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ABSTRACT

This thesis is the result of work done in connection
with the California Institute of Technology Electric-
Analog Computer. Several methods are developed for
determining the accuracy of the solutions of various types
of problems by electric circuit analogies. These are
used to obtain expressions for the errors involved in the
solutions of specific examples.

The first part deals with the error involved in the
solution of problems withh continuously distributed physical
properties by means of clrcult analogies of lumped para-
meters. The errors of mods frequencies of several mechan-
ical vibration problems are given in the form of asymptotic
series.

In the second part, investigation is made of the effect
of the statistical deviation of the actual values of the
computer elements from their nominal wvalues. This effect
is computed for circuits for some of the problems con-
sidered in the first sectilon.

The third part describes the analog computer solution
of the transient stresses in a model airplane wing under
landing impact. This solution is compared with another
computed solution and with an experimental test of the

same model wing.
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PREFACE

The statement of a problem which is to be solved
with the electric-analog computer consists of thres
distinct parts. The first part 1s a description of the
system. This may be in the form of a set of mathematical
egquations, or i1t may be a description of the subject of
the problem, consisting of physical measurements and
properties. The second part establishes the excitation
of the system. The third part states what answers are
desired; that is, prescribes the quantities to be in-
vestigated.

The solution of the problem follows the same steps.
First an electric circuit i1s constructed which is an ana-
log of the physical or mathematical system. The second
step 1s the application of electrical excitation to various
parts of the circuit. And finally the answers are obtained
by observation of the electrical gquantities present in
the circuit.

Errors in the solution may be traced back to one of
these three processes. The analogy between the elsctric
circuit and the physical or mathematical system may be
faulty. The excitation of the electric circult may not
correspond to the forces to whichh the physical system 1is
subjected. Observation of the electric analog by means
of meters may introduce further error. This thesis will

treat in detail only errors derived from the first source,



imperfect analogy.

The other sources do contribute to errors, and in
many classes of problems cannot be ignored. When the
excitation consists of an arbitrary function of time to
be applied to the circuit, the combatting of error from
this source lies chiefly in the design and use of special

(l)% Brrors

equipment to generate the desired functions.
due to metering may be caused by the disturbing of the
analog-circult when the meters are connected, or by
transmitting to the operator information at variancs

with that which exists in the circuit. The elimination

of these errors lies 1in metering-system design, in which
the chief limitatilions are the quality of ferromagnstic
materials and parasitic impedances.

The analogy between the physical or mathematical
system and its electric analog may be inaccurate for a
number of reasons. One 1s that the differential equations
of the original system may be represented in the circuit
by difference equations. This 1s most often the result
of using lumped electrical parameters as an analog of
distributed physical properties which are functions of
a continuous space variable. Errors belonging to this
class are considered in Part I of this thesis.

Another reason is the imperfection of the individual

% Ralsecd numbers in parentheses designate the references
listed at the end of the text.
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elements of the computer, including inherent parasitic
inductance, capacitance, and resistance; deviation of the
actual value from the nominal value; and non-linearities
in the operating characteristics. Part II deals with the
limitation of precision caused by the deviation of actual
values from nominal values.

A third reason is that it may be impossible to
reduce the original physical system to a set of equations
without introducing several qualifying assumptions which
affect the validity of the answers obtained.

In discussing the error and precision involved in
the solution of a problem by means of a certaln circuit

£ is necessary to specify what quantity constitutes the

e

answer in order to define the error and precision. It
would be difficult to define and ascertain the error of
an answer which consists, for example, of the response
of a system to an arbitrary transient excitation. 1In
the case of vibration problems, the frequency of normal
mode vibration is an important answer, and is a quantity
which i1s more readily analyzed. In this thesis, most of
the problems treated are vibration problems, and the
expressions which are derived are in terms of mode

frequencies.
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I ERRORS DUE TO THE LUMPING OF CONTINUOUS PHYSICAL PROPERTIES

1.1 Introduction

The theory underlying the construction of elec-
tric circuits of discrete elements to represent continuous
physical systems has been considerably developed. (2,3)
The most certaln method of determining the error intro-
duced by the lumping of parameters 1s to calculate the
solution to the physical problem, calculate the solution
of the circuit analogy, and compare the results. This
cannot be done in general, for the usual problem to which
the computer is applied cannot be solved by exact analyt-
ical methods. However the process of checking any com-
puter involves using it to gel answers to problems which
can be solved by other means. It is then hoped that the
errors present in the general solutions can be estimated
from a Lknowledge of the errors which exist in the test
problems.

Certain eigenvalue problems are a good test for
errors introduced by lumping parameters, for solutions
may be obtained for the problem withh continuous proper-
ties, as well as for the electric circuit which repre-
sents it. The electrical analogy for this type of problem
is a passive, non-dissipative circuit, for which the nor-
mal modes of oscillation are determined. Ior the purpose

of defining errors the mods frequencies are considered to



be the answer.®

In this part are considered eigenvalue problems
associated with linear second and fourth order partial
differential equations with constant coefficients. For
the continuous physical system the eigenvalue solution
is obtained from a differential equation by standard
methods. For the lumped circult the mode frequencies
are obteined from the solution of a differsence equation
or difference equations. For many of the cases considered
the mode frequencies carmot be expressed explicitly from
the difference equation solution, but are developed from

it in the form of series.

1.2 The Fourth Order Eigenvalue Problem

The equation considered here is that describing

the lateral motion of a uniform beam bending in one plane.
%+%%§:o (1)
y = lateral deflection
x = longitudinal dimension
P = mass per unit length
EI=stiffness to bending in x~-y plane
t =time

Effects of rotary inertia, finite shearing strain,

32,

% If the physical system under consideration is non-
conservative, but has linear dissipation, the same method
may be used. The circult will contain resistance, and
the modse frequencies will be complex numbers, repressnt-
ing rate of decay as well as rate of oscillation.
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and damplng are neglected. To reduce this to an eigenvalue
problem#* sinusoidal oscillations are assumed to exist at

a frequency of ®/2W. y(x,t) is replaced by Y(x)ejwt, and

3%y is replaced by _wQYGJwt, Equation (1) is now written
ot
4
Y 4
&L - ¥y =o, (2)

PW\%
EI )

where k =(
k is a positive, real number. In gensral Y is a complex
number., However, in normal mode vibrations, all portions of
the system vibrate in the same phase, so that Y may be
considered real without loss of generality. 7y is defermined
by taking the real part of Y’ejwt. The general solution of
equation (2) is

Y = A cosh kx + B sinh kx + C cos kx + D sin kx. (3)

For comparison with solutions by finite-difference
methods, two sets of boundary conditions are applied,
giving the following standard solutions.(4)

(a) Simply supported beam.

2
At x =0, Y =0 and 87¥ _ o,

d%Z

_ _ dcy

At x =21, ¥ =0 and —F = 0.

Y = A, sin kpx (4)
K= mT (5)

*The term "eigenvalue problem" refers to a differential
equation resulting from the separation of variables of a
partial differential equation, and a set of boundary condi-
tions. In order that the elgenvalue problem have a solution,
it will be found that a term in the differential equation,
initially undetermined, must take on one of a set of discrete
values, known as the eigenvalues. For the vibration problems
considered in this thesis, the variable which is eliminated
by separation is time, t. The eigenvalue and the frequency
of oscillation are related in a simple manner.



m=1, 2, 3, eee
(b) Cantilever beam.

At x =0, Y = 0 and %% —0. (Clamped end.)

2 3
At x = 1, %E% = 0 and %E% = 0. (Free end.)

Y = Am(cosh k,X = cOS kmx)
+ Bp(sinh kpx - sin kpx), (6)

where ky, is a solution of the equation

1 + cosh k cos k = 0, (7)
and

By _ _ cosh ky + cos kp _ m[ 1 ](-1)m

Apm © sinh ky + sin ky (-1)7|tan zky

The first few sigenvalues for the cantilever beam
are listed in Table 1.
The simplest type of electric circuit analogy for

the beam in bending is given in Fig. 1%, page 8, together with

Table 1 Eigenvalues of the Uniform, Continuous,
Cantilever Beam

mode number, m kg,
1.875
4,694
7.8585
10,986
14.137

e WM

%+ The transformers ‘of Fig. 1 are assumed to be "ideal".
That 1s, all the turns are 1linked by all the flux, the
sum of the ampere-turns is zero, and no energy is dis-
sipated. T represents the ratio of the number of turns
in the primary (y) circuit to the number of turns in the
secondary (@) circuit.
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the representation of several types of boundary conditions.
The theory on which this circuit is based is developed
in references (2) and (5). In this analogy, the corre-
sponding electrical and mechanical quantities are given
in Table 2.

When subject to sinusoidal electric oscillations,
the circuit of Fig. la is described by a difference
equation which is derived as follows.

Ynel = Yn = Tgp,2

én‘-% - én_% = j@IJEn 5

Mpal = My = - T Sp-3
Sned = Sp-l = JwoY,

The quantities in these equations which have subscripts ars
functions of only n, and are related to the electrical quan-

tities of Table 2 by the relations

Table 2. Analogous Quantities in the Circuit of Fig. la

Electrical Quantities Mechanical Quantities
Voltages at nodes, y,, yns+1, ©tc. g!, Bending velocity
t

\Z
Voltages at nodes, %n_%, ¢n+%, etc. %%:5%%ﬁlope velocity

Branch currents Sp_1, Sneds ete. Shear
Branch currents My, Mp,71, etc. Bending moment
Capacitors C Mass

Inductors L Bending flexibility
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Tnlt) = R(¥y o)

fnei(t) = R (Zned ed@t)

Mpy(t) = (R(M, oJ®t)

Spei(t) = R (Snsd o3,
R means "the real part of." The four dif’erence equations
may be reduced to one by substituting for the terms on the
left side of each equation according to the preceding
equation. The result of this process is

Yoo - 4¥,, 1+ (6-2%) Y - 4y + Y, o= 0 (8)
where

7z = Turffa,

and 1s real and positive. The general solution of this
difference equation is

Yp= A cosh n6; + B sinh n6] + C cos néy + D sin néy  (9)

in which €7 and 6o are determined from the equation

2 sinh 36, = 2 sin 365 = z = {fTwiLC. (10)
The details of this solution are given in Appendix 1.
Equations (8) and (9) are valid for 2<& n& N - 2 when
the end conditions are those given in Figs. 1lb to 1f.
By writing out the equations of these terminating circuits
and defining Y, for n< 2 and N - 2 < n by equation (8) or
(9) a convenient mathematical statement of the boundary

conditions is arrived at:

Fig. 1b. End simply supported at O T,=0 (11)
Y]_ + Y 1 =0
Fig. lc. End clamped at O Y, = 0 (12)
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Fig. 1d. End clamped at ~-% Y, =0 (13)
Y =0
Fig. le. End fres at N Yy,q - 28¥y + ¥y = O (14)
Yeg = ¥y * 2y - Y, =0
Fig. 1f. End frec at N + &+ Yy 4 = 2¥  + Y, ;= 0 (15)
YN+2 - 2YN+1 + YN = 0

1.3 Solutlion by Wave Propagation Characteristics.,

Simply Supported DBeam.

From equations (3) and (9) it i1s observed that
the solutions of both the differential and differencs
equations are composed of two parts, one of which is a
sinusoidal function of longitudinal distance. If the
entire solution is sinusoidal (in equations (3) and (9)

A= B =0) the relation of the frequency of oscillations
to the wavelength may be found directly from the differ-
ential equation of a uniform medium, or from the difference
equation of a periodic structure - in the latter case by

(7)

a method due to Brillouin. This method involves sub-
stituting in the difference equation an assumed solution
of sinusoidal form. Applied to equation (8) it consists
of carrying out the work of Appendix 1, but considering
only those values of © which are pure imaginaries. This

method has been applied to eight different electric-circult

analogies for the beam in bending.

% In "An Improved Electrical Analogy for the Analysis of
Beams in Bending" by W. T. Russell and R. H. Macleal. (To
be published.) -
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Referring to the differential equation (2), and its
solution, equgtion (3), and setting A= B = 0, wavelength
A and oscillatory frequency are related as follows.

BNy (,owi)'ﬁ

A BI (18)
Similarly, from the difference equation (8) and its
solution, equation (9), results the relation

6, = 2 sin” %z =2 sin” [} (T%w? 10)%]. (17)

©, is the finite-difference equivalent of k, the wave number.
From equation (4), the simply supported, continuous

beam has sinusoidal mode shapes. The equivalent circuit

of N cells analogous to this will have the end condition

of Fig. 1lb at nodes 0 and N. It is apparent from equations

(11) that the end conditions will be satisfied by a sinus-

oidal solution:

mnm
N

so that the frequency may be obtained from

Y, = A sin mel, 2, 3, couy, N =1 (18)

3
- i, — 5 oo i K Km _ K
z,= 2 sin 36, = 2 sin oh ¢ ald 5% W T 24N3
)
km - °
* Tizoms (19)

Except for an over-all factor relating time measurements
in the analogous systems, the circuit is constructed to
satisfy the equation

2 P

\ C:.—____..

N'TL =T (20)

This allows comparison of the mode frequencies of ths

two systems

Awm= Wm 1=Zm2 . '\/-P— . szn\z &
Wwmo Dmo Uk VIC‘ k.2 Kl - k

m
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. 2 K
AWy sin Eﬁ .

5N

Awm . kmz + km4- - e em 21
®oe, = — TonZ T F60W% (21)
km = MmN {5}

As in the case of the clamped and freec ends illus-
trated in Fig. 1, an analogy can bs constructed for a
support midway between nodes. The equations for this type
of analogy are satisfied by a sinusoidal mode shape. Thus
the preceding development is applicable, and equation (21)
gives the correct error, provided N represents the effec-

tive length in cells.

1.4 Solution by Asymptotic Series. Cantilever Beam.

Unless the boundary conditions permit a sinus-
oidal solution the method of wave propagation characteristics
cannot be used to determine the mode frequencies. For the
uniform beam, only the beam with both ends simply supported
will have a sinusoidal mode shape. Problems involving
other end conditions must be attacked by different methods.
The cantilever beam 1s an important object of study on
the electric analog computer. A method of analysis
suggested by R. H. MacNeal is employed Lere to determine
the error in mode frequencies of circult-analogiles of the
cantilever beam based on Fig. 1, and to compare it with
the error in mode frequencles of the simply supported
beam of the preceding section.

There are four possible combinations of end conditions
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given in Fig. 1. These will be designated (ce), (cf),
(de), (df), the (ce) beam having the end condition of Figs.
lc and le, etc. These are summarized in Table 3, page 15.
The first step is to reduce the general solution to the
difference equation,

Yn= A cosh ne;, + B sinh no, + C cos no, + D sin ne,, (9)
and the boundary conditions to a form analogous to equation
(7) of the continuous beam. This is essentially a process
of browbeating hyperbolic and trigonometric functions.

For the first two beams these details are recorded in
Appendix 2. For all four beams the resulting equation,
giving an implicit expression of tie frequency, is ob-
tained and given in Table 4, page 16. The length of the
circuit-analogy, measured in cells, 1s designated M. It
will be noticed that the two beams (cf) and (de) have
identical equations, and hence will have identical mode
frequencies.

It i1s seen that both members of the equations in
Table 4 are functions of z, and hence of @, The solutions
could be found by plotting these functions on a graph and
noting the points at which the functions are equal. This
method 1s of limited value as 1t would rave to be repeated
for each value of I,

The equations of Table 4 may be put in a form which
will make them susceptible to the theory of implicit

functions. First, permit M to be continuously variable,
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and not restricted to discrete values. DNow, as the
expansion desired will be for large values of M, replace
I by W"%. Also, for convenience, replace z by v+W. By
these means, any of the equations of Table 4 may bs put in
the form

£ = f(v,w) = 0. (22)
Furthe rmore, sach of these is satisfied by

f(km,0) = 0, (23)
in which kg4 is any solution of equation (7).
It is assumed that a golution exists of the form v = v(w).

2

Designating %; and aw,by subscripts v and w, respectively,

2
ard %% and ng by v' and v", respectively, successive

differentiation of equation (22) with respsct to w results

in
L= rvr+ fy=0 (B
2
a~r
v WV'2 + 2fouv! &+ £,v" & £, =0 (25)

These equations may be solved for v', v'", etc.

= - iw
v! = 7 . (26)
V" - fvv v! _ 2fvwV! - faww (27)
I\I fV fv
_ Ot 2fiwfw _ fww
f\lr fvz z\I

Then the function v(w) may be written
2
viw) = k, + 3 o wiv" L.,
! 21 (28)

v', v', etc., are to be calculated from equations (27),

(28), etc., in which the partial derivatives of f are all
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evaluated at (k,,0). According to the theory of implicit
functions (8), thnis development of v(w) is valid provided
f, (kmQ) 1s different from zero, and f and all its deriva-
tives used in equations (26), (27), etc. exist and are
continuous in the neighborhood of (km,0).

For example, aprplying the transformations stated at the
beginning of the preceding paragraph to the second equation

of Tabls 4 results in

= 2 it VAW 2 sV vYW
fv,w)= cosh(vw_s1nh —g—)cos( = sin —é—J
)
+ _ vtw
1 - 15 (29)

It is necessary to restrict this definition of f to wvalues
of w other than zero. When w = 0,

f(vyw) = £(v,0)=-cosh v cos v + 1 (30)
It is not immediately apparent that this function satisfies
the provisions stated at the end of the preceding paragraph,
but they may be verified by recourse to the fundamental
definition of partial differentiation, or by sexpansion of
the expressions in parentheses in equation (29) in power
series in (v w). (The existence of such series is of
intersest, as it shows that the partial derivatives in equa-
tions (26) and (27) will exist; that v may be expanded in

powers of w, and hence in the even powers of l; and that

M
)

The solution of a problem by the method of implicit

z may be expanded 1in odd powers of

*
®

functions will be given later, in Appendix 4, in which a
problem from section 1.6 is solved. The present problem,

the solution of the equations of Table 4 for mode frequen-
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cies, 1s obtained by a somewhat different, but related
method, as follows.
From the above development, and by comparison with
the simply supported beam, it is expected that the
difference between MzZ,and km, defined as

Mz-k

U agSe s, (31)

will have an expansion of the type

U = %.‘.;I_:-‘-.ot (52)
so that
= k k au a P =

(Subscripts m, designating mode number, are understood.)

The equations of Table 4 are attacked by substituting appro-
1

priate double power series in u and o

for the terms z, 8,,
©,, etc. The amount of calculation is kept within reason
by maintaining a balance among the various orders of infini-
tesimals consistent with the number of terms a,, a;, etc.,

desired. The zero order terms always cancel by virtue of

equation (7). Terms in u, %z constitute the first order

\

i

infinitesimals. Terms in u?, ﬁ? %4constitute the second

v

order infinitesimals, and so forth. This calculation is
carried out for the (ce) beam in Appendix 3, with the first
two terms in the expression of error determined.

The results for all the cantilever beams considered
are given symbolically in Table 5, page 20, and numerically
in Table 6, page 21. Figs. 2 and 3, pages 22 and 23,

present comparisons of the calculeated errors in cantilever
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Table 5 Finite-Difference Cantilever Beam lMode Frequencies

TwVic = z=% (4u) = £ (1 & 8L 4 82 4 ...

i i M4
Beam a1 8o
(co) - K » ko= 67 K* T[22k’ _ K2 (2K 49ka-127) (ka-67)
57 A 576 | 10 A Az
1{7(ka—67)2]
g 33
(of) 2 3 2
and p _ kK a k _ 27k 18-k7 k(Zk+3a)a
(de)] ~ 248 576 0 YTt 4=
12 7ol
A3
2 2 3 2 :
(arf) _ k_ . ko+6Y k _87x” _ k7 (2K -3ka+127)(car67)
2z A 576 10 A a7
k7 (a+69 )?
ﬁs
a = tan k + tanh k
B = tan k - tanh k
« = sinh k sin k
k = eigenvalue of continuous beam (see Table 1)

M = length in cells



(cf)
and
(de)}

g1

Finite-Difference Cantilever Leam Mode Frequencies

k v a2 AW b| bz b‘ = 23.
= el = e oelo g e FY e \
i e rt) Sewt ma

Mode aj as b4 bo
1 -.423 224 -, 846 . 628
2 -2.15 8.64 -4.35 21.9
1 -.0789 -.0757 -.158 -.145
2 ~-» 9 D2 « 5569 =-1.90 1.62
1 .265 .0254 . 530 « 121
2 243 -2.35 . 486 -4.,64

Limiting Values of the Terms Giving the
Higher WMode Frequencies of Finite-Differencs
Cantilever Beams

a1 ag
Kk (k+6 ) 12 (k% +100Kk+240)
7 1920
_ ¥ xt
57 1920
k(k-6) k2 (k2 -100k+240)

24 1920
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beam mode frequencies and experimental errors determined
by C. H. Wilts, for the first and second modes, respectively.
The experimental data of Fig. 3 were obtalned at a computer
frequency higher than optimum, at which the effect of
parasitic capacilitance and inductance was appreclable.
Consequently points were also obtained in which a
correction was made to account for this effect.

A comparison of the error of mode frequencies of the
cantilever beam with that of the simply supported beam is
made by comparing the coefficients of (k/M)z in the
expansions of either u or (Aw/uh). The qoefficients of
(k/M)2 rather than of (1/'M)z are considsered because the
former gives the error in terms of the number of cells
per wavelength of the sinusoidal part of the solution.

On this basis, it is found that, for the first mode, only
the (c¢f) and (de) cantilever beams have less error than the
simply supported beam, and for the second mode, only the
(df) cantilever beam has less error than the simply
supported beam.

In the higher bending modes of the uniform cantilever
beam, the sinusoidal part of the solution predominates in
the mode shape. Hence 1t is expected that the errors in
the higher mode frequencies will approximate those in the
simply supported beam. To determine if this 1s true, 1t
is noticed that as k increases, some of the terms of the

expressions in Table 4 increase exponentially, so that the
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remaining terms become insignificant by comparison.
Specifically
fl— ()" 2e7

— I

1.3

B

5 —
kK, — (@m-D37

In this manner, the limiting values of a, and a, are
determined. These are given in Table 7, page 21. Because
of the exponential nature of the terms involved, the
convergence to these forms is very rapid. By comparison
with equation (19), it is seen that the error of the
higher mode frequencies of the cantilever beam does
approach that of the simply supported beam, although less
rapidly for (ce) and @f) beams than for the (cf) and (de)
beams.

The method of reducing the difference equations of a
circult-analogy to a single equation analogous to the
eigenvalue esquation of the continuous system, and the
solution of this equation in a series form, have been
applied in thils section to one set of end conditions of one

beam amalogy. It may also be applied to other sets of end

conditions, and to other circuit-analogies of the uniform
beam. (See referenoe(5) and the footnote, p. 11). Another
application is the analysis of the effect of unequal

lumping, an example of which is presented later in Part I.
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It is questionable whether one number alone can be
a fair index of the accuracy of a particular type of
analogy. For example, by the method of wave propagation
characteristics, the accuracy of the simply supported beam
is determined. But when the end conditions are changed to
make the circuit analogous to a cantilever beam, the
accuracy 1s made significantly better or worse, depending
on the particular end analogies used. Thus it appears that
the accuracy of the analogy of tlie beam exclusive of end
conditions is best expressed by the entire range of values
it may take as the various combinations of end conditions
are apblied.

It is evident that there is some correlation between
the error in mode frequencieé and the form of the circulit
termination. Although 1t is not possible, for a single cir-
cuit, to separate the part of the error arising from lumping
from the part due to end conditions, it 1s possible to
determine the contribution to the error caused by a change
in circuit termination.

For example, 1n the case of the cantilever beam studied,
reference to Table 5 shows that replacing the representation
of the clamped end (c¢) by (d) results in a change in u of
._}%cdﬁ’ regardless of whether the free end is represented
by (e) or (f). (Only the first term in the expansion of u
is considered.) Similarly replacing (e) by (f) results in

a change in u of -—Zk— J regardless of whether the clamped

4 M2’

end analogy is (c) or (d). Since the change due to varying
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the representation of one end is independent of the other
end, the effects of changing the analogies at the two ends

may be superimposed.

1.5 The Second Order Eigenvalue Problem.

The equation considered here is the wave esquation

in onse dimension,

A (34)

This equation describes numerous physical phenomena,
including the vibration of a uniform string, longitudinal
and torsional wave motion in an elastic prismatic bar, and
motion of electric waves along a transmission line. As in
the fourth order problem, steady state oscillatory motion
is assumed. Again y(x,t) is replaced by Y(x)eyﬂt, and
g;% by - 9'Si'ejmt. Equation (34) becomes

a*y

dx?

+ a2@w?Y =0 (35)
The general solution 1is

Y = A cos awx + B sin awx. (36)
Two sets of boundary conditions will be considered, giving
solutions as follows.

(a) Y= 0atx = 0. Y = 0atx = 1.

Y = Apnsin mmux (37)
Wppo = Eﬁ, km= mm, m=1, 2, 3,... (38)

(b) Y=0at x= 0. & = 0 at x = 1.
dx

Y=A, sin (2m-1) &mx (39)

W = ]gr_“’ km == (2m'1)%ﬂ: m = 1’ 2’ 5"" (40)
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m is the mode numbser.

Several circults are developed to represent equation
(34), approximating differentiation with respect to x by
finite differences 1in accordance with the principles set
forth in Part I of reference (2). These are given in Fig.

4, page 29. In these circuits, the node voltages are analogous
1x>%%. The circuit embodying uniform cell size (Fig. 4a)
may be solved by standard methods.

| The difference equations are, from the summation of
currents leaving node n,

= ey T (B=8%) Ty = Yyae=0 (41)
in which

z =wyLC.

The solution 1s

Yqa= A cos né + B sin n8, (42)
where

z = 2 sin %0. (43)
With boundary conditions as given in Fig. 4d, equation (42)
is valid for 1 £ n £ N~1. By writing out the equations of
the circuits of IFig. 44 and defining Y4, Y., , Yy, and
Yw+) by equation (42), this mathematical statement of the

boundary equations is obtained:

Y= 0 at 0 Yo= 0 )
Y =0 at -3 Yo+ Y = 0
? (44)
%%==o at N Yn+i = Yy = O
%=o at N+g Yo - ¥y =0 )
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(a) UNIFORM CELL SIZE
Y.n'l oo Y_n T Y_r.r

“\m-zl T l - l T
Tt T T

(b) CHANGE IN CELL SIZE AT NODE O
~ CELL SIZE (1) ——<

CELL SIZE (o) —— =

Y2 o Y gy Yo fm i yz
L L _I_ L «l i all l

F T Tee T T

L L . L afores

(¢) CHANGE IN CELL SIZE AT -3

- CELL SIZE 1) ———T—CE’.LL S12E (&) —>

¥ pALIIPS e oY T A -

I i A
D

o ' - . ———

(d) REPRESENTATION OF BOUNDARY CONDITIONS
yz O AT NODE O Y= OAT-%

Yo g Y e SE . YR

- 1L - L

= OAT NODEN Y oAt Nt

Ta“’ YNIm _ Yi&nr:x )j‘_'futx

%
-

FIGURE 4 ELECTRICAL NETWORKS FOR THE

SOLUTION OF THE EQUATION 82y _ 2 9%Y
3 a® 57z = 0
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Considering the same boundary conditions as in the case of

the continuous beam, the solutions are

(a) Y=0at 0. Y=20 at N,

YnzAmsh1$m m= 1, 2, 340., N-1 (45)
i _ . m
wVIC = z,= 2 sin =5 (46)
(b) Y=04at 0. & =0 at N.
dax
Y,= A, sin (8m-l)nw me= 1, 8, 3y.0s N (47)
8 “ SN
wJIC = 2 sin i§§i%lg (48)

Except for over-all factors relating time and impedance
measurements of the analogous systems,

N? LC =a? (49)
Using this relation, the mode frequencies may be compared
with those of the continuous system, and the error due to

lumping is determined.

2N sin m
a ey S DLt UK
(a) P = 5 2N
P (4] 3 s Ko
Do _ Om Sln'é'l\f"_l_ L &
Wmo ~ Wmo - mm = ..lg.".‘ -]
2N 2N
24N2 1920N%
(b 2N . (2m-1)wr
) Wem a sin 4N-———'—
o (2m-1)T ¥on B
S1N Ml Lm
AWm _ By | o o, _ TR
Wmo ~ Wmo  (Rm-1)w - K |
4N 2N
2
Y — _li_r_L + km4 -0 o o (51)
24N*" To20N%

1.6 Unequal Lumping.

Figs. 4b and 4c give circult analogies of the

system of equation (34) in which the cell size is not uniform.
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bgch cell on the right side of the circuit represents a
segment of the physical system which is a times as long
as that represented by a cell on the left side. The method
of section 1.4 can be used to determine the mode frequencies
of circults of this type.
The circuits of Figs. 4b and 4c are described by two

difference equations. To the left of the change in cell

size
- Yoy + (8-2%) Y, = Yoo = O (52)
Ya= A cos né, + B sin ne, {53 )
where
2 sin 2 6, =z = wyLC. (54)

To the right of the change in cell size

Yoy *+ (2=0?2%2) Yy = Ypu= 0 (55)

Y,= C cos no, + D sin ne, (56)
where

2 sin 30, = az =awVlLC. (57)

Two circuits are considered which have unequal cell
size, and which are analogs of problem (a) of the preceding
section. Both are constructed from the circuits of Fig. 4,
as follows:

circuit (i)

Y =0 at =N,
Relative cell size 1

Change in cell size at O
Relative cell size o

Y =0 at N,

cireuit (ii)

Y=20 at -N,—
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Relative cell size 1

Change in cell size at -3
Relative cell size @
¥ =0 at N,—%

Two circuits are also considered which are analogs of
problem (b) of the preceding section, and are constructed
as follows:

circuit (iii)

Y =0 at =N,
Relative cell size 1

Change 1in cell size at O
Relative cell size a

2 _o at N
dx ~ 2

circuit (iv)

=0 at -N,-%
Relative cell size 1
Change in cell size at -3
Relative cell size a
ay y 4
a—;{—‘:o at NZ—-Z

The end conditions are determined from equations (44).
The mathematical description of the change in cell size 1is
determined by summing current flow from each node not
satisfied by equations (52) or (55). In circuits (i) and
(1ii), employing Fig. 4b, this is done for node O:

-Y_‘+(.1.;T°_‘-%522)Y°-%Y,=O (58)

where Y, satisfies both of equations (53) and (56). 1In
circuits (ii) and (iv), employing Fig. 4c¢c, equations are

written for nodes -1 and O0;

- Sta -% - 2 S 5
Yo+ (22 -2 ) Vo= 25 Yo=0 (59)
2ot 1+3 .

T Teq 0t ]:a“ - Zz) Yo = 4, =0 (60)

where Y., 1is defined by equation (53) and Yo by equation
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(56), By making use of equations (44) and either equation
(58) or equations (59) and (60), difference-equation
solutions, which are implicit solutions for mode frequen-
cies, are obtained as given in Table 8, page 34. In the
case of circuit (i) the details of this procedure ars
carried out in Appendix 4. The methods of section l.4 are
used to determine the first term in the expansion of the
error in mode frequencies, the results of which are given
in Table 9, page 34. Again, in the case of circuit (i),
this procedure is recorded in Appendix 4.

It 1s not proposed to analyze these results hers to
determine optimum clrcuitry, but merely to list them as
an example of the method of solution for mode frequency

error by series expansion.



Table 8 Differsnce Equation Solutions.
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Unequal Lumping.

Cireult Implieit Solutlon
(1) sin (N,8,+ N;6, )+v sin N,8, cos N,6,=0
(ii) sin (N, 0, + 1,0, )J+tvcos N,08, sin Ny;E,=0
(iii) cos (N,0, +N,8,)-vsin N8, sin N,8,=0
(iv) cos (N,e, + N,6, )+V cos N,6 cos N,0, =0
. 2 s

WYLC = z = 2 sin 36, = 3 Sin %92

_ c0s 302 4 (1- o?) (X z4+ o2 4

= Cos 26, B ? +'128 e )

Table 9 Mode Frequencies of Circuits with Unequal

Lumpi

WiLC =
Circuit

(1) -

(11) —

(iii) -

(iv) -

ng
z=%(l+u)=%(1+?’. ;15 groan )

a1
kg_{['y (1-0®) + a®] k+ 2 (1-0® sin B'Y.k}
3'5"{[7 (1-0) + o ] - 3 (1-a") sin 2‘7.k}
%—{[7 (1- o) + o | k+g’- (1-o®) sin 27‘1«:}
s{[" -+ o* ]k - 2 (1-e) sin 2%k}

2, B, ceey Nyt N,

2y B, weey Nyt Np
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II THE EFFECT OF STATISTICAL DEVIATION OF THE VALUES OF

THE ELEMENTS

2.1 General

The analyses of Part I are all concerned with the
accuracy of solutions. Civen a circuit-analogy of a physical
or mathematical system, and a statement of what constitutes
the answer, they determine what error will exist. It is
assumed that any time the circuit is constructed in the
computer, each element will be exactly what the circuit
diagram prescribes, and the answer, and hence the error,
will be the same each time.

Part II is concerned with the precision of solutions.
Considering that the values of the elements ars not exactly
their nominal values, and that the elements are not iden-
tical, it is apparent that when a circuit is constructed in
the computer by selecting computer elements at random,
successive constructions of the same cilrcult will not give
identical answers. Even 1f the elements are set to assigned
values with the aid of a meter, their actual values will be
subject to a deviation depending on the precision of the
meter, and may be treated as 1f coming from an original
population with this precision.

The precision with which an answer is determined depends
on the precision of the valus of each element in the circuilt
and on the extent to which changes in the value of the element

affect the answer. Specifically, if an answer f depends on
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various circult parameters x,, Xz, ... , Xyaccording to
the relation

f=171 (le Xgs o0 XN)’ (1)
and the circuit parameters are selected from populations
with uncorrelated distributions having r.m.s. deviations
Ois 03 500090 about means X,, Xyy «ves Xyy respectively,
then f is characterized by a mean

}‘-:f (X(’ Xy ooy EN) (2)

and an r.m.s. deviation
~N ]
of V]2
0'£= [Z(o—nan

n={

(3)

in which the partial derivatives are evaluated at (X,,

(9)

Kas sowy Zwls It is assumed that On are small so that
the Taylor series expansion of f about f is sufficiently
accurate with only the linear terms present.

Determination of the precision of answers by equation
(3) does not directly require knowledge of the answer, but
it does require knowledge of tlie partial derivatives of the
answer with respect to the parameters. Once again eigenvalus
problems are convenient for the determination of precision.
Regarding the mode frequencies as answers, the partial
derivatives can be obtained by a method due to Rayleigh.(lo)
This method relates increments in mode frequencies to
increments in the potential and kinetic ensergies associated
with given mode shapes.

When applied to a conservative electric circuit,

electrostatic and electromagnetic energles are considered.
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Assuming that a particular mode shaps, consisting of node
voltages Vi, Vo, eees Viy eesy Vy, 1s known for a given
electrical system, then the maximum instantaneous electro-

static energy associated with this mode 1is

We= %2, C;Vj (4)
and the maximum instantaneous magnetic energy is

fi :‘-.";" v T == 1 V:‘z

Wa=3 2 LiIf = 1 - (5)

The terms Vj are the voltages across the elements C;, Lj,

and are determined from the known voltages Vi. For the pur-
poses of this development, any energy associated with

mutual inductances is included in equation (5) by replacing
them in the circuit by equivalent self-inductance. In normal
mode oscillation of an electric circuit, the energy is at
times entirely magnetic, and at other times entirely electro-
static. Thus the normal mode frequency may be determined by

equating We and Wm.
2

ot

) A

wZ

To determine the partial derivatives of wwith respect
to the circuit parameters Lj, Cj, it is assumed for the
moment that the voltages defining the mode shape, Vi, and
hence Vj , remain unchanged.

\&2
dw _ 1 o) _ VrzZE - w C. V.
C, 2w oC Zco(f_':cj\/jz)z 2C, ZCjij (7)
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V2
ow 1 Jw3a | Ve’ —_w _ L (8)
oL, 2w OJL« Zwl® S50yt ZL, Z!Lz

L;

The expressions of equations (7) and (8) may be used
directly in equation (3).

The assumption of unchanged mode shape bears investi-
gation., Following Rayleigh's devslopment, (10) let the
normal coordinates of the given system be ﬁ., ﬁz, ey
fn. While considering one mode, the g™, for example,
change one of the elements, Ce, for example, by a small
amount pCr. Then it is shown that the shape of the new
normal vibration mode may be expressed as

¢ql= Pa¢u+Pz¢z+““"¢q+‘“+}-‘~¢u (9)
in which the Mi's are of the same order asm. However, it
is shown also that wfas calculated by equation (6) has a
stationary value when the mode shape is that of a normal mode.
By equation (9) the mode shape is changed by terms of order
P, so that w* will experlience change of order }ﬁ. Thus, in
differentiating equation (6) to obtain equations (7) and
(8), taking the limit AC,—~» 0 or AL,—~> 0 insures that all
change inwis directly due to the change in the value of
the element, and not to the change in mode shape.

The method developed here is used to determine the
precision with which normal vibration frequencies may be
determined by the use of some of the circults considered

in Part L.
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2.2 The Second Order Eigenvalue Problem

The example considered here is the circuit of
Fig. 4a with V= 0 at nodes 0 and N. The normal mode solu-

tions are obtained from equations (45) and (46), section

1050
v, = sinm—lr\%ﬁ m=1, 2, 3, ee., N=1 (10)
WWVIC = 2z, = 2 sin &N (11)

Considering L"*i to be the inductor connecting nodes n and

n+l, and le,_ the voltags across L"“’i ¥ ’
_ . m(n+l)w . mMNmw
V""i = Ve = V= Bin —=—— - sin ==

_ .., m® m(n+% )R
Vney = 2 sin 5§ COS __Tf&— (12)

It is necessary to determine the summations employed in

equations (7) and (8)

z

2 .2 mnm _ CN 3
ZC;V; = 0 Z;'.l sin -—1\7—=-2-1— (13)
it 4 e Ly _2n
—-—L‘j =7 sin® %‘5 cos? m—<-11%3'4=-2—-=-f— sin® %1% (14)
' n=o0 .

The detalls of the summations are given in Appendix 5.

Substituting in equations (7) and (8),

w __ W . 2 mrx _
?C, NC Sin = (15)
2w w 2 n(r+s)K

— ww e
TL"*% T, cos ——-——-&-—N (16)

It is now assumed that each of the capacitors C, is
chosen from a large population having a mean capacitance C
and r.m.s. deviation O,=€,C. Similarly, the inductors are

distributed about a mean inductence L with r.m.s. deviation
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6,=€_L. Equations (15) and (16) may now be substituted in

equation (3).

2 w* b 4 mrR 2,2 wz__“z': 4 mlr+3)w
2_ 2,2 WX ind mri cos® mir+s)T
Gw =éc C N2c1 rZ.z‘ sin N + éL L NzL'z r=o N
N
O'wz::: U.)"é%‘l (6:14'6;2) m = 1’ 2} s &y 1\T'-l; m*_g\— (17)
i
2=t L(yer+ied) m=g (18)

The details of these summations are also given in Appendix

5. If E.= €_= € , then
- ,{'3__@'2_ . [3 (19)
o—m“ £ 4"N = w 2 N m = 1, 2, ¢ e 0 g 1\-\{"1

The result confirms expectation that the deviation of the
mode frequency 1s proportional to the mode frequency and
the per unit deviation of the elements, and inversely pro-
portional to the squars root of the number of cells used.
From equation (50), section 1.5, it is seen that the
error due to lumping diminishes as %?, much faster than the
statistical deviation. The two effects will be equal when
N is given by
No = (lz.gzl:.i ’ (20)
In the California Institute computer,é will be approxi-

mately .01, if pains are not taken to sslect special elements.

In this case Ng = 13.1 for the first mode. For this number

of cells,
o, AW,
W = W, = .0024 (21)

It is possible that, because of aging, parasitic
effects, or other reasons, the mean of the values of the

elements C, may be C % 8C instead of C, and of the elements
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Lyy L + 8L. Assuming that 8C and 8L are small compared
with C and L, the expressions determined for Ow will still
apply. However, the mean frequency,tﬂ;+805 will differ

from the calculated frequency for the circult, Wm.

2 sin BN
L+8L +8C
8w ~ . 8L _ 8C
@Wm AR 20 (22)
2.5 The Fourth-Qrder Eigenvalue Problem

The problem 1s that of the simply supported beam,
taken up in section 1l.3. The circuit is that of Figs. la and
1b, with supports at nodes 0 and N. The node voltages, Vn,
given in equation (18) of section 1.3, are the same as those
in the problem just considered. vVva, the voltages across the

elements Lp, are determined from Fig. la.

Vo = sin &2 m=1, 2, ses, N-1 (23)
Va = ¢ﬂ+é = an—t = % (Vn-ﬂ - QV" + V“__| )
Y = - z° sin .r.n_g.'l = — wVIC sin 3“—1{-;-'5 (24)
The last relation is from equation (11) of Appendix 2.
Nl
2.CV;* = ¢ ) sifEEN . ON (25)
N 2
n=1
v; 2 2 & 2 mnmn 2, N
3 ok . m
3 — = ) =
Z: & wC g_| sin’ = C 5 (26)
ow _ W . 2 mrw
aC,  ~ TWo sin T (27)
w_  w 2 mrmw
oL, T S+ = (22)

Again it 1s assumed that O.=€.C, O_ =€, L. From equation

(3) and Appendix 5,
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2 N-1 N-1
2 2w 2 122 : : .4 mrn w® 2.2 . Anmrn
O"w = Wé‘ C - S1n __N.+ WGLL ; s1in T
2 _ w3 2, _2 ; I
O = =2 (€Ec + €F) m=1l, 2, e.0, N-1; m# = (29)
2
1 2 I\
0L3== %L'g (€ + €2) m‘=g (20)
e _[3 V =
o =w 592 m=1, 2, eu., N-1; m:,e-l\g-‘ (31)
we _
T = i m=_1\2_{ (32)

Except for the possible mode m:=~g, the results are

identical with those for the second order elgenvalue
problem.

From equation (21), section 1.3, it is seen that the
error due to lumping is increased, compared with the second
order problem. Here, the deviation is less than the error

due to lumping unless N is greater than Neo, wherse

m4 74 \3
o= (50es) —
Again taking m=1l, € = ,01,
Ny = 20.8 (34)
AW
= o = .00 (35)

It is concluded from the examples of these two
sections that the expected deviation of the answer resulting
from the distribution of the elements about thelr means will
be negligible compared with limitations imposed by the
accuracy of the solution. If the number of cells is less
than N,, the error due to lumping overshadows the effect
of deviation of the element values. If the number of

cells is greater than N,, the expsected deviation is well
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within the specifications of the computer operation.
However, the effect of mean error of the values
of the elements, from equation (22), may not be negligible,
as it does not decrease as N is increased.

2.4 Distribution of the Elements of the California
Institute Computer.

The elements of the California Institute computer
have been measured accurately for purposes of calibration,
and some of the results of these measurements are given in
Table 10, page 44. The capacitors and inductors wers
measured with an a.c. impedance bridge at 1000 cycles, and
the resistors with a d.c. bridge. ¥ach capacitor measure-
ment is of a single unit, and is independent of the other
measurements. For use in the computer, each element is
made up of several units of different nominal values, and
the proper capacitance is formed by connecting units whose
capacitance have the correct sum.

The computer inductor elemsents each consist of three
coils wound on three separate cores. One coil has a large
inductance, one intermediate, and one small. Each coil has
several taps. The colls are connected in series, so that
by various settings of the taps, a wide range of inductance
values is available. The data of Table 10(b) are for
the various tap settings of the larger inductors only. The
uniformity of the r.m.s. deviations i1s explained by the fact
that each row represents measurements on the same coils and

cores, with only the tap settings changed. It should be
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Table 10. Distribution of the Values of Elements, Cali-

fornia Institute of Technology Elesctric-Analog Computer
(a) Capacitors

In Per Cent of Nominal Value:

Nominal

Quantity Value, Mean Rem.s.

Measured Microfarads Brror Deviation
80 .01 2.20% 1.00%

160 « 02 .82 .88

80 + 08 .19 +60

79 o + 32 «93

159 .2 -.27 1.+:26

80 D .04 1.08

32 e 3«10 1+12

32 2. 3.20 .82

(b) 20 Inductors

In Per Cent of Nominal Value:

Nominal

Valus, Mean R.msg,

Henrys Error Deviation
.06 ~.30% 1.30%
% L2 -.52 1.24
.18 -.17 1.18
.24 .09 1.i8
« 30 «aB 1.22
. 36 .07 1.16
.42 « 86 A dtt
.48 «B5 1.45
. 54 1.03 1.19
.60 .90 dos S
.66 129 1.20
«78 1.24 1.28
+ 78 1.25 1.20
.84 1.63 1.24
« 20 1,956 1,25

(Continued on p. 45)
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Table 10. (Continued)

(¢) 178 Resistors

In Per Cent of Nominal Values

Nominal
Value, Mean R.m.s.
Ohms Error Deviation
2 6.75% 3.62%
4 2:82 1+882
6 1.63 1.23
8 J.01 « 90
10 2.43 1«00
20 1.66 .66
30 1.89 « 54
40 1.28 « D%
50 1.83 «» 80
60 1.14 42
70 110 .41
80 108 +39
90 1.06 7
100 « 97 Ol
100 o LOT « B8
200 +09E .43
300 .020 « 36
400 029 e,
500 1Y .29
600 012 <29
700 . 024 .28
800 +018 + 26
900 013 "
1000 -.100 .24
1000 .47 . ia)
2000 .46 «32
3000 .49 e B0
4000 .49 20
5000 Bl o A0

6000 .51 <13
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mentioned that the values of mean error are influenced by
the frequency of the metering bridge, somewhat higher than
the range of optimum operation of the inductors.

The resistances tabulated in Table 10(c) are divided
into four groups. In any group, the resistance of the
nth row is actually made up n resistors, each with the nom-
inal value of the first row of the group. This construction
explains the variations of the r.m.s. deviations within
each group. The large errors of the low-resistance measure-
ments are caused chiefly by the contact resistance of meter-
ing relays in series with each element.

The data of several of the rows of Table 10 werse
tested to determine whether the hypothesis that the distri-
bution of values is a normal distribution might be supported.

The results wsr

(@]

not conclusive, but did not disprove the
hypothesis. The method employed was the chi-squared test
for goodness of fit.(ll) For the various rows, probabili-
ties that values selected from the assumed normal distri-
bution would form a better fit with this distribution than
the values actually measured were, successively, 0.65, 0.07,
0,85, D.21y 0.69.

Depending upon the requirements of the problem, and the
actual elements used, the settings of the elements are
arrived at in some cases from their nominal values, and in
other casses by reference to accurate measurements of their

values. The applications of Part II are chiefly with regard

to circuits in which the elements are selected at random
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from a group, the values of which are distributed in a

close range about the nominal value.
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IIT TLANDING TEST OF A MODEL AIRPLANE WING

3.1 Experimental Test.

In the past few years experimental tests have
been made at the National Bureau of ~tandards for the pur-
pose of verifying the accuracy of sesveral methods of
calculating the rsesponss of an airplans wing to transient
forces imposed by landing. A detailed description of these
tests is given in references (12) and (13).

The tests wers performed on a model airplane wing about
11 feet long. The mocdel wing was made of sheet and angles
of aluminum alloy, with "landing struts'" projecting down-
wards. The model was dropped in a condition as free from
strain as possible, alighting on the struts. The forces
transmitted to the wing through the landing struts and
the resulting stresses at several points in the wing were
measured by means of wire strain gauges fastened to the
model.

The tests were conducted so that the motion of the
wing consisted wholly of bending in the vertical plane,
vertical translation, and roll. The character of the
landing could be changed by varying the nature of the
surfaces which were struck by the landing struts. In the
test for which a solution was obtained on the electric-
analog computer the wing was subjected to a "soft", un-
symmetrical, two-point landing impact. By a "soft" impact,
it 1s meant that the time of contact of the landing strut

with the landing surface is comparable with the longest
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period of free bending vibration. The asymmetry was
provided by allowing one of the two landing struts to alight

before the othsr.

3.2 Analytical Methods of Computation.

Several analytical methods of computation were
employed to obtain solutions of the problem, to which the
electric-analog computer was applied. Some of these were
included in the report of the experimental tests, refer-
ence (13), and others were published later. These methods
were considered not only for accuracy, but also with rsgard
to the length and difficulty of the computations involved.
These methods are outlined here briefly.

The method of normal modes, and a few variations of
this method, are considered in reference (12). The basic
normal modes solution is described in reference (14). The
entire motion of the structure is considered as the sum of
motions, each of which maintains the shapes of one of the
normal modes of vibration. Similarly, the external forces
are broken into the generalized forces corresponding to
each mode. Because of the orthogonality of the normal
coordinates, the variation of each normal coordinate with
time depends on the generalized force forthat mode alons.
These variations are determined independently, and their
sum gives the entire motion of the structure.

By separating the statical response from the vibra-
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tional response in each mode due to exciting forces of
fixed spacial distribution, Williams (15) has obtained a
form which converges more rapidly. Part of the solution
is obtained by assuming the external forces act statically,
and the remainder of the solution, due to the inertia
forces of each mode, depends chiefly on the lower frequency
modes.

Another method outlined in reference (13), due to
Levy, makes use of modes which are no longer normal. Each
mode shape is calculated from all the lower modes. This
has the advantage that it is not necessary to have all the
normal modes calculszted. There is a difficulty in esti-
mating the accuracy of this form of solution -~ considera-
tion of the first neglected term involves recalculation of
all the preceding terms, because of the non-orthogonality
of the modes.

0f these three solutions, the second two proved somewhat
superior in the case of "soft" landings. All three were
unsatisfactory for "hard" impact, because of the number of
modes which had to be considered.

A "statistical"™ method, developed in reference (14),

was applied to the problem.(16)

In this method, answers
are obtained by summing the maximum responses in each mods,
regardless of the time of occurrence of the maximum. Thus

the answers are not given as functions of time. The method

includes the further simplification of using a forcing
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function taken from a table of standard forms as an
approximation to the actual excitations in the problem.
The results of this "statistical" method were regarded
as too conservative for practical wvalue.

The same problem was solved also by a step-by-step
method of calculation at the Bureau of Standards.(17)
This solution is based on a method first applied to the
study of aircraft vibration problems by Houbolt.<18)
In this method, the partial differential equation is
replaced by finlte-difference equations in both variables.
The forces on a given mass segment at any time are equated
to the mass times the acceleration which 1s expressed in
terms of the deflections of the segment at immediately
preceding time increments. It 1s not necessary to have
the normal modes for the step-by-step calculations.
Although there is a large amount of numerical work involved,
it 1s chiefly adaptable to handling by means of punched
cards. This method was regarded as superior to the other
solutions considered, and is compared hers with the results
of the experimental test and with the analog computer

solution.

3.3 Analog Computer Solution

The model wing subjected to the experimental
test was symmetric, and about 11 feet long. The two land-

ing struts were located at stations 16.5 and -16.5 (measured
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in inches from the centerline). The data describing
the wing, as obtained from the Bureau of Standards, con-

sisted of values of masses already lumped at ten stations,

Xls X9, seey X109, along the half-wing, and a curve of EI
versus distance along the wing, X.

Two circuits (Fig. 5, page 53) were used to obtain
two computer solutions to the problem. They are constructed
according to the method developed in reference (5). 1In
one case the half-wing was divided into ten cells, and in
the other, five cells. In the ten-cell analog, the nodes
corraesponded to the ten stations of the original data,
and the capacitances were determined dirsctly from the
lumped masses. To determine the values of inductance to
be used, a curve of %T— versus x was plotted. The flexi-

bility associated with each node was calculated by graph-

ically performing the integration

X ]
l ﬂ+-2 l
Rh_/ E-I—— a¥% . (1)
KXn-L
2
K-y and Xnyy are the points obtained by bisecting the

internodal intervals adjacent to node n. The inductance
L,is calculated from K,, the constant of the lumped
spring associated with node n. Values of 1T, the trans-
former turns ratios, were made proportional to the dis-
tances between stations. The single transformer in the
slope circuit of Fig. ba was introduced to maks a change
in the 1lmpedance base along the wing, for the range of

values, Ky, from root to tip was greater than the range of
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inductances, Ly, that 1t was practical to employ.

The five-cell analog (Fig. 5b) was constructed in
the same way, with successive nodes falling at alternate
stations of the original data. The mass at sach station
that was abolished was divided among the adjacent nodes
as though 1t were statically supported at those nodss,
that 1s, in the inverse ratio of the adjacent internodal
distances. It was not necessary to effect a change in the
impedance base of the slope circuit. The mechanical
constants of the system and the circuit parameters used
in the two analogs are presented in Table 11, page 55.

The excitation of the system was specified by giving
time histories of the forces applied at the landing struts.
These are given in Fig. 6a, page 56, f,(t) being applied
at the strut at station +16.5, and f.(t) being applied
at -16.5. The results desired were the wing bending
moments M4(t) at station +17.5 and M_(t) at -17.5.

The solution was carrised out in two steps. In the
first step the circuit represented half of a wing in
symmetric bending vibration, and in the second, half of
a wing in anti-symmetric vibration. Tbeyexcitations
applied were the symmetric and anti-symmetric parts of
the landing forces, fg(t) and fq(t), respectively (Fig.
b ), where

£ (t) = 2 [ £4(t) « £(t)] (2)

Fre(e) - £_(v)]. (3)

il

fo (t)
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Computer Solution of Wing Landing Problem.

Ten-cell Circuilt

(a)

Flexi-
Sta- bility
tion Ax rad/lb-in
in. in. x10-6
O -
3.0
3.0 . 334
6.5
9.5 .825
7.0
1645 1.25
8.0
24,5 2,29
9.5
34.0 5.37
10.0
44,0 9.46
8.0
52.0 4.5
4,5
56.5 20.5
5.5
62.0 1%8.
5.0
67.0 300

(b) Five-cell Circuit

Flexi-
Sta= bility
tion Ax rad/lb-in
in. in, x10-6
0 -
360
) « 759
185
16.5 BB
1% 5
34,0 2«85
18:0
52«0 324
10.0
62,0 494,

Mechanical and Electrical Parameters.

Mass Induct=-
1b sec?® ance
1% iy e
.03142 .0356
.00161 . 0879
. 00850 1331
. 00205 2418
.00899 OB
«00106 1.008
000728 1717
.000510 .3606
000225 2.070
« 000129 -
Mass Induct-
1b sec® ance
in. hy.
.03210 - 0970
.01054 » 0611
+01040 1.291

.001598 4.244

.000654 -

Capac=
itancs
nfd.

Capac-
itance

pod.

Analog

Trans-
former
Turns
Ratio
T
+ 200
«650
+ 700
. 800
« 950
1.« Q00
. 300
1380
1.650

1.500

Trans-
former
Turns
Ratio
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The exciting forces, fg(t) and fq(t), were introduced
into the circuit as currents at node 2. The forces
were first established electrically as time~varying volt-
ages by an arbitrary function generator operating on
the photoelectric principle (reference (1), p. 957).
By the use of current feedback, a dc amplifier was employed
as a current generator to provide the desired excitation
for the circuit.

The bending moments were determined from

Ma(t) = Mg(t) + Ma(t) (4)

M_(t)= Mg(t) - Mq(t), (5)
The quantities Mg(t) and lq(t) being obtained from measure-
ments of currents in the inductors in the symmetric and
anti-symmetric circuits, respectively. Resolving the
solution into symmstric and anti-symmetric components
results in an economy of computer elements and a simpli-
fication in the application of the exciting forces, but
requires more measurements.

As the currents in the inductors are analogous to
bending moments at the nodes, there was no current anal-
ogous to tiie moment at station 17.5. This moment had to
bs interpolated from measurements at 16.5 and 24.5 in the
ten-cell wing, and at 16.5 and 34.0 in the five-cell wing.
F'ig. 6¢c presents the moments obtained from measurements
at station 16.5 in the symmetric and anti~-symmetric ten-

cell circuit. Fig. 6d gives the moments at stations
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+17.5, -17.5, determined by equations (4) and (5).

A comparison of the results obtalined by several means
is given in Figs. 7 and 8, pages 59 and 60. The bending
moment at station 17.5 is plotted in Fig. 7 and the moment
at station ~17.5 in Fig. 8. The four curves are the
solutions by circuit-analogs of ten and five cells, by
experimental test with the model wing, and the solution
of reference (17) by a step-by-step method based on Houbolt's
method. In the step-by-step solution the mass of the half-
wing was lumped at four stations. The time interval of
the step calculations was .00l seconds.

It is difficult to make an accurate estimate of the
error involved in each of these solutions. A comparison
of the results of the various methods is perhaps as sig-
nificant as any other method. The results of Part I are
not directly applicable to the analog computer solution,
as the wing is not a uniform beam, and as the lumped
masses are not entirely derived from the distributed mass,
but, at some stations, consist partly of discrete masses
mounted on the wing. However, the accuracies of certain
processes of the analog computer solution of this problem
may be glven.

The error in producing the forcing functions of Fig.
6b was determined by recording the actual currents intro-
duced in the circuit and comparing with the desired

functions. The difference between the two functions was



-

1

CLLL

-

-

4
1T

5

i

T
1

o

B B0

L




nE

JA RS

L

+-+ -1+
T

44

i1 5

1

jan

T

I
Vi S

ST .

t

MV R W1
1 }

SR




61
at most four per cent of the maximum value of the function,
and, in absolute value, averaged two per cent of the max-~
imum value. The elements of the circuits were all measured,
and determined to be within one per cent of the desired
values. The process of measuring the quantities by photo-
graphing the oscillograph screen was considered reproduc-
ible with a precision of two per cent.

There were no data included in the report of the ex-
perimental test which could be used to estimate the
accuracy of that solution.

The step-by~-step soclution involves two approximations,
one in using lumped physical parameters, the other in
taking finite increments of time. The concentrating of
the masses at four points along the half-wing, in this
solution, 1s somewhat morse coarse than the five-cell
analog computer solution. The accuracy involved in
taking finite time increments may be estimated in the
light of the results obtained.

In the step-by-step solution, the acceleration of
a point, %%%, was obtained from the equation

[7(e)] = _16—2[2y(t) -5y (t-€) + 4sf(t—2€)—y(t-56)] P (6)
in which y(t-€¢), y(t-2€), etc., are values of the dis-
placement, y, at preceding time increments, and in which
a value of .00l seconds was used for €, The error of this
expression may be expressed in terms of the higher de-

rivatives £ y by writing the Taylor series expansion
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of each term on the right side of the equation, and

adding:
2 a 5
3 — d 4 Zd 3d ® o o
el = Gk gt e’ HE At

The derivatives are evaluated at time t.
Because of the tabular form of the results, it is
easier to find the error in terms of differences of y
than in terms of its derivatives. Defining
Ky(t) = y(tve) - 2y(t) + y(t-€) (8)
Ay ()= sty ()], (9)
the following relstion is obtained, again by Taylor

serles eXxpansions

1 _1“,-]~d_"'z:_1 4agby . ...
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