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ABSTRACT

Narrow-linewidth lasers have many applications including optical telecommunication, laser
spectroscopy, atomic clocks, and light detection and ranging. Conventionally, narrow linewidth
lasers have been realized in the form of fiber-based or solid-state lasers. These lasers are bulky and
relatively expensive, limiting their usage as bench-top systems in laboratory environments.
Historically, semiconductor lasers, also known as laser diodes, have served applications where size
and cost are important factors, including fiber optic communications. The linewidth of the
semiconductor lasers, however, has been limited to the MHz-level, due to high loss in laser cavities
and small size.

Recently, reduction of the frequency fluctuations in the semiconductor lasers has been achieved,
obtaining tens of kHz linewidth, using the heterogeneous Silicon/III-V platform with a new design
strategy. In this design, the majority of the optical energy is stored in the low-loss high-Q silicon
resonator away from the high-loss III-V active region, requiring the minimal gain from the active
region to overcome the reduced modal loss.

This work explores the new design strategy further, and demonstrates theoretically and
experimentally that the strategy eliminates the frequency fluctuations arising from the amplitude-
phase coupling by placing a relaxation resonance frequency at frequencies of a few hundred MHz.
Consequently, it becomes possible to obtain a semiconductor laser device possessing sub-kHz
quantum-limited linewidths at frequencies of a few GHz (the frequencies of interest in optical
telecommunication).

In addition to the frequency noise reduction, the strategy turns out to have the additional benefit
of accomplishing a coherent and stable lasing operation, even under external reflections. Thus, the
new design strategy has the potential to replace the costly, but currently indispensable external
optical isolators, which have been traditionally used to maintain the consistent performance of
semiconductor lasers in the presence of external reflection.

This work paves the way for the design of narrow-linewidth and stable semiconductor lasers
that can function without the use of the bulky and costly external components, such as external

cavities or optical isolators.
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Chapter 1

INTRODUCTION

Since their invention in 1962, semiconductor lasers have become indispensable in modern
technology serving as the primary light source powering modern high-data links, especially long-
distance fiber-optic communication, thanks to their low cost and compactness, ease of electrical
pumping, wide range of wavelengths of operation, and compatibility with Si-based electronics.
Despite these advantages, semiconductor lasers suffer from low coherence properties. A narrow-
linewidth and stable semiconductor laser would find many applications including optical

telecommunication, laser spectroscopy, atomic clocks, and light detection and ranging.

1.1 Narrow-linewidth semiconductor lasers for optical communication

In conventional optical communication, a simple and effective modulation method has been
used for decades. The modulation scheme is called on-off keying (OOK) or intensity-
modulated/direct-detection (IMDD) systems. An IMDD system encodes a single bit (1 or 0) in
each symbol. The binary digital signals are sent using a stream of light pulses, in which information

is encoded in the light intensity and recovered using a photodetector.

100 GHz 100 GHz

- Need 1 laser and 100 GHz electronics - Need 10 laser and 10 GHz electronics

Figure 1.1 Increasing the transmission capacity through wavelength-division-multiplexing. (Left)
A 100 Gbps transmission requiring 100 GHz electronics is not feasible using the current
electronics. With 100 GHz modulation, the carrier will experience larger fiber impairments.
(Right) 100 GHz modulation can also be achieved by transmitting 10 channels with 10 GHz
modulation each. 10 GHz electronics are readily available.



The transmission capacity in the OOK system can be expanded by either transmitting more

modulation symbols per second or encoding more bits into a modulation symbol.
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Figure 1.2 1Q diagrams of the coherent modulation schemes.
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Figure 1.3 Schematic of optical coherent communication

With an increasing internet demand for data rates for 100 Gb/s and beyond from new and
emerging services (e.g. 3D-TV [1], virtual-reality [2]), coherent phase communication schemes
are emerging as promising key technologies to further increase the transmission capacity. These
have been already realized in cutting-edge fiber-optic communication systems [3]. In these
communication systems, the phase of the optical field is used to transmit information [4], making
it possible to improve spectral efficiency by encoding more bits per symbol. For example, as shown
in Figure 1.2, quadrature phase shift keying (QPSK) is a four-level modulation format, where the
carrier phase is modulated to one of four possible phase states (n/4, 3n/4, 5n/4, 7mn/4). Using this

format, we can send twice the amount of information with the same number of symbols as on-off

keying.



Figure 1.3 illustrates that, for coherent communication, semiconductor lasers are used in
conjunction with external modulators, which can be external to the laser chip or integrated on the
same chip. Unlike direct modulation formats, these external modulators can be readily designed to
have desirable properties such as chirp-free operation [5], and combined to independently
modulate both the amplitude and phase of the laser (i.e. quadrature amplitude modulation (QAM)).
This further improves spectral efficiency [6].

External modulations can also take advantage of a larger range of materials which operate at
low voltages and currents making them desirable for low power applications [7]. A coherent
receiver is then used to detect both the phase and amplitude of the transmitted wave, either by
interfering the received pulse with a delayed version of itself, or with a local oscillator [8].
Throughout the operation, both the transmitting laser and the local oscillator typically operate in
the continuous-wave (CW) regime, and their phase noise directly affects the signal to noise ratio
of the received signal. For example, to operate at 40 Gb/s for 16 PSK and square 16 QAM, the
laser linewidth in the range of 240 kHz and 120 kHz respectively is required [9]. In particular, the
frequency noise near modulation sidebands (typically a few GHz to achieve high data rates) is
especially crucial, since it will directly increase the bit error rate of the communication link.

Beyond this, a number of diverse applications that require the determination of high sensitivity
or resolution, such as laser spectroscopy [10], optical frequency metrology [11, 12], atomic clocks
[13, 14, 15], and light detection and ranging (LIDAR), require ultra-narrow linewidth lasers.

Conventionally, the narrow linewidth lasers have been realized in the form of fiber-based or
solid-state lasers. These lasers are bulky and relatively expensive, limiting their usage as bench-
top systems in the laboratory environments.

Historically, semiconductor lasers, also known as laser diodes, have served applications where
size and cost are important factors, including fiber optic communications. In optical
communication, phase-shifted distributed feedback (DFB) semiconductor lasers or DFB lasers
with antireflection coated on one side of the cavity and high-reflection coated on the other side
(AR/HR) have played a key role.

The linewidth of the semiconductor lasers has been limited to the MHz-level, due to high loss
in laser cavities and small size. Linewidth narrowing of the semiconductor lasers has been achieved

by extending the laser cavity using an external cavity or by locking the laser to an atomic transition.



The use of those external components, however, removes the benefits of small size and low cost

of semiconductor lasers.

1.2 Silicon photonics and heterogeneously integrated Si/III-V lasers

Semiconductor lasers and semiconductor optical amplifiers (SOAs) have been available in
various III/V material systems (e.g. InP and GaAs) and are the main candidate for future efficient
and low-cost optoelectronic integrated platform.

Silicon (Si) photonics as an integration platform has recently become a focus in optoelectronics
research. This is due to the fact that they can be fabricated with CMOS-based technology, enabling
the integration of electronic devices on a silicon-on-insulator (SOI) wafer containing photonic
devices. However, the indirect bandgap of Si has been an obstacle in the realization of electrically
driven Si-based light sources. Although Si-based Raman lasers [16, 17] or Germanium(Ge)-on-Si
lasers [18] have been demonstrated, electrically pumped all-Si lasers have yet to be realized.

An alternative to electrically pumped all-Si lasers is heterogeneous integration of III-V
materials, such as InP, and SOI waveguides that enable light generation on Si (Figure 1.4).
Heterogeneously integrated Si/III-V lasers have previously been demonstrated by several groups,
but have historically failed to achieve a linewidth better than that of their all III-V counterparts
[19, 20, 21].

p-contact p-metal
Quantum well
n-cladding
[# J Si
—
ton (Not to scale)
Si
Sio, (Not to scale)

Figure 1.4 Diagram of heterogeneously integrated Si/III-V laser platform.



In this thesis, we show how to reduce the linewidth of the semiconductor lasers by orders of
magnitude by making best use of the heterogeneous platform, which combines the lossy III-V
active material and the low-loss passive Si material. Furthermore, we demonstrate that the strategy
that we use for the reduction of the frequency fluctuation makes it possible for the laser to achieve
even further reduction of the frequency noise, corresponding to a sub-kHz linewidth, at
telecommunication relevant frequencies (i.e., a few GHz).

In fact, noise reduction is not the only benefit of our new design. So far, the consistent
performance of semiconductor lasers, even in the presence of external reflection, has been
achieved by the use of costly, but indispensable optical isolators. It turns out that our strategy to
reduce the frequency noise has the additional benefit of enabling us to accomplish a coherent and
stable operation, even under external reflections.

Our simple approach paves the path for the design of narrow-linewidth and stable
semiconductor lasers that can function without the use of the bulky and costly components, such

as external cavities or optical isolators.

1.3 Thesis organization

This thesis is organized as follows. Chapter 2 introduces the basic concepts of the laser physics
and design, with emphasis on the effect of spontaneous emission on the frequency noise of a laser.
We will also discuss the modal engineering in our Si/III-V laser as a way to achieve a narrow-
linewidth semiconductor laser.

Chapter 3 presents the design and measurement of the grating-based defect-mode optical high-
Q resonators. In the later part of Chapter 3, the experimental demonstrations of the reduction in
the frequency noise of the lasers are presented.

Chapter 4 discusses the effect of the modal engineering on modulation response, especially in
terms of the relaxation resonance frequency. The measurement of the intensity and frequency
modulation response, and the linewidth enhancement factor of the lasers are described.
Furthermore, we revisit the frequency noise measurement discussed in Chapter 3, and describe
further reduction of the frequency noise at a few GHz range, revealing the intrinsic, quantum-

limited Schawlow-Townes noise floor of the lasers.



In Chapter 5, we derive the theoretical background regarding the sensitivity of a laser against
external reflections, and experimentally demonstrate orders of magnitude reduced sensitivity to
external reflections.

Appendix A describes the procedures for the fabrication of the passive Si resonators as well as
for the heterogeneous integration of Si and I1I-V.

Appendix B presents the work, carried out during my early years in the group, on refractive
index sensing based on on-chip integrated differential optical microring platform, which leverages

laminar flow conditions.



Chapter 2

PHASE NOISE IN HETEROGENEOUSLY SI/III-V LASERS

A laser emits light through a process called stimulated emission, which provides the gain to
overcome the loss in the optical resonator. However, stimulated emission is inevitably
accompanied by spontaneous emission, which introduces phase as well as amplitude noise into the
laser mode and sets the fundamental limit to the laser coherence. In this chapter, we will describe
the basic physics and derive the effect of spontaneous emission on the phase noise of a laser field.
It enables us to obtain insights that can be exploited to reduce the quantum-limited phase noise in

a semiconductor laser.

2.1 Laser physics
A laser oscillator consists of a gain medium to amplify light, and an optical cavity to provide
optical feedback and optical mode selection. Careful design of both the gain medium and the

optical cavity is necessary to achieve a high degree of coherence in a laser.

2.1.1 Carrier generation and recombination in active regions

Carrier generation

A semiconductor laser is basically a PIN diode. The active region of the semiconductor laser
resides in the intrinsic layer. The electrons and holes (i.e., the carriers) are injected into the active
region from the n- and p-region, respectively. The modal field in the optical resonator stimulate
the injected electron-hole pairs to recombine in the process of amplifying the field coherently.
However, not all of the injected carriers reach the active region, leading to an increase in the
leakage current in the laser. The fraction of the pump current that generates carriers — which will
recombine both radiatively and non-radiatively — in the active region is characterized by the
injection efficiency 1;. The temporal generation rate of the total number of the injected electron-

hole pairs N due to pump current I into the active region can be written as,
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where q is an electron charge.

The overall injection efficiency is composed of both the structural current injection efficiency

and the current injection efficiency in the active region [22].

The lateral current diffusion from the metal contact region, and the carrier loss due to poor
interfaces in the cladding layers are the primary factors accounting for the structural injection
efficiency. Our lasers, due to the heterogeneous nature of the structure with I1I-V material placed
on top of Si, utilize the lateral-electrode structure, where both p- and n-metal are deposited in the
same direction. Subsequently, they generate a large lateral current diffusion in the direction parallel

to the active layer, thus increasing the total leakage current.

Carrier escape through thermionic emission over the cladding layers causes degradation of the
current injection efficiency in the active region, and hence degrades the total injection efficiency.

Carrier recombination
The injected carriers recombine via a number of mechanisms:

1) The first mechanism is stimulated emission, where an incident photon stimulates the
electron and hole to recombine, generating a copy of the photon in the same quantum state.
This is the gain mechanism by which lasers amplify the light. This stimulated emission
process allows the optical mode to build up coherently. The stimulated emission rate Rg;
represents the number of stimulated emission events per unit time.

2) The second mechanism is similar to 1) except that the rate is independent of the optical
intensity in the cavity, hence the name “spontaneous emission”. The photons, generated by
spontaneous emission, have no correlation with the coherent laser field created through
stimulated emission, and thus modulate the phase of the laser mode. Spontaneous emission
events cannot be completely removed, and this implies that it is impossible to achieve
perfect coherence (i.e., perfect sinusoidal wave) in a laser.

3) The third mechanism is non-radiative recombination, which involves monomolecular
recombination through surface defects in the active region of the laser. The non-radiative
transition also can happen through Auger recombination, where energy from the electron-

hole recombination is transferred to another electron or hole. In these transitions, instead of



generating photons, the energy is dissipated as heat.

The recombination through the spontaneous emission and the non-radiative transition, which
does not require the existence of photons, is called a “natural decay process”, and is characterized
by a carrier lifetime 7. Then, the temporal decay rate of the total number of the carriers N by a

natural decay process can be written as

a__r (2.2)

2.1.2 Gain and loss in laser cavities
Gain

For a laser to function as an optical oscillator, an optical cavity is needed to provide optical
feedback. The electric field distribution of the standing wave in a cavity is usually referred to as
the mode.

As discussed in the previous section, light is amplified through a stimulated emission process
in the gain medium. The modal gain, g (s) is defined as the fractional temporal growth in the

number of photons in the mode N, [23],

1 dNp _ Rst
Np dt  Np

(2.3)

This relation follows from quantized field theory and is of key importance in all that follows.
The modal gain g can be expressed using the induced transition rate per electron due to one photon

A’ and the total number of the injected electrons N,

g=A(N - Ny), (2.4)

where N, is the carrier number at transparency, at which point the stimulated emission rate is
equal to the stimulated absorption.
Using the quantized electro-magnetic field and by applying the Fermi’s Golden Rule to the

dipole interaction between atomic systems and electro-magnetic radiation, the induced transition
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rate into the laser mode (/) per electron due to one vacuum-field photon (i.e., the spontaneous

emission transition rate of the electron into the laser mode) can be derived as [23, p. 155],

r_ 1 _ 2m?u?v
A= VVsp - he(4v)q ol l(ra)l (25)

where u is the dipole transition matrix element, (4v), is the frequency width of the lineshape

function of the atom transition at the lasing frequency v,.

The electric field distribution of the laser mode (E 1) is normalized as,
IZ E®2dV = 1. (2.6)

With this normalization, the confinement factor of mode (/) in the region i can be written as,

L= [, B2 2.7)
Thus, |E;(7,)|? in Equation A’ = ng) 121:(:1/; —2E ()3, (2.5) can be viewed as the

normalized field due to a single photon in the cavity at the location 7, of the emitting atoms, and

is our “knob” to engineer the spontaneous emission rate into the laser mode.
The induced transition rate per electron, I/I/S(t ), by N, photons and the simulated emission rate

due to the total number of the electrons, R, then can be written as,

W = Nw. (2.8)

Ry = WO (N = Ny) = A'(N — NN, (2.9)

Loss
An optical mode in a cavity decays through various mechanisms. Photons can be lost
intrinsically in the cavity through absorption in materials, scattering by the roughness of the

surface, and radiation into leaky modes. Also, a portion of the photons is lost by escaping the
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cavity through a mirror, which is used as a useful output of the laser. The total amount of loss that
a mode experiences is expressed using a (s™), loss coefficient per unit time.

A quality-factor (Q-factor) is also used to characterize the loss of the cavity and is defined as

_ Estored __ w —
Q = W= = = W, (2.10)

where 7, is the photon lifetime in the cavity.

Then, the total loss experienced by a mode in a cavity composed of different materials can be
expressed by a sum of losses in each material @; weighted by a modal confinement factor in each
material (I}),

a = Zi Fiai. (211)

For our lasers, we consider a heterogeneous platform composed of Si and InP, and the total loss

of the platform can be expressed as,
Atotal = Isi @si + M-y am-v- (2.12)

The above equation also can be expressed in terms of Q-factor,

1 _ Tsi + Fypp-v _ 1-Typ-v + Iip-v (2'13)

CQtotal Qsi  Qui-v Qsi Qui-v

Thus, we see that having large modal energy in low-loss, high-Q Si than in high-loss, low-Q

II-V (i.e., large I'5; and small Ij;_y) results in the large total Q-factor.

Threshold condition and threshold current

As we increase the modal gain by injecting more current, the carrier number reaches the
transparency carrier number Ni.. A further increase in the carrier number is used to overcome the
losses in the cavity. At the point where the modal gain equals the total loss in the cavity, the optical

wave returns to the wave with the same amplitude and phase after each round trip in the cavity,
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establishing a laser oscillation. Therefore, the laser threshold condition can be written with the

threshold material gain gy,

(2.14)

ole

1
8th = Qrotal = =
P

Above threshold, any carrier number rise slightly increases the stimulated emission rate,

increasaing the photon number through Equation g = 1N _ Rs (2.3) and Error! Reference

Np dt Ny’
source not found.). Then, the increased photon number will in turn deplete the carriers through
increased stimulated emission rate. This negative feedback clamps the gain above threshold at its
threshold value g;,.

Since the gain above threshold is monotonically related to the carrier number, the carrier

number is clamped at its threshold value Ny,.

2.1.3 Spontaneous emission rate

The stimulated emission rate is dependent on the population inversion (the difference between
the number of excited electrons and ground state electrons), whereas the spontaneous emission
rate depends only on the total number of excited electrons.

At the steady-state above threshold, there is a balance between the number of photons generated

by the stimulated emission and the photons lost in the cavity, and the balance yields,
(N, — N1)M/s(tl) = IZ_::; (2.15)

where N , is the number of electrons in the valance and conduction band.

Using Equation g = Nidd% = %. (2.3W5(tl) = NpWSg). (2.8), and gy = Apotal = Ti =
p p p

®

o

(2.14), it can be shown that the spontaneous emission rate into the lasing mode due to N,
electrons in the conduction band (RS)) ) and the total stimulated emission rate (Rg;) is related by,

N 1 _ TMsp

Ngp
= —=n = —R =
Na—Nj 7p T spgth Np st

Ngpw

Q

l l
RY) = N,W = : (2.16)
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Ny
Nz—N;

where the population inversion factor ng, is defined as [24, p. 192].

2.1.4 Rate equations
Based on the discussion so far, the rate equation for the total number of carriers in the active

region with the volume V}, can be written as,

dN I N
Wl B Ry, (217)
I N
=Mmi;— 78N (2.18)
I N ,
= T[ia - A'(N — Ny)N, (2.19)

In the last equation, the 1 term describes the generation of the carriers via a current injection.
The 2™ term accounts for the carrier recombination through both radiative and non-radiative
process. The 3" term is the loss of carriers through the stimulated emission.

In the steady-state at threshold, with threshold current I}, and threshold carrier number Ny, the

number of the photons is neglible (N, = 0). Thus, Equation Z—IZ =Mo— o= Rg (2.17) can be

used to find the threshold carrier number Ny,

Ith _ Ntn
= S (2.20)

As discussed, above threshold, the carrier number in a laser is clamped at its threshold value

Nip,. Thus, we can obtain an above-threshold carrier number equation,

dN I-1
— =1 qth — 8 Np. (2.21)
-1 ,
=1 — % — A'(Non = Ner)Np. (2.22)

q

I_Ith
' q

Using Equation Z—IZ =7 —gmNp.  (2.21)and gy, = Aoral = Ti =3 (2.14), the
p

photon number in the lasing mode above threhold (N,() can be obtained as,
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_ Wi I-Iyy I-Itn _  QI-Ity
NpO E—q T]iTp s = T]i; 7 (223)

The rate equation for the total number of photons in the laser resonator can be written as,

dN. N 1
w = Ra— 2 RS) (2.24)
N, l
= gN, — T—;’ +R{) (2.25)
= A'(N = Ng)N, — 'TV—;’ + RS (2.26)

In the above equation, the 1% term accounts for the stimulated emission rate. The 2™ term
describes the photon loss in the cavity both internally and through the laser mirrors. The 3™ term

corresponds to the spontaneous emission rate.

2.2 Phase noise in semiconductor lasers
Based on the analysis described so far, we now investigate the phase noise in semiconductor

lasers. The lasing mode can be expressed as,

E(t) = A(t)el(@ot+46(®)) (2.27)

where A(t) is the amplitude, w, /27 is the lasing frequency, and 46(t) is the random phase.

So far, we have assumed that the carrier and photon number in a laser remain constant in the
steady-state operation. In fact, even in the steady state and in the absence of any kind of
modulation, random carrier and photon recombination and generation occurs, causing fluctuations
in the carrier and photon number (i.e., noise).

The frequency noise of a laser partly results from technical noise, with a dominant 1/f noise.
This noise includes the noise from the pump source, and vibrations of cavity mirrors. As
frequencies increase, the ever-decreasing 1/f noise is eventually dominated by the quantum white

noise due to spontaneous emission into the laser mode. This type of the frequency noise is limited



15

by fundamental quantum processes. Thus, it is the noise that is ultimately responsible for the

deviation of the lasing field from that of an ideal monochromatic field.

2.2.1 Phase drift due to spontaneous emission (Schawlow-Townes linewidth)

In 1982, Henry showed that the phase variance of a laser, accumulated over time 7, due to
spontaneous emission into the laser mode, can be expressed using the total number of the
spontaneous emission Rég T, the photon number in the lasing mode N,, and the linewidth

enhancement factor a [25],

N0
L (1 + a?)r. (2.28)
p

(A6 (7)?) =

Assuming that the laser has only a white frequency noise, the phase variance (A8 (7)?) can be

shown to be related to the laser linewidth Avy, as [26, p. 488],
(A0(1)?) = Awy T = 2mAv, T. (2.29)

By combining the two above equations, a spontaneous emission-induced linewidth, known as

“Schawlow-Townes linewidth”, can be obtained as,

rW
AVST =k (1 + 0(2). (230)

4»an

As seen in the above equation, the Schawlow-Townes linewidth originates from two sources.

First, the spontaneous emission causes the instantaneous phase change to the lasing field (the

)
RS

41T N,

describes this effect.

blue line in Figure 2.1), and the term
p

Besides, the spontaneous emission alters the intensity of the lasing field. To restore the steady-
state photon number, the laser undergoes relaxation resonance oscillations, causing the carrier
fluctuations. These carrier fluctuations result in not only a gain variation (to restore the steady-

state photon number), but also a variation in the refractive index, and finally manifest as an
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additional, delayed phase change [27, 28]. The linewidth enhancement factor a effectively

characterizes the coupling between the gain variation and the refractive index variation.

. . , l 2m2u?vy 15 - 1
Using Equation 4" = WSE,) = ,:(A—l:;lolEl(ra)lza (2.5), 8tn = Arotal = ™ = % (2.14), Ny =

i I-1 I-1I QI-1I 5= / /
e Benm = ey (223) and g, = |E\()I?Vag (Nae — Ne) (g temporal

differential material gain coefficient, V,: volume of the active region), the quantum-limited

o
Rslf; (1+ a?). (2.30) can be expressed in
p

Schawlow-Townes linewidth in Equation Avgy = py

terms of the Q-factor and the bias current,

— ﬂzuzwg |El(Fa)|2Ntr wo 2
Avgr = 2mnjhe(Av)q(I—Itn) ( Q + g'QZ) (1+a%). (2.31)

This expression demonstrates that the Schawlow-Townes linewidth has a 1/Q? dependence
and thus, the reduction of the modal loss in a laser (i.e., high-Q) is a key requirement for the
reduction of a linewidth in the laser. The increase in the pump current also reduces the linewidth

by increasing the number of photons Nj, stored in the cavity. Thus, linewidths measured from

different lasers should be compared at the same value of (I — I;,) to make a fair comparison.

R(l)‘[ AN, (Amplitude fluctuation)
ImE]] 2N,

Spontaneous

- | AN (Carrier density fluctuation) |
emission

)

| An (Refractive index fluctuation) |

0]
RspT Linewidth enhancement
ZNp factor a (2~10 for QW)

—>| A6 (Phase fluctuation) |

| Re[E]

Figure 2.1 (Left) The phasor model for the laser field phase. It shows the effect of a single
spontaneous emission event on the laser field. The laser field rotating at a radian frequency of @y
has a length of\/ﬁp . The phase A6 represents phase fluctuation caused by lasing frequency noise

due to one spontaneous emission event. Spontaneous emission introduces direct phase noise
(blue line) and amplitude noise (green line). Spontaneous emission creates photons whose phases
are uncorrelated with that of the lasing field, making the angle ¢ a random variable uniformly
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distributed between [0, 27r]. (Right) The additional photons created by spontaneous emission
induce carrier density fluctuations through stimulated emission. This coupling between photons
and carriers is called a relaxation resonance and will be discussed in Section 4.2. The phase
fluctuation caused by the refractive index change due to carrier density fluctuation is
characterized by a parameter called a “linewidth enhancement factor” (a in Equation (A9 (7)?) =
2m%tS,, (w). (2.33).

Experimentally, the Schawlow-Townes linewidth can be obtained by measuring the power
spectral density (PSD) of the frequency noise Sp,(f). The phase variance of the laser can be
written in terms of the frequency noise PSD (double-sided) [29, p. 197],

sin?(nft)

(mf1)?

(A0()?) = 2m%7 [~ S, () df. (2.32)

If the frequency noise PSD Sy, (f) is assumed to be a white frequency noise, the integral in the

above equation becomes,

(A0(1)?) = 21215, (w). (2.33)

o
By replacing the above equation with Equation (A8(7)?) = % 1+ a®)t.  (2.28), the
p

frequency fluctuation (noise) PSD (double-sided) then can be obtained,

R®
(1 4 g2). (2.34)

2
4m Np

Sav (f) =

2.2.2 Linewidth enhancement factor
The linewidth enhancement factor a, also called Henry's alpha parameter or amplitude-phase
coupling factor, is defined as the ratio of the real refractive index fluctuation to the imaginary

refractive index fluctuation due to a variation of the carrier density in the active region,

_dny/dN _ 4mdng/dN _ 4T dny
~ dniy/dN A dg/dN  Aa dN’

(2.35)
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where a = dg/dN represents a differential material gain and g = 2kyn; = 4mn;/A is used.
Physically, the linewidth enhancement factor arises from asymmetry of the differential gain
spectrum about the lasing frequency [30]. In the case of quantum-well (QW) lasers (such as ours),
a ranges between 2 and 10 [31]. This causes the phase noise created by the carrier fluctuations due
to the spontaneous emission to be larger than the direct phase noise by the factor of a? (i.e., more
than an order of magnitude), and becomes the dominant frequency noise source of semiconductor
lasers. Whereas the linewidth enhancement factor in the quantum-dot (QD) lasers is smaller than
in the QW lasers. This is because of the high differential gain and a small carrier-induced
modulation of the refractive index in the active region. The delta-function-like density of states
(DOS) of 0-dimensional QD system yields a narrow symmetrical gain spectrum and subsequently
symmetrical differential gain spectrum around the lasing frequency. Ideally, the QD lasers should
have zero linewidth enhancement factor, however, it is difficult to achieve ideal QD properties,
because of QD size variations. The linewidth enhancement factor less than a value of 1 has been

reported for the QD lasers. [32, 33].

2.3 Phase noise reduction in heterogeneous Si/III-V lasers

2.3.1 Limitation of conventional semiconductor lasers

As illustrated in Figure 2.2, in the conventional semiconductor lasers made out of the III-V
semiconductors, the cladding layers are heavily-doped to a concentration of 10'® to 10! to
achieve efficient carrier injection into the active region. The abundant free-carriers (electrons in
the n-cladding and holes in the p-cladding layer) in those cladding layers interact with photons
through free-carrier absorption (FCA). Thus, the lasers suffer from high loss, and the Q-factor of
the lasers has been less than 10",

Also, the larger refractive index in the active region than in the surrounding cladding layers,
due to the plasma dispersion effect, causes the mode to be concentrated in the active region, making
the peak of the lasing mode profile to be located at the active region (i.e., large |E;(7,)|?) and

subsequently, resulting in the high spontaneous emission rate.
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Conventional all IlI-V laser High-coherence Si/lll-V laser
A
.
r
p-cladding n=3.1 b cladding
(highly-doped)
Ta Qw
n-cladding
a QW n~3.3
Si (low-loss)
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Figure 2.2 Transverse mode profile | E;(7,)|? in conventional III-V laser and in a heterogeneous
Si/III-V laser. (Left) In the conventional semiconductor laser made with I1I-V, the electric field
of the laser mode is maximum at the active region (large |E;(7;,)|?), resulting in large

spontaneous emission rate (Rgg ). Also, the large confinement in the lossy III-V material leads to

high loss and small number of photons (%,) in the laser. For these reasons, the linewidth of the

II1-V lasers is limited to the MHz range. (Right) In our heterogeneous lasers with two different

Si/III-V materials, most of the light is confined in low-loss Si instead of lossy III-V. Due to low
electric field at the active medium (small |E,(7,)|?), we effectively reduce the spontaneous

emission rate (R§Q ). Also, due to the small confinement factor in the III-V, a greater number of

photons in the laser cavity (V) can be achieved. Reduction in gain due to reduced stimulated
emission is balanced with reduction in loss, resulting in a constant threshold current density
despite the drastic change of electric field distribution in the active region.

Thus, the use of the same layer (i.e., active region) as both photon-generating and photon-
storing layers inherently causes this platform to be lossy, and thus limits its linewidth to be in the

range of a MHz [34, 35].

2.3.2 Phase noise reduction through modal engineering in heterogeneous lasers

Silicon is transparent for the light of a wavelength, which is bigger than its bandgap wavelength
of approximately 1.12 um. At the wavelength of 1.5 pm, absorption of light in Si is negligible.
Also, advanced CMOS fabrication technologies allow for the fabrication of the Si waveguide with
minimal scattering losses. In Section 3.1.2, we show the implementation of a high-Q Si resonator,
in which the Q-factors up to 10 were achieved. The availability of the high-Q Si resonators,

however, does not by itself yield a narrow-linewidth laser.
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In the heterogeneous Si/III-V platform, to achieve a narrow-linewidth laser, the reduction of
the modal loss can be accomplished by storing the vast majority of the mode energy in low-loss Si
instead of the lossy III-V active region, thus reducing |E;(7;)|? in the quantum wells. To “push”
the mode further into the Si, i.e., to reduce |E;(7,)|? further, we introduce a thin silicon oxide
(S10,) layer, which we call the quantum noise control layer (QNCL), between the Si and III-V
layers. Figure 2.3 illustrates the change in the transverse mode profile with the increasing QNCL
thickness. The mode is “pushed” further into the Si, reducing the electric field “intensity” at the

active region (|E;(7;)|?) and the confinement factor in the III-V layer (I}_y). The reduction of
|E,(7,)|? reduces the spontaneous emission rate into the lasing mode (R ) and the reduced I;;_y
leads to a greater number of photons in the laser cavity (N, ). The two combined effects reduce the

linewidth of the laser effectively.

No oxide t.x = 50 nm tox = 100 nm tox = 150 nm

4% in active 2% in active 0.5% in active 0.2% in active

QW

Si

Sio,
|E|2 10 |E|2 10 |E|2 10 (Not to scale)

Figure 2.3 Si0; layer, which we call the “quantum noise control layer (QNCL)”, is introduced in
between Si and III-V to further push the mode into the Si layer and reduce the confinement
factor in the active region (QWs). (Top figures) The peak of the transverse mode profile stays
further away from III-V (i.e., reduced |E;(7,)|?), and the confinement factor in the QWs
decreases with thicker QNCL thickness. (Bottom figures) COMSOL simulation showing the
transverse mode profile with varying QNCL thickness. The reduction of the QW confinement
factor with increasing QNCL thickness is evident.

This strategy of reducing the frequency noise fluctuation by pushing the mode further into the

Si continues to work until the loss from the Si becomes comparable to the loss from the III-V.
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From that point on, the overall improvement begins to saturate (i.e., saturation of the total Q-
factor), but the reduction in gain continues. The imbalance between the reduction in the gain and
loss then leads to an increase in the threshold carrier density to maintain the gain that matches the
no-longer-decreasing modal loss. In turn, the increase in the threshold carrier density causes an

increase in the spontaneous emission rate, diminishing the returns in reducing the phase noise.

Threshold current and output power

As long as the dominant loss in the laser cavity is the loss in III-V, the reduction in the gain,
loss, and the spontaneous emission rate occurs at the same scale, as modal engineering shifts modal
energy away from the active region. As a result, the reduction in the laser linewidth can be

achieved, while parameters such as the threshold carrier density, differential quantum efficiency

dPO/hv
al/q

(the ratio between the generated photon number and the injected carrier number, i.e., ), and

subsequently, the optical output power are unaffected by the modal engineering.

2.4 Conclusions

In this chapter, we showed theoretically that by storing the vast majority of the modal energy
in the low-loss Si rather than in the high-loss III-V active region, we can reduce the linewidth of
the semiconductor lasers by two to three orders of magnitude, while keeping other parameters
(e.g., threshold current density, output power density) the constant. In Chapter 3, we will provide
experimental evidence that the dramatic linewidth reduction is possible through the modal

engineering.
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Chapter 3
PHASE NOISE REDUCTION IN HETEROGENEOUS SU/III-V

LASERS

In Chapter 2, we discussed the modal engineering between the low-loss Si and high-loss I11-V
active layer as a way to reduce the linewidth of a laser by decreasing the total loss of a laser cavity
(i.e., increasing the Q-factor), while keeping the other parameters such as the threshold current
density, and output power density constant. Thus, it is critical to implement a high-Q resonator in
the low-loss Si for this modal engineering strategy to be effective. In this chapter, we
experimentally demonstrate the achievement of a few to tens of kHz linewidth in our lasers
fabricated using the high-Q Si resonator through the modal engineering strategy.

In the 1% part of the chapter, the design and measurement results of the fabricated high-Q Si
resonator will be presented. In the 2™ part, measurement results of the fabricated lasers including

the frequency noise measurements are described.

3.1 High-Q Silicon resonator for high-coherence heterogeneous lasers
To achieve higher total Q-factor using the modal engineering between Si and InP and thus a
narrow intrinsic quantum-limited linewidth in laser, a high-Q cavity needs to be employed as an
integral part of the laser resonator. In this work, a 1D-grating-based defect-mode resonator is
utilized to implement a high-Q cavity in Si for various purposes including support of a single mode
with a very high-Q factor, ease of change of mirror strength, and small footprint required on-chip.
In this section, the design and the measurement results of the high-Q Si resonator will be

presented. The fabrication part of the resonator will be discussed in Appendix A.

3.1.1 Si resonator design
Transverse Si waveguide design
As discussed in Chapter 2, increasing Q-factor in the Si/III-V lasers requires that most of the

modal energy be confined in the low-loss Si rather than in the lossy III-V active layer.
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Figure 3.1 Optical field intensity distribution of TEy mode in the 2D Si/III-V laser simulation.

To confine more modal energy in the Si than the III-V layer, Si must have a larger refractive
index than InGaAsP/InP epi-wafer (~3.45). This is achieved using an SOI wafer with 500 nm thick
Si, which is thicker than conventional photonic-application SOI wafers with 200 to 400 nm Si. A
shallow etch into the Si is utilized in order to mitigate the interaction of the optical mode with the
sidewalls, thus minimizing the loss from sidewall scattering. This also enables the use of a long
defect-section in our resonators, minimizing leakage loss to the radiation modes. The width of the
Si waveguide is chosen to accommodate TE( and TE; mode in the waveguide. Due to TE; mode’s
odd transverse symmetry, it interacts minimally with gratings that have even transverse symmetry.
Figure 3.1 shows the optical traverse profile of the TE; mode in our Si/I1I-V waveguide. The design

parameters of the Si waveguide are shown in Table 3.1.

Parameters Value
Si waveguide thickness 500 nm
Si waveguide width [1:0.5:2.5] pm
Si rib waveguide etch depth 60 nm
Si02 QNCL thickness (toncr.) 50 ~ 150 nm

Table 3.1. 2D Si waveguide design parameters

We have designed and tested a series of lasers where the thickness of the SiO, quantum noise
control layer (QNCL) varies from 50 to 150 nm. The confinement factor in each layer of Si, III-V,
and QW is shown in the Table 3.2 for each thickness. When tqycy, is 150 nm, the confinement

factor in Si reaches 99%, leaving less than 1% in III-V.
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toNecL Lg; Ihi—y Tow
0 nm 0.79 0.21 0.031
50 nm 0.90 0.10 0.015
100 nm 0.96 0.03 0.006
150 nm 0.99 0.003 0.002

Table 3.2 Confinement factors in Si, III-V, and QW layer for various QNCL thickness.

1D grating mode-gap resonator design

In 1D-grating-based mode-gap resonators, a photon-bandgap effect is used to confine light in
the in-plane direction. In-plane gratings in the Si waveguide are designed such that its defect
section shapes its photonic well to be parabolic (Figure 3.3Figure 3.4), analogous to an electron in
a parabolic potential well. The mode in the parabolic potential well exhibits a well-defined
Gaussian spatial field envelope along the z-direction (i.e., wave-propagating direction). Our design
features an especially long defect length. The gentle z-variation of the grating reduces radiation
loss to unbound radiation modes. In our elongated defect section with a parabolic potential well,
the envelope of the in-plane mode profile varies gently, but still remains spatially localized as a
Gaussian function [37, 38, 39, 40].

Reflectors for the resonator that bound the defect section are made using periodic gratings. The
gentle variation in the defect section is made by gradually modulating the strength of the gratings.
In our design, we choose to vary the width Wy of the gratings in the direction perpendicular to the
z-direction (Figure 3.2).

To obtain the band edge frequencies, i.e., conduction band frequencies f. and valence band
frequencies f, for each grating size, a 3D unit cell simulation is performed using the commercial
finite element method software Comsol, and the eigenfrequencies of the infinitely long 3D unit
grating are searched. To reduce computation time, the grating unit cell is cut in half along the light
propagating direction (z-direction in Figure 3.2), and the perfect electric conductor (PEC)
boundary condition is applied to the cut boundary for the simulation of the even TE, mode. To
further reduce the computation time, the grating is cut in half once again along the x-direction, and
the PEC and PMC (perfect magnetic conductor) boundary condition is properly applied to each
surface to extract the eigenfrequencies of the dielectric and the air mode as a function of a Wy [40].

The conduction band frequency f. is extracted from the air mode, and the valence band frequency
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fv 1s extracted from the dielectric mode. Using these band edge frequencies, along with our pre-
defined parabolic well structure, the spatial mode profile in the cavity and the mirror strength (i.e.,

external Q-factor) can be obtained using the 1D coupled-mode equation.

y; 2.5 um x%
z X - W, @ 100 nm y Z .

500 nm

Figure 3.2 Grating unit cell model for 3D periodic grating simulation.

Parameters Value
Si layer thickness 500 nm

Si waveguide width 2.5 pm

Si rib waveguide etch depth 60 nm

8i0, QNCL thickness (toncr) 100 nm

Grating period 240 nm

W, 120 nm

Etch depth difference between grating and trench 15 nm

area due to ARDE effect

Table 3.3 3D grating unit cell simulation parameters.

For our resonators, we design and fabricate both the accept-mode and donor-mode type

resonators, of which the optical band structure is shown in Figure 3.3 and Figure 3.4, respectively
[41].
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Figure 3.3 Schematic of the acceptor-type defect mode resonator and its optical band structure.
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Figure 3.4 Schematic of donor-type defect mode resonator and its optical band structure.
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For both type of the resonators, two kinds of the photonic well depth V = 70, 120 GHz were
used. Even though the photon well depth of 70 GHz creates a single-mode in the photonic well,
120 GHz was included in the design to create a mode in the well even when the Si material was
under-etched.

For the mirror section of the resonator, periodic gratings with Wy = 300 nm (coupling
coefficient x = 110 cm™) are used, creating a photonic bandgap of approximately 300 GHz (Figure
3.3 and Figure 3.4).

The mirror strength is designed to cover all the external coupling regimes from the over-
coupling (Qext < Qint) to the under-coupling regime (Qext > Qint). Table 3.4 shows the external Q-
factor in terms of the mirror length. The external coupling strength to achieve an optimum laser
output power can be theoretically calculated [26, p. 248], and was found to be approximately when
Qext 18 0.3 t0 0.5 of Qiyt. In the later laser measurements, the optimum output power was achieved
when the mirror had the number of grating holes Nyiror = 1200 and Npirror = 1600 for the 50 nm
and 90 nm QNCL lasers, respectively. More details about this resonator design can be found in

[42].

Number of Length of the External Reflectivity
grating holes in mirror (um) Q-factor (R)

the mirror section

400 96 1.6x10% 0.63
800 192 7.2x10% 0.90
1200 288 1.9x10° 0.96
1600 384 3.8x10° 0.98
2000 480 4.8x10° 0.99

Table 3.4 External Q-factor as a function of number of grating holes in the mirror section (for the
reflectivity calculation, the laser cavity round time 7y, of 6 ps was used).

3.1.2 Si resonator passive measurement
The transmission spectrum of the donor-type mode-gap resonator as a function of frequency is

shown in Figure 3.5. The high-Q mode from the donor-type mode-gap resonator is found to be
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resonant at a wavelength inside the photonic bandgap, near the conduction band edge (high
frequency). In the top figure, the resonance wavelength is near 1565 nm, and the measured Q-
factor is 10°, limited by the external Q-factor (mirror loss). With an under-coupled mirror, as
shown in the bottom figure, the loaded Q-factor reaches 1 million, implying that the intrinsic Q-

factor of the localized mode is near 1 million.
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Figure 3.5 Transmission spectrum of high-Q Si resonators (Top figure: donor-type mode, Ngefect
=299, Nmirror = 800, V =200 GHz, bottom figure: donor-type mode, Nyefect = 299, Nmirror = 2000,
V =200 GHz).
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Figure 3.6 Transmission spectrum of passive Si resonators with donor-type (in red) and acceptor-
type (in blue) mode (Donor-mode: Nyefect = 499, Niirror = 1200, V = 150 GHz, acceptor-mode:
Ndefect = 299, Nmirror = 2000, V = 150 GHZ).
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