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ABSTRACT

A study is made of the free vibration of planar coupled shear
walls, a common lateral load-resisting configuration in building
construction where two walls are coupled together by a system of
discrete spandrél beams. The differential equations and boundary
conditions are obtained by the variational method, and by assuming
that the spahdrels can be replaced by a continuous system of laminae,
or small beams. |

Natﬁral frequencies and mode shapes are determined, and
the results are presented in a number of figures from which the
natural frequencies of any coupled shear wall can be extracted.

The importance of including vertical displacement in the analysis is
discussed, and a study of the effect of neglecting the vertical inertia
term is given. These cases are illustrated with graphs and with one
specific exémple. Investigations are also made of the asymptotic
behavior of the system as the spandrels become weak, as they
become stiff, and as the frequencies become large.

Finally, the theory of sandwich beams is presented and
compared to that for coupled shear walls. It is observed that for most
cases of constant properties, the differential equations (and boundary
conditions) reduce to the same mathematical form for both

theories.
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Chapter 1

INTRODUCTION

Shear walls have been used in building construction for a long
time to resist lateral forces arising from winds and earthquakes.
These walls, extending the whole height of the buildings, are usually
placed on the sides of the structure, or around an interior core that
houses stairs and elevators. In order to have windows, doors and
service ducts, openings must be provided in the shear walls, and
the resulting structure often consists of two walls, coupled together
by a system of horizontal spandrel beams. This coupled shear wall
will have a reduced stiffness, and the analysis will become more
complicated. If the size of the openings increase, the behavior
changes from that of a single-layer shear wall to two smaller
independent walls.

Figure 1.1 shows an example of a building in which coupled
shear walls are used for the lateral resistance. This apartment
building, the McKinley building in Anchorage, Alaska, and a nearly
identical one a mile away, were severely damaged during the
Alaskan earthquake of 1964.

In order to analyze coupled shear walls, such as the one
shown in figure 1.1, a simple planar model, figure 1,2, is
introduced. This coupled shear-wall model has two walls of
unequal dimensions and properties coupled together with a system of
spandrel beams. The spandrels are assumed to be uniform

between the two walls, but their properties and spacing élong the



Fig. 1.1. McKinley building, Anchorage, Alaska



length of the structure can change. Although the differential
equations of motion are derived for this general structure, most
emphasis is placed on the coupled shear walls with constant
properties, and in particular on the case of two equal walls.

The coupled shear wall has attracted several investigators. in
the last decade or so., A simple technique of analysis has been
developed from the assumption that the discrete system of spandrel
beams could be replaced by an equivalent continuous medium. This
medium is assumed to be rigidly attached to the walls but only
capable of transmitting actions of the same type as the discrete
spandrels. A system of independently acting laminae, or little
beams, will have this property as will be explained in Chapter II,
and this device enables all the properties of the modified structure
to be expressed as continuous functions of x, the longitudinal
coordinate. By assuming that the spandrels have a point of contra-
flexure at midspan, and that the two walls are equal and constant
over the height of the structure, the equation for the static analysis
of a coupled shear wall can be written as a second-order differential
equation with constant coefficients.

The method was first used by L. Chitty'(l) {1947) in the analysis
of a cantilever composed of a series of paraliel beams interconnected

(2), L, Chitty and W. Wan applied

by cross bars., In a later paper
the technique to tall building structures under wind loads. Further

extension of this method was given by Beck(s) in the case of uniform
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(4)

treated the case of a concentrated load

(5)

lateral loading. Rosman

acting on top of the structure, and Burns analyzed the coupled

shear wall subject to triangular loading, such as those specified

in many seismic codes. Curves for determining stresses and

(6)

maximum deflections were given by Coull and Choudbury' ', and in

(8)

a later paper, Coull and Puri extended the coupled shear-wall

theory to include shearing deformations of the wall and flexibility
of the joints, which, from experiments, was found to be more
important than the incluéion of shearing deformations.

Walls with variable cross sections have been analyzed by

(5)

Burns'~’, for parabolically varying wall and beam stiffnesses, and

(9)

by Traum'’’', who treated the case of different, constant cross
sections placed on top of each other. The extension of the analysis
to walls with rhultiple bays, such as in figure 1.1 has been studied
by Burns(s) and Coull and Puri(g).

If the two walls have different properties, or if the loading is
not symmetrically applied to the two walls, then the midpoint of
the spandrels will not necessarily be a point of contraflexure. Tso(lz)
investigated the case of unequally applied loading and concluded that
for most cases, small errors were introduced by as sumin-g
symmetrical loading, and the gimplified theory could
hence be used with satisfactory results,

Experimental verification of the analysis of coupled shear walls
has been done by Barnard and Schwaighofer(lo) and Coull and

(8) (17

Puri Jennings applied the method to the building shown in

figure 1.1. He found that the damage pattern exhibited by the
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spandrel beams in the building was consistent with the stresses
determined from the theory of coupled shear walls. Full-scale

experimental studies of the behavior of spandrels in coupled shear

walls have been performed by Pauley(38, 40)

In short buildings with few spandrels, the use of a continuous
medium as a substitute for the spandrels becomes more question-

able. For these cases, numerical methods have successfully

(11)

been employed; Sensmeier presented a finite difference

approach based on the two-dimensional plane stress equations of

(21)

elasticity and Girijavallabhan applied a finite element technique.

The dynamic properties of the coupled shear wall has attracted
less attention from investigators. Kanai, Tajimi, Osawa and

(16)

Kobayashi did a dynamic analysis in which they neglected the

longitudinal deflections of the walls, and Tani, Sakurai and Iguchi(M)
have done a dynamic study of a related structure; the core-wall '

(13)

building, Recently, Tso and Chan analyzed the free vibra-

tion of a coupled shear wall with equal and unequal walls. The axial
deformations of the walls were included in the analysis, and
dynamic tests of two models gave good verification for the |

theoretical values of the fundamental modes and frequencies.

Shear-wall buildings, in which coupled shear walls are major

(39)
(42)

components, have recently been analyzed by Coull and Irwin

(41)

(static case). Tso and Biswas , and Irwin and Heidebrecht

have studied the dynamic response of such buildings.



When the spandrels in the coupled shear wall are replaced by
a fictitious continuous medium, the difference between this hypo-
thetical structure and the sandwich beam becomes small. In
essence, both structures have two beams separated by an elastic
medium, The differences are due to the assumptions made on the
spandrel system and the sandwich core. Because of the independence
of the laminae, no longitudinal strain can be considered in the
system of laminae,but for a sandwich core, longitudinal forces are
sometimes included in the analysis. The major difference, however,
is that the sandwich core does not adrmit bending strain (the analysis
would in that case be considerably more complicated) while the
spandrel system admits both bending and shearing deformations,

The theory of sandwich beams is somewhat older (7-8 years)
than the theory of coupled shear walls, but because of the applications
in airplanes, pressure bulkheads and flooring, recent emphasis has
been more on sandwich panels than on sandwich beams. The litera-
ture in sandwich construction is far larger than that for coupled
shear walls. A comprehensive review of work done up to 1965 is

(15)

Two recent books on sandwich construction by

(37)

given by Habip
Pla.ntema.(36) and Allen also give extensive reference listings.

Scope of Present Work

The object of this thesis is to find and study in detail the natural
frequencies and mode shapes of symmetric, planar coupled shear

walls. The differential equations are derived in terms of the four

displacement variables shown in figure 1. 2 since this formulation
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is found to be more applicable to the dynamic case than the methods

presented by Ch_itty( b , Beck(3)

and others. Also, by using the
variational principle, an extension of the theory to structures
composed of several shear walls connected together by spandrels
can easily be performed.

When the displacement variables are transformed into a new set
of variables representing the symmetrical and antisymmetrical
lateral and longitudinal displacements, the differential equations
as well as the boundary conditions for the equal wall case uncouple
into three new sets of differential equations and boundary conditions;
pure longitudinal motion, antisymmetrical lateral motion,and a coupling
between the symmetrical lateral and antisymmetrical longitudinal
displacements. This last set of equations are the basis for the study
in Chapter III where the vertical inertia term is neglected, and in
Chapter IV where it is included. For both cases, natural frequencies
and mode shapes are obtained. The importance of including vertical
displacement is clearly indicated in the analysis as well as in the
example given in Chapter IV, and although of somewhat lesser
importance, the effect on the solutions of the vertical inertia is
stated and explained in Chapter IV.

In order to get a better understanding of the general dynamic
characteristics of coupled shear walls, to seek simplified solutions to
special cases, and to obtain bounds on the natural frequencies,
asymptotic studies have been included in both Chapters III and IV.

Cases where the spandrels become weaker, and stiffer, as well as



9
where the two walls become more and more separated (usually only
applicable to sandwich construction) and ﬁhally where the fre.quencies
increase, havé been studied.

In Chapter V, the theory of sandwich beams is presented, and the
differential equations are derived and reduced to the case of constant,
equal faces, similar to the development in Chapter. 1I. It is found
that the differential equations for this case have the same form as
for the coupled shear wall, and although the two structures are dif-
ferent, as pointed out earlier, the differences are contained within
the dimensionless parameters of the structures, so no difference in
the differential equations and the boundary conditions are observed.
This is also true for most cases when the faces of the sandwich
beam and the walls of the coupled shear walls are constant but
unequal. It is hence concluded that the analysis in Chapters III and
IV do apply to the sandwich beams as well.

CE;api:er VI reviews some of the more important conclusions and
makes recommendations for future research in the area of the

thesis.
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CHAPTER IT

DERIVATION OF EQUATIONS OF MOTION

The objective of this chapter is to formulate the differential
equations of motion for the in-plane vibrations of the coupled shear
wall shown in Figure 1.2. Also shown in that figure are the dis-
placement parameters that will be used throughout this chapter; u,
and u, are the vertical (longitudinal) displacements of the neutral
axis of the left and right shear walls, respectively, and similarly,

vy and v. are the horizontal (lateral) displacements. Further, x

2
is the vertical coordinate and t is time.
The differential equations will be obtained using Hamilton's

variational Princ iple(zz)

£y
Gg (T -U)dt=0 (2.1)

to
where T is the kinetic energy of the system, U is the total strain
energy, and 6§ is the variational operator. The application of
Hamilton's Principle will give the differential equations of mofion
as well as all the boundary conditions, which in this problem are
difficult to obtain otherwise.

At the end of the chapter, the differential equations and

boundary conditions will be reduced to the important practical case

of two equal shear walls.
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2.1. Description of the Coupled Shear Wall and the Mathematical
Model

The two shear walls have the following properties:

Ai = Ai(x) = area of cross section
= Ei(x) = Young's Modulus
I, = I.(x) = moment of inertia about neutral axis
1 1 (2 2)
P, = pi(x) = mass per unit volume
di = di(x) = distance from neutral axis to wall opening
!.1 = length of wall

where i equals one for the left shear wall, and i is two for the
right shear wall. (See figure 1.2 o)

The spandrels are assumed to be uniform between the two
walls, but can vary along the length of the wall. The properties of
the spandrels are therefore defined for discrete values of x, Xj’

the distance to the neutral axis of the jth spandrel.

A3 = A3(xj) = area of cross section
—_— — !

E3 = E3(xj) = Young's Modulus

13 = 13(xj) = moment of inertia about neutral axis
d, = d,(x,) = total depth

R (2.3)
G3 = G3(xj) = shear modulus
Py = p3(xj) = mass per unit volume
L, = length {constant)

1,2,...,n; n = total number of spandrels

Cte
i
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It is convenient to introduce two other quantities:

ai(x) = di(x) +d2(x) + 13

le ; j=0
(2.4)
1,2,.4.,n-1

I

aZ(XJ) = ‘ xj.]_i = xj H j

2(11-—xn) 3 j=n

ai(x) is the distance between th.e neutral axes of the shear
walls at elevation x, and az(xj) is thé distance between the neutral
axes of the jth and (j+1)th spandrel.

The shear wall system shown in Figure 1.2 and defined by
equations (2.. 2), (2.3) and (2.4) will be analyz‘ed by replacing the
discrete spandrels by a uniform system of independent laminae,
or little beams , as illustrated by Figure 2.1, The laminae are
required to carry moment, shear and axial force equivalent to the
original system. The laminae will be assumed to be continuously
or plecewise continuously distributed along the length of the shear
wall. Also, the mass of the laminae is taken equal to the mass of the
spandrels they replace.

Let the properties of each lamina be defined by

Ax = depth
f3 = f3 (x) = moment of inertia
33 = X3(x) = area of cross section
53 = 53(::) = Young's Modulus {(2.5)
6}3 = 6}3(}:) = shear modulus
;3 = ‘53(::) = mass per unit volume
£ = length
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The= depth, Ax, is considered small and will later be allowed
to approach zero, thus creating a continuous or plecewise continuous
medium between the two walls. This medium is in essence a mathe-
matical convenience in which all the iaminae deform independently.
Because of this, the idealized coupled shear wall is not equivalent
to the usual sandwich beam, but it will be shown later (chapter V)
that under certain conditions the coupled shear wall model reduces
to the sandwich beam.

The medium between the two walls can now be defined by

letting
Ej(x) = E3(Xj) 2
G3(x) = G3(xj) S x €[Xj - %5:;\,2(:»(3.__1),xb_i + %az(xj)]
~ _ . j=1,2,...4n (2.6)

~

13 (x) = 13 (x)Ax }

. Ax =0, x€[0,1]
A3(x) = a3(x)Ax

where 13(x) and a3(x) must satisfy the relations

1
el e ) 13(x) dx = I3(XJ.)
j 22y
. j=1,2,...,n {(2.7)
xj*i'g aZ(Xj)
\ a3{x) dx = A3(xj)
X=Xj— 3 aZ(Xj-i)

When £3 is constant, equation (2.7) will ensure that the above-
mentioned stiffness requirements on the system of laminae are

satigfied.
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In some cases, the spacing and sizes of the spandrels will be

such that i3(x‘ and a,.(x' are constants over the entire wall. This

3
is the case in the coupled shear walls analyzed by several authors
(1-6, 12-13) where the spandrels are assumed to be identical vi;ith
.the exception of the top spandrel, which is taken to have one-half
the area, depth and moment of inertia of the other spandréls . For

this case, if the opening between the spandrels are such that

i=0,1,2,...,n-2

az 5
a,(x,) = (2.8}
2 S, -x); i=n-1
az 1 ; » -
then taking
I
i(x) = —
3 a,
xe[o,alj (2.9
A
3
a.(x) = —
3 a,

will satisfy. the conditions in equation (2.7). These relations will be
used later in the chapter, but there is no need at this stage of the
analysis to require conditions beyond those in' equation (2. 7.

Bothaxial and bending deformations of the shear walls will be included
inthe analysis, and inthe spandrel beams, bending, shear and axial deforma-
tions areincluded. For simplicity, however, and inkeeping withmostap-
plications, the shear deformations of the walls willbe neglected. It canbe

(43) thatthis assumptionimplies less than 5% error if the ratio between

shown
the wavelength ofthe mode shape and the depth ofthe wall is larger than about
ten. Ingeneral, this limits the practical applications of the theory to the first

few modes of coupled shear walls.
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The kinetic energy in equation {2.1) will include both lateral
and longitudinal motion, but the rotary motions are neglected in the

walls as well as in the spandrels.

Finally, all deflections will be considered small, i.e.,

i=1,2 (2.10)
; i
Vi<<'ei’ .5....<<1

so that the linear theory of bending can be applied to the shear walls

and spandrels.

2.2. Expressions for Kinetic Energy and Strain Energy

Kinetic Energy

Under the assumptions given above, the kinetic energy of the
shear wall system can now be obtained. In the system of spandrels,
the longitudinal and lateral displacements will be functions of both the
x and y coordinate. (See figure 2.2.) From equations {A.5), (A.9),
(A.11), (A.12) and (A.13) in appendix A, with the proper boundary
conditions as indicated in figure 2.2, the displacement of the spandrels,

neglecting rotation, can be written as

% 1 2 2 v.3
u (x,y) = ux) + L [B°-1) F +3(H - 20471 uylx) - u (x)]

viley) = v )+ F v, - v, (] (2.11)
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where the constant ﬁz will be defined in equation (2.23). The kinetic
(23)

energy of the systezﬁ of spandrels will then be

'_SY P3a 3[( )+( ]dxdy (2.12)

By substituting equation (2.11) in (2.12), the integration over the
length of the spandrel can be performed, and by adding the kinetic
energy of the two shear walls, the total kinetic energy of the coupled

shear wall system is given by

T“'Zg Pify ('a" 24%\_;1 2] TrpA 2[('5—) (T) ]

Bu, Bu, L 70p%+7p +1 Bu, ‘
tryazts [731: e 710 p2 ('a— -t/
ov, ov
g vy oy
-l (-5"' 'r') ] dx (2.13)

Strain Energy in the Shear Walls

With the shear walls restricted to axial and bending defor-

mations, the only non-zero stress is the axial stress, and the strain

energy iﬁ the shear walls is simply(Z?’)
g 't NZax i MmPax
u, = |4 L ’E'I"i (2.14)
t ZJp E K "2 i '

i=1

where Ni is the axial force and M, the moment in the left (i = 1)
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and right {i = 2) shear wall. Expressing the axial force and bending

moment in terms of the deformations

au.i
N. = E.A,
1 1 1 pd
2 1=1,2 (2.15)
V.
- 1
M; =Bl —
8x

the strain energy in the shear walls becomes

. 11 31.11 2 1/'-11 31.12 2 lnli Bzvi)z
Uy = ES. Ei"‘i('ﬁ) dx + E,) EzAz(‘a?) dx + 33 EiIi(__Z dx
0 0 0 ox
1 3 o2, |2
+35"0 EzIz(wTa ) ax (2.16)
X

Strain Energy in the Spandrels

The strain energy of the spandrels also has to be expressed
in terms of the deformations u; and vy lThus the problem reduces
to obtaining the strain energy of a beam subject to rotation, elonga-
tion and lateral deflections at the ends. This analysis is included in
Appendix A, |

In order to obtain the correct boundary conditions for each
lamina, the total deformation of the shear wall at position x must
be analyzed. Figure 2.3 shows how an undeformed lamina, BC,

deforms to B'C'. In the xi,yi-coordinate system centered at A,

the positions of B' and C' can be obtained from the figure:
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av
x,(B") = d,(x) v, () - d, () [1 - cos(-&?l— ]

. gBv
yi(B') = ui(x) - di(x) sin(-_agi-)
(2.17)

xi(C') = di(x) +13 + Vz(X) + dz(x) [1 - cos (-85;%)]

sz
Since only small deformations are considered, equation (2. 10), the

higher order terms of equation (2.17)} will be dropped, giving

xi(B’) = vi(x) +d1(x)
Bvi
Yi(B') = ui(x) - di(X.) =

(2.18)
x,(C') = d, (%) + 2, +v,(x)

sz
Yi(C') = uz(x) + dz(X) v

The transformation from the x 1 ,yi-system to the xz,yz-system is
again obtained from Figure 2.3. Neglecting higher order terms,
this transformation can be written in matrix notation as

ov

1
= 8v1 avi :
¥2 -2 | RS I

Applying equations (2.18), (2.19) and (2.11), the coordinates of B'
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and C' in the x

Z,YZ-system are found.

XZ(B') = yz(B') =

XZ(C') = 13 + vz(x) - VI(X) (2.20)

8V1 avi SVZ
n = — —
7(CY = £ g+ 00 -0y () +dy (6 5+ 400 5

To apply the results of appendix A to the laminae, the notations 0,

5 and € are evaluated from Figure 2.3 and equation (2. 20)

. ov ov
: i 2
0 =37 ~Ix
£ = xZ(C') - .€3 = vz(x) - vl(x) (2.21)
8v1 3v 3v2
6 =y,(C') = uy(x) - uylx) +44 -——+d(X)-15—-+d(X)—3*—

For each lamina, the properties are given by equatioﬁs (2.5) and
(2.6). By using these properties and equation (2.21) in equation
(A.17) of Appendix A, the total straln energy in one lamina is deter-

mined.

6E. 1 v v v v
D R 1 1 2 1
AUZ‘{- ETY: [ R L L A [CER TR
Bv ‘ 2 8v2 2]
+dy gt )*T(“ﬁ”(
3%3 2
t = ; (VZ - vi) } Ax : (2.22)

where
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12 '"313'"
1 a - (2.23)
3 9323

k = kix) = k(xj); x, XE€ [xj—%az(xj_i),xj+%a2(xj)] (2.24)
§=1,2,...,n

k(xj) is a numerical factor dependent upon the shape of the cross

section of the spandrels(zs)

1,2,...,n (2.25)

A_(x)
k(xj) =3 Jz g 72 dA3(xJ.); j
V(xj) A3(xj)
where T is the shear stress and V(xj) the total shear force in the

cross section of the spandrel

V(xj) = T dAB(Xj) ; j=1,2,...,n (;.26)

S.A?’(xj)
For a rectangular cross section k(xj) is 1.2, The parameter 52
is a measure of the relative flexural and shearing stiffnesses of the
spandrel beams. Taking 52 as unity is equivalent to neglecting the
shearing resistance of the spandrels.

The strain energy in the system of laminae can finally be
evaluated by letting Ax approach zero and integrating equation (2.22)

over the height of the shear wall.

) ~
U ~ 3 6E313 avl avz 3v1 Bv1
2'50 z_ﬂ-ﬁ (“2““1 tdy gt d, 52 Y33 )(“2' uytdy g

3 .

2 o~
8v ov ov ov E.a
2 2 1 2 2( 1 2) 393 2
td, 57 t 3% )+‘17(3+ﬁ Ya\ox - 7% ]+‘Tz ; (vy-vy) }dx
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The total strain energy in the system is given by adding the

contributions from the walls and spandrels, U1 and UZ’ respectively.

2.3. Derivation of Differential Equations and Boundary Conditions

Substituting from equations (2.13), (2.16) and (2.27), Hamilton's

Principle, equation (2.1), becomes

t 2 2 2 2
BS 15; 1% LI L(;;i‘) +(;:_1) ] 2 pzAz[(fa?) ¥ (%zté) ]

to
Cou, 9 du. Bu,\% dv, 9 av. \°
L2325 “2+k(“2_ “1)+V1 V2 +_1_("z_ 1)
2P3ast 3| Bt BT I\BT Bt 5t 8t 3\%t Bt
1 (3u1)2 1 (Buz)z 1 azvl)z 1 82v2 2
- 2B AN/ - EpANer - EE1I1(_T - EEzlz( 2)
Ox Bx
6E_i ov ov av 8v
3i3 1 2 1 1
BVERD [(‘12‘“1+d1 % T T )( upruytdy
3
av 8v 12 av ov 2
rd 2t 1\ 3(3+32)( 1. 2)
2 8% 3 Bx 1z g 9x D%
E.a | ,
- J’Hi (vz—vi)z idx dt = 0 | (2.28)
3
where
4., 2
Kk, =JOB FT7B H1 (2. 29)

t 2108

The variation in equation (2. 28) is performed by varying u, by Bui
and v, by Gvi (i = 1,2), where it is understood that the variation
vanishes at t = ty and t = t- Performing the variation and inte-

grating by parts where necessary, produces the following equation:
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t, 4

S‘t go [pi i {Zki_'T+(i 2k )*T}+5§(E1A1’5"x )
0

6E. i Bv v

+-——§-—'333{2u - 2u +(2d, +4,) L+ (2d,+E )—5—-2-}]511 dx dt

£ 4
0, | 8%, 8%y, Bu,,

171 9% o
+Slt So [pzAz““Z?’" 32373 {Zkiﬂ'ﬂi 2k }““T} +“‘“(E2A2‘§_)

6E313 ‘ 8v1 sz
- {Zu - 2u, +(2d + 4 )-E-—+(2.d +£3) -5—} Gu., dx dt
B
v
t 1 2 2
i a vy 8 vy 2 o7
1
+§ S' [ Ay _e_i % (z LI > (&1 )
tOO 3333 81:2) ax 1182
5 6E3i | 8v,
+§§;'£35 [(1 +2d )(u ““1) +2d (d + 4 )T_
2
v 1 v E
2 2 ]
+(2d,d +1!3at1 —+—6—(3+ﬁ )( 5m ) _
E3 23 |
+ (vz-vi)] 6v1 dx dt
3
ot 4 a2 ' "
LT Aavz-i (z e ) Iavz\
Py ™7 "% P3 3 3 E, 2 5.2/
ty~0 ot ‘
3 6E3i3 - avi
* 5?3}37& [(‘3”‘12)(“2' uy) *(2d,d,*al;) 5=
3 .
sz 12 ]i
+?.d2(d +£3)_---—6-(3+p )(T.._a_x_)
—-;-z(v —vi)] sz dx dt
t u, Ly ty Bu, L
0 0
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"1 aZV Bﬁv 1 Bzv 35v ﬂ1
—g E,T L dt_ 2 O%Va [
11 75,2 %% 2ls —7F %
t 0 to ax’ lo
LT azv 6E, 1, o,
+.§ [EE(E:lH 3(2d ) uy-uy) t2d (d;+ ) 5
to 8«
2
BVZ 12 Bvi aVZ 1
L) 2 ( )
t(2d d,Ya l.) 5= +T(3+p) = " B ﬂﬁv . dt
1r, 0%v,\  6E;is ov,
ﬁg [§§(EZIZ 2) Y 3(2d2+f3Hu2~u1)+(2d1d2+a113)15r
fo C T bx £3p
avz 12 v, 3V2 11
t2dyldythy) o - T(3+ﬁ )(_3?-—5?') 6v, o dt
=0 {(2.30)

If the following boundary conditions are satisfied at x =0

and x = 11,

Bu1

E 139 or uy =0 (2.313a)
auz .

EZAZ %-}—{— =0, or l12 =0 (2. 31b)
8%y, Bv, |

IEJII1 > =0, or -—a—x—=0 (2.31c)
Ox
B_sz BVZ

EZIZ—Tz 0, or “"aTz ) (2.31d)
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(Eﬁi "T) ‘3 )(2d1+13)(u2- u) +2d (d, H) ==
3
avz ﬂz BVZ
+(2dd+a£)_5_ '6"(3+5 )(_a"'" %:0,
or v, =0 (2.31e)

9%v 6E i ov
3 2 3l3 1
ﬁE(EzIz 2) - 5 ;(Zdzus)(“z' uy) +(2d;d,*a ds) =

ox fgﬁ
8v
+zd(d +£)T_ T(3+p)( E:o,

or v, = 0 (2.311)

then equation (2.30) implies that the differential equations of motion

are
Bzui 4~ 82111 Bzuz 5 uy
~PiB — "Ep3a3£3[2k1 5= t{l-2k,) — ] * EE(EiAi T‘x)
ot ot ot
65313 , ov, , ov,
*F‘z‘["‘“z' 2u, +(2d,+ ).__ +(2a,+ L)) "a_x']= 0 (2.32a)
35
azuz 1~ 32“2 8% ] 2
"pZAZ'a?"ip3a3£3[2k1_a't"2"+(1'2k1)__2' 7 (B4, x)
6§3i3 Bv , sz
; _ 0y L.
W[Zuz 2u, +(2d, +1;) = +(2d +4) 52[= 0 (2.32Db)
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2 2 2 ‘
Bvi Bvi avz]_

“Pyhy 393 3‘33[‘2 ") * o2

Bvi

—)

. (B — on

5 6E313 , sz
+3§E[ 3ﬁ2 %(13+2d1)(u2—u1) +(2,n:11d2+a1 3) o
3 .

-~

2
] JE v v E
1,73 1 2) 3%3 -
tad(dyths) 5 T4 BB )('a‘x' " o= {I+ T (Vz vy) =0

3
(2.32c¢)
82y 0%v. 8oy 2 8%y
-p 2 p [2 2+ 1]_ 9 (E I 2)
28 z_‘Z' '6' 3@ atz Btd o | 22 D32
5 6E313 Bvi
¥ a_x[isﬁz ;‘ﬂsudz)(“z“ui) tl2dydytagls) o
3

av Ez v v E

9 9
2 3 2 1 2 E32,
+ 2d2(¢2+£3)_a_x___6_ (3+8 )('—EE_”E)_X_)G "‘I_(V -v ) =0
(2.32d)

Equations {2.32) are a set of partial differential equations in
the space x and t, with variable coefficients. The associated
boundary conditions are given in equation (2.31), including both the natu-
ral andlgeometric‘ boundary conditions. That is, equa.tioné (2.31a) and
(2.31b) give the appropriate conditions for no longitudinal force or
no longitudinal deflection at the boundaries, equations {2.31c} and
(2.31d) give the conditions for no applied moment or no slope, and
finallfequé.tions (2.31e) and (2.31f} give the conditions for no applied
lateral shear force or no lateral deflection at the ends of the two walls.
If no major simplifications can be made in equations (2.31) and

(2.32), the solution for natural frequencies and mode shapes can only
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be obtained by approximate methods, for instance the Ritz Method or

the Galerkin Method. (29)

2.4. Reduction to the Case of Constant Properties

By making additional assumptions on the properties of the
coupled shear walls, considerable simplifications in the differential
equations and boundary conditions can be made. The first approxi-
mation will be to make all properties of the walls, equation (2.2),
constant. Further, all spandrels will be assumed to be of the same

material, E G, and Py and the dimensions of the spandrels will

37 73
be such that equation (2.9) is satisfied. Under these conditions, it

proves convenient to introduce new deformation variables

u=_u1+u2
u=u, -u
e . (2.33)
v=v1+v2
V=V -V,

such that the symmetrical (u and ¢) and antisymmetrical (@ and ¥)
displacements can be distinguished. The displacements a and ;

are in general the most significant. The set of equations in (2.32)

can now be transformed into a set of four differential equations in the
variables of equation (2.33) by adding and subtracting equations (2.32a)
and (2.32b), and adding and subtracting equations {2.32c¢) and (2.32d).

For this simplified case, the following equations are obtained.
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2a
8%u .
.;“ —
,z[piA1+PzA2+P3 3 ZJBt [P (P zjat
2% 2
tLH{E A +E,A) —

171 t3(EA-E A
8x

I‘\J

8 u
ot

1 2
319%%

+1(E ) 2~ (E - )EEE
11 112282

12E 1

+ '""'—33[2u+a

1a—'+(d d) = 0
fﬁ

L,
-3 [py A teyh,teshs o ay at —[P

2% 5
Z{E E.1)>— -3 _

- (B I FE, L) —7 - 2{E L -EL) —7

9x 55

6E _1.a

- [p1A1+ + 1

2y 8%y
A27 3 P38 az] 512 e A-p,A,]—

1 BV 84;’
-E(EI+E1)____2(EI_EI)
228

6E 1
_%'%[Z(d ) +a(d -d
126

(2.34a)

(2. 34b)

(2.34c)

(2.344)
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Using equation (2. 29), ku can be defined by

35p%+14p2+2 (2.35)
210p%

-1 =
k= 2[4:1:1_1] =

and it can be observed that ku is only a function of the relative shear
stiffness of the spandrels. The numerical value of ku lies between
0.167 {only shearing deformations in the spandrels) and 0. 243 (only
bending deformations in the spandrels).
From equation {2.23), the parameter 62 is now given by
BZ =1 + 12_}:3’19.1_; (2.36)

G3A3l,

where k is defined in equation (2.25).

The boundary conditions associated with the differential equa-

tions (2.34) can similarly be obtained from equation (2.31)

1 A y8u L1 - du _ =
LE, A +E,A)28 + HE A -E,A )52=0, or W=0 (2.37a)

. o , 1 9T _ .

lEI+EI)32‘7’+l(EI-EI)aV-o or &2 0 (2.37¢)

DB L TE L) — fa(E I -El) —5 =0, 0r 5z = .
ox 8x

~1~E1+E1)32V+1(E1 El)ﬁ-o 0 (2.379)

H{E L 272! 5 Z AT T T » O 3% © y
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a7y

31\
2E I FE,) 2z 3 t3(E I -EL)—
Ox ox

-

6E._1 . - —
373 2 0v dv | -0
- [— Za,u +a1-5§-+a1(d1—d2)-5-}—{] 0, or Vv

azggf’z :
(2.37€)
3— 3~ 6E .1 -
1 v 1 i 3°3 _
3(}::111+E212)_3.+2(E1I1-E212) - - T Z(d2 di)u
212
B\: 2+._---—3 8;-*0 or v=20
(2.371)

The procedure for solving this system of linear, partial
differential equations (2.34) for given boundary conditions could
follow exactly the technique applied to the reduced case in chapter III,

section 3.1, where a detailed analysis is given.

2.5. Application to Equal Walls with Constant Properties

In many buildings, the coupled shear wall system is sym-
metrical, that is, the two walls are identical. This case will be
studied in detail in subsequent chapters, and it will be convenient
to introduce a common notation for the properties of the two walls.
Thus, in accordance with equation (2.2}, Ai' Ei’ Ii’ Py and d1
will subs equeﬁtly denote the properties of both walls, and the pro-

perties will be taken to be constant along the he.ight of the building.
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A, 72— 2—
39 d"u _
(p 2p33 )ETHE Ai.é.x_z_o (2.38a)
25 12E,1, A
(p Atk poby — ).12 +EA, 8 u (zu a g;)=o (2.38b)
257 ot ax°  a, 1op°
ats
(i Lo Aa) b7y m 1, oty , OFsls?y 82'v_28u) .
Py T 2P 35 )2 - 7 52 \?1 3=
227 ot ax a2£3ﬁ 8x
(2.38¢c)
(pA+ . A)a B 1 o'y | ZE3l3 9%y 2E3f; .
3 - = _
18175 P35 7 Pt W Sl Sl S N
(2.384d)

du _ : - _
EA_B;—O, or u=2~0

171
A 28 1=0
113" °r BT
24 -
a"v _ ov _
Ellia—-z'-—o, or -5-;—0
x
327 av

E111—7=0, or -a—x=0

{(2.39a)

(2.39b)

{2.39c)

(2.394d)



3 6E I . a -
) 37371 Bv . AN _ ~
EiIia.’{- 1352 ail-g-E-Zu =0, or v=0 {2.39¢)
x 2°3
3-- 2E.1
3°v 33 8V _ -
E I, —-8X3-—T-az3rx_o, or v =20 (2.391)

It is observed that the differentia,l equations have been greatly simpli-
fied, uncoupling Into three different problems. The symmetrical,
vertical motion, u, uncouples from the other deformations into the
well-known differential equation for longitudinal vibration of a bar,

i.e. from equation (2. 38) and (2. 39)

E,A BZE'( At so.t A3)32“—o- x ¢ [0,2,] (2.40)
7T\ T 2P s ) T Y g S
ox 20t
with
E,A au’-:O or u=0 at x=0,4 (2.41)
121857 Y 1 .

The antisymmetrical horizontal motion v also uncouples from

the other deformations. From equations (2. 38) and (2.39)

Lo ZE az';+2E3A3.;+(p NPy i"’)ﬁ:o-
gt gty g2 a0, 171 673 3a,/ 4
x C[O,Ei] (2.42)
with
2— —
9" v _ v _
EiIia?-—o’ or -5-}—{-—0
at x=0,£1 (2.43)
E. 1 ﬁ-—ZE3I3 6‘\?:0 or v=0 ‘l
117, 3~ a1, ox ?
ox 2°3
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This differential equation has the same form as the equation for a

beam on an elastic foundation with end loads.(30)
The two remaining variables, ﬁ and :r, describe the coupled,

lateral and vertical motions of the shear wall system which are of

the mostpractical importance. The two variables are coupled to-

gether in the differential equations as well as the boundary conditions.

From equations (2.38) and (2. 39)

U 1 BN 3‘7-25)
171 5.2 PER AN RS
X. a, 3ﬁ
( .A3 2n
~-(p, A, *tk p L, — =0
1771 "3 3 Z)Btz
Y e - U 823_22}1)
1184 13 2 162 ox
x a, 3p x
A 2"
1 3
+lp, At Spt, — =0
( 1771 2733 2 atZ
with
gu _ ~
EiAi--—;—O, or u=20
2A .
8°v _ ov _ =
EiIi-—a-;?-—O, or -5-}-1-—0 atx-—O,ﬁi
3 6E I a ~ (2.45)
97 v 331 ov A\ s~
BT — - — ai—a—X-Zu)—O, or v=0
Bx a213ﬁ

Equations (2.44) and {2.45) define the dynamic problem that
will be studied in chapters III and IV. With regard to further reduction,

it can be observed that if the spandrels become weak, E3"I_'3 — 0,
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then the system of equations (2.44) uncouples into a u-motion, with
the same form as equation (2.40), and into an Euler-Bernoulli equa-
tion for the v-motion

9%v A3

4

1 v
E'[....—.—.+pA+—'pﬂ—.— =0

118X4 (1 1 233a2 Btz

(2.46)
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CHAPTER III

DYNAMIC ANALYSIS OF EQUAL-SIZED SHEAR WALLS

In this chapter the eigenvalue problem for a coupled shear
wall will be solved for the case in which the two walls have the same
properties. The boundary conditions will be those appropriate for a
building: fixed at the base {x = 0} and free at the top {x = 11). In
order to simplify the notation and to present the results in a general
way, dimensionless parameters will be introduced. In section 3.1
the eigenvalue-eciuation and the equation for the eigenvectors are de-
rived. For practical application, the natural frequencies correspond-
ing to principally horizontal motion are the most interesting cases,
and it will be assumed in section 3.2 and the rest of the chapter that
the term associated with the vertical inertia (a-motion) can be
neglected. It will be shown in chapter IV that this assumption is
justified for the first few eigenvalues.

In section 3.2 the eigenvalues and mode shapes for lateral
vibration are obtained; section 3.3 deals with some asymptotic
behavior of these eigenvalues and mode shapes; and in section 3.4

the effects of the parameters on the solution are discussed.

3.1. Derivation of Eigenvalues and Eigenvectors

It is convenient to non-dimensionalize the length and time

variables as well as the displacement variables. Thus, let



5;=x/.€1
T = wt
{3.1)
V—V/fi
u = I/Zﬁ/a.1

where w is the frequency of oscillation. Further, the material and
dimensional properties of the coupled shear wall can be represented

by three dimensionless parameters,

2,2
6E3I3a1£1
-3
E 1B a 13

II, =

411
I1, = {3.2)

25 2
ajhy

Yk p.t
0o PiPiRe TP

37,2
£
1

1
Ay Pyhja; tzeghaA,

in which the properties of the spandrels are given by E3, 13, .A3,

! (Young's Modulus, moment of inertia, cross-sectional area,

37 P3
length and mass density) and the properties of the two equal walls

are similarly givenby E , I;, A, 4, py. a s the distance

between the neutral axes of the two walls; ﬁz is defined in equation
{2.36); and ku are introduced in equation (2.35}. The frequencies

of oscillation will als.o be made nondimensional by introducing

A
1 3,,4 2

R (pyAy * 2p3iy 3'2'”1“’

A= R (3.3)
11
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With the use of equations (3.1), (3.2) and (3.3}, the differential

equations of motion, equation (2.44) can now be written as

2 -

(3.4)

2 -
g - Hinzu - A H3uTT =0

+
where the usual notation for partial derivatives has been employed.
In order to present a general method of solution for the eigen-
value problem, applicable both to the present case and also to the

system of differential equations (2.34), a symbolic notation will be

introduced. Egquation (3.4) can thus be written as

LiwE.m] =0 £€(0,1); 7>0 (3.5)
where
TRl [ vesse - Mives *Myvg #30vy,

-I:‘[E] = = 2 (306)

w€,7)
= (3.7)

v{§,T)
L1 and LZ being linear, partial differential operators. Similarly,

the boundary conditions given in equation (2.45) can, for a fixed~free

condition, be expressed as
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rBii[E(O’T)]— '-V(O,'T)
_33_1[2(0,7)] = Biz[E(O,’T)] _ vg(O,'r) =0
| B,,[w(0,7)] ] Luw0,7)
(3.8)
[_BZI[E(:I"T)]—. _Vgg(j.,"r)
EE[:'N_(:I- 37)] = BZZ[E(i’T)] = Vggg(i ,'T) - Hi(Vg(i,T) - u(i,"l")) =9_
_B23[E(1!T)]_ Lug(i,'f']

Discussion of Parameters

Equations (3. 5) and (3. 8) completely describe the vibrational
problem. For a given structure, the parameters .Hi s H2 and H3
are 