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ABSTRACT 

Xist initiates XCI by spreading across the future inactive X-chromosome, excluding RNA 

polymerase II, recruiting the polycomb repressive complex and its associated repressive 

chromatin modifications, and repositioning active genes into a transcriptionally silenced 

nuclear compartment. While much is known about the events that occur during XCI, the 

mechanism by which Xist carries out these various roles remains unclear. Here we identify 

ten proteins that directly associate with Xist, and we further show that three of these proteins 

are required for Xist-mediated transcriptional silencing. One of these proteins, SHARP, 

which is known to interact with the SMRT co-repressor that activates HDAC3, is not only 

essential for silencing, but is also required for the exclusion of PolII from the inactive X. We 

show that both SMRT and HDAC3 are required for Xist-mediated silencing and RNA 

polymerase II exclusion. Another of these proteins, LBR, is required for repositioning 

actively transcribed genes into the Xist-silenced compartment. We further show that Xist, 

through its interaction with LBR, a protein that is anchored in the inner nuclear membrane, 

would effectively reposition Xist-coated DNA to the nuclear lamina, thereby changing the 

accessibility of other genes on the X-chromosome to enable Xist to spread to active genes 

across the entire chromosome to silence chromosome-wide transcription. Together, these 

results present an integrative picture of how Xist can scaffold multiple proteins to orchestrate 

the complex functions required for the establishment of the inactive X-chromosome. 
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1 
C h a p t e r  1  

INTRODUCTION 

1.1 X Chromosome Inactivation 

In mammals, males and females carry a different number of X chromosomes. Females have 

two X chromosomes, while males have one X and one Y chromosome(1). The X 

chromosome is larger and carries many genes, while the Y chromosome is smaller and 

carries much fewer genes(2, 3). In this case, females would seem to express twice the 

amount of the X-linked genes in comparison to males. Therefore, to compensate for the 

dosage difference between males and females, one of the two X chromosomes in females 

is transcriptionally inactive during early development, and the inactive state is inherited 

throughout cell division(1, 4). This process, or X-chromosome inactivation (XCI), is 

essential for proper embryo development of females. Failure of proper XCI will lead to 

sex-differential embryo lethality(5). XCI is found in all mammals, but has not yet been 

found in other groups of animals, such as Drosophila or C. elegans, in which they 

compensate the dosage difference of X chromosome with different mechanisms(6, 7). 

In female mice, XCI occurs in two waves during early development. The first wave, 

imprinted XCI, occurs around 4-8 cell stage, where the paternal X chromosome (Xp) is 

transcriptionally inactive at this stage(8-10). The inactive state of Xp is reversed to active 

at the blastocyst stage, followed by the second wave of XCI, random XCI, where either the 

maternal X chromosome (Xm) or Xp is transcriptionally silenced(11, 12). Once the 



 

 

2 
inactive state of either Xm or Xp is established, the inactive state of the chromosome is 

maintained throughout cell division, except for some specific cell types, such as germ 

cells(13). In this thesis, we will mainly focus on the molecular mechanism of the regulation 

of random XCI. 

Chromosome-wide transcriptional silencing on Xi is one of the most significant events 

occurs during XCI. Immunofluorescence staining reveals that RNA polymerase II (PolII) 

is depleted (excluded) from the inactive X chromosome (Xi). PolII exclusion is one of the 

earliest events of XCI, which cause the transcriptional silencing on Xi(14).  In addition to 

the transcriptional silencing, many other events also occur exclusively on Xi. One of them 

is the dramatic change of chromatin structure. From visual observation, Xi forms a dense 

and distinct nuclear compartment known as the Barr body(15). In comparison to the active 

X chromosome (Xa), Xi undergoes chromosome-wide loss of topological association 

domains (TADs) and forms two mega-domains(16, 17). Xi becomes more compact and are 

enriched for heterochromatin structure(18). In addition, the nuclear organization also 

changes during XCI. Xi becomes localized at the periphery of the nucleus, and is associated 

with the nuclear lamina compartment(14, 19). Furthermore, XCI results in a cascade of 

chromatin modification on Xi, such as hypoacetylation of H4, H2A, and H3(20, 21), H3K9 

methylaion(22-25), and macroH2A recruitment(26). Interestingly, the regions contain these 

chromatin modification is associated with the heterochromatin region on Xi(18). XCI also 

leads to the enrichment of some proteins on Xi, such as polycomb repressive complex 1 and 

2 (PRC1/2), which mediates H2AK119Ub and H3K27me3 on Xi respectively(27, 28), and 

SMCHD1, a noncanonical member of the SMC family of chromosomal proteins, which 



 

 

3 
plays an important role in the DNA methylation on Xi(29). Finally, at the later stage of XCI, 

the CpG islands on the promoter region of the silenced genes on Xi are heavily methylated, 

which is crucial to maintain the silencing state of Xi throughout cell division(30, 31).  



 

 

4 
1.2 Xist/XIST LncRNA is a Key Regulatory Component for the Initiation of XCI 

The regulatory element on X chromosome for the initiation of XCI was identified by 

genetic studies, which was later called the X-inactivation center (XIC)(32, 33). The exact 

location of the XIC on X chromosome was identified by chromosome translocation study, 

where the autosome was silenced when the X chromosome fragment containing the XIC 

was translocated and fused with that autosome(34). This finding also suggesting that the 

XIC alone is sufficient to initiate chromosome-wide silencing even in autosomes. By 

comparing the differential gene expression pattern on Xa and Xi, a gene located within the 

XIC that was exclusively expressed on Xi, the Xi-specific transcript (Xist, or XIST in 

human), was identified(35). Sequence analysis of Xist/XIST RNA showed no conserved 

open reading frame, suggesting that it does not encode for any protein(36), and was later 

characterized as a long non-coding RNA (lncRNA). Imaging analysis showed that 

Xist/XIST RNA is localized in the nucleus and coated the entire Xi(36, 37). The expression 

timing of Xist/XIST RNA coincides with the developmental window of the initiation of 

XCI, suggesting that Xist/XIST RNA may play a role in the initiation of XCI(8).  

Mouse Xist transcript is ~17 kb in length (~21 kb for human XIST) and is 

polyadenylated(36, 38). Mouse female embryonic stem cells (ESCs) carry a heterozygous 

deletion of Xist promoter region or its first exon show skewed allele-specific 

transcriptional silencing; only the wild-type X chromosome is transcriptional silenced and 

becomes Xi, while the X chromosome carries the deletion are always actively transcribed 

and becomes Xa(39, 40). In addition, blocking Xist RNA to coat the X chromosome with 

antisense oligonucleotide analogs also prevents the transcriptional silencing during 



 

 

5 
XCI(41). These results showed that the expression of Xist and its capability of coating the 

X chromosome is required for the initiation of XCI and the chromosome-wide 

transcriptional silencing on Xi. Furthermore, inserting the entire Xist/XIST locus into any 

of the autosomes and driving its expression leads to chromosome-wide transcriptional 

silencing of the autosome(42). In addition, expressing Xist/XIST RNA on the X 

chromosome in male cells results in transcriptional silencing of the X chromosome, which 

eventually leads to cell death due to lack of the X-linked genes expression(43). These 

results showed that Xist/XIST a key regulator of XCI which is necessary and sufficient for 

chromosome-wide transcriptional silencing. 

Intensive studies on the function of Xist/XIST reveal a more extensive role that it plays in 

initiating and regulating XCI. Xist/XIST initiates XCI by spreading across the future inactive 

X-chromosome, excluding RNA PolII, and repositioning active genes into a transcriptionally 

silenced nuclear compartment(14, 44-46). All of these roles – localization, RNA PolII 

exclusion, and repositioning – are required for proper silencing of transcription during the 

initiation of XCI(46). Furthermore, Xist/XIST triggers a cascade of events on the inactive X-

chromosome including recruitment of the polycomb repressive complex and its associated 

H3K27me3 repressive chromatin modifications(27, 47, 48), loss of active acetylation(49-52) 

and methylation(22) chromatin modifications, chromosome-wide compaction(19, 53), and 

repositioning to the nuclear lamina(54, 55). Xist/XIST is also required for the change of 

chromatin structure on Xi. Disrupting proper function of Xist in female mouse ESCs 

resulted in lack of loss of TADs on Xi and no mega-domain formation, leading to a 
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chromatin structure similar to Xa(56). These results showed that Xist/XIST is a key 

component that is essential for initiating and regulating various events during XCI. 
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1.3 The Mechanism of Chromosome-wide Xist/XIST-mediated Transcriptional 

Silencing 

While much is known about the events that occur during XCI, the mechanism by which Xist 

carries out these various roles remains unclear because we still do not know the protein 

complexes that interact with Xist to initiate transcriptional silencing, recruit chromatin-

modifying proteins, compact chromatin structure, and reposition the inactive X-

chromosome(57-59). Over the last two decades, numerous attempts have been made to 

define the protein complexes that interact with Xist(57, 58) and that are required for its 

various roles in XCI24,25 26,27 28,29. Most studies have used prior knowledge of the molecular 

events that occur on the X-chromosome, as well as their timing during the initiation of XCI, 

to define potential Xist-interacting proteins(27, 57, 58, 60). While individual proteins have 

been identified that associate with Xist(60-65), these proteins cannot explain the various 

functional roles mediated by Xist. For example, we still do not know how Xist initiates 

transcriptional silencing: indeed, perturbations of the proteins identified so far, including 

components of the PRC2 complex, have no impact on Xist-mediated transcriptional 

silencing(61, 62, 66, 67).  

The main challenge in deciphering the mechanisms by which Xist, or other lncRNAs, 

function is that there are currently no methods to comprehensively define the proteins that 

interact with a lncRNA in the cell. Currently, the two classes of methods for studying 

lncRNA-protein interactions are immunoprecipitation of a specific protein(60, 68-70) and in 

vitro association between a labeled RNA and cellular lysates(71-77). Both of these 

approaches are limited in their ability to define lncRNA-protein complexes that occur in cells 



 

 

8 
because the immunoprecipitation methods require selecting specific candidate interacting 

proteins to study, and in vitro association methods fail to distinguish between interactions 

that occur in the cell from those that occur in solution (25, 68, 77). Accordingly, defining the 

mechanism of Xist and other lncRNAs requires new approaches that can specifically identify 

the direct lncRNA-interacting proteins in vivo without prior knowledge of their identity. 

Therefore, we decided to develop a method that allows us to identify the direct-interacting 

proteome of a lncRNA of interest. With the method. We will be able to reveal the Xist-

interacting proteins and give us some insights of the mechanism of Xist-mediated silencing. 

In Chapter II, it is demonstrated that a newly developed method, RNA Antisense Purification 

(RAP), can identify the direct interacting proteins of Xist in vivo, and a screening system that 

identifies three proteins which are essential for Xist-mediated silencing.  

In Chapter III, it is demonstrated that one of these essential proteins, SHARP, is required for 

Xist-mediated silencing through excluding PolII from Xist-coated territory.  

In Chapter IV, it is demonstrated that another essential protein, LBR, is required for Xist-

mediated silencing through recruiting Xist-associated DNA to nuclear lamina that enables 

Xist to spread across the entire chromosome.  

Chapter V is the discussion of a proposed model of the mechanism of Xist-mediated silencing 

based on the findings of this thesis, and some unanswered questions about Xist and XCI that 

require more studies in the future.  
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C h a p t e r  2  

RAP-MS IDENTIFIES DIRECT XIST-INTERACTING PROTEINS 

REQUIRED FOR XIST-MEDIATED SILENCING 

The work was first published as: 

McHugh, Colleen A., et al. "The Xist lncRNA directly interacts with SHARP to silence 

transcription through HDAC3." Nature 521.7551 (2015): 232. 

2.1    RAP-MS: A Method to Identify the Proteins that Interact with lncRNAs in vivo  

In order to characterize the mechanism of Xist-mediated silencing and define the functions 

of other lncRNAs, a new method that can identify the direct-interacting proteins of a lncRNA 

of interest is essential. To develop a method for identifying the proteins that directly interact 

with a specific lncRNA in vivo, we adapted our RNA Antisense Purification (RAP) 

method(1) to purify a lncRNA complex and identify the interacting proteins by quantitative 

mass spectrometry (RAP-MS) (Methods, Figure 2.1a). Specifically, we used UV 

crosslinking to create covalent linkages between directly interacting RNA and protein(2), 

then purified lncRNAs in denaturing conditions to disrupt non-covalent interactions(3, 4). 

This approach, utilized by methods such as CLIP(4), is known to separate interactions that 

occur in the cell from those that merely associate in solution(3, 5). 
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Adapting this UV-crosslinking and denaturing approach to enable purification of a specific 

lncRNA is challenging for several reasons: (i) In order to purify lncRNA complexes in 

denaturing conditions, we need an RNA capture method that can withstand harsh denaturing 

conditions. (ii) In order to detect the proteins associated with a given lncRNA, we need to 

achieve high purification yields of a lncRNA complex because, unlike nucleic acids, we 

cannot amplify proteins prior to detection. (iii) Because any individual RNA is likely to be 

present at a very low percentage of the total cellular RNA, we need to achieve high levels of 

enrichment to identify specific interacting proteins. (iv) Because the number of background 

proteins will be high, even after enrichment, we need accurate and sensitive methods for 

protein quantification to detect specific lncRNA interacting proteins. 

The RAP-MS method addresses these challenges because (i) RAP uses long biotinylated 

antisense probes, which form very stable RNA-DNA hybrids, and therefore can be used to 

purify lncRNA complexes in denaturing conditions (4M urea and 500 mM lithium chloride 

at 67˚C). Also, (ii) we optimized the RAP method to achieve high yields of endogenous RNA 

complexes. In our original protocol(1), we achieved <2% yield of the endogenous RNA 

complex; by optimizing hybridization, washing, and elution conditions, we were able to 

reproducibly achieve ~70% yield (Figure 2.1b). (iii) Using our optimized conditions, we 

increased the enrichment levels for the target lncRNA complex (~5,000-fold) relative to our 

already high levels of enrichment achieved previously (~100-fold)(1) (Figure 2.1c). (iv) To 

achieve sensitive quantification and to distinguish between specific proteins and background 

proteins, we used Stable Isotope Labeling by Amino acids in Culture (SILAC)(6) to label 
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proteins (Methods), which enables quantitative comparisons of purified proteins by mass 

spectrometry(7-9).  

We validated the RAP-MS approach by defining the proteins that interact with two well-

characterized non-coding RNAs: (i) U1 small nuclear RNA, a core component of the 

spliceosome(10) and (ii) 18S ribosomal RNA, a component of the small ribosomal 

subunit(11). In the U1 purifications, we identified 9 enriched proteins, all of which are known 

to interact with the U1 snRNA. The list includes 7 of the 10 proteins that made up the core 

U1 snRNP complex (U1-A, U1-C, U1-70K, Sm-B, Sm-D2, Sm-D3, Sm-E)(12) as well as 

the Gemin5 processing factor involved in U1 snRNP biogenesis(13) (Figure 2.1d). The ninth 

enriched protein, SF3a1, had not previously been identified as a U1-interacting protein but 

was recently shown to interact directly with the U1 snRNA in vivo(14). In the 18S 

purification, we identified 105 enriched proteins; 98 of these (93%) were previously 

characterized as ribosomal proteins, ribosomal processing and assembly factors, translational 

regulators, or other known ribosome interactors (Figure 2.1d). In particular, we identified 

21 of the 31 known small ribosomal subunit proteins. The U1 and 18S proteins that were 

missed appear to fall predominately into two categories: (i) proteins that make few direct 

contacts with the RNA, and (ii) small proteins that contain only a single possible peptide that 

could be detected by mass spectrometry.  

Together, these results demonstrate that the RAP-MS method identifies the majority of 

known RNA interacting proteins, and that the proteins identified by RAP-MS are highly 

specific for the purified lncRNA complex.  
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Figure 2.1. RAP-MS identifies proteins that are known to directly interact with 

specific ncRNAs. (a) A schematic overview of the RAP-MS method. (b) RT-qPCR 

measuring the percentage of the total cellular Xist or 18S recovered after RAP-MS of Xist. 

Values are computed as the amount of each RNA in the elution divided by the amount of 

RNA in the starting (“input”) lysate material. Error bars represent the standard error of the 

mean from 5 biological replicates. (c) Enrichment of Xist after RAP-MS captures from 

pSM33 cells as measured by qPCR. Bars indicate RNA levels of Xist, 18S, and Oct4 after 

purification of Xist, normalized to RNA in input sample. Each bar represents the RNA 
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levels of Xist, 18S, and Oct4 after purification of Xist, normalized to RNA in input 

sample, from 3 biological replicates. (d) SILAC ratios of top proteins enriched in the RAP-

MS U1 snRNA, 18S rRNA, and 45S pre-rRNA experiments. 
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2.2    RAP-MS Identifies Direct Xist-interacting Proteins 

To define the proteins that interact with the Xist lncRNA during the initiation of XCI, we 

performed RAP-MS in a male mouse embryonic stem (ES) cell line containing a 

doxycycline-inducible Xist after six hours of induction(1) (Methods). This system is known 

to represent a well-synchronized and accurate model for the initiation of XCI(1, 15-17). We 

performed RAP in nuclear extracts from UV-crosslinked SILAC-labeled cells using probes 

that are antisense to the Xist RNA and achieved a ~5,000-fold enrichment of the Xist RNA 

relative to its level in total nuclear RNA (Methods, Figure 2.1b). To control for background 

proteins or non-specific proteins that might interact with any nuclear RNA, we separately 

purified the abundant U1 snRNA, which is not expected to interact with the same proteins as 

Xist. We identified the proteins in each sample using liquid chromatography-mass 

spectrometry and calculated a SILAC ratio for each protein based on the intensity of all heavy 

or light peptides originating from the Xist or U1 purification.  

We identified 10 proteins that were specifically enriched in the Xist purification compared 

to the U1 purification (SILAC ratio >8-fold, Methods, Figure 2.2a). Nearly all of these 

proteins were reproducibly enriched in multiple Xist purifications from independent 

biological samples; the sole exception was missed only because its enrichment level (4-fold) 

fell below our stringent enrichment cutoff (8-fold) in some replicate samples (Methods). 

Consistent with the notion that these proteins are direct Xist RNA-interacting proteins, 9 of 

these proteins contain a well-characterized RNA binding domain (Figure 2.2b). 
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The identified Xist-interacting proteins are SHARP, RBM15, MYEF2, CELF1, hnRNPC, 

LBR, SAF-A, RALY, hnRNPM, and PTBP1. Interestingly, SAF-A (also called hnRNPU) 

was previously shown to interact directly with Xist by UV-based CLIP experiments(18) and 

is required for tethering Xist to the inactive X-chromosome in differentiated cells(18-20). In 

addition, 5 of these proteins have been previously implicated in transcriptional repression, 

chromatin regulation, and nuclear organization (Figure 2.2b). These include the SMRT and 

HDAC Associated Repressor Protein (SHARP, also called SPEN), a member of the SPEN 

family of transcriptional repressors that directly interacts with the SMRT (also called NCoR-

2) component of the nuclear co-repressor complex(21, 22) to activate HDAC3 deacetylation 

activity on chromatin(23). Interestingly, we also identified RBM15, another member of the 

SPEN family of transcriptional repressors, which shares the same domain structure as 

SHARP(24), but appears to have a distinct functional role during development(25, 26). 

Myef2 has been shown to function as a negative regulator of transcription in multiple cell 

types, although its mechanism of regulation is still unknown(27, 28). hnRNP-M is a paralog 

of Myef2. Finally, we identified the Lamin B receptor (LBR), a protein that contains 8 

transmembrane domains that are anchored in the inner nuclear membrane(29-31), a domain 

that interacts with repressive chromatin regulatory proteins(29, 32, 33), and an independent 

domain that interacts with Lamin B(29, 30). 

To confirm that these proteins reflect specific interactions with Xist, and are not due to non-

specific purification of other RNAs, we performed RAP using the same Xist probes in 

uninduced cells in which Xist is not expressed. Furthermore, to confirm that the identified 

interactions represent proteins that are crosslinked to Xist in vivo rather than interactions that 
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form in solution, we purified Xist from cells that were not crosslinked (no UV light). In 

both cases, we identified none of these 10 Xist-interacting proteins, nor any other specifically 

enriched proteins in either of these control samples (Methods), demonstrating that the 

identified proteins are covalently crosslinked to Xist in cells.  

Finally, we tested whether we could enrich Xist RNA using UV-crosslinking and 

immunoprecipitation of the identified proteins (Methods). We tested 5 of the 10 identified 

proteins, for which we could obtain high-quality IP-grade antibodies (Ptbp1, hnRNPC, 

RBM15, LBR, and RALY), along with several negative controls (IGG and Pum1). In all 5 

cases, we observed a strong enrichment for Xist RNA relative to total input RNA levels 

(Figure 2.2c, d). Notably, we did not observe any enrichment for Xist in the negative 

controls, nor did we observe enrichment of mRNAs (i.e. Oct4 or Nanog) or other nuclear 

lncRNAs (i.e. Neat1) (Figure 2.2e, f).   

Together, these results identify a set of highly specific and reproducible proteins that directly 

interact with Xist during the initiation of XCI. Given the generality of the RAP-MS approach, 

we expect that it will be broadly applicable for defining the protein complexes that interact 

with other lncRNAs. 
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Figure 2.2. RAP-MS identifies direct Xist-interacting proteins. (a) The SILAC ratio 

(Xist/U1) for each Xist-enriched protein identified by RAP-MS for one representative 

sample of four biological replicates. For SHARP and RBM15, the enrichment values are 

indicated above their bars. (b) Each Xist-interacting protein is shown (scaled to protein 

length). The locations of functional domains are shown. (c) Enrichment of the Xist lncRNA 

after immunoprecipitation from a sample of pSM33 male cells. (d) Immunoprecipitation 

of SHARP was performed from a sample of UV-crosslinked females ES cells that were 

treated with retinoic acid for 24 hours. The levels of recovered Xist lncRNA (black bars), 

Neat1 lncRNA (white bars), and 45S pre-ribosomal RNA (gray bars) were measured by 

RT-qPCR. Enrichment of each RNA after capture with anti-SHARP antibody was 

calculated relative to the level of RNA captured with IgG control antibody. (e) The 

enrichment of various lncRNAs after immunoprecipitation in pSM33 male cells – 

including Neat1, Malat1, Firre, and Tug1 – are shown. (f) The enrichment of various 

mRNA controls after immunoprecipitation in pSM33 male cells – including Oct4, Nanog, 

Stat3, and Suz12 – are shown.   
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2.3    SHARP, LBR, and SAF-A are required for Xist-mediated silencing 

Having defined the direct Xist-interacting proteins, we sought to determine which Xist-

interacting proteins are required for Xist-mediated transcriptional silencing on the inactive 

X-chromosome. To do this, we knocked down each of the identified proteins prior to Xist 

induction and assayed for the failure to silence gene expression on the X-chromosome upon 

induction of Xist expression (Figure 2.3a). 

Specifically, we selected two X-linked genes, Gpc4 and Atrx, that are well expressed in the 

absence of Xist expression, but are normally silenced by 16 hours of Xist induction in our 

doxycycline-inducible system in male cells (Figure 2.3b, c). This male-inducible system is 

more sensitive for identifying proteins that affect silencing compared to a female system 

because Xist-mediated silencing in males will lead to loss of 100% of X-chromosome 

transcripts rather than only 50% in a female system, which still retains one active X. We used 

siRNAs to knock down the mRNA levels of each of the proteins identified by RAP-MS along 

with several negative controls (Methods). We ensured that each cell examined showed both 

successful depletion of the siRNA-targeted mRNA as well as induction of Xist expression 

using single molecule RNA FISH(34) (Methods). We observed no difference in the 

percentage of cells that induce Xist expression in any of the siRNA conditions relative to 

untreated cells. Within each of these cells, we quantified the mRNA level of each of the two 

X-linked genes prior to Xist induction (-dox) and after Xist induction (+dox). 

As a control, we transfected several non-targeting siRNAs (Methods). In these negative 

controls, we observed the expected silencing of the X-linked genes studied (Gpc4 expression 
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decreased from an average of 20 copies (-dox) to 2 copies (+dox) per cell and Atrx 

expression decreased from 22 to 3 copies per cell; Figure 2.3d). Similarly, knock down of 

Rbm15, Myef2, Ptbp1, Celf1, hnRNPC, Raly, or hnRNPM did not alter gene silencing on 

the X-chromosome (Figure 2.3b, e). Consistent with previous observations, we also 

observed no effect on X-chromosome gene silencing upon knock down of EED42,43, a 

component of PRC2 that is required for its localization and activity on chromatin(35, 36) 

(Figure 2.3b, e).  

In contrast, knock down of SHARP, Lamin B Receptor (LBR), or SAF-A largely abolished 

the silencing of X-chromosome genes following Xist induction (Figure 2.3b, e). Indeed, the 

expression levels of the X-chromosome genes studied did not significantly change following 

Xist expression (Figure 2.3b, c), indicating that SHARP, LBR, and SAF-A are required for 

Xist to initiate transcriptional silencing on the X-chromosome.  

Since previous studies have shown that Xist can no longer initiate transcriptional silencing 

after a certain critical window during differentiation(16), we wanted to ensure that the loss 

of Xist silencing upon knock down of SHARP, LBR, and SAF-A was not merely due to 

cellular differentiation. To address this, we performed single molecule FISH for Gpc4 

mRNA along with immunofluorescence for Nanog, a marker of the pluripotent state that is 

rapidly lost upon differentiation(37). We confirmed that knockdown of SHARP, LBR, or 

SAF-A also abolished gene silencing on the X-chromosome in Nanog-positive cells (Figure 

2.3f). 
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To ensure that these silencing defects were not specific to our inducible male ES cell 

system, we knocked down SHARP, LBR, or SAF-A along with several controls in wild-type 

female ES cells and induced Xist expression through retinoic acid-mediated differentiation 

(Methods). In the negative controls, we observed silencing of X-chromosome genes upon 

induction of Xist (30 to 14 copies of Gpc4). Consistent with our previous observations, knock 

down of SHARP, LBR, or SAF-A led to a loss of gene silencing on the X-chromosome, 

whereas knock down of EED had no effect on gene silencing within cells that induce Xist 

expression (Figure 2.3g). 

Since SAF-A was previously shown to be required for Xist localization to chromatin in 

differentiated cells(18), we hypothesized that the observed SAF-A silencing defect might be 

because it is required for Xist localization to the X-chromosome during initiation of XCI. To 

test this, we looked at the Xist distribution in the nucleus in all of these perturbations. 

Consistent with previous observation, we observed a diffuse Xist localization pattern in the 

nucleus upon knock down of SAF-A, but not in any other control or protein knock down 

(Figure 2.3f). This suggests that SAF-A is required for localizing Xist and its silencing 

proteins to the X-chromosome. 

Together, these results demonstrate that SHARP, LBR, and SAF-A are required for the 

initiation of Xist-mediated transcriptional silencing of the X-chromosome. Although the 

remaining seven Xist-interacting proteins showed no effect on X-chromosome gene 

silencing, they may still be important for Xist function: (i) some may have redundant 

functions (e.g. Myef2 and hnRNP-M, which are known paralogs), (ii) in some of these cases, 

the small amount of protein remaining after knock down may still be sufficient for Xist 
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function, or (iii) some of these proteins may be important for alternative Xist-mediated 

roles, such as the maintenance of XCI, which would not be captured by this silencing assay. 
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Figure 2.3. SHARP, LBR, and SAF-A are required for Xist-mediated gene silencing. 

(a) Screen for Xist-mediated gene silencing for knockdown of control (top), non-silencing 

proteins (middle), or silencing proteins (bottom). (b) Gpc4 mRNA levels after induction of 

Xist (+dox) normalized to Gpc4 levels before Xist induction (-dox). Error bars: standard 

error of the mean across 50 cells from one experiment. siCtrl: scrambled siRNA control. (c) 

Images of individual cells for two X-linked mRNAs, Gpc4 (green) and Atrx (red), and DAPI 

(blue) after treatment with different siRNAs (rows). The number of identified mRNAs is 

shown. (d) Quantification of the copy number of Gpc4 before and after Xist induction upon 

treatment with different siRNAs. (e) Quantification of the copy number of Gpc4 in –Dox and 

+Dox cells after knockdown with siRNAs targeting different mRNAs. (f) Knockdown of 

SHARP, LBR, or SAF-A abrogates Xist-mediated gene silencing without causing 

pluripotency defects. Representative images showing staining of Nanog (cyan), Xist (red), 

and Gpc4 (green) upon knockdown of SHARP, LBR or SAF-A after 16 hours of Xist 

induction with doxycycline. (g) Quantification of the copy number of Gpc4 for –RA and 

+RA cells upon transfection with different siRNAs. Error bars represent the standard error 

across 50 individual cells from one experiment. Error bars represent the standard error of the 

mean across 50 individual cells from one experiment. NS: not significantly different, **** 

represents values with a p-value<0.001, ** represents values with a p-value<0.01, and * 

represents values with a p-value<0.05 between +Dox and –Dox, or +RA and –RA, cells 

based on an unpaired two-sample t-test. Scale bars on the images represent 5 μm. 
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Methods 

Mouse ES cell culture 

All mouse ES cell lines were cultured in serum-free 2i/LIF medium as previously 

described(1). We used the following cell lines: (i) Wild-type male ES cells (V6.5 line);  (ii) 

Male ES cells expressing Xist from the endogenous locus under control of a tet-inducible 

promoter (pSM33 ES cell line) as previously described(1). (iii) Male ES cells carrying a 

cDNA Xist transgene without the A-repeat integrated into the Hprt locus under control of the 

tet-inducible promoter (A-repeat deletion: kindly provided by A. Wutz)(15). (iv) Female ES 

cells (F1 2-1 line). This wild-type female mouse ES cell line is derived from a 129 x 

castaneous F1 mouse cross as previously described(1).  

Xist induction 

For Dox inducible cells (pSM33 and A-repeat deletion), we induced Xist expression by 

treating cells with 2 μg/ml doxycycline (Sigma) for 6 hours, 16 hours, or 24 hours based on 

the application. For female ES cells (F1 2-1 line), we induced Xist expression by inducing 

differentiation; 2i was replaced with MEF media (DMEM, 10% Gemini Benchmark FBS, 

1× L-glutamine, 1× NEAA, 1× Pen/Strep; Life Technologies unless otherwise indicated) for 

24 hours followed by treatment with 1 μM retinoic acid (RA) (Sigma) for an additional 24 

hours. 

We measured the amount of Xist RNA in both the doxycycline-inducible cells (6 hours 

induction) and differentiating female ES cells (24 hour induction) by qRT-PCR. We 

normalized this level to various RNA housekeeping controls, 18S, 28S, and U6, in both cell 
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populations and calculated the fold expression difference between male and female cells 

using the comparative Ct method. We observed a range of expression, with the male 

inducible system expressing from 5-20 fold (12-fold average) more Xist than the female 

cells. We note that this estimate likely represents an upper limit of the actual differences 

because the female ES cell system is known to be heterogeneous in Xist-induction, such that 

not every cell will induce Xist to the same level after 24 hours of retinoic acid treatment. 

Accordingly, we expect that the actual differences between the male inducible system and 

differentiating female ES cells are actually significantly lower. While the precise levels are 

hard to compare by single molecule FISH, the size and intensity of each Xist RNA cloud is 

similar in both systems at the time points used. 

The male-inducible system is more sensitive for identifying proteins that affect silencing  

compared to a female system because Xist-mediated silencing in males will lead to loss of 

100% of X-chromosome transcripts rather than only 50% in a female system, which still 

retains one active X.  

UV crosslinking 

Cells were washed once with PBS and then crosslinked on ice using 0.8 Joules/cm2 (UV8k) 

of UV at 254 nm in a Spectrolinker UV Crosslinker. Cells were then scraped from culture 

dishes, washed once with PBS, pelleted by centrifugation at 1500 × g for 4 minutes, and flash 

frozen in liquid nitrogen for storage at – 80 ˚C.  

SILAC ES cell culture 
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For SILAC experiments, we adapted our ES cell culture procedures to incorporate either 

light or heavy lysine and arginine amino acids. The 2i/LIF SILAC medium was composed 

as follows: custom DMEM/F-12 without lysine or arginine (Dundee Cell Products) was 

supplemented with either 0.398 mM heavy Arg10 (Sigma) or unlabeled arginine (Sigma) 

and either 0.798 mM heavy Lys8 (Cambridge Isotope Labs) or unlabeled lysine (Sigma), 

0.5× B-27 (Gibco), 2 mg/mL bovine insulin (Sigma), 1.37 μg/mL progesterone (Sigma), 5 

mg/mL BSA Fraction V (Gibco), 0.1 mM 2-mercaptoethanol (Sigma), 5 ng/mL murine LIF 

(GlobalStem), 0.1 μM PD0325901 (SelleckChem) and 0.3 μM CHIR99021 (SelleckChem). 

Cells in both heavy and light 2i/LIF SILAC medium were also supplemented with 0.2 

mg/mL of unlabeled proline (Sigma) to prevent conversion of labeled arginine to proline. 2i 

inhibitors were added fresh with each medium change. 

Adapting cells to SILAC conditions 

Prior to mass spectrometry, ES cells were adapted to SILAC conditions over three passages. 

The heavy or light culture medium was replaced every 24-48 hours depending on cell 

density, and cells were passaged every 72 hours using 0.025% trypsin (Gibco), rinsing 

dissociated cells from the plates with DMEM/F12 containing 0.038% BSA Fraction V 

(Gibco). Cells were grown in two different types of medium: (i) 2i/LIF SILAC medium with 

light (unlabeled) lysine and arginine, or (ii) 2i/LIF SILAC medium with heavy isotope 

labeled lysine and arginine.  

Measuring SILAC incorporation 
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To examine the efficiency of SILAC labeling in pSM33 cells, we tested for the 

incorporation of labeled amino acids after 10 days of growth (3 cell passages) in heavy 2i/LIF 

SILAC medium. Pellets of 2 million cells were boiled for 10 minutes in LDS Sample 

Loading Buffer (Invitrogen) and then proteins were separated by SDS-PAGE on a 4-12% 

Tris-Glycine polyacrylamide gel (Invitrogen). Total protein was stained with Colloidal 

Coomassie (Invitrogen) and gel slices were excised with a clean scalpel and transferred to 

microcentrifuge tubes for in-gel tryptic digest. Protein disulfide bonds were reduced with 

DTT and then alkylated with iodoacetamide. Proteins were digested with trypsin overnight 

and then extracted using successive washes with 1% formic acid/2% acetonitrile, 1:1 

acetonitrile/water, and 1% formic acid in acetonitrile. Peptides were collected, lyophilized, 

and then resuspended in 1% formic acid for mass spectrometry analysis (described below in 

Mass Spectrum Measurements). Peptides were identified from mass spectra using 

MaxQuant (described below in MS data analysis). The incorporation rate of labeled amino 

acids was calculated based on the ratio of the intensity of heavy and light versions of each 

peptide identified. In cells used for subsequent assays, we confirmed that over 95% of 

peptides from cellular proteins showed >95% incorporation of labeled amino acids 

(Extended Data 1b). 

RNA Affinity Purification-Mass Spectrometry (RAP-MS)  

Probe design and generation 

To create the probes used to capture target RNAs, we designed and synthesized 90-mer DNA 

oligonucleotides (Eurofins Operon) that spanned the entire length of the target RNA. The 
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sequence of each DNA oligonucleotide probes was antisense to the complementary target 

RNA sequence. Each DNA oligonucleotide probe was also modified with a 5’ biotin in order 

to enable capture of DNA-RNA hybrids on streptavidin coated magnetic beads (described 

below). While we had previously used 120-mer probes, we found that 90-mer probes 

provided comparable stringency and yield in the conditions used. For Xist, we used 142 

probes that covered the entire mature RNA sequence, with the exception of regions that 

match to other transcripts or genomic regions as previously described(1, 38).  

Total cell lysate preparation  

For the 18S and U1 experiments we used total cellular lysates prepared in the following 

manner. We lysed batches of 20 million cells by completely resuspending frozen cell pellets 

in ice cold detergent-based Cell Lysis Buffer (10 mM Tris pH 7.5, 500 mM LiCl, 0.5% 

dodecyl maltoside (DDM, Sigma), 0.2% sodium dodecyl sulfate (SDS, Ambion), 0.1% 

sodium deoxycholate (Sigma)). Next, 1× Protease Inhibitor Cocktail (Set III, EDTA-free, 

Calbiochem) and 920 U of Murine RNase Inhibitor (New England Biolabs) were added and 

the sample was incubated for 10 minutes on ice to allow lysis to proceed. During this 

incubation period, the cell sample was passed 3-5× through a 26-gauge needle attached to a 

1 mL syringe in order to disrupt the pellet and shear genomic DNA. Each sample was then 

sonicated using a Branson Digital Sonifier with a microtip set at 5 watts power for a total of 

30 seconds in intermittent pulses (0.7 seconds on, 1.3 seconds off). During sonication the 

samples were chilled to prevent overheating of the lysate. The samples were then treated for 

10 minutes at 37 ˚C with 2.5 mM MgCl2, 0.5 mM CaCl2, and 20 U of TURBO DNase 

(Ambion) to digest DNA. Samples were returned to ice and the reaction was immediately 
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terminated by the addition of 10 mM EDTA and 5 mM EGTA. Disulfide bonds were 

reduced by addition of 2.5 mM Tris-(2-carboxyethyl) phosphine (TCEP) and samples were 

then mixed with twice the lysate volume of 1.5× LiCl/Urea Buffer (the final1× Buffer 

contains 10 mM Tris pH 7.5, 5 mM EDTA, 500 mM LiCl, 0.5% DDM, 0.2% SDS, 0.1% 

deoxycholate, 4M urea, 2.5 mM TCEP). Lysates were incubated on ice for 10 minutes and 

then cleared by centrifugation in an Eppendorf 5424R centrifuge for 10 minutes at 16,000 × 

g. Supernatants were pooled and flash frozen in liquid nitrogen for storage at -80 ˚C. 

Nuclear lysate preparation 

For the Xist versus U1 and 45S versus U1 comparisons, we used nuclear lysates prepared in 

the following manner. We lysed batches of 50 million cells by resuspending frozen pellets 

in 1 mL Lysis Buffer 1 (10 mM HEPES pH7.2, 20 mM KCl, 1.5 mM MgCl2, 0.5 mM EDTA, 

1 mM Tris(2-carboxyethyl)phosphine (TCEP), 0.5 mM PMSF). Then the samples were 

centrifuged at 3,300 × g for 10 minutes to pellet cells. The cell pellets were resuspended in 1 

mL Lysis Buffer 1 with 0.1% dodecyl maltoside (DDM) and dounced 20 times using a glass 

dounce homogenizer with the small clearance pestle (Kontes). Nuclei released from the cells 

after douncing were pelleted by centrifugation at 3,300 × g then resuspended in 550 μl Lysis 

Buffer 2 (20 mM Tris pH 7.5, 50 mM KCl, 1.5 mM MgCl2, 2 mM TCEP, 0.5 mM PMSF, 

0.4% sodium deoxycholate, 1% DDM, and 0.1% N-lauroylsarcosine (NLS)). Samples were 

incubated on ice for 10 minutes, and then each sample was sonicated using a Branson 

Sonifier at 5 watts power for a total of 1 minute in intermittent pulses (0.7 seconds on, 3.3 

seconds off) to lyse nuclei and solubilize chromatin. During sonication the samples were 

chilled to prevent overheating of the nuclear lysate. Samples were then treated with 2.5 mM 
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MgCl2, 0.5 mM CaCl2, and 330 U TURBO DNase (Ambion) for 12 minutes at 37 ˚C to 

further solubilize chromatin. After DNase treatment, lysates were mixed with equal volume 

of 2× Hybridization Buffer (the final 1× Buffer contains 10 mM Tris pH 7.5, 5 mM EDTA, 

500 mM LiCl, 0.5% DDM, 0.2% SDS, 0.1% deoxycholate, 4M urea, 2.5 mM TCEP). 

Finally, lysates were cleared by centrifugation for 10 minutes at 16,000 × g in an Eppendorf 

5424R centrifuge and the resulting supernatants were pooled and flash frozen in liquid 

nitrogen for storage at -80 ˚C.  

RNA affinity purification of crosslinked complexes 

Lysates from 200 million or 800 million cells were used for each capture. For 200 million 

cells the following protocol was used, and scaled appropriately for larger cell numbers. For 

each capture, a sample of heavy or light SILAC labeled frozen lysate was warmed to 37 ˚C. 

For each sample, 1.2 mL of Streptavidin Dynabeads MyOne C1 magnetic beads (Invitrogen) 

were washed 6 times with equal volume of hybridization buffer (10 mM Tris pH 7.5, 5 mM 

EDTA, 500 mM LiCl, 0.5% DDM, 0.2% SDS, 0.1% deoxycholate, 4M urea, 2.5 mM TCEP). 

Lysate samples were pre-cleared by incubation with the washed Streptavidin C1 magnetic 

beads at 37 ˚C for 30 minutes with intermittent shaking at 1100 rpm on a Eppendorf 

Thermomixer C (30 seconds mixing, 30 seconds off). Streptavidin beads were then 

magnetically separated from lysate samples using a Dynamag magnet (Life Technologies). 

The beads used for pre-clearing lysate were discarded and the lysate sample was transferred 

to fresh tubes twice to remove all traces of magnetic beads. Biotinylated 90-mer DNA 

oligonucleotide probes specific for the RNA target of interest (20 μg per sample, in water) 

were heat-denatured at 85 ˚C for 3 minutes and then snap-cooled on ice. Probes and pre-
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cleared lysate were mixed and incubated at 67 ˚C using an Eppendorf thermomixer with 

intermittent shaking (30 seconds shaking, 30 seconds off) for 2 hours to hybridize probes to 

the capture target RNA. Hybrids of biotinylated DNA probes and target RNA were then 

bound to streptavidin beads by incubating each sample with 1.2 mL of washed Streptavidin 

coated magnetic beads at 67 ˚C for 30 minutes on an Eppendorf Thermomixer C with 

intermittent shaking as above. Beads with captured hybrids were washed 6 times with 

LiCl/Urea Hybridization Buffer at 67 ˚C for 5 minutes to remove non-specifically associated 

proteins. Between 0.5 – 1% of the total beads were removed and transferred to a fresh tube 

after the final wash to examine RNA captures by qPCR (see “Elution and analysis of RNA 

samples”). The remaining beads were resuspended in Benzonase Elution Buffer (20 mM Tris 

pH 8.0, 2 mM MgCl2, 0.05% NLS, 0.5 mM TCEP) for subsequent processing of the protein 

samples.  

Elution of protein samples 

Elution of captured proteins from streptavidin beads was achieved by digesting all nucleic 

acids (both RNA and DNA, double-stranded and single-stranded) using 125 U of Benzonase 

nonspecific RNA/DNA nuclease for 2 hours at 37 ̊ C (Millipore, #71206-3). Beads were then 

magnetically separated from the sample using a DynaMag magnet (Life Technologies)  and 

the supernatant containing eluted Xist-specific proteins was precipitated overnight at 4 ˚C 

with 10% trichloroacetic acid (TCA). TCA treated protein elution samples were pelleted by 

centrifugation for 30 minutes at >20,000 × g, and then washed with 1 mL cold acetone and 

recentrifuged. Final protein elution pellets were air dried to remove acetone and stored at         

-20 ˚C until processing for mass spectrometry.  
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Elution and analysis of RNA samples 

Beads with hybrids were magnetically separated using a 96-well DynaMag (Life 

Technologies) and the supernatant was discarded. Beads were then resuspended by pipetting 

in 20 μL NLS RNA Elution Buffer (20 mM Tris pH 8.0, 10 mM EDTA, 2% NLS, 2.5 mM 

TCEP). To release the target RNA, beads were heated for 2 minutes at 95 ̊ C in an Eppendorf 

Thermomixer C. Beads were then magnetically separated using a 96-well DynaMag (Life 

Technologies) and the supernatants containing eluted target RNA were digested by the 

addition of 1 mg/mL Proteinase K for 1 hour at 55 ˚C to remove all proteins. The remaining 

nucleic acids were then purified by ethanol precipitation onto SILANE beads (Invitrogen) as 

previously described(1, 38). DNA probes were removed by digestion with TURBO DNase 

(Ambion). To quantify RNA yield and enrichment, qPCR was performed as previously 

described(1).  

Mass Spectrometry Analysis  

Preparation of proteins for mass spectrometry  

Proteins from RAP-MS captures were resuspended in fresh 8 M urea dissolved in 40 μL of 

100 mM Tris-HCl pH 8.5. Disulfide bonds were reduced by incubation with 3 mM TCEP 

for 20 minutes at room temperature, followed by alkylation with 11 mM iodoacetamide for 

15 minutes at room temperature in the dark. Samples were then digested with 0.1 μg 

endoproteinase Lys-C for 4 hours at room temperature. After Lys-C digestion the samples 

were diluted to a final concentration of 2M urea by the addition of 100 mM Tris-HCl pH 8.5, 

and CaCl2 was added to a final concentration of 1 mM. Tryptic peptides were generated by 
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treatment with 0.1 to 0.5 μg of trypsin overnight at room temperature. Contaminating 

detergents were removed from peptides using HiPPR detergent removal columns (Thermo), 

and peptides were protonated by the addition of 5% formic acid before desalting on a Microm 

Bioresources C8 peptide MicroTrap column. Peptide fractions were collected and 

lyophilized, and dried peptides were resuspended in 0.2% formic acid with 5% acetonitrile.  

Mass spectrum measurements  

Liquid chromatography-mass spectrometry and data analyses of the digested samples were 

carried out as previously described(39) with the following modifications. All experiments 

were performed on a nanoflow LC system, EASY-nLC 1000 coupled to a hybrid linear ion 

trap Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) 

equipped with a nanoelectrospray ion source (Thermo Fisher Scientific). For the EASY-nLC 

II system, solvent A consisted of 97.8% H2O, 2% ACN, and 0.2% formic acid and solvent B 

consisted of 19.8% H2O, 80% ACN, and 0.2% formic acid. For the LC-MS/MS experiments, 

200 ng of digested peptides were directly loaded at a flow rate of 500 nL/min onto a 16-cm 

analytical HPLC column (75 μm ID) packed in-house with ReproSil-Pur C18AQ 3 μm resin 

(120 Å pore size, Dr. Maisch, Ammerbuch, Germany). The column was enclosed in a column 

heater operating at 30°C. After 30 min of loading time, the peptides were separated with a 

75 min gradient at a flow rate of 350 nL/min. The gradient was as follows: 0–2% Solvent B 

(5  min), 2–30% B (60 min), and 100% B (10  min). The Elite was operated in data-dependent 

acquisition mode to automatically alternate between a full scan (m/z=400–1600) in the 

Orbitrap and subsequent rapid 20 CID MS/MS scans in the linear ion trap. CID was 
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performed with helium as collision gas at a normalized collision energy of 35% and 10 ms 

of activation time.  

MS data analysis 

Thermo RAW files were searched with MaxQuant (v 1.5.0.30)(40, 41). Spectra were 

searched against all UniProt mouse entries (43,565 entries, downloaded 02 Oct 14) and 

MaxQuant contaminant database (245 entries). Decoy sequences (reversed peptide 

sequences) were generated in MaxQuant to estimate the false discovery rate(42). Search 

parameters included multiplicity of 2 with heavy Arg (+10.0083) and heavy Lys (+8.0142) 

as heavy peptide modifications. Variable modifications included oxidation of Met 

(+15.9949) and protein N-terminal acetylation (+42.0106). Carboxyamidomethylation of 

Cys (+57.0215) was specified as a fixed modification.  Protein and peptide false discovery 

rates were thresholded at 1%. Precursor mass tolerance was 7 ppm (or less for individual 

peptides). Fragment mass tolerance was 0.5 Da. Requantify and match between runs were 

both enabled.  Trypsin was specified as the digestion enzyme with up to 2 missed cleavages.  

Identification of RNA interacting proteins 

Proteins of interest from RAP-MS captures were identified based on several criteria. First, 

proteins were considered identified only if 2 or more unique peptides were found in the mass 

spectrum. Then proteins of interest were selected based on the SILAC ratio of capture versus 

control samples. SILAC ratios for each peptide were calculated based on the intensity ratios 

of heavy and light SILAC pairs. The protein ratio is the median of all calculated peptide 

ratios, with a minimum of two SILAC pairs required for a SILAC ratio to be assigned to a 
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given protein. A SILAC ratio cutoff of ≥3.0 (fold enrichment over control sample) was 

used as a cutoff for further analysis. We excluded known contaminants, including human 

keratin and proteins introduced during the sample purification and preparation process (such 

as streptavidin, Benzonase, and trypsin), as well as naturally biotinylated proteins that 

contaminate the preparation by binding to streptavidin beads.  

RAP-MS experiments and controls 

18S rRNA versus U1 snRNA  

To validate the RAP-MS method and identify proteins specifically interacting with 18S 

ribosomal RNA or U1 snRNA, we performed captures of each target RNA in parallel 

samples from heavy and light labeled lysates from wild-type V6.5 ES cells. The total protein 

quantity in elution samples from each RAP-MS capture was measured by comparing the 

median intensity of peptides identified in a single quantitation MS run for each sample. The 

heavy and light label swapped samples were then mixed equally based on total protein 

quantity and analyzed by mass spectrometry to identify the SILAC enrichment ratio of 

proteins originating from 18S rRNA or U1 snRNA captures. The experiment was performed 

twice and each experimental set contained two biological replicates of 18S and U1 captures 

(heavy and light labeling states).  

Xist lncRNA versus U1 snRNA captures 

To identify proteins specifically interacting with Xist lncRNA, we performed captures as 

described above with either 200M cells or 800M pSM33 cells treated with doxycycline for 
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6 hours. The total protein quantity in elution samples from each RAP-MS capture was 

measured by a single quantitation MS run for each sample. Heavy and light label swapped 

samples were mixed equally based on total protein quantity, and analyzed by mass 

spectrometry. SILAC ratios of Xist enriched proteins versus U1 enriched proteins were 

calculated and used to identify Xist-specific interacting proteins for further analysis. The 

experiment was performed twice and each experimental set contained two biological 

replicates of Xist and U1 captures, from heavy and light labeled samples. Proteins replicated 

well between samples, with a sole exception (LBR) that was missed only because its 

enrichment level (2-fold) fell below our enrichment cutoff (3-fold) in some replicate samples.  

Xist lncRNA capture from non-crosslinked cells 

As a control to ensure that purified proteins are not non-specifically associated or binding in 

vitro with target RNAs during capture, we performed RAP-MS captures of Xist from non-

crosslinked cells otherwise treated in the same manner (i.e. doxycycline treated for 6 hours).  

Xist lncRNA capture from cells where Xist is not expressed  

To confirm that the identified proteins are not resulting from background proteins or probe 

association with other RNAs or proteins in the pSM33 cells, we performed RAP captures of 

Xist from pSM33 cells that were not treated with doxycycline, but which were otherwise 

treated identically.  

45S pre-rRNA capture versus U1 capture 
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To ensure that the proteins enriched in Xist captures using RAP-MS are not simply due to 

increased protein capture as a consequence of long target RNA transcripts, we additionally 

performed captures of the 13,000 nucleotide long 45S pre-ribosomal RNA as a control. To 

ensure specific capture only of the 45S, and not the mature 18S and 28S, we designed probes 

that specifically targeted the internal transcribed spacer regions (ITS1 and ITS2) that are only 

present in the 45S pre-ribosomal RNA.  The experiment was performed in the same manner 

and with the same conditions as the Xist lncRNA captures described above. To compare Xist 

protein enrichment to 45S protein enrichment, we used a SILAC approach based on direct 

comparison of two samples that share a common denominator (called spike-in SILAC(43)). 

Specifically, we calculated an overall Xist/45S SILAC ratio by multiplying the Xist/U1 ratio 

by the U1/45S ratio for each identified protein.  

Protein domain classification 

We defined the conserved domain structures of proteins using the Protein Families database 

(Pfam(44)).  

RNA Immunoprecipitation in UV-crosslinked cells 

We crosslinked pSM33 cells after 6 hours of doxycycline-treatment with 0.4 Joules/cm2 of 

UV254. Cells were lysed and RNA was digested with RNase I to achieve a size range of 100-

500 nucleotides in length. Lysate preparations were precleared by mixing with Protein G 

beads for 1 hour at 4 ˚C. For each sample, target proteins were immunoprecipitated from 20 

million cells with 10 μg of antibody (Supplementary Table 1) and 60 μl of Protein G 

magnetic beads (Invitrogen). The antibodies were pre-coupled to the beads for 1 hour at room 
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temperature with mixing before incubating the precleared lysate to the antibody-bead 

complexes for 2 hours at 4 ˚C. After the immunoprecipitation, the beads were rinsed with a 

wash buffer of 1× PBS with detergents. After a dephosphorylation treatment, the RNA in 

each sample was ligated to a mixture of barcoded adapters in which each adapter had a unique 

barcode identifier. After ligation, beads were rinsed with 1× PBS and detergents and then 5× 

PBS (750 mM NaCl) and detergents prior to pooling 3-4 antibodies in a new tube. The 

proteins and RNA were then eluted from the Protein G beads with 6 M urea and 40 mM DTT 

at 60 °C. Protein-RNA complexes were separated away from free RNA by covalently 

coupling proteins to NHS-magnetic beads (Pierce) and washing 3 times in 6 M GuSCN 

(Qiagen RLT buffer) and heating in 1% NLS at 98 °C for 10 minutes. The proteins were then 

digested with Proteinase K and RNA was purified for subsequent analysis. From the 

barcoded RNA in each pool, we generated Illumina sequencing libraries as previously 

described(38). We saved a small percentage (~1%) of starting material prior to 

immunoprecipitation and processed and sequenced this sample in parallel. 

Analysis of crosslinked RNA Immunoprecipitation Data 

We computed the enrichment for any RNA upon immunoprecipitation with a specific protein 

relative to its total levels in the cell. To do this, we counted the total number of reads 

overlapping the RNA in either the immunoprecipitation sample or the input control. To 

account for differences in read coverage between samples, each of these numbers was 

normalized to the total number of reads within the same experiment. This generates a 

normalized score, per RNA, within each sample. We then computed an enrichment metric 

by taking the ratio of these normalized values (IP/Input). We then compared these enrichment 
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levels across different proteins and controls (i.e. IgG). To enable direct comparison across 

proteins for a given gene, we need to account for differences in the protein specific 

background level, which may occur to differences in IP efficiency or non-specific binding of 

each antibody. To do this, we computed a normalized enrichment ratio by dividing the ratio 

for each gene by the average ratio across all genes for a given protein, as previously 

described(45).  

To exclude the possibility of promiscuous binding to all RNAs, we considered various 

mRNA controls, which are not expected to bind to these proteins, including Oct4, Nanog, 

Stat3, and Suz12. These mRNAs were selected as examples because they are expressed in 

ES cells, although many mRNAs show similar results. To account for the possibility that the 

Xist RNA non-specifically binds to any RBP, we evaluated Xist with other RBPs that we did 

not identify as interacting with Xist by RAP-MS (Pum1 and hnRNP-H). To ensure that a 

negative result (i.e. no enrichment for Xist) is meaningful and does not reflect a failed 

immunoprecipitation experiment, we evaluated Neat1-1, which we previously found 

immunoprecipitates with hnRNPH(45). To further evaluate the level of enrichment on other 

lncRNAs, we considered several lncRNAs including Malat1, Firre, and Tug1. These 

lncRNAs were selected as examples because they are well-known and expressed in ES cells, 

although many ES lncRNAs show similar results. 

Immunoprecipitation and RT-qPCR  

Female ES cells were differentiated then crosslinked with UV4k as described above. Pellets 

of 20M cells were lysed and treated with TURBO DNase (Ambion) to destroy DNA by 
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incubation for 10 minutes at 37 ˚C in an Eppendorf Thermomixer C. The lysate was pre-

cleared by incubation with 180 μL of Dynabeads Protein G magnetic beads (Life 

Technologies). Meanwhile, 10 μg  of antibody for immunoprecipitation (SHARP antibody, 

Novus NBP1-82952 or IgG antibody, Cell Signaling 2729S) was coupled to 60 μl Protein G 

magnetic beads. After pre-clearing was completed, the lysate was then mixed with the 

appropriate antibody-coupled Protein G magnetic beads and incubated for 2 hours at 4 ˚C on 

a Hulamixer sample mixer (Life Technologies) for protein capture. After 

immunoprecipitation, beads were washed with a wash buffer of 1× PBS with detergents and 

then captured nucleic acids were eluted by digesting all proteins with 5.6 U proteinase K 

(New England Biolabs). Eluted RNA was purified using the RNA Clean and Concentrator-

5 Kit (Zima Research) and RT-qPCR was performed as described previously(1) to evaluate 

RNA enrichment.  

V5-epitope tagged protein expression 

For V5-tagged protein expression and immunoprecipitation, mouse ES cells were 

electroporated using the Neon transfection system (Invitrogen) with an episomally-

replicating vector (pCAG-GW-V5-Hygro) encoding expression of a C-terminal V5 tagged 

ORF driven by a CAG promoter.  ORFs were obtained from the DNASU plasmid repository 

as Gateway entry clones and inserted into pCAG-GW-V5-Hygro using an LR recombination 

reaction (Invitrogen).  Transfected cells were selected on 125ug/mL Hygromycin B 

(Invitrogen) to generate stably expressing lines.  

siRNA Transfections 
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For siRNA knockdown experiments, 20 nM siRNAs were transfected using the Neon 

transfection system (settings: 1200V, 40ms width, 1 pulse). For each transfection, two 10 μL 

transfections with the same siRNA were carried out in succession using 100,000 cells each, 

mixed, and plated equally between two poly-L-lysine or poly-D-lysine (Sigma) and 0.2% 

gelatin (Sigma)-coated #1.5 coverslips placed into wells of a 24-well plate containing 2i 

media. After 48 hours, 2i media was replaced and cells on one coverslip of each pair were 

treated with 2 μg/mL doxycycline (Sigma) for 16hr to induce Xist expression. Coverslips 

were then fixed in Histochoice (Sigma) for 5 min, washed thoroughly in PBS, and dehydrated 

in ethanol for storage until FISH staining. 

For all proteins we used siRNAs pool from Dharmacon (ON-TARGETplus SMARTpool 

siRNAs). For each of these, we tested whether the siRNA successfully reduced the targeted 

mRNA expression by >70%. For SAF-A and SMRT, the siRNAs failed to achieve this level 

of mRNA reduction, so we purchased additional siRNAs (and their associated controls) for 

SAF-A and SMRT from Qiagen and Ambion respectively, and selected siRNAs that 

successfully reduced on-target mRNA levels. siRNA against GFP was purchased from 

Qiagen. For additional independent siRNAs, the siRNAs were purchased as a pool from 

Dharmacon, Qiagen, and Ambion, or as each individual siRNA deconvoluted from the pool 

from Dharmacon and Qiagen (Supplementary Table 2).  

siRNA experiments in female ES cells 

Female ES F1 2-1 cells were similarly transfected. To initiate differentiation and Xist 

expression for these cells, 2i was replaced with MEF media (DMEM, 10% Gemini 
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Benchmark FBS, 1x L-glutamine, 1x NEAA, 1x Pen/Strep; Life Technologies unless 

otherwise indicated) at 12 hours post-transfection. Forty-eight hours after transfection, 1uM 

retinoic acid (Sigma) was administered for 24 hours and cells were fixed as described above. 

For cells not undergoing differentiation, 2i was replaced 12hr and 48hr after transfection. 

Single molecule RNA FISH 

Single molecule RNA Fluorescence in situ hybridization (FISH) experiments were done 

using QuantiGene ViewRNA ISH Cell Assay (Affymetrix) and QuantiGene ViewRNA ISH 

Cell 740 Module (Affymetrix) according to manufacturer’s protocol. Cells fixed on 

coverslips were first permeabilized with Detergent Solution QC at room temperature for 5 

min, and then incubated with desired mixture of probe set (Affymetrix) in Probe Set Diluent 

QF at 40°C for 3 h, followed by incubated with PreAmplifier Mix at 40°C for 30 min, 

Amplifier Mix at 40°C for 30 min, and Label Probe Mix at 40°C for 30 min sequentially. 

For DAPI staining, coverslips were incubated in 30 nM DAPI in PBS at room temperature 

for 15-20 min. Probe set and conjugated fluorophore for FISH were TYPE 1-XIST (550 nm), 

TYPE 4-GPC4, RBMX, SMC1A, MECP2 (488 nm), TYPE 10-ATRX (740 nm), and TYPE 

6-EED1, SHARP, LBR, SAFA, RBM15, MYEF2, PTBP1, HNRNPC, HNRNPM, CELF1, 

RALY, HDAC3, NCOR2, MID1, PIR (650 nm). 

Immunofluorescence and RNA FISH 

For immunofluorescence (IF), cells were fixed on coverslips and permeabilized with 0.1% 

Triton-X in PBS at room temperature for 10 min, and blocked with 5% normal goat serum 

in PBS at room temperature for 10 min. Cells were then incubated with primary antibodies 
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at room temperature for 1 h, followed by incubating with secondary antibodies at room 

temperature for 1 h. The samples were then processed using the RNA FISH protocol, as 

described above. Primary antibodies and the dilution used for IF were anti-RNA polymerase 

II CTD repeat YSPTSPS (phospho S2) (Abcam; ab5095) (1:100), anti-Nanog (Abcam; 

ab80892) (1:100), and anti-EZH2 (Active Motif; 39933) (1:100). Secondary antibodies and 

the dilution used for IF were Alexa Fluor® 405 goat anti-rabbit IgG (H+L) (Life Technology; 

1575534) (1:100) and Alexa Fluor® 488 F(ab’)2 fragment of goat anti-rabbit IgG (H+L) 

(Life Technology; 1618692) (1:100). 

Microscopic Imaging 

FISH and IF/FISH samples were imaged using a Leica DMI 6000 Deconvolution 

Microscope with the Leica HC PL APO 63x/1.30 GLYC CORR CS2 objective. Samples 

stained with TYPE 10-ATRX (740 nm) were imaged using Nikon Ti Eclipse with the Nikon 

CFI Plan Apochromat λ DM 60x/1.40 oil objective. Images were projected with maximum 

projection (3 μm; step size, 0.5 μm). 

X-chromosome Silencing Assay 

Cells were stained for Xist RNA, Gpc4 mRNA, Atrx mRNA and siRNA-targeted mRNA by 

FISH and imaged. In addition, in some siScramble and siSHARP samples, we used probes 

against Rbm15, Mecp2, Smc1a, Mid1 or Pir mRNA. Images were then analyzed using 

Matlab R2013b (described below). Cells were selected if the copy number of the targeted 

mRNA was less than 30% of the level of the no siRNA treated cells and if they induced Xist 

expression. Within these cells, the copy number of Gpc4 mRNA and Atrx mRNA were 
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quantified using a peak finding method (described below) and compared across conditions. 

We quantified mRNA levels for 50 individual cells. We also evaluated Xist expression in 

siRNA-treated cells, and observed no difference in the percentage of cells that induced Xist 

expression in any of the siRNA conditions relative to untreated cells.  

Quantifying mRNAs by single molecule FISH 

All image analysis was carried out using Matlab (version R2013b) utilizing built-in functions 

from the Image Processing toolbox. Images were first filtered using a two-dimensional 

median filter to remove background. Cell boundaries were outlined manually, guided by 

DAPI staining, to create a binary mask and applied to the various channels from the same 

field of view. Top-hat morphological filtering, a background subtraction method that 

enhances the individual focal spots, was applied to the images(46). The spots were then 

identified using a 2D peak finding algorithm that identifies local maximal signals within the 

cell. Once regional maxima were identified, the number of spots was counted for each cell.  
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C h a p t e r  3  

SHARP IS REQUIRED FOR XIST-MEDIATED EXCLUSION OF RNA 

POLYMERASE II 

The work was first published as: 

McHugh, Colleen A., et al. "The Xist lncRNA directly interacts with SHARP to silence 

transcription through HDAC3." Nature 521.7551 (2015): 232. 

3.1    SHARP/SMRT/HDAC3 Complex is Required for Xist-mediated Exclusion of 

RNA Polymerase II 

Xist-mediated transcriptional silencing involves several distinct roles, including (i) initial 

localization to sites on the X-chromosome(1, 2), (ii) establishment of the initial silenced 

compartment – an Xist-coated nuclear domain from which RNA PolII is excluded(3), and 

(iii) repositioning of actively transcribed genes into the RNA PolII-excluded nuclear 

compartment(3, 4). To determine the proteins that are directly responsible for establishing 

the initial silenced compartment on the X-chromosome, we explored whether SHARP or 

LBR might be required for the exclusion of RNA PolII from the Xist-coated region. We 

excluded SAF-A because we observed a diffuse Xist localization pattern in the nucleus upon 

knock down of SAF-A, but not in any other sample, consistent with the previous observation 

that SAF-A is required for Xist localization to chromatin(5). 
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To identify the proteins required for RNA PolII exclusion, we measured co-localization in 

single cells using RNA FISH for Xist and immunofluorescence for PolII upon Xist induction. 

In wild-type cells after 16 hours of Xist induction, we observed a depletion of RNA PolII 

over the Xist-coated territory (Methods, Figure 3.1a). We observed a similar depletion in 

the negative controls and upon knock down of EED (Figure 3.1a, b). Similarly, knock down 

of LBR did not alter the exclusion of PolII from the Xist-coated region (Figure 3.1b). In 

contrast, upon knock down of SHARP, we observed higher levels of PolII over the Xist-

coated territory relative to the control samples (Figure 3.1b). We note that the effects on 

transcriptional silencing and PolII exclusion are robust, being seen with two independent 

siRNA pools (Figure 3.1d).  

Together, these results demonstrate that SHARP is required to exclude RNA PolII on the 

inactive X-chromosome and may be required for creating the initial silenced compartment 

upon Xist localization(4). While LBR is not required for initial PolII exclusion on the X-

chromosome, it is likely to play an alternative role during the initiation of Xist-mediated 

transcriptional silencing, such as repositioning genes into this PolII excluded compartment(2, 

3). 

Having identified SHARP as the direct Xist-interacting protein that is required for excluding 

RNA PolII on the X-chromosome, we sought to determine how it might carry out this role. 

SHARP is a direct RNA binding protein(6, 7) that was identified based on its interaction with 

the SMRT co-repressor complex(7, 8), which is required for activating the deacetylation and 

transcriptional silencing activity of HDAC3 in vivo (9, 10). Based on these previous 
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observations, we hypothesized that Xist-mediated transcriptional silencing through 

SHARP would occur through SMRT and the silencing function of HDAC3.  

To test this hypothesis, we knocked down either SMRT or HDAC3 and measured the 

expression of X-linked genes before and after Xist induction. Knock down of SMRT or 

HDAC3 abrogated silencing of X-linked genes upon induction of Xist expression (Figure 

2.2b, g). To determine whether this effect is similar to the effect produced by knock down of 

SHARP or a distinct defect in transcriptional silencing, we tested whether HDAC3, the 

silencing protein in this complex(10, 11), is required for the exclusion of RNA PolII from 

the Xist-coated territory. We found that knock down of HDAC3 eliminated the exclusion of 

RNA PolII from the Xist-coated compartment to a similar degree to that seen for knock down 

of SHARP (Figure 3.1a-d).  

Together, these results suggest that SHARP silences transcription through the HDAC3 

silencing protein. This role for HDAC3 in Xist-mediated silencing would explain the long-

standing observation of global hypoacetylation on the entire X-chromosome as one of the 

very first events that occur upon initiation of XCI(4, 12). 
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Figure 3.1 SHARP is required for exclusion of PolII from the Xist-coated territory. 

(a) Individual male ES cells labelled with Xist (red), PolII (green), and DAPI (blue) across 

different siRNA conditions (rows). Quantification of fluorescence intensity of PolII within 

Xist territory normalized to control siRNA levels for (b) male ES cells after 16 hours of 

doxycycline treatment and (c) female ES cells after 1 day of retinoic acid induced 

differentiation. (d) Images of individual cells that are labeled with Xist (red), RNA 

Polymerase II (green), and DAPI (blue) across different siRNA conditions (rows) in female 

ES cells after 24 hours of retinoic acid treatment. The dashed white region represents the 

outlined Xist coated territory. Error bars: standard error across 50 cells from one 

experiment. NS: not significant, **** p-value<0.001 relative to siControl by unpaired two-

sample t-test. ΔA: Genetic deletion of A-repeat. Scale bars, 5 micrometers. 
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3.2    SHARP is Required for Xist-mediated Recruitment of PRC2 

One of the features of the initiation of X-chromosome inactivation is the recruitment of the 

PRC2 complex across the X-chromosome in an Xist-dependent manner(13-15). While PRC2 

is not required for the initiation of XCI(16, 17) (Figure 2.2b, g), it or its associated 

H3K27me3 repressive chromatin modifications may be involved in establishing an 

epigenetically silenced state(18, 19). Yet how Xist recruits the PRC2 complex across the X-

chromosome is unknown.  

Since we failed to identify any PRC2 components in our RAP-MS data, we reasoned that 

PRC2 recruitment across the X-chromosome might occur through one of the other identified 

direct interacting proteins. Specifically, we hypothesized that SHARP might be required to 

recruit PRC2 to the X-chromosome for three main reasons: (i) SHARP is required for RNA 

PolII exclusion, which has been shown to be sufficient to trigger PRC2 recruitment in other 

contexts(20); (ii) Previous studies have shown that the PRC2 complex can interact with 

various HDAC complexes(21) or may be recruited through HDAC mediated compaction of 

chromatin(22); (iii) SHARP has been shown to interact in vitro with RbAp48(7), a 

component of several chromatin regulatory complexes including the PRC2(23, 24) and 

HDAC3 complexes(25, 26). 

To test this hypothesis, we looked at PRC2 recruitment to the Xist-coated territory. In wild-

type cells, we observe a strong enrichment of EZH2, a component of PRC2, over the Xist-

coated territory after 16 hours of induction (Figure 3.2a). Upon knock down of EED, a 

distinct component of the PRC2 complex that is required for its proper localization to 
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chromatin(23, 24), we observe no enrichment of EZH2 over the Xist cloud at this same 

time point (Figure 3.2a). Similarly, upon knock down of SHARP, we identified a loss of 

EZH2 over the Xist coated territory, of comparable magnitude to that observed in the absence 

of EED (Figure 3.2a). Conversely, upon knock down of LBR, we observed a strong 

enrichment of EZH2 over the Xist coated territory, of comparable magnitude to the levels of 

recruitment in wild-type conditions (Figure 3.2b). To determine whether HDAC3 is required 

for PRC2 recruitment, we knocked down HDAC3 and observed a loss of PRC2 recruitment 

(Figure 3.2a), of comparable magnitude to that observed upon loss of SHARP (Figure 3.2b). 

Together, these results argue that PRC2 recruitment across the X-chromosome is dependent 

on the Xist interaction with SHARP and the activity of HDAC3. Whether this occurs through 

an interaction with HDAC3 (direct recruitment) or due to the HDAC3-induced silenced 

transcription state, chromatin modifications, or compact chromatin structure (indirect 

recruitment) remains unclear. We note that our results are in contrast to previous reports that 

PRC2 is recruited to the X-chromosome through a direct interaction between Ezh2 and the 

A-repeat of Xist(15). Instead, our results are consistent with reports that the deletion of the 

A-repeat, unlike knock down of SHARP or HDAC3, has no significant effect on PRC2 

recruitment(13, 27) (Figure 3.2b). 
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Figure 3.2. SHARP is required for PRC2 recruitment across the Xist-coated territory. 

(a) Images of individual male ES cells that are labeled with Xist (red), Ezh2 (green) and 

DAPI (blue) across different siRNA conditions (rows). Quantification of the level of Ezh2 

within the defined Xist territory normalized to the levels in the control siRNA sample for (b) 

male ES cells and (c) differentiating female ES cells. (d) . Images of individual cells that are 

labeled with Xist (red), Ezh2 (green), and DAPI (blue) across different siRNA conditions 

(rows) in female ES cells after 24 hours of differentiation. Error bars: standard error of the 

mean across 50 cells from one experiment. NS: not significant, ***, p-value<0.005, **** p-

value<0.001 relative to siControl by an unpaired two-sample t-test. Scale bars, 5 

micrometers. The dashed white region represents the outlined Xist coated territory. 
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Methods 

Only the methods that have not yet been described in previous Chapters are listed 

Ezh2 Recruitment and PolII Exclusion 

Cells were stained for Xist RNA and the siRNA-targeted mRNA (FISH) along with Ezh2 or 

PolII (IF) as described above. For image acquisition, the exposure time for each individual 

channel was kept the same across all samples. Images were then analyzed and selected for 

XIST-induced and cells showing knock down of the target mRNA, as described above. 

Specifically, the nuclei of individual cells were identified manually using the DAPI staining. 

We identified the Xist cloud by using an intensity-based threshold to partition the image 

within the nucleus and find contiguous 2-dimensional regions of high intensity. The 

threshold was determined based on Otsu method as previously described50, which splits the 

image into 2 bins – high and low – and identifies a threshold that minimizes the variance 

within the partition. This creates a binary mask on the image. We visually confirmed that this 

binary mask accurately reflected the Xist cloud. We then applied this binary mask to all other 

images in that field of view (PolII or Ezh2) for all images. We then quantified the intensity 

of fluorescence signal by taking the average intensity of all the pixels within the region (i.e. 

PolII or Ezh2, respectively). We computed this average intensity (1 number per cell) across 

all conditions and compared them using a 2-same unpaired t-test relative to the scramble 

sample across 50 single cells.  
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C h a p t e r  4  

LBR IS REQUIRED FOR XIST SPREADING TO ACTIVELY 

TRANSCRIBED GENES ACROSS THE X-CHROMOSOME 

The work was first published as: 

Chen, Chun-Kan, et al. "Xist recruits the X chromosome to the nuclear lamina to enable 

chromosome-wide silencing." Science 354.6311 (2016): 468-472. 

4.1    LBR Requires its Arginine-Serine (RS) Motif to Interact with Xist 

Although the 3-dimensional structure of the nucleus is dynamically organized in different 

cellular conditions (1-3), it is generally unclear whether these structural changes reflect 

distinct regulatory states or whether they lead to changes in gene regulation (2, 4, 5). X 

chromosome inactivation (XCI) represents an ideal model to study the relationship between 

dynamic 3-dimensional nuclear organization and gene regulation because initiation of XCI 

entails chromosome-wide transcriptional silencing (6, 7) and large scale remodeling of the 

3-dimensional structure of the X chromosome (8-12).  

The Xist lncRNA initiates XCI by spreading across the future inactive X chromosome and 

excluding RNA Polymerase II (PolII) to silence chromosome-wide transcription (7, 13-15). 

Xist initially localizes to genomic DNA regions on the X chromosome that are not actively 

transcribed (16-19) before spreading to actively transcribed genes (17). Deletion of a highly 

conserved region of Xist that is required for transcriptional silencing, called the A-repeat 
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region (20), leads to a defect in Xist spreading to actively transcribed genes on the X 

chromosome (17) and spatial exclusion of active genes from the Xist-coated nuclear 

compartment (21). While these results suggest a role for Xist in remodeling the 3-

dimensional structure of the X chromosome, whether these structural changes are required 

for, or merely a consequence of, transcriptional silencing mediated by the A-repeat of Xist 

remains unclear (17, 22). 

Addressing this question requires understanding the molecular components involved in Xist-

mediated transcriptional silencing. Recently, we and others identified the proteins that 

interact with Xist using mass spectrometry (23-25). One of these proteins is the Lamin B 

Receptor (LBR) (23, 25), a transmembrane protein that is anchored in the inner nuclear 

membrane (26), interacts with Lamin B (27, 28), and is required for anchoring chromatin to 

the nuclear lamina (27) – a nuclear compartment that helps shape the 3-dimensional structure 

of DNA (2, 3, 29) and is enriched for silencing proteins (2, 3, 30, 31). Based on these 

observations, along with the observation that induction of XCI leads to recruitment of the 

inactive X-chromosome to the nuclear lamina (11, 12), we hypothesized that the Xist-LBR 

interaction might be important both for shaping nuclear organization and regulating gene 

expression during XCI. 

To determine whether LBR-mediated silencing is due to its interaction with Xist, we sought 

to disrupt its RNA binding region. However, among the 10 Xist-interacting proteins that we 

previously identified (11), LBR is the only protein that does not contain a canonical RNA 

binding domain. We hypothesized that the Arginine-Serine (RS) motif of LBR might be 

required for interacting with Xist because the RS motif is present within a class of mRNA 
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binding proteins involved in splicing (SR proteins) (31–33), is overrepresented in RNA 

binding proteins that lack canonical RNA binding domains (34), and the RS motif of LBR 

was previously shown to interact with RNA in vitro (35). To test this, we generated a 

truncated LBR protein containing a deletion of the RS motif (∆RS-LBR, Figure 4.1a, 

Methods). As a control, we also deleted seven of the eight transmembrane domains in LBR 

(∆TM-LBR, Figure 4.1a, Methods). Consistent with previous observations (32), we find 

that both ∆RS-LBR and ∆TM-LBR localize properly in the nuclear envelope (Figure 4.1b). 

Importantly, ∆RS-LBR did not interact with Xist (~97% reduction relative to wild-type 

levels, Figure 4.1c, Methods) and failed to rescue the silencing defect upon knock down of 

LBR (Figure 4.1d). In contrast, ∆TM-LBR did not impact Xist binding (Figure 4.1c) and 

was able to rescue the silencing defect upon knock down of LBR (Figure 4.1d).  

To ensure that ∆RS-LBR fails to silence X chromosome genes because of its RNA binding 

ability and specifically its interaction with Xist, we tested whether artificially tethering ∆RS-

LBR to the Xist RNA can re-establish Xist-mediated silencing. To do this, we fused 3 copies 

of the viral BoxB RNA aptamer, which binds tightly to the viral λN coat protein (33-35), to 

the 3’ end of the endogenous Xist RNA (Xist-BoxB, Figure 4.1e, Methods) and ensured 

that Xist-BoxB still silences X chromosome genes (Figure 4.1f). Expression of ∆RS-LBR-

λN in Xist-BoxB cells rescued the silencing defect observed upon LBR knock down (Figure 

4.1g). Together, these results demonstrate that the Xist-LBR interaction is required for Xist-

mediated transcriptional silencing (Figure 4.1h). 
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Figure 4.1. LBR requires its RS motif to interact with Xist and silence transcription. 

(a) The domain structure of the LBR protein highlighting the Tudor domain (red), RS motif 

(blue), and 8 transmembrane domains (gray). The regions deleted in ΔRS-LBR (amino acids 

71-90) and ΔTM-LBR (amino acids 237-615). (b) Images of individual cell stained with 

endogenous LMNB1 (green) and FLAG-tag (red) in cells transfected with empty vector 

(WT) or λN-3xFLAG tagged ∆TM-LBR, ∆RS-LBR, or full-length LBR. The λN-3xFLAG 

tagged proteins colocalize with endogenous LMNB1 demonstrating that these mutants 

localize properly in the nuclear envelope. Scale bars: 5 micrometers. (c) Xist RNA levels 

measured by RT-qPCR after immunoprecipitation of a 3x-FLAG tagged LBR mutants 

relative to the input in cells expressing full-length LBR (WT), ΔRS-LBR, or ΔTM-LBR. 

Error bars represent the standard error from three independent IP experiments. NS: not 

significantly different from the input; **** represents values significantly different from the 

input with a p-value<0.001 based on an unpaired two-sample t-test. (d) Relative Atrx mRNA 

expression upon knockdown of the endogenous LBR and expression of full length LBR 

(WT), ΔTM-LBR, or ΔRS-LBR. (e) A schematic of the interaction between λN-fusion 

protein and Xist containing 3 copies of the BoxB RNA aptamer. (f) Quantification of the 

copy number of Atrx mRNA prior to Xist-BoxB induction (-Dox) and after Xist-BoxB 

induction (+Dox). (g) Relative Atrx mRNA expression in Xist-BoxB cells after knockdown 

of the endogenous LBR and expression of GFP-λN (control), LBR-λN, or ΔRS-LBR-λN. (h) 

A schematic of the nuclear lamina and the interaction between LBR and Xist. Error bars: 

SEM across 50 individual cells. NS: not significant, **** p-value<0.001 relative to wild type 

cells (d, f), or cells transfected with GFP-λN (g) by an unpaired two-sample t-test. 
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4.2    LBR Binds to Precise Regions of the Xist RNA that are Required for Silencing 

To determine where LBR binds to Xist, we UV-crosslinked RNA-protein complexes in cells, 

digested RNA into short fragments, immunoprecipitated LBR, gel extracted crosslinked 

RNA-protein complexes, and sequenced the Xist RNA (CLIP (41–43), Methods). We 

identified 3 discrete LBR binding sites (LBS) that are spread across >10,000 nucleotides of 

the Xist RNA (Figure 4.2a). These LBR binding sites are distinct from the binding sites of 

other Xist interacting proteins, including SHARP and PTBP1 (Figure 4.2a). Interestingly, 

one of these LBR binding sites (LBS-1) is present within the ~900 nucleotide region of Xist 

that was previously shown to be required for Xist-mediated silencing (∆A-repeat region) (20) 

(Figure 4.2a).  

We tested LBR binding within a previously generated ∆A-repeat cell line (20) and found that 

LBR binding is lost across the entire Xist RNA (Figure 4.2b). Because SHARP also binds 

within the ∆A-repeat region (24, 44) (Figure 4.2a) and its binding is also disrupted in ∆A-

Xist (24) (Figure 4.2b), we generated a mutant Xist that precisely deletes the LBR binding 

site, but not the SHARP binding site, that overlaps the ∆A-repeat region (∆LBS, Figure 

4.2a). In ∆LBS-Xist, LBR binding was lost across the entire Xist RNA without impacting 

SHARP binding (Figure 4.2b). Importantly, ∆LBS-Xist fails to silence X chromosome 

transcription to a similar level as observed in the ∆A-Xist (Figure 4.2c).  

To ensure that the observed silencing defect in ∆LBS-Xist cells is due to LBR binding alone 

and not due to disruption of another unknown protein interaction, we tested whether we could 

rescue the observed silencing defect by re-establishing the ∆LBS-LBR interaction. To do 
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this, we generated an endogenous ∆LBS-BoxB Xist RNA (Methods) and confirmed that 

expression of LBR-λN fusion protein, but not LBR fused to a different RNA binding domain 

(MS2-coat protein(45)), was able to rescue the silencing defect observed in ∆LBS-BoxB 

cells (Figure 4.2d, Methods). In contrast, expression of other silencing proteins fused to λN, 

such as SHARP and EED, did not rescue the observed silencing defect (Figure 4.2d). 

Together, these results demonstrate that the LBR binding site that overlaps the ∆A-repeat 

region of Xist is required for silencing.  
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Figure 4.2. LBR binds to precise regions of the Xist RNA that are required for silencing. 

(a) CLIP data plotted across the Xist RNA for LBR, SHARP, and PTBP1 proteins. The 

values represent fold-enrichment at each position on Xist normalized to a size-matched input 

RNA control. Input represents the total RNA control for the LBR sample. Bottom: A 

schematic of the annotated repeat regions on the Xist RNA (WT) and the locations of the 

deleted regions in ΔA (nucleotides 1-937) and ΔLBS (nucleotides 998-1782). (b) Xist RNA 

enrichment level measured by RT-qPCR after immunoprecipitation of endogenous LBR or 

SHARP in wild-type, ΔA, or ΔLBS cells. Error bars: SEM from four independent IP 
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experiments. (c) Relative Atrx mRNA expression in wild-type, ΔA, or ΔLBS-Xist cells. 

(d) Expression of ΔLBS-Xist with a 3x-BoxB fusion (ΔLBS-BoxB) along with expression 

of GFP-λN (control), EED-λN, SHARP-λN, or LBR-λN. As an additional control, we 

expressed LBR fused with the bacteriophage MS2 Coat Protein (LBR-MCP). Error bars: 

SEM across 50 individual cells. NS: not significant, *** p-value<0.005, **** p-value<0.001 

relative to wild type cells (b, c), or cells transfected with GFP-λN (d) by an unpaired two-

sample t-test. 
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4.3    LBR is Required for Recruitment of the Xist-coated Compartment to Nuclear 

Lamina 

Because induction of XCI is known to lead to recruitment of the inactive X chromosome to 

the nuclear lamina (11, 12, 46), we hypothesized that the Xist-LBR interaction might be 

required for mediating these structural changes. To test this, we measured the distance 

between the Xist-coated nuclear compartment and Lamin B1 in the nucleus using RNA FISH 

and immunofluorescence (Figure 4.3a, Methods). Specifically, we computed the minimum 

distance between the edge of the Xist compartment and Lamin B1. To account for differences 

in nuclear size, we normalized the measured distance by the nuclear radius.  

Upon Xist induction in wild-type cells, we find that the Xist compartment overlaps Lamin 

B1 signal in the vast majority of wild-type cells (~88%, Figure 4.3). In contrast, in ∆LBS-

Xist cells, which disrupt the Xist-LBR interaction, the vast majority of cells (~85%) 

displayed a clear separation between the Xist-coated compartment and Lamin B1 (Figure 

4.3), demonstrating a ~17-fold increase in the distance between the Xist compartment and 

Lamin B1 relative to the distances observed for wild-type Xist. In ∆A-Xist cells, which also 

ablate the Xist-LBR interaction, we observe a comparable distance distribution between Xist 

and Lamin B1 to that observed in the ∆LBS-Xist (Figure 4.3). These results demonstrate 

that recruitment of the inactive X chromosome to the nuclear lamina is an active process that 

is directly mediated by the Xist RNA through a direct interaction with LBR.  

Having demonstrated that the Xist-LBR interaction is important for recruitment of the X 

chromosome to the nuclear lamina, we sought to explore why LBR is important for Xist-



 

 

81 
mediated transcriptional silencing. One possibility is that recruitment of the X 

chromosome to the nuclear lamina, a nuclear territory enriched for silenced DNA and 

repressive chromatin regulators(36), acts to directly silence transcription. Consistent with 

this notion, recruitment to the lamina has been shown in some cases to be sufficient to silence 

transcription (37, 38). To test this hypothesis, we explored the nuclear lamina association 

upon knock down of SHARP, which we previously showed is required for Xist-mediated 

transcriptional silencing (23, 24, 39, 40). We found that in the absence of SHARP, the Xist-

coated compartment is still localized at the nuclear lamina, demonstrating a comparable 

distance distribution between Xist and Lamin B1 to that observed for wild-type Xist (Figure 

4.3). These results demonstrate that Xist-mediated recruitment of the X chromosome to the 

lamina does not directly lead to transcriptional silencing. 
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Figure 4.3. Xist-mediated recruitment of DNA to the nuclear lamina is required for 

transcriptional silencing. (a) Images of Xist (red), Lamin B1 (green) and DAPI (blue) 

across different conditions. Scale bars: 5 micrometers. (b) The cumulative frequency 

distribution of normalized distances between Xist and Lamin B1 across 40 individual cells 

across different conditions. Dashed lines represents a second independent experiment. 
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4.4    LBR is Required for Xist Spreading to Actively Transcribed Genes across the 

X-Chromosome 

The A-repeat region of Xist was previously shown to lead to an Xist spreading defect such 

that genes that are actively transcribed prior to initiation of XCI are no longer repositioned 

into the Xist compartment (17, 21). Because LBR binds within the previously deleted A-

repeat region of Xist (∆A), we hypothesized that LBR-mediated recruitment of the X 

chromosome to the nuclear lamina might act to reposition actively transcribed genes into the 

Xist-silenced compartment. 

To test this hypothesis, we explored the localization of Xist across the X chromosome using 

RAP-DNA. RAP-DNA enables comprehensive mapping of Xist to all genomic DNA sites – 

including active and inactive genes as well as intergenic regions. We confirmed that Xist 

RNA localization is depleted over large regions that contain actively transcribed genes, but 

not inactive genes, in ∆A-Xist expressing cells(17). In ∆LBS-Xist cells or upon knock down 

of LBR, we observed a comparable Xist localization defect as in ∆A-Xist, with strong 

depletion of Xist observed across all actively transcribed genes(17) (Figure 4.4a, b). To 

ensure that this result is specific to LBR, we knocked down SHARP, a protein that is also 

required for silencing and that also interact with the A-repeat region of Xist. Upon knock 

down of SHARP, we did not observe an Xist RNA localization defect; instead Xist 

localization was comparable to that observed in wild-type conditions (Figure 4.4b). 

To determine whether this spreading defect is due to a failure to reposition actively 

transcribed genes into the Xist-coated compartment, we measured the position of active 
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genes relative to the Xist coated compartment using RNA FISH (Figure 4.4c, Methods). 

We labeled the genomic locus of an actively transcribed X chromosome gene (Gpc4) using 

probes against its intronic region and calculated the distance to the Xist compartment 

(Methods). As a control, we measured the distance between the genomic locus of an 

autosomal gene (Notch2), which should always be excluded from the Xist compartment. In 

∆A cells, the distance between the Xist compartment and the Gpc4, Mecp2, or Pgk1 loci was 

comparable to the distance between Xist and the autosomal locus (Figure 4.4d, e). Similarly, 

in ∆LBS cells or upon knock down of LBR, we observed a comparably large distance 

between the Gpc4, Mecp2, or Pgk1 loci and the Xist compartment (Figure 4.4d, e). In 

contrast, upon knockdown of SHARP, we found that the Gpc4 locus overlapped with the 

Xist compartment in the vast majority (~80%) of all cells (Figure 4.4d, e) displaying a 

comparable frequency of overlap to that observed for the Xist genomic locus itself. 

Together, these results demonstrate that the Xist-LBR interaction is required for Xist 

spreading to actively transcribed DNA loci. Because Xist can still spread to active genes 

upon knock down of SHARP, this argues that spreading to active genes occurs independently 

of RNA PolII exclusion and that both roles – spreading and RNA PolII exclusion – are 

required for silencing. As both roles are mediated by the A-repeat, this would explain why 

the A-repeat mutant fails to display an RNA PolII exclusion defect, as observed upon knock 

down of SHARP, because in the absence of Xist spreading to active genes, SHARP cannot 

localize to and exclude PolII from these active genes. 
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Fig. 4.4. LBR is Required for Xist Spreading to Actively Transcribed Genes across the 

X-Chromosome. (a) Xist RNA localization as measured by RAP-DNA for wild type (top), 
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ΔLBS-Xist (middle), and the smoothed fold change (bottom) across a region of the X 

chromosome containing active (red) and inactive (blue) genes. Dashed line: average Xist 

enrichment in wild type cells. (b) Aggregate Xist enrichment relative to the genomic 

locations of highly active genes (dark red, RPKM > 5), all active genes (red, RPKM >1), and 

inactive genes (blue) on the X-chromosome for ΔLBS and SHARP knockdown cells 

compared to wild type cells. Shaded areas represent 95% confidence interval. (c) Images of 

Xist (red), Gpc4 locus (green) and DAPI (blue) across different cell lines (rows) after Xist 

induction for 1 or 16 hours. Scale bars: 5 micrometers. (d) The median distance from Gpc4 

locus to the Xist-compartment after Xist induction for 1, 3, 6, and 16 hours. Error bars 

represent the standard error of the median across 50 individual cells. ** p-value<0.01 relative 

to 1-hour induction by an unpaired two-sample t-test. (e) The median distance from the 

Mecp2 and Pgk1 locus to the Xist compartment after Xist induction for 16 hours across 

different conditions. Error bars represent the standard error of the median across 50 

individual cells. ** p-value<0.01, *** p-value<0.005 relative to siSHARP by an unpaired 

two-sample t-test. (F) A model for how Xist-mediated recruitment to the nuclear lamina 

enables spreading to active genes and transcriptional silencing on the X chromosome.  
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4.5    Recruitment to the Nuclear Lamina Enables Xist Spreading and Silencing of 

Active Genes 

Having established that LBR is required for Xist-mediated transcriptional silencing, 

recruitment of the Xist-coated compartment to the nuclear lamina, and for Xist RNA 

spreading to actively transcribed genes, we hypothesized that Xist-mediated recruitment of 

DNA to the nuclear lamina enables Xist to spread to active genes and silence transcription. 

We reasoned that if we recruit Xist to the nuclear lamina, independent of LBR, then Xist will 

spread to active genes and rescue Xist-mediated transcriptional silencing (Figure 4.5a). To 

test this, we used our ∆LBS-BoxB Xist, which fails to interact with LBR, to create an 

interaction between Xist and other components of the nuclear lamina that on their own do 

not impact X chromosome silencing in normal conditions. Specifically, we created a fusion 

between Lamin B1 and λN and confirmed that expression of this fusion protein in ∆LBS-

BoxB Xist cells led to recruitment of the Xist-compartment to the nuclear lamina using RNA 

FISH and immunofluorescence of Lamin B1 (Figure 4.5b-d). 

Having synthetically recruited Xist to the nuclear lamina, we tested whether Xist can spread 

to actively transcribed genes using RAP-DNA. Indeed, tethering Xist to the nuclear lamina 

is sufficient to enable Xist to spread to active genes, with Xist localizing to active genes and 

inactive genes at comparable levels, similar to that observed in wild-type conditions (Figure 

4.5e). Consistent with a functional requirement for Xist spreading across active genes to 

enable X chromosome silencing, we find that tethering Xist to the nuclear lamina also rescues 

the Xist silencing defect observed in ∆LBS cells to the same extent as that observed after 

rescuing directly with LBR-λN (Figure 4.5f). 
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Together, these results demonstrate that Xist-mediated recruitment of the X chromosome 

to the nuclear lamina leads to Xist spreading to active genes, and through this enables Xist-

mediated transcriptional silencing. 
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Figure 4.5. Recruitment to the nuclear lamina enables Xist spreading and silencing of 

active genes. (a) A schematic illustrating the tethering of ΔLBS-BoxB to the nuclear lamina 

using the LaminB1-λN fusion protein. (b) Images of individual cell stained with endogenous 

LBR (green) and FLAG-tag (red) in cells transfected with empty vector (WT) or λN-
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3xFLAG tagged LMNB1. The λN-3xFLAG tagged LMNB1 localizes properly in the 

nuclear envelope and colocalizes with endogenous LBR. Scale bars: 5 micrometers. (c) 

Images of Xist (red), Lamin B1 (green) and DAPI (blue) across different conditions. Scale 

bars: 5 micrometers. (d) The cumulative frequency distribution of normalized distances 

between Xist and Lamin B1 across 40 individual cells across different conditions. Dashed 

lines represent a second independent experiment. (e) Aggregate Xist enrichment relative to 

the genomic locations of highly active genes (dark red, RPKM > 5), all active genes (red, 

RPKM >1), and inactive genes (blue) on the X-chromosome ΔLBS-BoxB + LMNB1-λN 

cells compared to wild type cells. Shaded areas represent 95% confidence interval. (f) Three 

independent replicates (two for LMNB1-λN) showing the copy number of Atrx mRNA 

molecules after induction of Xist normalized to the number of the mRNA molecules prior to 

Xist induction in cells expressing ΔLBS-BoxB Xist transfecting with LBR-MCP, LBR-λN, 

λN-LMNB1 or LMNB1-λN fusion protein. Error bars represent the standard error across 50 

individual cells. NS: not significantly different from 1; **** represents values significantly 

different from 1 with a p-value<0.0001 based on a one-sample t-test. 
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Methods 

Only the methods that have not yet been described in previous Chapters are listed 

LBR knockout female ES cells  

We generated an LBR knockout in female ES cells using the CRISPR-Cas9 system. 

Specifically, we co-transfected a construct expressing Cas9 driven by a pCAG promoter 

and a pool of sgRNAs targeting an upstream and downstream region of LBR locus to 

delete the entire genomic locus (upstream sgRNA sequences: 

GGCGATGATTCAAAAGGTCG, AGCGCCGGCGATGATTCAAA, 

GGGCTCCGGCCTGGGCCTGC, TGAAATAAGAGAATGTTATA; downstream 

sgRNA sequences: TTTAACCTGTTTTTAGGTCT, AGGCTGTCTGGTCAGAATCC, 

CGAAGAAACCTCCCAGTCAC, CATTTTTGGTTTATTCATGG). We then picked 

single colonies from transfected cells and verified LBR knockout using PCR and Sanger 

sequenced successful homozygous knockout lines with primers flanking deletion sites. We 

confirmed that this deletion leads to a complete loss of function of LBR using RNA FISH 

and immunofluorescence of the protein. 

Integrating the BoxB aptamer sequence into Xist  

We knocked in 3 copies of the viral BoxB RNA aptamer, which binds tightly to the viral 

λN coat protein (38–40), into nucleotide 16,523 of the endogenous Xist RNA in pSM33 ES 

cell line using CRISPR-mediated homologous recombination. Specifically, we co-

transfected a construct expressing Cas9 driven by a pCAG promoter, a sgRNA targeting 
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the 3’ region of the Xist locus (sgRNA sequence: CCTCATCCTCATGTCTTCTC), and 

a single strand DNA ultramer (IDT) containing a 3x-BoxB sequence 

(GGGCCCTGAAGAAGGGCCCATGGGCCCTGAAGAAGGGCCCATAGGGCCCTG

AAGAAGGGCCC; underlined nucleotides denote the BoxB sequence) flanked with 70 

nucleotides of upstream and downstream homologous sequence of the insertion site. We 

then picked single colonies from transfected cells and verified BoxB integration using PCR 

and Sanger sequenced successful integration lines with primers flanking the integration site 

and confirmed correct insertion. We ensured that the Xist-BoxB was still able to silence the 

X chromosome by expressing it and measuring transcriptional silencing of Atrx. 

UV crosslinking 

Cells were washed once with PBS and then crosslinked on ice using 0.4 Joules/cm2 (UV4k) 

of UV at 254 nm in a Spectrolinker UV Crosslinker. Cells were then scraped from culture 

dishes, washed once with PBS, pelleted by centrifugation at 1500 × g for 4 minutes, and flash 

frozen in liquid nitrogen for storage at – 80 ˚C.  

Immunoprecipitation and RT-qPCR  

Mouse ES cells were induced then crosslinked with UV4k as described above. Pellets of 

20M cells were lysed and treated with TURBO DNase (Ambion) and incubated for 10 

minutes at 37 ˚C in an Eppendorf Thermomixer C to digest genomic DNA. The lysate was 

pre-cleared by incubation with 180 μL of Dynabeads Protein G magnetic beads (Life 

Technologies). Meanwhile, 10 μg of antibody for immunoprecipitation was coupled to 75 μl 

Protein G magnetic beads. After pre-clearing was completed, the lysate was then mixed with 
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the appropriate antibody-coupled Protein G magnetic beads and incubated overnight at 4 

˚C on a Hulamixer sample mixer (Life Technologies) for protein capture. After 

immunoprecipitation, beads were washed with a wash buffer of 1× PBS with detergents and 

then captured nucleic acids were eluted by digesting all proteins with 5.6 U proteinase K 

(New England Biolabs). Eluted RNA was purified using the RNA Clean and Concentrator-

5 Kit (Zymo Research) and RT-qPCR was performed as described previously (7) to evaluate 

RNA enrichment. The antibodies used for immunoprecipitation were anti-FLAG® M2 

(Sigma-Aldrich; F1804) (for ΔTM- and ΔRS-LBR transfected cells), anti-SHARP (Bethyl; 

A301-119A), and customized LBR antibody from GenScript (LBR #4; 540774‐1). 

Crosslinking and Immunoprecipitation (CLIP) analysis 

We crosslinked 6 hour doxycycline-induced pSM33 mouse male ES cells with 0.4 J/cm2 of 

UV254. Cells were lysed and RNA was digested with RNase I to achieve a size range of 

100-500 nucleotides in length. Lysate preparations were precleared by mixing with Protein 

G beads for 1 hr at 4C. For each CLIP sample, target proteins were immunoprecipitated from 

20 million cells with 10 ug of antibody and 75 ul of Protein G beads. The antibodies were 

pre-coupled to the beads for 1 hr at room temperature with mixing before incubating the 

precleared lysate to the beads-antibody overnight at 4C. After the immunoprecipitation, the 

beads were washed four times with High salt wash buffer (50 mM Tris-HCl pH 7.4, 1 M 

NaCl, 1 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) and four times with 

Wash buffer (20 mM Tris-HCl pH 7.4, 10 mM MgCl2, 0.2% Tween-20). RNAs were then 

eluted with NLS elution buffer (20 mM Tris-HCl pH 7.5, 10 mM EDTA, 2% N-

lauroylsacrosine, 2.5 mM TCEP) with 100 mM DTT. Samples were then run through a 
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standard SDS-PAGE gel and transferred to a nitrocellulose membrane, and a region 75 

kDa above the molecular size of the protein of interest was isolated and treated with 

Proteinase K (NEB) followed by phenol/chloroform/isoamyl alcohol (pH 6.5) extraction to 

isolate the RNAs. Extracted RNAs were then purified with RNA Clean & Concentrator™-5 

(Zymo). After a dephosphorylation treatment, the RNA in each sample was ligated to a 

mixture of barcoded adapters in which each adapter had a unique barcode identifier 

according to our Massively Multiplexed RNA Sequencing method (25). After ligation, beads 

were rinsed with 1x PBS and detergents and then 5x PBS and detergents prior to pooling 3-

4 IPs per new tube. The proteins and RNA were then eluted from the Protein G beads with 

6M urea and 40 mM DTT at 60C. Protein-RNA complexes were separated away from free 

RNA and the proteins were then digested with Proteinase K. From the barcoded RNA in each 

pool, we generated Illumina sequencing libraries as previously described(26). 

Input samples: As a control, we sequenced an “input” RNA control for each 

immunoprecipitated protein. To do this, we saved 10% of the total cellular lysate prior to the 

immunoprecipitation step. These samples were then run through an SDS-PAGE gel 

alongside the immunoprecipitated sample and gel extracted from the identical region as the 

protein analyzed. We then made sequencing libraries from these samples as described above. 

Analysis of CLIP Data 

We computed and visualized the enrichment for any RNA region by normalizing the number 

of reads upon immunoprecipitation with a specific protein relative to the number of reads in 

its size-matched input control (input sample). Specifically, we counted the total number of 
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reads overlapping the RNA region in either the immunoprecipitation sample or the input 

control. To account for differences in read coverage between samples, each of these numbers 

was normalized to the total number of reads within the same experiment. This generates a 

normalized score, per region, within each sample. We then computed an enrichment metric 

by taking the ratio of these normalized values (IP/Input).  

We identified protein binding sites on the Xist RNA by identifying regions that were enriched 

relative to the same region in the input control (“differential enrichment”) and also was 

enriched relative to all other regions on the remainder of the Xist RNA (“local enrichment”). 

The differential enrichment accounts for biases in the size-selected input sample that would 

lead to a pile up of reads in specific regions of the RNA, but that do not reflect true protein 

binding sites. In contrast, the local enrichment accounts for cases where a given RNA might 

have higher overall levels of protein binding relative to the input. To compute significant 

enrichment, we computed the differential enrichment as defined above (IP/Input) for each 

window (window size=100 nucleotides). We computed the local enrichment for each region 

by taking the normalized number of reads for each region (IP) and dividing it by the 

normalized number of reads over the entire Xist RNA. To make these rates comparable, we 

divided each number by their respective region length prior to taking the ratio. We then 

generated 1,000 random permutations of the reads in the IP samples and paired input samples 

across the Xist RNA. For each permutation, we computed the differential and local 

enrichments and generated an empirical distribution of the maximum value observed for each 

permutation. We assigned a multiple-testing corrected p-value to each region by comparing 
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the observed differential and local enrichment values to these permutation distributions. 

We identified significant windows that had a differential p-value <0.01 and a local p-

value<0.01. 

We identified three distinct LBR binding sites from 535-1608 nucleotides (LBS-1), 9506-

10245 nucleotides (LBS-2), and 11732-11956 nucleotides (LBS-3). We also identified a 

SHARP binding site from 317-1056 nucleotides and PTBP1 binding site from 10859-11344 

nucleotides on Xist. 

Generating ΔLBS and ΔLBS-BoxB Xist 

We generated ΔLBS and ΔLBS-BoxB using CRISPR-mediated knock out. To generate 

ΔLBS and ΔLBS-BoxB cells, mouse pSM33 ES cells and Xist-BoxB cells were transfected 

with two sgRNAs flanking the LBS-1 region of Xist (sgRNA sequence: 

CACCGAGGAGCACAGCGGAC and TAAGGACGTGAGTTTCGCTT) and co-

transfected along with the Cas9 construct described above to create a deletion of LBS-1 by 

non-homologous end joining. We isolated single colonies from the transfected cells for both 

cell lines and verified that the LBS-1 region was deleted from the genome using PCR and 

Sanger sequencing with primers flanking the A-repeat region of Xist. Inversed PCR using 

the primer inside of deleted region and Sanger sequencing showed that the deleted region 

had been inserted in Chr12. We confirmed that the ΔLBS Xist transcript lacked of the deleted 

region and the deleted region was not expressed from its inserted locus by RNA-seq. We 

ensured that the ΔLBS affected binding of the LBR protein using IP-qPCR and CLIP 

sequencing across the entire Xist RNA. We also ensured that there was no impact on SHARP 
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binding using IP-qPCR. The ΔLBS RAP experiment is done in ΔLBS-BoxB cells as a 

better control for LMNB1-λN rescuing experiment. 

dCas9-KRAB silencing 

To generate stable LBR and SHARP knock down cells, we co-transfected a puromycin 

resistant construct expressing dCas9-KRAB driven by an Ef1a promoter and a guide RNA 

with scaffolding structure targeting the region near the transcription start site of LBR (sgRNA 

sequence: CGGGACTCCGCCGCGTG) or SHARP (sgRNA sequence: 

CGGTGGCGTCGGCAGCGG). Transfected cells were selected on 1 µg/mL puromycin 

(Sigma-Aldrich) for four days to enrich for cells that contain the dCas9-KRAB. We used 

FISH to verify that >90% of these puro-resistant cells had no detectable amount of mRNA 

after four days of puromycin selection. 

LBR Protein mutagenesis 

A human cDNA containing the full-length ORF of LBR was obtained from the DNASU 

plasmid repository as a Gateway entry clone and inserted into the pCAG-GW-λN-3xFLAG-

BSD vector using an LR recombination reaction (Invitrogen). To generate ΔRS-LBR and 

ΔTM-LBR, λN-3xFLAG tagged full-length LBR construct was truncated using PCR-

mediated deletion with primers flanking the deletion region. 

Expression of cDNA rescue constructs 

Mouse ES cells were electroporated using the Neon transfection system (Invitrogen) with 

mammalian expression vector (pCAG-GW-λN-3xFLAG-BSD vector) expressing human 
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ΔRS-LBR, ΔTM-LBR, or full-length LBR construct from above. We knocked down 

endogenous LBR by treating cells with siRNAs pool from Dharmacon (ON-TARGETplus 

SMARTpool siRNAs) targeting only mouse LBR, but not human LBR. We ensured that the 

siRNAs targeted the mouse LBR specifically by ensuring that the human full-length LBR 

construct could rescue cells with knock down of endogenous LBR. 

Generation of λN-3xFLAG epitope tagged proteins 

For λN-3xFLAG-tagged protein expression and immunoprecipitation, mouse ES cells were 

electroporated using the Neon transfection system (Invitrogen) with mammalian expression 

vector (pCAG-GW-λN-3xFLAG-BSD) encoding expression of a C-terminal λN-3xFLAG 

tagged ORF driven by CAG. Human ORFs of GFP, LBR, EED1 and LMNB1 were obtained 

from the DNASU plasmid repository as Gateway entry clones and inserted into pCAG-GW-

λN-3xFLAG-BSD vector using an LR recombination reaction (Invitrogen). For λN-

3xFLAG-LMNB1, the LMNB1 ORF was inserted into the vector described above but with 

a N-terminal λN-3xFLAG tag instead (pCAG-λN-3xFLAG-GW-BSD) using an LR 

recombination reaction (Invitrogen). Mouse SHARP ORF was obtained by RT-PCR from 

pSM33 total RNA using SHARP specific primers. The SHARP ORF was then cloned into a 

pENTR™/D-TOPO Gateway entry clone (Invitrogen) and inserted into the pCAG-GW-λN-

3xFLAG-BSD vector as described above. Transfected cells were selected on 4 ug/mL 

Blasticidin (InvivoGen) to enrich for cells expressing tagged proteins. For LBR-MCP, the 

LBR ORF was inserted into Ef1a-GW-MCP-V5-Neo vector using an LR recombination 

reaction (Invitrogen) and selected with 200 ug/mL Geneticin/G418 (Invitrogen). For 
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analysis, we used immunofluorescence staining with antibodies against 3xFLAG or V5 

epitope (described below) to select for cells expressing tagged proteins. 

We verified that λN-3xFLAG tagged proteins were still functional by ensuring that they 

could rescue knock down of the endogenous protein. 

Western blotting 

pSM33 cells were lysed in buffer containing 50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1% 

NP-40, 0.5% sodium deoxycholate and protease inhibitor cocktail (CalBiochem; 539134) 

and sonicated using a Branson Sonifier at 25 watts for 20 seconds (0.7 seconds on, 3.3 

seconds off) on ice. ~30 μg of total protein was separated by SDS–PAGE and transferred to 

nitrocellulose membranes followed by blocking with Odyssey Blocking Buffer (Licor, 927-

40000). Primary antibodies were diluted in blocking buffer as follows: anti-FLAG® M2 

(Sigma-Aldrich; F1804) (1:1000), anti-lamin B receptor antibody (Abcam; ab122919) 

(1:1500), anti-V5 tag antibody (Abcam; ab27671) (1:1000) and anti-actin antibody (Abcam; 

ab3280) (1:1500). Secondary antibodies were diluted in 0.1% Tween-20 diluted in PBS as 

following: IRDye® 680RD Goat anti-Mouse IgG (H + L) (LI-COR; 926-68070) (1:10000) 

and IRDye® 800CW Goat anti-Rabbit IgG (H + L) (LI-COR; 926-32611) (1:10000). Blots 

were imaged with Odyssey® CLx Imager (LI-COR Biosciences) and the intensity of each 

band was quantified using ImageJ. 

 

Single molecule RNA FISH 
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Single molecule RNA Fluorescence in situ hybridization (FISH) experiments were done 

using QuantiGene ViewRNA ISH Cell Assay (Affymetrix) and QuantiGene ViewRNA ISH 

Cell 740 Module (Affymetrix) according to manufacturer’s protocol. Specifically, cells fixed 

on coverslips were first permeabilized with Detergent Solution QC at room temperature for 

5 min, and then incubated with desired mixture of probe set (Affymetrix) in Probe Set Diluent 

QF at 40°C for 3 h, followed by incubation with PreAmplifier Mix at 40°C for 30 min, 

Amplifier Mix at 40°C for 30 min, and Label Probe Mix at 40°C for 30 min sequentially. 

For DAPI staining, coverslips were incubated in 30 nM DAPI in PBS at room temperature 

for 15-20 min. Probe sets and conjugated fluorophores (excitation wavelengths) for FISH 

were TYPE 1-XIST (550 nm), TYPE 4-GPC4 (488 nm), TYPE 10-ATRX (740 nm), and 

TYPE 6-SHARP, LBR, LMNB1, EMD (650 nm). 

Immunofluorescence and RNA FISH 

For immunofluorescence (IF), cells were fixed on coverslips and permeabilized with 0.1% 

Triton-X in PBS at room temperature for 10 min, and blocked with 1X blocking buffer 

(Abcam; ab126587) or 5% normal goat serum in 0.1% Triton-X in PBS at room temperature 

for 30 min. Cells were then incubated with primary antibodies at room temperature for 1 h, 

followed by washes with 0.1% Triton-X in PBS and incubation with secondary antibodies at 

room temperature for 1 h. The samples were then processed using the RNA FISH protocol, 

as described above. Primary antibodies and the dilution used for IF were anti-Lamin B1 

(Abcam; ab16048) (1:50), and anti-FLAG® M2 (Sigma-Aldrich; F3165) (1:50), and anti-

Lamin B Receptor antibody (Abcam; ab122919) (1:100). Secondary antibodies and the 

dilution used for IF were Alexa Fluor® 488 F(ab’)2 fragment of goat anti-rabbit IgG (H+L) 
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(Life Technology; 1618692) (1:100), highly x-ads DyLight® 650 goat anti-Rabbit IgG 

(H&L) (Bethyl; A120-201D5) (1:200), DyLight® 650 goat anti-Mouse IgG (H&L) (Bethyl; 

A120-201D3) (1:200), DyLight® 550 goat anti-Rabbit IgG (H&L) (Bethyl; A90-516D5) 

(1:200) and DyLight® 650 goat anti-Mouse IgG (H&L) (Bethyl; A90-516D3) (1:200). 

Microscopic Imaging 

FISH, IF/FISH and X-chromosome paint samples were imaged using a Leica DMI 6000 

Deconvolution Microscope with the Leica HC PL APO 63x/1.30 GLYC CORR CS2 

objective. Samples stained with TYPE 10-ATRX (740 nm) were imaged using Nikon Ti 

Eclipse with the Nikon CFI Plan Apochromat λ DM 60x/1.40 oil objective. Images were 

projected with maximum projection (3 μm; step size, 0.2 μm). Samples for 3D deconvolution 

was imaged using Leica DMI 6000 Deconvolution Microscope with the Leica HC PL APO 

63x/1.30 GLYC CORR CS2 objective (15 μm; 0.02 μm step size). 3D deconvolution images 

were processed using Huygens Professional (SVI; v15.05) with the built-in theoretical point 

spread function and the classic maximum likelihood estimation method for restoration. A 

manually defined signal to noise ratio value was applied for each fluorescent channel 

respectively. Samples stained with LMNB1 or LBR were imaged using a Zeiss LSM 880 

Laser scanning confocal system with the Airyscan super-resolution module, mounted on an 

upright Axio Examiner Z1 microscope. We used a Plan-Apochromat 63x/1.40 NA Oil DIC 

f/ELYRA objective and the Airyscan module to collect super-resolution images. Single Z-

section was used for these images. 

X-chromosome Silencing Assay 
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Cells were stained for Xist RNA, Gpc4 mRNA, Atrx mRNA and siRNA-targeted mRNA 

by FISH and imaged. Images were then analyzed using Matlab R2013b (described below). 

Cells were selected if the copy number of the targeted mRNA was less than 30% of the level 

of the no siRNA treated cells and if they induced Xist expression. Within these cells, the 

copy number of Gpc4 mRNA and Atrx mRNA were quantified using a peak finding method 

(described below) and compared across conditions. We quantified mRNA levels for 50 

individual cells. We also evaluated Xist expression in siRNA-treated cells, and observed no 

difference in the percentage of cells that induced Xist expression in any of the siRNA 

conditions relative to untreated cells. 

The mean and the variance of the ratio (+Dox/-Dox) were calculated using the standard 

Taylor approximation method for estimating the significance of ratios. Accordingly, we 

calculated the average, standard deviation, and standard error of the mean as follows. 

The average (𝜇𝜇) is defined as: 

𝜇𝜇 �
+𝐷𝐷𝐷𝐷𝐷𝐷
−𝐷𝐷𝐷𝐷𝐷𝐷�

=  
𝜇𝜇(+𝐷𝐷𝐷𝐷𝐷𝐷)
𝜇𝜇(−𝐷𝐷𝐷𝐷𝐷𝐷)

+
𝜇𝜇(+𝐷𝐷𝐷𝐷𝐷𝐷)
𝜇𝜇(−𝐷𝐷𝐷𝐷𝐷𝐷)3 𝜎𝜎

2(−𝐷𝐷𝐷𝐷𝐷𝐷) 

The standard deviation (𝜎𝜎2) is defined as: 

𝜎𝜎2 �
+𝐷𝐷𝐷𝐷𝐷𝐷
−𝐷𝐷𝐷𝐷𝐷𝐷�

=  
𝜎𝜎2(+𝐷𝐷𝐷𝐷𝐷𝐷)
𝜇𝜇(−𝐷𝐷𝐷𝐷𝐷𝐷)2 +

𝜇𝜇(+𝐷𝐷𝐷𝐷𝐷𝐷)2

𝜇𝜇(−𝐷𝐷𝐷𝐷𝐷𝐷)4 𝜎𝜎
2(−𝐷𝐷𝐷𝐷𝐷𝐷) 

and the standard error of the mean is defined as: 
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𝑆𝑆𝑆𝑆𝑆𝑆 �
+𝐷𝐷𝑜𝑜𝑜𝑜
−𝐷𝐷𝐷𝐷𝐷𝐷�

= �𝜎𝜎
2 �+𝐷𝐷𝐷𝐷𝐷𝐷
−𝐷𝐷𝐷𝐷𝐷𝐷�
50

2

  

Quantifying mRNAs by single molecule FISH 

All image analysis was carried out using Matlab (version R2013b) utilizing built-in functions 

from the Image Processing toolbox. Images were first filtered using a two-dimensional 

median filter to remove background. Cell boundaries were outlined manually, guided by 

DAPI staining, to create a binary mask and applied to the various channels from the same 

field of view. Top-hat morphological filtering, a background subtraction method that 

enhances the individual focal spots, was applied to the images (27). The spots were then 

identified using a 2D peak finding algorithm that identifies local maximal signals within the 

cell. Once regional maxima were identified, the number of spots was counted for each cell. 

For better visualization of spots of mRNAs, we enhanced the spot size of the images using 

Fiji (ImageJ v1.51d) Maximum Filter plugin with radius of 1.0 pixel for Gpc4 and/or Atrx 

channel.  

Calculating distance between Xist RNA compartment and Lamin B1 

The nuclei of individual cells were identified manually using the DAPI staining. We 

identified the Xist compartment by either staining for Xist RNA (FISH) or X chromosome 

DNA (chromosome paint) along with immunofluorescence for Lamin B1 protein. We 

defined the compartment by identifying a region in the nucleus using an intensity-based 

threshold to partition the image within the nucleus and find contiguous 2-dimensional regions 

of high intensity. The threshold was determined based on Otsu method as previously 
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described (28), which splits the image into 2 bins – high and low – and identifies a 

threshold that minimizes the variance within the partition. This creates a binary mask on the 

image. We visually confirmed that this binary mask accurately reflected the Xist 

compartment, X chromosome, or Lamin B1 region. The distance between the Xist 

compartment and Lamin B1 was determined by calculating the distance of each pixel 

between Xist or the X chromosome and Lamin B1 and finding the minimum value with a 

customized Fiji macro script. The area of the nucleus (Area) was measured using Fiji, and 

the radius of the nucleus (r) was calculated using 𝑟𝑟 = �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝜋𝜋⁄ . We set the distance as zero 

if the Lamin B1 fluorescence signal overlapped with the fluorescence signal detect for Xist 

or the X chromosome (respectively). 

Calculating distance between the Xist compartment and genomic loci 

The nuclear area and Xist compartment were identified using the method described above. 

Genomic loci were determined by RNA FISH with probes against the intronic region of the 

genes using smFISH (29) as described above (TYPE 4-GPC4 (Intron1) (488 nm)). We then 

identified the spot with Analyze Particle function in Fiji and selecting the spot with highest 

fluorescent intensity within the nucleus. We discarded the small number of images that 

contained more than one spot. For the GPC4 locus in male cells, the distance between the 

Xist compartment and the locus was determined by finding the minimum distance between 

Xist compartment and the locus with a customized Fiji macro script described above. For 

GPC4 in female ES cell, the distance between the Xist compartment and the loci was 

determined by calculating the minimum distance between Xist compartment and either one 
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of the two loci. Median values and the standard error of the median were plotted in the 

figures. We calculated the standard error of the median as standard error of the median = 

1.2533(standard error of the mean) 

We identified loci as inside the Xist compartment if the fluorescence signal of the locus 

overlapped with these fluorescence signal for Xist (for XIST and male ES cell GPC4). 

RNA antisense purification (RAP) coupled with DNA sequencing 

10 million mouse ES cells were induced with  doxycycline for 6 , lysates were prepared, and 

Xist RNA was captured and purified as previously described (7). For Xist RNA capture, we 

used antisense 5’ biotinylated 90-mer DNA oligonucleotides (Eurofins Operon) that spanned 

the entire length of the Xist RNA as previously described (11). To elute captured DNA, we 

incubated the beads with 15 U RNase H in 20 uL RNase H buffer (NEB Biolabs) at 37°C for 

1 hour. The RNase H digested samples were then transferred to a new tube. To reverse 

crosslinks, we added 25 uL Hybridization Buffer (20 mM Tris-HCl (pH 7.5), 7 mM EDTA, 

3 mM EGTA, 150 mM LiCl, 1% NP-40, 0.2% N-lauroylsarcosine, 0.125% Na-

Deoxycholate, 3M Guanidinium Thiocyanate, 2.5mM TCEP), 125 uL NLS Elution Buffer 

(20 mM Tris-HCl (pH 7.5), 10 mM EDTA, 2% N-lauroylsarcosine, 2.5mM TCEP), 500 mM 

NaCl and 4 U Protease K (NEB Biolabs, Molecular Biology Grade) and incubated at 60°C 

overnight. Eluted DNA was sequenced, aligned and analyzed as previously described (7, 26). 

Aggregate gene analysis  
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We calculated the metaplot by first scaling the number of reads in each sample to obtain 

the same total number of reads for all the samples in 1 kb windows. We then normalized 

each sample to its own input followed by a second normalization to the wild-type Xist sample 

to obtain the relative ratio of each window. We then plotted the log-ratio of these values 100 

Kb upstream and downstream of each gene on X-chromosome along with the gene body 

region, which was scaled across genes to represent the same overall area. To avoid 

overcounting, when we extended a given gene, we only included those extensions in our 

aggregation set if they were not already included in the left or right extensions from a 

previous gene. Genes within 5 Mb of the Xist transcription locus were excluded from the 

analysis because they represent outliers in terms of average Xist enrichment. The plots were 

generated and visualized using DeepTools and Gviz. The “active” and “inactive” genes were 

defined as previously described (7). Expression levels were split based on RPKM levels 

computed from chromatin RNA-Seq levels as previously described (26). We only considered 

genes with RPKM expression >1. Genes with RPKM expression >5 are grouped as highly 

actively transcribed genes.  

The regional normalization curve was obtained by calculating a smoothed running average 

across a 10-kilobase window on the chromosome. Accordingly, it was included to 

demonstrate the overall pattern of the data, which can be more easily seen in a smoothed 

aggregate representation relative to overlay of each individual data point. Each number in 

the plot (Wi) was calculated using the simple mean of the 1-kilobase pair windows shown in 

the top panel, such that: 
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Wi =
Wi + Wi+1 + ⋯+ Wi+9

10
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C h a p t e r  5  

CONCLUSION AND FUTURE DIRECTIONS 

5.1    Conclusion 

With RAP-MS, we are able to identify three Xist direct-interacting proteins, SAF-A, SHARP 

and LBR, that are required for Xist-mediated chromosome-wide silencing. While previous 

studies have shown that SAF-A is required for Xist to localize on the chromatin(1), by 

characterizing the roles SHARP and LBR play in the process, we suggest a model for how 

the interaction between Xist and these three proteins can orchestrate chromosome-wide 

transcriptional silencing on Xi (Figure 5.1). 

Upon initiation of Xist expression (Figure 5.1; left panel), Xist spreads to regions (Figure 

5.1; black regions) that are closest to the Xist transcription locus (Figure 5.1; red arrow) 

by binding to the SAF-A protein on chromatin(1, 7, 8). Xist recruits the SHARP protein and 

its associated SMRT complex(2-4) to these initial sites. This Xist-SHARP complex can then 

act to either directly recruit HDAC3 to the X-chromosome or exploit HDAC3 that may 

already be present at active genes across the X-chromosome(5, 6) and induce its enzymatic 

activity by bringing it into proximity with its required SMRT co-repressor(7, 8) at Xist target 

sites across the X-chromosome. Through the activity of HDAC3, Xist can direct the removal 

of activating histone acetylation marks on chromatin thereby compacting chromatin(9-11) 

and silencing transcription(6, 12, 13). Then, these initial Xist-coated DNA regions (Figure 

5.1; black regions) sample different locations of the nucleus(44, 45, 23, 46, 47) and when 
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they come into close proximity of the nuclear lamina, are sequestered at the nuclear 

lamina through an interaction between Xist and LBR (Figure 5.1; middle panel). Because 

DNA that interacts with the nuclear lamina undergoes more constrained mobility(23, 24), 

this recruitment changes the 3-dimensional organization of X-chromosome(15, 48, 49) and 

repositions active genes (Figure 5.1; green regions) closer the Xist transcription locus 

enabling Xist, and its SHARP/SMRT/HDAC3 silencing complex(11, 18, 22), to spread to 

these new sites by 3-dimensional proximity transfer. These sites are then recruited to the 

nuclear lamina, effectively bringing another set of active genes (Figure 5.1; yellow regions) 

into closer contact with the Xist transcription locus (Figure 5.1; right panel). Because the 

Xist transcription locus escapes Xist coating and silencing, it is positioned away from the 

nuclear lamina(7, 8, 5, 2, 1) and therefore will be close to sites that have not yet been coated 

and silenced by Xist. This iterative process would enable Xist to spread to, and silence, 

actively transcribed genes across the entire X-chromosome. 

Xist has long represented a mechanistic paradigm for understanding other lncRNAs, but this 

is largely because we lacked the tools required to probe any specific lncRNA. Accordingly, 

most work has focused on the role of lncRNAs in the regulation of gene expression through 

the recruitment of chromatin regulatory proteins – primarily PRC2. Our results highlight the 

importance of identifying direct lncRNA-interacting proteins for deciphering lncRNA 

mechanisms of action. Even for Xist, where we know a tremendous amount about its 

molecular functions, we uncovered a novel mechanism for its ability to silence transcription. 

There are likely to be many additional mechanisms of action for lncRNAs, including roles 

in the nucleoplasm and cytoplasm. Identifying the proteins that interact with any given 
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lncRNA will be an important step towards deciphering these mechanisms. Importantly, 

RAP-MS provides a critical tool for achieving this goal and will accelerate the discovery of 

novel lncRNA mechanisms that have thus far proved elusive. 
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Figure 5.1. A model for how Xist-mediated recruitment to the nuclear lamina enables 

spreading to active genes and transcriptional silencing on the X chromosome. Xist 

initially localizes to the core of the X chromosome territory by localizing at DNA sites that 

are in close 3D proximity to its transcriptional locus. These initial Xist localization sites are 

generally inactive prior to Xist induction. The Xist-coated DNA, like other chromosomal 

DNA regions, will dynamically sample different nuclear locations and, because Xist binds 

LBR, will become tethered at the nuclear lamina when it comes into spatial proximity. This 

lamina association is known to constrain chromosomal mobility and by doing so would 

position the Xist-coated DNA away from the actively transcribed Xist transcription locus. 

This would enable other DNA regions on the X chromosome, which are physically linked to 

these tethered regions, to be brought into closer spatial proximity to the Xist transcription 

locus. In this way, Xist and its silencing factors can spread to these newly accessible DNA 

regions on the X chromosome.  
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5.2   Future Directions 

Although we have identified the direct Xist-interacting proteins and demonstrated a model 

for the mechanism of Xist-mediated silencing, some questions remain unclear during the 

process of XCI. For example, although Xist can spread across the entire X chromosome, 

some genes on Xi, including Xist itself, can escape from Xist-mediated silencing and 

remain actively transcribed(14). Genome-wide analysis of Xist associated DNA on Xi 

reveals that Xist is depleted from the regions of these escaping genes and their 

promoters(15). The result suggests that the escapees escape from Xist-mediated silencing 

by preventing Xist binding to the regions. Furthermore, the depleted Xist association is 

unlikely result from the features of the DNA sequences of these escapees, since no common 

sequences have been identified among escapees. Also, the depleted Xist association could 

not be simply explained by the interaction between Xist and SAF-A, since SAF-A showed 

homogenous chromatin association across the entire X chromosome. It is possible that the 

depleted Xist association is due to the spatial separation between Xist and the escapees, 

which makes Xist unable to access to the regions by 3D proximity search. This hypothesis 

is supported by a recent study showing that changing the chromosome organization of Xi 

can lead to lower expression level of certain escapees(16). However, further studies are 

required to identify the components involved in the process, which may help us to reveal 

the mechanism of escaping Xist-mediated silencing. Although escapee only contributes a 

small fraction among the genes on X chromosome (~20-80 in mouse depending on 

different cell types)(14, 16), studies have suggested that some escapees may be related to 

some clinical features of polyX karyotypes in humans(17). Therefore, studying the 
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mechanism of escaping may also provide us some clinical insights of how to 

compensate the dosage difference of certain escapees for polyX karyotypes patients. 

Another interesting question waiting to be answered is that how the maintenance state of 

Xist-mediated silencing is established. At the late stage of XCI, the CpG island of the 

promoter regions of silenced genes on Xi is heavily methylated(18, 19). One possible 

model is that once the DNA methylation has been established de novo by DNMT3A/B, the 

silencing state can be maintained by DNMT1-mediated self-propagation of DNA 

methylation pattern(20). But how is DNMT1 recruited to the target sites across the entire 

Xi at the first place? Since Xist is capable of spreading across the entire Xi, it is likely that 

DNMT1 is recruited to Xi through an Xist-mediated mechanism. However, since DNMT1 

is not identified as one of the Xist-interacting proteins, either directly or indirectly(21-23), 

it is possible that DNMT1 is recruited to the target sites through a secondary downstream 

event of Xist spreading and silencing. Some studies suggested that SMCHD1, a protein 

interacting with Xist indirectly, plays a role in DNMT1 recruitment(24, 25). However, the 

CpG island methylation still occurs in some silenced genes, which suggests another 

Smchd1-independent pathway of DNA methylation(25). Therefore, further studies are 

required to identify the other components that are involved in the transition from the 

initiation state to the maintenance state of Xist-mediated silencing, which may provide us 

some insights into the mechanism of establishing XCI maintenance and the role Xist plays 

in this process.  

In sum, by identifying Xist-interacting proteins, we show how a lncRNA can function as a 

scaffold which orchestrates various events through recruiting different proteins to specific 
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loci. The methods we used enable us reveal some unknown mechanism of Xist-

mediated events that occur during XCI. In addition to Xist, we now have the opportunity 

to study the molecular mechanism of other lncRNAs with either known or unknown 

function. I believe that with Xist as an example, a door has been opened for us to study the 

functions of various lncRNAs and explore their molecular mechanisms! 
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