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ABSTRACT

Present methods for computing the shielding efficiency of
metallic plates with apertures are based on the analysis of a
plane wave incident on an infinite conducting sheet. When applied
to actual enclosures with internal radiation sources, these methods
lose all validity, and obviously fail to predict the measured
results. Semi-empirical formulas are available for special cases,
but no serious analytic investigation has ever been conducted.

This dissertation develops the theory of electromagnetic
radiation from metallic enclosures with apertures, excited by
an internal source at frequencies below the findamental resonance
of the enclosure,.

The enclosure with an aperture is analyzed from two different
points of view: as a cavity with a small aperture in a wall; and
as a waveguide section short-circuited at one end and open at the
other end.

Rectangular geometries are used throughout, since these are
by far the most commonly encountered in practical enclosures and
cabinets.

Using the corresponding dyadic Green's functions, the fields
generated inside the enclosure by some simple sources are determined.
In addition to the case of a Hertzian dipole - the building block
for more complicated sources - a center-fed dipole and a square
loop antenna are analyzed. The fields radiated through small aper-

tures in a cavity are determined using Bethe's theory of diffraction




iv

by small holes. The radiation from an open waveguide is calculated
with the help of field equivalence theorems, with assumptions

applicable to the case of evanescent waves.

The final step is to derive expressions for the "Insertion !
Loss" of the shield, defined as the ratio of the field strength i
at a point external to the shield, before and after the insertion !
of the enclosure. To accomplish this, the effect of the shield :
upon the input impedance of the antenna is analyzed, and expressions
obtained for the applicable cases.

The resulting insertion loss expressions are numericall-

evaluated for some representative cases, and graphically compared

with a series of measurements performed to obtain experimental

confirmation. Very good agreement is obtained in all cases, estab-

lishing the validity of the analysis.
Thus, this work provides accurate prediction capabilities |

for the design of shielded enclosures with apertures, in the presence

of internal or external noise sources (the latter is a consequence

of applying the reciprocity theorem). Hence, it constitutes a useful

tool in the solution of electromagnetic interference and susceptibility

problems.

.%
|
|
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Chapter 1
INTRODUCTION

0f all the topics comprising the broad field of Electromagnetic
Theory, one of the most relevant but least developed is that of
electromagnetic shields, The most obvious reason for this state of
affairs is that very few three-dimensional boundary value problems
have exact or even approximate mathematical soluticns, and those that
do, are seldom representative of practical, real-world problems. A less
obvious, but not less important reason, is that most enaineers and
physicists working with electromagretic waves emphasize the optimiza-
tion of radiation and the generation and transmission of propagating
waves and in so doing, disregard those effects that are of paramount
importance in shielding theory.

An excellent example combining both of the above reasons is
provided by the theory of waveguides and resonant cavities at fre-
quencies below their fundamental mode. The fact that at low frequencies
the waves in these structures become "evanescent", seems to have
justified their neglect, except for casual and sometimes misleading
statements,

One extremely important application for such a theory, if it
were systematically developed, is the prediction of the shielding
effects of closed shields with apertures. A typical electronic or
electromechanical piece of equipment consists of a collection of

circuits and devices, surrounded by a metallic cabinet or by covers.




This cabinet, besides providing obvious physical protection, acts as a
double-purpose electromagnetic shield: it protects the sensitive
portions of the equipment from the electromagnetic "noise" of the
environment, and it contains the "noise" generated in its interior.

The concern about generating unwanted electromagnetic waves
("pollution of the spectrum") has been growing rapidly over the past
few years. Germany has taken the lead with its "RFI* Law", which
imposes strict limits to electromagnetic emanations from any electrical
machine or appliance marketed in that country.

Other countries, including the United States, will soon follow,
and manufacturers will need a reliable mean of predicting the degree
of shielding afforded by metallic enclosures, so that function and
cost may be optimized.

In most situations, the leakage of electromagnetic energy from
a metallic enclosure is dominated not by the physical characteristics
of the metal, but by the size, shape and location of the apertures
that are needed for such various reasons as: input and output
connections, control panels, dials, ventilation panels, visual access
windows, etc.

Moreover, the mere presence of a conducting enclosure around
a radiating source changes--sometimes dramatically--the radiation

characteristics of that source, It does so by affecting its input

*Radio-Frequency Interference




impedance and therefore changing its current.

A1l these things have to be accounted for in a comprehensive
theory of shielding applicable to enclosures with apertures.

No serious attempts have been made to date to develop such a
theory. The treatment of electromagnetic leakage through apertures
has been confined to the case of incident plane waves on an infinite
screen, and the various formulas available in sihielding handbooks
are derived from that case.

In the present work, we develop the theory of electromagnetic
radiation from metallic enclosures with apertures, excited by an
internal source.

We have confined our treatment to frequencies below the funda-
mental mode of the enclosure (i.e., below the cutoff frequency of the
cavity). For typical cabinets, the "cutoff" frequency is in the tens
or hundreds of megahertz, and the radiatior spectrum of most noise
sources seldom shows a significant contribution at these or higher
frequencies. Thus, we are covering a very significant portion of the
RFI spectrum. Besides, the inclusion of resonance effects would call
for very different techniques from those used here.

We have also limited ourselves to rectangular geometries,
which are by far the most typically encountered in cabinets and
enclosures. Nevertheless, the techniques here presented may be easily
duplicated for other regular geometries.

The approach taken is to treat the enclosure as a resonant

cavity below cutoff. This allows us to replace it with a perfectly
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conducting cavity, obviously assuming that the wall losses will be
small compared to the energy leaking through the aperture.

After finding the fields generated in a rectangular cavity by
typical radiation sources, we apply Bethe's theory of diffraction by
small holes to determine the fie'ds radiated by the aperture,

In order to cover the case where a whole wall is missing in
the enclosure (representing for instance, an cpen door or missing
cover), we develop the theory of typical antennas inside a wavequide
section, short-circuited at one end and open at the other end. Field
equivalence theorems are then invoked to find the radiation from the
waveguide's "mouth".

The effect of the cavity (or waveguide section) upon the
antenna is treated next, so that we can derive expressions for the
quantity of interest in shielding theory: the "Insertion Loss" of a
shield, defined as the ratio of the field strength at a point external
to the shield, before and after the insertion of that shield.

Our final task is the development of equations for some
specific cases, and the comparison of theoretically predicted results
with experimentally measured values.

Throughout this thesis, we will be forced to make approxima-
tions and assumptions, some of them Justified on purely heuristic
grounds. The correlation between predictions arising from the two

different approaches, and their experimental confirmation, will provide

the final word on their validity.




Chapter 11
ELECTROMAGNETIC LEAKAGE FROM A CAVITY WITH SMALL APERTURES

In this chapter we shall find expressions for the electromagnetic
fields leaking through small apertures in a perfectly conducting
rectangular cavity excited by a source located in its interior,

To accomplish this, we shall first make use of the Green's
functions for a rectangular cavity to determine the interior fields
produced by simple antennas in the absence of apertures. As is the
case throughout this dissertation, we shall only consider frequencies
lower than the first resonant frequency of the cavity, i.e., the
cavity is excited below cutoff.

Then, we shall make use of Bethe's theory on the "polariza-
bility" of apertures[]J. which will allow us to find the electromagnetic

fields radiated through the aperture.

II.1 Green's Functions for a Rectanqular Cavity

We start by defining the electric scalar potential ¢ and the

magnetic vector potential R in the usual way
B=VxAh (11.1.1)
E= Uy + Juh (11.1.2)

If we now choose to work in the Lorentz gauge by defining

e

V.R= jwu°c°¢ (11.1.3)




the field equations to be solved are the scalar and vector Helmholtz

equations
V2¢ + kZO .- D (”.].d)
€
0
V2R + k2R = oy J (11.1.8)
where
keuyTge, =2 (11.1.6)

We are, of course, assuming that the fields are time-harmonic, with 2

-Jwt.

time-dependence given by e

The corresponding scalar and dyadic

Green's functions are the solutions to[z]

2212 4 - S = {
v G(rlro) + kZG(rer) s(r ro) (11.1.7) i
v2§1F|Fo) + kZE(?]?o) = . Us(F - 7)) (11.1.8)

where U is the "idemfactor" (unit dyadic). f

On the walls of a perfectly conducting cavity, we know that

an=0 on § (11.1.9)

where S 1is the boundary surface. The corresponding boundary conditions

for Eqs. (II.1.7) and (II.1.8) are

¢=0
VeRh=0 on S (11.1.10)
Tn xf=0

I
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The Green's functions thus obtained are then combined with the
mathematical representation of the actual sources in the cavity to pro-

duce the field potentials

-+

o(r) = f 6(F|7,) gé—ri’-)-d 1 (11.1.11)
Voi 0
A(F) = f B(FIF,) + uJ(F,) d 1, (11.1.12)

where dt, is an element of volume.
For a perfectly conducting rectangular cavity of sides a, b and

d, associated with the x, y and z directions, the Green functions are

found to be[3]

sre o _ 4 x| nz
G(rlro) = - sin sin Ed—

a a
m,p

mix phz

v sin —2 . sin—2 . ] -
a a lgnpsin(lg“pﬂ

sin (Ky¥o) sin [Ky (b-y)] 5 if y >y,

<in (Ignpy) sin [Ignp(b-yo)] pify <y, (I1.1.13)




[fy X ﬁwmp(F}] fmp

2 -+
+ k fp Ty xmp(r‘o) Ty X

* Vg (o) mep(r) -

v o @]

where

+

mp(v’) Ip *

(I1.1.14)

(11.1.15)

2y - (gl)z : (Eg)z (11.1.16)
bpp = €OS ﬂ%& * C0s 2%5 (11.1.17)
pp = S0 o+ sin B (11.1.18)

R sin(Kmpyo) sinlig, (b-y)] 5 ify >y,

Fop E;;§1anmp55 '

] .
gmp Kmps1an pBI

m and n are positive integers ranging from zero to infinity.

sin(Kmpy) sin[Kmp(b-yo)]; Iy« g,

(I1.1.19)

cos(Kmpyo)-cos[Kmp(b-y)] v ify ey,

cos(Kpoy) + cos[Ky(b-y )] 5 if y <y

(11.1.20)




€ and cp are Neumann factors, i.e.,

(15ifm=0

m ™12 ; otherwise (I11.1.21)

€

(xo. Yo zo) are the source coordinates and (x,y,z) are the field

coordinates.
Equivalent forms for G(F[?o) and‘G‘(?[?‘o) may be obtained by

cyclic interchange of x, y and z and their associated parameters.

I1.2 Electromagnetic Fields in a Rectangular Cavity

In this section we shall make use of the Green functions to
find the electromagnetic fields inside a rectangular cavity excited by
simple antennas, namely: a Hertzian dipole (or current element), an
electrically short thin dipole, and an electrically small loop.

Horking in the Lorentz gauge, Eq. (I1.1.3), we need only to
solve for the vector potential A in Eq. (I1.1.12), since the electric

and magnetic fields are then given by

Eeo e F@H) ¢+ gl (11.2.1)
Julgeg
R=l 342 (11.2.2)
Yo

I1.2.1 Excitation by a Hertzian Dipole.

Consider a current element of length L, defined by (see Fig. 1)




> 7 - directed

\1“' source 1
| b’ b

T - = e

[ 4 y

a' S _l"’
a T ————
X
Figure 1

Hertzian dipole in a rectangular cavity




n

1,1 6(x-a') a(x-b') ; @ -§< z<d+

J - TZJz = (11.2,3)
L
0 i lz-d'l >3

~j—

The vector potential A 1s given by Eq. (I1.1.12), reproduced below

A(F) = f CRIF) - uy 3G d v, (11.2.4)
Vol.

Given o in the z-direction, the only components of Green's dyadic

that may contribute to the answer are

ze , Gyz and Gzz

Inspection of Fq, (I1.1.14) results in

G,, = 0 (I1.2.5)

Gyz =0 (I1.2.6)

Z xo pHZ
Gzz‘ EmE -sm-———-cos-a---
m,p

-smm-? vcos M2 . ]

’sin(Kmpyo) . sin[Kmp(b-y)] ; ify> Yo

sin(lg“py) . sin[lgnp(b-yo)] ; ify < Yo (11.2.7)
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Using Eqs. (I1.2.3) and (I1.2.7) in (11.2.4) we obtain

A= TZAZ (11,2.8)
u l
. 200 By
A, 'T:TE “mép ° sin c“%—
m,p

2d mia’' nd' . . piab
'B'n"sm_a— cosRa——- smEm |

] sin(Kpob' Jsinlky (b=y)] ;3 if y > b’ |

s1n(lgnpy)s1n[lgnp(b-b')] s ify<b’
(11.2.9)

The electric field is then found from Eq. (1I1.2.1), which now

becomes
L (A
"'—Jl V(E'z'z') + 1,40, (11.2.10)
00

resulting in

E --Jn( Z cos X . sin B2 . L

mia'
in —

'cos%-d—"sin%k'—-ms; .
P P

sin(Kmpb')sin[Kmp(b-y)] ; if y > b

sin(lgnpy)sin[lgnp(b-b‘)] s ify<2 (11.2.11)
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'-J:-IH- % Zsm"'g" -sineg-z-'

mep
mna' nd' . o,
n=— - cos Ed—— sin Eﬂ, =Th

-sin(lgnpb') * €OS [Kmp(b-y)] s if y » b

cos(lgnpy) . sin [Ignp(b-b') s if gy < (11.2.12)

"JWJ—Z 'sinmnx-cosgd-z- gﬁ
2
mIl-a-—-cosp-a—-osm?ﬁ» (5-2————

a sin(lﬂnpb)

sin(lg“pb')sin[lgnp(b-y)] ; ify>b'
s1n(lg“py)sin[tgnp(b-b')] ; ify<b' (11.2.13)

The magnetic field is obtained from Eq. (II.2.2), which we can

nov write as

ﬁ:l—vx;x:l.(ra T-—) (11.2.14)

X 3y y

The cartesian components of this magnetic field are

et
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H=4I° ’ 1w-coslg-z--d—
X ﬁ—zep =13 pl
m,p

mna'

sinT-ocosi%gi-sin%--ﬂ%mU-

-sin(lgnpb‘) . cos[l’mp(b-y)] ; ify> b’

cos(lgnpy) . sin[lgnp(b-b‘)] s ify <b' (11.2.15)

4]
.0 z : mix | nz , ml
H,Y o cp cos - cos %— e

m,p

' '
5% sin __mn: * cos %__nd : sin%-

] sin(ngnpb') . sin[ignp(b-y)] s ify>b'

K.(;;'Si"('ﬂnpb) sin(!ﬁnpy) » sin[Kmp(b-b')] ; ify<b

(11.2.16)

H, =0 (11.2.17)

I1.2.2 Excitation by an Electrically Short Dipole Antenna.
We shall consider the idealized case of a center-driven thin
dipole antenna, with the driving emf concentrated at its center. The

antenna current is assumed to be
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11, Sk 2ed D) o (xea)otyebt) 5 [2=d" (<

0 s |z-d'|>h

J=T4

2z

(I11.2.18)
The overall length of the dipgle is 2h,

Repeating the process of part II.2,1, we arrive at the following

field components

41 U o)
o 0 ‘,_g 2 milx nz
By = = ad sin B Cos == - sin Ld"
m,p

=

I g_n_
! (—-—-—._.2... -"-‘gl cos %—— [cos %—- cos(kh)] :

|

E
5 N
L

: sin(lgnpb') . sin[lgnp(b-y)] i ify> b

Vmpsin(l’mpb)

sin(lﬂnpy) : sin[!ﬂnp(b-b')] 3 ify<b

(11.2.19)
o Yo milx 1z
fy " - ssmney ¥t ) sin TR sin B2
0
m,p

(gﬂ?_ * sin _n)_n_a__, cos %— [cos P-a—- cos(kh)] .

e -Sin('g,,pb') . cos[lgnp(b-y)] s ifysb

cos(lg"py) ' sin[l(mp(b-b')] ; ify < b
(11.2.20)
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Ez - ep sin

sin(lgnpb') . sin[lgnp(b-y)] s ify > b

sin(lgnpy) . sin['g“p(b-b‘)) s ify <b
(11.2.21)

2kI
i = 0 E : mix nz ,
= = TSI L fp * ST TG cos B

m,p
M sin EIE- . cos LT [cos Ba—- COS(kh)] ’
(& -¢

-sin(lgnpb') . cos[Kmp(b-y)] + ify > b’

" sTn )
p cos(l(mpy) . sin[Kmp(b-b')] s ify<h'
(11.2.22)
2kl
= O . m—n.& 0 nz .
Hy -m mzp ep cos 3 COS%—
mi
a . esp MO i’ Th -
( n)2 - sin = cos [cos PT - cos(kh)]
5— =
sin(%pb‘)-sin[ﬁnp(b-y)] ; ify>b'
1 .
fp® 1" Kip

sin(Y\npy) . sin[lg"p(b-b‘)] s 1fy <b'

(I1.2,23)




H, = 0 (11.2.24)

In these expressions, Io is the current at the input terminals

of the antenna.

I1.2.3 Excitation by an Electrically Small Loop Antenna.

In order to simplify our already cumbersome expressions, and
without loss of generality, we shall evaluate the fields produced hy
a square loop of sides 2D.

Since we have previously solved the case of a current element,
and we are assuming that the loop carries a constant current Io’ the
answer is obtained by a straightforward application of the principle of
superposition,

From Fig. 2 and Eqs. (II1.2.11) through (II.2,17), it is easy to
obtain expressions for the fields of a square loop, With the help of
trigonometric identities and after rearranging terms, we arrive at the

following equations.
8k] p
cj—o4l . cos MX . gip RIZ .
ST S SR
m,p

] ]
.cos.m.g_a_—- cosmg- .sinw .

L8
ml d a

. pID ]
‘Sln%—0w‘
sin(Kmpb') . sin[Kmp(b-y)] ; ify > b

sin(Kmpy) . sin[Kmp(b-b‘)] ; ify<b (11.2.25)




e C e

18

li =
=D e=
T I——— :Tr 20
'o
|
| !
I
-
d' d z

Figure 2

Square loop in a rectangular , |
cavity (as seen in the plane y=b ) |

v




19
0 (11.2.26)
EZ=J-8;-(;2J_L'%m’p cp'sinml'alz‘-cm%g;-
2 E%; cos mga' cos 14’ . sin E%?l
. sin 20 W

sin(Kmpb') ' sin[Kmp(b-y)] s i g b
sin(Kmpy) ‘ sin[Kmp(b-b')] ; ify<b (11.2.27)
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B E . eip MiX nz 4
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m,p '

mia' id' . miD . pnD .,
+ €OS ——— * C0S ST == sin RH"

; -sin(Kmp

b') - cos[Kmp(b-y)] ; ify - b

cos(Kmpy) . sin[Kmp(b-b‘)] s ify<h

(11.2.28)
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+ COS "'—— cos p-a— T Sin %—

s1n(§npb') . sin[Kmp(b-y)] s ify > b

sin(KmpY) . sin[Kmp(b-b')] y ify <b

(11.2.29)

"o ),
= .9 o MIX s PIZ A
H = € cos = sin E%T’

z T
m,p
-cos—a—°cosp—a— ——--sin%@'

: -sin(Kmpb') . cos[Kmp(h-y)] s if vy o> b

) swn(Kmpﬁi )

cos(Kmpy) ’ sin[Kmp(b-b')] y ify <b
(11.2.30)

I[.3 [lectromaonetic Leakage through Small Apertures in Rectanqular

Cavities
I1.3.1 The "Polarizability" of Apertures
Consider an aperture in a perfectly conducting plane, being
illuminated by an ejectromagnetic field existing in one of the half-
spaces defined by that plane.

If the size of the aperture and the wavelength of the field are
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such that

¢ << 2% (11.3.1)

where & 1is any dimension of the aperture, H. A. Bethe[1] has shown
that the field in the vicinity of the hole may be represented
approximately by the original internal field En, ﬁo at the location
of the aperture (i.e., the fields existing at the site of the hole
before it is cut in the wall), nlus the fields of an electric and
magnetic dipole located at the center of the aperture,

The field transmitted to the other side of the conducting wall
may be considered a dipole field and can be calculated from the
electric and magnetic dipole moments induced by the incident field on
the complementary disk of infinite permeability[4].

An electric dipole moment can be induced only by an electric
field which is normal to the plane of the disk (aperture), and a
magnetic diole moment can only be induced hy a magnetic field which

Ties in the plane of the disk.

The resulting electric and magnetic moments are qiven by

P = uecofo (11.3.2)
M = -amno (11.3.3)

where
a, = electric polarizability scalar

T - magnetic polarizability tensor




22

Obviously, for a perfectly conducting plane Eo is normal to
the surface and ﬁo is tangential,

The values of aperture polarizabilities for different shapes
and sizes have been determined by C. G, Montgomery[sj and S. B,

Cohn[GJ’ [7]. Table I shows a selection of their results.

I1.3.2 Application of Bethe's Method to Rectanqular Cavities

with Small Apertures

Bethe's treatment of the diffraction through holes, coupled
with the field equations we have developed in Sec. 2 of this chapter,
provide us with a powerful machinery to evaluate the electromagnetic
fields leaked through an aperture in a rectangular cavity.

At frequencies below cutoff, typical cabinet apertures will
automatically satisfy condition (III.3.1), making the method
applicable.

In the first section of Chapter V we shall make use of these
results to find expressions for the insertion loss of rectanqular

shielding boxes with apertures.

o i : " MLWM
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Table I

Polarizability of Apertures

ape

a

— - R L A ™ AARAPCR C ORISR - .

a

e m m
1 [ 2
] parallel to [H normal to
long dimension | Tong dimension
. . d? 1.4 e

Circle of diameter d T §-d 3 d

Long narrow ellipse, - )

semi-major axis = a 2 2 a 2 2

semi-minor axis = b 7 Mab 30 " (la) . 7 lab
a> b i Y

Long slot of width w and 1,2 n,.2

length 2 g g

Square of side & 0.2274 3 0.518 3 0.518 &3

Rectangle of

length ¢ and 7 = 0.75 0.1462 13 0.4192 23

width w

Rectangle of v

length £ and T 0.5 0.0740 &3 0.2750 23

width w

Rectangle of "

length 2 and = 0.2 0.0140 13 0.1812 23

width w

Pectangle of "

length 2 and 7= 0.1 0.0038 &3 0.1290 &3

width w
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Chapter III
ELECTROMAGNETIC LEAKAGE FROM AN OPEN CAVITY

In the present chapter we shall investigate the electromagnetic
fields leaking from an open rectangular cavity (i.e., a perfectly
conducting cavity having one wall missing] when it is excited below
cutoff by an internal source.

First, ve must find a suitable description of the problem. This
is done by considering the open cavity as a section of a rectangular
waveguide, short-circuited at one end and open at the other end.

We shall begin by wriiing the Green function for a semi-
infinite rectangular waveguide, and then using it to find expressions
for the fields inside the wavequide, generated by simple antennas.

Up to this point, we have paralleled the work done in
Chapter II with the closed cavity. But now we must cut open the semi-
infinite waveguide and explore the consequences of this truncation.
This will lead to an assumed field distribution at the "mouth" of the
waveguide.

Then, with the help of the induction and field equivalence
theorems, the radiated fields will be determined in an approximation

suitable for our purposes.

II1.1 Dyadic Green's Function for a Semi-Infinite Rectangular Wave-

guide
As was seen in Chapter II, when working in the Lorentz gauge

(Eq. I1.1,3), we need only the dyadic Green's function to determine the
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field potentials, and from them, the electric and magnetic fields,
Consider a perfectly conducting, semi-infinite rectangular
wavequide of dimensions a and b associated with the x and y directions,
short-circuited at the plane z = 0 and extending towards z = +«,
Its dyadic Green's function corresponding to the toundary

conditions (I1.1.10) can be easily obtained, by using image theory,

from a knowledge of the dyadic Green's function for an infinite

waveguidefe]. ‘e have, then, for our semi-infinite waveguide |

€ €
BEF) = & mzn k_':_!l :

mn

: ’ [T, % P VLT, x By (9] +

5 + >
* kK Tz xmn(ro) Tz Xon(T) *

+ B (F) B (F)

, S

g [l
™
(I11.1.1)

vhere the + sign is for longitudinal (z-directed) sources, and the -

sign for transverse sources.

The symbols used are defined as follows:

K-‘"m il [(gﬂ)z % (.g_ﬂ.)z] (111.1.2)
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2 o (m)2, fnn)?
K m (,) + (F‘) (111.1.3)
mix ni
Yo = cos =+ cos BpX (111.1.4)
- mix . ni
Yo = $1n %+ sin BgL (111.1.5)

€, and £, are Neumann factors, defined in (I1.1.21).

To remind ourselves that we are dealing with non-propagating

modes, we shall find 1t convenient to define
. (mi)? ni |2 2
| rzmn (E’) + (E') -k (I11.1.6)

%m o . (I11.1.7)

The dyadic Green's function (I11.1.1) can now be written as

2
m,n k mn

-

G(F|

34-—-

o)

: 1 [T, x Fopg (FILT, x B (M1 -

: k2mn Tz an(?o) Tz xmn(?) *

el L L Sl e L e

> . > -»> ]
+ Vo (F) T (F) | - T

-rmnz Sinh) e
e cosh/ (rpn2,) 5 if z > 2,

'rmnzo(hinh) .
e e (rmnz) y 1f 2z < z, (I11.1.8)
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where the sinh function {s to be used for transverse sources, and the

cosh for longitudinal sources.

I1I.2 Electromagnetic Fields in a Semi-Infinite Rectangular Waveguide

Just as we did in Chapter II for the rectangular cavity, we
shall find the fields inside a semi-infinite rectangular waveguide
excited by three different sources: a Hertzian dipole, an electrically
short thin dipole, and an electrically small Toop.

In the present case we must distinguish between transverse
and longitudinal sources, which will add up to our already impressive
collection of oversize equations. tle must ask the reader to bear with
this situation, since every one of these expressions will be needed
in Chapters IV and V for the determination of the antenna impedance

and the insertion loss equations.
I11.2.1 Excitation by a Hertzian Dipole,

(A) Transverse Source
Consider a current element of length L, defined by (see

Fig. 3) L L
71 6(y-b')s(z-d"); g excal +x
T8 Y

x"x L
0 y [x - a'l> i (I11.2.1)

Putting expressions (II1.1.8) and (111.2.1) into Eq. (II.2.4)

repeated below

A(F) [ BFIF) « wd(F) d v, (111.2.2)
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Figure 3
Source in a semi-infinite rectangular waveguide
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K'Tx—gﬁg €€ cos."'_n.x_.,mngl.

mn MO a
;2 mia' . nmb' miL
mi ¢ 60S —5— sin Sepr sin =N
-Pmnz
. % o
; e 51nh(rmnd ) ; ifz>d
o-r—-—- -]" d'
M e ™ sinh(rmnz) s iz ed

Thus, from

and

we obtain

='J—5V Z n cos B2 - sin O

(mn!z k2
] U
a cos Ml | oy, pOb! sin MOL

i 2 B 1Y
d
[ 2
g ™ sinh(r d') ; 1f z > d'
an “Pmnd'

) s1nh(Pmnz) s ifz<d

(111.2.3)

(I11.2.4)

(I11.2.5)

(I11.2.6)
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=i 04l 0 mix
2" i@ Ve Lasin 5 -sin il
0 m,n

mila’ nib' miL

'COS-—'SH—B" nT

z
- mn i [ . 4 > d!
e s1nh(rmnd J s 9fzad

'rmnd'
- . S ]
e cosh(r‘mnz) y ifz<d

n
o

(I11.2.7)

(111.2.8)

(I11.2.9)
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. mia' .. ngb' | 1111
cos =5 sin sin T

-e sinh(p_d') ; if z » d'

Tmn

-r_d'
e ™ cosh(rmnz) s ifzed (111.2.10)

41 <~
B mix , NIy, a_ .
H, 'a'b"L‘m“s =+ cos gL L
m,n

nn . mia' nmb' o .omiL
«p oS - sin—b—- sin s
-r 2z
mn : "y . 1
e s1nh(rmnd ) ifz>d
1
Ton -r_d'
‘ e M sinh(rmnz) 3 162 24" (111.2.11)

For a y-directed source, we can use the same expressions inter-
changing x, a, a' and m with y, b, b' and n, respectively.
(B) Longitudinal Source

If our source is assumed to be a z-directed current element

-leo s(x=a') gy-b') ; d'- %- <2<d +'2-.

->
J = ]ZJZ=

0 ; [2-d" | % (I11.2.12)
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the electric and magnetic fields are found to be

‘JWJ_ECOS °sin-51 i,

g mua' | nmb' 1 _ ., Ly .
sin—— sin-—b— -——rm sinh (rmn?)

z
mn 1y .
- cosh(rmnd )y ifz>d
o

-rmnd'
sinh(r‘ z) s ifz <d' (111.2.13)
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-and'
e sinh(rmnz) st ifz ad (111.2.14)

‘JT(-E-J_Z sinm“"'sm-a- mna .
+sin -115 .+ sinh(r, -(E%L)2 :(Eﬂ)z
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«

r.2z
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o

-I‘md'
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H,6 = - 8I° cos WX .+ gip ﬂgl.. M,
Yy 'a'[a" a a
m,n
comma' o Lonmb! 1, Ly,
« Bih === 5in ~3— -—-—r . smh(r‘mn 2-)
mn
[ -T2
mn .
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Tond" cosh(r_z) ; if 2 < d (111.2.17)
e mn=’ =
Hz =0 (111.2.18)

I11.2.2 Excitation by an Electrically Short Dipole
Antenna

(A) Transverse Source

Assume a dipole antenna current defined by




34

T"I° ﬂ‘%ﬂll &(y-b')s(z-d") ; |x-a'|<h

0 s |x=a'|>h

J=T4

X X

(I11.2.19)

The fields generated by this current in the semi-infinite

waveguide are found to be

2Io ‘l ¥
S SIN(KAT 2y Z e COS E'?- sin ML .

m,n

= +k2 '
a . mia |, sin _'% . [COS ma#h- cos(kh)] ¢

I 3
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25
lnmn -rmnd'
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| 41
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H, =0 (I11.2.23)
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For a y-directed source, we should use these equations inter-
chanaing x, a, a' and m with y, b, b' and n, respectively.
(B) Longitudinal Source

‘

In this case, we define the antenna current by

i - |7<d"
Tzl°m%%)g_u“x'a')é(y-b')  |2-d'|<h
J = Tsz -
0

5 [z-d'|>h
(111.2.26)

and the resultant electric and magnetic fields are
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H, =0 (111.2.32)

[11.2.3 Excitation by an Electrically Small Loop Antenna.

Paralleling the work done in Chapter II, we shall take up the
case of a square loop of sides 2D and current Io' Figures 4 and 5 show

the loop configuration for the transverse and Tongitudinal cases,

respectively.
(A) Transverse Loop (Fig. 4)
Using the expressions for the fields generated hy a current

element, worked out in part (II1.2.1) of this section, and applying the

superposition principle, we obtain
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Figure 4
Transverse square loop in semi-infinite :
rectangular waveguide (as seen in the plane z=d")
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Longitudinal square loop in semi-infinite
rectangular waveguide (as seen in the plane y=b’)
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(8) Longitudinal Loop (Fig. 5)

In this case, the generated fields are found to be
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For a Toop in the (yz) plane, we use the same expressions inter-

changing x, a, a' and m, with y, b, b' and n, respectively,
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[11.3 Radiation from an Open-Ended Yaveguide ggcited Below Cutoff

We must now use the tools developed in the first two sections
of this chapter, to set up expressions for the radiated fields from an
onen waveguide excited below cutoff.

First, we shall find a suitable approximation for the fields
at the plane of the aperture (i.e., at the "mouth" of the wavequide).
After a review of the induction and field-equivalence theorems, we shall
make physically reasonable assumptions that will allow us to find the
radiated fields under some restrictions,

This section is the least accura.z portion of this thesis, but
the reader will find ample justifications for the approach taken, not
only through reasonable heuristic arguments, but also through experi-
mental confirmation. To put it in another way: since this particular
problem cannot be solved exactly, we shall take what we feel is the
best possible course under the given circumstances, and rely on the
correlation between theory and experiment to pronounce the final

verdict.

II1.3.1 Electromagnetic Fields at the Open End of a

Rectangular Waveguide Excited Below Cutoff.

In Section I1I.2 of this chapter, we have found expressions
for the electromagnetic fields generated inside a semi-infinite
waveguide by some simple antennas, The question now arising is:

what happens to these fields when the waveguide 1is cut open at the
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plane z = d? Specifically: what are the new field values at the
plane z = d?

We should always keep in mind that we are dealing exclusively
with non-propagating modes that decay exponentially as we move away
from the source. The usual treatment of waveguide radiators, from the
pioneering works of Barrow and Greene[9] and Chu[w:I to the textbook
treatments of Jones[]]] and Collin and Zucker[lzl, assume that the
source is sufficiently distant from the aperture, so that any non-
propagating modes have decayed to negligible amplitudes and we are

left only with the desired propagating mode.

This clearly shows the dichotomy existing in the treatment of
radiators, when looked at from the antenna viewpoint or from the
point of view of shielding theory. The presence of evanescent waves
is ignored in the former and is essential in the latter.

From the above considerations, it is clear that the antenna-

aperture distance is the most critical parameter in our case, and

since we shall apply our results to typical rectangular cabinets and
enclosures, that distance will normally be a fraction of a typical
cabinet dimension,

A look at the equations in Section III.2 of this chapter shows
that the field generated by a longitudinal dipole consists of TM mndes
only. As a reasonable approximation, we can assume that the aperture
produces a complete reflection of the transverse (x and y in Fig. 3)
components of the fields, resulting in the doubling of the transverse

magnetic field and the cancellation of the transverse electric field.
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Similarly, in the case of a transverse loop, only TE modes are
present. This leads to the assumption that the transverse electric
field is doubled and the transverse magnetic field cancelled by reflec=~
tion at the aperture.

For a transverse dipole and a longitudinal Toop we have neither
Ti. or TM modes in the z-direction, In these cases, the safest course
is to take the fields at the aperture as being identical to those that
would exist at the same place in a semi~infinite waveguide,

The next step 1s to find an answer to the question: how is the
antenna affected by the aperture? In order to do this, we must obtain
some measure of the decay rate of the fields as we move away from the
antenna, and then of the reflected fields as we move from the aperture
towards the source,

In Appendix A we show that for a rectangular waveguide of square
cross-section, and for physically reasonable sources (thin antennas),
the reflected field is at least four orders of magnitude smaller than
the incident field (both calculated at the surface of the antenna),
when the antenna-aperture distance is greater than 0,1a (where a is a
typical dimension of the enclosure), This fact allows us to disregard
the effect of the aperture upon the antenna in all cases of interest,
(There is no point in shielding a source if we are going to place the
source at, or very close to, an aperture in the shield).

We have then determined that the fields at the open end of a

rectangylar waveguide excited below cutoff are given in terms of the
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fields that would exist at the same place in a semi-infinite waveguide,
modified according to the assumptions on aperture reflection pertaining

to each specific case.
IT1.3.2 Induction and Field Equivaleace Theorems.

As mentioned eariier, the problem of an open rectangular wave-
guide radiating tnto space cannot be solved exactly. The assumptions
required to obtain an approximate solution can be better understood
after a review of the induction and field equivalence theorems,
magistrally stated by S. A, Schelkunoff[]3]’ (141, D151, [16]

(A} Induction Theorem (see Fig. 6)

Consider an infinitely Tong waveguide with a known electromagnetic
field in its interior, and let us call this the "incident field" Ei
and ﬁi.

If vie now cut the waveguide to a finite length, the internal
field will change to the "actual field" E and .

Let us now imagine a surface S over the waveguide aperture,
separating the "inside" of the waveguide (region 1) from its "outside"
(region 2). The surface S can be chosen to be any convenient boundary.

We shall call the field in reqion 2 the "transmitted field"
ft and ﬁt.

Turning back our attention to region 1, let us call "reflected
field" £ and B" , the difference between the actual field and the
incident field.

Hence, we have:
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Figure 6
Fields in an open waveguide
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3 Eatharr
Region 1
egion detl,ar (111.3.1)
Region 2 £t
egion A= Ht (111.3.2)

If we assume no sources on S, the continuity of the fields F
and A is assured, and their tangential components at the surface S

must satisfy:

t _ i r
Eo,tan B Eo.tan ¥ Eo.tan (111.3.3)

t _ i r
“o.tan ) no,tan K ﬁo,tan (I11.3.4)

Maxwell's equations ensure the continuity of the normal

components.

We now define a "scattered field" £°, B° made up of the reflected

field in region 1 and the transmitted field in region 2
A A (111.3.5)
CRE L (111.3.6)

This scattered field satisfies Maxwell's equations under the boundary
conditions imposed hy the waveguide, but it is discontinuous across S by

the amounts

t r -
Eo.tan = Eo,tan B Eo,tan (111.3.7)
>t *r . -pi ‘
Ho.tan B Ho,tan Ho,tan (111,3.8) ,
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These discontinuities may be thought of as arising from the
following sources on S:
1) A magnetic current sheet (due to the discontinuity
s
in to.tan) of density

. E1

_ 3
m~ o,tan Tﬁ Eo X Tn (111.3.9)

2) An electric current sheet (due to the discontinuity

s \]
in no,tan) of density
®at x ﬁ;.tan =t af (111.3.10)

The Induction Theorem can then be stated as follows:
"The reflected and transmitted fields may he generated by an appropriate
distribution of electric and magnetic currents distributed over the
"surface of reflection". The linear densities of these currents are given
by the tangential components of the incident field."

When using these currents to determine the fields, the environment

must be left unchanged, i.e., the waveguide must be left in its place.

(8) Field Equivalence Theorem

When we are interested in calculating only the transmitted field,

we may resort to a corollary that follows obviously from the induction
theorem: The transmitted field can be obtained by postulatina a zero

field inside a closed surface § comprised of the surface of the

aperture and the outer surface of the waveguide, and a field ft. At

outside S. These fields are produced by electric and magnetic
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current sheets over S given by expressions (II1.3.11) and (II1.3.12),
but nov, {n carrying out the calculations, the wavequide must be
ignored and the response is obtained by using the "free-space"

retarded potentials,

%-me (111.3.11)

P-mxﬁ (111.3.12)

[I1.3.3 Radiation Fields from an Open-Ended Rectangular
Waveguide Excited Below Cutoff

The determination of the radiation fields from open-ended

parallel-plate wavequides and circular wavequides is essentially a two-
dimensional problem, and can be solved exactly by using Wiener-Hopf
techniques.[]7]

On the other hand, the radiation from an open rectangular wave-
guide (or horn) poses a much more difficult probiem, due to the effect
of currents on the outside walls of the waveguide, which are now
distributed on a three-dimensional boundary.

The standard procedure[lzl is to neglect these currents, which

amounts to assuming the existence of a perfectly conducting flange
coplanar with the aperture and solving, in essence, the radiation from
a rectangular aperture in a perfectly conducting plane.

This approximation worsens at low frequencies, especially if
we are interested in the fields at large angles from the axis of the

waveguide (1.e., the fields near the imaginary flange). But for points
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on, or near the axis, the approximation is acceptable, as borne out by

experiments (see Chapter VI).

In the design of electromagnetic shields, the quantity of
interest is the worst-case insertion loss (or the worst-case shielding
effectiveness). Thus, when we study the "leakage" from an open
waveguide, our major concern is with the field intensities along the
axis of the wavequide, and the "infinite flange approximation" becomes
acceptable.

We are then led to the use of the field equivalence theorem with

the closed surface S being now composed of the surface of the
aperture, the co-planar infinitely conducting flange and the hemisphare
at infinity that does not contain the waveguide.

The radiation field will be that produced by the current sheets
(111.3.11) and (111.3.12), repeated below

%-ngn (111.3.13)

° ., t
J Tn X M3 (111.3.14)

vhere E; and Hg are the assumed aperture fields, whose tangential

components are taken to be zero elsewhere on the aperture plane[]z’ p.71ff]
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Chapter 1V

INPUT IMPEDANCE OF A DIPOLE ANTENNA INSIDE A CAVITY WITH APERTURES

In Chapter V we will need to know the input impedance of a
dipole antenna inside a cavity with apertures, in order to evaluate
the insertion loss of a shielding box when its internal source is fed
by a voltage gene-ator.

In most practical circumstances, an electrically short linear
antenna is fed by a high-impedance source, whereas a small loop is fed
by a low-impedance source. Since the radiated fields from both types
of antennas are proportional to their current, it becomes necessary
to know the input impedance of the linear antenna if we are to describe
the insertion loss of the shielding box in terms of the quantity being
kept constant, i.e., the input voltage.

The input impedance of a small loop not only is of little

practical interest, but cannot be deduced from our treatment.

Obviously, the input impedance of a resistanceless loop enclosed in a
perfectly conducting cavity is zero to a first approximation (low~

frequency, or quasi-static case).

The antenna impedances are developed in this chapter using the
"induced-emf" method[]al. f.e., the input impedance of the antenna is

given by
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L [t .t (1V.1)
12
o L

g
where di is a length element along a thin antenna of total length L, and
I, is the current at the antenna input terminals.

The evaluation of (IV.1) for an infinitely thin antenna leads,
in general, to an infinite value of reactance. To obtain a useful
result, the finfte radfus of the wire must be taken into account. This
requires that the electric field E in (IV.1) be evaluated at a distance

o (the wire radius) from the axis of the antenna.

IV.1 Dipole Antemna Inside a Cavity with Small Apertures

To the same degree of approximation that we have used in the
treatment of the radiation from a cavity with small apertures, we can say
that the presence of small apertures will not disturb the fields near
the anteina,

Obviously, the most significant error will be introduced in the
input resistance of the antenna, whereas the input reactance will be
hardly affected. Since we will be dealing with electrically short
antennas, for whom the imaginary part of their input impedance is
several orders of magnitude greater than the rea' nart, our assumption
turns out to be an excellent approximation. In tact, given that our
expressions for the fields were derived for the case of infinitely
conducting boundaries, we are totally neglecting the input resistance.

Consider a thin dipole antenna oriented in the x~direction, and

with a current given by
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NERR ’T’“o—'Ls'fi&ﬂ_nld(y-b')c(z-d') 3 |x-a'|<h
- XX )
0

; |x=a'|>h

(Iv.1.1)

The electric field component Ex is obtained from Eq. (II.2.21)

after the appropriate coordinate transformation,

Taking
y=b' (1v,1.2)
2=4d"+top (1v.1.3)
we have
a'+h
.
Zy > f Ex(x) Ix(x) dx
0 a'=h
2
R b B . g2
Ve T e
m,n m\2 L,
=) -k

[ ] ——mna‘ [ ] 1 2 nnb' m-]-I-h-- .
cos ==+ sin? =g [cos = cos(kh)]

sinh(rmz') . sinh{rm"[d «(d' + p)]}
. sinh(i‘mnd)‘ ‘

rmn

a'th
. f sin [k(h=|x~a'[)] ¢ cos m_g_x_ . dx (Iv.1.4)
a'-h




cos? EE%L + sin? EE%L : [cos(kh) - €S ﬂﬂﬂ]

stnh(r_d') - sihhgrmn[d-('d' + p)ji
, sinh(‘?md) (1¥.1.5)

IV,2 Dipole Antenna Inside an Open Cavity

The approximation used in this case consists in considering that
the cavity extends to infinity in the direction of the aperture. As was
seen in Chapter III, this is a perfectly acceptable assumption as lona as
the antenna 1s located at some small but reasonable distance behind the
missing wall.

Thus, we can use the equations developed in Section 2 of Chapter

111 for a semi-infinite rectangular waveguide,
Iv.2.1 Transverse Source

Putting expressions (I11.2.19) and (III.2.20) into Eq. (IV.1)

we obtain, for an x-directed dipole,




_ +k2
S z |
ab sin?(kh)

' ' 2
. cos2 Eﬂ%. + sin? ﬂﬂ%— {cos(kh) - ¢os E%ﬂ] .
1 “Toa(d' +0)
. .I-'— . @ . S'lnh(rmnd‘) (IV.Z-])

1¥.2,2 Longitudinal Source

For a z-directed dipole, we use Eqs. (I11,2.26) and (I11.2.29)
to obtain

7. = J"O Z .
i ab sin’-(kh)

in2 mal . coonm(b'4p) . onmb'
sSin 3 Sin s1n—-5-

. [cosh(rmnh) - t.os(kh)] . sin(kh) +

1..l!ll'l

-er h  -2r d'
+k[%<e LU ) .

-2r _d |
-(1 e ™ )cos(kh)” (1v.2.2)
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Chapter V
INSERTION LOSS OF RECTANGULAR SHIELDING BOXES WITH APERTURES

In the present chapter we shall use all of the tools developed
in the previous chapters to find general expressions for the insertion
loss of rectangular enclosures with apertures.

As mentioned in Chapter I, we define the "Insertion Loss" of a
shield as the ratio of the field strength at a point external to the
shield, before and after the insertion of the shield, with the "noise
source" driving force maintained constant.

In the Tight of our present work, the "noise source" is a

simple antenna internal to the shield, excited at frequencies below

the lowest cutoff mode of the enclosure, and being driven either by a s
voltage generator or a current generator,
Thus, for the dipole antenna, we shall find two "Insertion
Loss" expressions, one for constant current and one for constant voltage i
at the antenna terminals. 1
For the loop antenna, the constant-current insertion loss is the 4

only meaningful quantity, as was discussed at the beginning of

Chapter IV, i
The presence of a conducting plane complicates the situation,

since 1t not only changes the radiation patterns of the antennas and the

apertures, but also affects the antenna input impedance. HNevertheless,

in many practical applications we cannot disregard the existence of

metallic floors or of highly conducting ground. For this purpose, we




T A——r—-

ro

62
are including the necessary equations to deal with this situation,

V.1 Cavity with Small Apertures

V.1.1 Dipole Antenna
(A) Constant Current Insertion Loss

In order to develop insertion Toss expressions for the case of
a dipole antenna inside a cavity with small apertures, the following
steps are necessary:

- Knowledge of the fields inside the cavity, obtained from

Eqs. (I1.2.,19) through (I1.2.24),

- Use of Eqs, (II.3.2) and (I1.3.3) together with Table I,
to find the equivalent aperture source,

- Determine the fields generated by the equivalent aperture
source and compare them with the fields produced by the
dipole antenna in the absence of the cavity,

We have, by now, all the necessary equations to develop a complete set
of insertion loss expressions. Such a task, however, would be not only
cumbersome but also pointless. In this and in the following sections,
we shall only show some typical examples.

Let us begin by considering a short, thin dipole oriented in
the x-direction and centered at the point (a', b', d'). This antenna
is enclosed by a perfectly conducting rectangular cavity of sides a,

b, and d (see Fig, 1 in Chapter II), haying a small aperture on the wall
defined by z = 0,
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The electric field at the surface of the wall z = 0 is found
from Chapter II to be:

4] u
" . 0 J..P.. mix ,
E 2%0 ) STN{KR] € Z sin 3
i % m,n

z

mi
My ., _a ) mia' , .. nob'
. sin-Bl -;).HT—— COS'—-a- sin-—B—
[y - v
a
it sinh[r_(d-d')]
. [cos == cos(kh)] . SinhUmnd)
s (v.1.1)
The magnetic field at that wall is
Hx =0 (v.1.2)
2=0

2kl
.. E mix , .oy .
Hyiz -  a s(kR] <0 5o sin gt

m,n

] ] mia' ., _. nnb'
. '('—j'z—'"—k—z' cos "’*a" sin T

inh d-d’
. [cos Eﬂs.’l - cos(kh)] . i Frmﬁ( =
sinh(rmnd)

(v.1.3)
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Expressfons (V.1.1) and (V.1.3) were not obtained directly from
Eqs. (I11.2,19) and (I1.2.23), but from equivalent expressions obtained
from Eq. (II.1.14) after an appropriate cyclic interchange of the
variables,

For computatfonal purposes, it 1s always advisable to write the
equations so that the most critical parameter (in this case the distance
d-d') appears in the exponential or hyperbolic functions. It is always
possible to do so by using the proper form of Green's function,
Throughout this thesis, the Green's functions are expressed as double
summations; this proyvides considerable computational advantage at the
cost of lack of symmetry in the equations. However, cyclic interchange
of the variables and their associated parameters in the pertinent dyadic
Green's function allows us to write any one field expression in three
different forms which have, in general, different convergence proper-
ties,

Equations (V.1.1) and (V.1.3) provide us with the field
intensities at the point (x,y,0), taken to be the center of the small
aperture.

The electric and magnetic dipole moments induced on the

aperture are given by Eqs. (I1.3.2) and (I1.3.3).

E

P, = ag g &y

(v.1.4)
z2=0

My * Hy $%:1,5)

z=0
where the appropriate electric and magnetic polarizabilities are to be

used,

|
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If we neglect the lateral displacement between the antenna and

the aperture, i.e., if we set

a' = x (v.1.6)
b' = y (v.1.7)

and with the help of Appendices B and D, compute the fields with and
without the shield at a point directly in front of the aperture, we
obtain the following constant current insertion loss expressions for
the transverse components of the fields (Fig. 7):

Electric field:

I.h [y
0 0f{. ] 1
(I.L.) nr €0 g r jkr!

I ’u
0 k ; ]
Imr e_oo_ (Jk & F)lm

I h Jk+-]—'-+-—]—7-
% il Wf L) s r_Jkr (v.1.8)
K \r/ ke

Magnetic field:

jkr?
]
K+
= .EEE_ . r.j. J - (v.1.9)
KM\ gke e o
" jkr2

s kA A
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where
r'spr+d (v.1,10)

and [B| 1s given by Eq. (V.1.5). Only the absolute value of (I.L.) is
of interest.

(B) Constant Voltage Insertion Loss

In Chapter IV and Appendix C we have expressions for the input
impedance of a short dipole inside a cavity and in free space, respec-
tively. Thus, we can write the constant voltage insertion loss in terms

of the constant current insertion loss and of the impedance ratio:

z
(LL) =gt (L), (v.1.11)
) i 0
0
where
Zi = input impedance of the antenna inside the cavity
Z'1 = input impedance of the antenna in free space

V.1.2 Loop Antenna

The procedure to be followed is obviously the same as in the
previous case.

Consider, as before, a cavity with a small aperture on the
wall located at z = 0, We shall find the insertion loss expressions
for the case of a small scuare loop whose plane is parallel to the (x,z)
plane, centered at the point (a', b', d') internal to the cavity (see
Fig. 2 in Chapter II).
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We shall use expressions equivalent to (I1.2.27), (II.2.28),
and (II.2.29), but more convenient from a computational point of view,

to describe the fields on the surface z = 0.

16kl o\ ]
i 0 0 mix | iy . mia' |
E, - J rpr— —co L Sin==-sin "Bl cos =—-
myn
b’ . . mp |, SIMA(TRD)
« sin T sin T T

5 V4
s1nh(rmnd) mn

s _I
cosh [rmn(d d ﬂ (v.1.12)
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sinh (rmnD)
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The use of (I1.3.2) and (II.3.3) results in

P, =ace E (v.1.15)

2 Teo z|, . g

¥ = ‘??(TH +TH ) (v.1.16)
MRS %= 0 y y'z =0

and the corresponding constant current insertion loss expressions may he

found with the help of Appendices B and D.

V.2 Open Cavity
V.2.1 Dipole Antenna

(A) Constant Current Insertion Loss

We are now dealing with a cavity, in which the aperture is a
missing wall. As we have seen, this case is best treated as a semi-
infinite rectangular waveguide truncated (open) at the plane
2=d»>d" (see Fig, 3 in Chapter III),

The steps to follow are similar to those used in the first

section of this chapter, with the main difference that the fields needed
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to describe the aperture are the tangential components of £ and H, 1.e.,
‘ the components lying in the plane of the aperture.

With reference to Fig. 3 (Chapter III), let us consider an
x-directed dipole antenna of length 2h, centered at the point (a', b',
d') inside a waveguide section short-circuited at the plane z = 0 and
open at z =d > d',

At the plane of the aperture (z = d}, the tangential fields are
given by Eqs. (III,2.20), (III.2,21), (II1,2,23) and (II1.2,24).

: ‘/ ¢ cos X
Exlz_d' 3 sk Z B

(5 -
. =] +k \
«sin iy A2 ¢ €O0S mn:

¢« sin EE%L . [cos mith _ uos(khﬂ .
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e-rmnd | .
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1 . mna' nnb' mith .
. E;;};--TE cos = sin ~5 [%os . ke cos(khﬂ
e, -k
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K mnd
. e sinh(rmnd‘) (v.2.4)

We have transverse components of both E and B, Following

reference [12, p.71 ff], it is convenient to calculate the fields

radiated by the aperture in terms of the assumed transverse electric |

field. This results in a magnetic current sheet J; with the aperture

N

plane replaced by a perfect electric conductor, with the consequence
that the effective source has a value ZJ;. Since we are assuming that
the aperture dimensions are small compared to the wavelength, we can
integrateEqs, (V.2.1) and (V.2.2) over x and y and divide them by the
area of the aperture to obtain their average values over the opening.

Thus, we obtain
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According to Eq. (III.3.13), we have then a magnetic current

sheet
za‘my = 2%, (v.2.7)
V| ug
which produces a magnetic dipole of moment
M= 28— £ (v.2.8)
y p, ay
) z=d
ke ==
0

The use of Appendices B and D leads to constant current ;

insertion loss expressions tdentical to (V.1.8) and (V.1.9), where

now || 1s given by (¥.2,8) and r' = r 4 (d-d') .
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(B) Constant Voltage Insertion Loss
Just as in Section 1 of this chapter, the constant voltage

insertion loss is given by

4
1
(IoLo)vo = Ti' (I.L.)Io (V.z.g)

This expression is identical to (V.1,11), but Z1 is now the input

impedance of a dipole inside a semi-infinite waveguide, given in

Chapter IV.

V.2.2 Loop Antenna

Let us consider a longitudinal loop such as the one depicted in
Fig. 5 (Chapter III), where the waveguide has been cut open at the
plane z=d > d' +0D.

The tangential aperture fields are obtained from Eqs. (I11.2.39),
(111.2.40), (I11.2.42) and (I11.2.43). As in the previous case, we
shall work only with the tangential electric field and double the
resulting magnetic moment.

The tangential electric field at the aperture is

8kl U
o 0 0 e MIX nLy .
Ex i = ‘, —-eo Z e cos 5= sin -El

a mia’' nib' mid , _]
'-n-‘-IT'COS-T°51ﬂT'SinT T
mn
*and ‘
‘ sinh(rhnD) ‘e + cos(rd ) (v.2,10)

Averaging over the aperture results in
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Thus, we take our source to be a magnetic current sheet

L
2 me 2ab Exav (v.2.12)
z=d
which produces a magnetic dipole of moment
M, o~ g (v.2.13)

y T — X
ik ) V2=
€

With the help of Appendices B and D we may write the constant

current insertion loss expressions. For the electric field (Ex):




(LL.),

2 T b
_ 4IOD r ) Jk+?1- (v2]4
W\ T -2.14)
y Jk+=

For the magnetic field (H

41 D%k 1 1
0 ik + - +
e (J P ?)

(LL.)y
0

n
éq,r
=
Sl
€.
~
+
~|—
+
Ca.
b
- —
:i__,w#d
- ==
< -~

] ]
2 Jk + ¢ +
- 4IOD (L._) r JkY"Z
§ r Jjk + l+ ]
jkr2 (v.2.15)
where, once again
Pz o+ (d-d') (v.2.16)

V.3 Effect of a Conducting Ground Plane,

The presence of a conducting plane affects only the last step of
our procedure, i.e., the insertion loss expressions, The free-space
radiation fields and antenna impedances must be replaced with the half-

space fields and impedances.
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ATl the necessary equations have been provided in Appendices

B, C and D, Their use should be obvious by now, and nothing could be

gained by working out examples,
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Chapter VI

APPROXIMATIONS, NUMERICAL RESULTS
AND CORRELATION WITH EXPERIMENTS

In this chapter we shall take the cases of a transverse dipole
and a longitudinal loop, whose equations we developed in Chapter V, and
we shall evaluate the expressions for a source centered on a transverse
cross-section and an aperture centered on a wall of the cavity. (For an
open box, the "aperture" is already "centered" in its corresponding wall).

This results not only in a high degree of symmetry in the
equations, allowing their dramatic simplification, but it also consti-
tutes a good approximation for many practical cases of interest.

In the last section, the predicted results are compared with
experimentally obtained values to show the usefulness of the present

work.

VI.1 Cavity with Small Apertures.

VI.1.1 Dipole Antenna
Let us take the case of a transverse dipole antenna, worked

out in Section 1 of Chapter V, and set

w
o
"

(VI.1.1)

Ny oo
o oo

>
n

(V1.1,2)

-
~<
n

We are now interested in evaluating the electric field insertion
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loss for the above configuration, Equation (V.1.3) becomes

D T

H =z - € ¢ e —————

Y1,= ab sin m 2

- 0 m'0.2.4.-. ('2—11') = kz
n=1,3,5.:.

. [cos mih | cos(kh)] ' e [me(d-d'ﬂ

§ 2
sinh (r_d)
(T (V1.1.3)
P which may be written as :
2kI
0 1
H = - { -— l-cos(kh)] :
(. ab sin 2 [
20 n=1,3,5... _ K

<

sinh £fmp(d-d'ﬂ } (VI.1.4)
sinh(rd)

At frequencies significantly below cutoff we have

k«%,% (V1.1.5)
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and certainly

kh << 1 (VI.1.6)

Therefore, Eq. (VI.1.4) becomes

ni
. " %% Z ) g_z_  sinh [b" (d-d.)]_
L n=1,3,5... stnh (T~
2
+ Z 2(%1—) [cos -"“;—h- - cos(kh)]
ms2,4,6...
el 3,5, ..
sinh [r (d-d')]
‘ L (VI.1.7)

sinh (rmnd)

Assuming that d = b as it should be in a typical cabinet or
rectangular shielding box, we can approximate (VI.1.7) by
21, -F
by o * T R g

n=1,3,5,... +

2 -r d'
2 : 2 (%ﬁ> [?os Egﬂ. - cos(kh)J g N

2,4,6...
1,3,5

+
m
n ’ LI

(V1,1.8)

(22]

Evaluating the first summation
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2. V. ...
H R - 90 - —L-W+
Y|z=0 aBh 4 sinh 5

2 - -r d'
+ Z Z(Emﬁ) [cos _m_an_ll - cos(kh)] g N
m'2'4'6101
n=1,3,5...

(V1.1.9)

[f we further make the very reasonable assumption that d', the
distance between the antenna and the aperture, is not too small
(say, d' >'1?U). we need only keep the first term (m = 2, n = 1) of the
remaining summation,

Thus, we arrive.at

I
h
H =wbr | —= -
y'z=0 = sinh%—

nd' / b2
-2(%)2c052%-h--1 e.T ]+4(E)

Using Eq. (V.1.5) and inserting the resulting expression in

(Vi.1.10)

(V.1.8) gives us the desired constant current insertion loss expression.
To determine the constant voltage insertion loss, we must first
evaluate the input impedance of the antenna inside the cavity.
To the same degree of approximation used above, Fq. (IV,1.5)

becomes

T " s
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- ap D%- (d'+p)
4 0 k h e nnd'
1, = -j - Z ‘ « sinh +
1A s 7 = b
n=1,3,5... =
2 2
+ Z 2 (%ﬁ) [cos(kh) cos El‘!'_]
m=2,4,6..,
n=1,3,5... .
e.rmn(d""—'P) - | )
¢ S~ ¢+ sinh(r_ d VI.1.1
rmn mn i

Evaluating the first summation

nll
- (d'+p)
Z € r i . S'inh nnd. =
—B._

n=1,3,5,... gﬂ

b ’g'(z"'*")
H ﬁ e
n=]9 Oy

2d'
- tanh” [ E( +p):l

e [ <1
- tanh e

il
.' 2 _1 = E(Zd'+p)
i &n <-ﬁ:%;—> - tanh [e J

- %- (2d'4p)

] [1]
l;:l:r ;10'
~oj— §

- :'

3
/'\
=l

o-lé‘

gﬂ:r

= %{. %[’.n (‘—t”-) - 0.45] - tanh™! | e (VI.1.12)
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where we have used reference [22, p. 164] and the fact that Mp << b,
Putting this result in (VI.1.11) and evaluating the second

summation over the index n (see Appendix E), we arrive at

2 4
i Yo J kKhD b
Z =-J—-——‘f—— ——T—[tn(—)-o.45-
i abknz Y %o l L P
_ 2nd"
-Ztanh'l(e T)] +

2 z
+ g..a-t.’- -..l- (] - COS Mb—)z . [gn 2 o
m? a P

3
T° 1n=2,4,6...

2
- 1.84+———-]——-—- -zn(l+%— ] +m2(-g-) )
2 2
J] +m ('a-)
(vI. 1.13)
This expression, inserted in Eq. (V.1.11), gives us the constant voltage
insertion loss.

For frequencies near cutoff, the second summation in (VI,1.11)

should be evaluated by computer.

VI.1.2 Loop Antenna

If in Eqs. (V.1.12) through (V.1.14), corresponding to a

"longitudinal" square loop inside a cavity, we set

ey b = 5 (V.1.18)

X'% y :g- (VI.1.15)
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The only non-zero field component at the site of the aperture is

Hy. which now becomes

2
8 Z (“"2 - K2 .
- -3 Tm . leD ,
b =

m=0,2,4...
n=1,3,5...

H
y =0

! sinh(r

) mn?)
r

‘ T d
mn s1nh(rmn )

i cosh[rmn(d-d')] (V1.1.16)

Separating the m = 0 term and assuming, as before

k<<g—,% (Vl.].”) ‘
dab (V1.1.18)
H
we obtain (
81 _nnd'
Hy = # 3 Z De sinh (Q%Q) 2
z+0 n=1,3,5..

+
3 3 .
=
N

w
-ty
3
IB
=
o
L5 ]
1
3
3
=
Q.

i Al Sinh(anD)b

(VI.1.19)

The first summation can be easily evaluated if we write it as
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_ hnd’
E Dee © .stn MD .
n=1,3,5... '

3% [Her b

n=1,3,5...

= % ! csch [g-(d'-o)] - csch [ﬁ-{d' + DJ l
(V1.1.20)

where we have used reference [22].

In the last summation, if we again assume that (d'-D) is not too
small, we may keep only the first term (m =2, n = 1), so that
(VI.1.19) becomes

8l
)™ B
Yz=0 @

- ¢sch [g- (d* + D)]| +
sin 212 } 2%' V1 +4 ('aq)z
a e D 2
e T . sinh [1% ‘/1 +4 (35)

(vi.1.21)

g- { csch [g (d'-D)] -

Knowledge of the magnetic polarizability of the aperture will
allow us to determine the equivalent magnetic dipole moment M and the

corresponding insertion loss expression,
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VI.2 Open Cavity

VI.2.1 Dipole Antenna

Let us set b' = g- in Eq. (V.2.5), corresponding to the case of

a transverse dipole antenna inside an open cavity,

Assuming
k<< p (VI.2.1)
and
; kh << 1 (vi.2.2)

we obtain 4I 0 5 % (d-d'))"
EX 2 2
PR g "o n-1 03,5... "

This series, although deceptively simple-looking, does not have

(vI.2.3)

a closed form [22, p.184]. Fortunately, it is very rapidly convergent
and may be truncated after the first few terms. How many terms we must
keep depends on the ratio Q:gl » where (d-d') is the distance between
the antenna and the aperture.

Inserting Eq. (VI.2.3) in (V.2.8) results in the magnetic dipole
moment “y' and then the constant current insertion loss may be
immediately found. To obtain the constant voltage insertion loss, we
need the input impedance of the antenna inside the cavity. Setting

=%, b= g-and assuming

n n
k << ; ’ F (VI.2.4)

kKh << 1 (vI.2.5)
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in Eq. (IV.2.1) results in expression (VI.1.11), i.e., the input
impedance of a transverse dipole antenna inside a cavity, at
frequencies below cutoff, is independent (to a first approximation) of
whether the cavity 1s open or closed.

Hence, expression (VI.1,13) is also valid for ou: dipole
antenna in an open cavity.

VI.2.2 Loop Antenna

Consider the longitudinal loop treated in Chapter V and set

b= 5 (V1.2.6)

in Eq. (V.2,11). Assuming

k << ¢ (VI.2.7)
we have
: - 16kI D iy }: I e' e
3V |z=d n’a o n=1,3,5... n?
» sinh (ﬁgg) + cosh (ﬁﬂgl> (v1.2.8)

Once again, we meet the impossibility of finding a closed form

for the series. However, it is rapidly convergent and in most

practical cases the first few terms will suffice. Inserting (V1.2.8) in ;
Eq. (V.2.13) results in the magnetic dipole moment My. and 5

expressions (V.2,14) and (V.2,15) give us the desired insertion loss.

VI.3 Correlatton with Experiments e

To verify, to some degree, the validity of the assumptions made

i it Aletiianiod _.‘..J
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throughout this work, a series of measurements was performed on some
simple physical configurations. A cubical shielding box of sides
a =b=dwas used, having a square aperture centered in the correspond-
ing wall. The antennas were: a dipole of length 2h = a/5, and a
square loop of sides 2D = a/5, During the measurements, the antennas
were kept centered in the box, to allow the use of the equations
developed in the first two sections of this chapter,

The resulting insertion loss expressions are:

VI.3.1 Cavity with a Square Aperture of Side 1.

(A} Transverse Dipole Antenna

For the electric field (Ex). we have

] r jk + %T y JFl'E
(I.L.); = . ('r) . (V1.3.1)
Io F; ¥ jk + }
(LL. )}y = By & (T,L.} (v1.3.2)
Vo 2 Io
where
nd'
.y
_ L) [a 1 1.9] a
Fl = 10.36 1 (;) (T) M + 3 v e
20 sinh -y I
(v1.3.3)
and

PESSG




2 ZIT lnE;) -1 10 A P
21d’
S8 Bulara
- 0,45 - 2 tanh (e ), *

+i.(%) Z i
1\ me2,8,6... ™

n:"'] '3’50 o

[cos(kh)

2
- cos W] %,

- I
a
. e

m? + n? - 4(-;1--)2

¢m2 +n? - 4(-;-)2

(v1.3.4)
(B) Longitudinal Loop Antenna
For the magnetic field (ﬂy), the insertion loss is
jk+]—r+_1_
(LL.), =1 (L.-) L ik (V1.3.5)
o By \T K+ + ==
Jjkr
where
. A B (d' )l
F3 12.95(3‘) T ecsch [H 3—-0.] -
/3
! - e,
-cschln(g-+ 0.1) , + 238 . 2 , (VI.3.6)

VI.3.2 Open Cavity

(A) Transverse Dipole Antenna
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For the electric field (Ex):

1K ¥ Sy & e

;
(Ll =3¢ (rw*) i

I T-? r i +‘T[_ (v1.3.7)
(['L')VO = FZ ¢ (I'L')Io (VI.3.8)

where

nl
~ = (d-d')
F4=§.<§.> E, :-; e @ (V1.3.9)

n=1,3,5,...

and F, is given by Eq. (V1.3.4)

(B) Longitudinal Loop Antenna
For the magnetic field (Hy)

r

ik + Lp + _._l;r_.
o ]
(L.L.); = ,‘_-— . ({-r) - Jkr (V1.3.10)
0 5 ik + 14 ]
jkr2
where
_ md
.80 e 2 . fnn}). nid"'
Fs 2 ; 5 = sinh (W) cosh( a)
n= PP 9y e

(VI.3.11)

Figures 8 through 10 show plottings of the above insertion
loss expressions in decibels (i.e., 20 log (I.L.)), together with some

experimentally obtained values,
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It is interesting to note that the results for a longitudinal
loop antenna are independent of A and r (except for the small effect of
the difference between r and r'). On the other hand, the insertion
loss of the shield for a transverse dipole antenna follows a 2~!
behavior in the radiation field ("far-field") and a r-! behavior in the
induction field ("near-field").

Also, we rote that the input impedance of the dipole antenna
is only slightly affected by the presence of the shield, This was to be
expected for a relatively small dipole such as the one here used.

The curves in Figs. 8 through 10 were calculated by hand from
Egs. (V1.3.1) through (VI.3.11), which are themselves first-order ]
approximations of the more exact expressions given in Chapter V., For |
more accurate vresults, it is advisable to use the latter and evaluate
them with the help of a computer, extending the region of applicability
up to frequencies slightly below the first resonance.

The curves corresponding to values of % = %Uu %3 and % were
obtained using Bethe's method for small apertures. Those labeled é =)
were calculated using the waveguide methods.

It should be noted that the experimental values were obtained
using the upper half of the physical configurations shown in the
figures, resting on a conducting plane which provided the other half by
image theory. In this way, "free-space" results were simu’ated,

Due to equipment 1imitations, the measurements were restricted
to insertion losses smaller than 50 dB,

Figure 11 shows schematically how the unshielded and shielded

measurements were carried out.
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Chapter 7
CONCLUSIONS AND RECOMMENDATIONS

The comparison between theory and experiment presented in
the last chapter shows very good agreement. The differences are
well within the range expected due to experimental errors and
the approximations necessary to allow hand computation of the
equations.

A1l the significant features of the analysis have been
verified. A disagreement of a few dB's is normally considered
negligible in shielding theory, where discrepancies of 50 to 100
dB's in predicted values are not unconnnntzs].

We have thus provideu a method for predicting, with consid-

erable accuracy, the insertion loss or "attenuation" of a rectanqu-

lar shielded enclosure with apertures, containing an internal
radiating element, at frequencies below the first resonance of the
enclosure. Although tne detailed analysis was carried out for
particularly simple sources - a dipole antenna and a square loop -
the inclusion of the solutions for a current element (Hertzian
dipole) allows us to solve the problem for an arbitrary current
distribution.

Moreover, the results obtained for the chosen examples
(selected because of their "worst-case" characteristics) constitute
a very reliable indicator of the leakages to be expected from
apertures in shields containing "high impedance" or "low impedance"

sources (i.e., electric field sources such as dipole antennas,

haddatad "o i e Ad, o —— o Rl i e st atiaah i o

i i A s e i

i s Rkt i et ot b el

RPN SO 17| M LR W O O O




96 1

or magnetic field sources such as current loops, where the electric

or magnetic nature of the source is given hy the type of field

that predominates in the induction region). The insertion loss

of shields containing high impedance sources behaves as 1/» and

is independent of distance in the radiation region, and shows a

1/r behavior in the induction region (where it is independent of

the wavelength). For low impedance sources, the insertion loss

of the shield is essentially independent of wavelength and distance.
Sources having geometries different from the straight

center-fed dipole and the square loop here analyzed may he safely

approximated by the equations of Chapter V if their dipole moments

are known. A dipole, or square loop having the same dipole moment

as the given source, and comparable linear dimensions and orienta-

tion, should provide a fairly accurate substitute for the real case.
Furthermore, we can expect that enclosures of somewhat

different shape but of equal volumes will provide very similar

shielding effects, as long as their three dimensions are of com-

parable magnitude (i.e., if no one dimension is too large or too

j small compared with the other two). Thus, our results for rectan-

gular enclosures can be applied to other comparahle shapes to

obtain approximate values for their insertion loss. The critical
parameter to be maintained constant is the source-aperture distance.
Although the present work has been developed in terms of sources
internal to the shield, the theorem of reciprocity[]z’pp’ 24-25)
allows our results to be used for external source. as well. If the

external noise source is located at more than a few wavelengths

™ R T p TPy L OTY
R e R TS & i PO prees
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from the shield, the field incident on the enclosure will have
essentially the configuration of a plane wave. Our insertion

Toss ~uations provide us with a measure of the effect of the
shield upon the "noise pick-up" by sensitive circuits (having

high or low impedance, as the case may be) located in its interior,
when there are apertures present in the enclosure.

The applicability of the theorem of reciprocity to the
insertion loss of shielded enclosures is theoretically and experi-
mentally well established[27]. However, it should be stressed
that only the roles of receiving and transmitting equipment
should be interchanged for the successful application of the
theorem.

A study of the insertion loss equations here developed
should provide enough information to achieve optimum shielding
performance for a given piece of equipment and its metallic enclo-
sure. The location of "noisy" (or sensitive) circuits with respect
to the shield apertures, the physical layout of those circuits,
the choice of currents and impedances, the size, shape and loca-
tion of the required apertures, etc., can all be optimized by
analyzing their influence on the insertion loss expressions.

Our analysis may be easily paralleled for geometries other
than rectangular, and it should be a straightforward procedure
in the case of those regular geometries for which the Green
functions are already available.

A11 of the above considerations indicate that the present

TR T
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work will represent a valuable tool for EMC* engineers and to

all others interested in electromagnetic shields. The accurate
prediction of insertion loss (or shield attenuation) for equipment
enclosures should be very useful for the electronic industry.

Much theoretical and experimental work can be done to
complement this research. Some suggestions that readily come to
mind are:

- Effect of low-conductivity material covering the
apertures (e.g. conducting glass).

- Analysis of seam apertures formed by doors and covers.

- Description (possibly statistical) of the general
electromagnetic field inside a metallic enclosure containing a
large number of radiating sources (subsystems, cables, etc.).

- Development of nomograms to solve our expressions in
some typical circumstances.

- Include the effect of the finite conductivity of the
enclosure material to ascertain the conditions under which the
lezkage through the aperture ceases to be dominant.

- Critical review of current techniques for shielding

effectiveness measurements, in the 1ight of the present work.

*Electromagnetic compatibility
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Appendix A
BEHAVIOR OF THE FIELDS IN A SEMI-INFINITE WAVEGUIDE

From the treatment of semi~infinite waveguides excited by
internal sources at frequencies bLelow cutoff (Chapter III, Section 2),

vie see that the fields decay, in the z-direction, at least as fast as

-T2
mn : 1
E e smh(rmnd ) (A1)

m,n

for z > d' (2=d' is the plane of the source). Let z = d be the plane
at which we will cut open the vaveguide (i.e., z = d will be the

plane of the aperture).

The ratio of the field at z = d to that at z = d* + p is then

-r_d
Ze et sinh(rmnd')

myn

z : -r (d' + o)
mn
e s1nh(rmnd‘)

m,n
[ - (d-d') - (d+d*)
| Z . Tmn L, Tmn ]
: m.ﬂ = — (Zd ) (A.Z)
- ar -r_(2d'+
Z A mnP _ o N °]
m,n L

Thus, it is necessary to evaluate a double summation of the

form




100
mn\2 (nn)2
-24ll— +
S = 2 : e J(a) b, (A.3)
m=0,1,2...
n=0,1,2...
where we have assumed
ke, g (A.4)

and m and n are not both zero simultaneously.

For computational ease, let us set

a=b (A.5)
Hence,

ALl m + n<
S = e ¢ (A.6)
m,n

This double summation, although convergent, cannot be evaluated in

closed form. Nevertheless, an approximation can be found by consider-
ing the m,n space of Fig., A.1. Each one of the grid crossings is at a

distance

r= ‘/mz + n? (A7)

from the origin.
For m and n sufficiently large, the total number of crossings

(modes) up to a radius R is given to a good degree of approximation by

-u-l---ind-illIlllIIlIﬂIll!!nillllluuiIlIllllzJlIIIlIIIIIIiEﬂIJﬂIIIIEIIIIIIIl‘lIl"
e sl abealasd, A 4




14
13
12
1
10

- N W SN

o

101

1

2 34 56 7 8 9 1011121314

Figure A.1




102

q = %-u R2 = -j“- (m2 + n?> (A.8)

Thus, in our summation (A.6), we can replace / m? + n2 by 2\/—%
vhere q = 0,1,2,...

2
q:

To evaluate this series, we shall use a graphical comparison

e

S

between the summation and the integral of the function, i.e.,

Ze'yfq— (A.10)

and

/ ek A g (A.11)

o

From Fig. A,2 we see that the difference between the summation
and the integral is the solid shaded area. The approximate value of

this area A may be obtained from
AT [f(o)-fm] e ] [fm-f(z)] ‘
Al [f(q)-f(q+1)] ¥ uix
= 3 f(o) + ;-[f(l)-f(l)] ‘g [f(Z)-f(Z)] P e
cee t %— [f(q)-f(Q)] $ yei (A.12)

and since
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=

f(q) = e'K 9 0 as Q= (A, 3)

we have
AT (o) (A.18)

This can also be seen from Fig, A.3, where the area representing
the summation has been shifted to the left by a half unit, FExcept for
the solid shaded portion, the area overshoots and undershoots approximately

cancel each other. The solid shaded area is clearly given by Eq. (A.14).

Therefore
. 2/ £/79 T2 2o
2 T -]?- + / e dq
q=0 0
2
S LR (A.15)
nz?
and we can write
2
sT % = (A.16)
nz
Let us now evaluate
-T  (d-d')
$(d-d') = 2 : e ™ (A.17)

m,n

for (d-d') = a, %and %U' i.e., 2= a, -ﬁ- and '?U in Eq. (A.16)
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s(a) = 0.659 (A.18)
S(2) = 2.07 (A.19)
s(%u) = 16.4 (A.20)

On the other hand, the radius of the antenna (wire radius) is of
the order of T%U' or less, so that the relative magnitude of the field

next to the antenna is approximately
S(ygg) = 1590 (A.21)

What this means is that if the semi-infinite wavequide is cut
(terminated into space) at a distance (d-d') = %U' from the source,
the magnitude of the fields at the plane of the cut is down by
approximately two orders of magnitude "rom that next to the antenna.

Any reflections from the open end will be further attenuated
by another factor of 100 before reaching the antenna.

Hence, we can say that the antenna "does not see" the aperture.
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Appendix B

RADIATION FROM SMALL ANTENNAS

A.1 Antennas in Free Space

A.1.1 Dipole Antenna (See Fiq, B,1)

A short, thin, center-fed dipole antenna of length
2h <<

and having a current Io at its terminals, has essentially a trianqular
current distribution, and may be represented by a Hertzian dipole
(current element) of the same length and constant current 10/2.

Thus the phasor expressions for the fields from such an

antenna are given, in spherical coordinates, by [18, pp. 322-323]

I h u ) .

. . 0 o 2, 2 . o-Jkr ’

IS 2 Vs (2 o2 B0 Lt
[ h U .

- .0 T YV R , @ Jkr

EO * T % (Jk + - + jer) sin 6 e (B.2)
I h .

H¢ = 1—%—; (jk + -},-) sin 6 * e'Jkr (B8.3)

where 6 is the angle between the direction of the dipole and the radius

vector to the field point (r,0,4). The dipole antenna is at the center

of the coordinate system.

A.1.2 Loop Antenna (See Fig. B.2)

Consider a loop antenna, whose dimensions are small compared
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Figure B.1
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Figure B.2

Sl e
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to the wavelength, having a constant current Io and enclosing an

area A, The radiated field is given by [12, p.37]

[ Ak :
0 2 2 -jkr
H =JT—-<—+-—-——> cos o * e (B.4)
i r nr r Jkrz
|
l
I Ak
| _ 0 1 1 e . =Jkr
Hy = 3 (Jk o e ) sino * e (B.5)
[ Ak [y
[ = =j 7?-”7 E—Q <jk i %)sin o endKT (B.5)
0

8.2 Antennas Over a Perfectly Conducting Plane

The electromagnetic fields from small dipoles and louns loceted
over a perfectly conducting plane can best be obtained by describing

the radiation in terms of the Hertz vectors. Using Collin and

Zucker's[]g] trecatment and letting the conductivity of the ground plane
approach infinity, we obtain the following field expressions (see Fig.
B.3) where cylindrical coordinates are used for convenience.

B.2.1 Vertical (z-directed) Electric Dipole

(z-z)

I hp " .
E=—%Y1—- - jk+3+-3—-'- e-JkR'O-
P ‘ o R3 jkR2
(Z+Z ) ZikR?
+ 0 Jk+-3—+—-3—-— eJkR (B.7)




m

Dipole moment T

Figure B.3
Elementary dipole over a
perfectly conducting plane (the x,y plane)

B

|
|
|




B.2.2 Horizontal (x-directed) Electric Dipole

I h cos¢ " 2
.0 0 [l 3 3
E = — Jk+ gt —~———]| -
P LE €0 R2 R jkR2
-jkR
1 1 J
-lik + o+ . =
B e d o B
= jk+ —+ -
R'2 R' JkR'2
-jkR'
s s . &
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I h u (z-2.)2
E = E%_ L - %.+.._.2. ik P P
¢ o R3 jkR?2
{24z, )? \
w o Loy 00 jk+l.+_J__ e'JkR
R! R'3 R'  jkR'2
I _hp g
. 0 ] 1 -JkR
H¢ e e ;:;- Jk + +

-jkR

(8.8)

(R.9)

(8.10)
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* E = .{.Q[‘.sm Y ik + LI Sl
¢ 4n p -R- - . -
0 JKR
1,1\ IR
jk+R' +R'2 m” (B,11)
I .hp cos ¢ " (z-2_) .
E = 0 _o_ 0 jk + 3 ¥ _-3__ e‘JkR -
z A o R3 R jkre
(z+z ) ;
- 08 [k + 3+ 3 ]Ik (B.12)
R|3 Rl Jle? )
I hsing¢l(z-z ) :
.0 0 s 1 -jkR
H = k + e -
(z+z ) -
e 9" [k + 1) o IkR (8.13)
R'Z Rl
Ioh cos ¢ | (z-2.) ) ‘KR
H = - o ik + 5 e™J
¢ 41 R2
‘ (Z+Z ) -ikn?
) R': ik + i.- e JKkR (B.14)
Iohk p sin ¢ 1 1 e-ij
o (kg =) S
J
-jkR'
- Ljk + e g (8.15)
R' gkR'2/ R
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B.2.3 Vertical (z-directed) Magnetic Dipole

I Ak p | .(2%2))
o R (8 (g, 2 ) o
(z2¢z ) )
i I (Jk P I > e~JkR (B.16)
R'3 R'  JKkR'
I Ak (z-2_ )2
- 0 ] 0 1 1 -jkR
c 2k ian A | Il S aeean (J"*W;ﬁ;)e -

e (ik + L> g JkR’ (B.18)

B.2.4 Horizontal (x-directed) Magnetic Dinole




_ IoAkcos ¢ 2
A 2 (

+
©
TN
.
=
-+
lw
-+
'w
N————
1

(8.19)

]
P
.
=~
+
el
+
]
N ar”
(1]
)
St
~
=

| - jkR"
r_ *<J~|,,+L+ ) > £ (5.20)

I_ Ak » cos ¢ (z-2) ‘i hy
o o(jk,,%+ 3 1 LI
Z 411 R3 jkR?

(Z+Z ) . '
o) o]
R'3 Y kRe

+




0 R
(z+z ) i
b2 [y -‘—) e JKR (B.22)
R\ R
I Ak cos f..' (2-2 ) e
£ = . . ‘ L VR | Vo4 J) )"Jk.( +
{ ‘ 2 "o ne . [V
(z+4z2 ) I
P (Jk + l—) e'Jkn (B.23)
pe R'

I Ak7p sin ¢ [ -ikp
B, & = = - <\jk+l4 _...].>£...... +
Z W ln P ‘Jkp'/ I)

. l ] “'.ikR‘
gk + — + - (L.24)
R! JkR' R'

In the above equations, we are assuming that the electric
dipole consists of a current element of length 2h and current 10/2.

an. the magnetic dipole is a small loop of area A and current Io.
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Appendix C

SELF-IMPEDANCE OF SMALL ANTENNAS

C.1 Antennas in Free Space

C.1.1 Dipole Antenna

The self-impedance of a small dipole of length

2h =¢ X

f and of wire radius p is approximately given by[20]

iy 120 h
- k'h? -j ~% [v.n - - ]J ohms (C.1)
1 gn (h) -0.81 LA e

C.1.2 Loop Antenna

The leading terms in the driving-point impedance of a small

loop of area A and wire radius p are[?'oJ

Z;. = 20 kA2 + j 120 /T k /R [L’n ‘éA:- -;-] ohms (c.2)

In expressions (C.1) and (c.2), the resistance of the wire has been

nealected.

C.2 Antennas Over a Perfectly Conducting Plane

Using the procedure indicated by Collin and Zucker[]g’ p. 392 ff'],
we have obtained the self-impedance of elementary dipoles over a
conducting plane. The electric dipole is taken as a current element of

length 2h, and the magnetic dipole as a small loop enclosing an area A,

SRS P
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In both cases, the radius of the wire is P

In the following equations,
a =2 z, (C.3)

? where Z, is the height of the dipole over the conducting plane (Fig,
B.3, Appendix B).

C.2.1 Vertical Electric Dipole

_ 60 h h3 ke ? "
f Z'i = 40(kh)? 'JTZF 22n(5~>- --—-[l +-—T] ohrs

ol

C.2.2 Horizontal Electric Nipole

2 = 5 (kh)2(ka)? -5 B4 2 un (;’1)21‘—’- ] f—z-‘)-i] ohms i
: 2at b
(c.5)

C.2.3 Vertical Magnetic Dipole

2'; = 2(kA)(ka)2+ § 120 i k /T | an (-"%) ]

2 %- ;l/-ﬁ (-'%-)3 [l + -(k?"f] ohms (C.6)

i e e A St gl




19

C.2.4 Horizontal Magnetic Dipole

;=40 K*AZ + § 120 /Il k /R )sn 3%? -

3
-%-—2—/1—11: (-—"%)[]-%ﬂ-ﬁ] ohms

Zl

{CaT)

The resistance of the wire has been neglected in all of the above

expressions.
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[ Appendix D
! RADIATION FROM DIPOLE MOMENTS

The electromagnetic field produced by an electric dipole moment

B has componentn[21]

§

i 2 \ =5
Er=JW—<F+.—L/'pI cos e "Ik (D.1)
L, = J r—— <Jk + l + -j--—> 1] sin o - eJkr (D.2)

kr?

. . o-dkr

Hy = 1—9 ( ) || sino - e (D.3)
and that produced by a magnetic dinole moment M is[ZI’ p.437]
. k 2 -jk
Hr = W <F + ) IMI cos e Jkr (0.4)
jkr?
k 1 l -J

i
<

|2 i
By = = ZT'%F v = (J'k t ]F)ml sin o - ¢™IK" (D.6)
0

A1l of the above are phasor expressions. The time-dependence has been
juwt

taken, in the usual engineering fashion, as e
The angle o is that between the direction of the dipole moment
and the radius vector to the field point.
For dipole moments over a perfectly conducting plane, we can

use Eqs. (B.7) through (B.24) of Appendix B if we write
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Loh Yiote . p
% = [Pl
for electric dipoles, and
A= W

for magnetic dipoles

(D.7)

(D.8)
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Appendix E

EVALUATION OF A SERIES

In Eq. (VI.1.11) for the input impedance of a dipole in a cavity,

the last summation is

» E a \? mih | 2
S = 2( ﬁﬁ) [cos(kh) - COoS '?T'] .
m=2,4,6...
1:3:5

- (d'+p)
emn

* e .« sinh (1_d') (£.1)
Fin i

If d' is not too small, e.g.

g-'-.»o.l
and |
DS

Eq. (E.1) becomes

. a_Y mith
5= Z (FﬁT) [cos(kh) - cos = ]

m=2,4,6...
n=1,3,5...

e
% ‘ﬁﬁz+. mz(g)z

We wish to evaluate the summation over n, which although

, e

(E.2)

convergent, decreases very slowly with n due to the fact that
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% «< ]
Let
- %ﬁ VHZ + o
B, = :E:: £ (E.3)
)|
n=] .3,5.00 F n2 + 0.2
where we have put '
m (P—) = (L.4)

Q

Investiaating the function of n and its derivatives, we determine

[22]

that Euler's surmation formula is applicable and that we may keep

only the first two terms

lp l’ 2 ., _ I (2x+1)? + o2
1 i 1+« / Bg
= € € dx

n 2 : e s
1 # a* 0 «(2)("’])2'*“2

=jor

{E.5)

Evaluating the integral
W e Eﬂ' J(ZX‘”)/ + o’
e

0 \[(Zxﬂ)'/ + o’

s dx =

—
[}

w

- F yEi
] Jr e S d
"2

2 4 42

1 W




124
= %- ./.e dw
0 ‘ﬂ;;:f:k

1 I
N ALt

[I] + 12 ] (E.6)

w

n
M—J

[24]

The first integral is

s -De 24 g2
1-/‘*5&# i d=|<(II ) (€.7
1 W= e 52 c* 7)

2 4 42
0 w

where Ko(x) is the modified Bessel function of the third kind and order

[25]

zero. For small arquments

Ko(x) ~ - n X (E.8)

For large arguments[zs’ p.378]

i -X 1 3¢
~ e - ] o cwe b oee—— - E_g

In the second integral of (E.6), %ﬂ is very small. But the
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2
m~” factor in Eq. (E.2), plus the effects of o2 = mz(g) in the

exponent and in the denominator of 12. will make the contribution from ’

this integral very small for m >> 1, MWe may then approximate

z 1 |

12 E&[dw

Ot/wz"'o:

- | ] I
= tn ';*\/“;'2‘ - = (E.10)
Hence,

-’l-l[)P. ]+m?(-:—)2

o™ ¥ lp.
2

% ° 7 - thta o ™)
b
‘/;V* m? Cg)
i a . ] ay2 ]

Essentially for the same reasons given above, we can safely

assume that the significant contribution from o in expression (E.2)

will happen for values of m such that we still have

ggﬁln << 1 j

and the use of (FE.8) is justified,
With kh << 1, so that

ne
p—}

cos(kh)

we finally have




¢ J
(r.12)

2
1o (D)




a,b,d
al .bl,dl
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List of Symbols

Magnetic vector potential
Magnetic flux density

One-half the side of a square loop
Electric field intensity

Scalar Green's function

Dyadic Green's function
Magnetic field intensity
Electric current at antenna input terminals
Constant-current Insertion Loss
Constant-voltage Insertion Loss
Electric current density
Electric current sheet density
Magnetic current sheet density
Length of Herzian dipole
Magnetic dipole moment

Electric dipole moment
Transverse-electric, or H-mode
Transverse-magnetic, or E-mode
Antenna input impedance
Enclosure dimensions

Source position

Half-length of dipole antenna
al

Wave number = 2I1/)

Aperture dimension




m,n,p

<N«
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Mode integers

Field-point position
Source-field point distance
Source position

Spherical coordinates
Idemfactor (unit dyadic)
Rectangular coordinates

Normal unit vector

Rectangular unit vectors
Electric polarizability scalar
Magnetic polarizability tensor
Free-space permittivity

Neumann factor (v _ <1; cm’0=2)
Wavelength

Free-space permeability

Wire radius. Electric charge density
Cylindrical coordinates

Volume

Angular frequency

Del (nabla) operator

Laplacian operator
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