
Frequency Noise Control of 

Heterogeneous Si/III-V Lasers 
 

 

Thesis by 

Dongwan Kim 

 

In Partial Fulfillment of the Requirements                                                          

for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

California Institute of Technology 

Pasadena, California 

 

2018 

(Defended October 17, 2017)



 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018 

Dongwan Kim 

ORCID: 0000-0002-5661-2503 

All rights reserved except where otherwise noted  



 iii 

ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my advisor, Prof. Amnon Yariv. He provided me the 

opportunity to encounter and gain expertise in the field of optics and photonics. His sincere passion 

towards many things, not just science deeply inspired me. I feel very thankful to have been able to 

interact with him during the most important years of my life, and I deeply appreciate his existence 

as a human being. I am sure that in every corner of my life, he will provide me inspiration. 

I appreciate my thesis committee members, Prof. Oskar Painter, Andrei Faraon, and Keith 

Schwab. I feel privileged to have them on my committee. I also would like to show my gratitude 

to Prof. Bruno Crosignani. 

Without a few individuals, I could never have gotten through the hard time of graduate student 

life successfully. In that sense, I must thank Mark Harfouche first. From the first day that I joined 

the group, Mark has been an invaluable person to me, both on and off campus. He has never 

hesitated to provide and share scientific knowledge and explanations, and has been a key person 

in various research projects in the group. I feel fortunate to have been able to meet and interact 

with him in my life, and can never sufficiently express how deeply I am indebted to him.  

I also would like to thank Dr. Huolei Wang, who has been another key person in the project. 

He has not only endured my foul temper with his earnest mind, but also made a great contribution 

to the project. I will never forget his warm heart and sincere attitude towards people.  

I also would like to express my thanks to Dr. Christos Santis, who has been my one and only 

friend, science mentor, and office mate. I hope that the friendship that we have developed over the 

years will last a lifetime. 

I owe much acknowledgement to Dr. Naresh Satyan and Dr. George Rakuljic. They have not 

only brought funding to the project, they have also been invaluable scientific counselors.  

In recent years, I enjoyed the company of Zhewei Zhang and Hetuo Chen. I believe that they 

both possess great scientific potential, and wish them the best of luck as scientists. 

I have also received much help from the previous graduate students in the group. Scott Steger, 

Yasha Vilenchik, Jacob Sendowski, who are all exceptionally talented individuals in their own 

ways, taught me the skills and knowledge that I need to continue the projects. Also, I would like 

to thank Paula Popescu, with whom I worked together during my early years in the group. I enjoyed 



 iv 

interacting with Reginald Lee, Arseny Vasilyev, Sinan Zhao, Yu Xien Lim, and Marilena 

Dimotsantou during my time at Caltech. 

I am thankful to the Kavli Nanoscience Institute staff members, Guy DeRose and Melissa 

Melendes. I would also like to express my gratitude to Connie Rodriguez, Christy Jenstad, and 

Mabel Chik for their support.  

I also got much help from and had fun with people outside the group, including Myoung-Gyun 

Suh, Nick White, Byung-Kuk Yoo, Chun Sik Chae, Roarke Horstmeyer, Kyo Lee, Seung Hoon 

Lee, Ki Youl Yang, Dong Yoon Oh, Hansuek Lee, Kiwook Hwang, Hyoung Jun Ahn, Max Jones, 

Samantha Johnson, and Kevin Fiedler. 

I would like to acknowledge the financial support from DARPA, ARO, and NSF for the projects 

described in this thesis. 

Lastly, I would like to thank my parents, without whom I could never have been who I am 

today. Their unconditional love and support made me who I am today. Thank you. 

  



 v 

ABSTRACT 

Narrow-linewidth lasers have many applications including optical telecommunication, laser 

spectroscopy, atomic clocks, and light detection and ranging. Conventionally, narrow linewidth 

lasers have been realized in the form of fiber-based or solid-state lasers. These lasers are bulky and 

relatively expensive, limiting their usage as bench-top systems in laboratory environments. 

Historically, semiconductor lasers, also known as laser diodes, have served applications where size 

and cost are important factors, including fiber optic communications. The linewidth of the 

semiconductor lasers, however, has been limited to the MHz-level, due to high loss in laser cavities 

and small size. 

Recently, reduction of the frequency fluctuations in the semiconductor lasers has been achieved, 

obtaining tens of kHz linewidth, using the heterogeneous Silicon/III-V platform with a new design 

strategy. In this design, the majority of the optical energy is stored in the low-loss high-Q silicon 

resonator away from the high-loss III-V active region, requiring the minimal gain from the active 

region to overcome the reduced modal loss. 

This work explores the new design strategy further, and demonstrates theoretically and 

experimentally that the strategy eliminates the frequency fluctuations arising from the amplitude-

phase coupling by placing a relaxation resonance frequency at frequencies of a few hundred MHz. 

Consequently, it becomes possible to obtain a semiconductor laser device possessing sub-kHz 

quantum-limited linewidths at frequencies of a few GHz (the frequencies of interest in optical 

telecommunication). 

In addition to the frequency noise reduction, the strategy turns out to have the additional benefit 

of accomplishing a coherent and stable lasing operation, even under external reflections. Thus, the 

new design strategy has the potential to replace the costly, but currently indispensable external 

optical isolators, which have been traditionally used to maintain the consistent performance of 

semiconductor lasers in the presence of external reflection. 

This work paves the way for the design of narrow-linewidth and stable semiconductor lasers 

that can function without the use of the bulky and costly external components, such as external 

cavities or optical isolators.   
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Chapter  1   

INTRODUCTION 
 

    Since their invention in 1962, semiconductor lasers have become indispensable in modern 

technology serving as the primary light source powering modern high-data links, especially long-

distance fiber-optic communication, thanks to their low cost and compactness, ease of electrical 

pumping, wide range of wavelengths of operation, and compatibility with Si-based electronics. 

Despite these advantages, semiconductor lasers suffer from low coherence properties. A narrow-

linewidth and stable semiconductor laser would find many applications including optical 

telecommunication, laser spectroscopy, atomic clocks, and light detection and ranging. 

 

1.1 Narrow-linewidth semiconductor lasers for optical communication 
In conventional optical communication, a simple and effective modulation method has been 

used for decades. The modulation scheme is called on-off keying (OOK) or intensity-

modulated/direct-detection (IMDD) systems. An IMDD system encodes a single bit (1 or 0) in 

each symbol. The binary digital signals are sent using a stream of light pulses, in which information 

is encoded in the light intensity and recovered using a photodetector.  

 

 

Figure 1.1 Increasing the transmission capacity through wavelength-division-multiplexing. (Left) 
A 100 Gbps transmission requiring 100 GHz electronics is not feasible using the current 

electronics. With 100 GHz modulation, the carrier will experience larger fiber impairments. 
(Right) 100 GHz modulation can also be achieved by transmitting 10 channels with 10 GHz 

modulation each. 10 GHz electronics are readily available. 
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The transmission capacity in the OOK system can be expanded by either transmitting more 

modulation symbols per second or encoding more bits into a modulation symbol.   

 

 

Figure 1.2 IQ diagrams of the coherent modulation schemes. 

 

 

 

Figure 1.3 Schematic of optical coherent communication 

 

With an increasing internet demand for data rates for 100 Gb/s and beyond from new and 

emerging services (e.g. 3D-TV [1], virtual-reality [2]), coherent phase communication schemes 

are emerging as promising key technologies to further increase the transmission capacity. These 

have been already realized in cutting-edge fiber-optic communication systems [3]. In these 

communication systems, the phase of the optical field is used to transmit information [4], making 

it possible to improve spectral efficiency by encoding more bits per symbol. For example, as shown 

in Figure 1.2, quadrature phase shift keying (QPSK) is a four-level modulation format, where the 

carrier phase is modulated to one of four possible phase states (π/4, 3π/4, 5π/4, 7π/4). Using this 

format, we can send twice the amount of information with the same number of symbols as on-off 

keying.  
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Figure 1.3 illustrates that, for coherent communication, semiconductor lasers are used in 

conjunction with external modulators, which can be external to the laser chip or integrated on the 

same chip. Unlike direct modulation formats, these external modulators can be readily designed to 

have desirable properties such as chirp-free operation [5], and combined to independently 

modulate both the amplitude and phase of the laser (i.e. quadrature amplitude modulation (QAM)). 

This further improves spectral efficiency [6].  

External modulations can also take advantage of a larger range of materials which operate at 

low voltages and currents making them desirable for low power applications [7]. A coherent 

receiver is then used to detect both the phase and amplitude of the transmitted wave, either by 

interfering the received pulse with a delayed version of itself, or with a local oscillator [8]. 

Throughout the operation, both the transmitting laser and the local oscillator typically operate in 

the continuous-wave (CW) regime, and their phase noise directly affects the signal to noise ratio 

of the received signal.  For example, to operate at 40 Gb/s for 16 PSK and square 16 QAM, the 

laser linewidth in the range of 240 kHz and 120 kHz respectively is required [9]. In particular, the 

frequency noise near modulation sidebands (typically a few GHz to achieve high data rates) is 

especially crucial, since it will directly increase the bit error rate of the communication link.  

Beyond this, a number of diverse applications that require the determination of high sensitivity 

or resolution, such as laser spectroscopy [10], optical frequency metrology [11, 12], atomic clocks 

[13, 14, 15], and light detection and ranging (LIDAR), require ultra-narrow linewidth lasers.  

Conventionally, the narrow linewidth lasers have been realized in the form of fiber-based or 

solid-state lasers. These lasers are bulky and relatively expensive, limiting their usage as bench-

top systems in the laboratory environments.  

Historically, semiconductor lasers, also known as laser diodes, have served applications where 

size and cost are important factors, including fiber optic communications. In optical 

communication, phase-shifted distributed feedback (DFB) semiconductor lasers or DFB lasers 

with antireflection coated on one side of the cavity and high-reflection coated on the other side 

(AR/HR) have played a key role.  

The linewidth of the semiconductor lasers has been limited to the MHz-level, due to high loss 

in laser cavities and small size. Linewidth narrowing of the semiconductor lasers has been achieved 

by extending the laser cavity using an external cavity or by locking the laser to an atomic transition. 
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The use of those external components, however, removes the benefits of small size and low cost 

of semiconductor lasers. 

 

1.2 Silicon photonics and heterogeneously integrated Si/III-V lasers 
Semiconductor lasers and semiconductor optical amplifiers (SOAs) have been available in 

various III/V material systems (e.g. InP and GaAs) and are the main candidate for future efficient 

and low-cost optoelectronic integrated platform. 

Silicon (Si) photonics as an integration platform has recently become a focus in optoelectronics 

research. This is due to the fact that they can be fabricated with CMOS-based technology, enabling 

the integration of electronic devices on a silicon-on-insulator (SOI) wafer containing photonic 

devices. However, the indirect bandgap of Si has been an obstacle in the realization of electrically 

driven Si-based light sources. Although Si-based Raman lasers [16, 17] or Germanium(Ge)-on-Si 

lasers [18] have been demonstrated, electrically pumped all-Si lasers have yet to be realized.  

An alternative to electrically pumped all-Si lasers is heterogeneous integration of III-V 

materials, such as InP, and SOI waveguides that enable light generation on Si (Figure 1.4). 

Heterogeneously integrated Si/III-V lasers have previously been demonstrated by several groups, 

but have historically failed to achieve a linewidth better than that of their all III-V counterparts 

[19, 20, 21]. 

 

Figure 1.4 Diagram of heterogeneously integrated Si/III-V laser platform. 
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In this thesis, we show how to reduce the linewidth of the semiconductor lasers by orders of 

magnitude by making best use of the heterogeneous platform, which combines the lossy III-V 

active material and the low-loss passive Si material. Furthermore, we demonstrate that the strategy 

that we use for the reduction of the frequency fluctuation makes it possible for the laser to achieve 

even further reduction of the frequency noise, corresponding to a sub-kHz linewidth, at 

telecommunication relevant frequencies (i.e., a few GHz).  

In fact, noise reduction is not the only benefit of our new design. So far, the consistent 

performance of semiconductor lasers, even in the presence of external reflection, has been 

achieved by the use of costly, but indispensable optical isolators. It turns out that our strategy to 

reduce the frequency noise has the additional benefit of enabling us to accomplish a coherent and 

stable operation, even under external reflections.  

Our simple approach paves the path for the design of narrow-linewidth and stable 

semiconductor lasers that can function without the use of the bulky and costly components, such 

as external cavities or optical isolators.  

 

1.3 Thesis organization 
This thesis is organized as follows. Chapter 2 introduces the basic concepts of the laser physics 

and design, with emphasis on the effect of spontaneous emission on the frequency noise of a laser. 

We will also discuss the modal engineering in our Si/III-V laser as a way to achieve a narrow-

linewidth semiconductor laser. 

Chapter 3 presents the design and measurement of the grating-based defect-mode optical high-

Q resonators. In the later part of Chapter 3, the experimental demonstrations of the reduction in 

the frequency noise of the lasers are presented. 

Chapter 4 discusses the effect of the modal engineering on modulation response, especially in 

terms of the relaxation resonance frequency. The measurement of the intensity and frequency 

modulation response, and the linewidth enhancement factor of the lasers are described. 

Furthermore, we revisit the frequency noise measurement discussed in Chapter 3, and describe 

further reduction of the frequency noise at a few GHz range, revealing the intrinsic, quantum-

limited Schawlow-Townes noise floor of the lasers. 
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In Chapter 5, we derive the theoretical background regarding the sensitivity of a laser against 

external reflections, and experimentally demonstrate orders of magnitude reduced sensitivity to 

external reflections. 

Appendix A describes the procedures for the fabrication of the passive Si resonators as well as 

for the heterogeneous integration of Si and III-V. 

Appendix B presents the work, carried out during my early years in the group, on refractive 

index sensing based on on-chip integrated differential optical microring platform, which leverages 

laminar flow conditions. 
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Chapter  2   

PHASE NOISE IN HETEROGENEOUSLY SI/III-V LASERS 
 

 

A laser emits light through a process called stimulated emission, which provides the gain to 

overcome the loss in the optical resonator. However, stimulated emission is inevitably 

accompanied by spontaneous emission, which introduces phase as well as amplitude noise into the 

laser mode and sets the fundamental limit to the laser coherence. In this chapter, we will describe 

the basic physics and derive the effect of spontaneous emission on the phase noise of a laser field. 

It enables us to obtain insights that can be exploited to reduce the quantum-limited phase noise in 

a semiconductor laser. 

 

2.1 Laser physics 
A laser oscillator consists of a gain medium to amplify light, and an optical cavity to provide 

optical feedback and optical mode selection. Careful design of both the gain medium and the 

optical cavity is necessary to achieve a high degree of coherence in a laser. 

 

 Carrier generation and recombination in active regions 

Carrier generation 

A semiconductor laser is basically a PIN diode. The active region of the semiconductor laser 

resides in the intrinsic layer. The electrons and holes (i.e., the carriers) are injected into the active 

region from the n- and p-region, respectively. The modal field in the optical resonator stimulate 

the injected electron-hole pairs to recombine in the process of amplifying the field coherently. 

However, not all of the injected carriers reach the active region, leading to an increase in the 

leakage current in the laser. The fraction of the pump current that generates carriers – which will 

recombine both radiatively and non-radiatively – in the active region is characterized by the 

injection efficiency 𝜂E. The temporal generation rate of the total number of the injected electron-

hole pairs 𝑁	due to pump current 𝐼	into the active region can be written as, 
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GH
GI
= 𝜂E

J
K
,	 (2.1)	

 

where 𝑞 is an electron charge. 

The overall injection efficiency is composed of both the structural current injection efficiency 

and the current injection efficiency in the active region [22].  

The lateral current diffusion from the metal contact region, and the carrier loss due to poor 

interfaces in the cladding layers are the primary factors accounting for the structural injection 

efficiency. Our lasers, due to the heterogeneous nature of the structure with III-V material placed 

on top of Si, utilize the lateral-electrode structure, where both p- and n-metal are deposited in the 

same direction. Subsequently, they generate a large lateral current diffusion in the direction parallel 

to the active layer, thus increasing the total leakage current.  

Carrier escape through thermionic emission over the cladding layers causes degradation of the 

current injection efficiency in the active region, and hence degrades the total injection efficiency.  

Carrier recombination  

The injected carriers recombine via a number of mechanisms: 

1) The first mechanism is stimulated emission, where an incident photon stimulates the 

electron and hole to recombine, generating a copy of the photon in the same quantum state. 

This is the gain mechanism by which lasers amplify the light. This stimulated emission 

process allows the optical mode to build up coherently. The stimulated emission rate 𝑅NO 

represents the number of stimulated emission events per unit time.  

2) The second mechanism is similar to 1) except that the rate is independent of the optical 

intensity in the cavity, hence the name “spontaneous emission”. The photons, generated by 

spontaneous emission, have no correlation with the coherent laser field created through 

stimulated emission, and thus modulate the phase of the laser mode. Spontaneous emission 

events cannot be completely removed, and this implies that it is impossible to achieve 

perfect coherence (i.e., perfect sinusoidal wave) in a laser.  

3) The third mechanism is non-radiative recombination, which involves monomolecular 

recombination through surface defects in the active region of the laser. The non-radiative 

transition also can happen through Auger recombination, where energy from the electron-

hole recombination is transferred to another electron or hole. In these transitions, instead of 
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generating photons, the energy is dissipated as heat. 

 

The recombination through the spontaneous emission and the non-radiative transition, which 

does not require the existence of photons, is called a “natural decay process”, and is characterized 

by a carrier lifetime 𝜏. Then, the temporal decay rate of the total number of the carriers 𝑁	by a 

natural decay process can be written as 

 

 GH
GI
= −H

Q
.	 (2.2)	

	

 Gain and loss in laser cavities 

Gain 

For a laser to function as an optical oscillator, an optical cavity is needed to provide optical 

feedback. The electric field distribution of the standing wave in a cavity is usually referred to as 

the mode. 

As discussed in the previous section, light is amplified through a stimulated emission process 

in the gain medium. The modal gain, g (s-1) is defined as the fractional temporal growth in the 

number of photons in the mode 𝑁S [23], 

 

 g = T
HU

GHU
GI

= VWX
HU

.	 (2.3)	

 

This relation follows from quantized field theory and is of key importance in all that follows. 

The modal gain g can be expressed using the induced transition rate per electron due to one photon 

𝐴[ and the total number of the injected electrons 𝑁, 

 

 g = 𝐴[(𝑁 − 𝑁O\),	 (2.4)	

 

where 𝑁O\ is the carrier number at transparency, at which point the stimulated emission rate is 

equal to the stimulated absorption.  

Using the quantized electro-magnetic field and by applying the Fermi’s Golden Rule to the 

dipole interaction between atomic systems and electro-magnetic radiation, the induced transition 
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rate into the laser mode (l) per electron due to one vacuum-field photon (i.e., the spontaneous 

emission transition rate of the electron into the laser mode) can be derived as [23, p. 155], 

 

 𝐴[ = 𝑊NS
(_) = `abcbde

fg hd i	
𝐸_ 𝑟j `,	 (2.5)	

 

where 𝜇 is the dipole transition matrix element, 𝛥𝜈 j  is the frequency width of the lineshape 

function of the atom transition at the lasing frequency 𝜈m. 

The electric field distribution of the laser mode (𝐸_) is normalized as, 

 

 𝐸_ 𝑟 `𝑑𝑉 = 1p
qp .	 (2.6)	

 

With this normalization, the confinement factor of mode (l) in the region i can be written as,  

 

 Γt = 𝐸_ 𝑟 `𝑑𝑉t .	 (2.7)	

 

Thus, 𝐸_ 𝑟j ` in Equation 𝐴[ = 𝑊NS
(_) = `abcbde

fg hd i	
𝐸_ 𝑟j `, (2.5) can be viewed as the 

normalized field due to a single photon in the cavity at the location 𝑟j of the emitting atoms, and 

is our “knob” to engineer the spontaneous emission rate into the laser mode.  

The induced transition rate per electron, 𝑊NO
(_), by 𝑁S photons and the simulated emission rate 

due to the total number of the electrons, 𝑅NO, then can be written as,  

 

 𝑊NO
(_) = 𝑁S𝑊NS

(_).	 (2.8)	

 𝑅NO = 𝑊NO
_ 𝑁 − 𝑁O\ = 𝐴[ 𝑁 − 𝑁O\ 𝑁S.	 (2.9)	

 

Loss 

An optical mode in a cavity decays through various mechanisms. Photons can be lost 

intrinsically in the cavity through absorption in materials, scattering by the roughness of the 

surface, and radiation into leaky modes. Also, a portion of the photons is lost by escaping the 
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cavity through a mirror, which is used as a useful output of the laser. The total amount of loss that 

a mode experiences is expressed using 𝛼 (s-1), loss coefficient per unit time. 

A quality-factor (Q-factor) is also used to characterize the loss of the cavity and is defined as 

 

 𝑄	 = 𝜔 yWXz{|}
~�zWW

= �
�
= 𝜔𝜏S,		 	(2.10)	

 

where 𝜏S is the photon lifetime in the cavity.  

Then, the total loss experienced by a mode in a cavity composed of different materials can be 

expressed by a sum of losses in each material 𝛼E weighted by a modal confinement factor in each 

material (ΓE), 

 

 𝛼	 = ΓE𝛼EE .	 (2.11)	

 

For our lasers, we consider a heterogeneous platform composed of Si and InP, and the total loss 

of the platform can be expressed as, 

 

 𝛼O�O��	 = Γ�E	𝛼�E + Γ���q�𝛼���q�.	 (2.12)	

 

The above equation also can be expressed in terms of Q-factor, 

 

 T
�XzX��

	= ���
���
+ ������	

������	
= Tq������

���
+ ������	

������	
.	 (2.13)	

 

Thus, we see that having large modal energy in low-loss, high-Q Si than in high-loss, low-Q 

III-V (i.e., large Γ�E and small Γ���q�) results in the large total Q-factor. 

 

Threshold condition and threshold current 

As we increase the modal gain by injecting more current, the carrier number reaches the 

transparency carrier number 𝑁O\. A further increase in the carrier number is used to overcome the 

losses in the cavity. At the point where the modal gain equals the total loss in the cavity, the optical 

wave returns to the wave with the same amplitude and phase after each round trip in the cavity, 
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establishing a laser oscillation. Therefore, the laser threshold condition can be written with the 

threshold material gain gO�, 

 

 gO� 	= 𝛼O�O��	 =
T
QU
= �

�
.	 (2.14) 

 

Above threshold, any carrier number rise slightly increases the stimulated emission rate, 

increasaing the photon number through Equation g = T
HU

GHU
GI

= VWX
HU

. (2.3) and Error! Reference 

source not found.). Then, the increased photon number will in turn deplete the carriers through 

increased stimulated emission rate. This negative feedback clamps the gain above threshold at its 

threshold value gth.  

Since the gain above threshold is monotonically related to the carrier number, the carrier 

number is clamped at its threshold value 𝑁O�. 

 

 Spontaneous emission rate 

The stimulated emission rate is dependent on the population inversion (the difference between 

the number of excited electrons and ground state electrons), whereas the spontaneous emission 

rate depends only on the total number of excited electrons.  

At the steady-state above threshold, there is a balance between the number of photons generated 

by the stimulated emission and the photons lost in the cavity, and the balance yields, 

 

 𝑁` − 𝑁T 𝑊NO
(_) = HU

QU
,	 (2.15)	

 

where 𝑁T,` is the number of electrons in the valance and conduction band. 

Using Equation g = T
HU

GHU
GI

= VWX
HU

. (2.3𝑊NO
(_) = 𝑁S𝑊NS

(_). (2.8), and gO� 	= 𝛼O�O��	 =
T
QU
= �

�
.

 (2.14), it can be shown that the spontaneous emission rate into the lasing mode due to 𝑁` 

electrons in the conduction band (𝑅NS
(_)) and the total stimulated emission rate (𝑅NO) is related by, 

 

 𝑅NS
(_) = 𝑁`𝑊NS

(_) = Hb
HbqH�

T
QU
= �WU

QU
= 𝑛NSgO� =

�WU
HU
𝑅NO =

�WU�
�
,	 (2.16)	



 13 

 

where the population inversion factor 𝑛NS is defined as Hb
HbqH�

 [24, p. 192]. 

 Rate equations 

Based on the discussion so far, the rate equation for the total number of carriers in the active 

region with the volume 𝑉� can be written as,  

 

 GH
GI
= 	 𝜂E

J
K
−	H

Q
− 𝑅NO	 (2.17)	

 							= 	 𝜂E
J
K
−	H

Q
− g𝑁S	 (2.18)	

 																											= 	 𝜂E
J
K
−	H

Q
− 𝐴[(𝑁 − 𝑁O\)𝑁S	 (2.19)	

 

In the last equation, the 1st term describes the generation of the carriers via a current injection. 

The 2nd term accounts for the carrier recombination through both radiative and non-radiative 

process. The 3rd term is the loss of carriers through the stimulated emission. 

In the steady-state at threshold, with threshold current 𝐼O� and threshold carrier number 𝑁O�, the 

number of the photons is neglible (𝑁S = 0). Thus, Equation GH
GI
= 	 𝜂E

J
K
−	H

Q
− 𝑅NO (2.17) can be 

used to find the threshold carrier number 𝑁O�, 

 

 𝜂E
JX�
K
= 	 HX�

Q
.	 (2.20)	

 

As discussed, above threshold, the carrier number in a laser is clamped at its threshold value 

𝑁O�. Thus, we can obtain an above-threshold carrier number equation, 

 

 GH
GI
= 𝜂E

JqJX�
K

− gO�𝑁S.	 (2.21)	

 																										= 𝜂E
JqJX�
K

− 𝐴[(𝑁O� − 𝑁O\)𝑁S.	 (2.22)	

 

Using Equation GH
GI
= 𝜂E

JqJX�
K

− gO�𝑁S. (2.21) and gO� 	= 𝛼O�O��	 =
T
QU
= �

�
. (2.14), the 

photon number in the lasing mode above threhold (𝑁Sm) can be obtained as, 
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 𝑁Sm =
��
�X�

JqJX�
K

= 𝜂E𝜏S
JqJX�
K

= 𝜂E
�
�
JqJX�
K

.	 (2.23)	

 

The rate equation for the total number of photons in the laser resonator can be written as,  

 

 GH�
GI

= 𝑅NO −
HU
QU
+ 𝑅NS

(_)	 (2.24)	

 								= g𝑁S −
HU
QU
+ 𝑅NS

(_)	 (2.25)	

 																													= 𝐴[ 𝑁 − 𝑁O\ 𝑁S −
HU
QU
+ 𝑅NS

(_)	 (2.26)	

 

In the above equation, the 1st term accounts for the stimulated emission rate. The 2nd term 

describes the photon loss in the cavity both internally and through the laser mirrors. The 3rd term 

corresponds to the spontaneous emission rate. 

 

2.2 Phase noise in semiconductor lasers 

Based on the analysis described so far, we now investigate the phase noise in semiconductor 

lasers. The lasing mode can be expressed as, 

 

 𝐸 𝑡 = 𝐴 𝑡 e�(�eI�h� I ),	 (2.27)	

 

where 𝐴(𝑡) is the amplitude, 𝜔m/2𝜋 is the lasing frequency, and 𝛥𝜃(𝑡) is the random phase. 

So far, we have assumed that the carrier and photon number in a laser remain constant in the 

steady-state operation. In fact, even in the steady state and in the absence of any kind of 

modulation, random carrier and photon recombination and generation occurs, causing fluctuations 

in the carrier and photon number (i.e., noise).  

The frequency noise of a laser partly results from technical noise, with a dominant 1/f noise. 

This noise includes the noise from the pump source, and vibrations of cavity mirrors. As 

frequencies increase, the ever-decreasing 1/f noise is eventually dominated by the quantum white 

noise due to spontaneous emission into the laser mode. This type of the frequency noise is limited 
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by fundamental quantum processes. Thus, it is the noise that is ultimately responsible for the 

deviation of the lasing field from that of an ideal monochromatic field. 

 

 Phase drift due to spontaneous emission (Schawlow-Townes linewidth) 

In 1982, Henry showed that the phase variance of a laser, accumulated over time 𝜏, due to 

spontaneous emission into the laser mode, can be expressed using the total number of the 

spontaneous emission 𝑅NS
_ 𝜏 , the photon number in the lasing mode 𝑁S , and the linewidth 

enhancement factor 𝛼 [25], 

 

 Δ𝜃 𝜏 ` =
VWU
 

`HU
1 + 𝛼` 𝜏.	 (2.28)	

 

Assuming that the laser has only a white frequency noise, the phase variance Δ𝜃 𝜏 `  can be 

shown to be related to the laser linewidth Δ𝜈¡ as [26, p. 488],  

 

 Δ𝜃 𝜏 ` = 𝛥𝜔¡𝜏 = 2𝜋Δ𝜈¡𝜏.	 (2.29)	

 

By combining the two above equations, a spontaneous emission-induced linewidth, known as 

“Schawlow-Townes linewidth”, can be obtained as,  

 

 Δ𝜈�¢ =
VWU
 

£aHU
1 + 𝛼` .	 (2.30)	

 

As seen in the above equation, the Schawlow-Townes linewidth originates from two sources.  

First, the spontaneous emission causes the instantaneous phase change to the lasing field (the 

blue line in Figure 2.1), and the term 
VWU
( )

£a𝑁p
 describes this effect.  

Besides, the spontaneous emission alters the intensity of the lasing field. To restore the steady-

state photon number, the laser undergoes relaxation resonance oscillations, causing the carrier 

fluctuations. These carrier fluctuations result in not only a gain variation (to restore the steady-

state photon number), but also a variation in the refractive index, and finally manifest as an 
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additional, delayed phase change [27, 28]. The linewidth enhancement factor 𝛼  effectively 

characterizes the coupling between the gain variation and the refractive index variation. 

Using Equation 𝐴[ = 𝑊NS
(_) = `abcbde

fg hd i	
𝐸_ 𝑟j `, (2.5), gO� 	= 𝛼O�O��	 =

T
QU
= �

�
. (2.14), 𝑁Sm =
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. (2.23) and gO� = 𝐸_ 𝑟j `𝑉jg[(𝑁`O − 𝑁O\)  ( g′ : temporal 

differential material gain coefficient, 𝑉j : volume of the active region), the quantum-limited 

Schawlow-Townes linewidth in Equation Δ𝜈�¢ =
VWU
 

£aHU
1 + 𝛼` . (2.30) can be expressed in 

terms of the Q-factor and the bias current, 

 

 Δ𝜈�¢ =
abcb�eb

`a��fg hd i JqJX�

y  ¥i bHX{
�

+ �e
�¦�b

1 + 𝛼` .	 (2.31)	

 

This expression demonstrates that the Schawlow-Townes linewidth has a 1 𝑄` dependence 

and thus, the reduction of the modal loss in a laser (i.e., high-Q) is a key requirement for the 

reduction of a linewidth in the laser. The increase in the pump current also reduces the linewidth 

by increasing the number of photons 𝑁S stored in the cavity. Thus, linewidths measured from 

different lasers should be compared at the same value of 𝐼 − 𝐼O� 	to make a fair comparison. 

 

 

Figure 2.1 (Left) The phasor model for the laser field phase. It shows the effect of a single 
spontaneous emission event on the laser field. The laser field rotating at a radian frequency of v0 
has a length of 𝑁S. The phase Δ𝜃 represents phase fluctuation caused by lasing frequency noise 

due to one spontaneous emission event. Spontaneous emission introduces direct phase noise 
(blue line) and amplitude noise (green line). Spontaneous emission creates photons whose phases 

are uncorrelated with that of the lasing field, making the angle 𝜙 a random variable uniformly 
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distributed between [0, 2𝜋]. (Right) The additional photons created by spontaneous emission 
induce carrier density fluctuations through stimulated emission. This coupling between photons 

and carriers is called a relaxation resonance and will be discussed in Section 4.2. The phase 
fluctuation caused by the refractive index change due to carrier density fluctuation is 

characterized by a parameter called a “linewidth enhancement factor” (𝛼 in Equation Δ𝜃 𝜏 ` =
2𝜋`𝜏𝑆¨d 𝜔 . (2.33). 

 

Experimentally, the Schawlow-Townes linewidth can be obtained by measuring the power 

spectral density (PSD) of the frequency noise 𝑆¨d 𝑓 . The phase variance of the laser can be 

written in terms of the frequency noise PSD (double-sided) [29, p. 197], 

 

 Δ𝜃 𝜏 ` = 2𝜋`𝜏` 𝑆¨d 𝑓
NEªb a«Q
a«Q b 𝑑𝑓p

qp .	 (2.32)	

 

If the frequency noise PSD 𝑆¨d(𝑓) is assumed to be a white frequency noise, the integral in the 

above equation becomes, 

 

 Δ𝜃 𝜏 ` = 2𝜋`𝜏𝑆¨d 𝜔 .	 (2.33)	

 

By replacing the above equation with Equation Δ𝜃 𝜏 ` =
VWU
 

`HU
1 + 𝛼` 𝜏. (2.28), the 

frequency fluctuation (noise) PSD (double-sided) then can be obtained,  

 

 𝑆hd 𝑓 =
VWU
 

£abHU
(1 + 𝛼`).	 (2.34)	

 

 

 Linewidth enhancement factor 

The linewidth enhancement factor 𝛼, also called Henry's alpha parameter or amplitude-phase 

coupling factor, is defined as the ratio of the real refractive index fluctuation to the imaginary 

refractive index fluctuation due to a variation of the carrier density in the active region, 

 

 α ≡ G�{ GH
G�� GH

= − £®
¯
G�{ GH
G� GH

= 	− £®
¯j

G�{
GH
,	 (2.35)	
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where 𝑎 = 𝑑g 𝑑𝑁 represents a differential material gain and g = 2𝑘m𝑛E = 4𝜋𝑛E 𝜆 is used.  

Physically, the linewidth enhancement factor arises from asymmetry of the differential gain 

spectrum about the lasing frequency [30]. In the case of quantum-well (QW) lasers (such as ours), 

α ranges between 2 and 10 [31]. This causes the phase noise created by the carrier fluctuations due 

to the spontaneous emission to be larger than the direct phase noise by the factor of 𝛼` (i.e., more 

than an order of magnitude), and becomes the dominant frequency noise source of semiconductor 

lasers. Whereas the linewidth enhancement factor in the quantum-dot (QD) lasers is smaller than 

in the QW lasers. This is because of the high differential gain and a small carrier-induced 

modulation of the refractive index in the active region. The delta-function-like density of states 

(DOS) of 0-dimensional QD system yields a narrow symmetrical gain spectrum and subsequently 

symmetrical differential gain spectrum around the lasing frequency. Ideally, the QD lasers should 

have zero linewidth enhancement factor, however, it is difficult to achieve ideal QD properties, 

because of QD size variations. The linewidth enhancement factor less than a value of 1 has been 

reported for the QD lasers. [32, 33]. 

 

2.3 Phase noise reduction in heterogeneous Si/III-V lasers 
 Limitation of conventional semiconductor lasers 

As illustrated in Figure 2.2, in the conventional semiconductor lasers made out of the III-V 

semiconductors, the cladding layers are heavily-doped to a concentration of 1018  to 1019  to 

achieve efficient carrier injection into the active region. The abundant free-carriers (electrons in 

the n-cladding and holes in the p-cladding layer) in those cladding layers interact with photons 

through free-carrier absorption (FCA). Thus, the lasers suffer from high loss, and the Q-factor of 

the lasers has been less than 104.  

Also, the larger refractive index in the active region than in the surrounding cladding layers, 

due to the plasma dispersion effect, causes the mode to be concentrated in the active region, making 

the peak of the lasing mode profile to be located at the active region (i.e., large 𝐸_ 𝑟j `) and 

subsequently, resulting in the high spontaneous emission rate. 
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Figure 2.2 Transverse mode profile 𝐸_ 𝑟j ` in conventional III-V laser and in a heterogeneous 
Si/III-V laser. (Left) In the conventional semiconductor laser made with III-V, the electric field 

of the laser mode is maximum at the active region (large 𝐸_ 𝑟j `), resulting in large 
spontaneous emission rate (𝑅NS

(_)). Also, the large confinement in the lossy III-V material leads to 
high loss and small number of photons (Np) in the laser. For these reasons, the linewidth of the 
III-V lasers is limited to the MHz range. (Right) In our heterogeneous lasers with two different 
Si/III-V materials, most of the light is confined in low-loss Si instead of lossy III-V. Due to low 

electric field at the active medium (small  𝐸_ 𝑟j `), we effectively reduce the spontaneous 
emission rate (𝑅NS

(_)). Also, due to the small confinement factor in the III-V, a greater number of 
photons in the laser cavity (Np) can be achieved. Reduction in gain due to reduced stimulated 
emission is balanced with reduction in loss, resulting in a constant threshold current density 

despite the drastic change of electric field distribution in the active region. 

 

Thus, the use of the same layer (i.e., active region) as both photon-generating and photon-

storing layers inherently causes this platform to be lossy, and thus limits its linewidth to be in the 

range of a MHz [34, 35]. 

 
 Phase noise reduction through modal engineering in heterogeneous lasers 

Silicon is transparent for the light of a wavelength, which is bigger than its bandgap wavelength 

of approximately 1.12 µm. At the wavelength of 1.5 μm, absorption of light in Si is negligible. 

Also, advanced CMOS fabrication technologies allow for the fabrication of the Si waveguide with 

minimal scattering losses. In Section 3.1.2, we show the implementation of a high-Q Si resonator, 

in which the Q-factors up to 106  were achieved. The availability of the high-Q Si resonators, 

however, does not by itself yield a narrow-linewidth laser. 
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In the heterogeneous Si/III-V platform, to achieve a narrow-linewidth laser, the reduction of 

the modal loss can be accomplished by storing the vast majority of the mode energy in low-loss Si 

instead of the lossy III-V active region, thus reducing 𝐸_ 𝑟j ` in the quantum wells. To “push” 

the mode further into the Si, i.e., to reduce 𝐸_ 𝑟j ` further, we introduce a thin silicon oxide 

(SiO2) layer, which we call the quantum noise control layer (QNCL), between the Si and III-V 

layers. Figure 2.3 illustrates the change in the transverse mode profile with the increasing QNCL 

thickness. The mode is “pushed” further into the Si, reducing the electric field “intensity” at the 

active region ( 𝐸_ 𝑟j `) and the confinement factor in the III-V layer (Γ���q�). The reduction of 

𝐸_ 𝑟j ` reduces the spontaneous emission rate into the lasing mode (𝑅NS
(_)), and the reduced Γ���q� 

leads to a greater number of photons in the laser cavity (𝑁S). The two combined effects reduce the 

linewidth of the laser effectively.  

 

 
Figure 2.3 SiO2 layer, which we call the “quantum noise control layer (QNCL)”, is introduced in 

between Si and III-V to further push the mode into the Si layer and reduce the confinement 
factor in the active region (QWs). (Top figures) The peak of the transverse mode profile stays 

further away from III-V (i.e., reduced 𝐸_ 𝑟j `), and the confinement factor in the QWs 
decreases with thicker QNCL thickness. (Bottom figures) COMSOL simulation showing the 
transverse mode profile with varying QNCL thickness. The reduction of the QW confinement 

factor with increasing QNCL thickness is evident. 

 

This strategy of reducing the frequency noise fluctuation by pushing the mode further into the 

Si continues to work until the loss from the Si becomes comparable to the loss from the III-V. 
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From that point on, the overall improvement begins to saturate (i.e., saturation of the total Q-

factor), but the reduction in gain continues.  The imbalance between the reduction in the gain and 

loss then leads to an increase in the threshold carrier density to maintain the gain that matches the 

no-longer-decreasing modal loss. In turn, the increase in the threshold carrier density causes an 

increase in the spontaneous emission rate, diminishing the returns in reducing the phase noise. 

 

Threshold current and output power 

As long as the dominant loss in the laser cavity is the loss in III-V, the reduction in the gain, 

loss, and the spontaneous emission rate occurs at the same scale, as modal engineering shifts modal 

energy away from the active region. As a result, the reduction in the laser linewidth can be 

achieved, while parameters such as the threshold carrier density, differential quantum efficiency 

(the ratio between the generated photon number and the injected carrier number, i.e., G~e/fd
GJ/K

), and 

subsequently, the optical output power are unaffected by the modal engineering. 

 

2.4 Conclusions 

In this chapter, we showed theoretically that by storing the vast majority of the modal energy 

in the low-loss Si rather than in the high-loss III-V active region, we can reduce the linewidth of 

the semiconductor lasers by two to three orders of magnitude, while keeping other parameters 

(e.g., threshold current density, output power density) the constant. In Chapter 3, we will provide 

experimental evidence that the dramatic linewidth reduction is possible through the modal 

engineering. 
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Chapter  3   

PHASE NOISE REDUCTION IN HETEROGENEOUS SI/III-V 

LASERS 
 

In Chapter 2, we discussed the modal engineering between the low-loss Si and high-loss III-V 

active layer as a way to reduce the linewidth of a laser by decreasing the total loss of a laser cavity 

(i.e., increasing the Q-factor), while keeping the other parameters such as the threshold current 

density, and output power density constant. Thus, it is critical to implement a high-Q resonator in 

the low-loss Si for this modal engineering strategy to be effective. In this chapter, we 

experimentally demonstrate the achievement of a few to tens of kHz linewidth in our lasers 

fabricated using the high-Q Si resonator through the modal engineering strategy.  

In the 1st part of the chapter, the design and measurement results of the fabricated high-Q Si 

resonator will be presented. In the 2nd part, measurement results of the fabricated lasers including 

the frequency noise measurements are described. 

 

3.1 High-Q Silicon resonator for high-coherence heterogeneous lasers 

To achieve higher total Q-factor using the modal engineering between Si and InP and thus a 

narrow intrinsic quantum-limited linewidth in laser, a high-Q cavity needs to be employed as an 

integral part of the laser resonator. In this work, a 1D-grating-based defect-mode resonator is 

utilized to implement a high-Q cavity in Si for various purposes including support of a single mode 

with a very high-Q factor, ease of change of mirror strength, and small footprint required on-chip.  

In this section, the design and the measurement results of the high-Q Si resonator will be 

presented. The fabrication part of the resonator will be discussed in Appendix A.   

 

 Si resonator design 

Transverse Si waveguide design 

As discussed in Chapter 2, increasing Q-factor in the Si/III-V lasers requires that most of the 

modal energy be confined in the low-loss Si rather than in the lossy III-V active layer. 
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Figure 3.1 Optical field intensity distribution of TE0 mode in the 2D Si/III-V laser simulation. 

 

To confine more modal energy in the Si than the III-V layer, Si must have a larger refractive 

index than InGaAsP/InP epi-wafer (~3.45). This is achieved using an SOI wafer with 500 nm thick 

Si, which is thicker than conventional photonic-application SOI wafers with 200 to 400 nm Si. A 

shallow etch into the Si is utilized in order to mitigate the interaction of the optical mode with the 

sidewalls, thus minimizing the loss from sidewall scattering. This also enables the use of a long 

defect-section in our resonators, minimizing leakage loss to the radiation modes. The width of the 

Si waveguide is chosen to accommodate TE0 and TE1 mode in the waveguide. Due to TE1 mode’s 

odd transverse symmetry, it interacts minimally with gratings that have even transverse symmetry. 

Figure 3.1 shows the optical traverse profile of the TE0 mode in our Si/III-V waveguide. The design 

parameters of the Si waveguide are shown in Table 3.1. 

 

Parameters Value 

Si waveguide thickness 500 nm 

Si waveguide width [1:0.5:2.5] μm 

Si rib waveguide etch depth 60 nm 

SiO2 QNCL thickness (tQNCL) 50 ~ 150 nm 

Table 3.1. 2D Si waveguide design parameters 

 

We have designed and tested a series of lasers where the thickness of the SiO2 quantum noise 

control layer (QNCL) varies from 50 to 150 nm. The confinement factor in each layer of Si, III-V, 

and QW is shown in the Table 3.2 for each thickness. When t´µ¶¡ is 150 nm, the confinement 

factor in Si reaches 99%, leaving less than 1% in III-V.  
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tQNCL ΓSi ΓIII−V ΓQW 

0 nm 0.79 0.21 0.031 

50 nm 0.90 0.10 0.015 

100 nm 0.96 0.03 0.006 

150 nm 0.99 0.003 0.002 

Table 3.2 Confinement factors in Si, III-V, and QW layer for various QNCL thickness. 

 

1D grating mode-gap resonator design 

In 1D-grating-based mode-gap resonators, a photon-bandgap effect is used to confine light in 

the in-plane direction. In-plane gratings in the Si waveguide are designed such that its defect 

section shapes its photonic well to be parabolic (Figure 3.3Figure 3.4), analogous to an electron in 

a parabolic potential well. The mode in the parabolic potential well exhibits a well-defined 

Gaussian spatial field envelope along the z-direction (i.e., wave-propagating direction). Our design 

features an especially long defect length. The gentle z-variation of the grating reduces radiation 

loss to unbound radiation modes. In our elongated defect section with a parabolic potential well, 

the envelope of the in-plane mode profile varies gently, but still remains spatially localized as a 

Gaussian function [37, 38, 39, 40]. 

Reflectors for the resonator that bound the defect section are made using periodic gratings. The 

gentle variation in the defect section is made by gradually modulating the strength of the gratings. 

In our design, we choose to vary the width Wy of the gratings in the direction perpendicular to the 

z-direction (Figure 3.2). 

To obtain the band edge frequencies, i.e., conduction band frequencies fc and valence band 

frequencies fv for each grating size, a 3D unit cell simulation is performed using the commercial 

finite element method software Comsol, and the eigenfrequencies of the infinitely long 3D unit 

grating are searched. To reduce computation time, the grating unit cell is cut in half along the light 

propagating direction (z-direction in Figure 3.2), and the perfect electric conductor (PEC) 

boundary condition is applied to the cut boundary for the simulation of the even TE0 mode. To 

further reduce the computation time, the grating is cut in half once again along the x-direction, and 

the PEC and PMC (perfect magnetic conductor) boundary condition is properly applied to each 

surface to extract the eigenfrequencies of the dielectric and the air mode as a function of a Wy [40]. 

The conduction band frequency fc is extracted from the air mode, and the valence band frequency 
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fv is extracted from the dielectric mode. Using these band edge frequencies, along with our pre-

defined parabolic well structure, the spatial mode profile in the cavity and the mirror strength (i.e., 

external Q-factor) can be obtained using the 1D coupled-mode equation. 

 

 

Figure 3.2 Grating unit cell model for 3D periodic grating simulation. 

 

Parameters Value 

Si layer thickness 500 nm 

Si waveguide width 2.5 μm 

Si rib waveguide etch depth 60 nm 

SiO2 QNCL thickness (tQNCL) 100 nm 

Grating period 240 nm 

Wx 120 nm 

Etch depth difference between grating and trench 

area due to ARDE effect 

15 nm 

Table 3.3 3D grating unit cell simulation parameters. 

 

For our resonators, we design and fabricate both the accept-mode and donor-mode type 

resonators, of which the optical band structure is shown in Figure 3.3 and Figure 3.4, respectively 

[41].  
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Figure 3.3 Schematic of the acceptor-type defect mode resonator and its optical band structure. 

 

 

 

Figure 3.4 Schematic of donor-type defect mode resonator and its optical band structure. 
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For both type of the resonators, two kinds of the photonic well depth V = 70, 120 GHz were 

used. Even though the photon well depth of 70 GHz creates a single-mode in the photonic well, 

120 GHz was included in the design to create a mode in the well even when the Si material was 

under-etched. 

For the mirror section of the resonator, periodic gratings with Wy = 300 nm (coupling 

coefficient 𝜅 = 110 cm-1) are used, creating a photonic bandgap of approximately 300 GHz (Figure 

3.3 and Figure 3.4). 

The mirror strength is designed to cover all the external coupling regimes from the over-

coupling (Qext < Qint) to the under-coupling regime (Qext > Qint). Table 3.4 shows the external Q-

factor in terms of the mirror length. The external coupling strength to achieve an optimum laser 

output power can be theoretically calculated [26, p. 248], and was found to be approximately when 

Qext is 0.3 to 0.5 of Qint. In the later laser measurements, the optimum output power was achieved 

when the mirror had the number of grating holes Nmirror = 1200 and Nmirror = 1600 for the 50 nm 

and 90 nm QNCL lasers, respectively. More details about this resonator design can be found in 

[42]. 

  

Number of 

grating holes in 

the mirror section  

Length of the 

mirror (µm) 

External  

Q-factor 

Reflectivity 

(R) 

400 96 1.6×104 0.63 

800 192 7.2×104 0.90 

1200 288 1.9×105 0.96 

1600 384 3.8×105 0.98 

2000 480 4.8×106 0.99 

 

Table 3.4 External Q-factor as a function of number of grating holes in the mirror section (for the 
reflectivity calculation, the laser cavity round time 𝜏¡ of 6 ps was used). 

 

 Si resonator passive measurement 

The transmission spectrum of the donor-type mode-gap resonator as a function of frequency is 

shown in Figure 3.5. The high-Q mode from the donor-type mode-gap resonator is found to be 
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resonant at a wavelength inside the photonic bandgap, near the conduction band edge (high 

frequency). In the top figure, the resonance wavelength is near 1565 nm, and the measured Q-

factor is 105, limited by the external Q-factor (mirror loss). With an under-coupled mirror, as 

shown in the bottom figure, the loaded Q-factor reaches 1 million, implying that the intrinsic Q-

factor of the localized mode is near 1 million. 

 

Figure 3.5 Transmission spectrum of high-Q Si resonators (Top figure: donor-type mode, Ndefect 
= 299, Nmirror = 800, V = 200 GHz, bottom figure: donor-type mode, Ndefect = 299, Nmirror = 2000, 

V = 200 GHz). 
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Figure 3.6 Transmission spectrum of passive Si resonators with donor-type (in red) and acceptor-
type (in blue) mode (Donor-mode: Ndefect = 499, Nmirror = 1200, V = 150 GHz, acceptor-mode: 

Ndefect = 299, Nmirror = 2000, V = 150 GHz). 

 

 

Figure 3.7 Grating period vs. resonance wavelength of the Si resonator. Resonance wavelength 
can be coarsely tuned by varying the grating period. Grating period difference of 2.5 nm leads to 
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resonance wavelength difference of ~15 nm. In all wavelength, Q-factor larger than 105 is 
achieved. 

 

Figure 3.8 Grating period vs. resonance wavelength of the Si resonator. Resonance wavelength 
can be coarsely tuned by varying the grating period. Grating period difference of 2.5 ~nm leads 

to resonance wavelength difference of ~15 nm. In all wavelength, Q-factor larger than 105 is 
achieved. 

 

Figure 3.6 shows overlaid plots of transmission spectra of donor- and acceptor-type modegap 

resonator. The acceptor-type mode resides near the valence band edge (low frequency), in contrast 

with the donor-type mode in the low wavelength. Similar Q-factors have been observed between 

the acceptor- and donor-type resonators.   

These in-plane resonators can be fabricated into a dense array of lasers, with each device 

emitting a different wavelength, which is suitable for applications such as WDM. The Bragg 

condition 𝜆¸ = 2𝑛¹ºº𝑎 reveals that either the grating period or effective refractive index can be 

varied to change the resonance wavelength.  

The coarse resonance wavelength tuning can be obtained by varying the grating period. The 

grating period is varied from 235 to 240 nm with a step of 2.5 nm. The fixed grating period change 

of 2.5 nm is limited by the nominal minimum beam step size of e-beam lithography. Figure 3.7 

shows that the resonance wavelengths are distributed between 1540 and 1570 nm, and a change of 
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the grating period by 2.5 nm gives a resonance wavelength change of approximately 15 nm. Q-

factors larger than 105 are achieved at all grating periods.  

Fine-tuning of the resonance wavelength can be achieved by varying the effective refractive 

index, which can be accomplished with the waveguide variation. Figure 3.8 shows that when the 

waveguide with is varied from 2 to 3 µm, the resonance wavelength changes by 2 nm. This fine-

tuning range of 2 nm is not enough to cover the coarse wavelength tuning of 15 nm. However, this 

limitation can be circumvented by using the scaling feature of the e-beam lithography. By varying 

the lens current, the field scaling and the arbitrary step size of the e-beam can be obtained. This 

limitation also can be avoided when patterns are written using optical lithography with feasible 

resolution and a continuously scaling optical mask. 

 

3.2 Laser measurements 
In this section, the laser measurement results are presented. The III-V mesas are fabricated two 

different ways in this thesis: one method employs the ion implantation and the other the oxide-

confinement. The III-V wafers are InP-based and have five InGaAsP quantum wells (QWs). The 

fabrication procedure is discussed in A.2. The lasers with the QNCL thickness of 50 and 90 nm 

are fabricated.  

 

 LIV and OSA measurement 

The devices are mounted such that the Si substrate in an SOI wafer makes contact with a 

temperature-controlled copper heat sink. The light-current characteristic of the fabricated lasers is 

shown in Figure 3.9. 

The threshold current of the 50 nm QNCL laser is 55 mA, and that of the 90 nm laser 65 mA. 

Despite the dramatic decrease in the confinement factor in the active region in the 90 nm QNCL 

laser compared with the 50 nm laser, they possess similar thresholds. This demonstrates our claim 

that the threshold current remains constant even with the reduction of the laser modal gain when 

the QNCL thickness increases. This is due to the fact that the drop in optical losses, with the 

increasing QNCL thickness, is nearly the same as the drop in the gain.  

The output power from the lasers is in the range of 2 mW. Thermal roll-off occurs around 200 

mA at 20℃  in both lasers. The roll-off at relatively low current is due to the high thermal 

impedance in the laser and subsequent high rise of the temperature in QW. The poor thermal 
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conductivity mostly comes from the QNCL oxide layer and the buried oxide layer between the 

QW and the heat sink underneath the Si substrate. The maximum pumping current of the laser can 

be increased by improving the thermal conductivity of the laser by directing heat generated in the 

QW to the III-V layer. This can be accomplished using a flip-chip bonding technique [43] or 

thermal shunt method [44, 45].  

 

 

Figure 3.9 Light-current and current-voltage characteristics of the fabricated lasers with 50 nm 
(device ID: hQsp6 ch01 slot2 bar6 dev5) and 90 nm (hQsp7 ch9 slot1 bar4 dev9) QNCL lasers. 

 

 Temperature dependence 

The temperature dependence of the laser is determined by taking LI curves while varying the 

stage temperature. Figure 3.10 shows the LI characteristics when the stage temperature is varied 

from 20 ̊ C to 45˚C. We achieve the lasing operation up to 45˚C. Overall characteristic temperature 

(T0) and above-threshold characteristic temperature (T1) are extracted using the formula 𝐼O� =

𝐼m𝑒½/½e and 𝐼 − 𝐼O� = 𝐼Sm𝑒½/½�. T0 of 51˚C and T1 of 80˚C have been obtained. 
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Figure 3.10 Light-current and current-voltage characteristics of the 50 nm QNCL laser at 
different stage temperatures (device ID: hQsp6 ch01 slot2 bar06 dev05). 

 

The optical spectrum is taken using an optical spectrum analyzer with the resolution 

bandwidth of 0.08 nm. Figure 3.11 shows the optical emission spectrum of the 50 nm and 90 nm 

QNCL lasers at the bias current of 160 mA and 190 mA, respectively. The lasers exhibit stable 

single-mode operation with a side-mode suppression ratio (SMSR) of greater than 45 dB at the 

lasing wavelength of 1577 nm and 1556 nm. 

As shown in Figure 3.12, a differential lasing wavelength rate of 0.012 nm/mA in the 50 

nm QNCL laser has been obtained. Figure 3.13 shows the spectra of the 90 nm QNCL lasers when 

the grating period is varied between 237.5 and 242.5 nm with a step of 2.5 nm. 
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Figure 3.11 Optical emission spectrum of the 50 nm and 90 nm QNCL laser at 160 mA and 190 
mA, respectively (device ID: hQsp6 ch01 slot2 bar6 dev5, hQsp7 ch09 slot1 bar04 dev09). 

 

Figure 3.12 Optical emission spectrum of the 50 nm QNCL laser at different currents (device ID: 
hQsp6 ch01 slot2 bar06 dev05). 
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Figure 3.13 Optical emission spectrum of the three different 90 nm QNCL lasers. Each device 
has a different grating period. 

 

3.3 Frequency noise measurements 

 Measurement setup 

Frequency noise due to spontaneous emission can be determined by measuring the power 

spectral density (PSD) of the phase deviation 𝛥𝜃 . Figure 3.14 displays the frequency noise 

measurement setup.  

A ultra-low noise laser diode driver (ILX lightwave, LDX-3620B) is used to pump the laser, 

and the laser light is collected using a lensed fiber (tapered PM fiber with AR coated, TPMJ-3A-

1550-8/125-0.25-5-2-12-0.5-AR). Two optical isolators are placed after the lensed fiber to prevent 

undesirable external reflections from affecting the laser linewidth.  
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Figure 3.14 Frequency noise measurement setup (DUT: device under test, PD: photodetector, 

MZI: Mach–Zehnder interferometer, RFSA: RF spectrum analyzer). 

 

A Mach-Zehnder interferometer (MZI) with a FSR of 1.575 GHz (𝜏 = 0.6 ns) is used as a 

frequency discriminator by converting phase fluctuations into photocurrent fluctuations. MZI 

output is split into two photodetectors using 95%/5% fiber optic couplers. 5% tab of the MZI 

output is connected to a slow photodetector (PD, New-Focus 1817), and used to stabilize and lock 

the differential phase between the two arms at the quadrature point (𝜔m𝜏 = 𝜋 2) for the duration 

of the measurement [46]. One of the arms of the MZI was mounted on a piezo-electric fiber 

stretcher (Evanescent Optics, 915B). The output of the slow PD is routed to an electronic feedback 

circuit (custom battery powered), which is connected to the piezo-electric controller (Evanescent 

Optics, 914) and drives the fiber stretcher. The two 95% tabs of the MZI are connected to a fast 

balanced photodetector (PD, Optilab BPR-20-M), which removes most of the intensity noise 

present in the field. The PSD of the photocurrent generated by the PD is measured by an RF 

spectrum analyzer to extract the frequency noise PSD and finally the laser linewidth. 

The laser’s linewidth is extracted from the measured PD current PSD as follows. The collected 

laser’s electric field is expressed with the amplitude of the field 𝐴(𝑡), the lasing frequency 𝜔m, and 

the phase fluctuation caused by lasing frequency noise 𝜃 𝑡 , 

 

 𝐸 𝑡 = 𝐴 𝑡 𝑒t(�eI�� O ).	 (3.1)	

 

The optical field is then sent through the MZI, and the field at the output of the MZI is written 

as 

 𝐸¾¿� 𝑡 = T
`
𝐸 𝑡 − 𝐸 𝑡 − 𝜏 .	 (3.2)	
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The output of the MZI is measured with a photodetector, which generates a photocurrent 

proportional to the intensity of the field. The photocurrent from each output of the balanced PD 

can be expressed using the phase difference between the two MZI arms Δ𝜃 𝑡, 𝜏 = 𝜃 𝑡 − 𝜃(𝑡, 𝜏) 

and a phase to photocurrent gain conversion factor 𝐼�  

 

 𝐼ÀÁ	�ª¹	S�\O 𝑡 = 𝐼m ±
JÃ
`
cos(𝜔m𝜏 + Δ𝜃 𝑡, 𝜏 )	 (3.3)	

 

Then, the output of the balanced PD is the sum of each output, and is written as 

 

 𝐼 ÀÁ 𝑡 = 𝐼� cos(𝜔m𝜏 + Δ𝜃 𝑡, 𝜏 ).	 (3.4)	

 

The interferometer is locked at quadrature (𝜔m𝜏 = 𝜋 2) and under the assumption that the 

phase fluctuation Δ𝜃(𝑡, 𝜏) is small enough, the PD current generated by the balanced PD becomes 

proportional to Δ𝜃(𝑡, 𝜏),  

 

 𝐼 ÀÁ 𝑡 = 𝐼�Δ𝜃 𝜏 .	 (3.5)	

 

The phase to current gain conversion factor 𝐼� is found experimentally by modulating 𝜔m𝜏 from 

its quadrature point and measuring the maximum excursion of the voltage recorded on a 

oscciloscope. Since our lasers emitted more than 2 mW of optical power in free space, it was 

possible to obtain 1 mW in fiber with careful alignment of the lensed fiber. Possessing optical 

power more than 1 mW in fiber allowed us to perform the frequency noise measurement without 

any use of an amplifier, making our gain conversion factor 𝐼� the same as the DC current 𝐼m. The 

DC current 𝐼m was characterized at various levels of optical power, using a frequency chirped laser 

developed in the group [47], and used as the gain factor 𝐼�. 

The RF spectrum analyzer measures the PSD of the PD current (𝑆JÅÆ 𝜔 , one-sided, W/Hz), 

which can be converted into the PSD of the phase fluctuation (𝑆¨� 𝜔 , Hz2/Hz): 

 

 𝑆JÅÆ 𝜔 = 𝐼�`𝑅¡𝑆¨� 𝜔 ,	 (3.6)	
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where 𝑅¡ is the load resistance (50 Ω) of the spectrum analyzer. The phase noise PSD can be 

related to the PSD of instantaneous frequency deviation Δ𝑓 [29, 48] by 

 

 𝑆¨� 𝜔 = 2π `𝜏`𝑆¨d(𝜔)
NEªb �eQ `
�eQ ` b .	 (3.7)	

 

Therefore, the PSD of instantaneous frequency deviation Δ𝑓  can be obtained from 𝑆JÅÆ(𝑓) 

yielding, 

 

 𝑆¨d 𝜔 =
ÉÊÅÆ � 	∙	VÌ

`a bÍÃbQbNEªÎb �e `Ï�Ð 	
.	 (3.8)	

 

The phase variance of a laser can be written in terms of the frequency noise PSD 𝑆¨d 𝑓  [29, 

p. 197], 

 

 𝛥𝜃 𝜏 ` = Qb

a	
𝑆¨d 𝜔

NEªb �Q `
�Q ` b 𝑑𝜔p

qp .	 (3.9)	

 

If the frequency noise PSD 𝑆¨d(𝑓) is assumed to be a white frequency noise, the integral in the 

above equation becomes, 

 

 𝛥𝜃 𝜏 ` = 𝜋𝜏𝑆hd 𝜔 .	 (3.10)	

 

Replacing the above equation with Equation Δ𝜃 𝜏 ` =
VWU
 

`HU
1 + 𝛼` 𝜏. (2.28) relates 

the Schawlow-Townes linewidth with the one-sided white frequency noise PSD by, 

 

 𝛥𝜈 = 𝜋𝑆hd.	 (3.11)	

 

Therefore, the Schawlow-Tones linewidth can be obtained using the above formula at the white 

noise floor. 
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The dark noise of the PD set the ultimate noise signal that can be measured. The PSD of the 

dark noise from the photodetector is subtracted from the photocurrent PSD 𝑆JÅÆ 𝜔 , and the gain 

profile of the photodetector is also accounted for after subtraction of the dark noise. 

 

 Experimental results 

Figure 3.15 shows the frequency noise PSD for the laser with QNCL thickness 50 nm (𝐼O� = 55 

mA). 

 

Figure 3.15 Frequency noise power spectral density of the 50 nm QNCL laser (device ID: hQsp6 
ch01 slot2 bar06 dev05). 

 

As discussed in Section 2.2, the steep 1/f noise is observed in the low frequency region up to 

10 MHz. Noise from spontaneous emission is found when the spectrum reaches a flat white 

frequency floor, which is observed at the flat line at the frequencies between 10 and 100 MHz. The 

frequency noise PSD (𝑆¨d) at the flat floor measures to be 1.9×10£ Hz2/Hz for the current of 80 

mA. This value can be converted to the Schawlow-Townes linewidth of 60 kHz using Equation 
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𝛥𝜈 = 𝜋𝑆hd. (3.11). When the current is increased to 130 mA, the frequency noise drops to 

8.9×10Ò  Hz2/Hz (Schawlow-Townes linewidth: 28 kHz). 

Figure 3.16 shows the frequency noise PSD for the laser with QNCL of 90nm (𝐼O� = 65 mA). 

The same 1/f noise is observed up to 10 MHz. In this laser, the white noise floor drops even further 

down to 14 kHz at the current of 45 mA above threshold, and 4 kHz at 125 mA above threshold.  

 



 41 

 

Figure 3.16 Frequency noise power spectral density of the 90 nm QNCL laser (device ID: hQsp7 
ch9 slot1 bar4 dev9). 
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Figure 3.17 Frequency noise PSD of the 50, 90 nm QNCL lasers. The commercial laser from 

Fitel is plotted for comparison. 

  

Figure 3.17 shows the frequency noise PSD of the 50 and 90 nm QNCL lasers together when 

the current is about 40 mA above threshold. A commercially available DFB laser manufactured 

by Fitel (model number) is presented as a control. The commercial laser shows the linewidth larger 

than 1 MHz, as opposed to our narrow-linewidth lasers having the linewidth in the range of a few 

tens of kHz. 
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Figure 3.18 Linewidth as a function injection current above the threshold current for the 50 nm 
(device ID: hQsp6 ch01 slot2 bar06 dev05) and 90 nm (device ID: hQsp7 ch9 slot1 bar4 dev9) 

QNCL lasers. 

 

The Schawlow-Townes linewidth has a 𝐼 − 𝐼O�	 qT dependence according to Equation 2.79. 

Figure 3.18 shows the fitted line for the linewidths of the 50 and 90 nm QNCL lasers, plotted 

together with the linewidth measured at each current above threshold. It can be seen that the 

linewidth of the 90 nm laser is smaller almost by ×4 compared to the 50 nm laser. 

Figure 3.19 shows a scatter plot of the minimum linewidth measured for the lasers with output 

power larger than 1.5 mW. Figure 3.20 shows the minimum linewidth measured at each 

wavelength. 
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Figure 3.19 Linewidth at the maximum pumping current as a function of the QNCL thickness. 

 

Figure 3.20 Linewidth at the maximum pumping current as a function of the lasing wavelength. 
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3.4 Discussions and conclusions 
In this work, the concept of reducing the phase noise of a laser by decreasing the laser loss is 

realized through modal engineering in the transverse direction of the waveguide.  

The concept has also been realized in the past by increasing the Q-factor of the laser cavity 

through the modal engineering in the longitudinal direction, a method which includes the use of 

tapers to transition between regions of high loss and high gain, and regions including only a passive 

waveguide [49] as well as external cavity laser [50]. In both these architectures, the confinement 

factor in the active region scales as the ratio of the length of the active region to the effective length 

of the cavity. This means that reducing the frequency noise by more than an order of magnitude as 

shown in this chapter would require the size of the external cavity laser to scale by the required 

reduction in active confinement, yielding devices larger by orders of magnitude. 

However, in the lasers described here, small changes in the thickness of the SiO2 layer on the 

order of tens of nm can change the confinement factor by orders of magnitude and can alter the 

linewidth of the laser by orders of magnitude. This transverse modal control allows us to achieve 

the same effect with very little compromise in footprint. In addition, the thickness of the QNCL 

can be readily controlled through standard fabrication techniques before patterning, making this 

technique highly scalable for full wafer fabrication. This strategy can be utilized for any 

semiconductor lasers by replacing the active region with low-loss resonator, when the modal losses 

are dominated by the losses in the active region. 

This chapter has presented transverse modal engineering as the optimum way to decrease phase 

noise in lasers by storing most of the light in low-loss resonator rather than lossy active region. 

Modal engineering has been demonstrated on the heterogeneous Si/III-V platform by introducing 

a low-index SiO2 layer between Si and III-V waveguides to push the mode further into low-loss 

Si and away from the highly-doped III-V active layer. The resulting reduced modal loss in the laser 

is accompanied by the reduced modal gain, making the threshold current density ideally constant. 

These lasers are experimentally shown to have narrow linewidths reaching a few kHz Schawlow-

Townes linewidths even at a current slightly above threshold.  
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Chapter  4   

DYNAMIC RESPONSE 
 

In Chapter 3, we demonstrated the reduction of frequency noise in our heterogeneous Si/III-V 

laser through modal engineering in the heterogeneous Si/III-V structure. Here, we investigate the 

effect of such a design on the modulation response of the lasers. Due to the reduced mode 

confinement factor in the active layer, we show theoretically and demonstrate experimentally that 

the lasers possess reduced relaxation resonance frequencies, compared to the conventional III-V 

semiconductor lasers. At frequencies above the relaxation resonance frequency, carrier modulation 

due to spontaneous emission is effectively suppressed, diminishing the contribution of carrier 

number modulation to frequency noise via amplitude-phase coupling. Thus, at a GHz frequency 

range, it becomes possible to reveal the intrinsic, quantum-limited Schawlow-Townes noise floor, 

which is due to the direct spontaneous emission into the laser mode. This leads to further reduction 

of the linewidth. 

In this chapter, measurement results of the intensity modulation (IM) response of our lasers are 

presented. The relaxation resonance frequencies and the frequency modulation (FM) response of 

lasers with different QNCL thickness are measured. The two are used to obtain the linewidth 

enhancement factors of the lasers. Lastly, in section 4.6, we update our frequency noise results, 

presented in section 3.3, by using the measured modulation data to extrapolate the frequency noise 

of the lasers further into the GHz range, and reveal the intrinsic Schawlow-Townes noise floor of 

the lasers. 

 

4.1 Differential analysis of the rate equations 

To investigate the dynamic modulation response of a laser in response to the perturbation to the 

laser [26, 24], we employ the photon and carrier number rate equations derived in Section 2.1.4. 

 

 GH
GI
= 𝜂E

J
K
− H

Q
− 𝐴′(𝑁 − 𝑁O\)𝑁S	 (4.1)	

	 GHU
GI

= 𝐴[ 𝑁 − 𝑁O\ − T
QU

𝑁S,	 (4.2)	
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where 𝑁 and 𝑁S are the total number of carriers and photons, 𝜂E is an injection efficiency, 𝜏 is the 

carrier recombination time, 𝜏S is the photon lifetime. The induced transition rate into the laser 

mode per electron due to one photon, 𝐴′, was written as, 

 

 𝐴[ = 𝑊NS
(_) = `abcbde

fg hd i	
𝐸_ 𝑟j `,	 (4.3)	

 

where 𝐸_(𝑟j) 2 is proportional to the intensity of the modal profile of a single photon in the high-

Q resonator at the location of the emitting atoms.  

In Equation GHU
�I

= 𝐴[ 𝑁 − 𝑁O\ − T
QU

𝑁S, (4.2), the contribution of spontaneous 

emission to the photon number is ignored, since only a small portion of the spontaneously emitted 

photons couple into the lasing mode. 

 

 

Figure 4.1 Laser small-signal model. 

 

We consider the case in which a laser is biased to operate at a DC current 𝐼m with a small AC 

current 𝐼T of frequency 𝜔 superimposed on the DC bias. A laser is a linear time-invariant (LTI) 

system to a first approximation, so the applied current, carrier number, and photon number can 

be expressed as,  

	

	 𝐼 = 𝐼m + 𝐼T𝑒t�I,	 (4.4)	

	 𝑁 = 𝑁m + 𝑁T𝑒t�I,	 (4.5)	

	 𝑁S = 𝑁Sm + 𝑁ST𝑒t�I,	 (4.6)	

 

where 𝑁m and 𝑁Sm are the steady-state carrier and photon number. 
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Using the threshold condition 𝐴[(𝑁m − 𝑁O\) = 1 𝜏S, the steady-state solution 0 = 𝜂E
Je
K
− He

Q
−

HUe
QU

 can be obtained. Using Equations 𝐼=𝐼m + 𝐼T�t�I, (4.4-5) and this steady-state solution, 

we obtain: 

  

	 𝑖ω𝑁T = 	𝜂E
J�
K
− 𝑁T

T
Q
+ 𝐴′𝑁Sm − HU�

QU
,	 (4.7)	

	 𝑖ω𝑁ST = 𝐴′𝑁Sm𝑁T.	 (4.8)	

 

Then, the modulation response of the photon number 𝑁ST to the sinusoidal current modulation 

𝐼T is, 

 

	 HU� �
J� �

= ��Õ¦HUe
K

T
Ö¦×Ue
ØU

q�b�t� Õ¦HUe�
�
Ø

.	 (4.9)	

 

The above equation can be rewritten as,  

  

	
HU� �
J� �

= ��QU
K
𝐻(𝜔),	 (4.10)	

 

where the modulation response is described using the modulation transfer function 𝐻(𝜔),  

 

 𝐻 𝜔 = �Ù
b

�Ù
bq�b���Ú

.	 (4.11)	

 

The relaxation resonance frequency 𝜔V and the damping factor 𝛾 are given by  

 

 𝜔Ð =
Õ¦HUe
QU

	 (4.12)	

 γ = 𝐴′𝑁Sm +
T
Q
.	 (4.13)	
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The generated optical power 𝑃T from the modulating photons 𝑁ST can be derived using the ratio 

of the mirror loss to the total loss �|ÞX
��

�|ÞX
�� ���ßX

��  and a photon lifetime 𝜏S , and is written as  𝑃T =

�|ÞX
��

�|ÞX
�� ���ßX

�� ℎ𝜈
HU�
QU

. Accordingly, the IM response of the optical output power 𝑃T	to the modulation 

current 𝐼T becomes:  

  

 ~� 𝜔
J� 𝜔

= 𝜂á
fd
K

�Ù
b

�Ù
bq𝜔2�t𝜔Ú,	 (4.14)	

 

with a differential quantum efficiency 𝜂á = 𝜂E
�|ÞX
��

�|ÞX
�� ���ßX

��.  

We define the IM depth (also called the IM index) as 𝑚 = ~�
~e

. The DC output power 𝑃m from 

the photon number 𝑁Sm can be expressed as 𝑃m =
�|ÞX
��

�|ÞX
�� ���ßX

�� ℎ𝜈
HUe
QU

. Therefore, the IM depth 𝑚 per 

unit modulation current can finally be written as,  

 

 ã(𝜔)
J�(𝜔)

= ~� 𝜔 /~e
J� 𝜔

= T
(JqJX�)

�Ù
b

�Ù
bq𝜔2�t𝜔Ú.	 (4.15)	

 

This transfer function is essentially that of a 2nd-order low-pass filter response. The magnitude 

of the transfer function is constant at low frequencies, peaks at frequency 𝜔R, and then drops 

steeply at a rate of 40 dB/dec, as shown in Figure 4.2 Illustration of the intensity and frequency 

modulation depth of a semiconductor laser as a function of modulation frequency. The relaxation 

resonance frequency 𝜔Ð corresponds to a natural resonance frequency of oscillation associated 

with the coupling between the carriers and the photons.  

By using Equation 𝐴[ = 𝑊NS
(_) = `abcbde

fg hd i	
𝐸_ 𝑟j `, (4.3) and the steady-state photon 

number 𝑁Sm = 𝜂E𝜏S 𝐼 − 𝐼O� 𝑞 (Equation 𝑁Sm =
��
�X�

JqJX�
K

= 𝜂E𝜏S
JqJX�
K

= 𝜂E
�
�
JqJX�
K

. (2.23)), the 

relaxation resonance frequency in Equation 𝜔Ð =
Õ¦HUe
QU

 (4.12) can be written as,  

 

	 𝜔Ð = 𝜂E
Õ¦

K
𝐼 − 𝐼O� = `abcbde

fg hd i	
𝜂E(𝐼 − 𝐼O�) 𝐸_ 𝑟j .	 (4.16)	
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The relaxation resonance frequency determines the direct modulation bandwidth 𝜔3dB, which 

𝜔R=𝜂i𝐴′𝑞𝐼−𝐼th=2𝜋2𝜇2𝜈0ℎ𝜖𝛥𝜈𝑎	𝜂i(𝐼−𝐼th)𝐸𝑙𝑟𝑎. (4.16) describes the relaxation resonance 

frequency’s square root dependence on the offset current above threshold 𝐼 − 𝐼O�  and the linear 

dependence on 𝐸_(𝑟j) . 

We now study the response of the carriers to the modulation current. The small-signal response 

of the carrier number to the injection current 𝑁T(𝜔) 𝐼T(𝜔) is written as,  

 

	 H�(𝜔)
J�(𝜔)

=
𝜂i
𝑞

𝑖𝜔
𝜔R
2−𝜔2+𝑖𝜔𝛾

.	 (4.17)	

 

The carrier number modulation caused by the current modulation also leads to refractive index 

modulation in the active region through the plasma dispersion effect, and results in frequency 

modulation. The amount of frequency modulation Δ𝜈 is related to the amount of the carrier density 

modulation through the linewidth enhancement factor [26, p. 706], 

 

 Δ𝜈 = �
£a
Γ�𝑣�𝑎

¨H
è�
.	 (4.18)	

 

Using Equation H�(𝜔)
J�(𝜔)

=
𝜂i
𝑞

𝑖𝜔
𝜔R
2−𝜔2+𝑖𝜔𝛾

. (4.17), we obtain the frequency modulation response 

of the modulation frequency 𝜈T to a sinusoidal modulation current 𝐼T, 

 

	 Í�(𝜔)
J�(𝜔)

= �
£a
Γ�𝑣�𝑎

��
K

𝑖𝜔
𝜔R
2−𝜔2+𝑖𝜔𝛾

.	 (4.19)	

 

We define the FM depth (also called the FM index), as 𝑀 = d�
«

. Replacing Equation Í�(𝜔)
J�(𝜔)

=

�
£a
Γ�𝑣�𝑎

��
K

𝑖𝜔
𝜔R
2−𝜔2+𝑖𝜔𝛾

. (4.19) with 𝜔Ð =
��ÍÃjHUe

QU
 and 𝑁Sm = 𝜂E𝜏S

JqJX�
K

 yields the FM 

depth per unit modulation current, 

 

 ê(𝜔)
J�(𝜔)

= d�(𝜔)/«
J�(𝜔)

= �
`(JqJX�)

𝜔𝑅
2

𝜔R
2 −𝜔2+𝑖𝜔𝛾

.	 (4.20)	
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Figure 4.2 describes the typical behavior of the IM and FM response of semiconductor lasers. 

Both the IM and the FM indices show peaks at the relaxation resonance frequency, and falls off 

steeply above the relaxation resonance frequency with a slope of 40 dB/dec.  

 

 

Figure 4.2 Illustration of the intensity and frequency modulation depth of a semiconductor laser 
as a function of modulation frequency. For the FM depth, both temperature and carrier effects 

are included. 

 

At low modulation frequencies, the FM response includes another source of the frequency 

modulation, which is caused by the temperature fluctuations due to the modulating current. 

Through the thermo-optic coefficient, the temperature variations cause the frequency of the laser 

to change independently from the linewidth enhancement factor. To isolate the carrier modulation 

effect from the thermal effect, we must compare the IM and FM at GHz frequencies where 

temperature fluctuations can be ignored. In this regime, the linewidth enhancement factor is related 

to the IM and the FM depth, and can be obtained from the ratio between Equation ã(𝜔)
J�(𝜔)

=

~� 𝜔 /~e
J� 𝜔

= T
(JqJX�)

�Ù
b

�Ù
bq𝜔2�t𝜔Ú. (4.15) and ê(𝜔)

J�(𝜔)
= d�(𝜔)/«

J�(𝜔)
= �

`(JqJX�)
𝜔𝑅

2

𝜔R
2 −𝜔2+𝑖𝜔𝛾

. (4.20), 

 

𝛼 =
𝑀
𝑚/2

. 
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4.2 The linewidth enhancement factor revisited 
In Section 2.2.2, the linewidth enhancement factor was introduced to account for additional 

linewidth broadening, which arises from the refractive index fluctuations due to the carrier density 

fluctuations during the spontaneous emission events. However, the spectral dependence of the 

carrier density fluctuations and their effect on the frequency noise power spectral density were not 

considered.  

In [27, 28], Vahala described the noise spectrum of a laser in the quantum-limited regime and 

showed that the effect of the linewidth enhancement factor 𝛼	follows the same spectral dependence 

as the IM response of a laser 𝐻(𝜔) by including the carrier density as a dynamical variable. 

Therefore, the frequency noise arising from the carrier fluctuations during the spontaneous 

emission events shows α 𝐻(𝜔) ` spectral dependence, where 𝐻(𝜔)  is the modulation transfer 

function of the laser, previously discussed in Section 4.1. Thus, the frequency noise PSD of 

semiconductor lasers can finally be written as, 

 

	 𝑆hd 𝜔 =
VWU
 

£abHU
1 + α` 𝐻 𝜔 ` .		 (4.21)	

 

The above equation demonstrates that in a FM noise spectrum, the carrier modulation-induced 

noise (
VWU
( )

£abHU
𝛼`) becomes negligible at frequencies above the relaxation resonance frequency and 

the total frequency noise reduces to the white noise floor generated only by the spontaneous 

emission phase noise (
VWU
( )

£abHU
).  

Various techniques to measure the linewidth enhancement factor have been reported. They 

include linewidth-based measurement [51, 52, 53], modulation-based estimation [54, 55], 

injection-locking based [56, 57], and optical feedback self-mixing based [58, 59, 60] estimation. 

These different approaches are summarized and compared in [61]. For our lasers, we choose to 

use the modulation-based method, which takes the ratio of the FM and IM depth in a direct-

modulating state [62], as described in the previous section. This method allows for the direct 

observation of the IM and FM response, and the linewidth enhancement factor of the lasers at the 

same time.  
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4.3 Suppression of the influence of the linewidth enhancement factor in QNCL 
Based on the analysis performed in the previous section, we now investigate the dynamic 

modulation response of our high-coherence Si/InP lasers. 

In the on-off keying (OOK) or intensity-modulated/direct-detection (IMDD) systems, it is 

desirable for a solitary laser device to possess large relaxation resonance frequencies to achieve a 

high modulation bandwidth. Lasers with relaxation resonance frequencies in the tens of GHz have 

been demonstrated by reducing the damping of the resonance peak, reducing contact parasitic or 

improving the diffusion-limited carrier transport into the active region. A modulation bandwidth 

(f3dB) of more than 25 GHz in VCSEL [63]  and larger than 30 GHz in DFB lasers has been reported 

[64, 65, 66, 67]. 

 

 

Figure 4.3 Expected frequency noise PSD of QNCL laser and conventional III-V laser. In our 
high-coherence Si/III-V lasers, due to reduction of the confinement factor in the active region, 

decrease in the relaxation resonance frequency compared to III-V only laser is expected. Due to 
suppression of the effect of the linewidth enhancement factor above the relaxation resonance 

frequency, we expect to see even further reduced noise frequency at the frequency range of a few 
GHz (i.e., optical telecommunication frequency). 

 

On the other hand, in coherent communication, information is encoded in the phase of the field 

in addition to the intensity, and direct modulation is replaced by external modulators. Therefore, 

it is beneficial to decrease the relaxation resonance frequency of the laser to below the data 
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modulation frequencies to suppress the additional phase noise resulting from carrier density 

fluctuations at telecommunication relevant frequencies (few to tens of GHz).  

In our high-coherence Si/InP lasers, the normalized field at the active QW layer, 𝐸_ 𝑟j , is 

reduced drastically in the process of reducing the modal loss in the laser cavity. Due to the 

relaxation resonance frequency’s  𝐸_(𝑟j)  dependence (Equation 𝜔Ð = 𝜂E
Õ¦

K
𝐼 − 𝐼O� =

`abcbde
fg hd i	

𝜂E(𝐼 − 𝐼O�) 𝐸_ 𝑟j . (4.16)), we can expect this design to yield a lower relaxation 

resonance frequency by one or two orders of magnitude, compared to conventional III-V 

semiconductor lasers.  

Figure 4.3 illustrates that at frequencies of a few GHz (the frequencies of interest in optical 

telecommunication), the conventional III-V lasers still exhibit the “enhanced” frequency noise 

including the carrier modulation-induced frequency noise. In comparison, at the same frequencies, 

our high-coherence lasers are predicted to exhibit a frequency noise due to direct spontaneous 

emission phase noise only. This is due to the suppression of the influence of the linewidth 

enhancement factors at relatively low frequencies. Thus, we expect our lasers with their reduced 

linewidths down to a few to tens of kHz, to possess a frequency noise spectral density 

corresponding to a sub-kHz Schawlow-Townes linewidth at frequencies of a few GHz. 

In the remainder of this chapter, we present the measured IM and FM response of our lasers. 

The relaxation resonance frequencies from lasers with different QNCL thicknesses are measured 

and compared. We also revisit our frequency noise measurements presented in Section 3.3, and 

extrapolate the frequency noise further into a GHz range, revealing the intrinsic Schawlow-Townes 

noise floor of the lasers. 

 

4.4 Intensity modulation response of the heterogeneous laser 

 Measurement setup 
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Figure 4.4 Intensity modulation measurement setup. 

 

Figure 4.4 presents the IM measurement setup. A bias tee (ZFBT-6GW, 0.1-6000MHz) is used 

to combine the DC and the high-frequencies. An ultra-low noise laser diode driver (LDX-3620) is 

connected to the DC port of the bias tee and used to bias the laser above threshold. The high-

frequency signal available from the output port of the network analyzer (NA) is connected to the 

RF port of the bias tee. The set-point power for the NA is set to apply 𝑖T of 2 mA for a modulation 

power 𝑃ë�á = 𝑖T`𝑅��N¹\ 2 to the laser. The combined DC and high-frequency signal is routed to 

the laser probe (Picoprobe ACP40-GSG-100, max frequency: 40 GHz). The laser light, collected 

through the lensed fiber (tapered PM fiber with AR coated, TPMJ-3A-1550-8/125-0.25-5-2-12-

0.5-AR), is directly fed into one port of a fast-balanced PD (Optilab BPR-20-M). The PD generates 

voltage in the form of, 

 

 𝑉 𝑡 = 𝑉m + 𝑉T sin 𝜔ë𝑡 = 𝑉m(1 + 𝑚 sin 𝜔ë𝑡 ),	 (4.22)	

 

where 𝑚 is the IM depth discussed in Section 4.1. Therefore, the IM depth 𝑚 can be extracted as, 

 

 𝑚 = è�
èe
.	 (4.23)	

	 	

The output of the PD is routed to the return port of the NA to measure the forward transmission 

coefficient 𝑆`T(𝜔). The DC voltage 𝑉m is calculated from the optical power measured on the PD 

and the responsivity (V/W) of the PD (𝑅ÀÁ). The responsivity is characterized prior to conducting 

the experiment by passing the fast frequency chirping laser [47] and varying the laser output power. 

An Agilent 4395A network analyzer is used to measure the low-frequency range from 10 Hz to 
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500 MHz, and another network analyzer HP 8722 C is used to measure the high-frequency range 

from 50 MHz to 40 GHz. The peak amplitude of the AC signal, 𝑉T, can be calculated using the 

measured 𝑆`T and input average power 𝑃ë�á,  

	

	 𝑉T(𝜔) = 2𝑅ÀÁ[𝑃ë�á𝑆`T 𝜔 ] = 𝑅~ï 𝑖T`𝑅��N¹\𝑆`T(𝜔) .	 (4.24)	

	

Corrections are made to the measured data to compensate for the response of the driving 

circuitry (including bias tee, probe tip, SMA coax cable), measured prior to the experiment. The 

same number of the cables as in the laser modulation configuration is used. 

 

 Experimental results 

Figure 4.5 illustrates the IM response of the laser with the 50 nm QNCL (𝐼O� = 55	mA) at bias 

currents of 70, 90, and 130 mA. As expected, the IM response displays a 2nd-order low-pass filter 

behavior with a flat response for frequencies up to the relaxation resonance frequencies, and 40 

dB/dec drop-off thereafter. The relaxation resonance frequency increases with increasing bias 

current. Fitting the measured response to the 2nd-order low-pass filter response in Equation 

𝐻 𝜔 = �Ù
b

�Ù
bq�b���Ú

. (4.11) yields a relaxation resonance frequencies of 380, 650, and 

900 MHz at the bias currents of 70, 90, and 130 mA, respectively. The 3 dB modulation bandwidth 

can be obtained from the relaxation resonance frequencies through the relationship 𝜔Òá¸ =

1 + 2 ∙ 𝜔Ð	[24, p. 265]. The 3 dB modulation bandwidth 𝜔Òá¸ of 590 MHz, 1 GHz, and 1.4 

GHz is obtained at 70, 90, and 130 mA.  

Figure 4.6 shows the IM modulation response of the laser with 90 nm QNCL (𝐼O� = 65	mA) at 

bias currents of 100, 140, and 170 mA. The larger number of photons in the lasing mode in the 90 

nm QNCL laser than in the 50 nm laser makes the damping in the 90 nm laser larger, and thus the 

relaxation resonance less apparent than in the 50 nm laser. Fitting the measured curves to the 2nd-

order low-pass filter response yields relaxation resonance frequencies of 320, 540, and 610 MHz 

at 100, 140, and 170 mA, respectively. 

In Figure 4.7, we plot the IM response of the lasers from the 50, 90, and 130 nm QNCL all 

𝜔R=𝜂i𝐴′𝑞𝐼−𝐼th=2𝜋2𝜇2𝜈0ℎ𝜖𝛥𝜈𝑎	𝜂i(𝐼−𝐼th)𝐸𝑙𝑟𝑎. (4.16), the relaxation resonance frequency 

occurs at lower frequencies, as the QW confinement factor decreases with the thicker QNCL 
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thickness. The lasers show relaxation resonance frequencies of 200, 500 MHz, and 1 GHz at the 

increment of 80 mA above their respective threshold in the 50, 90, and 130 nm QNCL laser, 

respectively. These low relaxation resonance frequencies stand in contrast to those of conventional 

III-V lasers of tens of GHz. 

Figure 4.8 shows the linear dependence of the relaxation resonance frequencies of the laser on 

𝐼 − 𝐼O�. The relaxation resonance frequencies fall below 1 GHz even for bias current 100 mA 

above threshold. The reduction in the relaxation resonance frequencies with the increasing QNCL 

thickness is evident. 

The difference between the QW confinement factor in the 50 and 90 nm QNCL lasers can be 

extracted from the slopes in Figure 4.8. The slope of the 50 nm QNCL laser is larger than that of 

the 90 nm laser by a factor of 1.77. Considering the Γ� dependence of the relaxation resonance 

frequency (Equation 𝜔Ð = 𝜂E
Õ¦

K
𝐼 − 𝐼O� = `abcbde

fg hd i	
𝜂E(𝐼 − 𝐼O�) 𝐸_ 𝑟j . (4.16)), the 50 nm 

laser has a larger Γ� than the 90 nm laser by a factor of 1.8` = 3.24. This number matches our 

simulation result, which yielded a Γ� of 2% and 0.6% for the 50 and 90 nm lasers, respectively (as 

described in Figure 2.3 SiO2 layer, which we call the “quantum noise control layer (QNCL)”, is 

introduced in between Si and III-V to further push the mode into the Si layer and reduce the 

confinement factor in the active region (QWs). (Top figures) The peak of the transverse mode 

profile stays further away from III-V (i.e., reduced 𝐸_ 𝑟j `), and the confinement factor in the 

QWs decreases with thicker QNCL thickness. (Bottom figures) COMSOL simulation showing the 

transverse mode profile with varying QNCL thickness.  

The damping factor γ is also extracted from the fitting of the IM response to the 2nd-order low-

pass filter. The K-factor, the slope of the linear fits of 𝛾 vs. 𝑓Ð` in Figure 4.9, is found to be 0.5 ns 

and 1.3 ns for the 50 nm and 90 nm QNCL lasers, respectively. The large K-factors, compared to 

III-V only lasers [68], reflect the increased photon lifetime in our lasers [24, p. 264].  
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Figure 4.5 IM response of the 50 nm QNCL laser at different bias currents (device ID: hQsp6 

ch01 slot2 bar6 dev5). 

 

 

Figure 4.6 IM response of the 90 nm QNCL laser at different bias currents (device ID: hQsp7 

ch09 slot1 bar4 dev9). 
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Figure 4.7 IM response of the 50, 90, and 130 nm QNCL lasers at the similar bias current above 
each threshold. 

 

 

Figure 4.8 Relaxation resonance frequencies of the 50 nm and 90 nm QNCL lasers as a function 
of 𝐼 − 𝐼th. 
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Figure 4.9 Dependence of damping factor of the Si/III-V lasers on the relaxation resonance 
frequency. 

 

4.5 Frequency modulation response and linewidth enhancement factor 
 Measurement setup 

The FM response is measured using the setup shown in Figure 4.10. Except for an additional 

MZI path, the same setup is used as in the IM setup. As discussed for the frequency noise 

measurement setup, an MZI serves as a frequency discriminator by converting phase modulation 

into intensity modulation.  
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Figure 4.10 Frequency modulation measurement setup. 

 

The high-frequency signal generated from the output port of the network analyzer (NA) is 

connected to the RF port of the bias tee, whereas the bias current is provided by the ultra-low noise 

laser diode driver (LDX-3620). The set-point power for the NA is set to apply 𝑖T of 2 mA for a 

modulation power of 𝑃ë�á = 𝑖T`𝑅��N¹\ 2 to the laser.  

Laser light, collected through the lensed fiber (tapered PM fiber with AR coated, TPMJ-3A-

1550-8/125-0.25-5-2-12-0.5-AR), is passed through the MZI with an FSR of 1.575 GHz. The 

length of one of the arms of the MZI is controlled using a fiber stretcher piezo (Evanscent Optics 

915B). The piezo is used to lock the phase difference between the two MZI arms at the quadrature 

point.  

The two outputs of the MZI are connected to a pair of couplers that couple 5% of the light to a 

slow balanced PD (New Focus 1817, DC ~ 80MHz), and the other 95% to a fast PD (Optilab BPR-

20-M). The slow balanced PD is connected to an electronic feedback circuit. The output of the 

feedback circuit is fed to an MZI piezo driver (Evanscent Optics 914-2) and closes the feedback 

circuit.  

The output of the fast PD is routed to the return port of the NA to measure the forward 

transmission coefficient 𝑆`T(𝑓ë). The Agilent 4395A network analyzer is used to measure the low-

frequency range from 10 Hz to 500 MHz, and another network analyzer HP 8722 C is used to 

measure the high-frequency range from 50 MHz to 40 GHz. The same method as in the IM 

response is used to measure the DC voltage 𝑉m and the peak amplitude of the AC voltage 𝑉T. 

The laser’s frequency chirp due to the modulation current can be extracted from the measured 

AC signal 𝑉T as follows. When the interferometer is locked at the quadrature (𝜔m𝜏 = 𝜋 2) and the 
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phase modulation is small enough, the PD voltage generated is proportional to the phase difference 

between the two MZI arms Δ𝜃 𝑡, 𝜏 = 𝜃 𝑡 − 𝜃(𝑡 − 𝜏),  

  

	 𝑉T 𝑡 = 𝑉� 𝜃 𝑡 − 𝜃(𝑡 − 𝜏) ,	 (4.25)			

 

where 𝑉� is a voltage gain conversion factor. 

The Fourier component at each frequency is extracted by taking the Fourier transform of the 

above equation, 

 

𝑉T 𝜔 = 𝑉�	𝜃 𝜔 1 − 𝑒t�Q 	

= 2𝑖𝑉�𝜃 𝜔 𝑒taQ sin 𝜔𝜏/2 	

	 																						= 𝑖𝑉�𝜔𝜏𝜃 𝜔 𝑒t�Q/`sinc 𝜔𝜏/2 .	 (4.26)	

 

Using 1 𝜏 = FSR  and Δ𝜈 = T
`a

G�
GI
↔ Δ𝜈 𝜔 = T

`a
𝑖𝜔𝜃 𝜔 , the frequency modulation index 

𝑀 = ¨d �
«

 can be obtained from the measured	𝑉m and 𝑉T, 

 

 𝑀 = ¨d �
«

= Ï�Ð
`a«	NEªÎ	 � `Ï�Ð

è� �
èÃ

. (4.27) 

 

By placing the polarization controllers after the isolators and in one of the MZI arms, an 

interferometer fringe visibility value of 1 is achieved. This allow us to use the measured DC 

voltage 𝑉m as the voltage gain conversion factor 𝑉�	(i.e., 𝑉� = 𝑉m). In addition, corrections to the 

measured data are made to compensate for the response of the driving circuitry (including bias tee, 

probe tip, and SMA coax cable) which is measured prior to conducting the experiment. The same 

number of cables in the laser modulation configuration is used. 

 

 Experimental results 

Figure 4.11 illustrates the FM response of the 50 nm QNCL laser (𝐼th = 55 mA, 𝜆m = 1577 nm) 

together with its IM response at a bias current of 130 mA. Both the IM and FM depth exhibits the 

2nd-order low-pass filter response, where the response is flat up to the relaxation resonance 
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frequency and then drops steeply. The FM modulation response also shows a peak at the same 

relaxation resonance frequency of 900 MHz, as does the IM response.  

At low modulation frequencies, the FM response exhibits an additional modulation contribution 

from the thermal effect, as described in Section 4.1. The cut-off frequency for the thermal response 

is approximately 60 MHz. Compared to a conventional III-V laser, which has a thermal cut-off 

frequency in the few hundred kHz range, our laser shows a high thermal cut-off frequency. This 

can probably be attributed to the thermal time constant being inversely proportional to the thermal 

conductivity. Due to the relatively high thermal conductivity of Si (149 W/(m·K)) compared to 

InP (68 W/(m·K)), Si possesses a smaller thermal time constant than InP at a given surface area 

and volume, explaining the fast thermal response of our Si-based laser. 

The ratio between the FM and IM depth is used to extract the linewidth enhancement factor 𝛼 

of this laser. The ratio between the IM and FM depth of the 50 nm QNCL laser is shown in Figure 

4.12. In the frequency region below 1 GHz, the larger current has a larger value of the ratio, due 

to the residual thermal frequency modulation effect. Above 1 GHz past the relaxation resonance 

frequency, the thermal response is heavily suppressed, and only the carrier modulation effect 

remains in the lasers. The ratios converge to the value of ~5.8, regardless of the bias current level. 

Figure 4.13 describes the IM and FM depth of the 90 nm QNCL laser (𝐼O� = 65 mA, 𝜆m = 1556 

nm) at the bias current of 120 mA. Both responses are maximized at the same relaxation resonance 

frequency of 450 MHz. 

Figure 4.14  presents the calculated ratio between the IM and FM depth of the 90 nm QNCL 

laser. At approximately 1 GHz, the linewidth enhancement factor converges to the value of 

approximately 3 at all bias currents.  

Finally, we observe that the 50 nm QNCL laser, which has a lasing wavelength of 1577 nm, 

shows a linewidth enhancement factor of 5.8, whereas the 90 nm laser lasing at the wavelength of 

1556 nm has a linewidth enhancement factor of 3. As discussed in [30, 69], an increase in the 

linewidth enhancement factor is observed, as the lasing wavelength is blue-detuned from the 

differential gain peak. 
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Figure 4.11 The IM and FM response of the 50 nm QNCL laser at the bias current of 130 mA (Ith 
= 55 mA, device ID: hQsp6 ch01 slot2 bar6 dev5). 

 

Figure 4.12 Linewidth enhancement factor calculation for the 50 nm QNCL laser. 
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Figure 4.13 The IM and FM response of the 90 nm QNCL laser at the bias current of 130 mA (Ith 
= 65 mA, device ID: hQsp7 ch09 slot1 bar4 dev9). 

 

Figure 4.14 Linewidth enhancement factor calculation for the 90 nm QNCL laser. 

 

4.6 Frequency noise above relaxation resonance frequency 
As discussed in Section 4.2, due to the spectral dependence of the carrier fluctuation, the effect 

of linewidth enhancement factor decreases rapidly beyond the relaxation resonance frequency. In 

this frequency range, the frequency noise caused by the carrier fluctuations is heavily suppressed, 
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and the total frequency noise reduces to the white noise floor generated only by the spontaneous 

emission phase noise. 

A direct measurement of the spontaneous emission white noise floor is desirable. However, the 

limited output power of our lasers made their frequency noise approach the shot-noise level at 

approximately 1 GHz. As a consequence, it was not possible to measure the frequency noise above 

the relaxation resonance frequency. Instead, we extrapolate the expected frequency noise of lasers, 

𝛥𝜈�¢ 1 + 𝛼` 𝐻 𝑓 ` ,  based on the measured modulation response and the linewidth 

enhancement factor. 

 

Figure 4.15 shows the frequency noise PSD of the 50 nm QNCL laser (𝐼O� = 55 mA, 𝜆m = 1577 

nm), together with the extrapolated line at the bias current of 80 and 130 mA. The linewidth 

enhancement factor of 5.8 (Figure 4.12) was used for the extrapolated line. The measured and 

extrapolated curves at both currents are in good agreement up to 1.25 GHz, at which point the 

frequency noise PSD becomes shot-noise limited. The extrapolated frequency noise curve exhibits 

the same relaxation resonance frequency at 530 MHz (80 mA) and 900 MHz (130 mA) as that in 

the directly measured frequency noise spectrum.  

Consequently, we predict that the frequency noise, measured to be 1.9×10£ Hz2/Hz below the 

relaxation resonance frequency at a bias current of 80 mA, will drop to 540 Hz2/Hz at a few GHz, 
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yielding a Schawlow-Townes linewidth of 1.7 kHz. At a bias current of 130 mA, the frequency 

noise 8.9×10Ò Hz2/Hz (Schawlow-Townes linewidth: 28 kHz) below the relaxation resonance 

frequency is expected to decrease to 250 Hz2/Hz (Schawlow-Townes linewidth: 0.8 kHz). 

Figure 4.16 presents the relaxation resonance frequencies of the 50 nm QNCL laser at various 

bias currents, measured by two different methods. The two curves, one from the frequency noise 

measurment and the other from the IM measurment, show a good agreement with each other, 

displaying the 𝐼 − 𝐼O� dependence of the relaxation resonance frequency. 
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Figure 4.15 Frequency noise PSD for the 50 nm QNCL laser (Ith = 55 mA,  λ0= 1577 nm,  α = 
5.8, device ID: hQsp6 ch01 slot2 bar6 dev5). The extrapolated line for Δν�¢ 1 + 𝛼` 𝐻 𝜔 `  is 

overladen. 

 

Figure 4.16 Comparison of the relaxation resonance frequencies of the 50 nm QNCL laser at 
various bias currents, measured from two different measurements: the frequency noise and 
intensity modulation measurement. 
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Figure 4.17 shows the frequency noise PSD of the 90 nm QNCL laser (𝐼O� = 65 mA, 𝜆m = 1556 

nm), together with the extrapolated line. The linewidth enhancement factor of 3.0 (Figure 4.14) is 

used for the extrapolated line. The measured and the extrapolated lines show a good agreement 

with each other, up to approximately 1 GHz, including the relaxation resonance frequency at 360 

MHz and 680 MHz at 100 mA and 190 mA, respectively. 

Hence, we predict that the below-fR frequency noise 4.5×10Ò Hz2/Hz at the bias current of 100 

mA will drop to 450 Hz2/Hz at a few GHz, yielding a Schawlow-Townes linewidth of 1.4 kHz. 

At a bias current of 190 mA, the frequency noise 1.3×10Ò Hz2/Hz (Schawlow-Townes linewidth: 

4 kHz) is expected to decrease to 130 Hz2/Hz (Schawlow-Townes linewidth: 0.4 kHz). 

Figure 4.18 shows the comparison of the relaxation resonance frequencies of the 90 nm QNCL 

laser at various bias currents, measured with the two different methods. The two curves, one from 

the frequency noise measurment and the other from the IM modulation measurement, match 

closely, displaying the 𝐼 − 𝐼O� dependence of the relaxation resonance frequency. 
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Figure 4.17 Frequency noise PSD of the 90 nm QNCL laser (Ith = 65 mA, λ0 = 1556 nm, α = 3.0, 
device ID: hQsp7 ch9 slot1 bar4 dev9). The extrapolated line for Δν�¢ 1 + 𝛼`	 𝐻 𝜔 `  is 

overladen. 

 

Figure 4.18 Comparison of the relaxation resonance frequencies of the 90 nm QNCL laser at 
various bias currents, measured from two different measurements: the frequency noise and 

intensity modulation measurement. 
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4.7 Discussion and conclusions 
In Chapter 3, we described the reduction of the total frequency noise of a laser, by up to two 

orders of magnitude, compared to conventional III-V only lasers, including both the direct 

spontaneous emission phase noise as well as the attendant noise due to carrier modulation. This 

was achieved by modal engineering and by utilizing a low-loss Si material for photon storage and 

the lossy InP for photon-generation (gain). In this chapter, we investigated the modulation 

response, and showed that the same modal engineering has a major and beneficial effect on the 

relaxation resonance frequency. 

As discussed in Section 3.4, more conventional methods for controlling the confinement in the 

active region include the use of tapers to transition between the gain and the passive waveguide 

region [70] as well as external cavities [50]. In these platforms, the active region confinement 

factor scales as the square root of the ratio between the length of the active region and the effective 

length of the cavity. Due to the square root dependence of the relaxation resonance frequencies on 

the active region confinement factor, a longer external cavity length by two orders of magnitude 

would be needed to achieve a single order of magnitude reduction in the relaxation resonance 

frequency. In our platform, however, the same reduction of the relaxation resonance frequency 

was achieved by just tens-of-nm change in the QNCL thickness, as demonstrated in Figure 4.7.  

In this chapter, we also investigated the frequency noise spectrum beyond the relaxation 

resonance frequency of our lasers. We demonstrated the sub-kHz linewidths at a few GHz range, 

due to the suppression of the carrier modulation-induced frequency noise at a relatively low 

frequency. 

It is notable that the magnitude of the linewidth enhancement factor is an intrinsic property of 

the gain medium, regardless of the laser structure. As defined, the linewidth enhancement factor 

is the change in the refractive index due to an increase in carriers divided by the change of the 

modal gain due to the same increase in carriers: 

 

	 α = G�{,|óó GH
G��,|óó GH

= ������G�{,����� GH
������	G��,����� GH

= G�{,����� GH
G��,����� GH

,		 (4.28)		

 

where 𝑁  is the number of carriers in the gain medium,  nr,eff  and nr,III−V are the real part of the 

mode’s effective index and the average refractive index of the QWs, while ni,eff  and ni,III−V are 
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the imaginary part of the refractive index in the QWs. Therefore, for a given material, one cannot 

eliminate the presence of the linewidth enhancement factor. As discussed in Section 2.2.2, 

quantum-dots (QDs), for example, do not exhibit a linewidth enhancement factor, due to their delta 

function-like density of states. However, QDs still remain difficult to grow for certain materials 

and often exhibit lower material gain than their QW counterparts. The demonstration of the 

suppression of the linewidth enhancement factors at a relatively low frequency in our lasers means 

that using this approach, any laser with different material system can reduce to insignificance the 

effect of phase-amplitude coupling (i.e., the linewidth enhancement factor) at telecommunication 

relevant frequencies (i.e. a few GHz). 

Of further importance is the dependence of the linewidth enhancement factor on the operating 

wavelength of the laser. It has been shown, both theoretically [30] and experimentally in this 

chapter, that lasers that operate further from the differential gain peak experience a larger linewidth 

enhancement factor. Lasers designed with the same gain medium operating at different 

wavelengths will consequently have different noise characteristics, owing to differences in the 

linewidth enhancement factor. Here, we showed that our lasers with low relaxation resonance 

frequencies can be used to suppress the influence of the linewidth enhancement factor above the 

relaxation resonance frequency. This ensures that lasers operating at different wavelengths will 

have nearly identical spectral characteristics at a few GHz range. 

In conclusion, we demonstrated that engineering of the relaxation resonance frequencies is 

possible through modal engineering in our high-coherence Si/InP lasers, and the relaxation 

resonance frequency as low as a few hundreds of MHz is achieved. In addition, we could achieve 

a frequency noise corresponding to the sub-kHz quantum-limited Schawlow-Townes linewidth at 

frequencies of a few GHz range, as a consequence of the suppression of the influence of the 

linewidth enhancement factor. 

This sub-kHz linewidth semiconductor laser can be beneficial for many application systems 

including optical communication as a way to enhance the optical coherent telecommunication 

capacity.  
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Chapter  5   

FEEDBACK SENSITIVITY 
 

In the optical network, external reflections back into the laser from cleaved facets, splices, dust, 

connectors, and other components in the system, are unavoidable. This external optical feedback 

can sometimes be beneficial, as it can be utilized to achieve better side-mode suppression for 

Fabry-Perot lasers through the gain section mechanism using short external reflectors [71, 72, 73] 

or to achieve a linewidth narrowing by coupling the laser cavity to a high-Q external resonator [74, 

75, 76, 77, 70, 78]. However, in most cases, the external reflections are undesirable, because they 

lead to an instability and degradation of coherence in semiconductor lasers.  

Thus far, consistent performance of semiconductor lasers has been achieved by the use of 

costly, but indispensable optical isolators in many communication and sensing systems. These 

non-reciprocal magneto-optic-based devices prevent undesirable external reflections in the optical 

networks from reaching the laser cavity, and increase the laser stability against optical feedback.  

The combination of the use of the high reflectivity mirrors and the relatively long cavity in our 

high-coherence Si/III-V lasers makes these lasers inherently less sensitive to external feedback. 

This eliminates the need for costly optical isolators in certain settings. In this chapter, we 

demonstrate the stability of the lasers against external optical feedback by investigating their fringe 

visibility and the RF noise spectrum under various levels of external reflections. 

 

5.1 Feedback sensitivity of lasers 
A simple analysis regarding the effect of an external cavity to a laser cavity diode can be 

performed based on the Fabry-Perot-type compound cavity model, as shown in Figure 5.1 (a) [79]. 

The compound cavity model consists of a laser diode cavity with mirror reflection coefficients 𝑟T 

and 𝑟¡ , and an external cavity with reflection coefficient 𝑟¹ôO . The external reflectivity Rext is 

defined as the ratio between the reflected power and the emitted power, 

 

	 𝑅¹ôO = 𝑟¹ôO` = ~{|ó�|õX|}
~|ö�XX|}

.	 (5.1)	
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The effective reflection coefficient of the laser, 𝑟¹ºº, with optical frequency ν at 𝑧 = 𝐿 can be 

given by, 

 

	 𝑟¹ºº 𝜈 = 𝑟¡ + 1 − 𝑟¡ ` 𝑟¹ôO𝑒qt`adQ|ÞX,	 (5.2)	

 

where 𝜏¹ôO is the round-trip time of the external cavity, which has a length of 𝐿¹ôO. We do not 

consider multiple reflections within the external cavity under the assumption	 𝑟¹ôO𝑟¡ ≪ 1. 

 

 

Figure 5.1 (Left) A model of a compound cavity consisting of a laser diode and an external 
optical reflection. (Right) A diagram for the effective laser cavity mirror reflection. Δ𝑟 represents 

a perturbation by the external optical feedback to the reflection coefficient of the laser cavity 
mirror. 

 

In the presence of external reflection, the effective reflection coefficient 𝑟¹ºº varies. This causes 

variation in the laser cavity loss, and subsequently the threshold gain (dotted yellow line in Figure 

5.1 (b)). The required gain in the laser under feedback is given by, 

 

	 gÎ = gO� −
ù|ÞX
ú
cos 2𝜋𝜈𝜏¹ôO ,	 	(5.3)	

 

where gO�  is the threshold gain with external feedback. The coupling coefficient 𝜅¹ôO  to the 

external cavity is defined as, 

 

	 𝜅¹ôO =
¥|ÞX
¥Ì

1 − 𝑟¡ ` .	 (5.4)	
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In addition to the gain variation, the external reflection causes the laser’s round trip phase 

change Δ𝜙¡, through the direct mirror phase change (dotted green line in Figure 5.1 (b)), the lasing 

frequency change, and the refractive index change induced by the threshold gain variation (dotted 

yellow line in Figure 5.1 (b)). The round trip phase change, due to the carrier density change, is 

again related to the refractive index change through the linewidth enhancement factor 𝛼. Then, the 

round-trip phase change Δ𝜙¡, due to the external feedback, is written as [29],  

 

	 Δ𝜙¡ = 2𝜋𝜏¡ 𝜈 − 𝜈O� + 𝜅¹ôO 1 + 𝛼` sin(2𝜋𝜈𝜏¹ôO + atan 𝛼) ,	 	(5.5)	

 

where 𝜈O� is the lasing frequency without feedback, and 𝜏¡ = 2𝑛¹ºº𝐿/𝑐 is the round-trip time of 

the solitary laser diode cavity.  

 

 

Figure 5.2 The round trip phase change ΔϕL, as a function of the optical frequency 𝜈 at different 
levels of external optical feedback. υth represents the lasing frequency when there is no feedback 

(𝛥𝑟 = 0). The resonant phase condition of the compound cavity is satisfied when ΔϕL= 0. 

 

The feedback sensitivity of a laser is essentially governed by a parameter called a feedback 

coefficient 𝐶 , defined as   
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	 𝐶 = 𝑋 1 + 𝛼` = Q|ÞX
QÌ
𝜅¹ôO 1 + 𝛼` = Q|ÞX

QÌ
𝑟¹ôO

Tq ¥Ì b

¥Ì
1 + 𝛼`.	 (5.6)	

 

Equations 𝐶 = 𝑋 1 + 𝛼` = Q|ÞX
QÌ
𝜅¹ôO 1 + 𝛼` = Q|ÞX

QÌ
𝑟¹ôO

Tq ¥Ì b

¥Ì
1 + 𝛼`. (5.6) and 

Error! Reference source not found.) show that a laser with a stronger mirror (large 𝑟¡) and a 

long cavity (large 𝜏¡) is less sensitive to the external reflections for a given external reflector 

configuration with a fixed external cavity round trip delay 𝜏¹ôO	 and an external reflection 

coefficient 𝑟¹ôO. Therefore, a laser with a high endurance against optical feedback can be obtained: 

(1) by increasing the round-trip group delay 𝜏¡ of the laser by increasing the cavity length, (2) by 

decreasing the coupling to the external cavity (i.e., 𝜅¹ôO) by increasing the laser’s mirror reflection 

coefficient 𝑟¡, or (3) by decreasing the linewidth enhancement factor 𝛼. 

Error! Reference source not found. describes the round-trip phase change as a function of the 

frequency 𝜈 , according to Equation Δ𝜙¡ = 2𝜋𝜏¡ 𝜈 − 𝜈O� + 𝜅¹ôO 1 + 𝛼` sin(2𝜋𝜈𝜏¹ôO +

atan 𝛼) ,  (5.5). The zeros that meet the phase condition Δ𝜙¡ = 0 correspond to the possible 

lasing frequencies. When there is no feedback (which corresponds to the blue line in Error! 

Reference source not found.), the lasing occurs at frequency 𝜈O� , i.e., the lasing frequency 

without a feedback. The five different regimes of the feedback effects have been studied and 

identified as a function of the feedback coefficient 𝐶, as the amount of the external reflection 

increases. [80].  

In Regime I, with a small amount of external feedback, characterized by a feedback coefficient 

𝐶 of less than 1, Equation Δ𝜙¡ = 2𝜋𝜏¡ 𝜈 − 𝜈O� + 𝜅¹ôO 1 + 𝛼` sin(2𝜋𝜈𝜏¹ôO + atan 𝛼) ,  (5.5) 

has one solution for the frequency 𝜈 . The red line in Error! Reference source not found. 

illustrates the case where the round-trip phase change Δ𝜙¡ still increases monotonically with an 

increasing frequency, yielding only one solution that satisfies the resonant condition Δ𝜙¡ = 0. 

Only a small change in the linewidth broadening or narrowing takes place depending on the phase 

of the external feedback, maintaining a single mode operation [79, 81]. 

In Regime II, the feedback coefficient 𝐶  becomes larger than 1 (yellow line in Error! 

Reference source not found.). The round-trip phase change Δ𝜙¡ undergoes strong oscillations so 

that Δ𝜙¡ is zero at more than one frequency, and the laser can oscillate at a number of frequencies 

near 𝜈O�. Transitioning from Regime I to Regime II, a second external cavity mode appears, thus 

creating a linewidth splitting [82, 81].  
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As the amount of feedback increases further, the strong feedback makes the threshold gain 

difference for the different external cavity modes stronger. In Regime III, the mode hopping 

between the external cavity modes is suppressed. A stable external cavity mode lasing with a large 

linewidth reduction is achieved through the gain selection mechanism and the extended total cavity 

length [71, 72, 73]. This regime only occurs in a small range of the external feedback level.  

In Regime IV, with further increased feedback, strong laser instability occurs, which is 

evidenced by the drastic increase in the intensity and the phase noise of the laser. Because of the 

complete loss of coherence, this regime is termed “coherence collapse”. In the coherence collapse 

regime, one observes an extreme broadening of the laser linewidth up to several tens of GHz [83, 

84, 85], and a drastic increase in the laser relative intensity noise (RIN) [86]. In optical fiber 

communication, coherence collapse results in an increase in bit error rate (BER), and should be 

avoided [87, 88]. 

In Regime V, the external reflector starts to have a stronger reflectivity than the laser cavity 

reflectivity. As such, it basically forms an external cavity laser.  

The most undesirable laser operation takes place in the coherence collapse regime. 

Consequently, we will focus our attention on identifying this regime in our lasers.  

 

5.2 Feedback sensitivity of QNCL 

Section 5.1 illustrates that it is desirable to have a high mirror reflectivity 𝑟L	to reduce the laser 

feedback sensitivity. But for a given laser cavity with a fixed intrinsic loss, the mirror reflectivity 

cannot be increased indefinitely, because it would suppress the optical output power. Thus, to 

achieve the same output power with a higher-reflectivity mirror would require a reduction of the 

intrinsic cavity loss. 

To achieve a narrow linewidth, the key strategy of our high-coherence Si/III-V laser was the 

reduction of the modal loss in the laser cavity by storing most of the modal energy in the low-loss 

Si instead of the III-V. By moving modal energy away from III-V to Si, we increase the Q-factor 

and thus increase the stored number of photons at a given current. This enables us to increase the 

mirror reflectivity for the same output power. This makes our lasers less sensitive to external 

reflections. 
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To compare the feedback sensitivity of our lasers with the conventional III-V lasers, let us 

assume that the mirror loss of each laser (i.e., Qext) is designed to be 30% of the intrinsic cavity 

loss (i.e., Qtotal) to achieve optimum output power.  

With a proper assumption for the intrinsic loss for each layer (i.e., QSi = 106 and QIII-V = 104), 

Qext, which yields the optimal output power, can be calculated as a function of the confinement 

factor in the III-V layer (Figure 5.3 (left axis)). This, in turn, allows us to compute the mirror 

reflectivity R using the following equation, 

 

 𝑄¹ôO =
�

ÍÃ�ö
= �

ÍÃ
�
ÿ �ª

�
!
= �QÌ

�ª(T V)
,	 (5.7)	

 

where L is the laser cavity length. Using the calculated mirror reflectivity R, the ratio of the 

feedback coefficient C between the heterogeneous laser and the III-V only laser can be extracted 

using Equation 𝐶 = 𝑋 1 + 𝛼` = Q|ÞX
QÌ
𝜅¹ôO 1 + 𝛼` = Q|ÞX

QÌ
𝑟¹ôO

Tq ¥Ì b

¥Ì
1 + 𝛼`. (5.6), under 

the assumption that the lasers have the same cavity length 𝜏ú. The effective isolation, compared to 

the III-V only laser, can then be obtained as, 

 

 Effective	isolation	 dB = 20 log ()*+Ì
(�����

= 20 log
(TqV)*+Ì) V)*+Ì
(TqV�����) V�����

.	 (5.8)	

 

The right axis of Figure 5.3 illustrates the effective isolation of the high-coherence Si/III-V 

laser. Considering that the lasers possess a confinement factor in the III-V layers of 10%, 2.5%, 

and 1% for 50nm, 100 nm, and 150 nm QNCL thickness, respectively (Figure 2.3), we can expect 

that the lasers would be less sensitive to the external optical reflections than a III-V only laser by 

10 to 30 dB. This calculation did not account for the optical cavity length difference. Thus, we can 

expect even further improvement from our lasers, considering their large cavity length, owing to 

the use of the extended defect-mode resonator. 

In the remainder of this chapter, the improved feedback sensitivity of our lasers is demonstrated 

by experimental data by searching the coherence collapse regime, while monitoring the optical 

linewidth, the interferometric fringe visibility, and the relative intensity noise under external 
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feedback. The coherence collapse manifests itself as an abrupt linewidth broadening, a sudden 

drop in the fringe visibility, and a drastic enhancement of the RIN.  

 

 

Figure 5.3 Q-factor of the heterogeneous laser and the effective isolation, compared to the 
conventional III-V laser, as a function of the confinement factor in the III-V layer (Assumption: 

QSi = 106 and QIII-V = 104. 

 

5.3 MZI fringe visibility measurement 

 Measurement setup 

The interferometric fringe visibility is a good measure to quantify the coherence of two or more 

waves. Two or more waves are combined and the intensity of the combined wave varies from a 

maximum to a minimum as a function of the phase difference between them. The fringe visibility 

is defined as the ratio of the amplitude of the resulting oscillating wave envelope (𝐼ë�ô − 𝐼ëEª) 2 

to the average amplitude (𝐼ë�ô + 𝐼ëEª) 2. It can be written as 

 

 𝑉 = Jö�ÞqJö�ß
Jö�Þ	�Jö�ß

,	 (5.9)	

 



 80 

where Imax/min are the maximum/minimum intensity measured on a photodetector collecting light 

from the interferometer. 

Experimentally, we combine the wave in an uneven MZI. The phase difference is controlled by 

varying the delay 𝜏 (sec). As we pass the laser light through the MZI, we combine the emitted laser 

field 𝐸(𝑡) and a time-delayed version of itself 𝐸(𝑡 − 𝜏) at the output of the MZI, with a time delay 

𝜏 = 1 FSR . Since the laser is not a perfectly monochromatic source, the phases of the two 

interfering fields become progressively less correlated with each other, as the time delay 𝜏 

increases. The envelope of the interference pattern V can be given by  

 

 𝑉 = eqQ Qõ,	 (5.10)	

 

where 𝜏¶  is the coherence length of the laser. Plugging 𝜏 = 1 FSR and 𝜏Î = 1 Δ𝜈  (Δ𝜈 : laser 

linewidth) [26, p. 59] into the above equation yields 

 

 𝑉 = eq¨d Ï�Ð.	 (5.11)	

 

The fringe visibility, in the case where the laser output is fed into the MZI, will be close to 1 if 

the laser linewidth is much smaller than the FSR of the MZI. However, it will drop rapidly, if the 

laser linewidth becomes comparable to the FSR.  

To characterize the laser’s fringe visibility under the external optical feedback, two types of 

setup are used (Figure 5.4). To collect the laser light into the fiber, the light is coupled into the 

slow axis of a polarization maintaining (PM) fiber using a lensed fiber. A coupling efficiency 

typically in the range of 30 to 40% is measured.  

The top path of the setup, created by the forward 95% tap of the fiber coupler, is used to create 

an external optical reflection. The magnitude of the reflection is controlled using a variable 

attenuator. 

In Setup I, the artificial reflection is created by a gold fiber mirror (model number). In this 

setup, due to the assumed coupling efficiency 𝜂 = 50%, the insertion loss of 2.8 dB in the variable 

attenuator, and the 95% tab fiber coupler, the maximum achievable external reflectivity R¹ôO 

becomes approximately -12 dB. 
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In Setup II, a booster optical amplifier (BOA) is placed in the loop. The BOA is used to 

overcome the coupling efficiency of the lensed fiber and the insertion losses in the fiber network. 

It will then increase the total magnitude of the external reflection. An amplifier is unidirectional, 

since it has a built-in isolator in the package. Therefore, a circulator has to be used to feed the light 

in the loop back into the laser. The amplifier creates another 10 dB of external reflection, enabling 

the maximum reflectivity Rext to reach 0 dB. The ability to reach reflectivity near unity is necessary 

to measure the onset of coherence collapse of the expectantly feedback-insensitive Si/III-V lasers. 

In this setup, the optical fiber path length is approximately 10 m. 

It is worth noting that the fiber network in the top path creating the external reflection is made 

using polarization maintaining (PM) fibers to ensure that the reflected light has the same 

polarization as the emitted light.  

 

 

 
Figure 5.4 . The measurement setup used to quantify the MZI fringe visibility. The top path 
allows for the precise control of the magnitude of the external optical feedback. A variable 

attenuator is used to vary the amount of the external optical reflection going back into the laser. 
A booster optical amplifier (BOA) is used to enable the reflectivity to approach unity even in the 
presence of losses included in the fiber network. The bottom path measures the fringe visibility 
of the laser output as it passes through a MZI. Two isolators are used to prevent reflection from 
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the measurement loop from going back into the laser. A piezo-actuator is controlled by a 
function generator, and is used to provide a small length variation to display interference fringes. 

 

The bottom path of both setups (i.e., Setup I and II) is used as a characterization path to monitor 

and quantify the fringe visibility. The light in the forward 5% tap is passed through two isolators 

to remove any external feedback from the bottom path, and an MZI, with a free spectral range 

(FSR) of 533 MHz. A piezo-actuator provides a few microns of a length variation to one arm of 

the MZI, at a rate of 1 kHz, to display the interference fringe pattern. The interfered light, passed 

through the MZI, is routed to a photodetector. The voltage generated from the photodetector is 

measured using an oscilloscope. For each attenuation of the variable attenuator, the fringe visibility 

is taken 10 times with a delay of a few seconds between each measurement.  

The four-port 95%/5% fiber coupler also creates taps to measure the backward and forward 

power in the fiber loop. The external reflectivity Rext is calculated by using the measured backward 

and forward power, the coupling efficiency, the insertion loss of the fiber coupler, the isolators, 

and the variable attenuator. The coupling efficiency and the insertion losses are characterized prior 

to conducting the experiment.  

 

 Experimental results 

Figure 5.5 illustrates the change in the fringe visibility of a commercial high-end DFB laser 

(i.e., QPhotonics, model number: QDFBLD-1550-5AX), which has no packaged isolator, as a 

function of time at different external feedback levels, when the laser is pumped with 40 mA (Ith = 

5 mA). 

 

Figure 5.5 The MZI fringe visibility of the commercial HR/AR coated DFB laser (I = 30 mA, Ith 
= 5 mA), as a function of time. (Left) The fringe visibility of 1 is maintained under weak 

feedback condition (Rext = -60 dB). (Middle) As the feedback increases to Rext = -27 dB, the 
fringe visibility starts to drop as the laser goes into the coherence collapse. (Bottom) The fringe 
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visibility becomes 0, i.e., in our case 𝜏Î ≪ 1/FSR, the laser completely loses coherence under 
strong feedback (Rext = -17 dB). 

 

Under a weak feedback condition of 𝑅¹ôO = −60	dB, the laser maintains a high fringe visibility. 

As the feedback level increases to -28 dB, the fringe visibility starts to drop. When the feedback 

level reaches -17 dB, the laser loses its coherence completely (i.e., 𝜏Î ≪ 1/FSR) and the fringe 

visibility becomes 0. 

Figure 5.6 presents the fringe visibility of the laser as a function of the external reflectivity Rext. 

The laser starts to go into the coherence collapse regime (i.e., onset of coherence collapse) at 

approximately 𝑅¹ôO = −44	dB. It goes into the complete coherence collapse regime at 𝑅¹ôO =

−20	dB. The fringe visibility plots measured using two different setups, one using a gold fiber 

mirror and the other using an amplifier and a circulator, show good agreement with each other. 

This demonstrates that the setup, using an amplifier and a circulator, can create the same external 

reflection as a mirror while boosting the maximum achievable external reflectivity. The results 

reveal that the maximum achievable external reflectivity is approximately -8 dB, whereas the setup 

using the amplifier creates the maximum external reflectivity of unity (0 dB). The right axis of 

Figure 5.6 illustrates the level of the power emitted out of the laser and the reflected power going 

back into the laser. 
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Figure 5.6 The MZI fringe visibility measurement of the commercial DFB laser (QPhotonics, I = 
30 mA, Ith = 5 mA) using two different setups (Figure 5.4), as a function of the external 

reflectivity Rext. The two different setups, one using a gold fiber mirror and the other using an 
amplifier and a circulator, yield nearly the same result. The setup using an amplifier can create a 
maximum external reflectivity up to approximately 0 dB. The emitted power and the reflected 

power going into the laser are shown on the right axis of the plot. 

 

Figure 5.7 compares the fringe visibility of the same commercial DFB laser, which has no 

packaged isolator,  to that of the laser when an isolator (FDK YD-460) is placed at the output of 

the laser. When the isolator is present, the laser maintains coherence, even when the power that 

goes back into the laser is the same as the power emitted from the laser (i.e., 𝑅¹ôO = 0	dB). This 

demonstrates the isolation effect of 42 dB of the isolator used in the experiment. 
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Figure 5.7 The MZI fringe visibility measurement of the commercial DFB laser (QPhotonics, I = 
15 mA, Ith = 5 mA) as a function of the external reflectivity Rext. As a control experiment, the 
fringe visibility measurement is performed on the same laser after placing an isolator at the 

output of the laser. 

 

Finally, using the setup with a circulator and an amplifier in the loop, we measure the fringe 

visibility of the 50 and 90 nm QNCL high-coherence lasers. Figure 5.8 shows the fringe visibility 

of the commercial DFB laser, the 50 nm (Ith = 100 mA, λm = 1560 nm) and 90 nm (Ith = 80 mA, 

λm = 1556 nm) QNCL lasers all together.  

The 50 nm QNCL laser, biased at 200 mA, experiences the onset of coherence collapse at a 

reflectivity of Rext between -21 and -18 dB, and complete coherence collapse from 𝑅¹ôO = −10	dB. 

The onset of coherence collapse of the 90 nm QNCL laser, biased at 160 mA, is at the level between 

-19 and -14 dB. It goes into complete coherence collapse at 𝑅¹ôO = −9	dB. 
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Figure 5.8 MZI fringe visibility of the commercial laser (QPhotonics, I = 15 mA, Ith = 5 mA), 50 
nm (device ID: hQsp7 ch8 slot1 bar7 dev10, I = 200 mA, Ith = 100 mA), and 90 nm (device ID: 

hQsp7 ch09 slot1 bar4 dev05, I = 160 mA, Ith = 80 mA) QNCL lasers. 

 

Considering that, on the system level, a single-mode operation is needed throughout, we 

compare the external reflectivity of each laser at which it starts to experience the onset of the 

coherence collapse. The 50 nm and 90 nm QNCL lasers possess an insensitivity to reflection 

feedback comparable to a commercial DFB laser, employing 25 dB and 30 dB isolation, 

respectively. 
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5.4 Relative intensity noise (RIN) measurement 
 Measurement setup 

The onset of coherence collapse of the lasers can also be characterized by investigating the RF 

intensity noise spectrum, using the setup shown in Figure 5.9.  

The top path creates an artificial external optical reflection, and uses the same setup as the fringe 

visibility measurement setup described in 5.3.1. In this setup, however, the light emitted from the 

laser under feedback is directly fed into a photodetector to measure the RF intensity noise without 

passing it through an MZI. The laser RIN is then measured using an RF spectrum analyzer. 

 

 

Figure 5.9 The setup to measure the relative intensity noise (RIN) of the laser in the presence of 
the external reflection. The laser light is directly fed into a photodetector; the RF spectral density 

of the intensity noise is measured using an RF spectrum analyzer. 

 

 Experimental results 

Figure 5.10 shows the RF intensity noise spectrum of the commercial DFB laser (QPhotonics) 

at different level of external feedback.  

When the feedback is very small (R¹ôO ≈ −45	dB), the laser is below the coherence collapse 

regime and shows a stable trace of RIN. At the external feedback level of R¹ôO = −40	dB, the 

noise spectrum begins to rise at RF frequencies near the relaxation resonance frequency at 

approximately 10 GHz [89]. The intensity modulation characteristics of this laser, discussed in 

Section 4.4.2, are overlaid on top of the RF intensity noise for comparison purposes. The relaxation 

resonance frequency is observed to occur at the same location in both measurements. The inset in 

Figure 5.10 shows that the oscillations are at harmonics of 1 𝜏¹ôO. The feedback level of the onset 
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of coherence collapse of R¹ôO = −40	dB  is approximately the same as that of the onset of 

coherence collapse in the fringe visibility measurement (Figure 5.8). 

With a further increase of feedback to R¹ôO = −30	dB, the instabilities spread to the frequencies 

farther removed from that of the relaxation resonance. A resonance structure with peaks at 

harmonics of 1 𝜏¹ôO is superimposed on the IM response of the laser, with a natural resonance 

peak at the relaxation resonance frequency.  

Figure 5.11 presents the RF intensity noise spectrum of the 50 nm QNCL laser (Ith = 100 mA, 

λm = 1560 nm) at different levels of external feedback. A stable RIN signal is measured at the 

small feedback level of R¹ôO ≈ −28	dB . The laser shows the onset of coherence collapse at 

approximately R¹ôO = −15	dB, displaying instabilities near the relaxation resonance frequency of 

10 GHz. The same relaxation resonance frequency is observed in the overlaid IM response of the 

laser. The complete coherence collapse occurs at 𝑅¹ôO = −10	dB. The onset of the coherence 

collapse and the complete coherence collapse levels, measured in the intensity noise, are in an 

agreement with those from the fringe visibility measurement. 

Figure 5.12 shows the RF intensity noise spectrum of the 90 nm QNCL laser (Ith = 80 mA, λm =

1556 nm) at different levels of external feedback. The onset of coherence collapse of the laser 

occurs at R¹ôO = −12	dB, and complete coherence collapse is observed at R¹ôO = −9	dB. 
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Figure 5.10 The RF RIN spectrum of the commercial AR/HR coated DFB laser (QPhotonics, I = 
20 mA, Ith = 5 mA). 
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Figure 5.11 The RF RIN spectrum of the 50 nm QNCL Si/III-V laser (device ID: hQsp7 ch08 
slot1 bar7 dev10, I = 200 mA, Ith = 100 mA). 
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Figure 5.12 The RF RIN spectrum of the 90 nm QNCL Si/III-V (device ID: hQsp7 ch09 slot1 
bar4 dev05, I = 150 mA, Ith = 80 mA). 
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5.5 Optical spectrum measurement  
The optical spectrum of the lasers under feedback are monitored with an optical spectrum 

analyzer. The resolution bandwidth (RBW) is 0.08 nm (approximately 10 GHz at 1550 nm).  

Figure 5.13 shows the optical spectrum of the commercial DFB laser (QPhotonics), as well as 

the 50 nm, and the 90 nm QNCL lasers under different levels of external feedback.  

The commercial laser illustrates a linewidth broadening from the level of Rext = -22 dB. The 50 

nm and 90 nm QNCL lasers do not display a linewidth broadening under any feedback level. 

 

 

Figure 5.13 The optical spectrum under different levels of external feedback: (a) commercial laser 
(QPhotonics, I = 40 mA, Ith = 5 mA), (b) 50 nm QNCL laser (device ID: hQsp7 ch8 slot 1 bar7 
dev10, I = 180 mA, Ith = 100 mA), and (c) 90 nm QNCL laser (device ID: hQsp7 ch09 slot1 bar4 
dev05, I = 200 mA, Ith = 80 mA). 

	
5.6 Discussions and conclusions 

In Figure 5.10, Figure 5.11, and Figure 5.12, all lasers exhibit instabilities with maximum 

response near the relaxation resonance frequency. This is because of the natural resonance of the 

laser’s carrier-photon coupling system against the external perturbations. An important 

consequence of the reduced relaxation resonance frequency of the high-coherence QNCL Si/III-V 

lasers, discussed in Section 4.4, is that the relaxation resonance frequency sets a limit to the 

bandwidth of the RIN spectrum, induced by the optical feedback. This means that noise at a 

frequency above the relaxation resonance frequency is highly suppressed. Thus, the Si/III-V lasers 

rarely exhibit the RF intensity noise at frequencies larger than the relaxation resonance frequency 

(Figure 5.11 and Figure 5.12). The commercial DFB laser (QPhotonics) had a relaxation resonance 

frequency at approximately 8 GHz (Figure 5.10), whereas the 50 nm and 90 nm QNCL lasers had 

relaxation resonance frequencies at 1 GHz and 600 MHz, respectively (Figure 5.11 and Figure 
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5.12). Accordingly, the subsequent linewidth broadening of the laser would not significantly 

exceed the bandwidth of the relaxation resonance frequency. This is evidenced by the optical 

spectrum measurement (Figure 5.13), in which the OSA cannot resolve the increased linewidth of 

the high-coherence lasers with a resolution bandwidth of 0.08 nm (10 GHz at 1550 nm).  

As discussed in Section 5.1, the technological remedy that could be used to improve the laser’s 

stability against external reflections included the use of an active material with a low linewidth 

enhancement factor. Quantum-dot-based semiconductor lasers should show high resistance against 

external reflections. For example, the InAs/GaAs quantum-dot system near the 1.3 𝜇m showed 

high endurance against external feedback [90]. However, quantum-dots remain difficult to grow 

for certain materials and wavelengths. The demonstration of the improvement of the feedback 

sensitivity in our lasers illustrates that this approach of utilizing the high-reflectivity mirrors, 

enabled by the reduction of the intrinsic loss of the laser, can be applied to any lasers with a 

different material system to increase resistance against external feedback. Combined with the use 

of the low linewidth enhancement factor, this approach will create a laser which can further 

withstand external reflections. 

In conclusion, we demonstrated the high immunity of the high-coherence Si/III-V lasers to 

external reflections by investigating the fringe visibility, the RF intensity noise, and the optical 

spectrum of the lasers in the presence of feedback. The lasers exhibited a feedback insensitivity 

which is larger by 25 dB compared to conventional III-V lasers. Furthermore, the lasers possess a 

low relaxation resonance frequency, as low as hundreds of MHz, thus suppressing high-frequency 

noise and amplitude/phase coupling at RF frequencies above ~ 1GHz. This was achieved through 

the use of the low-loss resonator and the reduction of the intrinsic loss in the laser cavity through 

transverse modal engineering. Consequently, the increased intrinsic Q-factor of the laser enabled 

the use of high-reflectivity mirrors, without sacrificing the laser output power.  

The combination of this approach and the use of a material with a low linewidth enhancement 

factor 𝛼 would yield a laser that is highly resistant against external reflections, eliminating the 

need to use costly optical isolators. 
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Appendix  A   

FABRICATION 
 

This appendix presents the fabrication procedures for the heterogeneous Si/InP lasers. 

 

A.1 Si resonator fabrication 

The fabrication procedure for the Si resonator fabrication is shown in Figure A.14. The high-Q 

modegap grating Si resonators were fabricated using SOI wafers. Eight inch SOI wafers with a 

700 nm Si layer (resistivity: p-doped Boron, 14-22 Ω ∙ cm) and a 1 µm buried SiO2 (BOX) layer 

were purchased from Soitec (Peabody, MA, USA). The Si layer on the SOI wafer used in this work 

was thinned down to 500 nm by thermal oxidation, yielding a 400 nm thermal oxide layer on top 

of the Si. Then, the wafers were diced into chips (9 cm × 18 cm), and covered with the PMMA 

photoresist for surface protection. 

The photoresist on the chip surface was removed by cleaning with a solvent (acetone/isopropyl 

alcohol). The organic compounds on the sample surface were cleaned using a piranha solution, a 

mixture of H2SO4/H2O2 with a volume ratio of 3:1. Then, the 400 nm thermal oxide layer on top 

of the Si was thinned down to 50–150 nm, depending on the laser design, using a HF solution 

(Buffer HF Improved). The etch rate was approximately 100 nm/min. The thickness of the 

remaining thermal oxide layer was measured using the spectral reflectance-based thickness 

measurement tool (Filmetrics model F40).  
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Figure A.14 A fabrication procedure for high-Q modegap grating Si resonator 

 

To etch Si, we used two etch masks to minimize the etch rate difference between the waveguide 

trench and the grating region. As shown in Figure A.15, a thick electron-beam (e-beam) resist can 

cause a lag in the etch rate while forming the patterns into Si, especially for the regions that have 

a high aspect ratio, i.e., grating holes in this case. This effect, called aspect ratio dependent etching 

(ARDE), is attributed to the poor transport of the etchants into the trenches. The thicker the mask 

is, the more difficult for the etchants to reach the trench bottom and for the byproducts to escape 

[91, 92]. To overcome this ARDE effect, we used a thin chrome (Cr) hard mask, instead of the 450 

nm e-beam resist, as a final mask to transfer the patterns into the SiO2 and Si. The Cr hard mask 

provides a good etch selectivity to SiO2 of about 32:1 [93], which imply that 10 nm of Cr is 

sufficient for etching 150 nm SiO2 and 60 nm Si (the grating depth target, as described in Table 

3.1. 2D Si waveguide design parameters) in our waveguides. We deposited a 20 nm Cr layer on 

our SOI chip using an e-beam evaporator (CHA Industries Mark 40).  
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Figure A.15 Aspect ratio dependent etching causes etch lag in the grating region, when etched 
with the 400 nm e-beam resist. This etch lag in the high aspect ratio region can be avoided by 

using the thin 20 nm Cr hard mask. 

 

 

Figure A.3 Atomic force microscope measurement showing the etch depth in the waveguide 
trench and the grating region, when etched with the 450 nm e-beam mask and the 20 nm Cr hard 
mask. The right figure shows that using Cr hard mask yields small etch depth difference between 

the waveguide trench and the grating region.  
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Figure A.4 Atomic force microscope measurement for the waveguides in the defect (left figure) 

and mirror section (right figure). The waveguide is etched with the Cr hard mask. 

 

Figure A.3 Atomic force microscope measurement showing the etch depth in the waveguide 

trench and the grating region, when etched with the 450 nm e-beam mask and the 20 nm Cr hard 

mask. The right figure shows that using Cr hard mask yields small etch depth difference between 

the waveguide trench and the grating region.shows the atomic force microscopy (AFM) 

measurement for the waveguides in the mirror section after Si etching. The ARDE effect was 

severe when the etching was performed using the 450 nm e-beam mask, whereas the 20 nm Cr 

hard mask yielded a small etch depth difference of approximately 10 nm between the waveguide 

trench and the grating region. 

Figure A.4 Atomic force microscope measurement for the waveguides in the defect (left figure) 

and mirror section shows the AFM measurements for the waveguides in the defect and mirror 

section. While etching 60 nm of SiO2 and 60 nm of Si, the grating holes show 200 nm difference 

in diameter in the x-direction between the top and the bottom of the hole, and 80 nm difference 

between the top and the bottom in the wave-propagating z-direction. These differences are 
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identical in both the defect and mirror sections. After Cr deposition, approximately 450 nm of 

positive e-beam resist (ZEP520A [94]) was deposited on top of the Cr.  

The waveguide trench and the grating patterns were written using e-beam lithography 

(Vistec/Leica EBPG 5000+). Patterns were divided into a ‘sleeve’ part, which were written with a 

beam current of 300 pA and a beam step size of 2.5 nm, and a ‘bulk’ part, which were written with 

a beam current of 10 nA and a beam step size of 10 nm. The sleeve part writes the gratings and the 

edge part of the waveguide trenches, and the bulk writes the remaining part of the waveguide 

trench area. The clearing dose of the spun-on e-beam resist was approximately 270 µC/cm2, but a 

slightly higher dose was used to reduce the roughness on the resist sidewalls with over-exposure 

[95, 96].  

Then, patterns were transferred into Cr using an inductively coupled plasma reactive ion etching 

(ICP-RIE, Oxford III-V Etcher) with Cl2/O2 chemistry [93]. Cr etching took approximately 8 

minutes, leaving ~80 nm of e-beam resist on top of the Cr. The remaining e-beam resist was 

removed by O2 plasma using the same etcher. The patterns were then transferred into SiO2 and Si 

with C4F8/O2 gases [93]. A large etch rate variation was observed and careful calibration of the 

etch rate is required in this step. The Cr hard mask was removed using the wet Cr etchant (CR-7S) 

[97].  

After cycles of thorough cleaning (Piranha/O2 plasma), the Si chip was oxidized using dry 

thermal oxidation for 15 min and annealed with N2 for 30 minutes at 1000°C (Tystar Tytan) to 

further reduce the sidewall roughness [98, 99, 100].  

Every step of the fabrication broadens the grating holes. The design patterns were calibrated 

using a careful SEM characterization to account for this effect, thus enabling the precise fabrication 

of holes with the target z-direction diameter of 120 nm. 

Figure A.16 SEM image of the fabricated grating in-plane Si resonator. shows the scanning 

electron microscope (SEM) image of the fabricated 1D grating in-plane Si resonator. In Figure A.4 

Atomic force microscope measurement for the waveguides in the defect (left figure) and mirror 

section (right figure). The waveguide is etched with the Cr hard mask., a grating hole with a 120 

nm in diameter, which is our design target, was obtained when we write 60 nm in the e-beam 

lithography pattern. Therefore, we decide to e-beam write 60 nm to achieve the 120 nm dimeter 

on the surface of the waveguide. The transmission spectrum of the fabricated resonator is given in 

Figure 3.5. 
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More detailed description for the process condition can be found in [101, 42, 102]. 

 

 

 

Figure A.16 SEM image of the fabricated grating in-plane Si resonator. 

 



 100 

A.2 III-V fabrication 
The structure of the III-V epi-wafer used for our laser is shown in Table A.1 The structure. The 

wafer was custom grown by Landmark (Tainan City, Taiwan).  

 

Table A.1 The structure of the III-V epi-wafer used in this thesis. 

 

To bond the III-V InP wafer to Si/SiO2, we used the plasma-assisted low temperature direct 

(molecular) bonding technique [103, 104, 105]. There are many other bonding methods, such as 

metal bonding [106, 107], and adhesive bonding [108, 109], but we used the direct bonding 

technique mostly for the precise control of the spacing between Si and III-V. Direct bonding 

between Si and InP was realized using high mechanically-applied pressure in vacuum at 285°C 

for 5 hours in a wafer bonder (Suss SB6L). For removal of the InP substrate, we introduced a 

physical lapping method to grind away most of the InP substrate. The final 50 µm InP substrate 

was removed using hydrochloric acid (HCl). Figure A.17 An image showing the laser chip after 

bonding step and subsequent substrate removal step. shows the image of the bonded Si/III-V chip 

after removal of the III-V substrate. 
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Figure A.17 An image showing the laser chip after bonding step and subsequent substrate 
removal step. 

 

The III-V mesa and metal contacts are tens of micron wide, whereas the optical mode in our 

waveguide is a ~2 µm wide. To obtain a high injection efficiency, the injection of carriers into the 

active region at the immediate vicinity of the lasing mode is necessary. In this thesis, an efficient 

current injection was achieved using two different methods: ion implantation and oxide-

confinement. 

 

 Mesa formation using ion implantation  

Figure A.7 A schematic of heterogeneous Si/III-V lasers where III-V mesa structure is made 

using ion-implantation. shows a schematic diagram of heterogeneous Si/III-V lasers in which the 

current injection is realized using ion implantation. The ion-implanted region becomes highly 

electrically resistant, making it possible to confine the injected current to the central region of the 

mesa.  

The III-V mesa fabrication procedure using ion implantation is shown in Figure A.8 III-V mesa 

fabrication procedure using ion implantation.. Implantation was outsourced and performed by 

Kroko (Tustin, CA, USA). After ion implantation, the photoresist mask becomes sticky and hard 

to remove. Thorough solvent cleaning along with O2 plasma was necessary to strip the resist. 

Ti/Pt/Au (30/50/300 nm) and Ni/Ge/Au/Ni/Au (5/20/20/20/225 nm) were used for the p- and n-

metal contacts, respectively. A 65 µm wide photoresist mask was used to etch the InGaAs p-

contact layer with Piranha (H2SO4:H2O2:H2O = 5 mL:15 mL:50 mL), while a single 80 µm wide 
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photoresist mask is used to etch both the p-InP cladding and InGaAsP QW layers with HCl and 

Piranha solution, respectively. The fabricated laser structure using ion implantation is shown in 

Figure A.18 SEM image of the fabricated laser using ion implantation.. A more detailed 

description of the mesa fabrication procedure using ion implantation can be found in [43, 105, 

106]. 

 

 
Figure A.7 A schematic of heterogeneous Si/III-V lasers where III-V mesa structure is made 

using ion-implantation. 
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Figure A.8 III-V mesa fabrication procedure using ion implantation. 

 

 

Figure A.18 SEM image of the fabricated laser using ion implantation. 

 

 Mesa formation using oxide-confinement 

The III-V mesa structure was also formed using a different technique, which we call the oxide-

confinement method, as shown in Figure A.19 Schematic diagram of heterogeneous Si/III-V lasers 

where III-V mesa structure is made using oxide-confinement method.. In this method, the current 

injecting structure was directly etched using wet processes to define the electrical current path. 

Subsequently, SiO2 was deposited over the mesa and a window was opened only over the central 
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pillar to provide the electrical connection between the III-V and the p-metal contact. The 

neighboring pillars provided the mechanical support when electrical probes were used to make 

contact with the laser. 

 

 

 
Figure A.19 Schematic diagram of heterogeneous Si/III-V lasers where III-V mesa structure is 

made using oxide-confinement method. 
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Figure A.20 III-V mesa fabrication procedure using oxide-confinement. 

 

The oxide-confinement method was demonstrated on edge-emitting lasers [110], and vertical-

cavity surface-emitting laser (VCSEL) [111, 112]. To our knowledge, this is the first 

demonstration of the oxide-confinement method in a heterogeneously integrated Si/III-V platform. 

Figure A.20 III-V mesa fabrication procedure using oxide-confinement. shows the III-V mesa 

fabrication procedure using the oxide-confinement method. To create the oxide-confined mesa 

structure, the III-V mesa was defined by wet etching the mesa with three pillars with a depth of 

1.4 µm; the central pillar had a width of 6 µm and the two adjacent pillars had a width of 20 µm 

for mechanical support on either side. The central pillar was used to inject carriers into the QWs 

directly above the waveguide to provide the laser gain. The mesa etch was stopped above the QWs 
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so that defects introduced by etching are kept away from the active region [113]. An SiO2 layer 

was deposited by plasma-enhanced chemical vapor deposition (PECVD) to provide electrical 

isolation between the different pillars of the mesa. A 4 µm wide window was opened in the SiO2 

on the central pillar using photolithography and etched with HF to enable electrical contact 

between the metal and the III-V material. Then, the p- and n-metal contacts with the same structure 

described in were deposited. Figure A.21 shows a SEM image of the cross section of the mesa of 

the fabricated laser, in which the central mesa and the waveguide can be seen. The successful 

connection between the p-metal and the p-InGaAs contact layer through the opened window can 

be confirmed from the image. 

The wet etching recipe for each layer of III-V and the metal contact structure was the same as 

that described in Section A.2.1. The detailed conditions for the processes can be found in [42, 101, 

102]. 

 

 

 

 

Figure A.21 SEM image of the fabricated laser using oxide-confinement method. 
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Appendix  B   

BIOSENSING 
 

Here we describe proposals, fabrications and experimentation of employing an on-chip 

integrated differential optical microring refractive index sensing platform. This platform leverages 

laminar flow conditions, close spacing between a sensing and a reference resonator, and sharing 

the same microfluidic channel which allows the two resonators to experience similar 

environmental disturbances, such as temperature fluctuations and fluidic-induced transients, 

achieving reliable and sensitive sensing performance. We obtain a noise floor of 80.0 MHz (0.3 

pm) and a bulk refractive index sensitivity of 17.0 THz per refractive index unit (RIU) (64.2 

nm/RIU), achieving a limit of detection of 1.4 × 10-5 RIU in a 30 minute and an 8˚C window. 

 

B.1 Biosensing using optical microresonators 
Optical microresonators, compatible with CMOS technologies and easily incorporated with 

microfluidics, are good candidates for integration into portable medical diagnostic devices and 

commercial bench-top systems for chemical/biological analysis [114, 115, 116]. Microring 

resonators are promising optical sensing devices, due to their high sensitivity to environmental 

refractive index changes and single-mode of operation. In these devices, the light propagates in 

the form of a traveling wave with resonance wavelengths, 𝜆 = 2𝜋𝑅𝑛¹ºº/𝑚	(R: the radius of the 

resonant cavity, neff: the effective refractive index experienced by the resonant mode, m: the 

azimuthal mode number). A change in the refractive index of the cladding, caused by analytes 

binding to the functionalized surface of the optical resonator, or by analytes in the whole region of 

a cladding layer, will induce a spectral shift in the resonance wavelength [117]. 

However, environmental disturbances, such as temperature drift, flow-induced drift, and laser 

drift, cause spurious changes in the resonance wavelength and must be accounted for to enhance 

the limit of detection of the sensing system. A differential measurement can reject common mode 

noise by including an additional reference resonator to track the undesired drift. An on-chip 

differential measurement requires the physical separation of the reference resonator from the 

sensing solution. Current methods include utilizing a reference resonator covered by a 

perflouropolymer [114], a SU-8 polymer or a silicon oxide (SiO2) cladding layer [118], or a 
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platform where the reference resonator resides in a separate microfluidic channel from the sensing 

resonators [119]. 

 

B.2 Differential sensing based on a laminar flow scheme 
 

 

Figure B.22 (a) Schematic view of the proposed platform. (b) Layout of the waveguide-resonator 
chip shown together with two-layer microfluidic structures. (c) Photograph of (left) the 

fabricated device where the Si3N4 waveguide-integrated microring resonator chip is bonded to 
the PDMS microfluidic device, (right) a dime shown for scale. (d) Photograph showing the 

laminar flow of the two different dye solutions flowing onto three pairs of resonators, with no 
disruption between two fluid layers. 

 

We present a new on-chip differential refractive index sensing platform that leverages laminar 

flow conditions between the non-mixing solutions. The two resonators, one used for sensing and 

the other for reference, are exposed to an aqueous environment in one common microfluidic 

channel. Two solutions, one containing the sample of interest and the other acting as a reference, 

flow in the common microfluidic channel, and the laminar flow maintains the composition of the 

two fluid streams as they pass by the sensing and the reference resonators separated by more than 

the diffusion length (~10s of µm) of the analyte molecules within the laminar flow. The differential 
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measurement is then realized by tracking the difference between resonance wavelength of the 

sensing and reference resonators (Figure B.22 (a)). 

In this platform, since the resonators are placed in close proximity to each other in the same 

microfluidic channel, environmental disturbances, such as temperature fluctuations, flow-induced 

transients, and drifts induced by interaction of the microfluidic channel with liquids (such as the 

slow drift caused by solvent permeation into microfluidic channel walls [120]), have similar, 

ideally identical, effects on both resonators. This results in stable and sensitive sensing without 

requiring external stabilization. The close spacing between the resonators leads to a compact 

device and also improves resonator-to-resonator fabrication variation tolerance in waveguide 

width, height, and coupling gap. This results in uniform resonator responsivity, and eliminates the 

need for time-consuming calibration of individual resonator responsivities.  

The condition of each solution flowing over each resonator can also affect sensing performance 

since they are in direct contact. It is difficult to precisely control the temperature of each solution. 

As we see later in this Letter, a difference of 1˚C corresponds to approximately 0.6 GHz in this 

platform, or equivalently 3.5 × 10-5 RIU in the sensing solution, which is 2.5 times larger than the 

reported limit of detection in this platform. To address this limitation, our proposed platform 

includes a 950 µm microfluidic equilibration region before the two fluids reach their respective 

resonators. This region, where the solutions are in contact with each other while still satisfying 

laminar flow conditions, helps reduce the temperature and pressure differences between the two 

fluids, and thus, between the two resonators.  

Our platform eliminates the need to cover the reference resonator and, thus, removes associated 

fabrication complexities. While covering the reference resonator with a cladding layer and then 

opening sensing windows is achievable, several process issues arise that can complicate its 

development. First, hard claddings (oxide-based) impose fabrication challenges due to the poor 

dry etch selectivity between the cladding layer and sensing resonator [118]. 

Imperfect control of the etching depth over the sensing window would lead to sensing 

resonators with different optical properties.  

Second, new materials added to the surface of the device limit the range of compatible 

chemicals and processes for surface treatment. For example, once a polymer cladding is deposited, 

it is difficult to clean, surface-activate, or recycle resonators with harsh cleaning solutions during 

the development of a surface functionalization protocol [121]. By overcoming these challenges 
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and also increasing the stability and sensitivity, we believe that our new platform offers a 

promising starting point for future development of laminar flow-based differential sensing 

measurements.  

 

B.3 Implementation of the platform 
Fabrication of the optical microring resonators 

Figure B.22 (b) shows a schematic of the platform where a waveguide-integrated resonator chip 

is shown together with a two-layer microfluidic layout. Two 140 µm diameter, 1 µm width optical 

microring resonators are positioned with a center-to-center spacing of 800 µm. They are fabricated 

on a 250 nm thick silicon nitride (Si3N4) layer on top of 6 µm thick SiO2 on a silicon handle. The 

1 µm wide waveguides and the microrings with a 400 nm coupling gap are patterned using electron 

beam lithography on electron beam resist, ZEP520A. The patterns are transferred to the Si3N4 layer 

using low DC-bias, inductively-coupled plasma reactive-ion etch (ICP-RIE) with SF6/C4F8 

chemistry.  

 

Implementation of microfluidics 

For liquid delivery, a microfluidic polydimethylsiloxane (PDMS) device is bonded on top of 

the Si3N4 layer. The two-layer microfluidic structure consists of a bottom flow layer and a top 

control layer, and incorporates four inlets and one outlet, each with a corresponding control valve. 

The two inlets to the left are used to deliver solutions to the sensing resonator, while the two inlets 

to the right supply flow to the reference resonator. Figure B.22 (c) shows a photograph of the 

fabricated platform, in which the Si3N4 waveguide-resonator chip is bonded to the two-layer 

PDMS device. Continuous pumping of the solutions and switching of the valves between the 

different inlets is achieved by computer-controlled pressurized solenoid valves [122]. The pressure 

driving the liquid flow is set to 41 kPa, whereas that used to actuate the control valves is set to 151 

kPa.  

To illustrate the laminar flow achieved on this device, we introduce two different dye solutions 

from two inlets into one common flow channel, which is 1.3 mm wide and 22 µm tall.  

Figure B.22 (d) shows the established dual laminar flow, demonstrating successful delivery of the 

different solutions to the sensing and reference resonators. 
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Figure B.23 (a) Transmission spectrum of two high-Q microring resonators in water measured at 

1064 nm (blue), the Lorentzian fits are shown in red. (b) sensing, reference, and differential 
frequency shift versus time from a 40 mM NaCl solution at constant stage temperature of 26˚C. 

(c) differential shift versus time at various NaCl concentrations. (d) Differential shift versus 
NaCl concentrations at 26˚C. 

 

Characterization of the optical resonators 

The microring resonators are characterized using a 1064 nm vertical-cavity surface-emitting 

(VCSEL) based optoelectronic linearly swept frequency laser with an optical frequency excursion 

of 400 GHz in 2 ms, which is coupled into the waveguide from free space optics. The feedback 

scheme described in [47] ensures that the laser sweeps at a fixed linear chirp rate for the entire 

sensing experiment. We achieve high Q-factors of the microring resonators in aqueous 

environments due to the transparency of Si3N4 and low water absorption at 1064 nm [123], 

measured to be Q = 1.9 × 105 and 2.0 × 105 for the sensing and reference resonator, respectively 

(Figure B.23 (a)). The relatively large diameter of 140 µm of the microring resonators not only 

enables high Q-factors but also give the resonators a free spectral range (FSR) small enough to be 
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spectrally scanned by a VCSEL through current injection. This removes the need for expensive, 

large-bandwidth, slow scanning mechanical tunable lasers. 

 

B.4 NaCl bulk sensing experiments 
To demonstrate the sensing ability of this platform, we flow sequentially diluted sodium 

chloride (NaCl) solutions. In this experiment, the temperature of the resonator chip is fixed at 26˚C 

using a Peltier thermoelectric cooler (TEC). The resonator chip is attached to the copper block 

using thermally conductive adhesive transfer tape and the stage temperature is monitored using a 

thermistor attached to the copper block. 

 

 
Figure B.24 Sensing, reference, and differential frequency shifts versus time while continuously 

flowing DI water from two inlets to the sensing and reference resonator as the temperature of 
stage is adjusted from 22 to 30˚C, 2 GHz of offset is applied to the reference shift to distinguish 

it from the sensing shift. (inset) monitored stage temperature. 

 

First, we establish the baseline by continuously flowing deionized (DI) water from inlet 1 and 

inlet 4 to the sensing and reference resonator, respectively. Next, we switch the sensing flow to 

inlet 2, which is connected to the NaCl solution, while maintaining the reference flow of DI water. 

For recovery, we switch back the sensing flow to inlet 1 (DI water). The resonance frequency of 

the sensing resonator, reference resonator, and their difference is monitored simultaneously by the 

swept VCSEL. The resonance frequency shifts from 40 mM NaCl solution are plotted in Figure 
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B.23 (b). The differential shifts at concentrations of 2.5, 5, 10, and 40 mM, are measured and 

plotted in  Figure B.23 (c). We perform 5 to 10 cycles of the same experiment at each concentration 

and the frequency shifts from all cycles are plotted in Figure B.23 (d). Using a refractive index 

change of 0.0018 per 1% mass (172.8 mM) [124], a bulk sensitivity of -19.2 ± 0.1 THz/RIU (72.6 

± 0.3 nm/RIU) is extracted by linear regression. The standard deviations at each of the 

concentrations (σ`.0ë¾  = 69, σ0ë¾  = 72, σTmë¾ = 27, and σ£më¾  = 86 MHz) demonstrate 

excellent sensing repeatability from cycle to cycle. The two-layer microfluidic structure with on-

chip valves allows the sensing signal to reach steady-state in less than 10 seconds after valve 

switching due to low dead volume in the microfluidic plumbing. 

To study the total noise of the platform in a temperature-varying environment, we increase the 

temperature of the stage over an 8˚C window, from 22 to 30˚C, in steps of 2˚C, while flowing DI 

water from inlet 1 and 4 to the sensing and reference resonator, respectively. To automate and 

monitor the change of the stage temperature, a computer-controlled temperature controller (LDC-

3724) is used instead of the TEC. 

The inset to Figure B.24 shows the monitored stage temperature. After applying 2 GHz of offset 

to the reference shift to distinguish it from the sensing shift, we plot their resonance frequency 

shifts as a function of time in an 8˚C window in Figure B.24. It can be seen that, even though the 

single resonator response follows the stage temperature change, most of the thermal drift is 

removed in the differential shift. A standard deviation (σ1�N¹�Eª¹) in the differential frequency shift 

of 80.0 MHz (0.3 pm) is achieved, as opposed to the ~ 3 GHz shift seen in the individual resonators, 

and taken to be the total system noise in an 8˚C window in the absence of switching transients.  
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Figure B.25 (a) Sensing, reference, and differential frequency shift versus time from a 40 mM 

NaCl solution at stage temperature from 22 to 30˚C; (b) differential shift from all temperatures at 
each concentration. 

We finally demonstrate the NaCl bulk refractive index sensitivity in a temperature-varying 

environment. Sequentially diluted NaCl solutions of 20, 40, 80, and 160 mM are measured, as the 

temperature of the stage is increased from 22 to 30˚C. Figure B.4 (a) shows the sensing, reference, 

and differential frequency shifts at 40 mM NaCl solution. The clean sensing signal in the 

differential shift is observed through the whole range of temperatures. The decrease of the 

resonance frequency shift in each of the single resonator response induced by the stage temperature 

perturbation is not immediately obvious in this specific experiment due to the superimposed slow 

drift induced by the laser starting frequency jitter and the interaction of the microfluidic channel 

with the fluids. The differential shifts from all temperatures at each concentration are plotted 

together with error bars in Figure B.4 (b). A bulk sensitivity of S = -17.0 ± 0.2 THz/RIU (64.2 ± 

0.9 nm/RIU) is extracted from the experiments.  

The standard deviations of the measurements at each salt concentration σ`më¾  = 81, σ£më¾ = 

164, σ2më¾= 384, and σT3më¾= 138 MHz) show excellent sensing uniformity, even in the 

presence of the stage temperature fluctuations in an 8˚C window and switching transients. 

Based on the measured data, we compute a practical refractive index limit of detection [129] of 

3σ1�N¹�Eª¹ / S = 3 × 80.0 [MHz] / 17.0 [THz⁄RIU] = 1.4 × 10-5 RIU in a 30 minute and an 8˚C 

temperature operating window. This platform thus achieves reliable and sensitive sensing 

operation while eliminating the need of bulky external active temperature stabilization elements. 
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B.5 Conclusion 
In summary, we have proposed and implemented a new on-chip differential refractive index 

sensing platform which employs a laminar flow scheme to isolate the reference resonator from the 

sensing flow. This platform shows excellent performance in removing external drifts, including 

thermal drift. A bulk sensing capability with refractive index limit of detection of 1.4 × 10-5 RIU 

was demonstrated in a 30 minute and an 8˚C window. We also achieve a switching transient time 

less than 10 seconds by using a two-layer microfluidic structure with on-chip valves. 

The stability and sensitivity of this on-chip, laminar flow, differential refractive index sensing 

platform make it promising for specific binding biosensing applications, by flowing analyte sample 

solutions once the optical resonators are functionalized with suitable conjugate reagents. 

Multiplexing can also be achieved on this platform by having multiple laminar flows containing 

different solutions of interest in one large microfluidic channel. Because the laminar flow 

condition between each pair of streams prevents the solutions from mixing, a single reference 

solution can be used as a global reference. 

Furthermore, this laminar flow scheme can be extended to selectively functionalize different 

resonators. It can be achieved by flowing different binding reagents over different resonators with 

laminar flow conditions before a sensing step. This enables not only detection of multiple species, 

but also use of a single sample flow to achieve an even smaller limit of detection. Work toward 

this integrated, multi-sensing platform is underway. 
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