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ABSTRACT

The various aspects of the propagation of long waves onto a
shelf (i.e., reflection, transmission and propagation on the shelf)
are examinedbexperimentally and theoretically. The results are
applied to tsunamis propagating onto the continental shelf.

A numerical method of solving the one-dimensional Boussinesq
equations for constant depth using finite element techniques is
presented. The method is extended to the case of an arbitrary
variation in depth (i.e., gradually to abruptly varying depth) in
the direction of wave propagation. The scheme is applied to the
propagation of solitary waves over a slope onto a shelf and is
confirmed by experiments.

A theory is developed for the generation in the laboratory of
long waves of permanent form, i.e., solitary and cnoidal waves. The
theory, which incorporates the nonlinear aspects of the problem,
applies to wave generators which consist of a vertical plate which
moves horizontally. Experiments have been conducted and the results
agree well with the generation theory. In addition, these results
are used to compare the shape, celerity and damping characteristics
of the generated waves with the long wave theories.

The solution of the linear nondispersive theory for harmonic

waves of a single frequency propagating over a slope onto a shelf is
extended to the case of solitary waves. Comparisons of this analysis

with the nonlinear dispersive theory and experiments are presented.




Comparisons of experiments with solitary and cnoidal waves with
the predictions of the various theories indicate that, apart from
propagation, the reflection of waves from a change in depth is a
linear process except in extreme cases. However, the transmission
and the propagation of both the transmitted and the reflected waves
in general are nonlinear processes. Exceptions are waves with heights
which are very small compared to the depth. For these waves, the
entire process of propagation onto a shelf in the vicinity of the
shelf is linear. Tsunamis propagating from the deep ocean onto the

continental shelf probably fall in this class.
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CHAPTER 1

INTRODUCTION

Long waves are waves with lengths which are large compared to
the depth of water in which they are propagating. Among the waves
which fall in this class are "tsunamis" or, as they are sometimes
called, "tidal waves." The word "tsunami" is a Japanese word which
means "harbor wave.'" It has been adopted by the scientific community
in preference to '"tidal wave" to mean an earthquake-generated sea
wave,

The earthquakes which generate tsunamis usually involve vertical
movements of the sea bed. Such an earthquake occurred in Alaska in
1964; it generated a tsunami which propagated throughout the Pacific
causing damage at various locations along the West Coast of the Uﬁited
States, particularly in Crescent City, California. An important aspect
in trying to either avoid or prepare for such a disaster is to under-
stand how a tsunami propagates.

In the deep ocean where the depth may be 3500 m a tsunami might
typically have a length of about 300 km and a height of 1 m and
travel at a speed of 700 km/hr. The prbpagation of the tsunami
would proceed essentially in constant depth through the deep ocean
until it reached the region of shallower depth which surrounds most
land masses--the continental shelf. Here the depth decreases

considerably; of interest in this investigation was to determine



how such changes in depth affect tsunamis or tsunami-like waves.
Since field observations of tsunamis are difficult except at
the coast, the investigation was carried out by means of physical

and analytical models.

1.1 Objectives and Scope

The objective of this investigation was to examine, both
experimentally and theoretically, the various aspects of the propa-
gation of long waves onto a shelf, i.e., the reflection, transmission
and propagation of the waves on the shelf, for both abrupt and gradual
changes in depth. Of equal importance was to determine if the linear
mathematical models which commonly are used in the analysis of
tsunamis are sufficient or if it is necessary to use more complicated
nonlinear models.

The waves used in this study were primarily solitary waves. These
were chosen because it can be shown theoretically that waves which
have net positive volume eventually, if the propagation distance is
sufficient, will break up into a series of solitary waves. For
analysis, solitary waves have the advantage that, although nonlinear,
they can be described with just two parameters: the wave height and
the depth. Additional benefits are: they propagate with constant
form in constant depth and generally they can be separated from
reflected waves. Periodic waves in the form of cnoidal waves also
were considered for propagation over abrupt changes in depth.

To facilitate the experimental investigation, a theory was

developed for the generation in the laboratory of long waves of
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permanent form, i.e., solitary and cnoidal waves., The theoretical
investigation included the development of a finite element technique
of solving the one-dimensional Boussinesq equations. This was
applied to the full problem of solitary waves propagating over a
slope onto a shelf and was confirmed by physical experiments.

A review of previous studies of the propagation of long waves
onto a shelf is presented in Chapter 2. The theoretical analysis
which includes a review of the classical long wave theories and
their application to this problem, wave generation theory and the
development of the finite element numerical method are presented in
Chapter 3. The experimental equipment and procedures are described
in Chapter 4. The results of the investigation are presented and

discussed in Chapter 5, and conclusions based upon these are described

in Chapter 6.



CHAPTER 2

LITERATURE SURVEY

The nonlinear partial differential equations which govern the
propagation of long waves have been known since the 19th century.
However, until recently, only the equation arising from a linear
approximation to these equations has been used for predicting the
propagation of long waves onto a shelf.

The theory arising from this equation is termed the linear

nondispersive theory. The solutions of the theory for long waves

of arbitrary shape propagating over abrupt and gradual slopes are
presented in Lamb (1932). (Note, this represents the sixth edition
of the work. It was originally published in 1879.) Lamb (1932,8176)

shows, for a step, the reflection and transmission coefficients are

given by:

(l-Vhl7h2)
KR = —— (2.1)
C14-¢h1/h2)

and

K, = —2 , (2.2)

T 1+ /hz/hl

respectively, where hl is the upstrean depth and hgy is the depth on
the shelf,
For a "gradual" slope, i.e., a slope on which the depth changes

by only a small ffaction of itself within the limits of a wavelength,
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Lamb (1932,5185) shows the reflection and transmission coefficients

are given by Green's Law:

KR = 0 . (2.3)
and

Kp = (hy/h)" (2.4)

respectively.

Solutions of the linear nondispersive theory for the slopes

between an abrupt slope (i.e., a step) and a gradual slope have been
presented by Kajiura (1961), Wong et al. (1963) and Dean (1964). For
all of these studies the solution was obtained for an harmonic wave
with a single frequency in the steady state,
Kajiura (1961) proposed a method of solution for slopes of
general shape and presented the solutions for two cases:
i) A slope on which the depth varies as the square of the
distance along it. The solution for the wave on the slope
is a function of x%.
ii) A continuous slope determined such that the basic equation
is transformed into an equation which gives simple expressions
for the reflection and transmission coefficients.
Wong et al. (1963) and Dean (1964) obtained the solution for a
slope on which the depth varies linearly as a function of the distance

along it. The solution of the wave on the slope is a function of

Bessel functions.



Recall, the solutions for the two extremes of abrupt and gradual
slopes were for long waves of arbitrary shape; therefore, if it is
valid to do so, the solutions can be applied directly to solitary or
cnoidal waves. However, for slopes between the two extremes, the
solutions are for harmonic waves with a single frequency only;
therefore the solutions, even if valid, cannot be applied directly to
solitary or cnoidal waves.

The full nonlinear equations were first solved for the problem
of long waves propagating onto a shelf by Madsen and Mei (1969).

Using the equations developed by Mei and Le Méhauté (1966), which
incorporate the effect of a slowly varying depth, Madsen and Mei
(1969) developed a numerical method of solution based on the method-
of-characteristics scheme of Long (1964). The slowly varying depth
assumption used by Madsen and Mei (1969) is equivalent to the gradual
slope mentioned earlier.

Madsen and Mei (1969) found theoretically and experimentally that
as a solitary wave propagates up a gradual slope its shape changes,
with the front face of the wave steepening and secondary waves emerging
from the back face of the wave. Eventually, either on the slope or
on the shelf, the waves separate into a series of solitary waves
followed by a train of oscillatory waves. Earlier, Street et al. (1968)
experimentally had observed similar behavior but over a propagation
distance which was insufficient for the solitary waves to emerge fully

from the main train.



Analytical solutions of the problem of solitary waves propagating
over a gradual slope were found independently by Tappert and Zabusky
(1971) and Johmson (1973). By assuming zero reflection and slowly
varying depth, a variable depth form of the KdV equation can be
derived and, using the same techniques as were used by Gardner et al.
(1967) to solve the KdV in constant depth, asymptotic solutions for
the solitary waves which emerge on the shelf can be obtained. The
number of solitary waves which will emerge on the shelf is a function

of only the depth ratio, h1/h2’ as given by:
{H

where the number of waves, N, is strictly less than P. The height

h 9/’+ %
1+8(—E1-) s ] (2.5)
2

N <P

N =

P =

of the solitary waves which emerge is given by:

H hy -2
EIE: (—— (P"n)z Y (2'6)
(o}

n=1, 2, -, N
where HQ is the height of the incident solitary wave.

To summarize, previous investigations in the field of long waves

propagating onto a shelf have dealt with one of the following aspects

of the problem:

(i) Linear waves of arbitrary shape propagating over an extreme

slope (i.e., either gradual or abrupt);



(ii) Linear harmonic waves with a single frequency propagating

over a slope; or
(iii) Solitary waves propagating over a gradual slope.

The question of which of the theories to use for the propagation
of long waves in various situations is addressed by Hammack and Segur
(1978). They show, using asymptotic arguments and a rectangular
wave shape, the choice of which theory to use depends on the volume
of the initial wave and an Ursell Number based on the amplitude and
length of the initial wave. Applying their criteria to tsunamis,

they show the linear nondispersive theory is the relevant theory for

the propagation of the leading wave of a tsunami in a constant depth

from the generation region to the beach.



CHAPTER 3

THEORETICAL ANALYSIS

The theoretical aspects of the problem can be described referring
to Fig. 3.1 which shows the series of events which takes place as a
long wave propagates onto a shelf.

Fig. 3.1(a) shows the incident wave propagating towards the
shelf in a region of constant depth. The various theories for long
waves propagating in a constant depth are reviewed in Section 3.1 and
exact solutions are described.

As with other investigators (e.g. Madsen and Mei (1969)), for
the analysis the incident wave was assumed to be a solitary wave
(although, as mentioned previously, recent work by Hammack and Segur
(1978) has cast some doubt on the practical validity of this). A
theory for the generation, in the laboratory, of solitary waves and
also of cnoidal waves is presented in Section 3.2.

As the wave propagates through a region of variable depth its
shape changes as shown in Fig. 3.1(b), and eventually the wave splits
up into two waves: a reflected wave traveling to the left in the
deep water and a transmitted wave traveling to the right on the shelf,
see Fig. 3.1(c). Two theories are presented which solve the problem.
In Section 3.3 a finite element method of solution of the Boussinesq
equations for the case of waves propagating in a comstant depth is

presented, then the method is extended to the case of waves propagating
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Fig. 3.1(a) Incident wave propagating towards the shelf.

- N
— N\

I

A A e e A

/

4

VA ARV A A Y A A

Fig. 3.1(b) Wave transforming on the slope.
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Fig. 3.1(c) Reflected and transmitted waves.
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in a region with variable depth. This solution is the more accurate
of those considered because it incorporates, up to second order, the
effects of dispersion and nonlinearity. A first order solution in
which these effects are neglected is presented in Section 3.4 where
the theory developed by others for the solution for incident waves
which are harmonic is reviewed and applied to the case of an
incident wave which is a solitary wave.

Finally in this chapter the technique of inverse scattering is
described and numerical schemes for its solution are presented.
Inverse scattering allows one to determine the final state of a
long wave if it propagates to infinity in constant depth in the
absence of friction. It was used in this study to analyze the

reflected wave. (This will be discussed in detail in Section 5.2.)

3.1 Outline Derivation of the Long Wave Equations and Exact Solutions

The long wave equations can be derived in numerous ways; the
approach which is outlined here follows that of Whitham (1974).

Consider the flow situation shown in Fig. 3.2 which shows a

y
T 7(x,H =

|

——
(¢0)
TY
- 7 7 7 7 7 7 7 7 7 77 777

Fig. 3.2 Definition Sketch of the Flow Situation
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wave propagating in water of depth h in a region of infinite
horizontal extent. The vertical y axis has its origin at the
still water level. The displacement of the free surface from the
still water level is n(x,t). Assuming inviscid, irrotational,
incompressible flow, there exists a velocity potential &(x,y,t)

which satisfies the Laplace equation:

V29 =0 ~hgys<n . (3.1

The boundary conditions are:

i) No flow through the bottom boundary:
® =0 y=-h s (3.2)

ii) Kinematic boundary condition at the surface:

nt+®xnx=¢>y y=n . (3.3)
iii)} Dynamic boundary condition at the surface:
1
® 4+ 2492 = =
g7 (85 +9,%) +en=0 y=n . (3.4)

The waves under consideration are long waves which are defined as
waves whose characteristic horizontal length 2 is large compared to
the depth h, i.e. £>h. For long waves the horizontal velocity ®x
is approximately constant over the depth so the velocity potential
can be expanded in terms of the parameter Y=h+y which is small

compared to the characteristic horizontal length £.
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o(x,y,t) = Z N fn(x,t) . (3.5)
n=0 ‘

By substituting Eq. (3.5) into Eq. (3.1), equating like powers of
Y and applying the boundary condition ¢y==0 at Y=0, the expansion
is simplified to:

=]

2n
y2n 8 fo

@(x,y,t)=n§=:o G oo : (3.6)

Each variable is now normalized by scaling by a characteristic

quantity:

x* y* n = n*
X = — =h H

where ¢ is the characteristic horizontal length and H is the
characteristic height of the wave and starred symbols denote the
original dimensional variables. (Henceforth all equations will

be dimensionless unless specifically stated otherwise.) When

these variables are substituted into the expansion, Eq. (3.6),

and the remaining boundary conditions, Eqs. (3.3) and (3.4), two
dimensionless numbers emerge: o=H/h and B==h2/£2. In writing

the expansion, Eq. (3.5), it was assumed that B<1l (i.e. the length
of the wave is large compared to the depth). It is also necessary

to assume that a <1 (i.e. the wave height is small compared to the

depth).
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The equations which arise by substituting the expansion,
Eq. (3.6), into the boundary conditions, Egqs. (3.3) and (3.4),
and retaining terms to order az, 82 and aB are termed the Boussinesq

equations after Boussinesq (1872) and are as follows:

1
nt+ {(1+om)u}x—gﬁuxxx=0 (3.7)
u, +ouu_+n --:LBu =( (3.8)
t x x 27 xxt * ‘

Notice in Eqs. (3.7) and (3.8) the dimensionless numbers, o
and B, have different roles. The number o appears before the
nonlinear terms indicating their importance relative to the other
terms depends on the wave height to depth ratio, H/h. The number
B modifies the third derivative terms which are a correction for
vertical acceleration. Hence as B decreases (i.e. as the wave
gets longer) the importance of vertical accelerations decreases
(or, equivalently, the pressure distribution with depth approaches

hydrostatic).

For Eqs. (3.7) and (3.8) to apply, it is further required that
o and B be of the same order. (To illustrate the reason for this,
consider the case where B is so much greater than o that 82>(x;
then terms of order 8% should be included in preference to terms
of order a, and Eqs. (3.7) and (3.8) are not appropriate.) This
introduces another dimensionless number U=oa/B, noted by Stokes (1847)
but named after Ursell who, in his 1953 paper, explicitly expounded

the importance of the ratio o/B8. Hence for the Boussinesq equatiocns
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to be applicable, the Ursell Number must be of order unity. Since
o represents the magnitude of nonlinear effects and B represents the
magnitude of dispersive effects, the Ursell Number of order unity
implies a balance of nonlinear and dispersive effects.

The velocity u appearing in Eqs. (3.7) and (3.8) is the
velocity at the bottom y=-1. It is often more convenient to use

the depth averaged velocity:

3

= ¢ _dy . (3.9)

The Boussinesq equations then take the form:

n + {(L+am)a} =0 , (3.10)

e 1,.-
ut+ocuux+nx—§-8u1xxt—0 . (3.11)

The Boussinesq equations cannot, in general, be solved in closed
form so it is necessary to resort to a numerical scheme such as
that which will be described in Section 3.3.

The Boussinesq equations are the most general form of the long
wave equations since the other well known equations can be deduced
from them. These will now be listed along with their general
solutions:

i) For small amplitude, very long waves (o <<1, B<<1) Egs.

(3.10) and (3.11) reduce to:



ii)
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nt+ﬁx=0 ,
and ut+nx=0 . (3.12)
or utt-ﬁxx=0 .

These are the linear nondispersive equations which have

solutions in dimensional terms of the form:
d=f(kx - owt) +g(ksg+ pt) .
where w? = cgkz and  c_="gh . (3.13)

Waves propagate at constant speed and with permanent shape
in +x and -x directions.

For small amplitude waves whose length is not as great as
those considered above (a<<1, <1 and U<<1), Eqs. (3.10)

and (3.11) reduce to:

nt+ux=0 .
d S +n.-%gE__=0 (3.14)
an g tn -3BU . = s .
or i, -u =-1—8—
tt xx 3" xxtt '

These are the linear dispersive equations which have solutions

in dimensional terms of the form:

= At (kx-wt) +Be? (kxtwt)



iii)

c 2 k2
where w29 (3.15)

1+% k2h2
3
This implies that waves propagate with speeds which are a
function of the length of the wave and the waves do not
have a permanent shape.

For finite amplitude, very long waves (a <1, B<< 1l and

U>>1), Egqs. (3.10) and (3.11) reduce to:

ne+ {(1+om)ﬁ}x=0 .

(3.16)
uk+mm&+nx=0 s

which are the nonlinear nondispersive equations

(sometimes called the Airy equations). By reverting back
to dimensional quantities, Eqs. (3.16) can be expressed

more simply in characteristic form:

%(ﬁiZc)=00n§%=ﬁic s (3.17)
where c = Yg(h+n) .

For waves propagating to the right into still water, Eqgs.
(3.17) predict that the wave amplitude and the velocity
are constant along the characteristic curves dx/dt=d+c,
which are straight lines. Thus, each portion of the wave
travels at its own speed, G+c. This process was termed
amplitude dispersion by Lighthill and Whitham (1955). At

the leading edge the velocity and amplitude are zero, hence
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the leading edge travels at speed /gﬁ; under a crest the
velocity and the amplitude are each greater than zero,
hence the crest moves faster than the leading edge.
Eventually therefore the crest will overtake the leading
edge and the wave will break. Breaking may actually occur
before this depending on the shape of the wave.

iv) For waves traveling to the right only, the velocity
can be expressed in terms of the amplitude:

3

4

U=n- n2+%-6nxx , (3.18)

and the Boussinesq equations then reduce to the KdV

equation (after Korteweg and de Vries (1896)):

3 1 _
nt+nx+-2—cmnx+g anxx— 0 . (3.19)
Since,

n =—nt+0(0h3) ]

X

Eq. (3.19) can be expressed to the same order as:
n_+n +—3-omn -an =0 (3.20)
t 'x 2 x 6 XXt ’

which is more amenable to numerical solution (see, for

example, Peregrine (1966)).

The KdV equation has exact analytical solutions in the form

of waves of permanent shape--solitary waves and cnoidal waves.
Before discussing these waves in detail, an example is presented

which illustrates how waves propagate by the theories discussed:
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(i) Linear Nondispersive
(ii) Linear Dispersive
(iii) ©Nonlinear Nondispersive
(iv) Nonlinear Dispersive
Referring to Fig. 3.3(a), the problem is posed where at t=0 there
exists, in water of constant depth and infinite extent, a wave

with profile given in dimensional terms by:
n(x,0) = H sech?kx . (3.21)

For the example shown, the following conditions apply:

-g-—-—().OS and k= e .

and for t> 0 the wave is assumed to propagate to the right into still
water., TFigs. 3.3(a), (b), {(c) and (d) show the wave profiles

calculated using the various theories listed above at intervals of

~
P

nondimensional time, tvg/h, of 25, The abscissas are.(%w't‘ﬁ§)

which means that the figures are the series of events an observer

would see if he were traveling at speed vgh.

In Fig. 3.3(a) the profiles from all four theories are plotted

together. In Figs. 3.3(b), (c) and (d) the linear nondispersive

theory is compared respectively with the linear dispersive theory,

the nonlinear nondispersive theory and the nonlinear dispersive

theory. Under the linear nondispersive theory, the wave would remain

stationary and retain its original shape. Under the linear dispersive

theory the wave would propagate as if it consisted of a linear
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combination of periodic waves with different lengths each propagating
with a speed given by the dispersion relation in Eq. (3.15). Since
short waves travel slower than long waves, the waves disperse, hence

the overall shape would change. The nonlinear nondispersive theory

predicts that the wave would retain its integrity but that the
coordinates behind the crest would stretch while those in front would
contract causing the back face to flatten and the front face to
steepen while the crest height remained constant. The wave would
begin to break when the front face became vertical (at t/§7ﬁl=90.92
in this case).

In fact for the wave chosen and described by Eq. (3.21) none
of the above would occur because the wave number k was selected
such that the initial profile is a solitary wave, i.e. an exact
solution of the KdV equation. Hence,the wave propagates unchanged
in shape as shown in Fig. 3.3(d). The wave travels faster than it
would under the linear nondispersive theory because the celerity is
c = Vg(h+H) .

The form the wave takes as it propagates in a particular case

. . . . 1
depends on the relative magnitudes of the dispersive term-gcohzn

XXX
c
and the nonlinear term %-T% nn, in the dimensional form of the KdV
equation:
note (143D +Xcn2n =0 (3.22)
£t ol 2h/ 'x 6 o Txxx ’ °

where cy = Ygh .
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For a wave with initial profile given by Eq. (3.21), k= *V% -1%-

represents the case where the nonlinear term balances the dispersive

[3E

term and the wave shape remains constant. If K<<‘V % the
nonlinear term is larger than the dispersive term (U>>1) and

amplitude dispersion as shown in Fig. 3.3(c) takes place. If
3B
4 13
same height) the dispersive term is larger than the nonlinear term

K >> (i.e. the wave is more peaked than a solitary wave of the
(U<<1) and frequency dispersion as shown in Fig. 3.3(b) takes place.
Since the KdV or Boussinesq equations can be solved in the
near field only by approximate numerical techniques, it is desirable
to use the other equations wherever possible since they can be solved

exactly in many cases. The problem of which of the equations to
use in various circumstances is addressed by Hammack and Segur (1978).
They show that for initial conditions of a rectangular wave, the
applicable equation depends on the initial volume and initial Ursell
Number, but that eventually, after a propagation time which is a
function of the initial conditions, only the KdV equation will apply.
This introduces another important parameter in long wave propagation:
the propagation time.

It is evident from Fig. 3.3 that if the time of interest is
0 < t/g/h < 25 then any of the four theories can be used since they
all provide essentially the same results. However for tv@ﬂﬁ;> 25
the solutions become quite different. The interpretation of this is
that both dispersive and nonlinear effects take some propagation time

(or distance) to become important. For example, for the nonlinear
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nondispersive theory a characteristic propagation time is the time

to breaking, which for an initial condition given by Eq. (3.21) is

approximately

e, /&l 22 (a/m)- (3.24)

Thus for this theory and for this type of wave, the propagation time
for nonlinear effects to become important is some percentage of
tb/§7ﬁ. No similarly clear cut time is available for the linear
dispersive theory.

For a particular problem of long wave propagation, such as the
problem of long waves propagating onto a shelf which was considered
in this study, it is difficult to say a~ priori under what conditions

it is necessary to use the full Boussinesq equations and when it is

possible to use one of the other theoties.

One approach is to assume that the linear nondispersive theory
applies unless the propagation time is sufficieﬁt for nonlinear or
dispersive effects to become important; however the magnitude of this
propagation time is, in general, ill-defined. The approach taken in

this study was to use the nonlinear dispersive theory and experiments

as a basis to find the conditions under which the other theories
would give the same results. The sort of conclusion which can be

drawn from this is that if, for example, the nonlinear dispersive

theory and the nonlinear nondispersive theory give the same results

in a particular case, then the propagation time was insufficient for

dispersive effects to become important.
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3.1.1 The Solitary Wave

The solitary wave was observed first by Scott Russell
(1844). 1t comsists of a single hump of water entirely above still
water level and extends from x=-~» to x=», Three theories are
available which describe the wave profile; those obtained by:
Boussinesq (1872), McCowan (1891) and Laitone (1963). The most
important of these is that due to Boussinesq (1872) since it is
this form which is an exact solution of the KdV equation. 1In

dimensional quantities the Boussinesq solitary wave is:

n(x,t)=H sech? 38 (x~ct) s
where (3.25)
c=7vg(h+H) .

The McCowan and Laitone solitary waves result from higher order
theories but do not fit experimental data any better than does Eq.
(3.25) (see for example Naheer (1977), French (1969)).

The solitary wave has the unique property that in a depth b it
is completely defined by the wave height, H. This simplicity of
shape along with its ease of generation in the laboratory and its
propagation with constant shape make the solitary wave a particularly
suitable model wave to study experimentally. For this study it had
the added advantage that when considering reflections from a slope or
a step the reflected wave was completely separate from the incident wave.

3.1.2 Cnoidal Waves

Cnoidal waves are periodic solutions of the KdV equation.
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In dimensional form they are defined (e.g. Svendsen (1974)) as:
_ 24 x t
n(x,t)—yt—h+ch {ZK I-7T Im} , (3.26)

where m=0a/8 is the elliptic parameter (sometimes called k2), K=K(m)
is the first complete elliptic integral, cn is one of the Jacobian
elliptic functions (hence the name cnoidal), Ve is the height of the
trough above the bottom, L is the wave length and T is the period.

It is noted that for given depth h, cnoidal waves are defined by
any two of the following:

i) the wave length L (or the period T),

ii) the wave height H,

iii) the elliptic parameter m (or the elliptic integral K).
The relationships between these and the other parameters were
described by Wiegel (1960) and Svendsen (1974). They are presented
in Appendix A along with the numerical techniques which were developed
during this study for their evaluation.

The elliptic parameter m, by definition, is the Ursell Number,
i.e., U=a/B. Another type of Ursell Number which can be defined in
terms of physical parameters is HL2/h3. The difference in these two
definitions is in the use of the characteristic length £ for U=a/8
and the use of the wave length L for HL2/h3. The two numbers are

related by:

— = — mK? s (3.27)



hence the lengths are related by:

L= (3.28)

= :

Since the elliptic integral K is a function of only the parameter m,

HL2/h3 is also a function only of m; hence either af the Ursell

Numbers can be used to define the shape of the cnoidal wave. The

parameter m can take values between 0 and 1. At the two extremes:

i) As m—>0 (and, consequently, HLZ/h3 +0), the Jacobian

elliptic function, cn, becomes the trigonometric function,
cos, and K-*g;. Hence the equation for cnoidal waves,

Eq. (3.26) becomes:

g4 x_t
=75 cos 2w \L T> s (3.29)

i.e., a harmonic wave.

ii) As m-+1 (and, consequently, HL?/h3+®), the Jacobian elliptic
function, cn, becomes the hyperbolic function, sech, and K,
L and T+« ., Hence the equation for cnoidal waves, Eq. (3.26),

becomes:
n=H sech? %—53— (x-ct) , (3.30)

i.e., a solitary wave.
The range of cnoidal wave shapes from m=0 and HLZ/h3=0 to m~>1
and HL?/h3-+« is shown in Fig. 3.4. For HL?/h% <10, the shape
appears sinusoidal to the eye but in fact at HL2/h3 =10 the crest

amplitude is about 207 greater than the trough amplitude, i.e.,
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n n
_crest 0.547, —EE%ESE = 0.453. As HL2/h3 increases this difference

H
increases, and as a consequence the crest becomes more peaked and
the trough becomes flatter. At HL?/h3=1000, the cnoidal waves have
the appearance of a train of solitary waves however the wave length
L is still finite and there is still a trough below still water level;
therefore, the waves are still cnoidal waves.
It is of interest to compare cnoidal waves with Stokes waves in

shallow water. Stokes waves can be obtained as a perturbation solution

of the KdV equation (see, for example, Whitham (p. 471)):

H 3 m?
ns(x,t) = E-cose + Eg.kzhs cos28
3
+__§Z_ E 3 cos38 + ——- s (3.31)
512 k*h
where 0 =kx-uwt .
The dispersion relation is:
w/k 1.2.9 952
= = 1 -=k*h*+ + (3.32)
/gh 6 64 k2h2 ’
where ‘w=2m/T and k=27/L .
H 1 HL?

Notice that the perturbation parameter =
P P k?h®  (2m)2 nd
is another form of the Ursell Number. For the Stokes expansion to
2
be valid, E%%g << 1 or, equivalently %&T << (2m)2,
Stokes waves may be compared to cnoidal waves by expressing

cnoidal waves in their Fourier Series form and comparing the harmonics

of the Stokes waves with these cnoidal wave components:
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n y.~h z
c t 2K
— = —— + cn? [fFelm> = E a, cos nf , (3.33)

n=1

1 2m nc
where a_ = —2-1-{./‘ T cosnb df . (3.34)

(Yt- h) _ (K-E)
el -

only of m. The Ursell Number, HLZ/h3, is also a function only of m

Now, since 1, it is evident that nC/H is a function
(as given by Eq. (3.27)); hence, it follows that nc/H and thus the
Fourier amplitudes a, are functions only of HL2/h3. Eq. (3.31)
indicates the amplitudes of the series for nS/H are also functions of
only HLz/h3; therefore, Stokes waves and cnoidal waves can be compared
by comparing the amplitudes of the components in Eqs. (3.31) and

(3.33) as functions of HL2/h3. This is done in Fig. 3.5 where the
magnitude of the first three components in each case are plotted
against HLZ2/h3. The dashed lines represent the Stokes wave amplitudes
given by Eq. (3.31). A continuous form for the as defined by

Eq. (3.34), could not be found so the integral was evaluated numerically
using the Fast Fourier Transform algorithm. (It is noted that although
only three Fourier amplitudes are plotted, the Fourier series repre-
sentation of cnoidal waves is an infinite series.)

Fig. 3.5 shows the component amplitudes of Stokes waves and
cnoidal waves are coincident for HL2/h3 <10 but diverge as HL2/h3
increases. Since Stokes waves are only an approximate solution of
the KdV equation while cnoidal waves are an exact solution, Fig. 3.5

indicates Eq. (3.31) is an accurate approximation only for HLZ/h3<10.
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Notice that the range of validity of Stokes waves is not increased

by inclusion of the third component. In fact, for()gHLZ/h3510,

the third component is at least two orders of magnitude less than

the first component so for most applications it can be neglected.

As HL2/h3 increases above 100, the second and third Fourier amplitudes
for cnoidal waves reach a maximum and then tend asymptotically to the
first amplitude. This corresponds to the wave becoming more peaked
and the shape approaching that of a delta function for which the

Fourier amplitudes are all equal.

3.2 Wave Generation

The wave generation theory presented here is applicable only to
long waves which propagate with constant form (i.e. solitary and
cnoidal waves). It was developed to prescribe the displacement-time
history of the piston wave generator which was used in this study
(see Section 4). The generator consists of a vertical plate which
is moved in the horizontal direction by means of a hydraulic servo-
system. The input voltage to the servo-system is supplied by a
memory unit containing 1000 voltages equispaced in time. The memory
is loaded from a paper tape on which the 1000 voltages which correspond
to displacement points are punched. The object of the theory developed
here is to determine the function from which the displacement points
(and hence the voltages) for a given wave can be obtained.

3.2.1 The Derivation of a Generation Equation for Long Waves

Consider the generation phase plane, Fig. 3.6, which will

be used to demonstrate the way in which the generation equation is
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obtained., The figure shows a wave whose amplitude profile is
sinusoidal (Fig. 3.6(c)) and whose velocity time record also is
sinusoidal (Fig. 3.6(a)). The wave propagates to the right with
constant form and with celerity ¢ as shown in the x -t plane

(Fig. 3.6(b)) where the wave properties such as amplitude and particle
velocity propagate along lines (i.e. characteristics) which are
straight and parallel and have slope dx/dt=c. The time history

of the motion of the wave plate which generated the wave is repre~
sented in Fig. 3.6(b) by the curve £(t) which will be termed the
"trajectory" in this study. Initially, for time t <0, the wave

plate is at rest at £=0. At time t=0 the wave plate begins to

move along the trajectory £(t). The object of this development is

to find the trajectory which will produce a particular long wave

n(x,t) of constant form propagating with celerity c. The basic con-
cept is simply to match the velocity of the wave plate at all positioms,
dg/dt, with the corresponding velocity of the particles under the wave.
For long waves the particle velocity is approximately constant over

the depth, so the velocity averaged over the depth, u(x,t), is used:

[aN f=N
o+ oy

=a(g,t) . (3.35)

Inclusion of the position of the plate, &, in the velocity, U(&,t),
takes into account that during generation the wave is propagating away
from the plate along the characteristics. The effect is to produce a
trajectory which is distorted from what it would be if T(0,t) were

used. This can be seen in Fig. 3.6, where for illustrative purposes



35

the particle velocity averaged over the depth (Fig. 3.6(a)) is a
simple sine curve. For this case, if the velocity G(0,t) were used
in Eq. (3.35), the trajectory would have sinusoidal shape and the
crest of the trajectory, & =S, would occur at time-%i?. However,
using the velocity u(g,t), Fig. 3.6(b) shows that the crest of the
trajectory occurs at time t=v%T-+S/c. Thus the time taken for the
plate to travel forward to its full extent is time S/c longer than it
would be if the trajectory were sinusoidal and consequently the time
taken for the plate to travel back to its original position is time
S/c shorter than it would be if the trajectory were sinuscidal. The
effect of including the position & in the velocity therefore is that
when the plate and wave are moving in the same direction, the time
coordinate stretches; when the plate and the wave are moving in
opposite directions, the time coordimate contracts.

The simple sine water particle velocity shown in Fig. 3.6(a)
was presented as an example; for waves of permanent form it can be

shown (e.g. Svendsen (1974)) by continuity that the velocity averaged

over the depth is:

- _en(x,t) (3.36)

Thus, in terms of the plate velocity, from Eq. (3.35):

* _enlx,t)
g = m . (3.37)

where é = %%w‘ Eq. (3.37) must be integrated to obtain the trajectory,

g(t). It is assumed that the wave has the form:
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n(g,t) = HE(B) s (3.38)

where ¢ = k{ct - &) . (3.39)

The total derivative of Eq. (3.39) is:

a9 _ .
L - k=) ) (3.40)
dg _ dg de _ dg -
and dt "3 " 3t - de k-8 ’

or, by rearranging:

dE . _____§___._" . (3.41)
de  k{(c-E&)
Substituting Eqs. (3.37) and (3.38) into Eq. (3.41), the latter

reduces to the simple form:

a £(0) = o fe £(w)d (3.43)
an t) = = w)dw R .
i )

where w is the dummy variable of integration and € is given by Eq.
(3.39). Equation (3.43) is an implicit equation which can in general
only be solved for a particular time t by numerical means. The most
efficient method of solution was found to be Newton's Rule:

Using Eq. (3.39), 8 is substituted for the displacement £ in Eq. (3.43)

to yield:

| .0
F = 8—kct+% f £ (w)dw =0 ) (3.44)
(o]
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The task is now to solve Eq. (3.44) for 6 at a given time t. Differ-

entiating Eq. (3.44):

3F H
35 = 1+g £09) , (3.45)

Newton's Rule is:

g (iHL) _ (1) _ F_(ﬁ_(_?..;_ , (3.46)
Fa(6° )

where superscripts denote iteration number and Fe==3F/86. Substituting

for F and Fy, in Eq. (3.46) yields:

e(i) - ket +—E— f £f(w)dw

(1) _ (D) o
G =0 - . - . (3.47)
1+% £(o ()

Having found 6 for given time t, the displacement £ is given by:
£ =ct-6/k . (3.48)

Egqs. (3.43), or (3.47) and (3.48) provide the wave plate displacement
as a function of time £(t) for a general wave form £(6). These
equations will now be applied for specific functions £(8) which

describe particular waves.

3.2.1.1. The Generation of Solitary Waves

For a solitary wave, the wave function £(6) in

Eq. (3.38) is:

£(8) = sech?® . (3.49)
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3
where 8 =x(ct-&), k= ‘}Zh_H?’. and c=7Yg(htH). Substituting Eq. (3.49)
into the generation equation, Eq. (3.43), and performing the integra-

tion yields:
H
g(t) = oy tanh k(ct - &) , (3.50)

and the iterative equations, Eqs. (3.47) and (3.48), become:

(1) H (1)
. R 0 - ket+-—~tanh ©
g () _ (1) _ B (3.51)

1 +-;—I- sech? © (1)

and g = ct-9/k . (3.52)

The phase plane in Fig. 3.7 shows a typical trajectory E£(t) calculated
from Eqs. (3.51) and (3.52). The origin of displacement & and of

time t occurs under the wave crest because of the definition of the
solitary wave, Eq. (3.49). In addition, since the function f in

Eq. (3.49) tends to zero as © goes to infinity, the intercepts of

the characteristics associated with the leading and trailing edges

of the wave with the time axis, ito, occur at *«, However, since
precision of only three significant figures was available in the
actual generating device, the intercepts, to’ were defined, for
practical purposes, by:

_ tanh™! (0.999) _ 3.80
¢/ K¢ Kc

. (3.53)
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/

Fig. 3.7 Phase plane showing typical wave plate trajectory for a
solitary wave.
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The stroke S is obtained by evaluating Eq. (3.50) at times t=+o

and t=-« and subtracting to yield:
S ="==¢95=—h . (3.54)

The duration of motion T is obtained from Fig. 3.7 by computing
the times at which the leading and trailing edge characteristics

intersect the trajectory £(t) and subtracting which gives:
T = 2to-FS/c . (3.55)

Substituting for the intercept t, and stroke S yields for the

duration:

=2 B
T = (3.80+7) . (3.56)

(The origin of the trajectory, £(0), was moved to the point (-%‘-T, —%—S)

in the x~t plane so that motion started from rest and proceeded in a
forward direction.)

3.2.1.2 The Generation of Cnoidal Waves

For cnoidal waves the function £(8) in Eq. (3.38) is:

y.—h

£(o) = +cn? (6 |m) , (3.57)

where 6 = 2K G%-—%? (which, for convenience in this development, is
of opposite sign to the 0 defined earlier), and K is the first complete
elliptic integral, cn is the Jacobian elliptic function, m is the

elliptic parameter, T is the period and L is the wave length.
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Substituting Eq. (3.57) into the generation equation, Eq. (3.43),

and performing the integration yields:

E(D) = 5= {(y, ~Wo+2 (E@6[m) -m'e)} , (3.58)

where-E(elm) is the second incomplete elliptic integral, and m' is
the complementary parameter, m'=1-m.
Substituting this into Eq. (3.47) gives the iterative equation:

2Kht
g1 _ (1) T

+(y -—H:“-ﬁl) o (1) +% E(e(i) |m)

t
v tH cnz(e(i)fm)

.(3.59)

The elliptic functions E(G(l)‘m) and cn2(0(1)|m) can most easily be
evaluated by the numerical methods described in Appendix A.

Having found € for given time t, the displacement £ is given by:

£(t) = L (%-72%) X (3.60)

Fig. 3.8 shows a typical trajectory £(t), normalized with respect to
the maximum, gmax’ calculated using Eqs. (3.59) and (3.60). Because
of the form of the definition of the function £(8) in Eq. (3.57),
the origin occurs at a point of maximum velocity. However, it is
desirable to start the motion of the wave plate at a position where

the plate velocity and wave amplitude are zero, i.e. where:

d¢ _ 5 -
T 0 s (3.61)

and

n=y,-h+H en?(o [m) = 0 , (3.62)
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where eo is the argument of the cnoidal function determined such that

the wave amplitude is zero. Eq. (3.62) can be written as:

y -n\1/2
60 = cn~t tH , (3.63)

which can be evaluated for a given wave by the numerical method

described in Appendix A.

Substituting for 60 in Eq. (3.51) gives:

- -_L _ B

®max = “Smin = 7KR Byf h)eo-km.{E(eolm)'-mleo}] » (3.64)
d So _ Zmax + i) (3.65)

an T ~ L K ¥ :

The maximum excursion of the wave plate or stroke S is:

§ =2 & nax . (3.66)

Since the leading wave of a train of cnoidal waves is a transient wave,
it was desirable to make it a positive wave rather than a negative wave
so the train would not overtake it. Thus, the motion is started at a
minimum point in Fig. 3.8, so the origin of the trajectory calculated
from Eqs. (3.59) and (3.60) is moved forward by a time T-—to.

The application of this theory and the waves which resulted from

it are presented in Section 5.1.

3.3 The Propagation of Long Waves onto a Shelf by the Nonlinear

Dispersive Theory

Two of the methods which presently exist for numerically solving
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the Boussinesq equations in constant depth are the finite difference
approach used by Peregrine (1966) and the method of characteristics
which was employed by Long (1964). The finite element method
described here has certain similarities to the scheme of Peregrine
(1966) but in contrast to those of Peregrine (1966) and Long (1964)
it is unconditionally stable and second order accurate. Madsen and
Mei (1969) extended the approach of Long (1964) to solve the
Boussinesq equations for the case of a gradually varying depth. In
order to avoid the restriction of a gradual change in depth, the
approach that was taken in this study was to first formulate a
finite element solution of the Boussinesq equations for the case of
a constant depth. The varying depth was then considered to consist
of a series of steps between which the Boussinesq equations for a
constant depth applied. The solutions in adjoining regions were
matched at the steps by applying the boundary conditions of continuity
of surface elevation and flow rate; the latter is equivalent to

matching the surface slopes.

3.3.1 The Numerical Solution of the Boussinesq Equations for

Constant Depth by a Finite Element Method

3.3.1.1 Analytical Formulation of the Problem

Consider the physical system shown in Fig. 3.9 which
consists of a body of water, bounded at x=0 and x=X with a depth h,
in which a wave propagates with characteristic horizontal length %

and characteristic height H.
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Fig. 3.9 Definition Sketch for Numerical Scheme

For long waves (2 >>h) of moderate amplitude (H < h) where the
Ursell Number (H22/h3) is of order unity, the governing equations
are the Boussinesq equations, Egs. (3.10) and (3.11), which in

dimensional form are:

n + {h+n)a}, =0 , (3.67)

= Lo 1, 2= -
and ut-kuux-kgnx-—g-h e = 0 . (3.68)

where u(x,t) is the velocity averaged over the depth and defined by:

h+n
a(x,t) = f i(x,y,t)dy . (3.69)
o)

Following the usual finite element formulation, the problem is first

stated in its three forms--Strong, Weak and Galerkin.
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The Strong (of Classical) form of the problem denoted as (S) is:

Find the amplitude n(x,t) and the velocity @(x,t), in the
intervals 0<x<X and 0<t<T, such that:

n + {(h+n)ﬁ}x =0

G+ Gd +gn -=h2T__. =0

(S)< t x 8Nx 73 xxt ’
with the boundary conditions:

a(0,t) = ﬁo(t) and G(X,t) = ﬁm(t) s
and the initial conditions:

G(x) .

L n(x,0) = H(x) and u(x,0)
A weak (or variational) form of (8) denoted as (W) is:

r Find the amplitude n(x,t) and the velocity TG(x,t) which
satisfy the boundary conditions such that for all variations
w(x) and v{x):

X
(n,w) + f wiagth+ n)}X dx = 0

W) ¢ 6
X
(i,v) +%h2 a(d,v) + f V(T +gn )dx = 0
4 X
and, ({n(x,0) - G(x)},w) =0

({ax,0 - F)},v) =0
\
where w is the amplitude variation and v is the velocity variation

. 3 o
R

Sl

X
The inner product is defined as: (u,v) = v/ﬂ uv dx .
G

X
and the bilinear form: a(u,v) = /f uxvxdx .
*o
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The Galerkin (or discrete) form of (W) which is denoted as (G) is:

©) ﬁ

Find the discrete functions nh(x,t) and Eh(x,t) which satisfy

the boundary conditions such that for all discrete functions

wh and vh:

X
G + f VHa (n+ 0™ dx = 0
(o]

X
2h L ~h..
(u ,Vh) +—-§ h? a uh,vh) + f vh(uhuh+gn2)dx =0

X
(o]

|
o

and,  {@x,0) - 6G)),v"}

]
(=]

{(nh(X,O) - H(x)),wh}

In this manner, the problem has been transformed from one of finding

the solutions, continuous in x and t, of a set of partial differential

equations to one of finding the solutions, continuous in t but

discrete in x, of a set of ordinary differential equations.

3.3.1.2 Finite Element Formulation

Consider the one-dimensional finite element mesh shown

in Fig. 3.10 where the interval 0<x <X has been divided into N+1

elements and N+ 2 nodes. Let the amplitude variation wh(x) and the

velocity variation vh(x) be linear combinations of the finite element

basis functions ¢i(x) and wi(x) respectively:

N
ARG PN (3.70)
i=1

N+1
Wx) = Z 8, () , (3.71)
i=0
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where subscripts denote the number of the node and ¢i(x) and wi(x)

are functions which satisfy the following conditions:

¢i(xj) = wi(xj) = (3.72)
0 j#1i 0 j#1i

The typical basis functions ¢i shown in Fig. 3.10 are the linear

piecewise continuous functions defined by:

/ X=X, 4 . . \
Axi i~-1-"-
X,, . —X
: i+l .
0;(x5) = < By X, SXLX, Yy i=1,2,---N , (3.73)
0 X'\+1<X<Xi—l
\ /
X

Axl X<Xl
and 6, (x) = , (3.74)

0 X>Xl

where Axi =X, -%, 4

¢ é; PN+

”\

NODE O | BEER ST i i+ N-l N N+l

X 0 X X Xz ¢ {Xj-) Xi Xi+1 XN X
ELEMENT I 2 3 i i+l N N+I

Fig. 3.10 Finite Element Mesh
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Denoting the amplitudes at the nodes by ei(t) and the velocities

at the nodes by di(t), let:

N+1
n"(x,t) = Z ¢; (x)e; (1) (3.75)
i=0
N
e = D) 900+, 0T, (0 Fi, T . (3.76)
i=1

The object of the numerical scheme is to find the nodal amplitudes
(ei(t) i=0,-—-N+1) and the nodal velocities (di(t) i=1,2---N)
for the interval 0<t<T. At a particular time, the amplitude and
velocity between nodes is found by interpolation using the basis
functions, ¢(x) and P(x). Linear basis functions imply linear
variation of velocity and amplitude between nodes.

Substituting the discrete approximations of the amplitude and
velocity given by Egs. (3.75) and (3.76) into the Galerkin form of
the problem (G) yields:

N+1

E (¢i,¢j)éj -fJ‘? =0 j=0,1,2,~—N+1 (3.77)
i=1

N

A 1,0 . 1 .
2 {(wi,wj) +3h a(xpi,wj)}dj + {(wm,q,j) +3h? alsb,) fa_
1=

+{(¢o,wj)+%h2 a(wo,wj)}ﬁo—ij= 0 (3.78)

j-1,2,---N
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where
N+1

C _ -

fj = —/ (Z¢ dy+9 U +y G) (h+ Z ¢kek)}xdx (3.79)
i=0

and

X
_[ [wjizwd"'wu"'wmm Zwkx1 oxo

+ 1Pm,xﬁm Z I‘bj i,x° 1 (3.80)

To write Eqs. (3.77) and (3.78) in matrix form, let:

c _ .
Mij = (¢i,¢j) j = 0,1-—-N+1

ij = ‘bl,wj) 3 a(lpl,llij)

M l.o ]

Moy = Wos¥y) + 302y ,05) i=1,2,---N (3.81)
Ty = (oby) + 5022 00,)

The matrix form of the Galerkin Problem (G) which is denoted as (M) is:
¢ Find the nodal amplitude ei(t) i=0,1,-—-N+1 and the nodal

velocity di(t) i=1,2,~—~N, over the interval 0< t < T such that:

P (3.82)

134

(M){
g = Mon e - (3.83)

e (0) = H(xp)  4;(0) = 6(xy)
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. C . R .
The matrices M and MM, arising from the continuity equation Eq.
(3.67) and the momentum equation (3.68) are symmetric positive
definite matrices of order N+2 and N respectively. (For linear
. . . ’ c M
shape functions they are tridiagonal.) The vectors £ and f
contain nonlinear terms in the nodal amplitudes e and the nodal
I M M .
velocities d. The vectors o, and m contain only one nonzero term

for linear shape functions.

3.3.1.3 The Time Integration Algorithm

The time integration algorithm used to solve the

matrix form of the problem, (M), was the Midpoint Rule:

£ “nt+l n n-l-% n+1/2 n+1/2
where
C c(1 1
Py = 8 (“2’ lemi*ents 7 1¢ +l+dn}> > (3.86)
M _ M(1 1
gn-l-l/z T o= (2 {gn+l+§n} > 9 {Qn+l+d }) ’ (3-87)
> _ s 1
uO —uo <2 {tn+t:n+]_}) s
n+s
2 _ L 1
Oy T (2 ¥tn+tn+l}> . (3.88)
n+s

and the subscripts denote the number of the time step.
The Midpoint Rule differs from the well-known Trapezoidal Rule
(or Crank-Nicholson Method) in a subtle way which is apparent only

when considering nonlinear problems. For the Trapezoidal Rule, the
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vector fC s for example, would be defined as:
~n+s

c _1[.c c

Thus, in Midpoint Rule, the vector §§+% is found by evaluating
the function fc with arguments which are the average of those at the
beginning and end of the time step, while for Trapezoidal Rule the
vector £g+% is found by evaluating the function gc at the beginning
and end of the time step and averaging these functions. Clearly, if
fC is a linear function, the Midpoint Rule and the Trapezoidal Rule
are identical, however, if gC is a nonlinear function, Egs. (3.86)
and (3.89) are quite different. Although both the Midpoint Rule and
the Trapezoidal Rule are unconditionally stable and second order
accurate, the Midpoint Rule is preferred for nonlinear problems
because the stability analysis more closely parallels the stability
analysis for linear problems and thus results in a more definite
statement of unconditional stability. The details of this and other
aspects of the stability analysis of the Midpoint Rule and the

Trapezoidal Rule for nonlinear problems are given by Hughes (1977).

3.3.1.4 The Iterative Scheme

The iterative scheme used to solve Eqs. (3.84) and
(3.85) is similar to that used by Peregrine (1966) to solve a finite
difference formulation of the Boussinesq equations:
1. First Iteration:
i) Evaluate £g+%==§c(gn,gn) and solve Eq. (3.84) for the

(1)

nodal amplitudes N
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o M 1 (1)
ii) Evaluate §n+% = g 7 {~n+14-e }, Qn> and solve Eq. (3.85)
for nodal velocities é(ii

It is noted the bracketed superscripts denote iteration number.

2, Second and Subsequent Iterations k = 2,3,--- :

i) Evaluate f +E-§ (2 { (Eil)+-§n} s 5 { (kll)-kén}>

(k)

and solve Eq. (3.84) for the nodal amplitudes e i1

. Mo (k) 1 ¢ (k-1) )
ii) Evaluate fn#/z‘f <2 {~n+l e } s 5 {@n_,_l +d ) and

(k)

solve Eq. (3.85) for the nodal velocities d N

The difference in this scheme from that of Peregrine is that, in the
second and subsequent iterations, Peregrine's scheme evaluates the
functions gC and fM for the nodal velocity at the previous time én
instead of the average of this and the best estimate of the nodal
velocities at the forward time step, %-{d 4—d(k 1)}. It was found that
this change, which amounts to full instead of partial implementation
of Midpoint Rule, eliminated numerical dissipation and thus errors in
the quantities which should be conserved (volume and energy) were

reduced from a few percent to zero.

3.3.1.5 Convergence and Accuracy

The convergence of the iterative scheme was tested by
numerical experiments. The experiments involved first setting up the
initial conditions for a solitary wave with height H and nodal spacing
Ax, The nodal spacing was chosen by assuming that, for numerical

purposes, the amplitude of a solitary wave is zero for n/H< 0.001.
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Then from Eq. (3.25) the "length" of the wave can be defined as:

L = —= (3.90)

c = ‘LQ.EL
4 h

By selecting the number of nodes over which the wave is described,

where

NX’ the nodal spacing is found from:

. 8.3
Nghx = L = == . (3.91)

The number Ny will be termed the "modal spacing number'" and in

similar manner the "time step number', Np, is defined as:

N, = —= (3.92)

Having set up the initial conditions, iterations for one time step
were performed to determine the minimum number of iteratiomns k for

which the error:

(k) (k+1)
g TNy 1

max <
) < 1000 -
Ny

- i=1,2-—-Ny

(3.93)

The results for two waves with height H/h=0.1 and 0.7, are presented
in Tables 3.1(a) and 3.1(b), where the number of iterations for
convergence is given for wvarious nodal spacing numbers NX and time
step numbers NT‘ The data show the iterative scheme converges for
the full range of Ny only if BH3240. It is noted that failure to

converge for NT;540 does not contradict the unconditional stability
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Table 3.1 Number of iterations for convergence

for various nodal spacing numbers, Ny,
and time step numbers, Ny (NC implies
not convergent.)

(2) H/h=0.1
AN 5 | 10| 20| 40 ] 80
5 Nc | Nc| No| NG| we
10 3 | n¢| wc| W | wc
20 2 | 4 5 9 | Nc
40 2 2 2 3 3
80 1 2 2 2 2
160 1| 1 1 2 2
(b) H/h = 0.7
AN 5 | 10| 20 40| 80
5 x| we| No| N | N
10 5| N¢c| Nc| N¢| NC
20 3| 4 7 | N | n
40 2 3 3 3 4
80 2 2 2 2 2
160 2 ) 2 2 2
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of the algorithm; it is a feature of the iterative scheme chosen to
solve the equations arising from the algorithm. Having selected a
nodal spacing number which provides the desired degree of resolution
in the wave profile, the optimum time step number is found by
minimizing the product of Ny and the number of iterations for con-
vergence. For the waves in this study, three iterations and

NX= Np= 40 were used.

A measure of the accuracy of a numerical scheme is the accuracy
with which quantities which are conserved analytically also are
conserved numerically. For the Boussinesq equations these conserved
quantities are the volume and the energy (potential + kinetic).

The accuracy of the scheme described here was tested by propagating
the two solitary waves described previously (H/h=0.1l and 0.7) for
ten wave lengths using three iterations and NX==NT==4O and comparing
the ratios of initial to final volumes, VI/VF, and initial to final
energies, EI/EF’ The results, which are presented in Table 3.2, show
errors in the volume and energy ratios which are considered negligible.
This implies, at least with regard to volume and energy, the numerical
scheme has a high degree of accuracy.

Table 3.2 Comparison of initial and final

conserved quantities for the
numerical scheme.

No. of
VI/VF EI/EF Time Steps
H/h=0.1 1.002 1.001 376

H/h=0.7 0.998 1.005 312
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Also of interest was the way in which these solitary waves
propagate. The wave profiles at regular time intervals are presented
in Fig. 3.11 where, it is noted, the abscissas are distance normalized
with respect to wave length, L, as given by Eq. (3.90). The total
distance of propagation in each case is ten wave lengths (10L);
thus, the wave has propagated 1.25L between each profile.

In both cases the shape of the initial wave changes as it
propagates. For the larger wave (H/h=0.7) the wave height decreases
to H/h=0.66 over the first five wave lengths and then remains
constant. The trough which forms initially behind the main wave is
left behind by the main wave and, after propagating a distance of
five wave lengths, they are completely separate. For the smaller
wave (H/h=0.1) the wave height decreases to H/h=0.090 over the first
five wave lengths and then remains constant. The trough which forms
behind the main wave grows in amplitude, reaching a maximum of at/h
= 0.0066 after the wave has travelled five wave lengths. Subsequently
the amplitude of the trough slowly decreases accompanied by an increase
in the length of the trough.

The shape of the main wave after it has travelled ten wave lengths
is examined in Fig. 3.12. 1In Fig. 3.12(a) the larger wave (H/h=0.7)
is compared to the Boussinesq and McCowan solitary waves. The wave
follows the theory of Boussinesq (1872) in the region of the crest and
the theory of McCowan (1891) near the leading and trailing edges.
(This also was found to be true for large waves (H/h> 0.3) generated

in the laboratory, and will be discussed in Section 5.1,) Imn Fig. 3.12(b)



58

0.8 T T T T T T
(a)
06 -
n/h H/h =0.7
04 .
L/ h=1l.46
0.2 _ b= t® ’_g/h 7]
t=0
o} 4
.2 ]
i 223 _
i 33.5 _
n 447 dos
i 559 _ Joe
1 67.0 doa /b
I 78.2 dos
L 89.4 o
1 ] I 1 1 i
0 2 8 10 12 14
X/L
1 i F | § I
o.l0f (b) -
0.08 - H/h =0.1 -
0 oot L/h = 30.3] -
0.04 t = t%/q/h 7
0.02 |- _
t=0
0 — _
35.6 |
B 7.2 |
i 106.8
i 142.
B 178.0
i 2136
] I 1 1 1 I
o 2 q 6 8 10 12 14

Fig. 3.11 Wave profiles calculated using the numerical scheme for
(a) H/h=0.7 and (b) H/h=0.1.
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the smaller wave (H/h=0.1) is compared to the Boussinesq solitary
wave. As indicated in the figure, the waves both have sech? shape
but the "wave number" of the wave obtained numerically is 0.220
compared with 0.260 for the solitary wave of the same wave height.
Increasing the nodal spacing number, Nx’ or the time step number,
NT’ did not change’the results presented in Figs. 3.11 and 3.12
significantly so it is assumed the behavior observed is not caused
by that aspect of the numerical scheme. Also, it is pointed out
that with the finite difference scheme of Peregrine (1966), numerical
dissipation caused by the partial instead of the full implementation
of the Midpoint Rule (as was discussed previously) eliminates some
of the details of the profiles which are shown in Figs. 3.11 and 3.12.
In both cases considered, the initial wave is a solitary wave
which is an exact solution of the KdV equation; however the shape of
the wave changes as it propagates which is contrary to what the KdV
equation predicts. A possible reason for this is that although the
solitary wave is an exact solution of the KdV equation, the KdV
equation is only an approximate form of the Boussinesq equations;
therefore the solitary wave is not an exact solution of the Boussinesq
equations., To demonstrate this, recall the expression for velocity,
Eq. (3.18), which arises from the derivation of the KdV equation and
which was used to compute the initial velocities for the waves being
considered. If this expression is substituted into the first of the

Boussinesq equations, Eq. (3.67), the following equation is obtained:
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c c h?
3 7o o
nt+conx+_2-—f1_ me‘l" 6 nxxx
(3.94)
- 3 2 _h
=c, {4h2 n“ng - ¢ (Mg F 5N ) ,
where ¢, = Ygh .

The left hand side of Eq. (3.94) is the KdV equation which, if the
right hand side were zero, would have the solitary wave as a solution.
However, since the numerical scheme solves the Boussinesq equations
with a high degree of accuracy, the presence of the higher order terms
on the right hand side of Eq. (3.94) (which are 0(a?,aB)) prevents

the solitary wave from being an exact solution. Further discussion

of this with reference to Boussinesq (1872) and Keulegan and Patterson
(1940) is presented in Appendix B.

The behavior of the larger wave (H/h=0.7) is consistent with
what is observed in the laboratory: the shape follows the theory of
Boussinesq in the region of the crest and that of McCowan near the
leading and trailing edges and the main wave quickly separates from
the trailing oscillatory waves. However, some of the behavior of
the smaller wave is contrary to what is observed in the laboratory;
in particular, the growth of the trough and the slow rate at which
the main wave separates from it. To investigate this further, use
was made of the finite element program developed by Hughes, Liu and
Zimmermann (1978) to solve the Navier Stokes equations. The program

uses a penalty function approach to take account of the pressure (the
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interested reader is referred to Hughes, Liu and Brooks (1978) for
details of the method) and solves the problem of the free surface by
allowing the finite element mesh to deform in the vertical direction.
The scheme is two-dimensional so that, in contrast to the numerical
method developed for this study, the velocities (horizontal and
vertical) can vary with depth to a degree which is dependent on the
number of elements which are taken in the depth. A comparison of

wave propagation using this scheme with one element in the depth with
wave propagation using the scheme developed for this study was
conducted. Starting with the same initial wave profile (amplitude

and velocity) for the two schemes, a wave with initial height H/h=10.086
was propagated for a nondimensional time, t/£7ﬁ; of 78.4., 1In Fig,
3.13, the profiles at interwals of t/§7ﬁ = 15.68 are compared, with
the scheme of Hughes, Liu and Zimmermann (1978) being the dashed
curves. The figure shows the results agree remarkably well consider-
ing they arise from approaches which are quite different. ©Notice the
rate of growth of the trough is even greater with the scheme of
Hughes, Liu and Zimmerman (1978) (at/h==0.0101 at t=78.4) than it

is for the scheme developed for this study (at/h==0.0063 at t=78.4).
This growth almost can be eliminated by using the approach of Hughes,
Liu and Zimmermann (1978) with two elements in the depth. The results
are presented in Fig. 3.14 which shows the trough has been reduced to
at/h==0.0033 at t=78.4 and the relative wave height is essentially
constant with propagation. The difference in having two instead of one
element in the depth is that the distributions of velocity (horizontal

and vertical) are no longer constrained to be linear with depth.
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Fig. 3.13 Comparison of wave propagation using the scheme developed
for this project (——) with the scheme of Hughes, Liu and
Zimmermann (1978) (---).
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Fig., 3.14 Wave propagation using the scheme of Hughes, Liu and
Zimmermann {(1978) with two elements in the depth.



65

That this change reduces the rate of growth of the trough is taken to
imply the growth of the trough is caused by the one-dimensional
approximations. These approximations, for the scheme of Hughes, Liu
and Zimmermann (1978), are made in the numerical scheme but for the
scheme developed for this study they are inherent in the derivation
of the Boussinesq equations.

Considering the dispersive nature of the trough, it is not
surprising these effects are more pronounced for the smaller wave
height because for the larger wave height the nonlinear effects would
be expected to be stronger. In fact for the cases considered in this
study where the numerical scheme was used to propagate solitary waves
onto a shelf, problems with the formation of a trough did not arise.
Part of the reason for this probably is that nonlinear effects caused
by the reduced depth masked this behavior, but also the trough is
small compared to the main wave (&6%) and its growth requires propa-
gation over a greater distance than was considered for most cases.

3.3.2 Extension to the Case of Variable Depth

Consider the problem shown in Fig. 3.15 where a long wave
is propagating from a region with a constant depth h; (Region I) over

a step into Region II in which the depth also is constant but reduced

VAN
b= 1+=T;  REGIONT h,
hy REGIONI 777 7 7 7 £ 7
| o

T 7777 00

Fig. 3.15 Definition Sketch for Extension to Variable Depth
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Section (1) in Region I and Section (2) in Region II are located
close to the step on either side of it. At a particular instant of
time, the amplitudes at Sections (1) and (2) are Ny and upy respectively,

and the depth averaged velocities are given by:

1
- _ 1
4, = h_'T'—n— f ul(y)dy , (3.95)
1 1 —h
1
, L 2 .
uy = -h——_:';]— f uz(y)dy R (3.96)
2 2

If the distance between Sections (1) and (2) is decreased until the
sections are an infinitesimal distance apart on either side of the

step, then for continuity of the water surface profile:

Ny = Ny s (3.97)

and for conservation of mass:

q =9, , (3.98)

where 4 and q, are the flow rates per unit width through Sections

(1) and (2), respectively, defined as:

n
1
qq = / u (y)dy (3.99)
..hl
n
4= f ? uy(y)dy . (3.100)
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Eq. 3.98 can be written in terms of the depth averaged velocities

defined by Egs. (3.95) and (3.96) as:
ﬁl(h1+nl) =1"12(h2+n2) (3.101)

Since, for the problems under consideration, nl‘<hl and n2<<h2, as a

first approximation Eq. (3.101) may be written as:
ﬁlhl = ﬁzhz (3.102)

An estimate of the error e in using Eq. (3.102) instead of Eq. (3.101)
may be obtained by taking the difference between Eqs. (3.101) and
(3.102) (which, using Eq. (3.97), gives: nl(ﬁz-ﬁl)) and dividing by
the flow rate u2h2:
. n, (@, - y)

u2h2 . (3.103)
Substituting for the velocity ratio from Eq. (3.102), Eq. (3.108)
becomes:

__E
h,

:1‘|l>
o

(3.104)
1

where ny has been replaced by a characteristic wave height H and
Ah==hl-h2. Thus, the error in using Eq. (3.102) is less than the
maximum wave height ratio H/h2 and may be made arbitrarily small by
considering only small differences in depth.

The finite element method described in Section 3.3.1 is extended
to the case of variable depth by considering the varying bottom as

consisting of a series of steps, as shown in Fig. 3.16. In the
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Fig. 3.16 The varying bottom considered as a series of steps

regions of constant depth between the steps, the Boussinesq equations,
Eqs. (3.67) and (3.68), apply. However, these differential equations
do not apply across the steps because at a node i which is at a step,
although the surface profile is continuous, velocities jump from

Gi to ﬁi+1 and the depth jumps from hi to hi+l' To obtain a solution,
the problem is simplified by restricting the change in depth between
steps to be small enough so that the error given by Eq. (3.104) is
negligible; hence the conservation of mass is as well represented by

Eq. (3.102) as by Eq. (3.101). By introducing a volume flow rate

defined as:

g = Gh s (3.105)
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the Boussinesq equations in constant depth may be rewritten in the

form:

n o+ (A+HP_= 0 (3.106)

1 +Lag “lp2s -
4. +£3d, +gtm_-3h%q_ =0 (3.107)

These equations still are applicable only in a constant depth, since
the depth h is discontinuous across a step; however both dependent
variables, surface profile n(x,t) and the flow rate g(x,t), now are
continuous across a step., The finite element scheme is implemented by
placing nodes at the steps as shown in Fig. 3.16. Upstream of Node i,
Egs. (3.106) and (3.107) apply with h==hi; downstream of Node i,

Egs. (3.106) and (3.107) apply with h==hi+l. Since the same n; and

qi are used for both regions, the continuity conditions across the
step given by Eqs. (3.97) and (3.98) are automatically satisfied.

The technique was tested by comparing with physical experiments and

the results will be presented in Section 5.

3.4 The Propagation of Long Waves Onto a Shelf by the Linear

Nondispersive Theory

In this section the method of solution of the linear nondispersive

theory as reported by Wong et al. (1963) and Dean (1964) is applied
to the case of solitary waves propagating onto a shelf over a transi-
tion in which the depth decreases linearly with distance. (These
approaches differ from those of Xajdura (1961) who used transitions

in which the depth varied in a more complicated manner with distance.)
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Even though the solitary wave arises as a solution of a nonlinear
dispersive theory, since nonlinear and dispersive effects take some
distance (or time) to develop (Hammack and Segur (1978)), the

linear nondispersive theory may predict the behavior for an initial

distance (or time) which is limited. The limits of application of
such an approach to propagating solitary waves was one of the
objectives of this portion of the investigation. Certain aspects
of this will be discussed more fully in Sectiomn 5.

The domain of solution in Fig. 3.17 consists of three regions.
In Region I, which extends from x= - to x=-L, the depth is a
constant hl’ Initially, the incident wave will exist wholly in this
region. Region III extends from x=0 to x= and the depth is a
constant h2' It is assumed that no waves propagate from x=« in a
negative x-direction. Region II is of length I and the depth changes

linearly from hy to hy.

The linear nondispersive equation for variable depth as derived

by Lamb (1932, §169) assuming small amplitude waves and hydrostatic

pressure distribution, is:

Nep = g(hnx)X . (3.108)

Wong et al. (1963), Dean (1964) and Kajiura (1961) solved Eq. (3.108)

for a single harmonic incident wave:

nx,t) = Alei(k"‘“’t) , (3.109)
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Fig. 3.17 Definition sketch for linear nondispersive theory.

where Z =v-1, w® is the radial frequency, k is the wave number and,
since it is assumed that there is no dispersion, m==/§ﬁz'k. The
method used was to solve Eq. (3.108) for each of the three regions
in turn and then match the solutions at the boundaries by assuming
continuity of surface elevation and surface slope. Details of

the method are presented in Appendix C.
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The solution is:

7 (kx-wt) -7 (kx+ut)

Region I: nl(x,t)==Ale -FAze s (3.110)
Region II: ny(x,£) =B I (e “UTHBY (e Ut (3.111)
20L b, b, ¢
where X = w n E—— <l —r)%
—_— 2 1 1
ghl 1 ‘h_l'.'
Region IIL:  ny(x,t) = ¢ e” (¥/Py/By *0E) , (3.112)

where JO(X) and YO(X) are the zero order Bessel functions of the first
and second kind respectively and the coefficients A2, Bl’ B, and Cl
are functions of the incident wave amplitude Al’ the depth ratio h2/hl
and the dimensionless quantity wL//EEI. The relationships for the
coefficients Ay, Bl’ B2 and Cl as deduced by Wong et al. (1963) are
listed in Appendix C. The reflection coefficient, defined as KRf=A2/A1,
and the transmission coefficient, defined as KT==C2/A1’ can be deter-
mined in simple terms only for extreme values of wL//EEI.

For wL//EEI <<1 (i.e. L =0, a step), the expressions for the
Bessel functions of small argument can be used and the coefficients

can be evaluated in terms of the depth ratio only:

1- u/hz/hl

—_ (3.113)
1+ Mhz/h1

KR =

Ry =P (3.114)

1+Vh2/hl
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(These also can be obtained by the more basic approach of Lamb (1932,
§176).)

The magnitude of the reflection coefficient is bounded by
0_<_KR~i5 1 and the transmission coefficient is bounded by OSKTS 2,
When the depth ratio h2/hl is unity (i.e. there is no shelf) there is
zero reflection KR==O and perfect transmission KT==1 as expected.
For small depth ratios hZ/hl (i.e. h2<<lﬁ) the reflection coefficient
KR->1 and the transmission coefficient KT—*Z, however care must be
exercised in using these expressions for small depth ratios to ensure
that the small amplitude assumption is not violated on the shelf. For
example, if hz/hl==0.01 and the incident wave amplitude to depth ratio
Al/hl==0.01 (which is small enough to be considered small amplitude),
then the transmitted wave amplitude to depth ratio Cl/h2==l.82 which
is certainly not small amplitude. In fact for the waves on the shelf
to have amplitude to depth ratios Cl/h2;50.01, the incident wave
amplitude to depth would have to be Al/hl< 5.5x107°, Similar
arguments apply when the depth ratio is large h2>> hl) except that
in this case care must be taken to ensure that the long wave assump-
tion is not violated.

For wL//EEI>> 1 (i.e. a long slope), the reflection and trans-

mission coefficients are:

K, =0 , (3.115)

h.\ %
2 %
K =<-1_:—> s (3.116)
1
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which represents the classical Green's Theorem (Lamb (1932, §185) for
long waves propagating over‘gradual slopes.

Wong et al. (1963), Dean (1964) and Kajiura (1961) solved Eq.
(3.108) for a single harmonic incident wave. Since Eq. (3.108) is a

linear equation the solutions can be superimposed for an incident

wave given by:
N 1(k_x-w_t)
n(x,t) = Z Al el VT, . (3.117)
n=0 n

Egs. (3.110), (3.111) and (3.112), become:

N . N .
Region I: n(x,t)= 5 Al eﬁ(knx—wnt)+ S A emi(knx+wnt)(3.118)
n=0

n =0 2n
X -Zw, .t
Region II: nz(x,t)= Z; {Bl Jo(Xn)-I-B2 Yo(Xn)}e n (3.119)
n=0 n “n
2 h ¢
% = “nt P2 i M2\
n h2 hl h1 L
Vghl <l-'i]—1'>
N . Voot e
Region III: n3(x,t) = z: Cl eﬂ(kn hl/h2 X_wnt) (3.120)

n=0 n
For incident waves given by Eq. (3.117), the reflection and trans-
mission coefficients for wnL//EEI =0 (Egs. (3.113) and (3.114))
apply for two conditions:
a) L/h1==0 (i.e. a step). Since Eqs. (3.113) and (3.114) are
independent of frequency, each frequency component of the incident

wave Al is reflected or transmitted by the same proportion. Thus,
n
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the reflected and transmitted waves have the same shape as the
incident wave. This is the classical result of Lamb (1932) who used
a more fundamental approach and general functions f(x,t) instead of
harmonic functions.

b) n=0 {i.e. wn==0). Since Eqs. (3.113) and (3.114) are
independent of the slope length L, the proportion of the mean component
(i.e. the volume) of the incident wave reflected or transmitted is
the same for all slope lengths L. This rather surprising result will
be discussed further in Section 5.

For the solutions, Egqs. (3.118), (3.119) and (3.120), to apply
to a particular long wave given by Eq. (3.117), it is necessary first
that the wave height be everywhere small compared to the depth and
second that the wave satisfy either of the two conditions:

a) The maximum frequency Wy is small enough for the nondispersive
assumption to be valid, or

b) The entire wave form propagates without dispersing.

A solitary wave propagates in constant depth without dispersing but
the wave height is not necessarily small compared to the depth. As
the wave enters a region of changing depth such as Region II in

Fig. 3.17, it is expected that amplitude and frequency dispersion
will occur. However, Hammack and Segur (1978) point out that the

linear nondispersive theory may apply for some time before it is

necessary to use the full Boussinesq equations to model the propagation.
It is to determine this range of applicability therefore that the

linear nondispersive theory is applied to a solitary wave propagating
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onto a shelf.

The solitary wave defined by Eq. (3.25) in Section 3.1 also can

be written as:

34_____/? (X—Ct)

7 s (3.121)

n(x,t) =Hsech?

where { is the characteristic length defined by Hammack (1972):

=3 Hy
=5 G) *h . (3.122)

To implement the linear nondispersive theory it is necessary to

use the celerity c=vgh. It is convenient to normalize the inde-

pendent variables with respect to the slope length, L, as follows:
x=x*/L £= t*u/ghllL ,

{(where * denotes the original dimensional variable) and to normalize
the wave amplitude with respect to the wave height, n=n*/H. Then

Eq. (3.121) becomes:

nx,e) = sech? 22 L o) (3.123)

To find the solution for an incident wave given by Eq. (3.123) it is
necessary to resort to numerical techniques because the complicated
form of the coefficients A2, Bl, B2 and Cl makes the analytical
Fourier Transform method difficult to implement. The development of
the Fast Fourier Transform (FFT) algorithm however, has made

numerical solution of the problem accurate and inexpensive.
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The solution at a particular x is found in four steps:
1. The incident wave at x=0 is approximated by the discrete

function

331

- 2
n(O,tm)-sech A t s (3.124)

4 m

where the t, are N equispaced points in the finite interval
—T/2<tm<T/2 ,

where the magnitudes of N and T are governed by the desired accuracy
and resolution as will be discussed presently.
2. The discrete approximation of the incident wave Eq. (3.124)

is put in the form:

n(0,t_) = Al e Whtn , (3.125)

where w_= g%g

by computing the discrete Fourier coefficients:
N-1 .
A =l§ n(0,e) MUt (3.126)
1 X m
n
m=0

using the Fast Fourier Transform (FFT) algorithm.
3. The solutions, Egqs. (3.118), (3.119) and (3.120), normalized
as described above and with wn = w:L/Vghl and kn = kgL may be trans-

formed from the time domain to the frequency domain to become:
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Region I: N Ge) =4 eﬁknx-l-A2 e kX (3.127)

Region II: ﬁz (x,wn)==B1 Jo(Xn)-I-B2 Yo(Xn) (3.128)
n n

20 [hz ( hz)
where X =———— |+ —-|1-—7]Xx
n (]_ _.h2> h1 hl

Region III: ﬁ3 (x,wn) = C; ezkn hl/hZ x (3.129)
n It
N N N N
I1="§, -5 +1,————- ’ 2_1’ )

The solution in the frequency domain for the wave at the particular
location, x, (Fn) is calculated by evaluating one of Eqs. (3.127),
(3.128) or (3.129) at that position, for the N components.

4, The solutions Fn are transformed back into the time domain:

N/2
n(x,tm) =% Z Fn(wn) e_iwntm . (3.130)
n=-N/2
using the inverse Fourier transformation.
The numerical scheme requires specifications of the two quantities
T and N. The total length of the time record T must be made large

enough to include the entire wave at the location x. The number of
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points N in the time interval T determine the resolution with which

the solution at x is determined. The accuracy is determined by the
. N ,

maximum frequency Wrax =T which must be large enough for IF(wmaX)[

to be negligible. An estimate of the magnitude of Wyay CaN be

obtained by considering the analytical Fourier Transform of

3/3 L

n(t) = sech? 7 which gives:
Al(w) =-;—;l cosech 12%;- w# 0 .
A, (0) = 2/@ R (3.131)
where Q= 223:%- .

For Al(wmax)/Al(O)'<l:§10"5, Eq. (3.131) implies wmax>-309/ﬂ which,
by substituting for Woox and Q, becomes %¢>%§, i.e., to accurately
define the incident wave in the frequency domain, the ratioc of the
number of points in the interval to the length of the interval (N/T)
must be greater than four times the length ratio.

Results of this analysis and comparison with the nonlinear

dispersive theory and experiment will be presented in Section 5.
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3.5 The Propagation of Long Waves to Infinity by the Nonlinear

Dispersive Theory

Distant propagation by inverse scattering is a method of deter-
mining asymptotic solutions of the KdV equation. It provides a way
of analyzing a wave of arbitrary shape which is being propagated by

the nonlinear dispersive theory in an analogous manner to the way

harmonic analysis could be used if the wave were being propagated by

a linear dispersive theory.

Linear dispersive equations such as the long wave equation (Eq.

3.14) discussed in Section 3.1 have exact solutions in the form of
sinusoidal waves. In a corresponding way the KdV equation has exact
solutions in the form of solitary waves. A wave of arbitrary shape

being propagated by a linear dispersive theory will eventually split up

into an infinite number of sinusoidal waves of different wave numbers
each travelling at a speed which is a function of the wave number; a

wave of arbitrary shape being propagated by the nonlinear dispersive

theory will eventually split up into a finite number of solitary
waves of different height followed by a train of oscillatory waves
and, since solitary waves propagate at a speed which is a function

of the wave height, the solitary waves separate into a train with the
largest wave leading and the smallest wave trailing. For the linear
dispersive theory, harmonic analysis provides the amplitudes of the
infinite number of sinusoidal waves which emerge; for the nonlinear
dispersive theory, inverse scattering provides the number and the

height of the solitary waves which emerge.
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In this section the inverse scattering theory, which was derived
by Gardner et al. (1967), is outlined, then one of the few analytical
solutions is presented and, finally, numerical methods of solution

are described.

3.5.1 Summary of the Inverse Scattering Theory

Consider the KdV equation, Eq. (3.22). By changing

variables as follows:

s (3.132)

Eq. (3.22) becomes:
f"c+6ffr+frrr=0 . (3.133)

Whitham (1974, P585) shows that the asymptotic solution of Eq. (3.133)

can be transformed to the Sturm-Louiville problem:
V' [A+£(r,0)]p=0 , (3.134)

where primes denote differentiation with respect to r, f£(r,0) is the
normalized initial wave profile and ¥(r) >0 as |r|+>«. Whitham shows
the number of negative eigenvalues )X gives the number of solitary

waves which will emerge as 7~ and the height of these solitary waves

is:

H oy
—h—='—f—>\. . (3.135)
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The number of negative eigenvalues is found by solving the

initial value problem (see Hammack and Segur (1974)):

P+ £(r,0DyP=0
s (3.136)
p(0) =1 $'(0) =0

and counting the number of zero crossings of .

The inverse scattering theory has been applied to practical
problems by Hammack and Segur (1974,1978) among others., Hammack and
Segur (1974) show that if the initial wave profile has net positive
volume, at least one solitary wave will emerge followed by a train of
oscillatory waves. If the net volume is less than or equal to zero,
solitary waves may or may not emerge depending on the form of the
initial wave. If the wave amplitude is entirely negative, no solitary
waves will emerge.

3.5.2 The Analytic Solution for a Wave with sech? Shape

Analytic solutions of the inverse scattering problem are
available for only a few initial wave profiles, i.e., n(x,0). One of

these, given by Whitham (1974, p597), is:

n(x,O)==A.sech2B(x-—xo) , (3.137)

where A is the wave height and B is a type of wave number.

The number of solitary waves emerging as x and t—+« is:

N <%—P , (3.138)
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6 Y
A
where P = <1-Fh3B2) +1 . (3.139)

Note that N is an integer which is strictly less than %-P (e.g. if
P=4.,0, N=1). The height of the emerging solitary waves is given

by Whitham (1974) as:

H
n

h2B2(P - 2n) % . (3.140)

W[

n=1,2....N

Since A is a wave height and 1/B is a horizontal length, the
nondimensional quantity A/h3B2 is a type of Ursell Number. Eq. (3.139)

can be rewritten in terms of the Ursell Number defined by Hammack

(1972) as:

7'13
U = — 22X . (3.141)

h3 l nX |I%.aX

Evaluating the Ursell Number for a wave given by Eq. (3.137) using

Eq. (3.141) gives:

=2l _A_ (3.142)

and substituting this in Eq. (3.139) yields:

1
P = (1+32 1741 : (3.143)
. 2_3 A R .
A special case occurs when B -—Z~E§ (i.e. a solitary wave); then

U=9/4 and, from Eq. (3.143), P=4, hence, using the inequality of
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Eq. (3.138), only one solitary wave will emerge.

If, for a particular initial wave with the form of Eq. (3.137),
the Ursell Number lies in the interval 0<U<9/4, then 2<P<4 and
therefore only one solitary wave will emerge. An important case in
this class relevant to this study is when the initial wave has the

form:

n(x,0) = ol SeChZV%% (x—xo) . (3.144)

where <1, i.e. a solitary wave whose amplitude has been reduced by
a constant ratio over the entire wave. The height of the one solitary

wave which emerges at infinity from Eq. (3.140) is:
1
H=7 {(1+80)%-1}2 . (3.145)

Eq. (3.145) is surprising in that, although it it the solution of
the nonlinear dispersive theory, the height of the emerging wave is
linearly proportional to the wave height which defined its original
shape., (This has important implications in data reduction and is
discussed in detail in Section 5.2).

If the Ursell Number U> 9/4, then P> 4 and therefore more than
one solitary wave will emerge. Table 3.3 gives the maximum Ursell
Number for which a particular number of solitary waves will emerge.
It shows that if for example the Ursell Number of a particular wave
of sech? shape lies in the interval 2.25<U<6.75, then two solitary

waves will emerge.
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Table 3.3 Maximum Ursell Numbers for a particular number of

solitary waves to emerge from a sech? wave.

2.25 6.75 13.5 22.5

U
max

33.75

46.75

63.

3.5.3 Numerical Solutions for Waves with Arbitrary Shape

The Sturm-Louiville problem Eq. (3.134) was solved using

the Rayleigh-Ritz technique:

Define the linear operator:
Ly = -p" - £

then Eq. (3.134) can be written as:

L = Av
where A is the eigenvalue.

The Rayleigh Quotient is:

- (Ly,p)
=D

where the inner product is defined in general terms as:

ce

(u,v) = f uv dr

om0

(3.146)

(3.147)

(3.148)

The eigenvalues ) are found by minimizing the Rayleigh Quotient

Q over all functions Y(r):
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‘ _ min
A= w(r) Q - (3.149)

The calculated eigenvalue:

w=Q , (3.150)

resulting from evaluation of Eq. (3.148) for a particular function

y(r), is an upper bound on the actual eigenvalue A:

bz . (3.151)

The proximity of the calculated eigenvalue u to the actual eigenvalue
A depends on the choice of the function ¥(r). Two schemes were
developed using different functions ¢{r) and although the basic
Rayleigh-Ritz techniques were the same, the implementation and appli-~

cations were quite different.
N

Scheme 1: ¢(r) = Zci¢i(r); $;(-=) =¢;(=)=0
i=1

Scheme 2: ¥(r) = ¢ (kr); $p(~») =¢(») =0

Scheme 1 produces N eigenvalue estimates and involves NZ/2
numerical integrations and a matrix eigenvalue problem, Scheme 2
produces only the lowest eigenvalue but with as few as nine numerical
integrations and no matrices. Thus, if the height of only the leading
solitary wave is required, Scheme 2 is preferable, but if more than one

height is required Scheme 1 must be used.
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3.5.3.1 Scheme 1: A Sum of Functions

N

Let: (p(r) = § ci¢i(r); d)i(—m) = ¢i<°°) =0 [] (3'152)
=1

where the ¢, are arbitrary functions. Then substituting in Eq. (3.148)

and minimizing Q with respect to ¢y gives:

]

N
— 0 oo L]
’_fi [__/c: d)iq)J!dr - f f(r,0)¢i¢jdr - / ¢i¢jer =0

2 J.. L

i=1

j=1,2,....N R (3.153)

where primes denote differentiation with respect to r, and u=qQ.

Eq. (3.153) may be written in matrix form:

[A-B-uDlc=0 , (3.154)
. LIFW
where Aij = b[; ¢i¢jdr ]
Bij = L f(r,0)¢i¢jdr ,

Dij = f ¢i¢jdr .

-0

Eq. (3.154) provides a standard matrix eigenvalue problem, the
resulting eigenvalues Hy being upper bounds on the actual eigenvalues

ALl
. §
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In order to simplify the matrix eigenvalue problems it was
decided to use orthogonal base functions ;e The functions chosen

were the trigonometric functions:

. T
¢i=sin-}-1ri-r—- 1=1,2,....N , (3.155)

where I. is a length large enough to be considered infinite for the

particular initial wave f(r,0), and:

]

H

+
[N

The trigonometric functions are not ideal because the definition
of the length L is arbitrary, but none of the other readily evaluated
orthogonal functions such as the orthogonal polynomials have a suitable
form for this problem. Substituting for the base functions given by

Eq. (3.155) in Eq. (3.154) yields:

P |
—j-—-lﬂ f iy’ cos J——T;_‘r dr'

0 i43
(3.156)
) izwz .
7L =14 ’
L v . igr' jor! 1
Bij=[ f(r',0) sin T sin =7 dr s

0 i#3

D,, =

1]

o e
=
1
L
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and using these relationships the matrix equation in Eq. (3.154) can

be simplified to:

[A'~B"-ullc=0 , (3.157)
22,2
' I - . .
where A 1172 Aij 0 i# 3 ,
L
2 ' inr' inr!
' =% 1 ) . '
i3 "L %!. £f(r',0) sin T sin =7 dr .

and I is the identity matrix.

To test the numerical scheme, the eigenvalues of waves with
initial shape given by Eq. (3.137) were calculated for various wave
heights A and wave numbers B and compared with the theoretical
eigenvalues. (The results are presented in Appendix D.) The tests
indicated that this scheme is sensitive to the choice of the length
L (which is discussed in Appendix D) and that it is most accurate
for waves from which more than one solitary wave will emerge.

3.5.3.2 Scheme 2: A Single Function

Since the solution sought is the height of the leading

solitary wave, an obvious choice for the trial function ¢ is:

y = sech?kr , (3.158)

which satisfies the boundary conditions y(t«) = 0. Using Eq. (3.138),

the denominator of the Rayleigh Quotient (Eq. 3.149)) is:

= h 4 =4
®W,¥) f sech'kr dr o s (3.159)

OO
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and the numerator is:

(Ly,y) = f {(w')z—f(r,O)}dr=%g-—I , (3.160)

where

(oo

I= f £(r,0) sech%krdr , (3.161)

-0

Thus, the Rayleigh Quotient becomes:

Q =%=§k2_%&1 i (3.162)

The best estimate of the lowest eigenvalue is found by minimizing

the Rayleigh Quotient Q with respect to the parameter k:

Q
=

ﬂ=%k——2—1- (3.163)

ok

~w
=
|

where

= = -4 f rf(r,0) sech“kr tanh kr dr . (3.164)

-—C0

Setting 3Q/3k=0, Eq. (3.163) was solved for the parameter k

using Newton's Rule:

3 3, 93I
k—Z-I—Z'k-aT{- s (3.165)

utjeo

_ 49 _
Put F = ik -

then, differentiating with respect to the parameter k:

2
oF 8 3 s8I 3 3°I (3.166)

— I e e e e - - k — ,

3k 5 28k 4  ok?

where

2 00
Ll S f r2£(r,0) [sechSkr - 4sechkr tanh?kr]dr .(3.167)
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Newton's Rule is:

LD @) _Fa®)

- ’ (3.168)
Fk(k(l))

where superscripts denote iteration number. Having found k within
given accuracy from Eq. (3.168) it can be substituted into Eq. (3.162)

to evaluate the Rayleigh Quotient Q, then

A <Q .

The same tests which were performed for Scheme 1 also were
carried out here, using Scheme 2 to calculate the lowest negative
eigenvalue of waves with shape given by Eq. (3.137). The results,
presented in Appendix D, show that this scheme also is most accurate

for waves from which more than one solitary wave will emerge.
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CHAPTER 4

EXPERIMENTAL EQUIPMENT AND PROCEDURES

Most of the equipment used in this investigation was constructed
using "U.S. Customary' units; however, all experimental data
were taken in SI (System Internationale) units. In this chapter,
in describing the equipment, measurements in the system of units
used in the construction of the equipment will be stated first and
the equivalent measurement in the other system of units will be

stated in parentheses.

4,1 The Wave Tank

The wave tank which was used for the experimental program
measures 123.8 ft (37.73 m) long, 2 ft (61 cm) deep and 155 in.
(39.4 cm) wide. The tank is constructed of thirteen separate
modules, twelve of which are identical; the additional module is
located at one end of the wave tank and contains a movable block
section of the bed which was used by Hammack (1972). This module
was sealed off and not used in this study. A schematic drawing of
one of the ten similar modules of the wave tank is shown in Fig. 4.1.
Details of the construction of these modules have been given pre-
viously by French (1969) and will be discussed only briefly here.
The side walls of each module are constructed of glass panels
measuring 5 £t (1.52 m) long, 25 in. (63.5 cm) high and % in. (1.27 cm)

thick. The instrument carriage rails are made of 1 in. (2.54 cm)
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diameter stainless steel rod and are mounted on the top flanges of
the tank sidewalls with studs spaced at 2 ft (61 cm) intervals. The
rails were carefully leveled to within 0.001 ft (.3 mm) of a still
water surface in the wave tank.

To simulate a shelf, a false bottom and four slopes were
constructed; the details are shown in Fig. 4.2. The shelf was
constructed of plywood in 8 £t units and @ach was weighted with lead
bricks to prevent it floating. The ribs shown in Fig. 4.2(a) which
were placed at 4 ft centers were shaped so as to allow the air to
escape along the underside of the shelf as the water level rose
during filling. The shelf was sealed by packing the gap between the
shelf and the glass walls of the tank with 3/8 in. diameter polyethylene
rod.

Three slopes with lengths of 150 cm, 300 cm and 450 cm were
constructed of 3/4 in. plywood as shown in Fig. 4.2(b). Each slope
was approximately 6 in, high (actually 15.54 cm) at the one end where
it butted into the shelf and tapered to a feather~edge, The feather-
edge was constructed of 16 gauge sheet metal. The half-sine transition
shown in Fig., 4.2(c) was cut from a glued laminated pine block. The

equation representing the shape of the face of the transition is:
y = 3{1+ sin%(x—3)} R (4.1)

where x and y are in units of inches.
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4.2 The Wave Generator

The wave generator which was designed and constructed for this
study consists of a vertical plate which is moved horizontally in a
prescribed manner by means of a hydraulic servo-system. The system
accepts a programmed input voltage and converts the input electrical
signal into a displacement (which is directly proportional to the
magnitude of the voltage); hence, the displacement-time history, or
"trajectory", of the movement is proportional to the voltage-time
history of the input signal. For purposes of discussion the overall
wave generating system can be divided into three parts: the
hydraulic system, the electrical servo-system and the carriage and
wave plate. Schematic drawings of the entire system are shown in
Fig. 4.3(a) and (b) and an overall view of the wave generator is
shown in the photograph of Fig. 4.4; the various components shown in
these figures now will be discussed.

4.2,1 The Hydraulic System

The hydraulic system consists of an oil reservoir, a pump,

a filter, an unloading valve, a check valve, two accumulators, a
second filter, a servo-valve and two hydraulic cylinders (only one

of which can be used at a time). Figure 4.5 is a photograph of the
hydraulic supply system which also can be seen in the lower left of
Fig. 4.4. 1In the background of Fig. 4.5 is the reservoir which has

a capacity of 40 gal. (0.152 m3) of hydraulic oil. In front of the
reservoir is the pump which is a Denison, constant volume, axial-

piston-type pump, rated at 2.9 gpm (0.012 m3/min) at 3000 psi
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(20,000 KN/m2) and 2.8 gpm (0.011 m%/min) at 3500 psi (24,000 KN/m2);
it is powered by a 7.5 hp (5.6 kW), 1800 rpm electric motor. Pro-
vision has been made for water cooling the oil but under present
operating conditions the o0il temperature has never exceeded 100°F (38°C)
and thus the thermostat has never been activated. Immediately
downstream of the pump is a filter comstructed of stainless steel
wire cloth with a nominal and absolute particle diameter rating of

5 microns and 15 microns respectively. Downstream of the filter is
an unloading valve which is followed by a check valve. The unloading
valve senses the system pressure at a point downstream of the check
valve; when the system pressure is below a preset value (3000 psi
during normal operation) the unloading valve directs the flow of
hydraulic fluid into the system. Once the desired system pressure is
reached, the system side of the valve closes and the flow is diverted
through an air-cooled heat exchanger (the radiator structure shown in
Fig. 4.5) and back to the reservoir. The check valve prevents a
reverse flow through the pump from the pressurized system when power
to the pump is turned off.

From the valves, the oil is pumped into two 10 gal. accumulators
which are mounted on the wall above the hydraulic supply unit and can
be seen in the background in Fig. 4.4. Each accumulator consists of a
rubber bladder fixed inside a pressure vessel. The bladder is pre-
charged with nitrogen gas at 600 psi (4000 kN/m?) and when there is no
0il in the accumulator, the bladder fills the entire vessel. When oil

is introduced at pressure, the increased pressure causes the nitrogen
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gas and the bladder which contains it to compress. As more oil is
pumped in, the pressure continues to rise until the rated pressure

of 3000 psi (20,000 kN/m?) is reached when the unloading valve
activates and directs flow back into the oil reservoir. At this
pressure each accumulator holds approximately 7 gal. (0.027 n3) of
0il which provides a reservoir to supply flows which exceed the
capacity of the pump (i.e., 2.9 gpm). The accumulators also serve to
damp out pressure fluctuations due to the opening and closing of the
servo-valve and the unloading valve although this was not the primary
purpose.

A second filter (Moog Buta N with nominal filtration of 10 microns)
is installed downstream of the accumulators to protect the servo-valve
which is the most sophisticated and sensitive item of the hydraulic
system., The servo-valve adjusts the quantity and the direction of
the flow of oil in direct proportion to the electrical current it
receives. The servo-valve is a Moog Model 72-103 which has a rated
flow of 60 gpm (0.24 m3/min) at 40 ma current.

The servo-valve directs the flow of oil to either end of a double-
acting hydraulic cylinder. Two cylinders were used in this study,
both of which can be seen in Fig. 4.4; a'long' cylinder which is
mounted beneath the truss and a "short" cylinder which is mounted on
the sloping face of the truss. In the photograph the servo-valve is
mounted on the shorter cylinder indicating this cylinder was in use.
For operation of the "long'" cylinder the servo-valve must be moved to

a position inside the truss not visible in the photograph. The truss
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was made massive to avoid vibration problems and in fact there is
no apparent vibration of the structure during operation. The long
cylinder is a Miller Model DH77B cylinder with 2% in. (6.35 cm) bore
and 1 3/8 in. (3.49 cm) rod with a stroke of 96 in. (2.44 m). The
cylinder is fitted with external drainbacks to eliminate oil leakage.
This was important because it was found even a small amount of oil
in the water caused the wave gaﬁges to behave in an erratic manner.
The length of the cylinder was designed so as to be able to gen-
erate a single or a geries of solitary waves; each use requires move-
ment in the forward direction only. However, problems occurred in the
generation of periodic waves with the actual motion being distorted
from the desired motion at the ends of the stroke. The cause of
this after some investigation was found to be the static friction
between the seals and the piston rod and the piston and the cylinder
walls which has to be overcome before the piston can move. At the
end of a stroke when the piston is momentarily at rest, before it
can begin to move a force termed the "break-loose force" must be
applied to overcome the static friction. However, the force is
provided by the differential pressure across the piston and this
pressure takes a finite time to become sufficient to produce the
break-locose force. In the meantime the input from the function
generator is continuing so that when the break-loose force is reached

the piston has to move faster than desired to catch up with the input

function.
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Two ways of reducing this problem are:

i) To increase the bearing area of the piston so that the
differential pressure required to produce the break-loose
force is reduced, and

ii) To improve the frictional characteristics of the seals,

i.e., to reduce the break-loose force.

Both of these were employed in the design of the smaller cylinder
which is a Miller Model DER~77 cylinder with 5 in. (12.7 cm) bore
and 1 3/4 in. (4.45 em) rod with a stroke of 16 in. (40.6 cm). The
bearing area of this cylinder is 17.3 in.2 (112 cm?) compared with
3.4 in.2 (22 cm?) for the longer cylinder. To ensure friction would
not cause problems for this cylinder, the manufactured seals were
removed and replaced by low friction Shamban Varidry R. G. Seals
Model $32573-132. For these seals the friction is reduced by reducing
the bearing area of the seals to a knife edge. These two measures
effectively eliminated the problem of friction for the short cylinder.

4,2.2 The Servo-System

The servo-system consists of a function generator, a
feedback device and a servo—controller. The principle of operation
is that the voltage from the function generator and the voltage from
the feedback device which are of opposite sign are summed in the
servo-controller which then amplifies the resulting current which
is transmitted to the servo-valve. The servo-valve directs flow in
one direction or the other depending on the sign of the current; the

quantity of flow through the valve and hence the velocity of the piston

is proportional to the magnitude of the current.
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The purpose of the function generator is to provide the voltage-
time history which is proportional to the desired displacement-time
history, i.e., the trajectory of the wave plate. The function
generator used in this study was designed and constructed by Shapiro
Scientific Instruments, Corona del Mar, California; a block circuit
diagram is presented in Fig. 4.6 and the front face of the electronics
is shown in the photograph of Fig. 4.7, The various components of
the function generator shown in Fig. 4.7 will be described briefly
first and the details of operation will be given later.

The lower part of the photograph shows the paper tape reader which
can be used either to load a memory unit which can be played back at a
later time or to drive the motion directly. Located above the tape
reader are the three digital thumbwheel potentiometers which allow
scaling of the amplitude of the motion. The dial on the left in the
uppermost panel is the time adjustment. When the switch beside it is in
the UP position, the time base is calibrated internally and the rate at
which the data are generated is determined by the larger knob and the
dial. The data rate can range frop 1 word/sec to 1x10% words/sec;
thus, since the memory contains 1000 words, the duration can range
from 1000 sec to 0.001 sec. When the switch is in the down position,
the data rate may be set between the internally calibrated rates
using the smaller fine tuning knob located on the outer part of the
larger knob. The right side of the upper panel contains the controls
for the mode of operation-—Manual, Run or Load from Tape--and the

switches which execute the various phases of operation--Load Data,
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Increment Address, Select Address and Start. The number of cycles
which the function generator will execute is governed by the single/
continuous switch on the lower right of the upper panel. The LED's
on the upper part of the upper panel display the address and the
data continucusly. Below these in the center are the digital thumb-
wheel switches used for manual operation.

The function generator allows almost unlimited flexibility in
programming the motion of the wave plate; however, due to the
mechanical limitations of the system, the wave generator is less
flexible in its operation. The only restrictions on the function
are that it be adequately described by:

i) Equispaced time steps, and

ii) Normalizing the stroke between the limits of 0 and 999 with
each word (i.e., point) represented by three digits.

The trajectory may be entered in any of the following three ways:

i) Wwith 1000 points punched on paper tape and stored ia the
memory. The paper tape, which may be punched either manually
or by computer, is read into the memory by the tape reader.
Once in the memory, the trajectory remains there until it
is over~ridden or the unit is switched off.

ii) With 1000 points entered manually by means of the digital
thumbwheel switches and stored in the memory. This facility
is useful if the paper tape described above contains a bad
point (or points) because corrections can be made to the

memory without repunching the tape.
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With continuous tape reading, bypassing the memory. If the
trajectory cannot be described by 1000 points, more points

can be used and the trajectory read directly from paper tape
into the serxrvo-controller at the constant rate of 37.5 words

per second.

The trajectory which either is stored in the memory or is to be read

in by the tape reader is scaled from 0 to 999 in amplitude.

The actual total amplitude of the wave generator (i.e., the

stroke) and the position of the wave plate are controlled by the

three thumbwheel digital potentiometers shown in Fig. 4.7 labeled

Initial Value, Gain, and Initial Position. Each contains 1000 divi-

sions from 0 to 999 and they have the following purposes:

i)

ii)

iii)

Initial Value is the first integer of the trajectory.
Gain is an integer directly proportional to the stroke.
For a stroke of S cm the gain is:

9 S for the long cylinder
Gain = Integer portion of

51 S for the short cylinder
Initial Position allows adjustment of the at-rest position
of the wave plate and gives the location of the plate prior
to starting the motion. When the Initial Position reads
500 the piston is in the center of the cylinder and the
input and feedback voltages are both zero. When the

Initial Position reads 0, the piston rod is completely
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retracted into the cylinder; when it reads 999 the piston
rod is fully extended from the cylinder.

At the completion of the motion, the wave plate will be in a
position given by the product of the Gain and the difference between
the last and first integers of the program. Pressing the Reset
button located beneath the Initial Position thumbwheel will return
the plate to its original position at a constant rate of 5.5 em/sec.

The duration time of the motion is set using the coarse and fine
adjustment knobs shown in Fig. 4.7 (and discussed earlier) and a
digital clock. Shutting the valve just downstream of the accumulators
removes the pressure from the servo-valve. In this depressurized
state, the function generator is put in the Continuous mode and the
Run switch depressed. The trajectory will cycle continuously with
the duration of alternate cycles displayed on the digital clock.
Having set the desired time, the function generator is switched to
the Single mode and the Reset button depressed. After pressurizing,
the wave generator is ready for operation.

Two different devices are used for feedback for the two cylinders.
For the long cylinder the feedback voltage is supplied by the voltage
drop across a rotary potentiometer fixed to the carriage which is moved
by a rack and pinion arrangement. The voltage drop across the
potentiometer is directly proportional to the carriage position. The
potentiometer is a Helipot Model 7603 with a ten turn, 10 K olm
resistance and 0.157 independent linearity. The anti-backlash gear

which has a circular pitch of 48 and the precision rack are Bearing
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Specialities Models AP48W~150 and RI-6-C2 respectively.

For the short cylinder the position of the carriage is converted
into an electrical signal by means of an LVDT (linearly variable
differential transformer), Collins Model LMT 711 P38. The LVDT
consists of primary and secondary coils wound in the form of a tube
inside which a ferro-magnetic core moves. The primary coil is
supplied with 6 VAC from the servo-controller and: the .output of the
secondary coil is returned to the servo-controller where it is demodu-
lated into direct current.. As the core moves within the coils,
the field is changed and the demodulated voltage from the secondary
coil varies linearly with the position of the core. The core is
attached directly to one end of the piston rod; hence, as the
piston moves, the core moves within the coils and the demodulated
voltage from the secondary coil varies linearly with the position
of the carriage.

The servo—controller referred to above is a Moog AC/DC servo-
controller (Model 82-151) and power pack (Model 82-152). The servo-
controller was modified slightly for this application and the modified
circuit diagram is presented in Fig. 4.8. The modifications are:

i) The addition of the bank of resistors which allows finer
tuning of the electrical damping than would be available
otherwise.

ii) The addition of the integrator circuit after the summing

point of the function generator and the feedback from the

potentiometer. This improved the response for the longer

cylinder.
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iii) The optional feature of the Dither Oscillator which provides
a 600 Hz ekcitation to the servo-valve and hence improves
the response was included also.
Examples of the response of the wave generator are presented in
Fig. 4.9 where the solid curves are the programmed motion from the
function generator and the dashed curves are the actual motion from
the feedback device. Figure 4.9(a) shows the response to a hyperbolic
tangent function which would be used to generate a solitary wave
and Fig. 4.9(b) shows the response to the function which would be
used to generate a series of cnoidal waves. The time lag of approx-
imately 0.05 sec between programmed and actual motion which is evident
in both figures is a feature of the servo-controller. In Fig. 4.9(a),
near the start and finish of the motion, the curves for both the
function and the motion exhibit some roughness. This is attributed
to the function being described with voltages equispaced in time and
with precision of only one part in one thousand. Apart from this,
the actual motion shows good agreement with the programmed motion.

4.,2.3 The Carriage and Wave Plate

The carriage and wave plate which are in the foreground
in Fig. 4.4 are constructed of aluminum I-beams and plate. The
carriage is supported on 1% in. (3.18 cm) hardened steel shaft rails
(Pacific Bearings Model SA-20-120) by means of four linear ball
bushings (Pacific Bearings Model SPB-20-OPN) mounted beneath the
support plate as shown in Fig. 4.4. The vertical post extending

upward from the carriage allows for the connection of either the
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upper short cylinder or the lower long cylinder depending on the
motion desired.

To avoid problems of leakage around the wave plate, the wave
plate is sealed against the glass side walls and steel bottom of the
wave tank by means of rubber windshield wiper blades. The device
which holds the wiper blades is shown in Fig. 4.10. It consists of
two identical aluminum bars with grooves cut out to accept the body
of the wiper blade. The blade is held in place by tightly bolting
the two bars together. The wiper blade and holder are attached to
the wave plate by #8 screws at 4 in. (10.2 cm) intervals. The holes
in the holder through which the screws pass are slotted so as to allow
adjustment of the distance the wiper blade protrudes beyond the
edge of the plate. This distance was set such that the wiper blade
bears against the glass sidewalls and steel bottom of the tank in

the manner shown in Fig. 4.10 over the full length of the traverse

of the wave plate.

4,4 The Measurement of Wave Amplitudes

Resistance wave gauges are used in conjunction with the Hewlett
Packard (7700 Series) recorder in order to measure wave amplitudes
as a function of time at a specific location in the wave tank. A
drawing of a typical wave gauge is shown in Fig. 4.11. The wave
gauge consists of two stainless steel wires 3.25 in. long with a
diameter of 0.01 in., and spaced 0.16 in. apart. The wires are

stretched taut and parallel in a frame constructed of 1/8 in. diameter
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stainless steel rod. The wires are insulated electrically from each
other in the frame, however, a current can pass between the wires
when they arevimmersed in a conducting fluid. A Hewlett Packard
Carrier Preamplifier (Model 8805 A) is used to supply the 2400 cps/4.5
volt excitation for the gauges as indicated by the circuit diagram
in Fig. 4.12, The output signal from the wave gauge is also received
by the Carrier Preamplifier which after demodulation and amplifica-
tion is displayed on the recording unit. As the immersion of a wave
gauge is varied in a conducting solution, the resistance in the
circuit changes proportionally, causing an imbalance in the full
bridge circuit shown in Fig. 4.12; this imbalance is recorded as a
change from the balanced position.

The wave gauge is attached to a remotely controlled calibration
device which allows five wave gauges to be calibrated simultaneously.
The calibration device is mounted on an instrument carriage resting
on the stainless steel rails which are mounted to the walls of the
wave tank. The calibration device, which is shown in Fig. 4.13(a),
consists of a rack and pinion driven by a synchronous motor. The
wave gauge is attached to the rack and its weight is counterbalanced
by a lead weight. The synchronous motor (GE Model SG 101) is connected
to the master control shown in Fig. 4.13(b) which consists of a
synchronous generator (GE Model SF 142) which is driven by a pinion
and the rack of a point gauge. When the point gauge is moved, a
current is generated and relayed to the motors which move the wave

gauges vertically. There is a one-to—one relationship between movement
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Fig. 4.13(b) View of the master control.
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of the point gauge and vertical displacement of the wave gauge so
that, for example, a 1 cm deflection of the point gauge will move
the wave gauge 1 cm vertically. To calibrate, the full bridge
circuit first is balanced at a fixed gauge immersion, then the gauge
is immersed and withdrawn a known distance from the balanced position
by means of the point gauge and the deflection of the stylus is noted.
This procedure is repeated for various immersions and withdrawals
and a typical calibration curve which results is shown in Fig. 4.14(a).
If the wave gauge record is to be recorded using an analog-to-digital
converter, the position of the point gauge may be représented electrically
by means of the potentiometer shown in the foreground of Fig. 4.13(b). A
typical calibration curve using this method is shown in Fig. 4.14(b).
Notice the clusters of points at regular intervals along the curve.
These occur because, when turning the wheel on the point gauge showm
in Fig. 4.13(b), after turning to the limit one's wrist will rotate,
the hand is lifted and the wrist rotated back in order to continue
turning. During the time it takes to lift one's hand and rotate the
wrist back, data still are being recorded by the A/D converter and
these appear as clusters of points in the calibration curve. The
scatter is caused by errors in the A/D converter.

Every wave gauge is calibrated before each experiment; however,
no calibration curves were obtained at the end of the experiment, since

each experiment was completed within minutes of the initial calibration.
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CHAPTER 5
RESULTS AND DISCUSSION OF RESULTS

The various aspects of the problem of long waves propagating
onto a shelf to be discussed in this section can be illustrated best
by considering a typical experiment, the layout of which is shown
in Fig. 5.1. For this experiment, the upstream depth h1 was 25 cm
and the height of the shelf was 15.54 cm, thus the depth ratio
(hl/hz) was 2.64. The front face of the shelf was vertical (i.e. a
step). Five wave gauges were located as shown in the figure: Gauge 1
was placed 23 h1 (5.75 m) upstream of the step; Gauge 2 was placed
at the step; and Gauges 3, 4.and 5 were placed at intervals of 60 hy
(5.68 m) downstream of the step. The distance from Gauge 5 to the end
of the wave tank was 30 h2, s0 that waves had travelled 60 h2 between
being first recorded at Gauge 5, reflecting off the tank endwall and
being recorded a second time at Gauge 5.

A solitary wave was generated by moving the wave generator with
the trajectory given by Eq. (3.50) for a relative wave height of
H/h=0.1, a stroke of 18.25 cm and a period of 4.24 sec. The variation
of the water surface elevation as a function of time as recorded by
the wave gauge is shown in Fig. 5.2, The incident wave is the first
wave recorded at Gauge 1; it has a height HI of 2.5 cm., Notice that

it is symmetric about the crest and there are no trailing oscillatory

waves.
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As the incident wave propagates over the step and onto the shelf,
part of it is reflected and travels back towards the wave generator.
The second wave recorded at Gauge 1 is this reflected wave. Its
height is 0.5 cm and its shape is somewhat different than the incident
wave.

At the location of Gauge 2 the wave is at the step. Its height
is 2.8 cm compared to 2.5 cm for the incident wave but its shape
appears to be about the same as that of the incident wave. In fact
if the reflection~transmission process were entirely linear it would
be possible to superpose the incident and reflected waves to obtain the
wave at the step; clearly this is not possible in this case and the
reasons will be discussed in some detail later.

As the wave propagates on the shelf a rather remarkable event
takes place: the single wave recorded at the step splits up into a
number of solitary waves of different heights followed by a train of
small amplitude, oscillatory waves. This is a practical example of
the inverse scattering theory discussed in Section 3.5. For this
particular case the theory can be used to predict the number and
height of the waves as follows: the time record of the wave at the
step is transformed approximately into a spacial record by multiplying
the time coordinate by a phase speed determined such that the volumes
of the transmitted and reflected waves sum to the incident wave volume;
then Egs. (3.138) and (3.140) predict four solitary waves will emerge
with wave heights 4.5, 2.5, 1.1 and 0.2 em. The theory takes no

account of friction, so applying an experimentally determined damping
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equation (the details of which will be discussed later), the corrected
wave heights which are predicted at x= 360 h, (the second pass of
Gauge 3) are 2.6, 1.5, 0.7 and 0.1 cm. The first three are similar

to the wave heights recorded experimentally at x= 360 h,.

As the wave train propagates off the shelf into deep water,
dispersion takes place immediately. The small waves which appear at
Gauge 3 at about 48 sec are those which were reflected back from the
step when the wave train propagated into deep water.

The various aspects of Figs. 5.1 and 5.2 (wave generation and
propagation in constant depth, reflection, transmission, transformation
on the shelf and propagation into deep water) will now be considered

sequentially and in detail, including theoretical aspects of the

problem.

5.1 Wave Generation and Propagation in a Constant Depth

5.1.1 The Generation of Solitary Waves

Hammack and Segur (1974) showed theoretically and
experimentally that from any block of water with net positive volume
at least one solitary wave followed by a train of oscillatory waves
will eventually evolve. Consequently, solitary waves can be generated
in the laboratory simply by producing a block of water above the étill
water level and allowing it to propagate a sufficient distance for
solitary waves to emerge. Figure 5.3 is an oscillograph record showing
the waves which evolve from such a block of water which was produced
by a linear displacement-time history of the wave generator. For this

case the depth was constant throughout the tank and equal to 10 cm, the
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stroke was 10.33 cm and the duration of motion was 0.8 sec. The gauges
 were spaced 2.5 m apart (i.e., 25 depths) with Gauge 1 placed 1.0 m
froﬁ the wave plate. Initially (Gauge 1) the wave has an arbitrary
shape with a single main crest followed by a deep trough and several
oscillatory waves. By the time the wave has propagated the 25 depths
to Gauge 2, a solitary wave with a relative height of H/h=0.18 has
emerged followed by a train of oscillatory waves with heights which
are about 25% of the height of the leading solitary wave. As the waves
propagate, the solitary wave quickly outpaces the remainder of the
tfain until at Gauge 5, 110 depths from generation, the solitary wave
is completely separate from the trailing oscillatory waves. For
many laboratory studies this method of wave generation would be
satisfactory; however, in this study the solitary wave interacted with
a step or a slope producing a reflected wave whose characteristics it
was desired to measure. Trailing waves such as those following the
main wave in Fig. 5.3 would have interacted with the reflected wave
causing difficulties in interpreting the measured wave. Therefore,
cbnsiderable effort was made to eliminate the trailing waves from the
initially generated wave. |
Referfing to the wave generation theory developed in Section 3.2,
if the position of the wave plate is neglected in the velocity of the.
.Water particles (i.e., if G(0,t) is used instead of T(E,t)), the

generation trajectory for solitary waves of all heights is:

Es(t) = tanh 7.6<%-']2;) » . (5.1)

s (wo 0't=!-1
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where, as before, S is the stroke given by Eq. (3.54) and T is the
duration of motion given by Eq. (3.56). Using this trajectory the
oscillatory tail, which was about 25% of the height of the main wave
when a linear trajectory was used (as shown in Fig. 5.3), could be
reduced to as little as 10%Z. Reduction of the oscillatory tail any
further, however, required implementation of the full theory of

Section 3.2, In the theory, it will be recalled, the trajectory is a
function of the relative wave height H/h. Thus seven trajectories were
prepared for relative wave heights of from 0.1 to 0.7 in increments of
0.1. These trajectories, with displacement normalized with respect to
the stroke, and time normalized with respect to the duration, are
plotted in Fig. 5.4. The trajectories are evidently of similar shape,
being distinguishable from one another only by the nondimensional slope
at midstroke:

a(3S,%t) _ 3.8+ H/h
s/t = 1+H/h » (5.2)

which implies the slope of the trajectory for a relative wave height
of H/h=0.7 is 75% of that for a relative wave height of H/h=0.1, The
difference in trajectories from one relative wave height to another is
small; however, since the degree of '"tuning' being attempted was so
fine, it was considered necessary, initially at least, to take details
as fine as this into account.

The oscillograph record from a typical wave generation experiment
is presented in Fig. 5.5. The setup was precisely the same as was
described for Fig. 5.3, but in this case the trajectory used was the

solitary wave trajectory for a wave height H/h=0.2. As before the
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depth was 10 cm and the stroke was 10.33 cm, but in this case the
duration was 2.044 sec., The figure shows the trailing waves nearly
have been eliminated, except for small amplitude, high frequency
waves which are attributed to surface tension effects.

The duration, T=2.044 sec, is 7.4% greater than the theoretical
duration calculated using Eq. (3.56). It was found that increasing
the duration of the trajectory by 107 the amplitude of the trailing
waves was reduced by 1% to 2%. It is at this stage that using the
refined trajectories is important because if one attempts to generate
a wave with the wrong trajectory, the trailing waves cannot be reduced
as much by adjusting the duration as they can be if the correct
trajectory is used.

That the optimum duration is not the theoretical duration is
attributed to the approximate nature of the assumptions that:

i) the actual motion of the wave plate is the programmed

motion (see Section 4.2.2);

ii) the velocity distribution is constant with depth (see
Eq. (3.5) in Section 3.1); and

iii) a laboratory solitary wave is given by the Boussinesq
profile (Eq. (3.25)).

The latter assumption is addressed in Fig. 5.6 in which the shape
of solitary waves with relative heights of H/h=0.15 and 0.61 are com-
pared with the theories of Boussinesq (1872) and McCowan (1891). (A
summary of these theories is presented in Table 5.1 which was extracted

from Naheer (1977)). For small wave heights, the solitary waves derived
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Table 5.1 Solutions of the solitary wave due to Boussinesq, McCowan

and Laitone.

(Naheer (1977))

Boussinesq

McCowan

Laitone

Wave profile

n

2 Vﬁ p.¢
H sech 4h b

3
h N sin¥ {1+n/h)

M[cos M (1+n/h) + coshM %]

(4
2 3
Wave speed C= Vgh(1+H/h) &1 pann ‘@[1+ Zi. 3_<E) + 0(§> J
M 2 h 20\h h
Fluid particle (1
velocities CN(1+cos; Z cos ~X) 2
horizontal u = Ln_ NEH mﬁ; /ég El:1+ §<l 3z )]sech2 (a ﬁ-) +
htn 2 I\2 h h\4  9p? h
(casMi]- +coshMi—i—>
H\2/922 Wl 5)}
(h) (4112 )sech (a h
@ ON simiZ sinhie /
sinM- sin 5/2
z dn H
vertical v = - /g_h [E ax + O(K) ]

(cos}-?z + coshl*‘%) :

Notes

1) u 1s averaged
over the depth
applying continuity
consideration

2) expression for the
vertical velocity was
not presented by
Boussinesq for soli-

tary waves

3) the relationships for

N and M are
3 h)j'

N = 2 sinZ[M (l

3
H_N 1, E)]
k- n tan[2 r{(l+ n

4)

by Boussinesq (1872) and McCowan (1891) are coincident except at the

leading and trailing edges and, as shown by Fig. 5.6(a), the shape of

small experimental waves compares well with the theories.

However, as

the wave height increases, the Boussinesq and McCowan profiles become

different, with the Boussinesq profile being wider at the crest and

narrower at the leading and trailing edges.

which are greater than 0.3, the experimental waves were found to follow

For relative wave heights

Boussinesq near the crest and McCowan at the edges, as shown in

Fig. 5.6(b).

(This same phenomenon was observed by French (1969) in

experiments conducted in the same wave tank as was used for these

experiments, but with a different method of wave generation.)
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The generation and propagation data for solitary waves which
will be presented were obtained from two different sets of experiments.
In the first set, the data were obtained from the incident waves of
experiments to be described in Section 5.2. The experiments were
for relative wave heights of from H/h=0.05 to 0.65 and for depths
of from 17,27 cm to 31.08 cm. The data were obtained from a wave
gauge placed 8.4 m from the initial position of the wave plate. The
second set of experiments was performed to investigate the behavior
of solitary waves as they propagate. Five wave gauges were used,
with Gauge 1 placed 1.0 m from the wave plate and the other four
gauges spaced at 4.0 m intervals downstream. Two depths were
considered, h=5.0 cm and 10.0 cm, and relative wave heights varied
from H/h=0,1 to 0.6. In this discussion, the data from the first
set of experiments and the data from Gauge 1 of the second set of
experiments will be presented first. Later the data from the remain-
ing four gauges of the second set of experiments will be compared to
the data from Gauge 1.

The solitary wave generation data are presented in Fig. 5.7
where the ratio of wave height to stroke H/S is plotted as a function
of the relative wave height H/h. The equation of the theoretical
curve, which can be derived from Eq. (3.54), is:

3

16 . (5.3)

wim
1
=l

For small wave heights (H/h<0.1) the theory agrees quite well
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with the data; however, as the relative wave height increases, the
measured wave height is generally less than is predicted and the
agreement is worse the greater the distance in depths the wave gauge
is from the wave generator. Friction cannot be the only cause of
this because both ordinate and abscissa have wave height in the
numerator.
The time-amplitude histories from which the data presented in
Fig. 5.7 were obtained were digitized and a comparison of the follow-
ing properties with those of theoretical solitary waves was made:
i) The shape of the solitary waves was compared to the shape
of the Boussinesq solitary wave by noting that, in Fig. 5.6,
both waves follow the Boussinesq theory for the upper-%
of the wave height. Therefore,a regression analysis could
be performed on the part of the wave where the amplitude

exceeded %&1 to determine HReg’ Q and t, in the expxession:
= 2 - .
n HReg sech” Q(t to) . (5.4)

For all but 11 of the 65 experimental waves considered, the
coefficient of determination, r?, was greater than 0.999
and the minimum for all 65 experiments was 0.990 which
indicates the surface profiles of the waves are well
described by a sech? curve. (In this discussion, waves
with this feature frequently will be referred to as having
"sech? shape.") The calculated wave height, HReg’ agreed

with the measured wave height to within the wave gauge
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error of +0.04 cm for waves less than 2 cm in height and
+27% for larger waves. The frequency, @, is compared with

that of the Boussinesq theory described by:

Q= E —431%(“%) : (5.5)
in Fig. 5.8 where the nondimensional frequency Qvh/g is
plotted as a function of the relative wave height H/h.
The data follow the theory for small wave heights (H/h<0.2)
but for larger wave heights the frequency is less than
the theory predicts. This implies the experimental waves
were less peaked than the theory predicts. The dashed
curve in Fig. 5.8 represents the best fit of the data to

an expression with the form:

Q= ‘]%',J—%—%—(Ha%) : (5.6)

(The regression analysis gave a=0.28 with coefficient of
determination r2=0.69.)

Since the gauge at which the solitary waves were measured
was less than 50 depths from generation, it was possible
that the propagation distance was insufficient for the
leading solitary wave to completely separate from the
remainder of the train. To check this, the waves were
propagated analytically to infinity using the technique

of inverse scattering. For a particular initial wave, the

analysis yields the number and heights of solitary waves
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which emerge at infinity. For a wave which is initially
a solitary wave, only one solitary wave with the same
height as the initial wave will emerge at infinity. The
results of this analysis on the 65 waves considered here
are presented in Fig. 5.9 where the ratio of the wave
height calculated from inverse scattering to the wave

height which was measured, H, __/H, is plotted as a function

INV
of the measured relative wave height, H/h. The horizontal
line represents the theoretical result that a wave which

is initially a solitary wave will retain its height at
infinity. The data from the second set of experiments all
lie below the theoretical line and this will be discussed

in detail presently. The majority of the data from the
first set of experiments lie between HINV/H==O.98 and 1.08
indicating the waves would have retained their shape if

they had propagated to infinity in the absence of friction.
One exception is the wave with height H/h=0.61 in depth
h=21.76 and for this wave the theory predicted two solitary
waves would emerge at infinity.

The volume under the experimental solitary waves is

compared to the theories of Boussinesq (1872) and McCowan
(1891) in Fig. 5.10 where nondimensional volume per unit
width, ¥/h2, is plotted as a function of the relative wave
height, H/h. The solid curve is the theory of Boussinesq

(1872) and the dashed curve is the theory of McCowan (1891).
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For small wave heights, the theories are coincident but
as wave height increases, McCowan's theory predicts a
greater volume than Boussinesq's theory, then as the
height approaches breaking (H/h =~ 0.7), the theories
converge again. For small wave heights (H/h<0.2) the
data agree well with the theories but as the relative
wave height increases the experimental waves have greater
volume than either of the theories predict. The reason
for this is evident from Fig. 5.6 which shows the experi-
mental profile follows Boussinesq's theory in the crest
and McCowan's at the edges which can only make the total
volume greater than either theory.
These results show the solitary waves generated in the laboratory
generally agree well with the theories for small relative wave heights
(BH/h<0.2) but diverge slightly for larger wave heights.

5.1.2 The Propagation of Solitary Waves in a Constant Depth

As a solitary wave propagates in a laboratory flume the
effect of friction on the side walls and the bottom of the flume
causes the wave height to decrease. This problem has received con-
siderable attention in the past by, e.g., Scott-Russell (1844),
Keulegan (1948), Ippen and Kulin (1955), Van Dorn (1966), Naheer (1977),
but in none of these studies is the agreement between theory and
experiment sufficiently good to be confident in applying the theory
without corrobarative experiments. Therefore, a set of experiments

(described previously as the second set) was conducted to determine
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the damping characteristics of solitary waves in this flume and in
particular to determine, for a range of wave height and depth, the

damping exponent f in:

H = Hoe‘f"/h R (5.7)

wvhere Ho is the initial wave height. The exponential form was used
because the data seem to fit Eq. (5.7) quite well. As mentioned
previously, five wave gauges were used, with Gauge 1 placed 1.0 m
from the wave plate and the other four gauges spaced at 4.0 m
intervals downstream. A solitary wave was generated and recorded
on the oscillograph and, in addition, on magnetic tape using an
analog-to-digital (A/D) converter.

The crest height H, the inverse scattered wave height HINV’ and
the wave height HReg and frequency § from regression on the upper
2/3 of the wave records were obtained from each digitized recoxrd.
The data are presented in Figs., 5.11 to 5.13. Fig. 5.11 is a plot
of the damping exponent f as a function of the relative wave height
HO/h,'where both f and Ho were obtained by semi-log regression using
Eq. (5.7). Data from Naheer (1977) which were for greater depths
than were considered here and for a tank width of 110 cm are included
in the figure. The curves are the theory of Keulegan (1948) which

also can be expressed approximately in the form of Eq. (5.7) with

the damping exponent given by:
Y 1

H 2
-if=e Zhy v
f= B(h ) <l+ b ) [glfz h3/2] ’ (5.8)
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where v is the kinematic viscosity, b is the width of the tank and
all other quantities are as have been defined previously. The theory
predicts a small variation of the exponent, f, with wave height but
the data do not appear to exhibit this. However, the increase in
the exponent with decreasing depth which the theory predicts also is
exhibited by the data,

The other quantities (HINV’ HReg and Q) were calculated from
the wave records in an effort to determine if and how the shape of
the wave changed as it propagated. In Fig. 5.12 the ratio of
the wave height calculated by inverse scattering to the measured
wave height, HINV/H’ is plotted as a function of the measured relative
wave height, H/h. Each symbol refers to a different experiment and
the ticks on the symbol denote the gauge from which that particular
point was taken, e.g., symbols with a vertical tick above denote
Gauge 1. The figure shows, for all experiments, the wave height
ratio HINV/H of the waves at Gauge 1 is less than unity but for the
other gauges the wave height ratio is scattered about unity. The
interpretation of this is that since Gauge 1 was only 1.0 m from the
wave plate, the wave had not yet reached its steady state but by
the time it reached Gauge 2 it had, and as it propagated reduction in
wave height due to friction was accompanied by the appropriate change
in shape for that wave height.

This is further illustrated in Fig. 5.13 where the frequency, @,
calculated from regression on the upper 2/3 of the wave is plotted as

a function of relative height, H/h. The solid curve in Fig. 5.13 is
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the theory of Boussinesq as given by Eq. (5.5); the dashed curve
represents the best fit of the data, other than those from Gauge 1,
to an expression with the form of Eq. (5.6) (in this case it was
found ¢ =~.004). The frequency of the wave at Gauge 1 in all cases
is greater than the frequency of the wave when it passes the other
gauges., This implies the wave becomes less peaked as it propagates
from Gauge 1 to Gauge 2. However, the data from the other gauges
appear to be less scattered which indicates the shape is not changing
as rapidly as it does between Gauges 1 and 2.

The speed of propagation, or celerity, of solitary waves was
measured by placing five wave gauges 0.45 m apart, generating a
wave and recording the times at which the crest passed each gauge.
The celerity was calculated by linear regression from the five
pairs of x and t and is plotted as a function of the relative wave
height in Fig. 5.14(a). With the gauges only 0.45 m apart, the change
in height of the wave between the first and fifth gauges was negligible
so the average of the five wave heights was used. The three curves
in Fig. 5.14(a) represent the theories of Boussinesq (1872), McCowan
(1891) and Laitone (1963). The theories of Boussinesq and Laitone
agree up to a wave height H/h=0.2, then diverge slightly with the
Boussinesq theory predicting a larger celerity (2% larger for H/h=0.7).
The theory of McCowan agrees with the other two up to a wave height
H/h=0.12, then diverges to predict celerities which are significantly
less than the other two theories. The data tend to follow the theory

of Laitone more than any other which is a result also found by Daily
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and Stephan (1952) and French (1969). Their data along with those
of Naheer (1977) are presented in Fig. 5.14(b) (from Naheer (1977)).

5.1.3 The Generation of Cnoidal Waves

The generation of long periodic waves of constant form
in the laboratory is difficult because nonlinear effects can never
be completely eliminated. This can be illustrated by considering

a wave of form:

n(x,t) = a sin(kx-wt) R (5.9

and substituting into the KdV equation:
3n 1.2 -
”t+°0(1+2 h)r‘x+6coh nxxx"o ’ (5.10)

where c0==¢gh. For nonlinear effects to be negligible, the magnitude
of the nonlinear term-é%connx must be much less than the magnitude

of the dispersive térm-%c°h211 » which, from Eqs. (5.9) and (5.10),

XXX
implies:

1

3 2,2
5 << -g.k h . (5.11)

a
h

For long waves, it is usually assumed that kh < w/10, thus Eq. (5.11)

implies:
2
a v
i << 00 . (5.12)

Hence for a depth of, say, 30 cm in a laboratory flume, the long waves
generated will be linear only for amplitudes a << 0.2 cm which is
extremely small. Because of this, the periodic waves considered in

this study were cnoidal waves which although nonlinear, propagate with
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constant form.

The wave generation theory developed in Section 3.2 was applied
to produce six cnoidal wave generation trajectories, named CN1 to CN6,
which were stored on punched paper tape. The trajectories, the
theoretical shape of the waves the trajectories gemerate, and other
associated data are presented in Fig. 5.15, where the abscissas
are time normalized by the wave period, t/T, and the ordinates are
the displacement normalized by the stroke, £/S, and the wave amplitude
normalized by the wave height, n/H. Trajectories CN1 to CN4 have a
nondimensional period: T/§753=20.3 and wave heights which, starting
with H/h=0.025, double successively. For trajectories CN5 and CN6
the relativerwave height is: H/h=0.6 and the nondimensional periods
are: T%§7E?=20 and 40, The trajectories in Fig. 5.15 correspond
to a range of the complementary parameter, m', of 0.4702m"' 2 9.53 x 10~1%,
As the complementary parameter, m', decreases, the crest of the
trajectory moves towards the left which means the average speed in
the forward direction is greater than the average speed in the reverse
direction. Since forward motion of the generator plate produces the
wave crest while reverse motion produces the trough, greater speed
in the forward direction produces a higher crest and consequently a
shallower trough than if the average speed were the same in both
directions. In addition, as the proportion of the period in which
forward motion of the plate takes place decreases, the wave crest
becomes more peaked.

The actual waves which trajectories CN1 to CN6 generated
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are compared to theoretical cnoidal wave shapes in Fig. 5.16. For
these experiments a wave gauge was placed 1.0 m from the wave
generator and a train of cnoidal waves was generated. The data for
Fig. 5.16 were taken from the third cycle which passed the gauge.
The wave height used for the theoretical wave was the measured wave
height, which was in general less than what the generation theory
predicted. Fig. 5.16 indicates that the generated wave shapes are
predicted quite well by the theory.

Figure 5.17 is the oscillograph recording of the variation of
the water surface during a typical wave generation experiment using
trajectory CN4. The five wave gauges were spaced 2.5 m apart with
Gauge 1 placed 1.0 m away from the wave generator. For this experi-
ment the depth was h=20 cm, the stroke was S=11.18 cm and the
period was T=2,90 sec. The wave generator executed four cycles,
as shown by the displacement time record at the bottom of the figure,
and four waves resulted. The behavior of the leading and trailing
waves will be discussed later. Attention is called here to the waves
in the middle of the train which retain the same shape from gauge to
gauge. Compare this with the recording shown in Fig. 5.18 in which
everything is the same as for Fig. 5.17 except that the period was
increased to 4.28 sec. In Fig. 5.18 the wave shape is not constant
between gauges; there appears to be a secondary wave as indicated in
the figure with a period half the main period. This phenomenon was
examined by Madsen (1971) for waves with small Ursell Numbers,

HL2/h3. He showed, using Stokes second order theory, that the waves
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and T=2,90 sec.



157

.55;r03

x/h

GE4 »

GAUGE 5

i

e
(W2) 3aNLiTdNY
& e L AR R T e

)

(sec

TIME

Fig., 5.18 Oscillograph record showing the waves generated by trajectory CN4 with h=20 cm, 8=11.18 em

and T=4,28 sec.



158

generatéd by sinusoidal trajectory, £ = Elsinmt, have the form:

n(x,t) =a sin(kx - wt) +elp sin 2(kx - wt)

(5.13)
+ ap sin(klw - 2wt)

where

w? =gk tanh kh and ky > 2k,

The first two terms represent a Stokes wave. The third term is a
free second harmonic wave which travels at a slower speed than the
Stokes wave and thus causes the wave shape to change as it propagates.
Madsen showed that the second free harmonic wave can be eliminated

by using a trajectory with the form:
g = Elcos(wt)-FEZ sin(2wt) . (5.14)

in which the second half-stroke 52 is adjusted so as to make a, = 0.

L
As was shown in Section 3.2, for HLz/h351D, Stokes waves and
cnoidal waves are coincident. Hence, the theory of Section 3.2
produces the same & and £y in Eq. (5.14) as does Madsen's theory;

) howevef, for this theory the arguments of the trigonometric function
in Eq. (5.14) are (wt-kE) instead of wt. The changing wave shape

in Fig. 5.18 cannot be expressed in the form of Eq. (5.13) because

for this case HL2/h3 120 which is well outside the range of appli-
cability of Stokes waves (HLZ/hs;SIO), however the phenomenon is
similar. Cnoidal waves, therefore, are generated only by their unique

trajectory and unless this trajectory is used, the waves change shape

as they propagate.
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Thié Aiscussion seems fo imply that trajecotries CN1 to CN6 will
produce only the waves for which they were designed. However, since
the trajeétories were stored on tape in the normalized form in which
they are plotted in Fig. 5.15 (i.e. with displacement normalized by
stroke), it was fossible to generate other cnoidal waves with
trajectories with the same shape but different stroke and period.

To find which waves have trajectories with the same shape, it was
noted in Fig. 5.15, the only parameter which obviously distinguishes
one trajectory from amother is the abscissal distance from the
ordinate axis to the crest, i.e., the value of the ratio t/T to the
crest. Referring back to Fig. 3.8, it can be seen this distance has
been defined already: it is twice the time the origin was moved to
start motion from zero, ZtO/T. Fig. 5.19 is a plot of tO/T against
the nondimensional period T/g/h . The curves are for constant wave
height H/h and the horizontal lines are for the particular to/T
corresponding to trajectories CN1 to CNé6. It can be seen, for example,
that for CN5 which was designed for period T/E7E?=20 and relative wave
height H/h=0.60, waves with (period, wave height) pairs of (21.4, 0.5),
7 (23.3, 0.4),’(26.2; 0.3), etc. have the saﬁe magnitude of tO/T==0.135.

The half trajectories of a number of period, wave height pairs
for which to/T==0.200 are compared in Table 5.2, where the displacement
normalized with respect to the maximum displacement, E/Emax’ is listed.
The table illustrates a feature common to all comparisons made: for
a particular to/T and for T/ETEz;ZO the trajectories are essentially

the same. Therefore, for a given trajectory shape, it was possible
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Table 5.2  Comparison of Generation Trajectories for to/T==0.200.

E/gmax for a half period for various wave height and

period combinations.

H/h 0.2 0.1 0.05 0.025

o/g/h| 16.36 | 21.33 | 28.81 | 40.0
t/T
0.0 | 0.0 0.0 0.0 0.0

0.05 | 0.408 | 0.412 | 0.414 | 0.416
0.10 | 0.738 | 0.741 | 0.743 | 0.746
0.15 | 0.937 | 0.939 | 0.939 | 0.940
0.20 | 1.000 | 1.000 | 1.000 | 1.000
0.25 | 0.947 | 0.950 | 0.951 | 0.951
0.30 | 0.817 | 0.823 | 0.825 } 0.825
0.35 | 0.639 | 0.644 | 0.650 | 0.650
0.40 | 0.437 | 0.443 | 0.446 | 0.447
0.45 { 0.221 | 0,225 | 0.227 | 0.227

0.50 | 0.0 0.0 0.0 0.0
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to set ﬁhé\period and the étroke to generate cnoidal waves other
than those for which the trajectory was designed without generating
secondary waves. That this was correct only for Tvg/h> 20 raises
an interesting point. The cnoidal wave relations (Appendix A) have
no mathematical restrictions on the period (or, equivalently, the
wave length). The relations apply equally as well to a wave with
T/g/h=1 as they do to a wave with T/gl_h-= 100, Thus, the long
wave assumption is an external physical requirement. However, when
the generation theory is extended to waves which are not long, i.e.,
TV/g/h < 20, it produces results which are different from those for
physically long waves (TVg/h > 20) with the same tO/T. For example,
the trajectory shapes change slightly for constant tO/T as shown in
Table 5.2,and the curves for various H/h in Fig. 5.19 converge. The
reason for this is that although the long wave assumption is not
explicit in the mathematical relations, it still must be there
implicitly.
Another example of this is shown in Fig. 5.20 which is the long

wave part of the H/S vs 1/T/§7ﬁ'plot often used for small amplitude
7 wave generation. The well-known small amplitude theory (see, e.g.,
Ursell et al. (1958)) is represented by the curve passing through the
origin. The other curves are for cnoidal waves and each are for a
constant relative wave height H/h. For l/T/§7EE=O, i.e., waves with
infinite period (solitary waves), the variation of H/S with H/h is
given by: %=‘/_l§6-% , which is Eq. (3.54). As the quantity 1/T/g/h

increases, the curves in Fig. 5.20 converge and, in fact, actually
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cross fdr i/T/E7K3'O.O6. Clearly, the theory is invalid when this
occurs, i.e., when the long wave criterion (h/L. <0.05) is violated.
The experiments performed to test the generation theory involved
generating waves of various periods with each éf the trajectories,
CN1 to CN6, and measuring the wave heights 1.0 m from the wave plate.
The results are presented in Fig. 5.21 which is the same as Fig. 5.20
but with the addition of curves of constant to/T (the dashed curves)
and the experimental data. Comparison of experiment with theory takes
place in two ways. First, the symbol shapes are associated with a
particular trajectory represented by a dashed curve (e.g., the points
represented by solid triangles were generated by trajectory CN6).
Second, the position of the flag on the symbol defines the range of
wave height in which a particular point lies, (e.g., symbols with a
vertical flag‘imply the relative wave height: H/h<0.05). Thus, the
posifion of the point relative to the curves of constant wave
height is also a comparison with the theory. It is evident that for
trajectories CN5 and CN6 (which were designed for H/h=0.6 and
T/ETF==20 and 40) all the experimental points lie below the theoretical
curves., For the wéves generated by trajecfory CN4, H/S is either on
or below the theoretical curve. For trajectories CN1l, CN2 and CN3 the
points lie above, below or on the theoretical curves. Thus, the
agreement with the theory is better for larger tO/T. A possible
reason for this is that the trajectories with smaller tO/T generate
high frequency small amplitude waves which appear in the trough of the

main wave. This can be seen in Fig. 5.16 where a wave with H/h=0.54
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was genéfafed by trajectorj CN6é and also to a lesser extent in
Fig. 5.17 where the trajectory used was CN4. The effect is even
more pronéunced in Fig. 5.22 which shows the waves generated by
trajectory CN6 in a depth of 5 cm with stroke S=6.07 cm and period
T=3.40 set, Which corresponds to H/S=0.304 and l/Tv/m= 0.021 in
Fig. 5.21. (This figure will be discussed in more detail presently.)
The generation of spurious high frequency waves detracts from
the energy available to generate the desired wave, so the effect is
a reduction in wave height. Harmonic analysis proved fruitless for
this problem because cnoidal waves have contributions at all frequen-—
cies so the spurious high frequency waves could not be separated from
the cnoidal wave components. A period representative of the waves
in the trough at Gauge 1 in Fig. 5.22 is 0.35 sec which gives a
nondimensional period of T/§753¥5 and a wave length of L~10 cm.
Capillary waves at an air/water interface have L~1.7 cm which is an
order of magnitude less than the observed waves so it is concluded
that the waves are not caused by surface tension. Conversely, TVg/h~5
is about a quarter of the minimum period for long waves so the
spurious waves wouid not be predicted by aﬁy long wave theory. Having
excluded the two extremes of capillary and long waves, only short
and intermediate waves remain, but no theory other than the full
Navier Stokes equations is known which could predict the simultaneous
appearance of both cnoidal waves and short waves.
One approximation which is made in the generation theory and its

application which can be eliminated as a cause of lower wave heights
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than exﬁécfed is the use of depth averaged velocities and a vertical
wave plate. This is because the disagreement is worse for large
periods wﬁere the velocity distribution with depth would be nearly
constant than it is for smaller periods where the velocity distribu-
tion varies moré with depth.

5.1.4 The Propagation of Cnoidal Waves in a Constant Depth

The propagation of cnoidal waves was considered in two
phases: short range propagation which is relevant to this study
and long range propagation which is of general interest.

An example of short range propagation was presented in Fig. 5.17
which shows a packet of four waves propagating 50 dépths. At Gauge 1,
five depths from the wave generator, the crest and trough amplitudes
are the same for all four waves and the crests are equispaced in
time, As the train propagates, the height of the leading wave
decreases relative to the height of the other waves and the time
between its crest and the crest of the next wave increases by about
1% éf the period from gauge to gauge indicating the leading wave is
travelling faster than the rest of the train. The trough at the
rear of the train ﬁaintains the same amplitude as the two central
troughs but increases in period as the train propagates. The small,
oscillatory waves which follow this trough grow in amplitude and
period from gauge to gauge.

However, in spite of these transient effects at either end of
the train, the central part of the train between the second and fourth

crests appears unaffected. Hence, the decrease in height from gauge
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to gaugé of the waves in the center of the train is attributed to
friction entirely. Two sets of experiments were performed to test
the effecf of friction in which five wave gauges were spaced 2.5 m
apart in water of depth 4.5 cm and 10.0 cm. A packet of waves was
generated and tﬁe height of the third wave passing each gauge was
recorded. A regression analysis was performed on these wave heights
to determine the initial height H, and the exponent f in the damping
equation, Eq. (5.7). The results of this analysis are presented in
Fig. 5.23 which is a plot of the exponent f vs the initial relative
wave height HO/h. Included in the figure is a table which lists the
data including the coefficient of determination, r2. For twenty
of the twenty-eight experiments the latter exceeded 0.9 which
indicates the decrease in wave height with propagation distance
is reasonably well represented by the exponential equation, Eq. (5.7).
The data exhibit considerable scatter but, even allowing for this,
no variation of damping exponent f with wave height Ho/h is apparent
in Fig. 5.23. Comparing Fig. 5.23 with Fig. 5.11 which showed the
damping exponent for solitary waves, the magnitude of the damping
exponents for cnoidal waves and solitary wéves appear similar for
the similar depths considered. (For comparison, the curves described
by Eq. (5.8) for solitary wave damping are presented in Fig. 5.23.)
The wave gauge records of the experiments marked with an asterisk
(*) in Fig. 5.22 were digitized using an A/D converter and an
harmonic analysis was performed on a single wave cycle from each

gauge, Of interest was the way in which the shape of the waves
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Fig. 5.23 Variation of the damping exponent, f, with relative wave

height, Ho/h’ for cnoidal waves.
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change éé iheir height decfeases due to frictional effects and whether
the shape remains cnoidal. Harmonic analysis was used only because

it provides a means of quantitatively describing the complitated

shape of a wave. The results for the first three frequency components
are presented in Fig. 5.24 where the component amplitudes, normalized

2
with respect to the wave height, are plotted against E%T" The curves

h
presented in Fig. 5.24 are the theoretical curves which were described
in Section 3.1 and plotted in Fig. 3.5; they represent the first three
theoretical Fourier components of cnoidal waves. As the wave propa-
gates, the period remains constant but the wave height, H, and hence
the celerity (and the wave length, L) decrease; therefore, %%;-
decreases. Hence, the progression from one wave gauge to another in
a downstream direction corresponds to moving from right to left in
Fig. 5.24 (i.e. in the direction of decreasing %&?&. For a particular
experiment the point at the right will have come from Gauge'l and the
point at the left from Gauge 5. Apart from one experiment, the
theoretical curves agree well with the data with no apparent trend
of the data either towards or away from the theoretical curves. Thus,
the waves retain cnbidal shape as they propagate even though the wave
height decreases due to friction. The exception is the experiment
with T/§7E?=20 which exhibits large variations in the second and
third components. It is this experiment for which, in Fig. 5.23,
the damping exponent f is considerably greater than for the other

exponents (f=3.25x10"3). Therefore, it is concluded that for this

wave the wave shape was changing as it propagated due to improper
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generation.
Another quantity of interest in the propagation of cnoidal waves
is their speed of propagation or celerity. The theoretical relation

for celerity (see, e.g., Svendsen (1974)) is:

C2
g
a =%‘1'3EEK , (5.16)

where m is the elliptic parameter and K and E are the first and

second complete elliptic integrals respectively. The parameter «,
2
which is a function of only m or, equivalently, only %%r-, is plotted
HL?2 HL2
against i;?-’ in Fig. 5.25. TFor large Tk a tends to unity and

-2.0F

(¢4 3 lo* 10* 10
HL®/h®

Fig. 5.25 Variation of the celerity parameter, @, with Ursell Number,
HL2/h3, for cnoidal waves.
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the celefiéy tends to the sdlitary wave celerity, c =Vgh<1+%\ .

2
As %%T’ goes to zero the parameter a goes to negative infinity but,

since smali %%; implies small wave height also, the celerity remains
finite and tends to ¢ = /E—.
The célerit& of cnoidal waves generated in the laboratory was

measured by placing five wave gauges 0.45 m apart, generating a

group of waves and recording the time at which a particular crest
passed each gauge. The celerity was calculated by linear regression
from the five pairs of x and t and is plotted as a function of wave
height in Fig. 5.26. With the gauges only 0.45 cm apart, the change
in height of the waves between the first and fifth gauges was
negligible so the average of the five wave heights was used. The
numbers next to‘the points in Fig. 5.26 represent the value of %%;—
(» denotes a solitary wave). The curves are the théory as given by
Egqs. (5.15) and (5.16), for constant values of %%éi. The dashed curve
represents the long wave limit of‘h/L'<.05. The scatter exhibited
by the data is partially explained by the sensitivity of the graph
exceeding the accuracy of the data. (For waves with large Ursell
‘Number this is less.of a problem because tﬁe wave crests are sharp
and therefore well defined, but for waves with a small Ursell Number
the crest is less peaked and its position is not as well defined.)
In spite of the scatter the trend is for the cnoidal wave celerity
to be generally less than the theory predicts, while the solitary

wave celerity is well defined by the theory.

Only near field propagation has been considered so far. Also
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of interés;‘is what happens to a train of cnoidal waves as it
propagates to infinity. The inverse scattering theory predicts

one solitary wave will emerge--the lead wave, but the theory does

not provide information about the trailing waves. An example of

the long distance propagation in the laboratory of a train of cnoidal
waves was presented earlier in Fig. 5.22 which shows a packet of

four cnoidal waves propagating 340 depths from generation. The
behavior of the leading crest, which slowly separates from the train
and the trailing trough, which increases in duration, was described
earlier when considering near field propagation. Of more interest
here are any changes which occur in the center of the train. Careful
inspection of each wave shows the heights of the three central crests
vary by up to 0.025 cm (i.e., 1.3%Z of the wave height). The period,
set at 3.40 sec, varies between 3.37 sec and 3.40 sec. These
fluctuations are considered too small to imply any change is taking
place to the center of the train as it propagates the 340 depths
from generation. However, it cannot be concluded from this limited
~aspect of the studyvthat the train would continue to propagate in

this manner to infinity even in the absence of friction.

5.2 The Reflection of Long Waves from a Change in Depth

5.2.1 The Reflection of Solitary Waves from a Step

The linear nondispersive theory described in Section 3.4,

when applied to solitary waves propagating over a step onto a shelf,

predicts the reflected wave will retain the same shape as the
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incident wave, but the amplitude will be scaled by the reflection
coefficient Ky (given by Eq. (3.113)). Hence, the predicted reflected

wave would be given by:
3 0y
nR=H.R sech? Z -Eé- (x+ Vghlt) . (5.17)
1

where HI is the height of the incident solitary wave and Hp is the

reflected wave height given by:
HR = KR HI . (5.18)

A series of experiments were conducted, for a range of wave

heights and depths, to test the validity of the linear nondispersive

theory when applied to the reflection of solitary waves from a step.
The experiments comprised essentially the arrangement described
earlier and shown in Fig. 5.1 except that one of the gauges from
the shelf was removed and placed adjacent to Gauge 1. This gauge
was adjusted to be more sensitive‘than Gauge 1 so that maximum resolu-
tion of the reflected wave (which had height 10-45% of the incident
wave) could be achieved. Electrical interference between the gauges
was minimized by cérefully and directly gréunding the gauge support
clamps.

The experiments were performed in two sets: in the first set
the effect of the height of the incident wave on the reflected wave
was examined; in the second set the effect of the depth ratio on the

reflected wave was examined.
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Thé'first set compriséd 51 experiments with incident wave
height to depth ratios HI/hl varying from 0.05 to 0.65 and with depth
ratios: ﬁl/h2 of 2, 3, 3.5, 4, 7 and 10. The height of the shelf
was 15.54 cm and Gauge 1 was situated 5.7 m upstream of the step.

A solitary Wave.was generated and the incident and reflected waves
were recorded. Both waves were digitized and the following quantities
were calculated: maximum wave amplitude, inverse scattered wave
height and volume. The results for the incident waves were presented
in Section 5.1.2; the results for the reflected waves relative to
these incident waves are plotted as a function of the relative wave
height, HI/hl, in Figs. 5.27 to 5.29,

Figure 5.27 shows the ratio of measured wave heights HR/HI
plotted as a function of the incident wave height ratio HI/hl‘ The
lines represent the best fit through the experimental points. They
indicate that, as the/incident wave height increases, the relative
height of the reflected wave decréases and, as the depth ratio
increases, this decrease takes place at a greater rate., Clearly this

is contrary to the linear nondispersive theory which from Eq. (5.17)

predicts, for constant depth ratio, hl/h2’ no variation in the wave
height ratio HR/HI with incident wave height. Therefore, the linear

nondispersive theory is invalid for some time between the time the

incident wave leaves the gauge until the reflected wave reaches the
same gauge. The propagation of the incident wave toward the step is

expected to be predicted well by the linear nondispersive (as well as

by the nonlinear dispersive theory) theory since the incident wave
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is a soiitéry wave which pfopagates with constant shape, however
this is not true for the propagation of the reflected wave from the
step back to the gauge. Assuming the reflected wave at the step
(x=0) is given by Eq. (5.17), then computing the Ursell Number
after Hammack (1974) Eq. (3.141) gives U=2.25 Kp» i.e. less than
the Ursell Number of a solitary wave (U=2,25). Hence, the wave
will change its shape as it propagates until one or more solitary
waves emerge followed by a train of oscillatory waves. Since the
gauge measuring the reflected wave is a finite distance (18-34 depths)
from the step, dispersive and possibly nonlinear effects will occur
and cause the reflected wave to be different in shape from that at
the step. In addition, since the distance for complete separation
into solitary waves is a function of the wave height, waves with
different heights will be in different stages of evolution as they
pass the wave gauge. Thus, the ratio of the reflected wave height
to the incident wave height HR/HI‘Will be a function of the distance
from the step and, therefore, dependent on the incident wave height.
A solution of this problem would be to measure the reflected wave a
large distance from the step after the separation process has taken
place. This is not practical first because the length of the flume
is limited and second because friction causes a reduction in the
wave height. However, propagation to infinity in the absence of
friction can be performed analytically by the method of inverse
scattering discussed in Section 3.5. As was shown in Section 3.5,

from a wave with the form of Eq. (5.17) one solitary wave emerges
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with the height given by:

me =3u {aregiaalt (5.19)

INV

where KR is the reflection coefficient from the linear nondispersive
theory, Eq: (3.113). Hence, using the inverse scattered height of

the reflected wave, HRINV’ computed from the record of a wave gauge
located at some position upstream of the step, the dependence of the

results on the actual position of the gauge will be eliminated.

In addition, if the linear nondispersive theory accurately describes

the reflection process at the step, from Eq. (5.19) there will be

no variation of wave height ratio HR /HI with incident wave height.
INV
The results of this analysis for the experiments plotted in Fig. 5.27

are presented in Fig. 5.28 where the wave height ratio HR /HI is

INV
plotted ‘as a function of the incident wave height to depth ratio

HI/hl' The difference between Figs. 5.27 and 5.28 is quite marked

in that most (but not all) of the variation of the wave height ratio
with relative incident wave height has been removed, particularly for
_ small relative wave heights and small depth ratios. In fact, for
incident wave heights HI/hl<<0.3 and depth ratios hl/h2:£7 the data
indicate no variation of the wave height ratio HRINV/HI with incident
relative wave height HI/hl' Hence, for these parameters the inverse
scattered reflected wave height HR is proportional to the incident

INV
wave height HI as predicted by the linear nondispersive theory,

Eq. (5.19).
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Fof‘ihcident wave heights HI/hl>~0.3 or depth ratios hl/h2> 7
the variation of wave height ratio with incident wave height still
occurs and since, by using inverse scattering, the propagation of
the reflected wave back to the gauge is eliminated as the cause, it
is concluded that the process at the step is not predicted by the

linear nondispersive theory. An obvious reason for this is that

for large wave heights or large depth ratios the wave breaks on
the shelf close to the change in depth. In fact, using the linear

nondispersive theory and the criterion that a wave will break if the

height to depth ratio exceeds 0.7, the limiting relative incident

wave height for a non~breaking wave on the shelf is:

B h 5
=< 0.35 EE(“V?{Z') . (5.20)
1 1 1

The limiting relative incident wave heights for the depth ratios
considered here obtained from Eq. (5.20) are presented in Table 5.3.
A comparison of the limiting wave heights in Table 5.3 with the range
of wave heights in Fig. 5.28 for which the»reflected wave height is
independent of the incident wave height indicates the linear

nondispersive theory predicts the correct behavior for some cases

even though the wave may break on the shelf.

This feature of the problem is further illustrated in Fig. 5.29
where, for the 51 experiments under consideration, the ratio of the
reflected to the incident volumes of the waves, VR/VI, is plotted as

a function of the relative incident wave height, HI/hl' The volume
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Table 5.3 Maximum relativé incident wave heights for non-breaking
waves on the shelf as predicted by the linear nondispersive
theory.

hl/hz 2. 3. 3.5 4. 7. 10.

‘HI/hi 0.30 | 0.18 | 0.15 | 0.13 | 0.07 0.05

ratio appears independent of incident wave height for all depth
ratios and even for waves which obviously break onto the shelf.
Hence, the reflected volume appears to be a linear function of the

incident volume, as predicted by linear nondispersive theory.

Included in Figs. 5.27 to 5.29 are data from experiments in
which the step was replaced by the half-sine transition described
in Section 4.1. These data lie close enough to the data for the
step to imply the transition has no effect on the reflected wave.

The finite element numerical scheme described in Section 3.3
also was used to determine the waves reflected from a step. However,
it was found the reflected waves were dependent on the incident wave
height, an effect the physical experiments do not predict and an
effect which did not occur when a slope instead of a step was used
(this will be discussed in more detail in Section 3.2.3). Hence, it
was concluded, the approximation used to match flow rates across a
step, which was described in Sectiom 3.3.2, caused errors in the
numetrical scheme in this case. To avoid this, the numerical scheme
was used with the step replaced by the half-sine transition. This

change, the physical experiments show, has essentially no effect on
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the refiecied wave, but it‘reduces the error given by Eq. (3.104) by
reducing the change in depth between the elements, Ah. The effect of
this is sﬁown in Figs. 5.28 and 5.29 where for a depth ratio of
hl/h2é=3 and relative incident wave heights of HI/hl==0.05, 0.10 and
0.15, the reflection coefficients calculated by the finite element
scheme are the same for all three wave heights.

As was mentioned earlier, the experiments were conducted in two
sets. The experiments described so far comprise the first set in
which the variation with wave height was examined. The second set
of experiments involved keeping the relative incident wave height
constant and varying the depth ratio to determine the behavior with
depth ratio. The experiments were arranged in the same manner as
for the first set with adjacent gauges placed 5.7 m from the plate;
one adjusted to measure the incident wave and the other adjusted with
increased sensitivity to measure the reflected wave. The relative
incident wave height was fixed nﬁminally at HI/hl==0.10 and all the
waves were withinm: 0.090<<H1/hn<0.103. Initially fourteen experiments
were conducted with depth ratios in the range: 1.515h1/h25 68.4;
for h1/h2==68.4 thé depth on the shelf was 0.19 ecm. To determine if
there was any dependence on the height of the shelf, two subsequent
sets of experiments were conducted with shelves of smaller height.
For the first set the shelf-height was 5.97 cm and the waves were
measured at gauges located 3.0 m from the step. For the second set,
the shelf-height was 5.68 cm and the waves were measured with gauges

located 2.08 m from the step. (This latter set of experiments is



187

equivaleﬁt fo those with thé 15.54 cm step because the wave gauges
were placed the same number of shelf-heights from the step.) The
results in the form of the ratios of reflected to incident measured
quantities: wave height HR/HI’ inverse scattered wave height HRINV/HI
and volumeiVR/VI are plotted as functions of depth ratio hllh2 in

Figs. 5.30 to 5.32. The curves in each of these figures represent

the linear nondispersive theory. For Figs. 5.30 and 5.32 this is

given by Eq. (3.113) which is the reflection coefficient for a step.
For Fig. 5.31 the curve is given by Eq. (3.145) and also Eq. (5.19)
which gives the ratio of the inverse scattered reflected wave height

to the incident wave height, Hp /HI'

For all three plots, the difz lie below the theoretical curves
and the distance below increases with increasing depth ratio h1/h2'
One reason for this is that from the equation which predicts approx-
imately the conditions for breaking onto the shelf, Eq. (5.20), the

maximum depth ratio for an incident wave of height HIhl==0.1 to be

a nonbreaking wave is h1/h2==5. Therefore the linear nondispersive

theory would not be expected to predict aqcurately the reflected

wave for depth ratios hl/h2>-5, and the data do seem to depart more
from the theory for h1/h2>'5. Friction also is a cause of the wave
height data lying below the theoretical curve but accounﬁing for its
effects only slightly increases the wave height ratios (by from 4% for
h;/hy=1.5 to 11% for h;/h, =60) and this does not bring the data up
to the theoretical curve. In addition, in Fig. 5.32, which shows the

reflected volume ratio, the data are not affected by friction but
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still téndxto be below the theoretical curve.

In Figs. 5.31 and 5.32 the data from the four different sets
of experiﬁents fit together well indicating there is mo dependence
on shelf-height. However, in Fig. 5.30, which shows the measured
wave height ratio HR/HI’ the data from the experiments with the 5.97 cm
shelf placed 3.0 m from the gauge are generally less than the other
data. The reason for this is that the distance from the step to the
gauge for this set of experiments was 50.25 shelf-heights whereas
the distance for the other experiments was 36.68 shelf-heights; thus,
for the former, the wave had travelled further and dispersive and
perhaps nonlinear effects had more time to develop. Notice that this
tendency is substantially reduced in Fig. 5.31 which shows the inverse
scattered wave height ratio HRINV/HI.

Also included in Figs. 5.30 to 5.32 are the data from four experi-
ments in which the half-sine transition instead of the step was used.
The data show no difference from the data obtained when the step was
used.

The results for the nonlinear dispersive theory, calculated using

the finite element scheme with the half-sine transition, coincide

with the linear nondispersive theory in Figs. 5.30 to 5.32. Thus,

from this and from the experiments conducted, it may be concluded
for depth ratios of h1/h25_10 the reflection of solitary waves from
a step is a linear process, apart from the propagation and the

reflected wave may be approximately predicted by the limear nondis-

persive theory.
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5.2.2ﬁ The Reflection‘of'Cnoidal Waves from a Step

Experiments conducted to measure the waves which are
reflectedbwhen cnoidal waves propagate over a step onto a shelf
require a different laboratory technique than that used if the waves
were small‘amplitude, harmonic waves. In the latter case a standard
procedure is to deduce the reflected waves from the combined incident
and reflected waves using the principle of superposition. However
for cnoidal waves, which propagate in accordance with the nonlinear
dispersive theory, the principle of superposition is not valid,
~ therefore an alternative method must be devised. The technique used
in this study was to generate a finite number of cnoidal waves and
measure the incident and reflected waves at a point in the flume
where the trailing edge of the incident wave group had passed before
the leading edge of the reflected wave group arrived. The method has
two conflicting requirements:

(1) The wave group must contain a sufficient number of waves so
that the waves in the center of the group where measurements will
take place are not affected by transient effects at the leading and
trailing edges of ﬁhe wave group.

(ii) The wave group must be short enough that the incident and
reflected wave groups are separated at the point of measurement.

As was demonstrated earlier (see Section 5.1.2), for short
distance propagation, the requirement that transient effects do not
affect the waves in the center of the packet may be satisfied by a

group consisting of as few as four waves. Thus, the procedure used
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here waé tg place the wave gauges midway between the wave generator
and the step and to generate as many waves as possible (four or
greater) but still satisfy the requirement that incident and reflected
wave packets be separate at the point of measurement.

To illustréte the experimental details, the results of five
experiments, in the form of the wave amplitude--time history are
presented in Fig. 5,33, where the ordinate is the wave amplitude
normalized with respect to the depth, and the abscissa is the non-.
dimensional time t/E?EI. The egperiments were conducted using the
15.54 cm shelf with the step situated 23.84 m from the wave generator
and the wave gauge which gave the records presented in Fig. 5.29
situated midway between the step and the wave generator (i.e., 11.92 m
from both). For each experiment, four waves were generated using
trajectory CN4 with a stroke S/h1==0.378 and a period T/§7_I¥=27.2,
which theoretically should have produced waves with a relative height
of H/hl==0.1. The five experimenfs were performed with five different
upstream depths and consequently five different depth ratios. The
four waves to the left in each part of Fig. 5.33 are those which
comprise the incidént wave group; the fourbto the right in each part
comprise the reflected waves. Progressing down the figure, the depth
upstream of the step, hl’ increases and, consequently, the depth ratio,
hl/hZ’ decreases as does the distance of the gauge from the step
expressed as the number of depths, x/hl. The decreasing depth ratio,
hl/hZ’ produces reflected waves of smaller height; the decreasing

relative distance, x/hl, causes the time between incident and reflected
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wave packe&s also to decrease. Close inspection of Fig. 5.33 reveals
that, for both incident and reflected waves, the amplitudes of the
third and fourth crests are about equal, as are the second and third
troughs. In addition to the constancy of period between the second,
third and fourth crests for both incident and reflected waves, this
indicates the tramsient effects at the leading and trailing edges of
the wave group do not affect the central portion of the group, as
was assumed previously, Figure 5.33 was introduced at this stage of
the discussion for illustrative purposes; it will be discussed in
more detail presently.

Using the arrangement just described, experiments were conducted
for depth ratios: h1/h2==3, 4, 7 and 10. The results are presented
in Fig. 5.34 where the ratio of reflected to incident wave heights
HR/HI is plotted as a function of the relative incident wave height
HI/hl‘ The numbers beside the points are the nondimensional quantity:
gHITz/hi, which is a type of Urseil Number. It is used in preference to
the Ursell Numbers described earlier (m and HLZ/hi) because it can be
calculated directly from experimentally measured quantities whereas
the others must bevdeduced using complex numerical calculations. It
is related to HL2/h3 by the celerity, c¢=L/T. The data exhibit
scatter (some reasons for this will be presented shortly) but show
no trend in the variation of reflection coefficient, HR/HI’ with
either the relative incident wave height, H;/h;, or the Ursell Number,
gHITZ/h% . The dashed lines in the figure indicate the limiting wave

height for a nonbreaking wave on the shelf as predicted by the linear
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nondispefsiVe theory, Eq. (5.20).

Included in the figure are data from experiments in which a
shelf with a height of 5.97 cm was used. For these experiments the
wave gauge measuring incident and reflected waves was placed the
same relative distance, x/hl, from the step as the equivalent
experiments with the 15.54 cm shelf, i.e., x/h1==51 for the depth
ratio h1/h2==3. In Fig. 5.34, the data generally lie below the
data for the 15.54 cm shelf and this is attributed to the increased
effect of friction for the smaller depth.

In Fig. 5.35 the ratio of reflected to incident wave heights,
HR/HI’ is plotted as a function of the depth ratio, h1/h2. The

curve was obtained from the linear nondispersive theory (as given

by Eq. (3.113)). The data were obtained from the experiments pre—
viously described and from experiments in which the relative incident
wave height and period were set at HI/hl==0'1 and T/§7EI==27.2 and
the depth, hl’ was changed. The data follow the trend of the linear

nondispersive theory but the reflection coefficient is generally

less than theory predicts as was found to be true also for solitary
waves, - Part of thé reason for this is, ofbcourse, the effect of
friction first on the incident waves as they propagate the 11.92 m
from the gauge to the step and second on the reflected waves as they
propagate the same distance from the step back to the gauge. However,
a more important effect is the change in shape of the reflected waves

as they propagate, due to amplitude and frequency dispersion.
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This éffect was examined for five of the seven experiments
represented by solid circles in Fig.‘5.35 (for which, it will be
recalled,bthe nominal incident wave height was HI/h1==0.l and the
period was T/§7EI¥=27.2). These are the five records which were
presented previously in Fig. 5.33 and now will be considered in

detail. The linear nondispersive theory predicts the reflected

waves will have the same shape as the incident waves and will retain
this shape as they propagate. Examination of Fig. 5.33, however,
indicates the crests of the reflected waves are only approximately
symmetric, tending to be steeper on the back face of the wave than
on the front face. In addition, the troughs exhibit secondary waves

which vary from experiment to experiment. Hence the linear nondisper-

sive theory appears to be invalid for some portion of the time between
the time the incident waves leave the gauge and the time when the
reflected waves reach it. The obvious region where the linear

nondispersive theory does not apply is in the propagation of the

reflected waves from the step back to the gauge.

For solitary waves, this effect was accounted for by propagating
the reflected waves'to infinity in an analytical manner using
inverse scattering.

For cnoidal waves, to investigate the effect of amplitude and
frequency dispersion, the following analysis was performed. First,
the incident wave group was assumed to propagate without change

of shape to the step. Second, the linear nondispersive reflectiomn

coefficient (Eq. (3.113)) was applied to the incident wave group to give
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the thedréfical reflected wéve group. Thus, the shape of the
reflected wave group at the step was assumed to be identical to that
of the inéident wave group. Finally, this reflected wave group was
propaggted numerically the 11.92 m back to the wave gauge by: (i) the

linear dispersive theory using a Fourier transform method, and (ii)

the KdV equation using Peregrine's finite difference scheme (from
Peregrine (1966)). The latter was used in preference to the numerical
scheme developed for this study because the waves were travelling

in one directiom only. The results are compared with the wave gauge
record from Fig. 5.33 in Figs. 5.36 and 5.37 which are arranged in

a similar manner to Fig. 5.33, with the normalized amplitude, n/hl,
plotted as a function of the nondimensional time, t/§7ﬁz. The five
reflected wave groups from Fig. 5.33 are represented by the solid
curves and the theoretical results are represented by the dashed

curves. In Fig. 5.36 which shows the linear dispersive theory

compared with experiment, the thebry predicts the reflected waves
quite well for small depth ratios but as the depth ratio increases

the reflected waves are more peaked than this theory predicts. The
reason for this isvthe experimental Urseli Number, gHRTZ/hi, increases
with depth ratio because the reflected wave height increases. There-
fore, since the Ursell Number is a ratio of nonlinear to linear
effects, the nonlinear effects are greater for larger depth ratios

than for smaller depth ratios and consequently the linear dispersive

theory is less likely to be applicable to large depth ratios. The

veracity of this is illustrated by Fig. 5.37 where the nonlinear
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disgersiveﬁtheory is compafed with experiment. Here the agreement
between theory and experiment is good, with even the secondary crests
in the trdughs predicted by the theory. The only difference between
the thgories in Figs. 5.36 and 5.37 is the inclusion, in the latter,
of the nonlineaf term. The good agreement between the theory and
the experiments for the larger depth ratios is somewhat surprising
considering, as was determined earlier, the wave breaks on the shelf
for depth ratios hl/h2> 5.

Recall that some of the data presented earlier in Fig. 5.35
were from the reflected waves shown in Figs. 5.36 and 5.37. In
Fig. 5.35, the wave height ratio, HR/HI’ is plotted as a function of

depth ratio and the data are compared with the linear nondispersive

theory. However, the comparison does not appear as good there as it
does in Figs. 5.36 and 5.37. The reason for this is that the wave
height, which is defined as the difference between the maximum and
the minimum amplitudes, is a measure only of the extremes of the
wave whereas Figs. 5.36 and 5.37 give the shape also.

The wave height ratios from the three theories and from the
five experiments béing considered are 1istéd in Table 5.4. The wave
heights were taken from the third wave in the group in each case.

The table shows the three theories predict essentially the same
wave height ratio which is up to 10% greater than the experiments.
The difference between the experiments and the theories is attributed
to dissipative effects which are not included in the theories.

Although the theories agree in the height of the reflected waves,
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Table 5.4 Wave height.ratios for experiments, (HR/HI) ., linear
Expt
nondispersive theory, (HR/HI) , linear dispersive
L.N.

theory, (HR/HI) , and nonlinear dispersive theory,

’ L.D.

(H,/H,)

R o
H,/h (H,/Hy) (Hp/Hy) (Hp /Hp) (HR/Hy)
172 L Ept RUT . R o | R .
10.48 0.510 0.528 0.529 0.529
6.32 . 0.406 0.431 0.429 0.434
4.96 ‘ 0.337 0.380 0.376 0.381
4.03 » 0.289 0.335 0.331 0.339
3.42 0.277 ...0.298 0.302 0.298

the theories predict different shapes for the reflected waves. This
can be séen by comparing the dashed curves in Fig. 5.36 which show

the linear dispersive theory with those in Fig. 5.37 which show

the nonlinear dispersive theory. The shape of the reflected waves

predicted by the linear nondispersive is the same as that of the

incident waves shown in Fig. 5.33.
Thus, the experiments conducted here, as was found for solitary
waves, indicate the reflection process is linear and governed by the

linear nondispersive theory. However, the propagation of the reflected

waves requires a higher order theory in order to accurately determine

the shape of the waves.
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5.2.3 The Reflection of Solitary Waves from a Slope

In this section the results from two theories and from

experiments will be presented. The theories are: the linear

nondispersive theory, which was solved by the Fourier transform

method destribed in Section 3.4, and, the nonlinear dispersive

theory, which was solved by the finite element method described in
Section 3.3.

The parameters involved in the problemkof reflection of solitary
waves from a slope in the absence of friction are:

the upstream depth, hl;

the downstream depth, h2;

the slope length, L

the incident wave height, HI; and

the reflected wave height, HR'
The characteristic horizontal length of the wave, %, in general also
is a parameter but for the particﬁlar case of solitary waves { is a
functionvof only the incident wave height and the upstream depth as

X
given by Eq. (3.122) (i.e., 2=1.5 (H;/h 2hl). The problem has

1)
five variables and one dimension; hence, using the Buckingham

theorem, there are four dimensionless groups:
h H
B 1 L I
- = f( ' ) . (5.21)
HI h2 % hl

That is, the reflected wave height ratio, ﬁzu is a function of the

depth ratio h1/h2, the length ratio L/% and the incident wave height
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dispersive theory, the reflected wave height ratio, HR/HI, is a
function of all three of these parameters, but for the linear

nondispersive theory it is a function of only the depth ratio and

the length-ratio. Hence, the results of the linear nondispersive

theory are presented first and, with corresponding experimental data,

the results of the nonlinear dispersive theory will be presented later.

It is recalled from Section 3.4 that the method used to solve

the problem using the linear nondispersive theory is a Fourier

transform method in which the incident wave is transformed into the
frequency domain and the reflection coefficient, which is a function
of frequency, is applied to each frequency component of the incident
wave in turn. The resultant reflected wave is obtained by the
synthesis of these components. In addition, it was shown in Section
3.4, using the dimensionless frequency wL//EEI, the Fourier transform
of a solitary wave for the purposés of the analysis may be considered
to be a function of the length ratio, L/%, and the frequency, wL//EE;,
while the reflection coefficient is a function of the depth ratio,
;hllhz, and the freqﬁency, wL//EEI . This is illustrated in Fig. 5.38(a)
and (b).

Figure 5.38(a) shows the Fourier transform of the incident solitary
wave, as given by Eq. (3.131), with the amplitude normalized with
respect to the amplitude at w=0, Al(m)/Al(O), plotted as a function
of the nondimensional frequency mL[/EEI. The curves, which are for

various length ratios, L/%, evidently have similar shape but rolloff
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from unity at different frequencies which are a linear function of
the length ratioc (e.g. Al(m)/Al(0)==0.95 occurs at wL/VEEI¥=O.461 L/e).

Figufe 5.38(b) shows the modulus of the reflection coefficient,
|KR(w)| (recall KR(w) in general is complex) plotted as a function of
the noﬁdimensioﬁal frequency wL//EEI'. The curves, which are for
various depth ratios, h1/h2’ have similar shape but are displaced from
one another according to the magnitude of the reflection coefficient
at w=0.

Kajiura (1961) presented curves similar to Fig. 5.38(b) but used
as the abscissa L/L where L is the wave length of the harmonic wave
under consideration. However, the abscissas are equivalent because
using the relationship L==/§EI'T, the frequency wL//EEI'reduces to
27L/L. Xajuira (1961) considered slopes in which the depth was a
nonlinear funcfion of the distance along the slope, whereas, in this
study the depth was a linear function of distance along the slopes.

In principle, the process of>ca1cu1ating the reflected wave is
to take the function describing a curve for a particular length ratio,
L/%, from Fig. 5.38(a) and multiply it by the function describing a
 curve for a particﬁlar depth ratio, hllhz,kfrom Fig. 5.38(b). This
gives the reflected wave in the frequency domain which can be trans-
formed into the time domain by multiplying by e_iwt and integrating
over the frequency range. (In practice, this procedure is performed
numerically.)

Before presenting the results of these calculations, Fig. 5.38(a)

and (b) can be used to deduce the overall behavior:
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i)’ FSr small length fatios (L/% <1) the majority of the Fourier
transform curve lies in the frequency range Osuﬁﬂ/éﬁz'glo"l
where the reflection coefficient is essentially constant.
Hence, the shape of the reflected wave is almost the same as
that of the incident wave. A special case of this which
already has been considered is when L/2=0, i.e., a step.

ii) For large length ratios (L/%2>1) a considerable portion of
the Fourier transform curve lies at frequencies wL//EE;>'1
where the reflection coefficient is essentially zero. Hence,
when the multiplication of the two functions takes place,
the high frequency components of the incident wave are
reduced to zero and, since it is these high frequency com-
ponents which affect the peakedness of the wave, the reflected
wave is less peaked than the incident wave.

iii) Because the reflection coefficient curves are similar in
shape but displaced vertically in Fig. 5.38(b), the shape
of the reflected wave for a particular length ratio is almost
independent of the depth ratio. However, the amplitude of
the refleéted wave for a particular length ratio is propor-
tional to the reflection coefficient at w=0 which is a
function of the depth ratio.

The transition between the two extremes of length ratio described

in i) and ii) above is illustrated in Fig. 5.39 where the reflected

waves predicted by the linear nondispersive theory for a depth ratio

of hl/h2==3 are plotted for length ratios of L/ =0, 0.25, 0.5, 1, 2,
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4 and 8;. in the table alongside the figure the quantities shown are
as‘defined previously except for the length L* which is defined as
the distaﬁce between points in the wave where the ratio n/H>0.01,
i.e., Fhe length occupied by the upper 99Z of the wave; thus, Lﬁ/L?
is the ratio of‘the length occupied by the upper 99% of the reflected
wave to the corresponding length of the incident wave. The abscissa
is t/§7ﬁz—-x/hl which means the leading edge of the wave is towards
the left in the plots (which can be thought of either as time records
or as profiles with the wave moving to the left).

For L/% <1 the shape of the reflected wave is similar to the
shape of the incident wave and the slope can be thought of as
relatively abrupt, since it does not affect significantly the shape
of the wave. However, for length ratios greater than unity, the wave
shape does change with the reflected wave taking the form of a
"plateau" which slopes down towards the front of the wave. The higher
amplitude near the rear of the waﬁe indicates the proportion of the
wave reflected increases as the wave climbs the slope.

The similarity of reflected waves for a particular length ratio
but various depth fatios as discussed previously is illustrated in
Fig. 5.40 which shows the reflected wave height ratio HR/HI plotted
as a function of the length ratio, L/%, for various depth ratios,
hL/hZ' The curves in Fig. 5.40 appear to have similar shape and, in
fact, can be collapsed almost to a single curve by normalizing the
reflected wave height, Hk(%), with respect to the reflected wave height

for a step, HR(O), as shown in Fig. 5.41. Hence, for this lipear
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nondispersive theory the depth ratio, just like the relative incident

wave height, HI/hl, is not a parameter in the solution.

Figure 5.41 shows as the length ratio increases from zero to
unity the reflected wave height decreases rapidly but as the length
ratio increases beyond unity the reflected wave height decreases at
a slower rate.

The solutions described so far are solutions to the linear non-
dispersive theory in which the relative incident wave height, HI/hl’
does not affect the shape of the reflected wave. However, in the
actual physical problem it is expected the relative incident wave
height would have some influence on the shape of the reflected wave.
To investigate this, a series of numerical experiments and a series
of physical experiments were performed. The numerical experiments
comprised using the finite element program described in Section 3.3
for a range of conditions.

The physical experiments, in which the objective was to measure
the wave reflected when a solitary wave propagates up a slope onto a
shelf, had a number of difficulties which limited their extent. The
main problems were:

i) When one wishes to measure two waves, one of which is a tenth
ot less in height than the other, the accuracy of measurement
of the smaller wave is considerably less than that of the
larger wave. For example, if the waves trailing the incident
wave are 1%Z of the height, they are negligible with respect

to the incident wave. However, for a reflected wave which
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~is a tenth the height of the incident wave, the trailing
waves represent 107 of the reflected wave and thus can affect
the shape considerably.

ii) As the length ratio increases, Fig. 5.39 shows the length of
the reflected wave also increases. Hence, the length of tank
upstream of the slope must be large enough to accommodate
the reflected wave which may be many times longer than the
incident wave.

The physical experiments were performed for two depth ratios,
hl/h2==3.0 and 4.0, and for three slopes, L = 150 cm, 300 cm and
450 cm, and the step (I =0); the shelf height was 15.54 cm. The
relative incident wave height was varied from HI/hl==0.033 to 0.125;
the lower bound arose from the difficulty of accurately measuring
waves with smaller height and the upper bound arose because waves of
greater height broke on the slope. For a particular slope a four-fold
increase in the incident wave height halves the length ratio, L/%,
because, it will be recalled, the characteristic length, 2, is defined
as 2=2105(H1/h1)—%tﬁf Hence, a range of length ratios could be
covered with one slope simply by varying the incident wave height.
However, to allow for the effects of incident wave height it was
necessary to overlap the regions of length ratio which each of the
slopes covered.

The results of the physical experiments, and the linear nondisper-

sive theory and the nonlinear dispersive theory are presented in

Figs. 5.42 and 5.43, in which the ratio of reflected to incident wave
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height is plotted as a function of the length ratio, L/%. Figures
5.42(a) and (b) are for the depth ratio hl/h2==3; Figs. 5.43(a) and (b)
are for the depth ratio hl/h2==4. Figures 5.42(a) and 5.43(a) are
reflected wave height ratios HR/HI; Figs. 5.42(b) and 5.43(b) are
inverse scattered reflected wave height ratios HRI /HI. The solid

NV
curves are the linear nondispersive theory; the dashed curves are

the nonlinear dispersive theory for a relative incident wave height

of HI/h1==0.l. The experimental points have different symbols
according to the slope which was used, and the numbers beside the
points are the relative incident wave height HI/hl’

The figures show the difference between the linear nondispersive

theory and the nonlinear dispersive theory with HI/hl==0.1 is small,

and the experiments show good agreement with the theories, particularly
considering the problems of accuracy discussed earlier. For the

‘ experimental data, the data in the overlapping regions described
.earlier exhibit some differences but in such a random manner they

are assumed to be scatter due to problems associated with experimen-
tal accuracy. Hence, the experimental data seem to indicate the
incident wave height does not affect the reflected wave for the

range of relative heights investigated.

To investigate this further, the finite element analysis was used
for a depth ratio: hl/h2==3 and a range of incident wave heights and
length ratios; the heights of the reflected waves are compared in
Tables 5.5(a) and (b), where zero relative incident wave height

represents the linear nondispersive theory. The tables show the
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Table 5.5 Reflected wave height ratios, (a) H,/H. and (b) H /.,
R’ X RINV I
for various length ratios and relative incident wave

heights for depth ratio h1/h2==3. (nonlinear dispersive

theory)
(a) Hp/Hp

H./h

I’
ore NN | 0 v 0.05 0.10 0.15
0.53 0.218 0.228 0.235 0.238
1.03 0.152 0.162 0.161 0.165
1.56 0.110 0.121 0.123 0.123
2.00 .0.0888 . .0.0980. 0.0978 0.0997

(b) /]
HRINV 1
H./h
/0y
/s 0 0.05 0.10 1.15
0.53 0.137 0.138 | 0.139 0.139
1.03 0.119 | 0.120 | 0.120 | 0.122
1.56 0.101 | 0.099 | 0.101 | 0.098

2.00 0.0831 | 0.0884 | 0.0879 | 0.0871
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results for the nonlinear dispersive theory agree with each other

within 5% which indicates no detectable influence of incident wave
height on the solution for the range used. However, for this depth
ratio (hi/h2==3) the maximum incident wave for a nonbreaking wave
on the shelf, as given by Eq. (5.20), is: HI/hl==0.18, which is
not a very large wave. To increase the size of the incident wave
but aveid breaking waves on the shelf, the depth ratio was reduced
to hl/h2==l.5; then incident waves with relative heights up to
HI/hl==0.4 could be considered. The results of the analysis, again
using the finite element formulation, are presented in Table 5.6.
Evidently, for these extreme cases, the height of the reflected
wave is dependent on the height of the incident wave, however the
dependence is only weak, with a fourfold increase in the incident
wave height resulting in at most a 16% change in the reflected wave
height ratio.

The linear nondispersive theory generally predicts lower wave

heights than the nonlinear dispersive theory and a reason for this

is shown in Fig. 5.44(a) and (b) where the profiles of two waves
from the experiments and the theoriles are compared. The ordinates
in the figures are amplitude normalized with respect to incident
wave height, n/HI, so that the reflected waves from incident waves
of different heights can be compared directly. The waves from the

nonlinear dispersive theory for various wave heights are shown as

dashed curves and apart from small differences which can be attributed

to numerical effects they predict the same wave profile., However,
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Table 5.6 Reflected wave height ratios, (a) HR/HI and (b) HR /HI’
INV

for various length ratios and relative incident wave
heights for depth ratio, hl/h2==1.5. (nonlinear dispersive

theory)
(a) H-R/ Hy
H./h
yias 4

L/a 0 0.1 0.2 | 0.3 0.4
0.26 0.0965 | 0.0961 | 0.0928 | 0.0889 | 0.0862
0.53 0.0849 | 0.0845 | 0.0815 | 0.0788 | 0.0764
1.06 0.0606 | 0.0647 | 0.0640 | 0.0638 | 0.0592
2.00 0.0356 | 0.0376 | 0.0389 | 0.0387 | 0.0378

(b) /H
HRINV I
H./h
1/ 81 ‘ :

/8 0 0.1 0.2 0.3 0.4
0.26 0.0259 | 0.0246 | 0.231 0.0219 | 0.0211
0.53 0.0256 | 0.0243 | 0.0225 | 0.0215 | 0.0195
1.06 0.0244 | 0.0233 | 0.0219 | 0.0204 | 0.0186
2.00 0.0211 | 0.0202 | 0.0195 | 0.0183 | 0.0170
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the wave predicted by the linear nondispersive theory has a different

shape and the difference is attributed to the effect mentioned
earlier of amplitude and frequency dispersion in the propagation of
the wave from the slope back to the point where the profile was
taken. |

The profiles from the two experiments also are plotted in Figs.
5.44(a) and (b). In Fig. 5.44(a) the data from the experiment agree
with the theories except in the region of the crest and this differ-
ence is attributed to friction which is not included in either theory.
In Fig. 5.44(b) the agreement is not as good although the overall

shape of the wave predicted by the nonlinear dispersive theory also

is evident in the experimental reflected wave. However, to illustrate
the problem of accuracy mentioned earlier, an error of 0.0l cm in

the measurement of the reflected wave becomes an error of 0.008

in the amplitude n/HI, i.e., an error of about 8% of the wave height
in Fig. 5.44(b).

The process of reflection of solitary waves from a slope in most

cases may be predicted approximately by the linear nondispersive theory

but the nonlinear dispersive theory should be used for propagation

upstream of the slope.

5.3 The Transmission of Long Waves over a Change in Depth

For the purposes of this study the "transmitted wave" will be

defined as the time-history of the variation of the water surface

elevation (the wave) at the upstream edge of the shelf. This concept
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arises from the linear nondispersive theory which predicts this wave is

in fact the wave measured at any position on the shelf because under
this theory waves propagate unchanged in shape in a constant depth.

The prediction of the transmitted wave is a particularly important
aspect of the problem. Once it is known it can be used as the boundary
condition of one of the more straightforward theories of propagation
for waves travelling in one direction only (e.g., the KdV equation) to
obtain the characteristics of the wave at any position on the shelf.

5.3.1 The Transmission of Solitary Waves over a Step

In the experiments described in Section 5.2.1, in addition
to measuring the incident and reflected waves, the waves at the step
also were recorded. The data from these experiments are presented in
Fig. 5.45 where the ratio of the wave height at the step to the incident
wave height, HT/HI’ is plotted as a function of the relative incident
wave height, HI/hl’ for various depth ratios, h1/h2’ The vertical
dashed lines represent the incident wave height at which the linear

nondispersive theory predicts the wave will break onto the shelf (see

Table 5.3). In fact, in the experiments, the incident wave height at
which the wave broke onto the shelf was not well defined, and in most
cases the only indication of breaking was irregularities just past

the crest in the recorded water surface-—time history.

The data exhibit considerable scatter, but for depth ratios
hl/h2§}3.5 in the nonbreaking region there appears to be a slight
trend for the transmitted wave height ratio to decrease with increasing
relative incident wave height. However, this is not reflected in the

results of the nonlinear dispersive theory applied to the case of the
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waves transmitted over the half-sine transition slope. These results,
wh;ch are presented in Table 5.7, indicate no significant dependence
of the trénsmitted wave height ratio, HT/HI’ on the relative incident
wave height, HI/hl (although the frequency ratio, QT}QI, does vary
with HI/hf and this will be discussed presently). Hence, the trend

in Fig. 5.45 is attributed to dissipative effects which increase

with relative incident wave height.

Transmitted waves calculated using the
nonlinear dispersive theory for hl!h2==3.

Table 5.7

by Hy g
0 1.268 | 1.000
0.05 | 1.261 | 0.973
0.10 | 1.256 | 0.946
0.15 | 1.258 | 0.936

The data from these experiments and also from the experiments
described in Section 5.3.1 as the second set of experiments are

compared with the linear nondispersive theory as given by Eq. (3.114)

in Fig. 5.46 where the transmitted wave height ratio, Hp/Hj, is

plotted as a function of the depth ratio, h1/h2¢ The heights of the
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wave at thé‘step evidently are less than the theory predicts for the
entire range of depth ratios which is attributed to dissipative
effects. The data depart more from the theory for depth ratios
hl/h2> 5. (Recall, as mentioned earlier, an incident wave, with a
relative height bf HIlh1==0.1 will break onto the shelf at depth
ratios hl/h2 greater than 5.) The data from the experiments with
different shelf heights agree sufficiently well to indicate there

is no dependence on the actual shelf height.

Also plotted in Fig. 5.46 are data from experiments in which the
vertical face on the shelf was replaced by the half-sine transition
slope. These data lie close enough to the data from experiments in
which a step was used to indicate the transition has no effect on
the wave at the step.

The nonlinear dispersive theory when applied to the case of

solitary waves with relative height HI/h1==O.l propagating over the
half-sine transition slope gave transmitted wave heights which are
plotted as solid circles in Fig. 5.46 within 17 of those predicted

by the linear nondispersive theory for hl/h2:53.

As mentioned earlier when describing Fig. 5.2, the shape of the
transmitted wave appears the same as the shape of the incident wave,

as the linear nondispersive theory predicts. To investigate this,

the transmitted waves for experiments with the depth ratios hl/h2==2, 3,
4, and 10 were digitized and the frequency, 2, and wave height, HReg’
in Eq. (5.4) were calculated by performing a regression analysis on

the upper 2/3 of the wave. The results are presented in Fig. 5.47
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where tﬁe fatio of the frequency of the transmitted wave to the fre-
quency of the incident wave, QT/QI, is plotted as a function of the
relative incident wave height, HI/hl‘ The data appear to lie about
a ratio of frequencies QT/QI'«:'»O.95 for wave heights HI/hlsO.Z,

then the ratio of frequencies decreases as the wave height increases
with those for larger depth ratios decreasing at a faster rate.

The linear nondispersive theory predicts QT/QI==1.00 as denoted

by the horizontal line in Fig. 5.47. However, the nonlinear dispersive

theory predicts the frequency ratio decreases with relative incident
wave height as shown by the experimental data in Table 5.7 which
also are plotted in Fig. 5.47.

Unlike the process of reflection, the process of transmission
of a solitary wave over a step appears to be one in which nonlinear
effects are important, particularly in the determination of the shape
of the transmitted wave.

5.3.2 The Transmission of Cnoidal Waves over a Step

The results of experiments conducted to determine the wave
height of cnoidal waves as they propagate over a step onto a shelf
are présented in Fig. 5.48 where the tranémitted wave height ratio,
HT/HI’ is plotted as a function of the relative incident wave height,
HI/hl, for depth ratios h1/h2==3, 3.5, 4 and 10. The numbers beside
the experimental points are the quantity gHI,TZ/hi which, as described
earlier, is the Ursell Number with wavelength replaced by wave period.
The vertical dashed lines represent the limits in incident wave height

for the wave to break or not to break onto the shelf, predicted by the
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linear nondispersive theory (described earlier) and listed in

Table 5.3.

The data exhibit considerable scatter, part of the reason for
this is the way in which these finite amplitude, periodic waves
propagate onto the shelf. As the crest passes the step, the flow
at the step is in the downstream direction, i.e., onto the shelf,
and as the trough propagates onto the shelf, the flow is in the
reverse direction, i.e., off the shelf. However, since the waves
have finite amplitude, the depth of water under the trough on the
shelf may be reduced to the extent that the flow off the shelf cannot
be achieved without some irregularities occurring in the trough of
the wave at the step. (As a crude analogy of this, the process can
be likened to the flow over a weir.)

5.3.3 The Transmission of Solitary Waves over a Slope

The dimensional analysis performed in Section 5.2.3 when
considering the reflection of solitary waves from a slope also is

applicable here. Eq. (5.21) becomes:

T f(—tll— L EI—) (5.22)
B CO\R, T Hy -

where HT is the transmitted wave height, h1/h2 is the depth ratio,
L/% is the length ratio where L is the length of the slope and & is
the characteristic length of the wave (£=:L‘5(H1/hl)—%h1)’ and HI/hl
is the relative incident wave height.

Initially, the effect of the relative incident wave height,

HI/hl, will be neglected and the linear nondispersive theory will be
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used to‘iliustrate the effect of the length ratio, L/%, and the depth
ra;io, hl/hZ’ of the transmitted wave. This is done using Fig. 5.49
which conéists of two parts. Figure 5.49(a) shows the Fourier
transform of the incident solitary wave which, as shown in Section 3.4,
for the purpose‘of analysis, may be considered to be a function of
the length ratio, L/%, and the nondimensional frequency, wL//EﬁIZ
Figure 5.49(b) shows the transmission coefficient normalized with
respect to the transmission coefficient Kp(w)/K;(0), which is a
function of the depth ratio, hl/hZ’ and the nondimensional frequency,
wL//EEI. The latter have similar shape but have increasing trans-
mission coefficient ratio for increasing depth ratios at large fre-
quencies.
The technique mentioned earlier for calculating the reflected

wave from Fig. 5.38 also applies for calculating the transmitted
wave from Fig. 5.49. Selecting a particular length ratio and a
particular depth ratio, the correéponding functions of frequency for
the Fourier transform and the transmission coefficient are multiplied
together to give the transmitted wave in the frequency domain. To
obtain the transmitted wave in the time doﬁain the product is multi-~
plied by e-imt and integrated over the frequency range.
The overall behavior can be deduced from Fig. 5.49 as follows:
i) For small length ratios, L/2<<1l, (i.e., an abrupt slope) the

transmitted wave will have essentially the same shape as the

incident wave because the majority of the frequency range

where the Fourier transform is nonzero is the frequency range
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" where the transmission coefficient is a constant.

ii) For large length ratios, L/2>>1, (i.e., a gradual slope) the
majority of the Fourier transform will be multiplied by a
constant transmission coefficient; hence the shape of the
transmitted wave should be almost the same as that of the
incident wave in this case also, but the wave height would
be larger than for the comparable case with small length
ratio (i.e., L/2<<1).

The transition between i) and ii) (i.e., the change from an
abrupt to a gradual slope) is shown in Fig. 5.50. 1In Fig. 5.50(a) the
transmitted wave height ratio, HT/HI’ is plotted as a function of the
length ratio, L/%, for various depth ratios. The figure shows the
difference in ;he height ratio for abrupt and gradual slopes is small
for small depth ratios but increases with depth ratio. As the length
ratio goes to zero the transmitted wave height ratio tends asymptoti-
cally to the value for a step givén by Eq. (3.114). As the length
ratio goes to infinity the transmitted wave height ratio tends
asymptotically to Green's Law, Eq. (3.116).

The shape of ﬁhe transmitted wave maybbe compared to the shape
of the incident wave by the following procedure: (i) multiplying
the incident wave by the wave height ratio, HT/HI’ (ii) lining up
the crests of this wave and the transmitted wave, (iii) taking the
difference between the amplitudes, and (iv) squaring the difference
and summing the squares. For a transmitted wave with exactly the

same shape as the incident wave, the sum-of-the-squares must be zero;
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otherwiée éhe sum—of—the—sﬁuares is greater than zero and the greater
the magni;ude, the poorer the shape of the transmitted wave compares
with the shape of the incident wave. The results of this analysis are
presented in Fig. 5.50(b) where the sum-of-the-squares is plotted as

a function of length ratio for various depth ratios. For the depth
ratios considered, the maxima all occur in the range 1.0<L/2<1.5,

Thus, the linear nondispersive theory predicts, except for a range of

length ratios close to unity, the transmitted wave has essentially
the same shape as the incident solitary wave.

For the linear nondispersive theory considered, the solution is

not dependent on the relative incident wave height, HI/h1 (although
it enters indirectly in the definition of the characteristic length,
%, as given by Eq. (3.122)). To examine the effect of the relative
incident wave height on the transmitted wave for a range of conditions
by physical experiments would have required a large number of experi-
ments with slopes and shelves of various heights each with different
viscous effects. In this investigation, experiments were performed
with the 15.54 cm shelf and the slopes described previously, and
these results were compared with those from the finite element numeri-—
cal scheme to justify investigation using numerical methods alone.
These comparisons will be presented first and the results of the
numerical experiments later.

The experiments were conducted for an upstream depth of
IH_=31.08 cm, a depth ratio of h1/h2==2.0, and for a nominal relative

incident wave height HI/hl==0.1. Four slopes were used: the half-sine
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transitionﬁslope and the linear slopes with lengths: 150 cm, 300 cm
and'450~cmf Each experiment was conducted in three runs. In the
first run the five wave gauges were placed at various locations along
the flume and a wave was generated., The resulting displacement of
the water surface was recorded on both the oscillograph and the A/D
converter. For the second run, Gauge 1 was placed in the position
occupied by Gauge 5 in the first run and the other four gauges were
positioned downstream of Gaugeki. The same wave which was generated
for the first run also was generated for the second run and the waves
were recorded in similar manner. This was repeated once more resulting
in 15 wave gauge records at 13 different locations. The records
were aligned in time by lining up the wave crests of the records
from Gauge 5 of the first run and Gauge 1 of the second run and
Gauge 5 of the second run with Gauge 1 of the third run.

In the numerical experiments, a wave of the same height as
was generated in the physical experiments (nominally HI/h1=0.1) was
used and the time records at locatioms equivalent to the thirteen

locations of the wave gauges were computed, The numerical and physical

experiments were aligned by lining up, in time, the crests of either
the first or the second time record (i.e., either Gauge 1 or Gauge 2
of the first run).

The results of the four experiments are presented in Figs. 5.51
to 5.54 which correspond to the half-sine transition, the 150 cm slope,
the 300 cm slope and the 450 cm slope respectively. The solid lines

represent the physical experiments and the dashed lines represent the
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numerical results. The figures are presented in dimensional form
because; although there are ﬁhe three lengths: the upstream depth,
hl’ the slope length, L, and the depth on the shelf, hy, which are
the important lengths for the three regions: upstream of the slope,
the slope, and the shelf, none of these lengths is the important
length for all three regions.

In Figs, 5.51 to 5.54 the origin of x was taken to be at the top
of the slopes. The waves at the bottom of each figure, which are
the amplitude-time history of waves at locations upstream of the
slope, exhibit the incident wave with its crest at time t=2 sec
then at time t=~6 sec the reflected wave can be seen. As the length
ratio increases from figure to figure this wave becomes longer and
smaller as was discussed in Section 5.2.3. As the solitary wave
propagates onto the shelf, the front face of the wave steepens
and as the wave propagates a second wave begins to form behind the
main creét. This process will be discussed in more detail shortly
but first the physical and numerical experiments will be compared.

In Figs. 5.51 and 5.53 the waves from the numerical experiments
appear to be propagating faster than those from the physical experi-
ments, particularly on the shelf. However, this is not true of the
waves shown in Figs. 5.52 and 5.54; therefore, the apparent shifting
of the wave records in time which occurs in Figs. 5.51 and 5.53 is
assumed to be caused by errors in the lining up of the time records.
It will be recalled, the method used to assemble the three physical

experiménts and the single numerical experiment which comprise each
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figure involved, for the physical experiments, lining up the record
from Géuge 5 of one experiment with Gauge 1 of thé next experiment.
Hence, if an error occurred in this procedure, all other records in
that experiment would be misaligned. The numerical scheme required
only a single alignment since all the time records were taken from
a single experiment. An example of misalignment occurs in Fig. 5.51
where, comparing the shift in time between the physical and the
numerical waves, the lower four waves appear to be aligned correctly
but the next five, i.e., at x=0, 0.4, 0.86, 1.3 and 1.66 m, all
appear to have been shifted by the same amount and the upper four
waves appear to have been shifted by an even greater amount.

As the waves propagate, the physical experiments exhibit smaller
wave amplitudes than the numerical experiments. This is attributed
to frictional effects in the physical experiments which are not
accounted for in the numerical experiments.

Aparf from these two effects, the physical and numerical experi-
ments show reasonably good agreement particularly with regard to
the shape of the waves; the errors in alignment actually highlight
some aspects of this. For example, Fig. 5.52, i.e., the experiments
wifh the 150 cm slope shows the good agreement in the shapes of the
front faces of the waves while Figs. 5.51 and 5.53, i.e., the experi-
ments with the transition slope and the 300 cm slope, show the good
agreement in the shapes of the back faces of the waves. In Fig. 5.54,
i.e., the experiment with the 450 cm slope, the waves appear to be

aligned better and this shows the overall shapes of the waves in the
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two experiments agree well except for the difference in amplitude
‘Which ié caused bykfriction in the physical experiments.

As mentioned previously, on the basis of the agreement between
the‘numerical and the physical experiments, the effect of the inci-
dent wave height on the transmitted wave was investigated by means
of numerical experiments. For depth ratios: hl/h2==2, 3 and 4,
experiments were conducted to find the time record of the transmitted
wave for various length ratios, L/%, and for incident wave heights
of HI/hl==0, 0.05, 0.10 and 0.15.

To compare the transmitted waves, the time records at the bottom
of the slope were aligned as is shown in Fig. 5.55 which is the
result of a typical set of numerical experiments, in this case for
a constant length ratio of L/2=2,00. Note, the characteristic
length, 2, varies with the relative incident wave height, HI/hl’
therefore a constant length ratio, L/% implies the slope length, L,
is diffefent for different relative incident wave heights. The
abscissa in Fig. 5.55 is the nondimensional time t/gﬁz-/z and the
ordinates are the relative amplitude n/HI. These allow waves of
different incident height HI propagating over slopes of different
length L to be compared because, as the lower figure shows, the waves
at the bottom of the slope collapse into essentially one profile.

The solid curve represents the linear nondispersive theory and is

denoted HI/hl==0 to indicate it is independent of the wave height.

The dashed curves represent the nonlinear dispersive theory for

various relative incident wave heights, HI/hl‘ The maximum wave
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height considered was Hy/hy; =0.15 because incident waves higher than
this résulted in transmitted waves whose height rélative to the
depth on the shelf (i.e., HT/hZ) exceeded 0.7.

The figure shows, for a wave of finite height propagating over
a slope, both the height and the slope of the front face of the trans-
mitted wave increase with increasing relative incident wave height.

As was mentioned in Section 3.1, the phenomenon of steepening of
the front face of a wave is a nonlinear rather than a dispersive
effect and, as shown in Fig. 3.3, nonlinear effects take place only
after a certain propagation distance. Hence, the propagation distance
for the cases shown in Fig. 5.55 must have been sufficient for
nonlinear effects to develop. Waves with larger heights have
steeper front faces which implies the propagation distance for non-
linear effects to become important is inversely proportional to the
relative incident wave height, HI/hlg this will be discussed in
quantitative manner, for waves propagating in constant depth, in
Section 5.4,

Further illustration of the effects of wave height and length
ratio on the transmitted wave is provided by the results of the
numerical experiments (of which Fig. 5.55 was a typical example)
presented in Figs. 5.56(a) and (b). Each experiment was for a different
length ratio, L/%, and comprised four waves with different relative
incident wave heights. This resulted in a figure similar to Fig. 5.55
for each experiment but only the transmitted waves are presented in

~ Figs. 5.56(a) and (b).
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‘In all cases the slope of the front face, i.e., the left>face
of the Qave,'for the larger waves is greater than for the smaller
waves. As the length ratio increases for a given relative incident
wave height, the slope of the front face also increases. For the
length ratio of L/2 =0.53, which would be considered an abrupt slope

by the criterion described earlier for the linear nondispersive

theory, there is evidence of steepening of the front face. This
indicates, even when the characteristic length of the wave is twice
the length of the slope, nonlinear effects are important to some
degree.

For length ratios less than unity, the transmitted wave height
ratio,,HT/HI, is almost constant with relative incident wave height.
However, as the length ratio increases the height increases and this
is interpreted as indicating the growth in the importance of disper-
sive effects,

For the transmitted wave resulting from an incident wave with a
relative height of HI/hl==O.15, when the length ratio is L/2=3.04
an abrupt change in slope appears in the back face of the wave and
for larger length ratios this becomes more pronounced. Similarly
for the wave resulting from the HI/h1==0.10 incident wave, a change
in slope appearé when the length ratio is L/¢=4.08. However, no
change in slope is evident in the back face of the waves resulting
from the incident wave with the relative height of HI/h1==O.O5.
These changes in slope corresﬁond to the emergence of a solitary

wave from the main wave and its appearance is interpreted as an
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indication nonlinear and disPersive effects are becoming equaily
impprtént. This is the area investigated by Madsen and Mei (1969)
and subsequently by Tappert and Zabusky (1971) and Johnson (1973)
in which it was assumed the slope of the bottom was gradual, i.e.,
in terms of the parameters considered here, (hl-hz)[L<<]”

In an effort to quantify these effects, for each of the numerical
experiments performed, the following quantities were calculated:

i) the maximum slope of the front face, S==|nt’max,

ii) the wave height, Hys and
iii) the Ursell Number defined as:
3
g
U= —Z'—H%— . (5.23)
h‘2[nt max

(which is similar to the Ursell Number defined by Hammack (1972)
except that the time derivative, Nes is used instead of the space
derivative, nx).

To estimate what the difference in the solution would be if the

linear nondispersive theory were used instead of the nonlinear

dispersive theory, the relative difference in the maximum slope from

that calculated by the linear theory, (S-—Slin)/Slin, and the relative

difference in the transmitted wave height from that calculated by the
linear theory, (HT—H )/H were calculated. These quantities
T. . T, .
lin lin
may be interpreted as indicating the relative importance of nonlinear

and dispersive effects respectively. These data, for a depth ratio
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of hi/h2==3, are plotted as functions of the length ratio in Fig. 5.57
(a)_and'(b)f 'Figure 5.57(c) shows the Ursell NumBer defined by
Eq. 5.23 plotted as a function of the length ratio; this figure will
be discussed presently.

The curves in Fig. 5.57(a) and (b) represent the best fit of
these data and also the data for depth ratios hl/h2==2 and 4 (which

are presented in Appendix F) as given by the following expressions:

‘1lin

Differences between the numerical results and the correspbnding
empirical expression (Eq. (5.24)) in Fig. 5.57(a) are primarily due
to the fact that data for all values of hl/h2 (see Appendix F) were
‘used to derive Eq. (5.24) whereas only those data for hl/h2==3 are
presented in Fig. 5.57(a). The relative differences predicted by

Eqs. (5.24) and (5.25) are compared to the actual data in Fig. 5.58(a)

and (b). The scatter exhibited there is attributed to the approximate
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nature of Egs. (5.24)”énd (5.25) rather than to errors in the data
which, it will be recalled, ére from numerical exéeriments. Egs.
(5.24) and (5.25) may be used to give order-of-magnitude estimates
of the conditions under which it is necessary to use the nonlinear

dispersive theory rather than the linear nondispersive theory. For

example, for a length ratio of L/2=2.0 and adepth ratio of h1/h2==3.0,
for the nonlinear analysis to be different by 10% from the linear
analysis, the following relative incident wave heights would be
required: Hy/h; >0.021 for the slope of the front face and HT/h130.19
for the wave height.

In Fig. 5.57(c) the Ursell Number at L/2 =0 is approximately
the Ursell Number of the incident wave multiplied by (h1/h2)2. As
the length ratio increases, the Ursell Number of the transmitted
wave decreases which corresponds to the transmitted wave becoming
more like a solitary wave for which the Ursell Number defined by
Eq. (5.23) is 2.25/(1-FHT/h2). The appearance of the changes in
slope of the back face of the wave mentioned earlier occur when
the Ursell Number is U=9.

The transmission of solitary waves over a slope, in general,

requires numerical solution of the nonlinear dispersive theory.

However, in some circumstances, which can be determined using Egs.
(5.24) and (5.25), the simpler and more straightforward linear

nondispersive theory may be used.
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5.4 The Propagation of Long Waves on the Shelf

5.4.1 The Propagation of Solitary Waves on the Shelf

As a solitary wave propagates over a step onto a shelf,
it was shown in Section 5.3.1 the wave height and frequency of the
transmitted wave are of the same order as the incident solitary wave.
Hence, using the Ursell Number defined by Eq. (5.23), the Ursell
Number of the transmitted wave is approximately the Ursell Number of
the incident solitary wave multiplied by (hl/hz)z. Therefore, since
the Ursell Number of the transmitted wave is not the Ursell Number
of a solitary wave of the same height, the transmitted wave must
change its shape as it propagates. Furthermore, since the Ursell
Number‘of the transmitted wave is greater than the Ursell Number
of the solitary wave of the same height, nonlinear effects will be
more important than dispersive effects in the propagation. As was
shown in Section 3.1, when nonlinear effects are greater than linear
effects,'the front face of the wave begins to steepen, (i.e.,

< and Inxl increase). However, as this occurs the Ursell

lnt‘ma max

Number given by Eq. (5.23) decreases and thus nonlinear effects
become relatively less important. In this section, this phenomenon
is examined for the particular case of a transmitted wave with the

form:

n = HT sech? Qr t . (5.26)

0f particular interest is under what conditions and for what distance

of propagation do nonlinear effects dominate.
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‘'For a transmitted wave given by Eq. (5.26) propagating on a

shelf with a depth h,, the Ursell Number defined Ey Eq. (5.23)

becomes:

2
v=2 <ET—> [———l———] i (5.27)
16 \h, QT/hz/g

There are two extremes to be considered:

i)

11)

If the Ursell Number is small enough for a linear theory

to apply, then for this linear theory the propagation is
not dependent on the actual wave height, HT' (One way this
can take place is if h2>»h1, i.e., if the wave propagates
into deeper water.)

If the Ursell Number is large enough for the nonlinear

nondispersive theory to apply, it can be shown the propaga-

tion is not dependent on the frequency, QT, and the

independent variables, x and t, can be normalized with

respect to the frequency QT and the depth h2 (for details

of this and other aspects of the nonlinear nondispersive

theory of propagation of sech? waves, see Appendix E).

Hence, if the linear dispersive theory applies, propagation is

dependent on the frequency Q. but independent of the wave height H..
P T T

Conversely, if the nonlinear nondispersive theory applies, propagation

is dependent on the wave height He but independent of the frequency

9/

T Between these extremes the nonlinear dispersive theory applies

(represented by the KdV equation) where propagation is dependent on
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both the frequency Qp and the wave height HT.

Td inveétigate these effects experiments were conducted using
the results of Section 5.3.1, with the incident solitary wave height,
HI’ and the upstream depth, hl,,adjusted to give a range of relative
wave heights, HT/hZ’ and nondimensional frequencies, QT/E;7E} for
the transmitted wave. The wave propagating on the shelf was then
recorded at eight locations downstream of the step. The desired
wave heights and frequencies of the transmitted waves were
Hp/hy=0.10, 0.30 and 0.50 and QT@=0.10, 0.13 and 0.15 respec-
tively., Of these nine experiments, only eight could be conducted
because in the case of HT/h2==O.50 and QT/ﬁ;7E1=O.10 the depth on
the shelf was too small (h2==3 cm) .

The actual wave heights and frequencies are presented in Table 5.8
along with other experimental data. These include the distance
between the locations at which the wave was recorded, Ax, and the
Ursell Number of the transmitted wave, U . This Ursell Number varies
from U°==5.5 which is 2.2 times that of the solitary wave of the
same height to Uo==57.4 which is 17 times that of the solitary wave
of the same height.

The time records i.e., the variation of the water surface eleva-
tion with time, at various locations are presented in Figs. 5.59, 5.60
and 5.61 for the desired relative wave heights HT/h2==0.10, 0.30 and
0.50, respectively. The ordinates are the amplitudes normalized with
respect to the de‘pthh2 and the abscissas are the nondimensional time

th/hz.'. The distance between the locations at which the waves were
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Table 5.8 Details of the experiments for propagation of solitary
waves on the shelf, shown in Figs. 5.58 to 5.60.

Expt| Desired| Desired | h h H Ax |Measured |Measured| U

o 1 2 L T o
No | Hy/h, 2y ‘}_2_ (cm) | (em) | (em) | (cm)| Hy/hy q J:Z_
g TVg

1 0.1 0.15 |34.55|19.01f 2.01| 45.0] 0.106 0.148 | 5.5
2 0.1 0.13 |29.63 |14.01| 1.48( 45.0| 0.108 0.126 {10.1
3 0.1 0.10 |[24.41 | 8.87|0.92| 45.0f 0.109 0.091 |14.3
4 0.3 0.15 |[22.50 | 6.96] 2.21| 22.5| 0.330 0.135 |25.8
5 0.3 0.13 |[21.42| 5.88|1.77{ 22.5| 0.304 0.117 |31.7
6 0.3 0.10 |15.37 | 4.15| 1.22] 22.5{ 0.322 0.084 [57.4
7 0.5 0.15 [20.61 ] 5.07(2.51| 22.5| 0.519 0.130 [42.3
8 0.5 0.13 [19.79 | 4.25| 2.05| 22.5| 0.512 0.112 |48.8

recorded is listed as x/h2 and also QTX/Vth. The latter quantity
is of interest because as is shown in Appendix E if the propagation

were predicted by the nonlinear nondispersive theory, the shape of

the waves would be similar for waves with the same initial relative
height, HT/hZ’ at equal values of QTX//EE;. In fact, inspection of
the figures, particularly Figs. 5.60 and 5.61 where the relative

distances defined by QTX//gﬂz'are approximately the same, shows the

shape of the waves are similar as the nonlinear nondispersive theory

predicts. However the increase in the height of the crest with
propagation distance evident for each experiment in Figs. 5.60 and

5.61 is not predicted by the nonlinear nondispersive theory and

hence must be caused by the interaction of nonlinear effects and

dispersion. To find the distance over which the nonlinear nondisper-

sive theory applies, the waves at x/h2==0,were propagated by this theory
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and by the nonlinear dispersive theory (i.e., the KdV equation) and
icomparea with the éxperiments. The comparisons fér the experiment
with desired relative wave height HT/h2==O.5 and desired nondimensional
freQuency QT/E;7§1=0.15 which are considered typical are presented

in Figs. 5.62 to 5.64, where the experiment is represented by the

solid curves and the theories by the dashed curves. The nonlinear

nondispersive theory is not presented in Fig. 5.64 because it predicts

the wave breaks at x/h22129 and the theory is invalid after this

occurs. In addition to the nonlinear nondispersive theory and the

nonlinear dispersive theory, the linear nondispersive theory also

is presented. As mentioned earlier the latter predicts the shape
of the wave remains the same and the wave propagates with celerity

c = Vghz. Figure 5.62 shows the nonlinear dispersive theory and the

nonlinear nondispersive theory are almost coincident for the initial

13.3 depths from the step and both predict a greater celerity than

the linear nondispersive theory. The experimental data follow the

nonlinear theories better than the linear theory but have a smaller

wave height and smaller froat face slope, » than the nonlinear

Intlmax
theories predict. Some reasons for this will be discussed presently.
Figure 5.63 shows as the wave propagates further onto the shelf

the results from the two nonlinear theories diverge; i.e., the

nonlinear nondispersive theory predicts the wave height will remain

constant but the front face of the wave will continue to steepen

until the wave breaks, while the nonlinear dispersive theory predicts

the wave will begin to transform into a series of solitary waves.
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The experimental profiles again exhibit a smaller wave height and
smaller front face slope, but notice at x/h==26.63 the experimental
wave height is slightly greater than the wave height predicted by

the nonlinear nondispersive theory and on the back face of the wave

there is a small trough indicating a second wave is beginning to

emerge.

In Fig. 5.64 the nonlinear nondispersive theory is omitted

because it predicts the wave breaks between x/h2==26.63 and 31.07.
This figure shows there is a considerable difference between the

results of the experiment and those of the nonlinear dispersive

theory; some possible reasons for this are proposed as follows.

As the wave propagates from deep water into shallow water one
would expect boundary layer separation to occur on the shelf close
to the step. To investigate this, the water in the region of the
step was mixed with fine aluminum powder, a wave was generated and
the resuiting motion of the aluminum particles was photographed. The
results for an incident solitary wave of height HI==2.0 cm propagating
from a depth h1==20.5 cm into a depth h2==5.0 cm (a) over the step
and (b) over the half-sine transition slope are presented in Fig. 5.65.
The photographs were taken at intervals of % sec, and from left to
right show thg leading edge, the crest and the trailing edge of the
wave propagating onto the shelf, The still water level is denoted
in each photograph by the horizontal line. For the step, the region
of separation appears to grow to be about 607 of the depth on the

shelf. However, this is reduced to about 20%Z of the depth when the



(b)

Fig. 5. 65 Vlews of the separation caused by a solitary wave propagating
over (a) the step and (b) the half-sine transition.
(hy =20.50 cm, hp=4.96, Hy=2.0 cm)

047
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half-sine transition slope is used.

To examine the effect the different regions 6f separation have
on the height of the wave as it propagates, experiments were conducted
with the step and with the half-sine transition and the changing
height of the waves as they propagate was compared. The results are
presented in Fig. 5.66 where for four different depths on the shelf
the relative wave height, H/hz, is plotted as a function of the
relative distance from the edge of the shelf, x/hz. For each of
the experiments the incident solitary wave had a relative height of
HI/hl==O.1. The transmitted waves, i.e., the waves at x=0, evidently
have almost the same height for the step as they do for the half-sine
transition. In fact, as is shown in Table 5.9 which compares the
transmitted wave data, the shape of the transmitted waves in the
form of the transmitted wave frequency, QT’ also is essentially the
same for the step as it is for the half-sine transition. Thus, as
was note& in Section 5.3.1 the transition slope has no effect on the
transmitted wave. However, for the smaller depths, i.e., h2='7.77
and 6.22 cm, the height of the wave propagating on the shelf which
had propagated over the half-sine tramsition increases faster than
the wave which had propagated over the step. This reflects the effect
‘of the different extents of the zone of boundary layer separation
shown in Fig. 5.65.

In addition, dissipation due to friction on the sidewalls and
the bottom which would be expected to be common to waves both from

the step and from the half-sine transition causes the wave height to
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Table 5.9 Comparison of the transmitted wave data for the experiments
' presented in Fig. 5.66.

h, Hp/hy Qpvhy/g

(cm) STEP TRANS STEP TRANS

6.22 | 0.393 | 0.385 | 0.138 | 0.135

- 7.77 | 0.331 | 0.339 | 0.144 | 0.142
12,43 | 0.246 | 0.246 | 0.201 | 0.193
15.54 | 0.218 | 0.217 | 0.193 | 0.192

be less than the theories predict. The cumulative effect on the shape

of the wave which friction may have is postulated in the following way.

If the shape of the wave is changing in a way which is proportional to

the wave height, and the wave height is decreasing because of friction,

then the shape of the wave will be different than if friction were absent.
Hence, the differences between experiment and theory exhibited in

Fig. 5.64 are attributed to dissipative effects. Thus, in view of these

problems and of the‘difficulty of accurately prescribing the transmitted

wave, further analysis of the propagation of a sech? wave was conducted

by analytical means. As mentioned earlier, for some distance from the step

the nonlinear dispersive theory and the nonlinear nondispersive theory

appear to predict the same results. However, the theories eventually
diverge and the distance which the wave has travelled when they diverge
a given amount represents the propagation distance necessary for disper-
sive effects to become important. To find this distance it was necessary
to propagate waves with botﬁ theories and determine the location at

which they diverged. For this study the location of the divergence of the
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theories was defined as the point at which the Ursell Numbers defined
by Eq. (5.23) became different by 10%4. The Ursell Number was used
because it is sensitive to changes in both the maximum slope of the

wave, |n » and the maximum wave amplitude, n <* The latter is

t lmax

of particular importance because the nonlinear nondispersive theory

predicts the amplitude of the crest remains constant, hence any change

in the crest height indicates dispersive effects have become important.

However differences in the maximum slope of the wave also indicate a

difference in the theories so its effect needs to be included also.
The problem of comparing the two theories for waves given by

Eq. (5.26) with various heights and frequencies is simplified

considerably by recalling that the nonlinear nondispersive theory is

independent of the nondimensional frequency QT/EETE. Hence, for a
particular relative wave height HT/hZ the solution is the same for
all freqqencies, QT/E;7E-, providing the independent variables x and t
are normalized with‘respect to the frequency (i.e., QTx//Eﬁz-and Qpt
respectively). The propagation distance over which most of the
numerical experiments were conducted was the distance the nonlinear

nondispersive theory predicts the wave will travel from the point at

which its time record is given by Eq. (5.26) to the point at which

‘the maximum slope, |n , is infinite, i.e., the wave breaks. This

tlmax
distance, denoted Xy is plotted as a function of the relative wave
height, HT/hZ’ in Fig. 5.67 where the ordinate is the normalized
distance QTxb/Vgh2° The relationship plotted in Fig., 5.67 cannot

be expressed in closed form (see Appendix E); however, for HT/h2~<0.05,
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the curve in Fig. 5.67 is essentially linear and is given by the

relationship:

-0.99
QTxb HT
~0.93 o . (5.28)
Vgh2 2

The significance of Eq. (5.28) for waves with small height, i.e.,
Hp/hy < 0.05, will be discuséed presently.

Comparisons of propagation by the two theories for relative wave
heights Hp/h,=0.1, 0,3 and 0.5 are presented in Figs. 5.68, 5.69
and 5.70 in each of which the quantity UQ% h2/g is plotted as a func~
tion of the propagation distance normalized with respect to the
distance to breaking, x/xb. The ordinate, UQ% h2/g, where U is
defined by Eq. (5.23), can be thought of as an Ursell Number in which

the time used is the normalized time fpt, since:

UQ2h n3
T2 “‘axz o2 i (5.29)
g hZInt max

In each of the figures the lower curve corresponds to the nonlinear

nondispersive theory. (Using the ordinate, Q%hzlg, this is a single

curve for all values of the frequency QT.) The theory predicts the
quant ity Uﬂ%hzlg decreases as the wave propagates which corresponds

to the front face of the wave steepening, i.e., |n - increases.

t/ma
Eventually Uﬂ%hz/g becomes zero when the front face becomes vertical
and the wave breaks.

The other curves in the figures are the variation of Uﬂ%hzlg
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theories.
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with propagation distance calculated by the nonlinear dispersive

thepry‘for ffequencies relative to the frequency éf the solitary
wave, Qs; of QT/QS =1., 1/2, 1/4 and 1/8. These correspond to

waves which are less peaked than the solitary wave of the same height.
Clearly, if the wave at x=0 is a solitary wave, the nonlinear
dispersive theory predicts the quantity Uﬂ%hz/g will remain comnstant.
However, Figs. 5.67 to 5.70 show if the frequency of the wave at

x=0 is less than the frequency of the solitary wave of the same
height, the quantity Uﬂ%hzlg decreases as the wave propagates. This
corresponds partly to the steepening of the front face of the wave as

for the nonlinear nondispersive theory but, in addition, dispersive

effects cause the wave héight to increase (as was evident in Figs.
5.60 and 5.61); the combination results in Uﬂ%hz/g increasing relative

to the nonlinear nondispersive theory for the same propagation distance.

The curves tend asymptotically to the value of UQ%hZ/g for a solitary
wave (deﬁoted Usﬂ%hélg) which is reached when the leading wave emerges
from the group. Usﬂ%hzlg is listed in the column at the right of
each figure,

The distance to the point at which the theories diverge by 10%,
Xgs (i.e., the propagation distance for dispersive effects to become

important) is presented in the tables in Figs. 5.68 to 5.70 as x_./h

da’' 2
and xd/xb. From the data, an approximate relationship fuor‘xd/‘h2 as a

function of the relative wave height, HT/h2 and the relative frequency,

' QT/QS, can be determined, ﬂsing regression analysis, the expression:
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o

: 1.31 -0.88
X Ay H
4 ~1.68 <9—3-1> <—ET-> , (5.30)
2 T 2

was found to give the best fit of the data, with coefficient of
determination of r2=0.9988. This equation along with the numerical
data used to obtain it are plotted in Fig. 5.71.

For a solitary wave propagating onto a shelf, if it is assumed
the frequency, QT, and the height, Hp, of the transmitted wave are
the same as those of the incident wave, as was shown to be approximate-
ly true in Section 5.3.1, the ratio of frequencies is given by

QS/QTzshllhz and Eq. (5.30) becomes:

x h 1.31 ,y \—0.88
h_d ~1.68 (-E—]l- > (-—1> s (5.31(a))
2

2 h,

or, in terms of the incident wave:

x h 1.31 ,p \=0.88 ,p \~0.88

d 1 1 I

% ~1.68[==- > (-) (—) . (5.31(b))
hy <h2 h, hy

The use of Egs. (5.30) and (5.31) is restricted to the range of the
data used to obtain them, i.e., O.lsHT/hzs 0.5 and Qp Qg . (It was
not realistic to generate data for waves with relative heights
VHT/h2< 0.1 because the distance to breaking, which is given by

Eq. (5.28) in this case, becomes prohibitively large and the numerical

solution of the nonlinear dispersive theory requires thousands of time

steps instead of the hundreds of time steps required for waves with

HT/hzzo.l.)
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Fig. 5.71 Theoretical variation of the distance for dispersive effects
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For the sech? waves considered, the distance for nonlinear effects
' to become important can be calculated in a manner similar to the way the
distance for digpersive effects to become important was calculated.

This involves propagating a wave by the linear nondispersive theory

and by the nonlinear nondispersive theory and finding the distance,

X, for the quantities Uﬂ%hzlg to become different by 10%. Recall,

the linear nondispersive theory predicts the wave retains its-original

shape, hence for this theory Uﬁ%hz/g is constant. For the nonlinear

nondispersive theory, the propagation distance for Uﬂ%hzlg to change

by 10% can be expresses analytically but not in closed form (see
Appendix E). Hence the nondimensional distance QTxn/ gh2 is
presented graphically as a function of the relative wave height,
HT/hZ, in Fig. 5.72. Notice the similarity in the shape of the curve
to that of the curve in Fig. 5.67 which is for the nondimensional
distance to breaking QTxb//EE;. As for that curve, the curve in
Fig. 5.72 is essentially linear for HT/h2< 0.05 and is given by the

approximate relationship:

Qx -1.00
T2~ 0.046 —E—T— , (5.32)
Vgh2 2

Comparison with Eq. (5.28) for the distance to breaking shows the
distance for nonlinear effects to become important is approximately
1/20 of the distance to breaking, i.e., xnasz/ZO.

To summarize the fesults of this section, when a wave of sech?

shape propagates onto a shelf, initially, for a distance X, (given
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by Fig. 5.72 or Eq. (5.32) the linear nondispersive theory applies;

n

but if the propagation diétance exceeds x, the nonlinear nondispersive
theéry mustbbe used. This theory is applicable for a propagation
distance x4 (given by Fig., 5.71 or Eq. (5.30)) when the nonlinear
dispersive theory must be used.

5.4.2 The Propagation of Cnoidal Waves on the Shelf

As cnoidal waves propagate over a step onto a shelf, the
period appears to remain constant (for a simple proof of this for
linear waves, the interested reader is referred to Ippen (1966) p. 21),
and»it was shown in Section 5.3.2 the height of the transmitted wave
is approximately the same as that of the incident wave. Hence, the
Ursell Number, defined as gHT?/h2, increases by a factor of (hl/hz)2
as the waves propagate onto the shelf., However, as was shown in
Fig. 3.4 in Section 3.1, a particular Ursell Number completely defines
the shape of the cnoidal waves in terms of the relative amplitude,
n/8, as avfunction of the relative time, t/T. Thus, since the trans-
mitted waves have an Ursell Number different from that of the cnoidal
waves of the same shape, the transmitted waves cannot be cnoidal
waves. Therefore, since only cnoidal and solitary waves propagate
with permanent form, the shape of the tramsmitted waves must change
as they propagate on the shelf,

To investigate the way in which this takes place, experiments
were conducted in which cnoidal waves were generated in a depth of
hl==20.23 cm and allowed to propagate over a step onto a shelf where

the depth was ‘h2==4.69 em. The waves were recorded at five locations:
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at the step and at 1.0 m intervals downstream on the shelf. The
resultiﬁg osdillograph records are presented in Fig. 5.73 which shows
three experiments in which the relative height of the transmitted
waves was kept constant at HT/h2==0.28 and the period was varied
(T/ETH; = 42,1, 57.1 and 77.4) and in Fig. 5.74 which shows three
experiments in which the period was kept constant at T/§7ﬁz-= 57.1

and the relative height of the transmitted wave was varied (HTh2==O.16,
0.28 and 0.50).

In Fig. 5.73 which shows the experiments in which the wave height
was held constant, the transmitted waves (i.e., x/h2==0) for each
experiment evidently have different shape; the amplitude of the trough
decreases from 50% of the wave height for the record at the left
of the figure (i.e., for T/§7ﬁ;'= 42.1) to 35% of the wave height for
the record at the right of the figure (i.e., for T/§7E;-= 77.4). The
transmitted waves are approximately symmetrical about the crest, but
21.3 depfhs downstream, for the three cases the front face of the waves
is steeper than the back face. At x/h2==42.6 secondary troughs appear
on the back face of the waves and as the waves propagate secondary
waves emerge in a manner similar to what was seen to occur for solitary
waves (e.g., see Fig. 5.58) except that in this case the wave groups
are periodic and there is a trough below still water level. Although
the number of waves emerging is different for each experiment, the
development of the secondary waves appears to be similar for each
experiment, namely, the front face steepens and secondary troughs
emerge on the béck face after the same distance of propagation in each

case.
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In addition, although the shape of the waves at x/h2==85;3 is
different for each experiment, the height of the waves measured from
thebmainvcrést to the main trough is the same (H/h2==0.30) and the
amplitude of the main trough is 23% of the wave height for all three
experiments. This is somewhat surprising because, it will be recalled,
the amplitudes of the troughs of the transmitted waves varied from
50% of the wave height to 35% of the wave height. It may be inferred
from these experiments the wave period governs the number of secondary
crests which emerge but it is the wave height which determines the
manner in which the waves propagate.

This is illustrated further in Fig. 5.74 which shows the records
of the’experiments in which the period was set at T/§7E;¥=57.1 and
the wave height was varied. In these experiments alsc, the transmitted
waves have different shape but in each case the waves are approxi-
mately symmetrical about the crest. As the waves propagate, the front
face steebens then secondary troughs appear on the back face of the
waves and finally secondary waves emerge. The height of the trans-
mitted waves approximately doubles between each experiment and it is
interesting to compare the shapes of the waves after they have
propagated distances proportional to the inverse of the relative height
of the transmitted wave, i.e., x/hzd=(HT/h2)_1. For example, comparing
the waves at x/h2==85.3 of the record at the left (HT/h2==O.l6) with
those at x/h2==42.6 of the record in the center (Hp/h,=0.28) with
those at x/h2= 21.3 of the record at thevright (HT/h2=0.50), the

shape of the waves appears similar with a secondary trough just
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beginning to emerge on the back face of the wave. Similarly comparing
the waves at'x/h2=¥85.3 of the record in the center with those at
x/h2==42;6 6f the record at the right, the shape in this case also
appears similar, with three crests evident and a number of other
crests emerging. Hence, as was found for the case of solitary waves
propagating onto a shelf, when cnoidal waves propagate onto a shelf
the propagation distance for nonlinear and dispersive effects to

occur is approximately proportional to the inverse of the relative
wave height.

The numerical solution of the nonlinear dispersive theory, in

principle, is no different for this problem than for the case of
solitary waves propagating on the shelf. However, the discretization
interval, i.e., the time step, must be made small enough to describe
each wave emerging in the group. Hence, for wave groups which break
up into many waves, the time step muét be made small, which implies
large nuﬁbers of calculations. An example of the numerical solution

of the nonlinear dispersive theory for cnoidal waves is presented

iﬁ Fig. 5.75, where the theory is compared with a portion of the
experiment shown at the right in Fig. 5.74, i.e., for HT/h2==O.5O.
The experiment and the theory agree quite well with regard to the
leading wave, however the theory predicts the emergence of secondary
waves on waves further back in the group occurs more rapidly than
observed in the experiment. One possible reason for this is the
dissipative effects which were mentioned earlier when considering
solitary waves propagating on the shelf. 1In spite of these effects

the overall behavior agrees between experiment and theory.
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5.5 Waves Propagating Off the Shelf

Aithough it is outside the scope of this invéstigation, the
process of waves propagating from shallow into deeper water over a
step is presented for a single case to demonstrate one way by which
it can be treated.

In an experiment similar to that shown in Fig. 5.2, a solitary
wave was generated and allowed to propagate over a step and onto the
shelf. The reflected wave from the shelf was trapped by dropping a
gate after it had passed. The main wave reflected off the rear wall
of the tank and propagated back towards the step separating into a
group of solitary waves in a manner similar to that shown in Fig. 5.2.
Wave gauges were located at the step and at four other locations
2.4 m apart in the region downstream of the step where the depth was
hl==21.73 cm. The waves were recorded on the oscillograph and on an
A/D converter and are presented as the solid curves in Fig. 5.76.
The wavevgroup at the step (x/h1==0) consists of four solitary waves
and a tail which gradually decreases in amplitude and from which more
solitary waves may have emerged if propagation in constant depth had
continued. In fact, the depth increased abruptly to be 3.5 times
that on the shelf. Hence, for any of the waves within the group,
the Ursell Number given by Eq. (5.23) was reduced to 1/12 (i.e.,
(hzlhl)z) that on the shelf. Thus, dispersive effects became more
important than nonlinear effects and this is reflected in the wave

records as the group propagated in the deep water.
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' The dashed curves in Fig. 5.76 are the linear dispersive theory

and.wefe calculated from the wave record at X/h1=¥0 using the disper-
sion relation in Eq. (3.,15). The shape of the waves predicted by the
‘theory agrees well with the experiment, particularly for the longer
waves at the front of the train as would be expected since the disper-
sion relation, Eq. (3.15),is a valid approximation for long waves only.
However, there is a difference in time between the theoretical and the
experimental time records with the theory predicting a greater celerity
than the experiment exhibits and the difference increases with propa-
gation distance. The reasons for the time shift are not understood but,

apart from this, the behavior is predicted well by the linear dispersive

theory.

5.6 Application of the Results to the Tsunami Problem

In this section, the results presented in previous sections
are applied to the problem of a tsunami propagating onto the con-
tinental shelf,

A typical cross-section of the continental slope off the coast
of California is shown in Fig. 5.77 where, for clarity, the vertical
scale has been distorted; the continental slope off New Zealand has
similar characteristics. The depth in the deep ocean varies from
2700 to 3900 m with an average of 3500 m. Defining the start of the
continental shelf to occur where the contours begin to increase
their spacing markedly, the depth on the shelf at the shelf-break is

found to be about 1000 m., Hence, the ratio of the depth in the deep
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ocean to that on the shelf-break, hl/hZ’ varies from 2.7 to 3.9. The

length'of the slope, L, varies between 11 and 90 km with an average

of 30 km.
100 to 300 km
TO COAST
= ¥
h,=1000m
| CONTINENTAL
' h, | SHELF
2700 to 3300 m |
Avg.= 3500m |
| |
CONTINENTAL
DEEP SLOPE |
OCEAN

l
TONNSNSSSS |
L -
[l to90 km
Avg. =30 km

Fig. 5.77 Schematic drawing of the continental slope off the coast
of California.
A problem in applying the results of this chapter to the tsunami
problem is that each tsunami is unique; the form it takes depends
both on the earthquake which generated it and on its propagation

from the generation region. Furthermore, three~dimensional effects
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in the propagation, which were not considered in this investigation,
‘probably are important.

An assﬁmption sometimes made in the analysis of tsunamis is
that the tsunami takes the form of a solitary wave. In fact,
Hammack and Segur (1974) show this will be true only if the initial
wave has non-negative net vqlume and the wave has propagated a
sufficient distance for the solitary wave to emerge. However, if
the initial wave has negative ﬁet volume, no solitary waves will
emerge and if it has zero net volume solitary waves may or may not
emerge depending on the detailed structure of the initial wave.
Furthermore, Hammack and Segur (1978) postulate that the maximum
distance of propagation possible across any ocean is not sufficient
for soiitary waves to emerge. Hence, the assumption of a tsunami
having the form of a solitary wave may not be accurate. However,
both tsunamis and solitary waves are long waves; therefore, the
behavior of both is described by the long wave equations and it is
on this basis the application of the results of the present study
to tsunamis is made.

To apply the results, some assumption must be made with respect
to the wave height of the tsunami in the deep ocean near the slope.
Following the example used by Hammack and Segur (1978), incident
wave heights, HI’ of 0.35 m and 3.5 m will be considered. Assuming
the depth in the deep»ocean is 3500 m this implies relative incident

wave heights, HI/hl’ of 1x10~" and 1x10~3, respectively.
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For reflection, as was shown in Section 5.2, the linear

nondispersive theory and the nonlinear dispersive theory agree

well except for large waves propagating over small depth ratios.
Hence, the reflection coefficient for the linear theory as shown in
Fig. 5.40 is applicable to the assumed height of this example. Thus,
for a depth ratio, hl/hZ’ of 3.5, the reflected wave will have 30%
of the volume and up to 30% of the height of the incident wave near
the shelf,

As will be recalled from Section 5.3, the transmitted wave is

best predicted by the nonlinear dispersive theory; however, if the

linear nondispersive theory is used, the difference between the

theories in the slope of the front face of the wave and in the wave
height are given approximately by Eqs. (5.24) and (5.25). In

Table 5.10 these differences are presented for solitary waves with
heights of HI==O.35 m and 3.5 m propagating over slopes with lengths
of =10 and 100 km for a depth ratio of hl/h2==3.5. As the table

shows, for this example, the differences are so small the linear

nondispersive theory can be used. (For the nonlinear dispeérsive

theory to be necessary, i.e., for there to be a 107 difference in
the slopes, the incident wave height, HI’ would have to be 175 m.)
Eqs. (5.24) and (5.25), developed for solitary waves, are
applied to an arbitrary wave to determine the characteristic length,
%, which would be necessary for the theories to be different by 1%.
Inspection of the equations indicates the difference will be a

maximum when the length ratio and the wave height ratio both are
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Table 5.10 Relative differences between the theories in (a) the
slope of the front face and (b) the transmitted wave
height for tsunamis which are solitary waves.

(@) (5=8y;,)/5 4,

H I (km)
(m) 10 100

0.35 6.7 x 10~ 3.9x10-°

3.5 2.4%x10"Y 1.4x10-3

(b) (Bp-Hp )/H
n

1i lin

Hy L (km)
(m) 10 100

0.35 3.0x 1078 5.6x 1077

3.5 3.1x107% | 6.0x1075
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maximum, hence, the characteristic length calculated will represent
the maximum length for the theories to be different by 1%. Using

a depth ratio of hl/h2==3.5, a relative incident wave height of
HI/hl==l:(10_3 and a slope length of L =100 km, the maximum charac-
teristic length is #=13 km. Thus, for tsunamis with characteristic
lengths greater than 13 km, which it is expected will be the case,
the linear and nonlinear theories are different by less than 17%.
Thus, the transmitted wave probably will be predicted by the linear

nondispersive theory. Referring to Fig. 5.50, since the maximum

length ratio of the slope relative to the wave is L/%=0.06,
(corresponding to a slope length of L=100 km and a solitary wave
height of HI==3.5 m) the slope is considered abrupt. This implies
the shape of the transmitted wave is the same as that of the incident
wave and the amplitude is scaled by the transmission coefficient
given by Eq. (3.114). (K;=1.30 for h;/h,=3.5).

For sech? waves propagating on a shelf with constant depth, the

distance to breaking predicted by the nonlinear nondispersive theory

was found to be given by Eq. (5.28). Thus, for an incident solitary
wave with height of HI==3.5 m which is transmitted in the manner
described above, the distance to breaking on the shelf where the depth
is assumed to be constant and equal to 1000 m is xb231.5x104 km.

The distance for nonlinear effects to become important was found to

be xnk:xb/ZO, thus xn=¥700 km. However, as shown in Fig. 5.77, the
distance from the continental slope to the coast is only 100 to 300 km.

Hence, for a shelf with constant depth, the linear nondispersive theory
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can be used for the propagation of the tsunami from the slope to the
region near the coast where shoaling begins. (It should be realized
that depth changes on the shelf may be important and shoaling effects
may take place on the shelf which were not treated in this study.)
From these examples it may be concluded, because of the small
relative height of tsunamis and their large lengths relative to the
lengths of the continental slope, the propagation of tsunamis from
the deep ocean to the continental shelf-break and for some distance

onto the shelf will be predicted as well by the linear nondispersive

theory as by the nonlinear theories.
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CHAPTER 6

CONCLUSIONS

The major cbjective of this study has been to investigate,
experimentally and theoretically, the propagation of long waves onto
a shelf. The generation and propagation in the laboratory of long
waves of permanent form have been investigated and the experimental
results have been compared with the theory. The propagation of
solitary and cnoidal waves over a step onto a shelf and the propaga-
tion of solitary waves over a slope onto a shelf have been invéstigated

experimentally and also theoretically using both the linear nondisper-

sive theory and the nonlinear dispersive theory. (Generally, the

experimental results indicate the finite element technique used to
solve the Boussinesq equations predicts the processes well.) A

single case of solitary waves propagating off the shelf into deep water
also has been investigated experimentally and theoretically using the

linear dispersive theory.

For convenience, the major conclusions drawn from this study are
arranged in the order in which the results were presented in Section 5:

The Generation and Propagation of Long Waves of Permanent Form in a

Constant Depth

1. The generation of a solitary wave without oscillatory trailing
waves requires the precise programming of a wave generator (see,

e.g., Eq. (3.50)).

2. The shape and celerity of solitary waves generated in the
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laboratory are predicted well by the theories of Boussinesq,
McCowan and Laitone for small relative wave heights (H/h<0.3).
However, for large relative wave heights, i.e., H/h>0.3, the
shape and celerity of the solitary waves are somewhat different
from these theories.

3. Cnoidal waves also require precise programming of a wave
generator (see, e.g., Eq. (3.58)); if the trajectory is incorrect,
secondary waves which travel at a different speed from the main
waves are generated.

4. The shape of cnoidal waves is well predicted by the KdV
equation, but the experimentally measured celerities are some~-
what less than those predicted theoretically.

5. In the laboratory, the immer waves of a limited group of
cnoidal waves propagate over short distances essentially as the
theory predicts an infinite number of waves would, i.e., without
change in shape.

6. The reduction of the height of solitary waves and cnoidal
waves due to friction is accompanied by corresponding changes in
the shape of the wave. The effect of friction on the height for
solitary waves is reasonably well predicted by the theory of others.
Experiments with cnoidal waves gave similar results as experi-
ments conducted with solitary waves.

The Reflection of Long Waves from a Change in Depth

7. At _a step, the reflected wave measured experimentally is

described well by the linear nondispersive theory for both
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solitary waves and cnoidal waves.
8. The propagation of the wave reflected from a step for both

solitary and cnoidal waves is governed by the nonlinear dispersive

theory.
9. The height of the wave reflected when a solitary wave propa-
gates up a slope, for most cases investigated, is predicted as

well by the linear nondispersive theory as by the nonlinear

dispersive theory. However, the shape of the wave predicted by
the two theories is somewhat different and the nonlinear
dispersive theory tends to agree better with experiment. The
numerical theory predicts nonlinear effects become important for
waves with a large height propagating onto a shelf with a small
depth ratio.

The Transmission of Long Waves over a Change in Depth

10. For a step, from experiment and theory, the height of the
transmitted wave (for both solitary and cnoidal waves) is not

a function of the relative incident wave height. However, in
the case of solitary waves, the shape of the transmitted wave
is a function of the relative incident wave height.

11. For solitary waves propagating over a slope, the linear

nondispersive theory and the nonlinear dispersive theory predict

different transmitted waves. The difference increases with
increasing slope length and incident wave height, and hence, the

nonlinear dispersive theory must be used to describe this aspect

of the propagation.
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The Propagation of Long Waves on the Shelf

12. As a solitary wave propagates over a step onto a shelf,

close to the step all three theories: the linear nondispersive

theory, the nonlinear nondispeérsive theory and the nonlinear

dispersive theory, predict the same result. However, at some

distance from the step, the linear nondispersive theory predicts

a different wave from the nonlinear theories; this distance
(Eq. (5.30)) is the distance for nonlinear effects to become
important. At a larger distance from the step the nonlinear

nondispersive and nonlinear dispersive theories predict differ-

ent results; this distance (Eq. (5.32)) is the distance for
dispersive effects to become important.

13. As cnoidal waves propagate onto the shelf, each wave splits
up into a series of waves of different height with the largest
first. The distance over which the change in shape takes place
is inversely proportional to the relative wave height; the shape
of the waves is related to the nondimensional period (TVg/h) of
the cnoidal waves.

The Propagation of Waves off the Shelf

14. As waves propagate off the shelf into deeper water, the

waves disperse in a manner predicted by the linear dispersive
theory. An exploratory experimental and theoretical investigation

indicates the linear dispersive theory predicts the propagation

of long waves from shallow to deeper water reasonably well.
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The Application of the results to the Tsunami Problem

15. For tsunamis propagating from the deep ocean, in the
vicinity of the continental shelf, the relative wave heights are

probably small; hence, the linear nondispersive theory predicts

the same results locally as would the monlinear theories.
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LIST OF SYMBOLS

A Wave height

Al’AZ’Bl’B2’C1 Coefficients in the solution of the linear nondispersive
theory :

a Celerity parameter

a Amplitude

B. Wave number

b Width of the channel

c Celerity

di’ei Nodal velocity and amplitude

E Second elliptic integral

i Damping exponent

fc,fM Continuity and momentum vectors

G(x),H{x) Initial conditions

g Acceleration of gravity.

H Wave height

Initial wave height
Reflected wave height

Inverse scattered reflected wave height

R

INV

HT Transmitted wave height
h Depth

hl Upstream depth

h2 Depth on shelf

ij,k Integers

7 =y
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o Sz
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Integral

Bessel functions of the first kind
First complete elliptic integral
Reflection coefficient
Transmission coefficient

Wave number

Wave length

8lope length

Characteristic length of the wave

Length of the wave over which the amplitude exceeds
1% of the wave height

Mass matrices for continuity and momentum equations
Mass vectors at the boundaries

Elliptic parameter

Complementary elliptic parameter (=1 -m)
Integers

Parameter in inverse scattering theory
Rayleigh quotient

Flow rate per unit width

Distance in inverse scattering theory
Stroke

Slope of front face of a wave

Period

Time

Time interval between crest and still water level
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t Parametric time for nonlinear nondispersive theory
u Horizontal component of velocity

a Depth averaged horizontal velocity

U Ursell Number

US Ursell Number of a solitary wave

¥ Volume

VoW Variations in velocity and amplitude

X Total distance

X Horizontal coordinate distance

Xy Distance to breaking

X3 Distance for dispersive effects to become important
x, Distance for nonlinear effects to become important
Yo’Yl Bessel functions of the second kind

Y Distance above the bottom

y Vertical coordinate distance

Ve Distance of trough from the bottom

a,B Parameters in long wave theory

€ Error

n Free surface elevation above still water level

¢ Periodic arguments

K Solitary wave number (K =v ;Z--I%)

v Kinematic viscosity

£ Wave plate displacement

T 3.14159...

T Time

o Velocity potential
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b0 Trial functions

Q Frequency of sech? wave

QT Frequency of transmitted wave
w Frequency

OEerators

%%fff%- Total derivative

%%fff% Partial derivative

("')x”( )t,...Partial differentiation with respect to subscript
Aos, Difference (e.g., Ah==hl-h2)

v2,.. Laplacian

£(...) Function of

0C...) Order of magnitude

(~" Vector if lower case; matrix if upper case

) Depth averaged value

aleveyens) Bilinear form

(evngans) Inner product
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APPENDIX A

Cnoidal Wave Relationships and Numerical Methods of Evaluation

The four relationships which follow are sufficient to describe

cnoidal waves:

n= (yt—h)+H <cn2{2K<%—%>'m'} . (A.1)

yt = K(lgm') (K-E) + h-H ’ (A.Z)
2
HL- 16 w23ty , (A.3)
h3 3

o)
]
|

= /eb {“%‘ [(1_2m'> - \'<.(lan')K)] } » (Aed)

where h is the depth, H is the wave height, K and E are the first

and second complete elliptic integrals respectively, Ve is the

distance to the trough from the bottom, L is the wave length, and

T is the period. The elliptic parameter m has been replaced by its

complement m' = (1-m), which makes the relationships more cumbersome,

but is more suitable for numerical evaluation since the parameter m

can take values as close to unity as, for example, l-m=1x10"%0,
Relationships A.1, A.2 and A.3 were presented by Wiegel (1960).

Svendsen (1974) points out an error in Wiegel's expression for celerity

and presents (A.4) as an alternative. This is also the expression

for celerity given by Keulegan and Patterson (1940).

Numerical Evaluation of Elliptic Functions

Since the complementary parameter m' can be as small as 10'“0,
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the numerical evaluation of elliptic functions for cnoidal waves
requires different treatment than for most other applications.

The methods of evaluation given here were extracted from Abramowitz
and Stegun (1965), and represent the most efficient and accurate

methods found.

The first step in computing any of the elliptic function is to

set up the Arithmetic/Geometric Mean (AGM) scale:

ao=l b =vm' co=v’1-m'

a =l(a +b ) b, =va b c =l(a -b)

1 2 o o 1 oo 1 2 o o

a =% (a, < +b. ) bo=var be . co=% (ay 4 -by 1)
N~ 2 “¥N-17 °N-1 N~ "aN-1°N-1 N 2 “¥N-17 °N-1

Stop at the Nth step, where aN==bN (i.e. cN==O) to the accuracy

desired. (Typically, cg < 1073.)

From the AGM, the elliptic functions are calculated as follows:
1. First Complete Elliptic Integral K.
K = 1T/2aN .
2, Second Complete Elliptic Integral E.
E = R{1-% (c2+2c2+22c2 4 ——+2%c2)} .
2 *ao 1 2 N
3. Jacobian Elliptic Function P = cn(w).

a) Find ¢N==2Nan in radians.
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b) Compute successively ¢N-—1’ ¢N—2’ - ¢l’ ¢, from the

recursive relation:

c
sin(2¢_ ;-9 ) = = sing .
n
c) Evaluate P=cn(w) = cos¢ .
4, Inverse Jacobian Elliptic Function w=ca~l(P).
a) Find ¢ from:
cos¢, =P = cn(w) .

b) Compute successively ¢l,¢2 —— ¢N from the recursive relation:

b
n
tan(¢n+1 - ¢n) —;; tan d)n .
¢) Evaluate:
w =cn 1(pP) = ¢N/2NaN .

The recursive relation is ambiguous by multiples of m. How-
ever w converges to the exact value from below so the correct ¢n can

be found by evaluating w at each step and using:
wio ) 2wl ;)

5. Second Incomplete Elliptic Integral E(w).

where ¢n are those calculated from the recursive relations above.
Using the relationships A.l to A.4 and the numerical methods

described above, most cnoidal wave problems can be solved in straight-



318

forward manner by computer. However, one important problem that
requires special treatment is: given H and T, find m'. Iterative
schemes (fixed point, Newton's Rule, Regula Falsi) do not converge;
hence, an ad hoc trial-and-error scheme was developed. The scheme is
presented with no claims of elegance.

For the given H, period can be expressed as a function of m':
T(m'") =L/c .

The object is to find the m' for which T(m') equals the given period
T, that is:

T-Tm")=0 .

The first step is to compute T-T(m') for:

n'=103  j=0,1,2,3, —- ,

until:

sgn(T - T(1073)) # sgn(T-T(103™)) .

-3 -j+1
Then it is inferred that T-T(m') =0 for 10 d<m' <10 v,

The second step involves finding kl in:

m' =1<1x10‘J ,

and:

mi = (k1 +1) x 1077 s

such that:

sgn(T-Tm") # sgn(T-T(m)))
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where kl is a digit between 1 and 9.

The third step is to find k2 in:

-1 —
m'=(k;+k,x10 ) x107 ,
and:
. -1 -j
my (kl+(k2+l)x10 )x10 ,
such that:
sgn(T~T(m")) # sgn(T - T(m;)) y

where kz is a digit between 1 and 9.

The nfh step is to find kn in:

m' = (ky+kyx 107 kg x107 24 oot k x10™ ) x1073
and:
m =n' +10 I ,
such that:
sgn(T - T(n')) # sgn(T - T(m;)) s

where kn is a digit between 1 and 9. This process is continued for
as many times as the number of significant figures required for m'.

To elucidate the procedure, consider an example where 3 signifi-
cant figures are required and it is found that j=3. Then the required
m' is one of the 900 numbers between 0.00100 and 0.00999. The second
step will determine the first nonzero digit after the decimal point
(kl), the third step will determine the second nonzero digit (kz)
and the fourth step will determine the third nonzero digit (kg). The

final result will be m'==0.00k1k2k3.
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APPENDIX B

The Equation from Boussinesq (1872), the Boussinesq Equations and

Solitary Waves

In Section 3.3.1.5, in discussing the accuracy of the numerical
scheme it was pointed out that although the solitary wave is an exact
solution of the KdV equation (Eq. (3.22)), it is not an exact solu-
tion of the Boussinesq equations (Eqs. (3.67) and (3.68)). However,
the original equation derived by Boussinesq (1872) (and also by

Keulegan and Patterson (1940)):

_ 32 (3n, . h?
ntt—gnxx+ghax2-(2h 3 "xx , (8.1)

does have the solitary wave as an exact solution.

A question which arises is: how can the Boussinesq equations,
Eqs. (3.67) and (3.68), and the equation from Boussinesq (1872),
Eq. (B.1), have different exact solutions if they are of the same
order of approximation, i.e., 0(a2,aB8,R2), in terms of the parameters

defined in Section 3.17

The answer is found in the early stages of the derivations of
the equations. In the method used by Boussinesq (1872) and Keulegan
and Patterson (1940), in evaluating the nonlinear terms in the dynamic

boundary condition:
¢t+% (u2+v2) +gn=0 s (B.2)

the approximations v ® 0 and u = \/% n are used. Similarly in the

kinematic boundary condition:
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nt+u¢x = ¢Y N (303)

the approximation uz‘/%n is used.

Although of the same order of approximation, this is slightly
different to the approach of Korteweg and de Vries (1895) and
Whitham (1974) where u and v are expressed as ¢x and ¢y respectively
and order of magnitude sorting is done with all the terms included.
In addition, in deriving Eq. (B.1l) the approximation g% R~ /EE é%

is used but it is not necessary to make this approximation in deriving

the Boussinesq equations, Eqs. (3.67) and (3.68).
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APPENDIX C

The Linear Nondispersive Theory for a Single Harmonic¢ Wave

The theory developed here is essentially that presented by
Wong et al. (1964). Using the nomenclature of Section 3.4, the

variables are normalized as follows:

x = x5/ t = t* Vghl/L.
n = n¥/h; h = h*/hy
Equation (3.108) becomes:
N = (hny)y . (c.1)

Considering only the steady state solution, the time dependence
of n(x,t) can be separated from the x dependence by assuming the

solution has the form:
n(x,t) = g(x)e ¥t . (€.2)

Substituting (C.2) in (C.l) results in the nondimensional ordinary

differential equation:
2, =
(hz ), +w’C = 0 . (c.3)
Referring to Fig. 3.17, the general solutions of (C.3) for

Regions I, II, and III are:

Region I: ;l==Alewx+A2e’7"*’x , (C.4)
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Region II: Zy=By Jo<1—_2_‘£h—- /hz -(1- h2)x>
2
2w
+3B, Yo<1_h2 /hz-(l—hz)x> , (C.5)
Region III: Ty= cle“"xl vhy cze‘i‘“"/ vhy ,  (C.6)

where Al, AZ’ Bl’ B2, Cl and C2 are constants to be determined and

Jo( ) and Y,( ) are the Bessel functions of zero order of the first

and second kind respectively.
The 6 constants are determined as follows:

(1) In Region I the rightward travelling wave is the incident wave
which has amplitude A. Thus A1==A.

(2) 1In Region III it is assumed that there is no wave travelling
leftward from x=«, therefore C2 =0,

(3) The surface elevation at the boundary of Region I and Region II

must be the same:

;l(_l) = Cz(‘l) ’

thus:

—iw 1w _ 2w 2w
Ae 4'A26 -Bl JQ(TT:T;;> 4'32 Yo<l__h2> . (C.7)

Similarly at the boundary of Regions II and III:

Cz(o) = C3(0) s

thus:

20 20 _
B, JO<1_h2 ‘/h_z) +3B, YO<————1_h2 /ﬁ;) =C, . (C.8)
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(4) The surface slope must also be continuous at the boundary of
Regions I and II:

Z;]-X(—l) = sz("l) ’

thus:

) . Tw_ 2w 2w
Aze - A2$e = B‘l Jl<-i-_—h—2’> + B42 Yl<l — h2> .(€C.9)

Similarly at the boundary of Regions II and III:

cZX(O) = c3x(0) s

thus:

2w _ 2w ;.
By Jl(éﬁfﬂz /H;) +B, Y1<l__h2 /E;> =ic, ,(C.10)

Equations (C.7), (C.8), (C.9) and (C.10), which must be solved

simultaneously, may be written in matrix form:

B iw 7] / \ ( A\

e —Jo —Yo 0 AZ —-A

. 1w

1e Jl Yl 0 B1 Ai

(= ) @
*
0 Jo* Y0 -1 32 0
Q J.* Y. % -1 C 0
1 1 1

- N \ “/ \

where

s
ti
]

<
1}
o)

t
'—l

m

Cy
Ll .
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and
3% =g (28— /A
o ol--h2 2
%x =
* =
el )
Defining:
0 = J Y =T Y %+ T Y - T Y ,
= -J %Y. - * * *
B = -3 ¥, - Y KHI K+ Y ,
(C.12)
= 1 %Y - ko J % %
Y = I RY -3 Y k- R T R
= J %Y - % 2y - %
§ = J ¥ -J Y K HI KT - T Y ,
the determinant of the matrix in (C.11l) is:
A= e (a+ 18) . (€.13)

The solution of (C.11) is:
A ey +18)

2(Y * +4Yq%)
{ y =2 ( b, (C.14)

Bz _Z(JO* ‘7:\]1*)
-2z (1 - h2)
1
mw/h,,

2
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where, in evaluating Cl’ use has been made of the identity:

I_(2)Y;(2) - 3 ()Y (2) = % ) (C.15)

The full solution is:

Region I:

Region II:

Region III:

n G, 0) =ae ™ 70 4y () EOGRHE) . (C.16)
n,(x,t) = Bl(w)Jo[I—%—%z- /hz - (1- hz)x]e—iwt
+ B, (W)Y [——E— vh,—-(1-h )x]e-iwt
2% | Tog,) 2 2 ,
(C.17)
ny(x,t) = Cl(w)eim (x/vhy - ©) , (C.18)

with Az(m), Bl(w), B,(w) and Cy(w) given by equations (C.14)



327

APPENDIX D

Tests of the Inverse Scattering Numerical Schemes

Since the majority of the waves under consideration in this
investigation were of sech? shape, the tests performed on the
numerical schemes described in Section 3.5.3 also were for waves
with sech? shape. These waves have the advantage that exact analytical
results are available for comparison (see Eq. (3.140)).

It was found for both schemes the wave height H in the initial

condition:
n(x,0) = H sech? kx , (0.1)

did not affect the results. To illustrate this, the results for
Scheme 2, in which no parameters other than H and k are involved,
will be presented first and later the results for Scheme 1, which
involves several parameters, will be presented for one relative wave
height, H/h.

The results for Scheme 2 are presented in Table D.l1 where the
ratio of the calculated to the exact height of the leading solitary
wave is listed as a function of the relative initial wave height,
H/h, and the wave number relative to that of the solitary wave of the
same height, i.e., k/k where k = ‘[%-ﬁ% . The calculated height is
obtained from the numerical theory discussed in Section 3.5 and for
purposes of this comparison the exact height is defined as that given

by Eq. (3.140). Recall from Section 3.5.2 that for wave number ratio
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Table D.1 Ratio of the calculated to the exact wave height of the

leading solitary wave using Scheme 2.

0.10 0.20 0.30 0.40 0.50 0.60

0.25 | 0.9993 | 0.9993 | 0.9993 | 0.9993 | 0.9993 | 0.9993
0.50 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
1.00 | 0.9968 | 0.9968 | 0.9968 | 0.9968 | 0.9968 | 0.9968
2.00 | 0.9562 | 0.9562 | 0.9862 | 0.9562 | 0.9562 | 0.9562
4,00 | 0.8357 | 0.8357 | 0.8357 | 0.8357 | 0.8357 | 0.8357
8.00 | 0.7443 | 0.7443 | 0.7443 | 0.7443 | 0.7443 | 0.7443
16.00 | 0.7139 | 0.7139 | 0.7139 | 0.7139 | 0.7139 | 0.7139
32,00 | 0,7058 | 0.7058 | 0.7058 | 0.7058 | 0.7058 | 0.7058

64.00 | 0.7037 | 0.7037 | 0.7037 | 0.7037 | 0.7037 | 0.7037

128.00 | 0.7032 | 0.7032 | 0.7032 | 0.7032 }0.7032 [ 0.7032
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k/k >1 only one solitary wave emerges and for k/x <1 more than one
solitary wave amerges. The table shows the accuracy of the numerical
scheme is independent of the relative wave height H/h. However, it
is dependent on the wave number ratio k/k and it has an accuracy of
better than 17 for waves from which more than one scolitary wave will
emerge but an error of up to 307 for waves from which only one solitary
wave emerges.

For Scheme 1, it will be recalled, as discussed in Section 3.5.3.1,
two other parameters must be prescribed: the length, L, defining
the trigonometric functions and the number of functions, N. For the
relative wave height H/h=0.1, a number of tests were conducted for
wave number ratios k/k=0.,25, 0.5, 1, 2 and 4 where, for k/k=1, 2
and 4, only one wave emerges but for k/k=0.5, three waves emerge and
for k/k=0.25, six waves emérge. The results, in the form of the
ratios of the computed to the exact wave heights, are presented in
Table D.2 where (a) is for k/k=1, 2 and 4, (b) is for k/k=0.5 and
(c) is for k/k=0.25. The results are listed as functions of the
length ratio L/LS where LS==10.6/k (which was used because
sech®5,3 = 1x10™%) and for (a) 20 trigonometric functions were used
while for (b) and (c¢) 50 functions were used. The tables show theré
is an optimum length, L, for maximum accuracy. For waves from which
a single solitary wave emerges, Table D.2(a) shows a good rule of
thumb is to make the length ratio the same as the wave number ratio
or, equivalently, put L =~ 10.6/k, i.e., the "length" of the solitary

wave of the same height as the initial wave. For waves from which
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Table D.2 Ratio of the calculated to the exact heights of the emerging

solitary waves using Scheme 1.

(a) N=20. Single wave emerges.
N k/k-
L/L 1.0 2.0 4,0
8
0.75 0.9965
1.0 1.0000
1.5 1.0000 0.9852
2.0 0.9979 0.9973
3.0 0.9949 0.8609
4.0 0.9802 0.9567
6.0 0.9743
8.0 0.9507
(b) N=50. k/k=0.5 Three waves emerge.
L Wave Wave Wave
L 1 2 3
s
1.5 0.9995 | 0.9996 | 0.9660
2.0 0.9995 | 0.9995 | 0.9923
2.5 0.9992 | 0.9995 | 0.9953
3.0 0.9977 § 0.9897 | 0.9258
(¢) N=50. k/k=0.25 Six waves emerge.
L Wave Wave Wave Wave Wave Wave
L 1 2 3 4 5 6
s
1.0 0.9995 | 0.9985 | 0.9993 | 0.9994 § 0.9966 | -3.76
1.5 0.9993 | 0.9995 | 0.9993 | 0.9998 | 0.9900 0.0959
2.0 0.9994 | 0.9994 { 0.9979 } 0.9953 | 0.9829 0.6161
2.5 0.9993 | 0.9955 | 0.9797  0.9522 | 0.8563 '0.0205
3.0 0.9941 | 0.9582 | 0.8846 } 0.7158 | 0.4585 § -1.,10
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more than one solitary wave emerge, the best length ratio appears
to be ]L/LSz 2.0,

In using this scheme it was found advisable to allow the number
of functions, N, to increment until the desired accuracy was reached
rather than to use a pre-set value of N. However, the computation
cost increases considerably with N so some upper limit needs to be

placed on N.
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APPENDIX E

In this section the solution of the nonlinear nondispersive

theory as given in characteristic form by Eqs. (3.17) will be applied

to the particular case of a wave given by:

no,t) = H sech2qt , (E.1)

propagating into still water with a constant depth, h.
For the case of waves propagating into still water the method of
characteristics simplifies considerably because as shown by, e.g.,

Henderson (1966) the characteristics are straight lines with slope:

%j:-‘ = G+c , (E.2)
where
c = Yg(h+n) s (E.3)

and between these characteristics the quantity (ﬁ-—?c) is constant.
Hence, referring to Fig. E.l, which shows the x-t plane for the case
of a wave given by Eq. (E.l); the velocity u and the celerity c are
constant along the characteristics and the velocity can be expressed

as a function of the celerity:

= 2(c-—co) R (E.4)
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t4

ZONE OF QUIET

DIVERGING
) CHARACTERISTICS

) CONVERGING
CHARACTERISTICS

BACK FACE

7 =Hsech?Qt

FRONT FACE ZONE OF QUIET

Fig. E.1 The x-t plane for a sech? wave propagating into still
water by the nonlinear nondispersive theory.




334

Substituting Eq. (E.4) into Eq. (E.2) gives:

dx _
it 3c-—2co s (E.5)

and since the celerity c is constant along the characteristics

Eq. (E.5) can be integrated to yield:

X = (3c—2c0) (t-1) , (E.5)
or, equivalently:
x ;
t = m—o- + ¢ s (E.7)

where ¢ is the intercept of the characteristic with the t axis and
thus n(¢) =n(o,t). Eqs. (E.6) and (E.7) are not in the usual func-
tional form because the variables usually considered the’independent
variables, x and t, are expressed as functions of the variable usually
considered the dependent variable, n, instead of vice versa. However,
it is found more convenient to use the solutions in the form of Egs.
(E.6) and (E.7) because of their relative simplicity.

The time slope of the wave, Nes is found by differentiating

Eq. (E.7) partially with respect to t to yield:
1 =-3x(3c-2)"2 s+ =2 , - (E.9)

and, 'using the relation %%-= %%-%% , one obtains:

— - -
n_dnly 3 JB dn (3._9c y-2(141 2]
on . dn [1 JxyE & Ge-2e)72(14f . (E.10)

Eq. (E.10) is applicable to any wave, n(t), but for the case of
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a wave given by Eq. (E.l), Eq. (E.10) becomes:

on n & n & %
—— D - —— -— E. T - - =2 .D.
T 2.Qn(l H) 1 3QXJ_1: n <l H) (3¢ 2co)‘ (1 + h)

(E.11)

=1

For a sech? wave the front face of the wave steepens as it propagates
while the back face flattens as is indicated by the converging and
diverging characteristics in Fig. E.l. Breaking occurs at the location
where the front face of the wave becomes vertical, i.e., where the
derivative %E*=w, which occurs when the expression in the brackets [ ]
in Eq. (E.11) is zero. Notice that for this theory the wave height,

H, remains constant even at breaking. This is because the celerity

and the velocity are constant along the characteristics which are
gtraight lines. The actual point of breaking is where the front face
first becomes vertical, i.e. the minimum x for the expression in

brackets to be zero. This minimum x, denoted the distance to breaking

and defined as Xy is found by algebraic manipulation of Eq. (E.11)

to be:
x 5 =1
b 1 -1 (B H )
é—f=g(c£ -1)-1 (;) (;+l-—c£> (3c*—2)2c* , (E.12)

where c, is the root of:

hed - 3<%+ 3) ci - 2(%+ l) ci+ 9(%+ l)c* - 2(%+ 1) =0 ,(E.13)

which lies in the interval 1<c,< 1+%.
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The maximum absolute slope, lntlmax’ at any location in the

interval 0<x< Xy is:

L L
B HY? , o H 2 ~1
|nt|max—2gh [(‘ﬁ) (c2-1) <1+-ﬁ-c§> _T (3c, - 2)%c ]

(E.14)

where ¢, is the root of:

L
-¢l (3c, - 2)3(%)2<3c§ -3~ 2-;1) +“37Sgl—’§ (e2-1)2 <1+-£- c*>3/ (2-9¢4) =0
(E.15)
which lies in the interval l<cg< ‘/:%-—.
The location at which the front face reaches a particular

, is:

maximum absolute slope, ’nt!max

1
-4

L
Ox H\® - '
v (3¢, - 2)c, <T{> (cZ-1) 1<1 +%- c,,%) - 2Qn/ l-nt Imax

(E.16)
where ¢, is the root of:
¢ (Bey-2) 3¢2-3-28 -(Z-1) 1+E-cZ (2-9c)
-k
H) ? /2
+29h[nt max <H) (c:,%-l)2< +%—c*) (2-9cy) = s
(E.17)

which lies in the interval 1 <cy,< l+% .

Notice in Eqs. (E.12) to (E.1l7) the explicit dependence on the
frequency, 2, can be removed by normalizing the independent variables,
x and t, to be Qx/Vgh and Qt respectively. Hence, the frequency, 9,

like the depth, h, is an independent parameter.
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Table F.1 Solitary waves transmitted over a slope: the difference
between the linedr nondispersive and the nonlinear

disEersive theories.

Hp = Hy S-8
2 lin “lin
L/ hl/h2 HI/hl i %
~“1in lin

0.050 0.002 0.C70

0530 3.000 0.100 0.002 0.150
0.150 0. 002 0.210

0.050 0.001 0140

1.030 2.000 0.100 0.001 0.340
04150 0.010 0.540

0.050 0.030 0.420

1.030 4,000 0.100 0.060 0.950
0.150 0.100 1.530

0.050 0.010 0.180

1.560 3.000 0. 100 0.020 0.400
0.150 0.040 0.630

0.050 0.001 0.140

2.000 2.000 0.100 0.020 0.340
0.150 0. 050 0.540

0.050 0.020 0.260

2.000 3.000 0.100 0. 040 0.510
0.150 0.060 0.890

0.050 0.020 0.410

2.000 4.000 0.100 0.050 0.930
0.150 0.090 1.510

0.050 0.020 0.300

3.040 3.000 0.100 0.040 0.750
0.150 0.100 1.230

0.050 0.020 0.240

4,080 2.000 0.100 0.070 0.590
0.150 0.120 0.930

0.050 0.030 0.370

4.080 3.000 0.100 0.110 0.920
0. 150 0.180 1.760

0.050 0.050 1.040

4,080 4.000 0.100 0.230 3.070
0.150 0.460 54530

0.050 0. 060 0.610

5.130 3.000 0.100 0.150 1.780
0.150 0e240 2.720




