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ABSTRACT

A four-layer single-sided LIM used for propulsion and suspen-
sion of magnetically levitated vehicles is studied. The track is
assumed to be made of conductors with uniaxial p and 6 A
general analysis allows us to exclude unsuitable geometries. The
machine performance is given for the promising geometries. A pos-
sible way of computing the effective p and e for a composite
track is sketched. From the analysis of an extremely simplified
geometry, the conditions for the validity of the effective p and
& concept are given. Finally, a three-dimensional correction is

introduced.
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CHAPTER |

INTRODUCTION

With the increasing need in traffic of people and commodities,
automobiles have created serious pollution and noise problems; the
airlines have also reached a high degree of saturation. Under the cir-
cumstances, it seems that the development of a rapid mass transporta-
tion system is desirable. Unfortunately, the conventional wheel-
supported railways face some difficulties as the travelling speed
becomes large. Not only does the noise become intolerable, but the

ssion of power
between the rotating-type motor and the wheels. As a result, such
non-contact systems as magnetic levitated (MAGLEV), track air cushion
vehicles (TACV) are suggested as substitutions for future transporta-
tion.

Although the TACV is still a competitive candidate for high
speed ground transportation (HSGT), in the following we will mainly
consider the MAGLEV system.

There are two fundamental schemes for magnetic levitation,
namely, attractive and repulsive schemes. The attractive system uses
the attractive force between a magnetic field source and a ferromag-
netic material. From Earnshaw's theorem, this kind of configuration
is basically unstable, i.e., a smaller clearance will increase the
attractive force and make the clearance even smaller. Thus, a feed-
back control system is necessary. For the repulsive scheme, the force

exerted on a magnetic field source moving over a conductor by the
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field of the induced eddy current within the conductor is employed.

Such a system is inherently stable.

Extensive studies of these suspension systems have been

made(12. Definitely, the details will depend on source and track
geometry. Certain general results will be described below. And ac-
tually, up to today, there is still no clear evidence as to which one

is the better one. Both are noiseless, not limited by speed, and can
be operated in vacuum. In reality the suspension system is only part
of a whole HSGT vehicle. Thus, whether a system is optimized or not
can only be judged by analyzing the whole vehicle from the tradeoff
among the performances, technical merits, economic conditions, etc.
Generally speaking, in order to have a sufficiently supporting
force, the attractive scheme can only allow a small clearance of about
1 or 2 cm, but the repulsive scheme can have a clearance of 20 cm.
This will also play an important role in deciding what kinds of pro-
pulsion systems to use. Also, as we know, ferromagnetic materials are
generally conductors. Thus, when the magnetic field source is moving
over it, there always are eddy currents induced. This will give an
undesired repulsive force component. When the velocity becomes large
enough, sometimes this will result in a net repulsive force. Of
course, we cannot allow this to happen. Thus, tracks and sources must
be suitably designed to prevent this phenomenon from happening within
the operating speed range. For the repulsive scheme, since it mainly
depends on the eddy currents induced, eddy current losses are inevi-

table. These will give an additional drag force. An increased
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propulsive force is necessary to overcome it. According to former
analyses, it is found that at high speed this drag force will decay
to a very small value. However, a very large drag force will exist
at a very small speed. Certain methods(3) have been suggested to
bypass this low speed drag.

Since the proposed suspension system is a non-contact one, the
conventional method of using the direct reaction with the ground is
not available. Thus, a new propulsion system is needed. In the early
period, jets,propellers and rockets have been suggested. However, pol-
lution and noise problems eventually led to the use of linear machines,

The idea of linear machines is not new. Back in the 19th cen-
tury and the early 20th century, people have tried to apply it in
train transportation, luggage handling, etc.(4,5). However, due to
economic and practical reasons, the interest in linear machines de-
clined. Recently as Laithwaite(6, 7,8) and Poloujadoff(4,5) put it,
"engineering fashions" have been changing. Due to Laithwaite's con-
tinuous efforts in promoting them, linear machines are being reevalu-
ated and they begin to be extensively used in HSGT, impact extrusion,
E.M. pumps, actuators, etc.

Now, if the repulsive suspension scheme is used in HSGT, be-
cause of its high clearance perhaps the linear synchronous(9) motor
is preferable. Also, power-pickup and weight problems are more easily
handled by the linear synchronous motor. However, in the following
discussions we will mainly consider linear induction motors. Linear

synchronous motors will not be included.
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The principle of the linear induction motor can be easily under-
stood from the conventional rotating induction motor. Actually, the
simplest form of LIM is just an unrolled rotating induction motor. A

alternative forms of LIMs serving different purposes can be
constructed by just adding or changing the primary or the secondary
structures. Laithwaite and Nasar(6) have given a complete classifica-
tion in terms of the different possible topological configurations.
Also, a "machine's good factor”(10) and a consideration of the econ-
omic problems were introduced to decide which kind of LIM is prefer-
able. Among them, the "double-sided short primary sheet rotor motor"
(DSLIM)(8,11,15,16) seems to be the best candidate for HSGT. Actually,
the DSLIM had already been used in prototype HSGT vehicles built in
Germany, the U.S., etc. But those vertically built DSLIMs suffered
from several severe problems, such as lateral instability in curves,
high cross sections of the vehicles, etc. Hence, an alternative, the
single-sided LIM (SLIM)(12,13,14) was introduced. Although the analy-
ses of these conventional rotating motors are well known and are not
too difficult, the analysis of LIMs is much more complicated, due to
the inevitable end effect and the dissymmetry of primary currents.
Those extra effects will introduce undesirable phenomena. Today, re-
search in LIMs concentrates on explaining these effects and looking
for methods to compensate them. Yamamura and Ito(16), Wang(11), and
Dukowicz(15) considered DSLIM with non-ferromagnetic sheet rotors.
Nasar and Del Cid, Jr.(14) and Wang(13) discussed SLIMs with non-

ferromagnetic sheet rotors backed by steel.



However, no matter which LIM was considered, up to now all of
the analyses were made under the assumption of separated suspension
and propulsion systems. Although an experimental vehicle has already
been constructed by Rohr Inc.(17), no serious analysis has been made
to consider a vehicle with a LIM used for both suspension and propul-
sion purposes. Of course, this would introduce extra control problems,
but it also offers advantages such as less weight.

The SLIM analyzed by Nasar and Del Cid, Jr.(14), Wang(13), etc.
will give either an attractive or a repulsive force, depending on the
velocity of the vehicle. However, if we want the LIM to be used for
both levitation and propulsion, a deeper analysis must be made as to
which geometry and which material to select so that only either an
attractive or a repulsive force is observed within the operating speed
range.

The ferromagnetic track was ruled out as unsuitable for DSLIM by
Laithwaite and Barwell(8) because of skin and nonlinear effects. These
authors, however, were only concerned about the thrust force. As we
want to include a levitating force, the inherent force between the
magnetic field source and ferromagnetic material has to be reconsidered
seriously. Furthermore, the undesired skin effect which gives rise to
nonlinear effects can also be partly taken care of by suitably laminat-
ing the ferromagnetic material or composing the track both from ferro-
magnetic and non-ferromagnetic material.

The following discussion will begin with an investigation of the

possibility of using a linear induction motor as a combined propulsion
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and supporting system in a HSGT vehicle. Linear machines of four
layers will be used as the starting point of the analysis. Most of
the proposed configurations can be described by suitably specifying
those parameters as conductivity, permeability, layer thickness, etc.
for different regions. The analysis of machine performance will ex-
clude unsuitable geometries and give possible methods to reduce the
undesired end effects. Expressions for machine performances will then
be evaluated for those promising geometries.

A possible way of computing the effective conductivity and per-
meability for a composite track will be sketched. Up to now these
parameters were determined experimentally, and no theoretical analysis
has ever been attempted. Definitely, it is difficult. An extremely
simplified geometry will be considered to check the validity of this
effective conductivity and permeability concept. Possible necessary
conditions for the validity will then be given. Starting from this
point, another possible configuration will be suggested and analyzed.
The transfer matrix method is employed to solve the 2-dimensional
problem. At the end of this discussion, a 3-dimensional correction
will be introduced. Of course, the previously nonexistent lateral
force will now appear. A corresponding quantitative approximation

w ill then be given.
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CHAPTER 11

GENERAL FORMULATION

The linear induction motors which will be considered consist of
four layers as shown in Fig. 2.1. The source with a given current or
B-field distribution (depending on how the source is connected) is lo-
cated at the interface of regions 3 and 4. Region 3 is the free space.
Regions 1 and 4 are any zero conductivity material, such as the in-
finitely laminated iron or free space. Regions 1 and 2 which make up the
track are moving at a constant velocity v relative to the source. The
material properties of region 2 in its rest frame are arbitrarily speci-
fied by constant conductivity and constant permeability uniaxial
tensors respectively. These
constants can generally describe the material used in LIMs satisfac-
torily.

Maxwell's equations involving moving magnetic material are com-
plicated. However, in this case, neglecting the displacement current
and relativistic effects is always a good approximation. In the rest
frame of the source, Maxwell's equations can then be simplified to give

us (see Appendix A):

(2.1a)

(2.1Db)

(2.1c¢)

(2.1d)

or, for a nonsingular & (i.e., region 2)



Fig.

Fig.

2.1

2.2



(2.2a)
(2.2b)
(2.2¢)

(2.2d)

and, for e =0 (i.e., regions 1,3,4)

(2.3a)

(2.3b)

(2.3¢)

(2.3d)
With a e-iwt time dependence, a Fourier transform pair, given in

(2.4a) and (2.4b), can be introduced to solve the differential equa-

tions:

(2.4a)

(2.4b)

Then, by applying suitable boundary conditions, in principle, the
problem has a unique solution.

However, generally this is tedious. To make the problem easier,
we assume at first that the source is infinitely extended along the
x-axis. Thus, x-dependence can be suppressed. The 3-dimensional cor-

rection for some simple geometries will be made later in Chapter V.
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For this 2-dimensional problem with the coordinate system as
shown, the only non-zero components of
As suggested by Freeman(18), Cullen and Barton(19), etc., the transfer

matrix method can be used to find the field. Actually we have:

Region 1:

(2.5)
with (2.6)
Regions 2,3:

(2.7)
with

(2.8)
Region 4:

(2.9)
with (2.10)

Also, in the above
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(2.11)

(2.12)

vk are suitably chosen such that they contain only positive real parts.

In these formulas the boundary conditions can then be introduced.
The field distribution in the whole space can be obtained. Now the
case with a specified current source will be considered (i.e., series
connected source):

The continuity conditions of give

(2.13a)

(2.13b)

Here ¢ is positive but small, tij = (T3(z3) T2(z2)]ij are the ele-

ments of T3(z3) T2(z2).

The boundary conditions at z3 give

(2.144a)

(2.14b)

(2.14c)

is the Fourier component of the specified current distribution.

Combine (2.13), (2.14) to get:
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(2.15a)

(2.15b)

The Fourier components of the field distribution can be obtained
from equations (2.5) to (2.12). The field distribution in real space
can then be obtained by using the Fourier inverse transform (2.4b).

From the above derivation, it is obvious that the problem can
also be solved by applying transmission line theory. With the field
components serving as the voltage and the current
respectively, the characteristic impedance can easily be defined.
Afterward the field distribution can be obtained by suitably matching
the input impedance or by using the Smith chart. Once we know the
field distribution, we can evaluate the machine performances. Among
them, the forces, efficiency, power input, power factor are the most
important.

As described by Fano, Chu, Adler(20) in calculating forces in-
volving magnetic material, the Minkowski formulation which we have used
so far cannot give satisfactory results. Thus, an alternative called
Chu's formulation is introduced. By using this new formulation, the
forces within the magnetic material can be clearly explained. Details
concerning the forces existing in the given LIM systems are included in
Appendix A. In our problem, the force which has to be calculated is
just the total force exerted on the source, which by the principle of
reaction, is just the total force acting on the combined regions 1 and

2. According to Chu's formulation, this force can be obtained simply
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by integrating the Maxwell's stress energy tensor over the surface in

the free space just outside of region 2, i.e.,

(2.16a)

with

(2.16b)
Fortunately, in the free space, the Maxwell's stress energy

tensors for Chu's and Minkowski's formulations happen to be the same.
Furthermore, in the free space, the electric part of the stress energy
tensor is always small compared to the magnetic part. Definitely, it
can be neglected, and actually this is equivalent to neglecting the dis-
placement current which was done at the very beginning. Thus, the calcu-
lation of forces can be simplified. Finally, the time averaged total

forces are given by:

(2.17)
with

(2.18)
Thus, for the 2-dimensional case:

(2.19)

(2.20a)

(2.20b)
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(2.21a)

(2.21b)

where the Fi represent the forces acting on a unit length of source

in the x direction. Combine (2.20), (2.21), (2.15) and (2.7) to get

the forces for the case of a specified current source:

(2.22)

(2.23)

where are the elements of matrix T2(z2).
Sometimes it is easier to evaluate the stress energy tensor

integral at the surface 2z3-¢ . Then we get:

(2.24)

(2.25)

The average mechanical power input is:
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(2.26)
The average power input is:

(2.27a)

(2.27b)

(2.27¢)

(2.27d)
Power factor is given by:

(2.28)
Efficiency is defined as:

(2.29)
Finally, the induced eddy current loss is found from:

(2.30a)
or

(2.30b)

By inspection of the above formulas, an equivalent circuit can

be constructed as shown in Fig. 2.2, with
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and thus P can be rewritten as:

Now Ean be decomposed into three parts:

The term contributes to the mechanical power,
while gives the induced eddy current loss. Thus, in
order to have a high efficiency or a low energy loss, is required
to be concentrated around kg such that is small. The
imaginary part Img& represents the difference between the average

stored electric energy and magnetic energy. However, as we understand
it, in this case the stored electric energy is relatively small com-
pared to the stored magnetic energy. So the term Im 24 will mainly
take care of the average stored magnetic energy of the system.

In the above, the problem of a source with specific current dis-
tribution at z3 is analyzed. Basically, this is the case of the so-
called series-connected source. The case of a parallel-connected source
with a specified B field distribution at z3 can be analyzed in the same
way. Definitely, if the source is infinitely extended such that it can be
described as a travelling wave, it does not make any difference whether

the source is series or parallel connected. However, their behavior is

guite different for a more realistic source. We do not intend to
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consider the parallel-connected case here.
This completes the general analysis. In the next chapter we

shall start from this general formulation and consider several examples.



-18-
CHAPTER 111

SEVERAL EXAMPLES

Up to now, the source circuit has been neglected in all of the
analyses. But, in the machine design, there is always a source winding
resistance 2%s. And no matter what kind of source connection is used,
it is quite clear that |-4] > & around kg is necessary to make
the source winding loss small. Surely, under certain circumstances,
the value of B4 0 (i.e., using infinitely laminated iron in region
4 as assumed in nearly all of the LIMs considered in previously pub-
lished papers) will achieve this. But this also means additional
weight to the vehicles. Thus, other lighter material with a different
r can also be used. As pointed out previously, the LIMs are supposed

to be used for both suspension and propulsion. Thus, if

around kyo is required in (2.25)to give a suf-
ficient attractive supporting force, 4 0 is suggested. On the
other hand, if around kyo is required in

(2.25) to give a sufficient repulsive supporting force, then the effect
of can be neglected. Definitely, for the general case, the trade-
off among the weight, cost of material in regions 3, 4, and the source
winding loss, will determine what value of 4 is superior in the
machine design. But, unfortunately, the arbitrariness of il
make the Fourier inverse integrals much more complicated to evaluate.
Thus, in the following, only two extreme cases of (4 0 for the in-
finitely laminated iron and B4 =i/po for the free space will be

discussed; and other values of (4 Ilying between them will be guessed



-19-
to give intermediate results.
The same assumptions can be made for (1 However, because
region 1 is not on the vehicle, weight is not a serious problem. In

reality, the earth (which can be considered as a free space) with

BL =i/po, and infinitely laminated back iron with [1 0, are most
practical and will be considered in the following as the only possibil-
ities.

Analytically evaluating the integrals (2.24) to (2.30) is
very difficult, if not impossible. Only two extreme approximations,
namely, thin and thick reaction rails, will be considered. That a re-
action rail is thin or thick is defined by |y2h2] << 1 or |y2h2] > 1
around ky o where |kxP is large. The details about when those
approximations are reasonable in describing the LIMs are given in
Appendix B.

Under these assumptions, sim plifications can definitely be made
in (2.24) to (2.30) to evaluate the performance of the LIMs. However,
instead of doing this immediately, we will first try to analyze the
integrands. It will be found that this is a convenient way of looking
into the system-optimizing problem and the compensation for end effects.

First, let us consider the case with f1 0.

(A) B1 0: (region 1 is infinitely laminated iron)

From (2.8), (2.13), (2.31):

(3.1)
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(3.2)

(3.3)

Here , kz = |ky} And PRy, Fz are the integrands for

the force integrals Fy,Fz respectively. h2,h3 are respectively the
thickness of regions 2 and 3.

It is not difficult to show that for a real ky both

and
tanhy2h2) have positive real parts. And, their imaginary parts will
have the same signs as those of vy2.

Thus, for a given source current distribution, a nonzero value
of o will result in smaller total power input and forces, and thus
degrade machine performance. Of course, as pointed out before, the
effect of this term o will strongly depend on the relative magnitude
of P1 and P2. Now, the thin and thick reaction rail assumption will

be used to simplify the problem.
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(i) Thin reaction rails:

Since |y2h2| is small, the approximation that tanh y2h2
y2h2 can be made. Also, for LIMs used in HSGT, h3 has to be small,
i.e., tanh kzh3 kzh3 is also a reasonable approximation. We can

now begin to consider different kinds of LIMs.

(i-1) o 0: (region 4 is infinitely laminated iron)
This is the most popular SLIM considered by Nasar, Del Cid,
Jr.(14), Wang(13), etc. The result can also be directly applied to

obtain the performance of DSLIM analyzed by Yamamura and Ito(16),

Wang(11), and Dukowicz(15).

From (3.1), (3.2), (3.3), we get:

(3.4a)

(3.4b)

(3.4c¢)

(3.5a)

(3.5b)

(3.5¢)
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(3.6a)

(3.6b)

Here It should be noticed that p2 always appears

in the form of p2z/(u2zh3 + poh2). Thus, except in the case that
h2 >> h3, which is generally not true in this thin reaction rail geom-
etry, the effect of the permeability is small.

After some tedious algebraic manipulations,

are plotted as functions of ky in Fig. 3.1. With "a" defined as
kyv/w, it is found that at

Also, have extrema at "a"

equal to ay, ar, ai satisfying equations given below, respectively:

(3.7a)

(3.7b)

(3.7¢)

From these plots, it is quite obvious that different arrangements
of HKY2 can give machines which can be used for different purposes,
(e.g., braking or propulsion in HSGT, or even other than HSGT systems).

However, LIMs used for both propulsion and levitation are our only con-

cern now.
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Fig. 3.1 Integrands for geometry (A-i-1) with

(1) Re (2) Im

(3) (4)
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In order to get a net propulsion force, kyo = ao u is gener-
ally required to satisfy 1 >ao >0. Thus, in the following, only
this region will be considered. Now, we will look more carefully into
equations (3.4), (3.5), (3.6), especially (3.5).

It can be shown that there will only be one value of "a" satis-
fying each of the equations (3.7) for 1 =a =0. And, for those
roots, ai >ay > ar are always true. Also, ay > az can be obtained
for this thin reaction rail case. From (3.7a), ay is found to be a
monotonically increasing function of Klv2/w.

Whether the machine has a repulsive or an attractive levitation
force depends mainly on whether ao is smaller or larger than az.
Nevertheless, a small ao <az generally means a larger energy loss
and thus a smaller efficiency. Since ay > az is always true, a
small ao < az also means a small thrust force. Furthermore, it is
noticed that the maximum value of positive Fz/|k«R is always much
larger than that of repulsive ~Fy/|~Kx|, (actually the ratio is about

So, this kind of LIM configuration is not good for use as
a repulsive levitation system. Thus, it is preferable to use a source
with 1 >ao > az such that a net attractive and a large propulsive
force can be obtained.

Two methods are suggested to operate the LIMs such that the
above requirements of 1 > ao > az can be met:

(1) Fixing kyo, then trying to use different w for differ-

ent speed ranges. This is the method most people suggest. And, thus,

a frequency converter is needed.
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(2) Fixing , then trying to vary kyo as v changes.
This is similar to an antenna array to change the directivity by suit-

ably arranging the current in each element.

In the ideal case where the source is a travelling wave with
the integrals for performance are easy to

evaluate. (Of course, we cannot consider the infinite total forces
and power any longer. But quantities per unit length in the y-direc-

tion are not difficult to derive). The following results can be ob-

tained;

(3.8a)

(3.8b)

(3.8¢)

(3.8d)

(3.8¢)

Equations (3.8) are plotted in Fig. 3.2 as functions of .

The maximum thrust force will occur at with a cor-

responding maximum value of Y4kyo e pop2z/ (p2zh3+ poh2). Both the
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Fig. 3.2 Power and forces for geometry (A-i-1) with ideal source and
wK1 = 2000, wpooxh2 =5, kyo =10.

(1)

(2)

(3) (4)
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supporting force and the efficiency are monotonically increasing func-
tions of v. Thus, in order to have a high efficiency, it is sug-
gested that the machine be operated in the attractive supporting force
region. At vm a larger efficiency can be obtained by making

kgo/wK1 smaller.

Unfortunately, a purely traveling wave source does not exist in
nature. Generally, we can only have a finite source with a |KPR
which is an oscillating function with a fast decaying envelop and a
maximum value at ky o . With the given information about the in-

tegrands, it is not difficult to understand how this so-called end

effect comes into play. We will explain this by assuming the
source has
(i.e., a source with for |yl =L and Kx=0

otherwise. This is the most popular uncompensated source used by

nearly all of the researchers.)

Now, let us go back to Fig. 3.1, where a typical plot for

is shown. When L becomes infinitely large,

becomes proportional to d&(ky-kyo). The integral for B wiill
just pick up the value of KBy at ky o, and the ideal source result
is obtained. However, for the more realistic case where L is finite,
the situation is different. It is obvious that |k will now have
non-zero values at ky # ky o. Thus, the integrals will also receive
a contribution from this region. And this explains how this so-called

end effect comes into play. Definitely, the overall result depends
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drastically on how functions Fy/|KxR , |KkxR wvary.

By observing the ~R/|+Kx2 curve more carefully, it can be seen
that there is only one local maximum located at ky = ay b Thus, if
those points kyo, kyo £ mwlL, are not too close to ay w/v, then although
part of X2 will spread into the region where ~Ry/|Kx2 is
smaller than that at kyo, there is always another part which will go
into the larger ~R/|+42 region. So the overall effect will be
small, i.e., the end effect causes little influence. On the contrary,
if kyo happens to be equal to ay w/lv, those non-zero 2 at
ky # kg will always pick up smaller ~Fy/|~Kx|2. Thus, the resultant
force will decrease enormously, especially when L is small such that
the spread is wide. And this is just the situation in which the end
effect degrades the machine performances most. This also explains
why a large L is suggested to reduce the undesired end effect. As
for the case where kyo is near ay w/v, although there is a possibility
that |[H42 will go to the region where ~R/J+KX2 is larger, the in-
crease is always small compared to the decrease coming from the spread-
ing of |42 into the opposite direction. Thus, although the detail
w ill depend on how ~Ry/|Kx2 varies, a decrease in the resultant force

can generally be observed.

In the above we have mainly talked about the influence of the
source function. Now we will also say something about the other param-
eters.

It is known that a smaller Klv2/w will give a smaller ay.
Now, if there are two cases with the same /v but different ay,

then roughly speaking, the slope to the right of ay will be steeper



-29.
for the case with larger ay. Thus, if we have two systems with dif-
ferent K1 operating at the same w,v, then we are going to get a
more serious end effect for the case with larger K1 when kyo's are
set to their corresponding values of ay w/N. (Remember, a larger ao
is suggested to give a higher efficiency. And the above argument is
only applied to the case where ay=ao >%). So generally, we are
expecting a smaller end effect for a system which uses a track with a
small oxh2. Also, as we suggested before, the machine can also be
used for supporting purposes. In this case, it is preferable to op-
erate in the attractive region. Thus, it is more desirable to make
oxh2 small. This happens to be consistent with the small end effect
requirement. So, it seems that composite tracks which will give a
relatively smaller ox are promising.

Note, for practical material suggested in MAGLEV systems, non-
ferromagnetic material generally has a higher conductivity. Thus,
although material with high g does not offer too many advantages;
composite tracks with ferromagnetic material contained are still
recommended for use in this special case. We will postpone our dis-
cussion about how to construct the composite tracks until Chapter IV.
However, it should also be remembered that K1 cannot be made too
low, otherwise ~R/KqJ2 will become too small in the low slip
region. This will eventually decrease the force and degrade the
machine performance. A suitable compromise is thus necessary.

For the geometry we are considering, one thing seems worthwhile
mentioning. With all of the specified source and track configurations,

we know that the maximum force is going to occur at
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for the ideal source. However, we also know that for this wvm the
maximum value of ~R/|2 is going to appear at ap/ which is less
than kyo. Thus, the maximum thrust force point is not the point
where the end effect is most serious. Later, this can be shown to be

different from some of the other configurations.

In the above, we considered mainly the end effect on the force
in the y-direction. Similar arguments can also be applied to Fz n,
PF. Since, for a given v, the integrand for the loss integral is
monotonically decreasing for 0 < ky <w/v, so the end effect will not
introduce too much influence to the loss. Thus, as for the efficiency,
the end effect will have similar influence to that of F yi.e., it
will generally degrade the efficiency. For most of ky, ~F/|¥42 is
also monotonically increasing, so that the end effect is not serious

for the supporting force either.

(i-2) o =1: (i.e., source without back iron)

Similar to the case «a 0, we can get from (3.1), (3.2), (3.3)

and the thin reaction rail assumption:

(3.9a)

(3.9b)

(3.10a)
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(3.10b)

(3.11a)

(3.11b)

All of the approximations (3.9b), (3.10b), (3.11b) are intro-
duced for the convenience of integrand analyses with 0 < ky < where
kyh2 << 1, kyh3 << 1 are very accurate. However, as far as the

realistic performance integrals are concerned, (3.9a), (3.10a), (3.11a)

w ill be more accurate.
Formulas (3.9a), (3.10a), (3.1l1a) are plotted in Fig. 3.3. For
those "a" parameters as defined in (i-1), if only the region 0< a<1

is considered, we will get:

(3.12a)

(3.12b)

(3.12¢)

In this case ai >ay > ar is always true, And all of them are

monotonically increasing functions of vy = pooxh2v. In order to have
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Fig. 3.3 Integrands for geometry (A-i-2) with y = pooxh2v = 10.

(1) (2)

(3) (4)
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Fig. 3.4 Power and forces for geometry (A-i-2) with ideal source and
wuooxhzv =25, kyo = 10.

1) (2) (3)

(4) (5) PF
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higher efficiency and enough supporting force, we suggest operating
this machine with ao > ay, i.e., an attractive scheme is preferable.
Now, since ay az, we cannot draw the largest possible propulsion
force for this kind of geometry operating in the attractive supporting
force region. Furthermore, for the same track configurations, w, v,
and ky , geometry (i-1) always gives larger values of ~Fy/|~Kx]|2,
~Fz/|~Kx|2, |A | than those of (i-2). So, if the same amounts of
forces and power are required, larger |~Kx]|2 is always necessary for
geometry (i-2). Source windings of higher conductivities must be used
to prevent intolerable ohmic losses. Thus, this geometry perhaps is
not preferred in HSGT vehicles where large power and forces are always
necessary. However, if the cost for a high conductivity source winding

is manageable or high power is not a requirement, this LIM will still

be applicable. Thus, we will still present some analysis for this
geometry.
For the ideal source with the

machine performance is easy to get:

(3.13a)

(3.13b)

(3.13¢)
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(3.13d)

(3.13e)

Here, of course, kyoh2 << 1 and kyoh3 =>> 1 have been assumed
such that (3.9b), (3.10b), (3.11b) can be used.

It should be noticed that g does not have any effect on the
machine performance. In (3.13a), for a given ky o, the maximum thrust

force occurs at with a corresponding value of

which is just proportional to Kb and is independent of every-
thing else. At wvm, ay wm happens to be equal to ky and thus the
corresponding Fz will be 0. Thus, if an attractive force is also
desired, we cannot draw the possible maximum propulsion force for this
given geometry. This is quite different from the previous case where
kg > aywvm > az w/vm and thus at the maximum propulsion force point a
reasonably large attractive force can also be obtained. This gives
further evidence that geometry (i-1) is superior. Similar to (i-1), for
a given kyo, n is a monotonically increasing function of v. At

vm, a larger efficiency can be obtained by making ko /(wpooxh2) smaller,

For the more realistic case of the

end effect also plays an important role in degrading machine performance.
The reason is definitely the same as before, i.e., H42 will spread
into the region where the integrand is smaller than that at kyo.

Now, as we mentioned, for an ideal source with

ay(vm) happens to be equal to (kyovm)/w. Thus, the most serious end
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effect is observed. Generally, it can be argued that the end effect

can possibly be reduced by making oxh2 smaller, which is also the

same conclusion as that of (i-1). Of course, a suitable lower axh2
must be chosen to prevent the machine from going into the low e ffici-
ency region.

(ii) Thick reaction rails:

For |y2|h2 = 1, tanhfd 1 is approximately true. In
addition to this, tanh kzh3 = kzh3 will further simplify the original
formulas. However, in this case, the algebraic analysis is found to be
much more complicated for problems with a 0. Thus, instead of con-
sidering o 0, we will take care of the problem with o =1 first.

Then several results for o 0 can be obtained by comparing with

those of o =1.

(ii-1) o = 1: (region 4 is free space)

From (3.1), (3.2), (3.3) and the given assumptions:

(3.14)

(3.15)
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(3.16)

(3.17)

(3.18)

(3.19)

Algebraic analyses for ~R/|Kx2 and ~FZ|Kq42 yield the re-
suits in Fig. 3.5. For the eddy current loss and real P, results can
be obtained simply by multiplying (w/ky-v) and w/ky with ~Fy/|—Kx|2
respectively.

For p = po~I, a maximum value for ~R/|~Kx2 is found to be at

(here K = with a corresponding value of
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If #pot and p26p2yp2z << 1 are true,
And the corresponding maximum

value is po/ (2v2(2++2)). Thus, if the peak propulsion force is of
most concern, the bigger extreme value of ~R/|Kx2 for the ferromag-
netic track will make the track a little bit more favorable than the

nonferromagnetic one. ~Fz/|Kx2 is zero at az =

with For the nonferromagnetic track, K31

reduces to zero, i.e., the only zero point is at a =1. And, no
matter whether ~u=po-l or ~p#po~I, ~F2/|HK«2 has a maximum at
a=1. More information about these integrands can be obtained from
Fig. 3.5.

It can easily be seen that for the thick reaction rail, the
skin effect will prevent the medium in region 1 from influencing the
machine performance. And the permeability p begins to play a very
important role. For the nonferromagnetic track, only the repulsive
force can be observed. A larger repulsive force can be obtained only
at a smaller "a". Thus, if high efficiency is desired, this geometry
is not recommended to be used as a LIM both for propulsion and levita-
tion. However, if it is mainly suggested for the propulsion purpose,
there will always be an extra repulsive force to help in supporting the
vehicles.

As for the ferromagnetic track, we will get a very similar re-

sult to that of the thin reaction rail (A-i-2). Both repulsive and
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attractive forces can be obtained. Furthermore, 0 =< az ay <1 is
true for both cases. Thus, most of the arguments given there can be
applied here. Depending on whether ao is larger or smaller than az,
the machine can have either an attractive or a repulsive force. But,
if high efficiency is also required, the attractive one is preferable.
Unfortunately, the largest propulsion force can only be obtained at
ay =az. It is also noticed that at ay the peak integrand for Fy
is a little bit smaller than that of (A-i-2) which is only of the order
of kyh multiplied by that of (A-i-1). Thus, similar to (A-i-2), a
high conductivity source winding is required to reduce the ohmic loss
when similar forces as in (A-i-1) are desired. And, actually, this
seems to be a common requirement for LIMs with a =1 when similar
forces as LIMs with a4 =0 are needed.

For the ideal source, the machine performance can easily be
obtained by substituting ky with kyo in equations (3.15), (3.17)
and (3.19). Plots of Fy, Fz, etc. are then shown in Fig. 3.6. Now,

the maximum thrust force point will satisfy

with Ki = K or K2. The corresponding force will be on the order of

Actually, as derived from the integrand analyses, the ideal
source results for g #wd will be qualitatively similar to (A-i-2).
Most of the other properties can also easily be observed from Fig. 3.6.
With the same argument as in (A-i), it is understood that the

end effect can be reduced by making Ki smaller. Using a composite track

generally can attain this objective. However, the decrease of Ki will
also give a smaller ay and thus a smaller efficiency. A suitable com-

promise should be made to determine which value of Ki to use.
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Fig. 3.5 Integrands for geometry (A-ii-1) with

(1) (2)

(3) (4)
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Fig. 3.6 Power and forces for geometry (A-ii-1) with ideal source and
wK5 = 200,000, kyo =10,

(1) (2)

(3) (4)

(5) Power factor



(ii-2)

“42-

o 0: (region 4 is infinitely laminated iron)

From (3.1),

(3.2),

(3.3) and the given assumptions:

(3.20a)

(3.20b)

(3.21a)

(3.21b)

(3.22a)

(3.22b)
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After comparing to the corresponding formulas in (A-ii-1), the
different terms in (3.20b), (3.21b), (3.22b) are underlined and by
changing these terms to "1", formulas for (A-ii-1) can be obtained. It
is seen that p =pod and ~u#puo- behave quite differently from each
other. By observing this fact and the results from some rough algebraic
calculation, the following remarks can be made.

Nonferromagnetic tracks:

o ~F|Kq2 is always negative. And similar to that in
(A-ii-1) ~F+q2 is monotonical ly increasing for 0 <a <1
with a minimum value of -po/4 at a =0 and a maximum

value equal to 0 at a =1.

e ay is located at with K41 lying between

and

Ferromagnetic tracks:

with

has a maximum lying between a =1 and a = az.

e ay is located at with K51 lying between

and Thus, ay > az is generally true.
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Fig. 3.7 Integrands for geometry (A-ii-2) with

(1) (2)

(3) (4)
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Fig. 3.8 Power and forces for geometry (A-ii-2) with ideal source and

wK5 = 200,000, =0.01, h3=0.01, kp = 10.
(1) (@)
3) (4)

(5) Power factor
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Also, no matter which track is used, ~Fy/|-Kx|2 and
~Fz/|~Kx|2 will always be larger than those of the corresponding
values of (A-ii-1). Most arguments given in (A-ii-1) can be applied
here for the nonferromagnetic track except that, due to the relatively
larger values of ay , ~Fy/|-Kx|2 and ~Fz/|~Kx]2, this case will pro-
duce larger forces and efficiency. For the ferromagnetic track, the
advantage over that of LIM with a =1 which was mentioned before is
re-observed. Due to the fact that ay > az, if the LIM is used for
both propulsion and levitation purposes, the LIM is suggested to be
operated in the attractive region. Then, a peak propulsion force can
always be obtained while the attractive force is still relatively large.
For the ideal source, the results can be obtained simply by substitut-
ing ky with kyo. Some plots with the machine performance as a func-
tion of v are given in Fig. 3.8. For ferromagnetic tracks, some
results are qualitatively similar to those of (A-i-1). When Kx is
not a o6-function, the end effect will also appear. Decreasing ox is

suggested to reduce it.
(B) PB1 =B3: (region 1l is free space)

In (A), B 0. This means a lot of laminated ferromagnetic
material must be used, and thus more cost. So, from the economic point
of view, the free space, or just the earth for region 1 may be prefer-

able.

From (2.8), (2.13), (2.31):

(3.23a)
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(3.23b)

(3.23c)
Here

(3.23d)

(3.23e)

For thick reaction rails, there is no difference whether region
1 is the free space or a laminated iron, or any other material. Thus,
in the following only the thin reaction rail is necessary to be con-

sidered.
(i-1) o 0: (region 4 is infinitely laminated iron)

Under the thin reaction rail assumption, (3.23) will give us:

(3.24a)

(3.24b)
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Of course, (3.24b), (3.25b) and (3.26b) are
purpose of simplifying the integrand analysis.
be used for the integral evaluation. (The ideal
is one exception.)

Except for a factor, (3.24) is exactly the

this factor w ill make the
more complicated.

Several remarks will be given:

(3.25a)

(3.25b)

(3.26a)

(3.26b)

introduced only for the
Generally they cannot

source with kyoh3 << 1

same as (3.9). However,

algebraic analysis much
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Nonferromagnetic tracks:

e Since [1 + kz(h2+h3)] ~ 1, except for the value ~Fz/|—Kx]|2,
the difference between this geometry and (A-i-2) is small. Thus

we will get similar plots of ~Fy/|-Kx|]2 and ZL for both cases.

And with

y = poxh2v. Of course, the corresponding maximum values w ill

be a little bit larger than those of (A-i-2).

e K42 will be different from the corresponding (A-i-2) re-

sult. Actually, i.e., it

w ill always be repulsive. This is not surprising because now

there is no back-iron to give the attractive force component any

longer. Also, there is a minimum value of -po/4 at ky=0 and

a maximum value of 0 at a =1.

Ferromagnetic tracks: cannot be neglected)
e For a >0 it can be shown that ay |lies to the right of
And for 0 <a < is monotonic -

ally increasing. At a =

e For a >0 it can be shown that if

az lies to the (eft/right) of And, there is only
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one value of az Ilying between 0 and 1. Also, at ky = wh,
which is the maximum value
of ~Fz/|—Kx]|2. Other properties of the integrands can roughly be

obtained from the plots in Fig. 3.9.

For the same source distributions, it can be seen that for non-
ferromagnetic tracks the machine performance in terms of Fy, n, and PF
is roughly similar to that of (A-i-2). The main difference is that now
we get only a purely repulsive force. And the small absolute value of
the integrand for Fz at large "a" will exclude this geometry from being
used as a LIM for both supporting and propulsion purposes. For ferromag-

netic tracks, the situation is different. Of course, if

is still small, the result definitely will be nearly the same as before.
However, if p2y is large enough, then becomes impor-
tant; especially when such that ay > az is true.

Then, we can try to design a LIM to support and simultaneously accelerate
the vehicle. Thus, from this point of view, we can conclude that a
larger value of is more desirable. And making p2y and
h2 large is the easiest way to reach this objective. As for the factor

we can also try to make ox larger to get a value approximately

equal to 1 at the peak velocity. However, as far as the end effect is
concerned, it is more desirable to keep it at a moderate value (say 0.8).
Then it seems that a somewhat smaller ox is preferred over a higher

ox . All of this will make the composite iron the most promising track

m aterial.
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Fig. 3.9 Integrands for geometry (B-i-1) with

(1)

(2) (3)

(4)
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Fig. 3.10a Power and forces for geometry (B-i-1) with ideal source and

(1) (2)

(3) 4)

(5) Power factor
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Fig. 3.10b Power and forces for geometry (B-i-1) with ideal source and

1) (2)

3) (4) (5) Power factor
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(i-2) o = 1: (region 4 is free space)

Under the

thin

reaction

rail

assumption,

(3.23) will give us:

(3.27a)

(3.27b)

(3.28a)

(3.28b)
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(3.29a)

(3.29b)

Some tedious algebraic analyses will give us the following results:

Nonferromagnetic tracks:

can be further approximated as 4ky2.

And Then (3.24b) and (3.27b) look

nearly the same; so do (3.25b) and (3.28b). By comparing the

formulas with each other it follows that
and Generally, the cor-
responding maximum values are smaller for geometry (B-i-2).
Actually ~Fy/|Kx]2 at for geometry (B-i-2) is
only about one-half of the value of ~R/JHx2 at
for the case (B-i-1).
This is similar to the

previous case (B-i-1) and will always be negative. Actually, a

minimum value of -uo/4 occurs at ky= 0, and a maximum value
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of "0" occurs at ky= wv. However, for the same "a" it will be
a little bit smaller for geometry (B-i-2).

Ferromagnetic tracks:

e For 1 >a>0, if is still small, then the same
conclusion as for that of nonferromagnetic tracks can be used

as an approximation.

e For a >0, if is not small, then, except in a very
small region where kz is small such that is
still true so as to make the integrands behave in the same man-

ner as that of nonferromagnetic track, the situation is differ-
ent for the remaining regions.

e In order to have a LIM with reasonable efficiency, it is sug-
gested that kyo be a little bit smaller than w/v (say,

kyo =0.8 w/v). Now for a >0, if then, in
the region where |KxpR is large (i.e., say around kyo
0.8 w/v), the approximation can

be made. Then, it can be shown that and

~Aym/|Kx]2 = po/4. Fz/|KX]|2 is found to be monotonically in-
creasing with az ay. A maximum value of po/4 at a =1

and a minimum value of -po/4 at a =0 can also be observed.

For small p2y/pyo w/v h2, the terms ~Fy/|-Kx|2, ~Fz/|Kx]2 and 2%
are found to behave in a similar manner as in (B-i-1). The main differ-

ence is that the most important factor y =poh2oxv of the previous case
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Fig. 3.11 Integrands for geometry (B-ii-2) with poh2oxv =5 ,

(1) (2)

(3) 4)
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Fig. 3.12 Power and forces for geometry (B-ii-2) with ideal source and

(1) (2) (3)

4) (5) Power Factor
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(B-i-1) is now changed to y/2 and the corresponding maximum values of
~Fy/|-Kx|2, &, Z for this case are smaller. For a large |BAouitE,
it is a different story. Actually, it looks more similar to (A-ii-1).

In both geometries (B-i-2) and (A-ii-1), we have ay = az,
Thus, most arguments

given in (A-ii-1) can also be applied here.

After the above analysis, a general discussion will be given. Now
that the LIMs are supposed to be used both for supporting and propulsion,
large forces in both directions and high efficiency are all required.
This will eventually eliminate the possibility of using LIMs which give
repulsive supporting forces. So cases (A-ii) and (B) with nonferro-
magnetic tracks are not recommended. For the remaining geometries which
can be operated to give attractive supporting forces, they can be
divided into two categories, namely, ay >az and ay az. The
property that a larger propulsion force can only be obtained in a region
where ~Fz/|Kx|2 is relatively small will further exclude the cases with
ay = az which generally occur for a4= 1. Thus, finally, the only re-
maining geometries are (A-ii-2) and (B-i-1) with p#p and (A-i-1).

It should also be noticed that maximum values of ~Fz/|Kx2 are generally
larger than those of ~R/KY2 for the remaining cases. And thus, for
a suitable |~ Kx]2, a larger Fz can always be obtained. This happens to
be consistent with the requirement for vehicle design, since an accelera-
tion of "lIg" is always necessary to support the vehicle, while for com-
fort, human beings can only tolerate a horizontal acceleration of several

tenths of "lg".
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Of course, if |kxpR is specified, the machine performance can
be evaluated either numerically or analytically. Generally, numerical
integrations are straightforward and analytical evaluations are diffi-
cult. However, for some of the simplified geometries with thin or
thick reaction rails, analytical evaluations seem to be possible. Now,

we will consider the most popular source distribution

and try to evaluate the machine performance

integrals. Of course, it would be the best situation if we could analy-
tically evaluate them for all of the recommended geometries. However,
geometry (A-ii-2) is quite difficult. Thus, although geometry (A-ii-1)
is not promising, it will be analytically examined as an alternative

of the thick reaction rails. And we hope that it will give us some in-

formation about geometry (A-ii-2). (Results for geometry (A-ii-2) are also
given in Appendix F.)
(a) Geometry (A-i-1):

In this case all of the integrands (with the source term excluded)
can be easily factorized. The integrals can be rewritten as the summa-
tions of integrals similar to Sl1(a,kyo,L). Appendix C can then be used

to get:

(3.30a)

(3.30b)
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(3.30¢)
(3.30d)
where (3.30e)
(3.30f)
with

In the above derivation, the thin reaction rail approximation
is used for the whole range of ky extended from -coto oo It is
obviously not very accurate. Actually, this thin reaction rail assump-
tion is only introduced to analyze the integrands within 0 < ky =t
or even only around ky where |Kx|2 is large. In the region where
kz is large, generally y2h2 is also large, i.e., the thin reaction

rail condition cannot be satisfied. However, if we go back to the

original exact expressions for the integrands, we find that the con-
tributions from the large kz region are always very small. And, in

the meanwhile, if we look into the thin reaction rail approximations,
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then, in the same region we will also see very small integrands.
Furthermore, the source function |Kx]|2 is only significant around

ky o . Thus, we can conclude that the use of the thin reaction rail
approximation for the whole range of Kky does not introduce too much
error for the machine performance integrals. This argument can also

be applied to other geometries.

Numerical values can be used in (3.30) to evaluate the machine

performance. However, before doing that, we will look into these
formulas more carefully. For practical cases, |Im 2anl] is generally
large (e.g., >m). Thus, can be neglected in S1(am,kyo,L).

It is quite obvious that the term proportional to L in S1 will give

a result corresponding to the ideal source case (i.e., will give

formulas (3.8)). The remaining term of is essentially
the reason for the end effect. Actually, we will have
(3.31a)
(3.31b)
(3.31c)

Here, the subscripts "1" are introduced to represent the contribution

from the term in  Si(am, kyo, L). Also, (3.30d) is used
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for Fz which will make the analysis simpler.

Now, two extreme cases with 4w/K1lv2 being either large or

small will be considered in investigating the effects due to the term

as shown above.

From (3.30):

(3.32a)

(3.32b)

It is noticed that |o2- kyo| is much larger than |aikyo| ; thus, the
term can be neglected in (3.31). By looking into (3.31), we

see that the properties of the expressions (3.31) can be observed by

considering:

(3.33a)

(3.33b)
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(3.33c)

It should first be noted that these terms are small when ao 1.

Also, for the ideal source case we know that Re P=0, Fy = 0,
and Im P< 0 within the operating range of 0< ao <1. Now, from
(3.31) and (3.33),we realize that Re PL is generally negative;

-im PL and "F1 vary in a similar way and are negative only when
is negative for ao >1/3. And, roughly, it can be
shown that the efficiency decreases for 1 > ao > 1/2. The degrading of

the machine performance is thus observed in the high ao region.

We then have:

Now, we need only consider the following terms:

(3.34a)

(3.34b)
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Machine performance for geometry (A-i-1) with

All parameters are the same as in Fig. 3.2. L = 2.512m.
Curves (1), (2), (3) and (4) represent the same quanti-
ties as in Fig. 3.2. Curve (6)

is the efficiency and
Curve (5) is the power factor.



-66-

Fig. 3.13b AIll quantities are the same as in Fig. 3.13a, except
L = 1.256m.
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It can be shown that the phase angles of (3.34a) and (3.34hb)
are all monotonically decreasing functions of a for 0 <a0 =< 1.
Actually, for (3.34a) (or, P1), the phase angle increases from -m/4
at ao=1 to m2 at ao to 5/4n at ao =0. And,
for (3.34b), it will vary from n/4 at ao 1 to nm at ao=
and finally to 7/4n at ao = 0. Thus, except in a very small region

increases in Re P and possible increases in PF are
expected. For ad (K1v2)/w , both Fy and machine efficiency are ob-
served to decrease. If (K1v2)/w >=>y2, Fz1 behaves in the same way as
-im "P1. On the contrary, if (Klv2)/w <<vy2 , F1 behaves in a way
similar to -Re Pl.

From the above analysis, it is not surprising that most conclu-
sions are basically similar to those obtained from the integrand
analysis. Typical plots of machine performance for this realistic source
are given in Fig. 3.13. The degrading in the machine performance can the
be observed by comparing with the results shown in Fig. 3.2 for the ideal

source.

(b) Geometry (A-ii-1):
Similar to (a), Fy and P can be evaluated by using suitable

factorization in (3.14a) and (3.15a) to get:

(3.35a)
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(3.35b)
where a3 and a4 are roots of k2y+ i(w-kyv)K6= 0 with
or:
(3.36a)
(3.36b)

with

Definitions for S2(am,kyo,L) and S3(am, kyo,L) are given in
Appendices D and E. However, it should be noted that the exact expression
for S3(am, kyo, L) is difficult to get. Thus, only an asymptotic formula
is derived.

As for Fz, the integral is much more complicated. However, as
we mentioned, the end effect is generally small provided that kyolL is
large. Thus, we can always use the formula for the ideal source as an
approximation for the more realistic source we are now considering.

It is obvious that ideal results can be obtained by just consider-

ing the terms proportional to L in S2(am, kyo, L) and S3(am, kyo, L).
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Here we will begin to consider effects due to the remaining terms.
However, as we just mentioned, the end effects on the supporting force
are relatively small, so we are not going to include any further analy-
ses for the TFz. Now, under the assumption of kyoL > 1 and

|Im(anL)| > 1, we can write:

(3.37a)

(3.37b)

Subscript "1" is introduced to point out that (3.37a) and (3.37b)
correspond to the term in (3.14) and (3.16). Now let

us consider two extreme cases:

From (3.36), we have

(3.38a)

(3.38b)
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(3.39a)

(3.39b)

When ao is not close to "1", values for Pl1 and F1 are gen-

erally small. However, when 1-ao is small, (e.g., l-a0 WK a

very large influence is observed. The underlined terms in (3.37a) and
(3.37b) dominate and produce a phase angle of about 0° in ~Pl. There
is also an increase in the propulsion force. Roughly speaking, expres-

sions (3.37) will help to ease the degrading of the machine performance.

From (3.36), we have:

(3.40a)

(3.40b)

(3.40¢)

(3.37a) and (3.37b) can then be rewritten as:
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(3.41a)
(3.41b)
When ao is close to 1, (3.41a) and (3.41b) are relatively small. How-
ever, when ao is small (e.g., & ~ (K6v2)/w) the situation is differ-

ent. ReB, Im Pl and Fy1l are all positive and somewhat larger.

As for the contribution due to the term

the results in Appendix E are used. As we can see, S3(am,kyo,L) is
decomposed into two parts. One is due to the residues of all the poles,
while the other is due to the integrations along the branch cuts. However,

if is true (Note that K5= oxu2z >> K6 is large, thus

covers most operating regions. The only exception occurs
in the very low speed region.) |B2] is much larger than | f Most
terms in the branch cut parts are then shown to be much smaller than the

corresponding terms in the residue parts. Further conditions of

JIm( il >1 will make it possible for us to write down the final approx-

imate results as:
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(3.42a)

(3.42b)

Here o3 and o4 are defined in (3.36) while 1 and {2 are roots

(3.43a)

(3.43b)

with



-73-

Now, under the condition we have:
(3.43c¢)
(3.43d)
We will begin to consider two extreme cases:
It is obvious that the values for Bnd Fy2 are small when

ao is not close to 1. We are most concerned with the case when a a4

where the values are large. Now, under the assumption t hose

terms with a3 involved can be neglected. For the

contributions due to the underlined terms approximately give us

Re P2 0, Fy2 0 and a positive Im P2. For the remaining terms,
it can be shown that Re P2, Im R and Fy2 are all negative. And
the magnitudes are so large that they will not only cancel the positive

values in Pl and Fyl , but will also eventually give us large negative
values of Re P, ImP and Fy. Thus, we can conclude that large de-
creases in the propulsion force, the power factor and the efficiency
will be observed for This conclusion is basically

similar to that described in the earlier integrand analyses.

In this case, the values are relatively small for an "ao" which
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is not too small. Thus, we are most concerned with the region where
ad~ (K6v2)/w. Of course, the terms corresponding to a3 cannot

be neglected any longer. After some rough algebraic manipulations, it
can be shown that the underlined terms will give us a positive value
for ImP2 and nearly zero values for Re R and Fy2. However, the
most important contribution comes from the remaining terms. Generally,
Fy2 <0, Re <0 and Im R <0 are obtained. And the values are
so large that overall decreases in the propulsion force, efficiency and
power factor will be observed. Thus, the most serious degrading in
machine performance is seen around a2o0 (Kyv2)/w. This is also the
same conclusion as that obtained from the integrand analysis. A typi-
cal plot of the machine performances for this more realistic source is
then given in Fig. 3.14. And, by comparing with Fig. 3.6, the degrad-

ing of the machine performances is observed.
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Fig. 3.14a Machine performance for geometry (A-ii-1) with

All parameters are the same as in Fig. 3.6. L = 2.512m.
Curves (1), (2), (3) and (5) represent the same quantities

as in Fig. 3.6. Curve (4) is the machine efficiency.
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Fig. 3.14b All quantities are the same as in Fig. 3.14a except

L = 1.256m.
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(c) Geometry (B-i-1):

We can now apply Appendices C and D to (3.24a) and (3.25a) to

get:

(3.44a)

(3.44b)

(3.44c¢)

Here &m are roots of

1,2,3,4. Also, om4 =d5*m. And
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with

Fz is very complicated and we will not analyze it any further. But,
similar to the previous case (b), the result for the ideal source can
be used as a good approximation provided that kyolL > 1.

The formulas given in (3.44) are complicated. By looking into
Appendix D we know that integral S2(di,kyo,L) can be decomposed into
two parts, namely, I1 and 212. Now we will consider the contribu-
tion from 11 . It is obvious that the ideal source result can be
obtained by just considering the terms proportional to L in S1 and
S2, and, similar to geometry (A-i-1), |Im 2diL] can be considered as
large (e.g., n ) for most practical cases. Thus, in S1 and S2
the terms involving can be neglected. Under the above

assumption, we can then write down the following expressions:

(3.45a)
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(3.45b)

here 81 and 02 are roots of
And the subscripts "1" are introduced to distinguish (3.45) from the
other terms where the contributions are due to integrals similar to 12.

Now, we will begin to consider two extreme cases:

In this case, the equation for 0&i is approximated as kg -
i(w-kyv)K1 =0. Also, y > 1 ensures that Klv > 1 w/Kv2 << 1.
Thus, similar to (A-i-1), most terms involving i/[(82-kyo)2] (Note:

61 al, 82 a2) can be neglected. (Perhaps the only exception is the
last term in Fy1l; it can be rewritten as For the
"1" part, a very small additional propulsion force is added. For the re-

maining part, the neglect is reasonable. Actually, the whole thing can

be shown to be cancelled by another term due to an integral similar to

12).

By applying (3.33), roughly speaking, the power factor, efficiency
and the propulsion force decrease for a larger ao (e.g., ao >2/3),
i.e., a degrading of the machine performance will be observed. And the

maximum decreases generally occur at a value of ao where

is true.
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In this case, the equation for ©&i can be approximated as

and the roots are found to be:

with

When vy is small, is small too. However, Klv/y is large. Thus

61 and 062 can be further simplified as:

Since |062- kyo| >> |61l- kyo] so, similar to the previous y >> 1 case
in (3.45), most terms involving 1/[(d2-kyo)2] can be neglected. (The
same argument as the previous y >> 1 case can also be applied to the
last term in Fyl. From a later consideration, it can be shown that this

term will be cancelled by another term due to 12) Also, we have:

(3.46a)

(3.46b)
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(3.46¢)

From (3.45) and (3.46) we know that Re P1 is positive when

is positive and Re Pl s

negative when A2 is negative. A similar argument can be applied to

Im PL by changing A2 to A3 = Thus

the influence of (3.45a) on the overall power factor largely depends on

ao . However, an increase in the power factor is expected when ao>>y
and Unfortunately, a decrease in the propulsion
force is always observed when ao y . And, the most serious decrease

will occur for a value of ao~vy

Now, we begin to consider the contribution due to the term 12
in S2. However, instead of using (3.44) directly, we go back to the

original force and integrand formulas to get:

(3.47a)
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(3.47b)

Here:

(3.48a)

(3.48b)

14 can be evaluated in the same manner as 12(dm,kyo,L) in

Appendix D. Actually, for most practical cases, kyoL is large.

is a fast varying function. And, thus by comparing to

IS1(dm, kyo, L)| (i.e., an integral whose limits are -oco and +o0),

|[14(dm, kyo, L)] is relatively small. Also, the integral [14(dm, kyo, L)|

can be approximated as:
(3.49a)

and

(3.49b)
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This approximation is basically similar to the neglect of 13 in 12

(see Appendix D). Now, we can begin to consider two extreme cases.

(i) y=>=1L

In this case, both equations

can be approximated as That is, d 83 and
A can be considered as true. Thus,
(3.50a)
(3.50b)
61 and 02 are approximately given at (3.32), i.e., al and a2, respec-

tively, so we have:
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The last two terms in P2 can be shown to have a small effect
on the power factor (actually, And the last three terms
in F2 will give a drag force which is about 1/kyolL of the ideal
propulsion force. Now, we will begin to look at the effect due to the
first terms in B2 and "F2 The imaginary part in can be
seen to have an opposite effect compared to the corresponding terms in
(3.45a), (3.45b), i.e., generally, it will ease the end effect. However,

since /2 >> w/K1v2, the influence is relatively small. The real part in

will also generally result in positive Re R and R and
negative Im R for ao which is not very small (e.g., al > 183 where
tn Yoo <1).

Thus, we can also say that it will make the overall end effect
a little bit smaller. As for the remaining parts, the term -i M in

fn &%o will just cancel the corresponding term in Pl and Fyl. Due

to the largeness of |02-kyo|] and Kilv2/w, the effect of the term

-iw/KIV2 in fn ®Kko is negligible. Unfortunately, for the real part of

fn 62/kyo, both the power factor and the propulsion force will be decreased.
However, the contribution due to this term is small too. By combining all

other results we can conclude that the most serious degradation in the

machine performance will occur at a0 where 1-a& wKIlV2<y

i)y <1

Now the term iKlkyov can be neglected in the equations
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And, we will have:

By using the above relations 41 -04 and &2 -03, formulas

(3.47a) and (3.47b) can be reduced to

(3.51a)

(3.51b)

where



-86-

Now, we will make a very rough approximation for the above formu-
las and hope that we can get some idea about the effects due to them.
After sone tedious algebraic manipulation and the neglect of the small

terms, we get:

(3.52a)
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(3.52b)

where

(3.52¢)

The last terms in P2 and F2 (i.e., with m involved) are
going to be cancelled by the corresponding terms in PL and ~Fyl, res-
pectively. As for the remaining terms, their values largely depend on
ao . However, the maximum influence definitely will be observed at
ao y. And at that point, the contribution to B2 is found to be

positive, i.e., it will ease the end effect. Especially if

there is even a possibility that the overall end
effect will help to increase the propulsion force.
Some of the arguments given above can be observed from comparing

the plots, Fig. 3.15 and Fig. 3.10.
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Fig. 3.15a Machine performance for geometry (B-i-1) with

All parameters are the same as those of Fig. 3.10a;
L = 1.256m. Curves (1), (2), (3) and (5) represent the
same quantities as in Fig. 3.10a. Curve (4) is the

machine efficiency.
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Fig. 3.15b Machine performance for geometry (B-i-1) with

All parameters are the same as those of Fig. 3.10b;

L = 1.256m. Curves (1), (2), (3) and (5) represent the
same quantities as in Fig. 3.10b. Curve (4) is the
machine efficiency.
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CHAPTER IV

COMPOSITE  TRACKS

From the previous discussion it follows that a composite track
is highly recommended. Definitely, in order to satisfy different pur-
poses, the LIM track configurations should be different also. It is
obvious that a composite track will make region 2 inhomogeneous, and
it thus makes the problem impossible to solve exactly. However, for
practical analytical purposes, some approximations can always be made.
For example, if the track is built
latively long wavelength travelling source field does not see the
inhomogeneity, the track can be approximately considered as homogeneous
with some effective uniaxial ~g ~u. This idea was probably first sug-
gested by Mishkin(21), Cullen and Barton(19) in analyzing rotary machines
with slotted rotors. Experiments have already been made to check its
applicability. It also gives the reason why we used uniaxial e,p
to represent the track properties from the very beginning of our analy-
sis.

The values of the effective e, depend on the track configura-
tion. Their values are determined from a homogeneous track for given
uniformly distributed e.m.f. and m.m.f. in such a way that the same
amounts of currents and fluxes are obtained. For example, for the gen-
eral composite track shown in Fig. 4.1, we will get (assuming that

within the track the material is uniformly distributed in the z direction):

(4.1a)
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(4.1b)

(4.1c)

To obtain i we change oca into pa, ob into pnd oi into
piin the above formulas.

It should also be noticed that in the lim it bx 0 these ex-
pressions reduce to the familiar formulas given by Cullen and Barton(19).

As we mentioned earlier, this effective p,6 concept has
already been experimentally verified. A theoretical proof, however,
has never been attempted. There is no doubt that it is impossible to
analyze this composite track geometry exactly. However, in order to
gain some intuition about its validity, an extremely simplified geometry,
specifically a finitely laminated iron, will be analyzed.

Due to the lamination, the problem basically becomes a 3-dimen-
sional one. The transfer matrix method is thus not applicable. The
most complete method for analyzing problems with laminated iron was
previously given by Bondi and Mukherji(22) who evaluated the induced
eddy current losses. Here we will use a similar formulation and extend
it to the LIM problem. The finitely laminated iron is supposed to be
used in region 2. Of course, for different LIM geometries, the situa-
tion will be different. Here we will consider the geometry (A-ii-2).
The results for some of the other configurations are possibly obtained
by some suitable substitutions.

The governing equations are the same as before. But

now we have & =0+ and g =pu+ in region 2. The source is still
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Fig. 4.1

Fig. 4.2
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infinitely extended in the x-direction. Due to the periodic charac-
ter of the track, the field distribution will also be periodic in the
x direction. A Fourier series expansion can be used to take care of
the x variation. Thus, only one lamination (i.e., Ix] < h/2) should
be considered. For the y variation, the Fourier transform technique

is employed. And, in the following, only one Fourier component is con-
sidered.

It can easily be seen that functions of x

for the coordinate system shown in Fig. 4.2. The insulation regions
(which make 3 =0 at x = *xh/2) are assumed to be very thin. Bx
and ¥ are thus continuous at the interfaces. Hence, it may be
concluded that # =0 at x = h/2 . Using similar arguments as in
Bondi and Mukherji(22), we can decompose the field in region 2 into
three parts, namely:

(a) ~+x=0 everywhere but ~Jx # 0,

(b) ~Jx = 0 everywhere but ~Hx # 0,

(c) ~IJx=0, ~Hx=0 -everywhere.

Part (c) is the so-called deeply penetrated field which will be found
to be the most important. It plays a role in reducing the undesired
skin effect.

The field components in each region are thus:
Region 2:

() ~+k=

(4.2a)
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(4.2b)

(4.2¢)

(4.2d)

(4.2¢)

(4.3a)

(4.3b)

(4.3c)
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(4.3d)

(4.3e)

(4.4a)

(4.4b)

(4.4¢)

(4.4d)

(4.4¢e)

(4.5a)

(4.5b)

(4.5c¢)

(4.5d)
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A suitable Riemann surface sheet should be taken to give posi-

tive real parts for the ki ke and kz

Region 3
(4.6a)
(4.6b)
(4.6¢)
(4.6d)

Thus we have unknowns {gml}, {gm2}, {bm}, {al}, f. In principle, they

can be solved by matching the boundary conditions at z =0 and 2z =h3.

At z =0: are continuous (4.7a)

(Note: Jz =0 at z =0 is automatically satisfied from the

boundary conditions given above.)

(4.7b)
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(4.7¢)

(4.7d)

(4.7e)

(4.71)

(4.79)

(4.8a)

(4.8b)
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is manipulated to give:

(4.8¢)

(4.9a)

(4.9b)

(4.9¢0)

(4.9d)
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(4.9¢)

If (4.9a) can be solved for af , all of the other unknowns can
be obtained from the remaining equations. Then we can find the field
distribution everywhere.

It is understood that the final results we want are machine per-
formances such as forces, power, efficiency, etc. All of these can be
expressed in terms of the field distribution at z = h3 as given by
(2.24), (2.25), (2.27). As far as the fields at z = h3 are concerned,

formulas (4.6), (4.7) can be used to give:

(4.10a)

(4.10b)

(4.10c¢)

For average Fy, P the m=#=0 terms in Hz do not give any
contribution. But for Fz these terms do have some effect. However,
due to the fast decay of the contributions from
m# 0 can be considered as negligible. (Note, generally h h3 s
true.) So, for Hz, we probably need only to consider the term with
m=0. Thus qJd1 is the most important unknown constant to evaluate.

Now, let us assume that of can be solved for, except for a

common factor aoco . Then we set
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(4.11a)

(4.11b)

(4.11c)

It should be noticed that A, B, C, aco are all ¢ ,m independent.

From (4.9),(4.11):

(4.12)

And the H-field at z = h3 is thus:

(4.13a)

(4.13b)

(4.13c)

Here for Hz, only the m=0 term is included. The corres-
ponding E field is given by E=7" {£x ¥ . Using (2.24), (2.25),
(2.27), the expressions for F P are found to be exactly the same as

those given in (A-ii-2), except that@ now should be replaced by
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Now we come to the point where we have to evaluate A, B, C, i.e.,
we should solve (4.9a). Doing it exactly is a hopeless task. An ap-
proximation can be made by truncating this set of equations, considering
only a limited number of equations with the same number of unknowns.
However, this will lead only to some numerical data. In the problem we

are considering it seems that an analytical solution is more desirable.

Thus, an alternative approximation will be made. First, let us look at

the term:

It can be rewritten as:

Now, if k<< 1 is assumed, kzdhkzfd << 1 can be shown to hold
in the region where Kkx is large. kzd /kz,¢d can thus be neglected
in 1 - kzd/kz,td. Furthermore, even for <1, if (]|4m2d2 |)/h2 1,
|[F(m)] > ukzd can always be obtained. Generally, the requirement
(J4n2d20])/h2 1 is not difficult to meet in the LIM which we are now
considering. Under these conditions, the following approximation is

reasonable:
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(4.14)

The next step is then trying to find an explicit function of )

for of to make independent of m The only

possibilities we can find are af = aco and

If of = aoo, then The magnitude of the

error term in A will always be larger than 0. Also, we are expecting a
set of of which will decrease faster than aco when £ increases.
Thus, we must exclude this possibility. On the contrary, for

is no longer zero.

And the error term will always be small. Thus, we may conclude that
the assumption will give a quite good approx-
imation.
Now we use in (4.11) to get:
(4.15a)
(4.15b)
(4.15c)
with

(4.15d)
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Thus:

(4.16)
Now compare the above formula with If h is suffi-
ciently small such that h/2do << 1 is true, then
and is thus reduced

to po/pw . This means that p2y pn and o 0 are the effective
material constants. And they are consistent with the values given by
empirical formulas (4.1). However, if h/2d << 1 is not met, then the
above sim plification is not valid any longer. Thus, we can conclude
that the conditions under which formula (4.1) gives accurate values for
the effective material constants are ky h << 1 and h/2d << 1.

Up to now we only consider one Fourier component with eikyy
variation. Eventually we have to take the Fourier inverse to get the
machine performances. It is obvious that the assumptions which we
make above cannot hold for all ky. However, the source function will
generally decay when it is away from kyo. Thus, if the above assump-
tions are reasonable around kyo, a good solution can still be obtained
by applying this kind of approximation to all ky.

In the geometry we are now considering, w ill
give a zero propulsion force. Thus it is out of the question to use
merely this kind of track as the LIM in HSGT vehicles. (Of course, it
can be used for the levitation purpose.) Extra conductivity should be

added. One example is shown in the LIM built by the Rohr Inc.(17) with
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suitably arranged conducting bars inserted into the laminated iron.
Definitely, if the requirements kyoh << 1 and h/2do < 1 hold, the
effective material constant concept is still valid. However, we are
not going to give any further analyses of that kind. Instead, an al-
ternative geometry is suggested. Now we will try to lift the criterion
h/2do << 1 and introduce a track with a larger h such that h/2don
approximately equals 1. Then the approximation tan(vih/2d) +ih/2dis not
true any longer, nor is the effective material constant concept.
Instead, the direct method, as introduced in this chapter, should be

used. However, even for h/2dm — 1, "C" can still be shown to be
small compared to "A". Thus, po(A-B)/u(A-C) po/u vih/2d cot(vin/2d). Now
h/2don ~ 1, so, except possibly in a very small region where w/v — ky

such that |vih/2d] << 1, h/2dn is going to be of the order of "1"

for most ky around kyo. And for h/2dm ~ 1, the argument of the

cotangent function will be large enough to allow us to make the approx-
imation that Thus, and:
(4.17a)
(4.17Db)

(4.17c)
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(4.17d)
(4.17¢€)
(4.17f1)
Analyses can be made of these integrands. At

is no longer equal to zero. Actually, if

Fy/ Kx]2 is a monotonically decreasing function of ky for

0< ky =w/v . Its value will decrease from

to "0" at ky =w/v . Also, in that same region, can be

shown to be positive under the condition that

For the ideal source, (4.17) can be used to evaluate the
machine performances. However, this approximation will be good only
under the conditions that kyoh3 << 1 and h/2ndo — 1. Thus for the
given source and track configurations, generally the approximation can-
not satisfactorily cover the entire velocity range 0 <v <wkyo . If

the necessary conditions are satisfied, the maximum force will be found

at with a corresponding force density of
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Special care should be taken if (4.17) is applied to the more

realistic source It is obvious that
the conditions kyh3 << 1 and h/2nd ~ 1 cannot be satisfied for a
large region of ky . Thus, for a source distribution | KR

the additional condition that L is very large seems to
be necessary to ensure the use of (4.17) a good approximation.

Now, if all the conditions for the approximations to be valid
are satisfied, it can be seen that the examined geometry can offer
forces of the same order of magnitude as those of geometry (A-i-1).
Thus, if the geometry (A-i-1) can meet the force requirements for the
LIMs, the studied geometry can also do it with source current magnitudes
of the same order. However, it seems that the most important advantage
which this geometry can offer is the "influences due to the end effect.”
From a remark given earlier, we know that now Fy/|k«P is a mono-
tonically decreasing function. If the source function # is not a
o-function, although part of it will spread into a region where
~Fy/|~Kx]2 smaller, there always are other parts which will go into
larger integrand regions. Thus, the net effect is generally small.
Similarly, since ~F/|¥KX?2 is always positive, it is not necessary to
worry about |+R being pushed into the repulsive region.

In the above analyses, a LIM of geometry (A-ii-2) with region 2
consisting of laminated iron is considered. We would expect that a

similar approach could be applied to other configurations. In some
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cases this is found to be true indeed. Actually, similar formulas will

hold with suitable substitution of by ex-

pressions A, B, C. However, generally these A, B, C's will be some-
what more complicated and the equations for them will be more difficult
to solve. Especially for a thin reaction rail geometry, we shall find
that we cannot use the same approximation any longer while solving for
of . Also, because less material is employed, a somewhat larger effec-
tive conductivity is always necessary to give a large enough propulsion
force. Thus, laminated iron alone is not good enough to build a thin
reaction rail LIM (i.e., composite reaction rails with both ferro- and
nonferro-magnetic material are necessary). Hence, we neglect further
considerations of this kind of configuration.

As for (A-ii-1), we shall find (3.14), (3.15) and (3.16) to be
still true with poy2jkzreplaced by wAB/MAC. Here B,C are defined
by the same formulas as in the previous case, i.e., (4.11b), (4.11c).

However, for A and of they are Somewhat different. Now we have:

(4.18a)

(4.18b)

(4.18c¢)
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Equations (4.18b), (4.18c) are similar to (4.11a), (4.9e).
Thus, the approximation given for the previous case can be used directly.
And, for h/2d << 1, we shall obtain the same conclusion that the
reaction rail works as if it is a nonconducting ferromagnetic material.
Thus, it is not suitable for use in the LIM except for levitation pur-
poses only. However, for h/2ndo ~ 1, we can use the by now familiar

approach to get:

(4.19a)

(4.19b)

(4.19¢)

(4.19d)

(4.19e)
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(4.191)

Again we observe that the magnitude of every term is relatively small
compared to the case with o O . It is also noticed that R/ |KP
is a monotonically decreasing function of both ky and v, provided
that [(wpoh2p29/p2] <1 which is generally true. ~Fz/|-Kx]2 also
always positive. The arguments given in the previous case are applic-
able. The end effect is not serious for this geometry. However, the
properties that the power factor and |Z | are relatively low (so
that the same amount of current can only draw a very small propulsion
force) compared to the case with o 0 will make this geometry un-
favorable.

In the above, we discussed the LIM which has a track with small
scale inhomogeneity such that the source only sees an average effect
as described above. Of course, different situations are possible. For
example, in the LIM built by Rohr Inc., we can put the inserted con-
ductor bars quite far away from each other such that the distances be-
tween them are larger than 2mn/kyo. Then definitely, the effective
and & concept fails. However, in this case, it seems that each bar

operates independently of the others. This is, of course, a different

problem and can be easily solved.
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CHAPTER V

THREE DIMENSIONAL CORRECTIONS

It is obvious that generally the current source and the reac-
tion rail cannot be infinitely extended in the x-direction. Thus, a
correction should be made, i.e., a more realistic geometry such as shown
in Fig. 5.1a should be investigated. This is a tough three-dimensional
problem and there are no simple methods available to handle it. Thus,
instead of considering that geometry, we shall look into an alternative
geometry as shown in Fig. 5.1b. With a suitable source arrangement, the
boundary condition Jx=0 at x = #MMb can be satisfied.
Thus, within |x] = W, this alternative geometry is supposed to be a
good approximation for the original one.

With Maxwell's equations and material properties as introduced
in Chapter 2, the Fourier transform method can be used to solve this
boundary value problem. Due to the periodicity in the x-direction, in
addition to the Fourier transform pair (2.4a),(2.4b), another Fourier

series pair (5.1a),(5.1b) is necessary to take care of the x-variation:

(5.1a)

(5.1b)

For neither Fourier component can the transfer matrix method be
applied any longer. A direct method should be used. First, we can
solve the Maxwell's equations in each region, introducing certain un-

knowns which can be determined by matching the boundary conditions.
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Fig. 5.1a,b
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In order to make the problem simpler, only the case (1 0 will be

considered. We have:

Region (2): (i.e., 0 =z = h2)

(5.2a)

(5.2b)

(5.2¢)
Here, the following relation also holds:

(5.2d)
with

(5.2¢)
and

(5.2f)
where

(5.29)

and are the roots of



From (5.2), (2.1),
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it follows:

Using the boundary condition:

we obtain:

In region (3),

(i.e.,

h2 < z < h2 + h3):

(5.2h)

(5.3a)

(5.3b)

(5.3¢)

(5.4)
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(5.5a)

(5.5b)

(5.5¢)

where and

(5.5d)

(5.5e)

(5.5f)

(5.59)

Now we match the boundary conditions at z =h2 . The continu-

ity of He and the relations above give us:

(5.6a)

with

(5.6b)

The continuity of Bzn and the previous relations also give us:

(5.7a)

with



so,

Furthermore,

get:

using

-115-

(5.7b)

(5.8)

(5.9a)

(5.9b)

(5.90)
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(ii) p4 =®E:

(5.10a)

(5.10b)

(5.10¢)

Now all of the field distributions can be obtained. The machine
performances can be calculated by using (2.17), (2.27), (2.28), (2.29),
etc. Among these we shall now consider only Fx, & which are the

simplest and the most important.

(5.11a)

(5.11b)

These formulas are still too complicated to evaluate. We shall
sim plify them even more by assuming the medium in region 2 to be iso-

tropic; then,

(5.12a)

with
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(5.12hb)
After some manipulations, it can be found that:

(5.13a)

(5.13b)
where

(5.13c¢)

(5.13d)

Here Hn) is an even function of n .

Now we take the source distribution into account. In order to
make Jx=0 at x =W within the reaction rail, the following ex-

tended periodic source current distribution J&(x,y) is necessary:

(5.14a)

(5.14b)

(5.14c¢)
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Thus,

for n odd (5.15a)

for n even (5.15b)

for n =0 (5.15¢)

Applying (5.15) to (5.13), we have:

(5.16a)

(5.16b)

So, if Jx(x,y) is neither even nor odd, there is a possibility that
a lateral force exists.

Now let us consider one example. The case b4 0 will be
analyzed. We shall assume that the reaction rail is thin such that,
for small n , |Jy2nh2] << 1 and kznh3 << 1 are true. Then, for

small n:
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(5.17)

Also, in order to compare this with the two-dimensional case, we shall

assume that Jx(x,y) is uniformly distributed for |x| =a Then,

n odd

otherwise (5.18)

Here Kx(ky) is introduced to take care of the y-variation. Of course,

we get a zero lateral force. As for Fy , we have:

(5.19)

The "n" summation can be evaluated by using several series sum-

mation formulae

(5.20a)

where

(5.20b)
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A remark should be made here. Obviously, for large n the
conditions |y2nh2| << 1, kznh3 << 1 are not satisfied and the ap-
proximation (5.17) is not valid any more. However, for large n the
force contribution as given by (5.13) is small and so is the invalid
approximation (5.17). Hence, using (5.17) for large n (which was
derived using the thin reaction rail approximation) will only introduce
a small error in the expression of the total force and we may conclude
that (5.17) is a fairly good approximation for all n

If the y-variation of Jx is the same as that of the idealistic
source for the two-dimensional case, Kx(ky) will be given by
\2mn d(ky-kyo). Of course, (5.20) will give us an infinite force. How-
ever, for the force of unit length in the y-direction, we go back to the

original force equation in real space to get:

(5.21a)

where

(5.21b)

If, furthermore, we assume (w-kyov)KlL << ko , then (5.21) re-

duces to:

(5.22)
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Comparing this to (3.8), we can say the finite width reaction rail

has an effective conductivity of

This is exactly the same conclusion as Russell and Norsworthy(23) made,
using another approach. Also, it is observed that the propulsion force
is reduced. The increase of "a" will generally reduce this so-called
lateral end effect.

Of course, the above condition (w-kyov) K1 << ko is generally
not true. Then, we cannot introduce the effective conductivity concept
any more. However, by comparing with (3.8), we can see the lateral end

effect will change the propulsion force by an amount:

(5.23)

From this complicated expression we cannot conclude whether this

term w ill decrease or increase the propulsion force. Assuming

[y20a] m and Ily20Wb-a)l << 1, (5.23) becomes:

(5.24a)

Or, we can assume both |y20a| and |y20(Wo - a)| m to get:

(5.24b)
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Thus, if (5.24) will be positive, i.e., the lateral

end effect will increase the propulsion force. Unfortunately, at the

maximum force point, Thus, the lateral end effect

w ill reduce the propulsion force at that point.

For the more general source we

can try to evaluate the integral (5.20). However, due to the presence
of the term y320 the integral is too tough to evaluate. However, a

change of propulsion force can always be observed, namely

(5.25)

(The main term is just given by (3.30b) except for a factor of "a").

Now, again using the assumptions |y2a] T |y2(wo-a) << 1,
we simplify (5.25) and get (5.26). The same expression (5.26) can also
be used for another situation with both |y2a] and | gW-a)| T

except that now a factor 1/2 should be introduced:

(5.26)

Note that, if the source function is not suitably constructed
the singularity at ky=0 will possibly give an infinite force and
also infinite power input, which is not practical. Thus sin kyoL =0

is always necessary to get rid of this singularity.
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As for the idealized source case, the integrand will be posi-
tive in the region where and negative in the remain-
ing region, Thus, if kyo belongs to the nega-

tive region, a smaller propulsion force than in the two-dimensional
case will be obtained. Because an odd power of y20 appears in the
above integral, two extra branch points in the complex ky plane
should be introduced, making the integral extremely hard to evaluate.
In order to obtain an explicit formula for the force, we shall go back

to the original series formulation (5.19). For each "n", an integral

of the following form should be computed:

(5.27)
We know that for the two-dimensional case, the force is pro-
portional to the above integral with n=0 . Now for n # 0, suppose that

then the integral will generally be smaller than the

two-dimensional case (corresponding to n =0). Thus, this lateral end
effect will reduce the propulsion force even more. However, if

there is a possibility that the lateral end effect will

compensate the longitudinal end effect. Actually, it had already been

found that the overall critical point should be around
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The factorization of

will lead to integrals of the form

In Appendix C this integral is worked out.

Also, integrals of the form

w ill appear. These integrals need further consideration. They will

give an infinite result unless sin kyoL =0. If this condition is

satisfied, we easily get from Appendix C:

(5.28)

Finally, we have

(5.29a)

where al,02 are roots of
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or:

(5.29b)

(5.29¢)

with

Now, let us consider the case that the originally symmetrical
source is shifted over a distance ¢ to the right, i.e., we consider

a source current distribution:

(5.30a)

The corresponding Fourier components are then found to be:

(5.30b)
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By using (5.16), the force components for the idealized source

w ill be given as:

(5.31a)

(5.31b)

Here Fr(n) represents the real part of F(n):

(5.31c¢)

Going through complicated series summation procedures, we get the

explicit forms for 4d4 and ~Fx:

(5.32a)
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(5.32b)

If y20(Wb-a) m, then tanh y20(Wo - a) coth y20(Wo - a), and

(5.32a) reduces to (5.21a); i.e., when the region which is not covered

by the source is large, the influence of the shift on F will be

small. Let us now look at the more practical case of |y2(Wo-a)| << 1,
ly20e] << 1. Then, after retaining only first order terms in the

hyperbolic functions, we have:

(5.33)

By comparing this with formula (5.21), it is seen that there

is always an increase of the propulsion force by the amount of

As for the lateral force, because |y20a| m and |y20Wo | |

generally hold, (5.32b) reduces to:

(5.34)

Thus, if |y20e|] is large enough, there is a possibility that

a huge lateral force in the same order as that of the propulsion force

is obtained. Of course, for the practical machine operation, this
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Fig. 5.2 Curves (1) and (2) represent (5.31a)/ for £ =0 and

€ = 0.01lm, respectively;

Curve (3) represents [(5.31b)/ for € =0.01m.

Here W - 0.3m and a = 0.28m. All parameters except ¢

are the same as those of Fig. 3.2.



Fig.

5.3
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Curves (1) and (2)
e =0.05,

represent

respectively;

Curve (3) represents

Here W =0.3m , a =0.2m.

All parameters except € are the

for ¢ =0

for € = 0.05.

and

same as those of Fig.

3.2.
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cannot happen. A small displacement from the symmetrical position

w ill introduce a restoring force to push the source back to the orig-

inal portion. This force is given by

It can easily be seen that Fx always has the opposite sign of e.
Thus, as far as the lateral displacement is concerned, the system is
stable. Also, for small displacements, these extra forces are rela-

tively small. For & it is of the order of €2 , while for & it

is of the order of e.
For the more general source

formula similar to (5.20) can be obtained by using (5.16), (5.30),

(5.31), and some series summations. Actually, we have:

(5.35a)

(5.35b)

It is difficult to evaluate these integrals. The assumptions

ly20e] < 1 |y20a|] > 1 and |y20Wo-a)|<< 1 are then used to
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sim plify (5.35) to:

(5.36a)
(5.36b)
Thus, the unsymmetrical case will introduce one more term in the
Fy integral, which can be easily evaluated to be:
(5.37)

(5.37) is always positive in the normal operating region, i.e.,
the unsymmetrical position generally increases the propulsion force.
Also, (5.36b) can be seen to have the opposite sign of € in most of
the practical cases where kyoL is large.

The branch points at y2=0 (also poles) make (5.36) very diffi-
cult to evaluate. Thus, similar to the previous case, we go back to
the original series formulation to get explicit expressions. Due to
the factors 1/n2, 1/m2 and 1/(m2-n2), the total forces are mainly gen-
erated by small n,m terms. Going through all the factorization and inte-

gration procedures we get:



where

with

al,a2 being defined
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in (5.29).

(5.38a)

(5.38b)

(5.38¢)

(5.38d)
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Fig. 5.4 Different force components of series expressions (5.38a) and
(5.38b).

1) (2)
(3) (4)

where

All of the parameters defined in the same way as in Fig. 3.2.
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Fig. 5.5 Different force components of series expressions (5.38a) and
(5.38b).

1) (2)
3) 4)
where

All of the parameters defined in the same way as in Fig. 3.2.



Fig.

5.6

Different late
(5.38b). (1)

(2)
(3)
(4)

where

ral

€ =0.0/m and all

those of Fig.

5.2.
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force components in the series expression

of the other parameters are the same as
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The analysis is essentially completed. For the ideal source
some results are shown in Figs. 5.2 and 5.3. Comparing these to Fig.
3.2, we notice the influence of the 3-dimensional corrections we made
in this chapter. As for the more realistic source, we only gave the
series representation. Several components with small n,m are shown in
Figs. 5.4, 5.5 and 5.6. When &/Wo and ¢&/a are very small, it is
seen that the series representation for Fy converges very fast.
However, it seems that we need many terms to give a fairly good approx-
imation for ~ Fx.

In the above, we mainly considered the three-dimensional correc-
tions for geometry (A-i-1). Similar approaches can be used to other

configurations.
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CONCLUSION

In this work we studied the four-layer single-sided LIM used for
propulsion and suspension of magnetically levitated vehicles. The moving
track is assumed to be made of a conductor with uniaxial + and 6.
The source sitting at the bottom of the vehicle has a given current dis-
tribution. Fourier transform techniques in conjunction with the trans-
fer matrix method are used to solve this two-dimensional boundary value
problem. The machine performance in terms of forces, efficiency, and
power factor is given in integral form. The results for the ideal
source Kx (ky-kyo) are then obtained. (Here Kx is the Fourier
component of the given current source). In addition to this, the analy-
sis of the integrands allows us to exclude the unsuitable geometries.
The machine performance integrals are evaluated for the promising geom-

etries and source distribution

The composite track seems to show a lot of potential. A possible
way of computing the effective p and & for a composite track is
sketched. From the analysis of an extremely simplified geometry, the
conditions for the validity of the effective g and & concepts are
given. Using the same analysis, another possible LIM configuration is
also suggested.

Finally, a three-dimensional correction is introduced in order to
take care of the finite width of the LIM. Fourier transform and Fourier
series techniques are used to solve this periodic 3-dimensional bound-

ary value problem. A general analysis is given. Propulsion force and

lateral forces are calculated for several special cases.
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APPENDIX A

Let K and K' Dbe the coordinate systems which are at rest with
respect to the source and the reaction rail, respectively. Then, after
neglecting the relativistic effect and the displacement current,
Maxwell's equations within the reaction rail are given as
K: (A-1a)

(A-1b)
K!': (A-1c)
(A-1d)
(A-1e)
(A-1f)
We also know:
(A-2a)
(A-2b)
(A-2¢)
(A-2d)
So, finally, we have Maxwell's equations in K :
(A-3a)
(A-3b)
(A-3¢)

(A-3d)
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This is the familiar Minkowski's formulation. However, because there
is moving magnetic material present, as far as those quantities such
as force density, energy, etc. are concerned, this formulation is not
clear enough to explain everything. Thus, an alternative called E-H

formulation introduced by Chu(20)s preferable, i.e., we have:

(A-4a)

(A-4Db)

with
(A-4c)

(A-4d)
The subscript "c" is introduced to distinguish those fields
from the ordinary fields in Minkowski's formulation. Actually, with a

suitable transformation, it can be found that these two formulations

are equivalent.

(A-5a)

(A-5b)

(A-5¢)

(A-5d)

In the E-H formulation, the force density can be expressed as:

(A-6a)

And the input power density is given as:



-142-

(A-6D)

Then the total force and the total power input can be obtained
by suitable volume integrations within the reaction rail. Further
information about machine performance can thus also be obtained. Un-
fortunately, those integrations are tedious. A simpler integration
can generally be obtained by introducing a stress energy tensor T to

transform the volume integral into a surface integral.

(A-7a)

with

(A-7b)

It should be noticed that except at the free space where
D=¢eoE and B=poH, this stress energy tensor is different from
the familiar Minkowski's tensor. As for the power input, it seems to
be much simpler to evaluate it directly at the source which is located

in free space, i.e.,

(A-7b)



-143-

APPENDIX B
Conditions for Thin and Thick Reaction Rails

Here we win say a reaction rail is thin when the condition that

ly2h2 | << 1 is satisfied around a region where the source function is
most significant. Similarly, the condition |[Jy2h2] > 1 is required
for the thick reaction rail. Now that we know that the source function
is generally concentrated within the region /v =ky =0 , we will

first consider this region. Now

(B-1a)

(B-1b)
With ky = a &, the only minimum of |y2] will occur at:

(B-2a)
where

(B-2b)
And the corresponding minimum value is

(B-3a)

or
(B-3b)
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or
(B-3c)
Now let us consider two different cases:
(i) then and
(B-4a)
(ii) then 4R/27 can be considered as small. Thus
(B-4b)

Thus, the condition for |Jy2h2] >> 1 (i.e., thick reaction rails)

can be rewritten as:

smaller of (B-5a)

Similarly, the condition for 1ly2h2] << 1 (i.e., thin reaction rails)

is
larger of (B-5b)
Actually, for the left-handed sides of values of the
order of are generally good enough to give accurate approxima-
tions.

However, in some cases, even relatively relaxed conditions are
difficult to be met. And, conditions cannot be satisfied for the whole

range of 0 < ky £ Under this situation, generally these conditions



-145-
can be further relaxed. As we understand, the source function is

generally concentrated around kyo. It seems that we need only to

consider ly2h2] around kyo, i.e., (y20h2]. And, the conditions

ly20h2] << 1 and |y20h2] >> 1 can thus be used as the criteria to

determine whether a reaction rail is thin or thick. Anddefinitely,
those conditions are much easier to be satisfied. For example, we can
consider a case with Vwp2zox ~60 , w/v ~ 300 . Then,it can be
shown that even the value of h2 = 5yx 108annot satisfy condition
(B-5b). However, as we know, in most of the practical cases kyo is
about 15. Thus, the region for which we are most concerned corres-
ponds to ky around 15. For those ky , |y2h2] is about 0.3 for
h2 = 5 x 103 , which is good enough to say that the plate is thin for

this more relaxed criterion.
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APPENDIX C

The Evaluation of the Integral

with a complex «a

Using a suitable variable change, we have

(C-1a)

with

(C-1b)

Further, can be rewritten as:

(C-1c)

(C-2b)

Now we will assume Im a > 0 . Then, by the using of Jordan's

lemma and residue theorem, it can be shown that:

(C-3a)

(C-3b)

(C-3c)

So, finally, we have
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(C-4a)

or

(C-4b)

A similar procedure can be used to evaluate the integral with

Ima < 0 to get:

(C-40)
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APPENDIX D

The Evaluation of the Integral

(D-1)
with a complex a .
can be rewritten as:
(D-2a)
(D-2b)
Using Appendix C, we have
(D-3a)
(D-3b)

For 12 , changes of variables will give us:

(D-4a)
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where

(D-4b)

with

In (D.4b), the sine and cosine integrals Si(x) and Ci (x) have

been used with

(D-5a)

(D-5b)

I3 is complicated; however, for many practical cases where kyolL
is large, 13 is relatively small compared to the remaining part of

(D.4a). Thus it can generally be neglected.
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APPENDIX E

The evaluation of the integral

(E-1)

o, BL, @ are all complex.

The branch cuts are chosen as shown in Fig. (E.1). Thus, with
the definition of -3m/2 < B8l <m , -1/2 < 02 < 2n and (ky-Rl) (ky- B2
= V0182 exp[ (i/2)(61+62)], the positiveness of Re V(ky- B)(ky-B2) is
insured. (Note: To obtain the branch cut I, an arbitrary straight line
is drawn from p1 with 0 <nl < mn/2 . Then another straight line can
be drawn from (2 with n2 = /2 - n1. These lines will meet at the
point Pl1. The branch cut | is just the loci of PlL. A similar method
can be used to get branch cut I1.)

Now, using a change of variable, we have:

(E-2a)

where

can be further rewritten as:
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(E-2b)
(E-2c¢)
Here ¢ is introduced to take care of the pole at ky =0
First, let us consider |I+(g). By using Jordan's lemma:
residues (at i€ and possibly at a')
(E-3a)
(E-3b)

It should be noticed that €2 has been neglected in the contour
integrals along Cl1 and Cl+Q@ . This is justified because along C1
and C2, €2 is always small compared to kf§ provided (i is not too
close to the origin.

Applying Jordan's lemma again, we have

- possible residue at a' (E-4)
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Now:

(E-5a)

(E-5b)

To derive (E-5b), changes of variables have been used. Also, in (E-5b),

In (E-5b), factorization can be applied to the integrand. Thus,

we need only consider integrals

and

"I is still too difficult to evaluate. However, in most of
the situations we now have, [ is large. Thus, asymptotic expansions

can always give us quite reasonable approximations, i.e.,

(E-6a)

(E-6b)

Combining (E-3), (E-4), (E-5), and (E-6), finally we have
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(E-7a)
A similar procedure will give us:
(E-7b)
As for lo(g), we can follow the same procedure as either
I+(¢) or 1I-(g). Now a contour similar to |[|-(g) is chosen to take
care of lo(g), i.e.
(E-8a)
(E-8b)

Factorization can be applied to the integrand in (E-8b). Thus,

we need only consider integrals

and

Now the asymptotic expansion cannot be used any longer. We have to

try to evaluate it exactly. After changing the variables, we get:
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(E-9a)

(E-9b)

So, finally we have

(E-9¢)
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Now we can go back to consider those contributions due to the

residues. Of course, depending on where a is, the result will be dif-

ferent. For the case we are considering, branch cuts | and Il are in
the regions | and 111 respectively. And a is found to be either in
region Il or IV. Thus, these are the regions we are going to discuss.

We can use the same procedure as in Appendix C to get:

o in region |II:

(E-10a)

o in region IV:

(E-10b)

Finally, we can combine (E-3), (E-7), and (E-10) to give the
expression for S3(a,kp L).

Of course, we can also use a contour similar to that for
I+(¢) to evaluate (E-8). Then, although the results for either the
branch cut part or the residue part will be somewhat different, the
total result should be the same. However, in most of the examples
which we are considering, |[B2] >> |B1] is generally true. The use of
a contour similar to that for |- (¢) will make the contribution due to
the branch cut negligible. And thus, further analyses can be signifi-

cantly simplified.
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Fig.

E-1
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APPENDIX F

Results for Geometry (A-ii-2) with

We apply Appendices C and E to (3.20a) and (3.21a) to get:

Here ai are roots of

and

As for Fz , it is much more complicated. However, the ideal source

result can be used as a good approximation provided that kyoL is large.





