if the function A(t) is a multiple of the identity I, 

(33) A(t) = a(t)I, 
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where a( t ) is a complex-valued function of bounded variation, t hen 

t he integral (1) reduces to t he f orm 

(34) 

00 

~ exp(-tS)da(t). 

0 

Under these conditions t he region of convergence of (34) is a 

diagonal cylindrical quadrant, and is described in 

(34) 

THEOREM 3 .h. For the integral 
co 

~ exp(-tS)da( t) 

0 

there exists a real number - co ~ c .::; oo given by the expression 

(17) c = lim 
ln la(t) - a(«>) I 

t.+<» t 

where a(«>) = lim a(t) or 0 according as the limit exists or not, such 
t-+ 00 

that (34) is convergent f or Rl(S) > c, and divergent for Rl(S) < c. 

This describes d
0 

as the diagonal cylindrical quadrant 

0:, = ~ 'H (M*;c) = { Sd3 j RJM*(s) > c, all M*tm} , 

Proof: Bearing in mind the convention established for the meaning 

of the term a(«>), let 

(35) lim 
t-+ °" 

ln la(t) - a(«>) I _....._ ____________ = c. 

t 

Equation (35) implies that for arbitrary 

such that 

(36) la(t) - a(0) I < e(c+ <i> )t 

a > o, there exists a t ( '$ ) 
0 

Secondly, if Rl(S) = d > b > c, then by the corollary to theorem 2.3 
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there exists a t 1 such that 

(37) 

Now 

11 exp(-ts) II < -bt e 

q J exp(-tS)da(t) = 
p 

q 

j exp(-tS)d [ a(t) - a(<»)] 

p 

hence on integrating by parts and employing the bounds (36) and (37), 

we have for arbitrary E- > 0 

\\ j exp(-tS)da(t) \I < E , provided 

p 

q > p .:> max { t , t 1 , 
1 

0 (c+ ~ -b) 
inc*), 1 

( c + <i) 

This shmrn the convergence of (34) for Rl(S) > c. 

1 r E: (c+ ~ -b)ll 
-b) n L II S 11 ·j J 

On the other hand, assume that the integral (34) converges for some 

S such that Rl(S ) = h < c. By theorem 1.7(i) there exists at least 
0 0 

one rvr* E. Yfl such that 
0 

RlM*(s ) = h < c. 
0 0 

By theorem 2.1 the strong convergence of (34) implies weak convergence, 
.)I... .)(. 

hence f or every bounded linear functional F" E. 'ta:. the integral 

(38) 

co J F* [ exp(-tS
0

)] da( t) 

0 
is convergent. 

~(­
In particular for M 

0 

Q) 

j M~ ( exp(-tS0 )] 
0 

Q) 

J -tM* (S ) 
da(t) = e o o da(t) 

0 
~-!. 

converges. which by theoremJ.1 is impossible since RJ.M'(S) =h <. c. , 0 0 
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This completes the proof of the theorem. 

Note that in theorem 3.4, as in the classical case no information 

is obtained about the convergence of the integral for those S for ·which 

Rl(S) = c. 

In case 1 it was a specialization of the form of the integral for 

which the conjecture was verified. We now consider two cases in which 

it is the Banach algebra itself which is specialized. 

Case 2: If the Banach algebra is finite dimensional it is possible 

to verify the conjecture. The proof of this fact depends upon the 

following lemma. 

LEMM.A J.1. If ~ is fin.i te dimensional then there exist X. 
J 

satisfying the conditions 

(39) 

(i) ~tcx.) = a .. 
1 J 1J 

(ii) x.x. = 0 • 
1 J 

Proof: There are only a finite numb er of maximal ideals M~, and 
1 

since they are linearly independent there exist Uj such that 

(40) 

Clearly the elements U.U. 
1 J 

( i ~ j) belong to the radical because 

M''\ U. U • ) = 0 ( i :j: j ) for al 1 M~~. 
l. J 

But U.U. 
l. J 

implies there exists an integer n. . such that 
l.J 

n .. 
(U. U.) l.J = 0 (i =} j). 

l. J 

Let n = max(n .. ) 
0 • • l.J i, J 

(i :j: j), then 

( i =J: j ) in the radical 
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Setting 

( 42) 

we have 

(i) 

n 
0 x. = u. 

J J 
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(iij). 

G -),~ ~ no no M. (U.) = ( ~ .. ) = 
1 J 1J 

n n n 
(ii) x. x . = u. 0 u . 0 = ( u. u . ) 0 = 0' 

1 J 1 J 1 J 

as was to be shown. 

~ij' 

THEOREM 3 • .5. Let 1fi be finite dimensional. Then for the integral 

(1) the region ~ is the cylindrical quadrant 

{ s E. t3 I RL.·11£\s) > c(J\{) = inf RlM.t-(s), all M·\ rte 1 . 
S t O' J 

c 

Proof: Let S
0 

t.. 'fc(Il)' then there exists a finite number of 

elements s1, s2, ••• ,sn such that 

(i) S. £. ~ i=1,2, ••• ,n 
J. c (44) 

(ii) RlM-l:-(s, ) > min RJJt(s.) all i~E. "dL • 
0 1 ~ i ::: n 1 

Since there are but a finite number of ma.xi.raal ideal~' (k = 1,2,.u,P) 

the S. may be relabelled in such a manner that we may write 
1 

(45) k = 1, 2, ••• ,p. 

Now by lemma 3. 1 determine X. ( j = 1 , 2,.., o ,p) such that 
J 

(46a) M~(Xj) = 'b kj 

(46b) xixj = o (i f; j). 

Uext choose an a such that for all i,j = 1,2, ••• ,p 
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RlM.(S.) +a <. O, 
l. J 

and construct the elements 

(48) k = 1,2, ••• ,p. 

A simple computation and the use of (47) shows 

(49) RlM. (Zk) ~ Rllf. ( Sk) 
l. l. ~ 

i = 1,2, ••• ,p, 

then by the corollary to theorem 2.4 Zk E. ~' k = 1,2, .... ,p. 
Finally define 

p 

(50) z = L [ Xk(sk + ar)1 - aI. 
k=1 

' By property (46b) for the ~ s an easy computation yields 
b p b 

(51) j exp(-tZ)clA(t) = 2:: j exp(-tZk)clA(t) 
a k=1 a 

and consequently 
b 

(52) \\ 5 e:xp(-tZ)dA( t) I ~ 
a 

But the Zk' s f. ~' and hence by choosing a and b sufficiently 

large the left side of (52) can be made less than arbitrary e > o. 

This at least implies that Z f. C, • Since the Zk' s t q', a standard 

argument based on the fact that ~ is open allo~vs one to conclude 

z (. O'. 
c 

From (50) we see that 

(53) Rl.M:(z) = Rl t { Mi(X;;) [ M(Sk) + •1} -a, 
k=1 

and using (46a) and (47) it follows that 

(54) * * RJ..M.(Z) ~ RllvL(S.), 
l. l. l. 

i = 1'2, ••• ,p. 
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But (54) together with (45) imply 

(55) Rn~:cs ) ~ Rn{(z) 
J. 0 J. 

i = 1,2, ••• ,p 

and the corollary to theorem 2.4 again implies that s (. er as was to 
0 c 

be shown. 

On the other hand, let S E. (j . Then there exists an r > 0 such 
0 c 

that S - rI €.. O". Hence 
0 c 

~ * ~ RD((S ) > RlM (S - rI) ~ c(M'). 
0 0 

Case J: To discuss the second class of specialized Banach algebras 

for which it is possible to verify the conjecture we make the following 

DEFINITION 3.3. Two elements X, Y E ti will be said to be equi­

valent at M~~ (-written X '""' Y at M-i<) if M*(X) = M~~(Y) for all M-r' in a. -----o 0 

neighborhood of M~. (See theorem 1.11 in this respect.) 

We assume now that the algebra Ti satisfies the following tvvo 

propertj_es. 

Property 1: If S, s1 , s2, ••• , Sn t 'fl , and if for each M* t. YI(; there 

* exists an i such that S r-..J S. at M , then 
J. 

n 

(56) 11 s 11~Z11 s. ll • 
• " J. J.=1 

Property 2: If S e 1i 
0 

there exists an s1 ~ t:L 

{ 

( i) R.lll (s1) 
(57) 

( ii) s1 '"'-' s 
0 

and if for some M~ e. ~ Rlli1~(S0 ) > o, then 

such that 

* > 0 for all M ~'IT{_ , 

It is easily verified that those Banach algebras given in examples 
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4, 5, 6, and 1 0 of Section I satisfy the above two properties. 

We proceed t o verify that the conjecture is true f or algebras 

satisf ying properties 1 and 2. 

LEMMA 3. 2. If for every M''l-e:. Yit , 
min RlM-i:-(S.) 

1 ~ i ~ n 1 
i = 1, 2, ••• ,n 

then there exi.st elements T1 , T 
2

, ••• , Tm vr:i th t he properties 

(i ) for each k = 1, 21 ••• ,m, there exists an i = 1, 21 ••• ,n such 

that for every M* ~ 'flt 
RJ.M-i1-(Tk) > R1M-r.·(s

1
), 

(ii) f or each M* £ Y/t , there exists k such that 

* S ~ Tk at M. 

Proof: 
-r.· 

Choose an M~ f..4/l 1 then there exi.sts an i such that 

RL-riiI-1(-(S) > Rl.M-i~(S.) or 
0 0 1 

RL"\r''l-(S - S.) > 0 0 1 • 

By property 2, there exists an element U e. i;1, such that for all M
1ft:.Ol'l 

A . ~ 

Rll.C(U) > 0 and u ~ (s - S.) at},['. Set TM~'*"= U + S., then 
1 0 1 

~- * * 0 * TM-1~ "'-' S at M and for all M i: ~ , RlM (TM*) > RJ..M (S. ). 
0 0 0 1 

By this construction a collection { Trlf} is obtained such that 

(i) given M*, there exists an i for vrhich 

RJll ( T:i{ ) > RlM''l- (Si) all 1l~ 1 

- v (ii) given Tu(, T
1
,t rv S at M''-. 

Since 'ttt is compact, the collection can be reduced to a finite 

collection which satisfies the conditions of the lemma. 

LEMMA 3.3. If for all~{" ~Yfl Rni~(S) > min Rllvt(s.) and 
1 ~ i ~ n 1 
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S. f. CJ then S c_ CY. 
1 c c 

Proof: Determine the finite collection T1, T2, ••• ,Tm by lemma J.2. 

Then since for each k = 1,2, ••• ,m and all Mi~ (¥fl , RJJA*(Tk) > Rll.t(si) 

for some i, it follows from theorem 2.4 that the Tk ~ ~ since the 

S. E. Lf. Furthermore if S rv Tk at M* then 
1 c 

q q 

J exp(-tS)dA(t) ,...._, S exp(-tTk)dA(t) 

p p 

By property 1 

\\ J -c-ts)dA( t)j 
p 

and since Tk f. (J , S t:. CJ . c c 

THEOREI~I 3 .. 6. For each 1r~ e. Ofl let 

c(Ivt) = inf RJ.M'<(s), 
s €. O" 

c 

and let S
0 

be such that 

RlM-{(-(S ) > cO . .t), 
0 

then S E. c::f • 
0 c 

Proof: We first note that c(Mh) is an upper semi-continuous 

function over ~ since it is the infimum of continuous functions. 

Consequently, at each point M~~ e. Oil__ there exists an SM* E. ~ such that 

Rlll(S
0

) > RJ..M*(sM~). But 'ft{_, is compact and hence there exist 

s
1

, s
2
, ••• , S t ef such that for all M-r;. t ¥t{_ n c 

-'~ 

Rll\( (S
0

) > 

and an application of 

min Rlll(s.), 
1 . 1 
~ 1 ~ n 

lemma 3.3 shows that s €, er . 
0 c 
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THEOlIDJ! 3. 7. Let c ( M...:-) = inf RJ.M-:~ ( S), then S t. d implies 
c 

RlM{(·(s) > c(M-l~). 

Proof: S €. ~ implies there exists an r > 0 such that if \ ZI <. r, 

then S + zI e. O' and RJJ.l(s + zI) = RJJl~(S) + Rl(z) >,.. c(M-:~), hence 
c 

Rll.t.i-(S) > c(tf). 

THEOREM 3. 8. If a Banach algebra satisfies properties 1 and 2 

then d is a cylindrical quadrant. c 

Proof: From theorems 3.6 and 3.7 it follows that the statement 

Rllrf~(S) > c(M*) all M* l. Yfl.. is equivalent to the statement S ~ O' c 

and thus cr is the cylindrical quadrant 
c 

= { s t.15 \ RlM-:~(S) > c(1l~) = inf Rli'ii*(s) , all J,l e. Y'/ll. 
s t: 0 ~J 

c 

The discussion in the previous paragraphs has concerned itself with 

the question of ordinary convergence of the · integral ( 1) and a partial 

description of the region of convergence d . 
c 

The question now arises, as to what we shall mean by absolute con-

vergence. It would be desirable of course to formulate a definition 

that would reduce to the already existing notion of absolute convergence 

when 11 is chosen as the complex field. It is ic'Illltediately apparent 

that this is possible in several ways. One might say that the integral 

(1) converges absolutely for a given S if any one of the followi ng 

three integrals converges: 

(58) S II exp(-tS )dA( t) II 
0 

' 
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00 

(59) J \\exp(-tS) \\ \l dA(t) ll , 

0 

< 6ol ~ exp(-ts l 11 dA( tl II • 

In the light of theorem 1.5 it is a priori evident that in general 

the regions of convergence of (58) and (59) will not coincide, and as a 

consequence there are several notions of absolute convergence. 

Before discussing integrals (58), (59), and (60) we introduce some 

notation,, Let 

~ = l S \ integral ( 1 ) converges} 

(J = the interior of ~ , c 

a = { s \ integral (58) converges 1 
eJ = the interior of CL , a 

(\ = { S \ integral (59) converges } 

~ = the interior of a ' sa s 

?r = { S \ integral ( 60) converges 1 
c:J =the interior of o . v 

From the properties of the norm it is obvious that ~)a ) ~ 

and hence d~CT)() . 
c a sa 

As in the case of integral (1) no definite criteria have been 

established with which one may describe t he region 

without proof however 

CJ . We state 
a 

THFDREM 3. 9: If S f. <:Y' and R is an arbitrary element belonging 
o a 

to the radical of ~ , then (S + R) f. CT . o a 
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As a first step toward establishing criteria for the description 

of the region ef we quote [5, pg. 204 J without proof the following sa 

theorem which is analogous to theorem 3.1. 

THEOREM 3. 1 o. For the integral 
co 

(61) 5 e-tzdil.( t) 

0 

there exist two real numbers c and a such that the integral is convergent 

for Rl(z) > c, but not for any z with Rl(z) < c, and it is absolutely 

convergent f or Rl(z) > a, but not for arry z with IU(z) < a. We have 

and 

(63) c = lim 

(64) a= lim 

ln ll A(co) - A(t) ll 
t 

ln I V(co) - V(t) I 
t 

, 
, 

where A(co) = lim A(t) or 0 according as the limit exists or not and 
t-+ co 

V( co) is similarly defined for the function V( t) which denotes the 

strong total variation of A(t). 

We can now prove 

THEDREM 3.11. For the integral 
co 

(.59) · j llexp(-ts) ll \ldA(t) ll 

0 

there exists a real number - co :s. a ~ co given by the expression 

(64) a= lim ln I V(t) - V(co) j , 

where V(t) denotes the strong variation of A(t ) in the interval [ o,t] 1 
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and V(oo) = lim V(t) or 0 according as the limit exists or not, such 
t~ 00 

that (59) is convergent for lll (S) > a, and is divergent for Rl(S) < a. 

This establishes the region d as the diagonal cylindrical quadrant sa 
ef = (\ 1'/- (M-l~ ;a) = { S e.13 \ RlM-i~(S) ) a, all M"l~t. Yi7 1. 

sa }(A-f..m_ uul.J J 

Proof: This is an immediate consequenc e of theorem 3.10 and the 

corollary to theorem 2.3 concerning the relationship between Rl(S) and 

the rate of growth of J\ exp(-tS) II • 

In the particular case where '£2 is the complex field ~ = ~a· 

That this is not true in general is demonstrated by the following 

example which sh01us that for a gi.ven A(t) the integral (59) may diverge 

for a certain S and yet the integral (58) converges in an entire 

neighborhood of s. 

EXAMPLE: Let '1j_, be the Banach algebra of complex-valued 

continuous functions F(x), 0 :s. x :s. 1, with the usual norm 

(65) ll F(x) II = sup I F(x) I • 
o ~ x ~ 1 

Integral (1) then assumes the form 

(66) i e-tS(x)dtA(x,t) • 
0 

Let 

( 67) A(x,t) = - 2a(x)e- t/2 , where 

{ :_4x 
0 ~ x ~ 1/4 

a(x) = 1/4 ~ x ~ 1/2 

0 1/2 ~ x ~ 1 

( 68) 

Then 

• 
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) - t/2 (69) dtA(x, t = a(x)e dt. 

Choose 

(70) S (x) = 
0 

Computation shows 

-1 /4 0 ~ x ~ 1 /2 

5/4 - Jx 1/2~ x ~ 3/4 

- 1 3/4 :s.x ~ 1 

(71) \\ e-ts o (x) dtA(x, t) \\ = - t/4 e dt, 

(72) I\ dtA(x, t) II = e-t/2 dt, and 

(73) II e- tS o (x) \\ lldtA(x,t) l\ = et/2 dt. 

• 

From (71) and (73) it follows that integral (58) converges while 

integral (59) diverges for S
0
(x). Now define a neighborhood of S

0
(x) 

by 

(74) 7(_(S
0
(x)) = { S(x) t: t3 I sup I S(x) - S

0
(x) I < i} . 

x 
For any S(x) l fl.CS

0
(x)) 

(75) II e-tS(x)dtA(x,t) II !S e- t/B dt 
' 

and hence integral (58) converges. 

It may be pointed out however, that it is not possible for (58) 

to converge and (59) to diverge for every S(x) t ti , for the two 

integrals must agree at least for all S(x) which are a multiple of the 

identity I. 

(60) 

Finally we come to the case of integral ( 60) for which we have 

THEDREM 3. 12. For the integral 

Joo exp( - tS) II dA( t) II 
0 
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there exists a real number - co ~ c ~ oo given by the e.xpression 

(64) c = lim 
t ~ Cl) 

ln I V(t) - V(co) I 
t ' 

where V(t) denotes the strong variation of A(t) in the interval [ o,t] , 

and V(oo) = lim V(t) or 0 according as the limit exists or not, such 
t-+ Cl() 

that (60) is convergent for Rl(S) > c, and is divergent for Rl(S) < c. 

Proof: This follows immediately from theorem 3.4 since JI d.ti..( t) II 

is merely a :rrru.ltiple of the identity., and shows that 

(\Noi'(;;c). 
~iI' t:'ftt . 

(j = (f = v sa 
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Section IV 

DIRICHLEl' AND PO~IER SERIES 

As in the case of the complex plane, a special case of the Laplace-

Stieltjes integral is the generalized Dirichlet series 
ClO 

( 76) f(S) = L 
n=1 

A exp(-t S) n n 

lim t = Q)• n 
n~ oo 

For if A( t) is defined by the equations 

A( t) = A1 + A2 + • •• +A (t < t n n 

(77) A(O) =O 

A(t) = A(t+) + A(t-) (t > 0) 
2 

we have 

(78) l"° exp(-tS)dA(t) 

0 

A exp(-t S) 
n n 

whenever the integral or the series converges. 

In particular if t == n, and we set n . 

exp( -nS) == [ exp( -S) J n == zn 

then (78) reduces to 
Q) ClO 

(79) j exp(-tS)dA(t) = L A nzn. 

0 n~ 

< tn-1) 

It must be pointed out however, that in general a power series 

cannot be represented as a Laplace-Stieltjes integral. This follows 

from the fact that the equation exp(-S) = Z has a solution for a given 
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Z if and only if it belongs t o that component of the regular elements 

of ~ which contains the identity I [5, page 451] • Lorch [11, 12] 

has shown that in a commutati ve Banach algebra the set of regular elements 

either has one ar infinitely many components. Inf act the number of 

components may well be non-denumerable. 

The failure of power series to become completely a speci al case of 

the Laplace-Stieltjes integral d oes not alter t he previous theorems, 

however. As is to be eJqJected it is no longer Rl(S), but the spectral 

radius 

(80) 
1/n 

\cr (Z) \ = lim \\zn l\ = inf \M*(z) \ 
n-+ 00 M*'e TIL 

that now plays the essential rol e in the oonvergence theory. Since only 

a. slight revis i on of techniques is required, 111e state without proofs 

the following t heorems. 

TIIEORE!I~ 4.1. If the series 

co 

L A zn 
0 n 

converges for Z = Z , then 
0 

it converges for any Z such that lcr( Z) I <. 

THEOREM 4. 2. Let q denote the interior of the set of elements 
00 

~ for which the series L A Zn converges. Then if Z t (j and R 
. 0 n o c 

is an arbitrary eleme~t belonging to the radical of t;2 , ( Z + R) t:. Cf• 
0 c 

co 

THEOREM 4.3. For the series L \\A \\ \\Znl\ , there exists a real 
n:::O n 

number 0 ~ a ~ + co given by the expression 

a = 1/ lim ll A II 1/n 
n~oo n 

such that the series converges for all Z for which }o-(Z) \ < a, and 

diverges for all Z for which la-(Z) \ > a. 
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Finally, as a special case of a theorem which may be found in 

[.5, page ss] we have 

THEOREM: 4. 4. For tl1 e power series 
00 

(81) L: 
n=O 

there exists a real number a given by the expression 

1 
a = -------........ -

lim llA II 1/n ' 
n n-+ co 

such that ( 81 ) converges absolutely for II Z I\ < a. On every spherical 

surf ace II Z II = r .> a there are points where the series di verges. 

Moreover the series is uniformly convergent for II Z II < (1- E: )a, E. >O, 

and fails to converge uniformly on any spherical surface JI Z II = r < a. 

The form of the conjecture stated in Section III undergoes obvious 

appropriate changes and can be verified for the same classes of Banach 

algebras that were treated previously. 
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Section V 

THE LAPLACE-STIELTJES INTEGRAL AS AN ANALYTIC FUNCTION 

The problem of extending analytic function theory has been 
~< 

considered in one form or another by many authors.~ We refer the 

reader to [5, chapters 3,4, chapter 4, paragraphs 5.1 5-5.17, and 

chapter 22, paragraph 22.9 ] where numerous references are to be 

found. 

Particularly applicable to the case of a commutative Banach 

algebra with unit element, where one desires to study functions on 

the algebra to itself, is the following definition of differenti­

ability and analyticity given by Lorch [ 11] • 

DEFINITION 5.1. Let a be a conunutative complex Banach algebra 

with a unit element. A single-valued fun::tion F(Z) whose domain ~ 

and range ft are in tfJ... 
Z = Z if for each E: > 0 a 

0 

H in fJ with !I H I\<~ 

1 
is said to have a derivative F (Z ) at 

0 

~ > 0 can be found such that for all 

(82) II F (Z + H) - F ( z ) - HF 
1 

( z ) II < 
0 0 0 

E. \\H II • 

If F(Z) has a derivative everywhere in o6'-' , then it is said to be 

Lorch-analytic in ff . 

The theory of analytic function in real and complex normed linear 
spaces was initiated by A. D. Michal and R. s. Martin in a seminar at 
the California Institute of Technology during the years 1931-1932. 
See footnote 1, page 2 of [13] • 
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The theory of Lorch-analytic functions closely parallels the 

classical course both in its methods and principal identities. In 

order to develop a Cauchy theoren Lorch defined the following analogue 

of the Rieillflnn integral. 

DEFINITION 5. 2: Let LY be an open connected subset of fl . Let 

W = F(Z) be a function on 13_ to itself ·with domain ,,()-' • Let tP be 

a rectifiable arc in ff • By this it is meant that -P is given 

by an equation Z = Z( t), 0 ~ t * 1, where Z( t) is continuous and of 

strongly bounded variation. We then define 
n 

(83) j F(Z)dZ = lim L F [ z(un,k)) { Z(tn,k) - Z(tn,k-1)J . 
f' n _,. c.o k=1 

where max ( t k - t k 1 ) _,. O. 
k n, n, -

If F(Z) is continuous in AY , the existence of the integral is 

established in the usual manner and it has the properties of linearity 

and boundedness which are to be expected. 

(84) 

In particular we have the f allowing 

THEOREM 5 .. 1 : 

max l\ F(Z) ll ). (<f'), 
f 

where _--f. (-P) is the length of -P , that is, the strong total 

variation of Z(t) in the interval [o,11. 

A function F(Z) Lorch-analytic in a region ff can be shown 

to be continuous and Frechet differentiable in jj • (See [5, page 72] 
for terminology and references to the literature). As such, it is but 
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a matter of computation to show that F(Z) possesses derivatives of 

all orders in ctY which are themselves Lorch-analytic functions. 

Furthermore if A denotes an interior point of jJ one can establish 

the formulas 

(85) F(n) (A) = 1 
21r i 

1mere z describes acy curve 

j F(A + zI)dz 
n+1 

0 z 
(n = o,1,2, ••• ), 

surrounding the origin in the complex 

plane once in the positive sense and in such a manner that 1z1 remains 

small enough to assure that (A + zI) remains in the domain of definition 

of F(Z). For the justification of the above statements, and further 

details we refer to [ 5, Chapter 4, especially pages 113-114] • 

With the aid of (85) it is now possible to represent F(Z) and its 

derivatives in a form more closely analogous to the classical formulas. 

In fact, we ba ve 

THEOREM 5.2. Let F(Z) be Lorch-analytic in an open connected 

region LY<. ~ , then the formulas 

(86) FCn\A) = 1 \ F(Z)(Z-A)-(n+1 )dZ (n = 0,1,2, ••• ) 
21l'i J r 

are valid for every path r of the form Z =A + zI, where z again 

describes any simple, closed, positively oriented path ?f surrounding 

the origin once in the complex plane, provided that IZI remains small 

enough to assure that (A + zI) remains in the domai..n of definition of 

F(Z). 

Proof: Letting Z =A + zI clearly reduces (86) to the form (85). 
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Should the domain ff include that portion of the subspace zI 

(z varying over the complex numbers) which includes the spectrum of A 

considered as elements of the algebra, then an argument on the 

deformation of paths will allow a restatement of the above theorem. 

The path Z = zI may nOV\r be chosen, where z surrounds the spectrum of 

A in the complex plane once in the positive sense. 

In the latter form, formula (86) has been used by H. Poincare 

[14] , F. Riesz [15] , L. Fantappie [16] , and more recently by 

Dunford [ 17, 18] , Lorch [11] and A. E. Taylor (19] . 

To be brief, the usual pattern of fundamental theorems may be 

developed, culminating with the establishment of a Taylor expansion 

for a Lorch-analytic function into a power series which converges in 

the largest sphere with center at the point of development i n which 

the function is analytic. As has already been pointed out however, 

the series may converge for points outside of this sphere ~ for 

example, points in the radical of ti . Conversely, a power series 

of the form 

F(Z) A (Z - A)n n 

defines a Lorch-analytic function in the interior of its set of 

convergence. 

As a first step toward establishing the Lorch- analyticity of 

the function 

(1) F(S) = s exp(-tS)dA(t) 

0 
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within the region d , we prove the following analogue of the c 

Vi tali theorem. 

that 

(i) 

(ii) 

THEOREM 5.3. Let { Fn(s)} be a sequence of function such 

F ( S) is Lorch-analytic in an open region (j , n = 1 , 2, • •• , n 

F n(S)-)- F(S) for each S f.. <Y , and 

(iii) for each S (_ Cf , there exists a closed sphere Q/(s) and 

a constant m(S) such that II Fn(s) fl ~ m(S), n = 1,2, ••• , then the 

limit function F(S) is Lorch-anaJ,ytic within () ., 

Proof: It will be sufficient to verify that F(S) is Lorch-

analytic in a neighborhood of each point S l lf . 

Let S
0 

be an arbitrary point belonging to LY • By (iii) there 

exists a sphere d es ;r ) of radius r > O about S contained 
0 0 0 0 

entirely in Cf , and a positive constant m, such that 

tl F (s) ll ~ m, s £ cf( s ;r) n = 1,2,3, ••• n o o • 

Choose an r 1 < r
0 

and form the sphere 

d cs
0
;r1 ) = { s / Us -S

0
ll .$ r1} . 

By (i) and theorem 5. 2, for s1 and S2 l iJ(S
0
;r1) 

Fn(S1) - Fn(S2) = 1 s F (1li)(W-S1 )-1 dW - 1 
2 1l' i r n 2 1f i 

1 =--
2 rr i 

(S1- s2) J F n (W)(w-s1 )-
1 (W-S2)-

1 dW , 

r 
where r may be chosen as 

W = S
0 

+ r
0
ei6 I (0 ~ 8 ~ 2 Tf ). 
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We then have 

l1Fn(S1)- Fn(S2)lf~ 

from r to 

then 

n=1,2, ••• • 

This states that the Fn(S) are equi-uniformly continuous in Q/(s
0
;r1). 

Novr choose r 2 < r 1 and define the path P1 as 

W = S
0 

+ rei6 I, O .:s e ~ 21I' , r 2 < r < r1 • 

By the choice of r, r1 belongs to the sphere Q/( S 
0
;r1 ) and hence 

by the preceding argument, given E > O there exists a S ( €: ) > 0 

such that 

11Fn(w1) - Fn(W2)11 < E n = 1,2, ••• 

for any W1' w2 E. r1 for which l! w1- w2 II < ~ ( E ). B-.r (ii) 

F (W) -+ F(W), and hence 
n 

JIF(W1 )-F(W2) \\< E for Uw1 -w2 11 < ~(E; ). 

Since r1 is a compact set it is possible to choose a finite 

number of points W. (i = 1, 2, ••• ,p) along 
1 

ll wi-Wi+1 l\<~(E) (i=1,2, ••• ,p) 

r1 such that 

(Wp+1 = W1), 

and for arbitrary w {. r 1 

ll w-w. 11 <~(E ) . 

there exists at least one W. such that 
J 

J 

Again by (ii) since F (W) -+ F(W), we have the existence of p 
n 

integers n.(W.) i = 1,2, ••• ,p, such that, given E: > 0 
1 1 
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11 F cw.) - F cw.) n < ~ n 1 m J. 

Let 

n = max [ n. (W. )] 
0 1 ~ i ~ p J. J. 

, 

then f or arbitrary w E.. r1 
l/ F (W)- F (W) ll ~ ll F (W)-F (W.) \I + !I F (W.)-F (W.) l\ + ll F (W.)-F (W) I\ n m n ni ni mi mi m 

< 3 E provided n,m > n
0 

and 

wi is chosen so that ll w - wi \\ < ~( E: ). 

Thus the Fn(W) converge uniformly to F(W) for W ~ r1• 

Now restricting S to the sphere 

rd(S
0
;r2) = {s \ ll S-S

0
/I s. r 2} , 

F ( S) - F (S) = - 1 - j { F (W)- F (W) } (W-S)-1 cnv, 
n m 2 1i i r n m 

1 

from which it follows 

II F (S )-F ( S) II ~ E r , n > n • 
n m d o 

But n is independent of S E s;J'(s ,r
2
), and hence the F (S) converge o o n 

uniformly to F(S) in this sphere and c onsequently to a Lorch analytic 

function. This completes the proof of the theorem. 

We next establish two lemmas. 

LEMNJA. 5. 1. If A( t) is a function of strongly bounded variation 

in every finite interval ( o,b 1 then the sequence of functions defined 

by 

(87) Fn(S) = ~ exp(-tS)dA(t) 
0 

n=1,2, ••• 

are Lorch analytic throughout --ra_ and their k-th derivatives are 
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given by the formula 

(88) 

n 

F;k)(S) = J (-t)k exp(-tS)dA(t) 

0 

n=1,2, •••• 

Proof: The proof vr.i.11 be demonstrated for the case k = 1 only. 

From (87) and (88) we have 

II F n ( S-l!l)-F n ( S )- HF' (S) II = \\ J exp(-ts) { exp(-tH) - I + tH} dA( t) II 
0 

llHll { l\H\I ~ t
2
et llHll II exp(-ts) II ll dA(t)I} = llHll { JIHll m(n)J 

Then given E": > O,for all H such that l\Hll< -5:_ we have 
m(n) 

II F ( S + H) - F ( S) - HF' ( S) If < E- II H )I • Similar proofs may be n n 

devised for higher derivatives. 

LEMMA 5. 2. Let d denote the interior of the region of con­e 

vergence of the integral 

(1 ) 

and let 

( 87) 

~m exp(-tS)dA(t) , 

0 

n 

F n(S) = J exp(-tS)dA( t) 

0 

(n =1,2, ••• ). 

• 

Then if S 
0 

is an arbitrary element belonging to the region ~' there 

exists a real number r(S ) > o, and a constant m(S ) , such that ·within 
0 0 

the sphere d(r;S ) = l\S-S \\ < r(S ) 
0 0 0 

\\ F ( S) I\ ~ m( S ) n o (n = 1,2, ••• ). 
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Proof: Let S 
0 

be an arbitrary point belonging to ~.. Since 

Ci is open, there exists an open sphere of radius c 

S which also lies in CJ • In particular o c · 

Now we restrict S to lie in the sphere 

We have 
n n 

( 89) Fn(S) = s exp(-tS)dA ( t) = 
0 

J exp [ -t(s-s1 + s1 )] dA(t) 

0 

where 

(90) 

= 

t 

n 

j exp [ -t(s-s1) ] dB( t) , 
0 

B(t) = J exp(-uS)dA(u). 

0 

An integration by parts yields 
n 

fn(S) = exp [ -n(s-s1 )] B(n) + (s-s1 ) J exp [ -t(s-s1 )1 B(t)dt, 

0 

and hence 
n 

(91 ) II f n ( S) I\ ~ II exp l -n( s-s1 5) I\ I\ B( n) II + II s-s1\\ J II exp [-t(s-s1 )] II 
0 

l\B( t) I\ dt. 

For each finite n, the right side of (91) exists giving a sequence of 

constants: 

The restriction II S - S 
0 

I\~ f!./ 3 implies that Rl( s-s1.) ~ t > ~ > 0, 
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hence there exists an n
0 

such that 

(92) II exp [ -n(s-s1 )]I) < (n > n ). 
0 

From (90), B( t) is a continuous function of t, and since s1 lies in ~ 

B(oo) exists, and therefore for some positive constant c 

(93) II B( n) JI < c for all n. 

Using (92) and (93) in (91) yields 

-n <f/7 jno 
(94) llFn(s) ll < e 

0 + 5c f /6 

0 
=m 

Setting 

' 
we have for S belonging t o c:J(s

0
) = { s \ \IS..S

0
1\ "- r:13 = r(S

0
)} 

( n = 1 , 2 ,3, ... ~ ) 
as was to be sho1m. 

( 87) 

From the last two lemmas we see that the functions 
n 

Fn(S) = ~ exp(-tS)dA(t) 

0 

n=1,2, ••• 

satisfy the conditions of theorem 5.3 and hence we have established 

THEOREM 5.4. The function defined by the LapJace-Stieltjes 

integral 

(1) 

00 

F(S) = s exp(-tS)d.A.(t) 

0 

represents a Lorch-analytic function within the region C{. 
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A more general theory of analytic functions on one Banach Space 

to another may be found stmunarized in [ 5, Chapter 4] where adequate 

references t o an extensive literature on ·t,he subject is available. 

When couched in the language of Banach algebras the definition of an 

analytic function assumes the following f orm. 

DEFINITION 5. J. A function F(Z) on -fJ._ to ~ , defined in the 

domain e;()-" is said to be analytic in ff if it is single- valued, 

locally bounded, and Gateaux-differentiable [ 5, page 72 ] in ff . 
The question arises if perhaps it is not possible for a Lorch-

analytic function to be analytic in the sense of the above definition 

in a more extensi ve domain than that in which it is Lorch- analytic. 

That this is not possibl e is shown in 

THEOREM 5.5. Let F(Z) be analytic (in the s ense of definition 5.3) 

in an open connected set CY<. 'fl. Let ~ be a i:phere, center at Z
0

, 

contained interior to lf i n which F( Z) is Lorch- analytic . Then F(Z) 

is a Lorch- analytic function throughout (j . 

Proof : Let W be an arbi tra!'IJ point in d . By hypothesis we may 

join Z
0 

to W by a path r lyi ng entirely within <:f • To each Zr 

belonging to r ther e exists a sphere, center at Zr , with a non-

zer o radius (.> (Zr ) in which F(Z) may be represented by an absolutely 

convergent F- power ser ies 

(9.5) 
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By standard arguments ~(Zr ) can be shown to be a continuous non-

zero function of Zr on the compact set r and hence attains 

its lovver bound ~o > O. 

By the compactness of r we may choose a finite number of 

points Z, z1, ••• ,z =W along 
0 p r such that II zi+1- z1 l\ < ~/ 2 

with the p spheres i = 0 , 1 p •• ,p-1 and cover r 
rJi = { Z \ II Z-Z i II < ~ J i = o, 1, ••• ,p. Furthermore, the cf. 

J. 

have the property that the center Zi+1 of ~ 4 is contained in ~ . 
J.+1 i~ 

i = 0,1, ••• ,p-1. 

Let z I be the first one of the zi (. r contained in ~ and 

for which the sphere II Z - Z 
1

11 <- fo includes a portion of 0 - 0L. 

Since Z 
1 

is interior to xfL' F(Z) may be expanded in a · Lorch-power 

series 

(96) 

co 

F(Z) = [ 
0 

F(n) (Z') (Z-Z 1 )n 
t 

n • 

Simultaneously we have the F-power series 
00 

I I 

(97) F(z) = L ~~cz, ;z-z ) 
n=O n. 

I I 
II Z-Z II< ~(Z ). 

I 

II Z-Z I\ < fo· 

I t 
By hypothesis, ( 96) and ( 97) agree in II Z-Z II <. ~(Z ) and for 

such Z it may be shovm [5, page 72] that 

(98) 
t I 

II Z-Z II < ~( z ) • 

I t 
Now let Z -:j. Z be an arbitrary point in II Z-Z JI < ~ 

0
, and set 

(99) 
II 

z = z + 
t ' ~(Z ) (Z-Z ) 

2 II Z-Z 'II • 
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Obviously 

' Jl z"- z'll = ~~z ) < ~cz') 

" ' and hence (Z - Z ) satisfies (98), that is 

Substituting from (99) into (100) and making use of the linearity 

and homogeneity of the G- differential we have 

(101) 

This reqµires that 

(102) 

00 

\ ' 
F(Z) = ~ 

0 

' II Z-Z II< ~o· 

~ ~ ( Z 
1 

; Z-Z ') = F ( n \ Z 
1 

) ( Z- Z ' ) n 

r ' n. n. 

' be absolutely convergent f or all Z such that II Z-Z II < \ o· Since the 

right side is an absolutely convergent series of Lorch-analytic 

' functions for IJ Z-Z JI..:::: \ o and converges to F(Z) in that domain; then 

F(Z) is a Lorch analytic function outside of C{. Proceeding in 

an analogous manner we thus see it is possible to reach an arbitrary 

point W f. (] in a finite number of steps , at each step establishing 

the Lorch-analyticity of F(Z). 
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Section VI 

SINGULARITIES ON THE BOUNDARY OF THE REGION ~ 

When 1fi is the complex plane it is well known that a function 

defined by a Laplace-Stieltjes integral may fail to have any singular-

ities on the abscissa of convergence of the integral. Indeed, it is 

not difficult to construct exa.~ples for which the abscissa of con-

vergence is finite and yet the function represented is entire. 

In the remaining paragraphs of this section the analogous situation 

is considered for an arbitrary Banach algebra. A special case is dis-

cussed for which it can be asserted that there exists singularities on 

the boundary of the region d . When the term singularity is used c 

it will be in the following sense. 

A point S on the boundary of the region 
0 

DEFINITION 6.1 .. 0 c 

will be called a singularity of the function defined by 

(1) F(S) = s exp( - tS)dA(t) 

0 

if, given any neighborhood /(( S
0

) of S
0

, it is impossible to extend 

the definition of F(S) into ~( S0 ) in such a manner that it remains 

analytic and agrees wi. th F(S) in /?.. (S
0

) /) ({. 

It has already been pointed out that a function F(S) Lorch- analytic 

in a region Cf may be expanded in a power series about any point S 
0 

in r:J • Furthermore, the series converges not only in the largest 

sphere contained in the domain of analyticity, but for all points of 

that sphere translated in the direction of the radical of tfi . This 
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serves to extend the domain of analyticity into a cylindrical set 

parallel to the radical. Because of this fact we have 

THEOREM 6.1. If the Lorch-analytic fumtion F(S) defined by (1) 

has a singularity at the point S
0 

on the boundary of the region ~' 

and if R is an. arbitrary element belonging to the radical of £1 , 

then S + R is a singularity of F(S). 
0 

Proof: We first recall from theorem 2. 5 that if S t:. CJ' then c 

S + R £ d for arbitrary R in the radical, so that F(S) is defined c 

and by theorem 5.4 is analytic in a cylinder in the direction of the 

radical. It also follows that if S
0 

is a boundary point of de then 

so is S + R. Now if S + R were not a singular point of F(S), it 
0 0 

could then be included within the interior of the set of corwergence 

of some power series representing F(S) and agreeing with F(S) in de. 
But by the remarks made previous to the theorem this would imply that 

F(S) could be analytically extended back to inc lude the point S • This 
0 

is a contradiction. 

Yve now consider a case when the existence of singularities on the 

boundary of cJ can be assured. c 

THEDREM 6. 2. Let the integral defining the function 
co 

(16) f(s) = S e-tsda(t) 
0 

have abscissa of convergence Rl( s ) = c, and let s be a singularity of 
0 

f(s) on Rl(s) = c. Then the function defined by the integral 
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F(S) = ~ exp(-tS)da(t) 

0 

possesses a si.ngulari ty at any point S on the boundary of 
0 

which there exists an M~ t:. O'll such that M~(S0 ) = s
0

• 

o' for c 

Proof . Let S be such a point. Assuming S is not a singular 
0 0 

point of (34), then for any r > 0 the point s1 = S
0 

+ rI t. ~' 

Rl(S1) > c, and F(S) may be expanded in a power series 

(103) 

where 

(104) 

00 

F(S) = .2::: A (S - s1)n, 
n=O n 

1 
A = -

n ' n. 

co 

~ (-t)nexp(-ts
1

)da(t) 
0 

n=0,1, •••• 

The series ( 1 03) vvi 11 include the point S 
0 

within its sphere of con­

vergence. This implies however that 
oo n 

M: l F(s)] = z M~(An) [ 1{~(S) - M:(s1 u (105) 

n=O 

* is a convergent power series which includes the point s = M (S ) 
0 0 0 

within its circle of convergence. Since 

(1o6) n=o,1, ••• ' 

we see that the power series (105) represent (16) at s
0

• But this is 

a contradiction to the assumption that s
0 

was a singularity of (16). 

Theorem 6.2 implies that any of the known results concerning 

singularities of the function represented by (16) apply to integral 

(34) in the sense stated above. In particular we ref er to [ 9, page 58] , 



-60-

[ 20, pages 89-92] , and [ 21 , Chapter 4] where many of these results 

are discussed. 

In conclusion we sketch the proof of a generalization of a theorem 

used in the theory of Dirichlet series by Cramer (?2] and Ostrowski 

(23] • To do so we first need 

LEM.MA 6.1. Let P(z) be a -t;j_ - valued entire function of the 

complex variable z of exponential type, i.e., there exists a non-

negative constant k such that for arbitrary E: > 0 

(107) 

Let 

(108) 

\\ P(z) \l < e(k+ E: ) l zl 

co 

= ~I Il 
P(z) L C z 

n n=O 

for \z I sufficiently large. 

be the power series expansion of P( z) and define the function 
co 

(109) Q(z) = L n: C /zn+1 
n;:O n 

constructed by using the same C as in (108). Then P(z) and Q(z) are n 

related by the following formulas: 

(110) Q(w) = S e-wzP(z)dz 
0 

(111) P(z) = - 1 - S ezwQ(w)dw. 
2 

Ti' i \W I = k + E 

The proof follov;s mutatis mutandis that of the classical case and 

may be found in [ 1 O, pages 61-65 J • 
Now let Oc be the open region of convergence of the function 

defined by 
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co 

(1) F(S) = 5 exp(-tS)dA( t), 

0 

and let P( z) be an entire function of the complex variable z satisfying 

the conditions of lemma 6.1. Introduce the new function C(S) defined 

by the integral 

(112) C(S) = f exp(-tS)P(t)d.A(t) • 

. 0 

By use of (107) it ccm. be verified that the integral (112) has an open 

region of convergence which at least includes the set 

( 113 ) ~ = { s ca I s = s 0 + k I , so.me s 0 E, (j c 1 . 
From theorem 2.4 it follows that 

Now let l;, be an open set contained in 1?i_ and such that 

~ n CJk is non- void. Further, let G(S) be an analytic function defined 

in ~ and such that 

(114) G(S) = F(S) for S e 

Define the region 

(115) 

Since CJc and cJk are open sets it is easily seen that 

S t:.. O'k implies that S + ]> I e. (jc for all ~ such that It l ~ k. 

Moreover, it follows that S f. E" C\ implies S + 'f, I E. 1./- for I bl ~ k. 

Construct within -;..;., the set 

( 116) 1f k = { s [ rl I s + ~ I f If ' I t I -:S k } • 
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Certainly 7-.fk is non-void since it contains at least ~ n ~· 

Furthermore, 'Nk is an open set. This follovrs from the fact that 

the minimum distance from the compact disk S + 1t I, ( I ti~ k) to the 

complement of 7? is definitely positive. 

(117) 

where 

~ 

Now let /y\ be that component of :1/k which is connected with 
"-' r"J 

Again, 7->lk is non-void since ~ f\ C\ C: /Y-k 11 ~ C /Y-k. 
Define the function 

1 
J(S) =--

2 1i' i 
S G(S-wI) Q (w)dw , 

f WI = k + €: 

Q (w) represents the analytic continuation of the function 

defined by (11 O). If S is restricted to remain in 
50 

can be chosen sufficiently small1that as w traverses the path l wl = k + E- , 

S - wI remains in the domain of analyticity of G(S), and hence by a slight 

modification of a stan::l.ard theorem of complex variable theory [24, page 

99 ] it can be shown that J(S) defines a Lorch analytic function of S 

,......., 

Moreover, since S is restricted to lie in 1v k' then by ( 114) 

J(S) may be written as 

(118) 1 
J(S) = --

2 11 i 
F(S-wI)Q (w)dw. 

lw l = k + E. 
~ 

If S is even further restricted to lie in 1-f k n CJk we may use 

equation (1) as a representation of F(S). Substituting from (1) into 

(118) we have 

(119) J(S) 1 
=- j ( ~ exp [ -t(S-wI)] dA(t0 Q (w)dw. 

Jw l = k +E-
211 i 
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""' The restriction S E ~ n Uk and the choice of 0 sufficiently 

small makes the inner integral in (119) uniformly convergent with 

respect to w (see theorem 2. 6), and an interchange of order of inte-

gration is justifiedo Carrying out this process yields 

(120) J(S) = 5 exp(-tS) ( ~: i j etwQ(w)dw) dA( t) , 

0 \ \WI = l{ +c 

which by (111) becomes 

(121) J(S) = 

We thus have 

~ exp(-ts)P(t)dA(t) = C(S). 
0 

THEOREM 6.3. Let F(S), P(z) , and G(S) be the functions described 

above, and define the function C(S) as in (1 12) . Then J(S) as defined 
AJ 

in (117) is an analytic extension of C(S) into 7yk. 
It is to be noted that J(S) need not be equal to C(S) at all 

points where both are defined, since this region may not be simply 

connected. This multi-valuedness of the extension can even be realized 

in the classical case where t3. is the complex plane. 

The importance of the last theor6Jl lies in the fact that in the 

classical case it plays an essenti al role in gap and density theorems. 

The function P( z) is an entire function vmich is associated with the 

sequence of exponents of a Dirichlet series, and aids in a discussion 

of the density of that sequence. Its function is essentially that of 

modifying the given Dirichlet series to one with all positive 

coefficients. Once the coefficients are positive the existence of 
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singularities on the abscissa of convergence ca..~ then be assured. 

It appears reasonable that a similar type of analysis could be 

extended to those special Banach algebras called Banach algebras 

in which there exists a notion of positiveness. It is the intention 

of the author to carry out such an investigation in the near future. 
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