
Online Algorithms: From Prediction to Decision

Thesis by
Niangjun Chen

In Partial Fulfillment of the Requirements for the
degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2018
Defended September 27, 2017

ii

© 2018

Niangjun Chen
ORCID: 0000-0002-2289-9737

All rights reserved

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisors, Prof. Adam Wierman
and Prof. Steven Low, for their helpful guidance and advise for my research, and
also for their encouragement and support when I encountered di�culties. It has
truly been an honor and great pleasure working them. They not only taught me
many essential skills of how to do good research, but they also showed me by their
example how to be a good researcher.

I would also like to thank my many collaborators: Siddharth Barman, Krishnamurthy
Dvijotham, Lingwen Gan, Xiaoqi Ren, Yorie Nakahira, Navid Azizan-Ruhi, Gautam
Goel, Palma London, Ben Razon and Anish Agarwal, from Caltech, Prof. Shaolei
Ren from UCI, Prof. Anshul Gandhi, Prof. Zhenhua Liu and Joshua Comden from
Stony Brooks, and Prof. Lachlan Andrew from Monash University. I am fortunate
to have learned many things from my collaborators, and our collaborations led to
many interesting results that contributed to this thesis.

My five years in the Department of Computing and Mathematical Sciences at Caltech
have been truly enjoyable. I would like to thank my friends and colleagues in CMS
for creating the helpful and friendly atmosphere. I would also like to thank the
helpful administrative sta� in our department, especially Maria Lopez, Sydney
Garstang, Christine Ortega, and Sheila Shull for keeping everything working so that
I don’t have to worry about anything other than my research.

Finally, I would like to thank my family, who supported me all the way through the
highs and lows of my life, and my girlfriend Yorie Nakahira, whose love made this
thesis possible.

iv

ABSTRACT

Making use of predictions is a crucial, but under-explored, area of sequential decision
problems with limited information. While in practice most online algorithms rely on
predictions to make real time decisions, in theory their performance is only analyzed
in simplified models of prediction noise, either adversarial or i.i.d. The goal of this
thesis is to bridge this divide between theory and practice: to study online algorithm
under more practical predictions models, gain better understanding about the value
of prediction, and design online algorithms that make the best use of predictions.

This thesis makes three main contributions. First, we propose a stochastic prediction
error model that generalizes prior models in the learning and stochastic control
communities, incorporates correlation among prediction errors, and captures the
fact that predictions improve as time passes. Using this general prediction model,
we prove that Averaging Fixed Horizon Control (AFHC) can simultaneously achieve
sublinear regret and constant competitive ratio in expectation using only a constant-
sized prediction window, overcoming the hardnesss results in adversarial prediction
models. Second, to understand the optimal use of noisy prediction, we introduce
a new class of policies, Committed Horizon Control (CHC), that generalizes both
popular policies Receding Horizon Control (RHC) and Averaging Fixed Horizon
Control (AFHC). Our results provide explicit results characterizing the optimal use
of prediction in CHC policy as a function of properties of the prediction noise, e.g.,
variance and correlation structure. Third, we apply the general prediction model
and algorithm design framework to the deferrable load control problem in power
systems. Our proposed model predictive algorithm provides significant reduction in
variance of total load in the power system. Throughout this thesis, we provide both
average-case analysis and concentration results for our proposed online algorithms,
highlighting that the typical performance is tightly concentrated around the average-
case performance.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Niangjun Chen, Lingwen Gan, Steven H. Low, and Adam Wierman. Dis-
tributional analysis for model predictive deferrable load control. In 53rd
IEEE Conference on Decision and Control, pages 6433–6438, Dec 2014. doi:
10.1109/CDC.2014.7040398.
N.C participated in the conception of the project, formulated the problem, ap-
plied and analyzed the performance of model predictive load control algorithm
and participated in the writing of the manuscript.

[2] Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and Lach-
lan L.H. Andrew. Online convex optimization using predictions. In Proceedings
of the 2015 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’15, pages 191–204, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3486-0. doi: 10.1145/2745844.
2745854. URL http://doi.acm.org/10.1145/2745844.2745854.
N.C participated in the conception of the project, formulated the problem, ap-
plied and analyzed the performance of averaging fixed horizon control (AFHC)
algorithm and participated in the writing of the manuscript.

[3] Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam
Wierman. Using predictions in online optimization: Looking forward with
an eye on the past. In Proceedings of the 2016 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Sci-
ence, SIGMETRICS ’16, pages 193–206, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-4266-7. doi: 10.1145/2896377.2901464. URL http:
//doi.acm.org/10.1145/2896377.2901464.
N.C participated in the conception of the project, formulated the problem, pro-
posed the Committed Horizon Control (CHC) algorithm to solve the problem,
analyzed its performance and participated in the writing of the manuscript.

[4] Lingwen Gan, Adam Wierman, Ufuk Topcu, Niangjun Chen, and Steven H.
Low. Real-time deferrable load control: Handling the uncertainties of renewable
generation. In Proceedings of the Fourth International Conference on Future
Energy Systems, e-Energy ’13, pages 113–124, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2052-8. doi: 10.1145/2487166.2487179. URL http:
//doi.acm.org/10.1145/2487166.2487179.
N.C participated in the conception of the project, participated in the performance
analysis of model predictive load control algorithm and participated in the
writing of the manuscript.

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Bibliography . v
Table of Contents . vi
List of Illustrations . viii
Chapter I: Introduction . 1

1.1 Online convex optimization . 1
1.2 Example applications . 2
1.3 Incorporating predictions . 3
1.4 Performance metrics: regret vs competitive ratio 4
1.5 Overview of this thesis. 4

Chapter II: General Prediction Model . 8
2.1 Problem formulation and notation 9
2.2 Impossibility results in adversarial prediction models 11
2.3 Modelling practical prediction errors 13
2.A Proofs for Section 2.2 . 17

Chapter III: The Value of Prediction . 18
3.1 Averaging fixed horizon control . 20
3.2 Average-case analysis . 21
3.3 Concentration bounds . 25
3.4 Concluding remarks . 30
3.A Proofs for Section 3.2 . 31
3.B Proofs for Section 3.3 . 39

Chapter IV: Optimizing the Use of Prediction 43
4.1 Problem formulation . 44
4.2 Committed horizon control . 47
4.3 Optimal commitment level . 53
4.4 Concentration bounds . 60
4.5 Concluding remarks . 62
4.A Experimental setup for Fig. 4.1 . 63
4.B Proof of analytic results . 65

Chapter V: An Application . 77
5.1 Smart energy system . 77
5.2 Real-time deferrable load control 78
5.3 Model predictive algorithm . 82
5.4 Performance analysis . 87
5.5 Simulation . 96
5.6 Concluding remarks . 104

vii

5.A Proof of average case results . 105
5.B Proofs of distributional results . 111

Chapter VI: Conclusion . 124
6.1 Theoretical contributions . 124
6.2 Practical insights . 124
6.3 Open problems . 125

Bibliography . 126

viii

LIST OF ILLUSTRATIONS

Number Page
4.1 Total cost of RHC and AFHC, normalized by the cost of the o�ine

optimal, versus: (a) prediction window size, (b) number of steps of
perfect prediction with w = 10. Note (a) and (b) were produced
under di�erent cost settings, see Appendix 4.A. 51

4.2 Fixed Horizon Control with commitment level v: optimizes once
every v timesteps for the next w timesteps and commits to use the
first v of them. 52

4.3 Committed Horizon Control: at each timestep, it averages over all v
actions defined by the v FHC algorithms with limited commitment. . 52

4.4 Illustration of Corollary 4.3, for long range dependencies. (a) shows
the time averaged expected competitive di�erence as a function of
the commitment level, and (b) shows the optimal commitment level
as a function of ↵. 56

4.5 Illustration of Corollary 4.4, for short range correlations. (a) shows
the time averaged expected competitive di�erence as a function of
the commitment level, and (b) shows the optimal commitment level
as a function of ↵. 58

4.6 Illustration of Corollary 4.5, for exponentially decaying correlations.
(a) shows the time averaged expected competitive di�erence as a func-
tion of the commitment level, and (b) shows the optimal commitment
level as a function of the decay parameter, a. 60

4.7 The cumulative distribution function of average-case bounds un-
der di�erent correlation structures: (a) i.i.d prediction noise; ex-
ponentially decaying, a = 2/3; (b) long range; short range, L = 4.
Competitive di�erences simulated with random realization of stan-
dard normal e(t) 1000 times under the following parameter values:
T = 100, v = 10, �D = 1,G = 0.1, ↵ = 1, c = 1. 63

5.1 Diagram of the notation and structure of the model for base load, i.e.,
non-deferrable load minus renewable generation. 79

ix

5.2 Illustration of the traces used in the experiments. (a) shows the average
residential load in the service area of Southern California Edison in 2012.
(b) shows the total wind power generation of the Alberta Electric System
Operator scaled to represent 20% penetration. (c) shows the normalized
root-mean-square wind prediction error as a function of the time looking
ahead for the model used in the experiments. 97

5.3 Illustration of the impact of wind prediction error on suboptimality
of load variance. 101

5.4 Suboptimality of load variance as a function of (a) deferrable load penetra-
tion and (b) wind penetration. In (a) the wind penetration is 20% and in (b)
the deferrable load penetration is 20%. In both, the wind prediction error
looking 24 hours ahead is 18%. 102

5.5 The empirical cumulative distribution function of the load variance under
Algorithm 5.2 over 24 hour control horizon using real data. The red line
represents the analytic bound on the 90% confidence interval computed
from Theorem 5.16, and the black line shows the empirical mean. 104

1

C h a p t e r 1

INTRODUCTION

Many important applications in control and communication involve making sequen-
tial decisions with limited future information, e.g., balancing electricity demand
and generation in power systems, dynamic right-sizing of servers in data-centers,
and adapting video encoding bit-rates in video streaming. We call such sequential
decision making online algorithms. Improving the e�ciency of online algorithms
has potentially huge benefits to society, e.g., it is estimated in 2012 that the cost
savings from improving the e�ciency of real time power dispatch in the US amounts
to $19 billions per year [67]. In practice, many important online algorithms rely
on predictions to make real time decisions. This thesis is about designing online
algorithms that make the best use of predictions.

While as separate subjects there is an abundance of literature on designing online
algorithms and making predictions, it is less understood how accuracy of predictions
should impact the design of online algorithms. For example, as prediction error in the
future changes, how should we adapt our online algorithm? Is it possible to quantify
the performance of online algorithms as a function of the prediction errors? In this
thesis, we address these questions using the online convex optimization framework,
which models many real problems in control and communications. We show that
insights that can be gained from incorporating a general, realistic model of prediction
noise into the analysis of online algorithms.

1.1 Online convex optimization
In an online convex optimization (OCO) problem, a learner interacts with an envi-
ronment in a sequence of rounds. In round t the learner chooses an action xt from
a convex decision/action space G, and then the environment reveals a convex cost
function ct and the learner pays cost ct(xt). An algorithm’s goal is to minimize total
cost over a (long) horizon T .

OCO has a rich theory and a wide range of important applications. In computer
science, it is most associated with the so-called k-experts problem, an online learning
problem where in each round t the algorithm chooses one of k possible actions,
viewed as following the advice of one of k “experts”.

2

In typical applications of online convex optimization in networking and cloud com-
puting there is an additional cost in each round, termed a “switching cost”, that
captures the cost of changing actions during a round. Specifically, the cost is

T
’

t=1
ct(xt) + �kxt � xt�1k, (1.1)

where k · k is a norm (often the one-norm). This additional term makes the online
problem more challenging since the optimal choice in a round then depends on
future cost functions. These “smoothed” online convex optimization problems have
received considerable attention in the context of networking and cloud computing
applications, e.g., [56, 58–61], and are also relevant for many more traditional online
convex optimization applications where, in reality, there is a cost associated with a
change in action, e.g., portfolio management. We focus on smoothed online convex
optimization problems.

1.2 Example applications
OCO is being increasingly broadly applied, and recently has become prominent
in networking and cloud computing applications, including the design of dynamic
capacity planning, load shifting and demand response for data centers [49, 58–60,
66], geographical load balancing of internet-scale systems [56, 82], electrical vehicle
charging [29, 49], video streaming [44, 45] and thermal management of systems-on-
chip [87, 88]; we briefly explain some examples in the following paragraphs. Note
that for each application below, decisions need to be made without exact knowledge
of the future costs.

Geographical load balancing for data centers In geographical load balancing,
we seek to minimize the energy cost by exploiting the geographical diversity of
internet-scale system. At each time t, there is �t, j amount of tra�c generated from
source j. The variable xt 2 (xt,s)s2{1,...,S} represents the number of active servers at
data s at time t. The energy cost at time t, ct(xt) = ÕS

s=1 ct,s(xt,s,
Õ

j �t,s, j) where
�t,s, j represents on the amount of real time tra�c from source j routed to data center
s at time t. Assuming the state transition cost of a server (from sleep state to active
state and vice versa) is �, then the switching cost �kxt � xt�1k1 represents the cost
of state transition cost of servers in the internet-scale system.

Power systems economic dispatch In power systems economic dispatch, the goal
is to satisfy the energy demand with minimum production cost. At each time t, the

3

generators need to satisfy yt of total demand, and xt = (xt,g)g2{1,...,G} represents the
amount of energy produce by generator g at time t. The cost ct(xt, yt) represents
the power generation cost given the demand yt and generator power output profile
xt . Assuming generator g has a ramp cost of �g > 0, then the switching cost with
appropriately defined norm kxt � xt�1k = ÕG

g=1 �g |xt,g � xt�1,g | captures the ramp
cost due to change in generation output.

Adaptive streaming In adaptive streaming problem, the goal is to adapt the bit-
rate representation of di�erent segments of the video stream over varying network
states, in order to maximize the playback quality while avoiding fluctuation. Here,
the variable xt represents the bit-rate request for the next segment at time t. At each
time, the cost ct(xt) = ct(xt, yt) represents the utility of requesting next segment
with xt when the link condition is given by yt , and the switching cost �kxt � xt�1k
penalizes rapid changing of bit-rate between consecutive video segments.

1.3 Incorporating predictions
It is no surprise that predictions are crucial to online algorithms in practice. In
OCO, knowledge about future cost functions is valuable, even when noisy. However,
despite the importance of predictions, we do not understand how prediction noise
a�ects the performance (and design) of online convex optimization algorithms.

This is not due to a lack of e�ort. Most papers that apply OCO algorithms to
networking and cloud computing applications study the impact of prediction noise,
e.g., [2, 8, 59, 66]. Typically, these consider numerical simulations where i.i.d. noise
terms with di�erent levels of variability are added to the parameter being predicted,
e.g., [36, 80]. While this is a valuable first step, it does not provide any guarantees
about the performance of the algorithm with realistic prediction errors (which tend
to be correlated, since an overestimate in one period is likely followed by another
overestimate) and further does not help inform the design of algorithms that can
e�ectively use predictions.

Though most work on predictions has been simulation based, there has also been
significant work done seeking analytic guarantees. This literature can be categorized
into:

(i) Worst-case models of prediction error typically assume that there exists a
lookahead window ! such that within that window, prediction is near-perfect

4

(too optimistic), and outside that window the workload is adversarial (too
pessimistic), e.g., [13, 19, 56, 58, 61].

(ii) Simple stochastic models of prediction error typically consider i.i.d. errors,
e.g., [16, 59, 60]. Although this is analytically appealing, it ignores important
features of prediction errors, as described in the next section.

(iii) Detailed stochastic models of specific predictors applied for specific signal
models, such as [46, 73, 74, 89]. This leads to less pessimistic results, but the
guarantees, and the algorithms themselves, become too fragile to assumptions
on the system evolution.

1.4 Performance metrics: regret vs competitive ratio
There are two main performance metrics used for online algorithms in the literature:
regret, defined as the di�erence between the cost of the algorithm and the cost
of the o�ine optimal static solution, and the competitive ratio, defined as the
maximum ratio between the cost of the algorithm and the cost of the o�ine optimal
(dynamic) solution. While in practice online algorithm can often perform well with
respect to both regret and competitive ratio; however, as shown in Chapter 2, in
adversarial setting, no algorithm can simultaneous achieve good performance in
both metrics. This motivates us to look at a more realistic model for predictions.
The resulting general prediction model also gives new insights into designing good
online algorithms that make use of predictions (Chapter 4).

1.5 Overview of this thesis.
This thesis makes the following contributions.

Generalizing prediction model
In Chapter 2, we show in Theorem 2.1 that, for the adversarial prediction model
(where predictions are exact within the prediction window and adversarial beyond),
no algorithm can achieve sublinear regret and constant competitive ratio simultane-
ously, no matter how long the prediction window is. This motivates us to introduce
a general colored noise model for studying prediction errors in online convex opti-
mization problems. The model captures three important features of real predictors:
(i) it allows for arbitrary correlations in prediction errors (e.g., both short and long
range correlations); (ii) the quality of predictions decreases the further in the fu-
ture we try to look ahead; and (iii) predictions about the future are updated as
time passes. Furthermore, it strikes a middle ground between the worst-case and

5

stochastic approaches. In particular, it does not make any assumptions about an
underlying stochastic process or the design of the predictor. Instead, it only makes
(weak) assumptions about the stochastic form of the error of the predictor; these
assumptions are satisfied by many common stochastic models, e.g., the prediction
error of standard Weiner filters [84] and Kalman filters [48]. Importantly, by being
agnostic to the underlying stochastic process, the model allows worst-case analysis
with respect to the realization of the underlying cost functions.

Bridging hardness result between regret and competitive ratio
In Chapter 3, we show that a simple algorithm, Averaging Fixed Horizon Control
(AFHC) [56], simultaneously achieves sublinear regret and a constant competitive
ratio in expectation using very limited prediction, i.e., a prediction window of size
O(1), in nearly all situations when it is feasible for an online algorithm to do so (The-
orem 3.1). Further, we show that the performance of AFHC is tightly concentrated
around its mean (Theorem 3.9). Thus, AFHC extracts the asymptotically optimal
value from predictions. Additionally, our results inform the choice of the optimal
prediction window size. (For ease of presentation, both Theorems 3.8 and 3.9 are
stated and proven for the specific case of online LASSO – see Section 2.1 – but the
proof technique can be generalized in a straightforward way.)

Importantly, Theorem 3.4 highlights that the dominant factor impacting whether the
prediction window should be long or short in AFHC is not the variance of the noise,
but rather the correlation structure of the noise. For example, if prediction errors are
i.i.d. then it is optimal for AFHC to look ahead as far as possible (i.e., T) regardless
of the variance, but if prediction errors have strong short-range dependencies then
the optimal prediction window is constant sized regardless of the variance.

Previously, AFHC had only been analyzed in the adversarial model [58], and our
results are in stark contrast to the pessimism of prior work. To highlight this, we
prove that in the “easiest” adversarial model (where predictions are exact within the
prediction window), no online algorithm can achieve sublinear regret and a constant
competitive ratio when using a prediction window of constant size (Theorem 2.1).
This contrast emphasizes the value of moving to a more realistic stochastic model
of prediction error.

Optimizing the use of prediction
Receding horizon control (RHC) has a long history in the control theory literature
[11, 18, 33, 50, 63, 83]. While it has been successful in many applications, [56]

6

shows that in the adversarial prediction setting, RHC with w steps lookahead has
competitive ratio of 1 + ⌦(1), i.e., the performance of RHC does not improve with
increasing accurate prediction. The contrast between the good performance of RHC
in practice against the pessimistic performance guarantee motivates us to move
beyond the worst case in the performance analysis of online algorithms.

In Chapter 4, our goal is to provide new insights into the design of algorithms
for OCO problems with noisy predictions. In particular, our results highlight the
importance of commitment in online algorithms, and the significant performance
gains that can be achieved by tuning the commitment level of an algorithm as
a function of structural properties of the prediction noise such as variance and
correlation structure.

In terms of commitment, receding horizon control (RHC) and averaging fixed
horizon control (AFHC) represent two extreme algorithm designs: RHC commits
to only one action at a time whereas AFHC averages over algorithms that commit to
actions spanning the whole prediction horizon. While the non-committal nature of
RHC enables quick response to improved predictions, it makes RHC susceptible to
switching costs. On the other hand, the cautious nature of AFHC averts switching
costs but makes it entirely dependent on the accuracy of predictions.

Motivated by these deficiencies in existing algorithm design, we introduce a new
class of policies, Committed Horizon Control (CHC), that allows for arbitrary
levels of commitment and thus subsumes RHC and AFHC. We present both average-
case analysis (Theorems 4.1 and 4.6) and concentration results (Theorems 4.7)
for CHC policies. In doing so, we provide the first analysis of RHC with noisy
predictions.

Our results demonstrate that intermediate levels of commitment can provide signif-
icant reductions in cost, to the tune of more than 50% (e.g., Figure 4.4a, Figure 4.5a
and Figure 4.6a). Further, our results also reveal the impact of correlation structure
and variance of prediction noise on the optimal level of commitment, and provide
simple guidelines on how to choose between RHC and AFHC.

These results are enabled by a key step in our proof that transforms the control
strategy employed by the o�ine optimal algorithm, OPT to the strategy of CHC via
a trajectory of intermediate strategies. We exploit the structure of our algorithm at
each intermediate step to bound the di�erence in costs; the sum of these costs over
the entire transformation then gives us a bound on the di�erence in costs between

7

OPT and CHC .

Application to smart energy systems
In Chapter 5 we focus on direct load control with the goal of using demand response
to reduce variations of the aggregate load. This objective has been studied frequently
in the literature, e.g., [30, 77], because reducing the variations of the aggregate load
corresponds to minimizing the generation cost of the utilities. In particular, large
generators with the smallest marginal costs, e.g., nuclear generators and hydro
generators, have limited ramp rates, i.e., their power output cannot be adjusted too
quickly. So, if load varies frequently, then it must be balanced by more expensive
generators (i.e., “peakers”) that have fast ramp rate. Thus, if the load variation is
reduced, then the utility can use the least expensive sources of power generation to
satisfy the electricity demand.

Using the general prediction model introduced in Chapter 2, we introduce a model
predictive algorithm for deferrable load control with uncertainty (Section 5.3). We
perform a detailed performance analysis of our proposed algorithm. The perfor-
mance analysis uses both analytic results and trace-based experiments to study (i)
the reduction in expected load variance achieved via deferrable load control, and
(ii) the value of using model predictive control via our algorithm when compared
with static (open-loop) control. The theorems in Section 5.4 characterize the im-
pact of prediction inaccuracy on deferrable load control. These analytic results
highlight that as the time horizon expands, the expected load variance obtained by
our proposed algorithm approaches the optimal value (Corollary 5.9). Also, as the
time horizon expands, the algorithm obtains an increasing variance reduction over
the optimal static algorithm (Corollary 5.12, 5.13). Furthermore, in Section 5.5 we
provide trace-based experiments using data from Southern California Edison and
Alberta Electric System Operator to validate the analytic results. These experiments
highlight that our proposed algorithm obtains a small suboptimality under high un-
certainties of renewable generation, and has significant performance improvement
over the optimal static control.

8

C h a p t e r 2

GENERAL PREDICTION MODEL

In this chapter, we discuss some of the shortcomings of the adversarial models for
prediction error, and introduce a practical model for prediction error that generalizes
models in the filtering and statistical learning community.

As OCO algorithms make their way into networking and cloud computing appli-
cations, it is increasingly clear that there is a mismatch between the pessimistic
results provided by the theoretical analysis (which is typically adversarial) and the
near-optimal performance observed in practice. Concretely, two main performance
metrics have been studied in the literature: regret, defined as the di�erence between
the cost of the algorithm and the cost of the o�ine optimal static solution, and the
competitive ratio, defined as the maximum ratio between the cost of the algorithm
and the cost of the o�ine optimal (dynamic) solution.

Within the machine learning community, regret has been heavily studied [40, 86, 90]
and there are many simple algorithms that provide provably sublinear regret (also
called “no regret”). For example, online gradient descent achieves O(pT)-regret
[90], even when there are switching costs [9]. In contrast, the online algorithms
community considers a more general class of problems called “metrical task systems”
(MTS) and focuses on competitive ratio [12, 13, 58]. Most results in this literature
are “negative”, e.g., when ct are arbitrary, the competitive ratio grows without
bound as the number of states in the decision space grows [13]. Exceptions to such
negative results come only when structure is imposed on either the cost functions or
the decision space, e.g., when the decision space is one-dimensional it is possible
for an online algorithm to have a constant competitive ratio, e.g., [58]. However,
even in this simple setting no algorithms perform well for both competitive ratio and
regret. No online algorithm can have sublinear regret and a constant competitive
ratio, even if the decision space is one-dimensional and cost functions are linear [9].

In contrast to the pessimism of the analytic work, applications in networking and
cloud computing have shown that OCO algorithms can significantly outperform the
static optimum while nearly matching the performance of the dynamic optimal, i.e.,
they simultaneously do well for regret and the competitive ratio. Examples include
dynamic capacity management of a single data center [7, 58] and geographical load

9

balancing across multiple data centers [56, 66, 69].

It is tempting to attribute this discrepancy to the fact that practical workloads are
not adversarial. However, a more important factor is that, in reality, algorithms can
exploit relatively accurate predictions about the future, such as diurnal variations
[10, 35, 59]. But a more important contrast between the theory and application
is simply that, in reality, predictions about the future are available and accurate,
and thus play a crucial role in the algorithms. In this chapter, we argue that this
mismatch is due to the pessimistic assumption on prediction errors, and propose a
general model for practical predictions. Using this model, we show in Chapter 3
that there is a simple online algorithm that achives simultaneous sublinear regret
and constant competitive ratio.

2.1 Problem formulation and notation
Throughout this thesis we consider online convex optimization problems with
switching costs, i.e., “smoothed” online convex optimization (SOCO) problems.

The standard formulation of an online optimization problem with switching costs
considers a convex decision/action space G ⇢ Rn and a sequence of cost functions
{c1, c2, . . .}, where each ct : G ! R+ is convex. At time t, the online algorithm
first chooses an action, which is a vector xt 2 G, the environment chooses a cost
function ct from a set C, and the algorithm pays a stage cost ct(xt) and a switching
cost � | |xt � xt�1 | | where � 2 (R+). Thus, the total cost of the online algorithm is
defined to be

cost(ALG) = Ex

"

T
’

t=1
ct(xt) + �| |xt � xt�1 | |

#

, (2.1)

where x1, . . . , xT are the actions chosen by the algorithm, ALG. Without loss of
generality, assume the initial action x0 = 0, the expectation is over any randomness
used by the algorithm, and | | · | | is a seminorm on Rn.

Typically, a number of assumptions about the action space G and the cost functions
ct are made to allow positive results to be derived. In particular, the action set G is
often assumed to be closed, nonempty, and bounded, where by bounded we mean
that there exists D 2 R such that for all x, y 2 G, | |x � y | |  D. Further, the cost
functions ct are assumed to have a uniformly bounded subgradient, i.e., there exists
N 2 R+ such that, for all x 2 G, | |rct(x)| |  N .

10

Performance Metrics
The performance of online algorithms for SOCO problems is typically evaluated via
two performance metrics: regret and the competitive ratio. Regret is the dominant
choice in the machine learning community and competitive ratio is the dominant
choice in the online algorithms community. The key di�erence between these
measures is whether they compare the performance of the online algorithm to the
o�ine optimal static solution or the o�ine optimal dynamic solution. Specifically,
the optimal o�ine static solution, is1

ST A = argmin
x2G

T
’

t=1
ct(x) + � | |x | |, (2.2)

and the optimal dynamic solution is

OPT = argmin
(x1,...,xT)2GT

T
’

t=1
ct(xt) + � | |(xt � xt�1)| |. (2.3)

Definition 1. The regret of an online algorithm, ALG, is less than ⇢(T) if the
following holds:

sup
(c1,...,cT)2CT

cost(ALG) � cost(ST A)  ⇢(T). (2.4)

Definition 2. An online algorithm ALG is said to be ⇢(T)-competitive if the following
holds:

sup
(c1,...,cT)2CT

cost(ALG)
cost(OPT)  ⇢(T). (2.5)

The goals are typically to find algorithms with a (small) constant competitive ratio
(“constant-competitive”) and to find online algorithms with sublinear regret, i.e., an
algorithm ALG that has regret ⇢(T) bounded above by some ⇢̂(T) 2 o(T); note that
⇢(T) may be negative if the concept we seek to learn varies dynamically. Sublinear
regret is also called “no-regret”, since the time-average loss of the online algorithm
goes to zero as T grows.

Background
To this point, there are large literatures studying both the designs of no-regret
algorithms and the design of constant-competitive algorithms. However, in general,
these results tell a pessimistic story.

1One switching cost is incurred due to the fact that we enforce x0 = 0.

11

In particular, on a positive note, it is possible to design simple, no-regret algorithms,
e.g., online gradient descent (OGD) based algorithms [40, 90] and Online Newton
Step and Follow the Approximate Leader algorithms [40]. (Note that the classical
setting does not consider switching costs; however, [9] shows that similar regret
bounds can be obtained when switching costs are considered.)

However, when one considers the competitive ratio, results are much less optimistic.
Historically, results about competitive ratio have considered weaker assumptions,
i.e., the cost functions ct and the action set G can be nonconvex, and the switching
cost is an arbitrary metric d(xt, xt�1) rather than a seminorm | |xt � xt�1 | |. The
weakened assumptions, together with the tougher o�ine target for comparison,
leads to the fact that most results are “negative”. For example, [13] has shown that
any deterministic algorithm must be ⌦(n)-competitive given metric decision space
of size n. Furthermore, [12] has shown that any randomized algorithm must be
⌦(plog n/log log n)-competitive. To this point, positive results are only known in
very special cases. For example, [58] shows that, when G is a one-dimensional
normed space, there exists a deterministic online algorithm that is 3-competitive.

Results become even more pessimistic when one asks for algorithms that perform
well for both competitive ratio and regret. Note that performing well for both
measures is particularly desirable for many networking and cloud computing ap-
plications where it is necessary to both argue that a dynamic control algorithm
provides benefits over a static control algorithm (sublinear regret) and is near opti-
mal (competitive ratio). However, a recent result in [9] highlights that such as goal is
impossible: even when the setting is restricted to a one-dimensional normed space
with linear cost functions no online algorithm can simultaneously achieve sublinear
regret and constant competitive ratio 2.

2.2 Impossibility results in adversarial prediction models
The adversarial model underlying most prior work on online convex optimization
has led to results that tend to be pessimistic; however, in reality, algorithms can
often use predictions about future cost functions in order to perform well.

Knowing information about future cost functions is clearly valuable for smoothed
online convex optimization problems, since it allows one to better justify whether

2Note that this impossibility is not the result of the regret being additive and the competitive ratio being
multiplicative, as [9] proves the parallel result for competitive di�erence, which is an additive comparison to
the dynamic optimal.

12

it is worth it to incur a switching cost during the current stage. Thus, it is not
surprising that predictions have proven valuable in practice for such problems.

Given the value of predictions in practice, it is not surprising that there have been
numerous attempts to incorporate models of prediction error into the analysis of
online algorithms. We briefly expand upon the worst-case and stochastic approaches
described in the introduction to motivate our approach, which is an integration of
the two.

Worst-case models. Worst-case models of prediction error tend to assume that
there exists a lookahead window, w, such that within that window, a perfect (or
near-perfect, e.g., error bounded by ") prediction is available. Then, outside of that
window the workload is adversarial. A specific example is that, for any t the online
algorithm knows yt, . . . , yt+w precisely, while yt+w+1, . . . are adversarial.

Clearly, such models are both too optimistic about the the predictions used and too
pessimistic about what is outside the prediction window. The result is that algorithms
designed using such models tend to be too trusting of short term predictions and
too wary of unknown fluctuations outside of the prediction window. Further, such
models tend to underestimate the value of predictions for algorithm performance.
To illustrate this, we establish the following theorem.

Theorem 2.1. For any constant � > 0 and any online algorithm A (deterministic or
randomized) with constant lookaheadw, either the competitive ratio of the algorithm
is at least � or its regret, is ⌦(T). Here T is the number of cost functions in an
instance.

The above theorem focuses on the “easiest” worst-case model, i.e., where the algo-
rithm is allowed perfect lookahead forw steps. Even in this case, an online algorithm
must have super-constant lookahead in order to simultaneously have sublinear re-
gret and a constant competitive ratio. Further, the proof (given in Appendix 2.A)
highlights that this holds even in the scalar setting with linear cost functions. Thus,
worst-case models are overly pessimistic about the value of prediction.

Stochastic models. Stochastic models tend to come in two forms: (i) i.i.d. models
or (ii) detailed models of stochastic processes and specific predictors for those
processes.

In the first case, for reasons of tractability, prediction errors are simply assumed
to be i.i.d. mean zero random variables. While such an assumption is clearly

13

analytically appealing, it is also quite simplistic and ignores many important features
of prediction errors. For example, in reality, predictions have increasing error the
further in time we look ahead due to correlation of predictions errors in nearby
points in time. Further, predictions tend to be updated or refined as time passes.
These fundamental characteristics of predictions cannot be captured by the i.i.d.
model.

In the second case, which is common in control theory, a specific stochastic model
for the underlying process is assumed and then an optimal predictor (filter) is
derived. Examples here include the derivation of Weiner filters and Kalaman filters
for the prediction of wide-sense stationary processes and linear dynamical systems
respectively, see [46]. While such approaches avoid the pessimism of the worst-case
viewpoint, they instead tend to be fragile to the underlying modeling assumptions.
In particular, an online algorithm designed to use a particular filter based on a
particular stochastic model lacks the robustness to be used in settings where the
underlying assumptions are not valid.

2.3 Modelling practical prediction errors
A key contribution of this thesis is the development of a model for studying pre-
dictions that provides a middle ground between the worst-case and the stochastic
viewpoints. The model we propose below seeks a middle ground by not making any
assumption on the underlying stochastic process or the design of the predictor, but
instead making assumptions only on the form of the error of the predictor. Thus, it
is agnostic to the predictor and can be used in worst-case analysis with respect to
the realization of the underlying cost functions.

Further, the model captures three important features of real predictors: (i) it allows
for correlations in prediction errors (both short range and long range); (ii) the
quality of predictions decreases the further in the future we try to look ahead; and
(iii) predictions about the future are refined as time passes.

Concretely, throughout this thesis we model prediction error via the following
equation:

yt = yt |⌧ +
t

’

s=⌧+1
f (t � s)e(s). (2.6)

Here, yt |⌧ is the prediction of yt made at time ⌧ < t. Thus, yt � yt |⌧ is the prediction
error, and is specified by the summation in (2.6). In particular, the prediction error is
modeled as a weighted linear combination of per-step noise terms, e(s) with weights

14

f (t � s) for some deterministic impulse function f . The key assumptions of the
model are that e(s) are i.i.d. with mean zero and positive definite covariance Re; and
that f satisfies f (0) = I and f (t) = 0 for t < 0. Note that, as the examples below
illustrate, it is common for the impulse function to decay as f (s) ⇠ 1/s↵. As we will
see later, this simple model is flexible enough to capture the prediction error that
arise from classical filters on time series, and it can represent all forms of stationary
prediction error by using appropriate forms of f .

Some intuition for the form of the model can be obtained by expanding the summa-
tion in (2.6). In particular, note that for ⌧ = t � 1 we have

yt � yt |t�1 = f (0)e(t) = e(t), (2.7)

which highlights why we refer to e(t) as the per-step noise.

Further, expanding the summation further gives

y
t

� y
t |⌧ = f (0)e(t) + f (1)e(t � 1) + . . . + f (t � ⌧ � 1)e(⌧ + 1). (2.8)

Note that the first term is the one-step prediction error yt � yt |t�1; the first two terms
make up the two-step prediction error yt � yt |t�2; and so on. This highlights that
predictions in the model have increasing noise as one looks further ahead in time
and that predictions are refined as time goes forward.

Additionally, note that the form of (2.8) highlights that the impulse function f cap-
tures the degree of short-term/long-term correlation in prediction errors. Specif-
ically, the form of f (t) determines how important the error t steps in the past is
for the prediction. Since we assume no structural form for f , complex correlation
structures are possible.

Finally, unraveling the summation all the way to time zero highlights that the process
yt can be viewed as a random deviation around the predictions made at time zero,
yt |0 := ŷt , which are specified externally to the model:

yt = ŷt +

t
’

s=1
f (t � s)e(s). (2.9)

This highlights that an instance of the online convex optimization problem can
be specified via either the process yt or via the initial predictions ŷt , and then the
random noise from the model determines the other. We discuss this more when
defining the notions of regret and competitive ratio we study in Section 4.1.

15

Examples
While the form of the prediction error in the model may seem mysterious, it is
quite general, and includes many of the traditional models as special cases. For
example, to recover the worst-case prediction model one can set, 8t, e(t) = 0 and ŷt 0

as unknown 8t0 > t + w and then take the worst case over ŷ. Similarly, a common

approach in robust control is to set f (t) =
8

>

><

>

>

:

I, t = 0;

0, t , 0
, |e(s)| < D, 8s and then

consider the worst case over e.

Additionally, strong motivation for it can be obtained by studying the predictors for
common stochastic processes. In particular, the form of (2.6) matches the prediction
error of standard Weiner filters [84] and Kalman filters [48], etc. To highlight this,
we include a few brief examples below.

Example 2.2 (Wiener Filter). Let {yt}T
t=0 be a wide-sense stationary stochastic

process with E[yt] = ŷt , and covariance E[(yi � ŷi)(y j � ŷ j)T] = Ry(i � j), i.e.,
the covariance matrix Ry > 0 of y = [y1 y2 . . . yT]T is a Toeplitz matrix. The
corresponding e(s) in the Wiener filter for the process is called the “innovation
process” and can be computed via the Wiener-Hopf technique [46]. Using the
innovation process e(s), the optimal causal linear prediction is

y
t |⌧ = ŷ

t

+

⌧
’

s=1
hy

t

, e(s)i | |e(s)| |�2e(s),

and so the correlation function f (s) as defined in (2.6) is

f (s) = hys, e(0)i | |e(0)| |�2 = Ry(s)R�1
e . (2.10)

Example 2.3 (Kalman Filter). Consider a stationary dynamical system described
by the hidden state space model

x 0
t+1 = Ax 0

t

+ Bu
t

, y
t

= Cx 0
t

+ v
t

,

where the {ut, vt, x0} are m⇥1, p⇥1, and n⇥1-dimensional random variables such
that

*

2

6

6

6

6

6

4

ui

vi

x0

3

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

4

uj

v j

x0

1

3

7

7

7

7

7

7

7

7

5

+

=

2

6

6

6

6

6

4

Q�i j S�i j 0 0
S⇤�i j R�i j 0 0

0 0 ⇧0 0

3

7

7

7

7

7

5

.

The Kalman filter for this process yields the optimal causal linear estimator yt |⌧ =
K[yT

1 , . . . , y
T
⌧]T such that yt |⌧ = arg minE⌧ | |yt � K0[yT

1 , . . . , y
T
⌧]T | |2. When t is large

16

and the system reaches steady state, the optimal prediction is given in the following
recursive form [46]:

x 0
t+1 |t = Ax 0

t |t�1 + K
p

e(t), y0 |�1 = 0, e(0) = y0,

e(t) = y
t

� Cx 0
t |t�1,

where Kp = (APC⇤ + BS)R�1
e , is the Kalman gain, and Re = R + CPC⇤ is the

covariance of the innovation process et , and P solves

P = APA⇤ + CQC⇤ � K
p

R
e

K⇤
p

.

This yields the predictions

yt |⌧ =
⌧

’

s=1
hyt, e(s)iR�1

e e(s)

=

⌧
’

s=1
CAt�s�1(APC⇤ + BS)R�1

e e(s).

Thus, for stationary Kalman filter, the prediction error correlation function is

f (s) = CAs�1(APC⇤ + BS)R�1
e

= CAs�1K
p

. (2.11)

Performance metrics under general prediction model
A key feature of the prediction model described above is that it provides a general
stochastic model for prediction errors while not imposing any particular underlying
stochastic process or predictor. Thus, it generalizes a variety of stochastic models
while allowing worst-case analysis.

More specifically, when studying online algorithms using the prediction model
above, one could either specify the instance via yt and then use the form of (2.6) to
give random predictions about the instance to the algorithm or, one could specify
the instance using ŷ := yt |0 and then let the yt be randomly revealed using the form
of (2.9). Note that, of the two interpretations, the second is preferable for analysis,
and thus we state our theorems using it.

In particular, our setup can be interpreted as allowing an adversary to specify the
instance via the initial (time 0) predictions ŷ, and then using the prediction error
model to determine the instance yt . We then take the worst-case over ŷ. This
corresponds to having an adversary with a “shaky hand” or, alternatively, letting
the adversary specify the instance but forcing them to also provide unbiased initial
predictions.

17

In this context, we study the following notions of (expected) regret and (expected)
competitive ratio, where the expectation is over the realization of the prediction
noise e and the measures consider the worst-case specification of the instance ŷ.

Definition 3. We say an online algorithm ALG, has (expected) regret at most ⇢(T)
if

sup
ŷ
Ee[cost(ALG) � cost(ST A)]  ⇢(T). (2.12)

Definition 4. We say an online algorithm ALG is ⇢(T)-competitive (in expectation)
if

sup
ŷ

Ee[cost(ALG)]
Ee[cost(OPT)]  ⇢(T). (2.13)

Using the general model for predictions, we show in the next Chapter that, there
exists online algorithm that can simultaneously achieve sublinear regret and constant
competitive ratio. Overcoming the hardness result for adversarial analysis (Theorem
2.1).

2.A Proofs for Section 2.2
Proof for Theorem 2.1. For a contradiction, assume that there exists an algorithm
A0 that achieves constant competitive ratio and sublinear regret with constant looka-
head. We can use algorithm A0 to obtain another online algorithm A that achieves
constant competitive ratio and sublinear regret without lookahead. This contradicts
Theorem 4 of [9], and we get the claim.

Consider an instance {c1, c2, . . . , cT } without lookahead. We simply “pad” the input
with ` copies of the zero function 0 if A0 has a lookahead of `. That is, the input to
A0 is: c1, 0, . . . , 0, c2, 0, . . . , 0, c3, 0, . . .

We simulate A0 and set the tth action of A equal to the ((t � 1)(` + 1) + 1)th action
of A0. Note that the optimal values of the padded instance are equal to the optimal
values of the given instance. Also, by construction, cost(A)  cost(A0). Therefore,
if A0 achieves constant competitive ratio and sublinear regret then so does A, and
the claim follows. ⇤

18

C h a p t e r 3

THE VALUE OF PREDICTION

In Chapter 2, we have shown that in the adversarial setting, no matter far we can
lookahead, no algorithm can achieve good performance in terms of regret and
competitive ratio simultaneously. This motivates us to propose a new model for
prediction error

Since our focus in this thesis is on predictions, we consider a variation of the above
with parameterized cost functions ct(xt ; yt), where the parameter yt is the focus of
prediction. Further, except when considering worst-case predictions, we adopt a
specific form of ct for concreteness. We focus on a tracking problem where the
online algorithm is trying to do a “smooth” tracking of yt and pays a least square
penalty each round.

cost(ALG) = Ex

"

T
’

t=1

1
2
| |yt � K xt | |22 + �| |xt � xt�1 | |1.

#

, (3.1)

where the target yt 2 Rm, and K 2 Rm⇥n is a (known) linear map that transforms the
control variable into the space of the tracking target. Let K† be the Moore-Penrose
pseudoinverse of K .

We focus on this form because it represents an online version of the LASSO (Least
Absolute Shrinkage and Selection Operator) formulation, which is widely studied in
a variety of contexts, e.g., see [20, 21, 26, 81] and the references therein. Typically
in LASSO the one-norm regularizer is used to induce sparsity in the solution. In
our case, this corresponds to specifying that a good solution does not change too
much, i.e., xt � xt�1 , 0 is infrequent. Importantly, the focus on LASSO, i.e., the
two-norm loss function and one-norm regularizer, is simply for concreteness and
ease of presentation. Our proof technique generalizes (at the expense of length and
complexity).

We assume that KT K is invertible and that the static optimal solution to (3.1) is
positive. Neither of these is particularly restrictive. If K has full column rank then
KT K is invertible. This is a reasonable, for example, when the dimensionality of the
action space G is small relative to the output space. Note that typically K is designed,
and so it can be chosen to ensure these assumptions are satisfied. Additionally if K
is invertible, then it no longer appears in the results provided.

19

Finally, it is important to highlight a few contrasts between the cost function in
(3.1) and the typical assumptions in the online convex optimization literature. First,
note that the feasible action set G = Rn is unbounded. Second, note that gradient
of ct can be arbitrarily large when yt and K xt are far apart. Thus, both of these
are relaxed compared to what is typically studied in the online convex optimization
literature. We show in Section 3.2 that, we can have sublinear regret even in this
relaxed setting.

Recall that we assume the prediction model in (2.6):

yt = yt |⌧ +
t

’

s=⌧+1
f (t � s)e(s).

Naturally, the form of the correlation structure plays a crucial role in the performance
results we prove. But, the detailed structure is not important, only its e�ect on the
aggregate variance. Specifically, the impact of the correlation structure on perfor-
mance is captured through the following two definitions, which play a prominent
role in our analysis. First, for any w > 0, let | | fw | |2 be the two norm of prediction
error covariance over (w + 1) steps of prediction, i.e.,

| | fw | |2 = tr(E[�yw�yT
w]) = tr(Re

w
’

s=0
f (s)T f (s)), (3.2)

where �yT
w = yt+w � yt+w |t�1 =

Õt+w
s=t f (t + w � s)e(s). The derivation of (3.2) is

found in the proof of Theorem 3.4.

Second, let F(w) be the two norm square of the projected cumulative prediction
error covariance, i.e.,

F(w) =
w

’

t=0
E| |KK†�y

w

| |2 = tr(R
e

w

’

s=0
(w � s + 1) f (s)TKK† f (s)). (3.3)

Note that KK† is the orthogonal projector onto the range space of K . Therefore it is
natural that the definitions are over the induced norm of KK† since any action chosen
from the space F can only be mapped to the range space of K i.e. no algorithm,
online or o�ine, can track the portion of y that falls in the null space of K .

Examples

1. For Wierner filter shown in Example 2.2, we have

| | fw | |2 = 1
Re

w
’

s=0
Ry(s)2 and F(w) = 1

Re

w
’

s=0
(w � s + 1)Ry(s)2.

20

2. For the Kalman filter shown in Example 2.3, we have

| | fw | |2 =
w
’

s=0
tr(Re(CAs�1Kp)T KK†(CAs�1Kp)) and

F(w) =
w
’

s=0
(w � s + 1)tr(Re(CAs�1Kp)T KK†(CAs�1Kp)).

Our proofs bound the competitive ratio through an analysis of the competitive
di�erence, which is defined as follows.

Definition 5. We say an online algorithm ALG has (expected) competitive di�er-

ence at most ⇢(T) if

sup
ŷ
Ee [cost(ALG) � cost(OPT)]  ⇢(T). (3.4)

Note that these expectations are with respect to the prediction noise, (e(t))Tt=1, and so
cost(OPT) is also random. Note also that when cost(OPT) 2 ⌦(⇢(T)) and ALG has
competitive di�erence at most ⇢(T), then the algorithm has a constant (bounded)
competitive ratio.

3.1 Averaging fixed horizon control
A wide variety of algorithms have been proposed for online convex optimization
problems. Given the focus of this thesis on predictions, the most natural choice of an
algorithm to consider is Receding Horizon Control (RHC), a.k.a., Model Predictive
Control (MPC).

There is a large literature in control theory that studies RHC/MPC algorithms,
e.g., [33, 63] and the references therein; and thus RHC is a popular choice for
online optimization problems when predictions are available, e.g., [11, 18, 50, 83].
However, recent results have highlighted that while RHC can perform well for one-
dimensional smoothed online optimization problems, it does not perform well (in
the worst case) outside of the one-dimension case. Specifically, the competitive ratio
of RHC with perfect lookahead w is 1+O(1/w) in the one-dimensional setting, but
is 1 + ⌦(1) outside of this setting, i.e., the competitive ratio does not decrease to 1
as the prediction window w increases [56].

In contrast, a promising new algorithm, Averaging Fixed Horizon Control (AFHC),
proposed by [56] in the context of geographical load balancing, maintains good
performance in high-dimensional settings, i.e., maintains a competitive ratio of

21

1 + O(1/w)1. Thus, in this chapter, we focus on AFHC. Our results highlight that
AFHC extracts the asymptotically optimal value from predictions, and so validates
this choice.

As the name implies, AFHC averages the choices made by Fixed Horizon Control
(FHC) algorithms. In particular, AFHC with prediction window size (w+1) averages
the actions of (w + 1) FHC algorithms.

Algorithm 3.1 Fixed Horizon Control
Let⌦k = {i : i ⌘ k mod (w + 1)}\ [�w,T] for k = 0, . . . ,w. Then FHC(k)(w+
1), the kth FHC algorithm is defined in the following manner. At timeslot ⌧ 2 ⌦k

(i.e., before c⌧ is revealed), choose actions x(k)FHC,t for t = ⌧, . . . ⌧ + w as follows:
If t  0, x(k)FHC,t = 0. Otherwise, let x⌧�1 = x(k)FHC,⌧�1, and let (x(k)FHC,t)⌧+wt=⌧ be the
vector that solves

min
x⌧,...,x⌧+w

⌧+w
’

t=⌧
ĉt(xt) + �| |(xt � xt�1)| |,

where ĉt(·) is the prediction of the future cost ct(·) for t = ⌧, . . . , ⌧ + w.

Note that in the classical OCO with (w + 1)-lookahead setting, ĉt(·) is exactly equal
to the true cost c(·). Each FHC(k)(w+1) can be seen as a length (w+1) fixed horizon
control starting at position k. Given (w + 1) versions of FHC, AFHC is defined as
the following:

Algorithm 3.2 Averaging Fixed Horizon Control
At timeslot t 2 1, ...,T , AFHC(w + 1) sets

xAFHC,t =
1

w + 1

w
’

k=0
x(k)FHC,t . (3.5)

3.2 Average-case analysis
We first consider the average-case performance of AFHC (in this section), and then
consider distributional analysis (in Section 3.3). We focus on the tracking problem
in (3.1) for concreteness and conciseness, though our proof techniques generalize.
Note that, unless otherwise specified, we use | | · | | = | | · | |2.

1Note that this result assumes that the action set is bounded, i.e., for all feasible action x, y, there exists
D > 0, such that | |x � y | | < D, and that there exists e0 > 0, s.t. c

t

(0) � e0, 8t. The results we prove in this
chapter make neither of these assumptions.

22

Our main result shows that AFHC can simultaneously achieve sublinear regret and
a constant competitive ratio using only a constant-sized prediction window in nearly
all cases that it is feasible for an online algorithm to do so. This is in stark contrast
with Theorem 2.1 for the worst-case prediction model.

Theorem 3.1. Let w be a constant. AFHC(w+ 1) is constant-competitive whenever
inf ŷ Ee[OPT] = ⌦(T) and has sublinear regret whenever inf ŷ Ee[ST A] � ↵1T �
o(T), for ↵1 = 4V + 8B2, where

V =
�| |K†| |1 | | fw | | + 3�2 | |(KT K)�1 | | + F(w)/2

w + 1
(3.6)

B = � | |(KT)† | |, (3.7)

and | |M | |1 denotes the induced 1-norm of a matrix M .

Theorem 3.1 imposes bounds on the expected costs of the dynamic and static optimal
in order to guarantee a constant competitive ratio and sublinear regret. These bounds
come about as a result of the noise in predictions. In particular, prediction noise
makes it impossible for an online algorithm to achieve sublinear expected cost, and
thus makes it infeasible for an online algorithm to compete with dynamic and static
optimal solutions that perform too well. This is made formal in Theorems 3.2 and
3.3, which are proven in Appendix 3.A. Recall that Re is the covariance of an
estimation error vector, e(t).
Theorem 3.2. Any online algorithm ALG that chooses xt using only (i) internal
randomness independent of e(·) and (ii) predictions made up until time t, has
expected cost Ee[cost(ALG)] � ↵2T + o(T), where ↵2 =

1
2 | |R1/2

e | |2KK† .

Theorem 3.3. Consider an online algorithm ALG such that Ee[cost(ALG)] 2 o(T).
The actions, xt , of ALG can be used to produce one-step predictions y0t |t�1, such
that mean square of the one-step prediction error is smaller than that for yt |t�1, i.e.,
Ee | |yt � y0t |t�1 | |2  Ee | |yt � yt |t�1 | |2, for all but sublinearly many t.

Theorem 3.2 implies that it is impossible for any online algorithm that uses extra
information (e.g., randomness) independent of the prediction noise to be constant
competitive if Ee[cost(OPT)] = o(T) or to have sublinear regret if Ee[cost(ST A)] 
(↵2 � ")T + o(T), for " > 0.

Further, Theorem 3.3 states that if an online algorithm does somehow obtain asymp-
totically smaller cost than possible using only randomness independent of the pre-
diction error, then it must be using more information about future yt than is available

23

from the predictions. This means that the algorithm can be used to build a better
predictor.

Thus, the consequence of Theorems 3.2 and 3.3 is the observation that the condition
in Theorem 3.1 for the competitive ratio is tight and the condition in Theorem 3.1
for regret is tight up to a constant factor, i.e., ↵1 versus ↵2. (Attempting to prove
matching bounds here is an interesting, but very challenging, open question.)

In the remainder of the section, we outline the analysis needed to obtain Theorem
3.1, which is proven by combining Theorem 3.4 bounding the competitive di�erence
of AFHC and Theorem 3.8 bounding the regret of AFHC. The analysis exposes the
importance of the correlation in prediction errors for tasks such as determining
the optimal prediction window size for AFHC. Specifically, the window size that
minimizes the performance bounds we derive is determined not by the quality of
predictions, but rather by how quickly error correlates, i.e., by | | f! | |2.

Proof of Theorem 3.1
The first step in our proof of Theorem 3.1 is to bound the competitive di�erence
of AFHC. This immediately yields a bound on the competitive ratio and, since it is
additive, it can easily be adapted to bound regret as well.

The main result in our analysis of competitive di�erence is the following. This is
the key both to bounding the competitive ratio and regret.

Theorem 3.4. The competitive di�erence of AFHC(w+1) is O(T) and bounded by:

sup
ŷ
Ee[cost(AFHC) � cost(OPT)]  VT, (3.8)

where V is given by (3.6)

Theorem 3.4 implies that the competitive ratio of AFHC is bounded by a constant
when cost(OPT) 2 ⌦(T).
The following corollary of Theorem 3.4 is obtained by minimizing V with respect
to w.

Corollary 3.5. For AFHC, the prediction window size that minimizes the bound
in Theorem 3.4 on competitive di�erence is a finite constant (independent of T) if
F(T) 2 !(T) and is T if there is i.i.d noise2.

2Specifically f (0) = I, f (t) = 08t > 0

24

The intuition behind this result is that if the prediction model causes noise to correlate
rapidly, then a prediction for a time step too far into the future will be so noisy that
it would be best to ignore it when choosing an action under AFHC. However, if the
prediction model is nearly independent, then it is optimal for AFHC to look over
the entire time horizon, T , since there is little risk from aggregating predictions.
Importantly, notice that the quality (variance) of the predictions is not determinant,
only the correlation.

Theorem 3.4 is proven using the following lemma (proven in the appendix) by taking
expectation over noise.

Lemma 3.6. The cost of AFHC(w + 1) for any realization of yt satisfies

cost(AFHC) � cost(OPT) 
1

w + 1

w
’

k=0

’

⌧2⌦
k

�| |x⇤⌧�1 � x(k)⌧�1 | |1 +
⌧+w
’

t=⌧

1
2
| |yt � yt |⌧�1 | |2KK†

!

.

Next, we use the analysis of the competitive di�erence in order to characterize the
regret of AFHC. In particular, to bound the regret we simply need a bound on the
gap between the dynamic and static optimal solutions.

Lemma 3.7. The suboptimality of the o�ine static optimal solution ST A can be
bounded below on each sample path by

cost(ST A) � cost(OPT)

�1
2
©

≠

´

v

u

t T
’

t=1
| |yt � ȳ | |2KK† � 2B

p
T)™

Æ

¨

2

� 2B2T � C

where ȳ =
Õ

T

t=1 yt
T , B = � | |(KT)† | |2 and C = �

2 T (KT K)�1

2T .

Note that the bound above is in terms of | |(yt � ȳ)| |2KK† , which can be interpreted as
a measure of the variability yt . Specifically, it is the projection of the variation onto
the range space of K .

Combining Theorem 3.4 with Lemma 3.7 gives a bound on the regret of AFHC,
proven in Appendix 3.A.

Theorem 3.8. AHFC has sublinear expected regret if

inf
ŷ
Ee

T
’

t=1
| |KK†(yt � ȳ)| |2 � (8V + 16B2)T,

25

where V and B are defined in (3.6) and (3.7).

Finally, we make the observation that, for all instances of y:

cost(ST A) = 1
2

T

’

t=1
| |y

t

� K x | |2 + �| |x | |1

� 1
2

T

’

t=1
| |(I � KK†)y

t

+ KK†y
t

� K x | |2

=
1
2

T

’

t=1
| |(I � KK†)y

t

| |2 + 1
2
| |KK†y

t

� K x | |2

� 1
2
| |KK†(y

t

� ȳ)| |2.

Therefore, by Theorem 3.8, we have the condition of the Theorem.

3.3 Concentration bounds
The previous section shows that AFHC performs well in expectation, but it is also
important to understand the distribution of the cost under AFHC. In this section,
we show that, with a mild additional assumption on the prediction error e(t), the
event when there is a large deviation from the expected performance bound proven
in Theorem 3.4 decays exponentially fast.

The intuitive idea behind the result is the observation that the competitive di�erence
of AFHC is a function of the uncorrelated prediction error e(1), . . . , e(T) that does
not put too much emphasis on any one of the random variables e(t). This type of
function normally has sharp concentration around its mean because the e�ect of
each e(t) tends to cancel out.

For simplicity of presentation, we state and prove the concentration result for AFHC
for the one dimensional tracking cost function

1
2

T
’

t=1
(yt � xt)2 + �|xt � xt�1 |.

In this case, Re = �2, and the correlation function f : N ! R is a scalar valued
function. The results can all be generalized to the multidimensional setting.

Additionally, for simplicity of presentation, we assume (for this section only) that
{e(t)}T

t=1 are uniformly bounded, i.e., 9✏ > 0, s.t. 8t, |e(t)| < ✏ . Note that, with

26

additional e�ort, the boundedness assumption can be relaxed to the case of e(t)
being subgaussian, i.e., E[exp(e(t)2/✏2)]  2, for some ✏ > 0.3

To state the theorem formally, let VT be the upper bound of the expected competitive
di�erence of AFHC in (3.8). Given { ŷt}T

t=1, the competitive di�erence of AFHC
is a random variable that is a function of the prediction error e(t). The following
theorem shows that the probability that the cost of AFHC exceeds that of OPT by
much more than the expected value VT decays rapidly.

Theorem 3.9. The probability that the competitive di�erence of AFHC exceeds VT
is exponentially small, i.e., for any u > 0:

P(cost(AFHC) � cost(OPT) > VT + u)

 exp ©

≠

´

�u2

8✏2 �2
T

(w+1)�2 | | fw | |2
™

Æ

¨

+ exp

�u2

16✏2�(2 T

w+1 F(w) + u)

!

2 exp
✓ �u2

a + bu

◆

,

where | | fw | |2 = (Õw
t=0 | f (t)|2), the parameter � of concentration

� 
w
’

t=0
(w � t) f (t)2 = 1

�2 F(w),

and a = 8✏2[T/(w + 1)]max(�2

�2 | | fw | |2, 4�F(w)), b = 16✏2�.

The theorem implies that the tail of the competitive di�erence of AFHC has a
Bernstein type bound. The bound decays much faster than the normal large devia-
tion bounds obtained by bounding moments, i.e., Markov Inequality or Chebyshev
Inequality. This is done by more detailed analysis of the structure of the competitive
di�erence of AFHC as a function of e = (e(1), . . . , e(T))T .

Note that smaller values of a and b in Theorem 3.9 imply a sharper tail bound. We
can see that smaller | | fw | | and smaller F(w) implies the tail bound decays faster.
Since higher prediction error correlation implies higher | | fw | | and F(w), Theorem
3.9 quantifies the intuitive idea that the performance of AFHC concentrates more
tightly around its mean when the prediction error is less correlated.

3This involves more computation and worse constants in the concentration bounds. Interested
readers are referred to Theorem 12 and the following remark of [14] for a way to generalize the
concentration bound for the switching cost (Lemma 3.10), and Theorem 1.1 of [72] for a way to
generalize the concentration bound for prediction error (Lemma 3.14).

27

Proof of Theorem 3.9
To prove Theorem 3.9, we start by decomposing the bound in Lemma 3.6. In
particular, Lemma 3.6 gives

cost(AFHC) � cost(OPT)  g1 + g2, (3.9)

where
g1 =

1
w + 1

w
’

k=0

’

⌧2⌦
k

� |x⇤⌧�1 � x(k)⌧�1 |

represents loss due to the switching cost, and

g2 =
1

w + 1

w
’

k=0

’

⌧2⌦
k

⌧+w
’

t=⌧

1
2
(yt � yt |⌧�1)2

represents the loss due to the prediction error.

Let V1 =
3�2T
w+1 +

�T
w+1 | | fw | |2, and V2 =

T
2(w+1)F(w). Note that VT = V1 +V2. Then, by

(3.9),

P(cost(AFHC) � cost(OPT) > u + VT)
 P(g1 > u/2 + V1 or g2 > u/2 + V2)
 P(g1 > u/2 + V1) + P(g2 > u/2 + V2). (3.10)

Thus, it su�ces to prove concentration bounds for the loss due to switching cost,
g1, and the loss due to prediction error, g2, deviating from V1 and V2 respectively.
This is done in the following. The idea is to first prove that g1 and g2 are functions
of e = (e(1), . . . , e(T))T that are not “too sensitive” to any of the elements of e, and
then apply the method of bounded di�erence [64] and Log-Sobolev inequality [53].
Combining (3.10) with Lemmas 3.10 and 3.14 below will complete the proof of
Theorem 3.9.

Bounding the loss due to switching cost This section establishes the following
bound on the loss due to switching:

Lemma 3.10. The loss due to switching cost has a sub-Gaussian tail: for any u > 0,

P(g1 > u + V1)  exp

�u2

2✏2�2 T
w+1 (| | fw | |)2

!

. (3.11)

To prove Lemma 3.10, we introduce two lemmas. Firstly, we use the first order
optimality condition to bound g1 above by a linear function of e = (e(1), . . . , e(T))T
using the following lemma proved in the Appendix.

28

Lemma 3.11. The loss due to switching cost can be bounded above by

g1  3�2T
w + 1

+
�

w + 1

w
’

k=0

’

⌧2⌦
k

�

�

�

�

�

�

⌧�1
’

s=1_(⌧�w�2)
f (⌧ � 1 � s)e(s)

�

�

�

�

�

�

. (3.12)

Let g01(e) be the second term of g1. Note that the only randomness in the upper
bound (3.12) comes from g01.

Lemma 3.12. The expectation of g01(e) is bounded above by

Eeg
0
1(e) 

�T
w + 1

| | fw | |2.

With Lemma 3.12, we can reduce (3.11) to proving a concentration bound on g01(e),
since

P(g1 > u + V1)  P(g01 � Eg01(e)  u). (3.13)

To prove concentration of g01(e), which is a function of a collection of independent
random variables, we use the method of bounded di�erence, i.e., we bound the
di�erence of g01(e)where one component of e is replaced by an identically-distributed
copy. Specifically, we use the following lemma, the one-sided version of one due to
McDiarmid:

Lemma 3.13 ([64], Lemma 1.2). Let X = (X1, . . . , Xn) be independent random
variables and Y be the random variable f (X1, . . . , Xn), where function f satisfies

| f (x) � f (x0k)|  ck

whenever x and x0k di�er in the kth coordinate. Then for any t > 0,

P(Y � EY > t)  exp

�2t2
Õn

k=1 c2
k

!

.

Proof of Lemma 3.10. Let e = (e(1), . . . , e(T))T , and e0k = (e(1), . . . , e0(k), . . . , e(T))T
be formed by replacing e(k) with an independent and identically distributed copy
e0(k). Then

|g1(e) � g1(e0k)| 
1

w + 1
�

w
’

m=0
| f (m)(e(k) � e0(k))|

 2
w + 1

✏ �
w
’

m=0
| f (m)| =: ck .

29

Therefore,

T
’

k=1
c2

k =
4✏2�2T
(w + 1)2

w
’

m=0
| f (m)|

!2

 4✏2�2 T
(w + 1)�2 | | fw | |2.

By Lemma 4.9,

P(g01(e) � Eg01(e) > u)  exp

�u2

2✏2�2 T
(w+1)�2 (| | fw | |)2

!

.

Substituting this into (3.13) and (3.11) finishes the proof. ⇤

Bounding the loss due to prediction error In this section we prove the following
concentration result for the loss due to correlated prediction error.

Lemma 3.14. The loss due to prediction error has Berstein type tail: for any u > 0,

P(g2 > u + V2)  exp

�u2

8✏2�(T
w+1 F(w) + u)

!

. (3.14)

To prove Lemma 3.14, we characterize g2 as a convex function of e in Lemma
3.15. We then show that this is a self-bounding function. Combining convexity and
self-bounding property of g2, Lemma 5.23 makes use of the convex Log-Sobolev
inequality to prove concentration of g2.

Lemma 3.15. The expectation of g2 is Eg2 = V2, and g2 is a convex quadratic
form of e. Specifically, there exists a matrix A 2 RT⇥T , such that g2 =

1
2 | |Ae| |2.

Furthermore, the spectral radius of � of AAT satisfies �  F(w).

Hence, (3.14) is equivalent to a concentration result of g2:

P(g2 > V2 + u) = P(g2 � Eg2 > u).

The method of bounded di�erence used in the previous section is not good for a
quadratic function of e because the uniform bound of |g2(e) � g2(e0k)| is too large
since

|g2(e) � g2(e0k)| =
1
2
|(e � e0(k))T AT A(e + e0(k))|,

30

where the (e+ e0(k)) term has T non-zero entries and a uniform upper bound of this
will be in ⌦(T). Instead, we use the fact that the quadratic form is self-bounding.
Let h(e) = g2(e) � Eg2(e). Then

| |rh(e)| |2 = | |AT Ae| |2 = (Ae)T (AAT)(Ae)
 �(Ae)T (Ae) = 2�[h(e) + EV2].

We now introduce the concentration bound for a self-bounding function of a collec-
tion of random variables. The proof uses the convex Log-Sobolev inequality [53].

Lemma 3.16. Let f : Rn ! R be convex and random variable X be supported on
[�d/2, d/2]n. If E[f (X)] = 0 and f satisfies the self-bounding property

| |r f | |2  a f + b, (3.15)

for a, b > 0, then the tail of f (X) can be bounded as

P { f (X) > t}  exp
✓ �t2

d2(2b + at)
◆

. (3.16)

Now to complete the proof of Lemma 3.14, apply Lemma 5.23 to the random
variable Z = h(e) to obtain

P{g2 � Eg2 > u}  exp
✓

� u2

8�max✏2(2V2 + u)
◆

for t > 0, i.e.,

P{g2 > u + v2}  exp
✓

� u2

8�max✏2(2V2 + t)
◆

= exp

�u2

8✏2�(T
w+1 F(w) + u)

!

.

3.4 Concluding remarks
Making use of predictions about the future is a crucial, but under-explored, area of
online algorithms. In this Chapter, we have introduced a general colored noise model
for studying predictions. This model captures a range of important phenomena for
prediction errors including, general correlation structures, prediction noise that
increases with the prediction horizon, and refinement of predictions as time passes.
Further it allows for worst-case analysis of online algorithms in the context of
stochastic prediction errors.

31

To illustrate the insights that can be gained from incorporating a general model of
prediction noise into online algorithms, we have focused on online optimization
problems with switching costs, specifically, an online LASSO formulation. Our
results highlight that a simple online algorithm, AFHC, can simultaneously achieve
a constant competitive ratio and a sublinear regret in expectation in nearly any
situation where it is feasible for an online algorithm to do so. Further, we show that
the cost of AFHC is tightly concentrated around its mean.

We view this chapter as a first step toward understanding the role of predictions
in the design of online optimization algorithms and, more generally, the design of
online algorithms. In particular, while we have focused on a particular, promising
algorithm, AFHC, it is quite interesting to ask if it is possible to design online
algorithms that outperform AFHC. We have proven that AFHC uses the asymp-
totically minimal amount of predictions to achieve constant competitive ratio and
sublinear regret; however, the cost of other algorithms may be lower if they can use
the predictions more e�ciently.

In addition to studying the performance of algorithms other than AFHC, it would
also be interesting to generalize the prediction model further, e.g., by considering
non-stationary processes or heterogeneous e(t).

3.A Proofs for Section 3.2
Proof of Theorem 3.2

Proof. Let (xALG,t)Tt=1 be the solution produced by online algorithm ALG. Then

cost(ALG) �1
2

T

’

t=1
| |y

t

� K x
ALG,t | |2

=
1
2

T

’

t=1
| |(I � KK†)y

t

| |2 + | |KK†y
t

� K x
ALG,t | |2,

by the identity (I�KK†)K = 0. Let ✏t = xALG,t�K†yt |t�1, i.e., ✏t = xALG,t�K†(yt |0�
Õt�1

s=1 f (t � s)e(s)). Since all predictions made up until t can be expressed in terms
of y·|0 and e(⌧) for ⌧ < t, which are independent of e(t), and all other information
(internal randomness) available to ALG is independent of e(t) by assumption, ✏t is

32

independent of e(t). It follows that

E
e

[cost(ALG)] � E
e

[| |KK†y
t

� K(K†y
t |t�1 + ✏t)| |2]

=
1
2

T

’

t=1
E
e\e(t)Ee(t) |e\e(t) | |KK†e(t)T � K✏

t

| |2 (3.17)

=
1
2

T

’

t=1
E
e\e(t)(| |R1/2

e

| |2
KK

† + | |(E
e(t)✏t✏T

t

)1/2 | |2
K

T
K

)

�T
2
| |R1/2

e

| |2
KK

†,

where the first equality uses the identity (I � KK†)K = 0, and the second uses the
independence of ✏t and e(t). ⇤

Proof of Theorem 3.3
By Theorem 3.2, if E[cost(ALG)] 2 o(T), there must be some t such that ✏t is
not independent of e(t). By expanding the square term in (3.17) and noting it is
nonnegative:

E[e(t)TK✏
t

]  1
2
| |R1/2

e

| |2
KK

†,F +
1
2
| |(E✏

t

✏T
t

)1/2 | |2
K

T
K,F
.

Each nonzero E[e(t)T K✏t] can at most make one term in (3.17) zero, since there
are T terms in (3.17) that are each lower bounded by 1

2 | |R1/2
e | |2, and by assumption

E[cost(ALG)] is sublinear. There can be at most a sublinear number of t such that
E[e(t)T K✏t] = 0.

For every other t, we must have E[e(t)T K✏t] > 0. Let lt = E[e(t)T K✏t] > 0, and
at = | |(E✏t✏Tt)1/2 | |2KKT ,F > 0.

Therefore, at time t, the algorithm can produce prediction y0t |t�1 = yt |t�1 +
1
w
t

K✏t ,
where the coe�cient wt is chosen later. Then the one step prediction error variance:

E| |y
t

� y0
t |t�1 | |2 = E| |e(t) �

1
w
t

K✏
t

| |2

= | |R1/2
e

| |2
F

� 2
w
t

l
t

+
1
w2
t

a
t

.

Pick any wt > at/2lt . Then E| |yt � y0t |t�1 | |2 < | |R1/2
e | |2F = E| |yt � yt |t�1 | |2. Thus

ALG can produce better one-step prediction for all but sublinearly many t.

Proof of Lemma 3.6
To prove Lemma 3.6, we use the following Lemma.

33

Lemma 3.17. The competitive di�erence of FHC with fixed (w + 1)-lookahead for
any realization is given by

cost(FHC(k)) cost(OPT) +
’

⌧2⌦k

�| |(x⇤⌧�1 � x(k)⌧�1)| |1

+
1
2

’

⌧2⌦k

⌧+w
’

t=⌧

| |KK†(y
t

� y
t |⌧�1)| |2,

where x⇤
t

is the action chosen by the dynamic o�ine optimal.

of lemma 3.6. Note that cost(FHC(k)) is convex. The result then follows with a
straightforward application of Jensen’s inequality to Lemma 3.17. By the definition
of AFHC, we have the following inequality:

cost(AFHC)  1
w + 1

w

’

k=0
cost(FHC(k)).

By substituting the expression for cost(FHC(k)) into the equation above and sim-
plifying, we get the desired result. ⇤

Before we prove Lemma 3.17, we first introduce a new algorithm we term OPEN .
This algorithm runs an open loop control over the entire time horizon, T . Specif-
ically, it chooses actions xt , for t 2 1, ...,T , that solve the following optimization
problem:

min1
2

T

’

t=1
(y

t |0 � K x
t

)2 + �| |(x
t

� x
t�1)| |1.

FHC(k) can be seen as starting at xk
FHC,⌧�1, using prediction y·|⌧�1, and running

OPEN from ⌧ to ⌧ + w. Then repeating with updated prediction y·|⌧+!. We first
prove the following Lemma characterizing the performance of OPEN .

Lemma 3.18. Competitive di�erence of OPEN over a time horizon, T , is given by

cost(OPEN) � cost(OPT) 
T

’

t=1

1
2
| | ŷ

t

� y
t

| |2
KK

† .

Proof. Recall that the specific OCO we are studying is

min
x

T

’

t=1

1
2
| |y

t

� K x
t

| |2 + �| |(x
t

� x
t�1)| |1, (3.18)

34

where xt 2 Rn, yt 2 Rm, K 2 Rm⇥n and the switching cost, � 2 R+.
We first derive the dual of (3.18) by linearizing the l1 norm, which leads to the
following equivalent expression of the objective above:

min
x,z

1
2

T

’

t=1
| |y

t

� K x
t

| |2 + � T z
t

s.t. z
t

� x
t

� x
t�1, zt � x

t�1 � x
t

, 8t.

The Lagrangian is

L(x, z; �̄, �) = 1
2

T

’

t=1
| |y

t

� K x
t

| |2 + h�̄
t

� �
t

, x
t

� x
t�1i

+ h� � (�̄
t

+ �
t

), z
t

i,

where we take �T+1 = 0 and x0 = 0.

Let �t = �̄t � �t and wt = �̄t + �t . Dual feasibility requires wt  � , 8t, which
implies ��  �t  � , 8t. Dual feasibility also requires h� � wt, zti = 0, 8t.

Now by defining st = �t ��t+1 and equating the derivative with respect to xt to zero,
the primal and dual optimal x⇤t , s⇤t must satisfy KT K x⇤t = KT yt � s⇤t .

Note by premultiplying the equation above by x⇤t
T , we have hx⇤t , s⇤t i = hK x⇤t , yti �

| |K x⇤t | |2. If instead we premultiply the same equation by (KT)†, we have after some
simplification that K x⇤t = (KK†)yt � (KT)†s⇤t . We can now simplify the expression
for the optimal value of the objective by using the above two equations:

cost(OPT) =
T
’

t=1

1
2
| |yt � K x⇤t | |2 + hx⇤t , s⇤t i

=

T
’

t=1

1
2
| |yt | |2 � 1

2
| |KK†yt � (KT)†s⇤t | |2. (3.19)

Observe that (3.19) implies s⇤t minimizes the following expression
ÕT

t=1 | |KK†yt �
(KT)†s⇤t | |2 over the constraint set S = {st |st = �t � �t+1,��  �t  � for 1 

35

t  T, �T+1 = 0}.

cost(OPEN) � cost(OPT) = p(x̂; y) � p(x; y)
=p(x̂; ŷ) � p(x; y) + p(x̂; y) � p(x̂; ŷ

t

)

=

T

’

t=1

1
2
| | ŷ

t

| |2 � 1
2
| |K x̂

t

| |2 � 1
2
| |y

t

| |2 + 1
2
| |K x⇤

t

| |2

+
1
2
| |y

t

� K x̂
t

| |2 � 1
2
| | ŷ

t

� K x̂
t

| |2.

Expanding the quadratic terms, using the property of the pseudo-inverse that
K†KK† = K†, and using the fact that K x⇤t = KK†yt � (KT)†s⇤t , we have

cost(OPEN) � cost(OPT)

=

T

’

t=1

1
2

⇣

| |KK†y
t

� (KT)†s⇤
t

| |2 � | |(KK†y
t

� (KT)† ŝ
t

)| |2
⌘

+
1
2

⇣

| | ŷ
t

� y
t

| |2 � | |(I � KK†)(ŷ
t

� y
t

)| |2
⌘


T

’

t=1

1
2
| | ŷ

t

� y
t

| |2 � 1
2
| |(I � KK†)(ŷ

t

� y
t

)| |2

=

T

’

t=1

1
2
| |KK†(ŷ

t

� y
t

)| |2,

where the first inequality is because of the characterization of s⇤t following (3.19). ⇤

Proof of Lemma 3.17. The proof is a straightforward application of Lemma 3.18.
Summing the cost of OPEN for all ⌧ 2 ⌦k and noting that the switching cost term
satisfying the triangle inequality gives us the desired result. ⇤

Proof of Theorem 3.4
We first define the sub-optimality of the open loop algorithm over expectation of the
noise. E[| |(yt � ŷt)| |2KK†] is the expectation of the projection of the prediction error

36

t + 1 time steps away onto the range space of K , given by:

E[| |(y
t

� ŷ
t

)| |2
KK

†] = E| |
t

’

s=1
KK†(f (t � s)e(s))| |2

=E[
t

’

s1=1

t

’

s2=1
e(s1)T f (t � s1)T (KK†)T (KK†) f (t � s2)e(s2)]

=tr(
t

’

s1=1

t

’

s2=1
f (t � s1)T (KK†)(KK†) f (t � s2)E[e(s2)e(s1)T])

=

t�1
’

s=0
tr(f (s)T (KK†) f (s)R

e

),

where the last line is because E[e(s1)e(s2)T] = 0 for all s1 , s2, and KK†K = K .
Note that this implies | | ft�1 | |2 = Õt�1

s=0 tr(f (s)T f (s)Re). We now write the expected
suboptimality of the open loop algorithm as

E[cost(OPEN) � cost(OPT)] 
T

’

t=1

1
2
E[| |y

t

� ŷ
t

| |2
KK

†]

=
1
2

T�1
’

s=0

T�1
’

t=s

tr(f (s)TKK† f (s)R
e

)

=
1
2

T�1
’

s=0
(T � s)tr(f (s)TKK† f (s)R

e

) = F(T � 1),

where the first equality is by rearranging the summation.

Now we take expectation of the expression we have in Lemma 3.6. Taking expecta-
tion of the second penalty term (prediction error term), we have

1
w + 1

w
’

k=0

’

⌧2⌦
k

⌧+w
’

t=⌧
E

1
2
| |(KK†)(yt � yt |⌧�1)| |2

=
1

2(w + 1)
w
’

k=0

’

⌧2⌦
k

F(w) = T
2(w + 1)F(w).

We now need to bound the first penalty term (switching cost term). By taking the
subgradient with respect to xt and by optimality we have 8t = 1, . . . ,T

0 2 KT (K x⇤t � yt) + �@ | |(x⇤t � x⇤t�1)| |1 + �@ | |(x⇤t+1 � x⇤t)| |1
)x⇤t 2 [(KT K)�1(KT yt � 2�), (KT K)�1(KT yt + 2�)],

where the implication is because the sub-gradient of a 1-norm function | | · | |1 is
between � to .

37

Similarly, since x(k)⌧�1 is the last action taken over a FHC horizon, we have that for
all ⌧ 2 ⌦k ,

x(k)⌧�1 2 [(KTK)�1(KT y⌧�1 |⌧�w�2 � �),
(KTK)�1(KT y⌧�1 |⌧�w�2 + �)].

Taking expectation of one of the switching cost term and upper bounding with
triangle inequality:

E
�

�

�

�

�

�

(x⇤⌧�1 � x(k)⌧�1)
�

�

�

�

�

�

1

 | |K† | |1E| |y⌧�1 � y⌧�1 |⌧�2�w | |1 + 3� | |(KTK)�1 | |1
 | |K† | |1 | | fw | | + 3�| |(KTK)�1 | |1, (3.20)

where the first inequality is by the definition of induced norm, the second inequality
is due to concavity of the square-root function and Jensen’s inequality. Summing
(3.20) over k and ⌧, we have the expectation of the switching cost term. Adding
the expectation of both penalty terms (loss due to prediction error and loss due to
switching cost) together, we get the desired result.

Proof of Lemma 3.7
We first characterize cost(ST A):

cost(ST A) = min
x

1
2

T

’

t=1
| |y

t

� K x | |22 + � T x.

By first order conditions, we have the optimal static solution x = K† ȳ� �T (KT K)�1 .
Substituting this to cost(ST A) and simplifying, we have

cost(ST A) =1
2

T

’

t=1

⇣

| |(I � KK†)y
t

| |22 + | |KK†(y
t

� ȳ)| |22
⌘

� �
2 T (KTK)�1

2T
+ � TK† ȳ.

Let C = �2 T (KT K)�1

2T . Subtracting cost(OPT) in (3.19) from the above, we have

38

cost(ST A) � cost(OPT) equals:

1
2

T

’

t=1
(| |KK†(y

t

� ȳ)| |22 � | |KK†y
t

| |22 + | |KK†y
t

� (KT)†s⇤
t

| |22)

+ � TK† ȳ � C

=
1
2

T

’

t=1

⇣

| |KK†(y
t

� ȳ) � (KT)†s⇤
t

| |22
⌘

+ hK† ȳ, � � �1i � C

�1
2

T

’

t=1

⇣

| |KK†(y
t

� ȳ) � (KT)†s⇤
t

| |22
⌘

� C.

The first equality is by expanding the square terms and noting st = �t��t+1. The last
inequality is because ��  �t  � and � T K† ȳ being positive by assumption
that the optimal static solution is positive. Now we bound the first term of the
inequality above:

1
2

T

’

t=1

⇣

| |KK†(y
t

� ȳ) � (KT)†s⇤
t

| |22
⌘

�1
2

T

’

t=1

⇣

| |KK†(y
t

� ȳ)| |2
⌘

�
T

’

t=1
hKK†(y

t

� ȳ), (KT)†s⇤
t

i

�1
2

T

’

t=1

⇣

| |KK†(y
t

� ȳ)| |2
⌘

� 2�
T

’

t=1
| |KK†(y

t

� ȳ)| | | |(KT)† | |

�1
2

T

’

t=1

⇣

| |KK†(y
t

� ȳ)| |2
⌘

� 2B

v

u

t

T
T

’

t=1
| |(KK†)(y

t

� ȳ)| |2,

where B = � | |(KT)† | |2.

By subtracting C from the expression above and completing the sqaure, we have the
desired result.

Proof of Theorem 3.8
Using the results of Lemma 3.7, taking expectation and applying Jensen’s inequality,
we have

E
e

[cost(ST A) � cost(OPT)]

�E
e

⇥1
2

T

’

t=1
| |KK†(y

t

� ȳ)| |2� 2B

v

u

t

T
T

’

t=1
| |(KK†)(y

t

� ȳ)| |2 � C
⇤

�1
2
©

≠

´

v

u

t

E
e

T

’

t=1

� | |KK†(y
t

� ȳ)| |2� � 2B
p

T™

Æ

¨

2

� 2B2T � C.

39

Therefore by Theorem 3.4, the regret of AFHC is

sup
ŷ

�

E
e

[cost(AFHC)�cost(OPT) + cost(OPT)�cost(ST A)]�

 VT+ 2B2T+ C� 1
2

inf
ŷ

©

≠

´

v

u

t

E
e

T

’

t=1
| |(y

t

� ȳ)| |2
KK

† � 2B
p

T™
Æ

¨

2

.

Let S(T) = Ee
ÕT

t=1 | |yt � ȳ | |2KK† . By the above, to prove AFHC has sublinear
regret, it is su�cient that

VT + 2B2T � 1
2

inf
ŷ

(
p

S(T) � 2B
p

T)2 < g(T) (3.21)

for some sublinear g(T). By the hypothesis of Theorem 3.8, we have inf ŷ S(T) �
(8A + 16B2)T .
Then, S(T) � (

p
2VT + 4B2T + 2B

p
T)2, and (3.21) holds since VT + 2B2T �

1
2 inf ŷ(

p

S(T) � 2B
p

T)2  VT + 2B2T � 1
2

⇣p
2VT + 4B2T

⌘2
= 0.

3.B Proofs for Section 3.3
Proof of Lemma 3.11
By the triangle inequality, we have

g1 =
1

w + 1

w

’

k=0

’

⌧2⌦k

�|x⇤⌧�1 � x(k)⌧�1 |

 1
w + 1

w

’

k=0

’

⌧2⌦k

�
⇣

|x⇤⌧�1 � y⌧�1 | + |y⌧�1 � y⌧�1 |⌧�w�2 |

+ |y⌧�1 |⌧�w�2 � x(k)⌧�1 |
⌘

.

By first order optimality condition, we have x⇤⌧�1 2 {y⌧�1 � 2�, y⌧�1 + 2�}, and
x(k)⌧�1 2 {y⌧�1|⌧�w�2 � �, y⌧�1|⌧�w�2 + �}. Thus, by the prediction model,

g1  3�2T
w + 1

+
�

w + 1

w

’

k=0

’

⌧2⌦k

�

�

�

�

�

�

⌧�1
’

s=1_(⌧�w�2)
f (⌧ � 1 � s)e(s)

�

�

�

�

�

�

.

Proof of Lemma 3.12
Note that by Lemma 3.11, we have

Eg01(e) 
�

w + 1

w

’

k=0

’

⌧2⌦k

E

�

�

�

�

�

�

⌧�1
’

s=1_(⌧�w�2)
f (⌧ � 1 � s)e(s)

�

�

�

�

�

�

 �

w + 1

w

’

k=0

’

⌧2⌦k

v

t

�2
w

’

s=0
f 2(s) = �T

w + 1
| | f

w

| |2.

40

where the second inequality is by Jensen’s inequality and taking expectation.

Proof of Lemma 3.15
By definition of g2 and unraveling the prediction model, we have

g2 =
1

w + 1

w

’

k=0

’

⌧2⌦k

⌧+w
’

t=⌧

1
2
(y

t

� y
t |⌧�1)2

=
1

w + 1

w

’

k=0

’

⌧2⌦k

⌧+w
’

t=⌧

1
2
(

t

’

s=⌧

f (t � s)e(s))2.

Writing it in matrix form, it is not hard to see that

g2 =
1

w + 1

w
’

k=0

1
2
| |Ak e| |2,

where Ak has the block diagonal structure given by

Ak = diag(A1
k, A

2
k, . . . , A

2
k, A

3
k), 4 (3.22)

and there are the types of submatrices in Ak given by, for i = 1, 2, 3:

Ai

k

=

©

≠

≠

≠

≠

≠

´

f (0) 0 . . . 0
f (1) f (0) . . . 0
...

...
. . .

...

f (v
i

) f (v
i�1) . . . f (0)

™

Æ

Æ

Æ

Æ

Æ

¨

,

where v1 = k � 2 if k � 2 and v1 = k + w � 1 otherwise. v2 = w, v3 = (T � k + 1)
mod (w + 1). Note that in fact, the matrix A2

k is the same for all k. Therefore, we
have

g2 =
1
2

eT (1
w + 1

w

’

k=0
AT

k

A
k

)e = 1
2
| |Ae| |2,

where we define A to be such that AT A = 1
w+1

Õw
k=0 AT

k Ak , this can be done because
the right-hand side is positive semidefinite, since Ak is lower triangular. The last
equality is because all A2

l has the same structure. Let � be the maximum eigenvalue
of AAT , which can be expressed by

� = max
| |x | |=1

xT AAT x

=
1

w + 1
max
| |x | |=1

w

’

k=0
xT A

k

AT

k

x  1
w + 1

w

’

k=0
�
k

,

4The submatrix A2
k

is repeated
⌅

T�k+1
!+1

⇧

times in A
k

for k � 2, and
⌅

T�k�!
!+1

⇧

times for
otherwise.

41

where �k is the maximum eigenvalue of Ak AT
k . Note that Ak has a block diagonal

structure, hence Ak AT
k also has block diagonal structure, and if we divide the vector

x = (x1, x2, . . . , xm) into sub-vectors of appropriate dimension, then by the block
diagonal nature of Ak AT

k , we have

xT A
k

AT

k

x =xT1 A1
k

A1
k

T x1 + xT2 A2
k

A2
k

T x2 + . . .

+ xT
m�1 A2

k

A2
k

T x
m�1 + xT

m

A3
k

A3
k

T x
m

.

As such, if we denote the maximum eigenvalues of �i
k as the maximum eigenvalue

of the matrix Ai
k Ai

k
T , then we have

�
k

= max
x

xT A
k

AT

k

x
xT x

= max
x1,...,xm

xT1 A1
k

A1
k

T x1 + xT2 A2
k

A2
k

T x2 + . . . + xT
m

A3
k

A3
k

T x
m

xT1 x1 + . . . + xT
m

x
m

 max
x1,...,xm

max(�1
k

, �2
k

, �3
k

) · (xT1 x1 + . . . + xT
m

x
m

)
xT1 x1 + . . . + xT

m

x
m

 max(�1
k

, �2
k

, �3
k

),

where �i
k is the maximum eigenvalue of Ai

k for i 2 {1, 2, 3}. As Ai
k Ai

k
T are all

positive semidefinite, we can bound the maximum eigenvalue by trace, and note that
A1

k and A3
k are submatrix of A2

k , we have

�
k

 max(�1
k

, �2
k

, �3
k

)  tr(A2
k

A2
k

T) = 1
�2 F(w).

Proof of Lemma 5.23
To prove the lemma, we use the following variant of Log-Sobolev inequality

Lemma 3.19 (Theorem 3.2, [53]). Let f : Rn ! R be convex, and random variable
X be supported on [�d/2, d/2]n, then

E[exp(f (X)) f (X)] � E[exp(f (X))] logE[exp(f (X))]

 d2

2
E[exp(f (X))| |r f (X)| |2].

We will use Lemma 5.22 to prove Lemma 5.23. Denote the moment generating
function of f (X) by

m(✓) := Ee✓ f (X), ✓ > 0.

42

The function ✓ f : Rn ! R is convex, and therefore it follows from Lemma 5.22 that

E
⇥

e✓ f ✓ f
⇤ � E ⇥

e✓ f ⇤ lnE
⇥

e✓ f ⇤  d2

2
E

⇥

e✓ f | |✓r f | |2⇤ ,

✓m0(✓) � m(✓) ln m(✓)  1
2
✓2d2E[e✓ f | |r f | |2].

By to the self-bounding property (5.23),

✓m0(✓) � m(✓) ln m(✓)  1
2
✓2d2E[e✓ f (X)(a f (X) + b)]

=
1
2
✓2d2 [am0(✓) + bm(✓)] .

Since m(✓) > 0, dividing by ✓2m(✓) gives

d
d✓

✓

1
✓
� ad2

2

◆

ln m(✓)
�

 bd2

2
. (3.23)

Since m(0) = 1 and m0(0) = E f (X) = 0, we have

lim
✓!0+

✓

1
✓
� ad2

2

◆

ln m(✓) = 0,

and therefore integrating both sides of (3.23) from 0 to s gives
✓

1
s
� ad2

2

◆

ln m(s)  1
2

bd2s, (3.24)

for s � 0. We can bound the tail probability P{ f > t} with the control (5.25) over
the moment generating function m(s).
In particular,

P{ f (X) > t} = P
n

es f (X) > est
o

 e�stE
h

es f (X)
i

= exp[�st + ln m(s)]

 exp


�st +
bd2s2

2 � asd2

�

,

for s 2 [0, 2/(ad2)]. Choose s = t/(bd2 + ad2t/2) to get

P{ f (X) > t}  exp
✓ �t2

d2(2b + at)
◆

.

43

C h a p t e r 4

OPTIMIZING THE USE OF PREDICTION

In this chapter, we investigate the problem of designing online algorithms that make
the best use of predictions. One of the most popular online algorithms that use
predictions to make online decisions is Receding Horizon Control (RHC). RHC has
a long history in the control theory literature [11, 18, 33, 50, 63, 83], but was first
studied analytically in the context of OCO in [56]. In [56], RHC was proven to have
a competitive ratio (the ratio of the cost incurred by RHC to the cost incurred by
the o�ine optimal algorithm) of 1 +O(1/w) in the one-dimensional setting, where
w is the size of the prediction window. However, the competitive ratio of RHC is
1 + ⌦(1) in the general case, and thus does not decrease to one as the prediction
window grows in the worst case; this is despite the fact that predictions are assumed
to have no noise (the perfect lookahead model). To this point there is no analytic
work characterizing the performance of RHC with noisy predictions.

The poor worst-case performance of RHC motivated the proposal of Averaging
Fixed Horizon Control (AFHC) [56], which provides an interesting contrast. While
RHC is entirely “forward looking”, AFHC keeps an “eye on the past” by respecting
the actions of FHC algorithms in previous timesteps and thus avoids switching costs
incurred by moving too quickly between actions. As a result, AFHC achieves a
competitive ratio of 1+O(1/w) in both single and multi-dimensional action spaces,
under the assumption of perfect lookahead, [56]. Further, strong guarantees on the
performance of AFHC have been established in the case of noisy predictions [22].

Surprisingly, while the competitive ratio of AFHC is smaller than that of RHC, RHC
provides better performance than AFHC in many practical cases. Further, RHC is
seemingly more resistant to prediction noise in many settings (see Figure 4.1 for an
example), though no analytic results are known for this case. Thus, at this point,
two promising algorithms have been proposed, but it is unclear in what settings each
should be used, and it is unclear if there are other algorithms that dominate these
two proposals. In this chapter, we investigate how we can optimize the performance
of online algorithm under di�erent forms of prediction errors.

44

4.1 Problem formulation
We consider online convex optimization (OCO) problems with switching costs and
noisy predictions. We first introduce OCO with switching costs (Section 4.1) and
then describe the model of prediction noise (Section 4.1). Finally, we discuss the
performance metric we consider in this chapter – the competitive di�erence – and
how it relates to common measures such as regret and competitive ratio (Section
4.1).

OCO with switching costs
An OCO problem with switching costs considers a convex, compact decision/action
space F ⇢ Rn and a sequence of cost functions {h1, h2, . . .}, where each ht : F ! R+
is convex, and F is a compact set.

At time t, the following sequence occurs: (i) the online algorithm first chooses an
action, which is a vector xt 2 F ⇢ Rn, (ii) the environment chooses a cost function
ht from a set C, and (iii) the algorithm pays a stage cost ht(xt) and a switching cost
� kxt � xt�1k, where � 2 R+, and k·k can be any norm in Rn, and F is bounded in
terms of this norm, i.e., kx � yk  D for all x, y 2 F.

Motivated by path planning and image labeling problems [22, 70, 75], we consider
a variation of the above that uses a parameterized cost function ht(xt) = h(xt, yt),
where the parameter yt 2 Rm is the focus of prediction. This yields a total cost over
T rounds of

min
x
t

2F

T
’

t=1
h(xt, yt) + � kxt � xt�1k , (4.1)

Note that prior work [22] considers only the case where a least-square penalty is
paid each round, i.e., an online LASSO formulation with h(xt, yt) = 1

2 kyt � K xt k22.
In this chapter, we consider more general h. We impose that h(xt, yt) is separately
convex in both xt and yt along with the following smoothness criteria.

Definition 6. A function h is ↵-Hölder continuous in the second argument for
↵ 2 R+, i.e., for all x 2 F, there exists G 2 R+, such that

|h(x, y1) � h(x, y2)|  G ky1 � y2k↵2 , 8y1, y2.

G and ↵ control the sensitivity of the cost function to a disturbance in y.

For this Chapter, we focus on ↵  1, since the only ↵-Hölder continuous function
with ↵ > 1 is the constant function [6]. When ↵ = 1, h is G-Lipschitz in the

45

second argument; if h is di�erentiable in the second argument, this is equivalent to
�

�@yh(x, y)��2  G, 8x, y.

Modeling prediction noise
Predictions about the future play a crucial role in almost all online decision problems.
However, while significant e�ort has gone into designing predictors, e.g., [46, 73, 74,
89], much less work has gone into integrating predictions e�ciently into algorithms.
This is, in part, due to a lack of tractable, practical models for prediction noise. As
a result, most papers that study online decision making problems, such as OCO, use
numerical simulations to evaluate the impact of prediction noise, e.g., [2, 8, 59, 66].

The papers that do consider analytic models often use either i.i.d. prediction noise
or worst-case bounds on prediction errors for tractability. An exception is the recent
work [22, 32] which introduces a model for prediction noise that captures three
important features of real predictors: (i) it allows for correlations in prediction
errors (both short range and long range); (ii) the quality of predictions decreases the
further in the future we try to look ahead; and (iii) predictions about the future are
refined as time passes.

Recall that we model prediction error via the following equation:

yt � yt |⌧ =
t

’

s=⌧+1
f (t � s)e(s), (4.2)

where yt |⌧ is the prediction of yt made at time ⌧ < t. This model characterizes
prediction error as white noise being passed through a causal filter. In particular,
the prediction error is a weighted linear combination of per-step noise terms e(s)
with weights f (t � s), where f is a deterministic impulse response function. The
noise terms e(s) are assumed to be uncorrelated with mean zero and positive definite
covariance Re; let �2 = tr(Re). Further, the impulse response function f is assumed
to satisfy f (0) = I and f (t) = 0 for t < 0.

Note that i.i.d. prediction noise can be recovered by imposing that f (0) = I and
f (t) = 0 for all t , 0. Further, the model can represent prediction errors that arise
from classical filters such as Wiener filters and Kalman filters (see [22]). In both
cases the impulse response function decays as f (s) ⇠ ⌘s for some ⌘ < 1.

These examples highlight that the form of the impulse response function captures
the degree of short-term/long-term correlation in prediction errors. The form of the
correlation structure plays a key role in the performance results we prove, and its

46

impact can be captured through the following definition. For any k > 0, let k fk k2 be
the two norm square of prediction error covariance over k steps of prediction, i.e.,

k fk k2 = tr(E[�yk�y
T
k]) = tr(Re

k
’

s=0
f (s)T f (s)), (4.3)

where �yT
k = yt+k � yt+k |t =

Õt+k
s=t+1 f (t + k � s)e(s). Derivation of (4.3) can be

found in Appendix 4.B Equation (4.19).

The competitive di�erence
For any algorithm ALG that comes up with feasible actions xALG,t 2 F, 8t, the cost
of the algorithm over the horizon can be written as

cost(ALG) =
T

’

t=1
h(x

ALG,t, yt) + �
�

�x
ALG,t � x

ALG,t�1
�

� . (4.4)

We compare the performance of our online algorithm against the optimal o�ine
algorithm OPT , which makes the optimal decision with full knowledge of the
trajectory of yt .

cost(OPT) = min
x
t

2F

T
’

t=1
h(xt, yt) + � kxt � xt�1k . (4.5)

The results in this chapter bound the competitive di�erence of algorithms for OCO
with switching costs and prediction noise. Informally, the competitive di�erence is
the additive gap between the cost of the online algorithm and the cost of the o�ine
optimal.

To define the competitive di�erence formally in our setting we need to first consider
how to specify the instance. To do this, let us first return to the specification of the
prediction model in (4.2) and expand the summation all the way to time zero. This
expansion highlights that the process yt can be viewed as a random deviation around
the predictions made at time zero, yt |0 := ŷt , which are specified externally to the
model:

yt = ŷt +

t
’

s=1
f (t � s)e(s). (4.6)

Thus, an instance can be specified either via the process yt or via the initial predic-
tions ŷt , and then the random noise from the model determines the other. The latter
is preferable for analysis, and thus we state our definition of competitive di�erence
(and our theorems) using this specification.

47

Definition 7. We say an online algorithm ALG has (expected) competitive di�er-

ence at most ⇢(T) if:

sup
ŷ
Ee [cost(ALG) � cost(OPT)]  ⇢(T). (4.7)

Note that the expectation in the definition above is with respect to the prediction
noise, (e(t))Tt=1, and so both terms cost(ALG) and cost(OPT) are random. Unlike
ALG, the o�ine optimal algorithm OPT knows each exact realization of e before
making the decision.

Importantly, though we specify our results in terms of the competitive di�erence,
it is straightforward to convert them into results about the competitive ratio and
regret, which are more commonly studied in the OCO literature. Recall that the
competitive ratio bounds the ratio of the algorithm’s cost to that of OPT, and the
regret bounds the di�erence between the algorithm’s cost and the o�ine static
optimal.

Converting a result on the competitive di�erence into a result on the competitive
ratio requires lower bounding the o�ine optimal cost, and such a bound can be found
in Theorem 6 of [56]. Similarly, converting a result on the competitive di�erence
into a result on the regret requires lower bounding the o�ine static optimal cost, and
such a bound can be found in Theorem 2 of [22].

4.2 Committed horizon control
There is a large literature studying algorithms for online convex optimization (OCO),
both with the goal of designing algorithms with small regret and algorithms with
small competitive ratio.

These algorithms use a wide variety of techniques. For example, there are numer-
ous algorithms that maintain sub-linear regret, e.g., online gradient descent (OGD)
based algorithms [40, 90] and Online Newton Step and Follow the Approximate
Leader algorithms [40]. (Note that the classical setting does not consider switching
costs; however, [9] shows that similar regret bounds can be obtained when switch-
ing costs are considered.) By contrast, there only exist algorithms that achieve
constant competitive ratio in limited settings, e.g., [58] shows that, when F is a
one-dimensional normed space, there exists a deterministic online algorithm that is
3-competitive. This is because, in general, obtaining a constant competitive ratio is
impossible in the worst-case: [13] has shown that any deterministic algorithm must

48

be ⌦(n)-competitive given metric decision space of size n and [12] has shown that
any randomized algorithm must be ⌦(plog n/log log n)-competitive.

However, all of the algorithms and results described above are in the worst-case
setting and do not consider algorithms that have noisy predictions available. Given
noisy predictions, the most natural family of algorithms to consider come from
the family of Model Predictive Control (MPC) algorithms, which is a powerful,
prominent class of algorithms from the control community. In fact, the only analytic
results for OCO problems with predictions to this point have come from algorithms
inspired by MPC, e.g., [11, 18, 50, 83]. (Note that there is an abundance of literature
on such algorithms in control theory, e.g., [33, 63] and the references therein, but
the analysis needed for OCO is di�erent than from the stability analysis provided by
the control literature.)

To this point, two promising candidate algorithms have emerged in the context of
OCO: Receding Horizon Control (RHC) [51] and Averaging Fixed Horizon Control
(AFHC) [56]. We discuss these two algorithms in Section 4.2 below and then
introduce our novel class of Committed Horizon Control (CHC) algorithms, which
includes both RHC and AFHC as special cases, in Section 4.2. The class of CHC
algorithms is the focus of this Chapter.

Two promising algorithms
At this point the two most promising algorithms for integrating noisy predictions
into solutions to OCO problems are RHC and AFHC.

Receding Horizon Control (RHC): RHC operates by determining, at each timestep
t, the optimal actions over the window (t + 1, t + w), given the starting state xt and
a prediction window (horizon) of length w.

To state this more formally, let y·|⌧ denote the vector (y⌧+1|⌧, . . . , y⌧+w |⌧), the predic-
tion of y in a w timestep prediction window at time ⌧. Define X⌧+1(x⌧, y·|⌧) as the
vector in Fw indexed by t 2 {⌧ + 1, . . . , ⌧ + w}, which is the solution to

min
x⌧+1,...,x⌧+w

⌧+w
’

t=⌧+1
h(xt, yt |⌧) +

⌧+w
’

t=⌧+1
� kxt � xt�1k , (4.8)

subject to xt 2 F .

RHC has a long history in the control theory literature, e.g., [11, 18, 33, 63].
However, there are few results known in the OCO literature, and most such results

49

Algorithm 4.1 Receding Horizon Control
For all t  0, set xRHC,t = 0. Then, at each timestep ⌧ � 0, set

xRHC,⌧+1 = X⌧+1
⌧+1 (xRHC,⌧, y·|⌧) (4.9)

are negative. In particular, the competitive ratio of RHC with perfect lookahead
window w is 1 + O(1/w) in the one-dimensional setting. The performance is not
so good in the general case. In particular, outside of the one-dimensional case the
competitive ration of RHC is 1 + ⌦(1), i.e., the competitive ratio does not decrease
to 1 as the prediction window w increases in the worst case [58].

Averaging Fixed Horizon Control (AFHC): AFHC provides an interesting contrast
to RHC. RHC ignores all history – the decisions and predictions that led it to be
in the current state – while AFHC constantly looks both backwards and forwards.
Specifically, AFHC averages the choices made by Fixed Horizon Control (FHC)
algorithms. In particular, AFHC with prediction window size w averages the actions
ofw FHC algorithms, each with di�erent predictions available to it. At time t, a FHC
algorithm determines the optimal actions xt+1, . . . , xt+w given a prediction window
(horizon) of length w as done in RHC. But, then FHC implements all actions in the
trajectory xt+1, . . . , xt+w instead of just the first action xt . Fixed Horizon Control
algorithms are individually more naive than RHC, but by averaging them AFHC
can provide improved worst-case performance compared to RHC. To define the
algorithm formally, let

⌦k = {i : i ⌘ k mod w} \ [�w + 1,T] for k = 0, . . . ,w � 1.

Note that, for k � 1, the algorithm starts from ⌧ = k � w rather than ⌧ = k in order

Algorithm 4.2 Fixed Horizon Control, version k

FHC(k)(w), is defined in the following manner. For all t  0, set x(k)FHC,t = 0. At
timeslot ⌧ 2 ⌦k (i.e., before y⌧+1 is revealed), for all t 2 {⌧ + 1, . . . , ⌧ + w}, use
(4.8) to set

x(k)FHC,t = X⌧+1
t

⇣

x(k)FHC,⌧, y·|⌧
⌘

. (4.10)

to calculate x(k)FHC,t for t < k.

While individual FHC can have poor performance, surprisingly, by averaging di�er-
ent versions of FHC we can obtain an algorithm with good performance guarantee.
Specifically, AFHC is defined as follows.

50

Algorithm 4.3 Averaging Fixed Horizon Control

For all k, at each timeslot ⌧ 2 ⌦k , use FHC(k) to determine x(k)FHC,⌧+1, . . .,
x(k)FHC,⌧+w, and for t = 1, . . . ,T , set

xAFHC,t =
1
w

w�1
’

k=0
x(k)FHC,t . (4.11)

In contrast to RHC, AFHC has a competitive ratio of 1 + O(1/w) regardless of
the dimension of the action space in the perfect lookahead model [56]1. This
improvement of AFHC over RHC is illustrated in Figure 4.1(a), which shows for a
specific setting with perfect lookahead, AFHC approaches the o�ine optimal with
increasing prediction window size while RHC is relatively constant. (The setting
used for the figure uses a simple model of a data center with a multi-dimensional
action space, and is described in Appendix 4.A.)

Comparing RHC and AFHC: Despite the fact that the worst-case performance
of AFHC is dramatically better than RHC, RHC provides better performance than
AFHC in realistic settings when prediction can be inaccurate in the lookahead
window. For example, Figure 4.1(b) highlights that RHC can outperform AFHC by
an arbitrary amount if the predictions are noisy. Specifically, if we make predictions
accurate for a small window � and then inaccurate for the remaining (w � �) steps
of the lookahead window, AFHC is a�ected by the inaccurate predictions whereas
RHC only acts on the correct ones. The tradeo� between the worst-case bounds
and average-case performance across AFHC and RHC is also evident in the results
shown in Figure 3 of [56].

The contrast between Figure 4.1a and 4.1b highlights that, at this point, it is unclear
when one should use AFHC/RHC. In particular, AFHC is more robust but RHC
may be better in many specific settings. Further, the bounds we have described so
far say nothing about the impact of noise on the performance (and comparison) of
these algorithms.

A general class of algorithms
The contrast between the performance of receding horizon control (RHC) and
averaging fixed horizon control (AFHC) in worst-case and practical settings is a

1Note that this result assumes that there exists e0 > 0, s.t. h(x, y) � e0 · x, 8x, y, and the switching cost is
� · (x

t

� x
t�1)+ where (x)+ = max(x, 0).

51

prediction window size, w
2 4 6 8 10

co
st

 n
or

m
al

iz
ed

 b
y

op
t

0

0.5

1

1.5

2

2.5

3

RHC
AFHC

(a)
steps of perfect prediction

2 4 6 8 10

co
st

 n
or

m
al

iz
ed

 b
y

op
t

0

1

2

3

4

5

RHC
AFHC

(b)

Figure 4.1: Total cost of RHC and AFHC, normalized by the cost of the o�ine
optimal, versus: (a) prediction window size, (b) number of steps of perfect prediction
with w = 10. Note (a) and (b) were produced under di�erent cost settings, see
Appendix 4.A.

consequence of the fact that RHC is entirely “forward looking” while AFHC keeps
an “eye on the past”. However, both algorithms are extreme cases in that RHC does
not consider any information that led it to its current state, while AFHC looks back
at w FHC algorithms – every set of predictions that led to the current state.

One way to view this di�erence between RHC and AFHC is in terms of commitment.
In particular, AFHC has FHC algorithms that commit to the w decisions at each
timestep and then the final choice of the algorithm balances these commitments by
averaging across them. In contrast, RHC commits only one step at a time.

Building on this observation, we introduce the class of Committed Horizon Control
(CHC) algorithms. The idea behind the class is to allow commitment of a fixed
number, say v, of steps. The minimal level of commitment, v = 1, corresponds to
RHC and the maximal level of commitment, v = w, corresponds to AFHC. Thus,
the class of CHC algorithms allows variation between these extremes.

Formally, to define the class of CHC algorithms we start by generalizing the class of
FHC algorithms to allow limited commitment. An FHC algorithm with commitment
level v uses a prediction window of size w but then executes (commits to) only the
first v 2 [1,w] actions which can be visualized by Figure 4.2. To define this formally,
let

 k = {i : i ⌘ k mod v} \ [�v + 1,T] for k = 0, . . . , v � 1.

Fixed horizon control with lookahead windoww and commitment level v, FHC(k)(v,w),
is defined in the following manner. For notational convenience, we write x(k) ⌘

52

x(k)FHC(v,w). Note that, for k � 1, the algorithm starts from ⌧ = k � v rather than ⌧ = k

Algorithm 4.4 FHC with Limited Commitment

For all t  0, set x(k)FHC,t = 0.
At timeslot ⌧ 2 k (i.e., before y⌧+1 is revealed), for all t 2 {⌧ + 1, . . . , ⌧ + v},
use (4.8) to set

x(k)t = X⌧+1
t

⇣

x(k)⌧ , y·|⌧
⌘

. (4.12)

in order to calculate x(k)t . We can see that FHC with limited commitment is very
similar to FHC as both use (4.8) to plan w timesteps ahead, but here only the first v
steps are committed to action.

... ...FHC (v,w)(k)

{ {v (w-v)

... ...

Figure 4.2: Fixed Horizon Control with commitment level v: optimizes once every
v timesteps for the next w timesteps and commits to use the first v of them.

CHC(v,w), the CHC algorithm with prediction window w and commitment level v,
averages over v FHC algorithms with prediction window w and commitment level v.
Figure 4.3 provides an overview of CHC. For conciseness in the rest of the chapter,
we will use x(k)t to denote the action decided by FHC(k)(v,w) at time t.

... ...

... ...

... ...

FHC (v,w)(1)

...

...

CHC

{ {v (w-v)

FHC (v,w)(2)

FHC (v,w)(v)

Figure 4.3: Committed Horizon Control: at each timestep, it averages over all v
actions defined by the v FHC algorithms with limited commitment.

Algorithm 4.5 Committed Horizon Control

At each timeslot ⌧ 2 k , use FHC(k)(v,w) to determine x(k)⌧+1, . . ., x(k)⌧+v, and at
timeslot t 2 1, ...,T , CHC(v,w) sets

xCHC,t =
1
v

v�1
’

k=0
x(k)t . (4.13)

53

RHC and AFHC are the extreme levels of commitment in CHC policies and, as we
see in the analysis that follows, it is often beneficial to use intermediate levels of
commitment depending on the structure of prediction noise.

4.3 Optimal commitment level
We now present the main technical results of this chapter, which analyze the per-
formance of committed horizon control (CHC) algorithms and address several open
challenges relating to the analysis of receding horizon control (RHC) and averag-
ing fixed horizon control (AFHC). In this section we characterize the average case
performance of CHC as a function of the commitment level v of the policy and
properties of the prediction noise, i.e., the variance of prediction noise e(s) and
the form of the correlation structure, f (s). Concentration bounds are discussed in
Section 4.4. All proofs are presented in Appendix 4.B.

Our main result establishes bounds on the competitive di�erence of CHC under
noisy predictions. Since CHC generalizes RHC and AFHC, our result also provides
the first analysis of RHC with noisy predictions and further enables a comparison
between RHC and AFHC based on the properties of the prediction noise.

Previously, only AFHC has been analyzed in the case of OCO with noisy predictions
[22]. Further, the analysis of AFHC in [22] depends delicately on the structure of
the algorithm and thus cannot be generalized to other policies, such as RHC. Our
results here are made possible by a novel analytic technique that transforms the
control strategy employed by OPT, one commitment length at a time, to the control
strategy employed by FHC(k)(v,w). At each intermediate step, we exploit the
optimality of FHC(k)(v,w) within the commitment length to bound the di�erence
in costs; the sum of these costs over the entire transformation gives a bound on
the di�erence in costs between OPT and FHC(k)(v,w). We then exploit Jensen’s
inequality to extend this bound on competitive di�erence to CHC.

Theorem 4.1 below presents our main result characterizing the performance of CHC
algorithms under noisy predictions for functions that are ↵-Hölder continuous in
the second argument; in particular, ↵ = 1 corresponds to the class of function that
is Lipschitz continuous in the second argument.

Theorem 4.1. Assuming that the prediction error follows (2.6), then for h that is
↵-Hölder continuous in the second argument, we have

Ecost(CHC)  Ecost(OPT) + 2T �D
v
+

2GT
v

v�1
’

k=0
k f

k

k↵ . (4.14)

54

Note that, while Theorem 4.1 is stated in terms of the competitive di�erence, it can
easily be converted into results about the competitive ratio and regret as explained
in Section 4.1.

There are two terms in the bound on the competitive di�erence of CHC: (i) The first
term 2T �D

v can be interpreted as the price of switching costs due to limited com-
mitment; this term decreases as the commitment level v increases. (ii) The second
term 2GT

v

Õv�1
k=0 k fk k↵ represents the impact of prediction noise on the competitive

di�erence and can be characterized by k fk k (defined in (4.3)), which is impacted by
both the variance of e(s) and the structural form of the prediction noise correlation,
f (s).
Theorem 4.1 allows us to immediately analyze the performance of RHC and AFHC
as they are special cases of CHC. We present our results comparing the performance
of RHC and AFHC by analyzing how the optimal level of commitment, v, depends
on properties of the prediction noise.

In order to make concrete comparisons, it is useful to consider specific forms of
prediction noise. Here, we consider four cases: (i) i.i.d. prediction noise, (ii)
prediction noise with long range correlation, (iii) prediction noise with short range
correlation, and (iv) prediction noise with exponentially decaying correlation. All
four cases can be directly translated to assumptions on the correlation structure,
f (·). Recall that many common predictors, e.g., Wiener and Kalman filters, yield f
that is exponentially decaying.

i.i.d. prediction noise. The assumption of i.i.d. prediction noise is idealistic since
it only happens when the forecast for yt is optimal based on the information prior
to time t for all t = 1, . . . ,T [43]. However, analysis of the i.i.d. noise is instructive
and provides a baseline for comparison with more realistic models. In this case,
Theorem 4.1 can be specialized as follows. Recall that E[e(s)e(s)T] = Re, and
tr(Re) = �2.

Corollary 4.2. Consider i.i.d. prediction error, i.e.,

f (s) =
8

>

><

>

>

:

I, s = 0

0, otherwise.

55

If h satisfies is ↵-Hölder continuous in the second argument, then the expected
competitive di�erence of CHC is upper bounded by

Ecost(CHC) Ecost(OPT) + 2T �D
v
+ 2GT�↵,

which is minimized when v⇤ = w.

This can be proved by simply applying the form of f (s) to (4.14). Corollary
4.2 highlights that, in the i.i.d. case, the level of commitment that minimizes the
competitive di�erence always coincides with the lookahead window w, independent
of all other parameters. This is intuitive since, when prediction noise is i.i.d.,
increasing commitment level does not increase the cost due to prediction errors.
Combined with the fact that increasing the commitment level decreases the costs
incurred by switching, we can conclude that AFHC is optimal in the i.i.d. setting.

Long range correlation. In contrast to i.i.d. prediction noise, another extreme case
is when prediction noise has strong correlation over a long period of time. This is
pessimistic and happens when past prediction noise has far-reaching e�ects on the
prediction errors in the future, i.e., the current prediction error is sensitive to errors
in the distant past. In this case, prediction only o�ers limited value since prediction
errors accumulate. For long range correlation, we can apply Theorem 4.1 as follows.

Corollary 4.3. Consider prediction errors with long range correlation such that

k f (s)kF =
8

>

><

>

>

:

c, s  L

0, s > L,

where L > w. If h is ↵-Hölder continuous in the second argument, the expected
competitive di�erence of CHC is upper bounded by

Ecost(CHC) � Ecost(OPT)  2T �D(↵ + 2) � 4GTc↵�↵

↵ + 2
v�1

+
23+↵

2 GTc↵�↵

↵ + 2
v↵/2.

If �D
Gc↵�↵ > ↵(2w)1+↵

2 + 2, then v⇤ = w; if �D
Gc↵�↵ <

2
↵+2 , then v⇤ = 1, otherwise v⇤

is in between 1 and w.

Corollary 4.3 highlights that, in the case of long range correlation, the level of
commitment that minimizes the competitive di�erence depends on the variance �2,
the switching cost �, the smoothness G, ↵, and diameter of the action space D.

56

commitment level, v
100 101 102

C
om

pe
tit

iv
e

D
iff

er
en

ce

0

2

4

6

8

10

12

14

βD=5, G=0.3, cσ=3, α=0.9
βD=3, G=0.1, cσ=2, α=0.1
βD=1, G=1.0, cσ=1, α=0.7

(a)
α

0 0.2 0.4 0.6 0.8 1

op
t c

om
m

itm
en

t l
ev

el
, v

*

100

101

102

βD=5, G=0.3, cσ=3, w=100

(b)

Figure 4.4: Illustration of Corollary 4.3, for long range dependencies. (a) shows
the time averaged expected competitive di�erence as a function of the commitment
level, and (b) shows the optimal commitment level as a function of ↵.

The term �D
Gc↵�↵ can be interpreted as a measure of the relative importance of the

switching cost and the prediction loss. If �D
Gc↵�↵ =

2
↵+2 2 O(1), i.e., the one step loss

due to prediction error is on the order of the switching cost, then v⇤ = 1 and RHC
optimizes the performance bound; if �D

Gc↵�↵ = ↵(2w)1+↵
2 + 2 2 ⌦(w), then v⇤ = w

and AFHC optimizes the performance bound. Otherwise, v⇤ 2 (1,w).
We illustrate these results in Figure 4.4 which plots the competitive di�erence as
a function of the commitment level for various parameter values. The case for
the dashed line satisfies �D

Gc↵�↵ > ↵(2w)1+↵
2 + 2 and shows competitive di�erence

decreases with increasing levels of commitment. Here, the window size is 100,
and thus AFHC minimizes the competitive di�erence, validating Corollary 4.3.
The dot-dashed line satisfies �D

Gc↵�↵ <
2
↵+2 and shows the increase in competitive

di�erence with commitment, highlighting that RHC is optimal. The solid line does
not satisfy either of these conditions and depicts the minimization of competitive
di�erence at intermediate levels of commitment (marked with a circle). Figure 4.4b
illustrates the relationship between ↵ and the optimal commitment level v⇤ (marked
with a circle that corresponds to the same v⇤ as in Figure 4.4a). As ↵ increases, the
prediction loss increases, and thus the optimal commitment level decreases to allow
for updated predictions.

Short range correlation. Long range correlation is clearly pessimistic as it assumes
that the prediction noise is always correlated within the lookahead window. Here,
we study another case where prediction noise can be correlated, but only within
a small interval that is less than the lookahead window w. This is representative

57

of scenarios where only limited past prediction noises a�ect the current prediction.
For such short range correlation, Theorem 4.1 gives us:

Corollary 4.4. Consider prediction errors with short range correlation such that

k f (s)kF =
8

>

><

>

>

:

c, s  L

0, s > L,

where L  w. If h is ↵-Hölder continuous in the second argument, the expected
competitive di�erence of CHC is upper bounded by:

if v > L

Ecost(CHC) � Ecost(OPT)  2T �D
v
+ 2GT(c�)↵(L + 1)↵/2

� 2GT
v

(c�)↵
↵ + 2

((L + 1)↵/2(↵L � 2) + 1);

if v  L

Ecost(CHC) � Ecost(OPT)  2T �D
v

+
4GTc↵�↵

v(↵ + 2) ((v + 1)(↵+2)/2 � 1).

If �D
Gc↵�↵ > H(L), where H(L) = 1

↵+2
�(L + 1)↵/2(↵L � 2) + 1

�

, then v⇤ = w; if
�D

Gc↵�↵ < min(H(L), 2
↵+2), then v⇤ = 1, otherwise v⇤ is in between 1 and w.

Corollary 4.4 shows that the structure of the bound on the competitive di�erence
itself depends on the relative values of v and L. In terms of the optimal commitment
level, Corollary 4.4 shows that, similar to Corollary 4.3, the term �D

Gc↵�↵ comes into
play; however, unlike Corollary 4.3 (where L > w), the optimal commitment level
now also depends on the length of the interval, L, within which prediction errors are
correlated. Note that H(L) is increasing in L. If �D

Gc↵�↵ > H(L), i.e., the prediction
loss and L are small compared to the switching cost, then v⇤ = w and thus AFHC
optimizes the performance bound. On the other hand, if the prediction loss and L
are large compared to the switching cost, then v⇤ = 1, and thus RHC optimizes
the bound; otherwise, v⇤ lies is between 1 and w, and thus intermediate levels of
commitment under CHC perform better than AFHC and RHC.

Note that when prediction noise is i.i.d., we have L = 0 and H(L) < 0; hence
we have �D

Gc↵�↵ > H(L) and thus v⇤ = w, which corresponds to the conclusion of
Corollary 4.2.

58

commitment level, v
100 101 102

C
om

pe
tit

iv
e

D
iff

er
en

ce

0

2

4

6

8

10

12

14

βD=3.5, G=0.5, cσ=3, α=0.9
βD=3, G=0.1, cσ=2, α=0.1
βD=0.1, G=1, cσ=2, α=0.7

(a)
α

0 0.2 0.4 0.6 0.8 1

op
t c

om
m

itm
en

t l
ev

el
, v

*

100

101

102

βD=3.5, G=0.5, cσ=3, w=100

(b)

Figure 4.5: Illustration of Corollary 4.4, for short range correlations. (a) shows
the time averaged expected competitive di�erence as a function of the commitment
level, and (b) shows the optimal commitment level as a function of ↵.

We illustrate these results in Figure 4.5a, which plots the competitive di�erence as a
function of the commitment for various parameter values. The dashed line satisfies
�D

Gc↵�↵ > H(L) and shows the drop in competitive di�erence with increasing levels
of commitment. The competitive di�erence is lowest when the commitment level
is 100, which is also the window size, thus validating the optimality of AFHC as
per Corollary 4.4. The dot-dashed line satisfies �D

Gc� < min(H(L), 2
↵+2) and shows

the increase in competitive di�erence with commitment, highlighting that RHC
is optimal. The solid line does not satisfy either of these conditions and depicts
the minimization of competitive di�erence at intermediate levels of commitment.
Figure 4.5b illustrates the relationship between ↵ and the optimal commitment level
v⇤. As ↵ increases, loss due to prediction noise increases; as a result, v⇤ decreases.

Exponentially decaying correlation. Exponentially decaying correlation is per-
haps the most commonly observed model in practice and is representative of pre-
dictions made via Wiener [84] or Kalman [48] filters. For clarity of illustration we
consider the case of ↵ = 1 here. In this case, Theorem 4.1 results in the following
corollary.

Corollary 4.5. Consider prediction errors with exponentially decaying correlation,
i.e., there exists a < 1, such that

k f (s)kF =
8

>

><

>

>

:

cas, s � 0

0, s < 0.

If h is 1-Hölder continuous, then the expected competitive di�erence of CHC is

59

upper bounded by

Ecost(CHC) � Ecost(OPT)  2T �D
v
+

2GTc�
1 � a2

� a2(1 � a2v)GTc�
v(1 � a2)2 .

When �D
Gc� � a2

2(1�a2) the commitment that minimizes the performance bound is
v⇤ = w, i.e., AFHC minimizes the performance bound. When �D

Gc� <
a2

2(1+a) , v
⇤ = 1,

i.e., RHC minimizes the performance bound.

Corollary 4.5 shows that when the prediction noise � and the correlation decay a are
small, the loss due to switching costs is dominant, and thus commitment is valuable;
on the other hand, when � and a are large, then the loss due to inaccurate predictions
is dominant, and thus a smaller commitment is preferable to exploit more updated
predictions.

We illustrate these results in Figure 4.6a, which plots the competitive di�erence as a
function of the commitment for various parameter values. The dashed line satisfies
�D

Gc� >
a2

2(1�a2) and shows the drop in competitive di�erence with increasing levels
of commitment. The competitive di�erence is lowest when the commitment level is
100, which is also the window size, thus validating the optimality of AFHC as per
Corollary 4.5. The dot-dashed line satisfies �D

Gc� >
a2

2(1+a) and shows the increase
in competitive di�erence with commitment, highlighting that RHC is optimal. The
solid line does not satisfy either of these conditions and depicts the minimization of
competitive di�erence at intermediate levels of commitment. Figure 4.6b illustrates
the relationship between a and the optimal commitment level v⇤. As a increases,
correlation decays more slowly, and thus the loss due to prediction noise becomes
dominant; as a result, v⇤ decreases.

Strong convexity. All of our results to this point depend on the diameter of the
action space D. While this is common in OCO problems, e.g., [47, 90], it is not
desirable.

Our last result in this section highlights that it is possible to eliminate the dependence
on D by making a stronger structural assumption on h – strong convexity. In
particular, we say that h(·) is m�strongly convex in the first argument w.r.t. the
norm of the switching cost k·k if 8x1, x2, y,

h(x1, y) � h(x2, y) � h@x h(x2, y) · (x1 � x2)i + m
2
kx1 � x2k2 .

60

commitment level, v
100 101 102

C
om

pe
tit

iv
e

D
iff

er
en

ce

0

2

4

6

8

10

12

14

βD=1.5, Gcσ=0.1, a=0.990
βD=2.5, Gcσ=0.1, a=0.900
βD=0.0002, Gcσ=0.2, a=0.975

(a)
a

0.9 0.92 0.94 0.96 0.98 1

op
t c

om
m

itm
en

t l
ev

el
, v

*

0

5

10

15

20

25

30

βD=1.5, Gcσ=0.1

(b)

Figure 4.6: Illustration of Corollary 4.5, for exponentially decaying correlations.
(a) shows the time averaged expected competitive di�erence as a function of the
commitment level, and (b) shows the optimal commitment level as a function of the
decay parameter, a.

Strong convexity is used in the online learning literature to obtain performance
bounds that are independent of the diameter of action space, see, e.g., [41, 76].
Under the assumption of strong convexity, we obtain the following.

Theorem 4.6. If h is m-strongly convex in the first argument with respect to k·k and
↵-Hölder continuous in the second argument, we have

Ecost(CHC) � Ecost(OPT)  2�2T
mv
+ 2GT

v�1
’

k=0
k fk k↵ .

Theorem 4.6 is useful when the diameter of the feasible set D is large or unbounded;
when D is small, we can apply Theorem 4.1 instead. As above, it is straightforward
to apply the techniques in Corollaries 4.2 – 4.5 to compute v⇤ for strongly convex h
under di�erent types of prediction noise2.

4.4 Concentration bounds
Our results to this point have focused on the performance of CHC algorithms in
expectation. In this section, we establish bounds on the distribution of costs under
CHC algorithms. In particular, we prove that, under a mild additional assumption,
the likelihood of cost exceeding the average case bounds proven in Section 4.3
decays exponentially.

2We only need to change �D with �2/m in the bounds of the corollaries to draw parallel conclusions.

61

For simplicity of presentation, we state and prove the concentration result for CHC
when the online parameter y is one-dimensional. In this case, Re = �2, and
the correlation function f : N ! R is a scalar valued function. The results
can be generalized to the multi-dimensional setting at the expense of considerable
notational complexity in the proofs.

Additionally, for simplicity of presentation we assume (for this section only) that
{e(t)}T

t=1 are uniformly bounded, i.e., 9✏ > 0, s.t. 8t, |e(t)| < ✏ . Note that,
with additional e�ort, the boundedness assumption can be relaxed to e(t) being
subgaussian, i.e., E[exp(e(t)2/✏2)]  2, for some ✏ > 0.3

Given { ŷt}T
t=1, the competitive di�erence of CHC is a random variable that is a

function of the prediction error e(t). To state our concentration results formally, let
V1T be the upper bound of the expected competitive di�erence of CHC in (4.14),
i.e., V1T = 2T �D

v + 2GT
v

Õv
k=1 k fk k↵.

Theorem 4.7. Assuming that the prediction error follows (2.6), and h is ↵-Hölder
continuous in the second argument, we have

P(cost(CHC) � cost(OPT) > V1T + u)

 exp
✓ �u2↵2

21+2↵G2"2TF(v)
◆

,

for any u > 0, where F(v) =
⇣

1
v

Õv�1
k=0(v � k)↵ | f (k)|↵

⌘2
.

This result shows that the competitive di�erence has a sub-Gaussian tail, which
decays much faster than the normal large deviation bounds obtained by bounding
moments, i.e., Markov Inequality, the rate of decay is dependent on the sensitivity
of h to disturbance in the second argument (G, ↵), the size of variation ("), and the
correlation structure (F(v)). This is illustrated in Figure 4.7, where we show the
distribution of the competitive di�erence of CHC under di�erent prediction noise
correlation assumptions. We can see that, for prediction noise that decays fast (i.i.d.
and exponentially decaying noise with small a) in Figure 4.7a, the distribution is
tightly concentrated around the mean, whereas for prediction noise that are fully
correlated (short range correlation and long range correlation) in Figure 4.7b, the
distribution is more spread out.

3This involves more computation and worse constants in the concentration bounds. Interested readers are
referred to Theorem 12 and the following remark of [14] for a way to generalize the concentration bound.

62

If we consider the time-averaged competitive di�erence, or the regret against the
o�ine optimal, we can equivalently state Theorem 4.7 as follows.

Corollary 4.8. Assuming that the prediction error follows (2.6), and h is ↵-Hölder
continuous, then probability that the competitive di�erence of CHC exceeds V1 can
be bounded by

P

✓

1
T
[cost(CHC) � cost(OPT)] > V1 + u

◆

 exp
✓ �u2

21+2↵G2"2↵F(v)/T
◆

,

where F(v) =
⇣

1
v

Õv�1
k=0(v � k)| f (k)|↵

⌘2
. Assuming f (s)  C for s = 0, . . . , v, then

limT!1 F(v)/T = 0 if either v 2 O(1), or f (s)  c⌘s for some ⌘ < 1.

Corollary 4.8 shows that, when either the commitment level v is constant, or the
correlation f (s) is exponentially decaying, the parameter of concentration F(v)/T
for the regret of CHC tends to 0. The full proof is given in Appendix 4.B. To prove
this result on the concentration of the competitive di�erence, we make heavy use of
the fact that h is ↵-Hölder continuous in the second argument, which implies that
the competitive di�erence is ↵-Hölder continuous in e. This allows application of
the method of bounded di�erence, i.e., we bound the di�erence of V(e) where one
component of e is replaced by an identically-distributed copy. More specifically, we
use the following lemma, the one-sided version of one due to McDiarmid:

Lemma 4.9 ([64], Lemma 1.2). Let X = (X1, . . . , Xn) be independent random vari-
ables and Y be the random variable f (X1, . . . , Xn), where function f satisfies| f (x)�
f (x0k)|  ck whenever x and x0k di�er in the kth coordinate. Then for any t > 0,
P(Y � EY > t)  exp

⇣

�2t2
Õ

n

k=1 c2
k

⌘

.

4.5 Concluding remarks
Online convex optimization (OCO) problems with switching costs and noisy pre-
dictions are widely applicable in networking and distributed systems. Prior e�orts
in this area have resulted in two promising algorithms – Receding Horizon Control
(RHC) and Averaging Fixed Horizon Control (AFHC). Unfortunately, it is not ob-
vious when each algorithm should be used. Further, thus far, only AFHC has been
analyzed in the presence of noisy predictions, despite the fact that RHC is seemingly
more resistant to prediction noise in many settings.

63

Competitive Difference
30 40 50 60 70

Em
pi

ric
al

 C
D

F
of

 C
om

pe
tit

iv
e

D
iff

0

0.2

0.4

0.6

0.8

1

i.i.d.
Exp decay

(a)
Competitive Difference

30 40 50 60 70

Em
pi

ric
al

 C
D

F
of

 C
om

pe
tit

iv
e

D
iff

0

0.2

0.4

0.6

0.8

1
Long range
Short range

(b)

Figure 4.7: The cumulative distribution function of average-case bounds under
di�erent correlation structures: (a) i.i.d prediction noise; exponentially decaying,
a = 2/3; (b) long range; short range, L = 4. Competitive di�erences simulated
with random realization of standard normal e(t) 1000 times under the following
parameter values: T = 100, v = 10, �D = 1,G = 0.1, ↵ = 1, c = 1.

In this chapter, we provide the first analysis of RHC with noisy predictions. This
novel analysis is made possible by the introduction of our new class of online al-
gorithms, Committed Horizon Control (CHC), that allows for arbitrary levels of
commitment, thus generalizing RHC and AFHC. Our analysis of CHC provides
explicit results characterizing the optimal commitment level as a function of the
variance and correlation structure of the prediction noise. In doing so, we character-
ize when RHC/AFHC is better depending on the properties of the prediction noise,
thus addressing an important open challenge in OCO.

Our focus in this Chapter has been on the theoretical analysis of CHC and its
implications for RHC and AFHC. The superiority of CHC suggests that it is a
promising approach for integrating predictions into the design of systems, especially
those that operate in uncertain environments. Going forward, it will be important
to evaluate the performance of CHC algorithms in settings where RHC and AFHC
have been employed, such as dynamic capacity provisioning, geographical load
balancing, and video streaming.

4.A Experimental setup for Fig. 4.1
Setting for Figure 4.1(a): This example corresponds to a simple model of a data
center. There are (w+1) types of jobs and (w+2) types of servers available to process
these jobs. Each server has a di�erent linear cost {a(t), b, c : 0 < a(t) < b < c}
(low, medium, high respectively) depending on the job type. The low cost is

64

a monotonically increasing function of time that asymptotically approaches the
constant medium cost (i.e. a(t) = ↵ + (b� ↵) t�1

t , where 0 < ↵ < b). The switching
cost � only applies when a server is turned on (shut down costs can be included in
the turning on cost) and has a magnitude greater than the di�erence between the
medium and low costs (i.e. � > b�↵). The high cost is constant but greater than the
di�erence between the medium and low costs multiplied by the prediction window
size plus the switching cost. (i.e. c > (b � ↵)w + �). One special server (server
0) can process all jobs with medium cost. Label all other servers 1 through (w + 1)
and all job types 1 through (w + 1). Let server s 2 {1, ...,w + 1} be able to process
job type s with low cost, job type s � 1 with high cost, and all other job types with
medium cost.

We assume perfect prediction within the prediction window, w. The trace that forms
Figure 4.1(a), is one in which the whole work load is only with one job type at each
timestep starting with job type 1 and sequentially cycles through all job types every
(w + 1) timesteps.

This forces RHC to switch every timestep and FHC to switch every w timesteps to
avoid a future high cost but take advantage of a low cost at the current timestep.

The o�ine optimal puts all of the workload on server 0 that processes all jobs with
medium cost and so never incurs a switching cost after the first timestep.

RHC and AFHC try to take advantage of the low cost but the trace tricks them with
a high cost one timestep beyond the prediction window. Switching to server 0 is
always slightly too expensive by (b� ↵)1

t within the prediction window. The values
used in Figure 4.1(a) are as follows: cycling workload of size 1 for 100 timesteps,
↵ = 0.9, b = 1, � = 2, c = 0.1(w + 1) + 3.

Setting for Figure 4.1(b): Similar to Figure 4.1(a), the setting in which this example
was constructed corresponds to a simple model of a data center. The key di�erence
is that predictions are noisy. There are (w + 1) types of jobs and (w + 1) types
of servers available to process these jobs. Each server has a di�erent linear cost
{a, c : 0 < a < c} (low, high respectively) depending on the job type. The switching
cost � only applies when a server is turned on (shut down costs can be included in
the turning on cost) and has a magnitude less than the di�erence between the high
and low cost (i.e. � < c � a). Label all servers 1 through (w + 1) and all job types 1
through (w + 1). Let server s 2 {1, ...,w + 1} be able to process job type s with low
cost, and all other job types with high cost.

65

We assume perfect prediction within only the first � timesteps of the prediction
window, w. The trace that forms Figure 4.1(b), is one in which the whole work load
is only with one job type at each timestep starting with job type 1 and sequentially
cycles through all job types every (w+1) timesteps. Error in the last w�� timesteps
of the prediction window is produced by making those predictions be equal to the
prediction of the last perfect prediction (i.e. the �-th timestep within the prediction
window).

RHC equals the o�ine optimal solution in this setting which is to switch the whole
workload at every timestep to the server with the unique low cost. AFHC on the
other hand puts (w � �)/w of the workload on servers with high cost and only �/w
of the workload on the server with the unique low cost. The values used in Figure
4.1(b) are as follows: cycling workload of size 1 for 30 timesteps, a = 1, c = 6,
� = 0.1.

4.B Proof of analytic results
We first introduce some additional notation used in the proofs. For brevity, for any
vector x we write xi.. j = (xi, . . . , xj) for any i  j. Let x⇤ denote the o�ine optimal
solution to (4.5), and let the cost of an online algorithm during time period [t1, t2]
with boundary conditions xS, xE and with online data yt1..t2 be

gt1,t2(x; xS; xE ; y) =
t2
’

t=t1

h(xt, yt) + �
�

�xS, xt1
�

�

+

t2
’

t=t1+1
� kxt�1, xt k + �

�

�xt2, xE
�

� .

If xE is omitted, then by convention xE = xt2 (and thus �
�

�xt2 � xE
�

� = 0). If xS is
omitted, then by convention xS = xt1�1. Note that gt1,t2(x) depends only on xi for
t1 � 1  i  t2.

Proof of Theorem 4.1
To characterize the suboptimality of CHC in the stochastic case, we first analyze the
competitive di�erence of fixed horizon control with commitment level v, FHCk(v).
Without loss of generality, assume that k = 0. Subsequently we omit k and v

in FHC for simplicity. Construct a sequence of T-tuples (⇠1, ⇠2, . . . , ⇠M1), where
M1 = #{t 2 [1,T] | t mod v = 1}  dT/ve, such that ⇠1 = x⇤ is the o�ine optimal
solution, and ⇠⌧t = xFHC,t for all t < ⌧v + 1 hence, ⇠M1 = xFHC . At stage ⌧, to
calculate ⇠⌧+1, apply FHC to get (x̃⌧v+1, . . . , x̃⌧v+w) = X⌧(⇠⌧⌧v, y·|⌧v), and replace

66

⇠⌧
⌧v+1:(⌧+1)v with x̃⌧v+1:(⌧+1)v to get ⇠⌧+1, i.e.,

⇠⌧+1 = (⇠⌧1 , . . . , ⇠⌧⌧v, x̃⌧v+1, . . . , x̃⌧(⌧+1)v, ⇠
⌧
(⌧+1)v+1, . . . , ⇠

⌧
T).

By examining the terms in ⇠⌧ and ⇠⌧+1, we have

g1,T (⇠⌧+1; y) � g1,T (⇠⌧; y)
= � �

�

�

�

x⇤(⌧+1)v+1 � x⇤(⌧+1)v
�

�

�

+ �
�

�

�

x⇤(⌧+1)v+1 � x̃(⌧+1)v
�

�

�

� � ��x⇤⌧v+1 � ⇠⌧⌧v
�

� + �
�

�x̃⌧v+1 � ⇠⌧⌧v
�

�

�
(⌧+1)v
’

t=⌧v+1

�

h(x⇤t , yt) + �
�

�x⇤t � x⇤t�1
�

�

�

+

(⌧+1)v
’

t=⌧v+1
(h(x̃t, yt) + � k x̃t � x̃t�1k) . (4.15)

By construction of (x̃⌧v+1, . . . , x̃(⌧+1)v), it is the optimal solution for g⌧v+1,(⌧+1)v(x; ⇠⌧⌧v; x̃(⌧+1)v+1; y·|⌧),
hence

(⌧+1)v
’

t=⌧v+1

�

h(x̃t, yt |⌧v) + � k x̃t � x̃t�1k
�

+ �
�

�x̃⌧v+1 � ⇠⌧⌧v
�

� + �
�

�x̃(⌧+1)v+1 � x̃(⌧+1)v
�

�


(⌧+1)v
’

t=⌧v+1

�

h(x⇤t , yt |⌧v) + �
�

�x⇤t � x⇤t�1
�

�

�

+ �
�

�x⇤⌧v+1 � ⇠⌧⌧v
�

� + �
�

�

�

x̃(⌧+1)v+1 � x⇤(⌧+1)v
�

�

�

.

Substituting the above inequality into (4.15) and by triangle inequality, we have

g1,T (⇠⌧+1; y) � g1,T (⇠⌧; y)

2�
�

�

�

x⇤(⌧+1)v+1 � x̃(⌧+1)v+1

�

�

�

+

(⌧+1)v
’

t=⌧v+1
|h(x⇤t , yt |⌧v) � h(x⇤t , yt)|

+

(⌧+1)v
’

t=⌧v+1
|h(x̃t, yt) � h(x̃t, yt |⌧v)|

2�D + 2G
(⌧+1)v
’

t=⌧v+1

�

�yt � yt |⌧v
�

�

↵

2 . (4.16)

67

Summing these inequalities from ⌧ = 0 to ⌧ = M1 and noting that ⇠M1 = xFHC1(v)
and ⇠1 = x⇤, we have

cost(FHC1(v)) cost(OPT) + 2M1�D + 2G
M1
’

⌧=0

(⌧+1)v
’

t=⌧v+1

�

�yt � yt |⌧v
�

�

↵

2

=cost(OPT) + 2M1�D + 2G
T
’

t=1

�

�yt � yt |t��1(t)
�

�

↵

2 , (4.17)

where �k(t) = arg minu2
k

,ut |t � u|. For k = 1, �1(t) = u whenever u = ⌧v
and t 2 [u, u + v � 1] for some ⌧. We only have M1 terms of the switching cost
�

�

�

x⇤(⌧+1)v+1 � x̃(⌧+1)v+1

�

�

�

since (M1 + 1)v + 1 > T . By the same argument, we have

cost(FHCk(v))  cost(OPT) + 2Mk �D + 2G
T
’

t=1

�

�yt � yt |�k (t)
�

�

↵

2 .

Recall that xCHC,t =
1
v

Õv
k=1 x(k,v)FHC,t , by convexity of the cost function and Jensen’s

inequality, we have

cost(CHC)  1
v

v�1
’

k=0
cost(FHCk(v))

cost(OPT) + 2
Õv�1

k=0 Mk �D
v

+
2G
v

T
’

t=1

v�1
’

k=0

�

�yt � yt |t��k (t)
�

�

↵

2

cost(OPT) + 2T �D
v
+

2G
v

T
’

t=1

v�1
’

k=0

�

�yt � yt |t��k (t)
�

�

↵

2

cost(OPT) + 2T �D
v
+

2G
v

T
’

t=1

v�1
’

k=0

�

�yt � yt |t�(k+1)
�

�

↵

2 , (4.18)

where the third inequality is because
Õv�1

k=0 Mk = T since by definition Mk is the
number of elements in [1,T] that is congruent to k modulus v; and the fourth
inequality is because for all t, t � �k(t) always range from 1 to v when k goes from
0 to v � 1.

Finally, we show that E
�

�y⌧ � y⌧ |⌧�(k+1)
�

�

↵

2  k fk k↵ to finish the proof. Note that for

68

↵ = 2, by (2.6), we have

E
�

�y⌧ � y⌧ |⌧�(k+1)
�

�

2
2 = E

�

�

�

�

�

⌧
’

s=⌧�k

f (⌧ � s)e(s)
�

�

�

�

�

2

2

=Etr

k
’

s1,s2=0
e(⌧ � s1)T f (s1)T f (s2)e(⌧ � s2)

!

=tr

k
’

s1,s2=0
f (s1)T f (s2)Ee(⌧ � s2)e(⌧ � s1)T

!

=tr

Re

k
’

s=0
f (s)T f (s)

!

= k fk k2 , (4.19)

where the second equality is due to cyclic invariance of trace and linearity of
expectation, and the third equality is due to the fact that e(s) are uncorrelated. When
↵  2, F(x) = x↵/2 is a concave function, hence by Jensen’s inequality,

E
�

�y⌧ � y⌧ |⌧�(k+1)
�

�

↵

2 = EF(��y⌧ � y⌧ |⌧�(k+1)
�

�

2
2)

F(E ��y⌧ � y⌧ |⌧�(k+1)
�

�

2
2) = k fk k↵ .

Proof of Corollary 4.3
Taking expectation over the prediction error and assuming long range correlation,
we have for all k  v  w

k fk k2 =
k

’

s=0
tr(Re f (s)T f (s)) =

k
’

s=0
hR1/2

e , f (s)i2


k

’

s=0
(
�

�

�

R1/2
e

�

�

�

F
k f (s)kF)2 = (k + 1)c2�2,

where the inequality is due to Cauchy-Schwarz and k fk k =
p

k + 1c�. To compute
competitive di�erence of CHC, note that

v�1
’

k=0
k fk k↵ =

v�1
’

k=0
(pk + 1c�)↵  c↵�↵

π v+1

1
k↵/2dk

=
2c↵�↵

↵ + 2
((v + 1)↵+2

2 � 1). (4.20)

69

Thus, by Theorem 4.1,

Ecost(CHC) � Ecost(OPT)  2T �D
v
+

2GT
v

v�1
’

k=0
(pk + 1c�)↵

2T �D
v
+

4GTc↵�↵

v(↵ + 2) ((v + 1)1+↵/2 � 1)

=
2T �D(↵ + 2) � 4GTc↵�↵

↵ + 2
v�1 +

4GTc↵�↵

↵ + 2
v↵/2

✓

v + 1
v

◆1+↵/2

2T �D(↵ + 2) � 4GTc↵�↵

↵ + 2
v�1 +

23+ ↵
2 GTc↵�↵

↵ + 2
v↵/2,

where the last inequality is because (v+1)/v  2 for v � 1. If �D(↵+2)  2Gc↵�↵,
which implies �D

Gc↵�↵  2
↵+2, then the right hand side is an increasing function of v,

hence the commitment level that minimizes the performance guarantee is v⇤ = 1.

On the other hand, if �D(↵ + 2) > 2Gc↵�↵, then let A = �D(↵+2)�2Gc↵�↵

↵+2 , B =
22+↵/2Gc↵�↵

↵+2 , then the right hand side is F(v) = 2T(Av�1 + Bv↵/2), by examining
the gradient F0(v) = 2T(�Av�2 + ↵2 Bv�(1�↵/2)), since F0(v) > 0 i� v2F0(v) > 0
and v2F0(v) is an increasing function in v, we can see that when v < (2A

↵B)2/(↵+2),
F(v)0 < 0 and F(v) is a decreasing function, when v > (2A

↵B)2/(↵+2), F(v)0 > 0 and
F(v) is an increasing function, hence when v = (2A

↵B)2/(↵+2), F(v)0 = 0 is the global
minimum point of F(v).

Therefore, when
⇣

2A
↵B

⌘2/(↵+2) � w, we have v⇤ = w, this happens when �D
Gc↵�↵ >

↵(2w)1+↵
2 + 2. When �D

Gc↵�↵ 2
⇣

2
↵+2, ↵(2w)1+

↵
2 + 2

⌘

, v⇤ is between 1 to w, in this

case, v⇤ =
⇣

�D(↵+2)�2Gc↵�↵

22+↵/2↵Gc↵�↵

⌘2/(↵+2)
.

Proof of Corollary 4.4
Taking expectation over the prediction error, when k < L, similar to the proof of
Corollary 4.3, k fk k2  (k + 1)c2�2. When k � L, k fk k2  (L + 1)c2�2. Thus if

70

v > L, we have

v�1
’

k=0
k fk k↵ =

L�1
’

k=0
k fk k↵ +

v�1
’

k=L

k fk k↵

2(c�)↵
↵ + 2

((L + 1)↵+2
2 � 1) + (v � L)(c�)↵(L + 1)↵/2

=v(c�)↵(L + 1)↵/2

+
(c�)↵
↵ + 2

⇣

(L + 1)↵/2(2(L + 1) � (↵ + 2)L) � 1
⌘

=v(c�)↵(L + 1)↵/2

� (c�)↵
↵ + 2

⇣

(L + 1)↵/2(↵L � 2) + 1
⌘

,

where the first inequality if by (4.20). Hence, by Theorem 4.1,

Ecost(CHC) � Ecost(OPT)  2T �D
v
+

2GT
v

v�1
’

k=0
k fk k↵

2T �D
v
+ 2GT(c�)↵(L + 1)↵/2

� 2GT
v

(c�)↵
↵ + 2

((L + 1)↵/2(↵L � 2) + 1).

The right hand side can be written as 2T(A�B
v +C), where A = �D, B = G(c�)↵H(L),C =

G(c�)↵(L + 1)↵/2 and H(L) = 1
↵+2

⇣

(L + 1)↵2 (↵L � 2) + 1
⌘

. When A > B, then the
right hand side is a decreasing function in v, hence v⇤ = w; this happens when
�D

Gc↵�↵ > H(L). When A < B, then the right hand side is an increasing function
in v, hence we want v⇤ to be small, i.e., v  L, this happens when �D

Gc↵�↵ < H(L).
When v  L,

Õv�1
k=0 k fk k↵  2(c�)↵

↵+2 ((v + 1)1+↵
2 � 1), hence

Ecost(CHC) � Ecost(OPT)  2T �D
v
+

2GT
v

v�1
’

k=0
k fk k↵

2T �D(↵ + 2) � 4GTc↵�↵

v(↵ + 2) +
4GT(c�)↵
v(↵ + 2) ((v + 1)1+↵/2).

If �D
Gc↵�↵  2

↵+2 , then the right hand side is an increasing function in v, hence v⇤ = 1.

71

Proof of Corollary 4.5
Taking expectation over the prediction error, assuming that there exists a < 1, such
that for all s, k f (s)kF  cas, we have

k fk k2 =
k

’

s=0
tr(Re f (s)T f (s)) =

k
’

s=0
hR1/2

e , f (s)i2


k

’

s=0
(
�

�

�

R1/2
e

�

�

�

F
k f (s)kF)2 =

k
’

s=0
c2�2a2s = c2�2 1 � a2k

1 � a2 ,

where the inequality is due to Cauchy-Schwarz, hence for h that is G-Lipschitz in
the second argument, we have k fk k  c�(1�a2(k+1)/2)

1�a2 , where the inequality is becausep
1 � a2 � (1 � a2), and 1 � a2(k+1)  1 � a2(k+1) + a4(k+1)/4 = (1 � a2(k+1)/2)2,

hence,

Ecost(CHC) � Ecost(OPT)

2T �D
v
+

2GT
v

v�1
’

k=0

c�(1 � a2(k+1)/2)
1 � a2

2T �D
v
+

2GTc�
1 � a2 �

GTc�
v(1 � a2)

v
’

k=1
a2k

2T �D
v
+

2GTc�
1 � a2 �

GTc�
v(1 � a2)

a2(1 � a2v)
1 � a2 .

Let A = 2T �D, B = a2GTc�
1�a2 and C = 2GTc�

1�a2 , then

Ecost(CHC) � Ecost(OPT)  A
v
� B(1 � a2v)

v
+ C

=
(A � B) + Ba2v

v
+ C.

Therefore when A � B, (A�B)+Ba2v > 0, and the RHS is a decreasing function in v,
hence v⇤ = w, and this happens when 2T �D � a2GTc�

1�a2 which implies �D
Gc� � a2

2(1�a2) .

On the other hand, if A < B � Ba, then (A � B) + Ba2v  A � B + Ba < 0, and the
right hand side is an increasing function in v, hence v⇤ = 1, and this happens when
2T �D < a2GTc�

1�a2 (1 � a), which implies 2�D
Gc�  a2

2(1+a) .

72

Proof of Theorem 4.6
The proof follows in the same fashion as that of Theorem 4.1. Recall that we have

g1,T (⇠⌧+1; y) � g1,T (⇠⌧; y)

2�
�

�

�

x⇤(⌧+1)v+1 � x̃(⌧+1)v+1

�

�

�

+

(⌧+1)v
’

t=⌧v+1
|h(x⇤t , yt |⌧v) � h(x⇤t , yt)|

+

(⌧+1)v
’

t=⌧v+1
|h(x̃t, yt) � h(x̃t, yt |⌧v)|

2�
�

�

�

x⇤(⌧+1)v+1 � x̃(⌧+1)v+1

�

�

�

+ 2G
(⌧+1)v
’

t=⌧v+1

�

�yt � yt |⌧v
�

�

↵

2 . (4.21)

Since h is m-strongly convex, g⌧v+1,(⌧+1)v is also m-strongly convex, hence

g⌧v+1,(⌧+1)v(x̃⌧v+1:(⌧+1)v; ⇠⌧⌧v; x̃(⌧+1)v+1; y·|⌧v)
g⌧v+1,(⌧+1)v(x⇤⌧v+1:(⌧+1)v+1; ⇠⌧⌧v; x̃(⌧+1)v+1; y·|⌧v)
� @g⌧v+1,(⌧+1)v(x̃⌧v+1:(⌧+1)v) · (x⇤⌧v:(⌧+1)v � x̃⌧v:(⌧+1)v)

� m
2

(⌧+1)v
’

t=⌧v+1

�

�x⇤t � x̃t
�

�

2
.

By the optimality of x̃⌧v+1:(⌧+1)v minimizes the cost function g⌧v+1,(⌧+1)v(x; ⇠⌧⌧v; x̃(⌧+1)v+1; y·|⌧v),
we have the first order condition

@g⌧v+1,(⌧+1)v(x̃⌧v+1:(⌧+1)v) · (x⇤⌧v+1:(⌧+1)v � x̃⌧v+1:(⌧+1)v) � 0,

hence
(⌧+1)v
’

t=⌧v+1

�

h(x̃t, yt |⌧v) + � k x̃t � x̃t�1k
�

+ �
�

�x̃⌧v+1 � ⇠⌧⌧v
�

� + �
�

�x̃(⌧+1)v+1 � x̃(⌧+1)v
�

�


(⌧+1)v
’

t=⌧v+1

⇣

h(x⇤t , yt |⌧v) + �
�

�x⇤t � x⇤t�1
�

� � m
2

�

�x̃t � x⇤t
�

�

2
⌘

+ �
�

�x⇤⌧v+1 � ⇠⌧⌧v
�

� + �
�

�

�

x̃(⌧+1)v+1 � x⇤(⌧+1)v
�

�

�

.

73

Substituting the above inequality into (4.21) and summing over ⌧, we have

cost(FHC1(v)) � cost(OPT) =
M
’

⌧=0
g1,T (⇠⌧+1; y) � g1,T (⇠⌧; y)

2�
M�1
’

⌧=0

�

�

�

x⇤(⌧+1)v+1 � x̃(⌧+1)v+1

�

�

�

�
M
’

⌧=0

(⌧+1)v
’

t=⌧v+1

m
2

�

�x̃t � x⇤t
�

�

2

+ 2G
M
’

⌧=0

(⌧+1)v
’

t=⌧v+1

�

�yt � yt |⌧v
�

�

↵

2


M
’

⌧=1

⇣

2�
�

�x⇤⌧v+1 � x̃⌧v+1
�

� � m
2

�

�x⇤⌧v+1 � x̃⌧v+1
�

�

2
⌘

+ 2G
M
’

⌧=0

(⌧+1)v
’

t=⌧v+1

�

�yt � yt |⌧v
�

�

↵

2

(a) 2�2M
m
+ 2G

T
’

t=1

�

�yt � yt |t��1(t)
�

�

↵
,

where (a) is because for any t,

2�
�

�x⇤t � x̃t
�

� � m
2

�

�x⇤t � x̃t
�

�

2

= � m
2
(��x⇤t � x̃t

�

� � 2�
m

)2 + 2�2

m
 2�2

m
.

Summing over k from 0 to v � 1 as in (4.18) and taking expectation on both sides
as in (4.19) finishes the proof.

Proof of Theorem 4.7
By the proof of Theorem 4.1 and assuming one dimensional setting, we have

cost(CHC) � cost(OPT)  2�T D
v
+

2G
v

T
’

⌧=1

v�1
’

k=0

�

�y⌧ � y⌧ |⌧�k
�

�

↵

=
2�T D

v
+

2G
v

T
’

⌧=1

v
’

k=1

�

�

�

�

�

⌧
’

s=⌧�k+1
f (⌧ � s)e(s)

�

�

�

�

�

↵

, (4.22)

which is a function of the randomness of prediction noise e = (e(1), . . . , e(T)), let

l(e) := 2�T D
v
+

2G
v

T
’

⌧=1

v
’

k=1

�

�

�

�

�

⌧
’

s=⌧�k+1
f (⌧ � s)e(s)

�

�

�

�

�

↵

be the upper bound of the competitive di�erence of CHC in terms of the random
variables e(1), . . . , e(T). For every i, let e(i)0 be an independent and identical copy

74

of e(i), and let e0i = (e(1), . . . , e(i � 1), e(i)0, e(i + 1), . . . , e(T)) be the vector that
di�er from e by the replacing the ith coordinate with an identical copy of e(i), then
let �is be the kronecker delta, we have

|l(e) � l(e0i)| 
2G
v

T
’

⌧=1

v
’

k=1

�

�

�

�

�

⌧
’

s=⌧�k+1
�is f (⌧ � s)e(s)

�

�

�

�

�

↵

� 2G
v

T
’

⌧=1

v
’

k=1

�

�

�

�

�

⌧
’

s=⌧�k+1
�is f (⌧ � s)e0i(s)

�

�

�

�

�

↵

2G
v

T
’

⌧=1

v
’

k=1

�

�

�

�

�

⌧
’

s=⌧�k+1
�is f (⌧ � s)(e(s) � e0i(s))

�

�

�

�

�

↵

,

where the last inequality is due to the fact that F(x) = x↵ is a ↵-Hölder continuous
with constant 1, hence 8x, y, |x↵ � y↵ |  |x � y |↵. Therefore,

|l(e) � l(e0i)| 
2G
v

T
’

⌧=1

v
’

k=1

�

�

�

�

�

⌧
’

s=⌧�k+1
�is f (⌧ � s)(e(s) � e0i(s))

�

�

�

�

�

↵

(a) 2G
v

v
’

k=1

T
’

⌧=1

⌧
’

s=⌧�k+1
�is | f (⌧ � s)|↵ |e(s) � e0i(s)|↵

(b)
=

2G
v

|e(i) � e0i(i)|↵
v

’

k=1

k�1
’

s=0
| f (s)|↵

21+↵G"↵

v

v�1
’

s=0
(v � s)| f (s)|↵, (4.23)

where (a) is because for all ↵  1, (Õk
i=1 |ai |)↵  Õk

i=1 |ai |↵, to prove this, note that
we only need to show that

8x, y � 0, (x + y)↵  x↵ + y↵ (4.24)

and iterate this inequality k times. To prove the above, note that when x = 0 or
y = 0 or ↵ = 1, the inequality is trivially true. Otherwise, wlog assume x � y,
and let t = y/x  1. (4.24) is equivalent to (1 + t)↵  1 + t↵, this is true by
examining the function F(t) = 1 + t↵ � (1 + t)↵, note that F(0) = 0, and for ↵ < 1,
F(t)0 = ↵(t↵�1 � (1+ t)↵�1) > 0, since ax hence F(t) � 0 for all t, which proves (a).

75

(b) is because let s0 = ⌧ � s, then
v

’

k=1

T
’

⌧=1

⌧
’

s=⌧�k+1
�is | f (⌧ � s)|↵ |e(s) � e0i(s)|↵

=

v
’

k=1

T
’

⌧=1

k�1
’

s0=0
�i(⌧�s0) | f (s0)|↵ |e(⌧ � s0) � e0i(⌧ � s0)|↵

=

v
’

k=1

k�1
’

s0=0
| f (s0)|↵

T
’

⌧=1
�i(⌧�s0) |e(⌧ � s0) � e0i(⌧ � s0)|↵

!

=|e(i) � e0i(i)|↵
v

’

k=1

k�1
’

s0=0
| f (s0)|↵.

Let ci = 21+↵G"↵
Õv�1

k=0
(v�k)| f (k)|↵

v , then by (4.23), |l(e) � l(e0i)|2  c2
i , by Lemma

4.9, we have

P(cost(CHC) � cost(OPT) � V1T + u)

 exp

�2u2
ÕT

i=1 c2
i

!

= exp
✓ �u2

21+2↵G2"2↵TF(v)
◆

where F(v) =
⇣

1
v

Õv�1
k=0(v � k)| f (k)|↵

⌘2
.

Proof of Corollary 4.8
By Theorem 4.7,

P

✓

1
T
[cost(CHC) � cost(OPT)] > V1 + u

◆

=P (cost(CHC) � cost(OPT) > V1T + uT)

 exp

�2u2
ÕT

i=1 c2
i

!

= exp
✓ �u2

21+2↵G2"2↵F(v)/T
◆

.

If v 2 O(1), then F(v) is bounded since f (s) is bounded, hence F(v)/T ! 0 as
T !1.

Otherwise, if f (s)  c⌘s for ⌘ < 1, denote a = ⌘↵, then
v�1
’

k=0
(v � k)| f (k)|↵  c↵

v
v�1
’

k=0
ak � a

v�1
’

k=0

d
da

(ak)
!

=c↵
✓

v
1 � av

1 � a
� a

d
da

✓

1 � av

1 � a

◆◆

= c↵
v � a(v + 1) + av+1

(1 � a)2

76

then

F(v) =

1
v

v�1
’

k=0
(v � k)| f (k)|↵

!2


✓

c↵(v � ⌘↵(v + 1) + ⌘↵(v+1))
(1 � a)2v

◆2


✓

c↵

(1 � ⌘↵)2 +
c↵⌘↵

(1 � ⌘↵)2v
◆2
2 O(1).

Thus in this case F(v)/T ! 0 as T !1.

77

C h a p t e r 5

AN APPLICATION

5.1 Smart energy system
The electricity grid is at the brink of change. On the generation side, the penetration
of wind and solar in the energy portfolio is on the rise due to environmental concerns.
And, on the demand side, many smart appliances and devices with adjustable
power consumption levels are entering the market. The combination of these two
changes makes generation less controllable and load less predictable, which makes
the traditional “generation follows load” model of control much more di�cult.

Fortunately, while smart devices make demand forecasting more challenging, they
also provide an opportunity to mitigate the intermittency of wind and solar generation
from the load side by allowing for demand response. There are two major categories
of demand response: direct load control (DLC) and price-based demand response.
See [3] for a discussion of the contrasts between these approaches.

In this chapter we focus on direct load control with the goal of using demand
response to reduce variations of the aggregate load. This objective has been studied
frequently in the literature, e.g., [30, 77], because reducing the variations of the
aggregate load corresponds to minimizing the generation cost of the utilities. In
particular, large generators with the smallest marginal costs, e.g., nuclear generators
and hydro generators, have limited ramp rates, i.e., their power output cannot be
adjusted too quickly. So, if load varies frequently, then it must be balanced by more
expensive generators (i.e., “peakers”) that have fast ramp rate. Thus, if the load
variation is reduced, then the utility can use the least expensive sources of power
generation to satisfy the electricity demand.

Model predictive deferrable load control
There is a growing body of work on direct load control algorithms, which includes
both simulation-based evaluations [1, 42, 65] and theoretical performance guaran-
tees [27, 62]. The most commonly proposed framework for algorithm design from
this literature is, perhaps, model predictive control.

Model predictive control (MPC) is a classical control algorithm, e.g., see [68] for
a survey. MPC can be applied to settings where unknown disturbances to the

78

system are present through the robust control paradigm or the certainty equivalence
principle, e.g., see [11, 18, 52]. In the context of direct load control, many variations
have been proposed. Scalability and performance in the presence of uncertainty are
essential to MPC algorithms for direct load control. At this point, there exist
model predictive deferrable load control algorithms that can be fully distributed
with guaranteed convergence to optimal deferrable load schedules, e.g., [30].

However, to this point, the evaluation of model predictive deferrable load control
has focused primarily on average-case analysis, e.g., [24, 71], or worst-case analysis,
e.g., [23, 55]. While such analysis provides important insights, there is still much
to learn about the performance of model predictive deferrable load control.

For example, it is likely that an algorithm has good average performance but bad
worst case performance, and vice versa. What is really needed is a distributional
analysis that tells us about the “typical” performance, which can say, e.g., that the
load variation will be less than the desired level 95 percent of the time. But, to
this point, no results on the distribution of the load variation under model predictive
deferrable load control exist.

5.2 Real-time deferrable load control
This chapter studies the design and analysis of real-time control algorithms for
scheduling deferrable loads to compensate for the random fluctuations in renewable
generation. In the following we present a model of this scenario that serves as the
basis for our algorithm design and performance evaluation. The model includes re-
newable generation, non-deferrable loads, and deferrable loads, which are described
in turn. The key di�erentiation of this model from that of [27] is the inclusion of
uncertainties (prediction errors) on future renewable generation and loads.

Throughout, we consider a discrete-time model over a finite time horizon. The time
horizon is divided into T time slots of equal length and labeled 1, . . . ,T . In practice,
the time horizon could be one day and the length of a time slot could be 10 minutes.

Renewable generation like wind is stochastic and di�cult to predict. Similarly,
non-deferrable load including lights are hard to predict at a low aggregation level.

Since the focus is on scheduling deferrable loads, we aggregate renewable generation
and non-deferrable load into one process termed the base load, b = {b(⌧)}T

⌧=1, which
is defined as the di�erence between non-deferrable load and renewable generation,
and is a stochastic process.

79

To model the uncertainty of base load, we use a causal filter based model described as
follows, and illustrated in Figure 5.1. In particular, the base load at time ⌧ is modeled
as a random deviation �b = {�b(⌧)}T

⌧=1 around its expectation b̄ = {b̄(⌧)}T
⌧=1. The

process b̄ is specified externally to the model, e.g., from historical data and weather
report, and the process �b(⌧) is further modeled as an uncorrelated sequence of
identically distributed random variables e = {e(⌧)}T

⌧=1 with mean 0 and variance
�2, passing through a causal filter. Specifically, let f = { f (⌧)}1⌧=�1 denote the
impulse response of this causal filter and assume that f (0) = 1, then f (⌧) = 0 for
⌧ < 0 and

�b(⌧) =
T
’

s=1
e(s) f (⌧ � s), ⌧ = 1, . . . ,T .

At time t = 1, . . . ,T , a prediction algorithm can observe the sequence e(s) for
s = 1, . . . , t, and predicts b as1

bt(⌧) = b̄(⌧) +
t

’

s=1
e(s) f (⌧ � s), ⌧ = 1, . . . ,T . (5.1)

Note that bt(⌧) = b(⌧) for ⌧ = 1, . . . , t since f is causal.

Figure 5.1: Diagram of the notation and structure of the model for base load, i.e.,
non-deferrable load minus renewable generation.

This model allows for non-stationary base load through the specification of b̄ and a
broad class of models for uncertainty via f and e. In particular, two specific filters
f that we consider in detail later in the chapter are:

1. A filter with finite but flat impulse response, i.e., there exists � > 0 such that

f (t) =
8

>

><

>

>

:

1 if 0  t < �

0 otherwise;

2. A filter with an infinite and exponentially decaying impulse response, i.e.,
there exists a 2 (0, 1) such that

f (t) =
8

>

><

>

>

:

at if t � 0

0 otherwise.
1This prediction algorithm is a Wiener filter [17].

80

These two filters provide simple but informative examples for our discussion in
Section 5.4.

To model deferrable loads we consider a setting where N deferrable loads arrive
over the time horizon, each requiring a certain amount of electricity by a given
deadline. Further, a real-time algorithm has imperfect information about the arrival
times and sizes of these deferrable loads.

More specifically, we assume a total of N deferrable loads and label them in in-
creasing order of their arrival times by 1, . . . , N , i.e., load n arrives no later than
load n + 1 for n = 1, . . . , N � 1. Further, we define N(t) as the number of loads that
arrive before (or at) time t for t = 1, . . . ,T and fix N(0) def

== 0. Thus, load 1, . . . , N(t)
arrive before or at time t for t = 1, . . . ,T and N(T) = N .

For each deferrable load, its arrival time and deadline, as well as other constraints
on its power consumption, are captured via upper and lower bounds on its possible
power consumption during each time. Specifically, the power consumption of
deferrable load n at time t, pn(t), must be between given lower and upper bounds
p

n
(t) and pn(t), i.e.,

p
n
(t)  pn(t)  pn(t), n = 1, . . . , N, t = 1, . . . ,T . (5.2)

These are specified externally to the model. For example, if an electric vehicle plugs
in with Level II charging, then its power consumption must be within [0, 3.3]kW.
However, if it is not plugged in (has either not arrived yet or has already departed)
then its power consumption is 0kW, i.e., within [0, 0]kW. Further, we assume that a
deferrable load n must withdraw a fixed amount of energy Pn by its deadline, i.e.,

T
’

t=1
pn(t) = Pn, n = 1, . . . , N . (5.3)

Finally, the N deferrable loads arrive randomly throughout the time horizon. Define

a(t) def
==

N(t)
’

n=N(t�1)+1
Pn (5.4)

as the total energy request of all deferrable loads that arrive at time t for t = 1, . . . ,T .
We assume that {a(t)}T

t=1 is a sequence of independent identically distributed random
variables with mean � and variance s2. Further, define

A(t) def
==

T
’

⌧=t+1
a(⌧) (5.5)

81

as the total energy requested after time t for t = 1, . . . ,T .

In summary, at time t = 1, . . . ,T , a real-time algorithm has full information about
the deferrable loads that have arrived, i.e., p

n
, pn, and Pn for n = 1, . . . , N(t),

and knows the expectation of future deferrable load total energy request E(A(t)).
However, a real-time algorithm has no other knowledge about deferrable loads that
arrive after time t.

We can now formally state the deferrable load control problem that is the focus
of this thesis. Recall that the objective of real-time deferrable load control is to
compensate for the random fluctuations in renewable generation and non-deferrable
load in order to “flatten” the aggregate load d = {d(t)}T

t=1, which is defined as

d(t) = b(t) +
N
’

n=1
pn(t), t = 1, . . . ,T . (5.6)

In this thesis, we focus on minimizing the sample path variance of the aggregate
load d, V(d), as a measure of “flatness” that is defined as

V(d) = 1
T

T
’

t=1

d(t) � 1
T

T
’

⌧=1
d(⌧)

!2

. (5.7)

We can now formally specify the optimal deferrable load control (ODLC) problem
that we seek to solve:

ODLC: min 1
T

T
’

t=1

d(t) � 1
T

T
’

⌧=1
d(⌧)

!2

(5.8)

over pn(t), d(t), 8n, t

s.t. d(t) = b(t) +
N
’

n=1
pn(t), 8t;

p
n
(t)  pn(t)  pn(t), 8n, t;

T
’

t=1
pn(t) = Pn, 8n.

In the above ODLC, the objective is simply the sample path variance of the aggregate
load, V(d), and the constraints correspond to equations (5.6), (5.2), and (5.3),
respectively. We chose V(d) as the objective for ODLC because of its significance
for microgrid operators [39]. However, additionally, [27] has proven that the optimal
solution does not change if the objective function V(d) is replaced by f (d) =
ÕT

t=1 U(d(t)) where U : R ! R is strictly convex. Therefore, we can use V(d)
without loss of generality.

82

5.3 Model predictive algorithm
Given the optimal deferrable load control (ODLC) problem defined in (5.8), the first
contribution of this thesis is to design an algorithm that solves ODLC in real-time,
given uncertain predictions of base and deferrable loads.

There are two key challenges for the algorithm design. First, the algorithm has access
only to uncertain predictions at any given time, i.e., at time t the algorithm only
knows deferrable loads 1 to N(t) rather than 1 to N , and only knows the prediction bt

instead of b itself. Second, even if there was no uncertainty in predictions, solving
the ODLC problem requires significant computational e�ort when there are a large
number of deferrable loads.

Motivated by these challenges, in this section we design a decentralized algorithm
with strong performance guarantees even when there is uncertainty in the predictions.
The algorithm builds on the work of [27], which provides a decentralized algorithm
for the case without uncertainty in predictions. We present the details of the
algorithm from [27] in Section 5.3 and then present a modification of the algorithm
to handle uncertain predictions in Section 5.3.

Load control without uncertainty
We start with the case where the algorithm has complete knowledge (no uncertainty)
about base load and deferrable loads. In this context, the key algorithmic challenge
is to solve the ODLC problem in (5.8) via a decentralized algorithm. Such a
decentralized algorithm was proposed in [27], and we summarize the algorithm and
its analysis here.

Algorithm definition: The algorithm from [27] is given in Algorithm 5.1. It is
iterative and the superscripts in brackets denote the round of iteration. In each
iteration k � 0, there are two key steps: Step (ii) and (iii). In Step (ii), the utility
calculates the average load g(k) and broadcasts it to all deferrable loads. Note that
the utility only needs to know the reported schedule p(k)n , the base load b, and the
number of deferrable loads N . It does not need to know the constraints of the
deferable loads. In Step (iii), each deferrable load n updates p(k+1)

n by solving a
convex optimization. The objective function has two terms. The first term can be
interpreted as the electricity bill if the electricity price was set to g(k). The second
term vanishes as iterations continue.

Algorithm convergence results: Importantly, though Algorithm 5.1 is iterative,
it converges very fast. In fact, the simulations in [27] stop the iterations after 15

83

Algorithm 5.1 Deferrable load control without uncertainty
Require: The utility knows the base load b and the number N of deferrable loads.

Each load n 2 {1, . . . , N} knows its energy request Pn and power consumption
bounds pn and p

n
. The utility sets K , the number of iterations.

Ensure: Deferrable load schedule p = (p1, . . . , pN).

(i) Set k 0 and intitialize the schedule p(k) as
p(k)n (t) 0, t = 1, . . . ,T , n = 1, . . . , N .

(ii) The utility calculates the average load g(k) = d(k)/N ,

g(k)(t) 1
N

b(t) +
N
’

n=1
p(k)n (t)

!

, t = 1, . . . ,T,

and broadcasts g(k) to all deferrable loads.

(iii) Each load n updates a new schedule p(k+1)
n by solving

min
T
’

⌧=1
g(k)(⌧)pn(⌧) + 1

2

⇣

pn(⌧) � p(k)n (⌧)
⌘2

over pn(1), . . . , pn(T)
s.t. p

n
(⌧)  pn(⌧)  pn(⌧), 8⌧;

T
’

⌧=1
pn(⌧) = Pn,

and reports p(k+1)
n to the utility.

(iv) Set k k + 1. If k < K , go to Step (ii).

rounds (i.e., K=15) in all cases because convergence is already achieved. Further,
Algorithm 5.1 provably solves the ODLC problem given in (5.8) when there is no
uncertainty, i.e., when N(t) = N and bt = b for t = 1, . . . ,T [27]. More precisely, let
O denote the set of optimal solutions to (5.8), and define d(p,O) := minp̂2O kp� p̂k
as the distance from a deferrable load schedule p to optimal deferrable load schedules
O.

Proposition 5.1 ([27]). When there is no uncertainty, i.e., N(t) = N and bt = b for
t = 1, . . . ,T , the deferrable load schedules p(k) obtained by Algorithm 5.1 converge
to optimal schedules to ODLC, i.e., d(p(k),O)! 0 as k !1.

84

A particular class of optimal solutions will be of interest to us later in the chapter,
so we define them here. Specifically, we call a feasible deferrable load schedule
p = (p1, . . . , pN) valley-filling, if there exists some constant C 2 R such that
ÕN

n=1 pn(t) = (C � b(t))+ for t = 1, . . . ,T .

Proposition 5.2 ([27]). If a valley-filling deferrable load schedule exists, then it
solves ODLC. Further, in such cases, all optimal schedules to ODLC have the same
aggregate load.

Note that valley-filling schedules tend to exist if there is a large number of deferrable
loads, in such settings optimal solutions to ODLC are valley-filling.

Load control with uncertainty
Algorithm 5.1 provides a decentralized approach for solving the ODLC problem;
however it assumes exact knowledge (certainty) about base load and deferrable
loads. In this subsection, we adapt Algorithm 5.1 to the setting where there is
uncertainty in base load and deferrable load predictions, while maintaining strong
performance guarantees. In particular, in this subsection we assume that at time t,
only the prediction bt is known, not b itself, and only information about deferrable
loads 1 to N(t) and the expectation of future energy requests E(A(t)) are known.

Algorithm definition: To adapt Algorithm 5.1 to deal with uncertainty, the first
step is straightforward. In particular, it is natural to replace the base load b by its
prediction bt in Algorithm 5.1 to deal with the unavailability of b.

However, dealing with unavailable future deferrable load information is trickier. To
do this we use a pseudo deferrable load, which is simulated at the utility, to represent
future deferrable loads. More specifically, let q = {q(⌧)}T

⌧=t with q(t) = 0 denote the
power consumption of the pseudo load, and assume that it requests E(A(t)) amount
of energy, i.e.,

T
’

⌧=t
q(⌧) = E(A(t)). (5.9)

We also assume that q is point-wise upper and lower bounded by some upper and
lower bounds q and q, i.e.,

q(⌧)  q(⌧)  q(⌧), ⌧ = t, . . . ,T . (5.10)

Note that q(t) = q(t) = 0. The bounds q and q should be set according to historical
data. Here, for simplicity, we consider them to be q(⌧) = 0 and q(⌧) = 1 for
⌧ = t + 1, . . . ,T .

85

Given the above setup, the utility solves the following problem at every time slot
t = 1, . . . ,T , to accommodate the availability of only partial information.

ODLC-t: min
T
’

⌧=t

d(⌧) � 1
T � t + 1

T
’

s=t
d(s)

!2

(5.11)

over pn(⌧), q(⌧), d(⌧), n  N(t), ⌧ � t

s.t. d(⌧) = bt(⌧) +
N(t)
’

n=1
pn(⌧) + q(⌧), ⌧ � t;

p
n
(⌧)  pn(⌧)  pn(⌧), n  N(t), ⌧ � t;

T
’

⌧=t
pn(⌧) = Pn(t), n  N(t);

q(⌧)  q(⌧)  q(⌧), ⌧ � t;
T
’

⌧=t
q(⌧) = E(A(t)),

where Pn(t) = Pn �Õt�1
⌧=1 pn(⌧) is the energy to be consumed at or after time t, for

n = 1, . . . , N(t) and t = 1, . . . ,T .
Now, adjusting Algorithm 5.1 to solve ODLC-t gives Algorithm 5.2, which is real-
time and shrinking-horizon. Note that if base load prediction is exact (i.e., bt = b
for t = 1, . . . ,T) and all deferrable loads arrive at the beginning of the time horizon
(i.e., N(t) = N for t = 1, . . . ,T), then ODLC-1 reduces to ODLC and Algorithm 5.2
reduces to Algorithm 5.1.

86

Algorithm 5.2 Deferrable load control with uncertainty
Require: Prediction of base load bt and the number N(t) of deferrable loads. Future

energy request Pn(t) and power consumption bounds pn and p
n
.

Ensure: At time t, output the power consumption pn(t) for deferrable loads
1, . . . , N(t). At time slot t = 1, . . . ,T :

(i) Set k 0. Each deferrable load n 2 {1, . . . , N(t)} initializes its schedule
{p(0)n (⌧)}T

⌧=t as

p(0)n (⌧)
(

p(K)
n (⌧) if n  N(t � 1)

0 if n > N(t � 1) , ⌧ = t, . . . ,T,

where p(K)
n is the schedule of load n in iteration K at time t � 1.

(ii) The utility solves

min
T
’

⌧=t

bt(⌧) +
N(t)
’

n=1
p(k)n (⌧) + q(⌧)

!2

over q(t), . . . , q(T)
s.t. q(⌧)  q(⌧)  q(⌧), ⌧ � t;

T
’

⌧=t
q(⌧) = E(A(t))

to obtain a pseudo schedule {q(k)(⌧)}T
⌧=t . The utility then calculates the

average aggregate load per deferrable load g(k) as

g(k)(⌧) 1
N(t)

bt(⌧) +
N(t)
’

n=1
p(k)n (⌧) + q(k)(⌧)

!

for ⌧ = t, . . . ,T, and broadcasts {g(k)(⌧)}T
⌧=t to all deferrable loads.

(iii) Each deferrable load n = 1, . . . , N(t) solves

min
T
’

⌧=t
g(k)(⌧)pn(⌧) + 1

2

⇣

pn(⌧) � p(k)n (⌧)
⌘2

over pn(t), . . . , pn(T)
s.t. p

n
(⌧)  pn(⌧)  pn(⌧), ⌧ � t;

T
’

⌧=t
pn(⌧) = Pn(t),

to obtain a new schedule {p(k+1)
n (⌧)}T

⌧=t , and reports to the utility.

(iv) Set k k + 1. If k < K , go to Step (ii).

(v) Set pn(t) pK
n (t) and Pn(t + 1) Pn(t) � pn(t).

87

Algorithm convergence results: We provide analytic guarantees on the conver-
gence and optimality of Algorithm 5.2. In particular, we prove that Algorithm 5.2
solves ODLC-t at every time slot t. Specifically, let O(t) denote the set of optimal
schedules to ODLC-t, and define d(p,O(t)) := min(p̂,q̂)2O(t) kp � p̂k as the distance
from a schedule p to optimal schedules O(t) at time t, for t = 1, . . . ,T .

Theorem 5.3. At time t = 1, . . . ,T , the deferrable load schedules p(k) obtained by
Algorithm 5.2 converge to optimal schedules to ODLC-t, i.e., d(p(k),O(t)) ! 0 as
k !1.

The theorem is proved in Appendix 5.A. Though iterative, Algorithm 5.2 converges
fast, similar to Algorithm 5.1. In the simulations, setting K = 15 is enough for all
test cases.

Similar to Proposition 5.2, “t-valley-filling” provides a simple characterization of
the solutions to ODLC-t. Specifically, at time t = 1, . . . ,T , a feasible schedule (p, q)
is called t-valley-filling, if there exists some constant C(t) 2 R such that

q(⌧) +
N(t)
’

n=1
pn(⌧) = (C(t) � bt(⌧))+, ⌧ = t, . . . ,T . (5.12)

Given this definition of t-valley-filling, the following corollary follows immediately
from Proposition 5.2.

Corollary 5.4. At time t = 1, . . . ,T , a t-valley-filling deferrable load schedule, if
exists, solves ODLC-t. Furthermore, in such cases, all optimal schedules to ODLC-t
have the same aggregate load.

This corollary serves as the basis for the performance analysis we perform in Section
5.4. Remember that t-valley-filling schedules tend to exist in cases where there are
a large numbers of deferrable loads.

5.4 Performance analysis
Average-case Analysis
To this point, we have shown that Algorithm 5.2 makes “optimal” decisions with
the information available at every time slot, i.e., it solves ODLC-t at time t for
t = 1, . . . ,T . However, these decisions are still suboptimal compared to what
could be achieved if exact information was available. In this section, our goal is to
understand the impact of uncertainty on the performance. In particular, we study
two questions:

88

(i) How do the uncertainties about base load and deferrable loads impact the
expected sample path load variance obtained by Algorithm 5.2?

(ii) What is the improvement of using the real-time control provided by Algorithm
5.2 over using the optimal static control?

Our answers to these questions are below. Throughout, we focus on the special,
but practically relevant, case when a t-valley-filling schedule exists at every time
t = 1, . . . ,T . As we have mentioned previously, when the number of deferrable
loads is large this is a natural assumption that holds for practical load profiles. The
reason for making this assumption is that it allows us to use the characterization of
optimal schedules given in (5.12). In fact, without loss of generality, we further
assume C(t) � bt(⌧) for ⌧ = t, . . . ,T , under which (5.12) implies

d(t) = C(t) = 1
T � t + 1

T
’

⌧=t
bt(⌧) + E(A(t)) +

N(t)
’

n=1
Pn(t)

!

(5.13)

for t = 1, . . . ,T . Thus, equation (5.13) defines the model we use for the performance
analysis of Algorithm 5.2.

The expected load variance of Algorithm 5.2
We start by calculating the expected load variance, E(V), of Algorithm 5.2. The goal
is to understand how uncertainty about base load and deferrable loads impacts the
load variance. Note that, if there are no base load prediction errors and deferrable
loads arrive at the beginning of the time horizon, then Algorithm 5.2 obtains optimal
schedules that have zero load variance. In contrast, when there are base load
prediction errors and stochastic deferrable load arrivals, the expected load variance
is given by the following theorem.

To state the result, recall that { f (t)}1t=�1 is the causal filter modeling the correlation
of base load and define F(t) def

==
Õt

s=0 f (s) for t = 0, . . . ,T .

Theorem 5.5. The expected load variance E(V) obtained by Algorithm 5.2 is

E(V) = s2

T

T
’

t=2

1
t
+
�2

T2

T�1
’

t=0
F2(t)T � t � 1

t + 1
. (5.14)

The theorem is proved in Appendix 5.A.

Theorem 5.5 explicitly states the interaction of the variability of base load prediction
(�) and deferrable load prediction (s) with the horizon length T . Besides, it high-
lights the correlation of base load prediction error through F. More specifically,

89

the expected load variance E(V) tends to 0 as the uncertainties in base load and
deferrable loads vanish, i.e., � ! 0 and s! 0.

Corollary 5.6. The expected load variance E(V)! 0 as � ! 0 and s! 0.

Another remark about Theorem 5.5 is that the two terms in (5.14) correspond to
the impact of the uncertainties in deferrable loads and base load respectively. In
particular, Theorem 5.5 is proved in Section 5.A by analyzing these two cases
separately and then combining the results. Specifically, the following two lemmas
are the key pieces in the proof of Theorem 5.5, but are also of interest in their own
right.

Lemma 5.7. If there is no base load prediction error, i.e., bt = b for t = 1, . . . ,T ,
then the expected load variance obtained by Algorithm 5.2 is

E(V) = s2
ÕT

t=2
1
t

T
⇡ s2 lnT

T
.

The lemma is proved in Appendix 5.A.

Lemma 5.8. If there are no deferrable load arrivals after time 1, i.e., N(t) = N for
t = 1, . . . ,T , then the expected load variance obtained by Algorithm 5.2 is

E(V) = �
2

T2

T�1
’

t=0
F2(t)T � t � 1

t + 1
.

The lemma is proved in Appendix 5.A.

Lemma 5.7 highlights that the more uncertainty in deferrable load arrival, i.e., the
larger s, the larger the expected load variance E(V). On the other hand, the longer
the time horizon T , the smaller the expected load variance E(V).
Similarly, Lemma 5.8 highlights that a larger base load prediction error, i.e., a larger
�, results in a larger expected load variance E(V). However, if the impulse response
{ f (t)}1t=�1 of the modeling filter of the base load decays fast enough with t, then
the following corollary highlights that the expected load variance actually tends to
0 as time horizon T increases despite the uncertainty of base load predictions.

Corollary 5.9. If there are no deferrable load arrivals after time 1, i.e., N(t) = N
for t = 1, . . . ,T , and | f (t)| ⇠ O(t�1/2�↵) for some ↵ > 0, then the expected load
variance obtained by Algorithm 5.2 satisfies E(V)! 0 as T !1.

The corollary is proved in Appendix 5.A.

90

Improvement over static control
The goal of this section is to quantify the improvement of real-time control via
Algorithm 5.2 over the optimal static (open-loop) control. To be more specific,
we compare the expected load variance E(V) obtained by the real-time control
Algorithm 5.2, with the expected load variance E(V 0) obtained by the optimal
static control, which only uses base load prediction at the beginning of the time
horizon (i.e., b̄) to compute deferrable load schedules. We assume N(t) = N for
t = 1, . . . ,T in this section since otherwise any static control cannot obtain a schedule
for all deferrable loads. Thus, the interpretation of the results that follow is as a
quantification of the value of incorporating updated base load predictions into the
deferrable load controller.

To begin the analysis, note that E(V) for this setting is given in Lemma 5.8. Further,
it can be verified that the optimal static control is to solve ODLC with b replaced
by b̄, and the corresponding expected load variance E(V 0) is given by the following
lemma.

Lemma 5.10. If there is no stochastic load arrival, i.e., N(t) = N for t = 1, . . . ,T ,
then the expected load variance E(V 0) obtained by the optimal static control is

E(V 0) = �
2

T2

T�1
’

t=0

⇣

T(T � t) f 2(t) � F2(t)
⌘

.

The lemma is proved in Appendix 5.A.

Next, comparing E(V) and E(V 0) given in Lemma 5.8 and 5.10 shows that Algorithm
5.2 always obtains a smaller expected load variance than the optimal static control.
Specifically,

Corollary 5.11. If there is no deferrable load arrival after time 1, i.e., N(t) = N for
t = 1, . . . ,T , then

E(V 0) � E(V) = �
2

T

T
’

t=1

1
2t

t�1
’

m=0

t�1
’

n=0
(f (m) � f (n))2 � 0.

The corollary is proved in the extended version [31].

Corollary 5.11 highlights that Algorithm 5.2 is guaranteed to obtain a smaller
expected load variance than the optimal static control. The next step is to quantify
how much smaller E(V) is in comparison with E(V 0).

91

To do this we compute the ratio E(V 0)/E(V). Unfortunately, the general expression
for the ratio is too complex to provide insight, so we consider two representative
cases for the impulse response f (t) of the causal filter in order to obtain insights.
Specifically, we consider examples (i) and (ii) from Section 5.2. Briefly, in (i) f (t)
is finite and in (ii) f (t) is infinite but decays exponentially in t. For these two cases,
the ratio E(V 0)/E(V) is summarized in the following corollaries.

Corollary 5.12. If there is no deferrable load arrival after time 1, i.e., N(t) = N for
t = 1, . . . ,T , and there exists � > 0 such that

f (t) =
8

>

><

>

>

:

1 if 0  t < �

0 otherwise,

then
E(V 0)
E(V) =

T/�
ln(T/�)

✓

1 +O
✓

1
ln(T/�)

◆◆

.

The corollary is proved in the extended version [31].

Corollary 5.13. If there is no deferrable load arrival after time 1, i.e., N(t) = N for
t = 1, . . . ,T , and there exists a 2 (0, 1) such that

f (t) =
8

>

><

>

>

:

at if t � 0

0 otherwise,

then
E(V 0)
E(V) =

1 � a
1 + a

T
lnT

✓

1 +O
✓

ln lnT
lnT

◆◆

.

The corollary is proved in the extended version [31].

Corollary 5.12 highlights that, in the case where f is finite, if we define � = T/�
as the ratio of time horizon to filter length, then the load reduction roughly scales
as �/ln(�). Thus, the longer the time horizon is in comparison to the filter length,
the larger expected load variance reduction we obtain from using Algorithm 5.2 as
compared with the optimal static control.

Similarly, Corollary 5.13 highlights that, in the case where f is infinite and expo-
nentially decaying, the expected load variance reduction scales with T as T/lnT
with coe�cient (1�a)/(1+a). Thus, the smaller a is, which means the faster f dies
out, the more load variance reduction we obtain by using real-time control. This is
similar to having a smaller � in the previous case.

92

Worst-case analysis
The results surveyed above highlight that Algorithm 5.2 performs well on average;
however, it is often important to guarantee more than good average case performance.
For that reason, many results in the literature focus on worst case analysis, e.g.,
[11, 54, 57]. While no existing results apply directly to the setting of this thesis, it
is straightforward to see that the worst-case performance of Algorithm 5.2 is quite
bad.

To see this, let us consider a setting where the prediction error for generation, e, and
deferrable load, a, have bounded deviations from their means (0 and � respectively).

Definition 8. We say that prediction errors are bounded if there exist ✏1 and ✏2 such
that, at any time t = 1, . . . ,T ,

|a(t) � � |  ✏1, |e(t)|  ✏2. (5.15)

In this situation, it is straightforward to see that the worst case performance of
Algorithm 5.2 can potentially be quite bad. For two real numbers a, b 2 R, define
a _ b := max{a, b}.
Proposition 5.14. If a t-valley-filling solution exists for t = 1, 2, . . . ,T , and predic-
tion errors are bounded by ✏1 and ✏2 as in (5.15), then the worst-case load variance
supa,e V achieved by Algorithm 5.2 is

sup
a,e

V = ✏21

1 � 1
T

T
’

k=1

1
k

!

+
✏22
T2

T�1
’

⌧=0

T�1
’

s=0

✓

T
⌧ _ s + 1

� 1
◆

|F(⌧)F(s)|.

The worst-case performance is achieved when all prediction errors on the load
arrivals are equal to ✏1 while all prediction errors on the generation are equal to
✏2 in magnitude with the appropriate signs—the case where a(t) = � + ✏1 and
e(t) = ✏2 · sgn(F(T � t)) for all t.

Corollary 5.15. If a t-valley-filling solution exists for t = 1, 2, . . . ,T , and prediction
errors are bounded by ✏1 and ✏2 as in (5.15), then the worst-case load variance
supa,e V achieved by Algorithm 5.2 is lower bounded as

sup
a,e

V � ✏21

1 � 1
T

T
’

k=1

1
k

!

⇡ ✏21
✓

1 � lnT
T

◆

.

93

Interestingly, the form of Corollary 5.15 implies that, in the worst-case, Algorithm
5.2 can be as bad as having no control at all: the time averaged load variance behaves
like the worst one step load variance. Meanwhile, recall from Theorem 5.5 that the
average performance E(V)! 0 as T ! 1. Therefore, while the the load variance
V has a small mean E(V), it can be quite large in the worst case.

Distributional analysis
The contrast between the worst-case analysis (Proposition 5.14) and average-case
analysis (Theorem 5.5) motivates the next main goal of this Chapter – to understand
how often the “bad cases,” where V takes large values, happen. That is, we want to
understand what typical variations of V under Algorithm 5.2 look like.

Concentration bounds
We start with analyzing the tail probability of V . Concretely, our focus is on

V⌘ := min{c 2 R | V  c with probability ⌘},

which denotes the minimum value c such that V  c with probability ⌘ for ⌘ 2 [0, 1].
Our main result provides upper bounds on V⌘, for large values of ⌘, for arbitrary of
prediction error distributions.

More specifically, we prove that with high probability, the load variance of Algorithm
5.2 does not deviate much from its average-case performance, i.e., we prove a
concentration result for model predictive deferable load control.

Theorem 5.16. Suppose a t-valley filling solution exists for t = 1, 2, . . . ,T , and
prediction errors bounded by ✏1 and ✏2 as in (5.15). Then the distribution of the
load variance V obtained by Algorithm 5.2 satisfies a Bernstein type concentration,
i.e.,

P(V � EV > t)  exp
✓ �t2

16✏2�1(2EV + t)
◆

, (5.16)

where ✏ = max(✏1, ✏2) and

�1 =
lnT
T
+

1
T2

T�1
’

t=0
F2(t)T � t + 1

t + 1
.

94

The theorem is proven in Appendix 5.B.

To build intuition, the tail probability bound of V in (5.16) can be simplified for two
di�erent regimes of t as

P(V � EV > t) 
8

>

><

>

>

:

exp
⇣

�t2

48✏2�1EV

⌘

, t < EV

exp
⇣

�t
48✏2�1

⌘

, t � EV .
(5.17)

Though looser than that in (5.16), the tail bound in (5.17) highlights that V has a
Gaussian tail probability bound when t < EV and an Exponential tail probability
bound when t � EV .

Theorem 5.16 relates the tail behavior of V with the maximum prediction error ✏
and the error correlation F over time. It implies that the actual performance of
Algorithm 5.2 does not deviate much from its mean. To illustrate this, consider the
following example where the prediction on baseload is precise, since the parameter
�1 has a simple expression in this scenario.

Example 5.17. Suppose that the baseload prediction is precise, i.e., ✏2 = 0. Then
the average load variance is

E[V] = s2

T

T
’

t=2

1
t
⇡ s2 lnT/T

and the tail bound in Theorem 5.16 can be simplified as

P(V � EV > cEV)  exp
✓

� c2

2 + c
s2

16✏2

◆

.

Recall that constant s is the variance of a and constant ✏ is the maximum deviation
of a from its mean. The above expression shows that, with high probability, V is at
most a constant c + 1 times of its mean EV .

More generally, the quantity �1 controls the decaying speed of the tail bound in
(5.16): the smaller �1, the faster the tail bound P(V � EV > t) decays in t, and the
load variance V achieved by Algorithm 5.2 concentrates sharper around its mean
EV . The following corollary highlights that �1 tends to 0 as T increases, provided
that the error correlation f (t) decays fast enough in t. Note that the condition on f
is the same for Corollary 5.18 and Theorem 5.5.

Corollary 5.18. Under the assumptions of Theorem 5.16, if the error correlation
f ⇠ O(t� 1

2�↵) for some ↵ > 0, then �1 ! 0 as T !1.

95

A detailed proof of Theorem 5.16 is included in the Appendix; however it is useful
to provide some informal intuition for the argument used.

In general, tail probability bounds can be obtained by controlling the moments of
a random variable. For example, the Markov inequality gives inverse linear tail
probability bound using the first moment, and the Chebyshev inequality provides
inverse quadratic tail probability bound using the second moment. However, the
bound we obtained in Theorem 5.16 approaches 0 much faster for large t than the
aforementioned Markov and Chebyshev bounds. This is done by controlling the
moment generating function of V using the convex Log-Sobolev inequality.

A challenge in controlling the moment generating function of V is that, the most
commonly used approach—the Martingale bounded di�erence approach [64]—only
obtains very loose tail probability bounds in our case. This is because V can change
dramatically when one of the sources a(t) or e(t) of the randomness changes. Instead,
we exploit the fact that the gradient of V is bounded by a linear function of itself
(similar but slightly di�erent from the “self-bounding” property defined in [15]).
Using this property together with Log-Sobolev inequality in the product measure
gives us a nice way to bound the entropy of V . After this we apply the Herbst’s
argument [53] to compute a good estimate on the concentration of V .

Bounds on the variance
To further understand the scale of typical load variance V under Algorithm 5.2, it
is useful to also study the variance. In addition, the form of the variance highlights
the impact of the tight concentration shown in Theorem 5.16.

Theorem 5.19. Suppose a t-valley-filling solution exists for t = 1, 2, . . . ,T , and
prediction errors are bounded by ✏1 and ✏2 as in (5.15). Then the variance var(V)
of V obtained by Algorithm 5.2 is bounded above by

var(V) 
✓

4✏1s lnT
T

◆2
+

4✏2�
T2

T�1
’

t=0
F2(t)T � t + 1

t + 1

!2

. (5.18)

To interpret this result, let var(V) denote the upper bound on var(V) provided in
(5.18). Theorem 5.19 implies that EV and

q

var(V) scale similarly with T . In
particular, the first term s2

T
ÕT

t=2
1
t in EV scales with T as ⌦(lnT/T) while the first

term (4✏1s lnT/T)2 in var(V) scales with T as ⌦
�(lnT/T)2� , and the second terms

96

in EV and var(V) have the same relationship. Therefore, the standard deviation
p

var(V), which is upper bounded by
q

var(V), is at most on the same scale as EV as
T expands. It immediately follows from the Chebyshev inequality that V can only
deviate significantly from E(V) with a small probability.

Corollary 5.20. Under the assumptions in Theorem 5.19, for t > 0,

P(|V � EV | > t)

 1
t2

2

6

6

6

6

4

✓

4✏1s lnT
T

◆2
+

4✏2�
T2

T�1
’

⌧=0
F2(⌧)T � ⌧ + 1

⌧ + 1

!2
3

7

7

7

7

5

. (5.19)

While the tail bound (5.16) in Theorem 5.16 scales at least exponentially in t, the
Chebyshev inequality only provides a tail bound (5.19) that scales inverse quadrati-
cally in t. Hence for large t, (5.16) provides a much tighter tail bound. However for
small values of t, the tail bound (5.19) is usually tighter since the variance var(V) is
well estimated in (5.18).

Furthermore, the variance var(V) vanishes as T expands, provided that f (t) decays
su�ciently fast as t grows, as formally stated in the following corollary.

Corollary 5.21. Under the assumptions of Theorem 5.19, if the error correlation
f ⇠ O(t� 1

2�↵) for some ↵ > 0, then var(V)! 0 as T !1.

Note that the condition on f parallels that in Theorem 5.5.

5.5 Simulation
In this chapter we use trace-based experiments to explore the generality of the
analytic results in the previous section. In particular, the results in the previous
section characterize the expected load variance obtained by Algorithm 5.2 as a
function of prediction uncertainties, and quantify the improvement of Algorithm
5.2 over the optimal static (open-loop) controller. However, the analytic results
make simplifying assumptions on the form of uncertainties and solution schedules
(equation (5.13)). Therefore, it is important to assess the performance of the
algorithm using real-world data.

Experimental setup
The numerical experiments we perform use a time horizon of 24 hours, from 20:00
to 20:00 on the following day. The time slot length is 10 minutes, which is the
granularity of the data we have obtained about renewable generation.

97

20:00 4:00 12:00 20:00
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

time of day

n
o
n
−

d
e
fe

rr
a
b
le

 lo
a
d
 (

kW
/h

o
u
se

h
o
ld

)

(a) non-deferrable load

20:00 4:00 12:00 20:00
0

0.1

0.2

0.3

0.4

time of day

re
n
e
w

a
b
le

 g
e
n
e
ra

tio
n
 (

kW
/h

o
u
se

h
o
ld

)

Jan. 1st~2nd, 2006
Apr. 1st~2nd, 2007
Jul. 1st~2nd, 2008
Oct. 1st~2nd, 2009

(b) wind generation

0h 8h 16h 24h
0

20

40

60

80

100

time looking ahead

n
o

rm
a

liz
e

d
 w

in
d

 p
re

d
ic

tio
n

 e
rr

o
r

(%
)

(c) prediction error over
time

Figure 5.2: Illustration of the traces used in the experiments. (a) shows the average
residential load in the service area of Southern California Edison in 2012. (b) shows the
total wind power generation of the Alberta Electric System Operator scaled to represent
20% penetration. (c) shows the normalized root-mean-square wind prediction error as a
function of the time looking ahead for the model used in the experiments.

Base load Recall that base load is a combination of non-deferrable load and
renewable generation. The non-deferrable load traces used in the experiments come
from the average residential load in the service area of Southern California Edison
in 2012 [78]. In the simulations, we assume that non-deferrable load is precisely
known so that uncertainties in the base load only come from renewable generation.
In particular, non-deferrable load over the time horizon of a day is taken to be the
average over the 366 days in 2012 as in Figure 5.2a, and assumed to be known to
the utility at the beginning of the time horizon. In practice, non-deferrable load
at the substation feeder level can be predicted within 1–3% root-mean-square error
looking 24 hours ahead [25].

The renewable generation traces we use come from the 10-minute historical data for
total wind power generation of the Alberta Electric System Operator from 2004 to
2009 [4]. In the simulations, we scale the wind power generation so that its average
over the 6 years corresponds to a number of penetration levels in the range between
5% and 30%, and pick the wind power generation of a randomly chosen day as the
renewable generation during each run. Figure 5.2b shows the wind power generation
for four representative days, one for each season, after scaling to 20% penetration.

We assume that the renewable generation is not precisely known until it is realized,
but that a prediction of the generation, which improves over time, is available to the
utility. The modeling of prediction evolution over time is according to a martingale
forecasting process [37, 38], which is a standard model for an unbiased prediction
process that improves over time.

98

Specifically, the prediction model is as follows: for wind generation w(⌧) at time
⌧, the prediction error wt(⌧) � w(⌧) at time t < ⌧ is the sum of a sequence of
independent random variables ns(⌧) as

wt(⌧) = w(⌧) +
⌧

’

s=t+1
ns(⌧), 0  t < ⌧  T .

Here w0(⌧) is the wind prediction without any observation, i.e., the expected wind
generation w̄(⌧) at the beginning of the time horizon (used by static control).

The random variables ns(⌧) are assumed to be Gaussian with mean 0. Their variances
are chosen as

E(n2
s (⌧)) =

�2

⌧ � s + 1
, 1  s  ⌧  T,

where � > 0 is such that the root-mean-square prediction error
p

E(w0(T) � w(T))2
looking T time slots (i.e., 24 hours) ahead is 0%–22.5% of the nameplate wind
generation capacity.2 According to this choice of the variances of ns(⌧), root-mean-
square prediction error only depends on how far ahead the prediction is, in particular
as in Figure 5.2c. This choice is motivated by [34].

Deferrable loads For simplicity, we consider the hypothetical case where all
deferrable loads are electric vehicles. Since historical data for electric vehicle usage
is not available, we are forced to use synthetic traces for this component of the
experiments. Specifically, in the simulations the electric vehicles are considered to
be identical, each requests 10kWh electricity by a deadline 8 hours after it arrives,
and each must consume power at a rate within [0, 3.3]kW after it arrives and before
its deadline.

In the simulations, the arrival process starts at 20:00 and ends at 12:00 the next day
so that the deadlines of all electric vehicles lie within the time horizon of 24 hours.
In each time slot during the arrival process, we assume that the number of arriving
electric vehicles is uniformly distributed in [0.8�, 1.2�], where � is chosen so that
electric vehicles (on average) account for 5%–30% of the non-deferrable loads.
While this synthetic workload is simplistic, the results we report are representative
of more complex setups as well.

Uncertainty about deferrable load arrivals is captured as follows. The prediction
E(A(t)) of future deferrable load total energy request is simply the arrival rate �

2Average wind generation is 15% of the nameplate capacity, so the root-mean-square prediction
error looking T time slots ahead is 0%–150% the average wind generation.

99

times the length of the rest of the arrival process T 0 � t where T 0 is the end of the
arrival process (12:00), i.e.,

E(A(t)) = �(T 0 � t), t = 1, . . . ,T 0.

If t > T 0, i.e., the deferrable load arrival process has ended, then E(A(t)) = 0.

Baselines for comparison Our goal in the simulations is to contrast the perfor-
mance of Algorithm 5.2 with a number of common benchmarks to tease apart the
impact of real-time control and the impact of di�erent forms of uncertainty. To this
end, we consider four controllers in our experiments:

(i) O�ine optimal control: The controller has full knowledge about the base load
and deferrable loads, and solves the ODLC problem o�ine. It is not realistic
in practice, but serves as a benchmark for the other controllers since o�ine
optimal control obtains the smallest possible load variance.

(ii) Static control with exact deferrable load arrival information: The controller
has full knowledge about deferrable loads (including those that have not
arrived), but uses only the prediction of base load that is available at the
beginning of the time horizon to compute a deferrable load schedule that
minimizes the expected load variance. This static control is still unrealistic
since a deferrable load is known only after it arrives. But, this controller
corresponds to what is considered in prior works, e.g., [27, 28, 62].

(iii) Real-time control with exact deferrable load arrival information. The con-
troller has full knowledge about deferrable loads (including those that have
not arrived), and uses the prediction of base load that is available at the current
time slot to update the deferrable load schedule by minimizing the expected
load variance to go, i.e., Algorithm 5.2 with N(t) = N for t = 1, . . . ,T . The
control is unrealistic since a deferrable load is known only after it arrives;
however it provides the natural comparison for case (ii) above.

(iv) Real-time control without exact deferrable load arrival information, i.e., Al-
gorithm 5.2. This corresponds to the realistic scenario where only predictions
are available about future deferrable loads and base load. The comparison
with case (iii) highlights the impact of deferrable load arrival uncertainties.

100

The performance measure that we show in all plots is the “suboptimality” of the
controllers, which we define as

⌘
def
==

V � Vopt

Vopt ,

where V is the load variance obtained by the controller and Vopt is the load variance
obtained by the o�ine optimal, i.e., case (i) above. Thus, the lines in the figures
correspond to cases (ii)-(iv).

Experimental results
Our experimental results focus on two main goals: (i) understanding the impact of
prediction accuracy on the expected load variance obtained by deferrable load control
algorithms, and (ii) contrasting the real-time (closed-loop) control of Algorithm 5.2
with the optimal static (open-loop) controller. We focus on the impact of three key
factors: wind prediction error, the penetration of deferrable load, and the penetration
of renewable energy.

The impact of prediction error To study the impact of prediction error, we fix
the penetration of both renewable generation (wind) and deferrable loads at 10%
of non-deferrable load, and simulate the load variance obtained under di�erent
levels of root-mean-square wind prediction errors (0%–22.5% of the nameplate
capacity looking 24 hours ahead). The results are summarized in Figure 5.3a. It
is not surprising that suboptimality of both the static and the real-time controllers
that have exact information about deferrable load arrivals is zero when the wind
prediction error is 0, since there is no uncertainty for these controllers in this case.

As prediction error increases, the suboptimality of both the static and the real-time
control increases. However, notably, the suboptimality of real-time control grows
much more slowly than that of static control, and remains small (<4.7%) if deferrable
load arrivals are known, over the whole range 0%–22.5% of wind prediction error.
At 22.5% prediction error, the suboptimality of static control is 4.2 times that of
real-time control. This highlights that real-time control mitigates the influence of
imprecise base load prediction over time.

Moving to the scenario where deferrable load arrivals are not known precisely, we
see that the impact of this inexact information is less than 6.6% of the optimal
variance. However, real-time control yields a load variance that is surprisingly
resilient to the growth of wind prediction error, and eventually beats the optimal

101

0 5 10 15 20
0

5

10

15

wind prediction error (%)

su
b
o
p
tim

a
lit

y
(%

)

static w/ arrival info.
real−time w/o arrival info.
real−time w/ arrival info.

(a) Wind and deferrable load penetration
are both 10%.

0 5 10 15 20
0

20

40

60

80

wind prediction error (%)

su
b
o
p
tim

a
lit

y
(%

)

static w/ arrival info.
real−time w/o arrival info.
real−time w/ arrival info.

(b) Wind and deferrable load penetration
are both 20%.

Figure 5.3: Illustration of the impact of wind prediction error on suboptimality of
load variance.

static control at around 10% wind prediction error, even though the optimal static
control has exact knowledge of deferrable loads and the adaptive control does not.

As prediction error increases, the suboptimality of the real-time control with or
without deferrable load arrival information gets close, i.e., the benefit of knowing
additional information on future deferrable load arrivals vanishes as base load
uncertainty increases. This is because the additional information is used to overfit
the base load prediction error.

The same comparison is shown in Figure 5.3b for the case where renewable and
deferrable load penetration are both 20%. Qualitatively the conclusions are the same,
however at this higher penetration the contrast between the resilience of adaptive
control and static control is magnified, while the benefit of knowing deferrable
load arrival information is minified. In particular, real-time control without arrival
information beats static control with arrival information, at a lower (around 7%)
wind prediction error, and knowing deferrable load arrival information does not
reduce suboptimality of real-time control with 22.5% wind prediction error.

The impact of deferrable load penetration Next, we look at the impact of
deferrable load penetration on the performance of the various controllers. To do
this, we fix the wind penetration level to be 20% and wind prediction error looking
24 hours ahead to be 18%, and simulate the load variance obtained under di�erent
deferrable load penetration levels (5%–30%). The results are summarized in Figure
5.4a.

102

5 10 15 20 25 30
0

50

100

150

deferrable load penetration (%)

su
b

o
p

tim
a

lit
y

(%
)

static w/ arrival info.
real−time w/o arrival info.
real−time w/ arrival info.

(a) Impact of deferrable load penetration

5 10 15 20 25
0

20

40

60

80

wind penetration (%)

su
b

o
p

tim
a

lit
y

(%
)

static w/ arrival info.
real−time w/o arrival info.
real−time w/ arrival info.

(b) Impact of wind penetration

Figure 5.4: Suboptimality of load variance as a function of (a) deferrable load penetration
and (b) wind penetration. In (a) the wind penetration is 20% and in (b) the deferrable load
penetration is 20%. In both, the wind prediction error looking 24 hours ahead is 18%.

Not surprisingly, if future deferrable loads are known and uncertainty only comes
from base load prediction error, then the suboptimality of real-time control is very
small (<11.2%) over the whole range 5%–30% of deferrable load penetration, while
the suboptimality of static control increases with deferrable load penetration, up
to as high as 166% (14.9 times that of real-time control) at 30% deferrable load
penetration.

However, without knowing future deferrable loads, the suboptimality of real-time
control increases with the deferrable load penetration. This is because a larger
amount of deferrable loads introduces larger uncertainties in deferrable load arrivals.
But the suboptimality remains smaller than that of static control over the whole range
5%–30% of deferrable load penetration. The highest suboptimality 25.7% occurs at
30% deferrable load penetration, and is less than 1/6 of the suboptimality of static
control, which assumes exact deferrable load arrival information.

The impact of renewable penetration Finally, we study the impact of renewable
penetration. To do this we fix the deferrable load penetration level to be 20%
and the wind prediction error looking 24 hours ahead to be 18%, and simulate the
load variance obtained by the 4 test cases under di�erent wind penetration levels
(5%–25%). The results are summarized in Figure 5.4b.

A key observation is that if future deferrable loads are known and uncertainty only
comes from base load prediction error, then the suboptimality of real-time control
grows much slower than that of static control, as wind penetration level increases.

103

As explained before, this highlights that real-time control mitigates the impact of
base load prediction error over time. In fact, the suboptimality of real-time control
is small (<15%) over the whole range 5%–25% of wind penetration levels. Of
course, without knowledge of future deferrable loads, the suboptimality of real-time
control becomes bigger. However, it still eventually outperforms the optimal static
controller at around 6% wind penetration, despite the fact that the optimal static
controller is using exact information about deferrable loads.

A case study
Theorems 5.16 and 5.19 provide theoretical guarantees that the load variance V
obtained by Algorithm 5.2 concentrates around its mean, if prediction errors are
bounded as in (5.15) and error correlation decays su�ciently fast (c.f. Corollary
2). Thus, they give the intuition that the expected performance of Algorithm 5.2
is a useful metric to focus on, and does indeed give an indication of the “typical”
performance of the algorithm.

However, our analysis is based on the assumption that a t-valley-filling solution
exists, which relies on the penetration of deferrable load being high enough. This is
a necessary technical assumption for our analysis, and has been used by the previous
analysis of Algorithm 5.2 as well, e.g., [30].

Given this assumption in the analytic results, it is important to understand the
robustness of the results to this assumption. To that end, here we provide a case
study to demonstrate that this intuition is robust to the t-valley-filling assumption.

In our case study, we mimic the setting of [30], where an average-case analysis of
Algorithm 5.2 is performed. In particular, we use 24 hour residential load trace
in the Southern California Edison (SCE) service area averaged over the year 2012
and 2013 [79] as the non-deferrable load, and wind power generation data from the
Alberta Electric System Operator from 2004 to 2012 [5]. The wind power generation
data is scaled so that its average over 9 years corresponds to 30% penetration level,
and pick the wind generation of a random day as renewable during each run. We
generate random prediction error in baseload and arrival of deferrable load similar
to [30].

Given this setting, we simulate 100 instances in each scenario and compare the
results with the Theorems 5.16. The results are shown in Fig. 5.5 where we plot
the cumulative distribution (CDF) of the load variance produced by Algorithm 5.2
under two di�erent scenarios. Specifically, in Fig. 5.5a, we assume the prediction

104

0.011 0.012 0.013 0.014 0.015
0

0.2

0.4

0.6

0.8

1

V

E
m

p
ir
ic

a
l C

D
F

 o
f

V

(a) 30% prediction error

0.011 0.012 0.013 0.014 0.015
0

0.2

0.4

0.6

0.8

1

V

E
m

p
ir
ic

a
l C

D
F

 o
f

V

(b) 10% prediction error

Figure 5.5: The empirical cumulative distribution function of the load variance under
Algorithm 5.2 over 24 hour control horizon using real data. The red line represents the
analytic bound on the 90% confidence interval computed from Theorem 5.16, and the black
line shows the empirical mean.

error in wind power generation is 30%, and in Fig. 5.5b, we assume the prediction
error is 10%. We plot the CDF on the same scale in both plots and additionally show
an analytic bound on the 90% confidence interval computed from Theorem 5.16.
For both cases, the results highlight a strong concentration around the mean, and the
analytic bound from Theorem 5.16 is valid despite the fact that the t-valley-filling
assumption is not satisfied. Further, note that the analytic bound is much tighter
when prediction error is small, which coincides the statement of Theorem 5.16.

5.6 Concluding remarks
We have proposed a model predictive algorithm for decentralized deferrable load
control that can schedule a large number of deferrable loads to compensate for
the random fluctuations in renewable generation. At any time, the algorithm in-
corporates updated predictions about deferrable loads and renewable generation to
minimize the expected load variance to go. Further, by modeling the base load
prediction updates as a Wiener filtering process, we have conducted performance
analysis to our algorithm in average case analysis and distributional analysis. We de-
rived an explicit expression for the aggregate load variance obtained by the average
case performance of the algorithm, which quantitatively showed the improvement
of model predictive control over static control. Interestingly, the sub-optimality of
static control is O(T/lnT) times that of real-time control in two representative cases
of base load prediction updates. Besides average case analysis, we have provided a

105

distributional analysis of the algorithm and shown that the load variance is tightly
concentrated around its mean. Thus, our results highlight that the typical perfor-
mance one should expect to see under model predictive deferrable load control is
not-too-di�erent from the average-case analysis. Importantly, the proof technique
we develop may be useful for the analysis of model predictive control in more gen-
eral settings as well. The qualitative insights from the analytic results were validated
using trace-based simulations, which confirm that the algorithm has significantly
smaller sub-optimality than the optimal static control.

The main limitation in our analysis (which is also true for the prior stochastic analysis
of model predictive deferrable load control) is the assumption that a t-valley-filling
solution exists. Practically, one can expect this to be satisfied if the penetration of
deferrable loads is high; however, relaxing the need for this technical assumption
remains an interesting and important challenge. Interestingly, the numerical results
we report here highlight that one should also expect a tight concentration in the case
where a t-valley-filling solution does not exist.

There remain many open questions on deferrable load control. For example, is it
possible to reduce the communication and computation requirements of the proposed
algorithm by assuming achievability of t-valley-filling? How to extend the algorithm
to a receding horizon implementation? Additionally, how to apply the technique
used here to incorporate prediction evolution for other demand response settings.

5.A Proof of average case results
In this section, we only include proofs of the main results due to space restrictions.
The remainder of the proofs can be found in the extended version [31].

Proof of Theorem 5.3
For brevity and without loss of generality, we prove Theorem 5.3 for t = 1 only.
Thus, we can abbreviate bt and N(t) by b and N respectively without introducing
confusion.

For feasible p, q to ODLC-t and p = (p1, . . . , pN), define

L(p, q) =
T
’

⌧=1

b(⌧) +
N
’

n=1
pn(⌧) + q(⌧)

!2

.

Since the sum of the aggregate load
ÕT
⌧=1 d(⌧) is a constant, minimizing the `2

norm of the aggregate load is equivalent to minimizing its variance. Therefore, if

106

subject to the same constraints, the minimizer of L is also the solution to ODLC-t.
According to the proof of Proposition 5.1 in [27], we have

L(p(k+1), q(k))  L(p(k), q(k))

for k � 0, and the equality is attained if and only if p(k+1) = p(k) and p(k) minimizes
L(p, q(k)) over all feasible p, i.e., (the first order optimality condition)

*

b +
N
’

n=1
p(k)n + q(k), p0n � p(k)n

+

� 0

for n = 1, . . . , N and all feasible p0n. According to Step (ii) of Algorithm 5.2, it is
straightforward that

L(p(k+1), q(k+1))  L(p(k+1), q(k))
for k � 0, and the equality is attained if and only if q(k+1) = q(k) and q(k) minimizes
L(p(k+1), q) over all feasible q, i.e., (the first order optimality condition)

*

b +
N
’

n=1
p(k+1)

n + q(k), q0 � q(k)
+

� 0

for all feasible q0. It then follows that

L(p(k+1), q(k+1))  L(p(k), q(k))

and the equality if attained if and only if (p(k+1), q(k+1)) = (p(k), q(k)), and
*

b +
N
’

n=1
p(k)n + q(k), p0n � p(k)n

+

� 0,

*

b +
N
’

n=1
p(k)n + q(k), q0 � q(k)

+

� 0

for all feasible p and q, i.e., (p(k), q(k))minimizes L(p, q). Then by Lasalle’s Theorem
[85], we have d(p(k),O(t))! 0 as k !1. ⌅

Proof of Lemma 5.7
When bt = b and E(a(t)) = � for t = 1, . . . ,T , the model (5.13) for Algorithm 5.2
reduces to

d(t) = 1
T � t + 1

T
’

⌧=t
b(⌧) + �(T � t) +

N(t)
’

n=1
Pn(t)

!

(5.20)

107

for t = 1, . . . ,T . Then

(T � t + 1)d(t) =
T
’

⌧=t
b(⌧) + �(T � t) +

N(t)
’

n=1
Pn(t)

(T � t + 2)d(t � 1) =
T
’

⌧=t�1
b(⌧) + �(T � t + 1) +

N(t�1)
’

n=1
Pn(t � 1)

for t = 2, . . . ,T . Subtract the two equations and simplify using the fact that b(t �
1) + ÕN(t�1)

n=1 (Pn(t � 1) � Pn(t)) = b(t � 1) + ÕN(t�1)
n=1 pn(t � 1) = d(t � 1) and the

definition of a(t) to obtain

d(t) � d(t � 1) = 1
T � t + 1

(a(t) � �)

for t = 2, . . . ,T . Substituting t = 1 into (5.20), it can be verified that d(1) =
� +

ÕT
⌧=1 b(⌧)/T + (a(1) � �)/T , therefore

d(t) = � + 1
T

T
’

⌧=1
b(⌧) +

t
’

⌧=1

1
T � ⌧ + 1

(a(⌧) � �)

for t = 1, . . . ,T . The average aggregate load is

u =
1
T

T
’

t=1
d(t) = � + 1

T

T
’

⌧=1
b(⌧) +

T
’

⌧=1
(a(⌧) � �)

!

.

Therefore,

E(d(t) � u)2

= E

t
’

⌧=1

1
T � ⌧ + 1

(a(⌧) � �) � 1
T

T
’

⌧=1
(a(⌧) � �)

!2

= E

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1) (a(⌧) � �) �

1
T

T
’

⌧=t+1
(a(⌧) � �)

!2

=
s2

T2

t
’

⌧=1

(⌧ � 1)2
(T � ⌧ + 1)2 + T � t

!

108

for t = 1, . . . ,T . The last equality holds because (a(⌧) � �) are independent for all
⌧ and each of them have mean zero and variance s2. It follows that

E(V) = 1
T

T
’

t=1
E(d(t) � u)2

=
s2

T3

T
’

t=1

t
’

⌧=1

(⌧ � 1)2
(T � ⌧ + 1)2 +

T
’

t=1
(T � t)

!

=
s2

T3

T
’

⌧=1

(⌧ � 1)2
T � ⌧ + 1

+

T
’

t=1
(T � t)

!

=
s2

T3

T
’

t=1

(T � t)2
t

+

T
’

t=1

(T � t)t
t

!

= s2
ÕT

t=2
1
t

T
⇠ s2 lnT

T
. ⌅

Proof of Lemma 5.8
In the case where no deferrable arrival after t = 1, i.e., N(t) = N for t = 1, . . . ,T ,
the model (5.13) for Algorithm 5.2 reduces to

(T � t + 1)d(t) =
T
’

⌧=t
bt(⌧) +

N
’

n=1
Pn(t) (5.21)

for t = 1, . . . ,T . Substitute t by t � 1 to obtain

(T � t + 2)d(t � 1) =
T
’

⌧=t�1
bt�1(⌧) +

N
’

n=1
Pn(t � 1)

for t = 2, . . . ,T . Subtract the two equations to obtain

(T � t + 1)d(t) � (T � t + 2)d(t � 1)

=

T
’

⌧=t
e(t) f (⌧ � t) � b(t � 1) �

N
’

n=1
pn(t � 1)

= e(t)F(T � t) � d(t � 1),
which implies

d(t) � d(t � 1) = 1
T � t + 1

e(t)F(T � t)
for t = 2, . . . ,T . Substituting t = 1 into (5.21) and recalling the definition of bt in
(5.1), it can be verified that

d(1) = 1
T

N
’

n=1
Pn +

T
’

⌧=1
b̄(⌧)

!

+
1
T

e(1)F(T � 1).

109

Therefore,

d(t) = 1
T

N
’

n=1
Pn +

T
’

⌧=1
b̄(⌧)

!

+

t
’

⌧=1

1
T � ⌧ + 1

e(⌧)F(T � ⌧)

for t = 1, . . . ,T . The average aggregate load is

u =
1
T

N
’

n=1
Pn +

T
’

t=1
b̄(t)

!

+
1
T

T
’

⌧=1
e(⌧)F(T � ⌧).

Therefore,

E(d(t) � u)2

= E

t
’

⌧=1

1
T � ⌧ + 1

e(⌧)F(T � ⌧) �
T
’

⌧=1

1
T

e(⌧)F(T � ⌧)
!2

= E

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1)e(⌧)F(T � ⌧)

�
T
’

⌧=t+1

1
T

e(⌧)F(T � ⌧)
!2

=
�2

T2

t
’

⌧=1

(⌧ � 1)2
(T � ⌧ + 1)2 F2(T � ⌧) +

T
’

⌧=t+1
F2(T � ⌧)

!

for t = 1, . . . ,T . The last equality holds because e(⌧) are uncorrelated random
variables with mean zero and variance �2. It follows that

E(V) = 1
T

T
’

t=1
E(d(t) � u)2

=
�2

T3

T
’

t=1

t
’

⌧=1

(⌧ � 1)2
(T � ⌧ + 1)2 F2(T � ⌧) +

T
’

⌧=t+1
F2(T � ⌧)

!

=
�2

T3

T
’

⌧=1
F2(T � ⌧) (⌧ � 1)2

T � ⌧ + 1
+
�2

T3

T
’

⌧=2
(⌧ � 1)F2(T � ⌧)

=
�2

T2

T
’

⌧=1
F2(T � ⌧) ⌧ � 1

T � ⌧ + 1
=
�2

T2

T�1
’

t=0
F2(t)T � t � 1

t + 1
.⌅

Proof of Theorem 5.5
Similar to the proof of Lemma 5.7 and 5.8, use the model (5.13) to obtain

d(t) = � + 1
T

T
’

⌧=1
b̄(⌧) +

t
’

⌧=1

1
T � ⌧ + 1

(e(⌧)F(T � ⌧) + a(⌧) � �)

110

for t = 1, . . . ,T and

u = � +
1
T

T
’

⌧=1
b̄(⌧) +

T
’

⌧=1

1
T
(e(⌧)F(T � ⌧) + a(⌧) � �) .

Therefore,

E(d(t) � u)2

= E

t
’

⌧=1

1
T � ⌧ + 1

e(⌧)F(T � ⌧) �
T
’

⌧=1

1
T

e(⌧)F(T � ⌧)
!2

+E

t
’

⌧=1

1
T � ⌧ + 1

(a(⌧) � �) �
T
’

⌧=1

1
T
(a(⌧) � �)

!2

.

The first term is exactly that in Lemma 5.8, and the second term is exactly that in
Lemma 5.7. Thus, the expected load variance is

E(V) = �
2

T2

T�1
’

t=0
F2(t)T � t � 1

t + 1
+

s2

T

T
’

t=2

1
t
. ⌅

Proof of Corollary 5.9
If | f (t)| ⇠ O(t�1/2�↵) for some ↵ > 0, then | f (t)|  Ct�1/2�↵ for some C > 0
and all t � 1. Without loss of generality, assume that 0 < ↵ < 1/2 and C �
(1 � 2↵)/(1 + 2↵). Then F(0) = 1 and

|F(t)| =
�

�

�

�

�

t
’

⌧=0
f (⌧)

�

�

�

�

�

 1 +
t

’

⌧=1
C⌧�1/2�↵  2C

1 � 2↵
t1/2�↵

for t = 1, . . . ,T . The last inequality holds because C � (1�2↵)/(1+2↵). Therefore
it follows from Lemma 5.8 that

E(V)  �2

T

T�1
’

s=0
F2(s) 1

s + 1

 �2

T
+
�2

T

T�1
’

s=1

4C2

(1 � 2↵)2 s1�2↵ 1
s + 1

 �2

T
+
�2

T
4C2

(1 � 2↵)2
T�1
’

s=1

1
s2↵

 �2

T
+

4�2C2

(1 � 2↵)2T
+

4�2C2

(1 � 2↵)3T2↵ .

Therefore, E(V)! 0 as T !1. ⌅

111

Proof of Lemma 5.10
The aggregate load d obtained by the optimal static algorithm is

d(t) = 1
T

N
’

n=1
Pn +

T
’

⌧=1
b̄(⌧)

!

� b̄(t) + b(t)

=
1
T

N
’

n=1
Pn +

T
’

⌧=1
b̄(⌧)

!

+

T
’

⌧=1
e(⌧) f (t � ⌧)

for t = 1, . . . ,T . Thus,

E(d(t) � u)2

= E

T
’

⌧=1
e(⌧)

✓

f (t � ⌧) � 1
T

F(T � ⌧)
◆

!2

=
�2

T2

T
’

⌧=1
T2 f 2(t � ⌧) � 2T f (t � ⌧)F(T � ⌧) + F2(T � ⌧)

for t = 1, . . . ,T . It follows that

E(V 0) = 1
T

T
’

t=1
E(d(t) � u)2

=
�2

T

T
’

t=1

T
’

⌧=1
f 2(t � ⌧) � 2�2

T2

T
’

⌧=1
F(T � ⌧)

T
’

t=1
f (t � ⌧)

+
�2

T2

T
’

⌧=1
F2(T � ⌧)

=
�2

T

T
’

t=1

t�1
’

⌧=0
f 2(⌧) � �

2

T2

T
’

⌧=1
F2(T � ⌧)

=
�2

T

T�1
’

⌧=0
(T � ⌧) f 2(⌧) � �

2

T2

T�1
’

⌧=0
F2(⌧)

=
�2

T2

T�1
’

t=0

⇣

T(T � t) f 2(t) � F2(t)
⌘

. ⌅

5.B Proofs of distributional results
Proof of Proposition 5.14
It has been computed in [30] that the load variance V obtained by Algorithm 5.2 is
composed of two parts:

V = V1 + V2,

112

where

V1 := 1
T

T
’

t=1

"

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1) (a(⌧) � �)

�
T
’

⌧=t+1

1
T
(a(⌧) � �)

#2

is the variance due to the prediction error on deferrable load and

V2 :=
1
T

T
’

t=1

"

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1)e(⌧)F(T � ⌧)

�
T
’

⌧=t+1

1
T

e(⌧)F(T � ⌧)
#2

is the variance due to the prediction error on baseload. Now we compute the
worst-case V1 and V2 under the bounded prediction error assumption (5.15).

We start with computing the worst-case V1. Let x(⌧) := a(⌧)� � for ⌧ = 1, 2, . . . ,T ,

113

then

V1 =
1
T

T
’

t=1

"

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1) x(⌧) �

T
’

⌧=t+1

1
T

x(⌧)
#2

=
1
T

T
’

t=1

"

t
’

⌧=1

1
T � ⌧ + 1

x(⌧) �
T
’

⌧=1

1
T

x(⌧)
#2

=
1
T

T
’

t=1

"

t
’

⌧=1

1
T � ⌧ + 1

x(⌧)
#2

+
1
T

T
’

t=1

"

T
’

⌧=1

1
T

x(⌧)
#2

� 2
T

T
’

t=1

t
’

⌧=1

1
T � ⌧ + 1

x(⌧)
T
’

s=1

1
T

x(s)

=
1
T

T
’

t=1

"

t
’

⌧=1

1
T � ⌧ + 1

x(⌧)
#2

+

"

T
’

⌧=1

1
T

x(⌧)
#2

� 2
T2

T
’

s=1
x(s)

T
’

⌧=1

T
’

t=⌧

1
T � ⌧ + 1

x(⌧)

=
1
T

T
’

t=1

"

t
’

⌧=1

1
T � ⌧ + 1

x(⌧)
#2

+
1

T2

"

T
’

⌧=1
x(⌧)

#2

� 2
T2

T
’

s=1
x(s)

T
’

⌧=1
x(⌧)

=
1
T

T
’

t=1

"

t
’

⌧=1

1
T � ⌧ + 1

x(⌧)
#2

� 1
T2

"

T
’

⌧=1
x(⌧)

#2

.

114

The first term

1
T

T
’

t=1

"

t
’

⌧=1

1
T � ⌧ + 1

x(⌧)
#2

=
1
T

T
’

t=1

t
’

⌧=1



1
T � ⌧ + 1

x(⌧)
�2

+
2
T

T
’

t=1

t
’

⌧=1

1
T � ⌧ + 1

x(⌧)
t

’

s=⌧+1

1
T � s + 1

x(s)

=
1
T

T
’

⌧=1

T
’

t=⌧

1
(T � ⌧ + 1)2 x2(⌧)

+
2
T

T
’

⌧=1

T
’

s=⌧+1

T
’

t=s

1
T � ⌧ + 1

1
T � s + 1

x(⌧)x(s)

=
1
T

T
’

⌧=1

1
T � ⌧ + 1

x2(⌧)

+
2
T

T
’

⌧=1

T
’

s=⌧+1

1
T � ⌧ + 1

x(⌧)x(s)

=
1
T

T
’

⌧=1

T
’

s=1

1
T � ⌧ ^ s + 1

x(⌧)x(s),

where a ^ b := min{a, b} for a, b 2 R. Let the matrix A 2 RT⇥T be given by

A⌧s :=
T

T � ⌧ ^ s + 1

for ⌧, s = 1, 2, . . . ,T , i.e.,

A =

2

6

6

6

6

6

6

6

6

6

6

6

4

T
T

T
T

T
T · · · T

T
T
T

T
T�1

T
T�1 · · · T

T�1
T
T

T
T�1

T
T�2 · · · T

T�2
...
...

...
. . .

...
T
T

T
T�1

T
T�2 · · · T

1 ,

3

7

7

7

7

7

7

7

7

7

7

7

5

then

V1 =
1

T2 xT
⇣

A � 11T
⌘

x,

115

where the vector x := (x(1), x(2), . . . , x(T))T . When prediction error is bounded as
in (5.15), one has |x(t)|  ✏1 for all t, and therefore

V1 =
1

T2

T
’

⌧=1

T
’

s=1
(A⌧s � 1) x(⌧)x(s)

 1
T2

T
’

⌧=1

T
’

s=1

⌧ ^ s � 1
T � ⌧ ^ s + 1

✏21

and the equality is attained if and only if x(t) = ✏1 for all t, or x(t) = �✏1 for all t.
Finally, we simplify the worst-case expression of V1 as follows:

sup
a

V1 =
1

T2

T
’

⌧=1

T
’

s=1

⌧ ^ s � 1
T � ⌧ ^ s + 1

✏21

=
✏21
T2

T
’

k=1

k � 1
T � k + 1

(2T + 1 � 2k)

= ✏21

1 � 1
T

T
’

k=1

1
k

!

⇡ ✏21
✓

1 � lnT
T

◆

.

We proceed to compute the worst-case V2. Using the same derivation, it can be
computed that

V2 =
1

T2 y
T
⇣

A � 11T
⌘

y,

where

y := (y(1), y(2), . . . , y(T))T,
y(t) := e(t)F(T � t), t = 1, 2, . . . ,T .

It follows that

V2 =
1

T2

T
’

⌧=1

T
’

s=1
(A⌧s � 1) y(⌧)y(s)

 1
T2

T
’

⌧=1

T
’

s=1

⌧ ^ s � 1
T � ⌧ ^ s + 1

✏22 |F(T � ⌧)F(T � s)|

and that the equality is attained if and only if e(t) = ✏2 · sgn(F(T � t)) for all t, or
e(t) = �✏2 · sgn(F(T � t)) for all t. Finally, we simplify the worst-case expression of
V2 as follows:

sup
e

V2 =
1

T2

T
’

⌧=1

T
’

s=1

⌧ ^ s � 1
T � ⌧ ^ s + 1

✏22 |F(T � ⌧)F(T � s)|

=
✏22
T2

T�1
’

⌧=0

T�1
’

s=0

✓

T
⌧ _ s + 1

� 1
◆

|F(⌧)F(s)|.

116

To summarize, the worst-case load variance V obtained by Algorithm 5.2 is

sup
a,e

V = ✏21

1 � 1
T

T
’

k=1

1
k

!

+
✏22
T2

T�1
’

⌧=0

T�1
’

s=0

✓

T
⌧ _ s + 1

� 1
◆

|F(⌧)F(s)|.

The lower bound in the lemma can be obtained from the case where all prediction
errors of the load arrival is equal to d1/2, then

sup
a

V � d2
1

4T

T
’

t=1

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1) �

T
’

⌧=t+1

1
T

!2

=
d2

1
4T3

T
’

t=1

t
’

⌧=1

T
T � ⌧ + 1

� T

!2

=
d2

1
4T

T
’

t=1

t
’

⌧=1

1
T � ⌧ + 1

� 1

!2

=
d2

1
4T

T
’

t=1
(

T
’

⌧=T�t+1

1
⌧
)2 � T

!

� d2
1

4T

T
’

t=1
(
π T

T�t+1

1
u

du)2 � T

!

=
d2

1
4T

T
’

k=1
(ln(T

k
))2 � T

!

.

Proof of Theorem 5.16
The theorem relies on a variant of the Log-Sobolev inequality provided in the
following lemma.

Lemma 5.22 (Theorem 3.2, [53]). Let f : Rn 7! R be convex and X be supported
on [�d/2, d/2]n, then

E[exp(f (X)) f (X)] � E[exp(f (X))] logE[exp(f (X))]

 d2

2
E[exp(f (X))| |r f (X)| |2]. (5.22)

If f is further “self-bounded”, then its tail probability can be bounded as in the
following lemma.

117

Lemma 5.23. Let f : Rn 7! R be convex and X be supported on [�d/2, d/2]n. If
E[f (X)] = 0 and f satisfies the following self-bounding property

| |r f | |2  a f + b, (5.23)

then the tail probability of f (X) can be bound as

P { f (X) > t}  exp
✓ �t2

2b + at

◆

. (5.24)

Proof. Denote the moment generating function of f (X) by

m(✓) := Ee✓ f (X), ✓ > 0.

The function ✓ f : Rn 7! R is convex, and therefore it follows from Lemma 5.22 that

E
⇥

e✓ f ✓ f
⇤ � E ⇥

e✓ f ⇤ lnE
⇥

e✓ f ⇤  d2

2
E

⇥

e✓ f | |✓r f | |2⇤ ,

✓m0(✓) � m(✓) ln m(✓)  1
2
✓2d2E[e✓ f | |r f | |2].

According to the self-bounding property (5.23), one has

✓m0(✓) � m(✓) ln m(✓)  1
2
✓2d2E[e✓ f (a f + b)]

=
1
2
✓2d2 [am0(✓) + bm(✓)] .

Divide both sides by ✓2m(✓) to get

d
d✓

✓

1
✓
� ad2

2

◆

ln m(✓)
�

 bd2

2
.

Integrate both sides from 0 to s to get
✓

1
✓
� ad2

2

◆

ln m(✓)
�

�

�

�

s

✓=0
 1

2
bd2s

for s � 0. Noting that m(0) = 1 and m0(0) = E f = 0, one has

lim
✓!0+

✓

1
✓
� ad2

2

◆

ln m(✓) = 0,

and therefore
✓

1
s
� ad2

2

◆

ln m(s)  1
2

bd2s (5.25)

118

for s � 0. We can bound the tail probability P{ f > t} with the control (5.25) over
the moment generating function m(s).
In particular, one has

P{ f > t} = P �es f > est  e�stE
⇥

es f ⇤

= exp[�st + ln m(s)]

 exp


�st +
bd2s2

2 � asd2

�

for s � 0. Choose s = t/(bd2 + ad2t/2) to get

P{ f > t}  exp
✓ �t2

d2(2b + at)
◆

.

⇤

Proof of Theorem 5.16. It has been computed in [30] that the load variance V ob-
tained by Algorithm 5.2 is composed of two parts:

V = V1 + V2,

where

V1 :=
1
T

T
’

t=1

"

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1) (a(⌧) � �)

�
T
’

⌧=t+1

1
T
(a(⌧) � �)

#2

is the variance due to the prediction error on deferrable load and

V2 :=
1
T

T
’

t=1

"

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1)e(⌧)F(T � ⌧)

�
T
’

⌧=t+1

1
T

e(⌧)F(T � ⌧)
#2

is the variance due to the prediction error on baseload.

Let x(⌧) := a(⌧) � � for ⌧ = 1, 2, . . . ,T , then

V1 =
1
T

T
’

t=1

"

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1) x(⌧) �

T
’

⌧=t+1

1
T

x(⌧)
#2

=
1
T
| |Bx | |22,

119

where the T ⇥ T matrix B is given by

Bt⌧ :=
8

>

><

>

>

:

⌧�1
T(T�⌧+1) ⌧  t

� 1
T ⌧ > t

, 1  t, ⌧  T .

Similarly, the variance V2 due to the prediction error on baseload can be written as

V2 = g(e) = 1
T
| |Ce| |22,

where the T ⇥ T matrix C is given by

Ct⌧ :=
8

>

><

>

>

:

⌧�1
T(T�⌧+1)F(T � ⌧), ⌧  t

� 1
T F(T � ⌧), ⌧ > t

for 1  t, ⌧  T . Therefore, the load variance

V = V1 + V2 =
1
T
kAyk22,

where

A =

"

B 0
0 C

#

, y =

"

x
e

#

.

Define a centered random variable

Z := h(y) := V � EV =
1
T
| |Ay | |2 � EV

and note that the function h is convex. Let �max be the maximum eigenvalue of
AAT/T , then

| |rh(y)| |2 = 4
T2 | |AT Ay | |2 = 4

T
(Ay)T

✓

AAT

T

◆

(Ay)

 4�max
T

(Ay)T (Ay) = 4�max[h(y) + EV].

According to the bounded prediction error assumption (5.15), one has |y |  ✏
componentwise. Then, apply Lemma 5.23 to the random variable Z to obtain

P{Z > t}  exp
✓

� t2

16�max✏2(2EV + t)
◆

for t > 0, i.e.,

P{V � EV > t}  exp
✓

� t2

16�max✏2(2EV + t)
◆

120

for t > 0. Finally, the largest eigenvalue �max of AAT/T can be bounded above as

�max  tr
✓

AAT

T

◆

= tr
✓

BBT

T

◆

+ tr
✓

CCT

T

◆

=
1
T

T
’

t=2

1
t

!

+
1

T2

T�1
’

t=0
F2(t)T � t � 1

t + 1

 lnT
T
+

1
T2

T�1
’

t=0
F2(t)T � t � 1

t + 1
=: �1,

which completes the proof of Theorem 5.16.

⇤

Proof of Theorem 5.19
The derivation of the theorem is based on the following two lemma, which separates
the cases when there is only one type of prediction error.

Lemma 5.24. If there is no prediction error in the base load, then the variance of
the performance of Algorithm 5.2 is bounded by

Var(V)  4d2
1 s2

✓

lnT
T

◆2
. (5.26)

Lemma 5.25. If there is no prediction error in the deferrable load, then the variance
of the performance of Algorithm 5.2 is bounded by

Var(V)  4d2
2�

2

1
T2

T�1
’

t=0
F2(t)T � t + 1

t + 1

!2

. (5.27)

Firstly we will prove Lemma 5.24, where we only consider prediction error in
deferrable load.

Proof of Lemma 5.24. Let x(⌧) = a(⌧) � �, then x(⌧) is centered, with variance s2.
Let x = (x(1), . . . , x(T)). From the results in [30] Lemma 1, we have

V =
1
T

T
’

t=1

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1) x(⌧) �

T
’

⌧=t+1

1
T

x(⌧)
!2

.

121

Define an auxilary matrix B such that

Bt⌧ =

8

>

><

>

>

:

⌧�1
T(T�⌧+1) ⌧  t

� 1
T ⌧ > t.

Then we have
V1 = f (x(1), x(2), . . . , x(T)) = 1

T
| |Bx | |22 .

Therefore V1 = f (x) is a convex function, by convex Poincaré inequality, we have

Var(V)  d2
1E[| |r f (x)| |2]. (5.28)

Whereas

E
⇥ | |r f (x)| |2⇤ = 4

T2E
⇥| |BT Bx | |2⇤

 4
T2�max(BT B)E ⇥| |Bx | |2⇤

 4tr
✓

1
T

BT B
◆

E



1
T
| |Bx | |2

�

= 4s2


tr
✓

1
T

BT B
◆�2

 4s2
✓

lnT
T

◆2
.

The last inequality is because

tr
⇣

BT B
⌘

=
1
T

T
’

i=1
(BT B)ii

=

T
’

i=1

T
’

k=1
(Bki)2

=
1

T2

T
’

i=1

i
’

k=1

(k � 1)2
(T � k + 1)2 + (T � i)

!

=
1

T2

T
’

k=1
((k � 1)2
(T � k + 1) +

T
’

i=1
(T � i)

=
1

T2

T
’

k=1

(T � k)2
k

+

T
’

k=1

(T � k)k
k

=

T
’

k=2

1
k
 lnT . ⇤

122

Next we proof lemma 5.25 the case where we only consider the prediction error in
the base load.

Proof of Lemma 5.25. Let e = (e(1), . . . , e(T)), when there is no prediction error in
the deferrable load arrival, we have

V =
1
T

T
’

t=1
(

t
’

⌧=1

⌧ � 1
T(T � ⌧ + 1)F(T � ⌧)e(⌧)

�
T
’

⌧=t+1

1
T

F(T � ⌧)e(⌧))2.

If we define an auxilary matrix C such that

Ct⌧ =

8

>

><

>

>

:

⌧�1
T(T�⌧+1)F(T � ⌧), ⌧  t

� 1
T F(T � ⌧), ⌧ > t.

Then we have
V = g(e(1), e(2), . . . , e(T)) = 1

T
| |Ce| |22 .

Therefore V = g(e) is a convex function in e. By similar argument as Lemma 5.24

Var(V)  d2
2E[| |rg(e)| |2]. (5.29)

Whereas

E
⇥ | |rg(e)| |2⇤ = 4

T2E
⇥| |CTCe| |2⇤

 4
T2�max(CTC)E ⇥| |Ce| |2⇤

 4tr
✓

1
T

CTC
◆

E



1
T
| |Ce| |2

�

= 4�2


tr
✓

1
T

CTC
◆�2

= 4�2

1
T2

T�1
’

t=0
F2(t)T � t + 1

t + 1

!2

.

123

The last equality is because

tr(CTC)

=

T
’

i=1

T
’

k=1
C2

ki

!

=
1

T2

T
’

i=1

i
’

k=1

(k � 1)2
(T � k + 1)2 F2(T � k) +

T
’

k=i+1
F2(T � k)

!

=
1

T2

T
’

k=2

(k � 1)2
T � k + 1

F2(T � k) +
T
’

k=2
(k � 1)F2(T � k)

!

=
1
T

T
’

k=2
F2(T � k) k � 1

T � k + 1
. ⇤

Next, we bring the two results together to get a proof of Theorem 5.19.

Proof of Theorem 2. Let V1 be the load variance without prediction error in base
load and V2 be the load variance without prediction error in the deferrable load.

V = V1 + V2.

By independence of x and e, the variance of V is bounded by

Var(V) = Var(V1) + Var(V2)


✓

2d1s lnT
T

◆2
+

2d2�

T2

T�1
’

t=0
F2(t)T � t + 1

t + 1

!2

. ⇤

124

C h a p t e r 6

CONCLUSION

Systems that constantly adapt to the state of environment or the need of customers
are prevalent and have huge impact in our lives, the Internet and power systems
are just two of the prominent examples. Online algorithms lie in the heart of these
systems that are increasingly being automated. Thus, it is important to understand
how to design good online algorithms. However, there is a divide between the
pessimistic theoretical analysis about the performance of online algorithms and
their success in practice, which suggests that the worst case analysis of prediction
error may be missing the bigger picture. The goal of this thesis has been to give a
better understanding of online algorithm through a general modeling of practical
prediction errors.

6.1 Theoretical contributions
To this end, we have proposed a general model for prediction errors (Chapter 2).
Using this model, this thesis has addressed the following theoretical challenge:

Simultaneous sublinear regret and constant competitive ratio. While previ-
ously shown that no online algorithm can achieve good performance for both regret
and competitive ratio under the adversarial prediction model [58]. We show that
AFHC can achieve simultaneous sublinear regret and constant competitive ratio,
under the practical assumption of prediction errors (Chapter 3).

Performance bound of MPC. While MPC enjoyed success in many applications,
the performance bound of MPC as a function of prediction error has been elusive.
In Chapter 4, we proved the performance bound of MPC as a special case of the
more general Committed Horizon Control algorithm (CHC).

6.2 Practical insights
This thesis also provides the following practical insights for the design of online
algorithms:

125

The optimal use of prediction. Theorem 4.1 shows that the performance of
online algorithm depends on the following three factors: the correlation structure
of prediction errors, the size of per-step prediction noise, and the sensitivity of the
online cost function. The Corollaries following Theorem 4.1 discusses optimal use
of predictions under the various scenarios.

Bridging between average and worst case analysis. In Chapter 5, we showed that
the there is a sharp contrast between the performance guarantee of average case and
worst case analysis for the direct load control problem. Our distributional analysis
o�ered a way to understand the typical performance of online algorithm, and showed
that when prediction errors are not strongly correlated, the typical performance is
close to the average performance. We expect this result to hold true more generally
for online algorithms under di�erent applications.

6.3 Open problems
There remain many challenges in the area of designing online algorithm, below we
briefly outline a few of them:

1. More general prediction models. While the general prediction model
introduced in Chapter 2 (2.6) can model any prediction error that is stationary
in nature, it would be interesting to further generalize the prediction error
model to nonstationary case, this can model that fact that for some prediction
tasks, the accuracy of prediction not only depends on how far into future we
are looking, but also when we are looking.

2. Incorporating learning into online algorithms. While this thesis is the first
to consider the problem of designing prediction-aware online algorithms that
make the best use of the given predictions, we are assuming that predictions
are given externally. However, if the system has additional capability to learn
from data and come up with predictions, then it gives new opportunities to
jointly design learning, prediction, and decision making in online algorithms.

126

BIBLIOGRAPHY

[1] Salvador Acha, Tim C Green, and Nilay Shah. E�ects of optimised plug-in
hybrid vehicle charging strategies on electric distribution network losses. In
Transmission and Distribution Conference and Exposition, 2010 IEEE PES,
pages 1–6. IEEE, 2010.

[2] Muhammad Abdullah Adnan, Ryo Sugihara, and Rajesh K Gupta. Energy
e�cient geographical load balancing via dynamic deferral of workload. In
IEEE Int. Conf. Cloud Computing (CLOUD), pages 188–195, 2012.

[3] M. H. Albadi and E.F. El-Saadany. Demand response in electricity markets:
An overview. In Power Engineering Society General Meeting, 2007. IEEE,
pages 1–5, June 2007. doi: 10.1109/PES.2007.385728.

[4] Alberta Electric System Operator. Wind power / ail data, 2009. http:
//www.aeso.ca/gridoperations/20544.html.

[5] Alberta Electric System Operator. Alberta electric system operator. wind power
and alberta internal load data. http://www.aeso.ca/gridoperations/
20544.html, 2012.

[6] AlphaHolderWiki. Hölder condition. {https://en.wikipedia.org/
wiki/Holder_condition}, 2016.

[7] Hrishikesh Amur, James Cipar, Varun Gupta, Gregory R Ganger, Michael A
Kozuch, and Karsten Schwan. Robust and flexible power-proportional storage.
In Proc. ACM Symp. Cloud computing, pages 217–228, 2010.

[8] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Ef-
fective straggler mitigation: Attack of the clones. In Proc. NSDI, volume 13,
pages 185–198, 2013.

[9] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam
Meyerson, Alan Roytman, and Adam Wierman. A tale of two metrics: Simul-
taneous bounds on competitiveness and regret. In Conf. on Learning Theory
(COLT), pages 741–763, 2013.

[10] Martin F. Arlitt and Carey L. Williamson. Web server workload characteriza-
tion: The search for invariants. In Proc. ACM SIGMETRICS, pages 126–137,
1996. doi: 10.1145/233013.233034.

[11] Alberto Bemporad and Manfred Morari. Robust model predictive control: A
survey. In Robustness in identification and control, pages 207–226. Springer,
1999.

127

[12] A. Blum, H. Karlo�, Y. Rabani, and M. Saks. A decomposition theorem and
bounds for randomized server problems. In Proc. Symp. Found. Comp. Sci.
(FOCS), pages 197–207, Oct 1992. doi: 10.1109/SFCS.1992.267772.

[13] Allan Borodin, Nathan Linial, and Michael E Saks. An optimal on-line algo-
rithm for metrical task system. J. ACM, 39(4):745–763, 1992.

[14] Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration
inequalities. In Advanced Lectures on Machine Learning, pages 208–240.
Springer, 2004.

[15] Stéphane Boucheron, Gábor Lugosi, Pacal Massart, et al. On concentration
of self-bounding functions. Electronic Journal of Probability, 14(64):1884–
1899, 2009.

[16] Stephen Boyd, Mark Mueller, Brendan O’Donoghue, and Yang Wang. Perfor-
mance bounds and suboptimal policies for multi-period investment. Founda-
tions and Trends in Optimization, 1(1):1–69, 2012.

[17] Robert Grover Brown, Patrick YC Hwang, et al. Introduction to random signals
and applied Kalman filtering, volume 3. John Wiley & Sons New York, 1992.

[18] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control.
Springer, 2013.

[19] Jose Camacho, Ying Zhang, Minghua Chen, and D Chiu. Balance your bids
before your bits: The economics of geographic load-balancing. Proc. of ACM
e-Energy, 2014.

[20] Emmanuel J Candès, Yaniv Plan, et al. Near-ideal model selection by `1
minimization. Ann. Stat., 37(5A):2145–2177, 2009.

[21] Venkat Chandrasekaran, Benjamin Recht, Pablo A Parrilo, and Alan S Willsky.
The convex geometry of linear inverse problems. Foundations of Computa-
tional Mathematics, 12(6):805–849, 2012.

[22] Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and
Lachlan L. H. Andrew. Online convex optimization using predictions. In
Proc. ACM SIGMETRICS, pages 191–204. ACM, 2015.

[23] Shiyao Chen and Lang Tong. iems for large scale charging of electric vehicles:
Architecture and optimal online scheduling. In Smart Grid Communications
(SmartGridComm), 2012 IEEE Third International Conference on, pages 629–
634. IEEE, 2012.

[24] Antonio J Conejo, Juan M Morales, and Luis Baringo. Real-time demand
response model. Smart Grid, IEEE Transactions on, 1(3):236–242, 2010.

128

[25] Eugene A. Feinberg and Dora Genethliou. Load forecasting. In Applied
Mathematics for Restructured Electric Power Systems, Power Electronics and
Power Systems, pages 269–285. Springer US, 2005.

[26] Mário AT Figueiredo, Robert D Nowak, and Stephen J Wright. Gradient
projection for sparse reconstruction: Application to compressed sensing and
other inverse problems. IEEE J. Sel. Topics Signal Processing, 1(4):586–597,
2007.

[27] Lingwen Gan, Ufuk Topcu, and Steven H. Low. Optimal decentralized protocol
for electric vehicle charging. In IEEE CDC, pages 5798–5804, 2011.

[28] Lingwen Gan, Ufuk Topcu, and Steven H. Low. Stochastic distributed protocol
for electric vehicle charging with discrete charging rate. In IEEE PES General
Meeting, pages 1–8, 2012.

[29] Lingwen Gan, Ufuk Topcu, and S Low. Optimal decentralized protocol for
electric vehicle charging. IEEE Transactions on Power Systems, 28(2):940–
951, 2013.

[30] Lingwen Gan, Adam Wierman, Ufuk Topcu, Niangjun Chen, and Steven H
Low. Real-time deferrable load control: handling the uncertainties of renew-
able generation. In Proceedings of the fourth international conference on
Future energy systems, pages 113–124. ACM, 2013.

[31] Lingwen Gan, Adam Wierman, Ufuk Topcu, Niangjun Chen, and Steven H.
Low. Real-time deferrable load control: handling the uncertainties of re-
newable generation, 2013. Technical report, available at http://www.its.
caltech.edu/~lgan/index.html.

[32] Lingwen Gan, Adam Wierman, Ufuk Topcu, Niangjun Chen, and Steven H.
Low. Real-time deferrable load control: Handling the uncertainties of re-
newable generation. SIGMETRICS Perform. Eval. Rev., 41(3):77–79, Jan-
uary 2014. ISSN 0163-5999. doi: 10.1145/2567529.2567553. URL
http://doi.acm.org/10.1145/2567529.2567553.

[33] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive
control: theory and practice—a survey. Automatica, 25(3):335–348, 1989.

[34] Gregor Giebel, Richard Brownsword, George Kariniotakis, Michael Denhard,
and Caroline Draxl. The State-Of-The-Art in Short-Term Prediction of Wind
Power. ANEMOS.plus, 2011.

[35] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper.
Workload analysis and demand prediction of enterprise data center appli-
cations. In Proc. IEEE Int. Symp. Workload Characterization, IISWC ’07,
pages 171–180. IEEE Computer Society, 2007. ISBN 978-1-4244-1561-8.
doi: 10.1109/IISWC.2007.4362193. URL http://dx.doi.org/10.1109/
IISWC.2007.4362193.

129

[36] Daniel Gmach, Jerry Rolia, Cullen Bash, Yuan Chen, Tom Christian, Amip
Shah, Ratnesh Sharma, and Zhikui Wang. Capacity planning and power
management to exploit sustainable energy. In Proc. IEEE Int. Conf. Network
and Service Management (CNSM), pages 96–103, 2010.

[37] S. C. Graves, H. C. Meal, S. Dasu, and Y. Qiu. Two-stage production planning
in a dynamic environment, 1986. http://web.mit.edu/sgraves/www/
papers/GravesMealDasuQiu.pdf.

[38] S. C. Graves, D. B. Kletter, and W. B. Hetzel. A dynamic model for require-
ments planning with application to supply chain optimization. Manufacturing
& Service Operation Management, 1(1):50–61, 1998.

[39] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay. Microgrids. IEEE
Power and Energy Magazine, 5(4):78–94, 2007.

[40] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms
for online convex optimization. Machine Learning, 69(2-3):169–192, 2007.

[41] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms
for online convex optimization. Machine Learning, 69(2-3):169–192, 2007.

[42] Marija Ilic, Jason W Black, and Jill L Watz. Potential benefits of implementing
load control. In Power Engineering Society Winter Meeting, 2002. IEEE,
volume 1, pages 177–182. IEEE, 2002.

[43] InnovationProcess. Innovation process. https://en.wikipedia.org/
wiki/Innovation_(signal_processing), 2016.

[44] Vinay Joseph and Gustavo de Veciana. Variability aware network utility max-
imization. arXiv preprint arXiv:1111.3728, 2011.

[45] Vinay Joseph and Gustavo de Veciana. Jointly optimizing multi-user rate
adaptation for video transport over wireless systems: Mean-fairness-variability
tradeo�s. In Proc. IEEE INFOCOM, pages 567–575, 2012.

[46] Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. Prentice-
Hall, Inc., 2000.

[47] Adam Kalai and Santosh Vempala. E�cient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307, 2005.

[48] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. J. Fluids Engineering, 82(1):35–45, 1960.

[49] Seung-Jun Kim and Geogios B Giannakis. Real-time electricity pricing for
demand response using online convex optimization. In IEEE Innovative Smart
Grid Tech. Conf. (ISGT), pages 1–5, 2014.

130

[50] Dara Kusic, Je�rey O Kephart, James E Hanson, Nagarajan Kandasamy, and
Guofei Jiang. Power and performance management of virtualized computing
environments via lookahead control. Cluster computing, 12(1):1–15, 2009.

[51] W.H. Kwon and A.E. Pearson. A modified quadratic cost problem and feedback
stabilization of a linear system. IEEE Transactions on Automatic Control, 22
(5):838–842, 1977.

[52] Wook Hyun Kwon and Soo Hee Han. Receding horizon control: model
predictive control for state models. Springer Science & Business Media, 2006.

[53] Michel Ledoux. Concentration of measure and logarithmic Sobolev inequali-
ties. In Seminaire de probabilites XXXIII, pages 120–216. Springer, 1999.

[54] JH a Lee and Zhenghong Yu. Worst-case formulations of model predictive
control for systems with bounded parameters. Automatica, 33(5):763–781,
1997.

[55] Qiao Li, Tao Cui, Rohit Negi, Franz Franchetti, and Marija D Ilic. On-line
decentralized charging of plug-in electric vehicles in power systems. arXiv
preprint arXiv:1106.5063, 2011.

[56] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew. On-
line algorithms for geographical load balancing. In Int. Green Computing
Conference (IGCC), pages 1–10. IEEE, 2012.

[57] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew. On-
line algorithms for geographical load balancing. In Green Computing Confer-
ence (IGCC), 2012 International, pages 1–10. IEEE, 2012.

[58] Minghong Lin, A. Wierman, L.L.H. Andrew, and E. Thereska. Dynamic right-
sizing for power-proportional data centers. IEEE/ACM Trans. Networking,
21(5):1378–1391, Oct 2013. ISSN 1063-6692. doi: 10.1109/TNET.2012.
2226216.

[59] Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Niangjun
Chen. Data center demand response: Avoiding the coincident peak via work-
load shifting and local generation. Performance Evaluation, 70(10):770–791,
2013.

[60] Zhenhua Liu, Iris Liu, Steven Low, and Adam Wierman. Pricing data center
demand response. In Proc. ACM Sigmetrics, 2014.

[61] Lian Lu, Jinlong Tu, Chi-Kin Chau, Minghua Chen, and Xiaojun Lin. Online
energy generation scheduling for microgrids with intermittent energy sources
and co-generation. In Proc. ACM SIGMETRICS, pages 53–66. ACM, 2013.

[62] Zhongjing Ma, Duncan Callaway, and Ian Hiskens. Decentralized charging
control for large populations of plug-in electric vehicles. In Decision and
Control (CDC), 2010 49th IEEE Conference on, pages 206–212. IEEE, 2010.

131

[63] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM
Scokaert. Constrained model predictive control: Stability and optimality.
Automatica, 36(6):789–814, 2000.

[64] Colin McDiarmid. On the method of bounded di�erences. Surveys in combi-
natorics, 141(1):148–188, 1989.

[65] Kevin Mets, Tom Verschueren, Wouter Haerick, Chris Develder, and Filip
De Turck. Optimizing smart energy control strategies for plug-in hybrid elec-
tric vehicle charging. In Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP, pages 293–299. IEEE, 2010.

[66] Balakrishnan Narayanaswamy, Vikas K Garg, and TS Jayram. Online opti-
mization for the smart (micro) grid. In Proc. ACM Int. Conf. on Future Energy
Systems, page 19, 2012.

[67] OptimalPowerFlow. History of optimal power flow and formulations.
https://www.ferc.gov/industries/electric/indus-act/market-
planning/opf-papers/acopf-1-history-formulation-testing.
pdf, 2012.

[68] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive
control technology. Control engineering practice, 11(7):733–764, 2003.

[69] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce
Maggs. Cutting the electric bill for internet-scale systems. ACM SIGCOMM
Computer Communication Review, 39(4):123–134, 2009.

[70] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast Cost-
volume Filtering for Visual Correspondence and Beyond. In Proceedings
of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’11, pages 3017–3024, 2011.

[71] JG Roos and IE Lane. Industrial power demand response analysis for one-
part real-time pricing. Power Systems, IEEE Transactions on, 13(1):159–164,
1998.

[72] Mark Rudelson and Roman Vershynin. Hanson-Wright inequality and sub-
Gaussian concentration. Electron. Commun. Probab., 18(82):1–9, 2013. ISSN
1083-589X. doi: 10.1214/ECP.v18-2865. URL http://ecp.ejpecp.org/
article/view/2865.

[73] Andrew P Sage and James L Melsa. Estimation theory with applications to
communications and control. Technical report, DTIC Document, 1971.

[74] Shankar Sastry and Marc Bodson. Adaptive control: stability, convergence
and robustness. Courier Dover Publications, 2011.

132

[75] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion
planning with sequential convex optimization and convex collision checking.
The International Journal of Robotics Research, 33(9):1251–1270, 2014.

[76] Shai Shalev-Shwartz. Online learning and online convex optimization. Foun-
dations and Trends in Machine Learning, 4(2):107–194, 2011.

[77] E. Sortomme, M.M. Hindi, S.D.J. MacPherson, and S.S. Venkata. Coordinated
charging of plug-in hybrid electric vehicles to minimize distribution system
losses. Smart Grid, IEEE Transactions on, 2(1):198–205, March 2011. ISSN
1949-3053. doi: 10.1109/TSG.2010.2090913.

[78] Southern California Edison. 2012 static load profiles, 2012. http://www.
sce.com/005_regul_info/eca/DOMSM12.DLP.

[79] Southern California Edison. Southern california edison dynamic load
profiles. https://www.sce.com/wps/portal/home/regulatory/load-
profiles, 2013.

[80] Eno Thereska, Austin Donnelly, and Dushyanth Narayanan. Sierra: a power-
proportional, distributed storage system. Microsoft Research, Cambridge, UK,
Tech. Rep. MSR-TR-2009-153, 2009.

[81] Robert Tibshirani. Regression shrinkage and selection via the LASSO. J.
Royal Stat. Soc. Ser. B, pages 267–288, 1996.

[82] Hao Wang, Jianwei Huang, Xiaojun Lin, and Hamed Mohsenian-Rad. Explor-
ing smart grid and data center interactions for electric power load balancing.
ACM SIGMETRICS Performance Evaluation Review, 41(3):89–94, 2014.

[83] Xiaorui Wang and Ming Chen. Cluster-level feedback power control for per-
formance optimization. In High Performance Computer Architecture, pages
101–110. IEEE, 2008.

[84] Norbert Wiener. Extrapolation, interpolation, and smoothing of stationary
time series, volume 2. MIT press, Cambridge, MA, 1949.

[85] Wikipedia. Krasovskii-lasalle principle, 2016. http://en.wikipedia.org/
wiki/Krasovskii-LaSalle_principle.

[86] Lin Xiao. Dual averaging methods for regularized stochastic learning and
online optimization. J. Machine Learning Research, 11:2543–2596, 2010.

[87] Francesco Zanini, David Atienza, Luca Benini, and Giovanni De Micheli.
Multicore thermal management with model predictive control. In Proc. IEEE.
European Conf. Circuit Theory and Design (ECCTD), pages 711–714, 2009.

133

[88] Francesco Zanini, David Atienza, Giovanni De Micheli, and Stephen P Boyd.
Online convex optimization-based algorithm for thermal management of MP-
SoCs. In Proc. ACM Great Lakes Symp. VLSI, pages 203–208, 2010.

[89] Xun Yu Zhou and Duan Li. Continuous-time mean-variance portfolio selec-
tion: A stochastic LQ framework. Applied Mathematics & Optimization, 42
(1):19–33, 2000.

[90] Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proc. Int. Conf. Machine Learning (ICML), pages 928–936.
AAAI Press, 2003.

