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ABSTRACT

The problem of panel flutter in a supersonic flow is treated
in three. parts, In the first the flutter of a simply supported rec-
‘tangular plate is studied., Only small deflections are considered so
that linear plate theory may be used, The flutter mode is described
'by.a series expansi(';n in terms of the normal modes of oscillation
of the plate in a vacuum. Linearized aerodynamic théory is used,
The exact aerodynamic solution as well as two simpliﬁcatioﬁs-—
strip theory and quasi-steady theory--are discusseci. Numerical
calculations were made to determine flutter boundaries for plates
of varying aspect ratio using strip theory aerodynamlicé for M= 2
and M = JZ . The flutter mode was described by considering
only two or three normal modes in the calculations,

The flutter of a two-dimensional buckled panel with clamped
edges is studied both theoretically and experimentally, The flutter
mode is described by a series expansion of functions which satisfy
the boundary conditions for clamped edges. Quasi-steady lin-
earized aerodynamics is used, Large deflections of the panel are
considered. Numerical calculations have been made considering
only the first two terms of the series expansion, The theoretical

and experimental results are compared,
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INTRODUCTION:

The problem of flutter of a thin elastic plate placed in a
supersonic airstream is considered. This problem has been treated
in two dimensions by Shen (Ref. 1), Miles (Ref. 2), Goland and
Luke (Ref. 3), and Nelson and Cunningham (Ref, 4). A different
problem, that of an infinitely long panel on equally spaced inter-
mediate supports, has been treated by Hedgepeth, Budiansky, and
" Leonard (Ref, 5). Linear plate theory is used in the above,

The possibility of the flutter of a buckled panel also exists,
This buckling may result from thermal expansion caused by aero-
dynamic heating or from other causes, This problem was first
treated by considering the steady state stability of a buckled two-
dimensional panel placed in a supersonic flow. Isaacs (Ref, 6),
Hayes (Ref, 7), and Miles (Ref, 8) treated this problem but ne-
glected the strain in the mid-surface of the plate caused by the
membrane stress, Fung (Ref, 9) included this effect in treating
the steady-state stability of a buckled panel. The hdn-steady or
flutter problem of a two-dimensional buckled panel has been treated
by Fung (Ref, 10). The effects of membrane stress have been in-
cluded.

In Part I of this report linear plate theory is used to study
the flutter of a single rectangular panel of finite aspect ratio
placed in a supersonic flow. Since small deflections are assumed,
linearized aerodynamics can be used over a large range of Mach
numbers excluding the transonic region, The exact aerodynamic

solution is complicated due to the boundary conditions involved so
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further approximation is necessary for computational reasons.
The simplest and most obvious is the strip theory approximation,
It is used for the numerical calculations in Part I, Another pos-
sible approximation is the quasi-steady one. This method is out-
lined in Appendix A, No calculations have been made using it,
The exa.ct theory is carried out in some detail but no calculations
have been made at this time,

It is further assumed that the flutter mode can be described
by a series expansion in terms of the normal modes of oscillation
in a vacuum, In the numerical calculations two and three normal
modes are used to describe the flutter mode, The feasibility of
this approach needs further discussion particularly in view of the
fact that the basic equation of panel flutter is non-self-adjoint,
This and the effects of other approximations are discussed later. .

Many parameters affect the flutter boundaries of rectangu-
lar plates. Principal among these are plate boundary condit&ons,
plate rigidity, mass density ratio of air and plate material, Mach
number, plate aspect ratio, edge loading conditions and others,
Only simply supported plates are considered in Paft I, The other
parameters mentioned above are varied over a rangé of values
and calculations have been made showing their effect, The limit-
ing case of zero plate rigidity, the membrane, is included, The
results of the calculations have been plotted and the curves are
presented at the end of this report, They are discussed in

Part 1,
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In Part II the method used by Fung (Ref, 10) to treat the
two-dimensional simply supported buckled panel is extended to the
two-dimensional clamped panel, As in the above reference only
small reduced frequencies are considered so that the quasi;steady
éimplification may be made, The fluttér mode is represented by
a series expansion of a set of functions which in themselves satisfy
the boundary conditions, The functions chosen were first used by
Iguchi (Ref, 11) for determining the buckling load of a clamped
rectangular plate, Additional information is presented in Ref, 12,
In the numerical work which follows only the first two of these
functions were used, The effect of clamped edges rather than
simply supported ones in general changes only the numerical re-
sults but does not change the nature of these results, Therefore
the presentation given here is quite sketchy and discussion is kept
to a minimum, For a more complete account of the method refer
to Ref, 10,

| In Part III an experimental program that w.ﬁs designed to
determine the nature of the flutter of a two-dimensional buckled
plate with clamped leading and trailing edges is described, Tests
were conducted in the Caltech Jet Propulsion Laboratory l2-inch
Supersonic Wind Tunnel, An aluminum plate was mounted on a
flat plate model placed on the centerline of the tunnel working
section, The model was designed so that the plate could be buckled
from outside the tunnel by moving the plate trailing edge with re-
spect to its leading edge. The principal parameters which could

be varied are Mach number, tunnel static pressure, plate material
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and thickness, and the amplitude of the buckle, Data were taken
by recording the above parameters at the onset of flutter. Infor-
mation as to the nature of the motion itself was taken by means of
strain gages fastened to the surface of the plate, The signals
from these gages were fed into a Miller recording oscillograph,
In this way a time history of the motion was obtained,

Due to the short time available for the tests no attempt
was made to determine the complete flutter boundaries for plates
of this type. The main effort was to determine the nature of the
motion in order to check with the assumptions and results of
Part II and with other theoretical approaches, This i‘s discussed

further in the body of Part III.
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PART I: THE FLUTTER OF SIMPLY SUPPORTED
RECTANGUILAR PLATES IN A SUPERSONIC FLOW

A, Aerodynamic Forces

The linearized potential equation for unsteady flow is

2 \% N 2 N 2
@ M__ B_LQ —_ b_Q + .ZLLA_ _B.g + Lz }_?. =0
w3yt ez T e woet T w3 (A-1)
where @"= M*~{ ; M is the Mach number; and a is the velocity of

sound in the undisturbed stream, The flow is in the direction of

the positive x axis. This equation has been solved in two dimen-
sions by Miles {Ref, 13), Garrick and Rubinow (Ref, 14) and others;
and by Garrick and Rubinow (Ref, 15) in three dimensions,

The particular problem to be solved is that of the 'pressure
distribution on an oscillating simply supported rectangular plate
placed in a supersonic airstream, It is assumed that the surface
can be represented by a series expa.nsion.in terms of the normal
modes of such a plate in a vacuum, Harmonic motion is assumed.

The exact solution to this problem is rather complicated;
therefore an approximate solution based on étrip theory is first
carried out, The subsequent numerical calculations are based on
this approach., The exact solution is then carried out in some de-
tail, At this time no calculations have been made using this ap-
proach, Another approximate method in which the quasi-steady
assumption is made has also been outlined. Sinc_e it is rather
long and is not used for any numerical work it has been included

as Appendix A,



a) Strip Theory
In the case of harmonic oscillations of the plate in a uniform
two-dimensional flow with undisturbed speed U, the deflection sur-

face; y, may be written as
K =y ghet (A-2)

The downwash distribution, v, in the plane of the plate is

V) = veoet = U D TV Ca (A-3)

The pressure distribution over the plate is (Ref, 13)
x

— e\ slwt \ _ WY
X0 = ﬁ_@_ et K\'(o) G + DC:Qx <) S de

_ %o_xxca(x-sx NS d%\ . e

where G = the density of the undisturbed flow
M = Mach number
vio) = yalue of Y(X) at X = O
TR x-2D
G = ¢ Jo (& Lx-¢7)
0 = w?
L@
\g = _S?./M
X = wh
do = Bessel function of first kind,

The normal modes in a vacuum for a simply supported two di-

mension plate with edges at ®=0,L, are



YX) = A, sn mmx ((m =12, ) {A-5)
L,

The pressure distribution for the "  mode has been

worked out ‘by Shen (Ref., 1) For convenience, let L =7 , then

2

Pw = Amfﬂ

T -1 t'
T U S ) b nx\ia‘“ cos P 3 lox)

= (e + W) ¥ ®n + L (wmw -k)efw Qﬁ}
(A-6)

Qn, ®, in the above equation are defined by the following inte-

grals
X
Qu -_-S e‘_.,(n«tm)i Jo(oRr)de
Tx -
_ —u (Sl X t{Stewm
= L¢ (v %oe Jo(TR) d (en)
) (A7)
~ ( S-wn)
9= ) €™ G (e ag
o
\ Tx
= =-L (L~ st R
= et "% e VTR (ew) dlow)
o
where R = X-¢
and y = tan” X

m Y

These integrals can be reduced to a form

1)
%oka,bﬁ = —:;\ et \\OQ'—E") du (A-8)
5 _
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which is called the Schwarz function and is discussed in Ref, (16)
and is tabulated in Refs, (14), (16), (17). Identities and asymp-
totic expansions are given in Ref. (1).

Specifically
q)k — xéiLSL-nm)x i‘o[-‘l—q:t_‘“‘ , (SL-\-«“\x]

(A-9)

= X% e—L(SL-\“\\X io [ SL;_M )} kD..-\‘M\X ]

where %, is the conjugate of %.

This result may be extended directly to the three-dimensional
case if the strip theory assumption is made, The normal modes in
a vacuum for a simply supported rectangular plate of finite aspect
ratio are (Fig, 1)

_ : % <
Yb&,?_) = Agm Sm““_\"j‘ Sin &\‘_‘:l | (A-10)

Since strip theory assumed the flow over any narrow strip parallel
to the flow is represented by the two-dimensional solution the pres-
sure for the wn™ mode may be found by multiplying equation A-6

by s'm“‘_’;\'_z-_ and replacing A, by A,,. . The result is:
bt ¥

k3
P = Byom a.e_a\;:t WA < Sin MRz i?:n s P J, (Tx)
Lo

-t (W“ '\'k\ e-i."P QA 1 (“"\“ —\ﬁ\ Q:.‘P Q& ejLLbu'k -3x) (A- 11)
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b) Exact Aerodynamic Theory

The exact solution to equation A-1 for harmonic motion

is (Ref. 15)

e

* YK
P (x,+0,2,) = —a‘a\\v smet
' s ‘N,

where

Jo=9000, -0

T, = M9 /-0 -1

a@" a@

(S Y (TN (M, -0

e ag

.5 21
M= e
M= -9
: e

(A-12)

The above integral represents an integration over the for-

ward Mach cone,

area in Fig, 2) this area of integration includes a region off the

plate itself, The boundary conditions on ¢ are

2 _ Y .\_UB_V
Y A X

on the surface of the plate and

2@ _
B_Y—D

in the regions Z <0 , Z > L,

For points within the tip Mach cones (shaded

(A-31)
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To integrate equation A-12 directly for a single rectangular
panel of finite width is very difficult, A possible approach to over-
come this difficulty is explained in the following:

An infinite plate in the direction perpendicular to the flow is
considered. - This plate is made up of an infinite number of bays of
the dimensions given in Fig, l. The front and rear edges are
simply supported. The plate is continuous at the juncture of the
bays and is free to rotate but may not deflect at this point. A de-

flection of the form

Y, = A SN ““:(‘" Sin M C_\’?-Z_ (A-14)

is assumed, This corresponds to the normal modes of a rectangular
simply supported plate as well as to the infinite plate just described,
The first mode is illustrated in Fig, 3. The velocity potential and
hence the pressure distribution may be found for this case from
equation A-12 as will be shown shortly.

Now another infinite plate is considered., In it each bay is
a separate simply supported plate, It is further assumed that all
bays are oscillating in phase with one another, A deflection of the

form

Y\ = Ahhs‘“ MT\X \A + ZA Cos ?.‘H\rz.\x

Ly

is assumed,

Ne = 2
may
(A-15)
A W‘uai‘ meslg ey (g e
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= g gy (e
This also corresponds to the normal modes of a single simply sup-
ported rectangular plate in a vacuum. The first mode for the infinite
plate is iliustra.ted iﬁ Fig. 4.

If the potentials obtained for these two cases are added, the
potential is double for those bays oscillating in phase and is can-
celled for those out of phase, Thus if the aspect ratio is large
enough so the area of integration of equation A-12 extends only
into the adjacent bays then the conditions of equation A-13 are
satisfied if the resulting potential is divided by 2.

In the following only the case with the deflection according
to equation A-14 will be carried out. This is not without value
in itself since an infinite plate of this type is also an interesting
problem. The strip theory solution for this infinit_:e plate problem
is identical to the single panel strip theory solution 4since the effect
of adjacent panels is zero in the strip theory case,

Equation A-12 can be simplified by the following substi-

tution
N = Ycos 8 +2z (A-16)

The velocity potential is then

x ot
wt Lw't,_
@(x,+0,z,%) a“m\x\‘&g “[ﬂ)e [ * ] deds (A-17)
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where

v, = %=£(wm- sin 0)
aQ‘

T, = X-f (M + S'\Y\B\
agt

-1
e = oS !l—lg
X—-€

The downwash velocity is given by
vix,2) = U % — Lwy, (A-18)
*

Putting in equation A-14 and letting L, = % as before, one obtains

Viam $%,Z) = Ay Sin Nz U fm"n‘-k‘ ic,us X + ‘P‘k (A-19)
L,

Substituting V(x,2) , ¥, , and 7T, into equation A-17 re-

sults in

% .
_ P = - o [0} ™M
@ (x,+0,2z,%) = —A‘“‘""@g«? [t —w- € {_’Socns('mg»fva)e_ ae

T

. , (A-20)
\fm %Aquc.os B +2)cos (U_;‘_%g S\ B) dpde

To simplify the integrals in the above equation, let 1, be defined

by the following:



13-

x

I, = \ Sin mTﬂl k\q“cuse +Z) cos Q%% Sin B) db

°

1

Cos oz T + Sin MYz T
Lz. 1 L?_ [ X

where
L

1 = % Sin (M& cos B) cos KQ'H sin ©) db
[

~
1, = XO Cos b\)\ cos®) cos (TR sin ©) 48

and
R = x-¢
= nw
A L@
g = SL/M

First consider 1, . Let B = A+¥ , It is seen that
2
n

E3
I, =- x Sin (AR sin A) cos (g cos A)dA

rid

= 0

(A-21)

(A-22)

since the integrand is odd, Now consider Ia . Using the identities

cos(A® cos B = I (an) — 23, (¥ cos 28
+ 2, (AR e 40 — -

os (@R sinbd) = J (o) — 2J,(TR) Cos 2B

+2J3,(OR) cos 48 -

(A-23)
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and the orthogonality relation,

I

o
E{
*
3

v
% Cos MO CcoswmbBdB

(]

I
o2
Ef
i
?

one obtains

T. = md,Om) g, (@n) 2w I (Aw)d, (on)

+ 2w g Aam) J, lar) — -

w N (R)

where

N(Y) = Jo ORI I leR) — 23 (0R) Jp low)
+2d, (Aar) o, (aw) —
The resulting potential equation is

- _ U T -wwt o
Qkx).‘.o\z)t} P\MM-?-“_@ M"ﬂ"—k Lo (4 ‘X

. W WY
Sin %X& Q. +t€e QNX

where
Q. = \ &I () ag
x .
O = S ST 0 de

It can be shown that

(A-25)
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N - il-m)Qy

¥R
My = NG - (e Ry (A-26)
AX '
The pressuré 1s
~leal LSt
= A U [wew-e & e
'?MM hwn 1%,“‘
. A 3 A 4
Sin iz g\(mm-k\ e’ Qu -lwmm+k)ie @,
Ve (A-27)

+ 2w (eos ¥) Nbo‘k

It is interesting to compare this result with the result of

strip theory, If doﬁ)\a) is expanded in a series

o
2 AR o
s = - . ) 20

and all powers of A greater than the first are neglected (higher order
Bessel functions are then completeiy neglected), then equation A-27

reduces to the strip theory solution, equation A-11, This is as

7\—-0

would be expected since as L, —= oo

c. Quasi-steady Theory

Another obvious simplification is to consider motion of
small reduced frequency and assume that all terms of the equation
involving the order X' or higher may be neglected, This has

been worked out and is included in Appendix A,
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B. Equations of Motion

The equations of motion for a rectangular plate such as that
shown in Fig. 1 can be found using Lagrange's equations, Linear
plate theory is used.

The normal modes in a vacuum for a simply supported plate

are

O Sin Wix  sin SHZ
QS L| LL

Taking Qs 25 the generalized coordinates, so that

(x,2,4) = Z z Sin X s\ SN2
Y ) = 4 %is ., r

(B-1)
Lagrange's equations are
d (27 ) 2V - Q
— _— + — -
3t \ 4 s 8 (B-2)

Qm is the generalized aerodynamic force. The effect of edge
loads in the plane of the plate may be included.

The kinetic energy is {Ref, 18)

(B-3)

The potential or strain energy consists of two parts--one

due to bending and one due to tension or compression from the
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edge loads, Consider the compressive loads S, and S, as shown

in Fig. 5. Their contribution to internal strain energy is

L&
- %%‘,%0 @B_Yx dxdz — Sz% % zz‘) dxdz
TS I EE SR

|

[

The contribution from bending is

- D\\ﬁw ¥ (%\Z 2w 3y 3y

oo eo ¥
2
= me? WL 2 * 5"
= w2 D &B_ —-)
3 Z .Z Cpss) o Yo
The total internal strain energy is

N = Ng +Vq

= “’lg‘"‘ ti‘ Z Z %bas (&z

-y
Nﬂ|dl’

\?-
22 (38«5 )}

Inserting equation B-3 and B-6 into equation B-2 results in

[E\,&s + w;sqns] fenbde Qis

a4

(B-4)

(B-5)

(B-6)

(B-7)
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where

(wls\z-

A Dt K? ELS. _ Slg'}
iy L

Wee .are the natural frequencies of the plate in'a vacuum
Qs is the mass density of the plate
h is the plate thickness

3
D = E%U—v“ . the plate flexural rigidity

Certain restrictions are placed upon S, and 5;_ « On the one hand,
the yield stress of the material must not be exceeded if O, and
S, impose tensile stresses: On the other hand, S, and Sz.
must not exceed the critical buckling load for the plate., Since
thin plates are under consideration this load may be quite small
and as will be seen can be of great importance,

. The equations of motion for a fectangular membrane are
also of interest, The no;:mal modes in a vacuum aré the same
as for the plate,

The kinetic energy is (Ref, 18)

Wb

= %?- (ﬁY-dxdz_
SE L LG

Let O be the tension per unit length in the membrane, then the

(B-8)

potential energy is
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v o= %%D\LL%Y * %ka"‘*l

o

> k3
R S I
[ 4 - & Ly

Lagrange's equations become

X Ly
[C\?& * w;s%as] @q_—}‘

where
2 2 x *
R o 2

= QQS

_5: » 2 (B-9)
L‘-;_ %ﬁs

(B-10)

The membrane equation of motion is the same as the plate

equation except for the definition of Wgq, « The generalized forces

are the same for both, They will now be evaluated,

For simple harmonic motion

-},u:t

avus = Ry e

(B-11)

The generalized forces, @, , are by definition

LIy vy

Qﬁs% Als = Z‘ Z-

O 3 Rgs 5in QxS sz dxdz
o ‘o L, Lo

(B-12)
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It is convenient to define the following

-] o
o - u 55
where ' L \-r..
2. Pram in L .
Q <~ .4 Sin ANX Sin SNz dxdz
mmas - ——— —_——
L2 Yo 'e N wik Ly =Y

The equations of motion may now be written

‘_*Lo'f- + Wy ] Ny = @%LZ Z A Qi ns (B-14)

\ ]

a) Strip Theory

th&s is defined by equation B-13, Substituting equa-

tion A-11 into equation B-13 and taking Ll =T

«
z WSLx :
Q\mgg = Qg:;SL ,/m\‘«u‘ -K"\ e Raw cos ¥ J, (ax)
T v

. -
—tlww + &) e @y (B-15)
2
. W : : .
rilmat - W)e Qg \ S Ax AX\S\“ WHZ S\w SNz d2
o Lo L
But Lv
\%\V\ MNZ s sSYZz d2. = O SEM
[~} j Ry ‘e ’

(B-16)

- e L = tn
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Thus Q«mus has a value only when s=m. The subscripts m and
S may be dropped since these integers no longer appear in the

equation for QMMQS o« Thus

T
2 L L%
Q = _€°_~P_ '\’m{‘ﬂ"-k" \ e i&'ﬂ ws ¥ d ((5'13
e o 0

Sl +0) €4 @,

+ Lkwn—k) Y QQ,‘E S Ax dx

(B-17)

The above integration can be performed with the result given
in terms of the Schwarz function, After considerable manipulation
the following is obtained,

For om # X

AT 2 (m«-\-k\t _\g". -
Qs = 51«32 (:‘—&’—)i w Tos k““\-&“'“‘T\ Tog L)

e o - Gead 1o¢K-Q\} | (B-18)
) : |
for m = %
Quon= L85 {0 [Tog () = Ty (o) ]
4@w> LM |
ey [Toelw = L)

+ (wrr—k‘)z'ﬂ [.1“‘ e - T \-tw\)]
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where
r )
Ioele) = % S i I, lox) dx
= v (&= N RSP
" B-19
Iele) = .;?\ &Ry (o) dx (B-19)

I

W i-‘ (R;b ,[Sl+b]-“)

The function S;-‘ is of the same family as ;o . Itis de-

fined as

b
$,.(a,%) = -“0—1\09—& Jo \ia) W dw (B-20)

In Ref, 16 a recurrence formula is given

e = (@)L {e® - puele

(B-21)

T (a,b\}

b) Exact Theory

By the same procedure used in the strip theory case thSL

for the exact theory is found to be
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Al
- Ul LU S v \ (ftx i.?_ W
Quy = %TF' /W\ﬂ - oe M oS N (x)

-y
— w4y e Qy

(B-22)

+ (ot =) e’ QM‘S sin Ux dx

With considerable work the above integration may be per-

formed with results similar in form to equations B-18,
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C. Flutter Determinant

Equations B-14 are the equations of motion for a simply
supported rectangular plate with harmonic motion, It is assumed
that the first few terms of the series expansion represent the
flutter mode with sufficient accuracy. With this assumption the
flutter condition becomes a finite determinant, since in order for
equations B-14 to have a solution the determinant of the coeffi-

cients of A, must be zero, Thus

A = | Moy | = © (C-1)
where
T
Hh\w\&s = (' w" L‘)&s) %mmls - éﬁ_\@\w\m&s
%\\'ﬂl\&s = \ if m=9% and M =S

= O if m# Q or M # S

Since in general the above determinant is complex valued it may

be divided into real and imaginary parts both of which must vanish.

A = Ay v LA = O (C-2)
Thus

A& = 0O

A, = O

Any two of the physical parameters may be solved by the
above equations, given all the other parameters.
The problem can be simplified by writing equations B-14

in terms of the following non-dimensional parameters,
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EL‘_ = X Wiy b — kls
V)

) (C-3)
Qmm&s =_Qmmﬂs ,“‘ = i"-'L—‘

(S
eV

Equations B-14 become
2 — ~ 1 =
(_KL * k&s) k&s I ZZP‘N\M Qmm&s © (C-4)
1] I

a) Strip Theory
For strip theory aerodynamics the equations of motion

are

e
]

1 *
(- +‘*h\'\m. B EZ; Ame Qwms = 0
' (C-5)
!
where Qma is given by equation B-18,
The simplest approach is to consider only two terms of
the series expansion as an approximation to the flutter mode,
The choice of terms is important, ®Br instance a plate deflec-
tion of the following form

Jx2) = A, Sin XX Sin Tz

L Ly
(C-6)

+ B,y SN WX Sin wz
Ly \-‘L.

can be taken. The first term represents a half sine wave in both

the X and Z directions, The second term represents a full
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sine wave in the X di‘rection, which is the direction of flow, and
1 half wave in the Z direction perpendicular to the flow, In the
following numerical calculations only one half wave in the z direc-
tion is considered, It is felt that the shape in the direction paral-
.1e1 to the flow is far more important,

The determinant obtained from 2 modes as in equation

C-bis
K+ ki) -p &, - Q-
= 0 (C-7)
‘P»Qw. (— K+ k.}‘\ - Q'u
By defining
X = x{ y = & = px (C-8)

x

=

v

the determinant may be written

(1 =%) ‘)’Q'u ‘\/Q;\

(C-9)
! z : '
=Y Q\a (l‘.’.“.‘\ - %X =Y Rz
Xu
For 3 modes the term A4, Sin 3'“T7* Sin ﬁLA is added
' 2
to equation C-6, The determinant for 3 modes is
4 ’ ’
l‘X‘\/Qu ')’QZI ~\/Qi|
) 2 ' ' - (C-10)
Y@ (BY-xyQu  ¥Qm |7 O
Xn
' i o ,
-y Qu -y Qe kk—“ -x-y Qu
"
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The reduced frequency ratios in the above can be deter-

mined from equation B-7, If aspect ratio is defined as
AR = (C-11)

then equation B-7 can be written

- D,n,'L 2 T & _ T S T Nk
wa:ftﬁeZFwi rAURE RS (C-12)

The frequency ratios, \ﬁ_m\l s are

k\\
(\cmz AR N G
PR (C-13)
Ku BRO%) -+ =3

The unknown parameters in the above determinant are
the Mach number, M ; density ratio, i ; reduced frequency, X ;
and reduced natural frequency, YXmm « For a plate of a given ma-
terial, thickness, and chord length the kw»\'s are £unctions of
aspect ratio, AR ; and edge compression, S,, and S, . With
AR and S, and S, known all the higher X wS can be expressed
in terms of X, by use of equation C-13, This leaves four un-
known parameters in the above detérminants. Due fo the com-
plexity of the calculations it is most convenient to assume values
for M and k and to solve for p and X, .

The change in value of the frequency ratios resulting from

a change in AR and edge compression has a very important effect

on the flutter boundary., These ratios are given by equation C-13,
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In order to illustrate the effect of AR on these ratios consider

the case 5,=5,= 0 . The frequency ratios are

2
Qimi = (AR +|S‘ = () & M= -
¥ i AR \+ i}i‘ (C-14)
In Fig. 6 Clk"u) va. AR is plotted for the first four ratios,
"

As AR-+D0, Xm%‘“ —»|. It should be noted that for a given plate

thickness and chord length, X, gets large as AR gets small,
The effect of edge compression will now be discussed,

It was pfeviously mentioned that S, and S, must not exceed

the critical buckling load. The relation for this buckling load is

given in Ref, 19,

z
Les,mt — Dt 2
S,\w\ 20 = _LT. T A (C-15)

\

AR AR®

where ™ is the number of half waves in'the % direction; m
is the number in the Z direction, The corresponding deflection
of the buckled plate is given for any ™ and M by

Yoomw = Cctmm Sin M\:fx S\ m:'(z | (C-16)
™

S, + S = o N
( - = 0+ ) (C-17)

Comparing equation C-17 with equation C-13 it is seen

that as S, and S, approach the buckling load for M =™ =\
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the denominator of equation C-13 approaches zero, If the mode
for m =t =1\ is the lowest buckling mode then as the applied
edge compression, 5. + SE/AR"“ , approaches the buckling load
QS, + 5}{11.\)"_ the frequency ratios get very large. To illus-

trate consider the specific case AR =oo »

Define
R= 5
See (C-18)
g = Dn .
e T TR from equation C-17,

The frequency ratios are

&A_\l — M"SN"\"-R\
} (1-R) (C-19)

Xy
The first four ratios are plotted in Fig., 7. Negative values of R
refer to tensile loads.
However, if the first buckling mode does not give the low-
est buckling load the results will be somewhat different. As an
example consider a plate with AR =1 . The buckling mode

m=m =1 gives the critical load

G+ S, = 4?:“ (C-20)

This is the lowest load within the range

787 > S, > - 3b%*
Ty s

See Ref, 19, page 334.
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For example with R defined as

R = 5|+Sa

(S.+ 52 )en (C-21)

buckling occurs at R=1. The frequency ratios for two possible cases

say 9, =0 and S, =0 are

3
X _ (=) -w s, =0
X IR
- (C-22)
om
&\1 = K'af) - R S\ = 0
Y 1-R

Equations C-22 are plotted in Fig, 8 for (n=2,3,4. If, however,

the condition

(C-23)

is imposed, the lowest buckling load occurs for the mode wm =2

m=1 . Take for example
- \oDw
Sa L (C-24)

Then the buckling load is

_ Dt
&4‘5. + SLXK = -Z-’S\}—“ (C-25)

Define R so that R=| corresponds to the critical buckling load

above,
R = AS + S,
2501t
L (C-26)
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The frequency ratios are

ﬁt‘z\)L - ()Y +75 ~L25R
W S ~L2BR (C-27)

This is plotted in Figs, 9. The ratios do not change as much with
R as in the preceding two examples,

The above cases were given to illustrate the change in
frequency ratios with aspect ratio and edge compression, Each
case must be investigated separately,

The frequency ratios of a membrane also are of interest,

From equation B-10

S IR (c-28)

Xu \+-§§

The importance of these ratios is in their effect on the

stability of the system, This is discussed in the next section,

D. Discussion of Results

Numerical calculations have been made for several cases,
A two mode solution for M=2, $5,=5,= 0 , and for a range
of AR's has been done with the results plotted in Fig. 10. The
results of a 3 mode solution for the same range of parameters
are plotted in Fig, 11, '. A comparison of the 2 and 3 mode solu-
tions is presented in Fig, 12,

From intuitive argument the region below each curve is
stable while above the curve it is unstable, This agrees with

the energy criteria of Ref, 1,
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These figures indicate a rather large change in the region
of stability with change in MR , but it must be noted that for a
plate of given material and thicknes’s the value of Xy also changes

as the aspect ratio is changed, An interesting way to plot the data

is as follows:

%
i
X th\-‘ [V k\ v _h_l"
Use (D-1)
Xu - & (B
|+—‘— - §) Qs

Ae*

for the abscissa. For a plate of given material and éhord length
a plot of this sort will show the stability boundaries as a function
of plate thickness, Fig, 13 is a replot of the M=2, 3 mode solu-
tion with S, =95, =0 using the new abscissa, This figure shows
the increasing stability for a given plate with decrease in aspect
ratio,.

The two mode solution for M=J2 , S, =S,=0, and
for a range of PR's is presented in Figs, 14 and 15, For M= {2
two branches to the flutter boundaries appear for e‘ach aspect
ratio, According to Ref, 1 the region between the two curves
is stable while the region above the upper curve and below the
lower curve is unstable, The lower branch disappears for suf-
ficiently large values of X,, . See Ref, 4 for a further discussion
of this,

For the membrane at M= 2 , AR =es no solution exists
if 3 modes are considered, This agrees with the conclusions

reached in Ref, 3.
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It is also interesting to note that no solution exists for
M =2 AR=) 3\. S. O for 3 modes, The only differences
in the flutter determinants for a change in AR are the changes
in the frequency ratios, These changes are given in Fig, 6. For
.a given plate the greater instability with increasing AR shown
in Fig, 13 can be associated with increasing differences in the
frequency ratios, The fact that no solution exists for the mem-
brane or AR=)5 plate mentioned above indicates that for fre-
quency ratios sufficieﬁtly close together the system is stable,
This leads to interesting consequences when edge compression
is considered since it also affects the frequency ratios, Nothing
has been done to try to predict the stability directly from the
frequency ratios however,

Another factor which has not been completely established
is the number of modes required for convergence of the flutter
boundary., The immense amount of work has limited the work
to 3 modes at this time, Fig, 12 indicates less change in going
from 2 to 3 modes at the higher AR's (higher difference in fre-
quency ratios) than for the lower AR's . It would be desirable

to compute higher modes to check convergence,
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PART II, FLUTTER OF A TWO-DIMENSIONAL BUCKLED
PLATE WITH CLAMPED EDGES IN A SUPERSONIC FLOW

A, Representation of the Flutter Mode

In Ref, 10 the flutter of a two-dimensional buckled plate
with simply supported edges has been considered, The approach
used there can be carried over directly for use in the clamped

edge case. The boundary conditions for the clamped case are

y (0,%) - yloeyy = O
d = d = (A"l)
ﬁ (0,t) a_;/ (L,Y) O

It is desired to represent the flutter modes of such a plate
by a series of functions which satisfy the above boundary condi-
tions, The functions first used by Iguchi (Ref, 11) have been se-

lected for use here, They are of the form

Fole) = glg-f + N (g-1) - & sinpve (A-2)

g- =~

The flutter mode is represented by

N

V&) = 2 beFels) (a-3)
P=1

The initial buckling mode for the buckled plate is repre-

sented by

N
Vol8) = 2 epFol® A

P=1
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B. Equations of Motion
The equations of motion may be derived by using Lagrange

equationss, The kinetic energy is

3 \
== \ e:h \/(e)
(B-1)
=Leh ) ) bib TG
Lo
© :
where I is an integral of the following form
tr) v r M
Tee =%° medég, Fo(e)dg = 1) Tom (B-2)

)
Integration of Imf has been carried out in Ref, 12 for several

values of v

The strain energy term is made up of two parts, One part
is due to the compression loading in the piane of the plate and the
other is due to the bending of the plate, The membrane forces
play an important part and therefore cannot be neglected. Their

contribution to strain energy is

2
e -3
where H is the membrane force per unit width
|
AR +%3\[ ) -G Jes
(B-4)

Eh (£ 3]
i a(\-vt)[gz (btb;\ - O-LO-,QI,;S ] a
3
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'HQ is the initial value of the membrane force. Remember that
this initial condition is not an unstressed state,

The contribution of bending to the strain energy is

ol (i e (B-5)
Ub - E\:So(y _Yo' - ‘%9\/0\) dg

= EDEX_X > (o-ade; -ay) I
T3
TR Y (mmed oy T
T
Q—\ L) Z Z aa (-)

Putting the above into Lagrange's equations
d\Va + Uy |
ax& \"r Li—— = Q- (B-6)

results in

Lfesh_z by, Iy, + Lin, + En [szbb

20\ - 20— %)

. 0.) Li) ‘\{Z b, _1(1)‘3 + ——&Z(bl 01‘&

g Y = @

(B-7)

QL is the generalized force,
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C. Aerodynamic Forces
If the quasi-steady simplifying assumption is used the aero-

dynamic pressure is (Ref, 10)

u.u‘t

$(gx) = %1 B\/kﬁ)_‘_ ik \“1 )Ym +n“k Ym} - (C-1)

The generalized force is given by

Qi = -\ p@Fude | (C-2)

Substituting for the deflection and then inserting the result-

ing expression for the pressure into the equation above results in

(o\
oA g T e ) )

(C-3)

The above expression refers to flow over one surface of
the plate, The other side is assumed to be vented to the free

stream static pressure,

D. Reduction to Dimensioniess Equations

Let
. = o /30-vIL _ th e
L oh component of initial arch
L
_ LJ'B(\- Y L _.th .
E;.L— T i component of deflection curve
u
S Wy - b . .
<= a8 D membrane compression stress ratio

(D-1)
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PR
G) = = dynamic pressure ratio
Dx* -1 P

b = ;\4\"-\ _Qﬂ = mass ratio {D-1
Q- cont'd)

X = Ut

e = dimensionless time

The constant ¢; has been introduced in 7\;. and B, .

It is chosen so that

[C'\Ftki)]nh =\ (D-2)

This has been done so that A and B: will refer directiy to the

amplitude of the mode, In the simply supported case Cg=|
since [Sih (angJ =
M

Upon substituting the above into the equations of motion

there results

. ‘}B © ba' o
4 Y . ®
Qvy 2 I 1]+ Qe Z 2 o1
3 J

w \
+ Q’“‘* Z B;\Q'&—L'\.s + 4118 S¢ Z k&.}-)\-’\ Q‘.)'_LL::\
J .

'\-U%-—_v;_)[JZZL_ KBLB:\-')\'\)\:D C. <y 1%:][.’2 BJQBI(TZ ]

I
O

PRI WS 15
J
(D-3)
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Since uniform plates which are flat in the unstressed state
are considered, the initial condition is the first mode of buckling,
Y, is the buckling load for the first mode, If the first term of

the series for Y,(¢) is assumed to be the first buckling mode,

then
W, = ABD Ly g -
- (D-4)
For convenience introduce the notation
= 2, _ @
4118 U_ﬂ[z Z QB'\E’S )"J"D Cicy 113] (D-5)
oL
From equation B-4
@ 3
(D-6)
= H, (1+X)
Thus X can be interpreted as
\|
X = = -1 = LCowenesswe Lono _
H, Fiesy Buceune oA D \ (D-7)

E. Approximation in Two Degrees of Freedom
In the initial condition all Xs for i=z?2 are zero, If
all B's for L z3 are neglected then

* b 2 2 2
X = m_\%a:(Tv‘s[(B‘ A et 1‘;] E-1)
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)
The values for 1?:‘ obtained from Ref, 12 may be substituted

into the various terms and two equations of motion follow

T
% BB:"- Hx\;;\ — 35038 B, — 5.1554 %6\ = 0

(E-2)

. _
¥ 0B 4 o 32, (19904 -12.014X) B £ 31635 B, = O
A T @

- 2 'S
In all calculations the value W = 0,1 iq used,

F. Static Equilibrium

If the derivatives with respect to T all vanish, equations
E-2 have a solution for B, and %, only if the determinant of
their coefficients is equal to zero, The golution of the determi-

nant is

X = 05206(1 £ [1- 0413060 Q)
(F-1)

X becomes imaginary when
Q@ =155%48

s0 no static equilibrium other than Yy(g)=0 exists when Q>1, 5548,

The condition for the plate to become flat when Q< 1.'5548 is

P

The value of C, is
¢, T - AL
sothat N =141 when @Q = 15548

Hence for
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2B
A & nay Qe = 010119 c,l,i\— .00 ¢, 'x’;}

-3
A > 4l Qcr = 15548 (F-3)

See Fig., 16 for a plot of Qe Vs. N\, .

G. Small Perturbations About Static Equilibrium
The first order perturbation equations which result from
imposing small perturbations %B‘ , 2B, onto B, and B, in

equation E-2 are,

¥9B, + «§B, + {-35038 + 1115 ﬁ@%ﬂ 5B,

+ 51554 28 =%\ %%\ -0

(G-1)
¥8B, + «xbB, + {\q.%++ 4150 B, "“-"’4705 be
Q
+ {mga BB, + 3.\&»35“& °B = 0
where
X =0 NG i-}f. i Y :
26 L= B - 41183 Ba} (G-2)

If solutions of the form
X <
2B = A Q‘* B, = B et

are assumed, two homogeneous equations are obtained, For a

solution other than $®, = *B, = O to exist the determinant of
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these must vanish, The determinant

(8 & + o (-3.5038
+ 5.1554 ig_.e:" —X\\ + \1\15 B\Bg)
) ' Q
=0
(G-3)
(2035 (%32 + g + Paace
+ 10.092 8,8,) +41501 B, - \q.mx\‘a)
@
Expanded this may be written
Ofbt + 0l + o va, e v+ a, = 0 _ (G-4)
where
a, = ¥
Oy = 28

L
o, = {i-@» + 19.964 +10.31) B} + 4\.%\51-14.3?5{3{&%

a, = i\"t.%‘\- + lo.3w BT: + 41,50\ B, —24.329 X} %

a, ~ —é};i‘is.aso %"—[?_\a_au efz + 19110 B, + loa.qz]k

2
+ 20584 B, + 31515 B, 8; + 1.084 Q ‘g
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Routh!s discriminant is defined as

2

kS
R =0,0,0; - 0,03 - O, Q]

(G-3)

The conditions for stability of the disturbed motion are

that Q,,04,0,, O-,, 0,4 and R all have the same sign, The

requirements for this reduce to (Ref, 10)

O, >0 R >0 (G-6)

Of special interest is the stability about the flat configuration

Let BB, =8,=0 and X = 0263w 7\7',

Then

a, = 98.850 %X - 102.92X + 11.084
Q" Q (G-7)

The critical condition Q,=0 is identical to equation F-2,

R becomes

Ty
R = ?';aa {qs.asox‘ + 219.86X + 113 Q

+ ‘L}@ [\0\.%4 -24.329°X ]‘k

The critical condition is R=0 . In Fig, 16 Qg vs. N

is
plotted for R =0 .
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For this plot the values B = 60, o =0,7335 (M = 2,18) were
chosen, These values compare with values obtained in experi-
mental tests which are discussed in Part IIl. In actuality the
curve R=0 is very insensitive to changes in « and ¥ . The

unstable areas lie on the shaded side of the curves =0 and

R=0,

H. Flutter with Finite Amplitude

Assume that an essentially sinusoidal motion exists,

Let
© B = A sin(xT+@) = A sinB,

) H-~-1
B, = A, Sin (k't + Q) = A,sn b, ( )

where A (), R (V)| @, (), 9, (%) are showly varying func-
tions of time, Substituting equations H-1 into the equations of

motion, E-2, results in a set of first order differential equations

for AN, ,Q,,Q, if the conditions
dA _. 409,
Fl Sin B, + T‘z/\,cos B, = 0
(H-2)
dAe

Sin + [ ,h. =
| Bg aCDS 93 O

are imposed, The first of equations E-2 becomes

%k% = ;"“"\Az) Q,, X \\«'C\ cos ©,

(13 P\‘é_'_f_' =5 ) sin 8, (H-3)
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where
§.0+) = AXKsm e, - AxXkcos®,

+ 51554 X A sn ®  + 35038 A, 5w B,
: ®

The second of equations E-2 becomes

A _
e itt = ;1K"'\ cos B,
(H-9)
¥¥ ALS% = - 5. sin 8,
where
SE'L(“') = \6\(\1 HZSW Bl - =k P\z Cos BZ

4 (Q.nax -1a864

Q

Ay S0 B, = 30635 A s B,

For steady oscillations to exist the average values of

ﬁ"——éAz)d_io_‘ ) sz
d 4T 4T dv

over a period of motion must vanish,

i, e,
- 2
sk dA - l_\ §.(-Ycos B, dlkt) = O
dax 2% ),
S 2t (H-5)
¥k N 49 L_x G Ysm e, Akt = 0O
4T 2w o '
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LT ﬁ\ .0 Ycos 0, d(k®) = O
i

¥k B,d® — L\ £,0-)sin 8, dkd =0
dT an o

The four resulting equations are
N,
- kA, t \.3%856—& Sin 2Q -35038 A,sin @ = O
A A
— ok A, ~ 1205 -—a—t Sn2@ - 31635 A\ sin® = O
2
TCA, + 13561 % \7\‘\ -3 K - Lovae (11\1

a4

T !\1 cos ?—Q\\ + 3.5038 A, o5 §

1l
O

(H-6)
2 z
¥R, + 12615 :A_,_im\l - 2K -K ws 29
Q

— 12,355 A, -10904% A: - 31635 A, os @ = O
Q

where P = 0 - Q = 6 — O,

Equations H-6 are to be solved for N, ,N,,®, and X for
a given set of values for ¥,Q, o, A, « In practice this is very
difficult but the problem of finding A\, X, @, and =« from a
given set of ¥, N, A, and @ is straightforward. Equations

H-6 may be rearranged as follows
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Daus R, + 12015 P«z“%

Q= . 2A N, s @
{335 N, —35038 Alz\ '
' T k3 (3
36843 X, = 15055 K, +1%ue + K, }18.299
A
+ .3%GT ¢os RQX Y Qcos @ K%.so% 'Kl\ _
+ 30635 M \
Ao {H-7)
& o= 138679 L3 K e (2R
KQ \ 4 \ . ®
r 35038 A
+ Ay Co% ZQ\\ + SB N, o8 ®
o« = _ 32388 A A.sin @

Dros K + 13968 ARk

For selected values of A N, @ , and ¥ it is possible to solve
for Q,\, , X , and % in that order. Since Q ,.')“ , and X
must be real and positive to have physical meaning flutter bound -
aries may be obtained. Some numerical calculations have been
made for A, =0,5, 0,8, and 1,0; ¥ = 60; 0< A<ID; W L\Ql e .
For a given Mach number flutter is possible under certain combi-
nations of A, N,, @ , and ¥ ., In Table I the results of some

specific calculations are presented, The Mach number, M = 2, 18,
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and mass ratio, -‘6_ = 60, were selected to correspond to values
used in some experimental tests discussed in Part IIl,

The results of § vs N for ™\ = 2,18, ¥ = 60, and A,;= 0,5,
0.8, 1.0 are plotted in Fig, 16, For each A, a series of.points.
have been found--each point corresponding to a given @ .  These
results show flutter-' can occur for values of @ up to the limiting
case of |@Q{=w% . For values of |Q| <1 the curve for a given A,
goes up and to the right and then down as illustrated in Fig, 16,
Each value of A, has a loop of this type. Any point on this loop
gives the possible flutter mode and frequency for the specific
values of ¥ A, Q,7\, - By taking a large number of A;s it
is possible to establish the pattern for all pairs of parameters,
Q and 7\, s where there exists a solution of the nature of a
limiting cycle that is approximated by a two mode expansion,
Such solutions exist to the right of the boundary as shown in
Fig., 16 for M = 2,18, ¥ = 60, To the left of this boundary a
solution of the assumed form does not exist, If fiutter of finite
amplitude exists at all for a @ and A, to the left of the bound-
ary either the flutter mode may not be expressed by the first
two terms of the series expansion of Eq. A-~3 or the limit cycle

is not nearly harmonic as assumed in Eq. H-1, -
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PART IIIl. EXPERIMENTAL STUDY OF THE FLUTTER

OF A TWO-DIMENSIONAL BUCKLED PLATE WITH
CLAMPED EDGES IN A SUPERSONIC FLOW

A, Purpose of Test

The primary purpose of the test was to study the nature
of panel flutter, From this information present theoretical methods
could be checked and perhaps new approaches could be suggested,
With this purpose in mind an experiment was designed to provide
information regarding the mode shape of the flutter; the accuracy
with which the motion could be approximated by harﬁonic motion;
the frequency of the flutter; and the combination of parameters
which formed the boundary between a region of flutter énd a region
with no flutter. On the following pages the model, instrumentation,

test procedure, and results are discussed.

B. Model and Instrumentation

In order to establish a range of parameters, if any, in
which panel flutter existed preliminary tests were conducted in
the Caltech 2% inch supersonic wind tunnel., These preliminary
tests, while not productive of any good quantitative results, were
invaluable in supplying information for the design and instrumen-
tation of a larger model,

The main tests were conducted in the Caltech JPL 12 inch
supersonic wind tunnel, A tunnel of this size made it possible
to use standard structural sizes of aluminum for the panels. A
flat plate model was designed to hold the panel, This model is
illustrated in Fig, 17, The model was mounted on the centerline

of the tunnel with the upper surface parallel to the airflow,
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As illustrated in Fig, 17 the panel is fastened flush with
the upper surface of the model, It is located near the leading edge
to minimize the effects of boundary layer. The leading and trail-
ing edges of the panel are fastened with screws as shown in Sec-
tions A-A and B-B of Fig., 17. This was to provide a close ap-
proxima.tion to a clamped end condition consistent with easy
removal of the panel, The side edges are free, The lower surface
of the panel is vented to the free stream static pressure by the
slits along the free edges,

A combination screw, wedge, and slide arrangement is
used to buckle the panel by moving the trailing edge with respect
to the leading edge, This is illustrated in Sections B-B and C-C
of Fig, 17. The slide permits horizontal motion but restrains
the trailing edge in rotation, With proper adjustment the resulting
deflection is a pure buckling deflection. To buckle the panel the
two wedges illustrated in Section C-C of Fig, 17 are moved
together by turning the operating rod by the right hand scréw
convention, This forces the slide forward and buckles the panel,
The operating rod passes through the sidewall of the tunnel so
that the plate may be buckled from outside the tunnel while the
tunnel is running. To decrease the amount of buckle the rod is
turned to the left. Springs are provided to aid in the return of
the slide,

The amount of buckle was measured by the position of
the rod which moves the wedges, It was calibrated by placing

a dial gage at the center of the plate and measuring the amount
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of deflection from the flat configuration for various degrees of ro-
tation of the rod.

Sevefal SR -4 strain gages were fastened to the lower sur-
face of the panels equally spaced along the centerline, The signal
from the gages was fed into a Miller recording oscillograph for a
permanent reéord. No attempt was made to calibrate the ampli-
tude of the trace with the amount of strain, Instead each gage
was set so that for a given strain each trace would record the
same amplitude, In this way relative values of strain along the
length of the panel could be determined but not absolute values,

All panels were approximately 11 inches long‘a.nd 11 inches
wide., Several thicknesses were tested from 0,025 inches to 0, 051
inches, The free edges were 3 inch from the tunnel sidewalls,

The slits along the free edges were approximately 1/16 inch wide,

C. Test Procedure

The significant parameters which could be varied in the
wind tunnel test are Mach number; plate material and thickness;
tunnel static pressure; and the amplitude of buckle. Due to the
short time available for the test the number of variations in the
parameters had to be kept to a minimum, Only one Mach number,
M=2,18, was used, Several thicknesses of 24 ST aluminum
panels were prepared, It was possible to vary the tunnel supply
pressure from 1 atmosphere up to approximately 2 atmospheres,
It was possible to vary the amplitude of buckle from zero up to
about 12 panel thicknesses depending on the panel tésted.

The standard procedure used for the tests was as follows:
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1} A panel‘of given thickness was selected and installed,
The gages were connected and the amplifiers and oscillograph were
checked,

2) The tunnel was started and a short time was allowed for
the flow to stabilize,

' 3) A supply pressure for the wind tunnel was selected. For
the first run this was usually set at one atmosphere,

4) The panel was then buckled and the amplitude was gradu-
ally increased until flutter occurred or until it reached the maxi-
mum amplitude possible with this model.

5) When flutter occurred the oscillograph was started and
a time history of the motion was recorded. The flutter was stopped
by decreasing the amplitude,

6) The pressure was then changed and steps 4 and 5 were
repeated,

7) When a full range of pressures and amplitudes had been

checked, a new panel was selected and steps 1 through 6 were repeated,

One of the variations of the above was to start the oscillograph
before the flutter started and to keep it on until the flutter was stopped.
D. Results of Test

Four thicknesses of panels were tested, The thickest, an 0.051
inch panel, would not flutter under any combination of pressure and
buckling amplitude available, The 0,040 inch panels fluttered in cer-
tain cases at the higher pressures and amplitudes, The 0,031 inch

panels fluttered over a wide range of pressures and amplitudes,
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Two of these plates gave the most significant results, The 0,025
inch panels fluttered at the lowest pressures possible (1 atmos-
phere supply pressure) even with no buckling load,

Two distinct types of flutter were observed, One occurred
at much lower amplitudes of the buckle, A, , than the othér. Here-
after it will be referred to as low amplitude flutter, Its character-
istics are definitely different from the other, large ampl@tude type.

The results of the tests are presented in Table II. The
dimensionless parameters @, , and ¥ as defined in equation
D-1, Part II, have been calculated and are included in Table II.
The type of flutter is of the large amplitude type unless marked
otherwise,

The results of @, vs. A, are plotted in Fig, 18, The

\
low amplitude flutter is marked by a dash through the line. The
reason for using a line to indicate the amplitude, A, , at which
flutter occurred is due to the uncertainty in the measurement of
A, + The amplitude of buckle was calibrated before and after
each run, Usually there was a zero shift which accounts for the
 length of the line,

Two sections of the oscillograph tape are shown in Fig.
19. The first, marked Trace 275, shows the large amplitude
flutter., A short section of trace showing the panel at rest but
with the tunnel running is also shown. Seven.gages were fastened
at equal intervals along the centerline of the plate, Gage number
1 was not working so no trace exists, The gages were numbered
in sequence from front to rear, Gage 4 is at the rrﬁddle of the

plate, The dominant motion is quite evident, Superimposed
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upon it is a higher frequency motion, This motion definitely existed
and was not in the instrumentation, The timing marks are at each
one-hundredth of a second,

The second, Trace 131, is of the low amplitude type. The
motion here has a very different character which will be discussed
later,

The oscillograph recordings such as the above mentioned
traces are in effect measures of the plate curvature, By per-
férming a double integration the deflection may be d.etermined.
The resulting deflection shapes are shown in Fig, 20 for Trace
275 and in Fig, .21 for Trace 131, Note the traveliné wé,ve nature
of the motion in Trace 275, The ordinate has no value assigned
since the gages are calibrated only to read relative amplitudes,
The times listed for each successive drawing are measured from
an arbitrary zero, Only the dominant motion is considered, .

In Part II the deflection of the panel was represented by
a series of Iguchi functions, If only the first two terms are con-

sidered, the deflection is of the following form
Y () = 8¢, F + B,c,F, (¢) (D-1)

®, and ®, have been evaluated for Trace 275 and the results

are plotted in Fig, 22, No values have been assigned to the or-
dinate since only the relative values of ®, and ®, have signifi-
cance. From this plot the amplitude ratio, ®1/@l s and the phase
shift, ® , may be determined. A sine curve has been superim-

posed on this plot for comparison,
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In Fig., 23 the results of low amplitude motion, Trace 131,
are presented, The results of another large amplitude motion,
Trace 283, are shown in Fig, 24, In all three cases the time
scales are measured in seconds from an arbitrary zero, In the
case of Trace 2_83, however, the plate is buckled but at rest at
+ =0 and is followed through the start of the motion and through

one complete cycle,

E. Conclusions
The results plotted in Fig, 18 show only a slight variation

in Qe with change in \, , This change is most pronounced in
the large amplifude range, At amplitudes, '\, , greatei' than
approximately 6 there is a definite decrease in Q. with increase
in A, . In the low amplitude range the change of Qegp With ampli-
tude is not so clear, It was in evidence, however, in the following
manner:

~ In a typical test the tunnel was set at some pre-selected
@ with the panel in the unbuckled condition., The panel was
then buckled and the amplitude was slowly increased, At some
point low amplitude flutter was observed, With further increase
in amplitude, A, , the flutter stopped. With a still larger ampli-
tude a point was reached at which large amplitude flutter occurred.
At no time did flutter stop at larger amplitudes than those re~
quired for initiating large amplitude flutter., In most cases it
was not possible to keei: increasing the amplitude because of mechan-
ical limitations, For examples of the tesf described above see

Traces number 162 and 163; 180 and 181; and 285 and 288, In
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other cases, particularly those which required very large ampli-
tude to initiate flutter, no low amplitude flutter was observed,

The possibility exists of a combination of Q | and X, for
which the flutter started as a low amplitude type and changed |
to large amplitude type as A, was increased without a staﬁle
region in between, Additional tests would be required to inves-
tigate this, |

The various stability boundaries presented in Fig. 16 and
discussed in Part II are replotted in Fig, 18, It is difficuit to
draw conclusions concerning the validity of the theoretical curves
in predicting the flutter boundaries. The large amplitude flutter
occurred in a region permitted by the two mode solution of Part
II. No large amplitude flutter occurred to the left of this. curve
in the region where the two mode solution indicates no solution
exists, This curve does not seem to have significance ﬁith
regard to the low amplitude flutter since this type of flutter was
observed on both sides. If higher modes are considered, some
correlation may be found,

No flutter was observed for values of  below the curve
for stable static buckling as presented in equation ¥-3, Part Il,
However there is a definite gap between the experimental points
and the theoretical curve, Assuming that this curve is a vé.lid
boundary the discrepancy could result from a combination of the
following factors.

1) The boundary conditions on the panel do not exactly

represent the clamped end conditions,
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2) The panels are theoretically under a pure buckling load,
In the manufacture of the model the necessary tolerances permit
a slight amount of initial curvature which induces additional
stresses,

3} A panel of finite width was used. This may not ade-
quately aéproximate the two-dimensional condition,

4) The free edges were extended slightly into the boundary
layer on the sidewalls of the tunnel., This edge effect may be im-
portant,

5) The boundary layer on the panel was ignored in the
theoretical study. For small oscillations it is possible for the
flutter to take place entirely within the boundary layer, The
panel was placed near the model leading edge to minimize this
effect,

6) The dead air space below the panel was restricted by
the maximum permissible thickness of the model.

It would be desirable to check all the above conditions
and some others to determine their effect, The short time al-
lotted for testing completely precluded the possibility of check-
ing these factors, The tests of necessity had to be primarily
concerned with two questions: Does flutter occur? If so, what
does it look like? The information concerning flutter bound-
aries could at best be incomplete,

In regions of small initial amplitudes the position of the
experimental points is uncertain., It was very difficult to mea-

sure A, for small deflections due to the shift in the zero. In
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all cases recorded in Table II the panel was definitely buckled al-
though in several cases it was impossible to determine the size
of this buckle,

The different character of the two types of motion is well
illustrated in Figs. 20 and 21. In the large amplitude type of Fig,
20 the traveling wave type of motion is quite evident, The low
amplitude motion of Fig, 21 is of the standing wave type, The
two mode approximation clearly shows these differences, Both
Figs, 22 and 23 show that the ratio of maximum amplitudes,
B‘M/e is not far from 1, The phase shift, Q , is quite evi-

2max :
dent in the two cases, For the large amplitude flutter of Fig, 22
® = 100" , While for the low amplitude flutter of Fig, 23 it
is essentially zero, Comparison of the calculated points with
the sine curves of Figs, 22, 23, and 24 show that the motion is
essentially sinusoidal, A further check of the motion shows that
the assumption used in Section H, Part II, that k.ﬂ\g , Q. and
®. are slowly varying functions of time is substanﬁiated.

The assumptions of Ref, 10 and Part II are in the main
substantiated, A study based upon use of additional modes is
probably warranted,

The results of many of the tests are presented in Table

1L,
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APPENDIX A

Quasi-steady Theory

1) Aerodynamic Forces

Let  ®(x,y,24) = Q (xy,2) e W (1)

and substitute it into equation A-1, Part I, The reduced potential,

X,¥,Z en satisfies the equation
V(x,y,2) th tisfies the equati

M)\ TQ, 3 X M* _
8 ST Y oa 47O (2)

The quasi-steady solution is formulated as follows (Ref, 20}):
Expand @, in a power series in terms of the reduced frequency, |,

and neglect all terms of order higher than the first, That is

® = @y +ik@, + O + .- (3)

The result of substituting equation 3 into 2 is

30 _ ¥R _ I
NI > > = 0
and (4)
: 3Dy 3 38 _
© R R Y A = 0

The boundary conditions are developed as follows:

39, = 3%

Y=0 y=0

+ LK &?;b)h
(5)

A, 2
iu ™ (r2) - 52 ﬂSQ

where
- ~wwt

Y = \/\ (xszyet (6)
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and y is the plate deflection,

Equating real and imaginary parts

R
dy Y=o DX

__b) = — XY e NASTA
¥Y Jy=o A

Equations 4 are of the form of the well known potential

equation for steady flow. The solution to this equation is

S M. (%%} d\q

Pz = = ) 4 —
3 RN Y, J\x-g)‘ - & 2= + 2]

(8)

where

%,

I
x
|
Vet
<

M =z - j(x;) e

v, = z + Jﬂlégl —v*

If the boundary condition is applied at the surface

equation 8 becomes

€, 2 >® A‘f(
Qxx0,2) = - T‘W—S deg 2 vz =,
o n, Y-y - g (zon) (9)




-64-

where
g, = X
Y\ z &
= ra + (X—ﬁ]
e s

The above integral represents an integration over the for-
ward Mach cone, The same difficulties are present when trying
to perform this integration as were present in the exact solution,
The discussion on pages 10 and 11 holds here as well, In the fol-
lowing the quasi-steady problem is worked out in detail according
to the method described on those pages.

Equation 9 can be simplified by the following substitution

N =V,C080 +2 \, = &’i@i’ (10)

If the specific boundary conditions of equation 5 are employed

there results

Y Ly
Qu = - 2\ °° \ 2 (g, v18]) 4o

RS

N . (11)

-V -LiLg
Q. = rry oe_“ Aqx\/.@,nm\aa
0
Assume a deflection of the form
= A Sin MUX S NNz

vy e . vy (12)
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Then
~
I =% ‘;‘g 49
o
= AM\M m Cos g SLCOS M'Nz% $\n km’“nn oS B) 48
+ Sin m’n’z_% CosS Q‘f\w\'}o Cos B) a8
e (13)
~
1\:: =% Y\AB
(o]
N
= N SN W\%KQOS LS % Sin K"‘W"‘“ Cos e) d9
Lz o e
+ Sn wm-z_ Cos (Wf\’lg cos 5)
But ~
% %\y\ Km’“"‘o oS 63 an = 0
0
" (14)
cos k“‘“m Cos B\ dd = WS, (WM.
[ L‘z_ L—a_
Thus
T. = A, cos wme (Sin Wrz\x (W4
a LYY % ( \—'a.\- o& LL\
(15)
1

o = Naw Sin we KSm 0 >“J (



-66-

Equation 11 become

b3
Qo = — !-\mm‘%" St _m_‘RA% e_'“ﬂgcos wme J(ARY d ¢
Lz
(16)
kS
- v o Rz - g _.
R, = Am.gm Sn o Xue Sn e 3, (AarYde .
where
= N - _
A= L@ ¥o= Ax-9)
Equations 16 can be put into a more useful form
. *(m-we :
Qo = ~ b\m\\é—m— S\ WNZ Kx e_L( " S, ) d¢
% Le ]
_LKS'L-H“QE
+ %De J, (W) d¢
. e 17)
Q. = P ze St —L: i— he SHES P

X
+% ST Gy (W dg

]

The integrals in the above equations are of the same form

as equation A-7, Part I, They can be reduced to the Schwarz

function notation,

@ =S

Q

The following integrals are defined
~ASL+m
e Ll )¢ dok?\“) A g

= et S_t;\_m ) (51_.+m)xJ (18)
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9o = & TTF O uvde

Q

= X Q-LLSL—M‘\X ib[ SL_;:M \ ksl.‘\- NV\\)X:I (18
cont'd)

Equations 17 are now

- U .
R = ~ 3@ A SN w_\_zr:z&QL_\, Q)
(19)
D, ~ ?i\;% A SiN E\—:—%‘ (Qc - Qo}
The complete potential is then
1 - - (it -5
Q = Q\éLkmt SLX\ — (QQ'\"L\KQ\Q\ S (w
(20)
=7 Amﬁ\é‘“ﬂin _‘1‘_"&? g\(w«\wrk\ Qc+ L=k Q‘;& e"‘(“’t'n")
The pressure is
— U .
Pom = N S 51 %i?\w«m Jo (M%)
(21)

. - (wt -sux
(e v 2km) L @ + (e —Akwm) Qo-k gt )
Equation 21 is the pressure distribution due to a deflection of the
form of equation 12,
If a deflection of the form of equation A-15, Part I is as-

sumed, it follows in a similar manner that
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X
Qu = - Amm%%e-Lai @S wmeg ib\'
+ Z Ae cos 2rmz  J (¥W) d¢
L \-2..

= _ % L\W\XNEH %i

r=|

Ay Cos armiz KQE* Qe)
2

R4
. _ U e .
Qb = b‘\mh %‘?SOQ S twme \Ao
+ Ay cos 2rwz S (3n) & |
2 Ao Tz 9, (90 asd (22)

= Num _(\QJFS\NQ‘D + L?. \Z A, os @.‘%&(QE-Q‘:\\X

where
> S
] = % e s we d g
(s
% Qs
D = S € Sin wmg d¢g
(23)
s (St+mye
-t 4+
Q. = \ e ™ S (¥wYd g

- XQ:LKSI-\-M\X 'g-_b [SL;}M \ KR*’W\X:\
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%

(e
9 = § TR e ae
o
Sy X = SL-tn _
= % e fo [ X ‘Kg'wﬂx.J (24)
and ¥ = ox
L.

If terms of order k2 are neglected

N - SUx . .
B = tng\e\. [—LS'LC.OS\MX +\w‘smme+L&‘§

D = ) - , .
a e - SU sin tax —mc_osmx]-\-tm}

(25)

The complete potential is

® = = Ay ?%% X’a(m«r% - kDY N,
+ (vmu—\d[ Z [N kcos &\‘Ez\ Qe J
Y=\ '

[ 2 a (s s @ J et

Y=\

The pressure relation is

PN N, f:@U_ %M > Aycos 2rmz J, (6

‘a\ i) Yo, L'L
(27)

oa

~ (b & 2w L z A, ws 3;\_—5(_4 Qe
Z

Y=
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+(mn-?.m‘<\ Z A, cos ?.\-'nz_ Q¢
=\ LL

~luwt -3ux)

-8 .
* [(Sm ~2K) SN WX 4 T Cos Mx ]\Xe

+2 RN, e

To find the pressure on a finite plate as shown in Fig, 1
the above pressure relation equation 2-40 is added to equation 2-34

and this sum is then divided by two., The result is

T

- O ~ilust-0 [ « .
(’Pm\)m“ ouavE At i-%—; e S\&mm o) st M:.z

i

Zf\ cos “YWZ ) (‘Gx}] - (ww « E\N'\\KX[ Q. S\n ?Q_Z:

Yz Lj_

+ i Z A cos 2rxz QE] + (m‘ﬂ—amk}[LQo S\n Mz
rat

|23 Ly

+ L Z N¢ Cos &rmz QF] + 2N, @_'w"x [m_ﬂr LS Wx
T2

Yz

+ (Stw -2X) sin \«\x]k
(28)

The generalized forces obtained from substituting equation 28 into

equation B-13, Part I, are

for wwn * &

Qwmys = (;::“il) S\U«m’ * ZK)[I_M((«\\ +‘; A?; 'S.“\wh} (29)
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~ (e -u\[xn(-m\ + iA"\, Tox (—m\:\
+(Qw+ak\[_1°,\\$2\ + :Z N I“&SL\]

- (9w -2%) [In -8) + “Z Ne Lo k—&\]}

29 .
cont'd)

X E_QE‘_QL A, X\_k_\\slSX‘_k_ﬂw-w*&

S{w

for b = R
Qe = Qa_;%'n\‘\ [10}@“\ * i A 1“&@]

—L[lux(‘m\\ + Z P-\L‘, 1.y \-M\\]

Yey

+ {omm + 2% [107\ () + Z Ne Lol

=L () - Z e L (‘M\]

rei
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+ (onar - 2) [ T, ) o+ Z N\ 1 (Fw) (30)
—1l7~ ("N\‘\ - Z Alv -S'\B k%\]x

y VN, %\ \- k-\f\s\:w -1\\

2aw @

These values of thls may be used to solve the determinant
equation C-1, Part I, In this case the @upp,'S depend upon
the AR ratio; therefore each case must be carried out sep-

arately.,
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TABLE I
M=2,18 6= 60
A, @ N Q N X

0.5 180 2.95 1.26 2,59 0
170 3.53 1,45 2,64 0,200
160 4,67 1,78 2.76 0. 340
150 5,56 1,98 2,87 0.418

0.8 180 3.2 2.3 - 2.81 0
175 3.8 2.7 2,86 0.161
170 4.9 3.2 2.98 0.238
160 6.9 4.3 3,25 0. 366
150 8.5 4.8 3,53 0. 449

1.0 180 3,3 3.3 2,97 0
175 4.4 3.9 3.1 0.184
170 5.9 4.9 3.28 0,274
165 7.3 5.8 3.48 0.335
160 8.5 6.5 3.66 0,377
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TABLE II
Trace Nos )\T. '): N Qe ¥ X $ Tyee

129 {0,031 | 9.5 2,75 60,7
132 8.8 3,10 54, 4
134 13,7 2,63 64,1
139 13,5 2,65 63.8
140 14,3 2,60 65,0
142 11,4 2,74 | 61.8
144 9.8 2,94 57,8
145 14,9 2,54 66,8
161 11,1 | 10,6 |2,75 | 64, 6%% o.‘242 73
162 4,2 3.5 [2.94 0.414 |125 |L.A.*%
163 9.9 9.4 |2,94 0,242 | 73
165 3.3 4.1 |[3.13 0,414 [125 |L.A.
166 3.1 4,0 (3,10 0.421 |127 [L.A.
168 3.2 3.8 13.26 {0.428 {129 |L.A.
169 3,4 4,0 |2.92 0.414 (125 |L,A.
170 4,2 4,6 |2.89 0.408 |123 |L.A.
173 10,4 | 10,0 |2,75 0.236 | 71
175 12,4 | 11,9 |2.68 0,202 | 61
177 5.8 5,0 |2.58 L. A.
178 13,3 | 12.9 |[2.66 0,186 | 56
180 6.1 5.3 |2,78 L. A,
181 10,7 [10,2 |2.78 0,246 | 74
183 v 12,4 |12.1 |2.68 62,18 [0.196 | 60
199 |0.032 {12,4 |12,0 |[2.23 0.085 | 26
200 ¥ [10.0 9.5 (2,42 0,082 | 25

sk
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Trace No. h o N A Qen % '8 ¢ | Tyee

201 | 10,9 | 10,4 | 2,41 65.1 |0.085 | 26

203 6.5 | 5.7 |2.56 L. A.
204 8.3 | 7.7 |2.56 0,088 | 27

205 8.7 8.0 | 2,55 0,085 | 25

206 7.4 | 6.7 |2.71

207 8.1 | 7.5 |2.70 0,108 | 33

209 5.9 | 5.3 | 2,79 0.062 | 19

210 7.7 | 7.0 | 2,79 0.052 16

211 6.7 | 6.0 |2.96 0.056 | 17

212 6.6 | 5.9 |2.94 o L. A.
213 5.5 | 4.8 |3.07 |

214 5.4 | 4.7 |3.07

216 5.0 | 4.3 | 3,21

217 6.1 | 5.4 |3,03

218 8.1 | 7.4 |2.62 |0.091 | 28

219 11.6 | 11,1 | 2,34 0,091 | 28

220 ' 11,9 | 11.4 |2.24 | 70.1 |0,085 | 26

250 |0.031 2.1 |2.47 | 68.4 L. A.
251 2,47 L. A.
252 1,27 | 2.61 L. A
267 2,61 | 59,8 |0,460 |140 |L.A.
275 11,8 | 12,7 |2.77 0.214 | 65

276 2,93 L. A.
278 3.4 |2.93 L. A.
279 v 2.3 | 5.0 [2,93 0.362 [110 |L, A,
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TRACE No Mg Ma @en ¥ X § |Tvee
280 4.5 | 6.3 |2.93 0.388 | 118 |L.A.
283 8.6 | 9.6 |2,92 0,220 | 67
284 2.3 5,0 | 2,72 61.1 L. A,
285 3.4 2,72 L. A.
288 12,2 [13.1 2.72 0,181 | 55
289 11.6 |12.4 |2,72 0,220 | 67
291 11,3 (12,2 |2,77 60,2 |0,191 | 58

*Subscript B refers to calibration before test run;
subscript A refers to calibration after test run,

**From Trace 161 on the temperature varied over
a narrow range so records were not taken for

every trace,

***] ,ow Amplitude.
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