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ABSTRACT

A fo u r - la y e r  s in g le -s id e d  LIM used fo r  p ropu ls ion  and suspen- 

s ion  o f m agne tica lly  le v ita te d  veh ic le s  is  s tud ied . The tra ck  is  

assumed to  be made o f conductors w ith  u n ia x ia l ~µ and ~σ.  A 

general a n a ly s is  a llow s us to  exclude un su itab le  geometries. The 

machine performance is  g iven fo r  the prom ising geom etries. A pos

s ib le  way o f computing the e f fe c t iv e  ~µ and ~σ fo r  a composite 

tra ck  is  sketched. From the an a ly s is  o f an extrem ely s im p lif ie d  

geometry, the cond it ion s  fo r  the v a l id i t y  o f the e f fe c t iv e  ~µ and 

~σ concept are g iven . F in a l ly ,  a th ree-d im ensiona l co rre c t io n  is  

in troduced.
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CHAPTER I

INTRODUCTION

With the in c rea s in g  need in  t r a f f i c  o f  people and commodities, 

automobiles have created se rious p o llu t io n  and no ise  problems; the 

a ir l in e s  have a lso  reached a high degree o f s a tu ra t io n . Under the c i r 

cumstances, i t  seems tha t the development o f a rap id  mass tran spo rta 

t io n  system is  d e s ira b le . U n fo rtuna te ly , the conventional wheel- 

supported ra ilw ays face  some d i f f i c u l t ie s  as the t r a v e l l in g  speed 

becomes la rg e . Not on ly  does the no ise  become in to le r a b le ,  but the

ssion  o f power

between the r o t a t ing-type motor and the wheels. As a r e s u lt ,  such 

non-contact systems as magnetic le v ita te d  (MAGLEV), tra ck  a i r  cushion 

v eh ic le s  (TACV) are suggested as su b s t itu t io n s  fo r  fu tu re  tran sp o rta 

t io n .

Although the TACV is  s t i l l  a com petitive  candidate fo r  high 

speed ground tran sp o rta t io n  (HSGT), in  the fo llo w in g  we w i l l  m ain ly 

cons ide r the MAGLEV system.

There are two fundamental schemes fo r  magnetic le v it a t io n ,  

namely, a t t ra c t iv e  and re p u ls iv e  schemes. The a t t r a c t iv e  system uses 

the a t t ra c t iv e  fo rce  between a magnetic f ie ld  source and a ferromag

n e t ic  m a te r ia l.  From Earnshaw's theorem, th is  k ind o f con fig u ra tio n  

is  b a s ic a l ly  unstab le , i . e . ,  a sm a lle r c learance w i l l  in crease  the 

a t t r a c t iv e  fo rce  and make the c learance even sm a lle r. Thus, a feed

back con tro l system is  necessary. For the re p u ls iv e  scheme, the fo rce  

exerted on a magnetic f ie ld  source moving over a conductor by the
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f ie ld  o f  the induced eddy cu rren t w ith in  the conductor is  employed. 

Such a system is  in h e re n t ly  s ta b le .

Extensive s tud ie s  o f  these suspension systems have been 

made(1,2). D e f in it e ly ,  the d e ta ils  w i l l  depend on source and tra ck  

geometry. C e rta in  general re s u lts  w i l l  be described below. And ac

t u a l ly ,  up to today, there is  s t i l l  no c le a r  evidence as to which one 

is  the b e tte r  one. Both are n o is e le s s , not lim ite d  by speed, and can 

be operated in  vacuum. In r e a l i t y  the suspension system is  on ly  pa rt 

o f a whole HSGT v e h ic le .  Thus, whether a system is  optim ized o r not 

can on ly  be judged by ana lyz ing  the whole v e h ic le  from the tra d e o ff 

among the performances, te chn ica l m e r its , economic co n d it io n s , e tc .

G ene ra lly  speaking, in  o rder to have a s u f f ic ie n t ly  supporting 

fo rc e , the a t t r a c t iv e  scheme can on ly  a llow  a small c learance o f about 

1 o r 2 cm, but the rep u ls iv e  scheme can have a c learance o f  20 cm.

This w i l l  a lso  p lay  an im portant ro le  in  dec id ing  what kinds o f  pro- 

pu ls ion  systems to use. A lso , as we know, ferrom agnetic m a te r ia ls  are 

g ene ra lly  conductors. Thus, when the magnetic f ie ld  source is  moving 

over i t ,  there always are eddy cu rren ts induced. Th is w i l l  g ive  an 

undesired rep u ls iv e  fo rce  component. When the v e lo c it y  becomes la rge  

enough, sometimes th is  w i l l  r e s u lt  in  a net re p u ls iv e  fo rce . Of 

course, we cannot a llow  th is  to happen. Thus, tra cks  and sources must 

be s u ita b ly  designed to prevent th is  phenomenon from happening w ith in  

the opera ting  speed range. For the rep u ls iv e  scheme, s in ce  i t  m ain ly 

depends on the eddy cu rren ts induced, eddy cu rren t lo sses are in e v i-  

ta b le . These w i l l  g ive  an a d d it io n a l drag fo rce . An increased
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p ropu ls ive  fo rce  is  necessary to overcome i t .  Accord ing to  former

ana lyses , i t  is  found tha t a t high speed th is  drag fo rce  w i l l  decay

to a very small va lue . However, a very la rge  drag fo rce  w i l l  e x is t

a t a very small speed. C e rta in  methods(3) have been suggested to 

bypass th is  low speed drag.

S ince the proposed suspension system is  a non-contact one, the 

conventiona l method o f using the d ir e c t  rea c t ion  w ith  the ground is  

not a v a ila b le .  Thus, a new propu ls ion  system is  needed. In the e a r ly  

pe riod , j e t s ,  p ro p e lle rs  and rockets have been suggested. However, p o l-  

lu t io n  and no ise  problems e ven tu a lly  le d  to  the use o f l in e a r  machines,

The idea o f l in e a r  machines is  not new. Back in  the 19th cen

tu ry  and the e a r ly  20th cen tu ry , people have t r ie d  to app ly i t  in  

t r a in  tra n sp o rta t io n , luggage hand ling , e t c . (4 , 5 ) . However, due to 

economic and p ra c t ic a l reasons, the in te re s t  in  l in e a r  machines de

c lin e d . Recently  as L a ith w a ite (6 ,  7,  8) and P o lo u ja d o ff(4 , 5) put i t ,  

"eng ineering fash ions" have been changing. Due to L a ith w a ite 's  con

tinuous e f fo r t s  in  promoting them, l in e a r  machines are being reeva lu 

ated and they begin to be e x te n s iv e ly  used in  HSGT, impact e x tru s io n , 

E.M. pumps, a c tu a to rs , e tc .

Now, i f  the rep u ls iv e  suspension scheme is  used in  HSGT, be-

cause o f i t s  high c learance perhaps the l in e a r  synchronous(9) motor 

is  p re fe ra b le . A ls o , power-pickup and weight problems are more e a s i ly  

handled by the l in e a r  synchronous motor. However, in  the fo llo w in g  

d iscu ss ion s  we w il l  m ainly cons ider l in e a r  induction  motors. L in ea r 

synchronous motors w i l l  not be inc luded .
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The p r in c ip le  o f  the l in e a r  induction  motor can be e a s i ly  under

stood from the conventional ro ta t in g  induction  motor. A c tu a lly ,  the 

s im p le st form o f LIM is  ju s t  an u n ro lle d  ro ta t in g  induction  motor. A 

a lte rn a t iv e  forms o f  LIMs se rv ing  d if fe re n t  purposes can be 

constructed  by ju s t  adding o r changing the primary o r the secondary 

s tru c tu re s . La ithw a ite  and Nasar(6) have given a complete c la s s i f i c a 

t io n  in  terms o f the d if fe r e n t  p o ss ib le  to p o lo g ica l co n fig u ra t io n s . 

A lso , a "machine's good fa c to r " (10) and a cons ide ra tion  o f the econ

omic problems were in troduced to decide which kind o f LIM is  p re fe r 

ab le . Among them, the "doub le-s ided sho rt prim ary sheet ro to r  motor" 

(DSLIM)(8 ,  11,  15 , 16) seems to be the best candidate fo r  HSGT. A c tu a lly ,  

the DSLIM had a lready been used in  prototype HSGT veh ic le s  b u i l t  in  

Germany, the U .S ., e tc . But those v e r t ic a l ly  b u i l t  DSLIMs su ffe red  

from severa l severe problems, such as la te ra l in s t a b i l i t y  in  curves, 

high cross se c tion s  o f  the v e h ic le s ,  e tc . Hence, an a lte rn a t iv e ,  the 

s in g le -s id e d  LIM (SLIM)(12 , 13 , 14) was in troduced . Although the ana ly 

ses o f these conventional ro ta t in g  motors are w e ll known and are not 

too d i f f i c u l t ,  the a n a ly s is  o f  L IMs is  much more com plicated , due to 

the in e v ita b le  end e f fe c t  and the dissymmetry o f primary cu rren ts .

Those ex tra  e ffe c ts  w i l l  in troduce  undesirab le  phenomena. Today, re 

search in  L IMs concentrates on e xp la in in g  these e ffe c ts  and look ing

fo r  methods to compensate them. Yamamura and I t o (16 ), Wang(11 ), and 

Dukowicz(15) considered DSLIM w ith  non-ferrom agnetic sheet ro to rs .

Nasar and Del C id , J r . (14) and Wang(13) d iscussed SLIMs w ith  non- 

ferrom agnetic sheet ro to rs  backed by s te e l.
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However, no matter which LIM was cons idered , up to  now a l l  o f 

the ana lyses were made under the assumption o f  separated suspension 

and p ropu ls ion  systems. Although an experim ental v e h ic le  has a lready  

been constructed  by Rohr In c . (17) , no se riou s a n a ly s is  has been made 

to cons ide r a v e h ic le  w ith  a LIM used fo r  both suspension and propul- 

s ion  purposes. Of course , th is  would in troduce  e x tra  con tro l problems, 

but i t  a lso  o f fe rs  advantages such as le s s  weight.

The SLIM analyzed by Nasar and Del C id , J r . (1 4 ), Wang(13 ), e tc . 

w i l l  g ive  e ith e r  an a t t r a c t iv e  o r a re p u ls iv e  fo rc e , depending on the 

v e lo c it y  o f the v e h ic le .  However, i f  we want the LIM to be used fo r  

both le v it a t io n  and p ropu ls ion , a deeper a n a ly s is  must be made as to 

which geometry and which m a te ria l to  s e le c t  so tha t on ly  e ith e r  an 

a t t r a c t iv e  o r a re p u ls iv e  fo rce  is  observed w ith in  the opera ting  speed 

range.

The ferrom agnetic tra ck  was ru led  out as un su itab le  fo r  DSLIM by 

La ithw a ite  and B a rw e ll(8) because o f sk in  and n on lin ea r e f fe c ts .  These 

au thors, however, were on ly  concerned about the th ru s t fo rce . As we 

want to in c lude  a le v it a t in g  fo rc e , the inhe ren t fo rce  between the 

magnetic f i e ld  source and ferrom agnetic m a teria l has to be reconsidered 

s e r io u s ly .  Furthermore, the undesired sk in  e f fe c t  which g ives r is e  to 

n on lin ea r e f fe c ts  can a lso  be p a r t ly  taken care o f by s u ita b ly  lam ina t- 

ing the ferrom agnetic m a teria l o r composing the tra ck  both from fe r r o 

magnetic and non-ferrom agnetic m a te r ia l.

The fo llo w in g  d iscu ss ion  w i l l  begin w ith  an in v e s t ig a t io n  o f the 

p o s s ib i l i t y  o f using a l in e a r  induction  motor as a combined p ropu ls ion
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and supporting system in  a HSGT v e h ic le .  L in ea r machines o f  fou r 

la y e rs  w i l l  be used as the s ta r t in g  po in t o f  the a n a ly s is .  Most o f  

the proposed con fig u ra tio n s  can be described by s u ita b ly  sp e c ify in g  

those parameters as c o n d u c t iv ity ,  p e rm eab ility , la y e r  th ic kn e ss , e tc . 

f o r  d if fe r e n t  reg ions. The a n a ly s is  o f  machine performance w i l l  ex

clude un su itab le  geometries and g ive  p o ss ib le  methods to  reduce the 

undesired end e f fe c ts .  Expressions fo r  machine performances w i l l  then 

be eva luated fo r  those prom ising geometries.

A p o ss ib le  way o f computing the e f fe c t iv e  co n d u c t iv ity  and per- 

m e a b ility  f o r  a composite tra ck  w i l l  be sketched. Up to now these 

parameters were determined e xpe r im en ta lly , and no th e o re t ic a l a n a ly s is  

has ever been attempted. D e f in it e ly ,  i t  i s  d i f f i c u l t .  An extrem ely 

s im p lif ie d  geometry w i l l  be considered to check the v a l id i t y  o f  th is  

e f fe c t iv e  c o n d u c t iv ity  and p e rm eab ility  concept. P o ss ib le  necessary 

cond it io n s  fo r  the v a l id i t y  w i l l  then be g iven . S ta r t in g  from th is  

p o in t, another p o ss ib le  co n fig u ra tio n  w i l l  be suggested and analyzed. 

The t ra n s fe r  m atrix  method is  employed to so lve  the 2-dim ensional 

problem. A t the end o f th is  d is cu ss io n , a 3-dim ensional co rre c t io n  

w i l l  be in troduced . Of course , the p re v io u s ly  nonex isten t la te r a l 

fo rce  w i l l  now appear. A corresponding q u a n t ita t iv e  approximation 

w i l l  then be g iven .
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CHAPTER II

GENERAL FORMULATION

The l in e a r  induc tion  motors which w i l l  be considered c o n s is t  o f  

fo u r la y e rs  as shown in  F ig . 2 .1 . The source w ith  a given cu rren t o r 

B - f ie ld  d is t r ib u t io n  (depending on how the source is  connected) is  lo 

cated a t the in te r fa c e  o f reg ions 3 and 4. Region 3 is  the fre e  space. 

Regions 1 and 4 are any zero co n d u c t iv ity  m a te r ia l,  such as the in 

f i n i t e l y  lam inated iron  o r fre e  space. Regions 1 and 2 which make up the 

tra ck  are moving a t a constan t v e lo c it y  v  r e la t iv e  to the source. The 

m a teria l p ro p e rt ie s  o f  reg ion 2 in  i t s  re s t  frame are a r b i t r a r i ly  s p e c i

f ie d  by constant c o n d u c t iv ity  and constant p e rm eab ility  u n ia x ia l 

tensors re s p e c t iv e ly .  These 

constants can g e n e ra lly  describe  the m ateria l used in  LIMs s a t is f a c 

t o r i l y .

M axw ell's  equations in v o lv in g  moving magnetic m a te ria l are com

p lic a te d . However, in  th is  case, neg le c ting  the d isp lacem ent cu rren t 

and r e la t i v i s t i c  e f fe c ts  is  always a good approxim ation. In the re s t 

frame o f  the source, M axw ell's  equations can then be s im p lif ie d  to g ive  

us (see Appendix A):

(2.1a)

(2.1b)

(2 .1c)

(2 .1d)

o r ,  fo r  a nons ingu la r ~σ ( i . e . ,  reg ion 2)
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F ig . 2.1

F ig . 2.2
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(2.2a)

(2.2b)

(2 .2c)

(2.2d)

and, fo r  ~σ = 0 ( i . e . ,  reg ions 1 ,3 ,4 )

(2.3a)

(2.3b)

(2 .3c)

(2.3d)

With a e- i ωt  time dependence, a F o u r ie r  transform  p a ir ,  g iven in  

(2.4a) and (2 .4b ), can be in troduced to so lve  the d if f e r e n t ia l  equa

t io n s :

(2.4a)

(2.4b)

Then, by app ly ing  su ita b le  boundary co n d it io n s , in  p r in c ip le ,  the 

problem has a unique s o lu t io n .

However, g e n e ra lly  th is  is  ted ious. To make the problem e a s ie r ,  

we assume a t f i r s t  th a t the source is  in f in i t e ly  extended along the 

x -a x is .  Thus, x-dependence can be suppressed. The 3-dimensional c o r

re c t io n  fo r  some sim ple geometries w i l l  be made la t e r  in  Chapter V.
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For th is  2-d im ensional problem w ith  the coord inate  system as

shown, the on ly  non-zero components o f

As suggested by Freeman(18 ), Cu llen  and Barton(19 ) , e t c . ,  the t ra n s fe r

m a tr ix  method can be used to f in d  the f ie ld .  A c tu a lly  we have:

Region 1:

(2 .5)

w ith (2 .6)

Regions 2,3:

(2.7)

w ith

(2.8)

Region 4:

(2 .9)

w ith (2.10)

A lso , in  the above
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(2.11)

(2.12)

γ k are s u ita b ly  chosen such tha t they conta in  on ly  p o s it iv e  rea l p a rts .

In these formulas the boundary cond it io n s  can then be in troduced . 

The f ie ld  d is t r ib u t io n  in  the whole space can be obta ined. Now the 

case w ith  a s p e c if ie d  cu rren t source w i l l  be considered ( i . e . ,  s e r ie s  

connected source):

The c o n t in u ity  cond it io n s  o f  g ive

(2.13a)

(2.13b)

Here ε is  p o s it iv e  but sm a ll, t i j  = (T3(z3 ) Τ2 (z2 ) ] i j  are the e le 

ments o f T3(z3 ) T2 (z2 ).

The boundary cond it io n s  at z3 g ive

(2.14a)

(2.14b)

(2.14c)

is  the F o u r ie r  component o f  the s p e c if ie d  cu rren t d is t r ib u t io n .  

Combine (2 .13 ), (2.14) to get:
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(2.15a)

(2.15b)

The F o u r ie r  components o f the f ie ld  d is t r ib u t io n  can be obta ined 

from equations (2 .5) to (2 .12). The f ie ld  d is t r ib u t io n  in  rea l space 

can then be obta ined by using the F ou rie r inverse  transform  (2 .4b).

From the above d e r iv a t io n , i t  is  obvious th a t the problem can 

a lso  be so lved by app ly ing  transm iss ion  l in e  theory. With the f ie ld  

components se rv ing  as the vo ltage  and the cu rren t 

re s p e c t iv e ly ,  the c h a ra c te r is t ic  impedance can e a s i ly  be de fined . 

A fterw ard the f ie ld  d is t r ib u t io n  can be obta ined by s u ita b ly  matching 

the in pu t impedance o r by using the Smith cha rt. Once we know the 

f ie ld  d is t r ib u t io n ,  we can eva luate  the machine performances. Among 

them, the fo rce s , e f f ic ie n c y ,  power in p u t, power fa c to r  are  the most 

im portant.

As described by Fano, Chu, A d le r (20) in  c a lc u la t in g  fo rce s  in 

vo lv ing  magnetic m a te r ia l,  the Minkowski fo rm u la tion  which we have used 

so fa r  cannot g ive  s a t is fa c to ry  re s u lt s .  Thus, an a lte rn a t iv e  c a lle d  

Chu's fo rm u la tion  is  in troduced . By using th is  new fo rm u la t io n , the 

fo rces w ith in  the magnetic m a teria l can be c le a r ly  e xp la ined . D e ta ils  

concerning the fo rces e x is t in g  in  the given LIM systems are inc luded  in  

Appendix A. In our problem, the fo rce  which has to  be ca lcu la te d  is  

ju s t  the to ta l fo rce  exerted on the source, which by the p r in c ip le  o f 

re a c t io n , is  ju s t  the to ta l fo rce  ac ting  on the combined reg ions 1 and 

2. Accord ing to Chu's fo rm u la tion , th is  fo rce  can be obta ined sim ply
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by in te g ra t in g  the M axw ell's  s tre s s  energy tenso r over the su rface  in  

the free  space ju s t  ou ts ide  o f reg ion 2, i . e . ,

(2.16a)

w ith

(2.16b)

F o rtu n a te ly , in  the free  space, the M axw ell's  s tre s s  energy 

tensors fo r  Chu's and M inkowski's fo rm u la tion s happen to be the same. 

Furthermore, in  the free  space, the e le c t r ic  p a rt o f  the s tre s s  energy 

tensor is  always sm all compared to the magnetic p a rt. D e f in it e ly ,  i t  

can be neg lected , and a c tu a lly  th is  is  equ iva len t to  neg lec ting  the d is 

placement cu rren t which was done a t the very beg inn ing. Thus, the c a lcu 

la t io n  o f fo rce s  can be s im p lif ie d .  F in a l ly ,  the time averaged to ta l 

fo rces are given by:

(2.17)

w ith

(2.18)

Thus, fo r  the 2-d im ensional case:

(2.19)

(2.20a)

(2.20b)
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(2.21a)

(2.21b)

where the F̄ i represent the fo rces a c t in g  on a u n it  length o f  source 

in  the x d ir e c t io n .  Combine (2 .20 ), (2 .21 ), (2.15) and (2 .7) to get 

the fo rces fo r  the case o f a s p e c if ie d  cu rren t source:

(2.22)

(2.23)

where are the elements o f m atrix  T2 (z2 ).

Sometimes i t  is  e a s ie r  to eva luate  the s tre s s  energy tensor 

in te g ra l a t the su rface  z 3- ε  . Then we get:

(2.24)

(2.25)

The average mechanical power inpu t is :
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(2.26)

The average power inpu t is :

(2.27a)

(2.27b)

(2.27c)

(2.27d)

Power fa c to r  is  given by:

(2.28)

E f f ic ie n c y  is  defined as:

(2.29)

F in a l ly ,  the induced eddy cu rren t lo ss  is  found from:

(2.30a)

or

(2.30b)

By in spec tion  o f the above form ulas, an equ iva len t c i r c u i t  can 

be constructed as shown in  F ig . 2 .2 , w ith
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and thus P̄ can be rew ritte n  as:

Now ~ZL can be decomposed in to  three parts:

The term con tr ib u te s  to the mechanical power,

w h ile g ives the induced eddy cu rren t lo s s . Thus, in  

order to have a high e f f ic ie n c y  o r a low energy lo s s , is  requ ired

to be concentrated around kyo such tha t is  sm a ll. The

imaginary p a rt Im ~ZL represents the d iffe re n ce  between the average 

sto red e le c t r ic  energy and magnetic energy. However, as we understand 

i t ,  in  th is  case the sto red e le c t r ic  energy is  r e la t iv e ly  small com

pared to the sto red magnetic energy. So the term Im ~ZL w i l l  m ain ly 

take care o f the average stored magnetic energy o f the system.

In the above, the problem o f a source w ith  s p e c if ic  cu rren t d is 

t r ib u t io n  a t z 3 is  analyzed. B a s ic a l ly ,  th is  is  the case o f the so- 

c a lle d  se ries-connected  source. The case o f a paral l e l -connected source 

w ith  a sp e c if ie d  B f ie ld  d is t r ib u t io n  a t z 3 can be analyzed in  the same 

way. D e f in it e ly ,  i f  the source is  in f in i t e ly  extended such th a t i t  can be 

described as a t r a v e l l in g  wave, i t  does not make any d iffe re n ce  whether 

the source is  s e r ie s  o r p a ra lle l connected. However, th e ir  behavior is  

qu ite  d if fe re n t  fo r  a more r e a l i s t i c  source. We do not intend to
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cons ide r the p a ra lle l-conne c ted  case here.

Th is completes the general a n a ly s is . In the next c hap te r we 

sha l l  s t a r t  from t h is  general fo rm u la tion  and con s ide r severa l examples.
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CHAPTER II I

SEVERAL EXAMPLES

Up to  now, the source c i r c u i t  has been neglected in  a l l  o f  the 

ana lyses. But, in  the machine design , there is  always a source w inding 

re s is ta n ce  ~Zs. And no matter what k ind o f source connection is  used, 

i t  is  q u ite  c le a r  th a t |~ZL| >> ~Zs around kyo is  necessary to make 

the source w inding lo ss  sm a ll. S u re ly , under c e r ta in  c ircum stances, 

the value o f β4 ≅ 0 ( i . e . ,  using in f in i t e ly  lam inated iro n  in  region

4 as assumed in  n ea r ly  a l l  o f the LIMs considered in  p rev io u s ly  pub

lis h e d  papers) w i l l  achieve th is .  But th is  a lso  means a d d it io n a l 

weight to  the vehic le s .  Thus, o the r  l ig h t e r  m ateria l w ith  a d if fe re n t  

~µ can a lso  be used. As pointed out p re v io u s ly , the LIMs are supposed 

to be used fo r  both suspension and p ropu ls ion . Thus, i f

around kyo is  requ ired  in  (2 .25 ) to g ive a s u f 

f i c ie n t  a t t ra c t iv e  supporting fo rce , β4 ≅  0 is  suggested. On the 

o the r hand, i f around kyo is  requ ired  in

(2.25) to g ive a s u f f ic ie n t  rep u ls iv e  supporting fo rc e , then the e f fe c t  

o f can be neg lected . D e f in it e ly ,  fo r  the general case, the trade 

o f f  among the w eigh t, co st o f  m ateria l in  regions 3, 4, and the source 

w inding lo s s ,  w i l l  determine what value o f  β4 is  su p e r io r  in  the 

machine design. But, u n fo rtu n a te ly , the a rb it ra r in e s s  o f  β4 w i l l  

make the Fou rie r inverse  in te g ra ls  much more com plicated to eva lua te . 

Thus, in  the fo llo w in g , on ly  two extreme cases o f β4 ≅  0 fo r  the in 

f in i t e ly  lam inated iron  and β4 = i / μo fo r  the free  space w i l l  be 

d iscussed; and o the r values o f β4 ly in g  between them w i l l  be guessed



-19-

to g ive  in te rm ed ia te  r e s u lts .

The same assumptions can be made fo r  β1. However, because 

region 1 is  not on the v e h ic le ,  weight is  not a se rious problem. In 

r e a l i t y ,  the earth  (which can be considered as a free  space) w ith  

β1 = i / μ o ,  and in f in i t e ly  lam inated back iron  w ith  β1 ≅ 0 ,  are most 

p ra c t ic a l and w i l l  be considered in  the fo llo w in g  as the on ly  p o s s ib i l 

i t i e s .

A n a ly t ic a l ly  e va lu a tin g  the in te g ra ls  (2.24) to (2.30) is  

very d i f f i c u l t ,  i f  not im poss ib le . Only two extreme approxim ations, 

namely, th in  and th ic k  reac t ion  r a i l s ,  w i l l  be considered. That a re 

ac tion  r a i l  is  th in  o r th ic k  is  de fined by |γ2h2 | << 1 o r |γ2h2 | >> 1 

around ky o  where |~Κx |2 is  l arge. The d e ta ils  about when those 

approximations are reasonable in  d e sc r ib in g  the LIMs are given in  

Appendix B.

Under these assumptions, s im p lif ic a t io n s  can d e f in it e ly  be made 

in  (2.24) to (2.30) to eva luate  the performance o f the LIMs. However, 

in stead  o f doing th is  imm ediately, we w i l l  f i r s t  t r y  to analyze the 

in tegrands. I t  w i l l  be found tha t th is  is  a convenient way o f look ing  

in to  t he system -optim iz ing  problem and the compensation fo r  end e f fe c ts .  

F i r s t ,  le t  us consider the case w ith β1 ≅ 0 .

(A) β1  ≅  0 : (reg ion  1 is  in f in i t e ly  lam inated iro n )

From (2 .8 ) , (2 .13 ), (2 .31):

(3.1)
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(3.2)

(3.3)

Here , kz = |ky |. And ~Fy , ~Fz are the in tegrands fo r

the fo rce  in te g ra ls  F̄y ,  ̄Fz re sp e c t iv e ly .  h2 ,  h3 are re sp e c t iv e ly  the 

th ickness o f  reg ions 2 and 3.

I t  is  not d i f f i c u l t  to show th a t fo r  a rea l ky both

and

tanhγ2h2 ) have p o s it iv e  rea l p a rts . And, t h e ir  imaginary parts w i l l  

have the same s igns as those o f γ2.

Thus, fo r  a given source cu rren t d is t r ib u t io n ,  a nonzero value 

o f α w i l l  r e s u lt  in  sm a lle r to ta l power inpu t and fo rce s , and thus 

degrade machine performance. Of course, as po inted out be fo re , the 

e f fe c t  o f  th is  term α w i l l  s tro ng ly  depend on the r e la t iv e  magnitude 

o f P1 and P2. Now, the th in  and t h ick reac t ion  r a i l  assumption w i l l  

be used to  s im p lify  the problem.



-21-

( i ) Thin reaction  r a i l s :

S ince |γ2h2 | is  sm a ll, the approximation tha t tanh γ2h2 ≅ 

γ2h2 can be made. A lso , fo r  L IMs used in  HSGT, h3 has to be small ,  

i . e . ,  tanh kzh3 ≅ kzh3 is  a lso  a reasonable approxim ation. We can 

now begin to cons ider d if fe r e n t  kinds o f  LIMs.

( i- 1 )  α ≅ 0: (reg ion 4 is  in f in i t e ly  lam inated iro n )

This is  the most popular SLIM considered by Nasar, Del C id , 

J r . (14 ), Wang(13 ), e tc . The re su l t  can a l so be d ir e c t ly  app lied  to 

ob ta in  the performance o f  DSLIM analyzed by Yamamura and I t o (16 ), 

Wang(11 ), and Dukowicz(1 5 ).

From (3 .1 ) , (3 .2 ) , (3 .3 ) , we get:

(3.4a)

(3.4b)

(3.4c)

(3.5a)

(3.5b)

(3.5c)
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(3.6a)

(3.6b)

Here I t  should be no ticed  th a t ~µ2 always appears

in  the form o f µ 2 z /(µ 2 zh 3  +  µ o h 2 ). Thus, except in  the case tha t

h2 >> h3 , which is  g e n e ra lly  not true  in  th is  th in  reac t ion  r a i l  geom

e t ry ,  the e f fe c t  o f  the p e rm eab ility  is  sm a ll.

A f te r  some ted ious a lg eb ra ic  m an ipu la tions,

are p lo tte d  as fun c tion s  o f ky in  F ig . 3 .1 . With "a" defined as 

kyv/ ω ,  i t  is  found tha t a t

A lso , have extrema a t "a" 

equal to ay , ar , a i s a t is fy in g  equations given below, re sp e c t iv e ly :

(3.7a)

(3.7b)

(3 .7c)

From these p lo ts ,  i t  is  q u ite  obvious tha t d if fe r e n t  arrangements 

o f |~Kx|2 can g ive machines which can be used fo r  d if fe re n t  purposes,

(e .g .,  brak ing o r p ropu ls ion  in  HSGT, o r even o ther than HSGT systems).

However, LIMs used fo r  both p ropu ls ion  and le v it a t io n  are our on ly  con

cern now.
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F ig . 3.1 Integrands fo r  geometry (A - i-1 )  w ith

(1) Re (2) Im

(3) (4)
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In o rder to get a net p ropu ls ion  fo rce , kyo = ao ω/v is  gener

a l l y  requ ired  to s a t is f y  1 > ao > 0 .  Thus, in  the fo llo w in g , on ly  

th is  reg ion w i l l  be considered. Now, we w i l l  look more c a r e fu l ly  in to  

equations (3 .4 ) , (3 .5 ) , (3 .6 ) , e s p e c ia lly  (3 .5 ).

I t  can be shown tha t t here w i l l  on ly  be one value o f "a" s a t is 

fy in g  each o f the equations (3 .7) fo r  1 ≥ a ≥ 0 .  And, fo r  t hose 

ro o ts , a i > ay > ar  are always tru e . A ls o , ay > az can be obta ined

fo r  th is  t hin  reac t ion  r a i l  case. From (3 .7a ), ay is  found to be a

m onoton ica lly  in c rea s in g  fun c tion  o f K1 v2 /ω .

Whether the machine has a rep u ls iv e  o r an a t t r a c t iv e  le v it a t io n  

fo rce  depends m ain ly on whether ao is  sm a lle r o r la rg e r  than az. 

N eve rthe le ss, a small ao < az g e n e ra lly  means a la rg e r  energy lo ss  

and thus a sm a lle r e f f ic ie n c y .  S ince ay > az is  always tru e , a 

small ao < az a lso  means a small th ru s t fo rce . Furthermore, i t  is

no ticed  tha t the maximum value o f p o s it iv e  ~Fz/ |~Κx |2 is  always much

la rg e r  than tha t o f  re p u ls iv e   ~Fy/|~Κx|, ( a c tu a lly  the r a t io  is  about

So, th is  k ind  o f LIM co n fig u ra tio n  is  not good fo r  use as

a rep u ls iv e  le v it a t io n  system. Thus, i t  is  p re fe rab le  to use a source

w ith  1 > ao > az such tha t a net a t t r a c t iv e  and a la rge  p ropu ls ive  

fo rce  can be obta ined.

Two methods are suggested to operate t he LIMs such t ha t t he 

above requirements o f 1 > ao > az can be met:

(1) F ix in g  ky o , then t ry in g  to use d if fe r e n t  ω fo r  d i f f e r 

ent speed ranges. This is  the method most people suggest. And, th u s , 

a frequency converte r is  needed.
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(2) F ix in g  ω, then try in g  to vary kyo as ν changes.

Th is is  s im i la r  to an antenna array  to change t he d ir e c t iv i t y  by s u i t 

ab ly  arrang ing the cu rren t in  each element.

In the id ea l case where the source is  a t r a v e l l in g  wave w ith

t he in te g ra ls  fo r  performance are easy to 

eva lua te . (Of course , we cannot cons ider t he in f in i t e  to ta l fo rces 

and power any longe r. But q u a n t it ie s  per u n it  le n g th in  the y -d ir e c -  

t io n  are not d i f f i c u l t  to d e r iv e ) . The fo llo w in g  re su lts  can be ob

ta in ed ;

(3.8a)

(3.8b)

(3 .8c)

(3.8d)

(3.8e)

Equations (3 .8) are p lo tte d  in  F ig . 3.2 as fun ction s  o f ν. 

The maximum th ru s t fo rce  w i l l  occur a t w ith  a co r

responding maximum value o f 1/4kyo • μoμ2z/ (μ2zh3 + μoh2 ).  Both the
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F ig . 3.2 Power and fo rces fo r  geometry ( A - i - 1) w ith  id ea l source and 

ωΚ1 = 2000, ωμοσxh2 = 5 ,  kyo = 1 0 .

(1)

(2)

(3) (4)
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supporting fo rce  and the e f f ic ie n c y  are m ono ton ica lly  in c rea s in g  func

t io n s  o f  ν. Thus, in  o rder to have a high e f f ic ie n c y ,  i t  is  sug

gested tha t the machine be operated in  the a t t r a c t iv e  supporting  fo rce

reg ion . At vm, a la rg e r  e f f ic ie n c y  can be obta ined by making

k2yo/ωK1 sm a lle r.

U n fo rtuna te ly , a pu re ly  t ra v e lin g  wave source does not e x is t  in

nature . G ene ra lly , we can on ly  have a f in i t e  source w ith  a |~Κx |2 

which is  an o s c i l la t in g  fun c tion  w ith  a fa s t  decaying envelop and a 

maximum value a t ky o . With the g iven in fo rm ation  about the in 

tegrands, i t  is  not d i f f i c u l t  to understand how th is  s o -c a lle d  end 

e f fe c t  comes in to  p lay . We w i l l  e xp la in  th is  by assuming the 

source has

( i . e . , a source w ith f o r |y | ≤ L, and Κx = 0 

o therw ise . Th is is  t he most popular uncompensated source used by 

n e a r ly  a l l  o f  t he re se a rch e rs .)

Now, le t  us go back to F ig . 3 .1 , where a ty p ic a l p lo t  fo r

is  shown. When L becomes in f in i t e ly  la rg e ,

becomes p ropo rtiona l to  δ(ky  -  ky o ). The in te g ra l fo r  F̄y w i l l  

ju s t  p ick  up the value o f ~Fy a t ky o , and the id ea l source re s u lt  

i s  obta ined. However, fo r  the more r e a l i s t i c  case where L is  f in i t e ,  

the s itu a t io n  is  d if fe r e n t .  I t  is  obvious tha t |~Kx|2 w i l l  now have

non-zero values a t ky ≠ ky o . Thus, t he in te g ra ls  w i l l  a lso  rece ive  

a co n tr ib u tio n  from th is  reg ion . And th is  e xp la in s  how th is  s o -c a lle d  

end e f fe c t  comes in to  p la y . D e f in it e ly ,  the o v e ra ll r e s u lt  depends
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d r a s t ic a l ly  on how fun c tion s  ~Fy / |~Kx |2 , |~Kx |2 vary.

By observ ing the ~Fy/|~Kx|2 curve more c a r e fu l ly ,  i t  can be seen

tha t there is  on ly  one lo ca l maximum loca ted  a t ky  = ay  ω/v. Thus, i f  

those po in ts  ky o , kyo ± π/L, are not too c lo se  to ay ω/v, then although

pa rt o f  |~Kx|2 w i l l  spread in to  t he region where ~Fy/|~Kx|2 is

sm a lle r than tha t a t ky o , there is  always anothe r  pa rt whi c h w i l l  go

in to  the la rg e r  ~Fy/|~Kx|2 reg ion . So the o v e ra ll e f fe c t  w i l l  be

sm a ll, i . e . ,  the end e f fe c t  causes l i t t l e  in f lu e n ce . On the con tra ry , 

i f  kyo happens to be equal to ay ω/v, those non-zero |~Kx|2 a t

ky ≠ kyo w i l l  always p ick  up sm a lle r ~Fy/|~Kx|2. Thus, the re su lta n t

fo rce  w i l l  decrease enormously, e s p e c ia l ly  when L is  small such tha t

the spread is  w ide. And th is  is  ju s t  the s itu a t io n  in  which the end

e f fe c t  degrades the machine performances most. Th is a lso  exp la in s

why a la rge  L is  suggested to reduce the undesired end e f fe c t .  As

fo r  the case where kyo is  near ay ω/v, although there is  a p o s s ib i l i t y

th a t |~Kx|2 w i l l  go to the region where ~Fy/|~Kx|2 is  la rg e r ,  the in -   

crease is  always small compared to the decrease coming from the spread- 

ing o f |~Kx|2 in to  the opposite  d ire c t io n .  Thus, although the d e ta il

w i l l  depend on how ~Fy/|~Kx|2 v a r ie s ,  a decrease in  the re su lta n t fo rce

can g e n e ra lly  be observed.

In the above we have m ain ly ta lked  about the in f lu en ce  o f  the 

source fu n c tio n . Now we w i l l  a lso  say something about the o the r param

e te rs .

I t  is  known tha t a sm a lle r K1ν2 /ω  w i l l  g ive  a sm a lle r ay . 

Now, i f  there are two cases w ith  the same ω/ν but d if fe r e n t  ay, 

then roughly speaking, the slope to the r ig h t  o f  ay w i l l  be steeper
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fo r  the case w ith  la rg e r  ay. Thus, i f  we have two systems w ith d i f 

fe re n t K1 opera ting  a t the same ω, ν, then we are go ing to get a 

more se riou s  end e f fe c t  fo r  the case w ith  la rg e r  K1 when ky o 's  are 

se t to t h e ir  corresponding values o f  ay  ω/v. (Remember, a la rg e r  ao 

is  suggested to g ive  a h igher e f f ic ie n c y .  And the above argument is  

on ly  app lied  to the case where ay  = ao > ½). So g e n e ra lly , we are 

expecting  a sm a lle r end e f fe c t  fo r  a system which uses a tra ck  w ith  a 

small σxh2. A lso , as we suggested be fo re , the machine can a lso  be 

used fo r  supporting purposes. In th is  case, i t  i s  p re fe rab le  to op

e ra te  in  the a t t r a c t iv e  reg ion . Thus, i t  is  more d e s ira b le  to make 

σxh2 sm a ll. Th is happens to be con s is ten t w ith the small end e f fe c t  

requirement. So, i t  seems tha t composite tra cks  whi ch w i l l  g ive  a 

r e la t iv e l y sm a lle r  σx are prom ising.

Note, fo r  p ra c t ic a l m a te ria l suggested in  MAGLEV systems, non

ferrom agnetic m a te ria l g e n e ra lly  has a h igher c o n d u c t iv ity . Thus, 

although m a te ria l w ith  high ~µ does not o f fe r  too many advantages; 

composite tra ck s  w ith  ferrom agnetic m a te ria l contained are s t i l l  

recommended fo r  use in  th is  sp e c ia l case. We w i l l  postpone our d is 

cussion about how to con stru c t the composite tra cks  u n t i l  Chapter IV.

However, i t  should a lso  be remembered tha t K1 cannot be made too

low, otherw ise ~Fy/|~Kx|2 w i l l  become too small in  the low s l ip  

reg ion . Th is w i l l  e ven tu a lly  decrease the fo rce  and degrade the 

machine performance. A s u ita b le  compromise is  thus necessary.

For the geometry we are con s id e r in g , one th ing  seems worthwhile 

mentioning. With a l l  o f the s p e c if ie d  source and tra ck  c o n f ig u ra t io n s , 

we know tha t the maximum fo rce  is  going to occur a t
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f o r  the idea l source. However, we a lso  know tha t f o r  th is  νm the

maximum value o f  ~Fy/|~Kx|2 is  going to appear a t ay ω/vm which i s  le ss
 

than kyo. Thus, the maximum th ru s t  fo rce  po in t is  not the po in t 

where the end e f f e c t  i s  most se r iou s .  La te r ,  th is  can be shown to be 

d i f f e r e n t  from some o f  the other con f igu ra t ion s .

In the above, we considered mainly the end e f f e c t  on the fo rce  

in  the y -d i r e c t io n .  S im i la r  arguments can a lso  be app lied  to F̄ z, η, 

PF. S ince , f o r  a given ν, the integrand f o r  the lo s s  in teg ra l is  

m onoton ica lly  decreasing fo r  0 ≤ ky ≤ ω/v, so the end e f f e c t  w i l l  not

in troduce too much in f luence  to the lo s s .  Thus, as f o r  the e f f i c ie n c y ,  

the end e f f e c t  w i l l  have s im i la r  in f luence  to tha t o f  F y, i . e . ,  i t  

w i l l  g ene ra l ly  degrade the e f f i c ie n c y .  For most o f  ky, ~Fz/|~Kx|2 is  

a lso  m ono ton ica lly  in c rea s in g ,  so tha t the end e f f e c t  i s  not ser ious 

f o r  the supporting fo rce  e i th e r .

( i - 2 )  α = 1: ( i . e . ,  source w ithout back iron )

S im i la r  to the case α ≅ 0 ,  we can get from (3 .1 ) ,  (3 .2 ) ,  (3.3) 

and the th in  reac t ion  r a i l  assumption:

(3.9a)

(3.9b)

(3.10a)
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(3.10b)

(3.11a)

(3.11b)

A l l  o f the approximations (3 .9b ), (3 .10b), (3.11b) are in t r o 

duced fo r  the convenience o f in tegrand analyses w ith  0 < ky < ω/v where

kyh2 << 1 ,  kyh3 << 1 are very accurate . However, as fa r  as the 

r e a l i s t i c  performance in te g ra ls  are concerned, (3 .9 a ), (3 .10a), (3.11a) 

w i l l  be more accura te .

Formulas (3 .9a), (3 .10a), (3.11a) are p lo tte d  in F ig . 3 .3 . For 

those "a" parameters as defined in  ( i- 1 ) ,  i f  on ly  the reg ion 0 ≤  a ≤ 1 

is  considered , we w i l l  get:

(3.12a)

(3.12b)

(3.12c)

In th is  case a i > ay > ar  is  always tru e , And a l l  o f  them are 

m onotonicall y in c rea s in g  fun ction s  o f γ = µoσx h2v. In order to have
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F ig . 3.3 Integrands fo r  geometry (A - i-2 )  w ith  γ = µoσxh2v = 1 0 .

(1) (2)

(3) (4)



-33-

F ig . 3.4 Power and fo rces fo r  geometry (A - i-2 )  w ith  id ea l source and 

ωµoσxh2v = 2 5 ,  kyo = 1 0 .

(1) (2) (3)

(4) (5) PF
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h igher e f f ic ie n c y  and enough supporting  fo rce , we suggest opera ting  

t his  mach ine w ith  ao > ay, i . e . ,  an a t t r a c t iv e  scheme is  p re fe ra b le . 

Now, s in ce  ay ≅ az, we cannot draw the la rg e s t  p o ss ib le  p ropu ls ion  

fo rce  fo r  th is  k ind o f geometry opera ting  in  the a t t r a c t iv e  supporting 

fo rce  reg ion . Furthermore, fo r  the same tra ck  co n fig u ra t io n s , ω, ν, 

and ky , geometry ( i- 1 )  always g ives la rg e r  va lues o f ~Fy/|~Kx|2,

~Fz/|~Kx|2, |~ZL | than those o f ( i- 2 ) .  So, i f  the same amounts o f 

fo rces and power are requ ired , la rg e r  |~Kx|2 is  always necessary fo r

geometry ( i- 2 ) .  Source w indings o f h igher c o n d u c t iv it ie s  must be used 

to prevent in to le ra b le  ohmic lo sse s . Thus, th is  geometry perhaps is  

not p re fe rred  in  HSGT v e h ic le s  where la rge  power and fo rce s  are always 

necessary. However, i f  the cost fo r  a high co n d u c t iv ity  source w inding 

is  manageable o r high power is  not a requirem ent, th is  LIM w i l l  s t i l l  

be a p p lic a b le . Thus, we w i l l  s t i l l  present some a n a ly s is  fo r  th is  

geometry.

For the id ea l source w ith the

machine performance is  easy to get:

(3.13a)

(3.13b)

(3.13c)
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(3.13d)

(3 .13e)

Here, o f  course, kyoh2 << 1 and kyoh3  >> 1 have been assumed

such th a t (3 .9b), (3 .10b), (3.11b) can be used.

I t  should be no ticed  tha t ~µ does not have any e f fe c t  on the 

machine performance. In (3 .13a), fo r  a given ky o , the maximum th ru s t 

fo rce  occurs a t w ith  a corresponding value o f

which is  ju s t  p ropo rtiona l to K2o and is  independent o f  every

th ing  e ls e .  A t νm, ay ω/vm happens to  be equal to kyo and thus the

corresponding F̄z w i l l  be 0 .  Thus, i f  an a t t r a c t iv e  fo rce  is  a lso

de s ired , we cannot draw the p o ss ib le  maximum propu ls ion  fo rce  fo r  th is

given geometry. Th is is  q u ite  d if fe r e n t  from the prev ious case where

kyo > ay ω/vm > az ω/vm and thus a t the maximum propu ls ion  fo rce  p o in t a

reasonably la rge  a t t ra c t iv e  fo rce  can a lso  be obta ined. Th is g ives

fu r th e r  evidence th a t geometry ( i- 1 )  is  su p e r io r . S im ila r  to  ( i- 1 ) ,  fo r

a given ky o , η is  a m ono ton ica lly  in c rea s in g  fu n c tio n  o f ν. At

νm ,  a la rg e r  e f f ic ie n c y  can be obtained by making kyo /(ωµoσx h2 ) sm a lle r, 

For the more r e a l i s t i c  case o f the

end e f fe c t  a lso  p lays an im portant ro le  in  degrading machine performance. 

The reason is  d e f in it e ly  the same as before , i . e . ,  |~Kx|2 w i l l  spread 

in to  the region where the in tegrand is  sm a lle r than th a t a t ky o .

Now, as we mentioned, fo r  an id ea l source w ith 

ay(vm) happens to  be equal to (kyoνm)/ω. Thus, the most se riou s end
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e f fe c t  is  observed. G ene ra lly , i t  can be argued tha t the end e f fe c t  

can p o s s ib ly  be reduced by making σxh2 sm a lle r , which is  a lso  the

same conc lus ion  as th a t o f ( i- 1 ) .  Of course, a s u ita b le  lower σxh2

must be chosen to prevent the machine from going in to  the low e f f i c i 

ency reg ion .

( i i ) Th ick reac t ion  r a i ls :

For |γ2 |h2 >> 1 ,  tanh γ2h2 ≅ 1 is  approxim ately tru e . In 

ad d it io n  to  t h is ,  tanh kzh3 = kzh3 w i l l  fu r th e r  s im p lify  the o r ig in a l 

form ulas. However, in  th is  case, the a lg e b ra ic  a n a ly s is  is  found to  be 

much more com plicated fo r  problems w ith  α ≅ 0 .  Thus, instead  o f con

s id e r in g  α ≅ 0 ,  we w i l l  take care o f the problem w ith  α = 1 f i r s t .  

Then severa l re s u lts  fo r  α ≅ 0 can be obtained by comparing w ith  

those o f α = 1 .

( i i - 1 )  α = 1: (reg ion 4 is  fre e  space)

From (3 .1 ) , (3 .2 ) , (3 . 3) and the given assumptions:

(3.14)

(3.15)
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(3.16)

(3.17)

(3.18)

(3.19)

A lg eb ra ic  analyses fo r  ~Fy/|~Kx|2 and ~Fz/|~Kx|2 y ie ld  the re -

s u its  in  F ig . 3 .5 . For the eddy cu rren t lo ss  and rea l P, re s u lts  can

be obta ined s im ply by m u lt ip ly in g  (ω/ky - ν) and ω/ky w ith ~Fy/|~Kx|2

re sp e c t iv e ly .

For ~µ = µo~I, a maximum value fo r  ~Fy/|~Kx|2 is  found to be at 

(here K = w ith a corresponding value o f
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I f  ~μ ≠ μο~Ι and μ2o/μ2yμ2z << 1 are tru e ,

And the corresponding maximum

value is  μο/ (2√2(2  + √2) ). Thus, i f  the peak p ropu ls ion  fo rce  is  o f

most concern, the b igge r extreme va lue o f ~Fy/|~Kx|2 fo r  the ferromag-

n e t ic  tra ck  w i l l  make the tra ck  a l i t t l e  b i t  more favo rab le  than the 

nonferromagnetic one. ~Fz/|~Kx|2 is  zero a t az =

w ith For the nonferromagnetic t ra c k , K3-1 

reduces to ze ro , i . e . ,  the on ly  zero po in t is  a t a = 1 .  And, no

m atter whether ~μ = μο~Ι o r ~μ ≠ μο~Ι, ~Fz/|~Kx|2 has a maximum at 

a = 1 .  More in fo rm ation  about these integrands can be obta ined from 

F ig . 3 .5 .

I t  can e a s i ly  be seen th a t fo r  the th ic k  reac t ion  r a i l ,  th e  

sk in  e f fe c t  w i l l  prevent the medium in  reg ion  1 from in f lu e n c in g  the 

machine performance. And the p e rm eab ility  ~µ begins to  p lay  a very 

im portant ro le .  For the nonferromagnetic t ra c k , on ly  the repu ls ive  

fo rce  can be observed. A la rg e r  re p u ls iv e  fo rce  can be obta ined on ly  

a t a sm a lle r  "a ". Thus, i f  high e f f ic ie n c y  is  d e s ire d , th is  geometry 

is  not recommended to  be used as a LIM both fo r  p ropu ls ion  and le v i t a 

t io n .  However, i f  i t  is  m ain ly suggested fo r  the p ropu ls ion  purpose, 

there w i l l  always be an ex tra  rep u ls iv e  fo rce  to help in  supporting  the 

v e h ic le s .

As fo r  the ferrom agnetic tra c k , we w i l l  get a very s im ila r  re 

s u lt  to  tha t o f the th in  reac t ion  r a i l  (A - i-2 ) .  Both rep u ls iv e  and
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a t t r a c t iv e  fo rces can be obta ined. Furthermore, 0 ≤ az ≅ ay < 1 is  

true  fo r  both cases. Thus, most o f  the arguments given there can be 

app lie d  here. Depending on whether ao is  la rg e r  or sm a lle r than az, 

the machine can have e ith e r  an a t t r a c t iv e  o r a re p u ls iv e  fo rce . But, 

i f  high e f f ic ie n c y  is  a lso  requ ired , the a t t r a c t iv e  one is  p re fe rab le . 

U n fo rtuna te ly , the la rg e s t  p ropu ls ion  fo rce  can on ly  be obta ined a t 

ay = az. I t  is  a lso  no ticed  th a t a t ay the peak in tegrand fo r  F̄y 

is  a l i t t l e  b i t  sm a lle r than tha t o f (A - i-2 )  which is  on ly  o f the order 

o f  ky h m u lt ip lie d  by tha t o f  (A - i-1 ) .  Thus, s im ila r  to  ( A - i- 2 ) ,  a 

high co n d u c t iv ity  source w inding is  requ ired  to reduce the ohmic lo ss  

when s im ila r  fo rce s as in  (A - i-1 )  are des ired . And, a c tu a lly ,  th is  

seems to  be a common requirement fo r  LIMs w ith  α = 1 when s im ila r  

fo rces as LIMs w ith  α4 = 0 are needed.

For the id ea l source, the machine performance can e a s i ly  be 

obta ined by s u b s t itu t in g  ky w ith kyo in  equations (3 .15 ), (3.17) 

and (3 .19). P lo ts  o f  F̄y , F̄z , e tc . are then shown in  F ig . 3 .6 . Now, 

the maximum th ru s t fo rce  p o in t w i l l  s a t is f y

w ith  K i = K o r K2. The co rre sponding fo rce  w i l l  be on the order o f

A c tu a lly ,  as derived from the in tegrand ana lyses, the id ea l 

source re s u lts  fo r  ~µ ≠ µo~I w i l l  be q u a l it a t iv e ly  s im i la r  to (A - i-2 ) .  

Most o f  the o the r p rope rtie s  can a lso  e a s i ly  be observed from F ig . 3 .6 . 

With the same argument as in  ( A - i) ,  i t  is  understood th a t the 

end e f fe c t  can be reduced by making Ki sm a lle r. Using a composite tra ck  

g e n e ra lly  can a t ta in  th is  o b je c t iv e . However, the decrease o f Ki w i l l  

a lso  g ive  a sm a lle r  ay and thus a sm a lle r e f f ic ie n c y .  A su ita b le  com

promise should be made to determ ine which va lue o f Ki  to use.
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F ig . 3.5 Integrands fo r  geometry ( A - i i- 1 )  w ith

(1) (2)

(3) (4)



-41-

F ig . 3.6 Power and fo rces fo r  geometry ( A - i i- 1 )  w ith  id ea l source and 

ωΚ5 = 200,000, kyo = 1 0 ,

(1) (2)

(3) (4)

(5) Power fa c to r
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( i i -2) α ≅ 0: (reg ion 4 is  in f in i t e ly  lam inated iro n )

From (3 .1 ) , (3 .2 ) , (3 .3) and the g iven assumptions:

(3.20a)

(3.20b)

(3.21a)

(3.21b)

(3.22a)

(3.22b)
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A f te r  comparing to  the corresponding formulas in  ( A - i i - 1 ) ,  the 

d if fe r e n t  terms in  (3 .20b), (3 .21b), (3.22b) are underlined  and by 

changing these terms to "1 ", formulas fo r  ( A - i i- 1 )  can be obta ined. I t  

is  seen tha t ~μ = μo~I and ~μ ≠ μo~I behave q u ite  d i f f e r e n t ly  from each 

o the r. By observ ing th is  fa c t  and the re su lts  from some rough a lg eb ra ic  

c a lc u la t io n ,  the fo llo w in g  remarks can be made.

Nonferromagnetic tra ck s:

• ~Fz/|~Kx|2 is  always negative . And s im ila r  to th a t in

( A - i i- 1 )  ~Fz/|~Kx|2 is  monotonical ly  in c rea s in g  fo r  0 ≤ a ≤ 1 

w ith  a minimum value o f - μo/4 a t a = 0 and a maximum 

value equal to  0 a t a = 1 .

• ay is  lo ca ted  a t w ith K4-1 ly in g  between

and

Ferromagnetic tra cks:

w ith

has a maximum ly in g  between a = 1 and a = az.

• ay  is  lo ca ted  at w ith  Κ5-1 ly in g  between

and Thus, ay > az is  g ene ra lly  true .
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F ig . 3.7 Integrands fo r  geometry ( A - i i- 2 )  w ith

(1) (2)

(3) (4)
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F ig . 3.8 Power and fo rces fo r  geometry ( A - i i- 2 )  w ith idea l source and 

ωΚ5 = 200,000, = 0 .01, h3= 0.01, kyo = 1 0 .

(1) (2)

(3) (4)

(5) Power fa c to r
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A lso ,  no matter which track  is  used, ~Fy/|~Kx|2 and

~Fz/|~Kx|2 w i l l  always be la rg e r  than those o f  the corresponding 

values o f  ( A - i i - 1 ) .  Most arguments given in  ( A - i i - 1 )  can be app lied 

here f o r  the nonferromagnetic t rack  except th a t ,  due to the r e la t i v e ly  

la rg e r  values o f  ay , ~Fy/|~Kx|2 and ~ Fz/|~ Kx|2 , th is  case w i l l  pro- 

duce la rg e r  forces and e f f i c ie n c y .  For the ferromagnetic t ra c k ,  the 

advantage over tha t o f  LIM w ith α = 1 which was mentioned before is  

re-observed. Due to the f a c t  tha t ay > az, i f  the LIM i s used fo r  

both p ropu ls ion  and le v i t a t io n  purposes, the LIM is  suggested to be 

operated in  the a t t r a c t iv e  region. Then, a peak propu ls ion  fo rce  can 

always be obtained w h ile  the a t t r a c t iv e  fo rce  is  s t i l l  r e la t i v e ly  la rge . 

For the idea l source, the re s u lt s  can be obtained s imply by s u b s t i t u t 

ing ky w ith kyo . Some p lo ts  w ith the machine performance as a func

t io n  o f  ν are given in  F ig . 3.8. For ferromagnetic t ra c k s ,  some 

re su lt s  are q u a l i t a t i v e ly  s im i la r  to those o f  (A - i -1 ) .  When ~Kx is

not a δ- fu n c t io n ,  the end e f fe c t  w i l l  a lso  appear. Decreasing σx is

suggested to  reduce i t .

(B) β1 = β3: (region 1 i s free  space)

In (A),  β1 ≅ 0. T h is means a l o t  o f  laminated ferromagnetic 

mater ia l mus t  be used, and thus more cos t.  So, from the economic po in t 

o f  view, the free  space, or ju s t  the earth fo r  region 1 may be p re fe r 

ab le .

From (2 . 8) ,  (2 .13),  (2.31):

(3.23a)
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(3.23b)

(3.23c)
Here

(3.23d)

(3.23e)

For th ic k  rea c t io n  r a i l s ,  there is  no d iffe re n ce  whether region 

1 is  t he free  space o r a lam inated ir o n ,  o r any o the r m a te r ia l.  Thus, 

in  t he fo llo w in g  on ly  t he th in  reac t ion  r a i l  is  necessary to be con

s idered .

( i- 1 )  α ≅ 0: (reg ion 4 is  i n f i ni t e ly  lam inated iro n )

Under the th in  reac t ion  r a i l  assumption, (3.23) w i l l  g ive  us:

(3.24a)

(3.24b)
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(3.25a)

(3.25b)

(3.26a)

(3.26b)

Of course, (3 .24b), (3.25b) and (3.26b) are in troduced on ly  fo r  the

purpose o f s im p lify in g  the integrand a n a ly s is .  G enera lly  they cannot

be used fo r  the in te g ra l e va lu a tio n . (The idea l source w ith  kyoh3 << 1

is  one excep tion .)

Except fo r  a fa c to r ,  (3.24) is  e x a c t ly  the same as (3 .9 ). However, 

th is  fa c to r w i l l  make the a lg eb ra ic  a n a ly s is  much

more com plicated.

Several remarks w i l l  be given:
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Nonferromagnetic tra cks:

• S ince [1 + kz (h2 + h3)] ~ 1, except fo r  the value ~Fz/|~Kx|2,

the d iffe re n ce  between th is  geometry and (A - i-2 )  is  sm a ll. Thus

we w i l l  get s im ila r  p lo ts  o f  ~Fy/|~Kx|2 and ~ZL fo r  both cases.

And w ith

γ = μσxh2ν. Of course, the corresponding maximum values w i l l  

be a l i t t l e  b i t  la rg e r  than those o f (A - i-2 ) .

• ~Fz/|~Kx|2 w i l l  be d if fe r e n t  from the corresponding (A - i-2 )  re 

s u lt .  A c tu a lly , i . e . ,  i t

w i l l  always be re p u ls iv e . Th is is  not  s u rp r is in g  because now 

there i s  no back-iron  to g ive  the a t t r a c t iv e  fo rce  component any 

longer. A lso , there is  a minimum value o f -μo/4 a t ky  = 0 and 

a maximum value o f 0 a t a = 1 .

Ferromagnetic t ra c ks: cannot be neg lected)

• For a > 0 i t  can be s hown t ha t ay l ie s  to  t he r ig ht  o f

And f or  0 < a < is  monotoni c -

a l l y  in c rea s in g . A t a =

• For  a > 0 i t  can be shown t ha t i f

az l ie s  to  the (left/right) o f And, there is  on ly
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one value o f a z ly in g  between 0 and 1. A lso , a t ky = ω/v, 

which is  the maximum value

o f ~Fz/|~Kx|2. Other p rope rtie s  o f the in tegrands can roughly be 

obta ined from the p lo ts  in  F ig . 3 .9 .

For the same source d is t r ib u t io n s ,  i t  can be seen tha t fo r  non

ferrom agnetic tra cks  the machine performance in  terms o f Fy , η, and PF 

is  roughly s im ila r  to  tha t o f (A - i-2 ) .  The main d if fe re n ce  is  th a t now 

we get on ly  a pu re ly  re p u ls iv e  fo rce . And the small abso lu te  va lue  o f 

the in tegrand fo r  F̄z a t la rge  "a" w i l l  exclude th is  geometry from being 

used as a LIM fo r  both supporting and p ropu ls ion  purposes. For ferromag

n e t ic  tra c k s , the s itu a t io n  is  d if f e r e n t .  Of course, i f  

is  s t i l l  sm a ll, the r e s u lt  d e f in it e ly  w i l l  be n ea r ly  the same as before .

However, i f  µ2y  is  la rge  enough, then becomes impor

tan t; e s p e c ia l ly  when such th a t ay > az is  true .

Then, we can t r y  to  design a LIM to support and s im u ltaneously  a cce le ra te  

the v e h ic le .  Thus, from th is  p o in t o f view , we can conclude th a t a 

la rg e r  value o f i s  more d e s ira b le . And making µ2y and

h2 la rge  i s  the e a s ie s t way to reach th is  o b je c t iv e . As fo r  the fa c to r

we can a lso  t r y  to make σx la rg e r  to get a value approxim ately

equal to 1 a t the peak v e lo c ity .  However, as fa r  as the end e f fe c t  is  

concerned, i t  is  more d e s ira b le  to keep i t  a t a moderate value (say 0 .8 ). 

Then i t  seems th a t a somewhat sm a lle r σx is  p re fe rred  over a h igher

σx . A l l  o f  th is  w i l l  make the composite iron  the most prom ising track  

m a te r ia l.
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F ig . 3.9 Integrands fo r  geometry (B - i-1 )  w ith

(1)

(2) (3)

(4)
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F ig . 3.10a Power and fo rces fo r  geometry (B - i-1 )  w ith  idea l source and

(1) (2)

(3) (4)

(5) Power fa c to r
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F ig . 3.10b Power and fo rces fo r  geometry (B - i-1 )  w ith  id ea l source and

(1) (2)

(3) (4) (5) Power fa c to r
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( i- 2 )  α = 1: (reg ion 4 is  fre e  space)

Under the th in  reac t ion  r a i l  assumption, (3.23) w i l l  g ive  us:

(3.27a)

(3.27b)

(3.28a)

(3.28b)
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(3.29a)

(3.29b)

Some ted ious a lg e b ra ic  analyses w i l l  g ive  us the fo llo w in g  re s u lts :  

Nonferromagnetic tra ck s:

can be fu r th e r  approximated as 4ky2 .

And Then (3.24b) and (3.27b) look

nea rly  the same; so do (3.25b) and (3.28b). By comparing the 

formulas w ith  each o ther i t  fo llow s  tha t

and G en e ra lly , the co r

responding maximum values are sm a lle r fo r  geometry (B - i- 2 ) .  

A c tu a lly  ~Fy/|~Kx|2 a t fo r  geometry (B - i-2 )  is

on ly  about one -ha lf o f the value o f ~Fy/|~Kx|2 at

fo r  the case ( B - i-1 ).

This is  s im ila r  to the

previous case (B - i-1 ) and w i l l  always be negative . A c tu a lly ,  a

minimum value o f -uo /4 occurs at ky = 0, and a maximum value
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of  "0" occurs a t ky= ω/v. However, f or  the same "a" i t  w i l l  be 

a l i t t l e  b i t  sm a lle r fo r  geometry (B - i-2 ) .

Ferromagnetic tra ck s :

• For 1 > a > 0 , i f is  s t i l l  sm a ll, then the same 

conc lus ion  as fo r  th a t o f  nonferromagnetic tra cks  can be used 

as an approxim ation.

• For a > 0 , i f is  not sm a ll, then, except in  a very

small reg ion where kz is  small such tha t is

s t i l l  true  so as to  make the integrands behave in  the same man

ner as tha t o f nonferromagnetic tra c k , the s itu a t io n  is  d i f f e r 

ent fo r  the remaining reg ions.

• In o rder to  have a LIM w ith  reasonable e f f ic ie n c y ,  i t  is  sug

gested tha t kyo be a l i t t l e  b i t  sm a lle r than ω/ν (say, 

kyo =  0.8  ω/ν). Now fo r  a > 0 ,  i f then, in

the reg ion  where |~Κχ |2 is  la rge  ( i . e . ,  say around kyo ≅

0 .8  ω /ν), the approximation can

be made. Then, i t  can be shown tha t and

~Fym/|~Kx|2 = μo/4. ~Fz/|KX |2 is  found to  be m onoton ica ll y in 

creas ing  w ith  az ≅ ay. A maximum value o f μo/4 a t a = 1 

and a minimum value o f -μo/4 a t a = 0 can a lso  be observed.

For small μ2y/μo ω/v h2, the terms ~Fy/|~Kx|2, ~Fz/|~Kx|2 and ~ZL.

are found to behave in  a s im ila r  manner as in  (B - i-1 ) .  The main d i f f e r 

ence is  th a t the most im portant fa c to r  γ = μ o h 2 σ x v  o f the previous case
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F ig . 3.11 Integrands fo r  geometry ( B - i i- 2 )  w ith  μoh2σxv = 5 ,

(1) (2)

(3) (4)
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F ig . 3.12 Power and fo rces fo r  geometry ( B - i i- 2 )  w ith  id ea l source and

(1) (2) (3)

(4) (5) Power Factor
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(B - i-1 )  is  now changed to γ/2 and the corresponding maximum values o f  

~Fy/|~Kx|2, ~Zr , ~Zi  fo r  th is  case are sm a lle r. For a la rge  μ2y/μo ω/v h2, 

i t  is  a d if fe r e n t  s to ry . A c tu a lly ,  i t  looks more s im ila r  to ( A - i i - 1 ) .

In both geometries (B - i-2 )  and ( A - i i - 1 ) ,  we have ay = az,

Thus, most arguments

given in  ( A - i i- 1 )  can a lso  be app lied  here.

A fte r  the above a n a ly s is ,  a general d is cu ss io n  w i l l  be g iven. Now 

tha t the LIMs are supposed to be used both fo r  supporting  and p ropu ls ion , 

la rge  fo rce s  in  both d ire c t io n s  and high e f f ic ie n c y  are a l l  requ ired .

Th is w i l l  e ven tu a lly  e lim in a te  the p o s s ib i l i t y  o f  using LIMs which g ive 

re p u ls iv e  supporting fo rce s . So cases ( A - i i )  and (B) w ith  non fe rro 

magnetic tra ck s  are not recommended. For the remaining geometries which 

can be operated to  g ive  a t t r a c t iv e  supporting fo rc e s ,  they can be 

d iv id ed  in to  two ca te g o r ie s , namely, ay > az and ay  ≅ az. The 

property tha t a la rg e r  p ropu ls ion  fo rce  can on ly  be obta ined in  a region

where ~Fz/|~Kx|2 is  r e la t iv e ly  small w i l l  fu r th e r  exclude the cases w ith 

ay = az which g en e ra lly  occur fo r  α4 = 1 .  Thus, f in a l l y ,  the on ly  re 

maining geometries are ( A - i i- 2 )  and (B - i-1 )  w ith  μ ≠ μoI and (A - i-1 ) .

I t  should a ls o  be no ticed  th a t maximum values o f  ~Fz/|~Kx|2 are g ene ra lly

la rg e r  than those o f ~Fy/|~Kx|2 fo r  the remaining cases. And thus, fo r

a s u ita b le  | ~ K x | 2 , a la rg e r  F̄z can always be obta ined. Th is happens to

be co n s is ten t w ith  t he requirement fo r  v e h ic le  design , s in ce  an a cce le ra 

t io n  o f " l g" is  always necessary to  support the v e h ic le ,  w h ile  fo r  com

fo r t ,  human beings can on ly  to le ra te  a h o r izo n ta l a c ce le ra t io n  o f severa l 

tenths o f  " lg " .
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Of course, i f  |~Kx |2 is  s p e c if ie d ,  the machine performance can

be eva luated e ith e r  num erica lly  o r a n a ly t ic a l ly .  G ene ra lly , numerical 

in te g ra t io n s  are s tra ig h tfo rw a rd  and a n a ly t ic a l e va lua tion s  are d i f f i 

c u lt .  However, fo r  some o f the s im p lif ie d  geometries w ith  th in  or 

th ic k  rea c t io n  r a i l s ,  a n a ly t ic a l e va lua tion s  seem to  be p o s s ib le . Now, 

we w i l l  cons ide r the most popu lar source d is t r ib u t io n

and t r y  to eva lua te  the machine performance

in te g ra ls .  Of course, i t  would be the best s itu a t io n  i f  we could ana ly 

t i c a l l y  eva luate  them fo r  a l l  o f  the recommended geometries. However, 

geometry ( A - i i- 2 )  is  q u ite  d i f f i c u l t .  Thus, although geometry (A - i i- 1 )  

is  not p rom is ing , i t  w i l l  be a n a ly t ic a l ly  examined as an a lte rn a t iv e  

o f the th ic k  rea c t io n  r a i l s .  And we hope tha t i t  w i l l  g ive  us some in 

form ation about geometry ( A - i i - 2 ) .  (R esu lts  fo r  geometry ( A - i i- 2 )  are also 

given in  Appendix F .)

(a) Geometry (A - i-1 ) :

In th is  case a l l  o f  the in tegrands (w ith  the source term excluded) 

can be e a s i ly  fa c to r iz e d . The in te g ra ls  can be rew r itte n  as the summa

t io n s  o f in te g ra ls  s im ila r  to S1 (α ,  ky o ,  L ) . Appendix C can then be used 

to get:

(3.30a)

(3.30b)
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(3.30c)

(3.30d)

where (3.30e)

(3 .3 0 f)

w ith

In the above d e r iv a t io n , the th in  reac t ion  r a i l  approximation 

is  used fo r  the whole range o f ky extended from -∞ to  ∞. I t  is  

obv iou s ly  not very accura te . A c tu a lly ,  th is  th in  rea c t io n  r a i l  assump

t io n  is  on ly in troduced to  analyze the in tegrands w ith in  0 ≤ ky ≤ ω/v 

o r even on ly  around kyo where |~Kx |2 is  la rge . In the reg ion  where 

kz is  la rg e , g ene ra lly  γ2h2 is  a lso  la rg e , i . e . ,  the th in  reac t ion  

r a i l  cond it io n  cannot be s a t is f ie d .  However, i f  we go back to  the 

o r ig in a l exact expressions fo r  the in teg rands, we f in d  th a t the con

t r ib u t io n s  from the la rge  kz region are always very sm a ll. And, in  

the meanwhile, i f  we look in to  the th in  reac t ion  r a i l  approxim ations,
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then, in  t he same reg ion we wi l l al s o see very small in teg rands. 

F u rthermore, the source fun c tion  |~Κx |2 i s  on ly  s ig n if ic a n t  around 

ky o .  Thus, we can conclude tha t the use o f t he t h in  rea c t io n  r a i l  

approximation fo r  t he who le  range o f ky does not in troduce  too much 

e rro r  fo r  the machine performance in te g ra ls .  Th is argument can a lso  

be app lied  to o the r geometries.

Numerical va lues can be used in  (3.30) to eva lua te  the machine 

performance. However, before doing th a t, we w i l l  look in to  these 

formulas more c a r e fu l ly .  For p ra c t ic a l cases, | Im 2αmL| is  g enera lly

la rge  (e .g .,  > π). Thus, can be neg lected in  S1 (αm,  ky o , L ) . 

I t  is  q u ite  obvious tha t the term p ropo rtiona l to  L in  S1 w i l l  g ive 

a r e s u lt  corresponding to  the id ea l source case ( i . e . ,  w i l l  g ive 

formulas (3 .8)). The remaining term o f is  e s s e n t ia l ly

the reason fo r  the end e f fe c t .  A c tu a lly ,  we w i l l  have

(3.31a)

(3.31b)

(3.31c)

Here, the sub sc r ip ts  "1" are in troduced to represent the co n tr ib u tio n  

from the term in  S1(αm , kyo , L). A lso , (3.30d) is  used
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fo r  F̄z which w i l l  make the an a ly s is  s im p le r.

Now, two extreme cases w ith  4ω/K1ν2 being e ith e r  la rg e  or 

small w i l l  be considered in  in v e s t ig a t in g  the e ffe c ts  due to the term 

as shown above.

From (3.30):

(3.32a)

(3.32b)

I t  is  no ticed  tha t |α2 - ky o | is  much la rg e r  than |α1 - k y o | ; thus, the

term can be neglected in  (3 .31). By look ing  in to  (3 .31 ), we

see tha t the p rope rtie s  o f  the expressions (3.31) can be observed by 

cons idering :

(3.33a)

(3.33b)
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(3.33c)

I t  should f i r s t  be noted tha t these terms are small when ao ≅ 1 .

A lso , fo r  the id ea l source case we know tha t Re P̄ ≥ 0 ,  ¯ F y  ≥  0 ,

and Im P̄ ≤ 0 w ith in  the opera ting  range o f 0 ≤ ao ≤ 1 .  Now, from 

(3.31) and (3 .3 3 ), we r e a liz e  tha t Re P̄1 is  g e n e ra lly  negative;

-Im P̄1 and ¯F1 vary in  a s im ila r  way and are negative  on ly  when

is  negative fo r  ao > 1/3. And, rough ly , i t  can be

shown that  the e f f ic ie n c y  decreases fo r  1 > ao > 1/2. The degrading o f 

the machine performance i s  thus observed in  the high ao reg ion .

We then have:

Now, we need on ly  cons ide r the fo llo w in g  terms:

(3.34a)

(3.34b)
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F ig . 3.13a Machine performance fo r  geometry (A - i-1 )  w ith

A l l  parameters are the same as in  F ig . 3 .2 . L = 2.512m. 

Curves (1 ), (2 ), (3) and (4) represent the same q uan ti

t ie s  as in  F ig . 3 .2 . Curve (6) is  the e f f ic ie n c y  and 

Curve (5) is  the power fa c to r .
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F ig . 3.13b A l l  q u a n t it ie s  are the same as in  F ig . 3.13a, except 

L = 1.256m.
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I t  can be shown th a t the phase angles o f (3.34a) and (3.34b)

are a l l  m ono ton ica lly  decreasing fun c tion s  o f ao fo r  0 ≤ ao ≤ 1 .

A c tu a lly ,  fo r  (3.34a) (o r, P̄1), the phase angle in creases from -π/4 

a t ao = 1 to π/2 a t ao ≅ to 5/4π a t ao = 0 .  And,

fo r  (3 .34b), i t  w i l l  vary from π/4 a t ao  ≅ 1 to  π a t ao =

and f in a l l y  to 7/4π a t ao = 0 .  Thus, except in  a very small reg ion

increases in  Re P̄ and p o ss ib le  in creases in  PF are

expected. For a2o ≅ (K1v2)/ω , both F̄y and machine e f f ic ie n c y  are ob-

served to decrease. I f  (K1v2)/ω >> γ2 , F̄z 1 behaves in  the same way as

-Im ¯P1. On the con tra ry , i f  (K1v2)/ω << γ2 , F̄z1 behaves in  a way

s im ila r  to -Re ¯P1.

From the above a n a ly s is ,  i t  is  not s u rp r is in g  tha t most conc lu 

s ions are b a s ic a l ly  s im ila r  to those obta ined from the in tegrand 

a n a ly s is .  T yp ica l p lo ts  o f machine performance fo r  th is  r e a l i s t i c  source 

are given in  F ig . 3.13. The degrading in  the machine performance can the 

be observed by comparing w ith the re s u lts  shown in  F ig . 3.2 fo r  the idea l 

source.

(b) Geometry ( A - i i- 1 ) :

S im ila r  to  (a ), F̄y and P̄ can be evaluated by using su ita b le  

fa c to r iz a t io n  in  (3.14a) and (3.15a) to  get:

(3.35a)
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(3.35b)

where α3,  and α4 are roots o f k2y + i ( ω -  ky v)K6 = 0 w ith  

or:

(3.36a)

(3.36b)

w ith

D e f in it io n s  fo r  S2 (αm,  ky o ,  L) and S3(αm, kyo, L) are given in  

Appendices D and E. However, i t  should be noted tha t the exact expression  

fo r  S3 (αm, kyo, L) is  d i f f i c u l t  to  get. Thus, on ly  an asym ptotic formula 

is  derived .

As fo r  F̄z, the in te g ra l is  much more com plicated. However, as 

we mentioned, the end e f fe c t  is  g en e ra lly  small provided t ha t kyoL is  

la rge . Thus, we can always use the formula fo r  the idea l source as an 

approximation fo r  the more r e a l i s t i c  source we are now cons ide ring .

I t  is  obvious tha t idea l re s u lts  can be obtained by ju s t  con s ide r

ing the terms p ropo rtiona l to L in S2(αm , kyo , L) and S3(αm , kyo , L ).  



-69-

Here we w i l l  begin to cons ide r e f fe c ts  due to the remaining terms. 

However, as we ju s t  mentioned, the end e ffe c ts  on the supporting fo rce  

are r e la t iv e ly  sm a ll, so we are not going to in c lude  any fu r th e r  ana ly 

ses fo r  the F̄z. Now, under the assumption o f kyoL >> 1 and 

| Im(αmL)| >> 1, we can w r ite :

(3.37a)

(3.37b)

Sub sc rip t "1" is  in troduced to po in t out th a t (3.37a) and (3.37b)

in  (3.14) and (3 .16 ). Now le tcorrespond to the term

us cons ide r two extreme cases:

From (3 .36), we have

(3.38a)

(3.38b)
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(3.39a)

(3.39b)

When ao is  not c lo se  to "1", values fo r  P̄1 and F̄1  are gen

e r a l ly  sm a ll. However, when 1-ao is  sm a ll, (e .g .,  1 -  ao ≅ ω/K6v2) a

very la rge  in f lu en ce  is  observed. The underlined  terms in  (3. 37a) and 

(3.37b) dominate and produce a phase angle o f about 0° in  ¯P1. There 

is  a lso  an increase  in  the p ropu ls ion  fo rce . Roughly speaking, expres

s ions (3.37) w i l l  help to  ease the degrading o f the machine performance.

From (3 .36 ), we have:

(3.40a)

(3.40b)

(3.40c)

(3.37a) and (3.37b) can then be rew ritte n  as:
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(3.41a)

(3.41b)

When ao is  c lo se  to 1, (3.41a) and (3.41b) are r e la t iv e ly  sm a ll. How-

ever, when ao is  small (e .g .,  a2o ~ (K6v2 )/ω) the s itu a t io n  is  d i f f e r 

ent. Re ̄P1 , Im ̄ P1 and F̄y 1 are a l l  p o s it iv e  and somewhat la rg e r .

As fo r  the co n tr ib u t io n  due to the term

the re s u lts  in  Appendix E are used. As we can see, S3(am, kyo , L) i s  

decomposed in to  two pa rts . One is  due to  the res idues o f a l l  the po le s, 

w h ile  the other is  due to  the in te g ra t io n s  along the branch cu ts . However,

i f is  true  (Note tha t K5= σxμ2z >> K6 is  la rg e , thus

covers most opera ting  reg ions. The on ly  exception occurs 

in  the very low speed reg io n .)  |β2 | is  much la rg e r  than | β1|. Most 

terms in  the branch cut pa rts  are then shown to  be much sm a lle r than the 

corresponding terms in  the residue p a rts . Fu rther cond it io n s  o f 

|Im( αmL) | > π w i l l make i t  p o ss ib le  fo r  us to w r ite  down the f in a l  approx

imate re su lts  as:
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(3.42a)

(3.42b)

Here α3 and α4 are defined in  (3.36) w h ile  β1 and β2 are roots 

o f γ22 = 0 , i . e . ,

(3.43a)

(3.43b)

wi t h
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Now, under the cond it ion we have:

(3.43c)

(3.43d)

We w i l l  begin to cons ide r two extreme cases:

I t  i s  obvious th a t the values fo r  P̄2 and F̄y2 are small when

ao is  not c lo se  to 1. We are most concerned w ith  the case when a ao ~ 1 

where the values are la rg e . Now, under the assumption

terms w ith  α3 invo lved  can be neg lected . For 

c o n tr ib u t io n s  due to  the underlined  terms approxim ately g ive  us 

Re P̄2 ≅ 0 ,  Fy2 ≅ 0 and a p o s it iv e  Im ¯P2. For the remaining terms, 

i t  can be shown th a t Re ¯P2, Im P̄2 and F̄y2 are a l l  negative . And 

the magnitudes are so la rge  th a t they w i l l  not on ly cancel the p o s it iv e  

values in  P̄1 and F̄y 1 , but w i l l  a lso  e ve n tu a lly  g ive  us la rge  negative  

values o f Re P̄, Im P̄ and F̄y. Thus, we can conclude th a t la rge  de

creases in  the p ropu ls ion  fo rce , the power fa c to r  and the e f f ic ie n c y  

w i l l  be observed fo r

the

Th is conclus ion  is  b a s ic a l ly

s im ila r  to tha t described in  the e a r l ie r  in tegrand ana lyses.

In th is  case, the values are r e la t iv e ly  small fo r  an "ao" which

t hose
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i s  not too sm a ll. Thus, we are most concerned w ith the reg ion where 

a2o ~ (K6v2)/ω. Of course, the terms corresponding to α3 cannot 

be neg lected any longer. A f te r  some rough a lg e b ra ic  m an ipu la tions, i t  

can be shown th a t the underlined  terms w i l l  g ive  us a p o s it iv e  value 

fo r  Im P̄2 and n ea r ly  zero values fo r  Re P̄2 and F̄y 2 . However, the 

most im portant co n tr ib u t io n  comes from the remaining terms. G ene ra lly , 

F̄y2 < 0 ,  Re P̄2 < 0 and Im P̄2 < 0 are obta ined. And the va lues are 

so la rge  th a t o v e ra ll decreases in  the p ropu ls ion  fo rce , e f f ic ie n c y  and 

power fa c to r  w i l l  be observed. Thus, the most se r iou s  degrading in 

machine performance is  seen around a 2 o  (Ky v2 )/ω. Th is i s  a lso  the 

same conc lus ion  as th a t obtained from the in tegrand a n a ly s is .  A t y p i

cal p lo t  o f the machine performances fo r  th is  more r e a l i s t i c  source is  

then given in  F ig . 3.14. And, by comparing w ith  F ig . 3 .6 , the degrad

ing o f the machine performances is  observed.
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F ig . 3.14a Machine performance fo r  geometry ( A - i i- 1 )  w ith

A l l  parameters are the same as in  F ig . 3 .6 . L = 2.512m. 

Curves (1 ), (2 ), (3) and (5) represent the same q u a n t it ie s  

as in  F ig . 3 .6 . Curve (4) is  the machine e f f ic ie n c y .
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F ig . 3.14b A l l  q u a n t it ie s  are the same as in  F ig . 3.14a except 

L = 1.256m.
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(c) Geometry ( B - i - 1):

We can now app ly Appendices C and D to  (3.24a) and (3.25a) to

get:

(3.44a)

(3.44b)

(3.44c)

Here δm are roots o f

1 , 2 ,  3 , 4. A lso , δm+4 = δ*m. And
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w ith

F̄z is  very com plicated and we w i l l  not ana lyze i t  any fu r th e r .  But, 

s im i la r  to  the previous case (b ), the r e s u lt  fo r  the id ea l source can 

be used as a good approxim ation provided th a t kyoL >> 1.

The formulas g iven in  (3.44) are  com p lica ted . By look ing  in to  

Appendix D we know th a t in te g ra l S2 (δi,  ky o ,  L) can be decomposed in to  

two p a r ts , namely, I 1 and 2 I2. Now we w i l l  con s id e r the co n tr ib u 

t io n  from I 1 . I t  is  obvious th a t the id ea l source r e s u lt  can be 

obta ined by ju s t  cons ide ring  the terms p ropo rtiona l to  L in  S1 and 

S2, and, s im i la r  to  geometry ( A - i- 1 ) ,  |Im 2δ iL| can be considered as 

la rge  (e .g . ,  ≳ π ) fo r  most p ra c t ic a l cases. Thus, in  S1 and S2 

the terms in v o lv in g  can be neg lected. Under the above

assumption, we can then w r ite  down the fo llo w in g  expressions:

(3.45a)
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(3.45b)

here δ1 and δ2 are roo ts  o f 

And the su b sc r ip ts  "1" are in troduced to  d is t in g u is h  (3.45) from the 

o the r terms where the co n tr ib u t io n s  are due to  in te g ra ls  s im i la r  to I2 . 

Now, we w i l l  begin to cons ide r two extreme cases:

In th is  case, the equation fo r  δi  is  approximated as k2y -

i ( ω-kyv)K1 = 0 .  A ls o , γ >> 1 ensures th a t K1v >> 1, ω/Κν2 << 1 .  

Thus, s im ila r  to  (A - i- 1 ) ,  most terms in v o lv in g  i / [ ( δ2-ky o )2] (Note:

δ1 ≅ α1 , δ2 ≅ α2 ) can be negle c ted . (Perhaps the on ly  exception  is  the

la s t  term in  F̄ y 1 ; i t  can be rew r itte n  as For the

"1" p a rt, a very small a d d it io n a l p ropu ls ion  fo rce  is  added. For the re 

maining p a r t , the neg lect is  reasonable. A c tu a lly ,  the whole t hing can 

be shown to  be can ce lled  by another term due to an in te g ra l s im ila r  to 

I2 ).

By app ly ing  (3 .33 ), rough ly speaking, the power fa c to r ,  e f f ic ie n c y  

and t he p rop u ls ion f orce decrease f or  a la rg e r  ao (e .g . ,  ao > 2/ 3) ,  

i . e . ,  a degrading of  t he machine  p e rformance w i l l  be observed. And the 

maximum decreases general l y occu r a t a value of  ao where 

is  tru e .
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In th is  case, the equation fo r  δ i can be approximated as

and the roots are  found to  be:

w ith

When γ is  small, is  small too. However, K1v/γ  is  la rg e . Thus 

δ1 and δ2 can be fu rth e r s im p lif ie d  as:

S ince |δ2 - kyo| >> |δ1 - ky o |, so , s im i la r  to  the previous γ >> 1 case

in  (3 .45 ), most terms in v o lv in g  1 /[ (δ2 - ky o )2 ] can be neg lected. (The

same argument as the previous γ >> 1 case can a lso  be app lied  to the

la s t  term in  F̄y 1 . From a la t e r  co n s id e ra tio n , i t  can be shown tha t th is  

term w i l l  be can ce lled  by another term due to I 2.) A lso , we have:

(3.46a)

(3.46b)
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(3.46c)

From (3.45) and (3.46) we know tha t Re P̄1 is  p o s it iv e  when

is  p o s it iv e  and Re ¯P1 is

negative when A2 is  negative . A s im ila r  argument can be app lied  to  

Im P̄1 by changing A2 to  A3 = Thus

the in f lu en ce  o f (3.45a) on the o v e ra ll power fa c to r  la rg e ly  depends on 

ao . However, an increase  in  the power fa c to r  is  expected when ao >> γ

U n fo rtuna te ly , a decrease in  the p ropu ls ion

fo rce  is  always observed when ao ≳ γ .  And, the most se r iou s  decrease 

w i l l  occur fo r  a value o f  ao ~ γ

Now, we begin to con s ide r the co n tr ib u t io n  due to  the term I2 

in  S2. However, in stead  o f using (3.44) d ir e c t ly ,  we go back to  the 

o r ig in a l fo rce  and in tegrand  formulas to  get:

and

(3.47a)
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(3.47b)

Here:

(3.48a)

(3.48b)

I4 can be evaluated in  the same manner as I2 (δm,  ky o , L) in  

Appendix D. A c tu a lly ,  fo r  mos t  p ra c t ic a l cases , kyoL is  la rg e .

is  a fa s t  vary ing  fu n c t io n . And, thus by comparing to

lS 1 (δ m , k y o , L )|  ( i.e .,  an in te g ra l whose l im it s  are -∞ and +∞),

|I4(δm, kyo, L)| is  r e la t iv e ly  small .  A ls o ,  the in te g ra l |I4(δm, kyo, L)|

can be approximated as:

(3.49a)

and

(3.49b)



-83-

This approximation is  b a s ic a l ly  s im i la r  to the neg lec t o f I 3 in  I2 

(see Appendix D). Now, we can begin to cons ide r two extreme cases.

( i )  γ >> 1:

In th is  case, both equations

can be approximated as That i s ,  δ1 ≅ δ3 and

δ2 ≅ δ4 can be considered as tru e . Thus,

(3.50a)

(3.50b)

δ1 and δ2 are approxim ately given a t (3 .32) ,  i . e . ,  α1 and α2 , respec

t iv e ly ,  so we have:
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The la s t  two terms in  P̄2 can be shown to  have a small e f fe c t  

on the power fa c to r  (a c tu a lly , And the la s t  three terms

in  F̄y2 w i l l  g ive a drag fo rce  which is  about 1/kyoL o f the id ea l 
 

p ropu ls ion  fo rce . Now, we w i l l  begin to look a t the e f fe c t  due to  the

f i r s t  terms in  P̄2 and ¯Fy2. The im aginary part in  

seen to  have an oppos ite  e f fe c t  compared to the corresponding terms in  

(3 .45a), (3 .45b), i . e . ,  g e n e ra lly , i t  w i l l  ease the end e f fe c t .  However, 

s in ce  π/2 >> ω/K1v2, the in f lu en ce  is  r e la t iv e ly  sm a ll. The rea l p a rt in

w i l l  a lso  g ene ra lly  r e s u lt  in  p o s it iv e  Re P̄2 and F̄y2 and

negative Im P̄2 fo r  ao which is  not very small (e .g . ,  a1 > 1/3 where

ℓ n 1/ao < π/2). 

Thus , we can a l so say th a t i t  w i l l  make the o v e ra ll end e f fe c t

a l i t t l e  b i t  sm a lle r . As fo r  the remaining p a rts , the term - i  π/2 in

ℓn δ2/kyo w i l l  ju s t  cancel the corresponding term in  P̄1, and F̄ y1. Due

to the la rgeness o f |δ2 - kyo| and K1v2/ω, the e f fe c t  o f  the term 

- i  ω/K1v2 in  ℓn δ2/kyo is  n e g lig ib le .  U n fo rtuna te ly , fo r  the rea l pa rt o f 

ℓn δ2/kyo, bo th the power fa c to r  and the p ropu ls ion  fo rce  w i l l  be decreased. 

However, the co n tr ib u t io n  due to  th is  term is  small too . By combining a l l

o ther re s u lts  we can conclude tha t the most se r iou s degradation in  the

machine  performance w i l l  occur a t ao where 1 - ao ≅ ω/K1v2 < γ

( i i ) γ << 1

Now the term i K1kyov can be neglected in  the equations

can be
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And, we w i l l  have:

By using the above re la t io n s  δ1 ≅ - δ4 and δ2 ≅ -δ 3 , formulas 

(3.47a) and (3.47b) can be reduced to

(3.51a)

(3.51b)

where
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Now, we w i l l  make a very rough approximation fo r  the above formu

la s  and hope tha t we can get some idea about the e f fe c ts  due to them. 

A fte r  some ted io u s a lg e b ra ic  m an ipu lation  and the neg le c t o f  the s mall 

terms , we get:

(3.52a)
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(3.52b)

where

(3.52c)

The la s t  terms in  P̄2 and F̄y2 ( i . e . ,  w ith  π in vo lved ) are

going to  be cance lled  by the corresponding terms in  P̄1 and ¯Fy1, re s -

p e c t ive ly . As fo r  the remaining terms, th e ir  values la rg e ly  depend on 

ao . However, the maximum in flu en ce  d e f in it e ly  w i l l  be observed at 

ao ≅ γ. And a t th a t p o in t, the co n tr ib u t io n  to  F̄y2 is  found to  be 

p o s it iv e ,  i . e . ,  i t  w il l  ease the end e f fe c t .  E s p e c ia lly  i f

there is  even a p o s s ib i l i t y  th a t the o v e ra ll end 

e f fe c t  w i l l  he lp to  increase  the p ropu ls ion  fo rce .

Some o f the arguments g iven above can be observed from comparing 

the p lo ts ,  F ig . 3.15 and F ig . 3.10.
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F ig . 3.15a Machine performance fo r  geometry (B - i-1 )  w ith

A l l  parameters are the same as those o f F ig . 3.10a;

L = 1.256m. Curves (1 ), (2 ), (3) and (5) represent the 

same q u a n t it ie s  as in  F ig . 3.10a. Curve (4) is  the 

machine e f f ic ie n c y .
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F ig . 3.15b Machine performance fo r  geometry (B - i-1 )  w ith

A l l  parameters are the same as those o f F ig . 3.10b;

L = 1.256m. Curves (1 ), (2 ), (3) and (5) represent the 

same q u a n t it ie s  as in  F ig . 3.10b. Curve (4) is  the 

machine e f f ic ie n c y .
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CHAPTER IV

COMPOSITE TRACKS

From the previous d iscu ss ion  i t  fo llow s  th a t a composite track  

is  h ig h ly  recommended. D e f in it e ly ,  in  order to s a t is f y  d if fe r e n t  pur

poses, the LIM tra ck  con fig u ra tion s  should be d if fe r e n t  a lso . I t  is  

obvious tha t a composite tra ck  w i l l  make region 2 inhomogeneous , and 

i t  thus makes the problem im poss ib le  to so lve  e x a c t ly . However, fo r  

p ra c t ic a l a n a ly t ic a l purposes, some approximations can always be made.

For example, i f  the tra ck  is  b u i l t  

la t iv e ly  long wavelength t r a v e l l in g  source f ie ld  does not see the 

inhomogeneity, the tra ck  can be approxim ately considered as homogeneous

w ith some e ffe c t iv e  u n ia x ia l ~σ,  ~μ. This idea was probably f i r s t  sug- 
 

gested by M ish k in (21 ), Cu llen  and Barton(19) in  ana lyz ing  ro ta ry  machines 

w ith  s lo t te d  ro to rs .  Experiments have a lready been made to check i t s  

a p p l ic a b i l i t y .  I t  a lso  g ives the reason why we used u n ia x ia l ~σ , ~µ 

to  represent the tra ck  p rope rtie s  from the very beginning o f our ana ly 

s is .

The values o f the e f fe c t iv e  ~σ , ~µ depend on the tra ck  con fig u ra 

t io n .  T he ir values are determined from a homogeneous tra ck  fo r  given 

un ifo rm ly  d is t r ib u te d  e .m .f. and m.m.f. in  such a way th a t the same 

amounts o f cu rren ts  and f lu xe s  are obta ined. For example, fo r  the gen

e ra l composite tra ck  shown in  F ig . 4 .1 , we w i l l  get (assuming tha t 

w ith in  the tra ck  the m ateria l is  un ifo rm ly  d is t r ib u te d  in  the z d ire c t io n ) :

(4.1a)
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(4.1b)

(4.1c)

To ob ta in  ~µ we change σa in to  µa, σb in to  µb and σ i in to  

µi  in  the above form ulas.

I t  should a lso  be no ticed  th a t in  the l im i t  bx → 0 these ex

p ress ions reduce to the fa m il ia r  formulas g iven by Cu llen  and Barton( 19 ) .

As we mentioned e a r l ie r ,  th is  e f fe c t iv e  ~µ , ~σ concept has 

a lready  been expe rim en ta lly  v e r if ie d .  A th e o re t ic a l p roo f, however, 

has never been attempted. There is  no doubt th a t i t  is  im poss ib le  to 

analyze th is  composite tra ck  geometry e x a c t ly .  However, in  o rder to  

gain some in tu it io n  about i t s  v a l id i t y ,  an extrem ely s im p lif ie d  geometry, 

s p e c i f ic a l ly  a f i n i t e l y  lam inated iro n , w i l l  be ana lyzed.

Due to the lam ina tion , the problem b a s ic a l ly  becomes a 3-dimen

s iona l one. The t ra n s fe r  m atrix  method is  thus not a p p lic a b le . The

most complete method fo r  ana lyz ing  problems w ith  lam inated iron  was

p rev io u s ly  given by Bondi and Mukherji(2 2 ) who evaluated the induced 

eddy cu rren t lo sse s . Here we w i l l  use a s im ila r  fo rm u la tion  and extend 

i t  to the LIM problem. The f in i t e l y  lam inated iron  is  supposed to be 

used in  reg ion 2. Of course, fo r  d if fe r e n t  LIM geom etries, the s it u a 

t io n  w i l l  be d if fe r e n t .  Here we w i l l  cons ider the geometry ( A - i i - 2 ) .

The re su lts  fo r  some o f the o the r con fig u ra tio n s  are p o s s ib ly  obtained 

by some s u ita b le  s u b s t itu t io n s .

The governing equations are the same as before . But 

now we have ~σ = o ~I and ~µ = µ ~I in  region 2. The source is  s t i l l
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F ig . 4.1

F ig . 4.2
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in f in i t e ly  extended in  the x -d ir e c t io n .  Due to the p e r io d ic  charac

te r  o f  the t ra c k , the f ie ld  d is t r ib u t io n  w i l l  a lso  be p e r io d ic  in  the 

x d ir e c t io n .  A F o u r ie r  s e r ie s  expansion can be used to take care o f  

the x v a r ia t io n .  Thus, on ly  one lam ina tion  ( i . e . ,  |χ | ≤ h/2) should

be considered. For the y v a r ia t io n ,  the F o u r ie r  transform  technique 

is  employed. And, in  the fo llo w in g , on ly  one F o u r ie r  component is  con

s ide red .

I t  can e a s i ly  be seen th a t fun c tion s  o f  x

fo r  the coo rd ina te  system shown in  F ig . 4 .2 . The in s u la t io n  reg ions 

(which make ~Jx = 0 a t x = ±h/2) are assumed to  be very th in .  ~Bx 

and ~Hx are thus continuous a t the in te r fa c e s .  Hence, i t  may be

concluded th a t ~Hx = 0 a t x = h/2 . Using s im ila r  arguments as in

Bondi and M ukhe rji(2 2 ), we can decompose the f ie ld  in  region 2 in to  

three p a rts , namely:

(a) ~Hx = 0 everywhere but ~ J x  ≠  0 ,

(b) ~ J x  =  0  everywhere but ~ H x  ≠  0 ,

(c) ~Jx = 0, ~Hx = 0 everywhere.

Pa rt (c) is  the s o -c a lle d  deeply penetrated f ie ld  which w i l l  be found 

to be the most im portant. I t  p lays a ro le  in  reducing the undesired 

sk in  e f fe c t .

The f ie ld  components in  each reg ion are thus:

Region 2:

(a) ~Hx = 0

(4.2a)
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(4.2b)

(4.2c)

(4.2d)

(4.2e)

(4.3a)

(4.3b)

(4.3c)
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(4.3d)

(4 .3e)

(4.4a)

(4.4b)

(4 .4c)

(4.4d)

(4.4e)

where

(4.5a)

(4.5b)

(4.5c)

(4.5d)
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A s u ita b le  Riemann su rface  sheet should be taken to g ive  p o s i

t iv e  rea l parts fo r  the kz,ℓ, kz,m and kz

Region 3

(4.6a)

(4.6b)

(4 .6c)

(4.6d)

Thus we have unknowns {qm1}, {qm2}, {bm},  {αℓ } , f .  In p r in c ip le ,  they 

can be so lved by matching the boundary cond it io n s  a t z = 0 and z = h3 .

A t z = 0: are continuous (4.7a)

(Note: J z = 0 a t z = 0 is  au tom a tica lly  s a t is f ie d  from the 

boundary cond it io n s  g iven above.)

(4.7b)
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i . e . ,

(4 .7c)

(4 .7d)

(4 .7e)

( 4 .7 f )

(4.7g)

Then, w ith

(4.8a)

(4.8b)
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(4 .8c)

Th is se t o f  equations is  manipulated to  g ive:

(4.9a)

(4.9b)

(4 .9c)

(4.9d)
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(4.9e)

I f  (4.9a) can be so lved fo r  αℓ , a l l  o f the o the r unknowns can 

be obta ined from the remaining equations. Then we can f in d  the f ie ld  

d is t r ib u t io n  everywhere.

I t  is  understood th a t the f in a l  re su lts  we want are machine per

formances such as fo rce s , power, e f f ic ie n c y ,  e tc . A l l  o f  these can be 

expressed in  terms o f the f ie ld  d is t r ib u t io n  a t z = h3 as given by 

(2 .24 ), (2 .25 ), (2 .27). As fa r  as the f ie ld s  a t z = h3 are concerned, 

formulas (4 .6 ) , (4 .7) can be used to g ive:

(4.10a)

(4.10b)

(4.10c)

For average F̄ y, P̄ the m ≠ 0 terms in  Hz do not g ive  any 

c o n tr ib u t io n . But fo r  F̄z these terms do have some e f fe c t .  However, 

due to the fa s t  decay o f the co n tr ib u t io n s  from 

m ≠ 0 can be considered as n e g lig ib le .  (Note, g en e ra lly  h ≲ h3 is  

t ru e .)  So, fo r  ~Hz , we probably need on ly  to cons ider the term w ith  

m = 0 .  Thus q0'1 is  the most important unknown constant to eva lua te .

Now, le t  us assume tha t α ℓ  can be so lved fo r ,  except fo r  a 

common fa c to r  a∞ . Then we set
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(4.11a)

(4.11b)

(4.11c)

I t  should be no ticed  tha t A, B, C, α∞ are a l l  ℓ , m independent. 

From (4 .9 ) ,(4 .1 1 ):

(4.12)

And the ~H- f ie ld  a t z = h3 is  thus:

(4.13a)

(4.13b)

(4.13c)

Here fo r  ~Hz, on ly  the m = 0 term is  inc luded . The co rre s -

ponding ~E f ie ld  is  given by ~E = ^ ℓ x  ωµo/ky ~Hz . Using (2 .24 ), (2 .25 ),

(2 .27 ), the expressions fo r  F̄, ̄ P are found to be e xa c t ly  the same as

those given in  ( A - i i - 2 ) ,  except tha t µoγ2/µ2ykz now should be replaced by
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Now we come to  the po in t where we have to  eva lua te  A, B, C, i . e . ,  

we should so lve  (4 .9a ). Doing i t  e x a c t ly  is  a hopeless ta sk . An ap

proxim ation can be made by trun ca tin g  th is  se t o f  equations, cons id e r in g  

on ly  a l im ite d  number o f equations w ith  the same number o f unknowns . 

However, t h i s w i l l  lead on ly  to some numerical data. In the problem we 

are cons id e r in g  i t  seems th a t an a n a ly t ic a l so lu t io n  is  more des ir a b le .  

Thus , an a lte rn a t iv e  approximation w i l l  be made. F i r s t ,  le t  us look at 

the term:

I t  can be rew ritten  as:

Now, i f  kyoh/2π << 1 is  assumed, kzd/kz,ℓd << 1 can be shown to hold

in  the reg ion where ~Kx is  la rg e . k z d / k z , ℓ d  can thus be neglected

in 1 - kzd/kz,ℓd. Furthermore, even fo r  m = 1, i f  (|4π2d2 |)/h2 ≳ 1 ,

|F(m)| >> ukzd can always be obta ined. G ene ra lly , the requirement

(|4π2d2o|)/h2 ≳ 1 is  not d i f f i c u l t  to meet in  the LIM which we are now 

con s ide ring . Under these co n d it io n s , the fo llo w in g  approximation is  

reasonable:
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(4.14)

The next step is  then try in g  to f in d  an e x p l i c i t  fu n c tion  o f  ℓ

fo r  αℓ  to  make independent o f  m. The on ly

p o s s ib i l i t ie s  we can f in d  are αℓ  = a∞ and

I f  α ℓ  =  a ∞ , then The magnitude o f the

e rro r  term in  A w i l l  always be la rg e r  than 0 .  A lso , we are expecting a 

se t o f  α ℓ  which w i l l  decrease fa s te r  than a∞ when ℓ  in c rease s. 

Thus, we must exclude th is  p o s s ib i l i t y .  On the co n tra ry , fo r

is  no longer zero .

And the e r ro r  term w i l l  always be sm a ll. Thus, we may conclude tha t

the assumption w i l l  g ive  a q u ite  good approx

im ation .

Now we use in  (4.11) to get:

(4.15a)

(4.15b)

(4.15c)

w ith

(4 .15d)
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Thus:

(4.16)

Now compare the above formula w ith I f  h is  s u f f i 

c ie n t ly  small such tha t h/2do << 1 is  tru e , then

and is  thus reduced

to µo/µ . Th is means tha t µ2y ≅ µ and σ ≅ 0 are the e f fe c t iv e

m a te ria l constan ts. And they are co n s is ten t w ith  the va lues given by

em p ir ica l formulas (4 .1 ) . However, i f  h/2d << 1 is  not met, then the

above s im p lif ic a t io n  is  not v a lid  any longer. Thus, we can conclude

tha t the cond it io n s  under which formula (4 .1) g ives accurate  va lues fo r

the e f fe c t iv e  m a teria l constants are ky h << 1 and h/2d << 1.

Up to now we on ly  cons ider one F o u r ie r  component w ith  eikyy 

v a r ia t io n .  E ven tua lly  we have to  take the F o u r ie r  inverse  to get the 

machine performances. I t  is  obvious th a t the assumptions which we 

make above cannot hold fo r  a l l  ky. However, the source fun c tion  w i l l  

g e ne ra lly  decay when i t  is  away from kyo . Thus, i f  the above assump

t io n s  are reasonable around kyo , a good so lu t io n  can s t i l l  be obtained 

by app ly ing  th is  kind o f approximation to a l l  ky.

In the geometry we are now con s id e r in g , 

g ive a zero p ropu ls ion  fo rce . Thus i t  is  out o f  the question to use 

merely th is  k ind o f tra ck  as the LIM in  HSGT v e h ic le s . (Of course , i t  

can be used fo r  the le v it a t io n  purpose.) Extra c o n d u c t iv ity  should be 

added. One example is  shown in  the LIM b u i l t  by the Rohr I n c . (17) w ith

w i l l
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s u ita b ly  arranged conducting bars in se rted  in to  the lam inated iro n . 

D e f in it e ly ,  i f  the requirements kyoh << 1 and h/2do << 1 ho ld , the 

e f fe c t iv e  m a teria l constant concept is  s t i l l  v a lid .  However, we are 

not going to g ive  any fu r th e r  analyses o f  th a t k ind . Instead, an a l 

te rn a t iv e  geometry is  suggested. Now we w i l l  t r y  to l i f t  the c r it e r io n  

h/2do << 1 and in troduce  a tra ck  w ith  a la rg e r  h such tha t h/2doπ 

approxim ately equals 1. Then the approximation ta n (√ih/2d) ≅ √ih/2d i s  not

true  any longe r, nor is  the e f fe c t iv e  m a te ria l constant concept. 

Instead, the d ir e c t  method, as introduced in  th is  chap te r, should be

used. However, even fo r  h/2dπ ~ 1 ,  "C" can s t i l l  be shown to be

small compared to "A". Thus, µo(A-B)/µ(A-C) ≅ µo/µ √ih/2d cot(√ih/2d). Now

h/2doπ ~ 1 , so , except p o ss ib ly  in  a very small reg ion where ω/ν ~ ky 

such t ha t |√ih/2d| << 1, h/2dπ is  going to be o f  the order o f  "1" 

fo r  most ky around ky o . And fo r  h/2dπ ~ 1 ,  the argument o f  the 

cotangent fun c tion  w i l l  be la rge  enough to  a llow  us to make the approx

imation tha t Thus, and:

(4.17a)

(4.17b)

(4.17c)
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(4 .1 7d)

(4 .1 7e)

(4 .17 f )

Analyses can be made o f these in teg rands. At 

is  no longer equal to zero . A c tu a lly ,  i f

~Fy / ~Κx|2 is  a m ono ton ica lly  decreasing fu n c tio n  o f ky fo r  

0 ≤ ky ≤ ω/ν . I ts  value w i l l  decrease from

to "0" a t ky = ω/ν . A ls o , in  th a t same reg ion , can be

shown to be p o s it iv e  under the cond it io n  tha t

For the id ea l source, (4.17) can be used to eva luate  the 

machine performances. However, th is  approximation w i l l  be good on ly 

under the cond it io n s  tha t kyoh3 << 1 and h/2πdo ~ 1 .  Thus fo r  the 

given source and tra ck  co n f ig u ra t io n s , g ene ra lly  the approximation can

not s a t is f a c t o r i ly  cover the e n t ire  v e lo c ity  range 0 ≤ ν ≤ ω/kyo . I f  

the necessary cond ition s  are s a t is f ie d ,  the maximum fo rce  w i l l  be found

at w ith  a corresponding fo rce  den s ity  o f
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Spec ia l care should be taken i f  (4.17) is  app lied  to the more

r e a l i s t i c  source I t  is  obvious tha t

the cond it io n s  ky h3 << 1 and h/2πd ~ 1 cannot be s a t is f ie d  fo r  a 

la rge  reg ion  o f ky . Thus, fo r  a source d is t r ib u t io n  |~Kx|2 ∝

the a d d it io n a l cond it io n  tha t L is  very la rge  seems to 

be necessary to ensure the use o f (4.17) a good approxim ation.

Now, i f  a l l  the cond it io n s  fo r  the approxim ations to be v a lid  

are s a t is f ie d ,  i t  can be seen tha t the examined geometry can o f fe r  

fo rces o f  the same order o f magnitude as those o f  geometry (A - i-1 ) .

Thus, i f  the geometry (A - i-1 )  can meet the fo rce  requirements fo r  the 

LIMs, the stud ied  geometry can a lso  do i t  w ith  source cu rren t magnitudes 

o f the same order. However, i t  seems th a t the most im portant advantage 

which th is  geometry can o f fe r  is  the " in f lu en ce s  due to  the end e f f e c t . "

From a remark g iven e a r l ie r ,  we know th a t now ~Fy / |~Kx |2 is  a mono-
 

t o n ic a l ly  decreasing fu n c t io n . I f  the source fu n c tio n  ~Kx is  not a

δ- fu n c t io n , although pa rt o f i t  w i l l  s pread in to  a region where

~ F y /|~ K x |2  sm a lle r , there always are o ther parts  which w i l l  go in to

la rg e r  in tegrand reg ions. Thus, the net e f fe c t  is  g ene ra lly  sm a ll.

S im ila r ly ,  s in ce  ~Fz/|~Kx|2 is  always p o s it iv e ,  i t  is  not necessary to

worry about |~Kx|2 being pushed in to  the re p u ls iv e  reg ion .

In the above ana lyses, a LIM o f geometry ( A - i i- 2 )  w ith  reg ion 2 

c o n s is t in g  o f lam inated iron  is  considered. We would expect tha t a 

s im ila r  approach could be app lied  to o the r co n fig u ra tio n s . In some
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cases th is  is  found to be true  indeed. A c tu a lly ,  s im i la r  formulas w i l l

ho ld w ith  s u ita b le  s u b s t itu t io n  o f by ex-

p re ss ion s A, B, C. However, g e n e ra lly  these A, B, C 's w i l l  be some- 

what more com plicated and the equations fo r  them w i l l  be more d i f f i c u l t  

to so lv e . Es p e c ia l ly  fo r  a th in  reaction  r a i l  geometry, we sh a ll f in d  

th a t we cannot use the same approximation any longer w h ile  so lv in g  fo r  

αℓ . A lso , because le s s  m a teria l is  employed, a somewhat la rg e r  e f fe c 

t iv e  c o n d u c t iv ity  is  always necessary to g ive  a la rge  enough p ropu ls ion  

fo rce . Thus, lam inated iron  alone is  not good enough to b u ild  a th in  

rea c t io n  r a i l  LIM ( i . e . ,  composite reac t ion  r a i l s  w ith  both fe r ro -  and 

nonferro-m agnetic m a te ria l are necessa ry ) . Hence, we neg le c t fu r th e r 

cons id e ra t io n s o f t h i s k ind o f co n fig u ra t io n .

As fo r  ( A - i i - 1 ) ,  we sh a ll f in d  (3 .14 ), (3.15) and  (3.16) to be 

s t i l l  true  w ith  μoγ2/μ2ykz rep laced by μo(A-B)/μ(A-C). Here B , C are defined

by the same formulas as in  the previous case, i . e . ,  (4 .11b), (4 .11c). 

However, fo r  A and α ℓ they are Somewhat d if f e r e n t .  Now we have:

(4.18a)

(4.18b)

(4.18c)
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Equations (4 .18b), (4.18c) are s im ila r  to (4 .11a), (4 .9e).

Thus, the approximation given fo r  the previous case can be used d ir e c t ly .  

And, fo r  h/2d << 1 ,  we s h a ll ob ta in  the same conc lus ion  tha t the 

reac tion  r a i l  works as i f  i t  is  a nonconducting ferrom agnetic m a te r ia l. 

Thus, i t  is  not s u ita b le  fo r  use in  the LIM except fo r  le v it a t io n  pur

poses on ly . However, fo r  h/2πdo ~ 1 ,  we can use the by now fa m il ia r  

approach to get:

(4.19a)

(4.19b)

(4.19c)

(4 .19d)

(4.19e)
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(4 .19 f )

Again we observe tha t the magnitude o f every term is  r e la t iv e ly  small

compared to the case w ith  α ≅ 0 . I t  is  al s o no ticed  tha t ~Fy / |~Kx |2

is  a m onoton ica lly  decreasing fun c tion  o f both ky and ν, provided

tha t [ (ωµσh2µ2o)/µ2 ] < 1 which i s g en e ra lly  tru e . ~ F z /|~ K x |2  a lso  

always p o s it iv e .  The arguments given in  the p rev ious case are a p p lic 

ab le . The end e f fe c t  is  not se r io u s fo r  th is  geometry. However, the 

p rope rtie s  tha t the power fa c to r  and |~ZL | are r e la t iv e ly  low (so 

th a t the same amount o f  cu rren t can on ly  draw a very small p ropu ls ion  

fo rce ) compared to the case w ith  α ≅ 0 w i l l  make t h i s geometry un

favo rab le .

In the above, we d is cussed the LIM w h ich has a tra ck  w ith  small 

s ca le  in homogeneity such tha t the source on ly  sees an average e ffe c t  

as des cr ibed  above. Of cours e, d if fe re n t  s itu a t io n s  are poss ib le .  For 

example, in  the LIM b u i l t  by Rohr In c . ,  we can put the in se rted  con

ductor bars qu ite  fa r  away from each other such th a t the d istances be

tween them are la rg e r  than 2π/ kyo. Then d e f in it e ly ,  the e f fe c t iv e  ~µ 

and ~σ concept f a i l s .  However, in  th is  case, i t  seems tha t each bar 

operates independently o f the o the rs. This i s ,  o f  course, a d if fe re n t  

problem and can be e a s i ly  so lved.
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CHAPTER V

THREE DIMENSIONAL CORRECTIONS

I t  is  obvious tha t g ene ra lly  the cu rren t source and the reac

t io n  r a i l  cannot be in f in i t e ly  extended in  the x -d ir e c t io n .  Thus, a 

co rre c t io n  should be made, i . e . ,  a more r e a l i s t i c  geometry such as shown 

in  F ig . 5.1a should be in v e s t ig a ted . This is  a tough three-d im ensiona l 

problem and there are no sim ple methods a v a ila b le  to handle i t .  Thus, 

in stead  o f cons idering  tha t geometry, we sh a ll look in to  an a lte rn a t iv e  

geometry as shown in  F ig . 5 .1b. With a su ita b le  source arrangement, the 

boundary cond it io n  Jx = 0 a t x = ±Wo can be s a t is f ie d .  

Thus, w ith in  |x | ≤ Wo , th is  a lte rn a t iv e  geometry is  supposed to  be a 

good approximation fo r  the o r ig in a l one.

With M axw ell's equations and m ateria l p rope rtie s  as introduced 

in  Chapter 2, the Fou rie r transform  method can be used to so lve  th is  

boundary value problem. Due to the p e r io d ic it y  in  the x -d ir e c t io n ,  in  

add it ion  to the Fou rie r  transform  p a ir  (2 .4 a ) ,  (2 .4b ), another F ou rie r 

s e r ie s  p a ir  ( 5 .1a ) ,  (5 .1b) is  necessary to take care o f  the x -v a r ia t io n :

(5.1a)

(5.1b)

For n e ith e r  F o u r ie r  component can the tra n s fe r  m atrix  method be 

app lied  any longer. A d ir e c t  method should be used. F i r s t ,  we can 

so lve  the M axw ell's equations in  each reg ion , in troduc ing  ce r ta in  un

knowns which can be determined by matching the boundary co n d it io n s .
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F ig . 5.1 a ,  b
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In o rder to make the problem s im p le r, on ly  the case β1 ≅ 0 w i l l  be 

considered. We have:

Region (2): ( i . e . , 0 ≤ z ≤ h2)

(5.2a)

(5.2b)

(5.2c)

Here, the fo llo w in g  r e la t io n  a lso  holds:

(5.2d)

w ith

(5.2e)
and

(5 .2 f)

whe re

(5 .2g)

and are the roots o f
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(5.2h)

From (5 .2 ) , (2 .1 ) , i t  fo llow s:

(5.3a)

(5.3b)

(5 .3c)

Using the boundary cond it io n :

we obta in :

(5 .4)

In reg ion (3 ), ( i . e . ,  h2 ≤ z ≤ h2 + h3):
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(5.5a)

(5.5b)

(5 .5c)

where and

(5.5d)

(5.5e)

( 5 .5 f )

(5.5g)

Now we match the boundary cond it io n s  a t z = h2 . The con tin u 

i t y  o f  ~Hxn and the re la t io n s  above g ive  us:

(5.6a)

w ith

(5.6b)

The c o n t in u ity  o f  ~Bzn and the previous re la t io n s  a lso  g ive  us:

(5.7a)

w ith
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(5.7b)

so,

(5 .8)

Furthermore, using we

get:

(5.9a)

(5.9b)

(5.9c)
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( i i ) β4 =  β3 :

(5.10a)

(5.10b)

(5.10c)

Now a l l  o f  the f ie ld  d is t r ib u t io n s  can be obta ined. The machine 

performances can be ca lcu la te d  by using (2 .17 ), (2 .27 ), (2 .28 ), (2 .29 ), 

e tc . Among these we s h a ll now cons ide r on ly  F̄ x, F̄y which are the

s im p le st and the most im portant.

(5.11a)

(5.11b)

These formulas are s t i l l  too com plicated to eva lua te . We sh a ll 

s im p lify  them even more by assuming the medium in  region 2 to be is o 

t ro p ic ;  then,

(5.12a)

w ith
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(5.12b)

A f te r  some m an ipu la tion s , i t  can be found tha t:

(5.13a)

(5.13b)

where

(5.13c)

(5.13d)

Here ~F(n) is  an even fun c tion  o f n .

Now we take the source d is t r ib u t io n  in to  account. In order to 

make Jx = 0 a t x = ±Wo w ith in  the reac tion  r a i l ,  the fo llo w in g  ex-

tended p e r io d ic  source cu rren t d is t r ib u t io n  J ℓx(x , y) is  necessary:

(5.14a)

(5.14b)

(5.14c)
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Thus,

fo r  n odd (5.15a)

fo r  n even (5.15b)

fo r  n = 0 (5.15c)

App ly ing  (5.15) to (5 .13 ), we have:

(5.16a)

(5.16b)

So, i f  Jx (x ,y ) is  n e ith e r  even nor odd, there is  a p o s s ib i l i t y  tha t

a la te r a l fo rce  e x is t s .

Now le t  us cons ide r one example. The case b4 ≅ 0 w i l l  be 

analyzed. We sh a ll assume tha t the reac tion  r a i l  is  th in  such th a t, 

fo r  small n , |γ2nh2 | << 1 and kznh3 << 1 are tru e . Then, fo r  

small n :
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(5.17)

A ls o , in  o rder to  compare th is  w ith  the two-dimensional case, we sh a ll 

assume th a t J x  (x ,y ) is  un ifo rm ly  d is t r ib u te d  fo r  |x | ≤ a. Then,

n odd

otherw ise (5.18)

Here ~Kx (ky ) is  in troduced to take care o f  the y - v a r ia t io n .  Of course,

we get a zero la te r a l fo rce . As fo r  F̄y , we have:

(5.19)

The "n " summation can be eva luated by using severa l s e r ie s  sum

mation formulae

(5.20a)

where

(5.20b)
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A remark should be made here. O bv ious ly , fo r  la rge  n the 

cond it io n s  |γ2nh2 | << 1 ,  kznh3 << 1 are not s a t is f ie d  and the ap

proxim ation (5.17) is  not v a lid  any more. However, fo r  la rge  n the 

fo rce  co n tr ib u t io n  as given by (5.13) is  small and so is  the in v a l id  

approxim ation (5 .17). Hence, using (5.17) fo r  la rge  n (which was 

de rived  using the th in  rea c t io n  r a i l  approxim ation) w i l l  on ly  in troduce  

a small e r ro r  in  the expression  o f the to ta l fo rce  and we may conclude 

tha t (5.17) is  a f a i r l y  good approximation fo r  a l l  n .

I f  the y - v a r ia t io n  o f  J x is  the same as th a t o f the id e a l i s t i c

source fo r  the two-dimensional case, ~Kx (ky ) w i l l  be g iven by

√2π δ (ky  -  ky o ). Of course , (5.20) w i l l  g ive  us an in f in i t e  fo rce . How

eve r, fo r  the fo rce  o f  u n it  length  in  the y -d ir e c t io n ,  we go back to the 

o r ig in a l fo rce  equation in  rea l space to get:

(5.21a)

where

(5.21b)

I f ,  furtherm ore, we assume (ω-kyoν )K1 << k2yo , then (5.21) re 

duces to:

(5.22)
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Comparing th is  to (3 .8 ) , we can say the f in i t e  w idth reac tion  r a i l  

has an e f fe c t iv e  c o n d u c t iv ity  o f

Th is is  e x a c t ly  the same conc lus ion  as Russe ll and Norsworthy(23) made, 

using another approach. A lso , i t  i s  observed tha t the p ropu ls ion  fo rce  

is  reduced. The increase  o f "a" w i l l  g e n e ra lly  reduce th is  s o -c a lle d  

la te r a l end e f fe c t .

Of course, the above cond it io n  (ω-kyov) K1 << k2yo is  g ene ra lly  

not tru e . Then, we cannot in troduce  the e f fe c t iv e  c o n d u c t iv ity  concept 

any more. However, by comparing w ith  (3 .8 ) , we can see the la te r a l end 

e f fe c t  w i l l  change the p ropu ls ion  fo rce  by an amount:

(5.23)

From th is  com plicated expression we cannot conclude whether th is  

term w i l l  decrease o r in crease  the p ropu ls ion  fo rce . Assuming 

|γ20a | ≳ π and l γ20(Wo - a ) l << 1, (5 .23) becomes:

(5.24a)

Or, we can assume both |γ20a| and |γ20(Wo - a)| ≳ π to get:

(5.24b)
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Thus, i f (5.24) w i l l  be p o s it iv e ,  i . e . ,  the la te r a l

end e f fe c t  w i l l  in crease  the p ropu ls ion  fo rce . U n fo rtuna te ly , a t  the

maximum fo rce  p o in t , Thus, the la t e r a l end e f fe c t

w i l l  reduce the p ropu ls ion  fo rce  a t th a t p o in t.

For the more general source we

can t r y  to eva lua te  the in te g ra l (5 .20 ). However, due to the presence

o f  the term γ3 2 0  the in te g ra l is  too tough to eva lua te . However, a 

change o f  p ropu ls ion  fo rce  can always be observed, namely

(5.25)

(The main term is  ju s t  given by (3.30b) except fo r  a fa c to r  o f  "a ") .

Now, again using the assumptions |y2a| ≳ π, |γ2 (ωo - a)|  << 1, 

we s im p lify  (5.25) and get (5 .26 ). The same expression  (5.26) can a lso  

be used fo r  another s itu a t io n  w ith  both |y2a| and | γ2(Wo - a) | ≳ π , 

except th a t now a fa c to r  1/2 should be introduced:

(5.26)

Note th a t, i f  the source function  is  not s u ita b ly  constructed  

the s in g u la r it y  a t ky = 0 w i l l  p o s s ib ly  g ive  an in f in i t e  fo rce  and 

a lso  in f in i t e  power in pu t, which is  not p r a c t ic a l.  Thus s in  kyoL = 0 

is  always necessary to  get r id  o f  th is  s in g u la r it y .
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As fo r  the id e a liz e d  source case, the in tegrand  w i l l  be p o s i

t iv e  in  the reg ion where and negative  in  the remain

ing reg ion , Thus, i f  kyo belongs to the nega

t iv e  reg ion , a sm a lle r p ropu ls ion  fo rce  than in  the two-dimensional 

case w i l l  be ob ta ined . Because an odd power o f γ20 appears in  the 

above in te g r a l,  two ex tra  branch po in ts  in  the complex ky plane 

should be in troduced , making the in te g ra l extrem ely hard to  eva lua te . 

In o rder to ob ta in  an e x p l i c i t  formula fo r  the fo rce , we s h a ll go back 

to the o r ig in a l s e r ie s  fo rm u la tion  (5 .19). For each "n" , an in te g ra l 

o f  the fo llo w in g  form should be computed:

(5.27)

We know th a t fo r  the two-dimensional case, the fo rce  is  p ro 

p o rt io n a l to  the above in te g ra l w ith  n =0 . Now fo r  n ≠ 0 , suppose tha t

then the in te g ra l w i l l  g e n e ra lly  be sm a lle r than the

two-dimensional case (corresponding to n = 0 ). Thus, th is  la te r a l end 

e f fe c t  w i l l  reduce the p ropu ls ion  fo rce  even more. However, i f

there is  a p o s s ib i l i t y  tha t the la te r a l end e f fe c t  w i l l

compensate the lo n g itu d in a l end e f fe c t .  A c tu a lly ,  i t  had a lready  been

found tha t the o v e ra ll c r i t i c a l  po in t should be around
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The fa c to r iz a t io n  o f

w i l l  lead  to in te g ra ls  o f  the form

In Appendix C th is  in te g ra l i s  worked ou t. 

A ls o , in te g ra ls  o f  the form

w i l l  appear. These in te g ra ls  need fu r th e r  co n s id e ra tio n . They w i l l  

g ive  an in f in i t e  r e s u lt  un less s in  kyoL = 0 .  I f  th is  cond it io n  is  

s a t is f ie d ,  we e a s i ly  get from Appendix C:

(5.28)

F in a l ly ,  we have

(5.29a)

where α1 , α2 are roots o f
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or:

(5.29b)

(5.29c)

w ith

Now, le t  us cons ider the case tha t the o r ig in a l ly  symmetrical 

source is  s h if te d  over a d is tance  ε to the r ig h t ,  i . e . ,  we consider 

a source cu rren t d is t r ib u t io n :

(5.30a)

The corresponding F o u r ie r  components are then found to  be:

(5.30b)
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By using (5 .16 ), the fo rce  components fo r  the id e a liz e d  source 

w i l l  be given as:

(5.31a)

(5.31b)

Here ~Fr (n ) represents the rea l p a rt o f  ~F(n):

(5.31c)

Going through com plicated s e r ie s  summation procedures, we get the

e x p l ic i t  forms fo r  ~Fy and ~Fx:

(5.32a)
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(5.32b)

I f  γ20(Wo - a) ≳ π, then tanh γ20(Wo - a) ≅ coth γ20(Wo - a), and 

(5.32a) reduces to (5 .21a); i . e . ,  when the reg ion which i s  not covered 

by the source is  la rg e , the in f lu e n ce  o f the s h i f t  on F̄y  w i l l  be 

sm a ll. Le t us now look a t the more p ra c t ic a l case o f  |γ2 (Wo - a)| << 1, 

|γ20ε| << 1 . Then, a f t e r  re ta in in g  on ly  f i r s t  o rde r terms in  the 

h ype rbo lic  fu n c t io n s , we have:

(5.33)

By comparing th is  w ith  formula (5 .21 ), i t  is  seen th a t there 

is  always an in crease  o f the p ropu ls ion  fo rce  by the amount o f

As fo r  the la te r a l fo rce , because |γ20a| ≳  π and |γ20Wo | ≳ π 

g en e ra lly  ho ld , (5.32b) reduces to:

(5.34)

Thus, i f  |γ20ε| is  la rge  enough, there is  a p o s s ib i l i t y  tha t 

a huge la te r a l fo rce  in  the same o rde r as th a t o f  the p ropu ls ion  fo rce  

is  obta ined. Of course , fo r  the p ra c t ic a l machine ope ra tion , th is
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F ig . 5.2 Curves (1) and (2) represent (5 .31a)/ fo r  ε = 0 and

ε = 0.01m, re sp e c t iv e ly ;

Curve (3) represents [(5 .31b)/ fo r  ε = 0.01m.

Here Wo - 0.3m and a = 0.28m. A l l  parameters except ε 

are the same as those o f F ig . 3.2.
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F ig . 5.3 Curves (1) and (2) represent fo r  ε = 0 and

ε = 0 .05 , re sp e c t iv e ly ;

Curve (3) represents fo r  ε = 0.05.

Here Wo = 0.3m , a = 0.2m.

A l l  parameters except ε are the same as those o f F ig . 3.2.



-130-

cannot happen. A small d isp lacem ent from the symmetrical p o s it io n  

w i l l  in troduce  a re s to r in g  fo rce  to push the source back to the o r ig 

in a l p o r t io n .  Th is fo rce  is  given by

I t  can e a s i ly  be seen th a t F̄ x always has the opposite  s ign  o f ε.

Thus, as f a r  as the la te r a l d isp lacem ent is  concerned, the system is  

s ta b le . A lso , fo r  small d isp lacem ents, these ex tra  fo rces are re la -  

t iv e ly  sm a ll. For F̄y i t  is  o f the o rder o f  ε2 , w h ile  fo r  F̄x i t

is  o f  the o rder o f  ε.

For the more general source

formula s im ila r  to (5.20) can be obta ined by using (5 .16 ), (5 .30 ), 

(5 .31 ), and some se r ie s  summations. A c tu a lly ,  we have:

(5.35a)

(5.35b)

I t  is  d i f f i c u l t  to  eva lua te  these in te g ra ls .  The assumptions 

|γ20ε| << 1, |γ20a | >> 1 and |γ20(Wo - a ) | << 1 are then used to
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s im p lify  (5.35) to:

(5.36a)

(5.36b)

Thus, the unsymmetrical case w i l l  in troduce  one more term in  the 

F̄y in te g r a l,  which can be e a s i ly  eva luated to be:

(5.37)

(5.37) is  always p o s it iv e  in  the normal opera ting  reg ion , i . e . ,  

the unsymmetrical p o s it io n  g e n e ra lly  in creases the p ropu ls ion  fo rce . 

A lso , (5.36b) can be seen to have the opposite  s ign o f ε in  most o f 

the p ra c t ic a l cases where kyoL is  la rg e .

The branch po in ts  a t γ2 = 0 (a lso  po les) make (5.36) very d i f f i 

c u lt  to  eva lua te . Thus, s im i la r  to the previous case, we go back to

the o r ig in a l s e r ie s  fo rm u la tion  to get e x p l i c i t  e xp ress ion s. Due to 

the fa c to rs  1 /n2, 1/m2 and 1/(m2 -n2), the to ta l fo rces are m ain ly gen

erated by small n , m terms. Going through a l l  the fa c to r iz a t io n  and in t e 

g ra t io n  procedures we get:
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(5.38a)

(5.38b)

whe re

(5.38c)

(5 .38d)

w ith  α1 , α2 being defined in  (5 .29 ).
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F ig . 5.4 D if fe re n t  fo rce  components o f s e r ie s  expressions (5.38a) and 
(5.38b).

(1) (2)

(3) (4)

where

A l l  o f the parameters defined in  the same way as in F ig . 3.2.
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F ig . 5.5 D if fe re n t fo rce  components o f  s e r ie s  expressions (5.38a) and 
(5.38b).

(1) (2)

(3) (4)

where

A l l  o f the parameters defined in  the same way as in  F ig . 3.2.
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F ig . 5.6 D if fe re n t la te ra l fo rce  components in the se r ie s  expression 
(5.38b). (1)

(2)

(3)

(4)

where

ε = 0.0/m and a l l  o f the other parameters are the same as

those o f F ig . 5 .2 .
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The a n a ly s is  is  e s s e n t ia l ly  completed. For the id ea l source 

some re s u lts  are shown in  F ig s . 5.2 and 5 .3 . Comparing these to F ig . 

3 .2 , we n o tice  the in f lu en ce  o f the 3-dim ensional co rre c t io n s  we made 

in  th is  chapter. As fo r  the more r e a l i s t i c  source , we on ly  gave the 

s e r ie s  rep resen ta tion . Severa l components w ith  small n , m are shown in  

F ig s . 5 .4 , 5.5 and 5 .6 . When ε/Wo and ε/a  are very sm a ll,  i t  is  

seen th a t the s e r ie s  rep resen ta tion  fo r  F̄y converges very fa s t .  

However, i t  seems th a t we need many terms to  g ive  a f a i r l y  good approx

im ation f o r  ¯Fx .

In the above, we m a in ly  considered the three-d im ensiona l c o rre c 

t io n s  fo r  geometry (A - i- 1 ) .  S im ila r  approaches can be used to  o ther 

c o n f ig u ra t ions.
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CONCLUSION

In th is  work we stud ied  the fo u r - la y e r  s in g le -s id e d  LIM used fo r  

p ropu ls ion  and suspension o f m agnetica lly  le v ita te d  v e h ic le s . The moving 

tra ck  is  assumed to be made o f a conductor w ith u n ia x ia l ~μ and ~σ.

The source s i t t in g  at the bottom o f  the v eh ic le  has a given cu rren t d is 

t r ib u t io n .  F o u r ie r  transform  techniques in  con junction  w ith  the tra n s 

fe r  m a tr ix  method are used to  so lve  th is  two-dimensional boundary value 

problem. The machine performance in  terms o f fo rce s , e f f ic ie n c y ,  and 

power fa c to r  is  given in  in te g ra l form. The re s u lts  fo r  the id ea l

source ~Kx ∝  (ky -ky o ) are then obta ined. (Here ~Kx is  the Fou rie r 

component o f the given cu rren t source). In ad d it io n  to  t h is ,  the ana ly 

s is  o f the integrands a llow s us to  exclude the un su itab le  geometries.

The machine performance in te g ra ls  are evaluated fo r  the prom ising geom

e t r ie s  and source d is t r ib u t io n

The composite tra ck  seems to show a lo t  o f  p o te n t ia l.  A poss ib le  

way o f  computing the e ffe c t iv e  ~µ and ~σ fo r  a composite t r a ck is  

sketched. From the a n a ly s is  o f an extremely s im p lif ie d  geometry, the 

cond ition s fo r  the v a l id i t y  o f the e f fe c t iv e  ~µ and ~σ concepts are 

g iven. Using the same a n a ly s is ,  another p o ss ib le  LIM co n fig u ra tio n  is  

a lso  suggested.

F in a l ly ,  a three-d im ensiona l c o rre c t io n  is  introduced in order to 

take care o f the f in i t e  w idth o f the LIM. Fou rie r transform  and Fou rie r 

s e r ie s  techniques are used to so lve  th is  p e r io d ic  3-dim ensional bound

ary value problem. A general a n a ly s is  is  g iven. P ropu ls ion  fo rce  and 

la te ra l fo rces are ca lcu la ted  fo r  severa l sp e c ia l cases.
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APPENDIX A

Let K and K' be the coordinate systems which are at rest with 

respect to the source and the reaction r a i l ,  respectively. Then, after 

neglecting the r e la t iv is t ic  effect and the displacement current, 

Maxwell's equations within the reaction ra il are given as

K: (A-1a)

(A-1b)

K ': (A -1c)

(A-1d)

(A-1e)

(A-1f)

We also know:

(A-2a)

(A-2b)

(A-2c)

(A-2d)

So, f in a lly ,  we have Maxwell's equations in K :

(A-3a)

(A-3b)

(A-3c)

(A-3d)
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This i s  the fam ilia r M inkowski's formulation. However, because there 

is  moving magnetic material present, as fa r as those quantities such 

as force density, energy, etc. are concerned, th is  formulation is  not 

clear enough to explain everything. Thus, an a lternative called E-H 

formulation introduced by Chu(20) is preferable, i.e .,  we have:

(A-4a)

(A-4b)

with
(A-4c)

(A-4d)

The subscript "c " is  introduced to d ist ingu ish  those f ie ld s  

from the ordinary f ie ld s  in Minkowski's formulation. Actually, with a 

su itable  transformation, i t  can be found that these two formulations 

are equivalent.

(A-5a)

(A-5b)

(A-5c)

(A-5d)

In the E-H formulation, the force density can be expressed as:

(A-6a)

And the input power density is  given as:
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(A-6b)

Then the total force and the total power input can be obtained 

by suitable volume integrations within the reaction r a i l.  Further 

information about machine performance can thus a lso be obtained. Un

fortunately, those integrations are tedious. A simpler integration 

can generally be obtained by introducing a stre ss energy tensor T to 

transform the volume integral into a surface integra l.

(A-7a)

with

(A-7b)

I t  should be noticed that except at the free space where 

D = εoE and B = μ o H , th is  stre ss energy tensor is  d ifferent from

the fam ilia r M inkowski's tensor. As for the power input, i t  seems to 

be much simpler to evaluate i t  d irectly  at the source which is  located 

in free space, i . e . ,

(A-7b)
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APPENDIX B

Conditions fo r Thin and Thick Reaction Ra ils

Here we w in  say a reaction ra il is  thin when the condition that 

|γ2h2 | << 1 is  sa t is f ie d  around a region where the source function is  

most s ign ifican t. S im ila rly , the condition |γ2h2 | >> 1 is  required 

for the thick reaction ra il.  Now that we know that the source function 

is  generally concentrated within the region /ν ≥ ky ≥ 0 , we w ill 

f i r s t  consider th is  region. Now

(B-1a)

(B-1b)

With ky = a ω/v , the only minimum of |γ2 | w ill occur at:

(B-2a)

where

(B-2b)

And the corresponding minimum value is

(B-3a)

or

(B-3b)
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or

(B-3c)

Now le t us consider two d ifferent cases:

( i ) then and

(B-4a)

( i i ) then 4R/27 can be considered as small. Thus

(B-4b)

Thus, the condition fo r |γ2h2 | >> 1 ( i.e . ,  thick reaction r a i ls )

can be rewritten as:

smaller of (B-5a)

S im ila rly , the condition for Iγ2h2 | <<  1 ( i . e ., thin reaction r a i ls )  

is

larger of (B-5b)

Actually, fo r the left-handed sides of values of the

order of are generally good enough to give accurate approxima

tions.

However, in some cases, even re la t ive ly  relaxed conditions are 

d if f ic u lt  to be met. And, conditions cannot be sa t is f ie d  fo r the whole 

range of 0 ≤ ky ≤ ω/v. Under th is  s itua tion , generally these conditions
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can be further relaxed. As we understand, the source function is  

generally concentrated around kyo . I t  seems that we need only to 

consider Iγ2h2 | around kyo , i.e .,  (γ20h2 |. And, the conditions

|γ20h2| << 1 and |γ20h2| >> 1 can thus be used as the c r ite r ia  to

determine whether a reaction ra il is  thin or thick. And d e fin ite ly ,

those conditions are much easier to be sa t is f ie d . For example, we can 

consider a case with √ωμ2zσx ~ 60 , ω/ν ~ 300 . Then, i t  can be

shown that even the value of h2 = 5 χ 10-3 cannot sa t is fy  condition

(B-5b). However, as we know, in most of the practical cases kyo is  

about 15. Thus, the region fo r which we are most concerned corres

ponds to ky around 15. For those ky , |γ2h2| is  about 0.3 for 

h2 = 5 χ 10-3 , which is  good enough to say that the plate is  thin for

th is more relaxed c rite rion .
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APPENDIX C

The Evaluation of  the Integral

with a complex α

Using a su itable  variable change, we have

(C-1a)

with

(C-1b)

Further, can be rewritten as:

(C-1c)

(C-2b)

Now we w ill assume Im α > 0 . Then, by the using of Jordan 's 

lemma and residue theorem, i t  can be shown that:

(C-3a)

(C-3b)

(C-3c)

So, f in a lly ,  we have
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(C-4a)

or

(C-4b)

A s im ila r procedure can be used to evaluate the integral with 

Im α < 0 to get:

(C-4c)
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APPENDIX D

The Evaluation of the Integral

(D-1)

with a complex α .

can be rewritten as:

(D-2a)

(D-2b)

Using Appendix C, we have

(D-3a)

(D-3b)

For I 2 , changes of variables w ill give us:

(D-4a)
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where

(D-4b)

with

In (D.4b), the sine and cosine in tegra ls S i (x) and Ci (x) have 

been used with

(D-5a)

(D-5b)

I 3 is  complicated; however, for many practical cases where kyoL 

is  large, I 3 is  re la t ive ly  small compared to the remaining part of 

(D.4a). Thus i t  can generally be neglected.
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APPENDIX E

The evaluation of the integral

(E -1)

α , β1, β2 are a ll complex.

The branch cuts are chosen as shown in Fig. (E .1). Thus, with 

the defin ition  of -3π/2 < θ1 < π , -π/2 < θ2 < 2π and √(ky  -  β1) (ky -  β2)

= √ ℓ1 ℓ2 eχρ[ ( i /2)(θ1 + θ2 )], the positiveness of Re √(ky  -  β1)(ky -β2 ) is  

insured. (Note: To obtain the branch cut I,  an a rb itra ry  stra igh t line  

is  drawn from β1 with 0 < η1 < π/2 . Then another stra igh t line  can 

be drawn from β2 with η2 = π/2 - η 1 . These line s w ill meet at the 

point P1. The branch cut I is  ju st the loc i of P1 . A s im ila r  method 

can be used to get branch cut I I . )

Now, using a change of variab le, we have:

(E-2a)

where

can be further rewritten as:
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(E-2b)

(E-2c)

Here ε is  introduced to take care of the pole at ky = 0 .

F ir s t ,  le t us consider I + (ε). By using Jordan 's lemma:

residues (at i ε and possib ly  at α ')

(E-3a)

(E-3b)

I t  should be noticed that ε2 has been neglected in the contour

integra ls along C1 and C1 + C2 . This is  ju st if ie d  because along C1

and C2 , ε2 is  always small compared to k2y provided βi is  not too 

close to the o rig in .

Applying Jordan 's lemma again, we have

- possible residue at a ' (E-4)
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Now:

(E-5a)

(E-5b)

To derive (E-5b), changes of variables have been used. A lso, in (E-5b),

In (E-5b), factorization  can be applied to the integrand. Thus, 

we need only consider in tegra ls

and

" I "  is  s t i l l  too d if f ic u lt  to evaluate. However, in most of 

the situa tion s we now have, β is  large. Thus, asymptotic expansions 

can always give us quite reasonable approximations, i.e .,

(E-6a)

(E-6b)

Combining (E-3), (E-4), (E-5), and (E-6), f in a lly  we have
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(E-7a)

A s im ila r procedure w ill give us:

(E-7b)

As for Io (ε), we can follow the same procedure as e ither 

I + (ε) or I - (ε). Now a contour s im ila r to I - (ε) is  chosen to take 

care of Io (ε), i.e .

(E-8a)

(E- 8b)

Factorization can be applied to the integrand in  (E-8b). Thus, 

we need only consider in tegra ls

and

Now the asymptotic expansion cannot be used any longer. We have to 

try  to evaluate i t  exactly. A fter changing the variab les, we get:
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(E-9a)

( E-9b)

So, f in a l ly  we have

(E-9c)



-155-
Now we can go back to consider those contributions due to the 

residues. Of course, depending on where α is ,  the resu lt w ill be d if 

ferent. For the case we are considering, branch cuts I and I I  are in 

the regions I and I I I  respectively. And α is  found to be e ither in 

region I I  or IV. Thus, these are the regions we are going to d iscuss.

We can use the same procedure as in Appendix C to get: 

α in region I I :

(E -10a)

α in region IV:

(E -10b)

F in a lly , we can combine (E-3), (E-7), and (E-10) to give the

expression for S3(α , kyo, L).

Of course, we can also use a contour s im ila r to that for 

I + (ε) to evaluate (E-8). Then, although the resu lts fo r e ither the 

branch cut part or the residue part w ill be somewhat d iffe rent, the 

total re su lt should be the same. However, in most of the examples 

which we are considering, |β2 | >> |β1| is  generally true. The use of 

a contour s im ila r to that for I- (ε) w ill make the contribution due to 

the branch cut neg lig ib le . And thus, further analyses can be s i g n i f i 

cantly sim plified.
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Fig. Ε -1
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APPENDIX F

Results fo r Geometry (A - ii-2 )  with

We apply Appendices C and E to (3.20a) and (3.21a) to get:

Here α i. are roots of

and

As for F̄z , i t  is  much more complicated. However, the ideal source 

re su lt can be used as a good approximation provided that kyoL is  large.




