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ABSTRACT

The governing relations for gaseous flow systems with chemical
reaction are briefly discussed. A mixture of mechanically similar
Maxwellian molecules is assumed and the general relations are then
reduced to the simplified forms appropriate for reacting, .laminar bound-
ary la.yer type flow systems. One-step unopposed, 'global" reactions
following first-order, second-order, and third-order kiﬂetics are con-
sidered.

The simplified governing relations are transformed to an equiva-
lent constant density plane by application of the Howarth transformation.
A similarity function relating the specie concentrations to the local
temperature is found for the case of equal Prandtl and Schmidt numbers.
* The similarity function is shown to be equal to the dimensionless stream-
wise velocity when the Prandtl and Schmidt numbers are both equal to
unity. The remaining governing relations are then transformed to the
Blasius plane in which the velocity field has known solutions. ‘The
en.ergy equation is solved by an iteration process; a general analytic
solution for the N'th approximation is obtained.

The analytic techniques developed are aéplied to the problems
of combustion within laminar mixing regions and boundary layers.
Temperature and concentration profiles are calculated and the depend-
ence of the characteristic stay time upon the parameters of the system
is determined. The application of the similarity techniques to the
problem of chemical reaction within a hypersonic boundary layer is

briefly discussed in an Appendix.
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1. INTRODUCTION

The analytic treatment of gaseous flow systems with chemical
reaction poses many new problems and greatly increases the complexity
of the formulation and solution of the flow field. Although the considera-
tion of flow fields with chemical reaction is not a recent inhovation_,
Mallard and Le Chatelier(l)* having treated the one-dimensional flame
in 1883, the complexity of the problems and the relatively small effort
expended in this field have conspired to limit the current state of know-
ledge to a rather primitive state. Only the simplest physical problems,
reduced to yet simpler conceptual models, have been successfully
attacked and the correlation of the analytic solutions with experimental
data is generally not in good quantitative agreement. In connection with
related experimental studies, however, the analytic studies have been of
considerable value in determining the relative importance of various
mechanisms postulated for reacting flow systems; furtherniore, the
qualitative trends indicated by analysis have usually been substantiated
by experimental studies.

The large majority of analytic studies in "aero_thermochemistry"(2)
have been concerned with either of two problems: (1) the structure of

(3,4,5)

simple one-dimensional flame fronts and detonation waves and

(2) the influence of a flame front, treated as a surface of discontinuity,

7).

upon the flow field(b’ Studies of these problems have yielded much

useful information. However, many technically important problems

* Superscript numbers enclosed by parenthesis refer to the
references; cf. pp. 150-155.
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exist in which the essential physical phenomena cannot be approximated
by either a plane one-dimensional flame or a surface of discontinuity in
the flow field. For example, the stabilization limits (blowoff and flash
back velocities) for a bluff body flame holder could be calculated in’
general only by considering a viscous two-dimensional or three-dimen-
sional ﬂow. field with chemical reaction. As another example, flame
‘front oscillations and turbulence would normally require the considera-
tion of a non-steady two-dimensional or three-dimensional flow field
with chemical reaction. Both of these problems appear. to be intractable
in view of the present state of knowledge in aerothermochemistry.
However, as pointed out by Marble and Adamson(g), an entire
class of technically important problems, namely those which can be
treated using the classic Prandtl boundary layer assumptions, can be
successfully attacked with the present state of knowledge. Problems
falling within this class include, (l) the thermal quenching of a reacting
gaseous mixture by a cool wall, briefly discussed by von Karmén and
Millan(g), {2) the thermal ignition of a combustible gaseous mixture by
a heated wall, (3) combustion processes in free jets and combustion
under conditions of mixing between two gaseous strear-ns, (4) dissocia-
tion and recombination in a hypersonic boundary layer, and (5) the
erosive burning of a solid propellant grain. Relatively lii:tle effort has
been expended upon this technically important class of problems.
Marble and Adamson(s) considered problem (3) above; in partic-

ular they considered the case of a first-order chemical reaction occurr-

ing in a laminar mixing region having a velocity ratio of unity. An
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equivalent, and almost identical, analysis of this problem has also been
given by Pai( 10).

In the present study, the fruitful approach of Marble and Adamson
is utilized. Their work is generalized to include second-order and third-
order reactions as well as the first-order reaction and is extended to
mixing regions with arbitrary velocity ratios and to combustion within
the laminar boundary layer of a constant temperature flat plate. For the
case where the Prandtl and Schmidt numbers are equal, the determination
of a similarity function relating the specie conc_entra.tiohs to the local
temperature greatly simplifies the analyéis and leads to a general analytic
solution for the N'th approximation to the temperature and concentration
profiles in a reacting boundary layer type region. The similarity
function is shown to be equal to the dimensionless streamwise velocity
when the Prandtl and Schmidt numbers are both equal to unity.

The application of the similarity technique to one—dimensional
flow fields is briefly discussed in Appendix E. Combustion in the
laminar boundary layer with arbitrary wall temperatur.e distribution is
considered in Appendix F and chemical reaction in the hypersonic

laminar boundary layer is briefly discussed in Appendix G.
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II. THE GOVERNING EQUATIONS OF CHANGE FOR ONE-DIMENSIONAL
AND BOUNDARY LAYER TYPE FLOWING GASEQUS SYSTEMS WITH
CHEMICAL REACTION

A. General Equations of Change

The physical description of nonequilibrium systems such as flow-
ing gases with chemical reaction is in the province of nonequiiibrium

e . .- 11,
- statistical mechanics or modern kinetic theory( 12).

By virtue of
rather recent developments in kinetic theory, the propert;ies.of a non-
equilibrium dilute gas mixture may be adequately described by the set of
distribution functions, one for each component of the mixture, which is
obtained by the solution of a corresponding set of Boltzmann integro-
differential equations. The fundamental Boltzmann equation rhay be

derived from a physical and intuitive Viewpoint(13’ 14)

which, though
simple, unfortunately presents some logical difficulties; the equation may
also be rigorously derived from the firm ground of the Liouville theorem

of statistical mechanics(ls’ 16).

The Boltzmann equation ié valid only at
densities.sufficiently low that the effect of collisions involving more than
two molecules is negligible. This and the additional condition that the gas
mixture behaves as a continuum (the mean free path of the gas molecules
being short compared with all the macroscopic dimensions of the
system) are certainly valid in the case of combustion in flowing gaseous
systems at normal (near atmospheric) pressures.

The fundamental equations of changé - continuity, momentum and
energy balance - can be derived from the Boltzmann equation without

actually determining the form of the distribution function(17). Express-

ions for the fundamental equations of change for a flowing gaseous system
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with chemical reaction are presented later in this section. However,
certain functions, called the flux vectors, which involve the distribu-
tion functions appear in the expressions for the fundamental equations
of change; the Boltzmann equation must thus be solved in order to
evaluate the flux vectors.

 In view of the complexity of the Boltzmann equation, it is not
surprising that an exact solution has not been obtained and that con-
siderable effort has been expended upon obtaining approximate solutions.
The perturbation technique of Enskog, which is a modification of a
method due to Hilbert, is the most widely used method of approximation.
This technique involves a perturbation about the equilibr‘ium state (the
nzeroth-order" solution which corresponds to the Eulerian equations of
motion) and is thus valid only when the distribution function at any point
in the gas is only slightly different from a Maxwellian distribqtion. The
first-order perturbation leads to the Navier-Stokes equations which
apply to systems, such as are considered in this study, in which the
gradients in physical properties are small in the sense‘ that they do not
change appreciably in a distance of a mean free path; phenomena such
as shock and detonation waves cannot properly be treéted by this order
of approximation. The second-order perturbation leads to the Burnett
equations which were formerly thought to be applicable to phenomena
such as shock and detonation waves. Apparently, such is not the case(ls?
however, and there is now considerable doubt as to the validity of the

Burnett equations due to questions concerning the convergence of

Enskog's series, causality, and the fact that proper statistical mechan-
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(19),

ical modifications were not included Fortunately, the recent
contribution by Grad( 20) of a new method of solving the Boltzmann
equation justifies the fi.rst approximation of Enskog with which we will
be concerned.

Enskog's first perturbation leads to expressions for the flux
~ vectors in ferms of a set of integral equations*. These equations
explicitly involve the dynamics of a molecular encounter and hence the
intermolecular force law. Even within the restrictions imposed by the
assumptions previously noted, the accuracy of the calculation of the flux
vectors and of the associated transport properties is thus related to the
validity of the intermolecular force law utilized. Solutions to the integral
equations, in terms of the properties of the molecular model employed,
have been obtained by two equivalent methods. Chapman and Cowling(zn
expanded the unknown scalar functions in an infinite series of Sonine
polynomials; these polynomials are related to the associate'd Laguerre
polynomials(zz). The flux vectors are then expressed in terms of ratios
of infinite determinants. Curtiss and Hirschfelder(za) ‘utilized a finite
series of Sonine polynomials and employed a variational procedure in
determining the coefficients of the expansion. The re.sults of the latter
work will be employed in this study. Expressions for the flux vectors

in terms of the transport property coefficients are presented in Section

II1 B; expressions for the transport property coefficients for a simple

% One additional assumption is made in the derivation of these integral
equations: classical mechanics is employed. This restriction is
unimportant in the present case and in all applications except where
light gases are treated at very low temperatures.



-7-

molecular model, the Maxwellian molecule, are presented in Section IIC.
With the above brief discussion for background, the general

equations of change which include the effects of chemical reaction and

molecular internal degrees of freedom will now be presented in the form

derived by Hirschfelder, Curtiss and Bird(24).

l. Continuity of Chemical Species

The equations for the continuity of the i'th chemical specie is¥,

ok v e (343 = ~ (1)

For a system consisting of N distinct chemical species, N such
equations may be written; however, as will be discussed later, only N-1
of these equations are independent or necessary. The term KL repre-
sents a source strength due to the production of molecules of the i'th
chemical specie; an expression for this term as a functibn of the thermo-
dynamic variables and the pérameters of chemical kinetics is presented

in Section IID.

2. Conservation of Mass

In the absence of sources or sinks for mass, the overall relation
for the conservation of mass may be obtained from equation 1 by multi-
plying through by M, , summing over A and noting that >am. = §

© A A
by definition and that Z “'\;.“,-,?.L = ZM_K = 0 from mass conserva-
A — . o
A

(25)

tion considerations

d =
= 4 v-8¢ =0 (2)

* Refer to List of Symbols, pages x-xix , for definitions of the various
symbols used.
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3. Conservation of Momentum

In general there will be four equations for the conservation of
momentum; one equation is required for each of the three translational
degrees of freedom and a fourth equation, not generally considered, is
strictly required for the conservation of angular momentum. If the
molecules are smooth épheres, however, there is no mechanism for
an interchange of the angular momentum associated with the rotation of
the molecules with the angular momentum present in the form of the
macroscopic motion of the gas. The impossibility of interchange of the
angular momentum in the case of smooth spherical molecules negates
the necessity of including the equation for the cons ervation of angular
momentum. If the molecules are not smooth spheres, however, ‘the
equation for the conservation of angular momentum should be included
as the interchange of angular momentum will introduce some modifica-
tions to the transport properties(zé’).

Only smooth spherical molecules, represented by the Maxwellian
molecular model (Section IIC), will be considered in thé present paper.
The equation for the conservation of angular momentum will thus be
omitted.

The three scalar equations for the conservation of translational

momenta may be expressed by the following vector equation:

E_azurz v = -2 v.P+ =¥ X (3)
D& ot R RS

The symbol Z represents the pressﬁre tensor, to be discussed in
—ly
Section II B, and .IL is the force vector in dynes per molecule acting
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on molecules of the i'th chemical specie due to an external field. The

D . . . . D o 2
operator ¢ 18 the Eulerian derivative, 3%== - + CO‘V

ot

4., Conservation of Energy

The following form of the energy equation is valid for polyatomic
as well as monatomic molecules and includes the effects of chémical

reaction:

De T ¥, T =
g[ B:: + co.vch'k_: —V--t'(,

| (4)
-7 :v-c: + g“;_ (-é:z ‘i;\) - ii‘“i:z&ﬁ; +i;.. ﬁbv‘-;;.

- -

.

The vector ‘lr is the heat flux vector, 4. is the mass flux vector for

»
~~

the i'th chemical specie, and 'U; is the total (thermodynamic plus
chemical) internal energy per gram of the i'th chemical specie. The
guantity c, is the éverage heat capacity per gram of the mixture at
constant volume. Thus,

C =~ nm(a_a-g\ - L 5
v gzﬁh"“’v 325,“&"\&9@ (5)

The heat and mass flux vectors are discussed in Sectiqn IB.

5. Equation of State

Only five of the usual six hydrodynamic equations have been
listed above. The remaining equation is that of thermodynamic state.
It will be assumed that each component of the gas mixture obeys the

thermodynamic equation of state of a perfect gas. Thus,

)P,:_ =n kT
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Furthermore, the validity of Dalton's law (the law of additivity of
pressures at constant volume and temperature) will be assumed for the
gas mixture. Then,

p:Zﬁ:nkT

or, in more convenient form,

,P::g%\-T (6)

where & is the universal gas constant (8. 314:5:107 ergs/oK/g-—mole)
:;.md M is the equivalent molecular weight of the gas 'mi#ture; the corre-
sponding units of pressure are dynes/cmz.

Expressions/_for the three flux vectors and for the chemical specie
source strength due to chemical reaction are presented in the following
gsections in terms of the ordinary hydrodynamic and thermodynamic
variables. They may thus be considered to be known quantities in the
equations of change presented in the present section. The desired
description of the reacting flow system is then given upon obtaining
solutions for the unknown dependent variables in terms of the independ- '
ent variables of time and the three space coordinates. The unknown
dependent variables are the usual six variables of hydrodynamics - the
three velocity components and the three thermodynamic. variables of
state (pressure, density and temperature) - plus the variable of chemical
concentration for each of the species in the mixture. The latter variable
may conveniently be expressed as a weight fraction. Since the sum of
the weight fractions must be identically unity, only N-1 equations for

the continuity of chemical specie, equation 1, will be required if N is
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the total number of distinct chemical species in the flow system. The
set of equations is thus determinant as there are N + 6 unknowns and an

equal number of independent equations.

B. The Flux Vectors

Under nongqui/librium conditions, gradients exist in one or more
of the macroscopic physical properties of the system: composition,
mass average velocity, and temperature. These gradienfs give rise '
respectively to the molecular transport of mass by diffusion, of momen-
tum by the action of viscous and pressure forces, and of kinetic energy
by the transfer of heat. The flux vectors which express these molecular
transports are responsible for the irreversibility of the process or flow
field under consideration. Expressions for the flux vectors of a binary

(11

mixture have been derived by Chapman and Cowling ); extension to the
case of a general multi-component mixture has been made by Curtiss

and Hirschfelder(23). The following summary is based on the latter

work.

l. The Mass Flux Vector and the Diffusion Velocity

The mass flux vector for the rate of molecular transport of the
i'th chemical specie is given by,
—’
,X = N\.m, ? (7)
. M b
A

-
where the diffusion velocity C; is given by the expression,

<

) Z mé—‘vpé X& - (—D'.' ) Ve\neT (8)

4> M,

2
|

"8

-*
2= |
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and the vector :\; is expressed as,
by a; n, n, m;
G =6+ (- Hp Ve
(9)
“imi S _'i -
‘(w)[ﬁ i zl"*xx\

3

T :
The terms 33 and DL are the multicomponent diffusion coefficients

A
and the multicomponent thermal diffusion coefficients, respectively*.
The multicomponent coefficients depend upon the physical properties,
mass and law of interaction at collision, of the molecules of each of

the chemical species present in the gas mixture and on the local com-
position and thermodynamic state. Expressions for these coefficients

(28)

are given by Hirschfelder and his collaborators in terms of the
expansion coefficients of the finite series of Sonine polynomials used in
their variational technique. The resulting expressions are very com-
plex. Fortunately, by virtue of the simple molecular modei which will
be introduced in Section IIC, multicomponent diffusién and thermal
diffusion coefficients will not be required in the analysis of this paper;
therefore, they will not be considered hereafter. If desired, reference

may be made to the excellent work of Hirschfelder, Curtiss and Bird,

noted above, for a complete exposition of the current (1954) state of

* There is considerable variation among authors in the nomeclature
and definition of the diffusion coefficients. Hirschfelder's
nomeclature and definitions are used in this paper. See reference
27 for the relations between the diffusion coefficients used by
Hirschfelder et al and those used by Chapman and Cowling.



-13-

knowledge with regard to multicomponent diffusion and thermal diffusion

coefficients.

2. The Pressure Tensor

The pressure tensor represents the flux of momentum t_hrou'gh
the gas. The usual assumptions which are fundamental to the Navier-
Stokes equations will be made; namely, that the gas medium is isotropic
(no preferred direction) and that the normal and shear stresses are
linear functions of the deformation velocities. The tensor is thus
reduced to a symmetric second-order tensor whose diagonal elements
are normal stresses and whose non-diagonal elements are shear
stresses, the stresses being those measured by a suitable instrument
moving with the stream velocity. For a dilute gas, the pressure tensor

may be expressed as follows,

-l
P=4T - 248 T V-5 (10)

The unit tensor g and the rate of shear tensor §g are given by,

~—

| o o
T =(0o v o
- 0 0

and
S = Q&@ (11)

where the components are as follows:

oC oC -
S =L[ %y 2 L v.7
oK < C

o((; 4 o bxoa 1 3 g




-14-

In equations 10 and 11, £ is the equilibrium hydostatic pressure
(e.g., the local static pressure which would exist in the absence of
velocity gradients) and /A and *l are the coefficients of shear and

bulk viscosity respectively; Sa‘ is the Kronecker delta, equal to unity

g
when ® equals @ and equal to zero when « is not equalto § .

. The coeffiéient of bulk viscosity (sometimes called the coefficient
of dilatation viscosity) is closely related to the "relaxation time'", a
characteristic time required for the transfer of energy from the trans-
lational to the internal degrees of freedom. The bulk viscosity
coefficient is zero for a dilute monatomic gas and is small, though non-
zero, for a dilute polyatomic gas. Unless this coefficient \}anishes, a
spherically symmetrical expansion or contraction will give rise to a
pressure different from the pressure of a gas at rest under the same

(29).

conditions of density and temperature To avoid this complication,
and in view of the lack of more complete information on the value of the
bulk viscosity coefficient for polyatomic molecules, the validity of the
cléssic Stoke's hypothesis of a zero bulk viscosity coefficient will be
assumed; this assumption leads to results which are in good agreement
with experimental measurements.

With thYe assumption of zero bulk viscosity, equations 10 and 11

can be combined to yield the following expressions for the diagonal and

non-diagonal elements respectively of the symmetric pressure tensor:

— bco
L7l ok T A Sl vig
' o« (12)
d¢
8l . LR
)
BXH

ac,
Y= %= ‘/"‘{ ax:; T
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Upon operating on equation 12 with the appropriate rules for the

manipulation of dyadics and tensors(30), the following relations are

obtained for the scalar product appearing in the energy equation and for

the o -component of the vector product appearing in the momentum

equation:

PivE =T Ty, Y

= i e

_ < ok
(vo2), =2 52

8=1 ‘8

Expansion of the above expressions yields the following relations

;E:V?o = ,pv-zb—,u@

(vep) = 2% _ 2 [ ( u g -*)l (13)

= M2 ST — T.eC

o BXD‘* bx% ?)X%( o

% 2]
PEW ¢>g bxoﬁ },xu
where @ contains the terms due to viscous dissipatio_n(31’ 32) and is
given by, 7
2 2 2
. U, da- dur,
§= 2| (bx)"‘ (a”*’ (_bﬂ |

(14)

(bn; . ‘ou.,)2+ (bw; L% b
ITRAERTY W. {,;:)

2
o, dwyp Bu W, *
(b2°+bx° AET %, ;,2.)
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3. The Heat Flux Vector

The heat flux vector is given by the following expression:
- N>
E=-AvT + 2T 8 h ¢
A Ay A e

LT Ny > (15)
MY ‘23 m;x,j_a.[c-—"—f-é]

N

. In the above, b;? is the binary diffusion coefficient and h‘.' is the
total enthalpy (thermodynémic plus chemical) per gram of the i'th
chemical specie. The terms on the right hand side of equation 15 are
the rate of heat transfer by thermal conduction, ordinary diffusion,
and thermal diffusion respectively.

It should be noted that the transfer of energy by radiation has
not been included in the above expression for the heat flux vector. At
the combustion pressures considered in the present paper, near atmos-
pheric, the ratio of the energy transferred by radiation to the total
energy tfa.nsferred is very small. In view of this fact, the exploratory
nature of the present investigation does not warrant the inclusion of
this additional and cumbersome burden. A discussion of energy transfer
by radiation and its influence upon the heat flux vector is given by
Hirschfelder et a1(33); the influence of radiation upon flame propagation

(34) (35)

is treated by Gaydon and by Magee

C. Transport Properties for a Simple Molecular Model

It should be obvious from a cursory review of the expressions

for the equations of change and for the flux vectors presented in the



-17-

preceding sections, that some rather drastic simplifications must be
made if solutions are to be obtained. Simplifying assumptions with
regard to the nature of the flow field will be made in Section IIE; in the
present section assumptions will be made with regard to the molecular
characteristics which determine the transport properties. The
objective, of course, is to select a molecular model which is reasonably
realistic and yet leads to simple expressions for the transport
properties; furthermore, the model should be logically compatible with
the assumptions which will later prove to be essential in the analysis to
be presented. In particular, it is desirable that the Prandtl number,
the Schmidt number, and the product of dynamic viscosit’y and density
should be constants for the molecular model chosen.

Even if all species present in a gas mixture individually have
simple expressions for the transport properties, the corresponding
expressions for the transport properties of the gas mixture may still be
very complex(zg). For éxample, the most elementary system in which
chemical reactions can be considered, the binary system, will probably
be mathematically intractable (at least in the absence of large digital
computing machines) even if the transport coefficients. of each com-
ponent are simple. .If follows that one desirable condition with regard
to mathematical tractability is that the transport coefficients of the
various components of a gas mixture be not only individually simple,
but be equal.

One is thus driven to the realization that the most effective

simplification that can be made with respect to the transport properties,
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is the assumption of a gas mixture consisting of mechanically similar
molecules. In this simple case the molecules of the various chemical
species are of the same mass and obey the same law of interaction at
encounter; the equivalence of molecular mass implies that the number of
molecules in the gas mixture is not changed by chemical reaction. Note,
. however, that the molecules of different species may still differ in
chemical reactivity. The coefficients of thermal conductivity and of
viscosity for the mixture are then the same as if the molecules were
identical in all respects (e. g., the mixture coefficientsAreduce ident-
ically to those of a pure component), the coefficient of thermal diffusion
vanishes, and the coefficient of ordinary diffuéion reducés to the
coefficient of self-diffusion of a simple one-component gas(36).

The mechanically similar molecules will be assumed to be
Maxwellian (e.g., a molecule is assumed to be a point center of force
repelling the nearest neighboring molecule with a force of magnitude
A r_5 where o is the force constant of proportional_ity and r is the
diétance between the two molecules). Maxwellian molecules are
reasonably fair approximations to reality, particularly at the high
temperatures of interest in combustion where the contributions due to
the repulsive forces are far more important than those due to attractive
forces. Furthermore, the expressions for the transport properties of
Maxwellian molecules are much simpler than are those for the more
realistic molecular models such as that of Lennard-Jones.

Expressions for the transport properties of a one-component

gas whose molecules are represented by point centers of force repelling
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v
with a force of magnitude <t are given by Hirschfelder, Curtiss

and Bird(37); proceeding from these general expressions, the trans-
port properties for a gas mixture composed of mechanically similar

Maxwellian molecules, U =5, can be shown to be of the following

k-
M= 348 ™ \/-%—

T
QQ'— 9{ w T ' (16)
—'|\qz¢ oL ?E

-

form:

Y S 2

In the above, the expressions for the coefficients of viscosity and of
diffusion are valid for polyatomic as well as monatomic gases; the
expression for the thermal conductivity, however, is valid only for
monatomic gases. This latter restriction is due to the presence of the
internal degrees of freedom in polyatomic molecules anci th¢ conse-
quent effect resulting from the time lag in the transfer of energy from
the translational to the internal degrees of freedom. Since the internal
degrees of freedom do not participate in the transfer of mass or of
translational momentum, their presence does not affect the expressions
for the diffusion and viscosity coefficients.

(38

The Eucken correction ) for the thermal conductivity of

*
polyatomic molecules will be employed . With this approximation, the

* Because of the difficulty of transferring energy from the trans-
lational to the internal degrees of freedom at room temperatures,
the Eucken correction does not fit experimental data accurately at
these temperatures. At the higher temperatures of interest in
combustion studies, however, the difficulty of transferring energy
is much less and the Eucken correction should be applicable.
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coefficient of thermal conductivity for polyatomic molecules is given by
5 R 'k
— C ~ 4
A=l + T & (17)

where & is the universal gas constant and M  is the equivalent
molecular weight of the gas mixture.

Simple expressions for the Prandtl and Schmidt numbers of a
mixture .of mechanically similar Maxwellian molecules can be

obtained from equations 16 and 17 with the following results:

(18)

The assumption is now made that the components of the gas mixture
are all calorically perfect; the specific heats are thus independent of
temperature. If, in addition, it is assumed that the specific heats of

the various chemical species are equal (c_ =¢_ =c j;c_ =c_ =c_),
i Pj P v, Vj v
then the specific heats of the mixture will also be independent of the

chemical composition and will, by virtue of the above, be constant.
Under these conditions, the Prandtl number, as well as the Schmidt
number, is constant, Furthermore, since the assumption that the
mixture obeys the equation of state of a perfect gas has already been
made (SectionII A ), then §~ T—l ; thus from equation 16:

/&g = /Vtxg = constant (19)

fuy
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This result will be exploited in Section IIF through utilization of the

Howarth transformation.

D. Rate of Production of Chemical Species

The weight rate of production of chemical species enters
explicitly into the expressions for the continuity of chemicél sp.ecie and
for the conservation of energy. The rate of production is dependent
upon the concentrations of all of the reacting species and ﬁpoﬁ the
specific reaction-rate coe.fficient. The form of the rate law which is
appropriate is dependent upon the type of reaction: opposed or unopposed,
single or multi-stepped. The assumption, which is not rigorously
justifiable, is made that the reaction-rate laws of classical chem_ical
kinetics which were derived for stationary, isothermal systems are
applicable to non-isothermal flowing systems. The argument .is made
that although the phenomenological description of the flowing, non-
isothermal system is different than that of the stationary isothermal
system, the conditions on the microscopic level which govern the rate
of energetic collisions and consequently the rate of chemical reaction

%*
are essentially unchanged . Brief introductory treatments of the

* This argument is not valid in the treatment of physical phenomena,
such as detonation waves, in which the temperature gradient is
unusually large. Note, however, that the assumption of small
gradients in the physical properties, in the sense that they do not
change appreciably in the distance of a molecular mean free path,
has already been made in Section II A as an essential restriction
on the validity of the Navier-Stokes equations. Thus the above
assumption as to the validity of classical chemical kinetics does
not give rise to additional restrictions on the type of systems
which can be treated with the present analytical machinery, but
rather is consistent with the previous development of the
expressions for the flux vectors.
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(39) (40)

reaction-rate laws are given by Penner and by Taylor More

extensive treatments of chemical kinetics are presented in references
41, 42 and 43.

Only one-step chemical reactions in which the forward reaction
is dominant and the backward reaction is consequently completely
" negligible will be considered in the main body of this paper*. In
exploratory studies such as the present, such a simple ""global"
reaction is an acceptable model for the complex multi-stepped chemical
reactions which actually occur in technical exothermic combustion
processes(44). Advanced analysis of a quantitative nature will of course
require a more sophisticated approach which considers xhulti-stepped and
opposed reactions.

The one-step forward reaction of arbitrary complexity may be

represented by the equation

z -vé' blg —_ —Ug'“%\&' . (20)
4= j=

i

N N

t
where the V. and 'Vj' are the stochiometric coeff_icients for the

&
reactants and products respectively; ’h? - stands for the j'th chemical
specie and N is the total number of different chemical species which

take part in the reaction. The reaction represented in equation 20 is

* A simple one-step opposed reaction is considered in Appendix G
in the course of a brief discussion and analysis of an important
technical problem - dissociation and recombination in the
hypersonic boundary layer.
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said to have an overall order, m#*, equal to the summation of the
coefficients of the reactants, —Z'U .

According to the law of mass actlon, the net mass rate of pro-
duction per unit volume of the i'th chemical specie, ML-R;, , due to
the chemical reaction represented by equation 20 is given by the

expression:

N
_ " 1 g K A\ 4 21
- M .
=\ 4
The proportionality factor k{_ is called the specific reaction-rate
caefficient; K and M. are the weight fraction and molecular weight
of specie j respectively. According to the classical Arrhenius
equation(45), which will be utilized in the present study, the specific

reaction-rate coefficient is given by,
’% = }exp|—E/&T] (22)

%* .
where b is the so-called frequency factor and E is the activation

energy (per gram mole of stoichiometric mixture) for the reaction.

* The so-called frequency factor actually has the dimensions of
frequency only for the particular case of a first- order reaction.
For a reaction of order m#*, the dimensions of the "frequency
factor" are actually as follows:

1-m¥* 3)m*-1

{moles) {cm (sec)-1 . See reference 46 for a derivation

of this dimensional expression. Note that from equation 22, the
dimensions of the specific reaction-rate coefficient are identical
with those of the so-called frequency factor.
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In conformity with the assumption of Section IIC with regard to
mechanically similar molecules, the reactions considered will be
limited to those in which all chemical species involved have the same
molecular weight; thus, the number of molecules present in the gas’
mixture will not be affected by the occurrence of chemical reaction.

_ A simple first-order, a simple second-order, and a simple third-order

reaction will be considered; the corresponding reactions are listed

below:
First-order reaction: ,)"( A — ’}Y\? '
1 \
. Second-order reaction: + — 2 23

Third-order reaction: MAS—’- 11]33—{— )nc:—» 3'))1 3

The thermal decomposition of azomethane is aﬁ example of a
complex chemical reaction which obeys first-order kinetics rate 1aws*.
This reaction, which will be considered as the basis foi‘ first-order
kinetics calculations in certain of the following sections, has been

discussed in considerable detail by Kasse1(48’ 49), by Ramsperger(47’ 50?

and by Rice and Ramsperger(sn. The principal reaction is given by

the equation

* Ramsperger(47) experimentally determined that the decomposition
of azomethane is essentially a first-order or unimolecular
reaction at '*high pressures" (e.g., at pressures of about
700 mm Hg., thus near the pressure level considered in the present
paper) but rapidly degenerates to a fractional order reaction as the
pressure decreases,
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which indicates that one molecule of azomethane decomposes to yield
one molecule of ethane and one molecule of nitrogen. However, there
is a small amount of side reaction as indicated by the presence of about
1.7 °/o of unsaturated hydrocarbons in the reactant products; this side
reaction will be neglected in the present paper. Note that in equation
24, the products are similar in molecular weight and may bé treated as
consisting of two molecules of a hypothetical chemical specie of
molecular weight 29 having properties between those of CZH() and NZ‘
Other examples of complex reactions obeying first-order kinetics rate
laws are the decomposition of NZOS’ the thermal decomposition of
certain hydrocarbons, and the decomposition of the azo éompounds,
azoisopropane, methyl isopropyl diimide and dimethyl triazene(sz).

Many chemical reactions of technological importance follow
second-order kinetics. When the reaction is complex and follows this
order of kinetics, it is probable that the rate-determining or "slow"
step is a bimolecular process. The combustion of hydrocarbon fuels
with air is generally thought to be governed by rate—coﬁtrolling
bimolecular processes obeying second-order kinetics. A simple one-
step second-order reaction such as that of equation'23.may thus be
taken as a reasonable though crude model for exploratory analytic
investigations of air, hydrocarbon fuel combustion.

Third-order reactions may be classified into two groups: those
in which all of the molecules involved enter into the chemical equation
for the reaction, and those in which the third molecule is needed only

to remove the excess heat of reaction and permit the two reacting



-26-

molecules to combine.  Only four of the first group of reactions are
known; each of these is second-order with respect to nitric oxide and
first-order with respect to the other substance - oxygen, chlorine,
bromine, or hydrogen. These reactions have been rather thoroughly
studied, while reactions of the second group have not been thoroughly
studied. Since none of thé third-order reactions are of paramount
interest in technical combustion processes, no numerical calculations
for this order of reaction will be carried out. Inasmuch, however, as
the analysis for third-order reactions can be carried through with no
additional difficulty, the analysis will be presented in such a form as to
be directly applicable to this order of reaction as well as to the more
common first-order and second-order reactions.

Now if the order of reaction is denoted by the symbol m*, and
the product specie is denoted by the subscript p, then the reactions of

equation 23 may be summarized in the single expression:
¥
m .
% :
E M, — wm (25)
: b i
'l

The corresponding general expression for the mass rate of production
of a reactant specie per unit volume is obtained upon combining

equations 21, 22, and 25:

3
m
m, %, = - M b exel-/gr] TT(300) (26)
M A~ é:‘ Ma'

From the equation of state, equation 6, it follows that S/M = 'P/&T .
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Noting from the above equation that the mass rate of production of all
reactant species is the same (since molecular weights and stoichiometric
coefficients are equal), and defining W as the mass rate of removal
. of any given reactant specie per unit volume and per unit density, the

L)

following relation is obtained:

% X

-\ " _
exel- €/&T) TT K, (27)
= @

From equations 25 and 26 and the principle of the conservation of mass,
it follows that the mass rate of production of the product specie per unit

volume and per unit density is given by:

mt
we-g > W = miy (28)
P S ok ~

A=\

It will now be convenient to develop an expression for the sum

N
A
z m;.T(:-_ U; which occurs in the energy balance equation, equation 4,

&:\

for the particular class of reactions represented by equation 25. Since
A

-D'&' is the total (thermodynamic plus chemical) internal energy of the

i'th chemical specie,
° T

T = Al + f C, (v dr (29)
~ 29.0¢
L4
where A“—F is the standard heat of formation (per gram) of the i'th
&

chemical specie at 298. 16 degrees Kelvin, Using the assumption from

Section IIC that c, = cV =c, = constant it follows that:
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N Y =
Zm;’i{. ﬁ; = ZM#K' sh, + ¢ (T-298.1¢) z"‘J‘l
‘ - A=\

A=t =\

N
However, E m. X, is identically zero by virtue of the conservation

~ A
=t

of mass; thus,

4]

N
m, % T = E w, K. oh, (30)
A=\ A=\

Equation 30 is a general expression valid for any reaction for which the
assumption of constlant specific heats is acceptable.

Now for the particular class of reactions represented by
equation 25, the first N-1 terms of the above sum are concerned with
the reactants and the last term is concerned with the product specie;

thus from the above,

m R, = =W, i<W
mK = s 3 A=W

where, (31)
N = m*|

Combination of equations 28, 30, and 31 yields,

N
\ s - :
- . K. = W
SCPZ K. T A (32)
L=\
where:
%
™
—_— - o * o
c, sk = M-\{_ — m A\-\{_ .(33)
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is the excess of chemical energy which a combustible mixture contain-
ing one gram of each reactant specie and satisfying equation 25, has
available for conversion to thermal energy; 4 \‘\_:__ and & “;‘ are .
the standard heats of formation of the j'th reactaxft specie and the
product specie respectively. Note that for an exothermic chemical

reaction at constant pressure, the conversion of chemical to thermal

energy satisfies the simple relation:

L
W= m (T—T) | (34)

where Tf is the adiabatic flame temperature for a stoichiometric
mixture which is initially, in the cold premixed state, at the tempera-
ture TI of the combustible free stream. The previous assumption of
constant specific heats is, of course, essential to the validity of

equation 34.

E. Equations of Change for Combustion in One-Dimensional and

Laminar Boundary Layer Type Flow Systems

The complexity of the expressions for the general equations of
change (Section II A) and for the flux vectors (Section IiB) demands
that rather drastic simplifications be made before the analysis can
proceed. Simplifying assumptions with regard to the molecular
.properties of the gas mixture were made in Section II C with the

consequent results that:
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m, = m = constant

Mi = M = constant

cVi = c, = constant

cpi = cP = c, + Q\/M = constant

Pr = C\,/A/A = constant (35)
Sc = /"'/35’ = constant

A] = §, = constant

N - by = ﬁpé |

D'f = 0 (thermal diffusivity vanishes)

Although these results serve to materially simplify the fundamental
equations governing the reacting flow system, additional assumptions
with regard to the nature of the flow field will now be made in order to
obtain the least complex set of governing equations consistent with the
class of flow systems to be considered in the analysis.

Three assumptions with regard to the flow field will be made:
First, it will be assﬁmed that all viscous regions and flame fronts are
laminar; treatment of the turbulent case appears to be possible but
much more complex and will not be considered in the present paper.
Second, the absence of external forces acting on the gas molecules
will be assumed. In practice this assumption requires that the flow
velocity be sufficiently high so that the gravitational influences are
negligible; furthermore, consideration of the interesting problem of the

influence of magnetic and/or electric fields on the reacting (and possibly
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ionized) gases is thus excluded. The third assumption is that of a
constant pressure flow field. This implies that the radius of curvature
of the streamlines is very large and that the free stream velocity is
steady; the present analysis must thus be restricted to non-accelerating
one-dimensional flows or to steady planar boundary layer type flows.

_ The implication is also made that the pressure change through a laminar
deflagration wave is negligibly small, an implication which is in accord

(53)

with reality From the a.Bove,

a. P = constant
-#
b. X, =0 (36)

c. Flow is laminar

These three assumptions with respect to the nature of the flow field,
when coupled with the results of Section IIC which are summarized in
equation 35, re.sult in a very great simplification of the expres sions
for the flux vectors and for the equations of change. Furthermore,
they still permit the treatment of a class of technically important com-
bustion problems - namely the planar boundary layer type of phenomena
in which the variations in the physical properties of the flow system are
much greater in a direction normal to the main flow than they are in the
streamwise direction. The simpler class of one-dimensional systems
may also be considered.

In the present section, equations 35 and 36 will be utilized in
reducing the general expressions for the equations of change (Section II A)
and the flux vectors (Section IIB) to the simplified forms which serve as

the basis for the analysis which is to follow.
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1. Simplified Expressions for the Mass and Heat Flux Vectors

Combination of equations 8, 9, 35, and 36 yields the following
simple expression for the diffusion velocity,
2
—p n n:
T — m.
AR LILA
IEN

noting that 'mj = m (mechanically similar molecules), nm = S and

| introducing Kﬁ: g/“ as the weight fraction of specie j,

Kat!
1
|27

4
Qﬁ

& é’*h
or, since Z K. = and Z\{ = 1=K, ,
PR ARL &
——p
E; :—% \v/ K,L (37)

From the above and equations 7 and 35 the divergence of the mass

flux vector may be expressed as,
T Bro |
V4 =V.}-¢e8vKkl — _gf~ (38)
b= Vg RVK] = —vfa o))

In similar manner, the heat flux vector, equation 15 can be
simplified to,
¢ =-{AvT+ 5% vk
¥ Se & &] (39)

Now since,

U= = (40)
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the following sum which appears in the energy balance relation,
equation 4, may be simplified through the use of equations 38 through

40:
.—5

AR DRABIEL S AR AR
_ Z[{k — #/e)( V.’“v\(\l
= v.AVT +(¢/§)v-[’;—chQ

4 %Z[VK;’ -vﬂh&]

For a calorically perfect gas mixture with constant spec1f1c heats as
previously assumed, Vh - C?VT . Furthermore, VZ K'.‘— 0 ;
~

the following simple result is thus obtained:

—

—v- G +> G, vy = VAT (41)
A

A

2. The Equation for the Continuity of Chemical Specie

Upon multiplying equation 1 through by m = m,, noting that

=8 K'.' , and using equation 37, it is found that:

a(g‘(ﬂ - —_— = _
Y +V'{SK,;,C0 33‘7“;\ =mX =-w3

where W; is the mass rate of removal (per unit volume and per unit
density} of the i'th chemical specie from the system. Furthermore,

since

v‘gK;—C: :va'g.z: +_g-£o.vK;v
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and gﬂ 2/"/50 , the above may also be written as,

o T + 69K, +x| %—\—v-gﬂ vl ok =-

The coefficient of \(‘»'.' is idéntically zero by virtue of the relation for

the conservation of mass, equation 2. In the case of a chemical system
reacting according to equation 25 and containing one inert diluent specie,
the _continuity of the m* + 2 chemical species may thus be accounted for

by the following expressions:

DK,; — A L |
a) v = gv'('EZ VK}) W, ;A ER
{W; Iv$‘m.*
where: w. = (42)
~ 0 L =4
*
"
S L
j=

The subscript d refers to the inert diluent specie, the subscript p
refers to the product specie, and the m* values of i other than d
and p refer to the m* reactant species. Since the last term in
equation 42a is related to the rate at which the i'th specie is being
removed by chemical reaction, this term must be zero in the case of
the inert specie. Equation 42b is simply a statement of the fact that

the sum of the weight fractions must be unity.
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3. The Energy Balance Equation

The left hand side of the energy balance relation, equation 4,
may conveniently be expressed in terms of the constant pressure
specific heat rather than in terms of the constant volume specific heat.

For a perfect gas as has already been assumed,
¢, = G ~PRT
thus, noting that the assumption of constant specific heats has already

been made,

DCT—gc:DT— CmT _’E_m_T

g *d¢ T Dt

The last Eulerian derivative in the above can be expressed in a more

convenient form through the use of the equation for the conservation of

Ds _

—’
mass in the form '.D_ = —gV- C, , for then,
t

D=2 +8De=Dep ,,¢2
W 3e Toe Ty T 3 TS

and, finally,

e, T AN Y )

= - V-a (43
Dt S L) Dt ® )

Substitution of equations 13, 41, and 43 into equation 4 and the utilization
of equations 35 and 36 yields the following expression for the energy

balance relation:

N
R R

In the exothermic combustion problems to be considered in the following

sections, the ratio of thermal to kinetic energy is so high as to make
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the viscous dissipation function @ in the above expression completely
%

negligible ; thus @ will be set equal to zero. With the use of this

approximation and the application of equations 32 and 34, the above

. relation reduces to the expression:

T _

| M *
el ?v-(?r vT) +wm ow (T -T.) (44)

%

An expression for W, is given in equation 27,

4. The Equation for the Conservation of Momentum

Upon.substi_tution of equations 13 and 35 into equation 3, the
following expression for the conservation of the o -component of trans-

lational momentum is obtained for the case of a constant pressure flow

field:
’Dco \ b an —ly
« = = 2 2 —= _2 g.C
Dt S Xy, /U'( CL ﬂ
(45)
] 0 9C, oC,
+ — - [/A_ o, of ]
: e (b*o “u\

5. Compilation of the Governing Equations for One -Dimensional

Flow Systems

Although one-dimensional flow systems will not be treated in the

*  An important technical problem, that of the chemical reaction in
hypersonic boundary layers is briefly treated in Appendix G. In
this high speed flow case, of course, the viscous dissipation is
relatively large and must be included.
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main body of the present paper, many of the analytic techniques used in
the following sections are directly applicable to the simpler one-
dimensional systems*. The governing equations for one-dimensional
. flow systems will thus be summarized for future reference.

For simple one-dimensional flow systems, the differential
operators which appear in the preceding equations take the following

special forms:

d _ 2 d
Pt~ 2t +U %,
v R = 2Py (46)
O%,
B, -»
vy = 2
3 K,

The governing relations for one-dimensional flow systems with
chemical reaction are obtained upon compiling equations 2, 6, and 27,
and simplifying equations 42, 44, and 45 é.ccording to equation 46. The
chemical reaction may follow first-order, second-order, or third-order
kinetics, according to equation 25, and one inert diluent specie may be
included. The gas mixture will thus consist of m¥* + .2 distinct
chemical species: m* reactant species, the product specie, and the
inert diluent specie. Noté that the following set of governing equations
is valid only when the restrictions of equations 25, 35, and 36 are

satisfied.

* The application of similarity techniques to one-dimensional,
reacting flow systems is briefly discussed in Appendix E.
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One-dimensional flow systems:

08 4 a8u) — 9

a) ot 3%,
o' ot _ |
b) 2/ W = —
) ¥t % X, § o
oK. ¥ L2
C) > + u b — . Y
ot ) S B2
w;v
where: Wl =
0
i
"
d) ={-X, - K.
K? $ '2:\ é'

f)

Note that for the case of present interest, a one-dimensional

(47)

constant pressure flow field, the momentum equation is not necessary.

The m¥* + 5 unknowns (velocity, temperature, density, and the

m* + 2 weight fractions) are completely specified by a simultaneous

solution of the above m* + 5 independent governing relations.
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6. Compilation of the Governing Equations for Planar, Laminar

Boundary Layer Type Flow Systems

In assuming a constant pressure flow field in Section IIE, it was
noted that this assumption is valid even in the presence of chemical
reaction since the pressure change through a laminar deflagration wave
is negligibly small. Now, since there are no additional terms due to
chemical reaction in the momentum relation, equation 45, and since the
chemically induced pressure changes are negligible, it follows that the
classic Prandtl boundary layer assumptions will be valid with regard to.
this equation. Thus the axial or streamwise mofnentum equation is
simplified and the normal or lateral momentum equation simply indicates
that the lateral pressure variation is negligible, an assumption which
has already been made. The lateral momentum equation is thus deleted.

Since the relations for the conservation of mass, equation 2 and
of thermodynamic state, equation 6, are also unaffected by chemical
reaction, the application of the boundary layer assumptions in the
presence of chemical reaction requires clarification oniy with regard to
the continuity of chemical specie, equation 42, and with regard to the
energy balance relation, equation 44. Each of these relations has a
reaction term which is explicitly independent of the velocity or of any
velocity derivatives. The order of magnitude comparison usually made
in boundary layer theory may thus be accomplished without regard to
the additional combustion terms; the normal boundary layer equations
for energy balance and specie continuity, modified by a single chemical
reaction term are then obtained. However, in making the classic

boundary layer assumptions in the order of magnitude comparison, it
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is assumed that the changes in the chemical concentration, temperature,
and velocity in the streamwise direction are negligible in comparison

to corresponding changes in the lateral or normal direction. The
assumption is tacitly made, therefore, that the reaction induced changes
in these variables follow this same pattern. The normal boundary layer
equations for specie continuity and energy balance when modified by the
addition of a reaction term are thus valid only in a region in which the
chemically induced changes in temperature, concentration, and velocity
are much greater in the lateral direction than in the streamwise
direction. The consequent limitations in the applicability of the boundary
layer equations to reacting flow systems, particularly in the case of the
heated flat plate, will be brought out in later sections.

The governing relations for planar, laminar boundary layer type
flow systems are obtained upon compiling equations 2, 6, and 27, and
simplifying equations 42, 44, and 45 according to the classic Prandtl
boundary layer assumptions (see reference 54 for detailed discussions
of the Prandtl assumptions). The chemical reaction may follow first-
order, second-order, or third-order kinetics. Note, however, that the
following set of equations is valid only when the restrictions of equations
25, 35,‘ and 36, and the fundamental restriction noted in the paragraph

above are all satisfied.
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Planar, laminar boundary layer type flow systems:

a) 0g 4 dgud L dMgm) = ¢

ot X, oy
b) W 4w Qe 4024, :‘—9—(/&@&9_

ot ° . o %‘, g 'bu‘;.o B\a.c)

3T 2T v —13d (M 9T -
c) wali w, T v, S B SY.)H“ “&(‘1 T)

oK. oK, AW, . ® . '
M L p 2% _—_(&_m_w.
ot ° aﬁo +N;'{\;L Y B\ao S b% ~ (48)
. *
{w;v ALm
where: w =
0 A= d {inert diluent gas)
*
o
o K =l-K, -2 K,
v é:\ ﬁ

*

1.
_ "
) w, = b(—%m \exv[—E/&Tl-\;Ké

RS
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F. Transformation of Equations to the Corresponding Constant

Density Plane

1. The Howarth Transformation

The set of relations presented in equation 48 is greatly simpli-
fied from the original relations of Sections IIA and IIB. The elimina-
tion. of the density as an explicit dependent variable, however, would
certainly lead to yet more tractable equations. Through the use of the
so-called Howarth(55) or Dorodnitzyn(Sé) transformation, the lateral
coordinate may be stretched in such a way as to effectiw)ely eliminate
the density as an explicit dependent variable; the set of equations is
thus effectively reduced to the constant density form. The Howarth
transformation may thus be considered as a transformation from the
real physical plane (xo, yo) in which the density is a variable, to a
corresponding constant density plane (%, y). The following transfor-

mation of independent variables is made:

X = X,
%, (49)
= S \ d
Y f (8.} 24,
where g: is the density of the combustible free stream. This
variable transformation satisfies the differential relations:
2] =2, 22
™K % X, ou
oly y e 2%, (50)
9| =8 o
Y, %
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where, from equation 49,

a %’D
AR ENTA o

The usual aerodynamic stream function, Y (xo, yo), defined such that

g\).o = §I B__Y_
Y
(52)
o
3T T8
is now introduced. Combination of equations 50 and 52 yields the
relations:
— e O
su, =g 2L
&
(53)
— Y oY »
N = — °0r L 9% oy
S g:l R T b} Tb)(;\

The velocities in the transformed plane are now denoted by W and A ,
with:

_ Y
i
(54)
_
V=T

The following expressions are then obtained upon substituting equations

51 and 54 into equation 53:
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uo = W
%, 5
v, = ~(+/3)| -NNL s*?:(g/st\*%;] o

Utilization of equations 19, 50, and 55 yields the following differential

expressions:
u°aix° +~;%°=u% +~r§%
(56)
.
where, by equation 19, ..’%i_ = /“'_tgg;_ = pp - and 7V E’M‘/gI
z

is the kinematic viscosity of the combustible free stream. Note that,
as stated in Section IIC, the fortunate property that/u. g = éo.nstant
for a gas mixture composed of mechanically similar Maxwellian
molecules is essential to the fruitful application of the Howarth trans-
formation.

If non-steady phenomena are eliminated from further consider-
ation, the Howarth transformation of the relations in the :physical plane,
equation 48, according to equations 55 and 56 yields the following set

of steady-state relations in the corresponding constant density plane:
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Boundary layer type flow systems, corresponding constant density

plane:

a) 9-&-1-%"5:0

39

@}k 3w du
b} _ u\“ + N W _1)3;"

oT 3T _ v ¥T *
) Y +N’B\3, — oy +eouw (T-T)
d) TRCLV R LS. TR AL P

X Yy Se B‘}"' ~

Wwoohogmt (57)
where: W;; =

0 & = & (inert diluent gas)

*
wm

e) KP :\_K&—'ZK&
3-\
*

.
nw =5

\

exp(-E/RT) ﬁ_ K

= 8

M
o 3= tx

In the preceding equations, the results of Section IIC with regard to
constant Prandtl and Schmidt numbers have been utilized.
The great simplification introduced by the Howarth transfor-

mation is now apparent. Note that the equations for the conservation of
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mass and of momentum are now completely uncoupled frorp the equations
of energy balance and of species continuity and are, in fact, reduced to
the identical form of the constant density case. The solution of the
velocity field in the plane of the transformation is thus reduced to a con-
sideration of a pure mixing problem in the case of combustion in the
laminar mixing region, or to a consideration of the incompressible
laminar boundary layer on a flat plate in the case of combustion within
the laminar boundary layer. These two problems have been solved and

. . . (57) . (58)
are discussed in the literature; Lock and Gurtler , also reported

.(59) . . ... (60) _
by Pai , have discussed the pure mixing problem and Blasius has
given the solution to the flat plate problem, which is also discussed in

considerable detail by Schlichting(él).

The Howarth transformation has
thus eliminated the added complication of combustion as far as the
conservation equations for mass and momentum are concerned, and has

simplified the remaining equations of energy balance and specie

continuity.

2. Introduction of Dimensionless Dependent Variables

As a further step in preparing the governing equations for
analysis, it will be convenient to express the dependent variables in
dimensionless form. Before defining the dimensionless variables, how-
ever, it will be necessary to set apart one particular, and simple,"
special case: that of a laminar mixing region in which the two streams
have the identical velocity prior to mixing. In this simple case no

shear flow exists in the corresponding constant density plane (x, y) and
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the velocity is constant throughout the flow field in this plane*. Thus

for this particular case u = uy and v = 0 in equation 57, with the

following result:

T

Shear-free mixing region ' , up = Vg
3T _ Vv T * wr,
2 TR, w7 s (T
W, — VN W .
e 2 _Sc‘*:ﬂf_——\f: y o F P
*
W, kgwm
where: w., =9 (58)
) A=4d
¥
™
S A
a,:
% _ "
m -\ ™
dj W= b(ﬁ\ exe(—E/&T) 11 K.
o
- M
e) g = _L
KT

* When two streams having the same velocity but different tempera-
tures mix in a constant pressure field, the resultant temperature
gradient induces a shear-flow in the real, or physical plane
(x , v.). Fortunately, however, the Howarth transformation warps

o] ﬁ . . .
this shear-flow in the x , Ve plane into an equivalent shear-free
flow in the x, y plane of the transformation; in this latter plane,
the streamlines are the lines y = constant.

T Hereafter, ‘'shear-free flow" and ""shear-flow'" will refer to the
flow conditions in the Howarth (x, y) plane, not to the conditions
in the physical (xo, yo) plane.
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The above particular case has been set apart at this time because
certain of the dimensionless variables which are to be introduced in
the general shear-flow case are infinite when Uy is equal to ury
Dimensionless streamwise velocity and temperature variables
are now defined such that they are equal to unity at the cold boundary
(denoted by the subscript I) and vanish at the hot boundary (denoted by
the subscript II). A new dimensionless concentration variable is also
defined which will later prove to be of a useful form. The following

dimensionless variables and parameters are now introduced:

— Ay -us
U(f\g\ = W -,
u= :Fug ﬂ\ = E/@‘Tn
_ N'(K\Q\—LL-;_
Vg = —_____u;_u,
( *(T-T (59)
_ T =Ty C =m _L__"}
Yo = S IR
h— - — T "'T:
Gty = g -, ] o= B
A~ FEP

It should be noted that in the definition of the dimensionless express-
ions above, it has been implicitly assumed that the physical quantities
are constant along both the hot and the cold boundaries. This assump-
tion is essential to the manner in which the above expressions are to be
utilized in obtaining equation 61 and following relations. Thus, in the
case of combustion within the laminar boundary layer on a flat plate for

example, the wall temperature must be a constant and arbitrary wall
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temperature distributions are a priori ruled out when the above
dimensionless quantities are employed in the manner which follows. In
all analyses in the main body of the text, therefore, the physical
quantities will be constant along both the hot and the cold boundaries.
These boundaries, of course, have yet to be specified. The case of the
. laminar boundary layer on a flat plate with arbitrary wall temperature
distribution is treated in Appendix F by a different technique:.

The reaction term, equation 27, will be considerably sirhplified
if the dimensional parameter C3(cm—1) and the dimensibnless variable

€ (K 4} are also introduced:

— iy
(U.:Elkt ({T}-) y Ye * “x

C3 = b m¥o
" (T‘“%‘Tt e T (60)

* *
1=w ™m

sty =[t-2agg] Ty,
'gz\

"p\
€Xp [ \-2¢, 3 (x"b\\

Through the use of equations 59 and 60, the set of relations for the.
general shear-flow case, Uy + ugp s given by equation 57, can be

simplified to the following form:
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Shear-ﬂow, ug =(= Uy

”AT oy _
A\ 2T U _ 1 d'w
b) (v +-4-) 47 +(V+%— -a—%._s_.__i‘__
AN\ D o, __ 1"
o (TR r L3 = ek —anany
A bG— 6, :_‘_ &. - O,
D (v hy) T () T T 5y A%
bFP (61)
'GN(X‘Q) /‘"M*
where: e&(x‘\é\ =
0 »=4
e) K - \(;‘ + E'g_ y &~ :F 4
~ o \

-
-0
I
|
<
o
|
Fa
o
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Although the above equations can be considerably simplified in the
case of the laminar boundary layer on a flat plate, since in this case
A = -5_/“-1 = 0 , the general form presented will be maintained
. in order to permit application to the laminar mixing region, whe_re AN
may be non-zero.

.Thro.ugh the use of equations 59 and 60, the set of governing
relations for the special shear-free case, up = up, given by

equation 58 can be simplified to the following form:

Shear-free flow, Up = Ul
2 _ ) % _
g o> Ok # 639, (xy)
06, 7 .
I A L AU
© PRRY o
~ ~N
where: 6’;’ = (62)
0 A=
- G’ .
*
m
d) Kp =1 —K& - z Ka
=

e) g:ﬂ ; T=Tn ——(T,_—T,_\%

In the above equations, the quantity
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\L:/‘u = ng;[//“: ') u-: = u'n

(63)

Wz —ug)/v =W =008 [y u, = W

has the dimensions of Reynolds number per unit length (cm-l) based on

the gas properties of the cold combustible free stream.

G. Similarity Solutions for the Specie Concentrations

1. Similarity of Specie Continuity and Energy Balance

Equations When Pr = Sc:

The governing relations presented in equations 61 and 62 for
boundary layer type flow systems with one-step chemical reactions are
the end result of rather considerable and somewhat drastic simplifica-
tions. They are, however, still non-linear and are so complex that an
exact analytic solution is not to be expected. Useful approximate
analytic solutions, however, may be obtained for various special cases.
In particular, the special case where the Prandtl and Séhmidt numbers
are equal is amenable to a relatively simple analysis which may readily
be applied to first-order, second-order, and third—order chemical
reactions occurring either in the laminar mixing region or in the
laminar boundary layer on a flat plate.

In view of the rather drastic assumptions which have already
been made and the power of this simple assumtion, the restriction to
the particular case where the Prandtl and Schmidt numbers are equal
will not unduly limit the usefulness of the present analysis which, as

frequently stated, is exploratory rather than quantitative in nature.
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L4

Throughout the remainder of the present paper, then, the assumption

of equal Prandtl and Schmidt numbers will consistently be made:
Pr = Sc (64)

From equations 18 and 64 it is apparent that gb’c‘,/p\ = | . This
relation infers that the rate of energy transfer by thermal conduction
is exactly equal to the rate of energy transfer by diffusion%. This
approximation is in fair accord with reality in many combustion
problems.

By virtue of equation 64, a striking similarity now exits between
the reactant specie (i & m¥) continuity relations and the energy balance
relation in equations 61 and 62; the mathematical form, though not
necessarily the boundary conditions, are now identical. Now if each of
the reactant specie continuity relations in equations 61 and 62 are sub-
tracted from the corresponding energy balance relation, then equation

61d may be replaced by the following expressions,

A\ 2 . A\
2w (a6 fT i (- = iy
Lgwm*
(65)
¥ , LM .
T + Ay Y 9 =4
( A w +(v+\-r\ dy oy~ » &
and similarly, equation 62b may be replaced by the expressions:
o — .
a('}—@,—_ —0’? %(g G-\ )/"S‘"\*
96, — 1 3% C L=
Se T o o S A=14 (66)

* Another physical statement corresponding to equation 64 is that
the ratio of macroscopic transport to microscopic transport is

the same for both heat and mass transport.
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The boundary conditions for each of the above expressions are normally
different. By utilization of a properly chosen dimensionless variable,
however, each of the above sets of m* + 1 partial differential equations
can be reduced to a single partial differential equation having normalized
boundary conditions of zero and unity. The dimensionless variable
utilized, which has the same boundary conditions as U (%, y) and

3, {x, v), is defined as follows:

-
[gm-&ug\:= 2 — ¢ (K, =% ¥
%I—Gv-;, \ —c Af;. \ e
G, g — Ki=X, s a=4 | (67)
G’; b,
T
where:
b) A, = K, -k
~ < Ay

The following eéxpressions for the reactant and inert diluent specie
weight fractions in terms of the dimensionless variable F(x, y) are
obtained from equation 67. The expression for the product.specie
weight fraction is obtained by substituting the expressions for the
reactant and inert species into equation 61f (or equation 62d) and
simplifying; it is assumed that the product specie weight fraction is

zero at the cold boundary.
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) "
a) K, = Ki“n + 4, F +é—\(%—F\ s hgm

b) Ky =Xy ¥ 4,F (68)

*
c) K., = Kvs(\—l-'-\ - —“Cl\- (g —F)

?

The following set of governing relations for shear-flow, U =+ Upp
with Pr = Sc is obtained upon substituting equation 67a into equation
65, using the resultant expression to replace equation 61d, and
replacing equations 6le an 61f by equation 68.

Shear-flow, Uy + Uy with Pr = Sc:

T 3V

X -1-)% =0

a)

_A \ 2T A\ T
By (T+ A8 (v

AN 2% A N3 — A

c) (v + —137\\ 5 (v"'i—A\_g ﬂryg\r: €630, (1) 69)
Ay OF A NE _ LE

d) (v + \—A\ w (v« \—A) o4  OP by

e) K, =¥ +&F +%(}—F3 L hgmt

f) Ka = Kén + 4 F

%
g K, =K (- -2 (-F

ny %= % T =Ty




-56-

The following set of governing relations for shear-free flow, up = U

with Pr = Sc is obtained upon substituting equation 67a into equation

66, using the resultant expression to replace equation 62b, and replacing

equations 62c and 62d by equation 68.

Shear-free flow, up = oug, with Pr = Sc:
_a_ﬁ’_ = l zﬁf _ c \
R TR oyt ¢.C o thy
0F _ _L_ d"F
b) W O g™
c) K. =K, +8;F +1(qa—F) 3 & &m*
~ ~ »~ < %— b} =

(70)

f) g:ﬂ } T =T

The boundary conditions on the partial differential relations
in equations 69 and 70 are particularly simple by virtue of the
definitions of the dimensionless variables which have been introduced:
Conditions at the cold boundary:
hY) (X\'a\ =4 ( X‘-g\

Conditions at the hot boundary: (71)

l

A
>
o

I

Ul =4y = Flugy =0
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2. Similarity of the F(x, y) function equation with the momentum

equation when Pr = 1:

One additional and particularly powerful similarity can be found
in the shear-flow case. If the Prandtl number is set equal to unity, it
is apparent from the resulting complete similarity of equations..69b and
69d and the identical boundary conditions, equation 71, that the function
F(x, y) must be equivalent to the dimensionless velocity U (x, y). Thus,
Fx,y) = VU (%)
(72)

when: Pr = 1

This similarity between the F(x,y} function equation and the momentum
equation reduces the set of governing equations which remain to be
solved to the relations for the conservation of mass and momentum and
the energy balance equation.

The following set of governing equations for the particular case
where Pr = Sc =1 is obtained upon substituting equation 72 into
equations 69e, 69f, and 69g and deleting equation 69d by virtue of

equation 72.
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Shear-flow, u; # uy, with Pr = Sc = L
a) %%fi%_o ”
b) (v '\"%\\i—g-k(v-\-%-\%:#%
c) (v + l_%j—\ % + (v + TI-LI\.\% 2‘;7%5‘9‘3%“‘%\
d) K, = K;I + 5,7 +é\(rb—v\ S hgwm® (73)
e) Ko =%+ 0,70

%
f) K? = Kes_(\_v) - ':_\ (3,“.9\

_ AM - -
g) =I—= 3 T=T G-
S T ) T ’}
For the preceding particular case, Pr = Sc = 1, it follows from

equation 18 that the assumption is implicitly being made that the rates
of heat transfer by convection, by conduction, and by diffusion are all
equal. Obviously, therefore, the solution of equation 73 will not yield
information directly related to the differences in the heat transfer
rates by the three mechanisms listed above. The solution of equation
73 will, however, provide considerable insight into the qualitative

aspects of combustion in shear-flow regions.
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It should be noted that a powerful similarity relation similar to
that presented in paragraph 1 above is equally applicable to the one-
dimensional flow case, equation 47, when Pr = Sc. Similarity
solutions for the one-dimensional case are briefly discussed in Appendix
E. |

H. The Blasius Transformation

Since the governing relations in equations 69, 70, and 73 are in
the same mathematical form as the usual incompressible equations,
the introduction of the Blasius type variables W and x in place of the

present variables y and x will be of considerable benefit. Define
— W
=¥/ (74)

where the quantity W has the dimensions of velocity and is given by,

—

uI; if uI=uII or if uI>0

W = and up T 0. (75)

up - vp Hup F ug

and Uy + 0

Then for a change of variables x, y to s, 1> the following differential

relations will apply:

ol _ v M| ?

2 S R Y
X‘?f “l% bsl‘\ % Y "\'s
_3_ - + | D
2 M| os by 3
¥y d1, 2 d . \ s
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If now s = x and equation 74 is utilized, then

-2 w3 |
(2) bx; bx\ 2X b\\l
Ya
0 WA d
b Q|=a(wy\" 2 76
(b) 3-3«,\ ?.(‘W\\ mi, : (76)
2" | (w2
(c) b}" 4-(“’)&\ ‘o\"*

Upon substituting the above differential relations into equation 70, the
following set of governing equations in the vl , X plane is obtained for

the shear-free, u, =

I u; . case.

Shear-free flow, u, = u with Pr = Sc:

1 i’

I — ?
() L% r2fn 3 = 4R Lapnc (g0

oY LY
O'E
(b) 2t 8 — 4pex OF
w TN M = AR
(77)
— : %
(c) K. = K;I +‘?‘(%—F\+A;F J AL

H

(e) K? K‘,I(\—F‘) —%*(%—F)

(f) y = %\: y T =Tg ‘(Tﬁ“‘}\%
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In the general shear-flow case, the dependent variable '(;(\\\

is now defined such that,
Yo ,
V) = (wox) £(x (78)

where '\y (ﬂ’x\ is the usual aerodynamic stream function expressed
in terms of the Y\ » x coordinates. It follows from equations 54, 59,

75, 76, and 78 that,

@ (T +35) = €W

/ (79)
Yz,
AN = L{v '
@ (V2 = 2(R) (e - )
where the prime denotes a differentiation with respect to V\ . Thus,
from equations 76 and 79,

(T D i\ o |- L - (80

( *\—A\ax;(v* \ \" z ”’('\\axl 'z_x ?ﬂ\H )
Differeﬁtiation»of equation 79a yields:

QT | — g« T | _ Lo .b‘v;\\\‘

3K |'l—0 ) ™" ‘— 2“(‘\\ e X—TL"? (V\\ (81)

Upon substituting equations 76, 80, and 81 into equation 70 the follow-
‘ ing set of governing equations in the n- x plane is obtained for the

shear-flow case, U + Uy s with Pr = Sc # 1:



(a)

(b)

(c)

(d)

(e)

()

(g)

(h)
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Shear-flow, uy * U with Pr = Sc:

£ ) +4MEW =0

P

_bfi % £(0) %% = 2P k£ %ﬁt 5 48 KC GO (N

EE e & o= arr € g

o
KA :\(AI+ Ay F

K, = Ke (=F) = 2 (4 _7)

= W-Ug = L7 _ .A-
N Ug-ug Z((V\ 1-A
M
g = %— y T =71 —(Tx'T:\’éf

The following set of equations for the shear-flow case,

(82)

Uy * Uy with Pr = Sc = 1, is obtained upon simplifying equation

73 according to equations 76, 79, 80, and 81.
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Shear-flow, u; :{: uy, with Pr = Sc = L:

(a) ‘Fm(v\\ +¥'(v04“(v(\ =0
L% 2% — 2xf'(n) 22
(b) s + £(q) Yo %€ (n) S2 + AXCC O (n 0
(e} Ko = by v (p-0) + 6T 5 igm’
(83)

(d) K, = K“n O, T

— m*
(e) Kp = K?n_(\—v) —C—I(%—v\

— Meuy Ly A
(£) Koy Z 0 -1
(g) §:=%% ) T=E‘mfmy
In the above, [\ = uH/uI is the velocity ratio of the two streams prior

to mixing in the mixing region case and is equal to zero in the boundary
layer case.
The boundary conditions corresponding to equations 77, 82, and

83 are obtained from equations 72 and 79.



-64-

Conditions at the cold boundary:

3 = Fl = |
\ . _2 .
£ =1=g A *F
Conditions at the hot boundary:

Ty = Fad =0

— 24 .
£ = {%j{ y A F

(84)
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III. COMBUSTION IN THE SHEAR-FREE LAMINAR MIXING REGION,
STREAM VELOCITIES EQUAL, WITH Pr = Sc:

A. Formulation of the Combustion Problem in the Laminar Mixing

Region

_Cohsider two semi-infinite steady gas streams flowing from left
to right parallel to the X, axis in the physical plane. The upper stream
consists of a cold gas mixture at temperature TI’ density g r and
velocity uy The lower stream consists of a hot gas mixture at
temperature TII’ density §II’ and velocity uyg The specification
of the constituents of the two gas streams is dependent upon the order
of chemical kinetics being considered and will thus be treated in
Sections IIIC and IIID where first-order and second-order reactions
respectively are considered. For the present, it is sufficient to state
that the constituents are such that upon the mixing of the two streams
(and only upon such mixing) an exothermic chemical reaction can take
place. The model which serves as a basis for the analysis is presented

low. ‘
below FULLY DEVELOPED

FLAME FRONT

yO ///
______—a”/ Vd
COLD STREAM _ T e
T. -
Poto T - MIXING ZONE v

e «  UNITIAL cHEMICAL 7
M ®  REACTION) e

pn"ulI'TI So //

~

HOT STREAM -~ -
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From the sketch and the definition of Y‘\ , equation 74, it should be clear
that the cold and hot boundaries are defined by \ =+ = and

Y\ = - o respectively in the . % plane of the analysis. Through-
out the mixing region the reaction rate increases until at some inclined
front dowﬁstream of the point X, = 0, the reaction rate reaches its
maximum \;alue and a flame front is established as indicated in the
sketch.

It will be assumed that the lower, hot stream is at a temperature
which is less than the adiabatic flame temperature for the combustible
mixture. The transport phenomena of heat transfer and diffusion of
chemical specie must thus govern the ignition and initial reaction rate.
As a consequence it follows that there will be a region immediately
downstream of the initiation of mixing in which the effects of chemical
reaction are small and in which the chemical concentration and tempera-
ture fields differ only slightly from those of a classic mixing problem
without chemical reaction.

The velocity and temperature profiles found in the classic mixing
problem are presented in figure 1, which is similar to a figure given by

Lc.)ck(57).

The profiles prior to mixing are smoothed during the mixing
process by viscosity in the case of velocity and by heat fransfer,
through the mechanisms of conduction, convection, and diffusion, in the
case of temperature. The anticipated chemically induced changes in
the temperature distribution when reaction takes place are presented in
figure 2; this figure is taken from a paper by Marble and Adamson(s)

which will be discussed in Section IIIB.
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The initial profile prior to mixing is the same as for the classic
mixing case without chemical reaction. Then, for a short distance
downstream of the initiation of mixing, the heat addition due to chemical
reaction is small, as indicated by tfle dotted line in the second profile,
At a given value of y (or of w ), the heat addition due to chemical
reacﬁon continues to increase until at some point downstream the local
temperature exceeds the lower, hot stream temperature and a tempera-
ture bulge is formed as shown by the solid line in the third profile.

This temperature bulge grows rapidly in magnitude and moves upward
(or downward, depending upon initial conditions) toward the region of
higher combustible concentration. A laminar flame front is finally
established as is indicated by the dotted line in the third profile. With
the establishment of the flame front, the local temperature is essentially
at the adiabatic flame temperature. Note that steep reaction induced
temperature gradients are associated with the laminar flame front.

It was pointed out on page 40 that the application of the boundary
layer assumptions, which are fundamental to the present analysis, is
valid only when the reaction induced gradients' in the temperature and
in the other physical variables are substantially greater in the lateral
direction than in the streamwise direction. Since steep ‘temperature
gradients exist normal to a laminar flame front, it follows that the
flame must lie at a very small angle with respect to the x, or flow axis
if the boundary layer assumptions are to be valid throughout the entire
mixing and flame region. This implies that if u is the flame speed

(normally of the order of one to ten feet per second), then un/uI and
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un/uII must both be small compared to unity in order to validate the
boundary layer assumptions throughout the mixing and flame region.
Fortunately, even if the above inequalities do not hold, the boundary

. layer assumptions are valid throughout most of the mixing region of’
interest and break down only at the incipience of a fully developed
flame front having steep temperature gradients. As was pointed out
by Adamson(62), the only result of increasing the initial flow velocities
so that both of the above inequalities are valid is to allow computation
of a flame speed and flame thickness, results which can be obtained by
a much simpler one-dimensional analysis.

In conclusion, the mixing region analysis to be présented in the
following three sections will be concerned only with the initial zone in
which the reaction induced changes and the streamwise gradients in the
physical variables are small; the boundary layer assumptions will thus
be valid throughout the region of present interest regardless of flow
velocities. Furthermore, as a consequeﬁce of the fact that the reaction
induced variations are small in the region of interest, these variations
may be treated as perturbations to the pure mixing region and an
interative solution for the mixing region with chemical reaction may be
obtained.

B. General Solution for the Case of Equal Stream Velocities with
Pr = Sc:

Marble and Adamson(g) have obtained an analytic first-approxi-
mation to the solution for the particular case of a first-order reaction

occurring in a laminar mixing region. The classic perturbation tech-
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nique is employed for the region. of initial chemical reaction and the
solution is then extended throughout the flame zone by an extension of
the von Karman integral method. They start with a set of relations
which is equivalent, though not of identical form, with equation 57 and
primarily consider the case where the stream velocities are equal
prior to mixing (the shear-free case, equation 58). A method of extend-
ing their solution (by utilization of the asymptotic expansions of the
solution for the velocity field) to any case in which the velocity ratio is
not too small is, however, indicated(S). No restrictioné on the values
of the Prandtl and Schmidt numbers other than that they be constant for
the mixture are imposed. An extensive treatment of this intéresting
analysis is presented in reference 62.

Pai(lo).has also studied the problem of a first-order reaction
occurring in a laminar mixing region with equal stream velocities. His
basic assumptions and approach are identical with those of the Marble-
Adamson analysis. Except for his utilization of the stream function as
an independent variable instead of the Y( or Blasius type indepéndent
variable employed by Marble and Adamson, his analysis for the region
of initial chemical reaction is also identical*.

The extension of the Marble-Adamson analysis (or of Pai's
equivalent analysis) to the treatment of chemical reactions which follow

second-order or third-order kinetics is not straightforward. Further-

¥ Pai employs the von Mises transformation; Marble and Adamson
employ the Howarth transformation. The results of these two
transformations are equivalent in the present application.
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more, extension of their analysis to a higher-order solution (obtaining
more terms in their perturbation series) is difficult. The present
analysis, which draws heavily from the work of Marble and Adamson,

. requires the restriction of equal Prandtl and Schmidt numbers, but has
the advantage of being easily applied to first-order, second-order, or
to third-order reactions; furthermore, any desired mathematical-order
of solution may be obtained by a straightforward iteration process, and
all finite values of the velocity ratio may be considered.

In the present section a general solution which is valid for first-
order, second-order, and third-order reactions occurring in the shear-
free mixing region (velocity ratio equal to unity) is obtained. Detailed
solutions for a first-order reaction are presented in Section III B.
Detailed solutions for a second-order reaction, including the effects of
changes in the fuel-air ratio and in the dilution of the combustible
mixture by an inert gas, are presented in Section IIIC. The shear-
flow mixing region (velocity ratio not equal to unity) is considered in
Part 1IV.

The governing equations and corresponding boundary conditions
for combustion in the laminar shear-free mixing region with Pr = Sc
are directly obtainable from equations 77 and 84. By virtue of the
similarity solution for Pr = Sc (Section IIG. 1) only two equations
remain to be solved. As noted in Section III A, the cold and hot
boundaries for the mixing region are n = t ® and | =—

respectively.
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D 2 -
a) -b—v%: -{—ZFrY\%%\:- = 4Prx%?f +4FrKClC3 'ea(q,x\
l Yy = 0
with: ’5('\,*\ -
0y =
b) o'F OF _ 4pex OF (85)
e +2~Prv\bv\ = 4tc >
| 3 =t
with: F(\r\‘x\ =
0 ) Y\ = -

The other unknowns are obtained upon substituting the solutions to the

preceding equations into the following expressions from equation 77.

a) K. = X. +%(/5,—F\ +4;F ) Alm*
A q \ : .
b) Ky =K, ¥ O,F
(86)
m*

c) Ke = K,ﬂ(\—F\ < (3 —F)
a =t T =T

) S = & ) z " Tx T g

The form of equation 85b and the corresponding boundary conditions

indicate that F(Vl » X)) = F(v\ }, thus
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4 € 4F
ey 45 _
dv\x. T2 1 AV\ = 0 (87)
\ = + 0
F(V\\ = { ! -
°o N\ = -

The solution of equation 87 is obtained in Appendix B-1; the result is,

Fy = 7 [+ et

(88)

where erf x denotes the tabulated error function of x; cf. Appendix B,
page 161 . The solution to equation 85a is not to be obtained so easily.
However, as previously noted, this analysis is concerned with the initial
region in which the reaction induced changes in the physical quantities,
temperature included, are relatively small. A close approximation to
the dimensionless temperature profile, namely that for the classic
mixing problem without chemical reaction, can thus be obtained as a
basis for an ite;ative solution. The dimensionless temperature for the
classic mixing problem, which will be denoted by the symbol g‘” (n, %) »
is given by equation 85a with the reaction term, the last term, set equal

to zero. Thus,

°% . 28 3%~ oavea g
on e )
ith, . 8
w m( {‘ "=+ (89)
.Y =
% o = -
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Upon comparing equation 89 with equation 85b it is obvious that

3 (1 = Fl (90)

A basis for an iterative solution for the dimensionless temperature in a
region in which chemical reaction is occurring is now available. In
view of the fact that similar iterative solutions will be employed in
Parts IV and V, in which combustion in the shear-flow miﬁing’ region
and in the boundary layer are considered respectively, a rather detailed
treatment of the iterative technique utilized throughout this paper will
be presented at this time.

Define the following two dimensionless quantities.

Q)] d 0
a) Q (4% :4{7;? e

) N
‘ + 0, ('\\*\l exp(fy)
v

(91)
b) I(i\ - C|C3K

In the above, the symbol %}N‘ (m K} indicates the N'th approximation

to the dimensionless temperature profile in a region in which chemical

reaction is occurring. Correspondingly, the symbol GN)(q,x\

represents &A(v\\x\ , equation 60, evaluated with }(v\'x\ replaced by
'}rm("\,)\\ If the right hand side of equation 85a is now approxirhated,

using a known but approximate expression for %(q‘x) , then the next

higher approximation to %(v“%\ may be obtained from the following

partial differential equation which is based on equations 85a and 91.
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% My =
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(92)

Equation 92 is fortunately of such a form that a general analytic solution

can be obtained. The solution, which is carried out in Appendix B. 2,

is as follows:

where,

(a)

(b)

(c)

-9

’}(m(q, ) = Fl) —EWNE (40

() (N-1y (N-9)
Z (0 = [FWR (o =R ()]

=) ‘\ﬁ: -y (N-1)
N = Lﬁ [e iy W,x;lM
(-0 W (D

£ en={ Q@ (@K

From equations 91a and 60 respectively,

(93)

(94)
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@ R (K =4e X 2 et v (@
where,

) l-m* w¥ o

(n N (-t LY .

(b) ((—)x :[\—ZC,_%, (%\K} WKQ (f—;\x\
= |
EK?K —{gl ‘X
(N-1
\‘ZCL'} (q—%\q ]

The corresponding approximations for the species weight fractions

and for the mixture density are obtained from equations 86 and 93:

o ) (N0

(a) K. (40 = K&I +AF - XWZ )
rS

(b) Ka(v\\x) = K*n + 4, Fly)

(N) m %h«-\\
(c) K? Yy = Kvt[l—F(Y\\] < X (v\’x\

Ny 0 - "
(d) B Gy = %%T‘; y Ty = (TI“T;\/;(W

(95)

(96)

One additional relation, also obtained in Appendix B. 2, will be useful

in later considerations of the "flame attachment distance".
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-2 :{%[\—mm (w,x»]

7
(-1 (97)

oy W L (vm} Sxp (-?rv\‘\

The complete N'th approximation to the solution for the shear-
free mixing region with first-order, second-order, or thifd-brder
chemical reaction is explicitly given in equations 93 through 97.
Particular, and simpler, expressions for the first approximation will
now be obtained; the first approximation will normally bel sufficient for
the purposes of an exploratory investigation such as the present study.

From equations 86a and 90 it follows that:

Ko = Ko = K+ OFR) (98)

Setting N = 1 in equation 95a, and utilizing equations 90, 95b, and 98:

L3
,. _ g
(a) QW = Q7(FE ) = afi-26F0) -
W\*
_ . B,
1T+ afw)] el - )

i
(99)

where from equation 88,

(b) Foy = F() = +(1rekn)
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From equations 94 and 99,

(a) I = T a0 = [FO U —Re)

' ©® Wy

(b) R = R = L e Raw
@ YW

@ =2 = QaM

(100)

The first-approximation to the dimensionless temperatufe in a region

in which chemical reaction is occurring is obtained upon substituting

equation 100 into equation 93.

’50) M0 = Flal =X 2(n)

The first-approximations to the species concentrations and to the

(101)

mixture density are obtained from equation 96 upon setting N = 1 and

utilizing equation 100:

(a) K g = K+ 8, F0) EXWZM
(b) Kela) =K +4,FQ
Q] w*
(c) Ko () = Krn[l ~F} + 2 XN 2()
v M W _ ®
(d) g()(m,q = %%; 1T N =Ty - (Tx ‘Tx\’g CR

(102)
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Finally, from equations 97 and 100,

a(\\ >

_f
e ={\/;£ I-Xwre) (% m:(v\\} ¢ (103)

From equation 103 it follows that,

a) V\:ioo

2"
2 =0 When: (104)
M

b X0 =[RS - t('\\]"'

Equation 104a is simply a statement of the required boundary conditions
on the temperature derivative with respect to Y| . Equation 104b
defines the value of X({) as a function of W for which a temperature
bulge exists; it thus defines the line in the W , x plane along which the
temperature is maximum. The value of W which corresponds to the
minimum.value of X{§) at which a temperature bulge exists is obtained

from the following relation; cf. equations 100c and 104b.

- ~vV Q(n, V)
A _ = £ =0
d’\{ Ri=) {1; ;E(v\\l\!\ﬂf]” [K(ﬁ\ —\w f(vm‘l (105)

In the above equation, Y|, denotes the value of W for which equation 105
A .
is satisfied.
Now for at least one of the active reactant species (1 & i ¢ m¥),

K,‘, £ will be equal to zero; thus at least one of the terms in the
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product function of equation 99a will be given by 1/2 (1 + erf v\\/?;— ) K.L .

Equation 105 will then be satisfied when ({+ erf V\ﬁ’; ) = 0; thus
W = —&® (106)

According to equation 106, a temperature bulge firsf océurs for
N, =-« . The temperature bulge then grows and moves in the ¥, x
plane in accordance with equation 104b. This conclusion ié somewhat
different from the result of the perturbation analysis of Marble and
Adamson. According to their numerical calculations, a temperature
bulge first occurs for a value of Yl,', of approximately —3. 25*. Their
result is based on the numerical solution of an equation involving the
first perturbation term; because of the asymptotic nature of the function
'g" (V[\ which occurs in this equation, it is not surprising that a large
(finite) negative value of Y\L was calculated as compared to the present
result of negative infinity., A verification of the result of the present
analysis can readily be obtained from the N'th approximation, equation
97, using the same technique employed for the first-approximation. In
the region of initial chemical reaction, it can also be shown that the
integrand of the reaction integral, equation 99a, is maximum at ‘qh_' —-;
the initial temperature bulge would be expected to occur where the

reaction integrand is at a maximum.

* The value of as defined in the present anaiysis (cf. equation 74)

is one-half that as defined by Marble and Adamson. The present
definition was introduced in order that the definition of | for the
mixing region case would be the same as the definition commonly
employed in the boundary layer case.
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The mathematical interpretation of an initial temperature bulge
at N, =-= is that the initial bulge occurs when x = 0 at an
indeterminate value of Vo Since the diffusion velocity of active
chemical species from the upper to the lower stream is finite, the
concentration of these species in the lower stream at x, = 0 is zero
except at Vo = 0; the value of \q’._ at this point is mathematically
indeterminate, but could be — ® . From physical considerations it
thus appears that the initial temperature bulge must occur at the origin
where mixing is initiated. The initial preponderant efféct of the
Arrhenius factor in the reaction integral will then rapidly pull the
temperature bulge deep into the lower stream for increasing values of
X3 finally, however, the scarcity of chemically active species from
the upper stream will force the temperature bulge to move back toward
the upper stream. The isotherm field will thus be similar to that
presented in figure 3. The line of maximum temperature, along which
equation 104b is satisfied, is indicated by the dashed line.

A ""characteristic flame attachment length", denoted by x¥ will
be arbitrarily defined as the value of x at which the line of maximum
temperature crosses the line W = - 3.00. Thus from equation 91b and

104b:
- '
X*(x\ = (¢, ¥ :[?\(oo\ —Vr ;ﬁ(—‘s.oﬂ (107)

The characteristic length could be defined in other ways. Any
definition, however, would be equally arbitrary. The present definition

is in reasonably good quantitative agreement with that of Marble and
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Adamson; furthermore, calculations indicate that the heat release
normally becomes significant in the region where | = - 3.0 and
b@/bv\ = 0. Egqguation 107 thus defines the streamwise distance x*
. at which the heat release due to chemical reaction first becomes

significant.

It will usually be convenient to consider a '"characteristic stay

time"™ rather than the '"characteristic flame attachment length". Define,
*
¥ __ X
t" = e ' (108)

Then from equations 47, 107, and 108:

* (’P'/&T::\ o
= bC\[R(oo\ = i("?ﬁ‘s& (109)

Note that the stay time is independent of the velocity of the upper stream;
the characteristic length is thus directly proportional to the velocity of
the upper stream. |

The complete first approximation to the general solution fpr the
shear-free mixing region with chemical reaction is explicitly given in
equations 99 - 102 and 109. Particular solutions for first-order,
second-order, and third-order reactions can be obtained upon evaluating
equation 99 using the appropriate value of m* (the order of the reaction),
and then evaluating the integrals in equation 100. Particular solutions
for first-order and for second-order reactions are carried out in the

following two sections.
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C. Detailed Solution for First-Order Kinetics

In the case of first-order kinetics, the upper stream which is at
temperature TI’ cf. sketch on page 65 , will consist of a cold mixture
. of an exothermically decomposable fuel* denoted by the subscript f, and
an inert diluent gas, denoted by the subscript d. The lower stream, at
temperature TII’ will consist of a hot inert gas, also denoted by the
subscript d. If desired, the inert gases in the initial streams can be
replaced by the product of combustion without affecting the following
analysis T, In the mixing region, the gas mixture will thus consist of
three components, fuel, combustion product, denoted by the subscript
p, and inert diluent. The boundary conditions on the specfie weight

fractions are as follows:

At the cold boundary, \\ = +e: At the hot boundary, Y = -<0:
Ke = 1-¢ K, =0
(110)
K, =& =\
4L KL;
KF: =90 K?ﬁ =0

*  Note that although the cold combustible stream at temperature T
has been implicitly assumed to undergo chemical reaction only
after the initiation of mixing (x_3» 0) the exponetial variation of
the reaction rate with temperature, equation 60, does not predict
this zero value for x_ £ 0. Fortunately, however, the exponetial
variation does predic% a rate of reaction at temperature TI which
is small enough to be neglected. This problem of the coldboundary
condition is discussed by von Kirman and Millan in reference 5.

1 In the case of an unopposed reaction, such as is being considered,
the product specie is in effect an inert chemical specie; this is not
true, of course, in the case of an opposed reaction.



-83-

In the above equation, € denotes the weight fraction of inert diluent

present in the combustible stream. From equations 67b and 110:

A\c:l—e 3 AA:—(\—e\ 3 b, =0

(111)
Equation 99a assumes a particularly simple form in the case of a first-
order reaction, for in this case m* -1 = o. Noting that there is but
one term in the product function of equation 99a, namely the term for

j = 1, and substituting equations 99b, 110, and 111 into equation 99a,

the following expression is obtained:

a) Q) = (1-¢) Q)
where; (112)
— _ ] v B,
b) Q) = 2(1 + esf n) exf{v\ | = ¢, (1 +erfy) \

Now, using equation 107, define the following dimensionless independent

variable:

= gﬁ\ = I = XRe - 2],

The temperature and concentration profiles for two similar reacting
flow systems having different values for the system parameters may
be completely dissimilar for a given value of x; the profiles will, how-
ever, be similar for a given value of /2 ; cf. figures 4 and 6. The

variable /L is indicative of the completeness of the reaction; it is a
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more useful independent variable than the variable x which it replaces.
The following relations are obtained using equations 100, 101,

112, and 113:

D 36 = F ATl
where,
_—_— F(n\i(*\‘—?\(vt\\
b) z) = KT{(&) “{F 230
(114)
_ wee g -
c) Riq) = ;’P\'E% = L,o e Faw
Je
_ 2() Wk
d) Ly = \—(2 :go Q) A
e) Flw = 5 {1+ erfniee)

The first-approximations to the specie concentrations and the mixture

density are obtained from equations 102, 110, 111, and 113:
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2 K ) = (-aFm - EFW
b) K =1 =0-6F(y)
(115)
Q) -
c) Ke () = 2 2
a o = Eh— 3 T =Te - (BT

The following expression for the characteristic stay time is obtained

upon setting m¥* = 1 in equation 109 and then utilizing equation 114c:

_ -\
(\—e)t* = {bc\[i(a\ —{w I('“\“ (116)

Once the integrals of equations 114c and 114d are evaluated, the
numerical calculation of the first-approximations for the temperéture
and specie concentrations in the mixing region with chemical reaction
is perfectly straightforward using equations 114a and 115. The integrals
are expressed in a suitable form for numerical evaluation by Simpson's
rule. The numerical evaluation of these integrals and the calculations
for the temperature and concentration profiles are discussed in Appendix
D. The physical constants used are approximately those for the first-
order decomposition of azomethane (discussed in Section IID) and are

based on the data of Adamson(63) and of Hirschfelder et a1(64).
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Temperature profiles (for Pr = Sc) as calcuated from equation
114a are presented in figure 4; the development of the temperature bulge
is clearly indicated. Similar profiles as calculated from the perturba-

. tion analysis of Marble and Adamson(s) with Pr = 0.91 and Sc = 1.00
are preseﬁted for comparison in figure 5. The discrepancies in the
profiles as calculated from the Marble-Adamson analysis and from
equation 114a are due to the difference in the Schmidt number in the two
cases and to the inherent differences in the analysis.

Concentration profiles (for Pr = Sc) as calculated from
equations 115a and 115b are presented in figure 6. As is to be expected,
the combustible weight fraction decreases and the product specie weight
fraction increases with increasing A . The variation of the character-
istic stay time, as calculated from equation 116, with the hot stream
and adiabatic flame temperatures is presented in figure 7. As the hot
stream temperature decreases the characteristic stay time, and also
the characteristic flame attachment length, increases enormously. As
pointed out by Marble and Adamson, the fact that semi-infinite streams
are considered makes it impossible to calculate a blowoff velocity; how-
ever, for low hot stream temperatures the characteriétic stay time
becomes very large and the related characteristic attachment length
becomes so large as to exceed the physical dimensions of any practical
apparatus. The exponential character of the curves of figure 7
indicates that the Arrhenius factor is the dominant term in the reaction.
Note that for a first-order reaction, the characteristic stay time is

independent of the static pressure, cf. equation 116, and is inversely
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proportional to (1 -€) where € is the weight fraction of inert diluent
in the combustible free stream.

The minimum streamwise distance at which a temperature 25°C
_ in excess of the hot stream temperature is attained can be readily
calculated .frorn equations 113 and 114a. Typical results of such
calculation ére presented in figure 8. The dependence of this stream-
wise distance upon adiabatic flame temperature (or heat release per
unit mass of combustible) is relatively insensitive compared to the
dependence upon the hot stream temperature. One point as calculated
from the Marble;Adamson analysis is presented for comparison; for
Ty = 1050°K and T, = 1650°K, the Marble-Adamson analysis yields
a streamwise distance for a 25°C temperature rise almost double that
obtained from the present analysis. This is consistent with the results
presented in figure 5 which indicates that the present analysis predicts
a more rapid development of the temperature profile than does the
Marble- Adamson analysis. However, for combustion studies in which
exponential functions are dominant, the results of the t&o analyses are

in gatisfactory quantitative agreement.

D. Detailed Solution for Second-Order Kinetics

In the case of a second-order reaction, the gas mixture in the
mixing region will consist of four distinct chemical species, fuel,
oxidizer, product specie, and an inert diluent specie. The fuel and
oxidizer may be initially premixed in the cold stream or may be
initially separated, the fuel in the cold stream and the oxidizer in the

hot stream. The former situation is typical of that in ramjet and turbo-
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jet afterburner combustors where a relatively cool premixed combustible
stream mixes with hot gases in the wake of bluff body flame stabilizers.
The latter situation in which the fuel and oxidizer are initially separated
. corresponds to a special case of the diffusion flame. Both of these
problems can be readily treated within the framework of the present

analysis. A brief discussion of each of these problems follows.

1. The Premixed Case

In the premixed case, the upper stream which is at temperature
TI’ cf. sketch on page 65, will consist of a cold combustible mixture
of fuel, denoted by the subscript f, oxidizer, denoted by the subscript
o, and an inert diluent, denoted by the subscript d. The lower stream,
at temperature TII’ will consist of a hot inert gas, also denoted by the
subscript d. The comments made on page 82 with regard to the
assumption that the combustible stream does not react at temperature
TI also apply in the present instance. The boundary conditions on. the

specie weight fractions are as follows.

At the cold boundary, )\ = ¥+ : At the hot boundary, | =~ :
_ afl=e -
K-GI - ¢(\+Q) K_G‘ =0

(= - o

1 {+9 Og
\&‘,m =0
=0 ‘ =
KP._\._ ) Kal. €5 K‘v_:\

In the above expressions, @ denotes the equivalence ratio of the com-

bustible mixture. This useful function is defined as the ratio of the
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actual value of the fuel-oxidizer ratio to the value of the fuel-oxidizer
ratio for a stoichiometric mixture; thus, q) =\ for a stoichiometric
mixture, ¢ <\ for a fuel-lean mixture, and Q >4 for a fuel-rich
- mixture. For the simple reaction being considered, involving
mechanically similar molecules, q} = K&: /Ko, . The symbol
denotes the weight fraction of inert diluent in the combustible stream.

From equations 67b and 117;

A :d‘)(:.::\ e =0

(118)

|-€
The appropriate expression for the integrand of the reaction integral

is obtained by setting j equal to o and f in equation 99a and utilizing

equations 99b, 117, and 118:

2 QW = 8liTe) QW

where (119)
- 4 Qaedt o) L B, 1
b Q= L —G,(rec v ] e“{'\ ek

Define:
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e _x."__
2 R = (DR = [ Tmar
where,
z e _
b) 2w = %(ttt) L(n )y = L QA 4«

(120)

Then, using equations 100 - 102, 113, and 119, the following expressions

for the first-approximations to the temperature, specie concentrations,

and mixture density are obtained.

a) 3 = F =2 %W
o K = 855 - & 3
c) 6 ) = (5 Fn — 230
(o . Z/L'i )
a K = F i
e) Ky = 1= (e Flr)
. (0 _ £ M : me/\) =T (T ’}m(v\/u\
) S () = T8 '
where,

Ry -ve 239

h) Fla = 3 (1 + erfniee)

(121)
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The temperature and concentration profiles, as calculated from the
above expressions, for a laminar mixing region with a second-order
chemical reaction are very similar to those for a first-order reaction;
cf. figures 4 and 6.

The following expression for the characteristic stay time is
obtained upon setting m* = 2 in equation 109 and then utilizing equation

120a:

82.08 T ol

be [ R -vw 2(-3.0)

3 (- 6\1'&* _ (atmos-secs) (122)

The functions R (%) and f (-3.0) are functions of the activation
energy E and of the stream temperatures TI and TH; cf. equations
120, 119, and 59. If all parameters other than the static pressure are

held constant, it thus follows from equation 122 that:
( * * \ l/
= /= 123
t,‘1 / taa r | (123)

If all parameters other than the weight fraction of inert diluent in the

combustible stream are held constant, then:
l-a\
(te/tens) = E_r--—;e (124)

If all parameters (including TH) other than the equivalence ratio are

held constant, then:

kS

¥ (% — U+ _
(tq/t¢=\\ = e Ty = constant (125)
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Finally, if TII = TII (1) ) and all other parameters are held constant,

then:
(ty /te.) = ('”" 2O 5T =T -z

where from equations 122 and 59:

{(ER) R - Zeal},
{(ﬁ\{w\ REE RN

o) =

(127)

If equations 119 and 120 are substituted into equation 127 and the result-
ing expression is then considerably simplified, using numerical
calculations as a guide, the following simple relation is obtained as a

satisfactory approximation to equation 127:
. £ Tn(Q=\\ _
Ho) = e“"{aﬂrﬁ(w\i T W) l\ | (128)

Equations 123 through 126 and the functional forms of equations

123 and 128 are not restricted to the problem of the present analysis,
combustion in the premixed shear-free laminar mixing region; identical
or similar relations are obtained in the case of the shear-flow laminar
mixing region (Part IV) and in the case of the laminar boundary layer
(Part V). The pressure dependence, equation 123, is a direct result
of the assumed law of mass action, equation 21, and is valid whenever

- this law is a satisfactory approximation to reality. The dependence

upon the extent of vitiation, equation 124, is also of general applicability.
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However, the dependence upon equivalence ratio, as given in equation
127, is strongly dependent upon the model employed for the mixing
region problem. Since, for purposes of exploratory investigation, the
present mixing region model is a satisfactory model for bluff body flame
stabilizers, it might be expected that equations 122 through 128 would be
in qualitative agreement with experimental data from experimental flame
stabilization studies. In fact, surprisingly good quantitative agreement
with experimental data is also obtained. This agreement, of course, is
largely due to the fact that dimensionless ratios rather than absolute
values are correlated: thus where the analysis might yield absolute
quantities considerably in error, the ratio of two quantitieé which differ
only due to the variation of a single parameter is in excellent agreement
with experimental data. Some of the correlations with experimental
data will be briefly discussed in the following paragraphs .

Mullins(és) has made measurements of the ignition delay of
kerosene-air mixtures as a function of static pressure over the pressure
range of 0.3 to 1.0 atmospheres. It was found that at a given free stream
temperature the ignition delay varied essentially as the inverse of the
static pressure. Since it is generally believed that the reaction between
kerosene and air obeys second-order kinetics, and since the character-
istic stay time of the present analysis is in effect an ignition delay time,
Mullins' experimental measurements are in good agreement with the
pressure dependence indicated by equation 123.

Zukoski(66) has determined that for a wide range of flow

velocities and static pressures, the length of the recirculation zone
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behind a bluff body flame stabilizer is essentially constant. Taking
this length as a characteristic length and dividing by the blowoff
velocity, a characteristic stay time for bluff body flame stabilization
can be obtained., If the blowoif data of DeZubay(67) is reduced to the
dependence upon static pressure of the ratio of the characteristic
stay time at an arbitrary static pressure to that at one atmosphere,
very satisfactory correlation with the pressure dependence indicated
by equation 123 and with the data of Mullins is obtained; cf. figure 9.
The variation of the characteristic stay time with.the weight
fraction of inert diluent in the combustible stream as predicted by the
present analysis is given in equation 124. In order to corﬁpére the
results of the present analysis with the results of the experimental
studies of Mullins(és) which are concerned with combustion in vitiated
air, it will be convenient to introduce the "oxygen index" d  which he
utilizes. This quantity is defined as the volumetric fraction of oxygen
present in the vitiated air. The vitiated air consists essentially of
oxygen, nitrogen, water vapor, and carbon dioxide. Since Mullins
shows that the equivalent molecular weight of the vitiated air is
relatively insensitive to the amount of vitiation and is close to that of
oxygen, the oxygen index may be set equal to the weight fraction (rather
than the volumetric fraction) of oxygen present in the vitiated air with

little error. The combustible mixture will consist essentially of fuel,

oxygen, and inert diluent. Thus:

K°+K{+e =
o Ke
& = K +€

(]

(129)
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The stoichiometric reaction of kerosene, the fuel used by Mullins,
with oxygen is as follows:

CnH +3/2r102 —= n CO

o0 + nH,0O

2 2

The stoichiometric fuel-oxygen weight ratio is thus:

— DAY OD — g 292
({'/035 (%3 (37_\

it follows, therefore, that:

K, = § (#l5) X, = 0.292 §K, (130)

The following expression can be obtained upon combining equations 129

and 130.

~\
e =[1+7% (1+ozare] | (131)

The variation of the inert diluent weight fraction with the oxygen index
and the equivalence ratio is presented in figure 10; note that o =0.21
corresponds to unvitiated air while lower values 6f « correspond to
vitiated air. If equation 131 is substituted into equation 124, the

following expression can be obtained

. 1 . Z
(£ roa) = 2V [ e 12

The variation of the characteristic stay time with the oxygen index as

predicted by equation 131 is given by the three solid line curves in
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figure 11. Mullins(ég) correlated his experimental data and concluded

that,

2
(’c:e /t’:(:o.u\ = (—‘%‘—) . (Mullins) (133)

a relation which is in very close agreement with equation 132. The
empirical correlation of Mullins, equation 133, is given by the dashed
line in figure 11. The equivalence ratio at which Mullins obtéined his
data. cannot be determined from his published papers. However, as
indicated by figure 11, the agreement of the present analysis with the
empirical data of Mullins is satisfactory regardless of the experimental
value of his equivalence ratio.

The variation of the characteristic stay time with equivalence
ratio in the simple case in which TII = constant, equation 125, is
presented in figure 12. In applying the results of the present analysis
to bluff body flame stabilizers, however, it is apparent that the hot
stream of the simple model of the sketch on page 65 will correspond
to the hot recirculation zone behind the bluff body; thus TII = TII (Q)

(

is given by the wake temperature. Zukoski 66) has measured wake
temperatures as a function of equivalence ratio. If his experimental
values of wake temperature are utilized for the function TII = TII ((0])]
in equation 128, and an activation energy of 43 kcals/g-mole (also |
estimated from experimental data of Zukoski) is utilized, the stay

times can be calculated from equations 126 and 128. Zukoski has also

measured the length of the recirculation zone at blowoff as a function
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of the equivalence ratio; upon dividing this length by the corresponding
blowoff velocity he obtained the characteristic stay time as a function
of the equivalence ratio. The agreement between the experimentally
- measured dependence of the characteristic stay time upon equivalence
ratio and the calculated dependence is quite good; cf. figure 13, It
should be noted that the same functional relations (equations 125, 126,
and 128) are found regardless of the stream velocity ratio; the fact that
Zukoski's experimental points, figure 13, are for different values of
the stream velocity ratio does not invalidate the agreemént with the
theoretical curve which is valid for all values of the velocity ratio.

The functional relations of the present analysis pfedict the
variation of the characteristic stay time (or equivalently, of the blowoff
velocity) with static pressure, extent of vitiation, and equivalence ratio,

- with surprising consistency with available experimental data. The
application of such functional relations may reduce the amount of
experimental data which must be obtained in developing turbojet after-
burner combustors or other technologically important combustion

devices.

2. The Diffusion Flame

In the case of the diffusion flame, the upper stream which is at
temperature TI’ cf. sketch on page 65 , will consist of a cold mixture
of fuel and of inert diluent. The lower stream, at temperature TII’
will consist of a hot mixture of oxidizer and inert gas. The boundary

conditions on the specie weight fractions are as follows:
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At the cold boundary, \ = + : At the hot boundary, | = — = :
KfI:l—éI K“n:O
K“x -0 Kon:\-én (134)
K, =0 Ko = 0
Kd: =€ K‘\-n = én |

The mass rate of fuel flow per unit cross-sectional area of the upper

stream is given by:
M‘F = K'F;gi UI = (\—'e:\g:u:

Similarly, the mass rate of oxidizer flow per unit cross-sectional

area of the lower stream is given by:

.

m, = K°n gﬂum = (\—ex\gnur/\,
The equivalence ratio is thus given by:
|- €,

§ = mfin, = (\—eﬂ(lﬂﬁ (135)

x

From equations 67b, 134, and 135:

A, = (-€)
{(i-€a [, \
y = -8 (S
o ¢ ( :) A (136)
AP =0

8, = (\—ex\X% ?‘l—\ - \}
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Now define

€, +e
e = =5 (137)

‘the overall weight fraction of inert diluent in the flow system. From

equations 135 and 137:

[ 2&1\.(\—6\\

—€ —_

(=& =1 ~mx (138)

From equations 134, 135, 136, and 138, setting j equal to o and f:
- ; . 44 (1-e) (Ta/7y)
TT ks + A F ={F(\ | = F . 139
é=‘[ LT aFl o1~ Ful (& + % (/) (9

For the case presently under consideration, shear-free flow, A=1.
The appropriate expression for the integrand of the reaction integral
is obtained upon substituting equation 139 into equation 99a and utilizing

equation 99b:

400-a" (%1 \ =
b QW = {FEEE) g

where, (140)

- \—(evw‘} 8
b) Q('\\ T Ve (ivectn) ex?‘“ l-C.,(Her{q\X

Now define:
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_ .__“d}«- /T,z __'\‘r‘?r g
a) 'R(vo = \44) (mer ) ?\() ( R(“AK‘

~-d

where, (141)

. &
(& + /1) A;ﬁ(&\ - f» f Q) Ao

4 & (-6 (Te /75

b) R ()

Using the above definitions, the temperature and concentration profiles
and the characteristic stay time can be determined by direct sub-
stitution, into equations 121 and 122, |

The dependence of the characteristic stay time upon static
pressure and the overall weight fraction of inert diluent is identical
with the premixed case; cf. equations 123 and 124. For a diffusion
flame, TII will not depend upon the equivalence ratio. The dependence
of the characteristic stay time upon equivalence ratio can thus be
simply obtained from equations 122 and 141; the integrals, being
independent of (b , cancel and the following simple relation, analogous

to equation 125 for the premixed case, is obtained:

2
Tx
L’c /t } ép l:TJIj (142)

This equation is valid only in the shear-free case, A =1 a4 general

expression valid when A F 1 is obtained in Part IV.
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IV. COMBUSTION IN THE SHEAR-FLOW LAMINAR MIXING REGION,
STREAM VELOCITIES NOT EQUAL, WITH Pr = Sc:

A. The Velocity Field in the Shear-Flow Mixing Region

The formulation of the combustion problem in the shear-flow
laminar mixing region ( /\ £ 1) is exactly the same as the formulation
presented in Section IIIA. The governing relations are presented in
equation 82 for the case Pr = Sc # 1, and in equation 83 for the case
Pr = Sc = 1. The corresponding boundary conditions on the |
differential equations are presented in equation 84. |

In both of the cases noted above, the velocity field is given by

the relations,

— MUz — ) - A
a) U T z I-A
b) £ +Hffw =0 (143)
2 . _
[ETN y U=
c) £ =
2 —
S j
where A = uH/uI is the velocity ratio of the two streams prior to

mixing., The differential equation with the associated boundary conditions
can only be solved by numerical methods. Lock(57) and Gc'irtler(ss)
have studied the solution to this problem. Lock numerically integrated

the differential equations for the particular cases A = 0 and A = 0.5
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starting from the analytic asymptotic expansions of the function and its
derivatives. The ingenious solution of Gortler, being of general
applicability for all values of A , is more useful in the present

application. Gortler assumed a series solution of the following form:

?L:o A 4. (144)

The series was then substituted into equation 143b, terms of the same
power of A were collected, and the resulting equations for the
functions were solved. An analytic solution was obtained_for gl(vu ;
all other %w: s are evaluated by numerical integrations. rfhe con-
vergence of the series in 6}{“(\) is very rapid; the first two terms
give sufficient accuracy for present purposes. If Gortler's solution
for (v} is differentiated with respect to % and equation 143a is
utilized, the following expression for the velocity distributio.n is

obtained:

Tl = U-ux {\-\-er((\\/ e M\l s A FL (145)

Velocity profiles, as calculated from equation 145, are presented in

figure 14.

B. General Solution for the Temperature and Concentration

Fields in the Shear-Flow Mixing Region

The temperature field in the shear-flow mixing region can be
obtained in the same manner as was the temperature field in the shear-

free case; cf. Part III. Utilizing the same iterative technique as
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previously employed, equations 82b, 83b, and 84 may be expressed as

follows:

RG]

- a) —ab—%,_— +?r4:(\r\\ %%

. ™)
with: % yy =

where,
(- £
b) Q (") V\\ - { c C‘\l

c) Xy = ¢GR

Equation 146a is fortunately of such a form that a general analytic

solution can be obtained. The solution, which is carried out in

Appendix B. 4, is as follows:

(N-1)

= X Q

a (a9

Ge— + Ze («\ x\} ¢ (V\\\

CRY

(N \)(vl,xﬂ

(n,x\} Ax

) -9

a) 32 M = Fla —XW 2
where:

(N-Y (-0
b) 2 () = &F(q\?\ (%) —

®-9 1 RS (N9
c) Ry = Lb{[f (m\l L

(N-) LU

d) he (9% :L Q

(s, W) Aok

Pe
W, %) [f (V\\}

(146)

(147)
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The function 'F"(V\\ can be obtained from equations 143a and 145:

By virtue of the similarity solution for Pr = Sc = 1, (cf. Section IIG. 2):
Flqg) = T when = Se=t (149)

When Pr = Sc f 1, the function F('\) can be obtained upon solving
the following partial differential equation; cf. equations 82c and 84:
O'F F _ o 'y 2F
e + Pr{(v\\) N [ SN >

with: | o= 4w {(150)
B =

Q ) y\:—oo

The form of equation 150 and the correspondihg boundary conditions

indicate that F(n, x) = F(Vl ), thus

a*F aF _
an +Prf(v\\x = 0 (151)
| N =+
Ely) :{
o =0 _

The solution to equation 151, carried out in Appendix B. 3, is as follows;

-

1 b
LQ (£ @) Ax
S* [f“(«\l"r M

~ch

g fe= 5 %1 (152)

Flp) =
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Expressions for the concentrations of the various chemical

species in the flow system can now be obtained by simple substitution

of equations 147, 148, and 149 or 152 into the following expressions;

- cf. equations 82 and 83:

W
A K Tk vl SF) A E e
b) K& = K‘\n + 08, F
Q) w¥ W
c) K, = K‘,I(\—-F} iy (% —F)
|

C. The Characteristic Stay Time

The following expression is derived in Appendix B. 4:

' - -1
w A . |
%" ~[)d SR L XL
4l S_‘b L' 2t

Proceeding as in Part III, it is readily determined that the required

condition for the occurrence of a temperature bulge in a shear-flow

laminar mixing region is as follows:

o N I Y
0 = (R e - & Gal | Tewl s

(153)

(154)

(155)
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The characteristic length and stay time are defined as in Part III.

The first approximation to the characteristic stay time is thus as follows:

* — (jf"/ﬂrx\l‘
be, [ Rty = R(=30 7 (et ™)

+

(156)

As in Part III, it can easily be demonstrated (cf. equations 146a and

150) that,

()]

Y (= 'gw(v\\ = Fly (157)

Then, from equations 60, 146b, and 157:

‘-
5)
Q= Q () = 41— 2¢,Fin)|
(158)

1;_T [k, -+ &, €0 exe| = u@.%

The variation of the characteristic stay time with the stream velocity
ratio /\ can now be calculated using equations 145, 147-149, 152,

156, and 158. The calculations are straightforward, though rather
lengthy, and will not be detailed in the present discussion. The
variation of the characteristic stay time with the velocity ratio for the
case where Pr = Sc = | is presented in figure 15; the normalizing
denominator (tA.\ o\) is calculated from equation 109, Part III.
Figure 15 is in qualitative agreement with experimental studies of com-

(69).

bustion in an axially symmetric mixing region by Wright
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Following the procedure of Part III, the variation of the
characteristic stay time with equivalence ratio in the case of a second-
order chemical reaction occurring in a shear-flow laminar mixing
. region can be determined in a straightforward manner. When the fuel
and oxidizer are initially premixed, the variation with equivalence ratio
is identical with the shear-free case; cf. equations 125, 126, and 128.
In the case of the diffusion flame, however, the variation is modified

for velocity ratio:

! 2 |
PP ety = L[ bex(®
(/50 = 3] H(i\('fx/vx] (159)

Equation 159 can be validated using equations 134 - 136, 138, 147, 156,
and 158. The functional relation of equation 159 is graphically
portrayed in figure 16. The dependence upon the parameter (‘/A\(E/T:\
is explained by the fact that as either the stream temperature or the
velocity ratio changes, the relative mass rate of flow of fuel and

oxidizer, and thus the equivalence ratio, also changes.
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V. COMBUSTION IN THE LAMINAR BOUNDARY LAYER OF A
CONSTANT TEMPERATURE FLAT PLATE WITH Pr = Sc:

A. Formulation of the Combustion Problem in the L.aminar

Boundary Layer

Consider a semi-infinite steady gas stream flowing from left to
right parallel to the X axis in the physical plane. The stream consists
of a cold combustible gas mixture at temperature TI’ density 8 I’
and velocity U it is assumed that no chemical reaction takes place at
temperature TI*. A semi;infinite flat plat extends along the positive
half of the X axis. This plate is maintained at a constant temperature
TII’ with TI £ TII < Tf where T is the adiabatic flame temperature
for a stoichiometric mixture of the free stream combustible
constituents

The free stream chemical concentrations will be specified and
will serve as the mathematical boundary conditions along the cold
boundary, Yk = o . The appropriate concentration boundary conditions
along the hot boundary, the plate surface, are not as éléarly evident.
Two reasonable a priori possibilities exist: (1) the chemical concentra-
tions along the plate surface may be specified, or (2) the concentration
gradients along the plate surface may be set equal to zero.

In the first case where the concentrations along the wall are

specified, the concentration gradients cannot be specified but must be

* See footnote page 82 , and reference 5 for a discussion of this
requirement on the cold boundary condition.

#*% The general case in which the flat plate may assume an arbitrary
temperature distribution is briefly discussed in Appendix F.
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determined. Normally the gradients will be non-zero at the wall,
indicating a net flux of a given chemical specie to or from the wall. A
gsurface reaction corresponding to a destruction of those species which
have a net flux to the wall and a production of those species which have
a net flux from the wall must be assumed. Note that a net flux of a
given chemical specie to or from the wall does not violate the law of
conservation of mass at the wall nor does it require a distribution of
mass sources or sinks along the wall. The absence of mass sources

or sinks along the wall does not require that

K,

e =0 all i
ol

\=0

but rather only requires that,

0¥,
2 %

N

n=o

a condition which is satisfied in the present analysis. Since the mass
average velocity and the diffusion velocity are both vei'y small near
the wall, the stay time of a molecule very near the surface of the wall
is large and it seems reasonable that while immersed in the hot layer
near the wall, the molecule will react to form product species.

The second case, where the concentration gradients along the
wall are set equal to zero, corresponds to the physical assumption

that a molecule impinging on the wall rehounds as the identical specie
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without chemical reaction; there is no net flux of any given chemical
specie to or from the wall and thus a surface reaction need not be
prescribed.

It is difficult to say a priori which of the two sets of concen-
tration boundary conditions will serve as the best model for com-
bustion within a laminar boundary layer of a constant temperature flat
plate. The problem should be solved with both sets of conditions and
the results compared for an a posteriori evaluation. Unfortunately the
second case, of zero gradients at the wall, cannot be solved within
the framework of the present similarity solution (Section II G) due to
the similarity requirement that the concentrations as Weli as the
temperature be specified constants along the plate surface; cf. equation
59. The specification of the concentrations along the cold boundary and
the gradients along the hot boundary will complicate the analysis but
should not render the problem intractable.

The present analysis, then, will be concerned only with the
first case in which the concentrations are specified along the wall; the
similarity solutions of Section IIG may then be utilized. No claim as
to the superiority of the boundary conditions of the firsf case as com-
pared to those of the second case is made. Both cases should be
solved but only the first case is compatible with the similarity solution
of the present analysis. The results of the following analysis are, of
course, only as valid as are the assumed boundary conditions.

The presence of the flat plate induces velocity and thermal

boundary layers. Near the leading edge of the plate, the transfer of
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heat to the combustible mixture within the thermal boundary layer
initiates an exothermic chemical reaction which accelerates with in-
creasing temperature. The increase in temperature is mutually
provided by heat transfer from the plate and by the chemical reaction
itself. The chemical reaction gains in intensity and in rate of heat
release with the result that the local temperature finally exceeds the
plate temperature. At this point the heat flux at the wall changes in
sign and heat proceeds to flow from the thermal boundary layer to the
plate rather than from the plate to the boundary layer as heretofore.
The rate of chemical reaction, which is now substantial, is still in-
creasing exponentialy with the local temperature. At a w}ery short
distance downstream from the point at which the heat flux at the wall
changes sign, therefore, a fully developed laminar flame front is
established. Since the local flow velocity normal to the flame front is
essentially equal to the flame propagating velocity, the flame front is
almost normal to the plate deep within the boundary layer where the
local flow velocity is very low, and then curves with a aecreasing slope
until if emerges from the boundary layer as a fl;t front lying at a
shallow angle with respect to the free stream velocity .vector. The
curvature of the flame front is illustrated in figure 17a; lines of constant
temperature, isotherms, are also presented. Note that the TII
isotherm is double branched and that all isotherms for temperatures
from TII to Tf are doubled valued functions in the physical plane.
The value of the abscissa at which the T_. isotherm becomes double

II
branched is denoted by the symbol xo*.
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Typical temperature profiles at various downstream stations
are presented in figure 17b. Note that as in the case of the mixing
region, cf. Section III A, there is a zone near the leading edge of the
plate in which the effects of chemical reaction are small and in which
the chemical concentration and temperature fields differ only slightly
from those of a boundary layer without chemical reaction. The
iteration procedure utilized in the mixing region case can thus be
applied in the boundary layer case; in the latter case, of course, the
basis for the iteration will be the temperature profile fdr the flat plate
with forced convection in the absence of chemical reaction.

In Section III A the restrictions on the applicabilit.y to the mix-
ing region of the present analysis, which is based on the classic
Prandtl boundary layer assumptions, were outlined. In particular, it
was noted that with suitable restraints on the stream velocities, the
boundary layer assumptions were valid throughout the entire mixing and
flame zone regions. In the boundary layer case, however, the élassic
boundary layer assumptions always break down just downstream of the
point at which the heat flux at the wall changes sign (x0 > 'x:). No
restraints on the initial stream conditions can be found, as in the
mixing region case, which will validate the boundary layer assumptions
throughout the entire flow field. The explanation for this fact is as
follows: Regardless of the initial stream velocity, the flame front is
almost normal to the plate deep within the boundary layer; since steep
temperature gradients exist normal to the flame front, it follows that

steep streamwise temperature gradients exist deep within the boundary
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layer at the upstream end of the flame front. The existence of these
steep streamwise temperature gradients violates the classic boundary
layer assumptions.

In conclusion, the boundary layer analysis to be presented in
the following four sections will be concerned only with the initial zone
in which the reaction induced changes and the streamwise gradients in
the physical variables are small; the classic boundary layer assump-
tions will thus be valid throughout the region of present interest
regardless of the free stream flow velocity. Furthermore, as a
consequence of the fact that the reaction induced variations are small
in the region of interest, these variations may be treated as pertur-
bations to the boundary layer without chemical reaction and an iterative
solution for the boundry layer with chemical reaction may be obtained

in a manner analogous with that employed in the mixing region case.

B. General Solution with Pr = Sc:

The governing equations and corresponding boundary conditions
for combustion in the laminar boundary layer with Pr = Sc are
directly obtainable from equations 82 and 84. By virtue of the similarity
solution for Pr = Sc (Section IIB. 1) only three equations remain to be
solved. The cold and hot boundaries in the Yl , X plane of the

analysis are =R and =0 respectively.
y . y
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a) £+ W = o
ya \1 — b
with: <F‘(v0 =
0 nw=20
b)

Ly d ") 2
E‘i}: _.1_?\-.(:(‘\\8?\: = 20X {('0_5?\: +4P\-)§C‘636~(v,'x\

(160)
\ n = R
with:

20N =

G n"n=20

O*F QF  _ iy OF
W +?r-ﬂv0—b"\‘ — ZP\—X‘C(\\ R

with; F(."l,*\ -

The other unknowns are obtained upon substituting the solutions to

the above equations into the following expressions from equation 82.
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a) K, :K;n+‘3;.‘: ‘*"é"(ré,—F\ gkém*
b) Kp =¥, +4F
W\*
c) K, = KPI(t—F\ ury (%,—F) (161)
d) T =% =56
e) S :% ) T:TK—(TI‘T:\}

Equation 160a has been solved by Blasiuswo) using a numerical
technique. A recent and more accurate numerical solution has been
obtained by Emmons and Leigh”m using modern high speed computing
equipment. An excerpt from this work is presented in Table I.

The form of equation 160c and the corresponding boundary

conditions indicate that F(Y\'X\ = F(y\\ , thus

d'F AF

= +RENST- =0

an* an

" L= (162)

with: Fly) =

1l
o

o 1

The solution of equation 162 is obtained in Appendix B-3; the result is,
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| " (4 -
a) g = 8 | (e A
where, (163)
-1 Y3
LN, s 0.664 B
b) £y = [ (o (£ @) o\&} =

The function [ (Pr) is presented in figure 18.

The solution to equation 160b is not to be obtained so easily.
However, as previously noted, this analysis is concerned with the initial
region in which the reaction induced changes in the temperature are
relatively small. A close approximation to the dimensionless tempera-
ture profile, namely that for the boundary layer without chemical
reaction, can thus be obtained as a basis for an iterative solution. The
dimensionless temperature for the boundary layer without chemical
reaction, which will be denoted by the symbol %@ (q){) ', 1is given by

equation 160b with the reaction term, the last term, set equal to zero.

Thus, )
b}' 1) b © ) b (9
2 = 20X ¥§ 25
o + B f(n) " (ny -
| Vl = D
with, ,8&‘) (v\\ ) = (164)
6o 8 =0

Upon comparing equations 160c and 164 it is obvious that
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® '
3 gy = Fly

A basis for an iterative solution for the dimensionless temperature

(165)

in a boundary layer region in which chemical reaction is occurring is

now available. Now define the following two dimensionless quantities:

~P ! N}
) \ £ @ bzk
a) Q )y = Ads [f ('\\l { C.¢ 2R

N)
+ 2_6;} (v\’x\}

) TM) = G ¥

(166)

Proceeding as in the mixing region case, equations 160b and 166 can

be combined to yield the following partial differential equation for

the N'th approximation to the dimensionless temperature in a region

in which chemical reaction is occurring.

b\. (G o) . P -y
_0;%—_ + P £y %%\‘__ = [\c (ﬂ.\] TRQ (aw
l N =
with, %\N\ (.8
0 W =0

Equation 167 is fortunately of such a form that a general analytic

solution can be obtained. The solution, which is carried out in

(167)
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Appendix B-4 is as follows:

(R-1Y
'};m(v\,x\ = F() “ X2y

where,
®-) (-1 -
a) 2 o =[FOR wn =R (]
(N'\’ 1 " 133 (N-l\
o) R =£ {[f (v} £ (a\,x\} Ko
-9 L )
c) X (Y =f° Q) Aok

From equations 166a and 60 respectively,

P \ -\
(N-1) W £ b@,(“
a) Q Gy =2kl { CC on

(N-H
+ 26 (v\\x\}

where,

(-0 -9 n* ok 1)
b) S G = [\ - ZCL% ('l,*\] TT KQ (ny
3=

o X -& X
LT ec, /f")(v\.x\

(168)

(169)

(170)
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The corresponding approximations for the species weight fractions

and for the mixture density are obtained from equations 161 and 168:

2) K" = XN ;A gm®

p T FAFR T AN A
b) K = K+ B, F(y)

(171)
* (N-1)

0 KWen = D) 2 10

Ny M Q) — —ty ¥
) VG = e 5 T = T (el

The following additional relation, also obtained in Appendix B-4, will
be useful in considerations of a "characteristic stay time" for com-

bustion in the laminar boundary layer.

b%(n)
on

s -t
= [ea) (£ - T {7 8y

(N-)
D GRS }

(172)

In the preceding section it was noted that the classic boundary

layer assumptions break down at the upstream end of the flame front
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and that this upstream end normally occurs a short distance downstream
of the point X, = X (xt being defined as the value of the abscissa at
which the TII isotherm becomes double branched). An equivalent and
more useful definition is that x: is the length of the flat plate, measured
from the leading edge, over which the heat flow is from the plate to the

| boundary layer; for X > xo*, the heat flow is from the boundary layer

. %
to the plate. Since the plate is acting as a heat sink for X, > x , the

o
substitution of a plate of finite length equal to x: would be advaﬁtageous
with regard to the stabilization of a flame within the laminar boundary
layer of a constant temperature flat plate. It is thus observed that: x:
is the length of a finite flat plate at temperature TII whic‘:h is just
sufficiently long to stabilize a flame within its laminar boundary layer.
From this viewpoint, or the viewpoint that the flame attachment length
(the length from the plate leading edge to the upstream end of the flame
front) is just slightly greater than x: and is not calculable from the
present analysis because of the invalidity of the boundary layer assump-
tions in this region, the distance x: may be taken as the fundamental

-r

characteristic length of the problem '.

T

The classic boundary layer assumptions are not valid at the up-
stream end of the flame front where the steep slope of the flame
front in the boundary layer results in large streamwise tempera-
ture gradients. Just a short distance upstream, however, say at
x, = x:, the classic assumptions are valid; thus x: can be
calculated from the present analysis. The rapid change in ,
conditions in a short streamwise distance downstream of x_ is
explained by the fact that the reaction rate is an exponentiaf
function of the local temperature; since the local temperature
near the wall at x, = X:‘)‘ is approximately equal to TII’ the re-
action rate is high.
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%*
The preceding definition of X implies that,

N
Og — (173)

oM [w=o
%o = X¥

1]

Thus, from equations 166b, 169c, 172, and 173:

* @) * (M) ) -\

From equations 161, 165,. 169, and 170:

- ]
oo [ar(i-zeFw) } .
a) Q("\\ = Q ('\u*\ —'{ [{_\\ (‘\\1 e
" .
-8
ﬁ\\— [Kén-\-AgF(‘l\\\ E,Y\?\' \—ZCLF(Y\\X
4 (175)
o ' N " fr
b) RO = % = | {U o) 0] de
o &
) 2 = 27000 =, Qe
The "characteristic stay time" is defined as follows:
£% = (%) (176)

The first-approximation to the characteristic stay time is readily

obtained from equations 60 and 174-176:

*

=-m
x _ | e/e \
f = o e ()
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Now, using equations 174 and 175, define the following dimensionless

independent variable:

A= e (x“‘/x*“‘\ = X (A Ve (178)
'\

The temperature and concentration profiles for two similar reacting
flow systems having different values for the system parameters may
be c_ompletely dissimilar for a given value of x; the profiles will,
however, be similar for a given value of /L . The variable 2 is
indicative of the completeness of the reaction; it is a more useful
independent variable than the variable x which it replaces. .

The first-approximations to the temperature, specie concentra-
tions, and mixture density can be readily obtained upon substituting
equation 175 into the following expressions; cf. equations 168, 169a,

171, and 178:

a) 1" () = F) -2 20

® _ .
b) K,; (hn = K;,n + O, Fn) —_/Cl-\- M pim®

N = 2 3 17
c) Ke () = Ko 1= FI) + 2= 2 (179)
d) K, = Ké:r + A, Fly)
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o A M ® _
e) S o = 2T T =T -
(Tg —'Tx)}@)(qln\
(179
where, cont'd)

e
i = TR -y - X

f) e )

The above expressions are valid when Pr = Sc. The particular and

simpler case where Pr = Sc = 1 will be considered in the following
section.
C. Particular Solution for Pr = Sc = I:

By virtue of the similarity solution for Pr = Sc

it
fa—
.o

il =T = Wa, = 70 (180)

cf. equations 72 and 83f. The appropriate expressions for the first-
approximation to the temperature, specie concentrations, mixture
density and characteristic stay time are obtained upon substituting

equation 180 into equations 175, 177, and 179:

a) %(l)(w\n,\ =S40 -2 W

b) K ) =K+ 860 - Z 3w

N (181)

A Sw

c) Ky = KAK + lz' ﬁd{;‘("\\
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a4 K =K, [ - 2
x
(181
© - M 0 _
e) $an = pm— 3T e =T ‘) cont'd)
(T T;\/é‘ ("\1
-m*
" ¥ :{ (# R Ty) }
be, R
where,
3 - 4t R(\\\
a) 2y = Z((V\\\ TRY
’\ [\
b) R = L (4" (0 200 A
(182)

c) R = L“‘Q(J&L

. ‘ \-m* w*
—C'L‘F \ A
d) Q{w) ={ il ; il \ [ [(Ké *EA;}H"‘]’_

| =orw
EXPL 1-¢, f'®

D. Detailed Solution for First-Order Kinetics With Pr = Sc = 1:

In the case of first-order kinetics, the free stream which is at
temperature TI’ cf. figure 17a, will consist of a cold mixture of an

%
exothermically decomposable fuel denoted by the subscript f, and an

* See footnote on page 82.
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inert gas, denoted by the subscript d. Since the mean flow velocity at
the surface of the plate vanishes, the fluid is relatively stagnant right
near the plate. Fuel molecules which move into the immediate vicinity
of the plate may thus be expected to stay near the hot plate for a period
of time sﬁfficient to insure decomposition to the product specie. The
concentration of fuel will thus be assumed to vanish at the wall*. The

boundary conditions on the specie weight fraction are thus as follows:

At the cold boundary, W = + o At the hot boundary, n = ¢

Kf; =1-¢€ K{I =0
(183
KP: =0 KFK ’:.\—é

- In the above equation, € denotes the weight fraction of inert diluent

present in the combustible stream. From equations 67b and 183:

=l-€ 3 =] A = —(1-€
Equation 182d assumes a particularly simple form in the case of a first-
order reaction, for in this case m* - 1=0. Noting that there is but
one term in the product function of equation 182d, namely the term

for j = f, the following expressions are obtained.

* The comments on pages 108 - 110 with regard to the fact that
this is but one of two reasonable a priori assumptions apply. The
case where the concentration gradients vanish at the wall should
also be carried out for comparison.
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2) QW = (-¢€) QKW
where, (185)
~ —_ 2‘{‘('\\‘ ___‘E‘_____.
b) Q(‘\\ - {u('o ex K | - CL'G‘("\\

[ ]
The appropriate expressions for the first-approximation to the tempera-
ture, specie concentrations, mixture density, and characteristic stay

time are obtained upon substituting equations 183-185 into equations 181

and 182:

G} [N 3
a) % ) = £ -z
m o ke =(5)f0 -2

’ - ] /L 5
B R T s
d) Ko =€

W M ®
e = v T \h) :T -
) S = ey

I\/h (-"\\
_ -

£) (\—-Qt*: [bC, R ]

where:
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*) Zw = 30

®) R0 = M = (e E e
— ¥ _

) 20 E\—_(*‘g— = { Qd
~ 2£'@

d) Q@) = {;“(Eq ‘?K. \

_ X
R

(187)

From equations 186b, 186¢c, 187a, 187b, and 187c and the fact

that ¥ (o) = 1,328, it follows that:

e = —ocea{l—e - F]

T

M |y=o
&

bv\ V\=0

—f :OGM\—G——l

The net flux of fuel is to the wall and the net flux of product specie is

from the wall when,
A <L i-8y)

and is vice versa when:
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~ > lea-6v]

Since Cl > \+ » the first condition which is physically reasonable holds
for /7 ¢ \_\; and the second conditions which is unacceptable (8ince an
unopposed reaction has been assumed) holds only for 2 >\,  in which
case the present analysis is admittedly invalid due to the breakdown

of the classic boundary layer assumptions. The specificatioﬂ of the
concentrations along the wall thus yields reasonable results in the case

of first-order kinetics. The integral,
—_ _ fk 2{‘(&) exp[ __(5‘ } " .
L0 = 1w | =€, W) (188)

cannot be evaluated except by numerical methods. By a simple approxi-
mation, however, equation 188 can be reduced to an integrable form.
The exponential term is the dominant term in the integrand; the term
2.?(«()/{%,,{\ is relatively a very slowly varying fuhction of the
variable of integration, o . It will obviously be better to approximate
the slowly varying function than to tamper with the dominant exponential
term. Furthermore, since the integrand peaks for a small value of «
and then rapidly drops off to negligible values, the approximation for
the slowly varying function must be satisfactory only for small values

of & . The simplest acceptable approximation which will reduce -

equation 188 to an integrable form is utilized.

\‘u(cd — 1.322 (valid for o small) (189)
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The constant was determined by the method of weighted least squares.
A comparison between the approximation and the actual function

is presented in figure 19. The integrand of equation 188 has significant

value only over the range of f(')I' which the approximation is satis-

factory. From equations 188 and 189:

Fn &l.sxsf{f‘(«\e”h_—}fmﬂ““‘ B T

A comparison of the integrands of equations 188 and 190 is presented in
figure 20 for typical values of 3, and CZ; the agreement is entirely
satisfactory. The variations of (3, and C2 with the appropriate para-
meters (cf. equation 59) are presented in figures 21 and 22 respectively.
Equation 190 can be simplified by introduction of the following

variable of integration:

+ &
(‘) = — 191
| —64'Q (191)

From equations 189-191:

a) ) = L\4s (%;\ g:m{$l _ %;k I ’

1 \
where, (192)

+B,

b) By = Tt
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Because of the repeated appearance of sums of integrals of the type

of equation 192a, it will be convenient to define:

k FL(B\\ =X
- E e (193)

An evaluation of @,\k(a\\ interms of 8 , k ,B, , . and the
coefficients A“ is presented in Appendix C. From equations 192 and

193:

2 = il'wf f‘l &2,3 () (194)

%

with { dl |
A3 - P\

From equation'C . 19:

"

& 1+iB)
-6m W 5 ¢ R
¥ .0 = e R e -5 (195)
From equations 194, C.16, and C.17:
—_ : (196)
QN - N-t )
[_______('“ El““" ] (8 +2) N2

)
Substituting equation 195 into equation 194 and utilizing equation 192b:

-8,
20 ={ﬂi~l { exv[ —cf @ e -

C'L
2 (197)

L+18,) @u B AL ﬁn\
N=2 [Fz.u\““ N=2 @\“
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Now define the quantities:

'y -N
a) I B ,c) = 50 {&“(m\[&(vf\ epr—CLG'(a\)(Bz(x\)\} An
3 1+18)
b) HR) = -8 Z (ﬁ’n B.") (198)
N=1,
-8

Substituting equations 197 and 198 into equation 187b and carrying out

the integration of the second term, noting from Table I that {-\(0\ =0

_ " GG R@)
R = Ai‘\%{ §N:z AT + 5 “"‘} (199)

Equation 198a can be placed in a more tractable form by introducing a

new variable of integration:

7z = B,(¥ (200)
Equation 198a can then be written in the form:

T W = B‘:'@‘ Sam( e—%)dt (201)
™

6‘ 1"*1
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If the following definition is now introduced (cf. equation 146},

¢
-1 T N=4 1

" "t = {M{‘(ﬁ-g\,(a\ +z)] N (202)
2 )

then, from equations 201 and 202:

L+ 18,1 8, 3‘\\&;\ 31(‘\\ -2
- €
R AU

From equations C.1, C.19, C. 17, and 203:

1416,
i (4T 0 = %—{e*?[“ﬁ‘(‘\\ B - (204)
N=2
1+18) 14 V&)
)‘u _ ()‘N/Bu}\
N )
N=4 [k(‘\-\ N=A
where,
) \ N=L \ T
a = (- -3
N G \\. ab.*)
(205)
"
_ ) D,
b) %4‘“ - s (-0t J

Substituting equation 202 into equation 205b: "
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44

N
o3 Bt

- (-2}

-

1]

PGP
4
i
' |
—— ~— (3]
&l

N
e+ > whem ) | we

w=Ss

Thus,

|

¢, . = —G(N_‘){z(u-z\ +a(N-4)] 5 Nx4 (206)

Substituting equation 206 into equation 205a:

\ ___[(‘_“N(_c‘:’l-\_‘][uﬂ-'s\ + (N-4) (s‘] yNY 4 (207)
N
Now define,
A V18
a) L =8 > el
N=4A
~(208)
4 i
w, Lk, = & el o fbi] ¢
L8
% {)‘%m\“\

Substituting equation 208 into equation 204:



-134-

1+18,)

z (&I (v\\\ = [L (w,8,,¢) —L (4)] (209)
Now, from equations 199 and 209:

T(('\\\ = A(@\,C,_\ [L.L(V\).@‘,C,_\ "L‘(ﬁ\\ +C7_{"('\\ H((&‘Yl (210)

Simplified expressions for Ll((a‘), Lz(v\, R, . CZ), and H( g8,} will now

be obtained. From equations 198b and 196:

1418 Nt
N -yt (84D
My = 8+ 2 [T

R=3

This expression simplifies to the following form:

\@\\“3 N
N G0 (N4 (ng) _
He) = _2— K 28" X (211)

N=0

Substitution of equation 207 into equation 208a and simplification yields,

18\~-4

N+l
=) w(ne(ne2)! '
L) = Z [ 8™ 1 (212)

N=y

From equations 207 and 208b:

LB (—\) EN (n-nt
expl-c, £'in) M\\\] Ly = @ Z { AT } (213)

[ 38-3) + (n-4) (ﬂ\




-135-

The following definitions are now introduced:

1
N44
! ’QN W, 8,6 = {[\ -G () [ (x4 ¢, - N) -
—P\ 1,“ ('\\
e"‘" —C, | } (214)
b) Jol8) = [M (“?é'l““\

The following expressions are obtained by substitution of equation 214

into equations 211, 212, and 213:

\2
2) ey = 3 > J,(8)
N=0
12
b) Lley = - ?:o (g, (e (215)
@
c) Lz(r\)@‘)ci) - Z} [ Jﬂ(g‘\ @NQ\\BHC'L\]

The upper limits of all three sums have rather arbitrarily been set
equal to 12; numerical calculations indicate that this convenience does
not incur significant error. Plots of the functions H(B,) and Ll({s\ )
are presented in figures 23 and 24 respectively. Fortunately the
functions are smooth and may be accurately obtained from large scale

plots on graph paper without continual resort to the rather lengthy
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numerical evaluation of equations 215a and 215b.
If equation 215 is now substituted into equation 210, the following

expression is finally obtained for the integral :F\(V\\ :
_ \2 \
R = Alge) > {Jnus,\[acﬂc W N+ Basal) (@i
N=0

The cold boundary condition (cf. footnote page 82 ) requires that the
exponential term in equation 214a be set equal to zero when T ¢ T

or, equivalently, when W= thus,
B,01=s,8,0) =0 )

Utilizing equations 215a, 215b, 216, and 217, the following expression
which will be employed in calculating characteristic stay times is

obtained:

R = Ale,c) [ 2 n(e) ~L (a)) - (218)

The relation -F‘(d&) = 2, cf. Table I, has been utilized in obtaining
equation 218. The following useful parametric representation of the
characteristic stay time is obtained from equations 59, 186f, 198c,

and 218:
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* oy, [a-abe® (v, 1]
\ (a\4 a2 B,
:0_%4.5{(;1_ ‘ - _o.092 & \
A e S SRR (219)
with,
b) o = Taf

The logarithmic term on the right hand side is small in comparision to
the B, term; the left hand side is thus essentially a linear function of
B, , cf. figure 25. The parametric plot in figure 25 is useful in that
none of the parameters of the system have been specified. For given
values of the activation energy and of the free stream and plate
temperatures, B, can be obtained from figure 21 and the parameter
TII/TI evaluated. Figure 25 will then yield the value of any one of the
quantities t*, € , b, or Tf when the other three are speéified. The
variation of the characteristic stay time with the plate and free stream
temperatures for fixed values of Tf, E, and b, corresponding to the
decomposition of azomethane, is presented in figure 26. As indicated,
the characteristic stay time {(or, equivalently, the characteristic
attachment distance) rapidly exceeds practical values as the plate
temperature decreases. Note that figure 26 would be very similar to
figure 7, for the mixing region case, if plotted on semi-log paper.

The function i(\\\ , as calculated from equations 198c, 214,

and 216 is presented in figure 27; the values of the physical parameters
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correspond to the decomposition of azomethane. The values of ‘F\('L\
are taken from Table I. Using the previously calculated values of i(‘\\
and i(*\ , the temperature and specie concentration profiles

during the early stages of a first-order reaction in a laminar boundary
layer are calculated using equations 186 and 187a. The temperature
profiles are i)resented in figure 28; the development of a temperature
bulge at the wall is clearly indicated. The specie concentration
profiles are presented in figure 29; note the similarity with figure 6,

for the mixing region case.

E. Detailed Solution for Second-Order Kinetics with Pr = Sc = 1:
In the case of second-order kinetics, the free streém which is at
temperature TI’ cf. figure 17a, will consist of a cold mixture of fuel,
denoted by the subscript f, of oxidizer, denoted by the subscript o, and
of inert diluent, denoted by the subscript d. At the cold boundary,

M = & , the specie weight fractions have the following values:

At the cold boundary, \ = &

K, = ("e\(\t},\ Koy 2(\_\—?%:\
| (220)
K?: =0 Ké: = €

In the above expressions, ¢° and € denote the free stream
equivalence ratio and weight fraction of inert diluent respectively.

Even for the case where the concentrations are to be specified
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along the plate surface*, the boundary conditions are not a priori evident.
One reasonable a priori assumption is that the specie concentrations at
the hot surface are identical with those which would exist far downstream
of a plane laminar flame front. There would thus be an excess of
oxidizer at the wall if the free stream equivalence ratio were less than
unity, and an excess of fuel at the wall if the free stream equivalence
ratio were greater than unity. Only for the particular case of a free
stream stoichiometric mixture would there be an absence of both fuel

and oxidizer at the wall. The corresponding boundary conditions at

the wall are as follows:

At the hot boundary, W = 0 (assuming same conditions as far

downstream of a laminar flame front):

0 Y & €\
T - 67,,"\ .
( é\\\w.\ -

u-es(“ ‘2\ y 9,4

1+ Q, . 221
K°c.: ) Kaﬂ =€ (221)
o y 4
2
(-6 (T?;T“\ ) Q, Q
s 2

An alternative specification of the specie weight fractions at

* The comments on pages 108 - 110 with regard to the fact that
this is but one of two reasonable a priori assumptions apply.
The case where the concentration gradients vanish at the wall
should also be carried out for comparison.
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the wall assumes that regardless of the free-stream equivalence ratio,

neither fuel nor oxygen species successfully penetrate to the wall.

At the hot boundary, W =0 (assuming neither fuel nor oxidizer

at the wall);

(222)

The dependence of the characteristic stay time upon free stream
equivalence ratio will be determined for each of the two assumptions
of specie concentrations along the wall,

In the case of a second-order reaction, m* = 2. Thus, from

equations 67b, 182b, 182¢, 182d, and 220:

(o 1- 8] + 8 Y- ) el
Fwli—cfm)

. exp ‘\—T%Y{\\

a) Q (V\\ =

(223)

b) Ry = K” () dat

e
c) R = SD L mR ) dn

From equation 181f:
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R | o0
(t /q’ \ {RH\[ ‘} (224)

For the particular case Qo = 1, equations 221 and 222 agree that

Kf = Ko = 0; thus, from equation 223:
11 II
- fm}
RMQ — (\:\ S {H\S [E c,ju\le ‘\ @ Al ay  (225)
=1\

Assuming that the specie concentrations at the plate surface are

correctly given by equation 222, it follows from equation 223 that:

\\ﬂ{“\g[\qm\ ‘\ccm }M (226)

0

m‘
Thus, when equation 222 is valid:

(t /tb _\\ 2(\:—?:— ' (227)

Note that equation 227 is identical with equation 125 for the mixing
region case in which TII = constant. The variation of the character-
istic stay time with equivalence ratio, as given by equation 227, is
presented in figure 30. This variation is substantially in agreement
with unpublished experimental studies by the present author and by

D. Turcotte.
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If the boundary conditions at the wall are assumed to be given
by equation 221, the integrands in eqﬁation 223 are not independent of
¢° , as in the previou‘s case, and the variation of the characteristic
stay time with equivalence ratio, according to equation 224, must be
determined .by numerical integration. If equation 221 is substituted
into equation 223a, and the integrals of equations 223b and 223c are
evaluated numerically for various values of (bo , the results may be
substituted into equation 224 to yield the variation of characteristic
stay time with equivalence ratio. The results of such calculations are
presented in figure 31. These results are in complete disagreement
with available experimental evidence and with intuitive reasoning; one
would expect the stay time to be at a minimum (and the blowoff
velocity at a maximum) for an equivalence ratio near stoichiometric.
Figure 30 agrees with this reasoning, and the available experimental
evidence, while figure 31 is in complete contradiction. The obvious
conclusion is that if the specification of the con’centrati_on, rather than
the concentration gradient, along the wall is valid then thé specification
must be that of equation 222 and not that of equation 221. An
explanation for the apparent validity of the boundary coﬁditions‘ as given
by equation 222 is presented in the following paragraph.

In the region of initial chemical reaction, the local equivalence

ratio is as follows; cf. equations 182d and 220:

Ko :{ Kee 1= 521 + ()
KD () K (1~ £y + (

b = 5

(228)
g
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If the wall conditions of equation 221 are substituted into equation 228,
it is apparent that the local equivalence ratio near the wall, where the
initial reaction will take place, may vary considerably from the free

_stream value of the equivalence ratio:

Of1 +U-gfi-5fa) g«

) = 9—5‘)—“’)— 6, =1 (229)

¢, + (o, — 01— 54 ) ¢, 7!

Note, that except for the particular case Qo = 1, the local
equivalence ratio is less than the free stream value when the latter
is less than unity and is greater than the free stream value when the
latter is greater than unity. Thus the local fuel-oxidizer ratio is
always further removed from the desirable stoichiometric ratio than
is the free stream mixture.

If the wall conditions of equation 222 are substituted into
equation 228, it is apparent that in the region of initial chemical
reaction the local equivalence ratio is always equal to the free stream
value. This is reasonable in view of the fact that in the region of
initial chemical reaction nothing has occurred which would substantially
change the free stream value of the equivalence ratio. It is thus con-
cluded that the wall boundary conditions of equation 222 are potentially
valid while those of equation 221 are definitely invalid. A complete

vindication of the boundary conditions of equation 221 must await a
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comparison with the results of an analysis in which the concentration
gradients are set equal to zero at the wall. In the meantime, it can
be accurately stated that none of the results of the present analysis,
in which the concentrations are specified at the wall, are in essential
conflict w;ith reality.

The variation of the characteristic stay time with static
pressure and with the extent of vitiation is the same as for the mixing
region case, Part III. The static pressure dependence is given in
equation 123 and in figure 9; the dependence upon vitiation is given by
equations 124, 131, and 132 and is presented in figure 11. Tempera-
ture and concentration profiles can be determined us ing'equations 181,
192, and 223. The profiles will be very similar to those for the case

of first-order kinetics; cf. figures 28 and 29.
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VI. RESUME AND CONCLUDING REMARKS

The analysis of Marble and Adamson(s) for combustion in a
laminar mixing region has been substantially modified and extended.
. The modification consists of the elimination of the partial differential
equations fbr the chemical specie concentrations by means of a-
similarity solution and the utilization of an iterative technique rather
than the classic perturbation technique for the solution of the energy
equation. The present analysis extends the approach of Marble and
Adamson to the problem of second-order and third-order kinetics in the
laminar mixing region of arbitrary velocity ratio and to combustion,
according to first-order, second-order, or third-order kinétics, within
the laminar boundary layer of a constant temperature flat plate. The
extension of the similarity solution to problems in one-dimensional
reacting flow systems is briefly discussed in Appendix E. The constant
temperature restriction in the flat plate problem is removed in Appendix
F, and the application of the similarity solution to the interesting
problem of dissociation and recombination in the hypersénic laminar
boundary layer is discussed in Appendix G.

The basic analysis which is generally applicablé to boundary
layer type flow systems with chemical reaction is developed in Parf II.
The general governing relations for flowing gaseous systems with
chemical reaction are discussed; they are then simplified for the
particular case of a one-step unopposed, ''global” reaction occurring
in a laminar boundary layer type region. The expressions for the
transport properties and flux vectors are considerably simplified

through the assumption of mechanically similar Maxwellian molecules.
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The Howarth transformation is then utilized to reduce the governing
relations to the corresponding constant density form. A similarity
function relating the specie concentrations to the local temperature is
found for the case of equal Prandtl and Schmidt numbers. The
similarity function is shown to be equal to the dimensionless stream-
wise velocity when the Prandtl and Schmidt numbers are both equal to
unity. The governing relations are then transformed to the Blasius
plane in which the velocity field has known solutions.

The particular case of combustion within a laminar mixing
region whose velocity ratio is equal to unity is discussed in Part III.
An exact analytic solution is obtained for the similarity function and an
iterative technique is employed for the solution of the energy equation;
a general solution for the N'th approximation is obtained. In the case
of first-order kinetics, the results of the present analysis are found
to be in satisfactory agreement with those of the Marble-Adamson
analysis. Both premixed and diffusion flames are considered in the
case of second-order kinetics; the results will be summarized shortly.

Combustion within a laminar mixing region with arbitrary
velocity ratio is considered in Part IV. The solution cﬁ GSrtlef(SS)
for the velocity field is utilized, The similarity function and the
dimensionless temperature are obtained in a manner analogous with
the previous case. For a given cold stream velocity, it is determined
that the characteristic stay time and attachment length decreases with

decreasing hot stream velocity.
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Combustion within the laminar boundary layer of a constant
temperature flat plate is considered in Part V. As in the case of the
mixing region, it is found that due to the consideration of a semi-
infinite domain in which reaction can occur, a temperature bulge
always develops. However, when the temperature of the flat plate
(corresponding to the hot stream temperature in the mixing region
case) falls below a critical value, the characteristic attachment
length and stay time become so large that a flame would "blowoff" any
reasonably sized apparatus.

The second-order reaction is of prime technological importance.
The present analysis yields the following conclusions: (1)‘ the blc'>woff
velocity (which is inversely proportional to the characteristic stay time)
is directly proportional to the static pressure, and (2) the blowoff
velocity is also directly proportional to (\ - E)2 where € is the
weight fraction of inert diluent present in the combustible mixture. The
analysis also yields expressions for the dependence of blowoff velocity
upon equivalence ratio. A careful check of the analysis reveals that
these functional relations are independent of many of the restrictive
assumptions of the present analysis. Since the mixing. region is a
reasonably good model for flame stabilization in the separated boundary
layer behind a bluff body flame stabilizer, it might be expected that the
present analysis would, in the case of second-order kinetics, be in
qualitative agreement with experiment. In fact, surprisingly good
quantitative agreement with available experimental data is obtained

with regard to the dependence of stay time {or, equivalently of blowoff
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velocity) upon static pressure, extent of vitiation and equivalence ratio.
The application of the functional relations such as those of this analysis
may reduce the amount of experimental data which must be obtained in
developing turbojet afterburner combustors or other technologically
important .combustion devices. A successful coupling of quantitative
experimental data with analytically derived functional correlations
appears to be feasible.
The similarity solutions of the present analysis may readily be
extended to other combustion problems of technological importance.
Without modification, or with only slight modification, the following
problems should prove to be amenable to treatment by the present
analysis:
1. Flame stabilization within the laminar boundary layer of a
finite flat plate; through extension of Appendix F.

2. Dissociation and recombination in the hypersonic laminar
boundary layer of a flat plate; through extension of
Appendix G in the case of constant wall temp.erature, and
through the extension of Appendix G with modifications
from Appendix F in the case of a wall with érbitrary
temperature distribution.

3. The thermal quenching of a flame front obliquely penetrating

the boundary layer of a cold wall; through modification of
Part V; Appendix F should be utilized if the restriction of
a constant wall temperature is not acceptable. The angle
at which the flame front penetrates the boundary layer

must be small if the classic boundary layer assumptions are
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to be valid; cf. page 112.

4. The erosive burning of a solid propellant grain; requires
modification of the equation of mass conservation,
equation 2, for the presence of mass sources along the
wall.,

5. The axially symmetric diffusion flame; through extension
of Section IIID. 2 with modifications from Part IV.

6. Planar, cylindrical, or spherical, one-dimensional time
dependent ignition problems; through extension of

Appendix E,

In a rather broad sense, the present analysis reemphasizeé the
conclusion of Marble and Adamson: namely, that there exists a wide
class of technologically important combustion problems which are
accessible, at least with respect to disclosing the essential features,

with present analytic techniques.
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APPENDIX A
SUMMARY OF ASSUMPTIONS

The assurﬁptions basic to the present analysis are herein
summarized for convenience. The numbers within parenthesis refer
to the page on which the assumption under discussion was first intro-
duced into the text. The motivation for introducing a given assumption

is discussed where the assumption is introduced into the text.

1. Assumptions Fundamental to the Boltzmann Integro-Differential
Equation .
a. The density is sufficiently low that the effect of collisions
involving more than two molecules is negligible; only
binary collisions are considered (4).
b. The gas mixture behaves as a continuum; the mean free path
of the gas molecules must thus be short compared with all of
the macroscopic dimensions of the system (4).
2. Assumptions Fundamental to the Navier-Stokes Equations .
a. The gradients in physical properties are small in the sense
that they do not change appreciably in a distance of a mean
free path (5).
b. Classical mechanics, rather than quantum mechanics, is
employed (6) .
c. The gas medium is isotropic (13) .
d. The normal and shear stresses are linear functions of the

deformation velocities (13} ,
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The coefficient of bulk viscosity is small and may be set

equal to zero (14) .

Assumptions with Respect to Molecular Properties .

&.

i.

With respect to the interchange of angular momentum, the
molecules act as smooth spheres; thus no interchange of
angular momentum is possible (8) .
Each component of the gas mixture obeys the thermodynamic
equation of state of a perfect gas (9).
The gas mixture obeys Dalton's law (10).
The gas mixture consists of mechanically similar molecules
(18); thus,
1) the molecular weights of all species are equal .
2) the molecules of all species obey the same law
of interaction at encounter .
The molecules are Maxwellian (18).
The Eucken correction for the thermal conductivity of
polyatomic molecules is employed (19) . |
The components of the gas mixture are all calorically
perfect (20).
The specific heats of the various chemical species are
equal (20).
The reaction-rate laws of classical chemical kinetics are
applicable (21) .

Only one-step chemical reactions are considered (22).
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The backward reaction is negligible (22). This assumption
is not employed in Appendix G.

The law of mass action is utilized (23).

. The specific reaction-rate coefficient is given by the

Arrnehius law (23).

Assumptions With Respect to the Flow System

a.

No sources or sinks for mass are present in the flow
system (7).

The transfer of energy by radiation is neglecfed (16).

All viscous regions and flame fronts are laminar (30).

No external forces act upon the gas moleculeS‘ (30).

The flow field is a constant pressure flow field (31).

The ratio of thermal to kinetic energy is so high as to make
the viscous dissipation function negligible (35). This
assumption is not employed in Appendix G.

The classic Prandtl boundary layer assumptions are
applicable (39): also refer to the discussions on pages 39-40,
68, and 112.

The boundary conditions are independent of.the streamwise
coordinate (48). This restriction is eliminated in Appendix
F for the case of combustion within the laminar boundary

layer of a flat plate.

Assumptions Fundamental to Similarity Solutions

a.

The assumption Pr = Sc (52) is fundamental to all of the

analyses of the present paper.
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b. The assumption Pr = Sc = 1 (57) is not fundamental to any
of the analyses of the present paper; this assumption, how-

ever, greatly reduces the labor of the numerical calculations.
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APPENDIX B
SOLUTION OF PERTINENT ORDINARY DIFFERENTIAL EQUATIONS

1. From equation 87 of the text,
.
sz 2% dF - 0
dn* T
with, (B.1)
\ y N =+
Fln =
0 ) V\_—_—-Gb

Define € = A‘E/AV\ , then
de 2? —_ (B. 2)

Equation B. 2 is a first-order, homogeneous, linear differential

equation which has an integrating factor of exp(Pr vC‘ ); thus equation

B. 2 may be expressed as,

%\{e e‘l\?(?vvﬁ\ =0

Integration of the above equation and the replacement of € by its

equivalent dF/Ay\ , yields the following,

%\E = Aexe (=P (B.3)

where A is the constant of integration. If equation B.3 is now

integrated from — o® to U\ and the second boundary condition of

equation B.1 is applied, then
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Fly) = Afv\ exp (- I7) A

-
The variable of integration is now changed to & =dyP-  and the error

~ function (a tabulated function, cf., reference 71) which is defined as

kS

2 (-t
ecf % ET—“TL e 4t (B. 4)

is introduced. Thus,

Finy = ST [ertnfFe) - evt (- (B.5)

The constant of integration, A, is now obtained upon evaluating equation
B.5 at + ® ; the first boundary condition of equation B.1 is applied

and the relation erf(a ) = - erf(-« ) = 1 is utilized.

— .
Az =3 - (B.6)

The final solution to equation B. 1l is obtained upon substitution of

equation B. 6 into equation B.5.

Flo) = -;{\ + ecf (o)) (B.7)

The above solution appears as equation 88 in the main body of the text.
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2. From equation 92 of the text,

a‘l- () a W ? X(\ _?rV\LQ(“")(
= AN
—%——av\,,_ +2Prn —%_—bV\ 3 ", %)
© with, ® 1 ') Vl = fob (B. 8)
F o =
o 3y | ="

if x is temperarily treated as a constant, then equation B.8 can be

written as an ordinary differential equation for any fixed value of x.

Thus, 3

d"" ® ()] -Pr'l\" n-9

E}i— & 2Py %\—%‘/—- = %X e O CRA

A\

with, {B.9)

My T

W) =
: 0 y N7 ®

Ny
Now define € = d} /d\’l , then the above equation may be rewritten as

~Pet )
%v% y2Prqe =T EWe Qe (B. 10)

Equation B. 10 is a first-order, nonhomogeneous, linear differential
equation which has an integrating factor of exp(Pr Yt?' ); thus equation

B. 10 may be expressed as,
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& e on(rey] = PTO Q™ 0

. The above equatlon is now integrated at constant x from W\ = 0 to ¥

and € is then replaced by its equivalent d’b’ /olr\ . Thus,

N
VIR Q@00

A e_erv\’"{ L
A Ay 1=0
Equation B. 1l is now integrated from — to YW at constant x

" and the second boundary condition of equation B.9 is applied. The

following result is obtained.

N (N)
'5 (“ 1\\ _'k_

Ul B F e -0 I N
+?rI(x\L{e fo Q (@ nd}dd

The variables of integration are now changed to d = ZVPr and
X :%\ﬁ and the error function, defined in equation B. 4, is

introduced. Then,

1))
_ . E 4
3 = H| T —f“—'\: [ +ect (nfer)]
W (o (M e
I **\°\°§°\*

(B.11)

(B. 12)

(B.13)
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Equation B.7 is now substituted in equation B. 13 and two new

definitions are introduced. Thus,

) ) (-
4 (ax) ={E i‘\;\%;l— F) +EQR oy (B.14)
=0 |
where: j
(N=1) e B ( S\
a) Ry = L‘b e £ (exyae
and (B.15)
we
(n~% (-1) o
Equation B. 14 is now evaluated at W = + < , using the first boundary

condition of equations B.1 and B.9, and the constant coefficient of F(V\)

is determined.

)
=[1-X@R (on) (B.16)
n=0 |

The final solution to equation B.9, which is also the solution to
equation B. 8, is obtained upon the substitution of equation B. 16 into

equation B. 14.
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-1
a) ,5‘"‘(,\,“ = F) —XWE (Y

" where,

_(ny
b) 2!\\

{N=-0)

(%=1}
o =[FRR on —R an)

(B.17)

The above expressions appear in equations 93 and 94 in the main body

of the text.

An expression for the first derivative with respect to v of

{

equations B. 11, B.15, and B. 16 it follows that,

N
a()

(-1

+or XK

SE{_ ={J% [\ —mn?\w\\t».x\]

%/N) (v , x) is also required in the main body of the text. From

( e-e\-q‘ | (B.18)
", %

The above expression appears as equation 97 in the main body of the text.

3. From equations 151 and 162 of the text,

2
¢F i =
with,
| y =t
b) Flw) =

(B.19)
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The hot boundary in the case of the mixing region is V\n= -
in the case of the boundary layer, the hot boundary is given by V\ll = 0.

Now define € = dF/&V\ ; then from equation B. 19a,

%—% + P flqle = 0 ] (B.20)

Equation B. 20 is a first-order, homogeneous, linear differential

equation which has an integrating factor, &(’f\\ , given by

W) = aexp S: e (B. 2.1%)

where a is any non-zero constant. The integrating factor may be
expressed in a more convenient form through the use of equation 143b

of the text (or, equivalently, through the use of equation 160a of the text).

n _ AW -
L Pr f(Qdat = —?"SO P |
-f“('\\ ‘\ .
N
o f
N X
_ £ ()
-_— \“e [ 'f“(“\ i -?r

Substituting equation B. 22 into equation B. 21 and setting & =[f “‘]
T

-P
ﬁ(v\\ = [{“(V\Y_\ : (B.ZS)

Utilization of equation B. 23 as the integrating factor of equation B. 20

yields the following differential equation:
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;\_,\{egm}“"} —o

The above differential equation is now integrated and € is then
replaced by its equivalent, dF/dV\ ; then
" Pr
4F _ A[f (v\\] (B. 24)
dq .
where A is the constant of integration. If the above equation is now

integrated from Ylt to W and the second boundary condition of

equation B.19b is applied, then
" W L0
F(Y\\ = AS‘\ ‘,{ (d\l Ad (B. 25)
]

The first boundary condition of equation B. 19b is now applied and the

constant of integration is then determined from equation B. 25.

\

el ] ?" B ’
A :{ ( {*f (ot\} do(-\ ' (B. 26)

(™ .
The solution to equation B. 19 is now obtained upon substituting equation
B. 26 into equation B. 25, Particular solutions for the mixing region
case and for the boundary layer case are presented in the following

equation.



Mixing region case, W; =~ D
" Pr 7
(O [#w) ad
2) Fla = =25 ?
W (ol
L [F W) A
Boundary layer case, “n =0 : (B.27)

", Y2y
(([Fe] - fogeat | (Mrev o™
o < Bl sl

LR r b
b) go ¢ (d“? ae (1.328)

Equations B. 27a and B. 27b appear as equations 152 and 163 respect-
ively in the main body of the text.
The last expression in equation B. 27b is based upon the

following approximation by E. Pohlhausen”z)

3

-

N N > ) s .
[f'o] L (@) a =[oeca ] (B. 28)

and the tabulated value, ¥“ (o) = 1. 328, which was obtained from Table
I of the present paper. A table comparing the Pohlhausen approxima-
tion with numerical evaluations of the integral is presented by
Goldstein(73); the agreement is excellent. Note that the Pohlhausen
approximation is applicable only to the boundary layer case, not to the

mixing region case.
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4. From equations 146a and 167 of the text,

At 2a™ -1 W At
a) ﬁ; + B £ —&— =X0Q (qalFwl
with, (B.29)
1 . =+
) i
b) 'b' (n,xy =
0 y W=
The hot boundary in the case of the mixing region is g =-= ; in the

case of the boundary layer, the hot boundary is given by W; =0
Now temporarily treat x as a constant, reducing equation B. 29

to a total differential equation as was done in equation B. 9, and define

a : : . L .
€ = da / dv\ . The following differential equation is then obtained.
d (N=1) I
9 rfne =N Q wnl€ W) (B.30)

Equation B. 30 is a first-order, nonhomogeneous, linear differential
equation which has the same integrating factor as equation B.19; thus

from equation B. 23,
‘ B
W =) (B.31)

is the integrating factor of equation B.30. Then, using the above
expression for the integrating factor, equation B. 30 may be expressed

as follows.
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d%\ { ef £ ) Pr] - XX Q(N“zv,, 0

The above equation is now integrated at constant x from o to | and €

Ny
is then replaced by its equivalent, d%( /Av\ ; thus

) P "
d% = [*F“('\\-l { [\‘“(oﬂ _}L\l
'l\

w=o

n -\
+ XK fo Q" )(o(,x\ o\d}

(B.32)

Equation B. 32 is now integrated at constant x from Y[I to | and the

second boundary condition of equation B. 29b is applied. The following

result is obtained.

N) A Lo ! oo
Y = 2| (€l f (6] o
M w=o "y

'\‘X(X( {[f b\\] (3‘ R-(e« x\A%Ab

Now define,

(=Y i . (-9
a) R (a9 :Ll {[{ (M POCRIES
o
(n-1) ¥ N0
b) L N = go Q  *ndL

(B.33)

(B. 34)
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Equation B. 33 is now evaluated at | = + & , the first boundary
condition of equation B. 29b is applied, equation B. 34 is utilized, and

the constant of integration in equation B. 33 is determined.

)
4"
d

.. |- X Rm-“(.u x)
‘f 0 = ’ (B.35)
=0

[£0] da

b,

Equation B. 35 is now substituted into equation B. 33 and equations B. 25,

B. 26, and B. 34 are utilized. The following solution to equation B. 29

is then obtained.

Ny (N-1
a) Y 0 = Fly —TWZE
where, (B.36)
(T (n-1) (n-9)
b) 2 () = KF(!\\ Ro(e =R (V\,X\X

An expression for the first derivative with respect to | of
o .
v N is also required in the main body of the text. From equations
B.32, B.34b, and B. 35 it follows that,

) el - (N
% =[] \ EMR“ (ﬂ?‘:o + XX (0 (B.37)
on g'\ e ax

-

-

The following expressions are now summarized for particular cases.

Note that Yln = -0 and 0 in the mixing region and boundary layer
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cases respectively.

b)

d)

b)

d)

Mixing region, Pr = Sc # l: (Using equations B. 27a,

B. 34, and B. 37)

Pe
(16w de
(-O [‘Fu(*\-\?\' Ao

Fla) =

TN —{ {H“M £ x\}

_ B (v
2 = go Q" 40 AL

(N-1)

o N e
A =[fw) {\ ey vIWS (v\,"\\

* W e
(- ()

B. 34, and B.37).

Fi) = Tt = §F0 =125

R 0 = f_: { fw (m\} 3}

(N=V) ¥» Ny
oo =) Q0 wndk

N)

[ - ( -\
0 - fW l—Xm[?f“ w28 \(v\,x\\
oM 2

Mixing region, Pr = Sc = 1l: (Using equations 72, 83f, 84,

(B.38)

(B.39)
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Boundary layer, Pr = Sc # 1: {(Using equations B.27b, B. 34,

and B. 37).

a)

b)

c)

d)

e)

LY " Pe
Fln) = @(pr\go (£ @] a«

(N=1)

N B ()
R = (0 {U (W] % \(v,x\ di

(N-1) L)

» )
e = Q @nad

(N

oM

. e (N-\)
_b_(b__ = {G‘ ('\ﬂ {@(?\-\ —X(‘k\‘@("r\ RR \(«‘%\

- Im-\\(v\\xﬂ}

o af 1L (o.66a R
@ (o) '—_'[ fj[\c () o\.a] Z{W\

(B. 40)

Boundary layer, Pr = Sc = l: (Using equations 72, 83f, 84,

B. 34, and B.37).

a)

b)

d)

Fl) = T = ¥ 0

(w-1 (N-9

Y\ W
R = L [T Ganldr

- ¥ M=4
2" me =L Q@i

0

(\ ) -‘
%" ﬂﬂ{\—x(x\[ﬁ“ Ty — 2
M 2

(-1}
L Gn

)

(B. 41)
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APPENDIX C

EVALUATION OF A SUM OF INTEGRALS

From equation 193 of the text:

& 31(5‘\ -%X
&R‘k(a«\ = E{Mg‘ eK Ax

Denote the integral by,

B -
—_ e
QS) j— a
A (x\\ S@\ X“ A

then from equations C.1 and C. 2 it follows that:

k
Y, 0 = > 8w

n=%

The indefinite integral corresponding to equation C. 2 is given as

follows in reference 74:

A U V-
S_e_{“_ = —e Zi (V\—\:‘-\')‘u‘) \:"""'X

U=\

wn-\

A+ A B0 1 C

n-ﬂ\

where Ei(y), the "exponential integral", is a tabulated function

defined as follows.

l>
\n\

(75

(C.1)

(C.2)

(C.3)

(C.4)

)
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. ¥ et At
iy =4 ©.5)

-

The following relation is given in reference 76:

g o P+
CEISRR I (S -u =

Pt —va)
or, more simply, as
R o 0 T €0 )
(Y\"\ '\ -1 ) -U\ - F(ﬂ“)\ - (ﬂ-\"D)‘: (C.6)
The following two definitions are now introduced:
— 0 (n- Y (n-v-myt ‘X
G, = UEE YR | (C.7)
en
and +W Er(-¥)
h p
2 L= Z 4, 6,0 | (C.8)
! n=R
Then from equations C.2, C.4, C.6, and C.7:
9,00 = GLam —6, () (C.9)

Similarly, from equations C.3, C.8, and C.9:
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Wy = A, lem) -8, (8 (C.10)

For values of the appropriate parameters (cf. equations 59 and 142b)
of practical interest, B, and B, (%) are bothlarge (i.e. » 15). The
asymptotic expansion for Ei(- ¥ ) may thus be employed. From

reference 77:

o TR W A S _4_‘-_....
Exl-® = —€ K‘o PO Y A ]
or,
" ' (\\“N\
Li(-® = ¢ z ‘ ﬂ*\‘} (C.11)
. N=0 x\

where |p| 1is the first integer smaller than ¥ . The semiconvergent
series is terminated at \X‘\ because the terms increase in magnitude
with increasing N when N 2\¥| . Using equation C.11, equation C.7
can be written as follows for large X : |

¥ U v
o = e ) S e

N:O 'U‘-‘-\

Setting N + 1 = n -V in the first series and simplifying, the
following expression can be obtained:

e
) e i GV
G, 0 =&—m—_\‘—r} iv_ﬂ__(ﬂ;‘}l} (C.12)

N=n 4 "
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Substituting equation C. 12 into equation C. 8,

Rl (%) (-v
bm(»\ = e. 2 {(“_m f\ - “ (C.13)

N=n

Equation C. 13 may be rewritten as follows:

.

" k N=-t
- &Y 4, EN (NN
Bl =€ Z{ T > ST — }
e—» i o) An \{ E n (N'\)\
¥ {n-1\! ' \

N= k-\\

(C.14)

-
P
S

The second pair of series are now uncoupled and may be taken as the
product of two terms. In the first pair of series n{N&k ; thus
for a given value of N, n can take on the values n = X, R+ 1,----N.

Equation C. 14 may thus be written as follows:

.3
&2‘»_ o = e-x{ zl(—\\ e %M\

n=8

(C.15)
[Gaty)

q&‘k Z‘U\ (n-\\‘\

N=ha

where,

Mo
Bom — Z ﬁ\:_fﬂ (C.16)
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Now define:

N-1
EN e gy

N-t
G0 (et L7%Y

then, from equation C.15 - C. 17,

—y 1+l

3,00 =e > Q@N/;«“\

LES)

3 N<Ck

3 N2k

(C.17)

(C.18)

An expression for the desired integral sum is obtained upon substituting

equation C. 18 into equation C.10:

gy W& o
V&l)h(k‘) = e N=g {@l“q\“

-8 Leif)

—e > ()

n=2

(C.19)
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APPENDIX D
DISCUSSION OF COMPUTATIONS

1. Shear-Free Mixing Region: First-Order Kinetics

From equations 112 and 114 of the text,

—-— »m L
) W= 2 L {(‘ +erfa) m[‘* r; (\+ oy ]} A&

W (D.1)
b) R = f (" 2

The integrand of equation D. la was calculated, using the tabulated
error function””, at increments of A& = 0,10 over the range
—34d4¢3 . Using Simpson's rule for numerical integration, i(&\

was then obtained at increments of A(X\m ) = 0.20 over the range
-3¢ Pr £3 . Using the calculated values of i(a\) , the integrand
of equation D. lb was then calculated at intervals of the variable of
intégration of 0.20. The lower limit of the integral for TP.\('\\ was
approximated by -3.0; this approximation is acceptable because of the
influence of the exponential term in the integrand. Sirl;lpson‘s rule was
again applied and R (V\\ was obtained at interwvals of 0.40 over the
range —3N¢D | The quantity R(‘-‘b\ is closely approximated by the
value R (+ 3.0) by virtue of the rapid decay of i(é") for positive
values of the argument and the accentuating decay due to the exponential

factor in the integrand. The temperature and concentration profiles

and the characteristic stay time are then easily calculated by direct
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substitution into equations 114a, 115, and 116. The results of these

numerical calculations are presented in figures 4 through 8.

2. Shear-Free Mixing Rg_gion: Second-Order Kinetics

From equations 119b and 120 of the text:

T

- e ff (\+e\'4d)1 _ B,
a) L = L {[\—C1(\+ev{—o()} exp[q \"C,_(Herfo(\-} a

(D. 2)

w A= ( (€ ke

The integrals were numerically evaluated using Simpson's rule; the
increments and ranges of integration were the same as for the case

of first-order kinetics which was previously discussed. The tempera-
ture and concentration profiles and the characteristic stay t_ime were
then readily calculated by direct substitution into equations 121 and

122. The variation of the characteristic stay time with static pressure,
extent of vitiation, and equivalence ratio were‘calculated using
equations 123, 125, 126, 128, and 132. The results of these numerical

calculations are presented in figures 9 through 13.

3. Shear-Flow Mixing Region

The dimensionless velocity in the shear-flow mixing region was

calculated from equation 145 of the text,

vw =[5z = gl eWBZR)] e ) e
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for —44144 and A , the velocity ratio, equal to 0, 0.2, 0.4,
0.6, and 0.8. The results of this calculation are presented in figure
14. The integrals i (%) and ‘R("\\ were calculated by Simpson's rule
- as for the previous cases considered; equation D. 2 can be simply
modified for the shear-flow case by replacing 7‘2.- A + ecf Y\\ by T,
equation D. 3 (cf. equations 147, 149, 158), The variation of the
characteristic stay time with velocity ratio was obtained by calculating
values of the stay time for various velocity ratios, equation 156, and
dividing these values by the characteristic stay time for a velocity
ratio of unity, equation 109. The results of these calculations are
presented in figure 15. The variation of the characterisfic stay time
with equivalence ratio was readily obtained from equation 159 and is

presented in figure 16,

4. Boundary Layer: First-Order Kinetics

From equations 214b, 215a, and 215b of the text:

a) R{B)

I

\2
3 “Z J,(8)

12

_ > [ng e

= (D. 4

b) L. (&)

where,

(1) (NN 42
o gle =Sl
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Evaluating the coefficients,

-\ -2
a) H(g ) = 1.00000 - 0.60000 B, + 0.36000 B,

-3 -4 -5
0.24000 3, + 0.18000 B, - 0.15120 B,

+

-6 -1 -8
0.14112 B, - 0.14515 @, + 0.16330 8,

-9 ~10 -
0.19958 B, + 0.26345 03 - 0.37362 {,
-12
+ 0.56656 B

(D.5)
- -2 -3
b) L, (B,) = 0.20000 B, - 0.24000 + 0. 24000 (3,
-4 -5 : ~&
- 0.24000 B, + 0.25200 g - 0.28224 B,
A -8 -9
+ 0.33869 B, - 0.43546 B, +0.59875 B,
-\ -\ -12
- 0.87817 B+ 1.36994 B - 2.26664 B,
The functions H(B) and L (B) were calculated over the range
15 £ (3‘ £ 50 at intervals of & (3‘ = 2.50; the results are presented

in figures 23 and 24.

The function R(V\\ , as given by equation 216 of the text, was
calculated for values of the parameters corresponding to the decompo-

sition of azomethane; (i.e., T, = 1650°K, b = 1014sec-1,

E = 50 Kcal/g-mole) and with T; = 300°K and Ty = 1200°K. The

interval of the argument Y\ was AW = 0.10 and calculations were

made over the range 0&%4& 3 The results of the calculations are
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‘presented in figure 27. The characteristic stay time and the tempera-
ture and concentration profiles were then calculated from equations 186
and 187 of the text using the previously determined values of the
functions H(@.\ s \_‘ ((3.\ , and —“ (‘\\ . The results of these

calculations are presented in figures 26, 28, and 29.

5. Boundary Layer: Second-Order Kinetics

The integrals of equations 223b and 223c were numerically
evaluated for % = 0.2, 0.4, 0.6, and 0.8 using Simpson's rule. An
interval of 0.1 was used in evaluating equation 223b and. an interval of
0. 20 was used in evaluating equation 223c; the range of integration was
zero to three., The Blasius derivatives were obtained fr‘cam Table I.

The specie weight fractions in equation 223a were given by equation 221.
The functional relation of equation 223 was calculated for the given values
of (bo ; the assumption i("& = -'\3\(‘5.0\ , which is in excellent agreement
with calculations, was utilized. The results of these calculations are
presented in figure 31. Figure 30 was directly obtained from equation

226.
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APPENDIX E

SIMILARITY SOLUTIONS FOR THE SPECIE CONCENTRATIONS
IN ONE-DIMENSIONAL FLOW SYSTEMS WITH
CHEMICAL REACTION
The governing relations in the physical plane for one-dimensional
flow systems with chemical reaction are compiled in equation 47 of the

text; for convenience, these relations are rewritten in equation E. 1

below:
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The notation used in the above relations is the same as that employed
in the text.
Now introduce the dimensionless temperature Tb' = T/TI

where TI is a constant reference temperature. Equation E.1lb may

then be written as follows:

Y 9 _ L 4 2 ( W\ 47
a) St +uo’5%; ~ P g bﬁo(/" S@ + Cw,
where, : (E.2)
b) ¢ = *(T*TTI\
T

For the case where Pr = Sc, the following dimensionless variable is

introduced: 1

(’:;g*o_)t\ (E.3)

-

If equations E.lb and E. lc are now added and the above dimensionless
variable is introduced, then the N specie concentration continuity

relations may be expressed as follows:

-
dF, PE, L 4 (. dF, .
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b) K}.. :__cl__(ﬁ';_‘,g_\ ; iew®
‘ (E. 4)
m*
q) Ke = 1=K = > K,
=2




-186-

The boundary condition and the initial condition appropriate to
the variable -F: are readily obtained from the known conditions upon
the variables -’S, and K;‘ and equation E.3. The introduction pf the
variable -F-:;_ has not reéduced the number of equations to be solved,
but has méterially reduced the complexity of the specie continuity
relation due to the elimination of the reaction term. For a given
problem, the definition in equation E. 3 could be modified so that the
boundary and initial conditions were independent of the subscript i; the
N-1 partial differential relations in equation E. 4a would then reduce to
a single equation. This is precisely what was accomplished in the text
by the introduction of the function defined in equation 67a. Unfortunately,
however, this technique cannot be carried out in general but must be
individually applied for each mathematical model corresponding to a

given class of physical problems; proper account of the appropriate

initial and boundary conditions must, of course, be taken.
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APPENDIX F

COMBUSION IN THE LAMINAR BOUNDARY LAYER
WITH ARBITRARY WALL TEMPERATURE DISTRIBUTION
AND WITH Pr = Sc

The extension of the Chapman and Rubesin analysis(78) for the
temperature and velocity profiles in the laminar boundary. layer with
arbitrary distribution of surface temperature to the case in which an
exothermic chemical reaction occurs in the boundary layer is briefly
considered in the present Appendix. As in the text, the viscous
dissipation ﬁmction will be deleted as being negligible relative to the
heat release due to chemical reaction. The Howarth transformation
utilized in the text will be employed rather than the von Mises transfor-
mation utilized by Chapman and Rubesin; the end results are equivalent
in the present application. In order that the similarity technique of
Paragraph IIIG. 1 may be employed, only the case where Pr = Sc will
be considered.

The governing relations for the laminar boundafy layer,
expressed in the Howarth plane, are compiled in equation 57 of the text.

The following notation is now introduced:

U = w/w 8 = £/aT,
(F.1)
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All of the above quantities are dimensionless except for 53 and O

which have the dimension cm-l. The subscript I refers to free stream

conditions.

Using the notation of equation F. 1, equation 57 may be rewritten

as follows:

W , dV _
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In the above, € denotes the weight fraction of inert diluent in the

combustible free stream. For the case of present interest,

equation F.2d can be replaced by a much simpler relation.

(F.2)
Pr = Sc,
Multiply

equation F. 2d through by C, and add the resulting expression to
q 1 g exp

equation F. 2c; then
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0T, T, — I .
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where: (F.3)
b) T, =4 +¢X,
The Blasius transformation is now utilized {cf. Section IIH). Equations
F.2 and F. 3 can then be summarized as follows in the W o, X plane.
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The boundary conditions corresponding to the above equations are as

follows: 7

2 =

a) fly =
0 y 1 =90
1 y N =20

b) ERCRARES (F.3)
30 5 =0
Q=L rcK . =

c) T.(aX) = -
T 00 = @om +CK Wy =0

The symbols E,Q(x\ and K%(x‘) respectively denote the dimensionless
temperature and the i'th specie weight fraction along the wall. Note
that the latter must be intimately related to the former.

The solution to equation F.4a with the boundary conditions of
F.5a is the classic Blasius solution(éo); a more recent solution by
Emmons and Leigh(70) which was obtained on modern high speed com-
puting equipment is tabulated in Table I. |

The solution of equation F. 4c with the boundary conditions of
F.5c is obtained, in general form, upon solving the following partial

differential equation:
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o ) N =
b) Fla ) =
(48N y v =0

Equation F. 6a is a linear, second-order homogeneous, partial
differential equation. The standard mathematical technique of
separation of variables is thus applicable. Variables are separated

in the form,
Eln =¥ oy (F.7)

Substitution of equation F.7 into equation F. 6a followed by the

separation of variables yields the following expression:

' -1
(v h;\ \ [y . )
20 x| 2| = €W g\x(‘\\] R ORAN!
P,
Since the left hand side of the above expression is independent of the
right hand side, and vise versa, both sides must be equal to a

constant, say (AP} ; thus
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W, X
(F.8)
b g.;(.\\ + Peb) ) — 20X EW D) =0

The solution to equation F,8a, neglecting the constant of integration,

is,

R
Wx(x\ =X (F.9)

The boundary conditions most convenient to impose on eqﬁation F.8b are

a y W= R
) = (F.10)
\ y A =0
The function }X(V\\ which satisfies equations F.8b and F. 10 can be
obtained by straightforward numerical solutions (cf. reference 78).
Then, using the principle of superposition, equations F. 6, F.7, and

F.9 can be combined to yield the following expression:

Fin,x) = 12 AAX’L?}(\\ (F.11)

-
-

where the coefficients AR are given by,

Z Axxx =FW (F.12)

k=0
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Note that the coefficients AA are simply the coefficients for the
Taylor series expansion of the known distribution along the wall.
Comparing equations F.4c, F.5c, and F.6 and using the above two

equations it follows that,

9 T =2 AKX

=0

where,

< _ _ (F.13)
b) > AN =T = Fm +EK,

X=0

and glx('\\ is given by,

c) ?\; (W) + Peg'(m) ‘A;(v\\ —2RAE M) =0
L+ T K, P 4=

The energy equation, equation F.4b, is the only equation which

remains to be solved. The iteration procedure employed in previous
considerations of combustion in the laminar boundary layer (cf. Part
V) will be utilized. Define -%(m ('\, K\ as the dimensionless tempera-
ture profile in the absence of chemical reaction but with the wall
temperature distribution of interest. Setting the reaction term, the
last term, in equation F.4b equal to zero and using equation F.5b, it

follows that,
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Py ® dn © \ da®
a) 2 = 20X £ (n) -
G + Pr £(y) X 2L AC) 7
with:
e i y A= A
b) % () =

so(i\ yn=0

(F.14)

The above equation is a special case of equation F. 6 and the solution

is given in equations F. 11 and F. 12; thus,

D

-t X
2) 30 Yy = XZ AgX ALY
=0
where,
o \
b) z AX =20
=0 °

and }X(V\\ is given by,

9 W) QTR -26AEW RN = 0
! ; A =9
Plny =
L 54 =0

-

(F.15)

The N'th approximation to the dimensionless temperature in

a boundary layer in which chemical reaction is occurring is then given
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by the following partial differential equation (cf. equations F.1, F, 4b,

F.4e, F.16 and Part V. of the text):

where,

b)

and,

Equation F.

differential equation.

]
a;_ N} ¥ [ . Y
L S S L S Y PR\
e 4 r{-('\ o r '\\ b*
= _akx T, B
— (=) (N-1) \'"‘* -(_I:
GN ('\pk\ :gfé, (\,n\} exp‘ m} .
I
_=m - (n=0 (F.16)
C ['C‘L - ]
B
| Yy | = b
Ny
2 ) =
3}‘\ y W=0

l6a is a linear, second-order, nonhomogeneous partial

By virtue of its linearity, the solution may be

obtained by adding a particular solution of the nonhomogeneous

equation to a solution of the homogeneous equation.

Thus,

— (N ()
BN = g G TG (F.17)
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- Note that the solution to the homogeneous equation is the same for all
iterations.
he ab i ™ d
In the above expression, fb,? N, X) an ’5’“("\»‘0 denote the
- particular and the homogeneous solution respectively. The boundary

conditions to be assigned to the particular and to the homogeneous

solution may be chosen subject only to the conditions that

™ ! y W=
Y, 0+ g a0 =

T 5 4=0

The following boundary conditions will prove to be convenient.

) l PN
a) ’5«‘, (%)
) , W= 0
(F.18)
0 y { =
b) ALY s =0

The homogeneous solution has already been obtained in general form,

cf. equations F.6, F.8b, F.10, F.1l, and F.12. Thus,
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.
> A
2) 3.0 = > AKX BN
R=0
where,
N
b) z A,l K} = %o(x) (F.19)
X=0
and,
O R R B )~ 2REW R = 0
0 ja=a
By = {
oy =0

An exact particular solution cannot be obtained. However, a satis-

: o
factory solution can be obtained by simply approximating 3%' IM

by b%:“-“/BX . Now introduce the following dimensionless variables,
.
(N—l) _ ’Z_P‘-[{“( \,1‘?!'{ {1('\\ b (n-1y
= (-
- 20,,9 h.*\} (F.20)
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Using equations F.1l6a, F.17, F.18a, and F. 20, the following partial

differential expression for the particular solution can be obtained.

]
T (W §
> (@ - " AU T
a) _ﬁf_ + P Q(v\\ﬁn_ = 'K(ﬂ{é Wl Q,
o o ’
| n=®
‘ N ’
with, %P (m X) =
o 3 M=0

Equation F. 21 is in the identical form of the energy equation for

(F.21)

combustion in a laminar boundary layer with a constant wall tempera-

ture; this equation was discussed in Section V B and the solution is

carried out in Appendix B-4. The solution is as follows,

® Y
T, 0y = Fl - X2, ()

where,

(F.22)
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The N'th approximation to the dimensionless temperature in a laminar
boundary layer with exothermic chemical reaction and with an
arbitrary surface distribution of temperature may now be written as
follows (cf. equations F.17, F.19, and F.22}):

(-0

@N(v\,q = Fly) ~X W %P Y + Z Axx";‘x(,\\ (F.24)
=0

The various terms in the above expression are defined in equations
F.19, F.20, and F.22. The N'th approximation to the specie concen-
trations can be obtained by substituting equations F.13 and F. 24 into

equations F'. 4e and F. 4f.
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APPENDIX G

CHEMICAL REACTION IN THE HYPERSONIC BOUNbARY
LAYER WITH Pr = Sc =1

By virtue of the similarity solutions for the specie concentration
relations, the analysis of the text can readily be extended to the
technically important problem of dissociation and recombination in the
hypersonic boundary layer*. In order to employ the similé.rity
solutions, however, the analysis must be restricted to the special case
where Pr = Sc = 1. Needless to say, this assumption v;rill lead to
results which are not quantitatively reliable; the qualitative results, how-
ever, should be acceptable.

The governing relations in the Howarth (x, yj plane for low
speed boundary layer flow with a one-step unopposed chemical reaction

are presented in equation 57 of the text. In order to modify these

*  In almost all practical cases, a body moving at hypersonic speeds
will have a detached shock wave due to the bluntness of the nose
or of the leading edge; nose bluntness is almost a certainty: as a
result of the melting of a sharp nose if not by logical design.
Because of the extreme temperature rise through the shock wave,
the flow field behind the shock will initially be in an almost com-
pletely dissociated state. This is indeed a fortunate occurrence
for the endothermic dissociation reaction markedly reduces the
thermal energy of the flow field about the body and thus greatly
reduces the heat flux to the body. The flow of heat to the
relatively cool body, however, results in lower temperatures in
the boundary layer and at these lower temperatures the reverse
or exothermic recombination reaction can dominate the desirable
endothermic dissociation reaction. Thus the "problem of
dissociation in the hypersonic boundary layer", often referred
to in the literature, is in reality a problem of recombination
and of dissociation.
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relations for application to the problem of present interest, chemical
reaction in the hypersonic boundary layer, two changes must be made:
(1) the viscous dissipation term, neglected in the low speed case, must
be added to the right hand side of the energy balance relation, equation
57c and (2) the reaction term, equation 57f, must be generalized for

application to an opposed reaction.

(54)

By virtue of the conventional boundary layer assumptions ,

the viscous dissipation function, given in equation 14, can be approxi-

mated as follows in the physical (xo, yo) plane:

, o,
@'\Y\o‘%\ :I\b_L;Q—) (G' 1)

°

Using equations 50 and 55, the equivalent expression in the Howarth

{x, v) plane is as follows:

z 2
- _ / e ’b
() = (= _i\
by \?11 kb% (G- 2)
The viscous dissipation term which is to be added to the right hand side
of the low speed form of the energy balance relation, equation 57c, is

obtained upon comparing the last expression of page 35 with equation

57c¢ and using equations G. 2 and 35; thus

¢ toa == 2

c?g;- \bux c? b'g

The energy balance relation appropriate for high speed flow with
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chemical reaction is obtained from equations 34, 57c¢, and G. 3.

7

wi g :%’;%‘ w25+ Ty (G-
- The left hand side of the preceding equation relates to the convection
of heat; the terms on the right hand side of the equation relate to the
conduction of heat, the conversion of kinetic energy to heat by
viscous dissipation, and the heat release due to chemical reaction
respectively.

The symbol AH is defined in equation 33. The reaction term
given in equation 57f for an unopposed reaction of the form of equation

25 can be readily generalized to an opposed reaction as follows (cf.

reference 39):

m*—\ "\* m*
wog =3 ) T
¥ ‘ (G.
TT &, exe(-£/aT)
A

The subscript e refers to the equilibrium value under the local
conditions of temperature and pressure.

Using equations 34, G.4, and G.5, the low speed relations of
equation 57¢ can be modified to the following form appropriate for

high speed flow systems:
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m

The symbol € denotes the weight fraction of inert gas in the flow
system; at very high Mach numbers € will be very close to zero

since the major constituents of air will be dissociating and recom-

bining.

The following notation is now introduced.

(G.

II refer to the conditions just behind the shock and on the surface of

the body respectively.

The subscripts I and



T = ufu,

Vo= afug
:__(Tn-Tj

T T\t

Using the above notation, the relations of equation G. 6 can be

expressed as follows:
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(G.7)
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Now introduce the assumption Pr = Sc and subtract equation G. 8d

from equation G. 8c; thus

> X
Uy -6) +V5 (g -6 = ;——23('5 -6
ot (G. 9)
-GS i #e
Define:
a) F(xg)z(%‘c’\:{}‘cw KJ&
%I‘Gh; l\ - C ( —KL“\
(G. 10}
Ce O
b) d. = ¢
L= C\ (K kg\
and then divide equation G. 9 through by {\ - (—:: (K;,:"K;,‘\-X ; then,
using the above definitions,
a) +V——:—‘—3LF/~ __bv) FE P
oy TP u- o \dy )
(G.11)
K. = K. (K. =K.\ — = (F — .4
b) L (K": Ko) < (Fo—a) j+F?
By virtue of the similarity for Pr = Sc, equation G. 6d can be replaced

by the simpler relations of equation G.11.
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Equation G. 1lla can be solved in a manner analogous with that

(79)

used by Buseman in solving for the temperature profile in a com-
pressible boundary layer., Assume that F(x, y) is dependent only
upon U ; thus F&(X,tz\ =F (U). Equation G.1la can then be written as

follows:

20 2T el AT LAY -
WO T s B 45 = RO -

If the Prandtl number is set equal to unity, the left hand side of the
preceding relation reduces to zero by virtue of the momentum
relation, equation G. 8b; then since (%%\* 0 . it follows that,

A F. = o
AT

and thus,

FAD) = 2T +aT +b (G.12)

Since F&(U‘) has the same boundary conditions as U - (equal to unity
just behind the shock wave and equal to zero along the surface of the

body),

thus,

F;.(U) :U[\-T(i—rnl (G. 13)
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Note that equation G. 13 reduces to the proper form for the low speed
case; when the viscous dissipation function is set equal to zero, o,
also is equal to zero and E(U) =U as was previously found in the
low speed case treated in the text; cf. equation 72.

Using eéuations G.8c, G.11, and G. 12, the specie weight
. fractions cé,n now be expressed in terms of the dimensionless tempera-

ture and the dimensionless streamwise velocity.

a) K;. :K‘;'ﬂ + F(U\[V\L:—K;E —’%"[F(U\"}} |
w¥ PREE \
b) Kp =1-€- z Ké (G. 14)
'
o
c) F(o) = 0L =% (-7)

The relations which remain to be solved, equations G, 8a, b, c,
can most conveniently be considered in the Blasius (v\ , X) plane used
in the analysis of the text. These relations can be expressed as
follows in the V\ » X plane; cf. the Blasius transformafion of Section

IIH.

) £+ W =0

(G. 15)
2
Ly ¥, _ ey O £
&) Tﬂ% +’C(“\S?{' - 2“('\\5% +C4°'[_1H

+4%CC, &, (WX
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Negligible error will be made if the conditions just behind the shock
are satisfied at W =& . The solution to equation G. 15a is then the
classic Blasius solution which has been previously discussed (cf.
‘Part V) and which is tabulated in Table I. Equation G. 15b will be
solved in fhe same iterative manner as utilized heretofore. Define the

following dimensionless quantities:

N B \ -\ 2 {'(,a 2 o o {u() (A
a) Qi = L€ {ag = *ﬁz‘cg_{‘%]
— (N
AR (G. 16)
b) T =GN

Then the N'th approximation to the dimensionless temperature in the

hypersonic boundary layer with chemical reaction is given by,

S > Y — . ) -
— 2 =T EWQ Wy
M oM
(G.17)
) l Yy | T o0
With, % ('\1‘\ -
o y v =0

The above equation is equivalent in form to the corresponding energy
equation for the low speed flow case, cf. Part V. The solution to

this equation, which is carried out in Appendix B-4, is as follows:
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.
O - -
a) 2 (a0 = ) —XWZ
where,
b) I = 5 W

(-1 (G.18)

Ne . L6
S S R T T

(N-)) b (R
d) P " (e = So QAN

(-9 n-0 -
e) Z'_“(““\ = K?‘(V\) R (a9 — R Km%\l

As in the text, the basis for the iteration will be the dimensionless
temperature profile in the absence of chemical reaction, denoted by
3&” ('h*\ . The governing relation for this quantity, expressed in

N X coordinates, is given by equation G. 15a with th.e reaction term,
the last term, set equal to zero. The resulting partial differential
equation can be solved by the technique of separating variables in
much the same manner as was employed in Appendix F. However,

the solution may be carried out in a much simpler manner in the %,y
plane. Thus, setting the reaction term in equation G. 8c equal to zero,
the following governing relation for the dimensionless temperature in

the absence of chemical reaction is obtained.
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A
)] © 2 (o) 2
a) T2 4V 3§_ T ¢\ %\
with, (G.19)
! 3 T =\
1}
b) 30 =
o yU =0
. (79) () o :
Now, following Busemann , assume Ib = /5' {(0) ; equation G. 19a

then reduces to the following expression.
g3 v - L dy” _ ‘_(L\IH Lo
oK ‘aa a b‘% AT - o b‘ﬁ' .._ - O'l

The left hand side is equal to zero by virtue of the momentum relation,

equation G. 8b; thus

O
d_'}T =G0
o, 4T
1%(0) = 2T T +aT +b | (G. 20)

Application of the boundary conditions of equation G. 19b to equation

G. 20 yields the following expression.
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Using the appropriate definitions from equation G.7 and noting that
A
U = ?f‘(r\\ , the dimensionless temperature in the absence of chemical

reaction can be expressed as follows:

The first approximation to the dimensionless temperaturé in a hyper-
sonic boundary layer with chemical reaction is obtained upon setting
N = 1 in equation G.18 and carrying out the indicated iﬁtegrations.
The corresponding integrand for the first integral is obtained from

equations G.7, G.16, and G. 21. | -

R
Q) = Q= (528 ~2y '\\\
w¥ U @, . (G. 22)
. &
TS -n) TT0)
e’“’{ ~2c, %\\ _

The equilibrium values of the specie weight fractions must be calculated
using the zeroth order temperature, equation G. 21, and the appropriate
value of the pressure.

Higher order solutions may be obtained by continuing the
iteration. The integrations will have to be performed numerically; the
use of a high speed computing machine would greatly facilitate the

numevrical calculations.



THE BLASIUS FUNCTION AND ITS FIRST THREE
DERIVATIVES*

(Flat Plate With No Blowing or Suction)
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TABLE I.

¥ Reference 70.

\’\ f £ £re fret
0.00000 0. 00000 0.00000 1.32823 0.00000
0.10000 0.00664 0.13282 1.32794 -0.00882
0.20000 0.02656 0. 26553 1.32588 -0.03522
0.30000 0.05974 0.39788 1.32032 -0.07887
0.40000 0.10611 0.52942 1.30956 -0.13896
0.50000 0.16557 0.65956 1.29203 -0.21393
0.60000 0.23795 0.78755 1.26636 -0.30133
0.70000 0.32298 0.91252 1.23146 - -0.39774
0.80000 0.42032 1.03352 1.18666 -0.49878
0.90000 0.52952 - 1,14952 1.13173 -0.59927
1. 00000 0.65003 1.25953 1. 06701 -0.69358
1.10000 0.78120 1.36262 0.99341 -0.77604
1.20000 0.92229 1.45797 0.91237 -0.84147
1.30000 1.07251 1.54491 0.82582 -0.88570
1.40000 1.23098 1.62302 0.73603 . =0.90604
1.50000 1.39681 1.69209 ‘0. 64544 -0.90156
1. 60000 1.56910 1.75216 0.55651 -0.87322
1.70000 1.74695 1.80352 0.47151 -0.82370
1. 80000 1,92953 1.84666 0.39235 ~-0.75705
1.90000 2.11603 1.88224 0.32051 -0.67820
2.00000 2.30575 1.91104 0. 25694 -0.59244
2.10000 2.49804 1.93391 0.20208 -0.50481
2.20000 2.69237 1.95174 0.15590 -0.41973
2.30000 2.88825 1.96537 0.11794 -0.34064
2.40000 3.08533 1.97558 0.08749 ~-0.26994
2.50000 3.28328 1.98308 0.06363 -0.20893
2.60000 3.48187 1.98849 0.04537 -0.15799
2.70000 3.68093 1.99231 0.03172 -0.11675
2.80000 3.88030 1.99496 0.02173 -0.08434
2.90000 4,07989 1.99675 0.01460 -0. 05957
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*0.00000

TABLE I. Continued
V\ f £ £rr o
3.00000 4,27963 1.99795 0.00961 -0.04114
3.10000 4, 47946 1.99873 0. 00621 -0.02780
3.20000 4,67936 1.99922 0.00393 -0.01837
3.30000 4.87930 1.99954 0.00244 -0.01188
3.40000 5.07927 1.99973 0.00148 -0.00752
'3.50000 5.27925 1.99984 0.00088 -0.00466
3.60000 5.47923 1.99991 0. 00052 -0.00283
3.70000 5.67923 1.99995 0.00030 -0.00168
3.80000 5.87922 1.99997 0.00017 -0.00098
3.90000 6.07922 1.99999 0.00009 -0.00056
4.00000 6.27922 1.99999 0. 00005 -0.00031
4.10000 6.47922 2.00000 0.00003 ~-0.00017
4. 20000 6.67922 2.00000 0. 00001 -0.00009
4,.30000 6.87922 2.00000 0.00001 -0.00005
4,40000 7.07922 2.00000 0.00000 -0.00002
4.50000 7.27922 2.00000 0.00000 -0.00001
4, 60000 7.47922 2.00000 0.00000 -0.00001
4.70000 7.67922 2.00000 0.00000 -0.00000
4.80000 7.87922 2.00000 0. 00000 -0.00000
4.90000 8.07922 2.00000 0.00000 -0.00000
5.00000 8.27922 2.00000 -0.00000
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FIGURE 10

VARIATION OF TEE INERT DILUENT WEIGHT FRACTION

WITH TEE O<YGEN INDEX

(C H_ Fuel Burning in Vitiated Air)
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EIGURE 15

VARTIATI N OF THE CEARACTERISTIC
STAY TIME WITE VELOCITY RATIO
(Shear-Flow Mixing Region)

1.25
Q.75
2
«
3
050 ! SECOND ORDER REACTION
& E = 50 Kcal/g-mole
T = 300°K
Tg= 1150°K
b
;;f}garbitrary
025 Pr=Sc=!
0
0 0.25 0.50 075 100

VELOCITY RATIO A = “LAug



-229-

28
FIGURE 16
VARIATION OF THE CHARACTERISTIC STAY
54 TIME WITH EQUIVALENCE RATIO
(Diffusion Filnme, Second-Order
Reacticn)
2-0 \ \
1.6 \
* - /
P
= \
o] g ]
08
- _|.__J/ \
1) i/ —
T A/ =1
= §4—
0
0 04 08 (.2 1.6 20 24

EQUIVALENCE RATIO (¢)



-230-

FULLY DEVELOPED
FLAME FRONT T=T;s

T
Y, o Z
REGION OF INITIAL 7~
COLD Z 7
COMBUSTIBLE CHEMICAL REACTION ‘.
MIXTURE ®
————
Ur 7PIrTI
)
10 & © “PLATE AT CONSTANT %o
e X ——= TEMPERATURE Ty

(TI < TII< Tf )
a. TYPICAL ISOTHER'® FIELD

NOTE: VERTICAL SCALES ARE
GREATLY ENLARGED

4

Yo

e

1.0 TyTI Tﬁ/Ti TVT}
b. TYPICAL TEMPERATURE PROFILES

FIGURE 17

COMBUSTION IN THE LAMINAR BOUNDARY LAYER



-231-

0.6

05

03

0.2

o

FIGURE 18

PHE DIMENSIONLESS FUNCTION #'{Pr)

FOR A LAMINAR BOUNDARY LAYER

04

06

08 1.0 1.2 1.4



-232-

N
(&)

1.00

0.50

BLASIUS SECOND DERIVATIVE AND ITS APPROXIMATION
o O ‘

N ~

(&)] (6]

'l

a=1.322

f"(?’)

FIGURE 19

dOMPARISON OF THE BLASIUS

SECOND DERIVATIVE WITH THE

APPROXIMATION USED IN

SECTION V-D

0.50

1.50

200



-233-

40
FIGURE 20

COMPARISON OF EXACT AND

APPROXIMATE INTEGRANDS
35 FOR THE REACTION INTEGRAL

(First-order Reaction

in a Lamlnar Boundary

Layer)
30
= APPROXIMATE
- INTEGRAND:;
o I5(7m)
9 (EQUATION 190) EXACT
25 INTEGRAND;

= Efr = 25 L)
T < T'?.TT o4 | // EQUATION 189 )
20
= /
) /
o
(o]
3
|00 0.5 , - 1.0 5

. I
n =3 VX




-234-

48 \
a4 AN
' \ FIGURE 21 1
THE DIMENSIONLESS PARAMETER ,J, ‘
40 N \\’
> \\\\ \\
\ \ E = 80Kcal/g-mole
N \ \ A
. \\ NO\\\\
mlg‘ \ \ \
> 60
c:1_24 \\ \\ \\ \\
\ \|50 \
e \\ \\\'
\% !\
\\
8 ——
4800 900 1000 00 1200 (300 1400 1500

Ty (°K)



0.42
—]
034 // T
/ 400°K / //
0.30 ]
L d I -
| e T
— .
o
© 600°K /
0.22 / d .
0.18 . /
I/ FIGURE 22
/ THE DIMENSIOILESS PARSHETER
0.14 V4
0.10
800 900 1000 1100 1200 1300 1400 1500
Ty (°K)
YIGURE

~23

‘:-—

TEE DDFHFTONLESS PARANETER €
o



-236-

0.90

0.88 -~

0.86 /

0.84
/

0.82
H(g) /

0.80 ’/

0.78 //7

0.76 //

FIGURE 23
074 THE DIMENSIONLESS FUNCTION H(/Jl)
' (FIRST-ORDER REACTION IN A
LAMINAR BOUNDARY LAYER)
0.72
0.70
15 20 25 30 E 35 40 45

Bi= o1y



-237-

0.066 I
i
0.062 /\ }
\ \. FIGURE 24

\‘ T=E DIMENSIONLESS FUNCTION L. (4G)

0.058 (FIRST-CROER REACTION IN A = ©
LAMINAR BOUNDARY LAYER)
0.054 \
L(8) \
0.050 |
0.046 N\
0.042
0.038
0.034 \\
0030 &
15 20 25 30 35 40 45



26

24

22

20

-238-

N

Vi

T
B
I
d3——
—
S

N

o

FIGURE 25

PARAMETRIC PLOT OF VARIABLES RELATED
TO TEE CHARACTERISTIC STAY TIME
(FIRST-ORDER REACTION IN A LAMINAR
BOUNDARY LAYER)

20

25

30 35 40 45 50
’ B' - E/ﬁTn



(1t - €)t" (in milliseconds)

-239-

18 :
{
\ FIGURE 26
\ \ CEARACTERISTIC STA TIME
16 1 VikSUS FLATE TEMPERATURE
! (W IRST-0RDER REACTION IN
\ A LAMINAR BOUNTARY LAYER)
14 \
12
10
\ /TI = 300°K
= 400°K
8 pd = 500%
P
6 / l |
AZOMETHANE DECOMPOSITION
T = 1650°K
4 b =10"sec™
= Kcal
E =50 /g-mole
2 \ S
.I \M

0
950 1000 1050 1100 50 1200 1250 1300
T (°K)



20

R(n)
x10™"

0.8

0.6

04

0.2

-240-

AZOMETHANE DECOMPOSITION /
T¢ = 1650°K P
b = 10"sec” ;
E = 50Kc°%;-mole /
T, = 300°K /
Tg = 1200°K
/
FIGURE 27
| THE DIMENSIONLESS FUNCTION Riz)
/ (FIRST-ORDER REACTION IN A
LAMIN,R BOUNL.RY LAYER)
{
_i
|
0 04 08 1.2 .6 2.0 24 28



32
FIGURE 28
TEMPERATURE PROFILES DURIHG
o8 THE EARLY STAGES OF A
FIR3T-ORCER FLACTION 1IN
LAMINAR BOUNDARY LAYER
24
2.0
1.6
AZOMETHANE DECOMPOSITION
Tf = 1650°K
| b = 10"sec™
' E = 50Kcal/g-mole
Tr= 300°K
Tg= 1200°K
1.8 /\ [
v =O-25‘/ !
n o= ]'OO/
0.4 \~
1.0 1.8 26 34 42

50



3.2

2.8

2.4

20

..2.42-

OF A FIRST-ORDER ., ma vLull

IN A LAMINAR BOUDSART I..¥ER

FIGURE 29
CONCENTRATION PRCFILES DURING THE EARLY STAGES

AZOMETHANE DECOMPOSITION

T = 1650°K

b =10"%ec™

E = 50Kcal/g-mole
T = 300°K

T = 1200°K

€ =0

kW (n n)

1.6 L
I.Z \
- 08
we150 7\ <150
w =1.00; ~n=).00
22025 2025
04 o N
FUEL SPECIE propucT speciE
o L |
0 0.2 0.4 06 0.8 10



-243-

1.3
1.2
o /
" /
*:_9' v
*} /
- \
1.0
FIGURE 30
YARIAI‘IQN OF TEE CLARACTERISTIC STAY TIME
0.9 WITH TEFE EQUIVALENCE RATIO
(Laminar Boundary Layer, Second-Order
Reaction)
(No Oxygen or Fuel at the Wall)
o8
.25 0.50 0.75 .00 1.25 1.50 175 200

EQUIVALENCE RATIO ¢



- 2hly -
FIGURE 31

VARIATION OF THE CIARACTERISTIC STAY TIME WITH EQUIVALENCE RATIO
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