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resonance of the enclosure. The enclosure with an aperture is analyzed 
from two different points of view: as a cavity with e small aperture in a 
wall; and as a waveguide section short-circuited at one end and open at the 
other end. 
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ABSTRACT 

Present methods for computing the shielding efficiency of 

metallic plates with apertures are based on the analysis of a 

plane wave incident on an infinite conducting sheet. When applied 

to actual enclosures with internal radiation sources, these methods 

lose all validity, and obviously fail to predict the measured 

results. Semi-empirical formulas are available for special cases, 

but no serious analytic investigation has ever been conducted. 

Thi5 dissertation develops the theory of electromaqnetic 

radiation from metallic enclosur~s with apertures, excited hy 

an internal source at frequencies below the f1mdamental resonance 

of the enclosure. 

The enclosure with an aperture is analyzed from two different 

points of view: as a cavity with a small aperture in a wall; and 

as a waveguide section short-circuited at one end and open at the 

other end. 

Rectang~lar geometries are used throughout, since these are 

by far the most conmonly encountered in practical enclosures and 

cabinets. 

Using the corresponding dyadic Green's functions, the fields 

generated foside the enclosure by some simple sources are detennined. 

In addition to the case of a Hertzian dipole - the buflding block 

for more complicated sources - a center-fed dipole and a square 

loop antenna are analyzed. The fields radiated through small aper­

tures in a cavity are determined using Bethe's theory of diffraction 
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by small holes. The radfatfon from an open waveguide fs calculatP.d 

with the help of field equivalence theorems, wfth assumptions 

applicable to the case of evanescent waves. 

The ff nal step fs to derive expressf ons for the "Insertion 

Loss" of the shield, defined as the ratio of the field strength 

at a point external to the shield, before and after the insertion 

of the enclosure. To accomplish this, the effect of the shield 

upon the input impedance of the antenna is analyzed, and expressions 

obtained for the applicable cases. 

The resulting insertion loss expressions are numerica 11 .'.' 

evaluated for some representative cases, and graphically compared 

with a series of measurements performed to obtain experimental 

confirmation. Very good agreement is obtained in all cases, estab­

lishing the validity of the analysis. 

Thus, this work provides accurate prediction capabilities 

for the desiqn of shielded enclosures with apertures, in the presence 

of internal or external noise sources (the latter is a consequence 

of applying the reciprocity theorem). Hence, it constitutes a useful 

tool in the solution of electromagnetic interference and susceptibility 

problems. 



J\CKNOWL ED'1MENTS 

ABSTRACT 

TABLE OF CONTENTS 

Chapter I INTRODUCTION 

v 

TARLE OF CONTENTS 

Chapter I I ELECTROMAGNETIC LEAKAGE FROM (\ l.fiVITY HITH sr~J\LL 

Page 

i f 

i ii 

v 

APERTURES 5 

II.1 Green's Functions for a R£~ctangular Cavity 5 

II.2 Electromagnetic Fields in a Rectangular 

c~vity 9 

II.2.1 Excitation by a Hertzia~ Dipole 9 

ll,2,2 Excitation by an Electrically 

Short Dipole Antenna 

II.2.3 Excitation by an Electrically 

Small Loop Antenna 

11.3 Electromagnetic Leakage Through Small 

f\pertures in Rectangular Cavities 

14 

17 

20 

II.3.1 The 11 Polarizabilfty11 of Apertures 20 

ll.3.2 Application of Bethe's MP.thod to 

Rectangular Cavities with Small 

f\pertures 22 

Charter I I I ELECTf~OMAGNETIC LEf\KAGE FROM AN OPEN CAVITY 24 

111.l Dyadic Green's function for a Semi~Infinite 

Rectangular Waveguide 24 

' 

I 

... "' ... _ .. ··-. .. .. ........ j e' tdd ffl'M'itc.¥n t" t "' " ' ·1: · sf·e' · t:·~ .............. ......-...., _ __....., • ._., ...... __ .... ,.,,_,..., ..• ___ ............ - • ..i. ...... _ _ .,,. __ ..,; ___ ....a __ ""'_.......,..,.liool.-. """""'"_,..-



vi 

PagP. 

III.2 Electromagnetir. Fields in a Semi-Infinite 

Rectangular Waveguide 27 

III.2.1 Excitation by a Hertz1an Dipole 27 

(A) Transverse Source 27 

(B) Longitudindl Source 31 

III.2.2 Excitation by an Electrically 

Short Oirole Antenna 33 

(A) Transv~rse Source 33 

(BJ longitudinal Source 36 

III.2.3 Excitation by an Electrically 

Sma 11 Lnup Antenna 39 

(A) Transverse Loop 39 

(B) longitudinal loop 44 

III.3 Radiation from an Open-l nded Waveguide 

Exe i ted Ce 1 ow Cutoff 

IIJ.3. l Elr.ctrornaqnetic Fields at the 

Open End of a Rectangular Wave-

47 

guide Excited Below Cutoff 47 

III.3.2 Induction and Field Equivalence 

Theore~s 50 

(A) Induction Theorem 50 

(B) Field rquivalence Theorem 53 

III.3.3 Radiation Fields from an Open-

<!rided l~ectanquldr ~/.1veguide 

[Xci tPd nl'lOW f.UtOf f 54 

, • ...,;·we ,, K * .. . ~~--·---"'-· '*~·-· .... " ....... ...._.._....,. _........._~ ........ --........ ........,---



vf f 

Page 

Chapter IV INPUT IMPEDANCE OF A DIPOLE ANTENNA INSIDE A CAVITY 

WITH APERTURES 56 
IV. 1 Of pole Antenna Inside a Cavity with Small 

Apertures 57 

IV.2 Dipole Anten~a Inside an Open Cavity 59 
Chapter V INSERTION LOSS OF RECTANGULAR SHIELDING BOXES 1nrn 

APERTURES 61 
v. 1 Cavity with Small Apertures 62 

v. 1. l Of po 1 e P.ntenna 62 

(A) Constant Current Insertion Less 62 

{B) Constant Voltage Insertion Loss 67 

v .1.2 Loop Antenna 67 

V.2 Open Cavity 69 

V.2. l Dipole Antenna 69 

(A) Constant Current Insertion Loss 69 

(B) Constant Voltage Insertion Loss 73 
V.2.2 Loop Antenna 73 

V.3 Effect of a Conducting Ground Plane 75 
Chapter VI APPROXIMATIONS, NUMERICAL RESULTS AND CORRELATION 

!~ITH EXPERIMENTS 77 

VI.1 Cavity with Small Apertures 77 

VI. 1. 1 Dipole Antenna 77 

VI. 1. 2 Loop Antenna 82 

· ~ • 1· ' · • • •r' t •• ~~-.--.......................... --.......:.._.......,.,..............._........., _ _ _ ........__,_ 



viii 
,, J 

Page 

VI.2 Open Cavity 85 

Vl.2, l Dipole Antenna 85 

VI.2. 2 Loop Antenna 86 

VI.3 Correlation with Experiments 86 

Chapter VI I CONCLIJSIONS AND RECOMMENDATIONS 95 

Appendix A BEHAVIOR OF THE FIELDS IN A SEMJ .. JNFINITE HAVEGUIDE 99 

Appendix B RADIATION FROM SMALL ANTENNAS 107 
Appendix C SELF-IMPEDANCE OF SMALL ANTENNAS 117 

Appendix D RADf ATION FROM DIPOLE MOMENTS 120 
Appendix E EVALUATION OF A SERIES 122 
LIST OF SYMBOLS 127 

l REFERENCES 129 

-· - -··- ... ~~-· ~~· h '' Ii' " fr 0 Hriabd) t+ ' tt .. ,h• 'Md•w.W. • + 1+ 'bd5~----· ...,.., Jlio'lo'ia\i· . ___ ......,.,.-



Chapter I 

INTRODUCTION 

Of all the topics comprising the broad field of Electromagnetic 

Theory, one of the most relevant but least developed is that of 

electromagnetic shields. The most obvious reason for this state of 

affairs is that very few three-dimensional boundary value problems 

have exact or even approximate mathematical solutions, and those that 

do, arc seldom representative of practical, real-world problems. A less 

obvious, but not less important reason, is that most en~ineers and 

physicists working with electromagr.etic waves emphasize the optimiza­

tion of radiation and the generation and transmission of propagating 

waves and in so doing, disregard those effects that are of paramount 

importance in shielding theory. 

An excellent example combin1ng both of the above reasons is 

provided by the theory of waveg111des and resonant cavities at fre­

quencies below their fundamental mode. The fact that at low frequencies 

the waves in these structures become 11 evan£.scent", seems to have 

justified their neglect, except for casual and sometimes misleading 

statements. 

One extremely important application for such a theory, if it 

were systematically developed, is the prediction of the shielding 

effects of closed shields with ~pertures. A typical electronic or 

electromechanical piece of equipment consists of a collection of 

circuits and devices, surrounded by a metallic cabfnP.t or by covers. 



2 

This cabinet, besides providing obvious physical protection, acts as a 

double-purpose electromagnetic shield: it protects the sensitive 

portions of the equipment from the electromagnetic 11 noise11 of the 

environment, and it contains the "noise" generated in its interior. 

The concern about generating unwanted electromagnetic waves 

("pollution of the spectrum") has been growing rapidly over the past 

* few years. Gennany has taken the 1 ead wf th its "RFI Law", 1·1hi ch 

imposes strict limits to electromagnetic emanations from any electrical 

machine or appliance marketed in that country. 

Other countries, including the United States, will soon follow, 

and manufacturers will need a reliable mean of predicting the degree 

of shielding afforded by metallic enclosures, so that function and 

cost may be optimized. 

In most situations, the leaka9~ of electromagnetic energy from 

a metallic enclosure is dominated not by the physical characteristics 

of the metal, but by the size, shape and location of the apertures 

that are needed for such various reasons as: input and output 

connections, control panels, dials, ventilation panels, visual access 

windows, etc. 

Moreover, the mere presence of a conducting enclosure around 

a radiating source changes--sometimes dramatically--the radiation 

characteristics of that source. It does so by affecting its input 

* Radio-Frequency Interference 

I 
\ 

I 

l 

· .. ,. -•u• ttH 'd w'S 'ltt"rt'ff&'ht' 1 t ' ''ft? 'It 
... 'H'*''" ·,,, ,,,,,,, · ·tt .• ,;.,;·,-vu:;ll;;:;n; ;,, 111111~•1 J 
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impedance and therefore changing its current. 

All these things have to be accounted for in a comprehensive 

theory of shielding applicable to enclosures with apertures. 

No serious attempts have been made to date to develop such a 

theory. The treatment of electromagnetic leakage through apertures 

has been confined to the case of incident plane waves on an infinite 

screen, and the various formulas available in shielding handbooks 

are derived from that case . 

In the present work, we develop the theory of electromagnetic 

radiation from metallic enclosures with apertures, excited by an 

i nterna 1 source. 

~le have confined our treatment to frequencies below the funda­

mental mode of the enclosure (i.e., below the cutoff frequency of the 

cavity). For typical cabinets, the "cutoff" frequency is in the tens 

or hundreds of megahertz, and the radiatior. spectrum of most noise 

sources seldom shows a significant contribution at these or higher 

frequencies. Thus, we are covering a very significant portion of the 

RFI spectrum. Besides, the inclusion of resonance effects would call 

for very different techniques from those used here. 

We have also limited ourselves to rectangular geometries, 

which are by far the most typically encountered in cabinets and 

enclosures. Nevertheless, the techniques here presented may be easily 

duplicated for other regular geometr·:es. 

The appro~ch taken is to treat the enclosure as a resonant 

cavity below cutoff, This allows us to replace it with a perfectly 
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conducting cavity, obviously assuming that the wall losses will be 

small compared to the energy leaking through the aperture. 

After finding the fields generated in a rectangular cavity by 

typical radiation sources, we apply Bethe's theory of diffraction by 

small holes to detennine the fie~ds radiated by the Jperture. 

In order to cover the case where a whole wall is missing in 

the enclosure {representing for instance, an ~pen door or missing 

cover), we develop the theory of typical antennas inside a waveguide 

section, short-circuited at one end and open at the other end. Field 

equivalence theorems are then invoked to find the radiation from the 

waveguide's "mouth". 

The effect of the cavity (or waveguide section) upon the 

antenna is treated next, so that we can derive expressions for the 

quantity of interest in sh1eld1ng theory: the "Insertion Loss" of a 

shield, defined as the ratio of the field strength at a point external 

to the shield, before and after the insertion of that shield. 

Our final task fs the development of equations for some 

specific cases, and the comparison of theoretically predicted results 

with experimentally measured values. 

Throughout this thesis, we will be forced to Make approxima­

tions and assumptions, some of them justified on purely heuristic 

grounds. The correlation between predictions arising from the two 

different approaches, and their experimental confinnatfon, will provide 

the final word on the1r validity. 
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Chapter 11 

ELECTROMAGNETIC LEAKAGE FROM A CAVITY WITH SMALL APERTURES 

In this chapter we shall find expressions for the electromagnetic 

fields leaking through small apertures in a perfectly conducting 

rectan~ular cavity exrited by a source located in its interior. 

To accomplish this, we shall first make use of the Green's 

functions for a rectangular cavity to detennine the interior fields 

produced by simple antennas in the absence of apertures. As is the 

case throughout this dissertation, we shall only consider frequencies 

lower than the first resonant frequency of the cavity, i.e., the 

cavity is excited be1ow cutoff. 

Then, we shall make use of Bethe's theory on the 11 polariza­

biHty11 of apertures[lJ, which will allow us to find the electromagnetic 

fields radiated through the aperture. 

11.l Green's Functions for a Rectangular Cavity 

We start by defining the electric scalar potential ~ and the 

magnetic vector potential ~ in the usual way 

~ = -v~ + jw~ 

If we now choose to work in the Lorentz gauge by defining 

-+ 't . 
V • I\ s: Jwµ c ~ 

0 0 

(II.1.1) 

(II.1.2) 

(II.1.3) 
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the field equations to be solved are the scalar and vector Helmholtz 

equations 

(II. l.4) 

(II.1.5) 

where 

2n 
= -~ (II.1.6) 

We are, of course, assuming that the fields are time-hannonic, with a 

time-dependence given by ejwt. The corresponding scalar and dyadic 

Green's functions are the solutions to[2] 

v2G(rlr ) + k2G(r!r ) = -6(r - r ) 
0 0 0 

(11.1.7) 

(I 1.1.8) 

-where U is the "idemfactor11 (unit dyadic). 

On the walls of a perfectly conducting cavity, we know that 

ln x E = 0 on S (II.1.9) 

where S is the boundary surface. The corresponding boundary conditions 

for Eqs. (11.1.7) and (11.1.8) are 

4' = 0 

V • ~ a 0 on S (I 1.1.10) 

ln x i • O 
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The Green's functions thus obtained are then combined with the 

mathematical reprP.sentatfon of the actual sources in the cavity to pro­

duce the field potentials 

(II.1.11) 

A(rJ • f {II.1.12) 
Vol 

where dio is an element of volume. 

For a perfectly conducting rectangular cavity of sides a, b and 

d, associated with the x, y and z directions, the Green functions are 

found to be[J] 

G(rlr0 ) = - h L sin !T · sin 1¥- · 
m,p 

mnx
0 Sin­a 

. pnzo 1 
s rn d • ~~-Ps"""'!:i-n ~( K,n..,p_b)-

sin {~pY0 ) sin [l<,np(b-y)] if y > y
0 

{II.l.13) 

--- ----·---
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where 
+ v,'"P''·) Vx,,,pm f mpj 

K mp 0 k ' - [(~) + (~)'] 

(II.1.14) 

(II.1.15) 

(II.1.16) 

~ = cos mrrx • cos El!!. 
mp a T (II.1.17) 

= sin ~ • sin ml! Xmp a T (II.l.18) 

_ 1 sin(~pY 0 ) sin[~P(b-y)] ; if y > y
0 

f mp - Kmpslntl).pll) ' sin(K,,pY) sin[K,,p(b-y
0
)]; if Y c Y

0 

(II.l.19) 

9mp = ~PsinCK;np6) • 
cos(~Py) · cos[~P(b-y0 )] ; ff y < y

0 

-1 

(I I.1.20) 

m and n are positive integers ranging from zero to infinity. 

' ··~·--...._ .... ~_ .. _ .. ..................... ...... ., .......... ,r?....,J , ...... tb-1 ... , , _.illlli't tillllltwli6d'thillilfj)'llliiid)'ili' tl ...... IMilliol ___ .............. lilllilii .. illiilliil ......... .... .. -llllili--
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cm and £P are Neumann factors, i.e., 

\l;ifm•O 
£m • 12; otherwise (II.1.21) 

(x0 , y0 , z0 ) are the source coordinates and (x,y,z) are the field 

coordfnates. 

fqulvalent fonns for G(rlr
0

) andGfr!r
0

) may be obtained by 

cyclic interchange of x, y and z and their associated parameters. 

II.2 Electromagnetic Fields fn a Rectan9ular Cavity 

In this section we shall make use of the Green functions to 

find the electromagnetic fields inside a rectanguldr cavf ty excited by 

simple antennas, namely: a Hertzfan dipole (or current element), an 

electrically short thin dipole, and an electrically small loop. 

IJorking in the Lorentz gau9c, Eq. (II.1.3), we need only to 

solve for the vector potential ~ in Eq. (II. 1. 12), since the electric 

and magnetic fields are then given by 

(11.2.1) 

(II.2.2) 

11.2.l Excitation by a Hertzian Dipole. 

Consider a current element of length L, defined by (see Fig. 1) 
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l 

d 

Figure 1 

z · directed 
source 

Hertzian dipole in a rectangular cavity 

b 

y 
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- ·ITZI06(x-a') 6(x-b') id'• f < z < d' + ~ 
J - TZJZ (II.2.3) 

o , I z - d' I > t 
The vector potential ~ fs given by Eq. (II.1.12). reproduced below 

Acrl • J Gc;tir0 ) • • 0 Jcr
0

) d 'o 
Vol. 

{II.2.4) 

G;ven J in the z-direction, the only components of Green's dyadic 

that may contribute to the answer are 

Inspection of F'l. (II. l.14) results ;n 

(II.2.5) 

(II.2.6) 

(II.2.7) 

--------~· ~~· ~ ... 
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Using Eqs. (II.2.3) and (II.2.7) in (lI.2.4} we obtain 

(II.2.6) 

• ~ • s i n !!!!!!.'.. • cos £llit · s i n ill . pn a 0- -rcf 

sin(~pb')sin[~P(b-y)] ; if y > b' 

~PS in (Ktnpb J ' 
sin(Y'mpy)sin[~P(b-b')] ; if y < b' 

(II.2.9) 

The electric field is then found from Eq. (lI.2.1), which now 

becomes 

(II.2.10) 

resulting in 

· 
810 ~ ~o """' cos !!!!!! · sin m!! · !!ill. Ex = -J kaJ, ~ Li a a a 

m,p 

mna' • ~ ~. 1 
• sin a- cos ---a- • sin '20 -~-P-s i,...n _(KfTl_p_b_J • 

sin(~pb')sin[~p(b-y)] ; if y > b' 

sin(~py}sin[~P(b-b')] ; if y < b' (II.2.11) 

} tr' # •flh ff t 1t •t ' tt iMt [ 

' 'j 
·,,•*'b - · ·· .. e,, .. * 1

"" , ·woett' 'tt:tr Tt alt 'S 1' 'ttt71tt 1 '11' -
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s1 ~-E E • -j o ...Q. s1n !!!!!! · sin lli · y ra E:o a a 
m,p 

sin~· cos~· sin ill· ....,...l _ _. 
a -er-- -za sin(Kmpb) 

-sin("mpb') • cos [Kmp(b-y)] ; if y > b' 

cos(~py) • sin [~P(b-b') ; if y < b' (II.2.12) 

E = -j ~ _f7a ~ c • sin !Jill! • cos ill d z ir-ao ,7a L.J p a a . Pfi . 
m,p I. )2 

• sin !!!!!!.'.. • cos .enf- · sin ~ • ~ - k 

2 

a ~psin(~pb) 

sin(~11pb' )sin[K,np(b-y)] ; if y > b' 

sin(l)y,pY)sin[K,np(b-b')] ; if y < b' (II.2.13) 

The magnetic field is obtained from Eq. (II.2.2), which we can 

now write as 

,... 1 1 ( aAz aAz) H=-Vx~s- l--l-
i.i0 lJo x ay y ax 

(II.2.14) 

The cartes;an components of this magnetic field are 

·• •• ,_.,..,, ... .., ...._, ••· •~··uL 
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41 
H • 0 ~ cp • sin ml!! · cos Jill! · !. · x i<r LJ a a pn 

m,p 

• sin mnaa' • cos ~ • sin .El!.!:..· .._l_.,........_ 
<J ~N sintk\'.llpb) ' 

-sin(~pb') · cos[r)n~(b-y)] if y > b' 

cos(~Py) • sin[K,,,p(b-b')] if y < b' (II.2.15) 

c cos !!ill! · cos lli. · !!Lan • p a d 
m,p 

d · sin mrraa' • cos ~ • sin m_ · . Pii a- '° 
sin(~pb') · sin[~p(b-y)] if y > b' 

H = 0 z 

sin(~py) · sin[K,np(b-b')] if y < b' 

(11.2.16) 

(11.2.17) 

11.2.2 Excitation by dn Electrically Short Dipole Antenna. 

We shall consider the idealized case of a center-driven thin 

dipole antenna, with the driving emf concentrated at its center. The 

antenna current is assumed to ~e 

' hdbt ' tdM I I ' ' ''tt'f rt nf MHr:ft'iW'Mttttss:: '1td 1 dh1!7X" I S'SS'bt'17 'MWtt #it72Pl'rttt'nmzn 
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0 lz-d'l>h 

(II.2.18) 

The overall length of the dip.ole is 2h, 

Repeating the process of part Il.2. 1, we arrive at the following 

fie 1 d components 

. 410 
Ex = -J ad sin(kh) ~L 

o m,p 
cos m~x • sin ~ · 

¥L. fL 
(a11)2- k2 

· sin m~a' • cos ~ • [cos ~ • cos(kh)] · 

sin(~pb') • sin[~P(b-y)] ; if y > b' 

r'rnrsin(r'mpb) sin(~y) • sin[l<,np(b-b' )] ; if y < b' 

(II.2.19) 

E - J. 4Io -~o "°' s1'n manx • sin lli.. . y - - rtd sin(kh) ~ ~ ~ -0-
m,p 

· (fll-1- / sfn ~a' • cos~· [cos~· cos(kh)J · 

1 -sin(~pb') • cos[~p(b·y)] ; if y > b' 

' s 1n <l)qpbJ ' 
cos(~pY) • sin[~P(h-b' )] ; if y < b' 

(II. 2. 20) 

! 
I 
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E, • -j a/:intkh) ~ ~ •p . sfn m:x . cos l?.jj!- . 

• sfn m:•' • cos ~ · [cos ~ - cos(kh)J · 

sin(~pb') • sin[~P(b-y)] ; if y > b' 

sin(KmpY) • sin[Kmp(b-b')] ; if y < b' 

(II.2.21) 

_ 2k1o ~ mnx fil 
Hx - - ad sin(kh) ~ tp • sin -;- • cos --er- · 

• ( ~} _ k 2 • sin m:a' · cos ~ · [cos ~ • cos ( kh )] · 

-sin(~pb') · cos[Kmp{b-y)] ; if y > b' 

• sin(KJnpb) · 
cos(~py) · sin[Kmp(b-b')] ; if y < b' 

(I I.?.. 22) 

2kl ~ 
H - o £.J t • cos !ill!! · cos ill_ • 
y - ad sin{kh) m,p p a ---er-

mn ·(;J. k' • sfn m:a• · cos ~ [cos ~h - cos(kh}] • 

sin(~pb')·sin[~P{b-y)] ; if y > b' 
l . 

~ sin(R; 6) 
P p sin(Y)npY) • sin[~P{b-b')] ; if y < b' 

(II.2.23) 
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(II.2.24) 

In these expressions, 1
0 

is the current at the input terminals 

of the antenna. 

II.2.3 Excitation by an Electrically Small Loop Antenna. 

In order to simplify our already cumbersome expressions, and 

\·lithout loss of generality, we shall evaluate the fields produced hy 

a square loop of sides 20. 

Since we have previously solved the case of a current element, 

and we are assuming that the loop carries a constant current 1
0

, the 

answer is obtained by a straightforward application of the principle of 

superposition . 

From Fig. 2 and Eqs. (II.2.11) through (II.2.17), it is easy to 

obtain expressions for the fields of a square loop. With the help of 

trigonometric identities and after rearranging terms, \'le arrive at the 

following equations. 

cos mnax · sin Q!!!. • ~1'1· a 

· ~n · cos m~a' • cos EEf- · sin m~D 

• sin p~D • _...,l _.,.....,..,.. 
P)n~s tn(\npb) • 

sin(l)11pb') · sin[K,np(b-y)] if y , b' 

sin(l)
11
py) • sin[~p(b-b' )] if y < b' (I I. 2. 25) 

...._ ...... ..........i.--..... ............... --...~~-~ .. - -.-..W , . w tt@ t't1 ' tft:h' ·.+· t ' rt ' ' +' 'hbnt' , 0 11t:!i,,• 
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-20-

-ER] I 
20 

110 t 

d' d 

Figure 2 
Square loop in a rectangular 

cavity (as seen in the plane y=b') 

l 
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. m11x cos pdllz . cp • sin a. 

• ~ • cos m~a' · cos ~ · sin m~D · 

sin(l)y,pb'} · sin[l)y,p(b-y}] ; if y ,. b' 

sin(!)
11
py} • sin[~P(b-b' )] ; if y < b' 

810 ~ . m11x E¥z d 
H = ~ £.,J c • sin - • cos • - • x aa p p a pll m, 

mna' ~ . mnD . p_!!Q_ • cos -a . cos ----er . sin a . s m a . 

(I I. 2 .26) 

(II.2.27) 

1 
-sin(Kmpb'} • cos[Kmp(b-y}] ; if y,. h' 

• sin{~Pb) · 
cos(~'mpy) · sin[Kmp(b-h')] ; if y < h' 

(I I. 2. 28) 



I 

20 

8Io ""'. cos marrx • cos .2.!!!. • 
H" = aT L.J T 
" m,p 

cos mn:' · cos JW.f- · sin m~D • sin 2¥- · 

1 
I sin(l),,pb') • sin[Kmp(b-y)] 

--~ .;.._sin CR;DJ · 1 
np ip sin(Kpy) · sin[t". (t··-b')] 

.)1) mp 

if y > b' 

if y < b' 

(I I. 2. 29) 

81 
H =---9. z ad m,p 

tnIIX 
£ • cos -m a 

. PlJ!-z ;i • Sln • - • 
11 11 

n 1 rrd' o no cos m: · cos~· sin m: · sin~· 

-sin(~pb') · cos[~P(h-y)] ; if y > b' 

cos(~py) · sin[~p(b-b')] ; if y < b' 

(II.2.30) 

ll.3 Ucctrom<lnnetic Leakage thrOUQh Small Apertures in !1ectangular 

Ca vi ties 

II.3.1 The "Polarizability" of Apertures 

Consider an aperture in a perfectly conducting plane, being 

illuminated by an electromagnetic field existing in one of the half­

spaces deffned by that plane. 

If the size of the aperture and the wavelength of the field are 



such that 

~ 
R. (( 2Ji 

2) 

(II.3.1) 

\'there R. is any dimension of the aperture, H .• ~. Bethe[l] has sho1·m 

that the ff eld in the vicinity of the hole may be represented 

apprnximately by the oriqinal internal fiP.ld (
0

, H
0 

at the location 

of the aperture (i.e., the fields existing at the site of the hole 

before it is cut in the wall), ;1lus the fields of an electric and 

111ag11etic dipole located at the center of the aperture. 

The field transr1itted to the other side of the conducting wall 

may he considered a dipole field and can be calculated from the 

electric and Ma9netic dipole moments induced by the incident field on 

the complementary disk of infinite pemeabiliti4J. 

/\n electric dipole moment can be induced only by an electric 

field 1·1hich is normal to the plane of the disk (aperture). and a 

ma~netic dioole moment can only be induced hy a magnetic field which 

lies in the pl~ne of the di sk. 

where 

....i.---· I d' I l!Odt ,, . • 

The resulting electric and magnetic moments are given by 

- ... it t1 = -a N m o 

ae = electric polarizability scalar 

4<tm :: magnetic polarizability tensor 

(II.3.2) 

{II.3.3) 
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Obviously, for a perfectly conduct ing plane f
0 

is non!lal to 
... 

the surface and H
0 

is tangential. 

The values of aperture polarfzabf litfes for different shapes 

and sizes have been detennfned by c. r.. ~·1ontgomcry[S] and s. P.. 

Cohn[6], [7J, Table I shows a selection of their results. 

II.3.2 Application of Bethe's Method to Rectan~ular C~vities 

~,;th Sma 11 Apertures 

Bethe's treatment of the diffraction through holes, coupled 

with the field equations we have developed in Sec. 2 of this chapter, 

provide us with a powe,.ful machinery to evaluate the electromagnetic 

fields leaked through an aperture in a rectangular cavity. 

At frequencies below cutoff, typical cabinet apertures will 

automatically satisfy condition (111.3.1), making the method 

applicable. 

In the first section of Chapter V we shall make use of these 

results to find expressions for the insertion loss of rectangular 

shielding boxes with apertures. 
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Table I 

Polar1zab111ty of Apertures 

Aperture Shape ae a am r.11 
+. 2 

~parallel to H normal to 
long dimension long dimension 

Circle of diameter d 
d3 1 d3 1 d3 r 3 3 

Long narrow ellipse, 
2 a3 semi-major axis = a j. rrab2 j nah2 

semi-minor axis = b ! rr .e.n(~)-1 a >> b 

Long slot of width w and n tw2 n 
length R. ~ 8 9.w2 

Square of side t 0.2274 R. 3 0.518 .e. 3 0.518 R. 3 

Rectangle of I = o. 1s 0.1462 R. 3 0.4192 .e. 3 length R. and 
width \'/ 

Rectangle of 
~ = 0 5 0.0740 .e. 3 o.~~so 13 length R. and R. • 

width w 

Rectangle of w 0.0140 p,3 0.1812 13 length R. and r = 0.2 
\'Ii dth w 

P.ectangle of r = 0.1 0.0038 ,,3 len9th .e. and 0.1290 R. 3 

width w 
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Chapter I I I 

ELECTROMAGNETIC LEAKAGE FROM AN OPEN CAVITY 

In the present charter we shall investigate the electromagnetic 

fields leaking from an open rectangular cavity {i.e., a perfectly 

conducting cavity having one wall missing} when it is excited below 

cutoff by an internal source. 

First, we must find a suitable description of the problem. This 

is done by considering the open cavity as a section of a rectangular 

waveguide, short-circuited at one end and open at the other end. 

He s ha 11 begin by wrh. i ng the Green function for a semi -

infinite rectangular waveguide, and then using it to find expressions 

for the fields inside the waveguide, generated by simple antennas. 

Up to this point, we have paralleled the work done in 

Chapter II with the closed cavity. Out now we must cut open the semi­

infinite waveguide and explore the consequences of this truncation. 

This will lead to an assumed field distribution at the "mouth" of the 

waveguide. 

Then, with the help of the induction and field equivalence 

theorems, the radiated fields will be determined in an approximation 

suitable for our purposes. 

III.l Dyadic Green's Function for a Semi-Infinite Rectangular Wave­

guide -
As was seen in Chapter II, when working in the Lorentz gauge 

(Eq. II.1.3), we need only the dyadic Green's function to determine the 

' ... . ,._ ~ -·~·~ ., . ,..,., _ _.._ ............. ........._~-·e+o•••• " t'w'MhM* ''''f:nHt#'1 ' 1 ''t ·' 110

M' 'tWbHt\' " '#trC '#'& t\d''•'• ...... 
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field potentials, and from them, the electric and magnetic fields. 

Consider a perfectly conducting, semi-infinite rectangular 

waveguide of dfmensio~s a and b associated with the x and y directions, 

short-circuited at the plane z • 0 and extendinl) towards z • + ... 

Its dyadic Green's function corresponding to the boundary 

conditions {II.1.10) can be easily obtained, by using image theory, 

from a ~nowledge of the dyadic Green's function for an infinite 

waveguide[aJ. He have, then, for our semi-infinite waveguide 

+ k2mn lz Xmn{ro) lz Xmn(r) + 

• Vx,,,, (;t ol Vxmnm I · 
; [ jlz-z0 1Kmn • ~ • e 

2~n 
j(z+zo)~nJ 

+ e 

(III.1.1) 

\·1here the+ sign is for longitudinal (z-directed) sources, and the -

sign for transverse sources. 

The s~1mbols used are defined as follows: 

? 

!\ = k~ .. 
I'm (III.1.2) 
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k2 • (fil!!.)2 + (nn)2 
r.in a 'D (III.1.3) 

~ = cos .!!!!!.! • cos n~y mn a (III.1.4) 

x = s i n fill!!. • s i n !!lli: mn a D (III.1.5) 

tm and £n are Neumann factors, defined in (II.1.21). 

To remind ourselves that we are dealing with non·propagatfng 

modes, we shall find 1t conven;ent to define 

(III,1.6) 

(III.1.7) 

The rlyad;c Green's function (III. 1.1) can now be written as 

+ vx (r ) v ,( (r) . ..L . 
mn o mn rmn 

·r z (sinh) 
e mn cosh (rmnz

0
) ; if z > z

0 

(III.1.8) 

· • -~ •L-- ~.--~---~,~·-·-•ftM ...... "tf .... t+t_bt_' ..... , ...... , """'' _±4 ................... . d ... t-~ 
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where the sinh function 1s to be used for transverse sources, and the 

cosh for longitudinal sources. 

III.2 Electromagnetic Field~ in a Semi-Infinite Rectangular Waveguide 

Just as we did in Chapter II for the rectangular cavity, we 

shall find the fields inside a semi-infinite rectangular waveguide 

excited by three different sources: a Hertzian dipole, an electrically 

short thin dipole, and an electrically small loop. 

In the present case we must distinguish between transverse 

and longitudinal sources, which will add up to our already impressive 

collection of oversize equations. He must ask the reader to bear with 

this situation, since every one of these expressions will be needed 

in Chapters IV and V for the detennination of the antenna impedance 

and the insertion loss equations. 

Fig. 3) 

III.2.1 Excitation by a Hertzian Dipole. 

(A) Transverse Source 

Consider a current element of length L, defined by (see 

lxI06(y-b')6(z-d'); a'-~< x <a' + t 
J = l J = 

x x L 
0 ; Ix - a' I> ! (III.2.1) 

Putting expressions (III.1.8) and (III.2.1) into Eq. (II.2.4) 

repeated below 

~ff) • f mr1ro1 • •oJ(jto) d 'o 
Vol, 

(III.2.2) 
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x 

• Source 
I d' z 

Figllre 3 
Source in a semi-infinite rectangular waveguide 

1+erdt ' • trl1#Et!Of·t 1 ett;, f' 'i1 t · ' ' s Hu1n• .r ..... ··.n.+• 11t t 1 IL'' +!l ' t• tdid"ttFt6"C'ktr't:fM'tiiett 
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results in 

2a mna' nnb' • ~ • cos - sin ~ mn a o 
sin mnL 

Ta 

1 

-r z 
e mn sinh(rmnd') ; if z > d' 

• rmn ' -rmnd' 
e sinh(rmnz) ; if z < d' (III.2.3) 

Thus, from 

(III.2.4) 

and 

(III.2.5) 

~1e obtain 

· 
410 -~ ~ cos ID!!! • sin n~y • E = - J ka'Dl ~ /-J tm a x a co m,n 

(¥)'. k' 
mn - cos mn:' • sin !!Ilf- · sin m~~ • 
a 

1 ·-· 
.. r z 

e mn s1nh(rmnd'} ; 1f z > d' 

... r d' 
mn ( e sinh rmnz) ; ff z < d' (III.2.6) 
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EY • -J ::~ · {i" L; sf n m~x • cos ~ • ~ • 
0 m,n 

• cos rnn:• · sin~· s1n m~; . 

-r z 
e mn s inh (r d') · if z > d' 

mn ' 
1 

• rmn • 
-r d' 

e mn s i n h ( r mn z ) ; i f z < d ' 

E = -j ~ -~ E sin !!ill! · sin filI1. • z r;ao l "t a 6-

H = 0 x 

o m,n 

mna' . nIIb' mnL 
• cos -a · sin 0- · sin Ta · 

-r z 
-e mn sinh(r d') if z ~ d' mn 

(III.2.7) 

(III.2.8) 

(111.2.9) 
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41 
H & 0 ~ 
Y ar i..J c cos l!1lll • sin .W · !.. · m a b- mn 

m,n 

· cos ~ • sin ~ · sin 2~L · 

-r z 
-e mn s i n h ( rmn d ' ) i f z > d ' 

-r d' 
e mn cosh (r mnz) if z < d' (III.2.10) 

H = -~ )-: £ cos !)!!!! • res .!l!!l. • L · z ao m a o mrr 
m,n 

nrr 
05 

mna' 
FJ' c a-· sin ~ • sin m~~ · 

-r z 
e mn sinh(rmnd') if z > d' 

l . -· 
rmn 

(III.2.11) 

For a y-directed source, we can use the same expressions inter­

changing x, a, a' and m with y, b, b' and n, respectively. 

(B) Longitudinal Source 

If our source is assumed to be a z-df rected current element 

+ .. izlo ~(x-.a') 4(y .. b') ; d'- t < z < d' + t 
J a l J • z z 

0 I d' · L ; z- I ~ f (III.2.12) 
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the electric and magnetic fields are found to be 

AI 0 Jµ; ~ 
Ex • j kali' l t' LJ cos !!ll1.! • sin ~ • !!!!!. • 

o m,n a a 

sin mn:• • sin nTif · r~ • s1nh (rmn t) · 
-r z 

-e mn cosh(r d') if z > d' mn 

-r d' 
e mn sinh(rmnz) ; if z < d' 

E = j 
810-~~ sin~· cos !l!!l. ~ · 

y ml~ LJ a D D 

m,n 

• sin !!!!Lt. • sin ¢ · J_ · sinh (rmn ~) • a o rmn , 

-r z 
-e mn cosh(r d') ; if z > d' 

mn 

-r d' 
e mn sinh(rmnz) ; if z < d' 

81 ~I: E =j..Jt ...Q. 
z kab £

0 m,n 

s i n !!!.!!! • s i n !!!!i'.. • s i n !!!.!l!.'.. • a o a 

• sfn ~· • sfnh(r LJ • (~.)2 + (git r 
-b mn f 

2 rrnn 
~r z 

e mn cos·h (r d' ) ; 1 f z > d' mn 

-r d' 
e 1111 cosh(rnmz) ; 1f z < d' 

(III.2.13) 

(III.2.14) 

(III.2.15) 
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81 ~ 
Hx • ab 

0 
LJ · sin m~ • cos ~ • ~ • 
m,n 

sin~· sin~· _l_ · sinh(rmn t) · 
a rmn 2 

-r z 
e mn cosh(r d'); if z > d' mn 

-r d' 
e mn cosh(rmnz) ff z < d' 

HY = - :~ 0 L cos m~x • sin ~ • ~ • 

. I 
I 

H = 0 z 

m,n 

• 111n .. • nnb' 1 L 
srn -;- · sin -0 · -;:-

2 
• sinh(rmn ~ ) • 

-r z 
e mn cosh(r d') mn 

mn 

if z > d' 

if z < d' 

111.2.2 Excitation by an Electrically Short Dipole 

Antenna 

(A) Transverse Source 

Assume a dipole antenna current defined by 

...... ¥040 

(111.2.16) 

(111.2.17) 

(III.2.18) 
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lx-a'l<h 
J = r J = x x 

0 lx-a'l>h 

{III.2.19) 

Thr. fields generated by this current in the semi·infinite 

1·1a vegu i de a re found to be 

. 2Io . ~I ~o 
Ex = -J ab sin(khJ 1 ::: • 

0 t cos ~ • sin n~ · m a 

· ~ · cos mrr: • sin~· [cos m~h - cos{kh)l · 
(~)' • k' 'J 

m,n 

-r z 
e mn sinh{rmnd') if z > d' 

l . -· 
-r d' 

e mn sinh(rmnz) if z < d' {II I .2. 20) 

E j 
410 ~ ~ " sin !!!!!!. • cos ru1l. • y ~ - ab sin(kh) l ~ LJ a b 

m,n 

mn nn 
a. 0 · cos mn:' sin~· · [cos m~h - cos(kh)] · 
·~n 2 - .. k a 

• l 
rmn 

-r z 
e mn s i nh { r d' ) ; 1 f z > d' 

Im 

-r d' 
e mn sinh (rm

0
z) ; if z < d' (III.2.21) 
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410 
Ez • -j ab s1n(kh) ~ ~ s 1n ~x • s 1n np: · 

0 m,n 

mn ~ J . a . cos fil!!!'... . sf n ~ • cos lil~h - cos(kh) • 
( ~n)2 .. k 2 a 

-r z 
-e mn sinh(r d') if z > d' mn 

-r d' 
e mn cosh(rmnz} if z < d' 

H = 0 x 

2k I 
ll = - 0 
y ab sin(kh) c cos !!!!!! · sin nbny • m a 

m,n 

(I I I.2 .22) 

(III.2.23) 

------ • cos mna' • sin ~ • [cos m~h - cos(kh)l. 
(~)2 -k' a ~ 

-r z 
-e mn s1nh(r d'} if z > d' mn 

-r d' 
e mn cosh(rmnz) if z < d' (II I. 2. 24) 
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Hz = ab 2:t~nh) .E CM • cos m~x • cos nns" . 
m,n 

nrr 

T · cos mn:' • sin ~ • I cos m:h - cos(kh)J • 
(~)2 -k2 

-r z 
e mn sinh(rmnd') if z > d' 

1 
• rmn • -r d' 

e mn sinh(rmnz) if z < d' (II I. 2. 25) 

For a y-directed source, we should use the5e equations inter­

changing x, a, a' and m with y, b, f>' and n, respectively. 

(B) Longitudinal Source 

In this case, \·1e define the antenna current by 

l I sin[k~h-~z-d' I) o(x-a')o(y-b') 
z o sin( h) lz-d' l<h 

j = f J = z z 
0 lz-d'l>h 

(l I I. 2. 26) 

and the resultant electric and magnetic fields are 
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810 
Ex • j ab sin(kh) ~ :E cos ~x • sin ~ • 

m,n 

mn 
- I 

• a . . · sin !!!!!!.... • 

(ID/-)2 '~' a 

• [cosh(rmnh) • cos(kh~ • 

sin~· 

-r z 
e mn cosh(r d'}; if z > d' mn 

-r d' 
e mn sinh(rmnz} ; i f z < d' 

(JII.2.27) 

- . 810 
Ey - J ab sin(Kh} ~L sin m~x • cos "? · 

m,n 

[cosh ( r r.mh) - cos ( kh i] 
-r z 

e mn cosh(r d'); if z > d' mn 

-rmnd' 
e sinh(rmnz) ; if z < d' 

(II J .2.28) 
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810 
Ez • -j ab sin(kh) ~E 

0 m,n 

l 
" 2 ... k2 
~rnn . ·- ------

rmn (~2 + ( ~n)' 

sin rn~x . • sin ~ • 

sin ~ • sin nnb' 
a -r 

• [cosh(rllVlh) • cos(kh)] · 

-r z 
e mn cosh(rmnd'} ; if z > d' 

-r d' 
e mn cosh{rmnz} ; if z < d' 

(I I I. 2 .29) 

sin .!!!!!! · cos ~ • ~ • 
a rmn 

m,n 

nn 
. b sin mna' • sin nrrb' • 

a --,;-' (~n)2 •(-1)2 · 

• [cosh(rmnh) • cos(khl] · 

-r z 
e mn cosh ( r 111'1d 1 

) ; if z > d' 

-rmnd' 
e cosh(rmnz) ; if z < d' 

(III.2.30) 

'·-··-.. -· ..... __ ._""" 
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Sk 1
0 

HY z - ab sfn(l(h) cos !!ll!! f s 1 n !!l!l. O J_ I 

a T rmn 

H IZ 0 z 

m,n 

-r z 
e mn cosh(r d') ; if z > d' mn 

i if z < d' 

(III.2.31) 

(II I.2 I 32) 

111.2.3 Excitation by an Electrically Small Loop Antenna. 

Paralleling the work done in Chapter II, we shall take up the 

case of a square loop of sides 20 and current 1
0

• Figures 4 and 5 show 

the loop configuration for the transverse and longitudinal cases, 

respectively. 

(A) Transverse Loop (Fig. 4) 

Using the expressions for the fields generated by a current 

element, worked out 1n part (111.2.1) of this section, and applying the 

superposition principle, we obtain 

. I 
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b11------------------------
b' ,---

' 

- 20.. 

I 
I 
I 
a ' 

f 
20· 
t 

Figure 4 

I 

Transverse square loop in semi-infinite 
rectangular waveguide (as seen in the plane z=d') 
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x 

a.---------------------------------

, 
a 

~20~ 

-----f~ol t 
20 
t 

I 
I 
I 

d' 

Figure 5 
Longitudinal square loop in semi-infinite 

rectangular waveguide (as seen in the plane y=b') 
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- Bk Io £ ~o " n nn 
F.x - j -aD l ~ i..J cm cos max • sin ~ • 

m,n 

· L' cos ~ • cos ~ · sin !!filQ. • sin nno · mn a u a o 

1 . - . 
rmn 

-r z 
e mn sinh(r d'} if z > d' mn 

-rmnd' 
e sinh(rmnz) if z < d' 

- Bk Io {7a " n nn E - - j ---:t:- - i..J c s i n !.!!...! • cos .!!.!!l. • y ao c
0 

m a -b-
m.n 

b cos mllaa' • cos~·· sin mnaD • sin !!i!Q · ''iiif' D 0 

-r z 
e mn sinh(rmnd') ; ff z > d' 

l . - . 
fmn -r d' 

e mn sinh(rmnz) if z < d' 

(I I I. 2. 33) 

(I I I. 2 I 34) 

E = 0 (III.2.35) z 
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cos mn:• • cos~· sin · m~D • si~ ~ • 

.. r z 
~e mn sinh(r d') ; if z > d' mn 

-r d' 
e mn cosh(rmnz) ~ if z < d' 

HY = 
8~h )-: cm cos m~x • sin n~y • ~ • 

m,n 

• cos mn:' • cos ~ • sin ~D • ~fn ~ • 

.. rmnd' 
e cosh(rmnz) ; if z < d' 

(I I I.2. 36) 

(I II. 2.37) 
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cos m:x · cos n~ • ~· ~ • •n ~ ) • 

• cos mn: 
1 

• cos nf- · sin m~D • sin ~ • 

1 . c· 
mn 

.. r z 
e mn s1nh(r

11111
d') ; if z > d' 

-r d' 
e rnn sinh(rmnz) ; if z < d' 

(B) Longitudinal Loop (Fig. 5) 

In this case, the generated fields are found to be 

. Bklo ~L n rr E = J ~ c cos ~ • sin .!4L · L · x ao 
0 

m a o mn 
m,n 

mna 1 nnb 1 mnD 1 Cos Sin S,·n - • - • . -a . ~· 
c a rmn 

-r z 
-e mn cosh(r d') ; if z > d' mn 

.. r d' 
e mn sinh(rmnz) ; if z < d' 

(I II .2.38) 

{I I 1.2. 39) 

E • 0 (II I. 2. 40) y 
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16kI ~ L E • j 0 ~ sin !!Y!! • sin .!l!!l • z ao- t
0 

a c~-
m,n 

• cos mnaa' • sin ~ • sin !!!!!Q. • J_ · 
D a r 2 

"" 
... r z 

e mn cosh(rmnd') ; if z > d' 

-r d' 
e mn cosh(rmnz) ; if z < d' 

(III.2.41) 

Hx • l:~o L sin m~x • cos np • ~ • 
m,n 

• cos mna' • sin ~ • sin !!!!!Q. • h · 
a o a rmn 

-r z 
e mn cosh(rmnd') ; if z > d' 

-rmnd' 
e cosh(rmnz) ; if z < d' 

(III.2.42) 



46 

, cos !!.!. · sin .!!!!1. • ( !!jf l -k 
2 

• 
m a o mn -m,n a 

• cos !!!!l!.'.. • sin ~ • sf n ml!Q. • ..L · 
a " a r 2 

mn 

-r z 
e mn cosh(r d') if z > d' mn 

-rmnd' 
e cosh(rmnz) ; if z < d' 

Bio L n n H = - -:r c cos !!!....!. • cos !llil. • L · z ao m a o mn 
m,n 

· Ell- · cos mn: ' • s i n nf. · sin m~D • -;-- • 
rm 

-r z 
-e mn cosh{r d') if z > d' mn 

-r d' 
e mn sinh(rmnz) ; if z < d' 

{II I.2.43) 

on. 2.44) 

For a loop 1n the (.yz) plane, we use the same expressions inter­

changing x, a, a' and m, with y, b, b' and n, respectively. 

'ff' d ' 'tt"d"in'S't'b . • 0 ( '*M I j/ n 
1 

t• 't t t ' 1 tt rt " ... I I • Hi)? t "st btr:l t 

! 

I 

I 

l 

'"J 
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111.3 Radiation from an Open-Ended ~Jave9uide Excited Below Cutof~ 

We must no~t use the tools developed in the ffrst two sections 

of this chapter, to set up expressions for the radiated fields from an 

o~en waveguide excited below cutoff. 

First, we shall find a suitable approximation for the fields 

at the p 1 ane of the aperture ( 1. e. , at the "mouth" of the wave9ui de). 

After a review of the induction and field-equivalence theorems, we shall 

make physically reusonable assumptions that will allow us to find the 

radiated fields under some restrictions. 

This section is the least accura .e portion of this thesis, but 

the reader \'lill find ample justifications for the arproach taken, not 

only through reasonable heuristic arguments, but also through experi­

mental confirmation. To put ft 1n another way: since this particular 

problem cannot be solved exactly, we shall take what we feel is the 

best possible course under the given circ1111stances, and rely on the 

correlation between theory and experiment to pronounce the final 

verdict. 

III.3. 1 Electromagnetic Fields at the Open End of a 

Rectangular Waveguide Excited Below Cutoff, 

In Sectf on III.2 of this chapter, we have found expressions 

for the electromagnetic fields generated f ns1de a semi-infinite 

waveguide by some simple antennas. The question now arising ;s: 

what happens to these f1elds when the waveguide f s cut open at the 
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plane z • d? Specifically: w~at are the new field values at the 

plane z • d? 

We should always keep in mind that we are dealing exclusively 

with non-propagating modes that decay exponentially as we move away 

from the source. The usual treatment of waveguide radiators, from the 

pioneering works of Barrow and Greene[9] and Chu[lO] to the textbook 

treatments of Jones[ll] and Collin and Zucker[ 12], assume that the 

source is sufficiently distant from the aperture, so that any non­

propagating modes have decayed to negligible amplitudes and we are 

left only with the desired propagating mode. 

This clearly shows the dichotomy existing in the treatment of 

radiators, when looked at from the antenna viewpoint or from the 

point of view of shielding theory. The presence of evanescent waves 

is ignored in the fonner and is essential in the latter. 

From the above considerations, it is clear that the antenna­

aperture distance is the most critical parameter in our case, and 

since we shall apply our results to typical rectangular cabinets and 

enclosures, that distance will normally be a fraction of a typical 

cabinet dimension. 

A look at the equations in Section 111.2 of this chapter shows 

that the field generated by a longitudinal dipole consists of Tt1 modes 

only. As a reasonable approximation, we can assume that the aperture 

produces a complete reflection of the transverse (x and y in Fig. 3) 

components of the fields, resulting in the doubling of the transverse 

magnetic field and the cancellation of the transverse electric field. 

Ii 
I 
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Similarly, in the case of a transverse loop, only TE modes are 

present. This leads to the assumption that the transverse electric 

field is doubled and the transverse magnetic field cancelled by reflec­

tion at the aperture. 

For a transverse dipole and a longitudinal loop we have neither 

Tl: or TM modes in the z-direction, In these cases, the safest course 

is to take the fields at the aperture as being identical to those that 

would exist at the same place in a semi-infinite waveguide. 

The next step is to find an answer to the question: how is the 

antenna affected by the aperture? In order to do this, we must obtain 

some measure of the decay rate of the fields as we move away from the 

antenna, and then of the reflected fields as we move from the aperture 

towards the source. 

In Appendix A we show that for a rectangular waveguide of square 

cross-section, and for physically reasonable sources (thin antennas), 

the reflected field is at least four orders of magnitude smaller than 

the incident field (both calculated at the surface of the antenna), 

when the antenna-aperture distance is greater than a.la (where a is a 

typical dimension of the enclosure). This fact allows us to disregard 

the effect of the aperture upon the antenna in all cases of interest, 

(There is no point in shielding a source if we are going to place the 

source at, or very close to, an aperture in the shield). 

We have then detenn1ned that th.e fields at the open end of a 

rectangular waveguide exctted below cutoff are given in tenns of the 

' 
j 

' . O BM tt•••&tb"t' C"ddM a I 'S ;;Eit; rtt' tr 1 nrnrn 111 ·m mm1 =m n11 r•1111 · 11rr n ns111 11 n 1111 · •• j 
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fields that would exist at the same place in a semi-infinite waveguide, 

modified according to the assumptions on aperture reflection pertaining 

to each specific case. 

III.3.2 Induction and Field Equivalence Theorems. 

As mentioned earlier, the problem of an open rectangular wave­

guide radiating fnto space cannot be solved exactly. The assumptions 

required to obtain an approximate solution can be better understood 

after a review of the induction and field equivalence theorems, 

magistrally stated by S. A. Schelkunoff[l3], [14], [15], [16] 

(A) Induction Theorem (see Fig. 6) 

Consider an infinitely long waveguide with a known electromagnetic 

field in its interior, and let us call this the "incident field" l 1 

and ~i. 

If we now cut the waveguide to a ffoite length, the internal 

field will change to the "actual field" t and A. 
Let us now imagine a surface S over the waveguide aperture, 

separating the "inside" of the waveguide (region 1) from its "outside" 

(region 2). The surface S can be chosen to be any convenient boundary. 

We shall call the field in region 2 the "transmitted field" 

rt and At. 

Turning back our attention to region 1, let us call "reflected 

field" rr and P.r • the difference between the actual field and the 

incident field. 

Hence, we have: 
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--ei ---~ 
Region 1 

Region 2 

--er 4-----

Figure 6 
Fields in an open waveguide 
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r • !1 + rr 
il -= n1 + ~r (III.3.1) 

(III.3.2) 

If we assume no sources on S, the continuity of the fields t 

and A is assured, and t~eir tangential components at the surface S 

must satisfy: 

rt - ti + rr 
o,tan - o,tan o,tan (III.3.3) 

At _ Jti + itr 
o,tan - ·o,tan o,tan (III.3.4) 

Maxwell's ef!uations ensure thP. continuity of the nonnal 

components. 

We nm·1 define a "scattered field 11 f5
, ~s made up of the reflected 

field in region l and the transmitted field in region 2 

(III.3.5) 

(III.3.6) 

This scattered field satisfies Maxwell's equations under the boundary 

conditions imposed by the waveguide, but it is discontinuous across S by 

the amounts 

rt tr _ f1 
o,tan ~ o,tan - o,tan (III.3.7) 

(III.3.8) 
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These discontinuities may be thought of as arising from the 

following sources on S: 

1) A magnetic current sheet (due to the discontinuity 

in t~,tan) of density 

2) An electric current sheet (due to the discontinuity 

in ~~.tan) of densit~ 

The Induction Theorem can then be stated as follows: 

(III.3.9) 

(III.3.10) 

"The reflected and transmitted fie 1 ds may he generated by an appropriate 

distribution of electric and magnetic currents distributed over the 

"surface of reflection". The linear densities of these currents are given 

by the tangential components of the incident field." 

When using these currents to detennine the fields, the environment 

must be left unchanged, i.e., the waveguide must be left in its place. 

(B) Field Equivalence Theorem 

When we are interested in calculating only the transmitted field, 

\'le may resort to a corollary that follows obviously from the induction 

theorem: The transmitted field can be obtained by postulat1n~ a zero 

f1el.j inside a closed sur"face S comprised of the surface of the 

aperture and the outer surface of the waveguide, and a field rt, nt 
outside S. These fields are produced by electric and magnetic 

j 

dflt'tH± • ' 1 1 'S't' ' C!'tW H '. ff 1 % 0$ • i • t '$' I ·:: '* n: """at r :lt7 ti!" ·• NW ii . J mraum:r1: ' 1 '1'!: 
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current sheets over S given by expressions (III.3. 11) and (III.3.12), 

but no~t, 1n carrying out the calculations, the wave!)uide Must be 

ignored and the response is obtained by using the "free-space" 

retarded potentials. 

(III.3.11) 

(III.3.12) 

III.3.3 Radiation Fields from an Open-Ended Rectangular 

Waveguide Excited Below Cutoff 

The detennination of the radiation fields from open-ended 

parallel-plate waveguides and circular waveguides is essentially a two­

dimens1onal problem, and can be solved exactly by using Wiener-Hopf 

techniques.[l 7J 

On the other hand, the radiation from an open rectangular wave­

guide (or horn) poses a much more difficult problem, due to the effect 

of currents on the outside walls of the waveguide, which are now 

distributed on a three-dimensional boundary. 

The standard procedure[l 2] is to neglect these currents, which 

amounts to assuming the existence of a perfectly conducting flange 

coplanar with the aperture and solving, in essence, the radiation from 

a rectangular aperture in a perfectly conducting plane. 

This approximation worsens at low frequencies, especially ff 

we are interested in the fields at large angles from the axis of the 

waveguide (i.e., the fields near the imaginary flange). But for points 
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on. or near the axis, the approximation is acceptable, as borne out by 

experiments (see Chapter VI). 

In the design of electromagnetic shields, the quantity of 

interest is the worst-case insertion loss (or the 1rorst-case shielding 

effectiveness}. Thus, when we study the "leakage" from an open 

waveguide, our major concern is with the field intensities along the 

axis of the waveguide, and tfle "infinite flange approximation" becomes 

acceptable. 

We are then led to the use of the field equivalence theorem with 

the closed surface S being now composed of the surface of the 

aperture, the co-planar infinitely conducting flange and the hemisphere 

at infinity that does not contain the waveguide. 

The radiation field will be that produced by the current sheets 

(III.3.11) and (III.3. 12), repeated below 

la. • Et x i 
m o n (III.3.13) 

jt • 1 x Ht 
n o (III.3. 14) 

where E~ and H~ are the assumed aperture fields, whose tangential 

components are taken to be zero elsewhere on the aperture plane~ 12 • r>· 71 ff] 

· ' X '+'+ tt M "ti rt t H'k ·±rt± o tdt e± h tit 
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Chapter IV 

rNPUT IMPEDANCE OF A DIPOLE ANTENNA lNSIDE A CAVITY WITH APERTURES 

In Chapter V we will need to know the input impedance of a 

dipole antenna inside a cavity with apertures, in order to evaluate 

the insertion loss of a shielding box when its internal source is fed 

by a voltage gene·ator. 

In most practical circumstances, an elettrically short linear 

antenna is fed ~ya htgh-impedance source, whereas a small loop is fed 

by a low-impedance source. Since the radiated fields from both types 

of antennas are proportional to their current, it becomes necessary 

to know the input impedance of the linear antenna if we are to describe 

the insertion loss of the shielding box in terms of the quantity being 

kept constant, i.e., the input voltage. 

The input impedance of a small loop not only is of little 

practical interest, but cannot be deduced from our treatment. 

Obviously, the input impedance of a resistanceless loop enclosed in a 

perfectly conducting cavity is zero to a first approximation (low­

frequency, or quasi-static case). 

The antenna impedances are developed in this chapter using the 

"induced-emf" method[lS], i.e., the ·input impedance of the antenna is 

given by 
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(IV.l) 

where dt is a length element along a thin antenna of total length L, and 

1
0 

is the current at t~e antenna input te"'1inals. 

The evaluation of (IV.1) for an infinitely thin antenna leads, 

in general, to an infinite value of reactance. To obtain a useful 

result, the finfte radtus of the wire must be taken into account. This 

requires that the electric field tin (IV.1) be evaluated at a distance 

i:i (the wire radius) from the axis of the antenna. 

IV.1 Dipole Antenna Inside a Cavity with Small Apertures 

To the same degree of approximation that we have used in the 

treatment of the radiation from a cavity with small apertures, we can say 

that the presence of small apertures will not disturb the fields near 

the ante1ina. 

Obviously, the most significant error will be introduced in the 

input resistance of the antenna, whereas the input reactance will be 

hardly affected. Since we will be dealing with electrically short 

antennas, for t1hom the imaginary part of their input impedance is 

several orders of magnitude greater than the rea 1 ~art, our assumption 

turns out to be an excellent approximation. In tdct, given that our 

expressions for the fields were derived for the case of infinitely 

conducting boundaries, we are totally neglecting the input resistance. 

Consider a thin dipole antenna oriented 1n the x--direction, and 

w'f th a current given by 
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Ix-a' I <h 

0 Ix-a' l>h 

(IV.1.1) 

The electric field component Ex 1s obtained from Eq. (II.2.21) 

after the appropriate coordinate transfonnation. 

we have 

Taking 

y. b' 

z • d' + p 

. 2 _,-;;; ~ 
1: J ab sin2(kh)l ~ £...J 

m,n 

(~.)2 J. k2 
£ • 

m lmn)2 \a - k2 

• cos mn:' · sin2 ~ [cos m::h - cos(kh)] • 

sinh(r'!!lz'} • sinh{rmnfd ·(d.' .+ p)]} 
• : a : a a t 

rmn • s1nh(rmnd) 

a'+h ' f s1n {k(h ... lx...a' I )J • cos~ • dx 
a'-h 

(IV.1.2) 

(JV.1.3) 

{IV .1. 4) 
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4k ~~E 
!!!!!. 2 + k2 

• -j a 
tm • 

ab sfn2 (kh) 0 m.n (¥-)2 . k2 
2 

• cos2 mn:• • sin2 ~. [cos(kh). cos m~h]
2

• 

s1nh(rmnd') • sinh rmn[d-(d' .+ p}] 

·r
1111 

• sinh(r
1111

d) 

IV.2 Dipole Antenna Inside an Open Cavity 

(IV.1.5) 

The approximation used in this case consists in considering that 

the cavity extends to infinity in the direction of the aperture. As was 

seen in Chapter III, this is a perfectly acceptable assumption as lon9 as 

the antenna 1s located at some small but reasonable distance behind the 

missing wall. 

Thus, we can use the equations developed in Section 2 of Chapter 

III for a semi·inf1nite rectangular waveguide, 

IV.2. 1 Transverse Source 

Putting expressions (III.2.19) and (III.2.20) into Eq. (IV. l) 

we obtain, for an x-directed dipole, 

l 

j 
-~~~~--~~" • .__.

0
_ . _ .. _. _...~pMrtc~t'•d'~' SilllM'~'r'•'~Mt•ft'•tt•' ~tl--·~:1--..-..· ~att•• •·llMll'M't!~O~h•ttM1mH~ttM'Mt*lllllllil' •tS•0•'t"•t«M···'~E~Z•C•:fi111111.._• 
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-__...4k~- J"Tn-; Z1 • -j l Z' 
ab s1n2(kh) 

[. • (~ 2 + k' 

m,n •m [(ill r . k' 2 

• cos2 mn:• • sin2 ~ • [cos{kh) - cos m~hJ 2 
• 

.. f ( d I + p) 
• - • e mn • sinh(rmnd') 

rmn (IV.2.1) 

IV.2.2 Longitudinal Source 

For a z-directed dipole, we use Eqs. (III.2.26) and (III.2.29) 

to obtain 

z = -j 8 1 ab sin2(kh) 

r 2 - k2 

• [(;)' + ( ~ )']' 

• sin2 ..!~~ · sin nn(b'+e} • sin ~ • 
a b D 

• (cosh(r..,h) • m(kh)] ·I r 11111 sin(kh) + 

l 1 ( -2r mnh -2r mnd ') +k'2' e +e .. 

• ( 1 + e·
2
rmnd') cos(kb)] I (IV.2.2) 



61 

Chapter V 

INSERTION LOSS OF RECTANGULAR SHIELDING COXES WITH APERTURES 

In the present chapter we shall use all of the tools developed 

in the previous chapters to find general expressions for the insertion 

losJ of rectangular enclosures with apertures. 

As mentioned in Chapter I, we define the "Insertion Loss" of a 

shield as the ratio of the field strength at a point external to the 

shield, before and after the insertion of the shield, with the "noise 

source" driving force maintafoed constant. 

In the light of our present work, the "noise source" is a 

simple antenna internal to the shield, excited at frequencies below 

the lowest cutoff mode of the enclosure, and being driven either by a 

voltage generator or a current generator. 

Thus, for the dipole antenna, we shall find two "Insertion 

Loss" expressions, one for constant current and one for constant voltage 

at the antenna tenninals. 

For the loop antenna, the constant-current insertion loss is the 

only meaningful quantity, as was discussed at the beginning of 

Chapter IV. 

The presence of a conducting plane complicates the situation, 

since it not only changes the radiation patterns of the antennas and the 

apertures, but also affects the antenna input impedance. tleverthel ess, 

in many practical applications we cannot d1sreqard the ex1stencP. of 

metallic floors or of highly conducting ground. For this purpose, we 
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are including the necessary equations to deal with this situation. 

V.l Cavity with Small Apertures 

V.1.1 Dipole Antenna 

(A) Constant Current Insertion Loss 

In order to develop insertion loss expressions for the case of 

a dipole antenna inside a cavity with small apertures, the following 

steps are necessary: 

- Knowledge of the fields inside the cavity, obtained from 

Eqs. (II.2.19) through (II.2.24). 

- Use of Eqs. (II.3.2) and (II.3.3) together with Table I, 

to find the equivalent aperture source. 

- Detennine the fields generated by the equivalent aperture 

source and compare them with the fields produced by the 

dipole antenna in the absence of the cavity. 

l~e have, by now, all the necessary equations to develop a complete set 

of insertion loss expressions. Such a task, however, would be not only 

cumbersome but also pointless. In this and in the following sections, 

we shall only show some typical examples. 

Let us begin by considering a short, thin dipole oriented in 

the x-direction and centered at the point (a', b', d'). This antenna 

is enclosed by a perfectly co~ducting rectangular cavity of sides a, 

b, and d (see Pig. 1 in Chapter II), having a small aperture on the wall 

defined by z : O. 

1 
I 
i 
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The electric field at the surface of the wall z • 0 is found 

from Chapter II to be: 

mn -

s 1 n ID.!!!. • a 

• sin n~y · a cos mn: 
1 

• sin ~ · 
(iEY - ~2 

r. h J sinh[rmn(d-d')) 
' Leos m~ - cos(kh~. sinh(rmnd) 

The magnetic field at that wall is 

H J a 0 
xlz = 0 

2kio [ n 
Hj - t cos fill!! · sin !!L!.l. • Jlz: 0 - - ab sfn(kh} m a ·~ 

m.n 

· cos !!!!!.!: · sin nnb 
1 

• a T 

[ 
h J s1nh[rmn(d-d' )] 

• cos m~ - cos(kh} • -----­
sinh(rmnd) 

(V. 1. 1 ) 

(V.1.2) 

(V.1.3) 
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Expressions (V.1.1) and (V.1.3) were not obtained directly from 

Eqs. (II.2.19) and (II.2.23), but from equivalent expressions obtained 

from Eq. (II.1.14) after an appropriate cyclic interchange of the 

variables. 

For computattonal purposes, it 1s always advisable to \·trite the 

equations so that the most critical parameter (in this case the distance 

d-d') appears in the exponential or hyperbolic functions. It is always 

possible to do so by using the proper fonn of Green's function. 

Throughout this thesis, the Green's functions are expressed as double 

sumnations; this provides considerable computational advantage at the 

cost of lack of syn111etry in the equations. However, cyclic interchange 

of the variables and their associated parameters in the pertinent dyadic 

Green's function allows us to write any one field expression in three 

different fonns which have, in general, different convergence proper­

ties. 

Equations (V.1.1) anci (V.1.3) provide us with the field 

intensities at the point (x,y,O), taken to be the center of the small 

aperture. 

The electric and magnetic dipole moments induced on the 

aperture are given by Eqs. (11.3.2) and (II.3.3). 

M s ·a,,, H I y Yzs:O 

(V.1.4) 

('l.1,5) 

where the appropriate electric and magnetic polarizabilities are to be 

used. · 
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If we neglect the lateral displacement between the antenna and 

the aperture, 1.e., 1f we set 

a' • x 

b' • y 

(V .1.6) 

(V.1.7) 

and,w1th the help of Appendices B and D, compute the fields with and 

without t~e shield at a point directly in front of the aperture, we 

obtain the following constant current 1nsert1on loss expressions for 

the transverse components of the fields (Fig. 7): 

Electric field: 

1oh~o 1 1 ) jk + - + ----r 

( ) 
4JirT ~ r' kr' 

I.L. 1o 11: k J'~~ 
rnrl C: 

(V.1.8) 

Magnetic field: 

Ioh ~k + L) 
4Jir• ~ r• • 
k jk + l + .L) IAI 
'liir' r jkr2 

1 
I h ( ) jk + -= o r C'' 
~ • ; • jk + 1 + __!_ 

r jkr2 

(V.1.9) 
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Figure 7 
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where 

r' • r + d' (V. 1.10) 

and IAI is given by Eq. (V.1.5). Only the absolute value of (I.L.) is 

of interest. 

(B) Constant Voltage Insertion Loss 

In Chapter IV and Appendix C we have expressions for the input 

impedance of a short dipole inside a cavity and in free space, respec­

tively. Thus, we can write the constant voltage insertf?n loss in terms 

of the constant current insertion loss and of the impedance ratio: 

where 

Zi c input impedance of the antenna inside the cavity 

Z'i = input impedance of the antenna in free space 

V.1.2 Loop Antenna 

(V.1.11) 

The procedure to be followed is obviously the same as in the 

previous case. 

Consider, as before, a cavity with a small aperture on the 

wall located at z • O. We shall find the insertion loss expressions 

for the case of a small s~uare loop whose plane is parallel to the (x,z) 

plane, centered at the point (a', b', d') internal to the cavity (see 

Fig. 2 in Chapter II). 

-. . ' . 
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We shall use expressions equivalent to (II.2.27), (II.2.28), 

and (II.2.29), but r.iore convenient from a computational point of view, 

to describe the fields on the surface z ~ o. 

E I • .. j 16
tl0 -~ ,..., sin ~ • sin .!!Ill · cos ~ • 

z z 11 0 ab 1 ~ ~ a o a 
m,n 

nrrb' sin mnD • sinh(rmnD) 1 
• sin -0 · a ---- • r:-z- · 

sinh(rmnd) mn 

H I - 16Io ~ sin mallx • cos .!llil • _bnrr • 
xz=O-al>L o 

m,n 

• cos mrra' . sin nnb' . sin mrrD . -=-1.r . 
a -0 a rmnL 

sinh (rmnD) 

sinh (rmnd) 

·-·• - · " ·~ · ·-- - ---- --~I'- ' ' l WO •' jltr'\t"!':I IJ" • j el: 

(V.1.12) 

(V.l.13) 



I 

(V. l.14) 

The use of (II.3.2) and (II.3.3) results in 

(V.1.15) 

~ = -rt Ir H I + r H I ) m~x x z s O Y Y z = o 
(V.l.16) 

and the corresponding constant current insertion loss expressions may be 

found with the help of Appendices B and D. 

V.2 Open Cavity 

V.2.1 Dipole Antenna 

(A) Constant Current Insertion loss 

We are now dealing with a cavity, in which the aperture is a 

missing wall. As we have seen, this case is best treated as a semi­

inf1n1te rectangular waveguide truncated (open) at the plane 

z s d > d' (see F1g. 3 in Chapter Ill). 

The steps to follow are similar to those used in the first 

section of this chapter, wtth the main difference that the fields needed 
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to describe the aperture are the tangential components off and H, 1.e., 

the components lying 1n the plane of the aperture. 

With reference to F1g. 3 (Chapter III), let us consider an 

x-directed dipole antenna of length 2h, centered at the point {a', b', 

d'} inside a waveguide section short~circuited at the plane z ~ O and 

open at z • d > d'. 

At the plane of the aperture [z ~ d), the tangential fields are 

given by Eqs. {III.2.20), (III.2.21), (III,2.23) and (III.2.24). 

2Io. . _,..-;; )1 mnx 
Exlz-d = -j ab s1n(kh) l ~ L em • cos T ' 

m,n 

(!!!!!.)
2 

+ k2 
•sin ·~· a • cos mna' · 

(~n)2 - k2 a 

• sin~ · [cos m~h • cos(kh)J · 

-r d 
e mn 

rmn 
~V.2.1) 

I 
. 410 .... ~ )1 

EY z=d = -J ab sin(khJ l ~ ~ sin m~x • cos ~ · 

' 

mn nn a. r .. 
(mn)2 2 - ... k 
'l! 

.. rmnd 
e 

• rmn 

m,n 

• cos mn:• • sfo ~ • [cos m~h - cos(kh~ 

(V.2.2) 
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H I • 0 x z•d 
(V.2.3) 

.2kI
0 

H I • y z•d ab sfn(kh) c cos !!!.!!! • sin !!!!l · m a o 
m,n 

1 
2 

• cos mn:' • sin ~ [cos m~h - cos ( kh ~ · 
(~-)2 . k ~ 
-r d 

• e mn sinh(r d') mn (V.2.4) 

We have transverse components of both t and~. Following 

reference [12, p.71 ff], it is convenient to calculate the fields 

radiated by the aperture in tenns of the assumed transverse electric 

field. This results in a magnetic current sheet J~ with the aperture 

plane replaced by a perfect electric conductor, with the consequence 

that the effective source has a value 2J!. Since we are assuming that 

the aperture dimensions are small compared to the wavelength, we can 

integrateEqs. (V.2.1) and (V.2.2) over x and y and divide them by the 

area of the aperture to obtain their average values over the opening. 

Thus, we obtain 

··---· ___ ..._ __ ~ ..... ~~J,,,_.. , .... , wWWtW, I ·11t 't m · et·t ar'· ot+1 '''"Wtct · t't'btttt't! 2 'rt• $7$0')$ ' !: !"Ill~ 



r 
! 

a JZZF as 1 

• [ k · s 1 n ~ • [ 1 - cos ( kh)] • 
ns:l ,3,5, •.• 

(V.2.5) 

E • 0 
Yav z•d 

(V.2.6) 

According to Eq. (III.3.13), we have then a magnetic current 

sheet 

2Ja. = 2E 
my x 

av z•d 
(V.2.7) 

which produces a magnetic dipole of moment 

M • 2 ab E 

y ~· o. xavlz=d jk ...... 
'o 

(V.2.8) 

The use of Appendices B and D leads to constant current 

insertion loss expressions 1dent1ca1 to (V.1.8) and (V.1.9), where 

now IAI 1s given by (V.2.8) and r' • r + (d~d') • 
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(B) Constant Voltage Insertion Loss 

~ust as in Section 1 of this chapter, the constant voltage 

insertion loss is given by 

Z1 
(I.L.)y a !!' (I.L.)I 

0 i 0 

(V.2.9) 

This expression is identical to (V.1. 11), but Zi is now the input 

impedance of a dipole inside a semi~infinf te waveguide, given in 

Chapter IV. 

V.2.2 Loop Antenna 

Let us consider a longitudinal loop such as the one depicted in 

Fig. 5 (Chapter III), where the waveguide has been cut open at the 

plane z • d > d' + D. 

The tangential aperture fields are obtained from Eqs. (111.2.39), 

(III.2.40), {III.2.42) and (III.2.43). As in the previous case, we 

shall work only with the tangential electric field and double the 

resulting magnetic moment. 

The tangential electric field at the aperture fs 

Ski~ [ E I • -j ~ ~ e: cos ~ • sf n ~ • 
x z=d au e:0 m a o 

. !. . cos mna ' • sin ~ • s 1 n !!!l!.Q. • J_ · mn a c a rmn 

.. rmnd 
• sinn(rmno) • e • cos(rmnd') (V.2.10) 

Averaging over the aperture results in 

l 

·~-------- ~~~ .. _...............,, rc1c .... :t.t:~· ···--·!'~?-!_..1t_U_1 1~' M1 ' ~r·-·-· -p1t~'*•d~t~H1Mlii'l!' ~' -'Mt~' ~:t•t•'•mr•· Mt •·u~· -~;~r~···P•'0M~F~H•rt~j ... ; 
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Ex • .. j _Bk-~~-0-~ [ 

av z-d n•l ,3,5, ... 

2 sin~• ;;n . g 

·d 1/(rt-)2 . k2 
( ) 

e ' • sinh D ~(~ · k2 ! 

~(rt-)' . k' 

· cosh (d' (~' • k;) (V.2.11) 

Thus, we take our source to be a magnetic current sheet 

R. 
2 Jmy • 2ab Ex 

av z=d 
(V.2.12) 

which produces a magnetic dipole of moment 

(V.2.13) 

With the help of Appendices B and D we may write the constant 

current insertion loss expressions. For the electric field (Ex): 

r - 1 w ft'h' tr' ± · er r ts , k t't e t'tt o· ·.. " rt ·1 f t · 7' Mt ' · 'z)' :t • :t' 

I 
i 

, •• 1'1 J 
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(I.L.)I = 
0 

= 
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k .. ~ (jk + l) M 4nr l ~ r y 

4I 02 
0 

'k + l J rr 
jk + l 

r 

For the magnetic field (HY): 

( jk + J,. + l ) 
r -:V 

(I.L. )I = 
0 k (··, l l rnr Jr,+ - + -

r jkr2 

41 02 

= 0 

'\ 

where, once a!)a in 

r 1 = r + (d-d 1
) 

jk + J,.. + _J_ 
r j kr' 2 

jk + l + _J_ 
r jkr2 

V.3 Effect of a Conducting Ground Plane. 

(V.2. 14) 

(V.2.15) 

(V.2.16) 

The presence of a conducting plane affects only the last step of 

our procedure, 1.e., the fnsertion loss expressions. The free-space 

radiation fields and antenna impedances must be replaced with the half­

space fields and impedances. 
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All the necessary equations have been provided in Appendices 

B, C and D. Their use should be obvious by now, and nothing could be 

gained b; working out examples. 

'tt w ·o u• uw:1r? 1 t: •rn In' : hr ·11 r ) • ,. n rt • '1P' t:'tr 1: It" 'mi t' 1tW'M1 
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Chapter VI 

APPROXIMATIONS, NUMERICAL RESULTS 

AND CORRELATION WITH EXPERIMENTS 

In this chapter we shall take the cases of a transverse dipole 

and a longitudinal loop, whose equations we developed in Chapter V, and 

we shall evaluate the expressions for a source centered on a transverse 

cross-section and an aperture centered on a wall of the cavity. (For an 

open box, the "aperture" is already "centered" in its corresponding wall). 

This results not only in a high degree of syn1T1etry in the 

equations, allowing their dramatic simplification, but it also consti­

tutes a good approximation for many practical cases of interest. 

In the last section, the predicted results are compared with 

experimentally obtained values to show the usefulness of the present 

work. 

Vl.l Cavity with Small Apertures. 

VI.l. l Dipole Antenna 

Let us take the case of a transverse dipole antenna, worked 

out in Section l of Chapter V, and set 

a, • a 
I 

X - a 
~ '2' 

bl - b - I 

Y - b .. ~ 

(VI.1.1) 

(VI.1.2) 

We are now interested in evaluating the electric field insertion 

.. ., .. ~· ....... -•·-' ·-· .... ....--.........._ ......... _.....__.. _________ ._, ................. ... ,, -·-'is_.,_. _ . ...,. __ ..,......., _ _.... _ _... __ _ 
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loss for the above configuration. Equation (V.1.3) becomes 

m•0,2 ,4.,. 
n11:l 13 ,5 ... 

1 £ • _..._ __ 

m (WJ-)2 - k' 

[ 
h J s i nh [ r nm ( d-d' ~ 

• cos m~ .. cos(kh) • -------­
s inh. (rrmid) 

which may be written as 

(VI.1.3) 

2kI0 ~ l [ J 
Hyj s:Q = - ab sin{kh) L.J - k2' 1 - cos(kh~ • 

z n•l ,3,5 ••• 

sinh (d-d') ~(f}l - k' l 
~---------------+ 
sinh ( d~W-)' - k

2 

+ L 2 
• [cos m~h - cos(kh~ • 

m•2,4,6... (:n )2 - k 
2 

n=l,3,5 ••. 

sinh [rmn(d-d'~ 
s inh(rmnd) 

At frequencies significantly below cutoff we have 

n n k«a-•r 

(VI.1.4) 

(VI. 1.5) 
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and certainly 

kh « 1 

Therefore, Eq. (YI. 1.4) becomes 

2r 
H I = 0 y z•O - iOTi' 

n=l ,3,5,., 

h2 ·r . 

. L 2 ( ~)2 [cos ~h _ cos(kh)] 
m=i2,4,6 ••• 
n=l,3,5,,, 

0 

(VI.1.6) 

(VI.1.7) 

Assuming that d = b as it should be in a typical cabinet or 

rectangular shielding box, we can approximate (VI .1. 7) by 

210 
HI = - ~ y z=O aon 

n=l ,3,5, ... 

+ 
m=2,4,6 .•• 
n=l ,3 ,5, .• 

2 (:rr)' 

nn d' 
h2 - 0 -r. e 

+ 

[ J 
-r d' 

cos m~h - cos(kh) e mn 

(VI.1.8) 

Evaluating the ftrst sunrnation [22] 



I. 

210 
H I ... ":1:"I:" y z•O aim 

80 
h2 ... 

4 sinh fia, + o 

+ 1: 2 (~)' [cos · ~~h · cos(kh)J e -r.nd' 
m•2,4,6 ••• 
n•l ,3,5 ••• 

(VI.1.9) 

If we further make the very reasonable assumption that d', the 

distance beb1een the antenna and the aperture, is not too small 

(say, d' > · ~),we need only keep the first tenn {m • 2, n • 1) of thP 

remaining sunmation. 

Thus, we arrive .at 

I h 

- 2 {tf~os ~-) e· llf ~ 
(VI. l.10) 

Using Eq. {V. 1.5) and inserting the resulting expression in 

(V.1.8) gives us the desired constant current insertion loss expression. 

To detennine the constant voltage insertion loss, \'le must first 

evaluate the input impedance of the antenna inside the cavity. 

To the same degree of approximation used above, Eq. (IV.1.5) 

becomes 

t 
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.. ~(d'+p) 
2 I+ D 

~ • e • sfnh nEf- + 
nn n•l ,3,5 I I I o 

+L 2 . ~r lcos(kh) • cos m:h]' . 
m•2 ,4,6 ••• 

n•l,3,5 ••• 
..r (d I +p) 

e mn 
• rmn • sfnh(rmnd') 

Evaluating the first SUJllTJation 

" • E11- ( d I +p ) 
LJ e · sinh ~ = nn o n=l,3,5,... S-

b 
= rrr 

. ~·I 
~ b I 2n 

:II b 
2n 

I .. ~ I 1 Id t+tM I ,. 

-1 [ • ~ (2d'+p~ 
- tanh e J 

-Et [ -& (2d'+pj 1 1 + e .. 1 tn __ ...,..._ - tanh e 

! 1 .. e .. ~ 

t tn (\ )· tanh"1 
[; ~2d'+pj 

[ l [ .. * ( 2d I tp )l J l tn (~ • 0.45J • tanh"1 e J 

(VI.1.11) 

(VI.1.12) 
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where we have used reference [22, p. 164] and the fact that ITp << b. 

Putting this result in (VI.1.11) and evaluating the second 

surrrnation over the index n (see Appendix E), we arrive at 

l - khb [ b I 2. I+ 

z = -j -- . ~n ~n(-P) - 0.45 .. 1 abkh2 '+ll 

2nd' 
.. l ( - ""D" ) ] .. 2 tanh e + 

{VI. 1.13) 

This expression, inserted in Eq. {V. 1.11), gives us the constant voltage 

inserti"n loss. 

For frequencies near cutoff, the second surrrnation in (VI.l.11) 

should be evaluated by computer. 

VI.1.2 Loop Antenna 

If in Eqs. {V.1.12) through {V.l.14), corresponding to a 

"longitudinal" square loop inside a cavity, we set 

a a' • r 

x • a '2' 

{VI.1.14) 

(VI.1.15) 
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The only non~zero field component at the site of the aperture is 

~· which now becomes 

~n
2 

2 
0. .. k • sin .!l!!Q • 

m a -a 

· A· __ _.nm_· cosh r (d...d') sinh(r D) [ ~ 
rmn s1nh("r mnd) mn 

Separating the m a 0 tenn and assuming, as before 

n n 
k << a ' o 

0 

d = b 

we obtain 

810 
H I -y z=O - iD 

+ 

~ nnd' 
~ D e- 0 · sinh (ng0) + 

n=l,3,5 ••• 

(~)2 
-· 

-r d' 
s i n !!!llQ , e mn 

mn m=2,4,6... a 
n•l ,3,5 ••• 

a r 2 
mn 

The first sul!lllation can be easily evaluated if we write it as 

(VI.1.16) 

(VI.1.11) 

(VI.1.18) 

(VI.1.19) 
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84 nnd' --,;-
D • e • s 1 nh nnD s T 

. ~ E [ (e- ~d·-~l· -(e- ~ (d'. or] 
n•l ,3,5,,, 

• i csch [~{d'-D~ • csch r~d' + D ~ 
(VI.l.20) 

where we have used reference [22]. 

In the last su11JT1ation, if we again assume that (d'-D) is not too 

small, we may keep only the first tenn (m = 2, n = 1), so that 

(VI.l.19) becomes 

810 
H I -y z=O - iD ~ I csch [~ (d'-0~ 

- csch [t (d' + oi]j _+ __ 

. 2no - rrd' ~l + 4 (B/ 
sin a e 0 a 

+ h 
a 

(VI.1.21) 

Knowledge of the magnetic polarizability of the aperture will 

allow us to detennine the equivalent magnetic dipole moment A and the 

corresponding insertion loss expres·s1on. 
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VI.2 Open Caviti 

VI.2.1 Dipole Antenna 

Let us set b' • ~ in Eq. (V.2.5), corresponding to the case of 

a transverse dipole antenna inside an open cavity. 

Assuming 

and 

we obtain 

n 
k « o 

kh « 1 

{VI.2.1) 

(VI.2.2) 

(e- ~ (d-d' ))n 
n2 

(VI.2.3) 

This series, although deceptively simple-looking, does not have 

a closed form [22, p.184]. Fortunately, it is very rapidly convergent 

and may be truncated after the first few tenns. How many tenn~ we must 

keep depends on the ratio~, where (d-d') is the distance between 

the antenna and the aperture. 

Inserting Eq. (VI.2.3) in (V.2.8) results in the magnetic dipole 

r.ioment Hy• and then the constant current insertion loss may be 

immediately found. To obtain the constant voltage insertion loss, we 

need the input impedance of the antenna inside the cavity. Setting 

a' • 1, b' =~and assuming 

n n 
k«;•lf 

kh « 1 

(VI.2.4) 

(VI.2.5) 
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in Eq. (IV.2.1) results in expression (VI.1.11), i.e., the input 

impedance of a transverse dipole antenna inside a cavity, at 

frequencies below cutoff, 1s independent (to a first approximation) of 

whether the cavity is open or closed. 

Hence, expression (VI.l.13) is also valid for ou r dipole 

antenna in an open cavity. 

VI.2.2 Loop Antenna 

Consider the longitudinal loop treated in Chapter V and set 

b' • b 
! (VI.2.6) 

in Eq. (V.2.11). Assumin9 

we havE' 

k « n 
'D 

..1. e 
n2 n=l,3,5, •• 

• sfnh (ngo) · cosh (nn~') 

nnd 
-1) 

(VI.2.7) 

(VI.2.8} 

Once again, we meet the impossibility of finding a closed form 

for the series. However, it is rapidly convergent and in most 

practical cases the first few tenns will suffice. Inserting (VI.2.8) in 

Eq. (V.2.13} results in the magnetic dipole moment My• and 

expressions (V.2.14) and (V.2,15) give us the dP.sired insertion loss. 

VI.3 Correlatton wttft Experiments 

To verify, to some degree, the validity of the assumptions made 

•If ' t ....... J) · ~-......-..-..... .-" __ ....-. ........ ....._.-.0....-...... ~--· -·b~· -~L·h~·-~·-E-•' 6«+M· ~·---·~It~·-·-~-·: it'" tnf1 .. fWM•W'tht ' · s & ' d''6M+d.' f 'ti)d '00 'tttt ' 'be' t ·c· •• -··-- .. -·-- •• ••• --
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throughout this work, a series of measurements was performed on some 

simple ph,ysical configurations. A cubical shielding box of sides 

a • b • d was used, having a square aperture centered in the correspond­

ing wall. The antennas were: a dipole of length 2h • a/5, and a 

square loop of sides 2D • a/5. During the measurements, the antennas 

were kept centered in the box, to allow the use of the equations 

developed 1n the first two sections of this chapter. 

where 

and 

The resulting insertion loss expressions are: 

VI.3.1 Cavity with a Square Aperture of Side 1. 

(A) Transverse Dipole Antenna 

For the electric ffeld (Ex)• we have 

1 1 
jk + ?'" + Jkr1! 

jk + l 
r 

(VI.3.1) 

(VI.3.2) 

F1 = 10.36 n (~)3 (r) [ 1 na' 
- - I'"! nd' ] 

+hll.e a 
20 sinh a n2 

(VI.3.3) 

. - - . ··-·~~•\ooow- ... ........-......---.....-...-............,-.1, eh tt • ••' tt ·•ts'h tr tt ±' 0'"6'" t'Mrmt ·e, e ·• " ..._ ......... -....----..-............. -..------
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z 
F • 1 ; l 
2 ~ .. ;~) ~ 1 • 

p 

.. I ,e .. ~)I .. 0.45 - 2 tanh. ~ + 

(~) L ~, 
m•2,4,6,,, 

[cos(kh) - cos m~h] 2 

e 

n=l,3,5,,, 

m2 + n2 - 4(.!)2 
). 

(B) Longitudinal Loop Antenna 

For the magnetic field (Hy)• the insertion loss is 

jk + J,.. + 1 
1 (r ) r jkr' 2 

(I.L.)Io • ,......3. ":'T"r • l l 
r.. jk + - + -

r jkr2 

F3 • 12.95(~)3 ·I j; losch ln(f-- 0.1)1 . 

. oschl n(f-+ o.1)J j + 0 · 3~8 . e" n:• /'!I 
VI, 3. 2 Open Cav1'ty 

(A) Transverse Dipole Antenna 

(VI.3.4) 

(VI.3.5) 

(VI,3,6) 
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For the electric field (Ex): 

jk + '-!,. + __ 1_ 

( ~ 
r Jkrt2 

(I.L. )Io • l-4 ' ':T'rr ' -----
r • jk + l 

r 
{VI.3.7) 

(I.L.)v • F2 · (I.L.} 1 
0 0 

where 
.. n!: (d .. d') 

e a (VI.3.9) 

and F2 is given by Eq. (VI.3.4) 

where 

(B) Longitudinal Loop Antenna 

For the magnetic field (Hy) 

jk+.h-+ 1 
1 (r ) r jkr' 2 (I.L. )Io = r;:-5 • rr . 

jk + l + _J_ 
r jkr2 

nnd 

(VI.3.10) 

F = 80 
5 1!2 

n=l ,3,5, .•. 

_e_--n-
2 
a_· sinh (wt) · cash h') 

(VI. 3. 11) 

Figures 8 through 10 show plottings of the above insertion 

loss expressions 1n decibels (i.e., 20 log (I.l.)), together with some 

experimentally obtained values, 
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It is interesting to note that the results for d longitudinal 

loop antenna are independent of~ and r (except for the s~all effect of 

tfle difference between r arid r' ) • On the other hand, the insertion 

loss of the shield for a transverse dipole antenna follows a \- 1 

behavior ~n the radiation field ("far-field") and. a r-1 behavior in the 

induction iie1d (11 near .. field 11
). 

Also, we note that the input impedance of the dipole antenna 

is only slightly affected by the presence of the shield, This was to be 

expected for a relatively small dipole such as the one here used. 

The curves in Figs. 8 through 10 were calculated by hand from 

Eqs. (VI.3.1) through (VI.3. 11), which are themselves first-order 

approximations of the more exact expressions given in Chapter V. For 

more accurate results, it is advisable to use the latter ~nd evaluate 

them with the help of a computer, extending the region of applicability 

up to frequencies slightly below the first resonance. 

The curves corresponding to values of F = frr, }, and ~ were 

obtained using Bethe's method for small apertures. Those labeled ! = a 

were calculated using the waveguide methods. 

It should be noted that the experimental values were obtained 

using the upper half of the physical configurations shown in the 

figures, resting on a conducting plane which provided the other half uy 

image theory. In this way, "free-space" results were simu"ated. 

Due to equipment l 1mi tat ions, the measurements were restricted 

to insertion losses smaller than 50 dB, 

Figure 11 shows schematically hm'I the unshielded and shielded 

measurements were carried out. 
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS 

The comparison between theory and experiment presented in 

the last chapter shows very good agreement. The differences are 

well within the range expected due to experimental errors and 

the approximations necessary to allow hand computation of the 

equa ti or1s. 

All the significant features of the analysis have been 

verified. A disagreement of a few dB's is normally considered 

negligible in shielding theory, where discrepancies of 50 to 100 

dB's in predicted values are not unconrnon[26J. 

We have thus provide~ a method for predictinq, with consid­

erable accuracy, the insertion loss or "attenuation" of a rectanqu-

lar shielded enclosure with apertures, containing an internal 

radiating element, at frequencies below the first resonance of the 

enclosure. Although trie detailed analysis was carried out for 

particularly simple sources - a dipole antenna and a square loop -

the inclusion of the solutions for a current element (Hertzian 

dipole) allows us to solve the problem for an arhitrary current 

distribution. 

Moreover, the results obtained for the chosen examples 

(selected berause of their "worst-case" characteristics) constitute 

a very reliable indicator of the leakages to be expected from 

apertures in shields containing "high impedance" or 11 1 ow impedance" 

sources (i.e., electric field sources such as dipole antennas, 

.• --·--·--·· -··----~.~~~~-........__ • ..., • .-%_'--·-··-El-· , ___ • ...., ........... b .... '_M_1 ......... ...,,"""* • .__, •. ..., .. . _..., ,..,., ... 'dPWoi1 "lloli.l!ri9W.V.tu ... t6ridWMd•··Mt 11""'d':..IOi>1 W-"lilll'1 ¢llilo1o lllltioik" ' l ...,. ___ _...~ 
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or magnetic field sources such as current loops, wherP. the electric 

or magnetic nature of the source is given hy the type of field 

that predominates in the induction region}. The insertion loss 

of shields containing high impedance sources behaves a~ l/A and 

is independent of distance in the radiation reqion, and shows a 

1/r behavior in the induction reqion (where it is independent of 

the wavelength). For low impedance sources, the insertion loss 

of the shield is essentially independent of wavelength and distance. 

Sources having geometries different from the straight 

center-fed dipole and the square loop here analyzed may be safely 

approximated by the equations of Chapter V if their dipole moments 

are known. A dipole, or square loop having the same dipole moment 

as the given source, and corrtparahle linear dimensions and orienta­

tion, should provide a fairly accurate substitute for the real case. 

Furthermore, we can expect that enclosures of somewhat 

different shape but of equal volumes will provide very similar 

shielding effects, as long as their three dimensions ar~ of com­

parable magnitude (i.e., if no one dim~nsion is too large or too 

small compared with the other two). Thus, our results for rectan­

gular enc 1 osures can be app 1 ied to other compa rab 1 e shapes to 

obtain approximate values for th~ir insertion loss. The critical 

parameter to be maintained constant is the source-aperture distance. 

Although the present work has been developed in terms of sources 

internal to the shield, the theorem of reciprocity[l 2,pp. 24-25] 

allows our results to be used for external source.J as well. If the 

external noise source is located at more than a few wavelenqths 
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from the shield. the field incident on the enclosure w111 have 

essentially the configuration of a plane wave. Our insertion 

loss <'-::-.1at1ons provide us with a measure of the effect of the 

shield upon the "noise pick-up" by sensitive circuits (having 

high or low impedance. as the case may be) located in its interior, 

when there are apertures present in the enclosure. 

The applicability of the theorem of reciprocity to the 

insertion loss of shielded enclosures is theoretically and experi­

mentally well established[27 J. However, it should be stressed 

that only the roles of receiving and transmitting equipment 

should be interchanged for the successful application of the 

theorem. 

A stu~y of the insert ion loss equations here developed 

should provide enough infonnation to achieve optimum shielding 

perfonnance for a given piece of equipment and its metallic enclo­

sure. The location of "nohl'" (or sensitive) circuits with respect 

to the shield apertures. the physical layout of those circuits. 

the choice of currents and impedances, the size, shape and loca­

tion of the required apertures, etc., can all be optimized by 

analyzing their influence on the insertion loss expressions. 

Our analysis may be easily paralleled for geometries other 

than rectangular, and it should be a straightforward procedure 

in the case of those regular geometries for which the Green 

functions are already available. 

All of the above considerations indicate that the present 

l 

. ' ' '
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work will represent a valuable tool for EMC* engineers and to 

all others interested fn electromagnetic shields. The accurate 

prediction of insertion loss (or shield attenuation) for equipment 

P.nclosures should be very useful for the electronic industry. 

Much theoretical and experimental work can be done to 

complement this research. Some suggestions that readily come to 

mind are: 

- Effect of low-conductivity material covering the 

apertures (e.g. conducting glass). 

- Analysis of seam apertures formed by doors and covers. 

- Description (possibly statistical) of the general 

electromagnetic field inside a metallic enclosure containing a 

large number of radiating sources (subsystems, cables, etc.). 

- Development of nomograms to solve our expressions in 

~ome typical circumstances. 

- Include the effect of the finite conductivity of the 

enclosure material to ascertain the conditions under which the 

leakage through the aperture ceases to be dominant. 

- Critical review of current techniquej for shielding 

effectiveness measurements, in the light of the present work. 

Electromagnetic compatibility 
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Appendix f\ 

BEHAVIOR OF THE FIELDS IN A SEMI-INFINITE WAVEGUIDE 

From the treatment of semi-infinite waveguides excited hy 

internal sources at frequencies Lelow cutoff (Chapter III, Section 2), 

we see that the fields decay, in the z-direction, at least as fast as 

L .. r z 
e mn sinh(r d1

) mn (A. 1 ) 

for z > d1 (z=d' 1s the plane of the source). LP.t z = d be the plane 

at which we will cut open the waveguide (1.e., z • d will be the 

plane of the aperture). 

form 

The ratio of the field at z = d to that at z = d1 + p is then 

~ -r d 
~e mn sinh(rmnd') 
_m_n.__ ___________________ = 

"'e-rmn(d' + p) 
~ sinh(rmnd') 

~ [ -r (d-d 1
) -r (d+d' fl 

~ Le mn .. e mn J 
m n 
~ [ -r P -r (2d'+p)] £..J Le mn _ e mn 
m,n 

(A.2) 

Thus, it is necessary to evaluate a double su11111atfon of the 



m•O, 1 ,2 ••• 
n•O, 1,2 •.• 

where we have assumed 

n n 
k«a'li' 

100 

and m and n are not both zero simultaneously. 

Hence, 

For computational ease, let us set 

a = b 

"-~"'"~ S=k.Je al' 

(A.J) 

(A.4) 

(fl.5) 

(/\,6) 

This double sunination, although convergent, cannot be evaluated in 

closed form. Nevertheless, an approxil'lation can be found by consider­

ing the m,n space of Fig. A.l. Each one of the grid crossings is at a 

dhtance 

r=F (/\, 7) 

from the origin. 

For m and n sufficiently large, the total number of crossings 

(modes) up to a radius R is given to d good degree of approximation by 
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(1'. 8) 

Thus, in our su11111atfon (A.6), we can replace~ m' + n2 by 2{f, 

where q = 0 , 1 , 2 , ••• 

To ev.1luate this ~;eries, we shall use a graphical comparison 

between the sun1nation and the integral of the function, i.e., 

"" 
~e-Y-/Cf (/\, 10) 

fl=O 

ru 

J -K lq d e q 

0 

(A. 11) 

From Fig. /\.2 we see that the difference between the surrmation 

and the integral ;s the solid shaded area. The approximate value of 

th;s area A may be obta;ned from 

A ~-} [f(o)-f(l )] + -} [t{l )-f{2)] + ••• 

• • • + [ f{q)-f(q+l)] + ••. 

and since 

= i f(o) + t [ f{l)-f{l )] + t [t(2)-f(2)J + .•. 

• • • + t [f(q)-f(q)J + ••• {f\.12) 

#Wt •ttn t r • ±tra Ct t ', I 1"t tt h 1 . tr . I.,. ·t 2 ,.-.... ____ ... __ llllllli __ _ 
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Figure A.2 
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f(q) 11 e-K rq ...,. 0 as q .... , (A. ,J) 

we have 

A ~ l f (o) (A. 14) 

This can also be seen from Fig. A.3, where the area representing 

the sunrnation has been shifted to the left by a half unit. Except for 

the solid shaded portion, the area overshoots and undershoots approximately 

cancel each other. The solid shaded area is clearly given by Eq. (A.14). 

Therefore 

-2 /i1 !. rq 
~ e a ~ 1 + f 
q=O 

and we can write 

Let us ~ow evaluate 

S(d-d') = L 
m,n 

_r (d-d') 
e mn 

2 
0 

,,, 
-2 Iii z {q 

a 
e 

for (d-d') = a ! and~ i e z • a, _na and~ in Eq. (A.16) 
t JI IV 0 

t t IU 

(fl.15) 

(A. 16) 

(A. 17) 



105 

5 10 16 20 q 

Figure A.3 



S(a) = 0.659 

S(r) • 2.07 

S(m) :s 16.4 
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(A.18) 

(A.19) 

(A.20) 

On the other hand, the radius of the antenna (wire radius) is of 

the order of~ or less, so that the relative magnitude of the field 

next to the antenna is approximately 

(A. 21) 

What this Means is that if the semi-infinite waveguide 15 cut 

(tenninated into space) at a distance (d-d') = Trr from the source, 

the magnitude of the fields at the plane of the cut is down by 

approximately two orders of magnitude irom that next to the antenna. 

Any reflections from the open e ~d will be further attenuated 

by another factor of 100 before reaching the antenna. 

Hence, we can say that the antenna "does not see" the aperture. 
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Appendix B 

RADIATION FROM SMALL ANTENNAS 

A.1 Antennas 1n Free Space 

A.1.1 Dipole Antenna {See Fiq, B. 1) 

A short, thin, center-fed dipole antenna of length 

and having a current 1
0 

at its terminals, has essentially a trian~ular 

current distribution, and may be repre~ ented by a Hertzian dipole 

(current element) of the Sdme length and constant current I/2. 

Thus the ~hasor expressions for the fields from such an 

antennJ are 9iven, in sphericitl r.onrdinatP.s, by [18, pp, 322-323] 

{R. i) 

E = ~ -~ (jk + l + _j_) sin e · e jkr (B.2) 
o <tllr l ~ r jkr2 

{B.3) 

where e is the angle between the direction of the dipole and the radius 

vector to the field point {r,o,•), The dipole antenna is at the center 

of the coordinate system. 

A.1.2 Loop Antenna {See Fig. B.2) 

Consider a 1 oop antenna, whose dimensions are sma 11 compared 
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/ Figure B.2 
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to the 1•1avelen9th, having a constant current 1
0 

and enclosing an 

area A. The radiated field is given by [12, p.37] 

H • IoAk (£ + .1-) cos e 
r j ""'4fir r jkr2 

-jkr . e (B.4) 

( jk + l+ _J_) sin o • e-jkr 
r jkr<> 

(B.5) 

I /\k ~1 ( 1) - . o o . . - kr E = -J ""A":':".:' - J k + - s l n (1 • e j 
o+ ll r r.

0 
r 

(B.6) 

B.2 /\nt~nnas Ovr.r a Perfectly Conductin2 Plane 

The electromagnetic fields from .>mall dipoles and loo;"Js loct•ted 

over a perfectly conducting plane can best be obtained by describing 

the radiation in tenns of the Hertz vectors. Using Collin and 

Zucker 1s[l 9J treatment and lettina the conductivity of the ground plane 

approach infinity, we obtain the following field expressions (see Fig. 

B.3) \·1here cylindrical coordinates are used for convenience. 

B.2.l Vertical (z-directed) Electric Dipole 

E 
0 

= l~:P ~ [ (z::0
) (jk + ~ + j~R2) .-jkR + 

+ (z+zo) (jk + .L + 3 ) e·jkR'] (B.7) 
R' 3 R' jkR'2 . 

l 
i 

I 
•· .1 .:;._. ...,.. ... ,;., kW'* ' 'tt zt fl¥n brii'nt 'rr hi Wt' t ' 

5 ti · · nnn mworsmtr rnr;'C nn;j , rn" 11tw su,w'f ·· r 1r1 , · 'HM ww r 11 rt r *" n 
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[
- 1 + (z-z~21 (jk + l + _l_) e-jkR + 
r R3 J lf jkR2 

+ [- L + (z+zoF] (jk + L + _j_) e·jkR' {B.8) 
q I RI 3 RI j kR • 2 

{R.9) 

E=H=H=O 
'1i ii z 

B.2 .2 Horizontal (x-directed) Electric Dipole 

[~ (jk + i + .J_) -
R2 ' jkR2 

( )] 

-jkR 
- jk + ~ + jk~2 • e R -

{B.10) 

' f It I ttf I d' ~ d i I* ' * firt''tnot""t'tr '( -- o . -



-jkR e . ,- -

(z+zo) (· 3 3 ) -jkR'] - Jk + - + e 
R' 3 R' jkR'=' 

I0 h sin 4> [ (z-z0 ) (. l ) -jkR 
H = Jk + 1'I" e -

P 4n R2 K 

- (z+zo) ~k + .!_) e-jkR ·] 

R' 2 
\ R' 

I0 h cos 4> [ (z-z0 ) (· 1) e-jkR _ 
H = - Jk + ff 

4> 411 R2 

. (z+z0 ) ( l ) -jkR'] - jk + - e · 
R' 2 R: 

H = _ j I0 hk p sin 4> fi(jk + i + _J_) 
z 4n ~ ~ jkR2 

{ ) -jkR' ] 
- ~ k + ~ + j k!' 2 e R' 

-jkR e ....,....... -

(B.11) 

-jkR 
e -

(B.12) 

(B.13) 

(B.14) 

(B.15) 

I, 
I 
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B.2.3 Vertical (z-directed) Magnetic Dipole 

II • j 
IOAk p [ tz~i:0 l 

(Jk + 3 + -L) -jkR 
4n • e p R3 1f 1kR2 

' 

(z+z
0

) 
( Jk + L + 3 ) e·JkR '] (B.16) 

R'3 R' jkR'~ 

(B. 17) 

[ ;, ( j k + ft ) e - j kR -

p,• ;> ( jk + _Rl' ) e·jkR'] (B. 18) 

H = E = E = 0 
¢> p z 

B.2.4 Horizontal (x-directed) Magnetic Dipole 



r AU_ u es _ e o :ow :_ a a s 

H = 
~ 

115 

[ 
£'.:. 
R2 ( j~ + 3 + --1...) 

R jkP7 

( 
l 1 )] e·Jkr. 

- jk + R" + jkR2 -r + 

[ 

P;> ( • 3 3 ) + - Jk + -+ - -
RI;:> P. I j k~ I ;> 

- ( j k + !-i- + _J_) ] 
r;. j kR I? 

e-.ikR' I 
') I 

'· 

j -2-~\ ~;~.:' ~(jk + ~ + _j_) 
], I\ 'kR7 .1 

t (jl'. t _l + _J_) ~-.ikR' ] 
R' jld~' 7 P-' 

-jH? 
P. 

R 

10 Ak p cos 4i [ (z-z0 ) ( . 3 3 ) 
- J~ + ~+ -

411 R:'I jkR" 

RI 3 ( jk + 3 + 3 ) 
1f"" jkR IL 

0 -jkR'] 

(B.19 ) 

(IL 20) 

(B.21) 
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£ = j 10 Ak sin ~ ~ rz-z0 ) ( , ft) e·jkP + - ------ i~ p 4 ll [ ., .. 
. 0 R' 

+ 
(z+z

0
) 

f Jk + _1 ) eJtr.J (13.27) R' ;• \ R' 

[

(z-1 ) 
() ---n;' 

P. I :' 
(B.23) 

) 

• i 1-f' 1 e ·· .. 
jkP ;-. ~ 

I ( jk +_I + _J_) !'_-.i_kR_'] 
R' jkH 1 :· R' 

( lL 24) 

In the above equations, we are assuming that the electric 

dipole consists of a current element of length 2h and current 1
0
/2, 

an.· the magnetic dipole is a small loop of area A and current 1
0

. 
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Appendix C 

SELF-IMPEDANCE OF SMALL ANTENNAS 

C.1 Antennas in Free Space 

C. 1. 1 Dipole Antenna 

The self-impedance of a small dipole of length 

2h .; < ). 

and of wire r<ldius n is approximately given by[ZO] 

~n (!!) -1 
z'. = ?.1> --~fi,;__--
, ~n (p-) -0.81 

1. :• h;_, -j 120 [ h ] ( ) '· ---W v. n n - 1 ohr1J<. C • 1 

C.1.2 Loop Antenna 

The leading tenns in the driving-point impedance of a sr.1all 

loop of area A and wire radius n are[?.O] 

Zj = 20 k4 A2 + J 120 lif k ffi r <n ii- -} ] ohms (C.2) 

In expressions (C. l) and (c.2), the resistance of the wirr h.1s 11een 

ne!"Jlected. 

C.2 Antennas Over a Perfectl1 Cunductfng Plane 

Using the procedure indicated by Collin and Zucker[1 9, p. 392 ff.] 

1'/e have obtained the self-impedance of elementary dipoles over a 

conducting plane. The electric dipole is taken as a current element of 

length 2h, and the magnetic dipole as a small loop enclosinq an area A. 
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In both cases, the raJius of the wirn is p, 

In the following equations, 

Cl • 2 z 
0 (C.3) 

where z0 is the height of the dipole over the conducting plane (Fig. 

B.3, Appendix B). 

C.2.1 Vertical Electric Dipole 

Z'; = 40(kh)? -j W- 2 1nU)- 2 - ~ (1 + 4-'] oh"" 

(C.4) 

C.2.2 Horizontal Electric Oi~ole 

Z'; = ~ (kh)?(ka)' -j * 2 •n (~)- 2 - ~~' [1 -lf£] lohms 
(C.5) 

C.2.3 Vertical Magnetic Dipole 

Z' i = 2(kA)2(ka~ 2+ j 120 /J1 k n R.n ( ~) -

- ~ -
2 
~ ('!H1 + ¥] ohms {C.6) 
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C.2.4 Horizontal Magnetic Dipole 

z•
1 

= 40 k'+A2 + j 120 Iii k lfi. 9.n {! 
p 

1 1 
. f - 2/il 

--~----~--~'-

OhMS ( c. 7) 

The resistance of the \'Ii re has been nc~Jlectcd in all of th~ above 

expressions. 

- t ..... :1 t f • 1 '? '. I 
1 f'tr(: 1 Mb ftnt' t I 

ti I r1S P ' tts m crt:r f tt r r:1n ii um n otrmn m, ? . .. j 
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Appendix D 

RADIATION FROM DIPOLE MOMENTS 

The electromagnetic field produced by an electric dipole moment 

~ has component·. [21 ] 

E = j k (£+_?_)\!~I cos 11· f'-jkr 
r 411L

0
r r 'k ., 

J r' 
(0. 1) 

[ = j __ k_ (jk + l + _J_) I~! sin n · e·Jkr 
• 11 '1!11.or r Jkr1 

(D.2) 

H
1 

= j 4~; ( jk + ~) l~I sin o • .-jkr (D.3) 

and that produced hy a magnetic di!)ole moment A is[21 • p. 437] 

H = j k (£ + __j_) !~I cos e • e-jkr 
r 4rir r jkr2 

(D.4) 

H = j A (jk + ! + _]__) IHI sin O• e-jkr 
n .. ~ r r jkr" 

(0.5) 

E . k ~1 
o ( . k 1 ) 11 ~ I . -j k r = -J ~ - J + - 1 srn o · c 

,~ <+llr F: r 
0 

(D.6) 

All of the dbove are phasor expressions. The time-dependence has been 

taken, in the usual engineering fashion, as ejwt. 

The angle o is that between the direction of the dipole moment 

and the radius vector to the field point. 

For dipole moments over a perfectly conducting plane, we can 

us~ Eqs. (B.7) through (B.24) of Appendix B if we write 
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(D.7) 

for electric dipoles, and 

I I\ :: I~ I 
0 (D.8) 

for magnetic dipoles 
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Appendix E 

EVALUATION OF A SERIES 

In Eq. {VI. 1.11) for the input impedance of a dipole in a cavity, 

the last surrrnation is 

If d' is 

and 

s = L 
m=2,4,6 •.• 
n=l ,3,5 •.• 

2( ~11 )' [cos(kh) • cos m~h] 2 
• 

• J' { d I +p) 
e mn 
----1-. --- • sinh (r d') 

rnn mn 

not too small, e.g. 

d' 
:> 0. l l) 

II IT k«a'o 

(E. l) 

Eq. (E. 1) becomes 

s : L 
111=2 ,4 ,6 ••. 
n=l ,3,5 ••• 

II ... .fl 
b 1n 

(a )' Piii" [cos(kh) ·cos m~h~ 

h / 
n2 + m7 (-) a 

(E.2) 

He wish to evaluate the sulllllation over n, which although 

convergent, decreases very slowly with n due to the fact that 

h • · w td 'st'drl1d°# 'tr··re ·· ' , •• ,,, ....... ,1 "•= .,. ::r w an ,,, u 'trrttrtt!l tt I , rw , er 

I . ' 

i 

.J 
ii -



p 
b ·-< 1 

Let 

on = 

n=l ,3,5 ••• 

where 1·1e have put 

.. ( h) ,' ') 
l'I' - : 1l' 

11 

123 

- ~ ~n2 + a2 
e (E.3) 

(L 4) 

lnV('sti~atin~ the function of n and it:; derivatfves, WP. detenr.ine 

that Euler's sur1nation fonnuld[?.3] is applicable and that we fTlay keep 

only the first two terms 

e-~F, -~ (2x+l) 2 + r12 

b 1 - + 1· e dx an - - 2 · ll 

F ~ (2x+l) 2 0 + (l2 

( E. 5) 

Evaluating the integral 

r -~ Fv + r1i' 

e • dx = .. 

(2x+l)i' + I ( ) 0 

J
oo 

- 1 - 2 
l 

!le. -~-- ff 1w2 + a2 
e dw 

" t -·· · . 

, . 1 , , $$ tie ( )¢ ' . hf!& . Is j 1 It " ' ts-·rt w rt'tC'W!rt er;; 1 ftp I . , • ., 7' lC lti'. tr .• .. i ?! 5 

i 
l 
t 

4 



rr I 

I . 

¢¥24 I 
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- 1 
J ; !if; ~~, + •' 

dw -- ! 
0 f:2-::2 

-/ - ~~ w2 + (\2 

e dw 0 ~(u2 + a2 

(E.6) 

The first integral is[24] 

- ~ ~w2 +7 
e {E. 7) 

0 

11here K
0

(x) is the modified Bessel function of the third kind and order 

zero. For small arguments[2S] 

K (x) - - in x 
0 

For large arguments[25 • p.J?S] 

K (x) - ~ f;; . e-x [1 .. ~ + __..3_2 -
o l 2X x 2 ! (Bx )2 

{E.8) 

- ... ] (E. 9) 

In the second integral · of (E.6), ~ 1s very small. But the 

~· 
I 

• . ... ..... 1i1 "Ct• r1''
5

d'ftttt'nu •-~--------ilillllll---------------ll 



125 

2 

m· ?. factor in Eq. (E.2), plus the effects of a2 = m2(k) in the 
a 

exponent and in the denominator of 12, will Make the contribution from 

this integral very small for m >> 1. We may then approximate 

= tn ( ~ + ~ 1 + :-, ) • ~ (E.10) 

Hence, 

~1 - !!£.. + m?(£) 2 

m) - b 
m a 

K ( ~-. e 
+ + on - '2il 

~1 
o a 

+ m2 (~)2 a 

~· ~1 + (~)2 • ~2) + ~ - .e.n l+ m (E.11) 

Essentially for the same reasons given above, we can safely 

assume that the significant contribution from on in expression (E.2) 

will happen for values of m such that we still have 

f!!e.. m « l 
a 

and the use of (f..8) is justified. 

With kh ~< l, SO that 

cos(kh} ; l 

we finally have 

> It I h dti1tK M d )> cf !l '" f !Wn' .. * ' 
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s a~b l: (i - cos m~h' ;::_ . 
21I 3 

m:m2,4,6 .•. m2 

· [rn ~ - 1. 84 - 1.n ( 1 + l b ') + 
'2" l -+ m2 (a) 

+ J 
~1 (£) 2 

(r.12) 
+ m.' 

a 



------~-·-------~-----------------------· ------ -

·• 
A 
.... 
B 

D 

E 

G(r1r
0

) 

............ 
G(r/r

0
) 

H 

Io 

(I.L.)Io 

(I. L. )y 
.... 0 

J 

.,,. 
M 
.... 
p 

TE 

TM 

z. 
1 

a,b.d 

a',b',d' 

h 

j 

k 
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List of Symbol) 

Magnetic vector potential 

Magnetic flux density 

One-half the side of a square loop 

Electric field intensity 

Scalar Green's function 

Dyadic Green's function 

Magnetic field intensity 

Electric turrent at antenna input terminals 

C0nstant-current Insertion Loss 

Constant-voltage Insertion Loss 

Electric current density 

Electric current sheet density 

Magnetic current sheet density 

Length of Herzian dipole 

Magnetic dipole moment 

Electric dipole moment 

Transverse-electric. or H-mode 

Transverse-magnetic. or E-mode 

Antenna input impedance 

Enclosure dimensions 

Source position 

Half-length of dipole antenna 

Wave number = 211/>. 

Aperture dimension 



m,n,p 
• r 

r 

r, 0,4' ..... 
u 

x,y,z 

ln -· . ~ .... 
lx,ly,lz 

p 

p,z.~ 

T 

w 

v 2 
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Mode integers 

Field-point position 

Source-field point distance 

Source position 

Spherical coordinates 

Idemfactor (unit dyadic) 

Rectangular coordinates 

Normal unit vector 

Rectangular unit vectors 

Electric polarizability scalar 

Magnetic polarizability tensor 

Free-space pennittivity 

Neumann factor (r.m=o=l; (m;
0

=2) 

Wavelength 

Free-space permeability 

Wire radius. Electric charge density 

Cylindrical coordinates 

Volume 

Angular frequency 

Del (nabla) operator 

Laplacian operator 
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