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ABSTRACT

The objective of thils study was to examine in a fundamental way
the mixing processes in a stably stratified shear flow. The results
of the experimental program have yielded information on the nature of
turbulence and mixing in density-stratified fluids. The results can
be applied to such problems as the determination of the spreading and
mixing rates of heated effluents discharged to lakes or the ocean, as
well as to many geophysical problems.

An experimental investigation was made to measure the mixing in
a two-layered density-stratified shear flow in a flume 40-meters long,
with a cross—section of 110 cm wide by 60 cm deep. Both mean tempera-
tures and the mean velocities of the two layers could be independently
controlled, and steps were taken to ensure that the temperatures and
velocities of the two layers remained nearly constant at the inlet.
The relative density difference between the layers was 1073 or less.

A laser-Doppler velocimeter, designed for this study, allowed measure-
ments of two components of velocity simultaneously, while a sensitive
thermistor was used to measure the temperature. The temperature and
velocity measurements were recorded and later analyzed.

The initial mixing layer which developed at the inlet was found to
be dominated by large, two-dimensional vortex structures. When the
flow was sufficiently stratified, these structures would collapse in
a short distance and the flow would develop a laminar shear layer at
the interface. It was found that the bulk-Richardson number
Ap

5—-ng*/AE;2, where QT* is the maximum-slope thickness of the
o
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temperature profile, attained a maximum value between 0.25 and 0.3 when
the mixing layer collapsed.

Downstream, much less turbulent mixing took place in the stratified
flows than homogeneous flows. The depth—averaged turbulent diffusivities
for heat and momentum were often 30 to 100 times smaller in stratified
flows than in homogeneous flows. The turbulence downstream was found
to be dominated by large turbulent bursts, during which the vertical
turbulent transport of momentum, heat and turbulent kinetic energy are
many times larger than their mean values. It was found these bursts
were responsible for most of the total turbulent transport of momentum,
heat and turbulent kinetic energy, even though the bursts were found
only intermittently.

The flux-Richardson number, Rf, in the flow was examined and found
to be related to the local mean-Richardson number in many cases. When
du

production of turhulent kinetic energy from the mean shear, -u'v' By °

was the largest source of turbulent kinetic energy, it was found that

Rf < 0.3, and when the flow was strongly stratified, R. < 0.2. If the

£
12 12y, S
diffusion of turbulent kinetic energy %’a(u ;yv )v = Qﬂg;l_ was
Yy

the largest source of turbulent kinetic energy, then the flux-Richardson

number often attained large values, and the quantity —p'v'g / Qg_’af}z'l'_
was found to be a more useful parameter than Rf. It waiofound that, in
almost all cases, the rate at which the potential energy of the fluid
increased due to turbulent mixing was much less than the estimated rate

of viscous dissipation of turbulent kinetic energy.
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CHAPTER 1

INTRODUCTTION

Density-stratified shear flow problems are commonly encountered
both in engineering practice and in geophysical studies. Yet, as with
many fluid mechanics problems, they are not well understood. Part of
the reason for this is that solutions for density-stratified shear flow
problems often require some knowledge of the behavior of turbulence in
fluids, at best a complicated and poorly understood matter. There are,
however, a number of vital engineering problems which require knowledge
on a fundamental level concerning the behavior of density-stratified
shear flows in order that they might be intelligently solved.

Among these problems is that of the discharge of cooling water
from power plants to lakes or the ocean. In such instances, a buoyant
layer of warm water may form on the surface and slowly spread. The
rate at which this layer of water drifts over and mixes with the cooler
ambient water will depend upon, among other things, the density differ-
ence between the two layers, the shear at the interface, and the
turbulence levels in the vicinity of the interface.

Another related problem is that of the discharge of sewage to the
ocean; whether the sewage field rises to the surface or stays submerged,
the ultimate turbulent mixing processes involve interactions with
buoyancy forces. Similarly, the spread of smoke in a burning building,
the circulation of water discharged into a power plant cooling pond,

and the dispersion of air pollutants in an urban atmosphere are all



density-stratified shear flow problems. In addition, there are many
geophysical stratified flow problems. These include atmospheric
motions, the nature of oceanic currents, and the behavior of estuarine
flows. There are also many problems related to mixing in lakes and
reservoirs which involve density stratification.

The purpose of this study is to examine in detail the mixing which
takes place in a two-layered density-stratified turbulent shear flow.
The ultimate goal is to provide fundamental information on the nature
of such flows in order that one might have a better understanding of
them when approaching engineering problems.

As a major part of this study, an experimental investigation was
conducted in order to measure the mixing in a density-stratified shear
flow. Experiments were conducted in the 40-meter precision tilting
flume in the Keck Hydraulics Laboratory. The flume was modified so
that at the upstream end warm water entered the flume at one velocity
from above a splitter plate, while cooler water entered at a slower
velocity from below. At the downstream end, an adjustable splitter
plate separated the upper and lower layers of water which were then
returned to the inlet via separate return pipes with temperature control.
Velocity measurements were made using a two-component laser-Doppler
velocimeter, developed for this study, while temperature measurements
were made with sensitive thermistors. The results of the measurements
have yielded much new information on the nature of density-stratified
flows.

In addition, density-stratified flows were considered in a



theoretical vein in order that the results of the experimental investi-
gation might be more easily understood. Together, the theoretical and
experimental investigations have answered a number of questions about
the nature of density-stratified shear flow problems, but leave many
more questions still unanswered.

Chapter 2 presents a review of some previous experimental and
theoretical work related to density-stratified shear flows. In addition,
new theoretical work is presented, including some work which was con-
ducted by the author at the Geophysical Fluid Dynamics Program at the
Woods Hole Oceanographic Institution.

Chapter 3 contains a discussion of the experimental apparatus.
Included is a detailed description of the laser-Doppler velocimeter
used in the study. (Appendix A contains a detailed description of
the electronics used with the laser~Doppler velocimeter.)

In Chapter 4 the experimental procedure is described. Included
are accounts of the calibration procedures of the various instruments
and analyses of the measurement errors. Also included is a discussion
on possible errors in velocity measurements caused by variations in
the refractive index of the water in the density-stratified flows.

Chapter 5 contains a general description of the flow. Included
are discussions on the inlet conditions and the boundary-generated
turbulence. In addition, some results from flow visualization studies
are presented.

In Chapter 6 the experimental results are presented. The chapter

is divided into sections concerning the flow in the initial mixing



layer, the downstream flow over a smooth bed, the downstream flow over
a roughened bed, and the organized structures found in the turbulent
regions.

Chapter 7 contains a detailed discussion of the experimental

results, and Chapter 8 gives the summary and the conclusions.



CHAPTER 2

THEORETICAL ANALYSIS AND REVIEW OF PREVIOUS WORK

2.0 Introduction

In this chapter previous theoretical and experimental studies on
density-stratified shear flows are reviewed and some new analysis is
presented. As discussed in Chapter 1, the bulk of this study concerns
the experimental investigation of the mixing between a warm layer of
water flowing over a colder layer. There are four basic regimes of
mixing in this type of flow. The first regime is the initial two-
dimensional mixing layer, which, given a sufficiently large buoyancy
difference between the layers, can collapse to a laminar shear layer.
If the mixing layer does not collapse, then downstream the fluid con-
tinues to mix due to boundary-generated turbulence, although it mixes
at rates which are much lower than those found in homogeneous open-
channel flows. This is the second mixing regime.

The third and fourth regimes are closely related and occur down-
stream if the mixing layer has collapsed. Shear stresses at the
boundary of the flume may alter the velocity profile in such a way
that a strong shear will exist across the stable interface. In
addition, boundary-generated turbulence may produce internal waves at
the interface. The waves may become unstable, because of the shear,
and break, causing a gradual breakdown of the interface. This is the
third regime. Finally, the boundary-generated turbulence may directly

cause mixing at the bottom of the interface. 1In this case, the



turbulence 'chips" away at the lower portion of the interface, without
totally disrupting the interface.

The balance of this chapter considers theoretical analyses and
experimental work which relate to these types of mixing processes. Of
particular interest are studies relating to mixing layers and the

nature of turbulence in density-stratified shear flows.

2.1 Equations of Motion and Pertinent Dimensionless Quantities

In this section, the pertinent equations of motion and the impor-
tant dimensionless quantities are presented and discussed. For con-
venience, subscripted notation is used here; the variables and notation
used are defined as follows: u, denotes the fluid velocity in the X,
direction, and (ul,uz,u3) = (u,v,w), while (xl,xz,x3) = (X,¥,2) whére
x is in the direction of the mean flow, y is in the vertical direction
and z is in the lateral direction. An overbar (—) denotes an ensemble
average and a prime (') denotes the usual fluctuating quantity. up
denotes the dynamic viscosity, p the density and v = u/p, the kinematic
viscosity; P denotes the pressure, T denotes temperature, and t denotes

time.

2.1.1 Equations of Motion

The flow is assumed to be incompressible, hence, the

continuity equation:

-0 . (2.1.1)

In addition, a linear equation of state, p-p, = a*(T-—To), valid



for small temperature differences, is assumed, so that

p op _ 2%
ot T %1 Bx, T € ax ox 2.1.2)
where K is the thermal diffusivity coefficient,
po is a reference density, and
To is a reference temperature.
The momentum (Navier-Stokes) equation is given by
<3ui Bui> P 32ui
py=—— + =) = - - pgd,, t U T—F— (2.1.3)
ot Yk axk axi i2 axkaxk

where Gij is the Kronecker delta function, and g denotes the accelera-
tion due to gravity (in the negative X, direction). Following the work

of Phillips (1966), Equation 2.1.3 can be reduced to

Bui Sui 1 9p_ p—po " 32ui
+ S L R YU S gun (2.1.4)
ot Yk 'c)xk P Bxi o i2 'p Bxkaxk

9P 9P _
where 5;;-— axi pogé12 and

po is a constant, reference density.

The Boussinesq assumption (in which it is assumed that p = Py @ constant,

except in the term involving the gravity force) is used and

9uy fuy 13 ?uy
—_— ____=_._.___B__B + v (2.1.5)

ot Uy 8%, b, Bx, S42 Bx, 0%,



p—po

Here B denotes the buoyant force per unit mass, g.
o

is obtained.
From Equations 2.1.1 and 2.1.5, the following relationships can be

derived (see Phillips (1966), Tennekes and Lumley (1972), Hinze (1959))

- o .
J— 1 ]
du 3ui=““l__8 -_5.2_ du 1%k § 3 ui , 2.1.6)
ot axk o Bxi i axk axkaxk
aEi
= -0 (2.1.7)
i
oY = 9B'u', 2=
TR i £ - (2.1.8)
ko Tk 5%k
au'iu'j du du . Bu'l.u'. E)u'.u'.u'k
1 1 — [] T | -
TR 1 I e S S P Y
N ) 2 v 9p | == —T 2
<uJ ox; i 3xj )/po <u.B 6,; + uiB sz) 3 Gije (2.1.9)
— — 2
- 72 9B'Zu’ 2g°¢
oz 25~ 4 L S - (2.1.10)

2
9B + 2u' B!

ot k Bxk

and
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—F — ge
-+ g _jp25 - 08 (2.1.11)
o X, i2 o
(o] 1 o

Here € is the viscous energy dissipation rate per unit mass, ep is the
dissipation rate for 57572 and epu is the dissipation rate for ETEz.

Equations 2.1.6, 2.1.7, and 2.1.8 are the conservation equations
for the mean quantities of momentum, mass and buoyancy for a Boussinesq
flow. Equations 2.1.9-2.1.11 are conservation equations for second-
order fluctuating quantities. For a detailed discussion of the terms
in these equations, the reader is referred to Hinze (1959) or Tennekes
and Lumley (1972).

From Equation 2.1.9, the conservation equation for turbulent

kinetic energy is found to be

= —u', 2B /o —u'ZB' - u', u' —k -€, (2.1.12)

where q¢ =

These are the primary equations that are used in analysis of stratified

shear flows.

2.1.2 Dimensionless Parameters

There are several important parameters which can be used
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to describe density-stratified shear flows. One parameter is the

Richardson number, Ri, which is defined as:

Ri = — -2 (2.1.13)

This quantity is useful in the analysis of laminar flows with wavelike
perturbation; its usefulness in turbulent flows is open to question,
since it is a rather difficult parameter to measure in a turbulent flow,
and has both spatial and temporal fluctuations. The Richardson number
is a stability parameter, for Miles (1961) and Howard (1961)
have shown that a sufficient condition for an inviscid density-
stratified shear flow to be stable is that the Richardson number be
everywhere greater than 1/4.

A more commonly used parameter in a turbulent density=-stratified

shear flow is a mean-Richardson number defined as

RL=— 9y (2.1.14)

The general usefulness of this parameter, however, is not clearly
established, at least to this author, in that a laminar flow with
internal waves may have a large value of EI; while locally it may have
values of Ri that are less than 1/4, and thus may become unstable.
However, it is a parameter which gives a general description of the

flow at a point, and may thus be useful as a parameter to consider
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in the reduction of data.

The flux-Richardson number, defined as

X
R, = —2Y (2.1.15)

is the ratio of the vertical flux of buoyancy to the production of
turbulent energy transferred by the Reynolds stresses from the mean
flow, Both of these quantities are important terms in Equation 2.1.12.

Another dimensionless quantity which is often neglected is

§__2|
y 4V

|

E = (2.1.16)

u
Tay?
u'v 3;

the ratio of the gradient of the vertical flux of turbulent energy to
the local production of turbulent energy. Again, both of these
quantities come from Equation 2.1.12. This parameter can be rather
important in some cases, particularly if the fluid is flowing over a
roughened bed, where there can be an enormous production of turbulent
energy. In this case, turbulent energy is transferred vertically from
the bed by the vertical velocity; if there is no mean vertical flow, all

the turbulent energy will be transferred away from the bed by the

fluctuating vertical velocity, and qzv' is the measure of the vertical
flux of turbulent energy. If E is large, then a term that would be

more important than Rf isg
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RBe B
E

F = = — (2.1.17)

which is a dimensionless quantity analogous to the flux-Richardson
number.
Another Richardson number which is commonly used in the reduction

of data is the bulk-Richardson number

R * = Lo gu/u2 (2.1.18)
P
o
where %E-g is the buoyancy difference between
0

two layers,
& 1s an appropriate length scale of the
problem, and

U 1is an appropriate velocity scale.

This parameter is, in fact, the inverse of ﬁhe densimetric Froude number.
The major problem with this parameter lies in the determination of the
length and velocity scales; that which is an appropriate length scale
in one problem may be inappropriate in another. This difficulty can
make the comparison of results from different experiments a problem.

The Keulegan number,(% %E-g)/U% where U is an appropriate velocity
scale, is formed by combining ihe Reynolds number, Re = UL/v and the
bulk~Richardson number in such a way that the length scale % is elimi-

nated. Keulegan (1949) found this parameter to be useful in character-

izing the mixing in a density-stratified flow, but Turner (1973) has
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questioned the usefulness of this parameter, in that viscosity may not
really be important. However, the Keulegan number may be useful in
characterizing the initial mixing layer, for, in the idealized case,
the mixing layer has no externally imposed length scale.

There are several measures of length scales in density-stratified
flows which are useful. Length scales based on maximum gradients are
useful in many flows, particularly flows with an interface. Two length

scales defined using maximum gradients are

% du
L AUO/(ay )max (2.1.19)
and
T
2% = AT <3—-) 2.1.
7= T () e 2.1.20
where AUO is the initial difference in mean flow

speeds between the two layers, and
ATO is the initial temperature difference

between the two layers.

Here, the maximum values of the gradients are taken to be local maxima.
luf and QT*, then, are local length scales which may be useful in
forming parameters such as Rb*.

An integral length scale which may also be useful is

0

6 a—
L =———— (T, -D(T-T,) d (2.1.21)
T (ATO)Z._/h 1 2’ Y
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where T, 1is the initial temperature
of the upper layer, and
T2 is the initial temperature

of the lower layer.

The coefficient of six is chosen so that ZT = 2T* for a linear
temperature profile.

Another parameter which may be important is the turbulent Prandtl
number, Pr* = Km/KH’ where K is the turbulent diffusivity of momentum
and KH is the turbulent diffusivity of heat. Other important parameters
may include ETEVIfz,the usual measure of the relative turbulent inten-
sity, although.;szawzmay be more appropriate for stratified flows,

since the vertical velocity fluctuations are ultimately responsible

for much of the mixing.

2.2 Stability Considerations for Stratified Shear Flows

In some instances, a stratified shear layer may become unstable;
in this situation internal waves may develop and break, resulting in
substantial mixing. In this section, some aspects of the stability of
stratified shear flows will be examined.

The stability of stratified shear flows has received a good deal
of attention in the past. Taylor (1931) and Goldstein (1931) found
stability curves for several inviscid cases. Miles (1961) and Howard
(1961) showed that for inviscid flow, a sufficient condition for
stability is that Ri be everywhere greater than 1/4. A review of much
of the work done with stratified shear layers is given by Draz