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Abstract

In this thesis I formulate and present a novel and new framework for simulating the
dynamics of arbitrarily shaped active or passive particles immersed in a Stokesian
fluid and evolving under confinement by a porous container or in free space. I use a
completed double layer boundary integral equation to model the particle’s dynamics
and combine this with a new formulation that uses a second kind integral equation
for describing the motion of the porous container. This newly formulated porous
container model permits fluid to pass through the container’s surface at a velocity in
proportion to a discontinuous jump in stress across the container’s surface. This jump
in stress is induced by the active particle’s motion. The proposed porous container
model is general in the sense that it allows fluid to pass through the membrane
with finite tangential and normal velocity components. I obtain the exact analytical
solution to this model when the active particle and porous container are perfectly
concentric. In addition, I numerically solve this system of boundary integral equations
for arbitrary particle positions, and fully characterize the particle and container
dynamics by performing a vast number of trajectory studies. Both the container
and particle are seen to move in complicated ways owing to their self and pairwise
hydrodynamic interactions. This system is studied over a vast parameter space, for
multiple container to particle size ratios, multiple types of active particles, and various
permeability parameterizations. This coupled set of particle and container boundary
integral equations is discretized using a novel interpretation and new extension of the
Galerkin Boundary Element discretization to multi-body particle systems in Stokes
flow. I also implement and extend an h-adaptive conformal mesh refinement algorithm
to accurately resolve near-contact particle and container interactions. In addition, I
perform all Galerkin BEM calculations on CUDA enabled GPUs, allowing for these
simulations to be run on modern desktop computers in seconds. I combine all of
these techniques in a modern C++ Galerkin Boundary Element Method computational
framework called GPUGBEM.
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Chapter 1

Introduction

1.1 Motivation

Physics was the science of the 20th century, and few disagree that biology will be
the science of the 21st century. Discoveries about our living world are brought
about daily by advances in molecular biology, neuroscience, cell biology, and other
biological disciplines. Enough is currently known about individual molecules and
their interactions inside cells that cellular life-cycles and cellular behaviors can be
simulated. Due to the advent of genomics and other high throughput techniques, it
has recently become possible to construct a full-cell computational model [29] dubbed
cells in silico, Latin for cells in silicon. Although this model recapitulates a broad set
of experimental data, the mathematics and perspectives of the model are not directly
connected to an explicit interpretation of cellular particle dynamics, specifically from
a fluid mechanical perspective.

There is currently great interest in understanding how hydrodynamic interactions
affect particle motions inside biological cells. A great deal of effort and work has been
put into performing molecular simulations that aim to ultimately develop quantitative
comparisons with in vivo molecular motion inside biological cells, [12]. A fair amount of
this work is on understanding mechanisms for the self-assembly of biological molecules
and sub-structures [3], [14], [39] (e.g. protein folding and lipid bilayer self-assembly).
It is also generally accepted and understood that hydrodynamic interactions play a
significant role in determining the dynamical properties of concentrated macromolecular
systems [2], [1]. However, all of these studies simulate concentrated dense suspensions of
stick or slip-stick spheres and completely abstract away the complex surface geometries
of biological structures. In these dense suspensions of spherical particles there are
also immense amounts of hydrodynamic screening, which makes it very hard to
develop intuition about individual particle motions and behaviors. In addition, these
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simulations are usually performed with periodic boundary conditions where there is
no inclusion of container confinement effects. A notable exception is in the recent
work by Nazockdast and Shelley, [43], where fiber assemblies are simulated inside of a
realistic cellular geometry. This thesis aims to explore basic cellular particle dynamics,
in confinement, and from a rigorous fluid mechanical prospective, but does so using a
method that remains faithful to particle geometries. No attempt is made at simulating
dense suspensions, rather effort is put into understanding the strikingly complicated
dynamics of a single active particle that moves as a force and torque free body inside
of a porous container. The simulation of larger numbers of active particles is left as
future work.

1.2 Contributions

In this thesis we rigorously formulate and solve an applied problem where an actively
propelled particle, immersed in a viscous fluid, moves inside of a geometry that is
reminiscent of the most basic cell imaginable: a spherical container. The container is
special in that it is porous and leaks fluid at a velocity proportional to a jump in stress
across its surface. This jump in stress is induced by the active particle’s motion. Exact
analytical solutions for the dynamics of this problem are obtained when the particle and
container geometry is perfectly concentric. With this analytical solution, the problem
serves as an important benchmark for testing numerical schemes, which ultimately
may be geared towards solving more complicated problems, with arbitrarily shaped
geometries and flexible or charged surfaces. The particle and container geometries
are spherical for convenience. There is no assumption in the numerical methods or
restrictions on the algorithms that forces the use of this geometry.

In order to solve this problem, a very special new numerical framework is needed.
We develop a computational framework, called GPUGBEM, which formulates multi-
body hydrodynamics problems in a very efficient way. In order to build this framework,
this thesis presents the detailed theoretical construction of Stokes flow boundary
element operators under the Galerkin discretization. This construction has not been
seen before for multi-body colloidal hydrodynamics problems. Its use in obtaining the
presented numerical results is both novel and new. This framework expresses boundary
integral equations using an intuitive language that is wrapped deeply in object oriented
design. Multi-body hydrodynamics problems may be solved in a very straightforward
manner with black-box controls over accuracy and spatial mesh adaptivity, automatic
formulation of Galerkin boundary element matrices, and automatic cross coupling
of particle-particle pairwise hydrodynamic interactions. Implementation may easily



1.3 Thesis Overview 3

be switched between the mobility and resistance formulations. The framework also
very efficiently models the dynamics of a special class of active particles known as
Blake squirmers. In addition, GPUGBEM is equipped with interfaces to the NVIDIA
CUDA API and performs all boundary element integrations on the GPU using efficient
splitting techniques and load balancing optimizations. Without GPUGBEM and its
object oriented design structure, solution of the particle porous container problem
would be incredibly error prone. The GPUGBEM framework is coupled to a novel
conformal adaptive meshing algorithm. This algorithm operates in time O(N logN)
by utilizing advanced spatial querying data structures.

1.3 Thesis Overview

The remainder of this thesis is organized as follows:

Chapter 2 reviews relevant ideas and formulas that are used in all subsequent
chapters. A detailed description is given for the appropriate design and implementation
of rigid body dynamics simulations and its coupling to the fluid-structure interaction
problem in Stokes flow.

Chapter 3 reviews important ideas from the boundary integral formulation of
linearized viscous flows. The Stokes equations are introduced together with notation
that is used throughout this thesis. Singularity solutions of Stokes flows are reviewed
and the boundary integral equations of linearized viscous flows are derived. The
chapter concludes with the formulation of the completed double layer boundary
integral representation. This method is described in detail since it is ultimately used
to find solutions for the dynamics of the particle porous container problem.

Chapter 4 discusses the theoretical formulation of the Galerkin boundary integral
method. Explicit constructions for the Galerkin discretization of Stokes BEM operators
are given and explained in detail. We discuss how the Galerkin discretization maps
onto multi-body problems in Stokes flow. Several constructions of the resistance
and mobility problems are provided as examples. Next, several important object
oriented design principles are discussed in the context of the GPUGBEM framework.
Insight is given into how GBEM calculations map to GPGPU computation. Finally
the implementation of a conformal h-adaptive meshing algorithm is described. This
h-adaptive meshing algorithm is an extension of the newest vertex bisection method
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to triangle 2-manifolds. Novelty is found in how the algorithm is coupled with the
Galerkin Boundary Element Method.

Chapter 5 presents the particle porous container problem. The active particle is
represented as a tangential Blake squirmer. The problem where a squirmer moves
inside of a non-porous container is first studied. Exact analytical solutions are obtained
for this problem and are compared with the solution for the well-known forced particle
concentric sphere problem. Next, a porous container model is proposed that derives
in part from Darcy’s law, but is more general in the sense that it allows for both
normal and tangential stress jumps to exist across the container surface. This model
is parameterized by a set of normal and tangential permeable resistances. An exact
solution for this porous model is obtained, and is shown to agree with the non-porous
container solution in appropriate limits. The flow fields for these analytical models
show vortical regions of flow that are axisymmetric to the particles swim orientation
and in both the anterior and posterior regions of the container relative to its center of
mass. Next the full boundary integral formulation is given for the system. The set
of boundary integral equations is solved using the Galerkin discretization of Chapter
4 and the GPUGBEM framework. The solution is seen to compare well with the
analytical models. A full trajectory analysis of the particle and container is given. A
novel interpolation algorithm is formulated and used to evaluate these trajectories
using pre-resolved fluid mechanics calculations. Finally, squirmer efficiencies are
quantified by examining which squirmer type has the ability to translocate across the
container the fastest.



Chapter 2

Basic Concepts and Tools

In this chapter we describe various principles and techniques that are needed to
simulated the rigid body dynamics of particles. This formulation loosely follows [4].
Ultimately these techniques are coupled with the Stokes flow mobility solution for the
particle container system (Chapter 5), and are use to accurately resolve particle and
container trajectories.

2.1 Frames of Reference and Transformations

In this thesis, the world space (WS), synonymous with the space fixed (SF) frame of
reference, is defined using a Cartesian coordinate system with basis vectors, eX , eY , eZ ,
that are taken to span a computational cell in 3D. Inside of the world space, one
may embed other orthonormal, rotated coordinate systems. These rotated coordinate
systems, when attached to a physical object (surface, volume, set of points), define the
object’s body space (BS) and have basis vectors which will be denoted by ex, ey, ez.
These basis vectors span the body space, and are collectively referred to as the body
fixed frame of reference. In general there is always a so-called passive transformation
that takes takes the world space to the body space. This is also known more commonly
as a change of basis assuming that both frames of reference share the same origin.
Otherwise there is always a passive affine transformation that moves between a
translated body and world frame of reference. Under passive transformations a given
vector remains fixed while the basis is transformed. The construction is simple and is
given by solving for the transformation matrix, RBW , such that eB:i = RBW :ijeW :j,


eB:1

eB:2

eB:3

 =


eB:1 · eW :1 eB:1 · eW :2 eB:1 · eW :3

eB:2 · eW :1 eB:2 · eW :2 eB:2 · eW :3

eB:3 · eW :1 eB:3 · eW :2 eB:3 · eW :3



eW :1

eW :2

eW :3

 . (2.1)
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The coordinates of a vector change under a passive transformation. For a WS vector
aW , the coordinates transform as

(aB:ieB:i) · eB:k = (aW :ieW :i) · eB:k

aB:iδik = (aW :iRWB:ijeB:j) · eB:k

aB:k = aW :iRWB:ijδjk

aB:k = aW :iRWB:ik

, (2.2)

where RWB ≡
(
RBW

)−1
. The active transformation is different in the sense that the the

basis is left fixed but the vectors are transformed. Under an active transformation,
the coordinates transform as

(aB:ieW :i) · eW :k = (aW :ieB:i) · eW :k

aB:iδik =
(
aW :i

(
RBW :ijeW :j

))
· eW :k

aB:k = aW :iRBW :ik

. (2.3)

The active transformation actually changes the physical location of a point or rigid
body. A passive transformation changes the coordinate system in which the object is
described. These two types of transformation are used throughout this thesis. They
are very important and are extensively used when describing rigid body dynamics.
Usually the dynamics of a rigid body are most easily described in a world space
coordinate system. On the other hand, the dynamics of a deforming body are often
much more easily described in the body space. However, there are many situations
where one needs a representation of these dynamics in the world space. Take for
example the description of an active swimming particle whose surface deforms with
non-reciprocal motion in time. Usually one either knows or explicitly defines a surface
parameterization, x(t), in a body frame that is attached to the active particle at some
world space location xc(t). The WS position vector of a point on the body’s surface is
then almost always most conveniently described by

x(t)W :ieW :i = x(t)c:ieW :i + x(t)B:ie(t)B:i . (2.4)

However, Eqn. 2.2 explicitly tells us how to write this expression completely in the
world frame,

x(t)W :ieW :i = x(t)c:ieW :i +
(
RBW :ik(t)x(t)B:k

)
eW :i . (2.5)
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Equations 2.4 and 2.5 must yield the same point x(t), and are therefore useful for
debugging numerical code and in producing and debugging visualizations. Conventions
describing particle locations in the world space and body space are shown in Fig. 2.1.

2.2 Rigid Body Dynamics

Simulating the motion of a rigid body is almost the same as simulating the motion of
a particle. Therefore, we will start by understanding particle simulation. Since we are
interested in understanding dynamic evolution in time, the spatial variable x is now
identified as being a function of time, x(t) such that x : R→ R3. This position is in
world space and can be written more explicitly as

x(t) = xi(t)eW :i , (2.6)

where the basis vectors {eW :1, eW :2, eW :3} span the space that all particles occupy
during the simulation. The function U(t) = ẋ(t) is identified as the velocity, also in
world space. This can be written more explicitly as

U(t) = ẋi(t)eW :i . (2.7)

For notational purposes, it is convenient to group these two quantities into a stacked
state vector, X,

X(t) =
x(t)

u(t)

 . (2.8)

Normally we also need to know the force acting on the particle at time t. We identify
this force as F (t), also in world space. If the particle has constant mass m, then the
change of X(t) over time is given by

Ẋ(t) =
ẋ(t)

u̇(t)

 =
 u(t)

F (t)/m

 . (2.9)

Given some X(t), we see that Eqn. 2.9 describes the evolution of X(t) over time. The
force on a particle at the k’th discrete simulation time tk is generally obtained from
the numerical solution of differential equations based on Newton’s second law. State
variable evolution is obtained by evolving the particle position using the known force
at a series of discrete times. Simulating rigid bodies proceeds in almost exactly the
same way except X(t) now holds more information, specifically related to the body’s
size.



2.2 Rigid Body Dynamics 8

e
x

e
y

e
z

e
x

e
o

e
z

e
y

e
x

e
z

e
o

e
Y

e
Z

e
o

e
x

e
o

e
z

e
y

e
y

x
3 x

4

x
1

x
2

P
ar
ti
cl
e
4

P
ar
ti
cl
e
2

P
ar
ti
cl
e
3

P
ar
ti
cl
e
1

a
S
p
ac
e
F
ix
ed

C
o
or
d
in
at
e
S
y
st
em

e
X

Fi
g.

2.
1

T
he

wo
rld

sp
ac

e
(s

pa
ce

fix
ed

)
an

d
bo

dy
sp

ac
e

fra
m

es
of

re
fe

re
nc

e
ar

e
sh

ow
n

fo
r

a
gr

ou
p

of
sp

he
ric

al
pa

rt
ic

le
s

in
a

3D
co

m
pu

ta
tio

n
ce

ll.
A

lso
sh

ow
n

is
th

e
fo

rm
al

ism
of

ve
ct

or
no

ta
tio

n
fo

r
pa

rt
ic

le
po

sit
io

n,
x

(t
),

an
d

or
ie

nt
at

io
n

e
o
(t

).



2.3 Rigid Body Position and Orientation 9

2.3 Rigid Body Position and Orientation

To locate a rigid body in world space we will use the vector x(t) which will describe
the translation of the body. We must also describe the rotation of the body. For now
we use a 3× 3 rotation matrix R(t). To simplify this construction we require that the
description of the body in the body space be such that the center of mass of the body
lies at the body space origin, (0, 0, 0). This identifies the world-space location of the
center of mass as x(t) ≡ xc(t). For a point xB in the body space, the world space
location, xW , is given as a result of rotating xB and then translating it by xc. For
rigid bodies, this is an affine transform and is given as

xi(t)eW :i = xc:i(t)eW :i +
(
RBW :ik(t)xB:k(t)

)
eW :i(t) . (2.10)

A simple interpretation of RBW (t) can be obtained if one notes that eB:i(t) is equal
to the i’th column of RBW (t). Thus the columns of RBW (t) give the set of coefficients of
the eW :i basis vectors which explicitly represents the direction that the rigid body’s
axes point in when transformed to world space at time t. In what follows we refer to
xc(t) and RBW (t) ≡ R(t) as the position and orientation of the body at time t.

2.4 Linear Velocity

We now define how the position and orientation change over time. Expressions are
needed for ẋc(t) and Ṙ(t). We define the linear velocity U(t) as

U(t) = ẋc(t) . (2.11)

If the orientation of the body is fixed, then the only movement the body can undergo
is pure translation. The quantity U(t) gives the velocity of this translation. In this
thesis we continually refer to the linear velocity as the translational velocity or as a
component of the body’s rigid body motion.

2.5 Angular Velocity

In addition to this translation, the body can also spin. If we freeze the position of
the center of mass in space, any movement of points on the body must be due to the
body spinning about some axis that passes through the center of mass. This spin can
be described by the vector Ω(t) and we call this the body’s angular velocity. The
direction of Ω(t) gives the direction of the axis about which the body is spinning. Its
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magnitude tells how fast the body is spinning in rev/time. Thus |Ω(t)| relates the
angle through which the body will rotate over a given period of time if the angular
velocity is constant.

How then are R(t) and Ω(t) related? We have already understood the columns of
R(t) as being the world space representation of the body space spanning vectors. Thus
Ṙ(t) intuitively represents the velocity at which these vectors change their directions
in the world space. To gain further insight, we consider a vector in world space that
is translating with the body,

r(t) = x(t)− xc(t) . (2.12)

We can decompose r(t) into a sum of two vectors a and b that are parallel and
perpendicular to Ω. Since this vector translates with the body it is independent of
U . Then the instantaneous velocity of r(t) must be perpendicular to both b and Ω.
Thus one may write ṙ(t) = Ω(t) × b. However, if one notes that r(t) = a + b and
that a ∥ Ω(t) =⇒ Ω× a = 0, then

ṙ(t) = Ω× b = Ω× (b + a) = Ω× r(t) . (2.13)

From Eqn. 2.13 we see that any world space position vector of a point on the body
transforms as Ω(t)× (·). We just claimed that the world space representation of the
body axes are the columns of R(t) and hence Ṙ(t) can be written as,

Ṙ(t) =
(
Ω× Ri1(t),Ω× Ri2(t),Ω× Ri3(t)

)
. (2.14)

This Ω can be factored out and we find

Ṙ(t) = Ω∗(t)R(t)
Ω∗ = [ϵijkΩj]3x3

. (2.15)

2.6 Velocity of a Particle ( or point )

If we now proceed to differentiate Eqn. 2.10, we find that

ẋ(t) = Ṙ(t)xB(t) + R(t)ẋB(t) + ẋc(t)
= Ω∗(t)R(t)xB(t) + 0 + U(t)

, (2.16)
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where we note that ẋB = 0 since the body is assumed to be rigid. We can rewrite
this as

ẋ(t) = Ω∗(t) (R(t)xB(t) + xc(t)− xc(t)) + U(t)
= Ω∗(t) (x(t)− xc(t)) + U(t)
= Ω(t)× (x(t)− xc(t)) + U(t)

. (2.17)

We see that Eqn. 2.17 separates the velocity of a point on a rigid body into two
components: a linear component U (t), and an angular component Ω(t)×(x(t)−xc(t)).
This is the normal usage most authors jump to when specifying boundary-velocity
conditions in fluid mechanics problems. However, the interpretation shown here is
much richer and shows how angular velocity is connected to the time derivatives of a
body’s rotation matrix (or orientation). Especially when studying or modeling actively
swimming or deforming particles, ẋB ̸= 0, and this term must be accounted for in
Eqn. 2.17. In later chapters, we shall see that a nonzero body space deformation
function gives rise to a mathematical mechanism by which microorganisms and other
particles may be understood to generate propulsive motion in Stokes flow.

2.7 Centroids and Centers of Mass

The primary purpose of defining the centroid or center of mass of a body is so that
we may separate the dynamics of bodies into linear and angular components. The
geometric centroid of a body in world space is defined to be,

xc(t) =
∫
V x(t)dV (x)∫
V dV (x) . (2.18)

In what follows, quantities solely dependent on the geometry of the object are differ-
entiated from their mass quantity counter parts under the conversion,∫

V
(·)dV (x)→

∫
V
ρ(x, t)(·)dV (x) . (2.19)
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An interesting and useful alternative formula follows by using the divergence theorem
to convert the volume integrals to surface integrals. We note the following conversions:

∇ ·
(

x · x
2

)
= x∫

V
xdV (x) =

∫
V
∇ ·

(
x · x

2

)
dV (x) = 1

2

∫
Γ
x2n(x)dS(x)

∇ · x

3 = 1∫
V
dV (x) = 1

3

∫
V
∇ · xdV (x) = 1

3

∫
Γ

x · n(x)dS(x)

. (2.20)

Thus we find that Eqn. 2.18 rewritten in terms of surface integrals becomes

xc(t) = 3
2

∫
Γ x

2n(x)dS(x)∫
Γ x · n(x)dS(x) . (2.21)

By a center of mass coordinate system we mean that in body space,∫
V xB(t)dV (x)∫

V dV (x) = 0 . (2.22)

Another useful equation follows from Eqn. 2.22,∫
V

(x(t)−xc(t))dV (x) =
∫
V

(R(t)xB+xc−xc)dV (x) = R(t)
∫
V

xBdV (x) = 0 (2.23)

or, from the conversions in Eqn. 2.20, that∫
Γ
r2(t)n(x)dS(x) = 0 . (2.24)

All of the formulas shown in this section are highly useful in debugging numerical
algorithms and discrete differential geometry code. These identities must at least
approximately hold on discrete (triangulated) versions of 2-manifolds and should
converge as the discrete resolution of the problem is increased (triangles are refined).

2.8 Force and Torque

For a particle or point that makes up a rigid body we can imagine an external force
F i(t) that denotes the total external force acting on the i’th particle at time t. The
total external torque on this particle can then be defined as

T i(t) = (x(t)− xc(t))× F i(t) . (2.25)
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These concepts are generalized to rigid bodies by integrating over the body volume,

F (t) =
∫
V

fV (x, t)dV (x) (2.26)

T (t) =
∫
V

(x(t)− xc(t))× fV (x, t)dV (x) , (2.27)

where fV (t) is a force density ( i.e. a force per unit volume ). We note that in general,
for uniform external forces, F (t) will convey no information about where the forces are
acting on the body. However, T (t) does tell us about this distribution. Equations 2.26
and 2.27 can be converted to surface integrals using the divergence theorem, where it
can be assumed that fV (t) can be represented as fV (t) = ∇x · σ(x, t) and

F (t) =
∫
S
σ(x, t) · n(x)dS(x) (2.28)

T (t) =
∫
S
(x(t)− xc(t))× (σ(x, t) · n(x))dS(x) . (2.29)

In coming chapters, σ(x, t) will be described by the Newtonian stress tensor, and
Eqns. 2.28 and 2.29 will be used as integral constraints on the hydrodynamic force
and torque that a body or particle may experience.

2.9 Linear Momentum

The total linear momentum simplifies in a straightforward manner. This is because
we are using a center of mass coordinate system where we can apply Eqn. 2.23. The
linear momentum of our rigid body becomes

P (t) =
∫
V
ρẋ(t)dV (x)

=
∫
V
ρ(Ω(t)× (x(t)− xc(t)) + U(t))dV (x)

=
∫
V
ρU(t)dV (x) + Ω(t)×

∫
V
ρ(x(t)− xc(t))dV (x)

=
∫
V
ρU (t)dV (x)

= mU(t)

. (2.30)

2.10 Angular Momentum

Angular momentum is more unintuitive. Angular momentum is conserved in nature
but angular velocity is not. This means that if we have a body floating through
space with no net torque acting on it, its angular momentum would be constant.
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However, the angular velocity may not be constant. A body’s angular velocity can
vary even when no force acts on the body. The angular momentum of a body is
defined as L(t) = I(t)Ω(t) where I(t) is a rank 2 tensor called the inertia tensor.
This tensor describes how the mass of a body is distributed relative to its center
of mass. The tensor depends on the orientation of the body but not on the body’s
absolute translation. Angular momentum and total torque are related by L̇(t) = T (t)
analogous to the relation Ṗ (t) = F (t).

2.11 Inertia Tensor

The inertia tensor scales the angular momentum, L(t) and the angular velocity Ω(t).
The tensor is expressed in terms of r(t) = x(t)− xc(t) as the symmetric matrix,

I(t) =


∫
V ρ(rkrk − r2

1)dV (x) −
∫
V ρr1r2dV (x) −

∫
V ρr1r3dV (x)

−
∫
V ρr2r1dV (x)

∫
V ρ(rkrk − r2

2)dV (x) −
∫
V ρr2r3dV (x)

−
∫
V ρr3r1dV (x) −

∫
V ρr3r2dV (x)

∫
V ρ(rkrk − r2

3)dV (x)


(2.31)

Or by the equivalent element-element relation,

Iij(t) =
∫
V
ρ(δijrkrk − rirj)dV (x) . (2.32)

One can develop this expression and find that the inertia tensor in the body space,
IB, is given by

IB =
∫
V
ρ (xB · xBI− xBxB) dV (x) . (2.33)

From which it follows that

I(t) = R(t)IBR(t)T . (2.34)

Since IB is specified in the body-space, it is constant throughout the simulation. It is
pre-computed and then one can easily compute I(t) from IB and R(t). The inverse of
I(t) is given by

I−1(t) =
(
R(t)IBR(t)T

)−1

= (R(t)T )−1I−1
B R(t)−1

= R(t)I−1
B R(t)T

. (2.35)

Since for rotation matrices it holds that R(t)T = R(t)−1 and (R(t)T )T = R(t). Note
also that I−1

B remains constant during the simulation.
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2.12 Rigid Body Equations of Motion

The stacked state vector X(t) for the rigid body becomes

X(t) =


xc(t)
R(t)
P (t)
L(t)

 . (2.36)

Thus, the state of a rigid body is its position and orientation (describing spatial
information), and its linear and angular momentum (describing velocity information).
We know m and IB at the beginning of the simulation and can compute the auxiliary
quantities I(t), Ω(t), and U(t) via

U (t) = P (t)
m

, I(t) = R(t)IBR(t)T , Ω(t) = I(t)−1L(t) . (2.37)

The derivative of the state vector Ẋ(t) is then

Ẋ(t) =


U(t)

Ω∗(t)R(t)
F (t)
T (t)

 . (2.38)

2.13 Rigid Body Dynamics Algorithm

The rigid body dynamics algorithm proceeds by the following steps:

1. Initialization:

(a) Determine Body Constants: m, IB, and I−1
B

(b) Determine Initial Conditions: X(t = 0)

(c) Compute Initial Auxiliary Quantities: I(0) = R(0)IBR(0), U (0) = P (0)/m,
Ω(0) = I−1(0)L(0)

2. Simulation, t > 0:

(a) Compute Individual Forces and Application Points: F i, ri

(b) Compute Total Forces and Torques: F (t) = ∑
i F i(t), T (t) = ∑

i ri ×F i(t)
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(c) Integrate State Vector Quantities:

X(t+ 1) = X(t) + Ẋ(t)∆t

(d) Re-orthogonalize R(t) (e.g. using modified Gram-Schmidt)

(e) Compute Auxiliary Quantities: I(t+ 1) = R(t+ 1)IBR(t+ 1), U (t+ 1) =
P (t+ 1)/m, Ω(t+ 1) = I(t+ 1)−1L(t+ 1)

(f) Update Geometry:

x(t+ 1) = x(t) + ẋ(t)∆t
= x(t) + [Ω(t)× (x(t)− xc(t)) + U(t)] ∆t

(2.39)

In practice this algorithm is much more stable if R(t) is represented by a unit quaternion
q(t) and this quaternion is integrated in time and appropriately re-orthonormalized.

2.14 Quaternion Representation of R(t)
In practice R(t) experiences a fair amount of numerical drift. The post re-orthogonalization
step also requires an additional algorithm (e.g. modified Gram-Schmidt). It proves
useful to use a quaternion representation of R(t). A quaternion is an ordered pair
[s,v] such that q = s+ vieW :i. Quaternion multiplication follows the rule,

q1q2 = [s1,v1][s2,v2]
= [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2]

. (2.40)

A unit quaternion represents a rotation matrix. The evolution formula for q(t) is

q̇(t) = 1
2[0,Ω(t)]q(t) . (2.41)

It also holds that the q(t)→ R(t) conversion follows,

[q(t) = [s,v]]→

R(t) =


1− 2v2

2 − 2v2
3 2v1v2 − 2sv3 2v1v3 − 2sv2

2v1v2 − 2sv3 1− 2v2
1 − 2v2

3 2v2v3 − 2sv1

2v1v3 − 2sv2 2v2v3 − 2sv1 1− 2v2
1 − 2v2

2


 .

(2.42)
When using a quaternion representation in the rigid body dynamics algorithm, q(t)
replaces R(t) as a state variable and R(t) is computed as an auxiliary quantity following
Eqn. 2.42.
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The norm of a quaternion is defined by qqc where qc = [s,−v]. For a unit
quaternion q, the mapping of a vector from body space to world space obeys the
relation,

xW = qxBqc , (2.43)

where xW = [0,xW ], xB = [0,xB], and q = q(t) represents R(t).

2.15 Updating the Rigid Body Mesh

It is much more efficient to update the mesh geometry by computing an overall
affine transformation matrix describing the net rotation and translation of the body.
This affine transformation matrix is the composition of a translation back to last
known center of mass xc(t), inverse rotation R−1(t), a rotation by R(t+ ∆t), and a
translation to xc(t+ ∆). This method which uses an overall transformation matrix
avoids numerical surface distortions which would result if individual points were
evolved separately.

2.16 Integration in Time

In dynamics problems, we have to solve an initial value problem which takes the vector
form,

d

dt
X(t) = f(t,x), X(0) = X0 , (2.44)

where X(t) is a time dependent vectorized state variable, subject to an initial condition
X0. In the context of Stokes flow with Np rigid particles, this system of equations
expands as

d

dt



x1
c(t)

R1(t)
...

xNp
c (t)

RNp(t)


=



U 1(t,x)
Ω1(t,x)× R1(t)

...
UNp(t,x)

ΩNp(t,x)× RNp(t)


. (2.45)

There are multiple methods to integrate Eqn. 2.45 ranging from fully explicit to IMEX
and fully implicit schemes. Although one can directly evolve material points x using
pointwise evaluations of u(x), we want to avoid distortion in the shape of a rigid body,
and so it is much better to compute U and Ω and then evolve xc and R in time.
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2.17 Linear Multistep Methods

Explicit Adams methods are called Adams-Bashforth methods. An s-step Adams-
Bashforth method is O(hs) accurate for time step h. Adams-Bashforth methods up to
order s = 5 are listed below:

yn+1 = yn + hf(tn, yn), (This is the Euler method) (2.46)

yn+2 = yn+1 + h
(3

2f(tn+1, yn+1)−
1
2f(tn, yn)

)
, (2.47)

yn+3 = yn+2 + h
(23

12f(tn+2, yn+2)−
4
3f(tn+1, yn+1) + 5

12f(tn, yn)
)
, (2.48)

yn+4 = yn+3 + h
(55

24f(tn+3, yn+3)−
59
24f(tn+2, yn+2) + 37

24f(tn+1, yn+1)−
3
8f(tn, yn)

)
,

(2.49)

yn+5 = yn+4 + h
(1901

720 f(tn+4, yn+4)−
1387
360 f(tn+3, yn+3) + 109

30 f(tn+2, yn+2) (2.50)

−637
360f(tn+1, yn+1) + 251

720f(tn, yn)
)
. (2.51)

Implicit Adams methods are called Adams-Moulton methods. An s-step Adams-
Moulton method is O(hs+1) accurate for time step h. Adams-Moulton methods up to
order s = 5 are listed below:

yn = yn−1 + hf(tn, yn), (This is the backward Euler method) (2.52)

yn+1 = yn + 1
2h (f(tn+1, yn+1) + f(tn, yn)) , (This is the trapezoidal rule) (2.53)

yn+2 = yn+1 + h
( 5

12f(tn+2, yn+2) + 2
3f(tn+1, yn+1)−

1
12f(tn, yn)

)
, (2.54)

yn+3 = yn+2 + h
(3

8f(tn+3, yn+3) + 19
24f(tn+2, yn+2)−

5
24f(tn+1, yn+1) + 1

24f(tn, yn)
)
,

(2.55)

yn+4 = yn+3 + h
(251

720f(tn+4, yn+4) + 646
720f(tn+3, yn+3)−

264
720f(tn+2, yn+2) (2.56)

+106
720f(tn+1, yn+1)−

19
720f(tn, yn)

)
. (2.57)

Adams-Moulton methods are more expensive to compute, especially if evaluations
of f are expensive. Since the method is implicit it requires an addtional method
for solving nonlinear equations iteratively (e.g. fixed-point iteration). This must be
applied during each step.

An interesting alternative is to pair an Adams-Bashforth method with an Adams-
Moulton method to obtain an Adams-Moulton predictor-corrector method. These
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methods are normally abbreviated “PECE”, which stands for predict-evaluate-correct-
evaluate. More generally the corrector may be run multiple times, giving the k PECE
method commonly abbreviated as P (EC)kE. The PECE method proceeds as follows:

1. Predict: Use the Adams-Bashforth method to compute a first approximation to
yn+1, which we call ỹn+1.

2. Evaluate: Evaluate f at this value computing f(tn+1, ỹn+1).

3. Correct: Use the Adams-Moulton method to compute yn+1 where f(tn+1, ỹn+1) is
used in place of f(tn+1, yn+1). This effectively turns the Adams-Moulton method
into an explicit method.

4. Evaluate: Evaluate f at the newly computed value of yn+1 computing f(tn+1, yn+1)
to use during the next time step.

PECE methods are viable alternatives to fully implicit schemes. To the authors
knowledge, they have not been appropriately applied to fluid-structure interaction
problems in Stokes flow.

2.18 Important Notes and Future Work

Because multi-step methods rely on previous time steps they cannot be used during
the first (s−1) time steps because not enough data is available. A single step with the
same order of accuracy must be used to compute enough starting values. A candidate
one-step method is the Runge-Kutta method. For example, one may use a fourth
order RK method to compute y0, y1, y2. Then an Adams-Bashforth three step method
may be used to compute y3 given y0, y1, y2.

In this thesis, all dynamics problems are solved with Euler integration. The reason
for this is that the solution of the mobility problem for particles in linearized viscous
flow (Stokes flow) is computationally demanding. Also, the use of linear explicit
multi-step methods does not readily solve any of the problems in Stokes flow related
to particle-particle collisions. For this, one at least needs adaptive resolution space.
In other words, the Stokes equations must be solved on an adaptive mesh. Adaptivity
in time is also necessary but is not considered here. In the coming chapters a scheme
for adaptive spatial resolution is developed for solving the fluid-structure interaction
problem in Stokes flow. Maintaining adaptivity in time remains an interesting research
avenue. Adaptive time-stepping techniques such as Richardson extrapolation may
provide appropriate solutions without significant modification.



Chapter 3

Boundary Integral Methods for
Viscous Flows

3.1 The Stokes Equations

In this thesis all fluid mechanical calculations are derived from the Stokes equations.
We present a derivation of these equations for completeness following [53]. We consider
the flow of an incompressible Newtonian fluid. The motion of the fluid is governed by
the continuity equation, ∇ · u = 0, which tells us about mass conservation, and the
Navier-Stokes equations,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + ρg , (3.1)

which simply express Newton’s second law for a small volume element of fluid. In
Eqn. 3.1 ρ and µ are the fluid density and viscosity, and g is a body force (which
we assume is constant). The Stokes equations may be non-dimensionalized using
ū = u/U , x̄ = x/L, t̄ = t/T , and p̄ = p/(µU/L), where we have identified the viscous
pressure scale as µU/L. In dimensionless form, Eqn. 3.1 becomes

β
∂ū

∂t̄
+Reū · ∇̄ū = −∇̄p̄+ ∇̄2ū + Re

Fr

g

|g|
. (3.2)

Three dimensionless parameters appear in Eqn. 3.2, namely the frequency parameter
β = L2/νT , the Reynolds number Re = UL/ν, and the Froude number Fr = U2/|g|L,
where ν = µ/ρ is the kinematic viscosity. The frequency parameter is a ratio between
inertial acceleration forces relative to viscous forces. The Reynolds number is a ratio
between the inertial convective forces and viscous forces. In this thesis we assume that
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the both β and Re are small. Under these assumptions, the Navier Stokes equations
reduce to the body-force-free Stokes equations,

−∇P (x) + µ∇2u(x) = 0, ∇ · u(x) = 0, x ∈ Ω̃ , (3.3)

where the body force has been combined with the pressure [53].
For a small Reynolds number and frequency parameter the Stokes equations model

linearized viscous flows where the viscous forces are large compared with inertial
forces. For colloidal dynamics problems, the particle length scale is often very small
and the Stokes equations govern the relevant fluid mechanics. This is not to say that
the fluid need be viscous, rather from the particle’s perspective, the fluid is viscous
over the particle’s small length scale. Although the Stokes equations are linear and
instantaneous, finding particle trajectories and or nodal trajectories of a surface mesh
is in general difficult and numerically expensive because particle and fluid motions are
coupled through specification of boundary conditions on the particle’s surface.

3.2 Notation

Throughout this thesis, the following standard notation is used to describe vectors,
tensors, and various fluid mechanics quantities:

Definition 1 (Ω̃) We are interested in solving the Stokes equations in a fluid domain,
Ω̃. In general Ω̃ ⊆ Rd where d is either two or three.

Definition 2 (Γ̃) Γ̃ is the boundary of the fluid domain Ω̃.

Definition 3 (Ω) In general we can identify a closed domain Ω that generates the
domain of the fluid, Ω̃, and its boundary, Γ̃. In exterior problems we will identify
Ω̃ ≡ Rd \ Ω̄. In interior problems Ω̃ ≡ Ω. In words, we have identified the domain
closure with its normal topological definition, where we allow for points on the boundary
and have taken the interior to mean Ω.

Definition 4 (Γ∞) When the domain is infinite, i.e. in the exterior Stokes problem,
the boundary Γ̃ = Γ∪Γ∞ where Γ∞ ≡ limR→∞ ∂BR(0), and BR(0) is the ball of radius
R centered at the origin (in world space).

Definition 5 ((x,y) pairing) (x,y) ≡ y−x ≡ r. Note that y is synonymous with
a “Field Point”, sometimes labeled as Q, and x is synonymous with a “Source Point”,
sometimes labeled P .
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Definition 6 (r distance vector) r ≡ |r| ≡ |y − x| ≡ |x− y|

Definition 7 (r,i component derivative of r w.r.t. y) r,i ≡ (yi − xi)/r ≡ (y −
x)i/r

Definition 8 (Gij, Single Layer Potential)

Gij ≡
1
r

(δij + r,ir,j) (3.4)

Definition 9 (Gij symmetry) Gij(x,y) ≡ Gji(x,y)

Definition 10 (Kij double layer potential)

Kij(x,y) ≡ Tijk(x,y)nk(y) ≡ − 6
r2 (r,ir,jr,knk(y)) (3.5)

Definition 11 (Kij symmetry) Kij(x,y) ≡ Kji(x,y)

Unless prefactors are explicitly given, we will absorb 1/8πµ into Gij, that is re-
define Gij = (1/8πµ)Gij, and also absorb 2/8π into Kij, writing it as Kij(x,y) =
−(2/3π)(r,ir,jr,knk(y))/r2. The additional factor of two is used to shift the eigenvalues
of K to lie in [−1, 1].

The general position of a fluid element or particle element is expressed using the
vector y and is referred to as the field position or field variable. The source points are
expressed using the vector x. The source and field points are interpreted based on how
they are presented as arguments in the Green’s function. The position of the center
of mass of a particle is expressed as xc or x{a−z,1−N} (i.e. a sub-scripted x where
the particle label is the subscript). Unless it is specified, the particle orientation is
expressed by a vector eo or es. When writing out equations, the independent variables
are explicitly expressed for each dependent field variable. If this dependence is obvious,
this explicit indication will be omitted. A representation of a model system in this
notation is shown in Fig. 2.1.

3.3 Singularity Solutions

Using our notation, we may consider the Stokes equations in free-space associated
with a forcing term due to a Dirac mass centered at x and weighted with the force
vector g. From this point of view the relevant equations are,
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−∇p(y) + µ∆u(y) = ∇ · σ = −gδ(y − x), in Rd

∇ · u(y) = 0
lim

|y|→∞
|u(y)| = 0, lim

|y|→∞
|p(y)| = 0

u(y) = gD ∈ H1/2(ΓD)
f(y) = gN ∈ H−1/2(ΓN), ∀y ∈ Γ = ΓD ∪ ΓN

. (3.6)

Although we have written Eqn. 3.6 for the exterior problem, the interior problem
is simply obtained by neglecting the decay conditions on u and p. We note here that
u and p are the desired velocity and pressure fields of a viscous incompressible fluid
flow in the domain R3 and f is the hydrodynamic traction at the boundary defined
by,

f(y) = σ(u(y), p(y)) · n(y) , (3.7)

where
σij(u)(y) = −p(y)δij + µ

(
∂ui(y)
∂xj

+ ∂uj(y)
∂xi

)
, (3.8)

is the Newtonian stress tensor. From equation system 3.6, Gij is generated as the
“Oseen-Burgers” tensor, also know as point force solution or Stokeslet, of Stokes flow.
The stress tensor, Tijk can be found by performing several manipulations of Gij. The
Stokeslet, G, and the pressure vector Π must satisfy the divergence free condition,

∂Gij(x,y)
∂xi

= 0 , (3.9)

and
− ∂Πj(x,y)

∂xi
+ ∆yGij(x,y) = −δijδ(y − x) . (3.10)

Also, let Tijk be the stress tensor associated with G, having components,

Tijk(x,y) ≡ Tijk(y−x) = −Πj(y−x)δik+ ∂Gij(y − x)
∂xk

+ ∂Gkj(y − x)
∂xi

. (3.11)
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The tensors G, Π, and T are given by

Gij(x,y) = δij
|x− y|

+ (yi − xi)(yj − xi)
|x− y|3

(3.12)

Πi(x,y) = 2 yi − xi
|x− y|3

(3.13)

Tijk(x,y) = −6(yi − xi)(yj − xj)(yk − xk)
|x− y|5

(3.14)

Dijkl(x,y) = 1
|x− y|3

([−6(δijr,k + δikr,j) + 60r,ir,jr,k] r,l (3.15)

−6(δjlr,ir,k + δklr,ir,j)− 4δjkδil) .

The pressure tensor Λ = Λik corresponds to the stress tensor, T , and satisfies

− ∂Λik(y − x)
∂yj

+ ∆yTijk(y − x) = 0, for x ̸= y , (3.16)

where T satisfies the divergence free condition,

∂Tijk(y − x)
∂xk

= 0 . (3.17)

Λ is given by,

Λik(y − x) = 4 δik
|x− y|3

− 12(yi − xi)(yk − xk)
|x− y|5

. (3.18)

We note that the tensors Gij, Πi, and Tijk generate the point force velocity, pressure,
and stress solutions of Eqn. 3.6 upon contraction with the point force g. These point
force solutions are given by,

ui(y) = 1
8πµGij(x,y)gj (3.19)

p(y) = 1
8πΠi(x,y)gi (3.20)

σik(y) = 1
8πTijk(x,y)gj (3.21)

There exists similar constructions using any singularity solution of the Stokes equations
(half-space, rotlet, image systems, quadruple). However, higher order solutions become
increasingly complicated and exhibit higher order singularities as x→ y which tends
to limit their use in numerical methods. The next useful higher order solution is the
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stresslet construction which gives velocity, pressure, and stress fields,

ui(y) = 1
8πµTijk(x,y)sjk (3.22)

p(y) = µ

8πΛij(x,y)sij (3.23)

σil(y) = µ

8πDijkl(x,y)sjk , (3.24)

where sij ≡ ϕinj.

3.3.1 Important Properties

From continuity it can be shown that∫
Γ
Gij(x,y)ni(x)dS(y) = 0 , (3.25)

and that

1
8π

∫
Γ
Tijk(x,y)nk(y)dS(y) =


δij, when x is inside Γ
1
2δij, when x is on Γ
0, when x is outside Γ

. (3.26)

Also it should be noted that (required by the symmetry of the stress tensor)

Tijk(x,y) = Tkji(x,y) = Tjik(x,y) = −Tijk(y,x)
Gij(x,y) = Gji(x,y) = Gij(y,x) = Gji(y,x) .

(3.27)

3.4 Lorentz reciprocal relation

Take two unrelated Newtonian flows with velocity fields u and u
′ , pressure fields p

and p
′ and stress tensors σ and σ

′ . The counter part to Green’s second identity can
be written as [54]

u
′

i

∂σij
∂xj
− ui

∂σ
′
ij

∂xj
= ∂

∂xj
(u′

iσij − uiσ
′

ij) . (3.28)

If the flows satisfy the Stokes equation without a body force (∇ · σ = 0), then the
Lorentz reciprocal relationship is immediately found,

∂

∂xj
(u′

iσij − uiσ
′

ij) = 0 . (3.29)
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It is important to note the following convention. In this thesis the del operator in an
othornormal basis is defined in the following way:

∇ ◦ (·) ≡ ∂(·)
∂xj
◦ ej , (3.30)

where (·) stands for an arbitrary differentiable tensor quantity (scalar, vector, higher-
order tensor), and the ◦ stands for any tensor product operation, for example the
inner product, outer product, or cross product. The gradient, divergence, and curl
can then be written as

grad(·) ≡ ∇⊗ (·) = ∇(·), div(·) ≡ ∇ · (·), curl(·) ≡ −∇× (·) . (3.31)

From this we can see that the Eqn. 3.29, in vector form reads

∇ · (u′ · σ − u · σ′) = 0 . (3.32)

3.4.1 Boundary Integral Equations

Equation 3.28 can be evaluated using using an arbitrary Stokes flow (u, σ) and a
Stokes flow (u′

, σ
′) associated with a point force. This yields,

δ3(y − x)gmum(x) = ∂

∂xj

(
1

8πµGim(x,y)gmσij −
1

8πuiTimj(x,y)gm
)

. (3.33)

The Lorentz reciprocal theorem is highly useful in the sense that one may attempt to
express an arbitrary Stokes solution (u, σ) in terms of a simpler solution (u′

, σ
′). This

is how the boundary integral representation is constructed though the method is by no
means limited to using an associated singularity solution (point force) as the known
Stokes solution. For example, it would be interesting to attempt a representation
where the Stokes flow (u′

, σ
′) may be associated, to some extent, with slender body

theory.
The following manipulations may be performed, all in one step: (1) discard the

arbitrary constant body force gm, (2) integrate over volume Ω̃ for x ∈ Ω̃, and (3)
convert the volume integrals to surface integrals over the boundary of Ω̃ given by Γ,

um(x) = 1
8πµ

∫
Γ
Gim(x,y)σij(y)nj(y)dS(y)− 1

8π

∫
Γ
ui(y)Timj(x,y)nj(y)dS(y) .

(3.34)
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Now Eqn. 3.34 can be re-label by making m→ j, j → i and i→ k to give,

uj(x) = 1
8πµ

∫
Γ
Gij(x,y)σki(y)ni(y)dS(y)− 1

8π

∫
Γ
ui(y)Tkji(x,y)ni(y)dS(y) .

(3.35)
Using both of the properties from Eqn. 3.27 and noting that σki(y)nk(y) = fi(y), it
can be shown that

uj(x) = 1
8πµ

∫
Γ
Gji(x,y)fi(y)dS(y)− 1

8π

∫
Γ
ui(y)Tijk(x,y)nk(y)dS(y) . (3.36)

With additional careful mathematics, a BIE for three different situations can be
derived, where x ∈ Ω̃,x ∈ Γ, and x ∈ Ω̃c. The final expression is

1
8πµ

∫
Γ
Gji(x,x)fi(x)dS(y)− 1

8π

∫
Γ
ui(x)Tijk(x,y)nkdS(y) =


uj(x), x ∈ Ω̃
1
2uj(x), x ∈ Γ
0, else .

(3.37)
It is important to note the following two ideas, which reflect solution goals of Eqn. 3.37
in the context of fluid-structure interaction and in understanding particle dynamics:

1. The Resistance Problem: Using Eqn. 3.37, either the rigid body motions
U ,Ω or the velocity surface distribution {u(y), ∀y ∈ Γ} is given, and the total
hydrodynamic force (or surface traction distribution) is solved for.

2. The Mobility Problem: Using Eqn. 3.37 either the total external force is
known or the distribution of the surface traction is given, and the velocity
distribution or rigid body motions are solved for.

In this thesis we formulate both of these problems in the context of the Galerkin
Boundary Element discretization. We will solve the mobility problem in Chapter 5
for the dynamics of a particle and porous container.

3.4.2 Conventions for Normal Vectors and Interior / Exte-
rior Problems

The normal vectors n(y) in Eqn. 3.37 point outward from the surface, Γ, and that
the physics are being resolved inside of this surface, where there is viscous fluid. Even
though the normals are exterior to the surface, Γ, this equation is understood to
represent the interior flow problem. The same procedure can be use to derive the
exterior flow problem where the fluid mechanics is resolved exterior to, for example,
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particle surfaces. If this same construction were used for the exterior problem, the
normal vectors would again point out of the fluid domain, and thus into the particle
interiors (inwards into the particle bodies). However, in this thesis we use the geometric
convention, which is that surface normals should always point outside of a closed
geometric surface. This simply means that for the exterior problem, the normals need
to be reversed. Thus the single layer and double layer integral contributions change
mathematical sign. Some authors use the alternative convention that the normal
vector always points into the fluid.

3.4.3 The Calderón Projection

The boundary integral equations and representations may be constructed for any
linear elliptic partial differential equation(s). Today, there are even integral transform
techniques and constructions for parabolic and hyperbolic PDEs. There are general
ways to rigorously construct these representations, and they are always expressed as
integrals over a surface distribution of singularity solutions. The general constructions
for these representations are described in the excellent text by Steinbach, [64].

The construction shown in Eqn. 3.37 is only for one of the two BIEs that describes
Stokes flow. A BIE for the traction field may also be formulated by taking appropriate
derivatives of Eqn. 3.37 and using the Newtonian stress constitutive law. The factor
of 1/2 for x ∈ Γ arises only in the case where Γ is smooth and has a tangent plane
defined everywhere. More generally it is expressed as a tensor Cij. We do not derive
the traction BIE here since this thesis does not use it. This additional traction
BIE is potentially useful in Stokes flow problems when one must couple unknown
surface tractions to constraints over velocity surface distributions. For example, when
considering constant power squirmers or active particles a constraint must be made on
the power or viscous dissipation as a function of a squirming parameter. Since power
is force × velocity, tractions depend on the squirmer’s velocity surface distribution
through a power integral constraint.

The velocity field and traction field boundary integral equations may be written
in a more pedagogical and mathematically rigorous way. Following similar notation in
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[64], the boundary integral equations of Stokes flow read,

Cij(x)(γext/int
0 uj)(x)±

∫
Γ
Kij(x,y)(γext/int

0 uj)(y)dS(y) (3.38)

= ∓
∫

Γ
Gij(x,y)(γext/int

1 uj)(y)dS(y) (3.39)

Cij(x)(γext/int
1 uj)(x)±

∫
Γ
K

′

ij(x,y)(γext/int
1 uj)(y)dS(y) (3.40)

= ∓
∫

Γ
Dij(x,y)(γext/int

0 uj)(y)dS(y) . (3.41)

The boundary integral equation describing pressure is,

P (x)±
∫

Γ
Qi(x,y)ui(y)dS(y) = ∓

∫
Γ

Πi(x,y)ti(y)dS(y) . (3.42)

In these equations, the integral kernels are given by,

Kij(x,y) = Tijk(y − x)nk(y), Qi(x,y) = µΛik(y − x)nk(y)
K

′

ij(x,y) ≡ Kji(y,x) = Tjik(x− y)nk(x)
, (3.43)

where all prefactors 1/8πµ, 1/8π and 1/4π have been respectively absorbed into the
definitions of G,K,K ′

, D,Π and Q. The notions of the boundary trace and co-normal
derivative trace operators are defined as,

γint
0 u(x) = lim

Ω∋x̃→x∈Γ
u(x̃) (3.44)

γext
0 u(x) = lim

Rd\Ω̄∋x̃→x∈Γ
u(x̃) (3.45)

γint
1 u(x) = lim

Ω∋x̃→x∈Γ
σ(u, x̃) · n(x̃) (3.46)

γext
1 u(x) = lim

Rd\Ω̄∋x̃→x∈Γ
σ(u, x̃) · n(x̃) . (3.47)

Again, the normal vector is kept consistent in the geometric sense where it is defined
to point out of closed surfaces or convex bodies. The normal vector, in the definition(s)
above, does however point out of the fluid region for interior problems and into the
fluid region for exterior problems.

Equations 3.38 and 3.40 may be written more compactly using shorthand matrix
operator notation. We subsequently define the Calderón projections. The interior
Calderón projection, C int, and corresponding system of two boundary integral equations
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can be written for x ∈ Γ as,γint
0 u

γint
1 u

 =
(1− C)I−K G

D CI +K
′

γint
0 u

γint
1 u

+
N0f

N1f

 (3.48)

C int =
(1− C)I−K G

D CI +K
′

 . (3.49)

where I is the identity, K is the double layer potential, G is the single layer potential,
D is the hypersingular potential, and γ0, γ1 are respectively the boundary trace and
co-normal derivative trace operators. Newton potentials N0 and N1 are left in for
generality since they allow for coupling with the Finite Element Method. However in
this thesis we are not concerned with volume body forced defined in the fluid.

Convention has it that, for problems with bounded domains, the normal vector
points out of the interior domain. With the distinction of integration domains, Ω
and Rd \ Ω̄, it is only natural to also have an exterior Calderón projector for exterior
boundary value problems. This is given as,

Cext =
CI +K −G
−D [1− C] I−K ′

 . (3.50)

The corresponding exterior boundary value problem is written as,γext
0 u

γext
1 u

 =
CI +K −G
−D [1− C] I−K ′

γext
0 u

γext
1 u

+
u0

0

 , (3.51)

where u0 may be some type of background flow. If the boundary is sufficiently smooth
at the point x we find that in all cases,

C(x) = 1
2I . (3.52)

In Eqns. 3.51 and 3.48, it is understood that the problem is to find the complete
Cauchy datums {γext/int

0 u(x), γext/int
0 u(x)} , x ∈ Γ, which are given only partially by

prescribed boundary conditions.

3.5 The Completed Double Layer Representation

In colloidal hydrodynamics problems, the exterior or interior problems, given respec-
tively by 3.51 and 3.48, do not readily contain relevant quantities of interest. If one
explicitly needs the distribution of velocities or surface tractions over a particle’s
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surface, Γp, then the Calderón construction is one adequate representation providing
this solution. However for mobility problems, one may, for example, want to solve for
particle rigid body motions subject to total external force and torque constraints. This
total force does not appear explicitly in the boundary integral construction. Instead a
larger system of equations is solved where force constraints are specified as,

F p,ext = −F p,H = −
∫

Γp

f(x)dS(x) (3.53)

T p,ext = −T p,H = −
∫

Γp

(x− xp
c)× f(x)dS(x) . (3.54)

Rigid body motions typically are coupled to the fluid mechanics using stick or no-slip
boundary conditions,

u(x) = U p + Ωp × (x− xp
c), x ∈ Γp , (3.55)

where for instance,

U p = 1
SΓp

∫
Γp

u(y)dS(y) (3.56)

Ωp = I−1
Γp

∫
Γp

(x− xp
c)× (u(y)−U p)dS(y) , (3.57)

where I−1
Γp

my be found using the formulas of Sec. 2.11. The system of equations 3.38,
3.55 subject to constraints 3.53 and 3.54 is then fully specified up to discretization
for a finite number of points x but a significant amount of extra work is needed to
re-arrange this system to find the solution. Roughly speaking the traction is given
by t = (G−1K)u which then must be substituted into Eqn. 3.53 and 3.54 and solved
in conjunction with the help of Eqn. 3.55. There is no guarantee that G−1 exists
since it is derived from an integral equation of the first kind. Thus this description is
relatively inadequate for our needs.

Instead, we would like to do as few computations as possible and only work with
second kind integral equations (for numerical stability reasons). The completed double
layer boundary integral equation method (CDL-BIEM) is one such construction that
satisfies these requirements. CDL-BIEM is an indirect integral equation method for
solving either the mobility or resistance problem. The method uses an indirect integral
equation to represent a Stokes velocity field,

u(x) =
∫

Γp

K(x,y) · ϕ(y)dS(y)

= (KΓpϕ)(x)
. (3.58)
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We remark here on a special property of the double layer potential. Specifically that
the exterior or interior traces show jumps (discontinuities) in the potential ϕ. For
smooth surfaces, it can be rigorously proven that [64],

γ
ext/int
0 (KΓpϕ)(x) = ±1

2ϕ + (KΓpϕ)(x) , (3.59)

which indicates that there is a jump of ±1
2ϕ when the limiting process is taken

respectively from the direction ±n in which the surface normal vector points. In this
thesis we always multiply the double layer potential, in the indirect representation,
by an additional factor of 2. With this factor of 2 the double layer has instead a
discontinuous jump given by ±ϕ.

3.5.1 Completion Schemes

The velocity field associated with the indirect double layer representation is not an
arbitrary Stokes flow field and ϕ technically has no relevant physical meaning, other
than representing the double layers density distribution (though it still has units of
velocity). Quite easily, it can be proven that the double layer operator K can only
describe flows that are force and torque free and that decay as 1/r2. Power and
Miranda [51] suggested completing the range of this operator with point force and
point torque solutions suitably located inside of the particles. Their range completion
scheme reads,

u(x) = ϕ(x) +
∫

Γp

K(x,y) · ϕ(y)dS(y) + F p,ext · G(xp
c ,x)

8πµ

− 1
2
(
T p,ext ×∇x

)
· G(xp

c ,x)
8πµ

= ϕ(x) +
∫

Γp

K(x,y) · ϕ(y)dS(y) + F p,ext · G(xp
c ,x)

8πµ

+ R(xp
c ,x)

8πµ · T p,ext

, (3.60)

for x ∈ Γp and where F p,ext and T p,ext are the external forces and torques on
the particle, G(xp

c ,x) is the Stokeslet centered at the particle’s centroid xp
c , and

R(xp
c ,x) ≡ ϵijk

(y−x)
r3 is the Rotlet or Couplet singularity again centered at the particle’s

geometric centroid. The Stokeslet and Rotlet, respectively, can be easily proven to
exert unit forces and torques on the particle when placed internally at the particle’s
center of mass. In this way, the range of the operator K can now represent arbitrary
flows. If the no-slip condition is used to couple the fluid velocity to the particle RBMs,
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six additional constraint equations are needed to fix the system. Power and Miranda
first formulated these constraints in terms of the hydrodynamic force and torque. The
CDL-BIEM method of Kim and Karilla [31], [30], [33] specifically targets the mobility
problems by applying different constraints that are directly related to the particle
RBMs. CDL-BIEM has been successfully applied to many different problems [49],
[50], [48], [46]. A clear and detailed monograph of application to elasticity is given by
Phan-Thien and Kim [47].

3.5.1.1 The Resistance Formulation

Since Power and Miranda [51] were mainly concerned with solving Stokes flow resistance
problems, in order to fix the system, they chose an additional set of constraints, given
by,

F p,H = −
3∑
i=1

ei⟨φRBM
i ,ϕ⟩ (3.61)

F p,H = −
3∑
i=1

ei⟨φRBM
i+3 ,ϕ⟩ , (3.62)

where φRBM
i for i ∈ 1, . . . , 6 are basis functions for the rigid body motions (RBMs)

and are the null functions of (I +K). These basis functions collectively described the
six eigenfunctions of the rank six eigenvalue K at -1. Here ⟨a, b⟩ ≡

∫
Γp

a(y)·b(y)dS(y)
is an inner product and the set of RBMs must be orthornormal and satisfy,

⟨φi,RBM ,φj,RBM⟩ = δij . (3.63)

We note here that construction of the set of RBMs satisfying Eqn. 3.63 is a relatively
non-trivial computation unless the geometry is spherical. For spheres the RBMs
become,

φi = 1√
SΓp

ei (3.64)

φi+3(x) = 1√
Ii,Γp

ei × (x− xp
c) . (3.65)

For arbitrarily shaped particles, these RBMs may be constructed using the modified
Gram-Schmidt orthornormalization process. This process is not explicitly given
in the literature. The GPUGBEM framework uses the modified Gram-Schmidt
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orthonormalization process to construct these RBMs and can therefore apply CDL-
BIEM to arbitrary shaped particles.

We note here that this completion process is arbitrary in the sense that one needs
only to impose six extra constraints that are linearly independent. However, we have
chosen a set of constraints that is both convenient to implement and is known to
provide a well-conditioned linear system. These constraints can be combined with the
range completion to yield a smaller linear system. Rewriting the force and torque in
terms of the constraints and using a symmetry property of G we find that,

F p,ext · G(xp
c ,x)

8πµ + R(xp
c ,x)

8πµ · T p,ext = G(xp
c ,x)

8πµ

3∑
i=1

ei⟨φRBM
i ,ϕ⟩

+ R(xp
c ,x)

8πµ

3∑
i=1

ei⟨φRBM
i+3 ,ϕ⟩

. (3.66)

The resistance problem for a rigid particle comprises the simultaneous solution of
Eqns. 3.60, 3.61, and 3.62 subject to specification of U and Ω in Eqn. 3.55. These
equations may all be combined together to yield,

U p + Ωp × (x− xp
c)− ūp = ϕ(x) +

∫
Γp

K(x,y) · ϕ(y)dS(y)

+ F p,ext · G(xp
c ,x)

8πµ + R(xp
c ,x)

8πµ · T p,ext
. (3.67)

Given (U ,Ω) one may solve Eqn. 3.67 for ϕ(x) for all points x ∈ Γp. The resistance
constraints Eqns. 3.61 and 3.62 are then used with the solution ϕ(x), in a post-
processing step, to obtain the hydrodynamic forces and torques.

3.5.1.2 The Mobility Formulation

Convenient constraints for the mobility problem were first given by Kim and Karilla
[31] and take the form,

U p = −
3∑
i=1

φRBM
i ⟨φRBM

i ,ϕ⟩ (3.68)

Ωp × (x− xp
c) = −

3∑
i=1

φRBM
i+3 ⟨φRBM

i+3 ,ϕ⟩ . (3.69)

These constraints may be combined with the boundary condition on the particle to
yield,

U p + Ωp × (x− xp
c) = −

6∑
i=1

φRBM
i ⟨φRBM

i ,ϕ⟩ . (3.70)
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Kim and Karrila designed this completion scheme with the primary intention of seeking
a Picard iterative based solution to Eqn. 3.60. It is important to point out that this
choice of these specific completion constraints is the only valid choice if one seeks to
obtain an iterative solution method cast as a fixed point problem where the linear
operator, K, is made to be a contraction mapping with spectral radius less than one.
With these constraints, the mobility problem may be solved using a Neumann series
expansion, which in practice, is replaced by standard Picard iteration. This means
that matrix inversions are not necessary and that by construction the method is O(N2)
for N points x ∈ Γ. We do not choose to pursue this iterative construction here;
however, throughout this thesis we extensively use the CDL-BIEM construction with
Power and Miranda’s force and torque range completer, and with either the resistance
or mobility completion schemes.

Combining Eqns. 3.60 and 3.70 yields a version of the CDL-BIEM mobility
formulation,

−F p,ext · G(xp
c ,x)

8πµ − R(xp
c ,x)

8πµ · T p,ext = ϕ(x) +
∫

Γp

K(x,y) · ϕ(y)dS(y)

+
6∑
i=1

φRBM
i ⟨φRBM

i ,ϕ⟩
.

(3.71)

Given the external force and torque, (F p,ext, T p,ext), one may solve Eqn. 3.71 for ϕ(x)
for all points x ∈ Γp. The mobility constraints Eqns. 3.68 and 3.69 are then used
with the solution ϕ(x), in a post-processing step, to obtain the translational velocity
and angular velocity.

3.5.2 The CDL Representation of an Active Particle

Active particles are defined by so-called force-free and torque-free motion. These terms
are often very loosely used in describing active matter. What this precisely means is
that the net hydrodynamic force and torque on the particle is zero,

F h = 0 (3.72)
T h = 0 . (3.73)

If the particle were a rigid force and torque free body then it would not move subject
to conditions 3.72 and 3.73. In other words, the hydrodynamic drag on the body
would be zero. Noticing this fact allows us to identify the rigid body motions (RBMs)
of the particle with the hydrodynamic drag force. In this case these two quantities
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are related through the use of a resistance force-velocity operator. In the case of an
actively propelled particle, the surface velocity is described by,

u(x) = U + Ω× (x− xc) + us(x) , (3.74)

where us(x) is a point-wise additional slip velocity piece. If this body is now made
force and torque free, the RBMs are still identified as giving rise to the drag force, but
the slip velocity piece must give rise to an additional forcing term that is equal and
opposite to the drag force. In this thesis, we call this the bodies propulsive force. If
an active particle is held fixed, swimming in place, the force required to keep it from
moving is precisely the propulsive force that arises from surface velocity piece, us(x).

Since the active particle is net force and torque free, the range completion term is
not needed in the CDL description. The active particle may be perfectly modeled by
the double layer alone and the mobility problem reads,

us(x) = ϕ(x) +
∫

Γp

K(x,y) · ϕ(y)dS(y) +
6∑
i=1

φRBM
i ⟨φRBM

i ,ϕ⟩ . (3.75)

This representation is incredibly simple and is capable of accurately describing the
motion of any force and torque free active particle whose motion is driven by a slip
velocity us(x). The range completion scheme only re-enters the problem in the event
that one wants to include external forces and torques in the description of active
particles (e.g. bottom heavy swimmers).

3.6 Conclusions

In this chapter we have shown that the Stokes BEM problem may be cast into another
form, given by Eqn. 3.71, which may be solved with much greater efficiency and ease.
This alternative form utilizes an indirect second kind integral equation representation
and is known as CDL-BIEM. Using techniques from linear operator theory, one
may prove that this representation of the mobility solution for multiple particles, in
either a bounded container or an extended domain, may be cast in terms of fixed
point problem where the linear operator (in this case the double layer potential) is
a contraction mapping with spectral radius less than one. Moreover, it was shown
that the CDL representation simplifies when it is used to model an active force and
torque free particle. Because of this simplification, and contraction mapping property,
it is likely that this BIE representation (Eqn. 3.75) is the most efficient representation
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for describing active particles with arbitrary geometries in Stokes flow. In subsequent
chapters we use this description to study the dynamics of active particles.



Chapter 4

The GPUGBEM Framework and
the Galerkin Discretization

There currently exist no adequate open-source software packages or implementations for
the discretization of boundary integral operators in Stokes flow. Moreover, there exist
no BEM libraries that specifically implement Galerkin Boundary Element computations
across multiple bodies or several coupled geometries in 3D Stokes Flow. A major
portion of the work in this thesis has been in creation of a new, novel, fast, and efficient
framework, dubbed GPUGBEM (GPU Galerkin Boundary Element Method), that
fills this void. GPUGBEM is a BEM library, written by the author, that uses both
static and dynamic polymorphism to generate Galkerin discretizations of BEM matrix
operators. GPUGBEM represents surface meshes using the VCG library [10] and
couples this high quality geometry library to h-adaptive Galerkin boundary element
calculations. The h-adaptive mesh class has been written in house, and is used to store
and perform conformal h-adaptive mesh refinement on an arbitrary BEM mesh. Mesh
adaptivity and the Galerkin BEM calculations are defined in ways so that the extension
of calculations for systems involving multiple bodies of arbitrary shape becomes trivial.
In addition, fast n-body simulation techniques have been used to translate Galerkin
BEM calculations onto GPUs using NVIDIA’s CUDA Runtime API. GPUGBEM also
implements rigid body dynamics algorithms for computing particle trajectories. Thus
GPUGBEM allows for full dynamics simulations of arbitrarily shaped particles to be
computed quickly on modern desktop computers that are equipped with a modern
GPU.

Other boundary element packages do exist, which seek, in large part, to unify
the language of BEM through object-orientated design (OOD). In particular there is
BEM, [60], which realizes all BEM abstractions using object-orientated design and
makes heavy use of virtual functions and inheritance when representing generic BEM
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computations. However, this package has gone through multiple extensive revisions
since this thesis work was started and has only recently appeared to be stable. Also, the
BEM++ library is exclusively tailored towards the solution of the Laplace, Helmholtz,
or Maxwell equations and it does not easily support multiple bodies or mesh geometries.
There is also BETL, [21], which is built upon generic programming paradigms and
C++ templates. This library generates optimized generic code at compile time for a
specific boundary element problem. In contrast to BEM++’s dynamic polymorphism,
BETL implements static compile time polymorphism. However, BETL seems to suffer
from requiring its users to sign a restrictive license agreement. Static compile time
polymorphism is also relatively restrictive. For example this type of coding prevents
any hopes of implementing adaptive h or p meshing routines or any algorithms that
require element types to change. Although, BETL claims to be fully decoupled from a
specific mesh implementation (since it provides STL iterators to mesh objects) it does
require that element types be specified at compile time and be uniform across the
entire surface. BETL is also not readily amenable to performing BEM calculations
across multiple surfaces. In this thesis we have extensively used programming ideas
and principles found in both of these packages, but GPUGBEM has been written
from scratch and efficiently combines both static and dynamic types of polymorphism
with adaptive meshing and multi-body BEM capabilities.

In this chapter we first formalize the Galerkin Boundary Element discretization
using the Calderón projection. This construction yields the general symmetric form
of GBEM for a single surface. We take this procedure and apply it to discretize
the completed double layer boundary integral representation of Chapter 3. This
construction is generalized to multi-body systems. We show how the resistance and
mobility problems may be posed using GBEM. We describe a general algorithm and
procedure for automatically computing GBEM matrix representations for an arbitrary
set of particles that may each be individually described by different boundary integral
equations. The GPUGBEM framework is briefly explained in the context of the
CDL representation for an active particle. Finally we discuss the h-adaptive meshing
algorithm and its coupling to GBEM.

4.1 Boundary Element Methods

The Boundary Element Method (BEM) is a relatively mature numerical technique
that solves elliptic partial differential equations with high accuracy at reasonable
computational expense. The method is quite general and can be applied to many
different topics and problems that may come from a variety of different fields including
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elasticity, geomechanics, structural mechanics, electromagnetism, acoustics, hydraulics,
low Reynolds number hydrodynamics, and biomechanics. The strength of the method
lies in its ability to provide efficient solutions to problems that have complex and even
time evolving or flexible geometries.

The BEM is formulated from an associated set of boundary integral equations
(BIEs) that are often derived from a partial differential equation, or reciprocal identity.
Integral equation formulations of PDE’s have been known for well over a century,
however it was not until 1978 that Brebbia [9] formalized the boundary integral
equation method (BIEM) and introduced BEM as a discretization method used to
compute the numerical solution of the associated BIEs. Brebbia approximated the
continuous surface boundary integrals as a sum of integrals over discrete surface
elements. This description naturally requires the discrete mesh representation, Γh, of
a given object’s (particle’s) surface.

Boundary Element Methods enjoy significant advantages over volume based meth-
ods in certain situations. They are extremely efficient in treating exterior domain
problems and offer the benefit of working with discretized surface meshes rather than
a volume discretization. One downside to working with BEM is that the representative
underlying linear BIEs discretize as dense matrices. This is due to the decay properties
of the BEM singularities; the boundary datums emanate in all directions with a fairly
persistent and long range decay that is usually at least O(r−1) or O(r−2). Conversely,
volume or spatial methods such as Finite Element Methods (FEM) or Finite Difference
Methods (FDM), yield sparse matrix equations and matrix representations. Solution
of these sparse systems can then be efficiently obtained by the use of iterative solvers
or by a straightforward mapping to large parallel architectures. However, FEM and
FDM also lead to much larger, although sparse system or so-called stiffness matrices.

In multi-body colloidal hydrodynamics problems, BEM enjoys exceptional advan-
tages over FEM and FDM. This is mainly due to the fact that as particles move in
space, volume based methods must re-mesh a significant portion of the entire solution
domain. Quite conversely, the BEM meshes are attached to the rigid body motions
of the particle and may be evolved in space subject to a simple rigid body affine
transform (rotation plus a translation). Re-meshing in BEM only needs to occur when
geometries become distorted or come into close contact. It is also well known that
volume base FEM and FDM are much less accurate in calculating Neumann datums,
(i.e. derivatives) due to the fact that they must be numerically post-processed and do
not come out naturally from the problem. As was seen in Chapter 3, surface tractions
arise naturally in the formulation of the Calerón projection and may be computed
with high accuracy with absolutely no post-processing.
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In BEM we solve for the boundary distribution of an unknown function (or for
one of its derivatives). Once the boundary distribution of the function is known, its
value at any point in the domain can be produced by direct evaluation. BEM reduces
the dimensionality a given elliptic partial differential equation by one order (e.g. in
3D the solution space is reduced to 2D surface distributions rather than the original
physical volume). This dimensionality reduction results from expressing the solution
in terms of the boundary distribution of fundamental singularity solutions of the
underlying partial differential equation. Distribution densities of these singularities
are then computed subject to boundary conditions.

In Stokes flows, direct formulations of BEM, where the primary variables are the
tractions and velocities on the particle surfaces, have been used to solve a vast array
of problems (see [24]). For example, a series of three papers by Ingber and Mondy
[15],[42],[23] solve the mobility problem in Stokes flow. The papers by Ingber and
Mondy use a direct formulation of BEM that leads to integral equations of the first
kind (IE1). They use Gaussian elimination-type linear solvers to find solutions to the
mobility since the more efficient iterative solvers can not deal with the high linear
system condition numbers that are characteristic of IE1s. It has been well know
since Fredholm’s seminal papers on integral equations (circa 1900) that IE1s lead to
ill-conditioned problems. In fact it is quite easy to see that for an inhomogeneous IE1
and a continuous degenerate kernel, there can only be a solution if the inhomogeneous
term lies in the range of the kernel (or in this case is a multiple of the part that gets
integrated out).

As discussed and shown in Chapter 3, the completed double-layer boundary integral
equation method (CDL-BIEM) provided a solution to the ill-conditioning problem.
Formulated by Power and Miranda [51], CDL-BIEM is a range completion method
that formulates the Stokes flow BIEs in terms of integral equations of the second
kind (IE2). This method has in turn gained popularity, especially in solving large
systems where the IE1 condition number becomes particularly large. CDL-BIEM was
formalized by the work of Karrila et al. [31], Phan-Thien and Kim [47], Phan-Thien
et al. [49], Phan-Thien and Tullock [48], and Power and Wrobel [52]. Also much on
BIM, BEM, and CDL-BIEM are formalized in the great books and works of Pozrikidis
[53] and [54]. More technical books exist. For Galerkin BEM the excellent books
by Sauter and Schwab [58] and Steinbach [64] read more like rigorous mathematical
treatises and are highly recommended.

The BEM results in a coupled set of linear algebraic equations. For small systems
of equations techniques such as LU decomposition may be readily used to obtain the
solution. For larger systems one must use iterative solvers such as the CG method by
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Hestenes and Stiefel [20], the CGS method by Sonneveld [63], the BICGstab method
by van der Vorst [66], or the GMRES method by Saad and Schultz [56]. GPUGBEM
makes extensive use of these solvers, depending on the symmetries and properties of
the discretized matrix operators.

BEM formulations are naively O(N3) for N degrees of freedom (e.g. mesh nodes)
owing solution using a primitive dense matrix inversion technique. This is the primary
reason for why BEM is not readily used for in the simulation of dense macromolecular
suspensions. If however, one combines a Krylov subspace iterative solver with either
the Barnes-Hut multipole methods [5] or fast multipole methods (FMM) [17] the
calculation time complexity changes to respectively O(N log(N)) and O(N) [16]. If
each particle has N degrees of freedom, this means that the simulation of potentially
thousands of particles is possible on desktop computers. A relatively different approach
that is highly competitve with FMM is in representing BEM matrices with so-called
hierarchial matrices. These matrices are termed H-matrices [18] and are data sparse
representations of the dense BEM matrices. Nearly all matrix operations may be
performed on H-matrix representations in almost optimal time complexities. These
fast algorithms have not been implemented in the GPUGBEM framework. This is left
as future work.

Both BEM and CDL-BIEM have trouble dealing with lubrication forces when
suspensions go above 30 volume percent. Lubrication corrections require one to
either adaptively re-mesh a particles surface in order to resolve “numerically” singular
integrals between close particles1 or utilize nonlinear transformation techniques to
smooth out the singularity. In this thesis, near contact interactions are resolved using
spatial adaptivity on the mesh.

4.1.1 Symmetric Galerkin Formulation

The equations from the interior Calerdón system are evaluated on a boundary parti-
tioning ΓD and ΓN such that Γ = ΓD ∪ ΓN ,

CgD(x) = (Gγint
1 u)Γ(x)− (Kγint

0 u)Γ(x) + (N0f)Ω(x), ∀x ∈ ΓD (4.1)
[I − C] gN(x) = (K ′

γint
1 u)Γ(x) + (Dγint

0 u)Γ(x) + (N1f)Ω(x), ∀x ∈ ΓN .

(4.2)
1The double layer can become singular as particle elements approach one another since in close

proximity a small separation between points could lose numerical significance or result in a sharply
peaked integrand.
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where we have made use of the known Cauchy data gN and gD. The exterior case
follows similarly as,

[I − C] gD(x) = −(Gγext
1 u)Γ(x) + (Kγext

0 u)Γ(x) + u0(x), ∀x ∈ ΓD (4.3)
CgN(x) = −(K ′

γext
1 u)Γ(x)− (Dγext

0 u)Γ(x), ∀x ∈ ΓN . (4.4)

The Cauchy data is then decomposed into known and unknown parts,

γ
int/ext
0 u(x) = gD(x) + ũD(x)
γ

int/ext
1 u(x) = gN(x) + ũN(x)

, (4.5)

in which the unknown Cauchy data is denoted as ũD(x) and ũN(x). Inserting the
decompositions shown in Eqn. 4.5 into Eqn. 4.1-4.4 and transferring the resulting
system to residual form with appropriate test functions w(x) and v(x) yields the
symmetric Galkerin formulation of the interior problem,

⟨GũN , w⟩ΓD
− ⟨KũD, w⟩ΓD

= ⟨(C +K) gD −GgN −N0f, w⟩ΓD
(4.6)〈

K
′
ũN , v

〉
ΓN

+ ⟨DũD, v⟩ΓN
=
〈(
I − C −K ′)

gN −DgD −N1f, v
〉

ΓN

, (4.7)

and the symmetric Galerkin formulation of the exterior problem,

⟨−GũN , w⟩ΓD
+ ⟨KũD, w⟩ΓD

= ⟨(I − C −K) gD +GgN − u0, w⟩ΓD
(4.8)〈

−K ′
ũN , v

〉
ΓN

− ⟨DũD, v⟩ΓN
=
〈(
C +K

′)
gN +DgD, v

〉
ΓN

, (4.9)

for ⟨f, g⟩Γ ≡
∫

Γ f(x)g(x)dx. To proceed with numerical solution, both the inner
product and all boundary element operators must be discretized. Thus, the surface Γ
must be discretized. In addition, appropriate spaces of test functions w(x) and v(x)
must be defined. These test functions will be constructed explicitly as nodal element
functions from the surface-mesh discretization.

4.1.2 Boundary Approximation and Discretization

First we introduce a decomposition of the k’th surface, Γk, into a union of M disjoint
boundary elements (also known as a mesh),

Γk ≈ Γhk,M =
M⋃
m=1

τ̄m

|Γhk| = M

, (4.10)
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with boundary elements τm, and a notion of mesh size, h. From here we make the
following approximation,

∫
Γ
(· · · )dS(ȳ) ≈

M∑
m=1

∫
τm

(· · · )dS(y), ∀ ȳ ∈ Γ and y ∈ Γhk,M , (4.11)

For the integration of the boundary element, τm, a parameterization is introduced
such that every boundary element τ is the image of a reference element, τ̂ under a
mapping,

χτ : τ̂ → τ . (4.12)

Boundary elements τ are defined as d− 1 dimensional surface patches embedded in
a d dimensional space. For three-dimensional Euclidean space, τ corresponds to a
two dimensional surface patch embedded in R3. Therefore the mapping χτ : R2 → R3

maps from the plane into three dimensional Euclidean space. The boundary elements
usually consist of either triangles or quadrilaterals and so the corresponding reference
elements are chosen to be either the unit triangle, τ̂△ or the unit square, τ̂□. These
reference elements may be defined as,

τ̂△ ≡
{
(ξ1, ξ2) ∈ R2 : 0 ≤ ξ2 < ξ1 ≤ 1

}
(4.13)

τ̂□ ≡
{
(ξ1, ξ2) ∈ R2 : 0 ≤ (ξ2, ξ1) ≤ 1

}
. (4.14)

If these reference domains are re-defined, then an appropriate modification of shape
functions will be necessary. Each reference element τ̂ has a set of local points p̂i
where i = 1, . . . , N . The correspondence between the number of points belonging to
boundary element uniquely defines the geometry of that element. The geometry of
the element τ is defined by the set,

EN ≡
N⋃
i=1

pi . (4.15)

Commonly these points are referred to as nodes and or boundary nodes. For example the
sets E3 = {p1,p2,p3} and E4 = {p1, . . . ,p4} define planar triangles and quadrilaterals.
These two element types are commonly called flat elements. Also available are so
called curved elements which include larger sets of nodes in their definitions. An
interesting research direction would be to discover or invent new parameterizations that
facilitate more accurate numerical quadrature techniques. For example, a charts-atlas
parameterization can generate much smoother surfaces and higher quality geometric
representations. This in turn improves interpolation errors and overall solution quality.
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The mapping χτ is commonly (but need not be) defined as a linear combination of
nodal shape functions, φαi ∈ R of order α such that reference coordinates ξ ∈ τ̂ are
mapped to points x ∈ τ . With a polynomial ansatz of dimension N , a χτ mapping
can be defined by,

χτ (ξ) = x(ξ) =
N∑
i=1

φαi (ξ)pi, α ∈ N . (4.16)

Every node pj is related to a distinct local or reference node p̂j such that

pj = χτ (p̂j)

holds. If this constraint is inserted into Eqn. 4.15, the description is that of Lagrange
nodal shape functions which satisfy the delta property,

φαi (p̂j) = δij . (4.17)

Construction of the nodal basis shape functions involves inversion of a generalized
Vandermonde matrix. The construction proceeds as follows. For every nodal point
p̂j one can define a linear form that maps elements, g, from a polynomial space
P = Pα(τ̂) to R,

Lj : g ∈ P → g(p̂j) ∈ R . (4.18)

Expanding each shape function using a basis {g1, . . . , gN}, it follows that,

φj =
N∑
k=1

akjgk . (4.19)

From here, the delta property implies that,

δij = Li(φj) = Li

(
N∑
k=1

akjgk

)
=

N∑
k=1

Li(gk)akj, 1 ≤ i, j ≤ N , (4.20)

which yields a system of N linear equations for each j. From here one obtains a matrix
equation,

LA = I

L = {Li(gk)}Ni,k=1

A = {akj}Nk,j=1

. (4.21)
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Matrix L is a generalized Vandermonde matrix, I is the identity, and A is the coefficient
matrix where columns contain coefficients of the corresponding shape functions. Shape
functions in 2D FEM are almost always identical to the 3D BEM shapefunction
constructions. Good resources that derive shape functions for various elements include
the excellent books by Solín, [62], [61] and the libMesh library, [34].

4.1.2.1 Linear Quadrilateral Shape Functions

To find the shape functions for a linear quadrilateral element, τ̂□, the polynomial space
is taken to be P 1(τ̂□) = span{1, ξ1, ξ2, ξ1ξ2}. The set of linear forms then becomes,

g1(x̂) = 1, g2(x̂) = ξ1

g3(x̂) = ξ2, g4(x̂) = ξ1ξ2

L1(g) = g(p̂1), L2(g) = g(p̂2)
L3(g) = g(p̂3), L4(g) = g(p̂4)

. (4.22)

From which the generalized Vandermonde matrix is determined to be,

L□ =


1 0 0 0
1 1 0 0
1 1 1 1
1 0 1 0

 , (4.23)

and the coefficient matrix A is,

A□ = L−1I =


1 0 0 0
−1 1 0 0
−1 0 0 1
1 −1 1 −1

 , (4.24)

and the shape functions are,

φ1
1(ξ) = 1− ξ1 − ξ2 + ξ1ξ2 (4.25)

φ1
2(ξ) = ξ1 − ξ1ξ2 (4.26)

φ1
3(ξ) = ξ1ξ2 (4.27)

φ1
4(ξ) = ξ2 − ξ1ξ2 . (4.28)
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4.1.2.2 Linear Triangle Shape Functions

To find the shape functions for a linear quadrilateral element, τ̂□, the polynomial
space is taken to be P 1(τ̂□) = span{1, ξ1, ξ2}. The set of linear forms then becomes,

g1(x̂) = 1, g2(x̂) = ξ1, g3(x̂) = ξ2

L1(g) = g(p̂1), L2(g) = g(p̂2), L3(g) = g(p̂3)
. (4.29)

From which the generalized Vandermonde matrix is determined to be,

L□ =


1 0 0
1 1 0
1 1 1

 . (4.30)

and the coefficient matrix A is,

A□ = L−1I =


1 0 0
−1 1 0
0 −1 1

 . (4.31)

and the shape functions are,

φ1
1(ξ) = 1− ξ1 (4.32)

φ1
2(ξ) = ξ1 − ξ2 (4.33)

φ1
3(ξ) = ξ2 . (4.34)

4.1.3 Galerkin Discretization

We define spaces of continuous boundary elements of order p on our discrete mesh Γhk
as,

Sp,0(Γhk,χ) ≡ {ψ ∈ C0(Γk)|∀τ ∈ Γhk : ψ|τ ◦ χτ ∈ Pτp} . (4.35)

Conversely we denote the space of discontinuous boundary elements of order p by
Sp,−1(Γhk). In this thesis, all calculations exclusively use piecewise linear and continuous
boundary elements from the space, S1,0. We may define boundary element spaces over
the spatial components of the partition Γhk = Γhk,D ∪ Γhk,N . We may choose to define
different spaces for the Dirichlet and Neumann datums, Sγ(Γhk,D) and Sβ(Γhk,N) in
accordance with Eqn. 4.35. In the construction shown here we select γ = β ≡ γ ≥ 1
so as to avoid discontinuous representations of the Dirichlet data. The basis functions
used in expanding the unknown datums are referred to as trial functions. These
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expansions may be written as,

ũN ≈ uγ
N,h(x) =

N∑
i=1

uN,iφ
γ
i (x), ∈ Sγ,0(Γhk,N) (4.36)

ũD ≈ uγ
D,h(x) =

M∑
i=1

uD,iψ
γ
i (x), ∈ Sγ,0(Γhk,D) . (4.37)

These approximations are inserted into the variational formulation to yield two
equations with N unknown parameters uN,k and M unknown parameters uD,l. To
yield a system of equations, the variational formulation is then passed through the
respective subspace’s basis such the the problem reads:

Find (uγ
N,h,u

γ
D,h) such that the interior problem satisfies

〈
Gũγ

N,h, w
γ
h

〉
ΓD,h

−
〈
Kũγ

D,h, w
γ
h

〉
Γh

D

=
〈
(C +K) gγD,h −GgγN,h −N0fh, w

γ
h

〉
Γh

D

(4.38)〈
K

′
ũγ
N,h, v

γ
h

〉
Γh

N

+
〈
Dũγ

D,h, v
γ
h

〉
Γh

N

=
〈(
I − C −K ′)

gγN,h −DgγD,h −N1fh, v
γ
h

〉
Γh

N

(4.39)

for all test functions (wγh, v
γ
h) and or such that the exterior problem satisfies,

〈
−Gũγ

N,h, w
γ
h

〉
ΓD,h

+
〈
Kũγ

D,h, w
γ
h

〉
Γh

D

=
〈
(I − C −K) gγD,h +GgγN,h − u0,h, w

γ
h

〉
Γh

D

(4.40)〈
−K ′

ũγ
N,h, v

γ
h

〉
Γh

N

−
〈
Dũγ

D,h, v
γ
h

〉
Γh

N

=
〈(
C +K

′)
gγN,h +DgγD,h, v

γ
h

〉
Γh

N

(4.41)

is satisfied for all wγh ∈ Sγ,0(Γhk,D) and vγh ∈ Sγ,0(Γhk,N). Equations 4.40 and 4.41 are
understood to be discretized under application of Eqn. 4.11 to the inner product, and
a second time to individual BEM operators over the subscripted surface. Numerical
solution proceeds by transforming these integrals to the reference element domain
taking them to quadrature.

4.1.4 Transformation of Integrals to Reference Elements

To transform Eqn. 4.11 to local coordinates, it remains to expressed the differential
surface element dS(y) in local coordinates. The Jacobian matrix represents this
transformation as,

J τ (ξ) =
[
∂χτ (ξ)
∂ξ1

∂χτ (ξ)
∂ξ2

]
, J τ ∈ R3×2 (4.42)
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and gives a linear approximation of the vector field x in a neighborhood of ξ. The
deformation of an infinitesimal surface element dS(x) is then given by,

dS(x) =
√

det
(
JT
τ (ξ) · J τ (ξ)

)
dξ

=
√
gτ (ξ)dξ

, (4.43)

where gτ (ξ) is the Gram determinant.

4.1.5 Discrete Forms of Galerkin Boundary Element Inte-
grals

We simplify the discussion by examining the explicit forms of integral operators shown
in Eqn. 4.40 and 4.41. The basis functions described so far are globally defined on
the discrete mesh Γhk. They are chosen to be related to the the local element basis
functions through the notion of local element interpolations. More specifically on the
reference element, the global test and trial functions identified as the same set of local
element basis functions. This construction is given formally as,

ψi(x)
∣∣∣
τk

=

(ψj,τk
◦ χ−1

τk
)(x), τk ∈ supp(ψi), ψj,τk

(χ−1
τk

(pi)) = 1
0

(4.44)

where supp(ψi) is the support of the i’th globally labeled node. For flat triangle meshes,
this support is simply the i’th node’s vertex-face 1-ring v∗

i,k ≡ {τ : τ ∈ Γhk,pi ∈ τ̄}.
This domain may be written as,

supp(ψi) = {τ ∈ Γhk : τ ∈ v∗
i } . (4.45)

Since we are ultimately solving for unknown datums at global boundary nodes (i.e.
vertices) of the flat triangles, the construction Eqn. 4.11 implies that the i, j matrix
element for the general BEM operator K is given by

Kh[i, j] = ⟨Kψγj , ψ
γ
i ⟩ΓD,h

=
∫

supp(ψγ
i )
ψγi (x)

∫
supp(ψγ

k
)
K(y − x)ψγj (y)dS(y)dS(x) .

(4.46)

It is, in general, unclear as to whether Eqn. 4.46 can be performed analytically.
The integrals are normally computed using numerical quadratures. In general, this
computation is far from trivial. In particular, the integral becomes singular when
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supp(ψγi ) ∩ supp(ψγi ) ̸= 0. The supports may either share elements that are vertex
adjacent (point singularity), edge adjacent (line singularity), or that are coincident
(triangular singularity). Each case requires special care. In this thesis we utilize the
Sauter Schwab quadratures [13], [58], to handle theses singularities.

The kernel of the integral (shown in Eqn. 4.46) may mapped to the reference
element and be written as,

K̂(ξy − ξx) = ψγi (ξx)K(χτy(ξy)− χτx(ξx))ψγj (ξy)
√
gτx(ξx)

√
gτy(ξy) . (4.47)

Taken to quadrature over elements τ̂x and τ̂y that are in supp(ψγi ) ∪ supp(ψγi ) , Eqn.
4.47 becomes,

I[K] =
∫
τ̂x

∫
τ̂y

K̂(ξy − ξx)dξydξx ≈
n∑
i=1

m∑
j=1

ωxi ω
y
j K̂(ξyi − ξxj ) , (4.48)

where ωxi , ω
y
j are appropriately chosen quadrature weights and ξxi , ξ

y
i are appropriately

chose Gauss points on τ̂x and τ̂y.
Throughout the rest of this thesis we use a simplified and highly convenient notation

KΓiΓj
to mean the full matrix form resulting from performing the computations shown

in Eqn. 4.46 over all globally defined sets of test functions defined on the discrete
mesh Γi and trial functions defined on the discrete mesh Γj for any general kernel K
(not just the Stokes double layer potential).

4.1.6 Mass Matrix

The Mass Matrix appears when one calculates the inner product of a given function
defined in the trial space, with a test function. In general we may expand some
function ϕ(x) = ∑N

j ψj(x)ϕj where ϕj are nodal values of ϕ and the summation
is taken over N nodes, i ∈ {1, . . . , N}. The inner product with a test function ψk

may be written as ⟨∑N
j ψj(x)ϕj, ψ⟩ where the property of linearity yields the matrix

expression MϕN
i=1. The element of M at position [k, l] is given as,

M[k, l] =
∫

supp(ψβ
k

)∩supp(ψβ
l

)
ψβl (y)ψβk (y)dS(y) . (4.49)

The integration is performed over the intersection of supports for the global basis
functions ψl and ψk. This matrix has a particularly convenient representation in the
case of linear triangular elements. Since x admits an expansion in the same basis
functions, i.e. x(ξ) = ∑3

j=1 ψj(ξ)xj, one may exploit the linearity of the functions
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ψk(x) such that,

ψk(x) = ψk

 3∑
j=1

ψj(ξ)xj


=

3∑
j=1

ψj(ξ)ψk(xj)

=
3∑
j=1

ψj(ξ)δjk

= ψk(ξ)

. (4.50)

Using the fact that the gram matrix and hence the Jacobian determinant is constant
for linear triangles, one may use Eqn. 4.50 in Eqn. 4.49 to find that,

M[k, l] =
√
gτy(ξy)

∫
supp(ψβ

k
)∩supp(ψβ

l
)
ψβl (ξy)ψβk (ξy)dξy . (4.51)

In typical applications where one uses element by element assembly, Eqn. 4.51 reduces
to a product of a constant local mass matrix times the gram determinant. We remark
that the mass matrix shown here is a square matrix in the number of degrees of
freedom on a boundary element mesh |Γhk|. If this notion of the mass matrix, as an
interpolation operator, is to be used for vector BIEs, its elements must be augmented
by identity matrices.

4.2 The Galerkin Discretization Applied to Lin-
earized Viscous Flows

Ultimately we are interested in studying a class of problems where a particle, which
may be actively self-propelled, is placed inside of a closed container. The container is
given its own set of properties and could, for example, be chosen to be incompressible,
yet flexible, in which case it could serve as a representative model of a membrane
bound vesicle. The CDL-BIEM formulation discussed in Chapter 3 is used to describe
the particle’s motion. We start by providing the discretization of this problem with
application to the sedimentation problem in Stokes flow.
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4.2.1 Discretization of the Completed Double Layer Repre-
sentation

The starting equation is the boundary integral representation describing the motion
of the particle,

6∑
j=1

φRBM
j (x)⟨φRBM

j ,ϕ⟩+ ϕ(x) +
∫

Γ
K(x,y) · ϕ(y)dS(y) = −b(x) (4.52)

b(x) = u0(x) + F p,ext · G(xp
c ,x)

8πµ + R(xp
c ,x)

8πµ · T p,ext .

The derivation of this equation has been given previously in Chapter 3 Eqn. 3.71 and
is not repeated here.

We proceed to discretize the system by constructing the variational form of Eqn.
4.52 with appropriate test and trial spaces. Let,

ϕ(x) ≈ ϕβ
h(x) =

M∑
l=1

ϕlψ
β
l (x) . (4.53)

Inner product terms can be developed as follows,

⟨φRBM
j ,ϕ⟩ =

∫
Γ

ϕ(y) ·φRBM
j (y)dS(y)

=
∫

Γ

[∑
l

ϕlψ
β
l (y)

]
·φRBM

j (y)dS(y)

=
∫

Γ

[∑
l

ϕlψ
β
l (y)

]
·
[∑
k

φRBM
jk ψβk (y)

]
dS(y)

=
∑
l

∑
k

ϕl ·φRBM
jk

∫
supp(ψβ

k
)
ψβl (y)ψβk (y)dS(y)

. (4.54)

Upon multiplication of Eqn. 4.52 by a test function, thus forming the variational
form of the equations, we find that the RBM inner product in discretized form can be
expressed as,

⟨φRBM
j , ψβk ⟩ =

∫
Γ

φRBM
j (y)ψβk (y)dS(y)

=
∫

Γ

∑
l

φRBM
jl ψβl (y)ψβk (y)dS(y)

=
∑
l

φRBM
jl

∫
supp(ψβ

k
)
ψβl (y)ψβk (y)dS(y)

. (4.55)
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This implies that the terms ⟨φRBM
j ⟨φRBM

j ,ϕ⟩, ψβk ⟩ for k ∈ {1, . . . ,M} generates the
matrix equation,

⟨φRBM
j ⟨φRBM

j ,ϕ⟩, ψβk ⟩ = ⟨φRBM
j , ψβk ⟩⟨φRBM

j ,ϕ⟩, ∀ k

=
6∑
j=1

(MφRBM
j )(φRBM

j ·Mϕ)
(4.56)

where φRBM
j and ϕ are stacked vectors holding respectively the nodal RBMs and the

nodal potentials and M is the mass matrix given by the construction shown in Eqn.
4.49.

Another term is needed in the iterative version of CDL-BIEM to map the eigenvalue
+1 of the double layer operator, K, to zero. Consequently, this bounds the spectral
radius of |K| ∈ (−1, 1) making Picard iteration possible. Note that the mobility
completion scheme has actually mapped the rank six eigenvalue at −1 to zero. We
include the discretization of this term for completeness. The variational form of this
extra term φ∗(x)⟨φ∗,ϕ⟩, where φ∗ is proportional to the surface normal vector, may
be written as,

⟨φ∗⟨φ∗,ϕ⟩, ψβk ⟩ = ⟨φ∗, ψβk ⟩⟨φ∗,ϕ⟩, ∀ k
= (Mφ∗)(φ∗ ·Mϕ)

, (4.57)

and the variational form of 1
2φ∗(x)⟨φ∗, b⟩ is,

⟨12φ∗⟨φ∗, b⟩, ψβk ⟩ = 1
2⟨φ

∗, ψβk ⟩⟨φ∗, b⟩, ∀ k

= 1
2(Mφ∗)(φ∗ ·Mb)

. (4.58)

Finally the single terms ϕ(x) and b(x) can be written as,

⟨ϕ, ψβk ⟩ = Mϕ (4.59)
⟨b, ψβk ⟩ = Mb . (4.60)

Therefore in order to solve this iterative system one must also be able to evaluate nodal
values of φRBM

j for each j, and the nodal values of φ∗ and b. The procedures used
to derive Eqns. 4.56, 4.58, 4.59, 4.60 in combination with the general procedure for
computing Galerkin matrix representations of BEM operators, Eqn. 4.46, are all that
is needed to represent and solve a wide class of problems in multi-body hydrodynamics.
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4.2.1.1 Single Particle Solution

If Picard iteration is not desired, one may choose instead to solve the system using
explicit matrix inversion or an iterative solver. In reduced notation, the system to
solve may be written as,

[
MΓp +KΓpΓp +∑6

j=1 MΓpφRBM
j

(
φRBM
j ·MΓp

)]
×
[
ϕp

]
= −Mpbp , (4.61)

where the system’s stiffness matrix is given by the number of degrees of freedom on
Γp given by |Γp| multiplied by the dimension of the BEM kernel. Since the Stokes
equations are vector equations, and the fundamental solutions are 2nd order tensors,
the total system matrix size is 3|Γp| × 3|Γp|.

4.2.2 Multiple Particles and General Matrix Representations

The mobility problem for N particles of arbitrary shape follows as a pair-wise sum of
interactions due to the linearity of the representative exterior BIE. In the variational
formulation, each particle needs to know about its own density field, ϕΓp

, its own set
of of pairwise KΓpΓ

p
′ and its own set of pairwiseMΓp . If we observe the eigenfunction

requirements that

φRBM
jp (x) = 0, ∀x /∈ Γp (4.62)

φ∗
jp(x) = 0, ∀x /∈ Γp . (4.63)

It then follows that Eqn. 4.52 generalizes as,

6∑
j=1

φRBM
jp (x)⟨φRBM

jp ,ϕp⟩+ ϕp(x) +
∑
p′

(Kpp′ ϕp′ )(x)−φ∗
p(x)⟨φ∗

p,ϕp⟩ = b
′(x)

b
′(x) = −b(x)− 1

2φ∗
p(x)⟨φ∗

p, b⟩

b(x) = u0(x) +
∑
p

[
F p,ext · G(xp

c ,x)
8πµ + R(xp

c ,x)
8πµ · T p,ext

]

∀p ∈ {1, . . . , N}

,

(4.64)

where we have given the full multi-body iterative version of CDL-BIEM construction.
Examining Eqn. 4.64 closely reveals that the multi-body formulation has a highly

symmetric structure. For every particle p, there is a self interaction matrix given by
KΓpΓp . There are also p−1 pairwise interaction matrices given by KΓi,Γp , ∀i ̸= p. The
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key to the multi-body Galerkin discretization is realizing that the i’th block matrix
row is formed by testing of Eqn. 4.64 with global test functions taken from surface Γi.
This means that the i’th block matrix row is given by,



Ks
Γ1Γ1 . . . KΓ1Γi

. . . KΓ1ΓN

... ... ... ... ...
KΓiΓ1 . . . Ks

ΓiΓi
. . . KΓiΓN

... ... ... ... ...
KΓN Γ1 . . . KΓN Γi

. . . Ks
ΓN ΓN


×



ϕΓ1
...

ϕΓi...
ϕΓN


=



(Mb
′)Γ1

...
(Mb

′)Γi

...
(Mb

′)ΓN


, (4.65)

where Ks
ΓiΓi

is the self GBEM interaction, given by,

Ks
ΓiΓi

= MΓi
+KΓiΓi

+
6∑
j=1

MΓi
φRBM
j

(
φRBM
j ·MΓi

)
, (4.66)

and the off-diagonal elements are computed by straightforward applications of Eqn.
4.46 using the Stokes double layer potential. The matrix construction shown in Eqn.
4.65 can be generalized to include problems where one may choose to use different
BIE’s to model various portions of a system. In the next section we present this
construction in the context of a particle in cell geometry. The key lies in exploiting
the linearity of the stokes equations and writing the fluid velocity u(x) as,

u(x) = uc(x) +
∑
p

up(x) , (4.67)

where uc(x) is the velocity contribution from the container and up(x) is the velocity
contribution of particle p. The construction shown in 4.67 is highly general and may
be used for an arbitrary number of bodies. Each velocity contribution may also be
arbitrarily described, for example, by using a variety of different BEM representations.

4.3 Mobility and Resistance Formulation for Particle-
in-Cell Models

We may decompose the fluid velocity as a sum of contributing velocities due to a
single immersed particle and a surrounding container. The particle and container
surfaces may be discretized using various types of 2-d finite elements, mapped to
corresponding 2-manifolds in R3. We label these surfaces, Γp and Γc respectively.
The fluid velocity at some point, x ∈ R3, is identified as belonging to a restriction
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on R3, that is generated by the union of the particle and container surfaces and is
representative of the fluid domain, Ω̃. We may write the fluid velocity as,

u(x) = up(x) + uc(x) . (4.68)

It is then useful to define complementary velocity fields ūp(x) and ūc(x) such that,

ūp(x) = u(x)− up(x) (4.69)
ūc(x) = u(x)− uc(x) , (4.70)

from which one can more conveniently express velocity contributions relative to a
complementary flow field. These complementary flow fields may be conveniently
interpreted as disturbance flows.

4.3.1 Particle Contribution

In accordance with Eqn. 3.60, the velocity contribution of the particle may be written
as,

up(x) = ūc(x)

=
∫

Γp

K(x,y) · ϕ(y)dS(y) + F p,ext · G(xp
c ,x)

8πµ + R(xp
c ,x)

8πµ · T p,ext
,

(4.71)

where K(x,y) is the Stokes double layer potential, ϕ defines the pointwise distribution
of K, F p,ext and T p,ext are the external forces and torques on the particle, G(xp

c ,x) is
the Stokes single layer potential centered at the particle’s centroid xp

c , and R(xp
c ,x) ≡

ϵijk
(y−x)
r3 is the Rotlet or Couplet singularity again centered at the particle’s geometric

centroid. Although we have completed the range of (Kϕ)(x) with a point force and
point torque, we could have chosen other flows that would impart a finite force and
torque to the body. Therefore the specific form of this range completer should not be
considered a limitation of the method. In the limit that x→ Γp we find that,

U p + Ωp × (x− xc)− ūp = ϕ(x) +
∫

Γp:i
K(x,y) · ϕ(y)dS(y)

+ F p,ext · G(xp
c ,x)

8πµ + R(xp
c ,x)

8πµ · T p,ext
, (4.72)
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where we have used that the particle moves as a rigid body. Note that the jump is
usually 1/2 but we have chosen to multiply K by a factor of 2 in order to move the
eigenvalues of (Kϕ)(x) to [−1, 1] for convenience.

4.3.2 Container Contribution

In formulating the container contribution we note that the container normal is taken
to point out of the fluid domain Ω̃, meaning that it is exterior to Γc. The velocity
contribution of the container may be written as,

uc(x) = ūp(x)

=
∫

Γc

K(x,y) · ϕ(y)dS(y)
. (4.73)

In the limit that x→ Γc we find that,

−ūc(x) = −ϕ(x)+
∫

Γc

K(x,y)·ϕ(y)dS(y)−φ∗(x)⟨φ∗,ϕ⟩, ∀ x ∈ Γc , (4.74)

where the additional term involving ϕ∗ acts to map the eigenvalue of the double layer
at −1 to 0 and where ϕ∗ is an eigenfunction of (I +K

′) proportional to the normal
vector, n.

4.3.3 Formulation and Solution of the System

The system of integral equations may be discretized by first meshing the surfaces
Γp and Γc in accordance with some desired mesh metric, h. From here, ϕ may be
expanded in a finite basis that may be taken to span the solution space. We choose to
enforce a zero weighted residual condition on the system and arrive at the familiar
Galerkin discretization whose solution is taken to belong to a subset of the half integer
Sobolev space H1/2(Γ). With the added mobility completion schemes, Eqns. 3.68,
3.69, and resistance completion schemes Eqns. 3.61, 3.62, the Galerkin discretizations
and associated linear systems may be derived using straightforward application of the
constructions shown in Section 4.2.1.
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4.3.4 Mobility Problem

The linear system for the mobility problem may be written in the form,(MΓp +KΓpΓp +∑
j(MΓpφj)φj ·MΓp

)
KΓpΓc

KΓcΓp (−MΓc +KΓcΓc − (MΓcφ
∗) φ∗ ·MΓc)


×

ϕΓp

ϕΓc

 =
−BΓp

−BΓc

 ,

(4.75)

where BΓk
is defined as,

BΓk
≡
[
M
(
GF p,ext +RT p,ext

)]
Γk

. (4.76)

In post processing, the linear and angular velocities, (U p,Ωp), are solved from the
mobility completion relationships given in Eqns. 3.68 and 3.69. These completion
relationships are linear in both U p and Ωp, and these quantities may be extracted
by forming the inner product of 3.68 and 3.69 with each φRBM

i . Assuming the RBM
eigenfunctions are orthonormalized and letting r ≡ x− xp

c , one finds that,

U p = −
3∑
i=j

(φRBM
j )Γp ·MΓp(ϕ)Γp (4.77)

Ωp =


[
(ϵijkrk)Γp ·MΓp(φRBM

4 )Γp

]T[
(ϵijkrk)Γp ·MΓp(φRBM

5 )Γp

]T[
(ϵijkrk)Γp ·MΓp(φRBM

6 )Γp

]T


−1 
−(φRBM

4 )Γp ·MΓpϕΓp

−(φRBM
5 )Γp ·MΓpϕΓp

−(φRBM
6 )Γp ·MΓpϕΓp

 . (4.78)

4.3.5 Resistance Problem

The linear system for the resistance problem may be written in the form,(MΓp +KΓpΓp +BΓp

)
KΓpΓc

KΓcΓp +BΓc (−MΓc +KΓcΓc − (MΓcφ
∗) φ∗ ·MΓc)


×

ϕΓp

ϕΓc

 =
[U + Ω× (x− xc)]Γp

0Γc

 , (4.79)

where BΓk
is defined as,

BΓk
≡

3∑
i=1

[
MΓk

(Gei)Γk
φRBM
i ·MΓp + MΓk

(Rei)Γk
φRBM
i+3 ·MΓp

]
. (4.80)
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4.4 The GPUGBEM Framework

The GPUGBEM framework centers around shielding the user from having to create
individual matrix blocks such as those seen in Eqns. 4.65, 4.75, or 4.79. To accomplish
this, one must first identify the commonalities that all GBEM calculations rely on.
All boundary element calculations derive from a discrete representation of an object’s
surface as a mesh. In addition, all objects require their own mass matrix and self-
interaction matrix, regardless of the underlying BIE representation. If the CDL
mobility description is used to represent an object, then that object also requires nodal
orthonormalized rigid body motion vectors, φRBM

j , j ∈ {1, . . . , 6}, and a specification
for the rigid body motions, namely (U ,Ω). The location of this matrix block must also
be specified, but this may be related to a unique particle index label. All boundary
element operators must also implement a set of functions describing how to compute
self interactions, pairwise interactions, and the right hand side loading vector. This
CDL mobility object may now serve as a base class from which other descriptions of
particles may be built using inheritance. An example of this minimal type of base class
is given below (note that the following code fragments are not meant to be complete
compilable C++ codes),

class ObjectBase : public ObjectCounter< ObjectBase >{
public : // p u b l i c member f u n c t i o n s
ObjectBase ( )
: mesh_( ) , id_ ( this −> l i v e ( ) − 1) { }
std : : s i z e_t GiveID ( ) { return id_ ; }
std : : s i z e_t Rows( ) { return rows_ ; }
std : : s i z e_t Cols ( ) { return cols_ ; }
// v i r t u a l f u n c t i o n s . . .
virtual void I n i t ( BEM∗ bem_computer_ptr ) = 0 ;
virtual void ComputeSe l f Interact ion ( BEM∗ bem_computer_ptr ,

RigidBodyMotions∗ rbms_ ) = 0 ;
virtual void ComputePairwiseInteract ion ( BEM∗ bem_computer_ptr ,

DenseMatrix& K ) = 0 ;
virtual void ComputeRHS( ) = 0 ;
virtual NodalVector& GiveRHS( ) = 0 ;
protected : // p ro t e c t ed data members
//mesh i d e n t i f i e r used to p l ace in matrix b l o c k s ( important )
std : : s i z e_t id_ ;
// the o b j e c t ’ s mesh
BEMMesh mesh_ ;
// i n t e r p o l a t i o n matrix or " mass matrix "
SparseMatrix M_;
// dense " s e l f −i n t e r a c t i o n " matrix
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DenseMatrix Kself_ ;
// nodal or thonormal i zed r i g i d body motion v e c t o r s and
// norma l i za t ion f a c t o r s
NodalVector phi1_ , phi2_ , phi3_ , phi4_ , phi5_ , phi6_ ;
NumericType nf1_ , nf2_ , nf3_ , nf4_ , nf5_ , nf6_ ;
// r i g i d body motion in format ion
Vector3d U_, Omega_;
// s i z i n g f o r matrix i tems
std : : s i z e_t rows_ , cols_ ;

} ; // end o f c l a s s ObjectBase

The point of the ObjectBase class is to illustrate how a base object may be use to
hide explicit BEM computations from the user. All derived classes must implement the
pure virtual functions. For example, in order to describe a squirmer, the self interaction
must be described by Eqn. 4.66 and this computation in turns requires that one
compute KΓsqΓsq , all nodal rigid body motion vectors, and the mass matrix. Pairwise
interactions are simply computed by calling a function which computes KΓkΓsq over
the test space Γk. These pairwise matrix blocks are computed while fixing the base
object’s mesh as the trial space. This means that all pairwise interactions fill the rows
of the column indexed by id_ and are formed by calling ComputePairwiseInteraction
over all test meshes in the system. The right hand side or load vector is computed as
an interpolation over the squirming slip velocity us. The class shown below shows how
a swimmer object inherits from the base class and defines these functions generically.

class ObjectSwimmer
: public ObjectBase {

ObjectSwimmer ( const NumericType B1 , const NumericType B2 ,
const Vector3d e , const std : : s i z e_t subdiv = 1 )

: squirmer_motion_ ( B1 , B2 , e ) , rbd_( )
{

// f i r s t b u i l d sphere
this −> mesh_ . Bui ldSphere ( subdiv ) ;
// a l l o c a t e space f o r a l l o f the s t r u c t u r e s
rows_ = this −> mesh_ . NDoFs( ) ∗ 3 ;
cols_ = rows_ ;
this −> M_. r e s i z e ( rows_ , cols_ ) ;
this −> Kself_ . r e s i z e ( rows_ , cols_ ) ;
this −> phi1_ . r e s i z e ( rows_ ) ;
this −> phi2_ . r e s i z e ( rows_ ) ;
this −> phi3_ . r e s i z e ( rows_ ) ;
this −> phi4_ . r e s i z e ( rows_ ) ;
this −> phi5_ . r e s i z e ( rows_ ) ;
this −> phi6_ . r e s i z e ( rows_ ) ;
us_ . r e s i z e ( rows_ ) ;
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}
virtual void I n i t ( BEM∗ bem_computer_ptr ) {

//compute mass matrix
bem_computer_ptr−>AssembleMassMatrix ( this−>GiveMeshPointer ( ) ,

M_ ) ;
// i n i t i a l i z e rbd_
rbd_ . I n i t ( &mesh_ ) ;

}
virtual void ComputeSe l f Interact ion ( BEM∗ bem_computer_ptr ,

RigidBodyMotions∗ rbms_ ) {
bem_computer_ptr−>

AssembleStokesDLPMatrix ( this−>GiveMeshPointer ( ) ,
this−>GiveMeshPointer ( ) ,
Kself_ ) ;

rbms_computer_ptr−>MGSSolveForCoeffs ( this−>GiveMeshPointer ( ) ,
M_ ) ;

rbms_computer_ptr−>EvaluateNodalRBMs ( this−>GiveMeshPointer ( ) ,
phi1_ , phi2_ , phi3_ ,
phi4_ , phi5_ , phi6_ ,
nf1_ , nf2_ , nf3_ ,
nf4_ , nf5_ , nf6_ ) ;

Kself_ += Eigen : : MatrixXd (M_)
+ M_ ∗ ( phi1_ ∗ ( phi1_ . t ranspose ( ) ∗ M_ )
+ phi2_ ∗ ( phi2_ . t ranspose ( ) ∗ M_ )
+ phi3_ ∗ ( phi3_ . t ranspose ( ) ∗ M_ )
+ phi4_ ∗ ( phi4_ . t ranspose ( ) ∗ M_ )
+ phi5_ ∗ ( phi5_ . t ranspose ( ) ∗ M_ )
+ phi6_ ∗ ( phi6_ . t ranspose ( ) ∗ M_ ) ) ;

}
virtual void ComputePairwiseInteract ion ( BEM∗ bem_computer_ptr ,

ObjectBase ∗ tes t_object ,
DenseMatrix& K ) {

//we use t h i s−>mesh_ as the " t r i a l mesh "
// t h i s computes o f f−d iagona l " row " e n t r i e s
// in the column f i x e d indexed by " id_ "
bem_computer_ptr−>
AssembleStokesDLPMatrix ( te s t_object−>GiveMeshPointer ( ) ,

this−>GiveMeshPointer ( ) , K ) ;
}
virtual void ComputeRHS( ) {

squirmer_motion_ . EvaluateNodalSquirmerMode ( this−>GiveMeshPointer ( ) ,
us_ ) ;

us_ = M_ ∗ us_ ;
}
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virtual NodalVectorRef GiveRHS( ) { return us_ ; }

private : // p r i v a t e data members
// nodal squirming " s l i p−v e l o c i t y "
NodalVector us_ ;
// genera tor f o r squirming s l i p v e l o c i t y
SquirmerMotion squirmer_motion_ ;
// genera tor f o r t r a j e c t o r y
RigidBodyDynamics rbd_ ;

} ; // end o f c l a s s ObjectSwimmer

This object base inheritance scheme is incredibly useful and modular as it wraps
complicated and error prone boundary element calculations into clean particle objects
that are attached to an underlying boundary integral equation representation in
a derived class. In the GPUBEM framework, this inheritance scheme is used in
representing all interacting bodies.

4.4.1 GPU GBEM Computations Using CUDA

We remark very briefly on ways to organize boundary element data so that calculations
may be performed on GPUs. A boundary element calculation only requires knowledge
of individual boundary elements in terms of local nodal orderings, global node labels,
and the set of global nodal points. After copying this set of information over to the
GPU the calculation may be carried out, at least in principle, by straight forward
n-body simulation techniques, i.e. by mapping the outer loop in the well-known
element-element assembly procedure to the individual CUDA cores. However, this
technique only works well if all calculations are numerically equivalent in their number
of operations. For singular quadrature in GBEM, this condition is grossly violated.
Each singularity case requires different orders of quadrature. However, this situation
may be resolved by first parsing the singularity types based on vertex-face 1-rings
and then launching individual kernels for each group of elements having the same
singularity type. In GPUBEM, this is precisely how self-interaction matrices are
computed. We note that element-element assembly procedures naturally give rise to
race conditions. These have to also be dealt with in an appropriate manner. One
may solve this problem by using atomic operations when assembling at global matrix
locations. This does not result in much of a slowdown since the number of CUDA
cores accessing a particular global matrix location is only ever proportional to the
number of faces in a vertices 1-ring.
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4.4.2 h-Adaptive Meshing in GPUGBEM

In adaptive mesh refinement, one typically marks groups of elements for subdivision
based on a heuristic (error measure/indicator). In this thesis this heuristic is loosely
chosen to be a scaled distance ratio, which we refer to as the nearly singular distance
ratio. This scaled distance ratio allows one to distinguish between cases where the
straightforward application of regular Gauss quadrature may produce erroneous results.
This situation tends to occur when two boundary elements, τx and τy, are in near
contact. The formal statement of this situation goes as follows: let hx denote the
diameter of τx such that,

hx = sup
x,y∈τx

|x− y| , (4.81)

then the distance between elements τx and τy may be formally written as,

dist(τx, τy) = min{|y − x| : x ∈ τx,y ∈ τy} . (4.82)

Defining the element diameter of τy in an analogous way, the nearly singular distance
ratio is defined as,

dxy = dist(τx, τy)
max{hx, hy}

(4.83)

In situations where dxy ≤ C for some distance cutoff C, experience has shown that
application of regular Gauss quadrature will fail to accurately resolve these element
contributions to the GBEM stiffness matrix. The idea is to then refine all element
pairs (τx, τy) such that dxy ≤ C. In this thesis the distance cutoff is always set to 1.
We find that this distance cutoff yields high quality results.

Element pairs (τx, τy) such that dxy ≤ 1 are refined using an extension of the
Newest Vertex Bisection (NVB) method, [40], [41] to triangle 2-manifolds. The algo-
rithm is coupled to various mesh smoothing routines which accurately project newly
formed nodes onto the surface. The surface need not have an explicit parameteriza-
tion. The computation of dxy for all triangle pairs (τx, τy) ∈ Γi × Γj is naturally an
O(|Γi||Γj|) calculation (approximately O(N2) for N elements). GPUGBEM builds
fast spatial querying structures on all meshes so that this calculation can be reduced to
O(N log(N)). We keep track of the element pairs {(τx, τy) ∈ Γi×Γj : dxy ≤ 1}. These
pairs of elements are subdivided using NVB. We note that the NVB algorithm does
not introduce hanging nodes so long as a suitable compatibility labeling is constructed.
In GPUGBEM, this compatibility labeling is constructed by finding longest edges of
triangle pairs. This means that meshes which are initially conformal stay conformal.
Keeping the mesh conformal is vital in maintaining the C0 continuity requirements of
the imposed continuous boundary element space, Sp,0(Γhk,χ). The overall adaptive
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mesh refinement algorithm for the GBEM stiffness matrix is given in Algorithm 1. An
example output of the algorithm for two spheres in close contact is shown in Fig. 5.9.
The algorithm in no way depends on a spherical geometry and works for arbitrarily
shaped meshes.

Algorithm 1 Refinement List for Γhs Given Γhq
1: search_octree← BuildSearchOctree(Γhs )
2: query_points← BuildQueryPoints(Γhq )
3: for all qp ∈ query_points do
4: sp← SearchOctreeClosest(qp)
5: sp_support← DOFSupport(sp)
6: {τq, hq} ← GetElementAndSize(qp)
7: for all τs ∈ sp_support do
8: hs ← GetElementSize(τs)
9: nsr ← dist{τs, τq}/max(hs, hq)

10: if nsr < dist_cutoff || hs/hq > diam_cutoff then
11: refine_list← τs

12: end if
13: end for
14: end for



Chapter 5

The Problem of an Active Particle
Inside of a Porous Container

The motion of an active particle inside of a spherical container is an interesting and
important problem for a multitude of reasons. Solution of this problem allows one to
understand the unique fluid mechanics associated with active particles in confinement.
Solving this problem also serves as a necessary step in understanding how viscous
fluid mechanics may affect cellular biomechanics. For example, this problem could
be modified in a straightforward way to study the dynamics and hydrodynamic
interactions of motor proteins moving on microtubules inside of a container, [59].
As a first approximation, the motor proteins could be thought of as active particles
undergoing constrained motion, tangent to the microtubule’s axis of symmetry. The
same fluid mechanical equations and boundary integral equations would govern the
dynamics of these motor proteins, microtubules, and surrounding container. Solution
of this system could be found using the same discretizations and algorithms. The
active particle and porous container problem could also be used to help understand
more complex problems involving viscous fluid structure interactions (FSI) between
many arbitrarily shaped active particles and a surrounding container. The equations
that model the particle and porous container system generalize under the construction
shown in Chapter 4 Sec. 4.2.2 to systems with arbitrary particle geometries and
heterogeneous boundary integral representations. In addition, the solution procedures,
theory, and numerical routines presented in this chapter generalize directly to particles
of arbitrary shape, with arbitrary physical properties. Attempting to resolve the
detailed fluid mechanics inside of a biological cell is an exponentially more complex
problem and task. By understanding the simpler case of how both viscous fluid
mechanics and confinement influence the dynamics of the active particle, we work
towards obtaining a more complete understanding of cellular particle dynamics.
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The solution for the dynamics of the active particle and container motions not
only reveals the effects of confinement on the motion of the active particle, but
also the unique physical relationships between net particle and container translation
velocities subject to container confinement effects and the imposed porous container
boundary conditions. Since the particle-container geometry is axisymmetric, the
creeping flow problem admits analytical solutions, so long as the geometry remains
perfectly concentric. These analytical solutions may be used in validating numerical
results and are particularly useful in designing numerical schemes that accurately
approximate solutions when separate geometries are in close contact.

In this chapter, we first study the problem where an active particle, specifically a
spherical squirmer [7], swims inside of a concentric, rigid, non-porous container. The
quasi steady-state dynamics of this system are seen to decay over a much shorter
timescale when compared to the case where the active particle is replaced with a
forced particle. Next, analytical solutions are developed for a spherical squirmer inside
of a concentric, rigid, porous container. A new porous container model is formulated
allowing fluid to leak from the container in proportion to a discontinuous jump in
stress across the container’s surface. This stress jump is induced by the squirmer’s
active motion and is parameterized by a set of permeability resistance coefficients.
These resistance coefficients may be different in both the tangential and normal
directions relative to the container surface. We show that, when preference is given
to permeability in the normal direction or the tangential direction, the container can
only move, respectively, in an anti-parallel or parallel direction relative to squirmer’s
motion.

The analytical results are supplemented and validated with numerical results ob-
tained using the Galerkin Boundary Element Method and the GPUGBEM framework.
Details for this numerical method and its general construction are given in Chapter
4, but the constructions shown in this chapter are self-contained. Novelty is found
in how the boundary integral equations are formulated and solved. Specifically, we
verify that the forms of these Galerkin discretizations are correct and show that they
produce highly accurate and stable solutions for the dynamics of the active particle
and porous container system.

5.1 Contributions

1. A detailed fluid mechanical formulation is developed for describing the motion of
an active particle, immersed in a Stokesian fluid, and confined by a surrounding
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container. Full multi-body hydrodynamic interactions are accurately accounted
for and included in all theoretical results and simulations.

2. Exact analytical mobility solutions are obtained for this problem when the
particle and container geometry is perfectly concentric and when the container
is non-porous.

3. The problem formulation is generalized to include a porous container by intro-
ducing a new model for describing fluid flow across the container’s surface. This
porous container model is a generalization of Darcy’s law. Fluid flow across the
container is driven by the motion of the active particle and is made proportional
to the jump in stress across the container. New exact analytical solutions, in
the context of flow fields and particle mobility solutions, are obtained for this
particle and porous container geometry. All relevant fluid mechanical variables
and datums are fully resolved (stress, pressure, and velocity).

4. A novel and new boundary integral representation of the problem is developed.
A double layer representation is used to describe the active particle. A single
layer potential is used together with the porous model to describe the motion of
the container. The proposed porous model naturally gives rise to an integral
equation of the second kind. These boundary integral equations describe both
the fluid velocity at the container surface and the particle rigid body motions.

5. A novel interpretation of the Galerkin method is proposed and used to discretize,
and produce highly accurate numerical solutions that show excellent agreement
with the exact analytical models.

6. Numerical solutions are preformed which fully characterize the dynamics of
this particle and porous container problem. Numerical results are obtained for
a wide variety of container to particle size ratios b/a, permeability resistance
parameters, squirmer types, and squirmer positions.

7. Thousands of squirmer trajectories are simulated and obtained using a novel, fast,
and highly efficient algorithm that only relies on pre-computed fluid mechanical
calculations. Squirmer and container dynamics are fully characterized by these
trajectories. Single trajectories are obtained at a rate much faster than real-time.
In addition we carry out full 3D trajectory analyses and answer the question,
“Which type of squirmer traverses the length of the container the fastest?”
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5.2 Background

The particle container problem may be partitioned into three domains Ωi, Ωp, and
Ωe, where i, p, e respectively denote fluid regions in the interior, porous, and exterior
regions relative to the container surface. The container normal is taken to point into
Ωe. The normal on the particle surface is taken to point into Ωi. The interior fluid
region, Ωi, is bounded by the particle and inner container surfaces, Γp ∪ Γc.
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Fig. 5.1 The container-squirmer geometry is shown with a Cartesian coordinate system.
The fluid region is partitioned into interior, porous, and exterior regions, respectively
Ωi, Ωp, and Ωe.

In what follows we equivalently use the words container and membrane and super-
scripts/subscripts, c,m, interchangeably. We also often refer to the particle as a
squirmer and use superscripts/subscripts sq, p interchangeably. We assume that the
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flow in Ωi and Ωe is governed by the steady Stokes equations,

µ∇2ui,e = ∇pi,e (5.1)
∇ · ui,e = 0 . (5.2)

Flow in the porous fluid region Ωp may be described in various ways, the most useful
of which is either macroscopic resolution using Darcy’s law or Brinkman’s equations,
or be abstracted away completely in the form of a pressure gradient taken to be
proportional to a membrane resistance parameter Rm and the relative motion of the
fluid at the membrane.

The problem is then fully specified by switching to either a resistance, mobility, or
a mixed formalism and asking questions, for instance, about the translational velocities
of the squirmer and container under the action of known external forces. Since we
are interested in the motion of the squirmer and container under force and torque
free conditions we solve the mobility problem under the additional specification of a
slip velocity, usl(x), on the squirmer’s surface. The problem’s geometric and spatial
partitions are illustrated in Fig. 5.1.

5.2.1 Tangential Squirmers

In recent years, the squirmer model, originally formulated by Lighthill [37] and Blake
[7], has become a workhorse for active matter calculations in low Reynolds number
flows. In an important set of papers, Ishikawa and Pedley used the model to study
the hydrodynamic interactions between two squirmers [27], and the rheology of both
semi-dilute [26] and dense suspensions [25] of tangential squirmers. They made an
important contribution by noticing that the velocity field of a tangential squirmer could
be written in a form independent of basis. In this thesis we use this representation up
to the first two squirming modes, B1, B2.

In the Blake’s squirmer model [7], the deformation field on the surface of the
squirming particle is substituted with a slip velocity that is assumed to be both
axisymmetric (spatially dependent only on θ) and time dependent. This slip velocity
may be written in spherical coordinates as,

usl(θ, t) = uslr (θ, t)er + uslθ (θ, t)eθ . (5.3)

The squirmer moves along its axis of symmetry or orientation, es, and θ is the angle
between this symmetry axis and a point r ≡ x− xsq

c on the squirmer’s surface. We
note that Pak and Lauga [45] have recently used Lamb’s general solution for the Stokes
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equations to derive a more general type of spherical squirmer that does not assume
axisymmetry and consequently has an additional azimuthal velocity component.

Theoretical studies of squirmers in contemporary literature usually examine the
fluid mechanics and dynamics of purely tangential squirmers with time-independent
slip velocities. These simplifications (or rather restrictions) of the squirmer boundary
condition, Eqn. 5.3, imply that the stress close to the surface of the squirmer is purely
tangential and that the related surface deformation field is time-averaged. While
these simplifications may seem fairly restrictive, purely tangential and time-averaged
motion at the squirmer boundary has been shown to be accurate in modeling cilliated
organisms such as Paramecia and Volvox.

Tangential squirmers are also typically simplified under the further restriction
of only using the first two expansion coefficients of uθ in the representation of the
squirmer’s tangential surface deformation dynamics. These squirming modes are
denoted as B1 and B2 from which the slip velocity may be written more compactly as,

usl(rsq, es) = B1(1 + β(es · r̂sq)) [(es · r̂sq)r̂sq − es] , (5.4)

where β = B2/B1 is a ratio that describes the type of squirmer and r̂sq = r/a is the
radial unit vector on the surface of the squirmer. Far away from the squirmer the
velocity field created by the first mode, B1, is that of a source dipole and decays as
O(r−3). The velocity field created by the second mode B2 is that of a force dipole
and so decays as O(r−2). These two coefficients or squriming modes are sufficient
to capture the far field dynamics of a variety of biological micro-squirmers. In the
literature the sign of B2 associates the names pusher and puller for respectively
B2 < 0 and B2 > 0. When B2 = 0 the squirmer is termed neutral and becomes a
source dipole swimmer. The free space translational velocity of the squirmer may be
calculated in various ways, one of which is by using the formalism presented in [65],
in which case one finds that U sq

fs = 2/3B1es and that the first tangential squirming
mode provides the only nonzero contribution to this velocity.

In the following analysis, time-independent tangential squirmers in confinement are
studied up to the first two squriming modes. We note that analogous solutions may
be obtained for more complex squirmer boundary conditions, e.g. with the inclusion
of an arbitrary number of radial and tangential squirming modes and also with the
much less frequently used and less well know azimuthal squirming modes.
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5.3 Analytical Solutions

The fluid mechanics problem of a squirming particle immersed in a viscous fluid
and subject to the confinement effects of a surrounding container admits analytical
solutions only when the container-particle geometry is perfectly concentric. The
full flow field and motions of the particle and container may be obtained by several
different approaches. For instance, one may use Lamb’s general solution [36] in the
form,

u =
∞∑

n=−∞

[
∇× (rχn) +∇Φn + (n+ 3)

2µ(n+ 1)(2n+ 3)r
e∇pn

− n

µ(n+ 1)(2n+ 3)rpn

] , (5.5)

where χn, Φn and pn are each solid spherical harmonics. The solution is then obtained
when these three harmonic functions are determined, for each n, from the prescribed
boundary conditions. For a Stokes fluid between concentric spheres, there are no
conditions to be satisfied at the origin or at infinity and so the solution involves both
positive and negative orders of the three harmonic functions. Thus there is, in general,
six equations to be solved simultaneously for each n from which the harmonics in Eqn.
5.5 may be determined. Reigh and Lauga [55] have recently taken this approach and
have studied the case in which a squirmer is moving inside of a viscous drop. In this
thesis we prefer the use of a different solution method.

If it is assumed that the flow is axisymmetric, i.e. u = u(r, θ), the solution may
also be obtained by following the standard stream function approach [19]. We fix the
problem using a concentric geometry with a Cartesian basis having eZ pointing upwards
and eY pointing into the page. The swimming orientation es is taken to point in the
direction of eZ . The squirmer translational velocity is taken to be U sq = U sq

z eZ and
the membrane velocity is Um = Um

z eZ . Under the tangential squirmer simplifications,
the stream function solution can be identified with the general form of the stream
function for a translating sphere, although subject now to tangential slip induced by
usl. Solution of the problem is similar to that of the standard or traditional concentric
hard spheres or viscous drop problems [19]. The stream functions in regions Ωi and
Ωe may be written as,

ψi(r, θ) =
(
Ai1r

4 + Ai2r
2 + Ai3r + Ai4

r

)
sin2(θ) (5.6)

ψe(r, θ) =
(
Ae1r

4 + Ae2r
2 + Ae3r + Ae4

r

)
sin2(θ) (5.7)



5.3 Analytical Solutions 72

from which the set of constants {Aij, Aej} for j ∈ {1, . . . , 4} is unknown. The fluid
velocity in region Ωe is assumed to decay to quiescence as r →∞ and so Ae1 = Ae2 = 0.
The remaining unknown constants are determined by imposing six additional boundary
conditions on the squirmer and container surfaces.

The boundary conditions on the squirmer surface are given by matching the
squirmer’s surface velocity to the fluid velocity at r = a. These conditions may be
written as,

[
ui(r, θ)−

(
U sq + Ωsq × r + usl(r, θ)

)]
· er

∣∣∣∣∣
r=a

= 0 (5.8)

[
ui(r, θ)−

(
U sq + Ωsq × r + usl(r, θ)

)]
· eθ

∣∣∣∣∣
r=a

= 0 , (5.9)

where U sq and Ωsq denote translational and angular velocities of the squirmer and
usl(r, θ) is the surface slip velocity (Eqn. 5.4) but written in spherical coordinates.
Since we have assumed that the squirmer’s surface has no azimuthal component, no
net angular motion can be generated along eZ and so one can also write that Ωsq = 0.

The squirmer experiences net translation along its orientation (in eZ). In the
absence of fluid inertia, the force balance on a neutrally buoyant and net force and
torque free particle reveals that the total hydrodynamic force is zero, FH = 0. In
the context of the imposed boundary conditions 5.8 and 5.9, the net hydrodynamic
force factors into two terms, namely the drag force, FD, due to resistive motion of the
fluid acting against the instantaneous particle geometry and the propulsive force, F P ,
arising from the imposed slip velocity or surface deformation field. From a different
point of view, the problem of squirming may be solved by superimposing the velocity
fields due to the propulsive force (often called the pumping problem) and due to the
rigid body motion (often called the resistance problem). However, in terms of the
Boundary Element Method it is more efficient and often more useful to enforce the full
nil constraint on the hydrodynamic force. The translational velocity of the squirmer
is found by solving,

FH = 0 , (5.10)

for U sq. Once ψi(r, θ) is determined, Eqn. 5.10 may be used to solve for U sq subject
to the general and well-known formula,

FH
z = µπ

∫
Γsq

[
(r sin(θ))3 ∂

∂r

(
E2ψ(r, θ)
(r sin(θ))2

)
r

] ∣∣∣∣∣
r=a

dθ , (5.11)
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after which general expressions for velocities, pressures, and stresses may be recovered
using standard formulas. When the container is made porous, this same analysis may
be used to find the container velocity, Um.

5.3.1 The Rigid Non-Porous Container

In the case of the non-porous rigid container, the fluid mechanics problems in regions
Ωi and Ωe are fully decoupled. Moreover, a momentum balance on the fluid in region
Ωi reveals that the net force and torque on the container are equal and opposite to
that experienced by the squirmer. Since the squirmer is assumed to be neutrally
buoyant and thus net force and torque free, the container must also be net force and
torque free. Therefore, the container does not move.

Uz
sq

Uz
fp

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

b/a

U
/U

0

Rigid Particle & Swimmer, Rigid Container

Fig. 5.2 The center of mass translation velocities of the squirmer, U sq
z and a forced

particle U fp
z are plotted as a function of the container particle size ratio, b/a. The

squirmer translational velocity approaches its free space squirming velocity fairly
rapidly in comparison to the forced particle as b/a→∞.

The problem then reduces to specifying the standard kinematic and dynamic
boundary conditions on the surface of the container, which are given by the vanishing
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of the normal and tangential velocity components,

ψi(r, θ)
∣∣∣∣∣
r=b

= 0 (5.12)

∂ψi(r, θ)
∂r

∣∣∣∣∣
r=b

= 0 . (5.13)

The system of equations for ψi(r, θ) is then fully specified subject to the boundary
conditions defined in Eqns. 5.8, 5.9, 5.12, 5.13. This system of equations may be
solved for the coefficients, set of constants {Aij, Aej}. Subject to the net force and
torque free constraint, given in Eqn. 5.10, the squirmer translational velocity is found
to be,

U sq = −B1(a− b) (3a3 + 6a2b+ 4ab2 + 2b3)
3 (a4 + a3b+ a2b2 + ab3 + b4) eZ (5.14)

Equation 5.14 together with the solution to the unit forced concentric sphere problem
found in Happel and Brenner [19]. This is shown in Fig. 5.2

5.3.2 The Rigid Porous Container

The rigid porous container (rigid membrane) is a different problem in the sense that
interface conditions between the fluid in interior and exterior regions now become
coupled across the membrane. To proceed one must develop or accept an appropriate
model which governs the fluid mechanics in the porous shell layer. There are only two
possible viewpoints to take when developing a porous media flow model.

In the microscopic approach, one may apply the Stokes equations at the level
of a characteristic porous matrix size O(ap), and resolve the fluid mechanics within
the porous media structure explicitly using, for example, no-slip conditions on the
membrane structure. However, this explicit resolution of the fluid mechanics in the
interstitial porous regions is normally abandoned since it requires unrealistic amounts
of computational time and prohibitive complexity in describing the geometry. Even if
the microscopic approach is successfully carried out, it is also likely to produce locally
oscillatory velocity and pressure data that would need smoothing for interpretation.

Alternatively in the macroscopic approach, one may try to express membrane
structure in terms of effective parameters. Even for membranes with heterogeneity’s
in their porous structures, parameters such as the permeability can be described
successfully with a variety of models of varying degrees of complexity. Techniques to
obtain macroscopic models from microscopic flow solutions usually involve volume
averaging in the porous media. Therefore the permeability is understood as an effective
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parameter translating volume averaged fluid-solid quantities from a smaller scale to a
scale often much larger than ap.

Historically, Darcy’s law was first empirically obtained based on macroscopic
porous flow ideas. It may be written as,

up = −K
µ
∇pp , (5.15)

where it should be understood that the pressure, viscosity, and velocity are now volume
averaged quantities and that K is a second order permeability tensor. Since the order
of derivative in up is one less that in the Stokes equations, one is forced to make
an additional ad-hoc assumption on a tangential boundary condition. No-slip in the
tangential direction is the easiest condition to enforce, however, extensive research
on these boundary conditions has lead to alternative tangential stress discontinuity
conditions [6], [57], [28].

Today, it is also recognized that volume averaging of the Stokes equations leads
one to conclude that the stationary form of Brinkman’s equations governs the flow
in the porous region. Brinkman’s equations have been verified by the microscopic
solution of the Stokes equations near the porous fluid interfaces [38]. Brinkman’s
equations may be written as,

∇pp = µ∇2up − µK−1 · up (5.16)
∇ · up = 0 (5.17)

As long as there is no deformation, the permeability is a constant second order tensor,
intrinsic to the porous medium. Since the Reynolds number in the porous medium
now depends on a characteristic length ap, which could for example be indicative of
pore size or void space dimensions, there are situations where the viscous term µ∇2up

is small relative to µK−1 · up. In these cases, Brinkman’s equations reduce to Darcy’s
law. An extension of this work could be to study the dynamics with Brinkman’s
equations

To couple creeping flow with that in porous media one also needs to specify
boundary condition at the fluid-porous interface. In general there are three conditions
that must be prescribed on the interface.

1. A permeable interface must have continuity of the normal velocity. This is a
simple consequence of assumed fluid incompressibility and thus simple mass
conservation in the free fluid and porous fluid regions. In the coupling of the
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fluid in region Ωi to that in the porous region this condition takes the form,

ui · n = up · n (5.18)

2. A condition relating the pressures in the two fluids across the membrane interface
has to be prescribed. From a fundamental perspective, this condition implies
that flow is driven across the porous/permeable interface by a pressure gradient.

3. Finally, an additional condition on the tangential component of the fluid velocity
at the interface must be specified. If one enforces the classic no-slip condition,
then the tangential velocity of the fluid must be continuous across the fluid/-
porous interface. The dynamic condition of no slip may be a good assumption for
small permeabilites in which case there would be larger portions of the material
interface between pores. However, for membranes with large pores, tangential
transport of fluid across the membrane is more likely to occur.

We first consider a model where we 1) assume Darcy’s law governs the fluid flow in
Ωp and 2) where ∇pp may be approximated well by its first order finite difference. For
a finite second order derivative in the pressure, this approximation is accurate to O(lc)
where lc is a length describing the thickness of our membrane. For thin membranes,
this approximation is useful under the assumption that lc ≪ {a, b, b− a}. We then
group the permeability parameters into an effective membrane resistance parameter
Rm ≡ lc/K. For pressure driven flow normal to the membrane, we remark here that
Rm ≡ R⊥. A similar driving force, although now related to a tangential viscous
stress jump, may be used to account for tangential slip relative to the membrane.
Although use of this condition is still debated, it provides the most simple model by
which fluid can pass through the membrane with a finite tangential velocity. This
construction is similar to that used by Jones [28]. Accordingly we use R∥ as a tangential
effective permeability parameter to model tangential slip in our system. The kinematic
boundary condition, Eqn. 5.18 is then supplemented with continuity in the tangential
fluid velocity and and normal and viscous traction jumps given by,

ui · t = up · t (5.19)
−pe + pi + µ(n · τ en− n · τ in) = R⊥µ(up −Um) · n (5.20)

µ(t · τ en− t · τ in) = R∥µ(up −Um) · t (5.21)

for unit normal and tangential vectors n, t. We supplement these conditions with
ui = up = ue at r = b which must hold for a thin membrane. Condition 5.21 deserves
some additional comments. In particular, it results in discontinuous partial derivatives,
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∂uiθ
∂r

∣∣∣∣∣
r=b
̸= ∂ueθ

∂r

∣∣∣∣∣
r=b

. (5.22)

This condition may be understood as one possible mechanism by which the squirmers
tangential slip boundary condition is transmitted to the container.

5.3.3 Resolving Flow in the Porous Region

The system of algebraic equations, Eqns. 5.6, 5.7 subject to the boundary conditions,
Eqns. 5.8, 5.9, 5.18, 5.19, 5.20, and 5.21 are now fully specified subject to the implied
decay conditions in the exterior fluid. The system is solved simultaneously to obtain
constants {Aij, Aej} for j ∈ {1, . . . , 4}. Subject to the force and torque free constraint,
Eqn. 5.10, the squirmer and membrane translational velocities may be obtained as,

U sq =
B1
(
3a5R⊥R∥ − 5a3b2R⊥R∥ + 2b5R⊥R∥ + 10b4(R⊥ + 2R∥)

)
3
(
a5(−R⊥)R∥ + b5R⊥R∥ + 5b4(R⊥ + 2R∥)

) eZ (5.23)

Um = 10a3bB1(R⊥ −R∥)
3
(
a5(−R⊥)R∥ + b5R⊥R∥ + 5b4(R⊥ + 2R∥)

)eZ . (5.24)

Both Eqns. 5.23 and 5.24 are independent of the second squirming mode B2 and β.
This means that for the concentric geometry, all types of squirming particles (pushers
β < 0, neutral β = 0, and pullers β > 0 ) move with the same translational speed.
It should be noted that the free space squirming velocity is also independent of B2

and β and so there is no a priori reason that the fully axisymmetric particle-container
should behave differently.

The resistance parameters R = {R∥, R⊥} have units 1/L and so all resistances in
all subsequent plots are nondimensionalized by multiplying with the particle size a.
The translational velocity of the squirmer and container, U sq and Um, respectively
given by Eqns. 5.23 and 5.24, are shown in Fig. 5.3 for various combinations of
R = {R∥, R⊥}. When there is relatively weak resistance to normal flow across the
membrane, R∥ > R⊥, the squirmer moves opposite to the container. However, when
R∥ < R⊥ and tangential flow is favored, the container and squirmer both move in the
same direction. In the situation where R∥ < R⊥, flow across the membrane is primarily
in the tangential direction and almost exactly mirrors the squirmer’s tangential slip
boundary condition. The squirmer is able to transmit its slip boundary condition onto
the container walls by forming recirculating vortical flows which extend out beyond
the container walls. This effectively turns the container into a larger version of a
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tangential squirmer. On the other hand, when there is weak resistance to normal flow,
the squirmer always pushes a net volume of fluid behind its body. Consequently, the
passive porous container, which now allows this fluid to flow through its surface in
the normal direction, is convected backwards with this net fluid motion. These effects
are seen more clearly in the velocity field plots shown in the upcoming sections.

The models limiting behavior of {R∥, R⊥} → {∞,∞} reproduces the non-porous
container solution, Eqn. 5.14 (note that these two curves overlap). Additionally,
U sq(b/a) shows a global minimum implying that there is a special size ratio where
the squirmer moves the slowest. This is understood as a confinement effect where the
squirmer becomes inefficient at moving fluid tangentially around its body. Both U sq

and Um decay away, respectively, to the free space squirming velocity, 2/3B1, and 0
as b/a→∞.
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Fig. 5.3 The normalized z-component of the squirmer’s and container’s translational
velocity, U sq

z and Um
z , is shown versus the container to squirmer size ration b/a.

Curves are shown for various sets of permeable resistances, R = {R∥, R⊥}
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Additional plots, shown in Figs. 5.10, 5.11, 5.12, and 5.13, have been constructed for
a wider variety of resistances. In general, a higher resistance leads to slower squirmer
and container translational speeds.

5.3.3.1 Limiting Behaviors

Several important limiting behaviors may be recovered from Eqn. 5.23 and 5.24.
Fixing the squirmer’s size as a, if the size ratio b/a → ∞, the squirming particle’s
speed is affected less and less by confinement and the free space squriming velocity,
2/3B1, is recovered with a container velocity that approaches zero. If b/a→ 1 or a→ b

then the squirmer perfectly transmits its boundary conditions to the container and
the squirmer moves with the free space velocity 2/3B1 with the container translating
at a speed reduced by (R⊥ −R∥)/(R⊥ + 2R∥). Summarized more formally, for these
two simple cases,

lim
b→∞

U sq = 2
3B1eZ , lim

b→∞
Um = 0 (5.25)

lim
b→a

U sq = 2
3B1eZ , lim

b→a
Um = 2

3B1

(
R⊥ −R∥

R⊥ + 2R∥

)
eZ . (5.26)

In the case where fluid leaks out of the membrane isotropically, meaning that R⊥ =
R∥ = R, the container does not translate, and the squirmer translates with a speed
given by,

lim
R⊥→R∥

U sq = B1 (3a5R2 − 5a3b2R2 + 2b5R2 + 30b4R)
3 (a5 (−R2) + b5R2 + 15b4R) eZ . (5.27)

The two cases in which the fluid is only permitted to leak normally or tangentially
to the container results in two different container and squirmer velocities. This implies
that mechanisms for normal and tangential fluid leakage are not equivalent in the
sense that only discontinuities in the normal stress may be driven by a finite pressure
jump. There is no corresponding equivalent mechanism to drive fluid tangentially
across the membrane. These two limiting cases correspond to where either R⊥ or R∥

diverges while keeping the other permeability resistance finite. The container and
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squirmer translational velocities become,

lim
R⊥→∞

U sq =
B1
(
3a5R∥ − 5a3b2R∥ + 2b5R∥ + 10b4

)
3
(
a5(−R∥) + b5R∥ + 5b4

) eZ

lim
R⊥→∞

Um = 10a3bB1

3
(
a5(−R∥) + b5R∥ + 5b4

)eZ

(5.28)

lim
R∥→∞

U sq = B1 (3a5R⊥ − 5a3b2R⊥ + 2b5R⊥ + 20b4)
−3a5R⊥ + 3b5R⊥ + 30b4 eZ

lim
R∥→∞

Um = − 10a3bB1

−3a5R⊥ + 3b5R⊥ + 30b4 eZ

. (5.29)

The limit in which both R⊥ →∞ and R∥ →∞ recovers the solution for the rigid
non-porous container, Eqn. 5.14. The case in which {R⊥, R∥} → {∞, 0} recovers a
special case of a viscous drop, where there is no viscosity discontinuity, yet a zero shear
stress jump at the membrane fluid interface. This is corroborated with comparison
to Reigh’s solution, [55]. In the limits that R⊥ → 0 or R∥ → 0 the squirmer velocity
goes to the free space solution, U sq → 2/3B1eZ , yet the container moves at a reduced
speed given by,

lim
R⊥→0

U sq = 2
3B1eZ , lim

R⊥→0
Um = −a

3B1

3b3 eZ (5.30)

lim
R∥→0

U sq = 2
3B1eZ , lim

R∥→0
Um = 2a3B1

3b3 eZ (5.31)

owing again to the difference in the whether a normal or shear stress discontinuity
drives fluid across the membrane.

5.3.3.2 Velocity Fields

The full fluid velocity field may be constructed inside and outside of the container
by using the well-known relationships between the Stokes stream function and the
pointwise fluid velocity. In spherical coordinates these are given by,

ui,er (r, θ) = − 1
r2 sin(θ)

∂ψi,e(r, θ)
∂θ

(5.32)

ui,eθ (r, θ) = 1
r sin(θ)

∂ψi,e(r, θ)
∂r

(5.33)

In terms of numerics, the velocity fields are most efficiently constructed in Cartesian
coordinates. Since our geometry is defined in the xz plane, standard mappings may be
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used to convert Eqns. 5.32 and 5.33 to vector functions of (x, z, ϕ). It is then a matter
of evaluating these Cartesian vector functions pointwise and piecewise over the sets
{ψi(x, z, ϕ) : b2 ≥ x2 +z2 ≥ a2, ϕ ∈ {0, π}}, and {ψe(x, z, ϕ) : x2 +z2 > b2, ϕ ∈ {0, π}}.
Streamlines may also be constructed using standard formalisms.

The velocity fields with streamlines have been constructed by sampling several pa-
rameters, namely the ratio b/a, the set of permeability resistances R = {Rt, Rb, Rn} ≡
{R∥, R∥, R⊥}, and squirmer types β ∈ {−5, 0,+5}. Figures 5.4, 5.14, 5.15, show
the velocity fields for a β = +5 puller, a β = 0 neutral squirmer, and a β = −5
pusher respectively and for a size ratio of b/a = 2 and permeability parameterization
R⊥ = 100, R∥ = 10. Subsequent Figures 5.22, 5.23, and 5.24, show a sweep over the
same set of squirmer types but now with R⊥ = 10 and R∥ = 100.

|u(x,z)|/|Usq|

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 5.4 The velocity field of a β = −5 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 2. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Figures {5.16, 5.17, 5.18, 5.25, 5.26, 5.27} and {5.19, 5.20, 5.21, 5.28, 5.29, 5.30}
show sweeps over the same set of squirmers, i.e. β ∈ {−5, 0,+5} and permeability
resistances, though now with different size ratios of, respectively, b/a = 5 and b/a = 10.

Velocity fields parameterized by permeable resistances R⊥, R∥ such that R⊥ > R∥

show that the fluid exits preferentially in tangential directions to the membrane.
Conversely the condition, R⊥ < R∥ forces fluid flow to enter and exit the membrane
with a larger normal component. It should be emphasized that the translational
velocities of the squirmer and container, in the concentric geometry, are independent
of the squirmer’s type. However, the flow fields are very much dependent on β.

In particular, neutral squirmers are seen to produce flow fields that are very similar
to the source dipole flow field. Pushers tend to draw fluid in radially and expel it
out axially. On the other hand pullers draw fluid in axially and expel it out radially.
Both pushers and pullers expel fluid asymmetrically relative to the xy plane, thus
generating net motion along their orientation es (in this case in +eZ). Pushers and
pullers should functionally behave like the point force dipole solution of Stokes flow.
However, the container induces voritcal flows in both the z-anterior and z-posterior
portions of the container. This unique phenomena is purely of hydrodynamic origin
owing to the confinement effects of the container.

5.4 Boundary Integral Formulation

Since the Stokes equations are linear, we may decompose the fluid velocity inside
of the container as a sum of velocities arising from integral contributions from the
squirmer with surface Γsq, and the container surface Γc. The fluid velocity at some
point x in the interior fluid region, Ωi, is then given as,

u(x) = usq(x) + uc(x), x ∈ Ωi (5.34)

It is then useful to define complementary velocity fields ūsq(x) and ūc(x) such that,

ūsq(x) = u(x)− usq(x) (5.35)
ūc(x) = u(x)− uc(x) , (5.36)

from which one can more conveniently express velocity contributions relative to a
complementary flow field or a disturbance flow.
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5.4.1 Squirmer Contribution

Conditional on whether or not we want to solve for squirmer surface tractions, we
may not necessarily choose the double layer representation for the squirmer. There
is no straightforward way to develop a second-kind integral formulation for surface
tractions by directly using the mobility Stresslet density. In fact, this procedure can
only be carried out if the surface tractions are direct mappings from rigid body motion
surface velocity fields [33], [32], [11]. Squirmers do not have boundary conditions
solely dependent on no-slip rigid body motions, rather there is usually a modeled slip
velocity that gives rise to some form of propulsive force. However, in the mobility
problem, there is no need to solve for the surface tractions, unless, for example, we
want to model a constant power squirmer. The solution here uses the complete double
layer formulation to describe the active squirmer’s motion under integral force free
and torque free constraints. The velocity contribution due to the squirmer may be
written as,

usq(x) =
∫

Γsq

K(x,y)ϕ(y)dS(y) + F sq,ext · G(xsq
c ,x)

8πµ (5.37)

− 1
2
(
T sq,ext ×∇x

)
· G(xsq

c ,x)
8πµ

=
∫

Γsq

K(x,y)ϕ(y)dS(y) + F sq,ext · G(xsq
c ,x)

8πµ (5.38)

+ R(xsq
c ,x)

8πµ T sq,ext ,

where K(x,y) is the Stokes double layer potential multiplied by a factor of 2, ϕ(y) is
the double layer density, F sq,ext and T sq,ext are the external force and torque on the
squirmer (usually set to zero), G(xsq

c ,x) is the Stokes single layer potential centered
at the squirmer’s centroid xsq

c , and R(xsq
c ,x) ≡ ϵijk

(x−xsq
c )

r3 is the Rotlet or Couplet
singularity again centered at the squirmers geometric centroid. Although we have
completed the range of (Kϕ)(x) with a point force and point torque, we could have
chosen other flows that would impart a finite force and torque.

In the limit that x→ Γsq we find the squirmer disturbance flow to be,

U sq + Ωsq × (x− xc)

+ usl(x)− ūsq(x) = ϕ(x) +
∫

Γsq

K(x,y)φ(y)dS(y)

+ F sq,ext · G(xsq
c ,x)

8πµ + R(xsq
c ,x)

8πµ T sq,ext

, (5.39)
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where we have used the no-slip boundary condition coupling the fluid velocity on the
surface of the particle to the particle’s rigid body motion. An additional known slip
velocity, usl(x), is prescribed and is solely responsible for generating a propulsive
force that drives the body. For a force and torque free swimmer the range completion
terms drop out of the CDL formulation and the swimmer may be fully described by
the double layer potential,

U sq +Ωsq× (x−xc)+usl(x)− ūsq(x) = ϕ(x)+
∫

Γsq

K(x,y)ϕ(y)dS(y) . (5.40)

Equation 5.40 is likely the most efficient way to represent active matter problems since
force and torque free constraints are automatically satisfied when using the double
layer representation. Although the singularity present in the kernel K is proportional
to 1/r2, Eqn. 5.40 is a second kind integral equation and admits rigorous analysis
under the Fredholm-Riesz-Schauder theory, [22], [35].

With additional modifications, Eqn. 5.40 may be written solely in terms of the
potential ϕ. Using the well known completion relationships [31],

U sq = −
3∑
j=1

φj,RBM(x)⟨φj,RBM ,ϕ⟩ (5.41)

Ωsq × (x− xsq
c ) = −

6∑
j=4

φj,RBM(x)⟨φj,RBM ,ϕ⟩ (5.42)

the eigenvalue −1 of rank six, corresponding to the operator (I + K), is mapped
to zero. The associated eigenfunctions correspond to the six different and linearly
independent rigid body motions, φi,RBM , i ∈ {1, . . . , 6}, made orthonormal using the
modified Gram-Schmidt process. The completion relationships, 5.41, 5.42 may be
combined with Eqn. 5.40 viz.,

usl(x)− ūsq(x) = ϕ(x) +
∫

Γsq

K(x,y)ϕ(y)dS(y)

+
6∑
j=1

φj,RBM(x)⟨φj,RBM ,ϕ⟩
. (5.43)

Upon solution of ϕ, post processing with the completion relations, Eqns. 3.68, 3.69,
allows recovery of U sq and Ωsq.
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5.4.2 Container Contribution

In formulating the container contribution we make explicit indications of where x and
y are located relative to the defined container normal vector n. Since we naturally
take the container normal to point exterior to the container (and in general exterior to
a closed geometry), we denote quantities that depend on points x and y, in the volume
Ωe and in the direction of n, with superscript +. We analogously denote quantities
that depend on x and y as points in the volume, Ωi bounded by Γc− ∪ Γp+ with
superscript −. This allows for more efficient notation to be used for the construction
of stress jumps across the container surface.

Under zero viscosity contrast inside and outside of the container, we find that,

uc(x)− ūc(x) = 1
2
[
u+(x)− u−(x)

]
+
∫

Γc

K(x,y)
[
u+(y)− u−(y)

]
dS(y)

−
∫

Γc

G(x,y)
[
f+(y)− f−(y)

]
dS(y)

.

(5.44)

If we assume that the fluid velocity is continuous across the membrane, as would
be the case for pressure driven flow through a cylindrical pore (i.e. fully developed
Hagen-Poiseuille flow), u+(x) = u−(x), the equations then reduce to,

uc(x)− ūc(x) = −
∫

Γc

G(x,y)
[
f+(y)− f−(y)

]
dS(y) . (5.45)

We emphasize that uc(x) is the fluid velocity evaluated on the container / mem-
brane surface and is different from the membrane point-wise velocity (to be denoted
as um(x)) unless no-slip is used in conjunction with the standard kinematic boundary
condition. To proceed, we construct a constitutive law for the stress jump across the
membrane. For the jump in stress a general form holds,

∆f(y) ≡
[
f+(y)− f−(y)

]
= −

[
f b(y) + f γ(y) + f p(x)

] , (5.46)

which includes forces related to membrane bending f b, tension f γ, and resistance
to permeability f p. More generally, the container surface Γc may be modeled as an
incompressible 2D fluid. For instance, if one chooses to model a lipid bilayer, the
Canham-Helfrich energy may be used to model the bending energy. The surface
incompressibility constraint is often imposed by using a Lagrange multiplier associated
with in-plane membrane tension. First variations in the Canham-Helfrich energy yield
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bending and tension force densities [8],

f b(y) = Eb(2∆sH + 2H(H2 −K))n(y) (5.47)
f γ(y) = −2γHn(y) +∇sγ . (5.48)

However, restricting our attention to a rigid membrane, we allow the membrane to
only support a permeable resistance force density and define,

f p(y) = − [uc(y)− um(y)] · [Rnn(y)n(y) +Rbb(y)b(y) +Rtt(y)t(y)]
= −{uc(y)− [Um + Ωm × (y − xm

c )]}
· {Rnn(y)n(y) +Rbb(y)b(y) +Rtt(y)t(y)}

, (5.49)

in analogy with Darcy’s law. This model is equivalent to the analytical formulation
under the identifications Rn ≡ R⊥, R∥ ≡ Rb ≡ Rt. The vectors t, b,n are respectively
the tangent, bitangent, and normal vectors and provide a localized point-wise tangent
space on the container surface.

In addition, integral constraints on the total hydrodynamic force and torque on
the membrane container must be made to fix the system,∫

Γc

∆f(y)dS(y) = F h = 0 (5.50)∫
Γc

(y − xc
c)×∆f(y)dS(y) = T h = 0 . (5.51)

We remark here on a subtly in connecting the analytical and numerical models.
By definition, first-order derivatives (i.e. t, b) only make sense when there is a global
parameterization assigned to the mesh. Applying normal and tangential stress jump
boundary conditions therefore requires consistent definitions of tangent spaces that
must originate from making differential geometric estimates on a globally parametric
mesh. If the mesh is nonparametric, after determining a normal vector, the tangent
vector space can be approximated using a local parameterization, e.g. a mapping
(s, t) → x0 + st + tb. In what follows, we parameterize with spherical coordinates,
making the identifications t ≡ eθ and b ≡ eϕ in a body coordinate system attached
to the container center.

5.5 Galerkin Discretization

The system of equations may be discretized by constructing the variational forms of
Eqns. 5.43 and 5.45 subject to the integral constraints, Eqns. 5.50, 5.51. In what
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follows we assume that our surfaces Γsq,Γc are piecewise smooth and admit conformal
mesh decompositions Γhsq,Γhc . It is assumed that any given 2-manifold Γk may be
decomposed into a mesh Γhk,

Γk ≈ Γhk,M =
M⋃
m=1

τ̄m (5.52)

with M boundary elements τm and where h is a globally defined mesh element width.
In what follows, for convenience, the M subscript is dropped under the assumption
that an appropriate global indexing set has been constructed with cardinality M .

5.5.1 Continuous Boundary Element Spaces

In general we may construct a space of continuous boundary elements of order p on
our discrete mesh Γhk as,

Sp,0(Γhk,χ) ≡ {ψ ∈ C0(Γk)|∀τ ∈ Γhk : ψ|τ ◦ χτ ∈ Pτp} , (5.53)

where χ = {χτ : τ ∈ Γhk} is an element mapping vector and Pτp is an order p element
polynomial space. The element mapping χτ (ξ) given by χτ : τ̂ ⊂ R2 → τ ⊂ R3 is
defined using the typical parametric element mapping, which in the case of flat planar
triangles is also an affine mapping,

χτ (ξ) =
2∑
i=0

piψi(ξ)

χτ (ξ) = p0 + ξ1(p1 − p0) + ξ2(p2 − p1)
(5.54)

The triangular reference element is defined as,

τ̂ ≡ {ξ ∈ R2 : 0 ≤ ξ2 < ξ1 ≤ 1} , (5.55)

where {p̂0, p̂1, p̂2} are the corners of the domain τ̂ and identify with their lifts into R3

as χτ (p̂j) = pj. In general, Lagrangian type shape functions for this domain, may be
built by inverting a generalized Vandermonde matrix. In doing so it is useful to define
a local nodal indexing set,

I τ̂p ≡ {(i, j) ∈ N2
0 × N2

0 : 0 ≤ i ≤ j ≤ p} , (5.56)

where for 3 node triangles I τ̂1 = {(0, 0), (0, 1), (1, 1)}. Points are given by p̂p(i,j) =
(i/p, j/p), ∀(i, j) ∈ I τ̂p . The set of shape or basis functions for flat 3-node triangles is
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simple, and may be written as,

ψ0(ξ) = 1− ξ1 (5.57)
ψ1(ξ) = ξ1 − ξ2 (5.58)
ψ2(ξ) = ξ2 (5.59)

with the property,
ψi(p̂j) = δij , (5.60)

where we have explicitly identified the nodes with the triangle vertices. In particular,
and for simplicity, we expand our unknowns, {ϕ,uc,Um,Ωm}, in the space of piecewise
continuous linear boundary element basis functions S1,0(Γhk,χ). The unknown nodal
dependent field quantities are then understood to be interpolated isoparametrically
over the number of global nodes. In constructing this interpolation, it is also useful to
introduce a global nodal indexing set for Γhk defined as,

Ik ≡ {χτ (p̂(i,j)) : ∀τ ∈ Γhk,∀(i, j) ∈ Iτp } , (5.61)

under which the unknown double layer potential and membrane fluid velocity read,

ϕ(x) =
∑
j∈Isq

ϕjψj(x)

uc(x) =
∑
j∈Ic

uc
jψj(x)

. (5.62)

It is common place to refer to an unknown field quantity’s associated basis functions
as trial functions.

In boundary element methods, there is little restriction on the choice of element
type so long as the boundary can be discretized with well shape-conditioned elements.
Though, one may choose a sub-parametric interpolation scheme for unknown field
quantities (meaning the geometry is less smoothly resolved), the isoparametric concept
is more efficient since, the unknown nodal dependent variables lie at the same locations
as the nodal coordinates. We remark that the use of flat triangles may be cast as a
high-level implementation issue under modern object-oriented design principles. There
are no computer code restrictions since the assembly of BEM linear systems is always
formulated as an element by element calculation and may be generically implemented
as a function of the number of element nodes.
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5.5.2 Galerkin BEM

In constructing the Galerkin formulation of a BIE, one multiplies the entire equation
by a global weighting or test function and integrates over the BIE’s domain. For a
continuous C0 interpolation, such test functions are defined on triangle patch domains
under a globally labeled node’s vertex-face 1-ring. For the i’th globally labeled node,
and its vertex-face 1-ring v∗

i,k ≡ {τ : τ ∈ Γhk,pi ∈ τ̄}, this domain may be written as,

supp(ψi,k) = {τ ∈ Γhk : τ ∈ v∗
i } . (5.63)

The test functions are chosen from the same set of affine 3-node triangular shape
functions, though defined globally though the notion of local element interpolants,

ψi(x)
∣∣∣
τk

= (ψj,τk
◦ χ−1

τk
)(x), τk ∈ supp(ψi), ψj,τk

(χ−1
τk

(pi)) = 1 (5.64)

i.e. under the identification that τk is in the support of the global basis function
and that the locally defined shape function and its node identifies precisely with
the globally labeled node. This construction yields the so-called Bubnov-Galerkin or
Galerkin discretization.

Multiplying Eqn. 5.43 and 5.45 by a test function ψi(x), integrating over the BIE’s
relevant domain, and using linearity yields,

⟨ψi,usl⟩Γsq − ⟨ψi, ūsq⟩Γsq = ⟨ψi,ϕ⟩Γsq + ⟨ψi, (Kϕ)Γsq⟩Γsq

+
6∑
j=1
⟨ψi,φj,RBM⟩Γsq⟨φj,RBM ,φ⟩Γsq

. (5.65)

⟨ψi,uc⟩Γc − ⟨ψi, ūc⟩Γc = −⟨ψi, (G∆f)Γc⟩Γc (5.66)

Several simplifying notations have been used here in order to obtain cleaner expressions.
The form ⟨f, g⟩Γ ≡

∫
Γ f(x)g(x)dS(x) defines the inner product of two functions over

the surface Γ. Operator notation (Kϕ)Γ ≡
∫

Γ K(x,y)ϕ(y)dS(y) is used for its
compact notational representation. Operator forms ⟨·, ·⟩ΓtestΓtrial are to be read as an
inner product and imply a nested double integral first over the test function space
defined on Γtest and the trial function space defined on Γtrial.

The appropriate number of equations is obtained by passing each ψi ∀i ∈ Ik
through Eqn. 5.65 and 5.66. This procedure yields two dependent rectangular
linear systems, which when combined yield a square linear system of dimension
3(|Isq|+ |Ic|)× 3(|Isq|+ |Ic|).
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5.5.3 Matrix Representation of Galerkin BEM Integrals

Subject to the mesh decomposition and the chosen finite dimensional boundary element
subspace, a third approximation is made, adding to discretization error, by breaking
the continuous integral up into a sum of integrals over individual elements,

∫
Γk

(· · · )dS(ȳ) ≈
M∑
m=1

∫
τm

(· · · )dS(y), ∀ ȳ ∈ Γk and y ∈ Γhk,M . (5.67)

Inspection of Eqns. 5.65 and 5.66 reveals that there are several different general
classes of computations that must be computed. Terms involving the inner product with
a known function are only single integrals. If one applies isoparametric interpolation to
this known function, the evaluation of this integral is extremely efficient and fast. Since
each basis function has finite support given by Eqn. 5.63, under this interpolation,
this inner product is simply the mass matrix times the nodal values of the known
function. For example,

⟨ψi,usl⟩Γsq =
∫

supp(ψi)
ψi(x)

∑
j∈Isq

usl
j ψj(x)dS(x)

=
∑
j∈Isq

usl
j

∫
supp(ψi)

ψi(x)ψj(x)dS(x),
. (5.68)

Passing each ψi ∀i ∈ Isq through Eqn. 5.68 implies that the overall matrix
representation for ⟨ψi,usl⟩ may be written as MΓsq(usl)Γsq ≡ (Musl)Γsq where the
general form of the mass matrix elements, MΓk

[i, j] may be written as,

MΓk
[i, j] =

∫
supp(ψi)∩supp(ψj)

ψi(x)ψj(x)dS(x) . (5.69)

The matrix representation of ⟨ψi,ϕ⟩Γsq is identically (Mϕ)Γsq . Computations of inner
products using the mass matrix are extremely efficient and fast because MΓk

is always
a sparse matrix. On the other hand, terms involving inner products between a basis
function and BEM operator imply double integrals over two possibly identical or
dissimilar meshes, respectively giving rise to the self-interaction and pairwise dense
interaction matrices. Extreme care must be taken when evaluating the self-interactions
since BEM operators are always singular for x→ y or y → x and singular integrations
dominate the matrix diagonals (and thus the conditioning of the linear system and the
overall accuracy of the solution). For example, the self-interaction ⟨ψi, (Kϕ)Γsq⟩Γsq ,
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computation is given more explicitly by,

⟨ψi, (Kϕ)Γsq⟩Γsq =
∫

supp(ψi)
ψi(x)

∫
supp(ψj)

K(x,y)
 ∑
j∈Isq

ϕjψj(y)
 dS(y)dS(x)

=
∑
j∈Isq

ϕj

∫
supp(ψi)

∫
supp(ψj)

K(x,y)ψi(x)ψj(y)dS(y)dS(x)
.

(5.70)

Equation 5.70 generates the dense matrix representation KΓsqΓsq(ϕ)Γsq ,

KΓsqΓsq [i, j] =
∫

supp(ψi)

∫
supp(ψj)

K(x,y)ψi(x)ψj(y)dS(y)dS(x) , (5.71)

where we have used the short hand KΓtestΓtrial
where test and trial are the geometries

that respectively define the domains of test and trial basis functions.
The discretization and numerical computation of boundary element operators, in

general, produces dense matrix representations since the associate singularity solutions
always have long range decay, i.e. proportional to 1/rα, α ≥ 1. Because of this
singularity, the accurate numerical computation of Eqn. 5.71 is a relatively complex
problem that is far from having a trivial solution. In Galerkin methods, when the
supports of the basis functions intersect, three classes of singularities occur: coincident,
edge adjacent, and vertex adjacent. The accurate computation of each singularity
demands different numerical integration routines and special numerical code logic.
Each singularity case has been studied in great detail by a variety of previous authors.
In this thesis we use the Sauter-Schwab integration rules, [13], [58], since they are black-
box integration procedures that produce high accuracy at relatively low computational
cost.

The integration and matrix representation of ⟨ψi, (G∆f)Γc⟩Γc follows identically to
Eqn. 5.70 and 5.71 although the singularity of G is one order less than K. Since the
unknowns Um,Ωm are constant vectors, they interpolate as constants. One possible
way to account for this is to first define a function (for notational convenience),

RTBN(y;Rt, Rb, Rn) = Rnn(y)n(y) +Rbb(y)b(y) +Rtt(y)t(y) (5.72)
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and rewrite the term (G∆f)Γc as a sum of three terms, namely,

(G∆f)Γc =
∫

Γh
c

G(x,y)
[
{uc(y)− [Um + Ωm × (y − xm

c )]} ·RTBN(y)
]
dS(y)

indx=
∑
j∈Ic

ucj:m

∫
supp(ψj)

Gkl(x,y)RTBN
lm (y)ψj(y)dS(y)

− Um
m

∫
Γh

c

Gkl(x,y)RTBN
lm (y)dS(y)

− Ωm
m

∫
Γh

c

Gkl(x,y)RTBN
ln (y)ϵnmp(y − xm

c )pdS(y)

= (GTBNuuc)Γc − (GTBNUUm)Γc − (GTBNΩΩm)Γc

.

(5.73)

The rigid body motion terms, ⟨ψi,φj,RBM⟩Γsq⟨φj,RBM ,φ⟩Γsq , follow along the same
lines as Eqn. 5.68 and are constructed as,

⟨ψi,φj,RBM⟩Γsq⟨φj,RBM ,φ⟩Γsq → (Mφj,RBM)Γsq(φj,RBM ·M)Γsq . (5.74)

Pairwise interactions must also be computed. They are present in the disturbance
flow inner products ⟨ψi, ūsq⟩Γsq and ⟨ψi, ūc⟩Γc . The structure of the integrations
is similar to the self-interaction integrations, except the double integrals are now
computed over patch product domains on dissimilar meshes, e.g. (τi, τj) ∈ Γhsq × Γhc .
If the surfaces are well-separated, the computation is straightforward because the
singularity in the integral’s kernel becomes relatively smooth. However, when the
surfaces are close, care must also be taken in appropriately handling these regular
integrations adaptively. It is commonplace to refer to these close surface-surface
integrations as nearly singular integrations which are roughly defined by x ≈ y and
imply that the integral’s kernel ∝ 1/rα diverges.

Discretization of the force and torque constraints as single integrals over Γc only
requires expansion in the trial space, in this case the boundary element subspace built
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on Γc. The force constraint may be expanded as,∫
Γc

∆f(y)dS(y) =
∫

Γc

{uc(y)− [Um + Ωm × (y − xm
c )]}

·RTBN(y)dS(y)
indx=

∑
j∈Ic

ucj:k

∫
supp(ψj)

RTBN
kp (y)dS(y)

− Um
k

∫
Γc

RTBN
kp (y)dS(y)

− Ωm
l

∫
Γc

ϵklm(y − xc
c)mRTBN

kp (y)dS(y)

= (RTBNuuc)Γc − (RTBNUUm)Γc − (RTBNΩΩm)Γc

. (5.75)

A completely analogous procedure may be used to partition the torque constraint
into a sum of three quantities. This expansion proceeds as,∫

Γc

(y − xc
c)×∆f(y)dS(y) =

∫
Γc

(y − xc
c)

× [{uc(y)− [Um + Ωm × (y − xm
c )]}

·RTBN(y)]dS(y)
indx=

∑
j∈Ic

ucj:k

∫
supp(ψj)

ϵqrp(y − xc
c)rRTBN

kp (y)dS(y)

−Um
k

∫
Γc

ϵqrp(y − xc
c)rRTBN

kp (y)dS(y)

−Ωm
l

∫
Γc

ϵqrp(y − xc
c)rϵklm(y − xc

c)mRTBN
kp (y)dS(y)

= (RTBNr×uuc)Γc − (RTBNr×UUm)Γc − (RTBNr×ΩΩm)Γc

. (5.76)

5.5.4 Global Linear System

The global linear system may be assembled by first constructing the matrix repre-
sentation of each inner product, factoring out unknowns, and then inserting each
inner product matrix block into the global BEM stiffness matrix. Since the Stokes
equations are vector equations and the singularity solutions are second order tensors,
the matrix dimensions follow by multiplying the number of nodes by three. Let the
number of nodes in geometry Γhk be defined by the cardinality of the index set Ik. For
the squirmer porous container geometry the number of nodes for each geometry is
defined as Nsq = 3|Isq| and Nc = 3|Ic|. The squirmer porous container problem then
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takes the form,

Ax = b

dim(A) = (Nsq +Nc + 6)× (Nsq +Nc + 6)
dim(x) = dim(b) = (Nsq +Nc + 6)× (1)

, (5.77)

where A is the BEM stiffness matrix, x is the vector of unknowns and b is the load
vector. Expanding the notation, Eqn. 5.77 is equivalent to,


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




(ϕ)Γsq

(uc)Γc

Um

Ωm

 =


(usl)Γsq

(0)Γc

0
0

 , (5.78)

where the self-interaction (diagonal) terms are given by,

A11 = MΓsq +KΓsq ,Γsq +
6∑
j=1

(Mφj,RBM)Γsq(φj,RBM ·M)Γsq (5.79)

A22 = −GTBNuΓcΓc
−MΓc (5.80)

A33 = −RTBNU
Γc

(5.81)
A44 = −RTBNr×Ω

Γc
. (5.82)

The pairwise interactions (off-diagonal) terms are given by,

A12 = −GTBNuΓsqΓc
, A13 = GTBNUΓsq

, A14 = GTBNΩ
Γsq

(5.83)
A21 = KΓcΓsq , A23 = GTBNUΓc

, A24 = GTBNΩ
Γc

. (5.84)

The final two rows of the stiffness matrix are given by discretizing the force and torque
integral constraints, Eqns. 5.51 and 5.50.

A31 = [0]3×Nsq , A32 = RTBNu
Γc

, A34 = −RTBNΩ
Γc

(5.85)
A41 = [0]3×Nsq , A32 = RTBNr×u

Γc
, A34 = −RTBNr×U

Γc
. (5.86)



5.6 Numerical Solution and Comparison with the Analytical Model 95

5.6 Numerical Solution and Comparison with the
Analytical Model

We first show agreement between the analytical model and the GBEM numerics
when the container’s and squirmer’s center of mass are coincident. This can be
accomplished for a variety of confinement ratios b/a > 1, permeability parameter
sets, and squirmer types (given by the ratio of β = B2/B1). However, axisymmetry
constraints implied by the coincident squirmer porous container geometry demands
that Rt = Rb ≡ R∥ and Rn ≡ R⊥ implying that the proposed BEM model is slightly
more general. In the analytical model, the squirmer orientation is also fixed as
es = eZ . The numerical solution is independent of the squirmer’s orientation in the
sense that one may always construct a rotation matrix R that takes the es → eZ

without affecting the axisymmetry of the system. Thus the numerical solution in the
concentric geometry is always equivalent to the analytical model up to a rotation.

5.6.1 Parameterization

To solve the global linear system given in Eqns. 5.77 or 5.78, one must choose container
permeability parameters {Rt, Rb, Rn}, squirmer and container radii {a, b}, a set of
squirming parameters describing orientation and squirming modes {es, B1, B2}, and
initial positions for the container and squirmer centers of mass {xc

c,x
sq
c }. So long

as the number of nodes is kept relatively small, the solution of the linear system
may be obtained relatively efficiently using standard LU decomposition. Situations
in which b/a ≈ 1 or where (b − a)/a ≈ δ for δ ≪ 1 require one to use either mesh
adaptivity and/or efficient nearly singular quadratures to control element size and
errors in numerical integrations.

In this work the solution of the linear system is computed using the Galerkin
BEM discretization down to a container size of b/a = 1.1 with appropriate spatial
mesh adaptivity subject to the nearly singular ratio distance cutoff defined in Chapter
4. The linear system is solved over the range of 1.1 ≤ b/a ≤ 10 using an advanced,
fast, GPU Galerkin BEM (GPUGBEM) implementation that uses the most recent
version of the CUDA API. This implementation has been created as a special general
framework for solving a wide variety of multi-body fluid structure interaction problems
in Stokes flow (see GPUGBEM framework in Chapter 4). These calculations are
computed on a NVIDIA GTX 780 using an analogous implementation of the well-
known fast-nbody simulation techniques [44]. However, the Galkerin BEM for vector
equations is considerably more difficult to implement on GPUs as many issues arise
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in various subtle forms: race conditions, data partitioning, and thread concurrency.
Also, although not obvious, each different type of operator (self, pairwise, integral
constraints, etc...) must all be implemented, optimized, and consequently computed
in different ways.

The numerical solution is computed down to a container size ratio of b/a =
1.1 without utilizing nearly singular integration/quadrature routines. During each
solve, the squirmer and container mesh are optimized using a very efficient and fast
O(N log(N)) mesh subdivision algorithm (see GPUGBEM in Chapter 4). Roughly
speaking, this new local method for h-adaptive meshing of the container and squirmer
surfaces conformally refines all element pairs {(τx, τy) ∈ Γhc × Γhsq : dxy(τx, τy) ≤ 1}.
The function dxy(τx, τy) is defined by,

dxy = dist(τx, τy)
max(hx, hy)

, (5.87)

where hx and hy are local element diameters of elements τx and τy.

5.6.2 Concentric Geometry BEM Results

The analytical model given in Eqn. 5.23 and 5.24 predicts that both the squirmer and
membrane translational velocities are independent of the type of squirmer (determined
by β). This is confirmed in the BEM calculations shown in Figs. 5.5, 5.31, 5.32, 5.33,
5.34, 5.35. The BEM model produces results that are in extremely good agreement
with the analytic model. Specifically, global minimums in the squirmer’s translational
velocity are recovered. As a general trend, it is observed that smaller resistances yield
greater squirmer speeds. The recovery of the non-porous container solution using high
values of permeability resistances (1012) highlights the fact that the squirmer’s speed
is always bounded from below by the non-porous container solution. Less resistance
in the normal direction also produces faster squirming speeds when compared to a
container having a tangential resistance of similar magnitude.
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Fig. 5.5 This plot shows a comparison between the analytical, Exact, and numerical,
BEM, models for the normalized squirmer’s translational velocity, U sq

z /(2/3B1), versus
the container/squirmer size ratio b/a. This comparison is made for various sets of
permeability resistances where tangential or normal flow across the container is made
to dominate (i.e. has a lower resistance). The correspondence between these resistances
is given by R = {Rt, Rb, Rn} ≡ {R∥, R∥, R⊥}. The squirmer’s translational velocity is
seen to have a minimum at a particular value of b/a. This minimum is reproduced
accurately by the Galerkin BEM model.

5.7 Mobility Field Calculations

So far all previous calculations have been for the completely axisymmetric geometry
where the squirmer and container are perfectly concentric, i.e. xc

c = xp
c . Axisymmetry
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in the geometry is necessary when constructing the analytical solution. Conversely,
the Galerkin BEM model can be solved for any placement of the squirmer so long as
|xsq

c − xc
c| < b − a meaning that the container and squirmer may not intersect. In

practice, in order to have stable and accurate numerical solutions, a further restriction
on the center to center separation needs to be enforced, namely,

rcp = |xsq
c − xc

c| < b− a(1 + δ) ≡ rmaxcp . (5.88)

In this way, the surface of squirmer is always kept a distance aδ away from the
container walls. The parameter δ functions as a fractional squirmer to container
gap-size.

It is important to make δ small enough so that the mobility solution is sampled in
the squirmer-container lubrication region. Very few authors ever attempt to simulate
particles in Stokes flow down to these separations. If this is attempted, lubrication
analytics are usually incorporated after the far-field has been solved. This is an
important distinction since the calculations shown here, which are computed using
the author’s very efficient GPUGBEM framework, allow full numerical resolution of
these solutions down to very small particle gap sizes. Using a novel locally h-adaptive
re-meshing algorithm, mobility solutions for small δ may be accurately sampled with
little computational cost. The calculations in this section show that reasonable results
can be obtained down to δ = 0.05 and likely for smaller values of δ. In all of the
following trajectory calculations, computations are performed down to δ = 0.05. Owing
to the fact that it is physically impossible for a squirmer to pass through the container
surface, squirmers attempting to cross the container boundary simply remain fixed
at a center to center separation of rmaxcp , yet may continue to keep running into the
container boundary at the δ = 0.05 level mobility solution.

5.7.1 Basic Trajectory Calculations and Improvements

Subject to an appropriate system specification in parameters P ,

P = ⟨a, b, Rt, Rb, Rn, B1, B2, es,x
sq
c ,x

c
c⟩ (5.89)

the most obvious way to do a trajectory analysis is to

1. Adaptively mesh both container and squirmer surfaces

2. Solve the mobility problem, Eqn. 5.78, for rigid body motions (RBMs) U sq,Ωsq

and Um,Ωm
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3. Integrate the center of mass and orientations of the squirmer and container using
the methods of Chapter 2

4. Construct an overall affine transform, (RST), describing the overall translation
and rotation of the particle

5. Check for container/squirmer collisions

6. Evolve squirmer and container meshes according to (RST) and appropriate
collision conditions

7. Evolve the squirmer orientation according to the rotational part of (RST)

8. Evolve time and repeat

In a CPU only implementation, this procedure may be reasonable for computing a
single squirmer trajectory so long as the squirmer does not say close to the container
surface where, solutions of the mobility problem tend to become prohibitively slow
for each time step. This computational speed burden may be alleviated using the
GPU implementation under the GPUGBEM framework. However, what if one wants
to compute hundreds or even thousands of trajectories, sampling a dense 3D grid of
squirmer starting positions xsq

c (t = 0), and do so in real time? Even if each trajectory
takes milliseconds to fully calculate, simulation of many trajectories is still two slow
to be evaluated in real time. The answer is to implement trajectory interpolation over
a special set of standard mobility solutions.

5.7.2 Interpolation Based Mobility Solutions and Trajectory
Sampling

In this section we devise an algorithm that allows for fast squirmer trajectory sampling
given a large set of arbitrary starting squirmer parameterizations {xsq

c , es}. Since the
Stokes equations are time independent and velocity fields are assumed to propagate
instantaneously, each spatial location for the squirmer, xp

c , relative to the container’s
center of mass, xc

c, produces a mobility solution that is independent of time. Therefore,
a squirmer with a given position and orientation produces the same mobility solution
regardless of its past trajectory history. This means that one may sample a set of
squirmer positions, find the mobility solution, and then use this set of solutions to
reconstruct the trajectory.

However, it would seem that for each set of squirmer positions, one would need
to sample an entire dense range of orientations in order to reconstruct even a single
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arbitrary trajectory (meaning the squirmer may have been initialized with an arbitrary
orientation). This is not the case. The squirmer and container geometry is special in
the sense that both surfaces are spherical, and so there always exists a symmetry plane
that perfectly divides both container and squirmer surfaces, Γc and Γsq. Moreover
the parameterizations of the squirmer and container have either an attached explicit
orientation, es, or an orientation that is implied when computing the rigid body
dynamics. Due to the problems overall spherical geometry, there always exists a
rotation from a fixed or standard orientation vector, e0

s = eZ , to an arbitrary squirmer
orientation es. In other words one need only sample mobility solutions from a single
orientation, preferably at the same standardized vector for each sampled squirmer
position, and then compute the inverse rotation of this standard mobility solution. It
also may appear that the mobility solution needs to be sampled on a dense grid in 3D
in order to incorporate all squirmer center of mass positions. Again, this is not the
case. Owing to the existence of this symmetry plane, a second rotation may always
be constructed mapping an arbitrary position vector to the xz plane. Put differently,
an arbitrary position vector can always be made to lie in the xz plane by rotating a
coordinate system fixed to the center of the container.

In summary, the mobility problem need only be sampled at positions on a 2D grid
in the xz plane for a fixed orientation e0

s. To recover the actual mobility solution for a
squirmer at an arbitrary position and orientation, one need only rotate the standard
mobility solution back by the inverse of the rotation that was used to map es → eZ .
To proceed with this algorithm, it is useful to define the standard parameterization of
the container and squirmer as,

P 0(x, z) = ⟨a, b, Rt, Rb, Rn, B1, B2, es = eZ ,x
sq
c = (x, 0, z),xc

c = (0, 0, 0)⟩ (5.90)

from which a set of standard mobility solutions may be generated for various squirmer
starting positions (x, z).

5.7.3 Mobility Solution Sampling Grid

The mobility solution is sampled on a circularly masked regular Cartesian grid, in effect
producing a discrete 2D sampling of mobility solutions for set of squirmer positions
(initialized centers of mass). The curved circular boundary represented by r = rmaxcp

makes obtaining a smooth regular sampling of points near this boundary problematic.
This is remedied by using linear extrapolation for r > rmaxcp .

Examples of grids used to sample the mobility solution are shown for b/a ∈ {3, 5, 10}
in Figs. 5.6, 5.36, and 5.37. The region of space defined by b− a > r > rmaxcp is well
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inside the Stokes lubrication region, where solutions tend to vary nonlinearly. However,
the use of a linear extrapolation in this region is a reasonable first approximation since
the lubrication mobility solution has been sampled at rmaxcp (inside the lubrication
region) and must at least vary linearly in its Taylor expansion for a small region near
rmaxcp given by rmaxcp + ϵ, ϵ≪ aδ.
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Interpolation Grid with Circle Masking 
b/a = 5

Fig. 5.6 In this plot all regular Cartesian (query) grid points are circled in red. Grid
points that are inside (outside) of the region defined by r < rmaxcp are shown in green
(blue). The mobility solution is solved for a squirmer placed at all green points
(841 query points and 385 mobility solves). A thick black circle shows the container
boundary at r = b. An inner red circle shows where r = b− aδ. The pink or fuchsia
colored circle shows where r = rmaxcp . The inner gray circle is sized according to r = a
giving a sense of the squirmer’s size.
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In this work we eventually use bicubic interpolation which explicitly requires the use
of a regular Cartesian grid that covers all of the circular masking region.

5.7.4 Mobility Solution Fields: Up-sampling to a Finer Grid

The grids with circular maskings for b/a ∈ {3, 5, 10} are likely dense enough for
computing squirmer and container trajectories using interpolation. However, all of
these grids may be smoothly up-sampled to produce densely packed mobility solutions.
We introduce the following notation for a 2D grid, Gn,

Gn = X × Z
X = [−b, . . . ,−b+ (i− 1)δx,−b+ iδx = +b], i ∈ {0, . . . , n+ 1}
Z = [−b, . . . ,−b+ (j − 1)δz,−b+ jδz = +b], j ∈ {0, . . . , n+ 1}

n = 2b
/⌊

2b
(b− rmaxcp )/3

⌋

δx = δy = 2b
n

, (5.91)

where the Cartesian product is taken over discrete sets X and Z. The j’th row of Gn

is at z = −b+ jδz and the i’th column is at x = −b+ iδx. Here δx and δz define grid
spacings in x and z. The integer n defines the number of bins along a grid abscissa and
the element Gn(i, j) = (x, z)ij represents a point (x, z) ∈ X ×Z. The grid parameter n
is constructed to ensure that there are at least 3 grid points in the region b > r > rmaxcp .
This creates a reasonable Cartesian based approximation of the circular boundary
at r = rmaxcp . Up-sampling proceeds by introducing an interpolation scheme taking
Gn → Gκn for an integer κ > 1. All results have been obtained by interpolating on
an up-sampled grid with κ = 3. Examples of up-sampled grids for b/a ∈ {3, 5} are
shown in Figs. 5.38 and 5.39.

Bicubic interpolation is used to calculate the mobility solution on the up-sampled
grid. These interpolated mobility solutions may be interpreted as mobility flow fields,
where each solution represents an element of the set,

{⟨U sq,Ωsq,Um,Ωm⟩0ij : P ((x, z)ij) = P 0((x, z)ij), ∀(x, z)i,j ∈ X ×Z} . (5.92)

The bicubic interpolation creates a tautologically forced smooth solution. Improve-
ments in the accuracy of the interpolation can be made by numerically approximating
the derivatives of the interpolated quantities. Centered difference approximations are
used to approximate first derivatives in x and y of the container’s and squirmer’s
center of mass velocities and angular velocities.
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Each standard mobility solution depends on the various parameters in P 0. The
size ratio is varied over the set b/a ∈ {3, 5, 10}, B1 is fixed at +1, B2 is varied over
the set B2 ∈ {−5, 0,+5}, and the permeability resistance parameters are each varied
over the discrete set Rtbn = {100, 50, 30, 10} such that Rt = Rb. In all plots and data,
the permeability resistance parameters are non-dimensionalized by the particle size a.

5.7.4.1 Container Velocity Field, Um Scalings

Scaling of the container velocity field, Um, as a function of squirmer positions can
be understood by applying known decay characteristics of the squirmer’s free space
velocity field in combination with the proposed porous container model. The velocity
fields of pushers and pullers, defined by β ≠ 0, decay as O(r−2) just like the Stokes
point force dipole,

GD
ijl = 1

r3 (δijxj − δilxj − δjlxi) + 3xixjxl
r5 . (5.93)

On the other hand the free space velocity field of a neutral squirmer (β = 0) decays
as O(r−3) just like a source dipole,

Dij = −δij
r3 + 3xixj

r5 . (5.94)

Sometimes, β = 0 squirmers are loosely grouped together with quadruple swimmers,
which have the same far field decay.

It is important to note that the presence of the B2 swimming mode fundamentally
changes the far field decay solution. The pressure field for the point force dipole is
given by,

ΠGD
jl = −2δij

r3 + 6xjxl
r5 . (5.95)

Pressure fields associated with the point force dipole, ΠGD and the source dipole, ΠSD

decay at one order higher, respectively O(r−3) and O(r−4).
From the representative boundary integral representation for the pressure,

p(x) = µ
∫

Γsq

ΠGD
il (x,y)nl(y)ϕi(y)dS(y) (5.96)
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the correct pressure scaling at the container wall (r = b) are,

p = O

(
|U sq

fs|µ
a2

(b− a)3

)
, β ̸= 0 (5.97)

p = O

(
|U sq

fs|µ
a3

(b− a)4

)
, β = 0 . (5.98)

Additionally, by using the proposed porous container model we relate velocity and
pressure at the container and find that container velocity must scale as,

|Um| = O

(
|U sq

fs|
Rmin

a2

(b− a)3

)
, β ̸= 0 (5.99)

|Um| = O

(
|U sq

fs|
Rmin

a3

(b− a)4

)
, β = 0 . (5.100)

Subsequent plots of the container velocity field are all scaled by either Eqn. 5.99
or 5.100 and so magnitudes should be interpreted relative to free space squirmer decay
conditions.

5.7.4.2 Effect of Permeability Resistances on Um and U sq

Variations in the permeability resistance parameters have the most effect on the
container velocity Um. If the squirmer type is held constant, cases in which the
normal resistance is weak, Rt = Rb > Rn, and in which the tangential resistance
is weak Rt = Rb < Rn, differ by a mirror flipping of the container velocity across
both the x and z planes. This effect is shown in Figs. 5.7 and 5.40 for a size
ratio of a/b = 3, a β = +5 squirmer, and using the parameters of, respectively,
R = {10, 10, 100}, R = {100, 100, 10}. This effects exists for all tested size ratios and
squirmer types and means that the motion of the porous container may be changed
by modifying its intrinsic porous structure so that either normal or tangential flow is
favored.

Effects on the squirmer’s translational velocity are not quite as dramatic. In
general, weak tangential resistance results in weak (small magnitude) swimming near
the posterior and anterior part of the region defined by r = rmaxcp for β = +5 and
β = −5. The swimming direction is reversed in these regions very near to where
r = rmaxcp . These weak tangential resistance effects for the same parameters can be
seen in Figure 5.41. Conversely weak normal resistance does not seem to effect the
overall swimming direction or magnitude much though the different squirmers still
produce relatively different velocity fields. Weak normal velocity fields for U sq are
shown in Figure 5.43.
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Fig. 5.7 This plot shows the container velocities that would result if a β = +5 squirmer
were placed at various grid points inside of a container with size ratio b/a = 3 and
weak resistance in the tangential direction, Rt = Rb < Rn. The black, red, pink, and
gray circles give notions of regions where r = b, r = b − aδ, r = rmaxcp , and r = a
respectively.

5.7.4.3 Effect of Squirmer Type on Um and U sq

Holding the permeability parameters fixed, each squirmer type (pusher, puller, neutral)
produces a different type of mobility velocity field. Generally speaking β < 0 pushers
produce U sq fields that show net motion upwards and directed outwards away from
the z axis towards r = rmaxcp and with mirror symmetry along the xy plane. Pullers
with β > 0 also show net motion upwards, but on the contrary, their velocity is
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directed inward towards the z axis and with mirror symmetry along the xy plane.
These effects may be seen, for example, by comparing two weak tangential (5.41, 5.8)
or weak normal (5.43, 5.44) plots for U sq and β = ±5 squirmers. Neutral squirmers
(Figs. 5.42, 5.45) show relative uniform velocity fields which indicate that they are
relatively unaffected by the presence of the container.
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Fig. 5.8 This plot shows the squirmer velocities that would result if a β = −5 squirmer
were placed at various grid points inside of a container with size ratio b/a = 3 and
weak resistance in the tangential direction, Rt = Rb > Rn. The black, red, pink, and
gray circles give notions of regions where r = b, r = b − aδ, r = rmaxcp , and r = a
respectively.

The container velocity field shows a similar mirror symmetry reversal as was
observed when switching from weak normal to weak tangential resistances. However,
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this time this mirror symmetry flipping of Um across the x and z planes is caused
by changes in β = +5→ −5. This means that the observed translational motion of
a container may be reversed simply by changing the type of squirmer inside from a
pusher to a puller.

5.7.4.4 Effect of b/a on Um and U sq

The size ratio’s effect on the mobility solution field is to make the solutions relatively
more uniform near the container’s center. Since the squirmer’s velocity U sq → U sq

fs

for b/a→∞, the squirmer tends to move faster especially when near the container’s
center. Since the velocity flow field decays as 1/r2 for pushers and pullers, the velocity
of the container Um decays in a similar way though in proportion to the pressure
field decay which goes like 1/r3. These effects simply scale the magnitude of Um. All
mirror and reversal effects previously describe also manifest themselves for a larger
b/a size ratio. Plots for b/a = 5, β = ±5 are shown in Figs. 5.46, 5.47, 5.48, 5.49,
5.50, 5.51, 5.52, 5.53. Plots for b/a, β = 0 are analogous to the b/a = 3 case are not
shown. These figures have been constructed in the same way, with an equivalent grid
resolution, up-sampling scheme, and interpolation procedure. Calculations were also
performed for b/a = 10 and are available on request.

5.8 Squirmer and Container Trajectory Calcula-
tions

With the mobility solution and its up-sampled representation, MP 0 , all the fluid
mechanics of the squirmer/porous container problem has been pre-computed and
solved. This a priori computation is relatively complex and time consuming, though
as previously argued, it facilitates the fast computation of many arbitrary particle
trajectories. At a given time, t = tk, a squirmer’s position may be calculated by
transforming the squirmer’s current parameterization P k into its standard parameter-
ization P 0

k. This allows for the squirmer’s position to be calculated in the reference
xz plane. The mobility solution is then the interpolated MP 0 field. Afterwards a
transformation is computed which rotates and transforms the standard orientation,
es = eZ to the time tk orientation, es,k .

The procedure may be summarized more formally as follows:

1. Given an arbitrary squirmer starting position, xsq
c and orientation esq at time t =

tk, find the rotation matrix Rrsq,xz

rsq such that [Rrsq,xz

rsq rsq] = rsq,xz ∈ span(eX , eZ)
for rsq = xc

c − xc
c.
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2. Rotate the squirmer’s orientation, es,k, into the xz plane such that es → exzs .
Then find the rotation matrix Rez

s
exz

s
that transforms exzs → ezs.

3. Rotate rsq,xz by Rez
s

exz
s

to find the squirmer’s reference position, rsq,xz0 , in P 0
k.

4. Search the κ up-sampled grid for rsq,xz0 using an efficient method (ordered list
bisection) and find spatial location bounds in the grid coordinates (il, jl), l ∈ 0, 1
such that Gκn(i0, j0) < xsq,xz

c · eX < Gκn(i1, j0) and Gκn(i0, j0) < xsq,xz
c · eZ <

Gκn(i0, j1).

5. Use bicubic interpolation on the bounding grid square indexed by the set
{(il, jl) : l ∈ 0, 1} (with counterclockwise ordering) to interpolate the standard
mobility solution field at rsq,xz0 . Store this interpolated solution as the quantity
MP 0(rsq,xz0 ).

6. Compute the rotation matrix, Res,k
eZ that transforms the standard orientation,

eZ , to the squirmer’s current orientation, es,k.

7. Rotate the standard interpolated mobility solution by Res,k
eZ to find the time

t = tk mobility solution, Res,k
eZ MP 0(rsq,xz0 ) =MP k(rsq)

8. Integrate both squirmer’s and container’s center of mass and orientation and
repeat this procedure for time t = tk+1.

The construction of the various rotation matrices results from asking the question
of, “How can a given vector, a, be rotated into a different vector b.” One answer to
this question is to use the well-known Rodrigues rotation formula, which is essentially
an angle-axis rotation representation. Put differently, given a vector a, an angle θ,
and a unit vector axis of rotation k̂, the Rodrigues rotation formula rotates a around
axis k̂ by an angle θ. In component form the formula is given by,

ai = Rikbk
=
[
δik + sin(θ)ϵijkk̂j + (1− cos(θ))[ϵijkk̂j]2

]
bk

=
[
δik + |â× b̂|ϵijkk̂j + (1− |â · b̂|)[ϵijkk̂j]2

]
bk

. (5.101)

There are several cases where the formula fails during numerical implementation, but
these cases may be avoided with proper implementation. It should also be understood
that k = â × b̂ and k̂ = k/|k|. This formula may be used to build Res,k

eZ by letting
a = eZ and b = es,k. One may build Rrsq,xz

rsq by letting a = r̂sqk and setting b to the
unit vector of the projection of a onto the xz plane.
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In practice, Euler integration is used to simulate trajectories. A squirmer run-time
may be defined as trun = a/|U sq

fs| from which a total simulation time may be calculated
as ttot = trunb/a. This total time is roughly the time that it takes the squirmer to move
a distance b. Since the squirmer’s translational velocity is bounded above by U sq

fs,
in practice, simulations are run for a constant multiple of trun so that the squirmer
has a chance to run across the container. A convenient way to generate trajectories,
which densely sample squirmer starting positions xsq

c,0 is to initialize theses positions
with grid points Gκn(i, j). In total this produces [(κ+ 1)(n+ 1)]2 starting positions.
Under the standard parameterization P 0 these positions all lie in the xz plane with
orientation eZ .

5.8.1 Squirmer Container Collisions

The long time behavior of all squirmer trajectories always shows squirmer and porous
container contact. In all simulations shown here, squirmers will eventually end up
moving towards the container walls, and tend to group at certain container boundary
accumulation points. The existence of these accumulation points is real since the near
field lubrication interactions have been rigorously sampled near the container walls at
a gap size aδ for δ = 0.05. The mechanism for squirmer and container contact is that
at the accumulation points, the squirmer always maintains a non-zero radially outward
velocity component relative to the container’s motion. Various types of squirmers find
these boundary accumulation points by sliding along the container walls. At these
accumulation points, the squirmer orientation aligns with the outward radial vector.

Appropriate collision models are always a subject of intense debate since using
different collision models often drastically changes near field system dynamics. In
these simulations a very simple collision model is used. The squirmer surface is
never allowed to move closer than aδ to the container surface. In other words, we
enforce a constraint on the container to squirmer center of mass vector such that
|rsqc | = |(xsq

c − xc
c)| ≤ rmaxcp . When a squirmer violates this condition, its position

is moved backwards along the unit radial vector r̂sqc (in general this would be the
normal vector) by a scalar amount γ such that | − γr̂sqc + rsqc | = rmaxcp . The squirmer’s
velocity and angular velocity (mobility solution) both remain unchanged. This idea is
similar to what is normally used for reflecting collisions, where the velocity component
parallel to the wall normal vector is reflected inward. This equation is quadratic in γ

and may be easily solved. Keeping the squirmer’s overall mobility solution unchanged
allows the squirmer to explore a small space of mobility solutions near the collision
point. This leads to a re-orientation mechanism by which the squirmer slides along
the container wall.
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5.8.2 3D Squirmer Trajectories

Full 3D squirmer trajectory plots for the P 0 parameterization are shown in Figs. 5.62,
5.60, 5.61, 5.65, 5.63, 5.64, for various types of squirmers, permeability resistances,
and a size ratio of b/a = 5. These plots provide insight into how squirmers behave
globally at all positions inside of the container. They also illustrate an interesting and
highly symmetric trajectory structure that is testament to the accuracy and precision
of the Galerkin BEM numerics. It is important to note that these trajectories show
the position of the particle relative to the container. In other words, the squirmer
positions are shown in a coordinate frame that moves with the container. The relative
position is used so that end points of a squirmer’s trajectory directly represent the
squirmers net translocation across the container.

Several general trends can be observed from these trajectory plots. A container
with weak tangential resistance tends to cause stronger radial migrations in individual
squirmers as they move upwards. Pullers (β > 0) tend to move radially inwards
relative to the z axis as they swim up in z. On the other hand, pushers (β < 0) move
radially outwards as they swim upwards in z. Neutral squirmers (β = 0) swim along
relatively straight trajectories. If the container has weak normal resistance to flow, the
squirmer trajectories show less of a tendency to move in the radial direction. However,
pullers still tend to migrate radially inwards and pusher move radially outwards.
Viewed differently, pushers tend to be attracted towards the container wall and pullers
tend move away from the container walls. This squirmer and container attraction is
purely a hydrodynamic effect.

These trajectories are slightly easier to understand and analyze if they are plotted
in the xz plane (note that the 3D trajectories have a negligible y-component owing
to the fact that component velocities U sq

y ≈ 0 and Um
y ≈ 0). To aid in this analysis,

the squirmer trajectories are sorted by the initial x and z components of the starting
position xsq

c,0. The trajectories are then sampled at several discrete values in z, starting
as close as possible to z = −b, which span the radial direction from the container wall
near −x to the container wall at +x. Only a small subset of the full mobility field’s
trajectories are shown so as to aid in clear visualization.

Squirmer trajectories for weak tangential resistance to flow and β ∈ {−5, 0, 5} are
respectively shown in Figs. 5.54, 5.55, 5.56. For this type of membrane resistance
there exists certain starting positions where a puller may become trapped and be
unable to swim away from its initial position. These sticky initial positions are near
the −z axial pole. The puller’s velocity reverses sign in this region forcing it to swim
towards the container wall. Above a certain elevation in z, all pullers finish their swim
and completely translocate to the other side of the container. Once at the container
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wall, they proceed to slide inward along the container wall and migrate towards the z
axis from both sides. There are two accumulation points for pullers when there is weak
tangential resistance to permeable flow. These accumulation points are at (0, 0,±b)
in the P 0 parameterization. On the other hand, pushers, in containers with weak
tangential resistance to flow, nearly all successfully translocate several run lengths
across the container. However, all trajectories tend to move away from the pole at
(0, 0,+b) towards two different poles that are symmetric with respect to the yz plane.
Neutral squirmers migrate towards the +z pole behaving like pullers but without
sticky initial positions.

Squirmer trajectories for weak normal resistance to flow and β ∈ {−5, 0, 5} are
respectively shown in Figs. 5.57, 5.58, 5.59. For weak normal resistance to flow, all
starting positions of pullers are now able to completely translocate the container.
All puller trajectories end up running into the container wall and accumulate at the
axial node (0, 0,+b). These trajectories move inwards towards the z-axis and proceed
upwards in z until they run into the container wall. Pushers again migrate towards
two container nodes, though this time at sharper (more acute) angles relative to the
yz plane. Pusher trajectories tend to spread in z and move away from the z-axis.
All pushers are able to translocate the container. Finally, neutral squirmers show a
relatively straight trajectory and all migrate towards the axial node at (0, 0,+b).

With the fully 3D trajectories, angular velocity, which is predominantly in the eY

direction, may be attached to the trajectory and visualized. The squirmer angular
velocity Ωsq is scaled by b|Um| using either Eqn. 5.99 or 5.100. Trajectory fields
supplemented with angular velocity data are shown in for weak tangential flow in
Figs. 5.66, 5.67, 5.68, and for weak normal resistance to flow in Figs. 5.69, 5.70,
5.71. The most important observation from these plots is that squirmers on opposite
sides of the yz plane have anti-parallel angular velocities and so rotate in opposite
directions. This anti-parallel rotation either results in a squirming orientation that
causes accumulation towards a point or depletion away from a point. This is the
fundamental mechanism that drives squirmer trajectories towards the +z pole (or
towards any other accumulation point).

5.8.3 3D Container Trajectories

Permeable container walls give rise to finite container velocities and thus finite container
motion. Full 3D container trajectories in world space are shown for weak tangential
resistance to flow and β ∈ {−5, 0, 5} in Figs. 5.72, 5.73, 5.74. Analogous plots for
weak normal resistance to flow are shown in Figs. 5.75, 5.76, 5.77. These plots
correspond to the 3D squirmer trajectories seen previously. These trajectory plots
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serve to illustrate the unique, often non monotonic motion of the container. General
trends which influence net container parallel swimming or anti-parallel swimming can
be observed by examining the net displacement of the container. Parallel swimming
or co-swimming means that the container and squirmer both end up swimming a
net-positive distance in the sense that they both move upwards in z. Anti-parallel
swimming means that the container swims a net-negative (net-positive) distance
and the squirmer swims a net-positive (net-negative) distance in the sense that the
container moves down (up) in z and the container moves up (down) in z. These
notions of co-swimming and anti-parallel swimming are to be understood only up to
the point where the squirmer’s motion stagnates at the container boundary.

For weak normal permeable flow, container trajectory plots show that pullers
induce net anti-parallel swimming of the container. Pushers on the other hand, induce
co-swimming. Even though the container trajectories are non-monotonic, the net
motion is monotonic across all cases. Neutral squirmers always induce anti-parallel
swimming of the container. Though not obvious from these trajectory plots, out of
the three types of squirmers, pullers will always translocate the container the fastest
since they enjoy the added benefit of net-negative container swimming distances.

For weak tangential flow, the situation is more complex. Pullers now induce co-
swimming of the container except for the so-called sticky squirmer positions. Certain
sticky squirmer positions that are very near the pole at −z however do result in
container co-swimming in the −z direction though some less sticky positions give rise
to net anti-parallel swimming. Pushers always induce anti-parallel swimming of the
container. Neutral squirmers always show co-swimming of the container. These results
are summarized in Table 5.1.

Squirmer Type Weak Normal Flow Weak Tangential Flow
β = +5 ↑↓ ↑↑, ↑↓, ↓↓
β = 0 ↑↓ ↑↑
β = −5 ↑↑ ↑↓

Table 5.1 Net squirmer and container swimming directions are shown for the P 0

parameterization relative to z. An up arrow, ↑ indicates net motion in +z. A down
arrow, ↓, indicates net motion in −z. The first and second arrows represent the
net directional motion of the squirmer and container respectively. Arrows are to be
understood as the overall direction of the net motion of the squirmer and container
for sufficiently long trajectories.
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5.8.4 Net and Total Distance, Fastest Squirmer Transloca-
tion

The net translocation distance that the squirmer travels relative to the container is also
an interesting quantity to study. Given a certain type of squirmer, this quantity gives
insight into which container resistance conditions allows this squirmer to translocate
most efficiently over a fixed net distance dβn. Naturally this net distance is taken
to be 2rmaxcp . The total distance traveled, dβt , relative to world space is also plotted
versus time. This quantity is nearly always equal to the net distance traveled, even
over several squirmer run times since the container velocities are much smaller than
the squirmer velocities at these b/a size ratios. However these two quantities start
to diverge as soon as the squirmer starts to repeatedly collide with the container’s
boundary. For weak tangential resistance to permeable flow, the squirmer’s net and
relative distances are shown in Figs. 5.78, 5.79, and 5.80. The cases where there is
weak normal resistance to permeable flow are shown in Figs. 5.81, 5.82, and 5.83.
Each distance plot uses the same colors as the trajectory plots.

One must be careful when comparing these plots, especially at long times. Each
trajectory shows unique spatial dynamics and is neither globally convex nor concave.
Also, at long times, not all trajectories make it to the container walls. This is
particularly evident in the case of weak tangential resistance to permeable flow
where pushers tend to stick near the negative axial pole at −z. The 3D container
trajectories show that for weak tangential resistance to permeable flow, pushers swim
net anti-parallel and pullers show net co-swimming relative to the container. However,
this understanding is not enough to make conclusions about which squirmers will
translocate most quickly.

The quantity ∆dβ1,β2
n = (dβ1

n − dβ2
n )/a compares net swimming distances between

two squirmer types. This may be computed for all combinations of weak normal and
weak tangential resistances and β ∈ {−5, 0, 5}. The quantity ∆d−5,5

n is shown in Figs.
5.84 and 5.85 for respectively weak tangential and weak normal resistances. These two
figures show a general trend where pushers, at early times, translocate over a much
larger relative distance than pullers. In the long time, pullers become more efficient
at translocating the container, in part due to the fact that pushers tend to attract
towards the container wall.

Holding the type of squirmer fixed, Fig. 5.86 shows that at early times, a pusher
swims most efficiently when there is weak tangential resistance. At long times, the
pusher swims more efficiently in a container with weak normal resistance to permeable
flow. On the other hand, Fig. 5.87 shows that pullers almost always are most efficient
when the container has weak normal resistance to permeable flow.
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5.9 Discussion and Conclusions

The dynamics of an active squirmer particle inside of a rigid container are incredibly
rich and complex. In this study we analyzed this system in great detail starting with
the simple concentric geometry case. An analytical solution of the Stokes equations
was obtained for several types of container boundary conditions. An active squirming
particle was first studied in the context of a non-porous container. The obtained
analytical solution describing the squirmers motion was compared with the solution
for the case where a forced particle moves inside of a rigid non-porous container. The
velocity of the squirmer is much less influenced by the container’s hydrodynamic effects
when compared to the velocity of a forced particle. This interesting phenomena is
attributed to the fact that the velocity field associated with a squirmer decays more
rapidly in free space ∝ 1/r2,3 than the point force free space solution ∝ 1/r, and so
squirmer will tend to move in a less hindered manner sooner than the forced particle
as b/a→∞.

Next, a new novel model was proposed for describing fluid flow across an infinitesi-
mal porous rigid container. The underlying basis of this model is Darcy’s law, but
this porous container model is more general and also allows for discontinuous jumps
in both the normal and tangential stresses. Fluid is thus allowed to pass through the
container surface with both finite normal and tangential velocity components (relative
to the container surface). In the concentric geometry, this model also admits an exact
analytical solution. This solution is parameterized by tangential (parallel) and normal
(perpendicular) resistance coefficients, which are respectively given by R∥ and R⊥.
By varying the magnitudes of these resistance coefficients various limiting cases can
be successfully recovered. In particular, the previously solved non-porous container
and squirmer case is given by the limit where R = {R∥, R⊥} → {∞,∞}. Plots of
these solutions for various values of the container to squirmer size ratio, b/a, showed
non-trivial and interesting results. In all resistance combinations, {R∥, R⊥}, there
exists a global minimum value in the squirmer’s translational velocity at a particular
size ratio (b/a)min. Roughly speaking, this is understood as the size ratio where the
squirmer is most inefficient in expelling fluid through the porous container. Velocity
flow fields with streamlines for the squirmer and porous container were generated from
the exact analytical solutions. Each flow field was seen to be heavily influenced by
the type of squirmer (described by the parameter β). Each flow field has non-trivial
and highly interesting features. Pushers, defined by β < 0 tend to draw fluid in
along the radial direction and expel it axially. They do so asymmetrically so as to
push more net flow towards the −z direction and generate net thrust in +z. Pullers,
defined by β > 0, swim by the opposite mechanism and tend to draw fluid in along
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the axial directions and expel it out radially. Again this is done axisymmetrically so
as to generate net thrust in +z. However, pushers and pullers both create voritcal
flows in the axial z-anterior and z-posterior portions of the container. This effect is
purely of hydromechanical origin. For weak resistance to tangential permeable flow,
these vortical flows were seen to extend outside of the membrane. These vortical flows
caused the container to move in the same direction as the squirmer. Conversely for
weak normal permeable resistances to flow, the container was seen to translate in the
direction opposite of the squirmer’s motion. In this case, fluid exits the container with
a predominantly normal component and the net thrust of the squirmer in +z acts to
convectively push the container in the opposite direction.

Next, a rigorous and novel boundary integral formulation was derived for the
squirmer and porous container problem. A completed double-layer boundary integral
representation was used to described the squirmer dynamics. However, it is important
to point out that no force or torque completion is necessary. Since the squirmer is by
definition, a force and torque free body, it can be perfectly represented by the Stokes
double layer potential K. The container BIE representation was expressed using a
Stokes single layer potential, G, and a surface traction discontinuity ∆f . This term
may be written using the newly proposed porous membrane model. However, a more
general description of the flow needs to be made to account for a fluid flow in a second
tangential basis direction. The porous resistances were subsequently generalized under
the identification R = {Rt, Rb, Rn} = {R∥, R∥, R⊥} with tangent, bitangent, and
normal permeable resistances given respectively by Rt, Rb, Rn. This description of the
container yields a second kind BIE equation making the overall description of the
coupled system second kind although with container force and torque free constraints.
It is likely that these constraints can be built efficiently into the container description
and still yield an integral equation of the second kind. This may be attempted in
future work.

The coupled system of boundary integral equations describing the dynamics of the
porous container and squirmer system was discretized under the Galerkin method.
While this discretization method has been well-known since the inception of the
finite element method, it is almost never applied to BEM and never to multi-body
hydrodynamics problems in Stokes flow. A detailed construction of this discretization
is described. The successful implementation of this discretization and overall solution
procedure is highly non-trivial. The squirmer porous container problem is solved under
this discretization using the authors GPUGBEM framework. Without this framework,
solution of this problem would be highly inefficient and very error prone. All boundary
element calculations are performed on CUDA enabled GPUs. Accurate calculations
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are enforced using a novel adaptive local meshing algorithm that preserves the mesh
manifold property an thus C0 continuity of all underlying unknown boundary datums.
Detailed matrix representations of all BEM operators are given and discussed in detail.
Each operator construction is novel and highly non-trivial.

After forming the overall GBEM linear system, numerical solutions are computed
for the perfectly concentric geometry. Numerical results are found to be in excellent
agreement with the exact analytical model. Numerical solutions are obtained down to
the size ratio b/a = 1.1. The squirmer’s translational velocity is seen to be bounded
below by the solution for the non-porous container. Global minimums in the squirmer’s
velocity, seen in the analytical model, are recovered in the GBEM numerics.

In order to fully characterize the squirmer’s and container’s dynamics, trajectories
are computed using a highly accurate, efficient, and fast interpolation procedure. An
important symmetry observation of the system is made, namely that the container
and squirmer always share a symmetry plane that contains both of their individual
centers of mass, and that the mobility solution is only unique up to how the squirmer
is oriented. If the fluid mechanics can be resolved in this single plane at a standard
squirming orientation, then the fluid mechanics is known in all space up to a rigid
body rotation. This allows for simulation and calculation of trajectories for arbitrary
squirmer orientations and positions and is independent of concurrent fluid mechanics
calculations. The planer grid containing all the relevant fluid mechanics information
is referred to as a mobility solution field. The mobility solution fields are constructed
in a standard reference configuration, namely the xz plane, and with a standard
squirmer orientation eZ , though these two selections are completely arbitrary. Next
mobility solution fields are used to interpolate squirmer and container trajectories
for a variety of size ratios, resistance parameters, and squirmer types. Full three
dimensional trajectories are constructed for both the squirmer and the contained.

Squirmer and container trajectories are examined in great detail. The trajectories
move in ways that could only be predicted by the numerics. Non-intuitive but smooth
motions result when the squirmer and container come in close contact. Several general
trends in the trajectories are observed, namely that weak tangential resistance causes
radial migrations relative to the z-axis. Under this type of resistance pullers move
radially inward and up towards the axial +z pole. However there are some sticky
starting positions where a puller may become trapped in the container’s hydrodynamic
grasp and possibly never be able to make it past the axial equatorial plane (defined
here by the xy plane). Conversely, pushers tend to move radially outward. For weak
normal resistance to flow, the sticky positions in the puller case disappear and all
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pullers successfully translocate across the container. Weak normal resistance to flow
has the general effect of reducing radial spread in the squirmer trajectories.

The net distance that a squirmer travels relative to the container is examined
as a function of time. This net distance is used as a metric measuring a squirmers
efficiency in exploring the fluid inside the container. With respect to this metric, it is
shown that pushers move most efficiently at short times. Pushers tend to run into the
container walls, or slow down as they cross the equatorial container plane. Pullers
then become more efficient in exploring the container. This swimming efficiency is
asymmetric in the total trajectory time, showing that pushers are more efficient over
longer portions of their trajectories.
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Fig. 5.9 In this figure, an example output of the h-adaptive meshing algorithm, based
on the nearly singular distance ration dxy ≤ 1 is shown for two spheres. Colors are
related to triangle diameters. This application of NVB to BEM results in a conformal
mesh (i.e. there are no hanging nodes or so-called T-edges).
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Fig. 5.10 The normalized z-component of the squirmer’s translational velocity, U sq
z ,

is shown versus the container to squirmer size ration b/a. Curves are shown for various
sets of permeable resistances, R = {R∥, R⊥} where R∥ > R⊥.
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Fig. 5.11 The normalized z-component of the container’s translational velocity, Um
z ,

is shown versus the container to squirmer size ration b/a. Curves are shown for various
sets of permeable resistances, R = {R∥, R⊥} where R∥ > R⊥.
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Fig. 5.12 The normalized z-component of the squirmer’s translational velocity, U sq
z ,

is shown versus the container to squirmer size ration b/a. Curves are shown for various
sets of permeable resistances, R = {R∥, R⊥} where R∥ < R⊥.
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Fig. 5.13 The normalized z-component of the container’s translational velocity, Um
z ,

is shown versus the container to squirmer size ration b/a. Curves are shown for various
sets of permeable resistances, R = {R∥, R⊥} where R∥ < R⊥.
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Fig. 5.14 The velocity field of a β = 0 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 2. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Fig. 5.15 The velocity field of a β = +5 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 2. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Fig. 5.16 The velocity field of a β = −5 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 5. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Fig. 5.17 The velocity field of a β = 0 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 5. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Fig. 5.18 The velocity field of a β = +5 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 5. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Fig. 5.19 The velocity field of a β = −5 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 10. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Fig. 5.20 The velocity field of a β = 0 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 10. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Fig. 5.21 The velocity field of a β = +5 squirmer is shown under the parameterization
R = {10, 10, 100} and for a container to particle size ratio b/a = 10. The weaker
resistance in R∥ promotes flow passing through the membrane in the tangential
direction.
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Fig. 5.22 The velocity field of a β = −5 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 2. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.

|u(x,z)|/|Usq|

1

2

3

4



Figures 137

Fig. 5.23 The velocity field of a β = 0 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 2. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.
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Fig. 5.24 The velocity field of a β = +5 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 2. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.
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Fig. 5.25 The velocity field of a β = −5 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 5. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.
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Fig. 5.26 The velocity field of a β = 0 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 5. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.
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Fig. 5.27 The velocity field of a β = +5 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 5. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.
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Fig. 5.28 The velocity field of a β = −5 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 10. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.
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Fig. 5.29 The velocity field of a β = 0 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 10. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.
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Fig. 5.30 The velocity field of a β = +5 squirmer is shown under the parameterization
R = {100, 100, 10} and for a container to particle size ratio b/a = 10. The weaker
resistance in R⊥ promotes flow passing through the membrane in the normal direction.
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Fig. 5.31 This plot shows a comparison between the analytical, Exact, and numerical,
BEM, models for the normalized squirmer’s translational velocity, U sq

z /(2/3B1), versus
the container/squirmer size ratio b/a. This comparison is made for various sets of
permeability resistances where tangential or normal flow across the container is made
to dominate (i.e. has a lower resistance). The correspondence between these resistances
is given by R = {Rt, Rb, Rn} ≡ {R∥, R∥, R⊥}. The squirmer’s translational velocity is
seen to have a minimum at a particular value of b/a. This minimum is reproduced
accurately by the Galerkin BEM model.
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Fig. 5.32 This plot shows a comparison between the analytical, Exact, and numerical,
BEM, models for the normalized squirmer’s translational velocity, U sq

z /(2/3B1), versus
the container/squirmer size ratio b/a. This comparison is made for various sets of
permeability resistances where tangential or normal flow is made to dominating (i.e.
has a lower resistance). The correspondence between these resistances is given by
R = {Rt, Rb, Rn} ≡ {R∥, R∥, R⊥}. The squirmer’s translational velocity is seen to
have a minimum at a particular value of b/a. This minimum is reproduced accurately
by the Galerkin BEM model.
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Fig. 5.33 This plot shows a comparison between the analytical, Exact, and numerical,
BEM, models for the normalized container’s translational velocity, Um

z /(2/3B1), versus
the container/squirmer size ratio b/a. This comparison is made for various sets of
permeability resistances where tangential or normal flow across the container is made
to dominate (i.e. has a lower resistance). The correspondence between these resistances
is given by R = {Rt, Rb, Rn} ≡ {R∥, R∥, R⊥}. The squirmer’s translational velocity is
seen to have a minimum at a particular value of b/a. This minimum is reproduced
accurately by the Galerkin BEM model.
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Fig. 5.34 This plot shows a comparison between the analytical, Exact, and numerical,
BEM, models for the normalized container’s translational velocity, Um

z /(2/3B1), versus
the container/squirmer size ratio b/a. This comparison is made for various sets of
permeability resistances where tangential or normal flow across the container is made
to dominate (i.e. has a lower resistance). The correspondence between these resistances
is given by R = {Rt, Rb, Rn} ≡ {R∥, R∥, R⊥}. The squirmer’s translational velocity is
seen to have a minimum at a particular value of b/a. This minimum is reproduced
accurately by the Galerkin BEM model.
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Fig. 5.35 This plot shows a comparison between the analytical, Exact, and numerical,
BEM, models for the normalized container’s translational velocity, Um

z /(2/3B1), versus
the container/squirmer size ratio b/a. This comparison is made for various sets of
permeability resistances where tangential or normal flow across the container is made
to dominate (i.e. has a lower resistance). The correspondence between these resistances
is given by R = {Rt, Rb, Rn} ≡ {R∥, R∥, R⊥}. The squirmer’s translational velocity is
seen to have a minimum at a particular value of b/a. This minimum is reproduced
accurately by the Galerkin BEM model.
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Figures 150

Fig. 5.36 In this plot all regular Cartesian (query) grid points are circled in red.
Grid points that are inside (outside) of the region defined by r < rmaxcp are shown in
green (blue). The mobility solution is solved for a squirmer placed at all green points
(289 query points and 96 mobility solves). A thick black circle shows the container
boundary at r = b. An inner red circle shows where r = b− aδ. The pink or fuchsia
colored circle shows where r = rmaxcp . The inner gray circle is sized according to r = a
giving a sense of the squirmer’s size.
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Figures 151

Fig. 5.37 In this plot all regular Cartesian (query) grid points are circled in red.
Grid points that are inside (outside) of the region defined by r < rmaxcp are shown in
green (blue). The mobility solution is solved for a squirmer placed at all green points
(3249 query points and 2040 mobility solves). A thick black circle shows the container
boundary at r = b. An inner red circle shows where r = b− aδ. The pink or fuchsia
colored circle shows where r = rmaxcp . The inner gray circle is sized according to r = a
giving a sense of the squirmer’s size.
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Figures 152

Fig. 5.38 This plot shows an up-sampled grid for b/a = 3 and κ = 3. Up-sampled
grid points are shown in orange. Original grid points are shown in green (inside the
circle mask defined by r = rmaxcp ) and blue outside the circle mask.
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Figures 153

Fig. 5.39 This plot shows an up-sampled grid for b/a = 5 and κ = 3. Up-sampled
grid points are shown in orange. Original grid points are shown in green (inside the
circle mask defined by r = rmaxcp ) and blue outside the circle mask.
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Figures 154

Fig. 5.40 This plot shows the container velocities that would result if a β = +5
squirmer were placed at various grid points inside of a container with size ratio b/a = 3
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 155

Fig. 5.41 This plot shows the squirmer velocities that would result if a β = +5
squirmer were placed at various grid points inside of a container with size ratio b/a = 3
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 156

Fig. 5.42 This plot shows the squirmer velocities that would result if a β = 0 squirmer
were placed at various grid points inside of a container with size ratio b/a = 3 and
weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink, and
gray circles give notions of regions where r = b, r = b − aδ, r = rmaxcp , and r = a
respectively.
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Figures 157

Fig. 5.43 This plot shows the squirmer velocities that would result if a β = +5
squirmer were placed at various grid points inside of a container with size ratio b/a = 3
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 158

Fig. 5.44 This plot shows the squirmer velocities that would result if a β = −5
squirmer were placed at various grid points inside of a container with size ratio b/a = 3
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 159

Fig. 5.45 This plot shows the squirmer velocities that would result if a β = 0 squirmer
were placed at various grid points inside of a container with size ratio b/a = 3 and
weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink, and
gray circles give notions of regions where r = b, r = b − aδ, r = rmaxcp , and r = a
respectively.

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

-3.0 -2.0 -1.0  0.0  1.0  2.0  3.0

z

x

Squirmer Velocity Field 
b/a = 3, {Rt, Rb, Rn} = {100, 100, 10}, β = 0

Usq

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

|U
sq

|/
|U

sq
fs

|



Figures 160

Fig. 5.46 This plot shows the squirmer velocities that would result if a β = +5
squirmer were placed at various grid points inside of a container with size ratio b/a = 5
and weak resistance in the tangential direction, Rt = Rb < Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 161

Fig. 5.47 This plot shows the squirmer velocities that would result if a β = +5
squirmer were placed at various grid points inside of a container with size ratio b/a = 5
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 162

Fig. 5.48 This plot shows the squirmer velocities that would result if a β = −5
squirmer were placed at various grid points inside of a container with size ratio b/a = 5
and weak resistance in the tangential direction, Rt = Rb < Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 163

Fig. 5.49 This plot shows the squirmer velocities that would result if a β = −5
squirmer were placed at various grid points inside of a container with size ratio b/a = 5
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 164

Fig. 5.50 This plot shows the container velocities that would result if a β = +5
squirmer were placed at various grid points inside of a container with size ratio b/a = 5
and weak resistance in the tangential direction, Rt = Rb < Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

-5.0 -4.0 -3.0 -2.0 -1.0  0.0  1.0  2.0  3.0  4.0  5.0

z

x

Container Velocity Field 
b/a = 5, {Rt, Rb, Rn} = {10, 10, 100}, β = 5

Um

 0

 1

 2

 3

 4

 5

 6

 7

|U
m

|/
(|

U
sq

fs
|(

r a
2
/R

m
in

)(
r b

-r
a
)-

3
)



Figures 165

Fig. 5.51 This plot shows the container velocities that would result if a β = +5
squirmer were placed at various grid points inside of a container with size ratio b/a = 5
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 166

Fig. 5.52 This plot shows the container velocities that would result if a β = −5
squirmer were placed at various grid points inside of a container with size ratio b/a = 5
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.
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Figures 167

Fig. 5.53 This plot shows the container velocities that would result if a β = −5
squirmer were placed at various grid points inside of a container with size ratio b/a = 5
and weak resistance in the normal direction, Rt = Rb > Rn. The black, red, pink,
and gray circles give notions of regions where r = b, r = b− aδ, r = rmaxcp , and r = a
respectively.

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

-5.0 -4.0 -3.0 -2.0 -1.0  0.0  1.0  2.0  3.0  4.0  5.0

z

x

Container Velocity Field 
b/a = 5, {Rt, Rb, Rn} = {100, 100, 10}, β = -5

Um

 0

 1

 2

 3

 4

 5

 6

 7

|U
m

|/
(|

U
sq

fs
|(

r a
2
/R

m
in

)(
r b

-r
a
)-

3
)



Figures 168

Fig. 5.54 Several squirmer trajectories are shown for β = −5 squirmers. Parameters
for this plot are given by a size ratio b/a = 5, and permeability resistances R =
{10, 10, 100}. Each squirmer is initialized with es = eZ .
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Figures 169

Fig. 5.55 Several squirmer trajectories are shown for β = 0 squirmers. Parameters
for this plot are given by a size ratio b/a = 5, and permeability resistances R =
{10, 10, 100}. Each squirmer is initialized with es = eZ .
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Figures 170

Fig. 5.56 Several squirmer trajectories are shown for β = 5 squirmers. Parameters
for this plot are given by a size ratio b/a = 5, and permeability resistances R =
{10, 10, 100}. Each squirmer is initialized with es = eZ .
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Figures 171

Fig. 5.57 Several squirmer trajectories are shown for β = −5 squirmers. Parameters
for this plot are given by a size ratio b/a = 5, and permeability resistances R =
{100, 100, 10}. Each squirmer is initialized with es = eZ .
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Figures 172

Fig. 5.58 Several squirmer trajectories are shown for β = 0 squirmers. Parameters
for this plot are given by a size ratio b/a = 5, and permeability resistances R =
{100, 100, 10}. Each squirmer is initialized with es = eZ .
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Figures 173

Fig. 5.59 Several squirmer trajectories are shown for β = 5 squirmers. Parameters
for this plot are given by a size ratio b/a = 5, and permeability resistances R =
{100, 100, 10}. Each squirmer is initialized with es = eZ .
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Figures 174

Fig. 5.60 Trajectories for β = −5 squirmers with various starting positions (defined
by a 2d grid) are shown for the case where b/a = 3, R = {10, 10, 100}. Each squirmer
is initialized with es = eZ . The squirming particles tend to migrate radially outward
(different from the β = +5 type squirmer) as they swim upward in z.
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Figures 175

Fig. 5.61 Trajectories for β = 0 neutral squirmers with various starting positions
(defined by a 2d grid) are shown for the case where b/a = 3, R = {10, 10, 100}. Each
squirmer is initialized with es = eZ . The squirming particles tend to swim along z
showing only small radial migrations as they near the container wall (different from
the β = ±5 type of squirmers).
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Figures 176

Fig. 5.62 Trajectories for β = +5 squirmers with various starting positions (defined
by a 2d grid) are shown for the case where b/a = 3, R = {10, 10, 100}. Each squirmer
is initialized with es = eZ . The squirming particles tend to migrate radially inward as
they swim upward in z.
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Figures 177

Fig. 5.63 Trajectories for β = −5 squirmers with various starting positions (defined
by a 2d grid) are shown for the case where b/a = 3, R = {100, 100, 10}. Each squirmer
is initialized with es = eZ . The squirming particles tend to migrate radially outward
(different from the β = +5 type squirmer) as they swim upward in z. This effect is
much weak than was seen for the weak tangential resistance case.
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Figures 178

Fig. 5.64 Trajectories for β = 0 neutral squirmers with various starting positions
(defined by a 2d grid) are shown for the case where b/a = 3, R = {100, 100, 10}. Each
squirmer is initialized with es = eZ . The squirming particles tend to swim along z
showing only small radial migrations as they near the container wall (different from
the β = ±5 type of squirmers).
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Figures 179

Fig. 5.65 Trajectories for β = +5 squirmers with various starting positions (defined
by a 2d grid) are shown for the case where b/a = 3, R = {100, 100, 10}. Each squirmer
is initialized with es = eZ . The squirming particles tend to migrate radially inward
as they swim upward in z. This effect is much weak than was seen for the weak
tangential resistance case.
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Figures 180

Fig. 5.66 Trajectories supplemented with a scaled squirmer angular velocity Ωsq for
β = −5 squirmers with various starting positions (defined by a 2d grid) are shown
for the case where b/a = 5, R = {10, 10, 100}. Each squirmer is initialized with
es = eZ . The angular velocity is distributed with anti-parallel direction but symmetric
magnitude across the yz lane.
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Figures 181

Fig. 5.67 Trajectories supplemented with a scaled squirmer angular velocity Ωsq for
β = 0 neutral squirmers with various starting positions (defined by a 2d grid) are
shown for the case where b/a = 5, R = {10, 10, 100}. Each squirmer is initialized
with es = eZ . The angular velocity is distributed with anti-parallel direction but
symmetric magnitude across the yz lane.
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Figures 182

Fig. 5.68 Trajectories supplemented with a scaled squirmer angular velocity Ωsq for
β = 5 squirmers with various starting positions (defined by a 2d grid) are shown for the
case where b/a = 5, R = {10, 10, 100}. Each squirmer is initialized with es = eZ . The
angular velocity is distributed with anti-parallel direction but symmetric magnitude
across the yz lane.
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Figures 183

Fig. 5.69 Trajectories supplemented with a scaled squirmer angular velocity Ωsq for
β = −5 squirmers with various starting positions (defined by a 2d grid) are shown
for the case where b/a = 5, R = {100, 100, 10}. Each squirmer is initialized with
es = eZ . The angular velocity is distributed with anti-parallel direction but symmetric
magnitude across the yz lane.
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Figures 184

Fig. 5.70 Trajectories supplemented with a scaled squirmer angular velocity Ωsq for
β = 0 neutral squirmers with various starting positions (defined by a 2d grid) are
shown for the case where b/a = 5, R = {100, 100, 10}. Each squirmer is initialized
with es = eZ . The angular velocity is distributed with anti-parallel direction but
symmetric magnitude across the yz lane.
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Figures 185

Fig. 5.71 Trajectories supplemented with a scaled squirmer angular velocity Ωsq for
β = 5 squirmers with various starting positions (defined by a 2d grid) are shown
for the case where b/a = 5, R = {100, 100, 10}. Each squirmer is initialized with
es = eZ . The angular velocity is distributed with anti-parallel direction but symmetric
magnitude across the yz lane.
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Figures 186

Fig. 5.72 Container trajectories are shown for β = −5 squirmers with various starting
positions (defined by a 2d grid). Parameters for this plot are given by a size ratio
b/a = 5, and permeability resistances R = {10, 10, 100}. Each squirmer is initialized
with es = eZ .

-0.04
-0.02

 0
 0.02

 0.04-0.02

 0

 0.02
-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

z

3D Container Trajectories
b/a = 5, {Rt, Rb, Rn} = {10, 10, 100}, β = -5

x y

z



Figures 187

Fig. 5.73 Container trajectories are shown for β = 0 neutral squirmers with various
starting positions (defined by a 2d grid). Parameters for this plot are given by a
size ratio b/a = 5, and permeability resistances R = {10, 10, 100}. Each squirmer is
initialized with es = eZ .
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Figures 188

Fig. 5.74 Container trajectories are shown for β = 5 squirmers with various starting
positions (defined by a 2d grid). Parameters for this plot are given by a size ratio
b/a = 5, and permeability resistances R = {10, 10, 100}. Each squirmer is initialized
with es = eZ .
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Figures 189

Fig. 5.75 Container trajectories are shown for β = −5 squirmers with various starting
positions (defined by a 2d grid). Parameters for this plot are given by a size ratio
b/a = 5, and permeability resistances R = {100, 100, 10}. Each squirmer is initialized
with es = eZ .
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Figures 190

Fig. 5.76 Container trajectories are shown for β = 0 neutral squirmers with various
starting positions (defined by a 2d grid). Parameters for this plot are given by a
size ratio b/a = 5, and permeability resistances R = {100, 100, 10}. Each squirmer is
initialized with es = eZ .
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Figures 191

Fig. 5.77 Container trajectories are shown for β = 5 squirmers with various starting
positions (defined by a 2d grid). Parameters for this plot are given by a size ratio
b/a = 5, and permeability resistances R = {100, 100, 10}. Each squirmer is initialized
with es = eZ .
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Figures 192

Fig. 5.78 The total and net distance that a β = −5 squirmer travels is shown for
various trajectories. Parameters for this plot are given by a size ratio b/a = 5, and
permeability resistances R = {10, 10, 100}. Each squirmer is initialized with es = eZ .
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Figures 193

Fig. 5.79 The total and net distance that a β = 0 squirmer travels is shown for
various trajectories. Parameters for this plot are given by a size ratio b/a = 5, and
permeability resistances R = {10, 10, 100}. Each squirmer is initialized with es = eZ .

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0  1  2  3  4  5  6  7  8  9  10

(N
e
t 

o
r 

T
o
ta

l 
D

is
ta

n
ce

)/
a

t/trun

Squirmer Distances (Total and Net)
b/a = 5, {Rt, Rb, Rn} = {10, 10, 100}, β = 0

Net Distance, |xc
sq - xc

c|
Total Path Distance



Figures 194

Fig. 5.80 The total and net distance that a β = 5 squirmer travels is shown for
various trajectories. Parameters for this plot are given by a size ratio b/a = 5, and
permeability resistances R = {10, 10, 100}. Each squirmer is initialized with es = eZ .
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Figures 195

Fig. 5.81 The total and net distance that a β = −5 squirmer travels is shown for
various trajectories. Parameters for this plot are given by a size ratio b/a = 5, and
permeability resistances R = {100, 100, 10}. Each squirmer is initialized with es = eZ .
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Figures 196

Fig. 5.82 The total and net distance that a β = 0 squirmer travels is shown for
various trajectories. Parameters for this plot are given by a size ratio b/a = 5, and
permeability resistances R = {100, 100, 10}. Each squirmer is initialized with es = eZ .
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Figures 197

Fig. 5.83 The total and net distance that a β = 5 squirmer travels is shown for
various trajectories. Parameters for this plot are given by a size ratio b/a = 5, and
permeability resistances R = {100, 100, 10}. Each squirmer is initialized with es = eZ .
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Figures 198

Fig. 5.84 The difference between the net distance that a pusher (β = −5) and puller
(β = +5) swim is shown as a function of time. In this case the trajectory dynamics
are shown under weak tangential resistance to permeable flow. Pushers are seen to
move relative distances greater than pullers at short times. At long times, pullers
move greater relative distances. Roughly speaking, this is due to the fact that pushers
tend to be attracted towards the container walls. Parameters for this plot are given
by a size ratio b/a = 5, and permeability resistances R = {100, 100, 10}.
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Figures 199

Fig. 5.85 The difference between the net distance that a pusher (β = −5) and puller
(β = +5) swim is shown as a function of time. In this case the trajectory dynamics
are shown under weak normal resistance to permeable flow. Pushers are seen to move
relative distances greater than pullers at short times. At long times, pullers move
greater relative distances. Roughly speaking, this is due to the fact that pushers tend
to be attracted towards the container walls. Parameters for this plot are given by a
size ratio b/a = 5, and permeability resistances R = {100, 100, 10}.
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Figures 200

Fig. 5.86 The difference between the net distance that a pusher (β = −5) swims in
the weak tangential and weak normal resistance regimes is plotted as a function of
time. Pushers are seen to favor motion in weak tangential resistance at short times
and weak normal resistance at long times. Parameters for this plot are given by a size
ratio b/a = 5, and permeability resistances R = {100, 100, 10}.
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Figures 201

Fig. 5.87 The difference between the net distance that a puller (β = +5) swims in
the weak tangential and weak normal resistance regimes is plotted as a function of
time. Pullers are seen to favor motion in weak normal resistance for almost all times.
Parameters for this plot are given by a size ratio b/a = 5, and permeability resistances
R = {100, 100, 10}.
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