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ABSTRACT

Navigation of micro air vehicles (MAVs) in unknown environments is a complex
sensing and trajectory generation task, particularly at high velocities. In this work,
we introduce an efficient sense-and-avoid pipeline that compactly represents range
measurements from multiple sensors, trajectory generation, and motion planning
in a 2.5–dimensional projective data structure called an egospace representation.
Egospace coordinates generalize depth image obstacle representations and are a
particularly convenient choice for configuration flat mobile robots, which are differ-
entially flat in their configuration variables and include a number of commonly used
MAV plant models. After characterizing egospace obstacle avoidance for robots
with trivial dynamics and establishing limits on applicability and performance, we
generalize to motion planning over full configuration flat dynamics using motion
primitives expressed directly in egospace coordinates. In comparison to approaches
based on world coordinates, egospace uses the natural sensor geometry to combine
the benefits of a multi-resolution and multi-sensor representation architecture into
a single simple and efficient layer.

We also present an experimental implementation, based on perception with stereo
vision and an egocylinder obstacle representation, that demonstrates the special-
ization of our theoretical results to particular mission scenarios. The natural pixel
parameterization of the egocylinder is used to quickly identify dynamically feasi-
ble maneuvers onto radial paths, expressed directly in egocylinder coordinates, that
enable finely detailed planning at extreme ranges within milliseconds. We have im-
plemented our obstacle avoidance pipeline with an Asctec Pelican quadcopter, and
demonstrate the efficiency of our approach experimentally with a set of challenging
field scenarios. The scalability potential of our system is discussed in terms of sen-
sor horizon, actuation, and computational limitations and the speed limits that each
imposes, and its generality to more challenging environments with multiple moving
obstacles is developed as an immediate extension to the static framework.
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C h a p t e r 1

INTRODUCTION

Due to recent advances in microcontroller technology, micro air vehicles (MAVs)
have emerged as a highly versatile platform for commercial, scientific, and recre-
ational activities, including remote observation, exploration, and reconnaissance in
areas inaccessible to humans or ground vehicles. Stabilizing digital controllers are
embedded aboard even the smallest of MAVs, which are often capable of vertical
take-off and landing (VTOL) and are generally among the easiest of aircraft to pilot
(Figure 1.1).

Figure 1.1: Micro air vehicles, colloquially known as "drones", are available in a
number of configurations. Quadcopters, such as the Asctec Hummingbird research
aircraft pictured here, are perhaps the most familiar and widely used member of the
the multirotor vehicle class. Multirotors are inherently unstable in flight without
high-frequency onboard estimation and control, but the delegation of these tasks
to digital controllers reduces the pilot workload to a motion planning problem in
position and yaw angle. The theoretical source of this reduction in workload arises
from a deep result in nonlinear control, and is also essential to MAV autonomy (see
Chapter 3).

In spite of its simplicity, the MAV-plus-pilot operation model has severe limitations
on mission complexity and scope. The poor line-of-sight visibility of small air-
craft limits manual operation of MAVs to simple missions, open environments, and
short ranges, and technical considerations frequently preclude the use of a pilot al-
together. The most high-profile research and development efforts, such as massive-
scale delivery of small parcels [1] and planetary exploration [2], [3], are extremely
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inefficient or impossible to operate manually. Navigation and motion planning for
all but the most trivial missions must allow for a high degree of autonomy that is
in turn dependent on lightweight and low-power sensing and computation. These
requirements conspire with high speeds, nonlinear dynamics, and the complexity
of unknown and unprepared operating environments to produce a challenging set-
ting for the engineering of MAV systems. Obstacle detection and representation,
trajectory generation, and motion planning must be performed in a highly compact
fashion and designed methodically using the tools of control theory and computer
vision.

Research into obstacle avoidance for autonomous aircraft has traditionally been
divided into two efforts: the first focuses on obstacle detection and attempts to
accurately and compactly represent a scene for presentation to a black-box motion
planner, while the second neglects onboard detection and state estimation in order to
provide accurate control of aggressive and complex maneuvers. When either aspect
of the obstacle avoidance problem is compromised, the ability of a system to oper-
ate in general environments becomes severely limited. Off-board state-estimation
and obstacle detection allows for efficient navigation through cluttered, but known
environments with full dynamics, but does not allow aircraft to stray from a care-
fully prepared and relatively small area of operation. Only with the separate ad-
vances made in each of these efforts have the first self-contained, independent, and
practical field obstacle avoidance systems emerged (such as [4], [5]).

1.1 Perception
Sensing regimes that have received use in other areas of robotics are often im-
practical aboard small aircraft due to weight, detection horizon, or computational
expense, and must be selected using a system-level payload-design perspective.

Obstacle sensors interact with their environment either actively, in which radiation
is broadcast to obstacles and the return signal is measured to extract depth data, or
passively, in which the interaction of exogenous radiation with obstacles — almost
always detected visually using cameras — is measured instead. Active sensors,
such as portable radar, LIDAR, or structured light, concentrate complexity in hard-
ware and within the sensor itself and have a smaller computational footprint on the
general-purpose flight stack. Depth data arrives nearly instantaneously in a single
measurement and processing stage.

This emphasis on hardware, however, increases weight and bulk on small aircraft
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that already have extreme payload limitations, and the requirement for internally
produced radiation emission limits performance at long ranges or in direct sunlight.
Laser scanners also have a limited field-of-view, which makes complete coverage
of the environment impossible for small aircraft that in practice can only support a
single unit. Single unit laser packages often require servo control mechanisms to
provide satisfactory coverage for aircraft flight, which only adds additional weight
and complexity (Figure 1.2). Modeling and error analysis of active sensors is re-
viewed in [6], with a detailed specification to laser range-finding.

Figure 1.2: A time-of-flight laser scanner calculates distance data by measuring the
time it takes an infrared laser signal to strike an obstacle and return to the scanner
in each direction. The model shown here (Hokuyo UTM-30LX, white arrow), is
light enough (370 g) for MAV applications on mid-to-large sized vehicles (Asctec
Pelican shown), with a detection range of roughly 30 m and an unobstructed field-
of-view of about 270◦ about its axis on a single plane. An additional "nodding"
servo mechanism, not provided, is required for 3D coverage. Image modified from
[7].

In contrast to the active sensing philosophy, passive visual approaches receive di-
rectional information and typically rely mathematically on the comparison of at
least two images to the resolve depth ambiguity of a single image. Visual detection
has the advantage of lightweight, low-power cameras as sensors and can readily
resolve long-range obstacles, but places the burden of the detection problem on
computation.

Monocular obstacle detection typically uses some form of optical flow, in which
two spatially and temporally separated images from a single camera are compared
in order to resolve the range ambiguity associated with directional data (see Chap-
ter 8 of [8] for an extensive review). Accordingly, obstacles can be localized only
up to a scale factor that must be determined using inertial cues or an external state
estimate. This process has the advantage of extremely simple hardware, requir-
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ing at most a single camera and an inertial measurement unit (IMU), but cannot
detect obstacles without sufficient vehicle motion. Furthermore, once moving, the
camera cannot acquire new depth data in the direction of vehicle velocity because
directional information does not change during direct approach of an obstacle — a
serious limitation for aircraft that must look where they are going. Learning-based
approaches, such as [9], offer the possibility of avoiding this issue by using implicit
visual cues to extract a depth image or a direct reactive maneuver without a need for
a second spatially separated image, but suffer from the difficulties of training and
transfer from a data set and remain an active area of research. Geometric monocular
vision also assumes an entirely static scene, and will misrepresent the distance to
moving objects without extensive filtering and inertial reasoning.

Stereo vision also compares images to extract depth data, but avoids the velocity-
based observability problems of monocular vision by using two or more fixed cam-
eras to simultaneously produce spatially separated images (see [10] for a review of
the geometry of stereo imaging and its generalizations). This comparison process,
however, limits the minimum and maximum detection ranges to those which can be
achieved with the specified camera resolution and separation baseline. For a given
resolution, cameras that are too close will be unable to distinguish independent di-
rections to a distant obstacle and fail to calculate a reliable range, and cameras that
are too far apart will be unable to capture close obstacles simultaneously in two
images. The accuracy of stereo also decays with range, which for the purposes of
accurate and efficient motion planning introduces a dependence on the geometry of
data representation that can enhance or degrade data quality independently of the
accuracy of the data itself. This connection between data quality and representation
is a major focus of this work and is explored in later sections.

Although there is as yet no "gold standard" onboard sensing approach that is ad-
vantageous in all aspects, most practical systems employ some form of either stereo
vision or LIDAR. The recent commercial development of single-purpose stereo in-
tegrated circuits and smaller laser scanners for the automotive market offers the
expectation that, respectively, the computational and size and power limitations of
these sensors will diminish in severity.

1.2 Representation
Regardless of the sensing platform, the motion planning software that eventually
must follow a perception suite operates on an internal representation that stores
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and indexes the locations of obstacles in an image. To date, MAV motion planners
(including [4], [11] and the "state-lattice" technique of [12]) have almost always
relied on the creation of a 3D “voxel” map, in which a 3D world is discretized
into a grid and occupancy (the presence or absence of an obstacle) is noted at each
point. This representation has been successfully used on a quadcopter with stereo
vision during a mapping operation, but at low speeds with negligible dynamics
[13]. Uniformly discretized voxel-based approaches are simple to index and store,
but require a transformation step in which range data is converted into Cartesian
coordinates and a 3D grid filled out accordingly (Figure 1.3).

Figure 1.3: A corridor scene (top left) is captured using a stereo camera pair on-
board a MAV, and the resulting depth data is converted to a point cloud that is used
to populate a probalistic occupancy grid (center). The probabilistic likelihood of an
obstacle being located in each cell of the uniform grid, with resolution 25 cm, is
noted and updated as points arrive and are appropriately placed in the structure. A
textured 3D map recovered from the occupancy grid is at bottom right. Image from
([13]).

Attempts to more compactly represent obstacles have typically relied on a conver-
sion to cylindrical coordinates ([14], [15]), which have an intrinsic advantage of
increased resolution at short ranges where it is most needed, and decreased reso-
lution at long ranges where it is less needed. The idea of scaling stereo vision to
high speeds by modulating resolution is taken to its limit by [16], who demonstrate
a “push broom” technique that only detects obstacles at a single disparity and uses
onboard state estimation to propagate their location with no further attempt at detec-
tion. This technique is able to achieve extremely high frame rates (120 frames per
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second), but is completely blind to obstacles that are first encountered at a distance
less than that of the detection horizon and cannot handle obstacle motion.

The JPL closed-loop rapidly exploring random tree system (JPL CL-RRT; [17])
generalizes polar representational structure as part of one of the first obstacle avoid-
ance pipelines to autonomously navigate an aircraft with full nonlinear dynamics
through cluttered, unknown environments. It is most notable for introducing a
compact obstacle representation based on the depth-image data structure acquired
natively from a set of stereo cameras (Figure 1.4), which is implemented using a
disparity (inverse depth) parameterization of visual input as a means to extend the
usefulness of stereo vision to long ranges. Although not exhibited experimentally
on the JPL CL-RRT system, [17] suggest that their depth image structure can be
used to fuse stereo data with side-looking monocular optical flow for enhanced
field of regard in cluttered environments.

Figure 1.4: The JPL-CRRT system relies on a "C-space expansion" technique that
dilates obstacles within an image for efficient collision-checking of trajectories
against disparity image data structures as acquired natively by a stereo camera pair.
Raw images (left) are captured by the stereo pair, which are then run through a
stereo matching algorithm to produce a raw depth map (middle). Obstacles are then
expanded by a characteristic vehicle radius (right), which allows the vehicle to be
abstracted to a point mass for the purposes of collision-checking by comparison—
if a projected point has a disparity equal to that of the expanded map at its pixel
coordinates, it is invalid. This approach contrasts with classical occupancy grids in
that the geometry of the image remains more-or-less unmodified and retains a radial
alignment in order to efficiently vary resolution with distance. This thesis extends
the observation that valid vehicle states can be easily identified in an image to a full
obstacle avoidance pipeline in which feasible motion plans arise naturally from an
image instead. Figure from ([17]).

JPL CL-RRT also contributes a disparity space “C–space expansion” technique,
in which difficulty of collision-checking the trajectory of a finite-sized vehicle is
bypassed by artificially increasing the size of obstacles in the same disparity co-
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ordinates used to detect and most compactly represent them. This step stands in
contrast to the usual practice of doing so in world coordinates, in which depth data
would be converted into a voxel grid and then expanded in three dimensions. Al-
though both approaches allow the vehicle to be treated as a point mass for motion
planning, JPL CL-RRT and also bypasses the need for conversion to a voxel map
for collision checking by performing all expansion calculations and intermediate
steps within the disparity representation.

Motion plans are collision-checked in JPL CL-RRT by projection into disparity
space and comparison to the disparity of obstacles in the scene. This technique
is inspired by by the “Z-buffer” procedure of computer graphics, and differs pri-
marily in its use of disparity coordinates rather than depth — if the disparity of
the projected path coincides with that of an expanded obstacle in the same pixel, a
collision results and the path is invalid. In doing so, the disparity space C-space ex-
pansion appears to provide computational savings in its compactness as an obstacle
representation for collision-checking. In spite of the representational advantages
demonstrated by JPL CL-RRT, however, compactness and efficiency claims have
not been rigorously verified and the motion planning portion of the pipeline suffers
from high planning latency and slow speeds due to a reliance on onboard numerical
integration of dynamics in world coordinates. These issues, as well as a desire to
more generally analyze motion planning using the novel representational structure
of JPL CL-RRT, provide the primary theoretical and experimental impetus for this
thesis.

1.3 Trajectory Generation, Selection and Control
Once an obstacle representation is at hand, dynamical trajectory generation for
MAVs typically assumes vehicle plant models with the differential flatness prop-
erty, which allows all vehicle states and controls to be expressed algebraically in
terms of a smaller set of "flat outputs" [18]. For a differentially flat system, any
sufficiently smooth trajectory in the flat output space can be followed up to state
and control constraints, and the difficulty of online nonlinear trajectory generation
can be largely bypassed by transformation. The class of differentially flat vehicles
includes quadcopters as well as common car and airplane abstractions, and is useful
for MAV motion planning because trajectory generation for differentially flat vehi-
cles does not require direct integration of the state equations — indeed, feasible
trajectories in the flat output space are relatively easy to find using simple linear
algebraic and simple optimization methods.
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For quadcopters, differential flatness has been used to generate real-time "minimum
snap" trajectories that penalize the fourth derivative of position to intentionally limit
control input aggression [19]. When properly posed as an optimzation problem, tra-
jectories that result from minimizing a net derivative of position between two states
have a polynomial form of fixed degree, but with undetermined coefficients and an
undetermined final time — a property used heavily later on in this work to sim-
plify motion planning. As a result, selection of a suitable minimum snap trajectory
becomes a geometric, rather than control-theoretic, problem and is essentially a
search over these undetermined parameters for a solution that will not result in a
collision. A minimum snap framework formed the basis of trajectory generation
in the quadcopter motion planning algorithm of [20], in which high-speed indoor
flight was calculated offline, within a volumetric world model, by seeding a polyno-
mial motion planner with the output of a preliminary, dynamics-free RRT* search.
A similar minimum jerk (third derivative of position) scheme was used aboard a
quadcopter in ([4], [21]) following a graph search within a fixed-resolution voxel
grid representation.

The related notion of motion primitives — short trajectory segments integrated
symbolically in advance and pieced together online — also attempts to sidestep
online integration of the state equations by abstracting available control trajectories
into a finite set of admissible behaviors. In general, these approaches also derive
their utility from a conversion of control theoretic problems into geometric prob-
lems, which further allows vehicle dynamics to embedded within a "maneuver au-
tomaton" decision-making structure in which the state equations are inaccessible to
the motion planner itself [22]. In addition to their classical use for ground vehicles
[23] and civil engineering [24], motion primitives have extensive precedent in the
standardized maneuvers that are at the core of manned aviation. Standard flatness-
based approaches, of course, also prescribe a functional form to trajectories and are
a subset of the motion primitive concept in some sense.

Regardless of its origin, the actual execution of a trajectory is typically delegated to
a low-level controller that is split into a fast inner loop that regulates vehicle attitude
and a slower outer loop that regulates vehicle position and speed (for quadcopters,
see [25]). This control architecture is well known for autonomous aircraft, and
the ability to easily extract bare-metal motor inputs from a prescribed trajectory
arises from the differential flatness property as well as the partition of the vehicle
dynamics by speed.
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1.4 Contribution
The contribution of this thesis is to combine the compactness of image-based ob-
stacle representation and perception with the efficiency of flatness and motion-
primitive-based motion planning, and analyze the resulting performance benefits
theoretically and experimentally. In Chapter 2 we discuss visual obstacle detection
and formalize the notion of an image-based representation to "egospace", which
replaces the depth image data structure with a general sensing geometry that can
accomodate a range sensor suite of arbitrary type and configuration. This definition
is followed with a full theoretical characterization of egospace, including its ability
to faithfully represent measured obstacle environments and accomodate point-mass
and spherical vehicle abstractions. The compactness advantages of egospace are
also demonstrated against uniform Cartesian grids.

In Chapter 3 we analyze motion planning within the egospace structure, relying
primarily on an extension of "configuration flat" vehicle dynamics. We character-
ize the general configuration flat motion planning problem in egospace coordinates,
after which we introduce a set of useful approximations and abstractions, with vari-
able dynamic fidelity to actual MAVs, to assess the limits of their performance and
applicability. The advantages of trajectory searches in egospace is compared against
occupancy grids for commonly-encountered obstacle avoidance scenarios.

In Chapter 4 we consider an experimental quadcopter platform, towards which this
thesis contributes motion planning and obstacle avoidance capability in egospace.
After specializing the theoretical development of the preceding chapters, we pro-
vide experimental verification of the egospace motion planning concept and its per-
formance benefits aboard a real aircraft. A scalability discussion considers the ef-
fects of horizon limitations at each step of the obstacle avoidance pipeline, and the
applicability of egospace is extended to environments with large numbers of mov-
ing obstacles.
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C h a p t e r 2

PERCEPTION AND REPRESENTATION

Portions of this chapter have been modified from [26] and [27].

In this chapter, we discuss the obstacle perception and representation process —
that is, "seeing" and "believing" in a systematic and algorithmic way. Although
perception strategies are not a research focus of this thesis, we first review the var-
ious sensing options available for MAVs as the first step of an obstacle avoidance
pipeline. We then abstract away this component to a black box and introduce the
representation problem, which determines how the vehicle makes sense of the range
data and uses it to calculate a configuration space, or "C-space", that formally cate-
gorizes the set of valid states to which the vehicle can travel. After introducing this
formalism, we discuss the apparent advantages of image-based C-space approaches
and generalize to a more formal geometric structure that we call "egospace". A
complete characterization follows, including a preliminary discussion of a natural
motion planning advantage of egospace that is explored more deeply in Chapter 3.
We also derive asymptotic compactness relations for egospace and for an equivalent
occupancy grid in a long-horizon, high-resolution field scenario.

2.1 Introduction
Perception
As discussed in Chapter 1, a fundamental aspect of mobile robotics in general is
the acquisition of information about an environment as it is traversed. If a robot
ventures into an unprepared setting, in order to avoid obstacles and reach a goal it
must typically have some way to detect their presence before it can calculate a safe
path around them.

The most primitive manner of obstacle detection is based on contact sensing, in
which robots are allowed to collide with obstacles and a "bump detector" notes their
presence or absence. The obvious advantages of detection at a longer range notwith-
standing, contact sensing is an important academic regime in ground robotics, pri-
marily as an input to insect-inspired "bug" wall-following algorithms that assume
only local information about an environment (as in [28]; see Chapter 3). Contact
sensing is taken to the limits of austerity in [29] for aerial robots, in which small
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MAVs in protective roll cages were allowed to collide with obstacles on their way
towards a destination without any attempt at detection or avoidance in advance —
the only evidence of an obstacle existing is the sudden deceleration registered by a
separate state estimation module.

Unless an aerial robot is specifically designed for contact with obstacles, however,
collision events usually result in mission failure and the potential for vehicle dam-
age or loss. Accordingly, there is a clear advantage to detecting obstacles well
before they are approached by the vehicle, with the necessary sensing horizon for
safe operation generally increasing with speed. Sensors with a non-zero detection
distance, or "range sensors", detect obstacles by measuring their interaction with
an energy source that is either onboard and actively emitting ("active sensing") or
exogenous and simply measured onboard ("passive sensing"). The source of energy
from active range sensors is typically electromagnetic, although active ultrasound
has been used on autonomous MAVs for obstacle detection [30] and altimetry [31].
Active electromagnetic sensors used on micro air vehicles include scanning LI-
DAR [4], [32] and 3D structured light [21], [33]. Scanning LIDAR, as discussed in
Chapter 1, measures the return time of a laser light signal (typically infrared) at a
specified angular interval to reconstruct the distance to a reflecting obstacle using
the constant speed of light. The units that have received use on MAVs typically have
a limited vertical field-of-view (entirely planar up to about 15◦) and require servo
mechanisms (as in [34]) to achieve complete coverage of an environment. Time-of-
flight cameras, or "flash LIDAR" have similar principles of operation, but avoid a
scan by simultaneously measuring the return time of a laser pulse at each pixel in
its sensor array and returning a dense image at each step. 3D structured light tech-
niques project a known test pattern (also infrared) onto obstacles that is distorted
by surface topography, imaged, and compared to extract a depth measurement. Al-
though not yet light enough to be employed on an MAV, portable single-beam radar
also offers promise as an onboard range sensor [35].

In addition to the size, weight, and hardware complexity issues mentioned earlier,
active sensors suffer from severe range limitations in outdoor environments. Radi-
ation emitted by active sensors must first be sourced from a small onboard power
supply, and then compete with ambient radiation to generate a return signal strong
enough to be distinguishable upon reflection. Accordingly, maximum ranges of
most units are relatively short and limit vehicle speeds. The state-of-the-art scan-
ning LIDAR in [4] is limited to a maximum useful range of approximately 40 m,



12

and the RGB-D structured light sensor in [21] is limited to about 5 meters.

The primary alternative to active detection, especially for the texture-rich outdoor
scenes in which active sensors struggle, is passive visual sensing using cameras.
In addition to requiring much simpler and lighter hardware (cameras), visual sys-
tems can detect obstacles at extreme ranges with an accuracy dependent on resolu-
tion rather than power. Vision approaches used by MAVs include structure-from-
motion depth maps [36], reactive optical flow [37], or machine learning [9] within
a monocular sensing and reactive control regime, or stereo depth matching with a
coordinated two-camera vision module (as in [17]). Monocular approaches have
the advantage of a simple single-camera sensor layout, but depth perception has
observability issues (depth and optical flow are unobservable if the vehicle is sta-
tionary or in the direction of its velocity) and learning has transfer issues that limit
generalization. With a sufficiently large baseline as afforded by vehicle motion,
however, monocular depth perception can be extended to limitless ranges.

Stereo vision avoids the observability issues of monocular vision and offers instan-
taneous dense depth maps independent of vehicle velocity, but requires an addi-
tional synchronized camera. The use of a fixed and relatively small stereo baseline
can severely limit the range of a stereo pair without a corresponding increase in im-
age resolution. At least one attempt [27] has been made to use stereo and monocu-
lar depth perception simultaneously to mutually enhance the weaknesses of each: a
forward-looking stereo pair is used to acquire depth data in the direction of vehicle
velocity, while side-looking optical flow extends the total field of regard based on
a scale estimate from overlap with the stereo region. This effort, discussed in more
detail in Chapter 4 of this thesis, suffered from computational throughput issues
that limited its usefulness and led to frequent loss of optical flow tracking and map
fusion.

For the rest of this chapter, we shift our focus away from the details of the perception
module and assume that, in spite of a motivation largely influenced by visual ap-
proaches, 3D range data is arriving in a general, dense, range-plus-direction format
unless otherwise specified. This assumption will cover all of the commonly used
sensing regimes and allow representation results to remain general and platform-
agnostic.
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Representation
The primary objective of the representation module is to conveniently organize
range data into sets of valid (safe) and invalid (unsafe) situations a robot can find
itself in for a given environment. Once a representation is available, a motion plan-
ning module is used to determine a trajectory among the set of valid situations
towards a goal specified in a higher layer of the vehicle architecture.

Formally, a robot’s disposition in its environment is defined as a configuration q in
a configuration space, or "C-space" C [38]. C-space consists of all configurations
that can be reached using actions u, drawn from an admissible action space U (q),
that induce transitions from configuration to configuration. The obstacle region is a
set O ⊂ C into which no part of the vehicle may enter, with the valid states confined
to free space Cfree = C \ O (Figure 2.1).

For a finite-sized vehicle, modeled by a set A, configuration space also takes into
account the set of valid orientations — that is, any configuration withA ∩O , ∅ is
invalid. Finite-sized vehicles are commonly abstracted to a point by the technique
of "C-space expansion", in which the vehicle is first modeled by a sphere (circle
in 2D) of radius r and the position of its center used to collision-check against ob-
stacles. Because this radius r is fixed and the spherical vehicle has no meaningful
orientation about its center, any point within a distance r of an obstacle is automat-
ically an invalid location for the center of the vehicle. The obstacle region can be
grouped along with this set into an expanded obstacle region O′, against which the
single center point alone can be checked to verify safety.

C-space representations, which are the data structures upon which motion planning
will ultimately take place, differ from each other in how O and Cfree are distin-
guished mathematically, stored, and accessed. If an environment is prepared in
advance and consists of simple shapes, such as polyhedra (polygons, in 2D), cylin-
ders (circles, in 2D), or spheres, obstacles can be represented exactly, to infinite
precision, using geometric primitives that explicitly and constructively define the
sets they occupy using inequalities. All points inside of a 2D polygon, for exam-
ple, can be described exactly using a set of linear inequality constraints that model
the intersection of closed half-planes, and the set of points on or inside a sphere of
radius R centered at (x0, y0, z0) can be defined by the single inequality constraint
(x − x0)2 + (y − y0)2 + (z − z0)2 ≤ R2.

Detailed sensed data of arbitrary obstacles, however, is almost always too complex
to model explicitly with primitives and is instead placed into a discretized structure
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Figure 2.1: A 2D point robot operates in a C-space C consisting of a roughly ellipti-
cal region of the plane. An obstacle set O, in cyan, consists of illegal configurations
within the space and restricts the position to any points contained in Cfree = C \ O,
in white. Here, a motion planner, as discussed in Chapter 3, has also found a valid
(obstacle-free) path between the start state qI and the goal state qG. Image from
[38].

according to an indexing scheme specified in advance. The classical approach to
scene representation for mobile robots is to insert range data into uniform 2D or 3D
Cartesian grid maps. Space is discretized into fixed-size cells, known as voxels in
three dimensions, that are indexed by their position in x, y, and z, and contain esti-
mated probabilities of occupation by an obstacle. Within the MAV literature (such
as [13], [4]), the voxel states are typically limited to "occupied" or "unoccupied",
with probability 1, and "unknown" otherwise.

Within a full probabilistic framework, a Bayesian update step operates on proba-
bilistic sensing and motion models to gradually build up a high-quality map that
updates the occupation confidence in each cell [6]. The map-building step is also
occasionally skipped in real time MAV operations, as in the instantaneous voxel
maps of [4], in order to keep onboard computation to a manageable level.

In addition to providing a natural setting for mapping and exploration missions in
and of themselves, Cartesian occupancy grids are also highly useful for multiple-
query planning problems in which known areas must be examined repeatedly for
new paths. Mobile robots also have state transition models that are almost always
expressed most conveniently in terms of the same (x, y, z) coordinates in which
these occupancy grids are indexed. These two properties allow essentially the entire
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body of literature on motion planning algorithms on Cartesian grids to be used
without modification, which includes a wide variety of local, global, reactive, and
deliberative approaches that can be tailored to the specific problem at hand. We
review the relationship between map coordinates and vehicle states along with the
advantages of various motion planning paradigms in Chapter 3.

In spite of their simplicity and extensive use, however, uniform Cartesian grids scale
poorly to longer sensing distances (which are required at high speeds) because their
resolution does not adapt with distance. Multiple-resolution Cartesian approaches
can mitigate the memory blow-up problem using tree [39] or hash-based structures
[40] that partition space hierarchically so that finer detail is used only where it is
essential. In maintaining different-sized blocks within the same indexing scheme,
however, multi-resolution Cartesian approaches sacrifice the simplicity of array in-
dexing and become significantly more expensive to access and update in real time.
As a result, most SLAM and obstacle avoidance applications continue to rely on
uniform grids when not performed offline. Although they are unable to perform
their octree-based SLAM algorithm aboard their quadcopter due to inadequate com-
putational resources, [41] limit its memory consumption to a bounded amount using
a rolling map that dynamically activates and inactivates live "tile" submaps for off-
board processing.

For single-query problems in which a mobile robot is simply passing through the
environment rather than attempting to explore it, mapping infrastructure on the oc-
cupancy grid itself is also largely unnecessary and presents an avoidable computa-
tional burden. Accoringly, for obstacle avoidance per se less-expensive representa-
tion and planning algorithms are possible. Often these representations are polar in
nature, matching the polar angular resolution of the depth sensors [14], [15], [42],
[43]. In [44], depth data from two onboard stereo pairs was fused in a cylindrical
inverse range map centered on a ground vehicle. This work introduced C-space
obstacle expansion of an image space depth map, though in a limited fashion based
on an assumed ground plane. In [17], the C-space expansion was generalized to be
based on the actual depth at each pixel, and included the first combination of an im-
age space depth representation with a dynamics-aware motion planner — feasible
trajectories were generated in 3D using forward integration and projected into im-
age space to do collision checking by testing for intersections with the C-space ex-
panded depth map. This approach to obstacle representation and collision checking
is fast, compact, and showed good potential in experiments, but had a limited field-
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of-view. The disparity space representation has been generalized to an "egocylin-
der" by [45], which offers a 360◦ field of regard as well as straightforward fusion
of range data from stereo and monocular sensors into a single compact structure.
[46] extended the image space representation of [17] to include a C-space expan-
sion based on the expected range uncertainty both in front of and behind a visible
surface.

The image-based representations discussed thus far capture only the instantaneous
visible obstacle surface, however, and will present spurious or dropped data from a
given frame to the motion planner without regard to its actual reliability. Although
mitigated somewhat by the C-space expansion, which tends to wash out small re-
gions of missing data, partially occluded surfaces are handled poorly and appear as
large gaps in the depth data. [5], [47] addressed these issues by equipping a dispar-
ity image and an egocylinder, respectively, with a temporal fusion module based on
a Gaussian Mixture Model (GMM) representation of the depth hypothesis at each
pixel. Measured range data, sourced from a single stereo pair in both implemen-
tations, is compared to previous data propagated forward in time using an external
pose estimate. Each hypothesis in the GMM is either reinforced or degraded by
the comparison operation, and the most likely depth is inserted into the final data
structure and presented to downstream modules. When used with an egocylinder,
the GMM propagation technique has a "memory" capability that allows previous
obstacle data to persist in areas beyond the field of view of the range sensors. As
the vehicle moves around its environment, a full representation that includes ar-
eas behind the vehicle begins to emerge in the egocylinder — a feature previously
available only to occupancy-based approaches with a map update step.

The temporal fusion step also significantly improves the quality of depth data in
the measured region of egospace, and leads to a representation that is stable enough
for direct use in motion planning. It is particularly useful for filling in flickering
image regions, removing spurious detections, and maintaining a representation of
obstacles that have drifted closer than the minimum detection distance.

2.2 Theoretical Development
For the rest of this chapter, we extend the compactness and efficiency advantages of
disparity-space obstacle representations, such as the disparity image and egocylin-
der formulations, to a more general "egospace" data structure that can accommodate
an arbitrary range sensor configuration.
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Egospace Obstacle Representation
The egospace obstacle representation is a generalization of the 2.5–dimensional
"depth map" data structure, which assigns to each pixel on an image plane a distance
into the plane called "depth".

Traditional depth maps are based on projection onto planes, however, and neces-
sarily have a limited field of view. In order to accommodate arbitrary sensing ge-
ometries with a field of view greater than 180 degrees, we define the egospace as a
parameterization of a portion of R3 by pixel coordinates (u,v), which parameterize
the set of directions (points in S2), paired with a generalized depth δ that is a smooth
and strictly monotonic function of radius from the origin. Intuitively, egospace sim-
ply describes the location of a point by a unique generalized direction and distance,
of which ordinary spherical coordinates is an immediately accessible special case.

Definition 1. The egospace coordinates of a point x = (x, y, z) in a region R ⊆ R3

are curvilinear coordinates (u,v, δ), for which the egospace map (x, y, z) = E (u,v, δ)
has a non-zero and smooth Jacobian determinant and the local unit vector eδ is par-

allel to the local radial unit vector er . An egospace representation of an obstacle

environment is any surface in egospace δ = f (u,v).

The use of a radial coordinate is responsible for the compactness advantages of
egospace (as is shown later in this chapter), but as defined it precludes, in general,
smooth and invertible egospace coordinates on all of R3. This issue arises naturally
from the geometry of range sensing and is simple to resolve in practice, but im-
practical to avoid in full generality. Difficulties always arise at the origin, which is
projected ambiguously onto itself, as well as from the well-known geometric fact
that it is impossible to parameterize S2 smoothly by the two coordinates (u,v). Al-
though these technicalities prevent a single valid egospace from covering all of R3,
they can be sidestepped either by restricting the representation to a non-singular re-
gion of interest or by patching together multiple egospace representations to cover
the entire space — for example, two or more spherical sectors can be used repre-
sent all of S2, or the poles and origin can be assigned any convenient unambiguous
coordinates. We simply exclude singularities from the definition because they can
be resolved in practice by patching, and construct the egospace representation to
be invertible to Cartesian coordinates and therefore able to represent any visible
obstacle surface in a valid region of interest.

The actual implementation of an egospace representation, which encodes the visible
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Table 2.1: Example Egospace Transformations E

Structure

Depth Imagea (u,v, Z ) x =
uZ
f

y = Z z =
vZ
f

Egocylinderb (θ,v,d) x =
cos θ

d
y =

sin θ
d

z =
v

f d
Egospherec (θ,φ, ρ) x = ρ sin φ cos θ y = ρ sin θ sin φ z = ρ cos θ

a Standard perspective projection with focal length f and depth Z
b For the standard cylindrical radius r , d = 1/r [27]
c Ordinary spherical coordinates, azimuthal angle θ and polar angle φ

surface perceived by an arbitrary configuration of range sensors, takes a form anal-
ogous to the Z-buffer of computer graphics — at each pixel, the generalized depth
of the first obstacle encountered in that direction is stored. Egospace coordinates
are defined on a continuum for the purposes of motion planning, but in all practi-
cal implementations the pixel values are discrete with a floating-point generalized
depth. If prior map information is available, as is the case when online temporal
filtering of depth data is available (as in [5]), the depth and confidence of multiple
occluded surfaces can be stored at each pixel instead. The implementation of an
egospace representation also depends on the pixel parameterization and the choice
of generalized depth (Table 2.1), with a trivial realization being ordinary spherical
coordinates (an "egosphere"). Similarly, the depth image example parameterizes a
sector of S2 using a pinhole projection to pixels coupled with ordinary image depth
Z (disparity d = 1/Z can be used instead, as in [17]), while the egocylinder imple-
mentation of [27] uses a cylindrical projection of S2 about the vehicle-carried IMU
origin with inverse radius 1/r (Figure 2.2).

The primary geometric advantage to egospace obstacle representations is that any
parameterization by pixels will have maximal spatial resolution near the origin,
where obstacles must be dealt with immediately, that decreases with distance as it
becomes less useful. In an ordinary depth image, for example, the Euclidean dis-
tance between the points (u0,v0, Z0) and (u0+1,v0, Z0) is smaller than the Euclidean
distance between the points (u0,v0,2Z0) and (u0 + 1,v0,2Z0). Although it is pos-
sible to equip a voxel map with a variable resolution that scales well with distance
and avoids excessive detail in empty space [39], [40], such structures are expen-
sive to access and have significant storage overhead because they must fundamen-
tally modify the intrinsic constant resolution (constant Jacobian) of the underlying



19

Figure 2.2: A simulated scene (left) is projected into an egospace data structure
in order to provide a full 360◦ representation of an environment. The horizontal
coordinate is discretized into uniform angular increments between 0 and 360◦. The
vertical coordinate, also discretized, is a pinhole image projection with focal length
f — as in a standard depth image. In the original egocylinder representation of
[27], the generalized depth coordinate is inverse range 1/r rather than range r .

Cartesian coordinates. Egospace, on the other hand, acheives a favorable variable
resolution in a natural pattern for range sensing with simple array indexing.

Stereo vision has been shown to be particularly well-suited to disparity space and
egocylinder representations primarily because a limited baseline and resolution also
causes sensor accuracy to decay quickly with range. The choice of generalized
depth also plays an important role in partitioning resolution to best suit a sensor
— inverse depth, for example, assigns points beyond the sensor horizon a finite
value (zero) and extends the useful range of stereo by compressing distant obstacles,
which are ranged inaccurately, into a much smaller region of egospace.

The freedom to choose any pixel parameterization also provides the system designer
with flexibility to accommodate any range sensor type or configuration, as well as
the obstacle layout expected during a mission. The egocylinder, for example, is
tailored to cluttered environments with a single dominant ground plane and limited
vertical motion. The depth image is tailored to linear scenes with a preferred direc-
tion, such as a road or corridor to be followed, or in vehicle configurations where
only a single visual range sensing unit is available and it remains coordinated with
the velocity vector of the vehicle (as on a fixed-wing aircraft with a range sensor
embedded in the nose). A more general environment with significant vertical and
horizontal motion, such as an MAV takeoff or landing amongst obstacles, would be
best treated using an egosphere to provide coverage of all possible flight paths in a
cluttered area. Egospace coordinates can be fixed to external references, such as the
local gravity vector, the normal vector of the terrain below the vehicle, or a com-
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pass direction, and can also be placed or carried arbitrarily in the world in a fixed or
moving frame. In addition to the external reference, multiple range sensors can also
be fused into egospace, with overlap, to greatly enhance the robustness of the entire
sensing suite. This property is particularly useful for monocular vision, which must
be initialized and then tracked continuously to remove a scale ambiguity and pro-
duce unambiguous depth data. In the event of a tracking failure or dropped frame,
scale can be reinitialized immediately by comparison to intact depth data in regions
of overlap with other sensors (as in [27] — see Chapter 4).

Collision-checking in egospace
Egospace also admits an efficient collision-checking approximation for finite-sized
vehicles first introduced for disparity image representations in [17]. To simplify
collision-checking and motion planning, the vehicle is modeled as a sphere with a
characteristic radius and abstracted to a point mass by expanding the apparent size
of obstacles directly in egospace. In addition to directly accomodating the finite
extent of the vehicle, the characteristic radius can be extended to account for sensor
uncertainty (as in [46]) and, in experimental settings, introduce a natural "aversion"
to obstacles that prevents close approaches.

After first expanding a point in world space to a sphere with radius equal to that
of the vehicle, the sphere is replaced by the rectangular region in egospace, at con-
stant generalized depth, that just occludes the sphere from view (Figure 2.3). By
insisting on a rectangular expansion (that is, a region in the egospace representation
bounded by lines on which either u or v are constant), the entire expansion algo-
rithm is divided into separate horizontal and vertical expansions that are performed
consecutively for speed. The performance of the algorithm can be further enhanced
with the use of a look-up table for the expansion radii. For a general obstacle con-
figuration in which every data point in a uniform structure must be evaluated and
expanded, the cost of visiting each pixel or voxel is compounded by the cost of a
depth or occupancy update of all points within the expansion radius. When per-
formed consecutively in each dimension, this cost is dependent on the precision of
the representation and scales with the width in pixels M of an egospace represen-
tation or the typically much larger size of a uniform voxel map N . Accordingly,
the egospace expansion algorithm described is O(M3) and enjoys a complexity ad-
vantage over a uniform voxel map, for which a similar expansion that visits and
expands every voxel would be at least O(N4).
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Figure 2.3: The rectangular C-space expansion in depth image coordinates, as de-
scribed by [17]. After expanding a point in the image by a characteristic vehicle
radius (circular region), the constant-depth, rectangular surface that completely oc-
cludes the expansion sphere is calculated and loaded into the expanded depth im-
age. The expansion process is divided into separate vertical (a) and horizontal (b)
operations for speed. Figure from [17]

Although rectangular expansion is highly efficient and a useful approximation in
practice — particularly for the disparity image and egocylinder formulations — it
can be difficult to process all of S2 in this manner because coordinates must be
chosen and patched carefully to avoid expanding points through singularities. Fur-
thermore, C-space expansions performed in this manner also exclude more space
than is technically required for a spherical vehicle to safely pass, and produce a
conservative estimate of the pixel region subtended by an obstacle.

Rectangular regions are also inconvenient for the egosphere in particular because
they degenerate into triangles as a pole is approached, due to convergence of merid-
ians, and eventually lose the ability to occlude the expansion sphere using separate
horizontal and vertical scans. Even if a rectangle stays away from a pole, it requires
the zonal ("east-west") 1–D expansions to be excessively conservative close to the
equator in order to maintain occlusion closer to the poles. If a degree of spherical
character is required to adequately represent an environment (that is, a representa-
tion based on the egosphere or a sector of an egosphere), a more general approach
replaces rectangles with the exact pixel region occupied by the projection of the
expansion sphere — a circular region of known radius (Algorithm 1 and Figure 2.4;
we assume that the poles have been assigned unambiguous pixel coordinates).
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Algorithm 1 Expand obstacles on an egosphere (ordinary spherical coordinates)
Input: egospace representation E, expansion radius R,

for u = 1 : M do {pixel coordinates (u,v)}
for v = 1 : N do

r ← E (E[u,v]) {acquire range to obstacle}
r′ ← r − R
σ ← arcsin(R/

√
r′2 + R2)

for i, j such that d((u,v), (i, j)) ≤ σ do {pixel distance metric d}
E[i, j]← min(r′,E[i, j])

end for
end for

end for

Figure 2.4: Expansion of obstacles for an egospace representation based on spheri-
cal coordinates. The red point in space is expanded by a characteristic vehicle radius
(blue sphere), which is then projected onto the egospace surface (black sphere).
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After the C-space expansion step and a projection, trajectories can be collision-
checked immediately by comparing their generalized depth values to those of the
acquired imagery — collisions occur whenever the coordinates of trajectories and
obstacles coincide. In particular, paths that extend radially from the vehicle can be
checked in a single operation that compares the path, which occupies a single pixel,
to the generalized depth of the scene at that pixel. For a more general discretized
trajectory, points in egospace can be compared to the depth data in a similar manner
by comparison. In this way, the simplicity of accessing egospace obstacle data
provides a significant advantage over the multi-resolution voxel approaches, which
require repeated calls of complex access schemes and limit the number of candidate
trajectories that can be practically checked during a planning cycle. This issue
is especially apparent in tree-based multi-resolution grids, which when subjected
to the above scanning example would incur the expense of a tree transversal as
opposed to a simple index scan.

2.3 Egospace compactness
Although not strictly feasible unless the vehicle comes to a complete stop, radial
and other attractive, yet infeasible paths are often used to seed fully dynamic motion
planners [4], [20], [21] in addition to being useful in their own right at low speeds
[48]–[50]. For high-speed obstacle avoidance in unknown environments, radial
paths in particular are an intuitive place to start. The arrival of new information (and
path continuity) will typically require revised plans that originate at the vehicle’s
current location, and visibility graph considerations of some sort can be highly
useful in the pursuit of expeditious progress around obstacles.

A comparison of the radial path search and identification problem between egospace
and Cartesian occupancy grids is illustrative not only of compactness and complex-
ity advantages, but also demonstrates a "natural" obstacle avoidance tendency in
egospace that prioritizes collision-free feasible paths within a trajectory search —
a tendency that is exploited in Chapter 4 to efficiently incorporate full dynamics
into the obstacle avoidance problem on an experimental aircraft. To this end, we
consider a two dimensional egospace consisting of an egocylinder restricted to a
single plane (r, θ, z = 0) along with an analogous uniform Cartesian occupancy
grid (x, y). We then use both structures to collision-check all radially-aligned paths
out to a radius R and compare performance.

For a given angular increment θ0 of the egocylinder, we first generate an "equiva-
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lent" uniform Cartesian occupancy grid by identifing the maximum size of a Carte-
sian grid cell that can acheive the same angular resolution at the distance R. As an
estimate of the cost required to collision-check all radial paths, we count the num-
ber of operations needed to access each cell within R of the vehicle and check its
occupancy (Figure 2.5). For clarity, we neglect the overhead required to maintain
a representation of each radial path for later use as well as the fact that a uniform
Cartesian grid must sacrifice precision at short ranges to achieve this minimum res-
olution at R (therefore, we are estimating a lower bound on cost).

We note that for large R and small θ0, the length of a side of a Cartesian grid cell
that subtends the angle θ0 at the distance R is approximately dx = θ0R. Comparing
the area covered by the egospace, Ae = πR2, to the area of a Cartesian grid cell,
dx2 = θ2

0 R2 gives an estimate of N = π/θ2
0 grid cells that must be collision-checked.

Letting M = 2π/θ0 be the corresponding number of egocylinder pixels that must
be scanned during the collision-checking process gives the relation

N =
M2

4π
, (2.1)

which is an increase in the square of angular resolution. Assuming that element ac-
cess requires an equal number of operations in both egospace and in the occupancy
grid, we take the actual expense of the collision-checking process to be multiples
of N and M by the same constant.

We may also consider the relative compactness of this 2D represenation scenario by
estimating the memory usage of egospace and the equivalent uniform occupancy
grid. We suppose that the egospace stores, up to the sensor horizon R, a 32-bit
floating-point depth value in each of the M pixels for a total storage of 32M bits.
The deterministic occupancy grid, on the other hand, stores an 8-bit, single-byte
addressable boolean value at each of its N cells for a total storage of 8N bits.

For the purposes of a compactness estimate, rather than a radial collision-checking
analysis, an occupancy grid indexed in discretized Cartesian coordinates and con-
taining the circle of radius R would be a square with side length 2R — otherwise,
conditions would need to be placed on the indices i and j that restrict their coverage
to the circular region and are never performed in practice. Accordingly, the size of
the occupancy grid is a slightly larger value N = (2R/dx)2 = (2/θ0)2 = M2/π2,
for a total memory consumption of 8M2/π2 bits. Using the egocylinder from the
experimental regime of ([5]; discussed in Chapter 4), there are M = 660 pixels cov-
ering each two-dimensional plane. Assuming a sensor horizon of approximately
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Figure 2.5: Egospace greatly simplifies a search for a collision-free radial path. For
a uniform 2D Cartesian grid, identifying a radial path at an angular resolution equal
to that of the alternating red and blue arcs requires collision-checking all squares
inside the circle. The same search can be done in egospace over the much smaller
set of arcs themselves. The number of squares that must be searched increases with
the the square of angular resolution, but for egospace the search size remains linear.

R = 50 m as typical for reliable stereo detection, the planar structure has a total
planar size of 2.6 kB. The resolution-matching occupancy grid has cells no larger
than dx = θ0R = 0.48 m on a side, which results in a grid with 44,000 cells and
44 kB of memory. A switch to egospace for the two dimensional scenario saves an
order of magnitude of storage and provides increased resolution at closer ranges.

In three dimensions, we consider an egosphere of radius R partitioned into M pixels
of uniform area, and match resolution at the same sensor horizon with a unform
Cartesian voxel grid made up of cubes with side length dx. For the solid angle
Ω = 4π/M , we must have dx2 = ΩR2 and, thus, dx3 = Ω3/2R3. Dividing the
volume of the sphere by the volume of a cell gives N = M3/2/(6

√
π) cells within

the sphere that need to be collision-checked to consider all radial paths, for total
size of the full cubic voxel grid equal (2R/dx)3.

Although the rate of increase of N with M is slower than in the two-dimensional
case, a full 3D egospace is typically much larger than its 2D analogue and still
demonstrates a clear practical advantage. Using the dimensions of the previous
egocylinder as a rough estimate for the size of an egosphere, we assume a sensor
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Table 2.2: Structure Size and Memory Consumption — 50 m Sensing Radius

Structure # Elements Memory Consumption
Egosphere (660 × 660) 435,600 1.7 MB
Uniform Voxel Map (Cube) 5.8 × 107 50.8 MB

horizon of R = 50 m with M = 660 ∗ 660 = 435,600 pixels for a total egospace
structure size of 1.7 MB. The corresponding occupancy grid has an approximate
cell size of dx = 0.27 m on a side, which generates a grid with 50.8 million cells
and, accordingly, 50.8 MB of storage (Table 2.2). A fairer comparison, of course,
would use a more representative resolution because cell size must be considerably
smaller to capture the detail of egospace at close ranges near the vehicle.

We can also consider the other possible occupancy grid trade-off, sacrificing res-
olution to keep memory usage manageable at long range, by considering the cell
size required to generate an occupancy grid equal in memory usage to our example
egosphere. A 1.7 MB occupancy grid over a sensor horizon of R = 50 m would
have 1.7 million cells covering a volume of 1,000,000 m3, for a cell side length of
approximately 0.84 m and a volume of 0.59 m3 — a cell volume 30 times larger
than that of the full resolution case.

The actual collision-checking process for radial paths on an occupancy grid is also
much more onerous in practice than the previous estimates suggest because a num-
ber of time- and space-consuming issues have been neglected in our analysis for
clarity. First, Cartesian grids must be populated by range sensors, which requires
a grid-filling step to proceed first. For a non-probabilistic, instantaneous uniform
grid like that of [4], this process combines an iteration over egospace with an un-
projection into Cartesian coordinates at each pixel. In contrast, the egospace itera-
tion could have immediately returned a radial path directly. Second, cells must be
searched for identifiable radial paths that can be looked up and used later, which
leads to additional indexing overhead compared to the simple iteration procedure
that we assumed — for example, the construction of an angular histogram as in the
VFH motion planning algorithm ([51]; reviewed in Chapter 3), or a large lookup
table of the cells encountered in each radial path. Cartesian cells also do not readily
line up with specfic angular regions, which must be calculated by considering the
angles subtended by problematic cells and requires more operations than a cell-by-
cell iteration.
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Summary
In this chapter, we have constructed the egospace representation, which exploits a
radially-aligned geometry to more compactly represent obstacles. We demonstrated
how the C-space expansion technique allows egospace to be efficiently collision-
checked for a spherical approximation of aircraft shape, which was made possible
by a generalization to egosphere representations with singularities at the poles. We
then provided a compactness comparison between egospace and the most widely
used alternative, uniform voxel grids, that will motivate efficient motion planning
in both a theoretical (Chapter 3) and experimental (Chapter 4) sense.
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C h a p t e r 3

CONFIGURATION FLAT MOTION PLANNING AND
TRAJECTORY GENERATION IN EGOSPACE

Portions of this chapter have been modified from [26].

In this chapter, we build on the results of Chapter 2 to characterize, through theory
and simulation, the use of egospace representations to inform motion planning with
and without vehicle dynamics. After discussing configuration flat aircraft models
and extending their traditional use in world coordinates to egospace coordinates, we
develop motion planning over configuration flat dynamics in egospace coordinates
and demonstrate basic performance guarantees.

The rest of the chapter highlights a number of useful approximations and specializa-
tions of the full configuration flatness problem and discusses their limits of validity.
We first evaluate the conditions under which vehicle dynamics are significant to
a motion planning problem at all, which depend on the operating environment as
much as they depend on the vehicle performance, and leads to an estimate of ob-
stacle sparsity relative to the dynamics. We then discuss the requirements of com-
plete motion planning, as distinguished from pure obstacle avoidance, and illustrate
the adaptation of complete world-space algorithms to egospace. We conclude by
considering the related notions of of motion primitives and configuration flat trajec-
tories, which allow online integration of state equations to be entirely avoided by
exploiting predefined problem stucture.

3.1 Introduction
Motion Planning
We consider a robot, without dynamics for the time being, operating in a C-space C
and located at an initial configuration q0 ∈ Cfree. A motion planner seeks to identify
a trajectory of valid configurations, q(t) ⊂ Cfree, such that the robot proceeds from
q(0) = q0 to a goal state q(t f ) = qg, at a potentially unspecified time t f . Each such
trajectory may also be assigned a cost J. A rich variety of motion planning algo-
rithms that can solve this problem have been developed over the past few decades of
research, and the performance of one algorithm versus another is largely dependent
on the nature of the obstacle representation and the state transition process.
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For a mobile point robot, the simplest motion planning problems are on a discrete
C-space, in which the set of valid configurations is finite or countable. A robot can
move from configuration to configuration using a state transition, to which is asso-
ciated a cost that measures its expense or desireablilty. The motion planner attempts
to to return a sequence of transitions uk and configurations qk that brings the vehi-
cle from the start to the goal, perhaps with a minimal (or maximal) cost J =

∑
Jk .

This problem generally has the structure of a graph search, for which a number of
extremely efficent algorithms have been developed (see [38] for a survey). Popular
examples include Dijkstra’s algorithm, which is guaranteed to find an optimal path
[52], or the related A∗ search [53], which attempts to speed up Djikstra’s algorithm
by considering a future cost heuristic and is optimal under mild conditions.

A motion planner is said to be complete if it will always return a path from start to
goal if a valid path exists, or return a failure in finite time if such a path does not.

On a continuous C-space, such as a point aircraft translating in R3 or a point ground
vehicle in R2, it is impossible to visit every point in the continuum and compromises
must often made according to the obstacle representation. The first distinction that
must be made is between reactive approaches, which are essentially local in nature
and return instantaneous actions, and deliberative approaches, which determine a
future trajectory over a non-zero planning horizon.

The simplest local planning algorithms are contact-based "bug algorithms" in two
dimensions (such as [28]), which attempt a direct path to the goal if possible, but
in the event of contact with an obstacle revert to a wall-following behavior until a
direct path is once again available — the criteria used to determine "availability"
distinguishes the different versions. Only a contact sensor is required to use the
basic bug algorithms, but the "tangent bug" [48] generalization also assumes that a
sensor with finite detection range is available. Although they are easily shown to
be complete in two dimensions (a consequence of the Jordan curve theorem; [54]),
bug algorithms generalize poorly to three dimensions because it is impossible to
partition R3 into two sets using a single space curve.

Potential field methods calculate a local action by analogy to electrostatics, in which
the robot is assumed to be a "charged particle" under the influence of an attractive,
opposite-charged goal and repulsive, like-charged obstacles [38]. The robot fol-
lows the negative gradient of a "potential field", as in the relation between electric
field and electric potential, calculated from the attractive and repulsive regions of
an a priori known C-space. Potential field methods produce elegant paths when
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obstacles are widely spaced and are applicable to a wide variety of explicit and
discretized representations. A naive choice of potential can produce local minima
in which a gradient-following robot would find itself stuck, however, and potential
fields are also somewhat unpredictable in general environments — oscillatory be-
havior and poor corridor identification is often observed in cluttered areas such as
doorways (as noted in the introduction of [51]). A related class of two-dimensional
methods, the vector field histogram [51] and its modifications [55], [56], address the
loss of directional information associated with compression into a potential field by
condensing the local obstacle layout, as represented by a Cartesian occupancy grid,
into an angular-indexed histogram that records the obstacle density in each direc-
tion. At each instant, the robot chooses a safe path from the available angles in the
histogram, with the more advanced methods restricting the choice to dynamically
feasible trajectories and offering completeness guarantees using higher-level looka-
head. For MAVs, the mapping operation in [13] employs VFH+ on horizontal 2D
slices of a 3D, uniform occupancy grid combined with a wall-following behavior.

Deliberative approaches, on the other hand, take into account the global structure
of the environment and produce a plan that is collision-checked in advance, for
safety, and reused over a number of data acquisition and control cycles. These
methods are mostly divided into combinatorial path planning, which assume an
explicit representation of the environment and construct exact paths, and sampling-
based path-planning, which consider only a subset of possible configurations in
C-space chosen using a probabilistic or determinsitic selection criterion.

Combinatorial methods consider the exact geometry of a region as given by explicit
geometric primitives and always offer at least a completeness guarantee, but are
often impractical for field operations and are primarily of academic interest. Most
combinatorial methods rely on the explicit construction of a roadmap of C-space,
which is a set of collision-free paths between important points in C-space onto
which a vehicle can merge in to order to proceed from an arbitrary starting state
to an arbitrary goal state. Popular roadmap generation techniques include visibility
graphs or cellular decompositions for polygonal or polyhedral obstacles, onto which
connections from the start and goal states are attempted. Once a roadmap is at hand,
a graph search determines a path from the start to the goal.

Sampling-based methods sacrifice the classical notion of completeness in order to
make progress in complex environments, and are used in most real mobile robotic
systems. Because it is impossible to evaluate every sequence of points in C-space,
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a set of configurations is chosen as a sample set to which motion planning is re-
stricted. The most straightforward way to do so is to sample in a deterministic
manner — for example, to overlay C-space with a Cartesian grid and consider only
grid points — and attempt a discrete graph search among the sampled points. Prob-
abilistic single-query searches, such as the rapidly exploring random tree [49] and
its variants (particularly, the asymptotically optimal RRT∗ algorithm of [57]) use
random sampling to build a search tree that "grows" into the space and more effi-
ciently explores for a path. Multiple-query options typically attempt to generate a
roadmap from samples, as in the probabilistic roadmap (such as the PRM algorithm
of [50] and its widely used relative Lazy PRM: [58]). Modified completeness cri-
teria, such as resolution completeness (if a path exists, it can be found in the limit
of infinite sample resolution), and probabilistic completeness (if a path exists, it
can be found with probability 1 as the number of samples grows to infinity), are
typically used for performance evaluation of sampling based methods, and are gen-
erally an acceptable compromise in the pursuit of progress for otherwise intractible
problems.

Motion planning and dynamics
We now generalize to a robot with dynamics — that is, it posesses a state vector
x(t) that includes at least the configuration variables q (for a general 3D rigid body,
q ∈ SE (3)) along with a set of internal variables (for our rigid body, this could
include derivatives of q). The state vector is contained in phase space that evolves
in time according to the dynamical state equations ẋ = f (x,u), where u ∈ Rm is
the vector of m control inputs to the state equations.

Although any consistent representation of obstacles can, in theory, serve as an input
to an optimal control problem, motion planning over dynamics is often performed
using a "seed" approach that attempts to modify a dynamics-free motion plan until
it satisfies the state equations. A popular approach for aerial robots is convexifica-
tion, in which a preliminary candidate path is found using dynamics-free methods
and used to build a set of continguous, obstacle-free convex regions in which it is
contained. The optimal control problem then proceeds as usual over the restricted
convex regions, which simplifies its domain and assists the optimization procedure.
These approaches differ primarily in how they seed the optimal control calculation
and the assumed structure of the control problem. For spacecraft, SE-SCP [59]
uses a novel sampling step to explore C-space and identify spherical obstacle-free
regions, over which minimum fuel paths calculated using a sequential convex pro-
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gram. The quadcopter motion planner of [4], [21] builds a set of ellipsioids around
the result of a graph search over the cells of a Cartesian occupancy grid, which are
then grown into convex obstacle-free regions. A minimum jerk polynomial trajec-
tory is then is calculated over the convex regions using a quadratic program on its
coefficients.

A different seeding strategy avoids the online optimal control problem altogether by
discretizing the set of vehicle actions into feasible motion primitives of a fixed form
— the maneuvers are then linked in sufficiently smooth fashion online and sim-
ply replace straight lines in most local and sampling-based methods. In particular,
smooth 3D turns for an aircraft with agility constraints were used in combination
with optimal aggressive turn-around procedures in [60] for flight in a cluttered for-
est environment. Motion primitives for a quadcopter are calculated offline and fixed
to a grid in [61], with feasible sequences determined online using a graph search.

Trajectory Generation
The trajectory generation problem is the identification of an open-loop control input
u(t) (u[k] for the discrete-time case, k ∈ Z) that will bring the system from its
current state x0 to a future state x f according to its dynamics ẋ = f (x,u) (in the
discrete case, x[k + 1] = f (x[k],u[k]). This step is the defining feature of the two
degree-of-freedom (2-DOF) control paradigm, in which the open loop input is used
in combination with a feedback loop. This structure improves control performance
and allows for tighter system operation than is possible using feedback error signals
alone.

Typically, u is determined using optimal control techniques. The Pontryagin min-
imum (or maximum) principle [62] offers necessary conditions for a trajectory to
be optimal, and in simpler cases can be used to calculate optimal inputs by ex-
plicitly solving the two-point boundary value problem (BVP) it generates. For a
typical nonlinear plant model, however, this approach has no closed form solution
and numerical methods are required.

In many practical cases, however, additional problem structure allows progress to
be made without resorting to direct numerical solution of a two-point BVP. For a
differentially flat system (as briefly mentioned in Chapter 1 and discussed in detail
below), a set of basis functions, typically polynomials, can be used to represent
trajectories in a smaller set of variables known as flat outputs. Coefficients are de-
termined by the boundary conditions and propagated through the plant model to
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determine the other states as well as the control inputs. The set of basis functions
can also reduce a trajectory optimization procedure to a problem with a much sim-
pler form — particularly, [19] assumes a polynomial form for space trajectories of
a quadcopter in R3 in order to minimize snap using a quadratic program. Although
not reliant on differential flatness, trim primitives solve the trajectory generation
problem [22] by selectively enabling constant control inputs and integrating for-
ward, possibly numerically, to produce a set of maneuvers with known input and
known output.

A trajectory generation procedure that calculates a control input out to a time hori-
zon T that is subsequently revised before it is completely executed is known as
receding horizon (for nonlinear systems, see [63]). At a replanning time t0, for
which the system state is x(t0), a receding horizon controller will calculate an op-
timal control input u∗(t) to a desired horizon state x(t0 + T ) over the time interval
[t0, t0 + T]. The optimal control input is executed until the next replanning time
(which occurs before t0 + T). The receding horizon paradigm seeks to introduce a
feedback component into trajectory generation by solving the optimization problem
over the future states at each planning step — online measurements and, potentially,
a system identification component can then be incorporated into the planning pro-
cess.

3.2 Theoretical development
Because obstacles can be represented compactly in egospace without having to con-
struct a 3D world model, it is a natural extension of the egospace data structure to
also use the same coordinates for motion planning and obstacle avoidance. The
use of visual features and coordinates to plan motion has extensive precedent in vi-
sual servoing and manipulation literature, including airborne manipulators aboard
MAVs [64]. Other image-based motion planning schemes have used optical flow for
reactive corridor-following with a quadcopter [37] as well as an image-plane rep-
resentation used to plan motion of a ground vehicle with negligible dynamics [44].
Existing visual methods for MAVs do not readily accommodate a feedforward con-
trol component that can be efficiently collision-checked in advance, however, which
is essential for accurate trajectory following and deliberative planning for MAVs at
high speeds. In this chapter, we specialize to the class of configuration flat aerial
robots and develop deliberative, feedforward motion planning in egospace using the
geometric results derived previously.
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Configuration flat aerial vehicles are well-equipped to handle real-time dynamical
obstacle avoidance using visual coordinates because their trajectories and controls
can be expressed in terms of the same configuration variables in which obstacles
are represented (see Chapter 4 of [65]).

Definition 2. A robot with state variables x, control inputs u, and state equations

ẋ = f (x,u) is called configuration flat if the configuration variables (see Chapter

2)

q = α(x,u, u̇, . . . ,u(k)),

are a smooth function α of the states and control inputs, with smooth functions β

and γ such that

x = β(q, q̇, . . . ,q( j)),

u = γ(q, q̇, . . . ,q( j)).

The configuration variables are known as flat outputs of the system, with obstacle

and configuration spaces O ⊂ C = {q} and a free space Cfree = C\O open in which

valid configuations lie.

Because their spatial obstacles can be expressed equivalently in R3 or in egospace,
trajectories and controls for a point configuration flat robot can also be expressed
equivalently in terms of egospace coordinates.

Proposition 1. A point-mass robot that is configuration flat in world coordinates is

also configuration flat in egospace wherever the egospace map is well-defined.

Proof. By definition of configuration flatness, all state variables x and controls u
can be written uniquely in terms of the configuration variables q and their deriva-
tives — in this case, a sufficiently smooth trajectory in world coordinates r(t) ∈ R3

so that
r = α(x,u, u̇, . . . ,u(k)),

x = β(r, ṙ, . . . ,r( j)),

u = γ(r, ṙ, . . . ,r( j)).

Assuming that the egospace map is sufficiently smooth, we calculate the trajec-
tory in egospace coordinates s(t) = E−1(r(t)), and after inversion and composition
exhibit the smooth flatness relations

s = E−1 ◦ α(x,u, u̇, . . . ,u(k)),
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x = β(E (s),
d
dt

[E (s)], . . . ,
d

dt j [E (s)]),

u = γ(E (s),
d
dt

[E (s)], . . . ,
d

dt j [E (s)]).

�

Configuration flat dynamics are particularly advantageous for sampling-based mo-
tion planning algorithms because only the flat outputs and their derivatives must
be specified and considered for waypoint and trajectory generation. Smooth con-
figuration flat robots also inherit the existence of time optimal trajectories between
points from differential flatness [66], which greatly restricts the number of trajec-
tories connecting two sampled points (possibly a single trajectory for certain plant
models and boundary conditions) and can accommodate the extreme maneuvers
that may be required to successfully evade obstacles. Insisting on time optimality
avoids the need to sample over the entire space of control inputs and also allows for
any feasible trajectory to be approximated by a finite sequence of segments.

Lemma 1. Any continuous feasible path in the flat outputs of a configuration flat

robot q(t) with finite duration is arbitrarily close to a sufficiently smooth and feasi-

ble sequence of finitely many locally time-optimal segments {q∗i }.

Proof. For a configuration flat robot, time-optimal trajectories exist between any
two points in the absence of obstacles and, by construction, satisfy the vehicle dy-
namics and constraints. Furthermore, any sufficiently smooth sequence of locally
time-optimal trajectories will also satisfy the dynamics and the constraints.

Let q(t) be any feasible trajectory in the flat outputs of a configuration flat robot
on the interval t ∈ [0, t f ]. Because q(t) is uniformly continuous on the closed time
interval (a consequence of the Heine-Cantor theorem), for any ε > 0, there exists
δ > 0 such that, for all s ∈ (0, t1) with t1 < t f ,

t1 < δ =⇒ ‖q(s) − q(t1)‖ <
ε

2
. (3.1)

For a configuration flat robot, there also exists a uniformly continuous time optimal
trajectory q∗1(t) between q(0) and q(t1) with duration t∗1 ≤ t1. Accordingly, there
exists δ∗ > 0 such that if t1 < δ∗ and s∗ ∈ (0, t∗1),

‖q∗1(s∗) − q(t1)‖ <
ε

2
. (3.2)
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Adding Equations 3.1 and 3.2 and applying the triangle inequality gives

t1 < min(δ, δ∗) =⇒ ‖q(s) − q∗1(s∗)‖ < ε, (3.3)

which implies that the time optimal segment and the non-optimal segment can
be made arbitrarily close by choice of t1. Similarly, a sufficiently accurate time-
optimal approximation originating at some other time ti ∈ (0, t f ) may be found by
considering the trajectory q(t − ti) and repeating the above analysis.

We now exhibit a continuous sequence of finitely many time optimal segments {q∗i },
between q(0) and q(t f ), that is at every point no further than a tolerance εq > 0
from some point on the trajectory q(t). Partition [t0 = 0, t f ] into N + 1 times
{t0, t1, t2, ..., t f }. For each i ∈ {1, ...,N } calculate a time optimal trajectory segment
q∗i , with duration t∗i , between q(ti−1) and q(ti). Refine the partition until for each i,
‖q(s) − q∗i (s∗)‖ < εq for all ti−1 < s < ti and 0 < s∗ < t∗i .

By uniform continuity, N ≤ t f
min

i
(ti − ti−1) is finite. �

Combining the flat output sample space with an insistence on optimal connections
allows for a resolution-complete and dynamically feasible motion planning algo-
rithm to be constructed from any resolution-complete algorithm that neglects dy-
namics.

Theorem 1. Suppose the flat outputs of a smooth configuration flat robot with

bounded inputs are sampled and connected according to any resolution-complete

motion planning algorithm without regard to dynamic feasibility. If a modified al-

gorithm attempts to make these connections with time-optimal trajectories q∗i and

rejects any that result in a collision, then it is also resolution-complete over the

vehicle dynamics.

Proof. The sampling and proposed connection of points is performed in a resolution-
complete fashion. In the limit of infinite resolution, every sequence of sampled
points — and, accordingly, every possible smooth sequence of time optimal trajec-
tories in the modified algorithm — is eventually evaluated, if necessary, by defini-
tion.

Let q(t) ⊂ Cfree be any feasible path from start to goal. By the preceding lemma,
we may find a smooth and feasible sequence of time optimal trajectories {q∗i }ε (t)
such that, for any ε > 0, ‖q(t) − {q∗i }ε (t)‖ < ε at each t — where we have also
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reparameterized each time optimal segment so that its duration matches that of the
feasible path segment to which it runs parallel.

Because Cfree is open, we may select ε = ε∗ sufficiently small such that {q∗i }ε∗ (t) ⊂
Cfree.

By resolution completeness, some such sequence {q∗i }ε∗ (t) is eventually considered
and returned by the modified algorithm. �

Additionally, there is never a need to leave egospace to accommodate a spatial
motion planning algorithm over configuration flat dynamics, because completeness
and soundness properties always carry over from world space.

Theorem 2. Any complete spatial motion planning algorithm is also complete in

egospace coordinates wherever the egospace map is well-defined.

Proof. A complete motion planning algorithm always returns, possibly in a reso-
lution or probabilistic limiting sense, a collision-free sequence of trajectory seg-
ments {qi (t)} between the start and goal if such a path exists. By invertibility of
the egospace map, if a motion plan exists its egospace representation {q̃i (t)} is
also collision-free, so after a composition we may return the individual segments
q̃i (t) directly and exhibit a complete motion planning algorithm in egospace coor-
dinates. �

Corollary 2.1. If the robot is also configuration flat in world coordinates then

all controls and state variables can be determined algebraically in terms of the

egospace motion plan and its derivatives.

Proof. The corollary follows directly from Proposition 1. �

The preceding two theorems suggest a natural way to proceed with motion planning
in egospace coordinates that uses both the invertibility and configuration flatness
structures. We may simply adapt standard world coordinate motion planning al-
gorithms from the literature, generating equivalent trajectory segments in egospace
instead. The first theorem also hints at an efficient way of incorporating dynamics:
the use of time optimal primitives, also expressed in egospace and linked online.
Configuration flatness allows control inputs to be extracted immediately.

To illustrate the simplicity of this approach, we now introduce a reactive obstacle
avoidance scheme under trivial dynamics (infinite agility), and sequentially modify
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the example to identify and accommodate the conditions under which full motion
planning and configuration flat dynamics must be considered.

3.3 Reactive Obstacle Avoidance
We distinguish obstacle avoidance, in which the objective is to simply avoid colli-
sions while not necessarily reaching a destination, from motion planning, in which
the objective is to always reach the destination if possible and a completeness guar-
antee is required in some sense. A lightweight and successful obstacle approach
that motivates our analysis is that of [45], in which an egocylindrical obstacle rep-
resentation was used to steer a quadcopter, assumed to have infinite agility, onto
collision-free radial paths through a forest towards a goal. In this section, we gen-
eralize this simple obstacle avoidance scheme to arbitrary egospace geometries and
establish the vehicle and obstacle regimes in which an infinite agility approximation
is valid.

Avoidance under Infinite Agility
Because egospace always has a coordinate parallel to the radial unit vector, trajec-
tories that extend radially from the origin occupy a single pixel location (u0,v0) in
egospace. An egospace trajectory is also, in general, collision-free if it nowhere
has the same pixel coordinates and depth as an obstacle, so it follows immediately
that a radial path around an obstacle can be collision-checked simply by comparing
the furthest point in the path to the depth of the egospace obstacle representation
at that pixel. Accordingly, an infinitely agile vehicle can navigate around obstacles
and maintain a time-to-contact constraint, chosen as a design parameter to ensure
a margin of safety, by simply scanning the pixels of egospace and choosing an ap-
propriate target to aim at.

The vehicle searches the egospace obstacle representation for the target pixel, clos-
est to the destination, that also satisfies the time-to-contact criterion — a low-level
controller then aligns the velocity vector with the chosen target (algorithm 2). If
the time-to-contact constraint cannot be satisfied after a scan, the vehicle repeats
the selection process with a decreased speed. It is clear that the simple avoidance
procedure presented here is collision-free in the infinite agility limit — because the
lookahead horizon decreases to zero with time-to-contact, the vehicle can always
reduce the time-to-contact search constraint until it can identify and turn onto an
acceptable path.

Although this approach is adequate for avoiding isolated obstacles that are sparse
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Algorithm 2 Infinite agility reactive obstacle avoidance
Input: egospace E, depth threshold δc, destination pixels (udest , vdest)
Output: target pixel (ut ,vt )

while true do
dmin ← ∞

for u = 1 : M do
for v = 1 : N do

if E[u,v] ≥ δc then {collision-check: assume δ(r) increases with r}
d ←

√
(u − udest )2 + (v − vdest )2

if d < dmin then
(ut ,vt ) ← (u,v)
dmin ← d

end if
end if

end for
end for
if dmin < ∞ then

return (ut ,vt ){pick closest collision-free pixel to destination}
else
δc ← δ′c {δ′c < δc}

end if
end while

relative to the vehicle dynamics, on a real system collisions become possible as
speeds increase and obstacles become denser. To determine the limits of validity
quantitatively, we evaluate the ability of a quadcopter, in constant speed, level flight,
to follow a weaving trajectory. Assuming that the roll axis is always aligned with
the velocity vector and that the only permitted acceleration is directed normal to it
(to maximize agility), we consider the simple plant model

ẋ = v cos(θ), (3.4a)

ẏ = v sin(θ), (3.4b)

θ̇ =
g

v
tan(φ), (3.4c)

φ̈ = u. (3.4d)

where v is the constant vehicle speed, θ is the heading angle, φ is the roll angle,
and g is the acceleration due to gravity. The control input and roll angle are also
subject to the saturation constraints |u| ≤ umax and |φ| ≤ φmax, which are related
to the mass, moment of inertia, and maximum thrust of the vehicle and ultimately
limit its agility.
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We consider the ability of the vehicle to track a sinusoidal trajectory in heading,
θ(t) = A sin(ωt), in which the parameters A and ω are estimates of maximum
turn severity and frequency in a particular environment. If the reference trajectory
saturates the constrained variables at the most severe point of the trajectory, we
conclude that it cannot be tracked by the vehicle without slowing down and that
the infinite agility assumption can no longer be safely made. We ignore the x and
y dynamics, which play no role in determining the agility of the vehicle, and for
clarity assume that level flight limits the vehicle roll angle to small values — in
addition to providing a conservative and simpler estimate of vehicle agility, roll
angles must remain small for the vehicle to simultaneously execute a sharp turn and
also support its own mass against gravity anyway. Accordingly, linearizing about
φ = 0 gives the linearized plant model

θ̇ =
g

v
φ, (3.5a)

φ̈ = u. (3.5b)

To identify the fastest speed for which the trajectory can still be tracked, we substi-
tute the reference trajectory and assuming that the constrained variables saturate at
the most severe point of the trajectory. This produces two distinct failure criteria in
φ and u,

v =
g

Aω
φmax, (3.6a)

v =
g

Aω3 umax, (3.6b)

which are limited by, respectively, the ability of the vehicle to provide sufficient
thrust to track the turn and its ability to roll quickly enough to bring its thrust to
bear.

Independently of whether or not the dynamics satisfy the tracking criteria, however,
collision-free obstacle avoidance does not imply that the vehicle will always reach
its destination in any environment — the vehicle can become trapped by either
entering a closed loop or reducing its own velocity to zero. In the next section we
remedy the limitations of the naive scheme and present complete egospace motion
planning over full configuration flat dynamics.

3.4 Complete Motion Planning and Full Dynamics
In obstacle environments that are two-dimensional and require no altitude changes
to reach a destination, the infinite agility procedure can easily be made complete by
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also including a wall-following behavior — as is done in the popular "bug" algo-
rithms for motion planning. This solution is not entirely satisfactory for MAVs in
general environments, however, because complete wall-following behavior is inef-
ficient on a platform with limited battery life and does not easily generalize to three
dimensions. Deliberative planning in egospace is a much simpler option, and can
accommodate popular approaches with all the same representation and collision-
checking advantages of the reactive scheme.

Infinite-agility motion planning is readily extended to the full dynamic case through
the use of motion primitives, which are trajectory segments that are precomputed ei-
ther numerically or analytically. The primitives are expressed directly in egospace
coordinates and simply replace the straight radial segments used in previous sec-
tions with trajectories that satisfy a more realistic vehicle model. Although trajec-
tory generation itself can always be performed directly in egospace coordinates,
the primitives described here are generated in the typically much simpler world co-
ordinate plant model and then projected, algebraically and in advance, using the
egospace map. The primitives are then used to connect waypoints in egospace as
part of the trajectory generation segment of any motion planning procedure, which
remains valid at higher speeds with minimal extra overhead.

After modifying the infinite-agility obstacle avoidance procedure to include a com-
pleteness guarantee, we introduce egospace motion primitives and combine the two
to provide a general approach to the MAV motion planning problem.

Completeness under Infinite Agility
As shown in an earlier section, any motion planning algorithm that is complete in
world coordinates is also complete in egospace — care must be taken, however, to
properly sample points in egospace and connect them with lines properly. Selecting
u and v coordinates separately from uniform distributions, for example, will not
generally produce a uniform distribution of pixels (u,v) in egospace, and the equa-
tion of a linear interpolation between points in egospace will be different in general
from a linear interpolation between points in Cartesian coordinates.

Once an appropriate sampling or point selection procedure is chosen, however, mo-
tion planning can proceed under the slight modifications suggested by Theorem 1.
For a sampling-based algorithm, the correct choice of a distribution in egospace
immediately satisfies completeness and follows an identical procedure as in world
coordinates — albeit with the more efficient collision-checking scheme by com-
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Figure 3.1: A Lazy PRM motion planner implemented entirely in depth-image co-
ordinates (top) for an MAV with negligible dynamics in a simulated forest envi-
ronment. In this depth image, pixels with cooler colors (blue trees, foreground)
are closer than pixels with warmer colors (green, yellow, and orange trees with red
background at sensor horizon). An equivalent point cloud and world-space repre-
sentation is also shown (bottom, viewed from above). Points are sampled, selected
and connected entirely in the egospace coordinates, for which the projected pixel
coordinates of the motion plan are shown. White segments are obscured by ob-
stacles, but pass safely behind them by a predetermined safety margin. The motion
plan is calculated for a particular view and followed until updated imagery becomes
available.
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parison as mentioned in the introduction. For a simulated obstacle data set with
no apriori known global structure, we exhibit an egospace implementation of the
Lazy PRM algorithm [58] generated using this approach (Figure 3.1) with an as-
sumed safety margin for trajectory segments that pass into unknown areas behind
obstacles.

Motion Primitives, Configuration Flatness, and Full Generality
Motion primitives for planning with aerial robots were introduced in [22] as "trim
primitives" inspired by aircraft maneuvers in which one or more inputs are held
at a constant value for a period of time. We continue to leverage precomputation
by employing trim primitives integrated in advance and converted into egospace
coordinates for immediate collision-checking. For the most frequently used MAV
models, the trim primitives can be readily integrated forward in closed form when
inputs are constant. For both this reason and the typically increased complexity
of plant models in egospace coordinates, we develop the set of trim primitives ex-
plicitly in terms of the initial vehicle state, the constant input value, and the final
vehicle state and then convert into egospace coordinates to produce a set to be used
online for motion planning. This strategy also allows for the simultaneous use of
primitives in world coordinates elsewhere to simplify low-level vehicle control —
state estimation, hardware inputs, and mission-level objectives are all measured or
expressed most conveniently in terms of world coordinates and can immediately
use the set of world primitives without a pass through the projection function, while
obstacle avoidance and motion planning can use egospace primitives that are more
convenient to collision-check.

As a simple example, we exhibit the set of egospace trim primitives for a simpli-
fied quadcopter model, based on a Dubins car, that remains torsion-free but can
be constrained to any plane in R3 rather than just the x–y plane. In addition to
being much simpler than the Dubins airplane generalization of [67], this "Dubins
helicopter” abstraction is more appropriate for the multicopter platforms that have
come to dominate research in MAV autonomy — unlike the Dubins airplane, which
must maintain a predetermined groundspeed and can only climb using helical ma-
neuvers, the Dubins helicopter model allows for purely vertical ascents as well as
a flexible groundspeed that can equal zero without disrupting trajectory generation.
Dubins helicopter trajectories are defined by a starting point r0 with an initial ve-
locity vector v0 and a relative destination x f vector that together determine a unit
normal vector n = (v0 × x f )/‖v0 × x f ‖ to the plane in which the trajectories lie.
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Figure 3.2: An egospace Lazy PRM algorithm adapted to Dubins helicopter dynam-
ics by replacing straight-line segments in egospace with the equivalent projected 3D
torsion-free Dubins paths (top), with the equivalent point cloud and feasible path in
world space (bottom).
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Using the planar assumption and the Rodrigues rotation formula gives the simple
Dubins helicopter plant model

ẋ = vx0 cos(θ) + (bx) sin(θ), (3.7a)

ẏ = vy0 cos(θ) + (by) sin(θ), (3.7b)

ż = vz0 cos(θ) + (bz) sin(θ), (3.7c)

θ̇ = uθ , (3.7d)

where (vx0,vy0,vz0) are the constant components of the initial velocity vector v0,
(bx ,by,bz) are the constant components of the vector b = n × v0, and |uθ | is limited
to a maximum value κ. In addition to having available all the analytic advantages
of the regular Dubins car, the Dubins helicopter plant model also always has θ = 0
at t = 0 to match the specified initial velocity. Setting the control input u either off

and equal to zero or, on at a constant value, and integrating produces two distinct
classes of trim primitives: straight-line trajectories, which include straight and level
flight as well as pure climbs and descents, and circular turns that are either level or
include a climbing component (at its most extreme, a full vertical loop) depending
on n. It also follows immediately from the Pontryagin minimum principle that if
the control inputs are allowed to saturate, any time-optimal path between two points
in space must be made up of a combination of these two primitives. The primitives
are integrated from the constant control inputs with a general initial vehicle state
and projected into egospace (Tables I and II) to replace the straight line trajectory
segments proposed in the previous section.

Table 3.1: Dubins helicopter trim primitives in Cartesian (x, y, z) coordinates.

(x, y, z)

Straight Line

(uθ ≡ 0)

x(t) = x0 + vx0t

y(t) = y0 + vy0t

z(t) = z0 + vz0t

Circular Turn

(uθ ≡ ±κ)

x(t) = x0 +
vx0 sin(κt) ± bx (1 − cos(κt))

κ

y(t) = y0 +
vy0 sin(κt) ± by (1 − cos(κt))

κ

z(t) = z0 +
vz0 sin(κt) ± bz (1 − cos(κt))

κ



46

Table 3.2: Dubins helicopter trim primitives in depth image (u,v, Z ) coordinates.

(u,v, Z )

Straight Line

(uθ ≡ 0)

u(t) = f
x0 + vx0t
y0 + vy0t

v(t) = f
z0 + vz0t
y0 + vy0t

Z (t) = y0 + vy0t

Circular Turn

(uθ ≡ ±κ)

u(t) = f
κx0 + vx0 sin(κt) ± bx (1 − cos(κt))
κy0 + vy0 sin(κt) ± by (1 − cos(κt))

v(t) = f
κz0 + vz0 sin(κt) ± bz (1 − cos(κt))
κy0 + vy0 sin(κt) ± by (1 − cos(κt))

Z (t) = y0 +
vy0 sin(κt) ± by (1 − cos(κt))

κ

The primitives are linked to form trajectories by enforcing smooth transitions, which
determine the initial state of each primitive, and solving for durations. Instead of
attempting to connect points with straight lines as in a kinematic motion planning
algorithm, dynamically feasible paths can be generated from primitives and are
used to explore the space. If this is done according to conditions of Theorems 1
and 2 (that is, the primitives allow for control saturation), this substitution allows
for resolution-complete motion planning that simultaneously satisfies the vehicle’s
dynamics and control constraints. In Figure 3.2, we adapt the lazy egospace PRM
of the previous section to use Dubins helicopter paths, which can be found alge-
braically in advance in terms of the destination in egospace as well as the initial
vehicle state and simply concatenated smoothly online. The egospace represen-
tation of the motion primitives can also be substituted into the reactive algorithm
described above if high-speed obstacle avoidance, rather than a complete motion
planning algorithm, is adequate for the needs of a mission.

Configuration Flat Trajectory Segments
The motion primitive concept is closely related to standard flatness-based trajectory
generation in that control inputs are immediately available for the planned trajec-
tory in C-space. We now specialize to a configuration flat plant and follow the
method of [68], in which space curves of a vehicle are restricted to a polynomial
of sufficiently high degree that can be smoothly linked — thus replacing the trim
primitives described above. Given an initial configuration q(0) = q0, final time
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t f , and final configuration q(t f ) = q f , we may find a polynomial trajectory of de-
gree n by enforcing the initial and final states and solving a linear system for the
coefficients. Assuming a one-dimensional particle with specified position and ve-
locity at the start and end of a maneuver, for example, we construct the polynomial
q(t) = a3t3 + a2t2 + a1t + a0 and specify its values at the endpoints:

q(0) = q0 q̇(0) = u0,

q(t f ) = q f q̇(t f ) = u f .

Immediately we have a0 = q0 and a1 = u0, and substitute q(t) into the remaining
conditions to obtain a 2 × 2 linear system for a2 and a3:



q f − u0t f − q0

u f − u0


 =




t3
f t2

f

3t2
f 2t f





a3

a2


 .

For non-zero t f , we obtain the closed form solution

a2 =
3(q f − q0) − t f (2u0 + u f )

t2
f

,

a3 =
2(q0 − q f ) + t f (u0 + u f )

t f 3 .

Indeed, for a polynomial of finite degree n, we can determine all coefficients in
advance in a similar manner. This property is used in Chapter 4 to extract feasi-
ble trajectories with minimal computation performed onboard. We then proceed
exactly as in the Dubins helicopter example, but instead of using the time-optimal
primitives, use the expression for each coefficent and find a suitable polynomial at
each linkage step.

When used to construct space curves (x(t), y(t), z(t)) with a specified final time,
polynomials of particular degree are also readily shown to minimize net derivatives
of position between fully determined endpoints.

Proposition 2. Let t ∈ [0, t f ], t f > 0, and M,N, k ∈ N0 such that M + N = 2k. The

space curve q(t) in R3 that minimizes the integral

J =

∫ t f

0

1
2

dkq(t)
dtk

T dkq(t)
dtk dt,

subject to the boundary conditions

dmq(t)
dtm

�����t=0
= q(m)

0 , 0 < m < M, q(m)
0 ∈ R3, (3.10a)
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dnq(t)
dtn

�����t=t f

= q(n)
f , 0 < n < N, q(n)

0 ∈ R3, (3.10b)

is a polynomial of degree 2k − 1.

Proof. Let L = 1
2

dkq(t)
dtk

T dkq(t)
dtk . Using a generalization of the Euler-Lagrange equa-

tions to higher derivatives [69]:

dk

dtk

(
∂L

∂q(k)

)
=

dk

dtk

(
q(k)

)
= q(2k) = 0,

which can be repeatedly integrated using the boundary conditions (3.10) to generate
a polynomial solution of degree 2k − 1. �

Accordingly, the degree-three example not only provides a feasible path from start
to finish, but also minimizes net acceleration through the single tunable parameter
t f that determines the value of the optimization objective J from Proposition 2.

Summary
In this chapter, we have characterized the nature of motion planning in egospace us-
ing configuration-flat dynamics and constructed examples of its use. We established
that literature motion planning algorithms, which are typically run in (x, y, z) coor-
dinates, extend readily to egospace and can be used together with configuration-flat
dynamics. We provided a number of useful approximations to the full motion plan-
ning problem, which were evaluated for applicability for use in later experimental
implementations (see Chapter 4).
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C h a p t e r 4

EXPERIMENTAL IMPLEMENTATION AND RESULTS

Portions of this chapter have been modified from [27] and [5].

In this chapter we introduce a quadcopter experimental testbed and evaluate the per-
formance of two approaches to the egospace obstacle avoidance problem. The first
evaluates the safety of reactive velocity selection under the infinite agility approxi-
mation of Chapter 3, using an egocylinder with a fusion of forward-looking stereo
data and side-looking optical flow. The second approach generalizes to deliberative
planning on full dynamics, and replaces the reactive turning controller of the first
approach with receding horizon, feasible trajectories that can be collision-checked
in advance. Depth data from a stereo pair is reinforced using GMM temporal fusion
and propagated away from the sensor field of view to provide complete coverage of
several complex and challenging environments.

4.1 Introduction: Quadcopters
The term "drone" has no precise technical meaning and is rarely used in the engi-
neering literature. Within a colloquial context, however, the unqualified term refers
most often to the class of multirotor vehicles, particularly the four rotor quadcopter

(also, quadrotor) configuration. Quadcopters have come to dominate the consumer
model aircraft sector due to their simplicity, inexpensiveness, and ease of use.

Quadcopters and multirotors are also an ideal testbed for research in aerial robotics.
Their small size, ability to hover in place, and vertical takeoff and landing (VTOL)
qualities allow for easy and safe operation within indoor and outdoor laboratory
setting, especially when interaction with the environment (including grasping tasks,
as in [64], and ball juggling, as in [70]) and flight near obstacles [71] is expected. On
a deeper engineering level, these capabilities also instill the platform with a natural
aptitude for high-level autonomy, including single- and multiple-agent construction
tasks [72], complex formation flight [73], and mapping operations [13].

Principles of Operation
Here, we focus on the quadcopter platform, following loosely the system character-
ization of [25]. More general multirotors are based on the same physical principles,
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but with a more complex actuator mapping due to either the redundancy of having
more than four rotors or the additional actuation mechanism required to fly with
three.

Quadcopters move through space using four electric motors, arranged in an "X",
that each spin a propeller (or rotor) on rotation axes parallel to the body z axis
(Figure 4.1). We assume for simplicity that the arms of the X are oriented at ninety
degrees to each other and aligned with the axes of the vehicle body frame. The
rotors are modelled by identical and constant vertical force coefficients kF such
that the vertical force (thrust) contribution Fi from the ith rotor is given by

Fi = kFω
2
i , (4.1)

where ωi is the angular velocity of rotor i. The drag on rotor i also generates a
reaction moment about its rotation axis

Mi = kMω
2
i . (4.2)

The thrust and moment coefficients kF and kM are found empircally through system
identification. The assumption that kF and kM are constant also tacitly assumes a
constant air density ρ, which is acceptable for the small altitude changes of a typical
quadcopter operation but can be relaxed by using the lift and drag coefficients kL

and kD instead (as in the aerodynamics of helicopter main rotors; see [74]). For a
relevant surface area S and rotor radius R,

kF = ρR2SkL, (4.3a)

kM = ρR3SkD . (4.3b)

The motors spin up the propellers to speed according to the linear model

ω̇i = km(ωdes
i − ωi), (4.4)

where ωdes
i is a desired feedforward motor speed and km is an empirical motor

gain. For a typical quadcopter, however, the motor response is much faster than the
dynamics of the vehicle and we can instead safely assume ωi = ωdes

i at all times.

The four motors rotors together produce a collective thrust

ucollective =

4∑
i=1

Fi (4.5)
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Figure 4.1: The four motors of a quadcopter have axes of rotation aligned with the
body z axis — here, denoted b3 — with the x (b1) and y (b2) axes aligned with the
arms of the vehicle. The world coordinate axes (ai) follow the east north up (ENU)
flat earth convention. Image from [25].

that supports the weight of the vehicle against gravity and provides translational
acceleration, and a net moment about the vehicle center of mass aligned with the
rotation axes

Mcom =

4∑
i=1

(−1)(i+1) Mi . (4.6)

Here, we have assumed that motors 1 and 3 are opposite from one other and spin
clockwise (thus inducing a positive, counterclockwise reaction torque about the
vehicle z axis) and motors 2 and 4 spin counterclockwise in order to cancel out the
reaction moments and prevent the vehicle from spinning about the z axis during a
hover.

The lifting surfaces of the rotors are usually cambered and have some degree of
spanwise twist, and are manufactured in distinct "right-handed" and "left-handed"
versions that are not interchangeable between motor spin directions. As a result,
reverse thrust is unavailable on off-the-shelf platforms — a research exception is
the fixed-speed, variable-pitch quadcopter of [75], which can actuate the rotors to a
negative angle-of-attack configuration and maintain a stable inverted hover.

The quadcopter maneuvers by separately selecting ωi to vector the collective thrust
and change its magnitude (Figure 4.2). Assuming that a balanced vehicle starts in
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Figure 4.2: A quadcopter modulates the speeds of four spinning rotors to change
its position in space. By increasing or decreasing the speed of the motors at once
(left), the quadcopter changes the magnitude of its collective thrust and can ascend
and descend. The collective thrust can be vectored by pitched by pitching or rolling
the vehicle (center), which is accomplished by increasing the speed of one motor
and decreasing the speed of its opposite. The vehicle can yaw about its center of
mass (right) by increasing the speed of the clockwise or counterclockwise motors
while decreasing the speed of the opposite motors.

a hover with equal motor speeds ω, a simultaneous and equal increase or decrease
in ωi will cause ucollective to increase or decrease without a change in its direction
of application. Pure rolling and pitching moments are generated by maintaining a
constant collective thrust but increasing the speed of one motor while decreasing
the speed of the opposite motor — for two opposite motors placed at a radius r

from the vehicle center of mass, this command produces a net torque ∆Tr for the
prescribed thrust differential ∆T . Pure yawing moments are generated, while again
maintaining a constant collective thrust, by increasing the speed of the clockwise or
counterclockwise motors and decreasing the speeds of their counterparts. If motors
1 and 3 (and thus, 2 and 4 by elimination) had not been opposite from each other,
this procedure would also have produced rolling and pitching moments. It is also
clear that a pure yawing moment will not result in translation of the vehicle because
it changes neither the magnitude nor the direction of the collective thrust. This
ability to yaw the vehicle separately from the x, y, z dynamics causes the yaw angle
ψ to be a flat output of the system.

Attitude Dynamics
A fully general derivation of the dynamics of a quadcopter on SO(3) is given in
[25], which neglects motor dynamics but includes the capability for aerobatic flight
at extreme orientations. For the purposes of outdoor unprepared obstacle avoidance,
however, these maneuvers are largely beyond the capability of the current state-of-
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the-art in onboard visual state estimation. A simpler linear attitude mode is derived
in [76], used in [17] as the basis of a numerical trajectory generator, and described
as linear approximation to the full geometric controller in [25]. The linear model
has been used extensively, is the default autopilot mode for the off-the-shelf exper-
imental aircraft described later in this chapter, and provides adequate performance
for outdoor obstacle avoidance missions.

We represent the attitude of the vehicle — that is, the transformation of a body frame
vector vB into a world frame vector vW = RW

B vB — using sequential Z-X-Y Euler
angles (where we have modified the rotation sequence and body axis convention in
[76] to match that of [25]). A particular orientation can be described, beginning
with aligned body and world frames, with a rotation first by a yaw angle ψ about
the body z axis, then a roll angle φ about the (now different) intermediate body x

axis, followed by a pitch angle θ about the (once again different) intermediate body
y axis. In our coordinate system, which is common in the MAV literature but differs
from the standard aeronautics convention, thrust is directed in the positive z body
direction and position and orientation are referenced against an inertial, flat earth,
east north up (ENU) world frame.

We also assume that the roll and pitch angles are small, which is acceptable for
level, non-aerobatic flight. In this limit the Euler angles commute, are orthogo-
nal, and can be modeled as a set of independent, linear, second-order equations of
motion:

ψ̈ = uyaw, (4.7a)

θ̈ = upitch, (4.7b)

φ̈ = uroll. (4.7c)

Here, uyaw, upitch, and uroll are prescribed angular accelerations that align with the
principal axes of inertia and can be related to the thrust and moment differentials,
using a diagonal inertia tensor, as discussed above.

We note that all of the experimental results that follow can be just as well imple-
mented with either the linear attitude model or the fully general geometric model,
and proceed with the linear model for clarity and ease of implementation. The con-
trollers differ only in their tracking performance and are essentially equivalent for
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the purposes of general motion planning — both the model discussed here and the
more complex geometric one in [25] are differentially flat in position and yaw angle,
and up to constraints have the same smoothness criteria for trajectory following.

Position Dynamics and Differential Flatness
To derive the position dynamics of the quadcopter, we rotate (0,0,ucollective/m)T into
the world frame using the conventions of the previous section and add the effect of
gravity:

ẍ = (sin θ cosψ + cos θ sin φ sinψ)
ucollective

m
, (4.8a)

ÿ = (sin θ sinψ − cos θ sin φ cosψ)
ucollective

m
, (4.8b)

z̈ = −g + (cos φ cos θ)
ucollective

m
. (4.8c)

Here, m is the mass of the vehicle, g is the acceleration due to gravity, and the Euler
angles evolve according to the plant model given in Equations 4.7. Given a trajec-
tory (x(t), y(t), z(t),ψ(t)) and its derivatives, we can use the combined state equa-
tions to algebraically extract the required roll and pitch angle trajectories φ(t), θ(t)
as well all the control inputs: ucollective, uyaw, uroll, upitch.

Proposition 3. The plant model given by Equations 4.7 and 4.8 is differentially flat

in (x, y, z,ψ)

Proof. We prove flatness by explict construction of expressions for φ(t), θ(t), ucollective(t),
uyaw(t), upitch(t), and uroll(t) in terms of x(t), y(t), z(t), and ψ(t) and their deriva-
tives.

Immediately, uyaw = ψ̈ and ucollective =
√

ẍ2 + ÿ2 + ( z̈ + g)2. Because reverse thrust
is unavailable on our quadcopter and a freefalling vehicle lacks control authority in
x and y, we select the positive square root and take ucollective > 0.

We then rotate ẍ and ÿ into the yawed frame (that is, the intermediate body frame
after the first Euler angle rotation) and solve for pitch and roll. This rotation opera-
tion gives the pitch relation

sin θ =
m

ucollective
( ẍ cosψ + ÿ sinψ), (4.9)

and the roll relation

sin φ = −
m

ucollective cos θ
(− ẍ sinψ + ÿ cosψ), (4.10)
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where we have taken cos θ > 0 to avoid a gimbal lock condition.

The control inputs uroll and upitch follow from 4.9 and 4.10 after differentiating
twice. �

We note that the independence of vehicle translation from the yaw angle trajectory
arises from the calculation of roll and pitch angles in terms of rotated frame ac-
celerations: ẍ′ = ẍ cosψ + ÿ sinψ and ÿ′ = − ẍ sinψ + ÿ cosψ. Accordingly, we
may set the desired yaw angle to any convenient value and extract roll and pitch an-
gles that will produce an invariant world frame acceleration. This property allows a
point abstraction of the quadcopter to be treated as a configuration flat vehicle in the
C-space variables x, y, z, leaving the yaw angle trajectory (which has a trivial con-
figuration space) to high-level considerations. Possible options include a fixed yaw
angle, which is mathematically the most convenient, or a "coordinated" yaw angle
that keeps the rotors aligned with the planar Frenet-Serret frame, which is more use-
ful for obstacle avoidance and control. The latter choice allows a forward-looking
range sensor to be aligned with the velocity vector and provides better tracking
performance by allowing the full rolling torque contribution of a motor pair to be
directed into a turn.

We also observe that expressions for uroll and upitch involve the fourth derivatives
of position — pitch and roll depend on ẍ and ÿ explicitly and z̈ through ucollective,
and are differentiated twice to determine their corresponding feedforward inputs.
Accordingly, feasible trajectories must be at least four times differentiable, not nec-
essarily continuously, to be tracked exactly by the attitude controller. In practice,
however, the position dynamics of the quadcopter are much slower than the attitude
dynamics, and trajectory tracking can be split into a slow position controller and
a fast attitude controller with somewhat relaxed smoothness criteria. The position
controller uses the flatness relations to request attitude and thrust values, which are
then maintained by the attitude controller at a rate at least an order of magnitude
faster.

4.2 Reactive Motion Planning using an Egocylinder: Infinite Agility Approx-
imation

In this section, we experimentally demonstrate the reactive, infinite agility egospace
planner discussed in the previous chapter, and assess its performance using an in-
tervention metric.
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System Architecture
Figure 4.3 illustrates the sensing, processing, and algorithm architecture of our ap-
proach, as implemented on an AscTec Pelican quadcopter (Figure 4.7). The archi-
tecture is divided between two onboard embedded computers and a closed-source
autopilot from AscTec — state estimation, motion planning, and position/velocity
control are performed on an ARM-based Odroid U3 [77], visual obstacle detection
and representation are performed on an Intel-based Asctec Mastermind [78], and
low-level linearized motor control is performed on a proprietary Asctec autopilot
[79]. With the exception of high-level triggering of the obstacle avoidance pipeline,
which is relayed to the vehicle over a 5 GHz WiFi connection, all sensing and
computing is performed aboard the vehicle and navigation from the start to goal is
accomplished without human input of any kind.

The various modules of the pipeline are written in C/C++ and coordinated us-
ing the Robot Operating System [80]. The vision and motion planning modules
are linked over a local Ethernet network between the Mastermind and the Odroid,
which serves as a master computer within the ROS framework. After a motion
plan is extracted, a control node calculates an instantaneous desired acceleration
command, which is in turn converted to a proprietary serial packet format using an
Asctec control ROS wrapper and sent to the autopilot over a serial UART link.

Figure 4.3: System architecture.
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To minimize the sensor hardware while still acheiving a large field of regard, we
augment a forward-looking stereo pair with monocular cameras aimed 45◦ to each
side for approximately 180◦ of coverage. The shutter of each camera is triggered
to fire simultaneously with that of the left stereo camera, which serves as a master.
Stereo depth data is extracted using local block matching for speed, which produces
dense disparity maps in our test environments. The obstacle detection sensing suite
is linked to the Mastermind using USB, which provides camera control, receives
the raw image data, and performs all vision and representation processing.

To obtain depth perception with the side-looking cameras, we examined several
two-frame optical flow algorithms, as well as the LSD-SLAM incremental SfM
algorithm [81]. LSD-SLAM constrains optical flow search to epipolar lines com-
puted from estimated camera motion, and incrementally improves depth resolution
by using each new image to update depth estimates in keyframes. After evaluating
several alternatives, LSD-SLAM proved to be much less noisy than unconstrained
optical flow algorithms and was selected for inclusion in the sensing suite. Because
monocular SfM has an unobservable scale factor (as discussed in Chapter 1), we
estimate scale by comparing SfM range measurements with range from stereo in
the image overlap areas between the outer SfM cameras and the stereo cameras.

To provide a unified depth representation, we project and fuse the stereo and scaled
SfM depth maps onto a cylinder (the "egocylinder") centered on the aircraft IMU,
fixed to the body frame, and aligned with the body z axis (as in the configuration of
Chapter 4). The vertical pixel coordinate retains the projective character of a stan-
dard depth map with focal length f , while the horizontal pixel coordinate is based
on a uniform discretization of the interval [0,2π) to admit a representation with a
full 360◦ field of regard. We use inverse range (1/r — the "radial disparity") as
a generalized depth coordinate, rather than range itself, because it assigns a finite
value (zero) to objects beyond the maximum range of the sensors, and discretized
inverse range matches the uncertainty characteristics of vision-based depth estima-
tion. The egocylinder is implemented internally as an array data structure in which
the nearest object in the direction of the pixel is recorded (Figure 4.4).

Once the raw depth data is projected onto the cylinder, a C-space expansion is
performed on the egocylinder using a rectangular method similar to that of [17]
and discussed in Chapter 2. This step essentially reduces the range at each pixel,
and widens objects in the depth map by a characteristic radius of the aircraft plus a
safety margin. A precomputed look-up table of expansion radii, in pixels, is used
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Figure 4.4: Schematic illustration of stereo and SfM depth maps fusion into the ego-
cylinder representation, and C-space expansion of the egocylinder. Using inverse
range, the expansion widens closer objects more than farther objects.

to keep onboard computation during the expansion to a minumum. The expanded
egocylinder then allows the aircraft to be treated as a point for collision checking,
and is sent to an obstacle avoidance module running on the Odroid U3. Images are
processed at 384 × 240 pixel resolution, with stereo running at 5 fps, LSD-SLAM
at 10 fps, and the egocylinder updated at the stereo frame rate of 5 fps.

For the rest of this section, we evaluate the innovations in the perception and repre-
sentation system with a simple, fast avoidance algorithm that is safe if there are no
major perceptual errors. At the obstacle densities and velocities considered here,
we employ a reduced dynamical model in which the vehicle can turn with infinite
agility but requires a finite distance to come to a stop. Accordingly, we restrict the
set of possible vehicle trajectories at any instant to the set of straight lines extending
radially from the vehicle — that is, the radial paths discussed at the end of Chapter
2 and related to the infinite agility approximation of Chapter 3.

Collision-free radial paths are extracted from the egocylinder by first transforming
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a desired vehicle cruise speed into an inverse range safety horizon. In order to
always maintain collision-free operation, the vehicle must look far enough ahead
that it could still safely come to a stop if an obstacle were detected in the proposed
flight path direction during the subsequent planning cycle. For the current velocity,
this safety horizon is determined by the time required to stop t (V )

stop, the time until
new range data appears tplan (for our implementation, equal to the 0.2 s egocylinder
update time), and a small margin of error dt — these time values are estimated,
added, and used to estimate the lookahead distance R (and its equivalent inverse
range value dlook = 1/R). For a vehicle cruise speed V ,

dlook =
1

V (t (V )
stop + tplan + dt)

. (4.11)

Paths are selected by comparing the lookahead horizon dlook to each pixel of the
egocylinder. After first checking the direction to the goal in order to avoid a search
if possible, the planning horizon is checked against the pixels of the egocylinder
to cull flight directions that violate the safety horizon constraint and would result
in an unacceptably short time-to-contact with an obstacle. Altitude restrictions are
implemented by directly restricting the pixel search region, in egospace, to prevent
the vehicle from selecting an excessively high or low target target. Of the remaining
pixels, all of which are collision-free, the motion planner returns the one that is
closest to the goal direction for presentation to the control module (Figure 4.5).

Figure 4.5: Motion planning schematic and simulation. Left: selected flight di-
rection to avoid obstacle. Right: simulated flights through cluttered environments
without dead-ends were successful up to speeds over 15 m/s (top view).

To maximize safety and visibility of the scene ahead, a low-level controller executes
the command by yawing the cameras towards the requested direction while separate
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PID loops extract acceleration commands that maintain forward velocity and elim-
inate side slip around the turn. The acceleration commands are converted to a set
of Euler angles and a collective thrust using differential flatness, which are sent to
the Asctec autopilot over the serial link and in turn converted to motor commands
using its proprietary firmware.

We have also implemented a simple temporal filtering feature over the extracted
motion plan that provides robustness against noisy or missing depth data. Once a
point on the planning horizon is chosen, it is propagated forward with the motion
of vehicle for a few cycles and assigned a priority lower than the goal direction but
higher than that of the egospace pixel scan — that is, the motion planner considers
the destination, the reused motion plan, and the output of a scan in that order and
exits the search once a collision-free path is found. In addition to reducing latency
by allowing the planning pipeline to be bypassed most of the time, target filtering
tends to smooth trajectories in complex environments where the target would oth-
erwise change frequently and prevents dropped frames or other gaps in visual input
from disrupting the planning process. This entire planning approach is very fast,
safe, and allows us to focus on evaluating perception at the cost of sacrificing algo-
rithmic completeness and strict satisfaction of the full vehicle dynamics. Planning
takes under a millisecond to verify that the current direction is still safe, and a few
milliseconds if it is necessary to search for a new direction — therefore, it occurs
at the egocylinder update rate of 5Hz. The approach is generalized later in this
chapter to a more sophisticated image-space motion planning algorithm that can
accommodate vehicle dynamics.

Visual-inertial state estimation is performed using a nadir-pointed camera using
methods from [82]. Operating outdoors in areas with bright sunlight and deep
shadow is particularly difficult, because it creates very large intra-scene (within the
same image) and inter-scene (between successive images) illumination variations
that greatly exceed the linear dynamic range of available cameras. This has been
especially problematic in the experiments we have conducted in a grove of trees
using the nadir-pointed camera.

The most straightforward way to address these issues is to improve dynamic range
at the sensor level. Some approaches acquire multiple images separated in time and
combine these in software, which is impractical for our low-altitude flight enve-
lope. Another approach uses hardware design within the imager to provide a “multi-
linear” exposure mode that approximates a logarithmic image response. This mode
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is implemented in hardware within the onboard Matrix Vision mvBlueFOX-200w
CMOS cameras and can extend the total dynamic range from 55 dB to 110 dB.
These cameras have three linear segments in their photometric response function,
where the slope and transition point of the second and third segments is controlled
by a two sets of knee point parameters. Creating a good exposure for given scene
conditions requires choosing the total exposure time and setting appropriate knee
point parameters.

Figure 4.6: Non-HDR (left) and HDR (right) images in a forest scene. Large areas
are saturated or under-exposed in the non-HDR image. The HDR image has a
better distribution of intensity values, which leads to better performance of vision
algorithms.

We have taken a first step toward exploiting this multi-linear HDR mode using a
camera initialization procedure which is run once at the start of an experiment (Fig-
ure 4.6). First, we acquire a series of images while adjusting exposure time via
gradient descent to push the average intensity of the image stream towards a target
intensity in the middle of the pixel brightness range. Next, we fix the total exposure
time while seeking the parameters of each knee point that maximize image entropy.
In an iterative process, each knee point is set sequentially to maximize local entropy
using a standard coordinate descent optimization. This does not simultaneously op-
timize the setting of both knee points, but it avoids extra parameters and has shown
to improve feature tracking performance. Once the exposure parameters are initial-
ized, they are fixed for the duration of the flight, which has been adequate in our test
conditions to date. Ideally, exposure should be optimized on every frame; however,
our current optimization procedure is too slow for that and large changes of expo-
sure have potential to require changes to feature tracking algorithms to maintain
landmark tracking across exposure discontinuities.
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Results
We have conducted low-speed (< 1m/s) experimental trials in a grove of trees that
provided a relatively high obstacle frequency (Figure 4.7). Flights totaled over 500
meters in aggregate length, during which 65 trees were encountered. This area had
very difficult illumination conditions due to the combination of brightly sunlit and
deeply shadowed areas in the same image. Figure 4.8 shows results of the vision
pipeline at several points during such a run, as well as a 2D map generated offline
from logged data.

Figure 4.7: Top: grove of trees test area. Bottom: AscTec Pelican with 4-camera ob-
stacle detection unit and downward-looking state estimation camera (orange box).

The saturated and underexposed areas of the images in Figure 4.6 illustrate the
dynamic range problem with these illumination conditions. While the C-space ex-
pansion effectively fills in many areas that have missing data in depth maps from
stereo and SfM, this forest environment was particularly challenging for the visual-
inertial state estimation system. Therefore, we focused HDR experiments on the
state estimation camera, where use of the HDR mode improved the average per-
centage of map landmarks that could be matched in each frame from 61% to 79%.
Nevertheless, the floor of the forest had many very small, self-similar features, and
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Figure 4.8: Results of a 20m experimental flight through a grove of trees. Top: the
results of the perception system for three different locations on the run, showing the
left rectified stereo image, the fused egocylinder, and the C-space expanded ego-
cylinder with selected direction of flight (red crosses). This only shows the central
180◦ of the egocylinder. Bottom: a top down 2D plot of the trajectory and nearby
obstacle pixels from the egocylinder over the whole run. Arrows and numbers on
the trajectory show where the three images above were acquired. Vehicle speed was
1m/s throughout.

doing state estimation with a nadir-pointed camera while flying low (< 2 m above
the ground) in this environment still made state estimation by far the weakest link
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in the system. Because state estimation is beyond the scope of this thesis, for the
rest of this section we have not included state estimation failures within our perfor-
mance evaluation.

The detection and evasion portions of the architecture were very reliable in the
performance evaluation experiments, which were analyzed quantitatively by noting
the frequency and cause of any human intervention required to avoid a collision.
These modules were responsible for only a single intervention event during the 521
meters recorded, which resulted in successful avoidance of 64 out of 65 trees for an
success rate of 98%. The intervention was attributed to a missed detection in which
the vehicle had drifted to within the minimum detection distance of our stereo unit.
Because of the large baseline of the stereo pair, the obstacle had a disparity beyond
the limited search range of the block matching algorithm and registered as empty
space — the motion planner interpreted this region as a valid direction of flight and
selected a path directly into the obstacle. A pilot intervention was then required
to avoid a collision. This error mode, which is inevitable for any stereo pair at
some minimum distance, is discussed and addressed later in this chapter using a
temporal fusion module, which maintains a representation of obstacles even as they
drift closer than the minimum detection distance.

LSD-SLAM failed to adequately track features about 25% of the time, after which
it would drop out and become unavailable to the egocylinder fusion step until its re-
covery a few frames later. With data logging, the LSD-SLAM frame rate dropped to
about 8 Hz, which is too slow for the algorithm to generate reliable depth data. Al-
though this limitation prevented the side-looking data from being of much use for
path planning, it did not severely impact overall obstacle avoidance performance
because the control policy of first turning the stereo cameras towards the flight di-
rection and incorporating a small amount of path hysteresis provided a high degree
of robustness to missed left or right camera LSD-SLAM depth maps. The presence
of an overlapping stereo region, however, allowed scale estimates to be immediately
propagated over to the monocular data, which was seamlessly reacquired beginning
on the next frame.

Main Experimental Insights
Using C-space expansion of image space depth maps for collision checking and
motion planning is a very new approach to obstacle avoidance for MAVs. In our
experiments to date, obstacle avoidance has been quite successful — in 521 meters
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of flight in challenging conditions, only one obstacle detection or avoidance inter-
vention was needed in 65 encounters with obstacles, and no problems with false
alarms in freespace were apparent. This is significant, since the approach so far
does not include explicit temporal fusion for false alarm suppression or filling in
missing data, unlike approaches based on voxel maps. Nevertheless, work is in
progress to add temporal fusion to image space representations to address the finite
probability that these problems will eventually occur.

LSD-SLAM was successful as a source of side-looking depth data, but it required a
high frame rate (> 10Hz) and accurate calibration of camera extrinsics to maintain
its usefulness for obstacle detection, both of which were problematic in this imple-
mentation. Side-looking stereo cameras might be easier to use, but would lack the
potential of exploiting increasing motion baselines to improve depth resolution that
exists with recursive approaches to structure from motion. Ultimately, combining
both may be a good approach, as is explored in a recent stereo extension of LSD-
SLAM [83]. Although our current level of computational resources prevented our
approach from reaping the full benefits of a combined monocular and stereo sen-
sor suite, the egocylinder showed promise as an underlying environment for depth
data fusion. In particular, the robustness of monocular sensing was significantly
enhanced by the propagation of scale information from the stereo regions, and al-
lowed for immediate recovery of range data. The possibility of a higher monocular
framerate on future embedded computing systems offers the potential for a much
more reliable and effective perception and representation system.

By far the biggest performance problem in this system, however, is with visual state
estimation. Using a nadir pointed camera while flying low (< 2 m above ground) in
a scene with a very high dynamic range of illumination and many small, self-similar
features (leaves) on the forest floor seems to be at the heart of the problem. We plan
to address this in several ways in ongoing work, including visual odometry meth-
ods with direct components (such as SVO: [84]) and tightly-coupled approaches in
which image features are directly incorporated into a vehicle state vector (such as
MSCKF: [85]).

The disparity-space reactive planner was able to extend the advantages of the C-
space expansion method and egocylinder to the planning regime — potential tra-
jectories are selected and executed in a highly economical fashion by employing the
same framework that allows the egocylinder to represent obstacles compactly and
efficiently. Overall, this choice of representation demonstrates decreased planning
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latency and complexity compared to world-coordinate methods.

There is a close connection between vehicle velocity, uncertainty in the range data,
and successful obstacle avoidance. This has not emerged as an issue for the slow
speeds of our experiments so far, but for reliable obstacle detection to scale to high
speeds, this interplay will require further study. Several approaches may improve
the maximum range and range resolution of the system to support higher velocities,
including the use of higher resolution imagery and potentially the use of temporal
fusion of depth maps for improved range resolution. Scenes involving moving ob-
stacles will require extensions of both the perception and the planning elements of
this system.

4.3 Dynamically Feasible Obstacle Avoidance
Egospace obstacle representations have been demonstrated to simplify reactive ob-
stacle avoidance because their underlying geometry reduces any radially-aligned
path to a single pixel — these pixels can be, in turn, evaluated and selected against
depth data using a lightweight pixel scan. Egospace also admits full configuration
flat dynamics, of which the quadcopter and commonly-used car and airplane mod-
els are examples, and allow all control inputs and vehicle states to be determined
uniquely in terms of the trajectories as they appear, in egospace coordinates, in
relation to obstacles.

In this section, we extend reactive egospace trajectory selection for micro air ve-
hicles with negligible dynamics (as in [27], as well as the previous section of this
chapter) to incorporate full configuration flat dynamics. We present experimen-
tal verification on a quadcopter platform in a priori unknown environments, using
stereo obstacle detection, temporal filtering of depth data, and an egocylindrical
obstacle and motion planning representation.

Related Work
Traditional approaches for MAV motion planning rely on flatness-based trajectory
generation (as in [86]) over a three-dimensional voxel model of the environment.
[21] populates an instantaneous, uniform resolution occupancy representation of an
unstructured environment, after which a minimum-jerk trajectory is identified using
a convex segmentation seeded with the result of an A∗ search over the voxel indicies
themselves. A layered short-range and long range planner then calculates a dynam-
ically feasible path to the goal. A modified version [4] of the same motion planning
framework employs a more efficient graph search algorithm. For a known indoor
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environment, [20] achieves high-speed flight within a volumetric world model by
seeding a polynomial motion planner with the output of a preliminary, dynamics-
free RRT* search. Although essentially any standard motion-planning method can
be used within a voxel representation, uniform grids scale poorly in size in large
outdoor environments, and complex access schemes are required to distribute reso-
lution in a more favorable way (as in [39]).

Egospace representations, on the other hand, can encode collision-free radial paths
using a single pixel and offer an efficient trajectory search space for dynamics-free,
reactive motion planning in unstructured environments [27]. [17] uses a disparity
image representation to efficiently collision-check the segments of a closed loop
RRT (CL-RRT) motion planner after a projection, but perform trajectory selection
and generation in world coordinates using forward integration of a nonlinear plant
model at severe computational expense. Although reactive methods in egospace
[27] are extremely lightweight, they scale poorly to high speeds because full trajec-
tories are neither known nor collision-checked in advance, and the reactive plans
are strictly infeasible — even if an instantaneous collision-free action is identified
and can be followed by the vehicle closely enough to be safe, there is no way to
practically verify if the future actions that follow will also be safe. Deliberative
motion planning performed entirely within egospace representations, rather than
simply projected into egospace for collision-checking, is introduced and character-
ized in [26] for robots with configuration flat dynamics. Completeness properties
are established for the egospace equivalents of motion planners in world coordi-
nates, and motion primitives expressed directly in egospace coordinates extend the
advantages of world trajectory libraries to also encompass fast collision-checking
and trajectory selection.

Depth data can be obtained from active depth sensors or passive stereo matching.
Stereo matching approaches work well both indoors and outdoors and have an ad-
justable depth range that provides computational flexibility for the design of the
perception system. Depth estimation is typically performed on each frame inde-
pendently, which introduces errors and holes due to environmental factors as well
as stereo matching failures. As a result, some degree of temporal fusion is re-
quired to propagate reliable data over time and generate a complete, reliable, and
stable scene representation for later motion planning steps — unfused egospace ap-
proaches, such as [27], require additional side-looking cameras to achieve a large
field-of-regard, and suffer from flicker and missed-obstacle incidents that result in
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collisions. Fusion can be performed during the matching step [84], [87], [88], in
image space [47], [89], [90] or on 3D voxel representatio [11], [91].

In [87] and [88], temporal fusion incorporates temporal data in cost functions dur-
ing estimation as an extension to spatial aggregation. SLAM techniques [84] also
constrain temporal consistency in the estimation framework, where online updates
are applied in key frames. In [84], a simple Gaussian model represents depth mea-
surements and limits the search range according to the standard deviation of prior
hypotheses. Multi-view filtering is another approach that improves depth maps by
removing outliers and compensating holes. In [89], the frames within a specified
time window (a fixed number of the most recent frames, for example) are mapped
to the most recent frame according to the related depth maps. These hypotheses are
merged probabilistically via probability density estimation. [47], [90] use Gaussian
Mixture Models (GMM) to represent depth observations in a compact manner, with
an online update and propagation approach that decreases computational complex-
ity and memory requirements. These methods tend to produce more reliable depth
maps than can be obtained using filter-based fusion approaches.

Three-dimensional models [11], [91] are also commonly used to merge multiple
depth map observations and provide temporal fusion. In this regime, depth data is
mapped to voxels [11] and accumulated in a surface representation [91] that pro-
duces highly accurate maps at the expense of memory usage and computational
efficiency.

System Overview
The perception, representation, and motion planning modules are implemented
within a pipeline architecture (Figure 4.9) aboard an AscTec Pelican quadcopter,
with vision and perception tasks performed on an AscTec Mastermind embedded
computer and motion planning and state estimation performed on an Odroid XU4
[92]. With the exception of a slightly more advanced Odroid board, the computa-
tional architecture is identical to that of the previous section.

After acquiring stereo imagery of a scene using a set of forward-looking cameras,
depth data is calculated, temporally filtered, and used to populate an egocylinder
structure in which obstacles are artificially expanded in order to abstract the vehicle
to a point mass for planning. The expanded egocylinder is then passed to a two-
stage motion planner (detailed below), which first performs a pixel scan to identify a
candidate flight path, and then attempts to identify a dynamically feasible, collision-
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free maneuver onto the candidate path using minimum-jerk paths directly in image
space. Once a motion plan is successfully found, a low-level flatness-based con-
troller calculates feedfoward inputs and tracks the reference trajectory until a new
motion plan is required. Vehicle pose is provided to both the temporal filtering and
motion planning modules using visual odometry from a downward-looking cam-
era (Semi-dense Visual Odometry SVO; [93]) fused with IMU data using the SSF
framework [82].

Figure 4.9: System architecture for the implementation on an Asctec Pelican
quadrotor that is equipped with an Asctec Mastermind and an Odroid XU4 com-
puting board.

Perception and Representation
The egocylinder representation of the scene [27] is used to represent the environ-
ment for collision-checking, which avoids much of the memory and computation
expense used by voxel maps to represent free space. A full 360◦ field-of-regard is
achieved by integrating depth maps forward as the vehicle moves within the envi-
ronment.

Visual perception for collision avoidance is based on the approach shown in Figure
4.10. The most recent stereo vision-based depth map estimate is first mapped onto
an egocylinder representation fixed to the frame of the left camera – the optical
center of the left camera maps to the center of the structure, with the forward di-
rection aligned with its viewing axis. The internal representation of the egocylinder
is a disparity image, specifically inverse range, which wraps around the cylinder
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Figure 4.10: The visual perception pipeline uses stereo matching to acquire depth
data, which is then mapped onto an egocylinder for temporal fusion and C-space
expansion directly in egocylinder coordinates. Areas of the egocylinder visible to
the stereo cameras are enclosed within a white rectangle for illustration.

structure and is called the egocylinder image.

Obstacles are then expanded within configuration space (C-space; [17], [27]) by
a characteristic radius of the vehicle, directly on the coordinates of the fused ego-
cylinder map, in order to abstract the vehicle to a point mass and simplify path
planning. As motion planning proceeds and the vehicle continues to move through
the environment, new depth data is observed in the central area of the egocylinder
corresponding to the field-of-view of the stereo cameras.

We use GMM-based fusion [47], [90] to efficiently merge the current depth map
with past observations directly in image space. In this approach, each pixel is mod-
eled by a mixture of Gaussian distributions, in pixel coordinates (u,v) and disparity
d, and propagated to the recent depth map using vehicle pose estimates. The final
depth map is obtained by constraining both the standard deviation of the disparity
models and an observation count to remove flicker and rely on frequently observed
depth values. [47] demonstrates that GMM-based fusion improves depth quality
by removing large depth errors such as false obstacles, which are typically due to
errors in stereo matching, and by assigning reliable depth values for empty pixels
in the recent depth map. Temporal fusion in this region of the egocylinder mitigates
sensing failures, such as incorrect depth estimates or empty pixels, by constrain-
ing the temporally accumulated data. Regions of the egocylinder not visible to the
stereo sensors do not receive new depth data, and are instead updated by transfer-
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ring temporally accumulated models subject to a forgetting factor at each update.
As the vehicle moves around and encounters obstacles at a variety of viewing an-
gles, a more complete representation of the scene emerges as temporal data is fused
into the structure.

Motion Planning
The first stage of the motion planning module replicates the approach of [27] in
which collision-free, yet dynamically infeasible radial paths are represented by
their pixel locations and identified using a scan over the expanded egocylinder
structure. During this scan, the distance to obstacles at each pixel is compared
to a predetermined planning horizon distance h, which is chosen to maintain a safe
time-to-contact towards obstacles at the desired speed and can take values up to the
maximum reliable sensor range depending on the expected complexity of the envi-
ronment. The collision-free pixel that is closest to that of the destination is selected
as a candidate path (Figure 4.11), and if no safe candidate path is found the process
is repeated with a lower desired speed and shorter planning horizon.

Figure 4.11: The first stage of the planner identifies collision-free flight paths by
checking the pixels of the egocylinder against a planning horizon chosen to guar-
antee a minimum time-to-contact. A goal is projected into the egocylinder (green,
occluded) and the nearest collision-free pixel (white) is selected as a candidate path
and passed to the trajectory generator. Here, brighter pixels are closer to the camera.

In the second stage, a trajectory generation module attempts to identify a feasible
maneuver that can smoothly merge the vehicle onto the infeasible candidate path at
the desired final velocity V . In addition to generalizing the infinite-agility approach
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by adding full dynamics and deliberative capability, the second stage also greatly
narrows the set of admissible trajectories that actually need to be calculated and
collision-checked. The straight-line segment that follows the turning maneuver is
known to be collision-free from the first stage and need not be checked again, while
the required acceleration, velocity, and position are automatically specified at the
beginning and end of the turning maneuver (for position, up to an undetermined
range):

ẍ(0) = a0, ẋ(0) = v0 x(0) = x0,

ẍ(t f ) = 0, ẋ(t f ) = V λ̂ x(t f ) = (λh)λ̂.

Here, the final flight direction λ̂ is chosen in the first planning stage, t f is the total
maneuver time, and λ ∈ (0,1] is a free parameter that modulates the distance to the
end of the maneuver.

The set of possible trajectories is further narrowed by insisting on a minimum jerk
maneuver, which can be shown to consist of fifth degree polynomials (x(t), y(t), z(t)) =∑5

i=0 aiti using a straightforward application of the Pontryagin minimum principle.
Once the endpoints are prescribed, the maneuver has only two remaining free pa-
rameters, t f and λ, that can either be modulated independently or constrained to
each other to produce a one-parameter family of admissible trajectories – for ex-
ample, the total time can be chosen to maintain an average vector velocity associ-
ated with the candidate path (fixed speed, fixed direction) such that t f = (λh)/V .
Minimum-jerk polynomials can be shown by direct substitution to satisfy the dif-
ferentially flat quadcopter plant model discussed in the introduction to this chapter,

ẍ = (sin θ cosψ + cos θ sin φ sinψ) ucollective
m ,

ÿ = (sin θ sinψ − cos θ sin φ cosψ) ucollective
m ,

z̈ = −g + (cos φ cos θ) ucollective
m ,

φ̈ = uroll,

θ̈ = upitch,

ψ̈ = uyaw,

where (φ,θ,ψ) are Z-X-Y Euler angles and ucollective is the collective motor thrust.
The trajectories (x(t), y(t), z(t)) correspond to unique control inputs, subject to ac-
tuator saturation and a yaw angle trajectory, that can be chosen independently of the
translation of the vehicle and determined algebraically using the associated flatness
relations.
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Figure 4.12: Closed-form trajectories are simultaneously maintained in egocylin-
der coordinates for collision-checking and world coordinates for control. Here, a
trajectory (top, blue dots proceeding towards the right) has been selected to avoid a
tree (brighter pixels are closer) using a pixel scan and collision-check in egocylin-
der coordinates. The trajectory is tracked in world coordinates (blue line, bottom)
by the flatness-based controller.

The coefficients of the minimum-jerk polynomials are determined symbolically, in
advance, as a solution of a small linear system of equations in terms of the initial
and final vehicle states and the search parameter λ. This solution step dramatically
reduces the amount of computation that needs to be performed onboard and allows
for a large number of potential trajectories to be considered during a planning cycle
(see Section 4.3 for runtime statistics). Evaluation for control saturation and colli-
sions is further enhanced by a simultaneous dual representation of the trajectories
(Figure 4.12) in world coordinates and egocylinder coordinates, which both have a
simple closed form and are determined by the single search parameter — the world
coordinate trajectories can be easily checked for saturation and converted into con-
trol inputs, while the egocylinder coordinates can be immediately collision-checked
using a pixel-by-pixel comparison against the egocylinder data structure.

Once a proposed candidate path is available, the trajectory search itself begins
by attempting to merge the vehicle onto the candidate radial path at a distance
corresponding to the planning horizon (Figure 4.13). The proposed maneuver is
collision-checked, evaluated against the control constraints, and returned if suc-
cessful – otherwise, the distance to the end of the maneuver is decreased along with
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Figure 4.13: The trajectory generator, shown in 2D for clarity, attempts to merge
the vehicle smoothly from the green heading (left, dashed) to the red heading (right,
dashed) using minimum-jerk polynomials (blue) that are parametrized by the dis-
tance covered before merging. By decreasing the length of the maneuver, the tra-
jectory generator can provide a more aggressive turn if a collision is detected.

the total time until either a valid trajectory is identified or the controls saturate, in
which case either the total time is increased independently or a different candidate
radial path is attempted.

Once the trajectory is available, a low level controller tracks the reference using a
standard two degree-of-freedom feedforward design ([25], using a linearized atti-
tude controller), with nested position/velocity and attitude loops corresponding to
the slow and fast dynamics of the vehicle model. Although the discussion in Sec-
tion 4.1 requires trajectories to be at least four times differentiable to be strictly
trackable, in order to strike a balance between performance and simplicty we have
instead insisted on piecewise C4 trajectory segments with at least C2 smoothness
throughout. This approach is able to prevent an attitude discontinuity between the
turn and the straight-line maneuver, which is inelegant and can disrupt state es-
timation, while also maintaining the minimum-jerk, low-degree character of the
polynomial segments without the additional overhead of an optimization over their
coefficients. It is also a justified approximation for the performance regime achiev-
able with our current attitude controller, which has angular velocity dynamics that
are significantly faster than position control and only requires feedforward in atti-
tude itself rather than its derivatives. A more general approach increases the de-
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gree of the polynomial, perhaps to n = 7, which would allow for optimization-free
minimum-snap maneuvers with continuity of angular velocity between the turn ma-
neuver and the straight-line segments. This approach would be consistent with ag-
gressive geometric attitude controllers from the literature (as in [19]), which do not
provide an angular acceleration feedforward signal in practice and would treat the
discontinuity as a step input.

Comparison to Other Approaches
Our receding-horizon approach does differ from a seeded RRT-type formulation,
like that of [20], in that it lacks a completeness guarantee in its own right and can
become stuck in dead ends. For obstacle avoidance in unstructured and unknown
environments where frequent replanning is required, however, complete methods
can bottleneck the pipeline (as in the CL-RRT of [17]) and limit flight speeds. For
a pure obstacle avoidance scenario in which environments are complex and con-
stantly changing, it is also difficult to justify the overall practicality of placing this
extra overhead within a low-level avoidance architecture as compared to a higher
level in which it is more straightforward to implement.

We contrast our approach primarily with graph-based, voxel grid approachs such
as [4], in which a complete planning algorithm operates over an instantaneous map
that is flushed and repopulated entirely anew at each cycle. Although these meth-
ods do produce a deliberative plan that can be stably followed towards the goal for
a long duration, only the visible obstacle surface is represented or known with any
certainty and no additional information is maintained beyond what could be pre-
sented in an unfiltered egospace. A significant amount of computational effort is
spent either on entirely unknown areas or in obviously empty regions, which re-
quires replanning times on the order of hundreds of milliseconds on state-of-the-art
embedded computers.

Unless a fully-intensive SLAM or exploration component is required, egospace
with temporal filtering can be a considerably more compact and efficient alternative.
Our approach is specifically designed to represent visible surfaces, which is ulti-
mately the only data available in any instantaneous representation, and efficiently
find paths around them. With the use of receding-horizon trajectory generation (see
below for a discussion of planning horizon) and temporal fusion, we share some
degree of deliberative action and map reinforcement with complete SLAM-based
planning algorithms, and offer forward collision-checking unavailable to reactive
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approaches such as [27].

Because our vehicle attempts to transit through an area as expeditiously as possi-
ble, unnecessary exploration of occluded areas is a hindrance to progress towards
the goal and ought to be avoided as much as possible. For this reason, our ap-
proach attempts to restrict deliberative action to visible areas under the assumption
that most of the unknown areas in an environment will never be encountered, and
need only be considered once they become absolutely necessary (and therefore,
known). An unprepared, cluttered environment with a limited sensor horizon will
be occluded almost in its entirety after single observation — if the environment is
also unstructured, as is the case in an outdoor field setting using range sensing, an
exploration-based global motion planner will be forced to rely heavily on pure spec-
ulation in its early stages. Accordingly, we leave exploration, mapping operations,
and the enforcement of theoretical performance guarantees to higher levels of the
mission architecture.

Results
The visual perception pipeline is implemented on the Asctec Mastermind embed-
ded computer equipped with a 1.86 GHz Intel Core2Duo processor. The forward-
looking stereo cameras are installed with a baseline of 25 cm, and frame-wise stereo
disparity maps (376x240) are calculated by block matching with a search range of
100 pixels. The resolution of the egocylinder image is 660x200. The full pipeline
maintains a 10 Hz update rate using both cores of the processor, with computation
times for each step in the visual perception pipeline given in Table 1. Typical re-
sults for temporal fusion on the egocylinder are illustrated in Figure 4.14. The left
stereo image, unfused disparity map, and the corresponding egocylinder images are
shown sequentially as the vehicle approaches an obstacle. Temporal fusion yields
a more complete scene representation compared to the unfused disparity maps —
known regions that would be otherwise discarded at each frame are instead retained
in the egocylinder. The propagation process is particularly important for obstacles
at close range, which eventually become invisible to stereo matching due to a lim-
ited search range and would otherwise present a missed-detection hazard (Figure
4.15). Motion planning experiments were conducted at a number of challenging
sites, including a 40 meter course through a forested area, a small dead-end alcove
in a built-up area, and an open, obstacle-free wash with distant buildings.

While maintaining a speed of 1 m/s, the vehicle encountered and successfully
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Figure 4.14: The perception pipeline was tested in a forested environment. In the
first column are raw images (grayscale) from the left stereo camera and the unfused
disparity map, and in the second are full egocylinder maps with temporal fusion.
Here, warmer colors are closer, cooler colors are farther, and the maroon back-
ground represents no data. In the fourth row, temporal fusion prevents a collision
at close range (first column) by propagating obstacle data forward from an earlier
detection (second column).
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Figure 4.15: While the maximum disparity calculated by the stereo algorithm is
too low to resolve the nearby obstacle, temporal fusion propagates the previously
observed obstacle, which is then used in the motion planner. Left: left rectified
image, Middle: stereo disparity map, Right: temporally fused disparity map.

Table 4.1: Onboard computation times for each step in the visual perception
pipeline

Step Time (ms)
Stereo Matching 100
Cylindrical Mapping 14.4
Temporal Fusion 52.6
C-Space Expansion 4.5

avoided three trees in the forest using the minimum-jerk trajectories of Section
4.3 executed in a receding-horizon fashion (Figure 4.16). This environment re-
quired frequent replanning as new obstacles became visible, which was performed
efficiently with average runtimes on the Odroid XU4 listed in Table 4.2.
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Figure 4.16: While navigating through a forested environment (tree trunks at 2 m
height shown as black point clouds), the vehicle took evasive maneuvers around
three trees and successfully reached a predetermined destination 40 m away. The
path (blue, vehicle travels from left to right) consists of segments of dynamically
feasible trajectory segments (red arcs) calculated using the two-step procedure of
Section 4.3 and followed in a receding-horizon fashion. Axis scale is in meters.

The egocylinder also proved highly useful in preventing the vehicle from becoming
stuck in confined areas when paired with temporal propagation of depth data. Af-
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Table 4.2: Onboard computation times for each step in the motion planning pipeline

Step Time (ms)
Egocylinder Scan 4.0a

Trajectory Generation 0.02
Collision-Checking 0.2

a For a complete replan (motion planner can reuse old targets)

ter exploring a small alcove and discovering a dead end (Figure 4.17), the motion
planner was able to extricate the vehicle towards an open area to its left that was
invisible to the stereo pair, but already stored within the egocylinder structure and
available to the motion planner.

Figure 4.17: When combined with temporal fusion, the egocylinder facilitates ex-
ploration of confined areas by propagating knowledge of open areas when they
become invisible to the stereo camera. Here, the vehicle has reached a dead end
within an alcove (top, raw images shown), but continues to represent an exit to its
left within the egocylinder (blue area, bottom left) beyond the visible field-of-regard
of unfused stereo (white rectangle). An escape route is also available by climbing
over the building, but was excluded by a mission-level altitude ceiling.

By identifying a restricted trajectory search space and exploiting the natural reso-
lution pattern of the egocylinder, the motion planning module was also able to effi-
ciently generate detailed, dynamically feasible trajectories at ranges near the limits
of reliable stereo detection. When presented with a destination waypoint inside
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a parking garage over 40 meters away, within 5 milliseconds the motion planner
identified a 5 meter x 2 meter opening into the garage as the best path towards the
target and calculated a collision-free and dynamically feasible path into the building
(Figure 4.18).

Figure 4.18: Egospace representations are particularly well-suited for producing
finely detailed trajectories at extreme ranges. Here, the motion planner has been
assigned a waypoint behind a pillar inside a parking garage 45 meters away (raw
image, top). After generating and expanding an egocylinder representation (origi-
nal, bottom left, zoomed for clarity, right), the motion planner projects the waypoint
(black square, bottom right) into the image and identifies the closest collision-free
target (white square, bottom right) as a candidate flight path for the trajectory gen-
erator.

Experimental Conclusion
We have demonstrated an obstacle avoidance pipeline over the full dynamics of
a micro air vehicle using a temporally fused egocylinder representation. In addi-
tion to being simple to access and compact to store, the egocylinder representa-
tion admits an extremely lightweight trajectory selection proceedure, based on a
parametrization of flight paths by pixels and differential flatness, that can quickly
generate dynamically feasible turn maneuvers towards targets at the range limit of
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stereo sensing. This advantage is made more reliable and flexible with temporal
fusion of obstacle data within the egocylinder geometry, which improves the accu-
racy of sensed data and accumulates a 360◦ representation with a single set of stereo
cameras that is useful for navigation in confined and cluttered environments.

Our perception framework also addresses a number of weaknesses of stereo vision,
primarily due to the limited and fixed baseline of MAV stereo applications, and sig-
nificantly increases its power as an obstacle detection tool. The resolution pattern of
the egocylinder, which decreases favorably with distance without additional over-
head, allows stereo data to inform motion planning and remain useful even at long
ranges where it is less accurate. Detection errors at close ranges, which eventually
become inevitable for raw stereo due to a limited field of view and disparity search,
are prevented by propagation and storage of sensed data with real-time temporal
fusion.

4.4 Scalability
We evaluate the scalability of egospace-based approaches, as speeds and obsta-
cle density increase, by considering the effect of lookahead distance on trajectory
speed, stability, and safety. Lookahead distance encompasses two distinct, yet re-
lated horizons that govern the motion planning problem: the maximum range of the
obstacle sensor (the sensing horizon), which is more-or-less fixed by the capabilities
of the onboard hardware, and the acceptable time-to-contact criterion (the planning
horizon), which is an engineering parameter that depends partially on the vehicle
performance and grants the designer some tuning flexibility. In this section, we
determine how the expected operating conditions suggest lookahead distance spec-
ifications, determine the acceptable vehicle cruise speed, and motivate the receding
horizon formulation.

Sensing Horizon
We now specialize to 2D for clarity, and assume a planar egocylinder structure
(r, θ, z = 0). Because the egocylinder is divided into fixed angular increments,
it is clear that choosing a planning horizon beyond the sensing horizon offers no
safety benefit. If the sensors can detect all obstacles within a distance R, with fur-
ther points unknown, collision-checking is entirely inconclusive beyond the sensor
horizon. We simply deem a path "acceptable" if it remains collision-free up to the
horizon, and derive no useful information beyond it. Although seemingly obvious,
this observation yields an important relation between perception and dynamic con-
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straints: for a general environment, we ought to require that the vehicle be able
to come to a stop (for a quadcopter; fixed wing aircraft must instead perform ag-
gressive turnaround maneuvers, as in [60]) by the sensor horizon, lest there be no
avenue of escape from the arrival of impenetrable obstacles.

To estimate the speed limit afforded by an obstacle sensing suite with horizon R,
we consider the ability of our quadcopter model (Equations 4.12) to come to a stop
from a cruise velocity V in level flight, with initial velocity vector (V,0,0), initial
yaw angle equal zero, and initial pitch and roll equal zero. The vehicle then uses
only its pitch and thrust authority to come to a level stop as quickly as possible
(that is, time optimally). This stopping procedure involves two trim primitive seg-
ments — one in which upitch is held at its minimum saturated value −umax, and
a second in which pitch is held at the minimum value θmin capable of sustaining
level flight. Due to the time-scale separation between attitude control and position
control that motivates our trajectory tracking architecture, for clarity we further as-
sume that minimal braking is achieved during the pitching maneuver. As a result, it
can be treated as a small additional time-delay (as in [60]), which is determined by
integrating forward the constant control input until θmin is acheived. We consider
actuation latency later in this section.

The value for θmin itself arises from substitution of the saturated inputs into the
expression z̈ — we set φ = 0, θ = θmin, ucollective to its maximum, Tmax, and enforce
level flight: z̈ = 0. Accordingly,

θmin = − arccos
(

mg

Tmax

)
. (4.12)

For our experimental system, m = 1.7 kg, Tmax = 30 N, and θmin=-57◦. Substituting
into the equation for ẍ and integrating twice gives

ẋ(t) = V − t

√
T2

max

m2 − g2, (4.13a)

x(t) = Vt −
t2

2

√
T2

max

m2 − g2, (4.13b)

where we have used the identity sin(arccos(x)) =
√

1 − x2 and assumed without
loss of generality that the vehicle starts at the origin. The vehicle requires a time

t f =
V√

T2
max
m2 − g2

(4.14)
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to come to a stop, over which it covers a distance x(t f ). Setting x(t f ) = R allows
the sensor horizon required to accomodate the cruise velocity V to be specified, and
relates the perception and dynamical parameters in a single expression:

R =
V 2

2
√

T2
max
m2 − g2

, (4.15)

which provides an estimate of the required sensing horizon and can be used dur-
ing the design process to assist in sensor selection. From a performance analysis
perspective, R is prescribed by hardware constraints and V must be determined in-
stead (Figure 4.19). The expression is easily invertible, and the above experimental
stereo-based system is capable of stopping within 75 m from a speed of 46 m/s if
it applied maximum braking power — a speed limit that could never actually be
acheived by our system and instead arises from its generous thrust-to-weight ratio
Tmax/(mg) = 1.8.

Figure 4.19: The maximum velocity afforded by sensor horizon for an Asctec Peli-
can (blue — thrust-to-weight ratio 1.8) and an Asctec Hummingbird (red — thrust-
to-weight ratio 2.3). Sensor A is the structured light sensor of [21], with a range
of 5 m, B is the Hoyuko UTM-30LX, with a range of 30 m, and C is the stereo
system presented in the previous section, with a range of 75 m (at one full pixel of
disparity). In the absence of latency the resulting speed limits are 12 m/s, 30 m/s,
and 46 m/s respectively on the Pelican, and 15 m/s, 35 m/s, and 56 m/s on the Hum-
mingbird. With the exception of the structured light sensor, the sensing horizon is
not the limiting factor for vehicle speed.

Although the vehicle can theoretically stop by the horizon at extreme speeds, no
room is left for error or the characteristics of real sensors, computational resources,
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and actuators. On the perception side, depth data arrives at discrete intervals with
some latency and is never instantaneous. For the 10 Hz perception system with
runtimes given in Table 4.1, at the moment depth data arrives for motion planning
it is already almost 200 ms old, which reduces the effective sensor horizon by a
corresponding amount. Because the vehicle must also commit fully to a stop the
moment unfavorable depth data arrives, even if no obstacles are detected within the
horizon the possibility of their presence a small distance ε further beyond must not
be discounted — the vehicle may not fly so fast as to prevent itself from stopping
in time, if it must, on the next measured frame. If an impentrable obstacle set lies
at R + ε , it will actually have advanced closer by a distance proportional to the
measurement interval t f rame by the time it is actually detected. Accordingly, we
take ε down to zero and subtract Vt f rame from the actual sensor horizon.

The motion planning pipeline has negligble latency once the depth data is available
to use, but on the control side it takes roughly 100 ms for the vehicle to perform the
pitch maneuver that preceeds braking. Consequently, a total latency time tl elapses
before the vehicle is able to actually respond to visual input. During this time it
covers a distance Vtl , which leads to a quadratic expression in V :

R − Vt f rame = Vtl +
V 2

2
√

T2
max
m2 − g2

. (4.16)

For our system, latency and the discrete frame rate further reduces the stereo speed
limit to just under 42 m/s. Operation at such a high speed, if it could even be
acheived under the vehicle aerodynamics, would be marked by frequent braking
maneuvers that are extremely inelegant and wasteful of battery life. In spite of its
clear aesthetic downsides, however, the ability of such a system to react to obstacles
would ultimately not be limited by the sensing regime.

We can consider sensor-level design charcteristics that result from our analysis. For
stereo vision suite with a fixed baseline (which is ultimately limited by what can be
practically carried on a small vehicle) and fixed optics, maximum range increases
linearly with the resolution of the camera in each row (which is along the epipolar
line for rectified images). Continuously increasing camera resolution in an attempt
to improve sensor horizon, however, will eventually overwhelm the limited onboard
computational resources entirely, increase latency to unacceptably high levels, and
counterproductively reverse the increase in speeds afforded by the longer sensor
horizon. For a given design speed, we can specify the sensor horizon along with
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both the camera resolution and the computational resources (through the latency
tolerance and frame rate) required to achieve it.

Planning Horizon
The sensor horizon ultimately limits the range to which motion plans can be collision-
checked and verified in a concrete sense, but the planning horizon eventually used is
also dependent on the obstacle layout in a given environment. Because the planning
horizon is incrementally decreased when a search for a collision-free direction fails,
an overly optimistic choice is wasteful and will require multiple fruitless egospace
scans until a more appropriate horizon is reached.

We may estimate the minimum planning horizon needed to safely avoid obstacles
using a similar analysis as used to determine the sensor horizon. We assume that a
point vehicle is initially at the origin with a velocity vector (V,0), and flies in the
xy plane near a C-space expanded wall lying entirely right of the line x = h with
V,h > 0. To determine the minimum planning horizon h required to safely avoid the
wall while maintaining the speed V , we order a 90 degree circular turn at the origin
with the full roll, thrust, and yaw authority of the vehicle and calculate the closest
h that will not produce a collision. Assuming that the planning horizon is less than
the sensor horizon, we may ignore latency in vision (the vehicle knows the wall is
coming, and simply decides when to react) and treat the initial roll maneuver as a
time delay as in the sensor horizon discussion. After the time delay tl , the vehicle
holds φmax for the first 90 degrees of the circular turn, after which the wall has been
successfully avoided. Balancing the maximum thrust with gravity gives

φmax = arccos
(

mg

Tmax

)
. (4.17)

Assuming that the vehicle’s acceleration is directed towards the center of the circu-
lar turn using a coordinated yaw command, the vehicle turning radius is

R =
V 2√

T2
max
m2 − g2

, (4.18)

where we have used the identity sin(arccos(x)) =
√

1 − x2 and the Newtonian equa-
tion for centripetal acceleration ac = V 2/R. A 90 degree circular turn will cause
the vehicle to travel a distance R in x, to which we add the effect of latency and
determine h:

h = Vtl +
V 2√

T2
max
m2 − g2

. (4.19)
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We note by comparison with Equation 4.15 that a circular evasion maneuver is a
good deal less effective than a full vehicle stop in preventing collisions — after
latency, a circular turn will require twice the distance of a hard braking maneuver
— but is capable of maintaining the vehicle cruise speed and is more typical of the
smoother operation expected of planned motion.

In an environment that requires less extreme maneuvering than an infinite wall, a
more realistic planning horizon is obtained by restricting our analysis to a wall of
finite extent. We now suppose that the vehicle attempts to maneuver around a wall
given by the set {(x, y) : x = h, y ∈ (−L,L)} using a circular arc that, for L < R, is
generally less than 90 degrees. Taking account the latency required to enter a turn
but not to undo it (the ability to undo a turn has no impact on obstacle avoidance
capability in this case), we set the planning horizon equal to distance at which the
wall first intersects the circular turn — any closer and a collision will result (Figure
4.20).

Figure 4.20: For a wall of finite extent L < R, a more aggressive minimum planning
horizon h may be found using the geometry of circular turns. A collision results if
the wall penetrates the circular turn, which relates tl and V , through R, to h.

The latency and φmax criteria determine the equation of the circle, (x −Vtl )2 + (y −
R)2 = R2, into which the position of the corner (h,L) is substituted. Solving for h

and requiring R > L (otherwise, the 90 degree turn solution holds) gives

h = Vtl +
√

L(2R − L), (4.20)
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which is asymptotically linear in V upon substitution of Equation 4.18 for R. For
the forested test site described previously, the half-width L of a typical tree is ap-
proximately 30 cm and the performance profile is considerably more favorable than
in the infinite wall case (Figure 4.21).

Figure 4.21: The minimum planning horizon at each velocity for the infinite wall
case (red) and for a 30 cm radius tree (blue) for our experimental Asctec Pelican
system.

In a sparse obstacle environment longer horizons help avoid (but do not eliminate)
the possibility of becoming trapped with a command of zero velocity, which would
require the invocation of a higher-level extrication routine (Figure 4.22). Longer
planning horizons also allow for higher speeds by a line of reasoning similar to
the sensor horizon discussion: by collision-checking further out, a longer verified
motion plan gives the vehicle more time to stop or revise its trajectory before hitting
new obstacles. In the interest of compromise between the more certain existence
of short-horizon paths and the benefits of longer horizons, an adaptive selection
scheme is appropriate. The vehicle attempts to increase the planning horizon by
a small amount each time until it is equal the lesser of the sensor horizon or the
remaining distance to the goal (lest it be repeatedly overshot).

Motion planning for systems in a priori unknown environments, such as ours, is
typically run in a receding-horizon fashion. Although the endpoints of each motion



88

Figure 4.22: Longer planning horizons can diminish the potential for the vehicle to
become trapped on its way to a destination (black star). Whereas a long-horizon
planner was able to find a clear path to the left of the alcove, the short-horizon
planner was unaware of the trap until it could no longer extricate itself without
resorting to high-level considerations.

plan are not necessarily reached, how they are selected and how the plans them-
selves are revised has important effects on performance. It is clear that the experi-
mental systems described in the previous sections rely on occasional replanning to
actually reach their destinations in a timely manner (Figure 4.23) — following a
long radial path to its endpoint without intermediately checking for a faster route
to the destination reliably prevents collisions, but can lead to highly uneconomical
paths that may not converge to the destination at all. At the same time, excessively
frequent replanning can lead to trajectory and control instability, especially in the
presence of depth and state estimation noise.

On our experimental system, which was tested for the most part around thin ob-
stacles (trees), a hand-tuning approach was sufficient to determine an appropriate
replanning horizon in each test scenario. As an extension to general environments,
however, a more systematic approach places the receding horizon endpoint at the
destination itself, rather than on the radial path, and relies on the collision-checking
routine to determine the timing of revisions. Once a trajectory is no longer known to
be collision-free for a sufficiently long time duration, as determined by the collision-
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Figure 4.23: Although the long-horizon radial path (solid) allows a collision-free
trajectory to be determined in a single planning cycle and followed for a consider-
able distance, its endpoint is very far from from the destination. A forced replan
(dashed) would have led to a much more economical path.

checker, a new plan towards the destination is ordered. This approach requires plan-
ning to be permitted to proceed in unknown, occluded areas, which in turn requires
a heuristic assumption of obstacle structure behind the visible surface. One solu-
tion is to use the simulated egospace approaches discussed in Chapter 3, which have
the additional benefit of probabilistic completeness guarantees for each structural
heuristic. A simpler approach motivated by the scanning and seeding philosophy
discussed in this chapter continues to use candidate radial paths, but with an ad-
ditional modification step in which a feasible path also smoothly departs the path
and reaches the destination (Figure 4.24). The departure point is tuned to maintain a
collision-checking horizon that allows for safe operation at the vehicle cruise speed.

4.5 Velocity Space and Moving Obstacles
The experimental representation and planning pipelines discussed in this chapter
ultimately derive their efficiency from a close connection between egospace and the
vehicle’s "velocity space" — the pixels of egospace can be thought of as encoding
the set of velocity vectors available to the vehicle at each instant, with the general-
ized depth coordinate serving as a safety metric. This equivalence is direct for the
infinite agility case, in which the pixel coordinates completely and unambiguously
describe the actual future path of the vehicle.

For the fully dynamic case, pixel coordinates instead index variable-aggression, fea-
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Figure 4.24: The collision-checker can be used to determine replanning timing. In
scenario, the the candidate radial path (green, dashed) is modified to include both
a merger and a departure maneuver that satisfy the vehicle dynamics (red). The
departure maneuver ends at the destination, but passes through an unknown area
— it is imperative that either some structual information about the occluded region
is available or the vehicle can collision-check far enough in advance to maintain
safe operation. The modified path can be followed directly to the destination if
necessary, but if a collision is detected a replanning cycle is triggered.

sible maneuvers. The additional aggression tuning structure we have imposed on
the experimental motion planner earlier in this chapter, however, allows the exact
functional form of each maneuver to be largely abstracted away after collision-
checking. By mutually restricting the final velocity and the maneuver time to main-
tain an average velocity vector over the course of the turn, higher-level considera-
tions need only consider the average velocity vector to which each trajectory corre-
sponds — once it is verified to be collision-free, the exact functional form of a turn
maneuver is immaterial to its eventual kinematic outcome. Accordingly, the direct
equivalence between pixels and velocity vectors can be recovered, even in the pres-
ence of full dynamics, at distances beyond the merger of feasible turn maneuvers
with their straight-line targets.

The equivalence we have observed allows classical multi-agent motion planning
techniques, which operate in the space of radial vehicle trajectories in the absence
of static obstacles, to be merged immediately into egospace static obstacle avoid-
ance with minimal additional structure. Cartesian occupancy grids, on the other
hand, require an additional time dimension to adequately represent moving obsta-
cles for motion planning. The extra coordinate usually emerges either as part of a
generalization to a 4–D structure in space-time (see Chapter 7.1 of [38]) or through
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velocity scheduling [94], in which a path among static obstacles is chosen and its
timing modified to accomodate obstacle motion. In egospace, the connection be-
tween velocities and pixel coordinates collapses the moving obstacle problem and
the static obstacle problem into the same 2.5–dimensional egospace structure that
we have developed in our previous analysis.

For the rest of this chapter, we develop moving obstacle avoidance in egospace us-
ing the experimental methods described above. After introducing the modifications
required to merge static and moving obstacles into a unified egospace representa-
tion, we exhibit simulation results that add the challenge of moving, non-compliant,
and non-communicating agents to the experimental regime we have considered in
the static case.

Velocity Obstacles
Multi-agent collision avoidance is typically dealt with using a velocity obstacle for-
mulation [95], in which the relative velocity and size of each vehicle pair is used to
calculate the set of velocities that will ultimately result in a collision. This proce-
dure is based on the well-known maritime principle of constant bearing, decreasing
range (CBDR; Figure 4.25) — if a vessel appears to be approaching but lingers in
the same relative direction when viewed from second ship, a collision will result
unless evasive action is taken. More formally, two vehicles are defined to be on a
collision course if the relative velocity vector of the pair, when placed at the first
vehicle, is directed at the second vehicle.

The formal version of the CBDR principle can be used to systematically calculate
a velocity obstacle region, in the space of instantaneous vehicle velocity vectors,
that contains the set of velocity vectors that will result in a collision and must be
avoided. For clarity, we consider a two-dimensional engagement between two cir-
cular vehicles, one of which is controlled (vehicle A with variable velocity vA) and
the other non-compliant (vehicle B, with a known, fixed velocity vB). We may ab-
stract vehicle A to a point by performing a C-space expansion on vehicle B, which
we now assume to have a radius rB enlarged by that of vehicle A.

A collision will result if the relative velocity vector, when placed at A, is directed
at B — the set of inadmissible relative velocity vectors, vAB = vA − vB is a cone
C ⊂ R2. Adding vB to each vector in C gives the velocity obstacle in vA: any vector
v ∈ C

⊕
vB is an invalid velocity for A because it is on a collision course with B

(Figure 4.26). Because B cannot be expected to take evasive action, the motion
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Figure 4.25: If vessel A remains at the same bearing relative to the velocity vector
of vessel B and also closes in distance, a collision is inevitable if neither yields.

planning objective for A is to select a velocity vector that is not in this set.

We now assume that vehicle A has infinite agility and attempts to maintain a fixed
cruise speed V , seeking only a collision-free instantaneous direction θ. Because the
cruise velocity is fixed, we need only check the circle of radius V in velocity space
against the velocity obstacle. If the circle is contained entirely inside the velocity
obstacle, a collision is inevitable at that speed. The intersection of a cone with a
circle, if it occurs, has a straightforward analytic solution equal at least one but
no more than two intervals [θ0, θ1] and [θ2, θ3]. Any θ outside of these intervals
represents a collision-free velocity vector.

A three-dimensional engagement at a fixed speed V , on the other hand, has an exact
solution corresponding to the region of a sphere contained in the cone — except for
the most trivial cases (such as static obstacles, which intersect with the sphere in
a circle, or inevitable collisions, in which the entire sphere is contained inside the
cone), this involves a quartic equation in x and y paired with a quadratic equation
in x, y, z [96].
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Figure 4.26: Velocity obstacle formalism is the classical approach to multiagent
coordination problems. For two vehicles in two dimensions, denoted A and B, a
C-space expansion first abstracts A to a point and B to a circle. The set of relative
velocities vAB = vA − vB that are directed at B result in collisions and lie in the col-
lision cone. Adding vB to the entire collision cone set gives the set of inadmissible
vA, which is known as a velocity obstacle. The red circle centered on A is the set
of vA with constant magnitude V , which in this case does not intersect the velocity
obstacle and will not produce a collision.

The first step towards a solution determines whether the sphere intersects with any
cones at all (there may be more than one) or is located entirely inside any of them
(which indicates an inevitable collision). This is a classic problem in collision-
checking and helps avoid needless computation if an intersection is not actually
present. If a non-trivial intersection is detected, we may avoid a simultaneous nu-
merical solution of the quartic and quadratic by instead sampling points in S2, for
which we ultimately we will use the set of pixels in egospace (see below). This
reduces the problem to an embarrassingly parallel scan that checks which points of
the sphere lie inside the cone. Given vA, vB, rB, and the position separation vec-
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tor towards B, xAB, all represented in the instantaneous body frame of A, we may
represent the cone using an equality constraint

(u · d)2 − (u · u) cos2 θ ≤ 0, (4.21)

where d = xAB/‖xAB‖, θ is the cone half-aperture, and u = (x, y, z)T − vB. Each
point on the sphere is checked against the inequality with the assistance of a look-
up table for the transformation from (V, θ, φ) to (x, y, z), and marked "unsafe" if the
inequality holds. The scan is highly efficient — for a C++ implementation on a 2.8
GHz dual-core Intel Core i7 processor with a 200x660 pixel egocylinder, it takes
less than one millisecond to process each moving obstacle.

Velocity obstacles and egospace
When a vehicle attempts to maneuver around a moving obstacle with a fixed speed,
the set of unsafe directions is indexed by coordinates on S2 (S1 in 2D) and can be
merged immediately with the angular layout of egospace and its representation of
static obstacles. We construct an artificial obstacle in egospace at the pixel locations
corresponding to these directions, and insert it into the structure as a mask over the
static obstacle data (Figures 4.27 and 4.28)— for the purposes of this thesis, we
do not speculate upon the source of moving obstacle detection and tracking. Once
the artificial obstacle is in place, motion planning can proceed as if the moving
obstacle were actually static (with an effective location and extent, of course, that
differs from any of its instantaneous positions in egospace) using the equivalence
between pixels and velocity space. Accordingly, we have merged the moving and
static obstacles into a single representation without the use of an additional time
coordinate or explicit velocity scheduling.

The modified velocity space principle can be employed used when the dynamics of
vehicle A are significant, but with the minor additional requirements that the initial
turn maneuver be completed before any interaction with vehicle B is expected, and
that any departure turn maneuver also be completed afterwards. This step occurs
after the candidate seed path is chosen, and is equivalent to the turn aggression
tuning operation of the static case.

The method described here is based on the first order velocity obstacle assumption,
which does not take into account the acceleration of vehicle B and anticipates that
its future action will be to continue on its current velocity vector — an assumption
of neutral non-compliance. Maneuverability of B incorporated into the planning
problem with a measurement and update of vB at each step.
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Figure 4.27: A top-down view of the moving obstacles encountered in the engage-
ment of Figure 4.28 — the expanded obstacles (black circles) are non-compliant
with instantaneous velocity vectors (green arrows; xy planar projection shown),
while the controlled vehicle must select a velocity vector of predetermined magni-
tude from the red circle. We note that the actual engagement is three-dimensional,
and that the moving obstacle located at (10,−10) has a velocity vector directed out
of the page (not shown).

Summary
In this chapter, we have specialized the theoretical development of motion planning
in egospace to obstacle avoidance on a real quadcopter aircraft. Through a perfor-
mance evaluation based on accepted metrics of online runtime and human interven-
tion rate, we demonstrated that vision-based egospace obstacle avoidance is safe
and extremely efficient with entirely onboard computing and visual hardware. We
then conducted a scalability analysis that asctertains the limits of egospace motion
planning in terms of sensor and actuator performance, and provided an extension to
moving obstacles based on a connection between egospace and the concept of the
velocity obstacles.
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Figure 4.28: The vehicle is asked to proceed through the simulated forest towards
a destination (static depth data, top), but with the addition of 10 moving and non-
compliant obstacles in the same environment (Figure 4.27) that produce a collective
velocity obstacle (middle, unsafe directions in blue). The velocity space obstacles
denote invalid flight directions, and serve as a mask over the static data that further
restricts the set of vehicle actions for a given speed (bottom). For each obstacle and
proposed speed, it takes less than one millisecond to generate a velocity obstacle
representation in egospace.
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C h a p t e r 5

CONCLUSIONS

In this thesis, we have started from the idea of the depth image as a C-space rep-
resentation and developed a lightweight obstacle avoidance pipeline based on a
general range sensing geometry and full configuration flat dynamics. Our analysis
followed from two structural observations — that the radially-aligned geometry of
egospace offers efficient collision-checking, compactness advantages, and a natural
set of candidate flight paths, and that configuration flatness in world coordinates
(x, y, z) immediately extends to egospace coordinates (u,v, δ). Combining these
two characteristics allowed for the construction of a highly efficient obstacle avoid-
ance algorithm that can generate dynamically feasible, collision-free trajectories at
extreme ranges with minimal computational overhead. The computational savings
afforded to our experimental approach ultimately arose from the use of egospace co-
ordinates to restrict the size of the trajectory search space, which includes a highly
efficient 2D pixel scan followed by a search over a single maneuver aggression
parameter.

We performed a theoretical analysis of the egospace motion planning problem in
a more abstract sense, which allowed a number of performance and applicability
guarantees to be established. We first showed that any traditional Cartesian obsta-
cle representation can be converted invertibly to egospace by construction, which
provides a theoretical basis for its ability to faithfully represent environments. Com-
pactness and search efficiency asymptotics were then compared for both egospace
and for the uniform Cartesian grids that are the principal alternative in the literature
for MAV use cases. We then considered the motion planning problem in egospace,
in which both configuration flatness and the use of complete motion algorithms
from the literature were extended to general egospace coordinates. A number of
approximations to the full configuration flat problem — including a bypass of vehi-
cle dynamics entirely, relaxed completeness requirements, and fixed-form motion
primitives — were also demonstrated and the conditions of their applicability de-
termined.

An experimental analysis, motivated by the theoretical results of the preceding
chapters, was performed on a quadcopter testbed equipped with visual range sen-
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sors. The reliability of the representation and obstacle avoidance pixel scan method
were determined through a flight test suite in a challenging forested environment.
Dynamically feasible, configuration flat trajectories were also specialized to the
quadcopter plant model and run in a series of field environments. This testing
regime taxed the efficiency of our trajectory selection and generation algorithm, as
well as the ability of our egospace represention to capture detail at extreme ranges
with large fields of view. Scalability requirements were then considered, including
the limitations of sensing, planning horizon, and vehicle actuators, along with an
extension to moving obstacle environments using a connection between egospace
and candidate vehicle velocities. Egospace obstacle avoidance methods were shown
to be safe and efficient on a real aircraft, and appear to offer the potential for more
widespread unsupervised use of field aircraft for applications beyond basic research
using current-generation embedded computing.

Future Work
Our work on obstacle avoidance occurs at a relatively low level within a vehicle
architecture, however, and also leaves open the potential for study of its interaction
with higher levels of motion planning and operation. Our approach has been de-
veloped specifically for a priori unknown environments that must be sensed as the
vehicle encounters them, but a number of situations in which higher-level super-
visory input may be required have been neglected. The completeness guarantees
that we have obtained assume that an accurate estimate environmental structure is
available, which was required in order to allow the vehicle to safely pass through
occluded areas. Any such assumption is actually the result of high-level decision
making, and if unavailable or incorrect would ultimately require high-level extrica-
tion instructions to be issued to the obstacle avoidance layer.

Micro air vehicles are also becoming increasingly complex and can incorporate
significant aerodynamic effects and exotic bioinspired propulsion (for example, the
"Bat Bot" of [97]). The possibility of moving beyond the class of differentially
flat vehicles and incorporating complex effects into motion planning is an open
question.
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