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ABSTRACT

If protons and neutrons are Dirac particles, as one
usually assumes, the corresponding antiparticles should ex-
ist, but these have never been observed. The coupling of
nucleons with the meson field offers processes by which
these particles could be created in energetic collisions be-
tween nucleons and mesons or other nucleons. In this thesis
the pseudoscalar meson theory is used to calculate cross-sec-
tions for the production of antiprotons in such collision
processes. These are applied to estimate the numbers of
antiprotons to be expected from the interaction of cosmic-
ray particles with the nucleons of the atmosphere. It is
found that meson production is about 60 times more frequent
than antinucleon production for the complete primary cosmic-
ray spectrum, but that antinucleon production is of compar-
able probability with meson production for energies greater
than about lO11 e.Vv. Cross-sections are also calculated for
the annihilation of antiprotons in collisions with protons

and neutrons, with emission of mesons.
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INTRODUCT ION

The theory of the electron proposed by Dirac in 19238 was
remarkably successful in explaining the properties of that
particle as known at the timet. For instance, it yielded the
Sommerfeld expression for the fine-structure of the spectral
lines of hydrogen. In addition, the fact that there was a
spin angular momentum of %ﬁ associated with the electron came
automatically from the theory. However, there was an import-
ant difficulty with the theory, namely that it offered the ex
istence of states of negative energy for the electron. By in-
teraction with the radiation field, transitions from states of
positive to states of negative energy were possible, so that
it appeared that the electron could lcse an infinite amount of
energy, gradually coasting down through states of more and
more negative energy. It was not possible to disregard these
states, for their presence was necessary in order that the set
of solutions of the Dirac equation be "complete" in the mathe-
matical sense. I.e., the expansion of an arbitrary wave-func-
tion in terms of the eigensolutions of the Dirac equation
would in general have to include some of those associated with
states of negative energy.

This difficulty of negative-energy states was circumvent-
ed by the assumption that in a vacuum all the states of nega-
tive energy are filled with electronsz. Then transitions to
them are forbidden by the Pauli exclusion principle, which

makes it impossible for two particles (fermions) to occupy the



same state. But now it appeared that if sufficient energy
were supplied -- namely, more than 2m02, where m is the mass
of the electron -- an electron in such a state of negative
energy could be raised tc a state of positive energy. The re-
sultant hole in the "sea" of negative-energy electrons would
behave like a particle of electronic mass but of opposite
charge. At first, Dirac associated these positive particles
with protons, but later the discovery by Anderson and Nedder-
meyer of the positron provided a physical realization of these
hypothetical "anti-particles'". The processes by which these
are produced always involves the creation of a pair of parti-
cles, a positive and a‘negative electron, at the same time.
Many experiments, together with consideraticns of nuclear
and molecular structure, have demonstrated that the proton and
the neutron also have a spin angular momentum of sh and obey
Fermi statistics. The only theory known which provides such
properties for an elementary particle is the Dirac theory.
Protons and neutrons, or "nucleons", as they are generically
called, have about them the short-range nuclear force field,
in addition to the electromagnetic fielda of the proton. To
explain this, one assumes coupling of the nucleons with the
field of mesons, so that nucleons can act as sources or sinks
of mesons as well as of photons. These theories of the nuc-
leon have as yet given only qualitative agreement with experi-
ment. The lack of exact quantitative zgreement may be due to
the inadequacy of the methods of calculation. For instance,

all meson theories predict that the nuclecns will have an addi-



tional magnetic moment due to their interaction with the meson
field (emission and absorption of virtual charged mesons), but
none of the theories has thus far yielded the experimental

values of the anomalous moments of the proton and the neutron.

A major difficulty with the interpretation of the proton
as a Dirac particle is that the corresponding anti-particle,
or "antiproton", should exist. This antiproton would have the
same mass as the proton, but a negative charge and a magnetic
moment of equal magnitude but of opposite sign. Such a par-
ticle has never been observed. It is the purpose of this the-
sis to investigate some of the properties predicted by current
theory for the antiproton, to determine whether the fact that
it has not been observed can be explained in this way.

The production of antiprotons through the electromagnetic
interaction of protons is possible by the same type of proces-
ses whereby electron-positron pairs are made, provided suffi-
cient energy is available. Since cross-sections for such re-
actions are proportional to the square of the Compton wave-
length of the particle produced, it is seen that those for mak-
ing proton-antiproton pairs would be smaller by a factor of
(1/1836)8 = & x 10~7 than the cross-sections for producing
positron-electron pairs at corresponding energies. Thus the
probability of such reactions would be unobservably small.

It is also through the coupling of nucleons with the meson
field that we can expect reactions to occur in which nucleon
pairs are produced. The coupling constant gg/ﬁc which defines

the strength of the interaction is on the order of unity, as



compared with the electromagnetic coupling constanteﬁﬁm:= 1/18%
Since the coupling constant occurs to the third or fourth power
in the cross-sections (computed in lowest order) for the vari-
ous production processes, this difference in the sizes of the
Acoupling constants may offset the above noted factor of & x 10" 7,

This theory requires that both the proton and the neutron
be Dirac particles, so that there are two "seas!", one of nega-
tive-energy protons, the other of negative-energy neutrons; and
there are both antiprotons and antineutrons, each represented
by "holes" in the respective seas. A neutron in a negative-
energy state could give up a negative meson to become a proton
which fills the hole which represents an antiproton. This cor-
responds to the virtual emission of negative mesons by antipro-
tons: P7=»[T~ + N¥, where N* represents an antineutron. In
this work we shall be primarily concerned with the antiproton,
since the antineutron would be much more difficult to observe.

Nearly 211l of the calculations made by meson theory of
processes in which nucleons occur in intermediate states, such
as meson production (cf. Section VII below), assume the Dirac
theory and hence the possible existence of the antiproton.
For instance, the observed decay of the neutral meson into two
gamma rays is usually explained by saying that the neutral me-
son turns into & virtual proton-antiproton peair, which annihi-
late by their coupling with the electromagnetic field into two
photons.

The antiproton was considered in certain attempts to ex-

plain the origin of cosmic radiation, such as that of O. Kleins,
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who assumed the existence of whole galéxies of "reversed mat-
ter". In these, nuclei were composed of antiprotons and anti-
neutrons, and surrouncded by positrons to form atoms. If such
a galaxy of reversed matter were to drift through one composed
of ordinary matter, the nuclei would annihilate into energetic
mesons or gamma-rays, and the mesons would ultimately decay in-
to electrons and neutrinos. These electrons were supposed to
constitute the cosmic radiation. Since it is now reasonably
certain that the primary radiation consists of protons and
heavier nuclei, and that the content of electrons and gamma-
rays is negligible, such theories as that of Klein are no long-
er considered.

On the other hand, N. Arley4 assumed the primary radiation
striking the atmosphere to consist of nearly equal numbers of
protons and antiprotons. The antiprotons were to annihilate
with protons of the air nuclei to form energetic gamma-rays,
which in turn initiate the cascade showers observed as a part
of the soft component of cosmic rays. In order to fit observa-
tions of the soft component, annihilation cross-sections on the
order of 107%° cm8 were needed. This could not be obtained
from the Dirac theory, which yields values of less than 10‘53cm8.
At present, showers are believed to be initiated by the gamnma-
rays produced in the decay of the neutral mesons, which are
formed in the high-energy collisions between the primary parti-
cles and the air nuclei.

One process by which antiprotons might be produced in the

atmosphere is the collision of an energetic pimeson with a nu-
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cleon; e.g., F1¥4+ N—=P~ + 3P, or M7+ P—>P" + P 4+ N. The
first attempt to estimate the cross-section for such a reaction
was made by McConnell®. He used the Weizs#cker-Williams method
(cf. Section VI below) in the following way. First he calcu-
lated, using the Heitler theory of radiation damping, the cross-
section for the reaction MY+ M™—=P~ + P. Then in the colli-
sion of an energetic meson with a nucleon, he transformed to
a Lorentz system in which the meson was at rest, with the nu-
cleon moving at high velocity. The field of the nucleon was
represented by mesons, which reacted with the resting meson to
make a nucleon-antinucleon pair according to the above process.
Now, at the time, it was thought necessary to use the theory
of radiation damping in order to aveid certain divergences and
other anomalies in the meson theory, but since then it has been
shown that this method is unnecessary and even gives unreason-
able results in certain cases®. Besides that, the method is
so difficult to apply that results can be obtzined only in the
limits of very low or very high energies. Hence we have calcu-
lated the cross-section for a typical meson-nucleon process us-
ing the Feynman methods of perturbation theory (c¢f. Section IV).
It is assumed that, despite the difficulties of the meson the-
ory, this will give a rough description of the behavior of the
cross-section at different energies, as well as an order-of-
magnitude estimate of its size.

Antiprotons could also be produced in the upper atmosphere
in the collisions of energetic primary cosmic-ray particles

with nucleons of the air. We have attempted to estimate the
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probability of such processes by using the Weizs#cker-Williams
method (Section VI). For collisions at extremely high energies,
greater than about 1012 €.V., i1t is known from studies using
photographic emulsions that large-scale disruptions of the nu-
cleus occur, with several mesons and nucleons thrown off. For
such occuﬁbnces, it is best to use a statistical method such

as that of Fermi’ to estimate the comparative numbers of mesons
and antinucleons formed.

Once antiprotons are formed, what becomes of them? Clear-
ly annihilation into two gamma-rays by collisions with a pro-
ton would be an improbable event, for the same reasons as those
noted above for the unlikelihood of production through the e-
lectromagnetic coupling. On the other hand, annihilation with
either a proton or a neutron to produce mesons could occur.

The probabilities of such events are calculated in Section III

below.¥*

* The annihilation of antiprotons and protons to produce
mesons was first considered by licConnell®, using the theory
of radiation damping. Because of the unreliability of this
method, the cross-sections have been recalculated using or-
dinary perturbation theory. Independent work by Ashkin,
Averbach, and Marshak has already been published8. They give
details concerning the distinctive appearance of annihilation
events in photographic emulsions.
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I. KINEMATICS OF THREE-PARTICLE PROCESSES.

For later reference we wish to develop notations and for-
mulas for the kinematical relations involved in processes in
which three particles are produced. The treatment will be rela-
tivistic except where otherwise noted, so that the term "energy
of a particle" always refers to the total energy, including
rest mass, and not to the kinetic energy alone. Masses and mo-
menta are measured in energy units, being multiplied by c® and
¢ respectively, where c¢ is the velocity of light.

In the center-of-mass (c.m.) system, the energies of the
three particles produced are Eq, Eg, and Ez respectively, and
the ordinary momentum vectors are Py, Dg, and D3+ These are
combined in the four-vectors By, D5, and Bz, so that
(1.01) 81 = (Eq, Pp), ete.

Then if T is the total energy available in the c.m. system,
and if P denotes the four-vector (T,0), we have
{1+08) B = 51 + ﬁg * 55
by the usual conservation laws of energy and momentum.
We introduce the scalar product of two four-vectors as

follows:

(1-05) f)l- f)g = ElEB - .;bl. 1_32 = E1E2 - plp2 Cos 9

where py, pg are the magnitudes of Py, Dy, and € is the angle
between these three-vectors. Then if my, My, m5 are the masses

of these three particles,

(1.04) Br- By = B = m? = B° - p)®, ete.



Thus we can use (1.02) to obtain

A L3 A

A 7 2
(1.05) pgf = mgw = (P - Pl = p2>8 -

A« ~ 5 A A A A - A
P2 4 plg + ﬁga - 8P -py - 3P -py dﬁl‘ py =

% 4 mlg + m82 - 8TE] - oTE5 + B(ElEg - plpgcos;e)
or
(1.08) plpgcose = 5(T% 4 m12 s mgz - m52)
- TEy - TEg + EqEp = 3F° - TE; + EqE,
where

3 2

£1.0%7) Fe TB + mlg + m32 - m58 - BTEl = 0GR 4 mo” - mg.

Thus for a given total energy T, and a fixed momentum 51
for particle 1, the end of the momentum vector Pg lies on a
surface of revolution a2bout Dy given by (1.08). ‘e shall need
the extreme values of Eg, pg, which occur for € = O and @ =T .
Let
(1.08) E, = E;', pg=pg' for 6 =0
(1.09) Eg = Eg", pg = py" for O=m.
From (1.08) we see that these are the roots of the equation
(1.10)  p1® po® = ;3? (E52 - myB) = [#F% - (T - E)ER]°
or

2

5 4 z 3
(1.11) AG°E5® - 4F3(T - Eq)Ey + F- + 4m 5p1? = o

2
Then we must have
(1.12) E," #+ Ep' = FRG73(T - Ej)

L L
(1.15)  Eg" - Eg' = p16™2 [6® —(my + mz)3] % [6R -(ug - ug)3] 2

From these it can be shown that

- 1L 213
(1.14)  p" + pg' =(T -E1)6™2 [6% - (mg + mg)®)2 (6P - (mg-m)) ®



= L=

(1.15) py" - pg! = FOG~2p;

Now po" + pg' is the longest diameter of the bg—surface. As
the energy El increases, this diameter decreases, and it van-
ishes for the maximum value Eg. This occurs when
6% - (mg + m3)® = 0 so that
(1.18)  ES = [T8 + m® -(mg + my)8] /2T

. 1 1 2 * %5

When E = EY

1% :
2 pas 32
(1.17) Eol = Eott = _ 03 [ T -m® + (my + mg3)
3 3 Mz 3 2

In this case the ﬁg-surfaoe has shrunk to a point, and both 52
and pz are in the direction opposite to bl' The other extreme
is for Ey = mj, By = O, in which case symmetry shows the Dg-

surface to be a sphere, with

= DRRY - - S
(1.18) Eg = = f — (T - my)® + mg My
( 1) 2(T - my)

We now wish to derive an expression for the differential

volume of momentum space
4o = £FdR  pEJELN, p E, dE dxdu
4T s

where JJ2,is an element of solid angle in the space of Pj, and

(1.19)

X is & polar angle which, with [ , locates the position of the

vector pg. x = cos @ . Using (1.08),

a -dT(-?l) S
PTUNATE T T
2
so that
(1.20) dt = E1EgEz dEj dfYy dEp d«

In integrations, ®& runs from O to SR® , while Eg' < Eg < EB"'

The integration over Ej is carried out last. The factor

ElEgEg will always be cancelled out by other terms, and it is
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clear that any pair of particle momenta can be used in 4T .

We now calculate the total volume of momentum space avail-
able to the three particles produced in the reaction, in the
non-relativistic limit where
[i.21) gz - (ml + my + Mz)4< My OT My OT Mg
and none of the masses vanishes. In this case we can set
E1 = my, ete., in (1.17). The integration over « gives 2w ,
that over Ej gives Eg" - Eg', and that over fl, gives 4w , so
that, using (1.13),

(1.22) _fdt-;= n i, my
: L 1
[T L S
m

In 2ll these terms except the first bracket, we can assume

Eq = Ei = my, so that G = my + mz. In the first bracket, how-
ever, we put, by (1.07),
(1.23) @° -(m2 + m5)2 = 79 STE7 + mlg - (mg + m5)2 =

U(T - my + mg + m3) - 2T (E7 - my)

Non-relativistically, Ej - my = py9/2m; so that

e m 2
(1.24) 6% - (my + mg)? = 3U(my + my) - L= &= (8 - m?)

where p, is the maximum value attained by pj, approximately.

Thus (1.22) becomes

2 Y, Fe
(1.25) /c‘T _ lbr (m,m,) ,g j Fz. r——‘““%?_— PL ‘lP -
‘ o

&Wﬂl-¥w43)2

e

4“’3 (M|M1M3

{Al

3
(W\I-G-M,_-l— W\3)IL

We shall need also the volume of available momentum space
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in the case of four particles of equal mass M produced in a re-
action with total energy T in the c.m. system. To calculate
this we use a method due to Fermi”. Again let U = T - 4M be
the excess energy, i.e., the total kinetic energy of the final
particles. Then, non-relativistically,

(1.26) p1° + p° + ps® 4+ pg® = 2wV

(1.27) PL + D2 + D3 + pg = 0O

Introduce the new vectors {, T, s given Dby

(1.28) 51 =4+ T+38 DPy=q-T-8
p5=*.(i+-l:—§, ._1:34:—-61—5-’-5
Then

(1.29) ® + r° ¢ s° = WU

where qg = qx2 + qyg + ng)etc. It is seen that

(1.30) aSp; a®py a8 ps=05a57 a7 a% s
1 1 1

where J= —-11 -1 -1 = 4 is the Jacobian of the
1 -1 =1

transformation (1.28). Thus
4 F-43Pz331=s_ *d [g3ad3Fd’s
(151j<l ~j _szaﬁJsz

where the latter integral is the volume of the nine-dimension-

al sphere (1.29), the radius of which is R = \/%MU. Using the

well-known formula for the volume of an n-dimensional sphere,

"l -
F1.82) \{‘ = é% —?2733;5 R
2



..
the integrzl becomes

, .6 d 2 2
(1.33) fcl"l' = U Tes 7= 9

4

A (

Ua
T (iMmu)

u/ 4
. L By Uy |, 7,
a 105" MU
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II. APPLICATION OF THE FEYNMAN METHOD

In these calculations we shall use the methods of R.P.
Feynman9, and our notation will be the same, except where other-
wise noted. In particular we use his convention as to the Dirac
matrices 'y} , With the definitions
(2.01) ')/4 :ﬁ, '}/‘;Bux) e’L'C., 7/
We use the notation

- ~> — e A —_
(2.03) o pp =B = BLpa—TF) s p =(pasi)

Considering only the charged meson theory at present, we

Ba .

1

state the following prescription whereby the matrix element of
the collision operator H in momentum space is written down from
the Feynman disgram for the given process: For each virtual-
nucleon line there is a term (D - M)'l where ﬁ is the four-mo-
mentum of the nucleon. For each virtual-meson line we put

(ag - Pz)-l where § is the four-momentum of the meson and P
is the mass of the meson. At each intersection where a virtu-

al meson is emitted or absorbed, there is an interaction term

of the form

mﬁ jtc. ;l;(F\‘)O "l’(fz)

where g is the meson coupling constant, and ‘P{Fi) and 4Jlfp)
are four-component plane-wave Dirac wave-functions for the ini-

tial and final nucleons.®* O is an operator depending upon the

% The factor of J4qr occurs because we are using unration-
alized units.
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type of coupling. For scalar coupling it is 1, for pseudo-
scalar q/c , and for pseudovector ys'i/r_ -y (r,) . \P*(F) B
is the adjoint of \P(P). At an intersection involving & real
meson of energy E, the interaction term above is multiplied
by (BE)'%.

In determining the cross-section for the given process,
the matrix element thus written down will be multiplied by its
adjoint and summed over the various spin states of the initial
and final nucleons by the spur technique presented by Feynmang.
As is there pointed out, it is necessary to multiply by a fac-
tor ( ¢\k/‘)’*‘+ ) = M/E for each real nucleon involved,
in order correctly to adjust the normalization, where M is the
mass and E the energy of the nucleon.

The differential cross-section for a process resulting
from the collision of two particles of relative velocity v is

then

_ 2m 2
(2.03) de¢ = e |H_, Pe

where |H\§v is the absolute square of the matrix element of
H summed over the spins of the final particles and averaged
over the spins of the initial particles. Pr is the usual densi-
ty of final states in momentum space.

As an illustration of the above prescription, we shall
work out the cross-section for the annihilation of a proton
and an antiproton into two charged mesons. In the c.m. system
the proton is represented by the four-vector 61 = (E, P), while

the antiproton has (E, -P). The process, represented by the
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P(f,) P(p,)
(Fig. 2.1)

diagram in Fig. 2.1, consists of the proton emitting two mesons
3= (E, ¥) and §' = (E, -%) and going into the negative-energy
state ﬁz = (-E, D). The intermediate state is a neutron of
momentum

"N - =9 A n ~ A
(2.04) py= (0, p~-k) =p -qa=pg+q
Then the pertinent matrix element is

(2.08) H = ?L%ﬁf’ﬂrl)ol(gw—M)"'o,HF.).

The relative velocity of the initial nucleons is

(2.06) v = (2p/E)c
The density of final states is

4% k K E dJ1
(3:07  Pr = (RfFdT T 2 (2wke)

where T = 2E is the total energy, and dJf) = ein 8 4@ dg is
the element of solid-angle for the meson direction. We get an
additional factor of & from the average over the spins of the
initial nucleons, so that the differential cross-section is

n 2w [ E N 2 L E dJ)
(2.08) cld = —_E:(—{;) 4 Z“‘“ Z(ZHtC)S

where ZE indicates that |H|2 is summed over all possible
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initial and final states. 4/(pl) satisfies the Dirac equa-
tion
(2.09) Py Ylp ) = My (p)

In the case of pseudoscalar coupling, O = )g-, and we
can simplify H by writing
— ~ =i
(2.10) Ylpa)ye (Fum ) s v () =
— _ a —1
Vi) ye (Fut M)y wl(p ) B -M7) =

Plp) p=M ) ¥p ) §lpa ) (5, -5 —M)¥lp)_ $lplglp)
Pv —M™ ~l,3—1\1 — M (f—i.)“‘th’*

2 q'L"RchL Y, o~ \
E[(P“T—E)l‘*M'LJ \P(Pz)q ""(}) )

Taking the absolute square and sum@}ng,
Tl 7 4 (p )] = (2M) Sp(Frm)F (Frem )
(238 = M7 (2 (54) (- §) + 3 p 2 (Fp) 7] =
~ 2k (E*—p>cos™h) MW

This must be multiplied by -MZ/EB, as noted above, so that
T
(2rr31‘klcl)7~-21c (tl—Plcosx 9)
_ =\ 2 1 & )
Eq[(rwk) + M7

(2.13) S IHI* =

Hence the differential cross-section is
g" kP LET peos™b) 40

(2.14) d¢ = E— -
8pE>[(F-Kk) + M7]*%

in the c.m. system, with
(P - B)® 4 M° = E® + k® - 23pk cos B = 2E(E - p cos B )-/».2

It is of interest to derive our formula (2.05) from the
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perturbation theory of Feynman in this simple case. We note
that we desire the transition amplitude A(2,1) from an initial

plane-wave state

(2.15) -F(l) ::(27()-3/2 q/l’),)e—i?";l ?.‘—‘(E,: F:)

2
to a final plane-wave state

(3:16) g(2) = (20) "¢ () e P, = (-E)

where E,, E, are the energies and il, 52 the momenta of the

2
initial proton and antiproton respectively. This transition
amplitude is given by g

(2) 3- =
(2.17)A(2,l):~”5(1)6)< (M) BFL)d7xd" =

where

(2.18) 1" (2.1) -\-..”‘(ﬂ(z,q)v(q) K, (43)V3)K,,B.)drdT,

Here K+1 is the free-particle kernel for the initial proton,
given by
¢ -1 A A g
.19 = = - B+ X,,)d
(2.19) K, (2.1) [2..)“J(l" M) exp (=i feky)dp

A A
£

A -
where Xo1 = Xg = X3 = (tg - 1, ﬁg - xl) and d4p1 = dEldsil.

(We take B = ¢ = 1 in this discussion.) Similar expressions

hold for K

¢, and K . dT. = dt.d %x. Combining these expres—
+n + O 3 9 (9

(<]

sions and using
(200 f13) = [ K, (3B 1) &%

with a similar expression for g(4), we find

All.\) = i(ZW)-q f/ J"(q) \/(4{) (F.,—M)-'.
exr(~iﬁ~->?q3)\/(3)fl3) cJTs JTq JqF,,.

(&.81)
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Now at the space-time point 5, the potential acting is given

by charged-meson theory to be

A A
> _ 2w cq, X
Lo Vis) = 9y5- 0, T,, e 1

where 51 = (Q» 93), ag = (Qg, Gg) are the four-momenta of the
emitted mesons. O is the coupling operator used above, and

Tpy 1s an operator which changes a proton into a neutron.

Similarly,

> (1) l’,’\ s X
(do(yf}) q') = j 2 TNP e 11 *
Since T, T,e=1 we get

Alz,1) = i(zw)"’f” ¥, dry dry -

xpli pomfo 1307 5a] expli (31-Bope)- 4] -
2mq" — ~ -
\[—EQ—:?QQ:: \)/([:,_)O,_(Pu"M) O,‘l’(I’H).

T

H of (2.05) in this more gen-

(3.24)

The last set of terms is merely
eral reference system. Now integrating over the space parts
of §5 and §4, and then over the space part of ﬁN’
Al2,1) = il2n )m dpudtydty S(F~F-po )
(1Q,-E,-Eu )ty (@ -E+Eu)t; H
e

—

(2.35) 9 (ﬁ'.—FﬁfFu) e

¢ (2m)” ”J dEodt dts $(5,4+3.-F-F):
Oa_ -E, )JC-} I.(Q""F +Eu)f3
e H

Let El + E, = E; = initial energy, Q1 + Qg = Eg = final energy;

ﬁl + D2 T pr = initial momentum, Ty T qg = Py = final momentum.

H can be written ( |Ey| = \/P.,‘-}MI ) ,
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"
I

Ty 5 O,
(2.26) H = =& tlpe) O, (Pt T) A58
QuQ‘L PN - M

ergl $(ﬁl)oz(ENY4 —:)—;'TD.N%-M)O: ""(f'l)
Q, 8, (Ew —1EW1) (Ey +1EGI)

Now in integrating over Ey, we take ]EN| tc have an infini-

o
tesimal negative imaginary part, § .7 The integrand contains

the factor exp [-iEy(ts4 - t3)] . Thus for t3 < t, we can
complete the contour in the lower half of the Ey-plane and e-
valuate the integral by taking the residue at Ey = + ) py+ M3-i§
= |Ey| - 1§, while for tz > t, we must complete the contour in

the upper half of the plane and take the residue at EN =

- Byl + 19, (§=0). Thus we get for ts < %y, using the

Cauchy residue formula,

l . w2 By {tq—ts i —ilEgllty —t3)
L U5, g-#Belia=tsly o L, .
2t j‘ N 2

(2.27)

'znjl \F(’,l)oz(lgdﬁ—-ﬁ,-?\tM)O,‘P(Fn)
Ve.0, |Ewl

while for t. > t,
By (te—t3)
—zl—-;‘{JE,J e M[ 4+ -3 ,—-l -
(2.28)
2ng™ ¥ (p2 )0, (~1Elyy Py +M) 0, ¢(p)
Q‘QL "‘IEN,

+ilEgl (te—t3)
e .

N |

Combining, we ultimately obtain

na® | T % (6, —E, ~IEyl )t
A(Z.\) = —Zﬁ%; ZlEulfo d'l:qé-j: ‘fQHSe L TS Lt 3

(2.29)3"(0\'&“6"”{'3 [‘T" (r’“)Ol ('FN"H _Fﬂ.j}‘:rM ) O,y [r-)]
" T*“s o ( (O —Ea 1By )ty ee(Q,—E,~tE.,l)‘c3 .

ty [‘i'—(r:.) OL(“Eul'Yq _F”'? +M )0, ‘-H;n)]} S(F(..F‘.)’




- D] -

where the integrals over tS’ t4 are extended over the time of
observation of the system, O to T. Carrying out the integra-
tion on tf we get

Atz) = \2/%26 2 S (e i)

(Q,~E,~1Ey] )t
(B.UO)I dt, g et (Er-E)ty ew‘ £,~1Eu] .,.
((Q,— E, +1Ey1)

[§(p,)0, (\E,,lyq—‘:,, y+™MI0 d(p)] +

i (Q,—€,~1Eg))T (@ —E, +I1Ey))ty ([E-Ei )iy
€ —
l'(QI~EI —‘EN))

[ @(F;)DL(“lEulyq'—Fu‘?-+b4) Ol\ylf‘)]}

Now considering times T long compared to h over the various

energies involved, only the terms in exp i(Ef - Ei)t4 will
contribute to the integral over t,, the others averaging out

to zero. Thus we get
i(E{l’Ef )T

1 T Gy =% iz 'Ai)
(2.31 Atz = ﬁ: Ef - E; Pe ~F

)
g ¥ (p2) 0, (1Ewlyy — yopu+ ™M) O, v lp)
\Eul (@, = E, +1E41)

T ()0, [—1Eulyy — p-PutM) O, \Hjh)f’
—\Ey] (@, — E,—1Enl)

Note that the terms in the brace are just those one would ob-

-+

tain in writing down the matrix element for such a process us-
ing the methods of the Dirac hole theory. They can be recan-
bined to give

ei(Ef—Ei)T =1

(2'52) A(27 l) = Ef — Ei H S(ﬁf = -fjl)

The § -function merely expresses conservation of momentum in
the process, while the exponential term gives conservation of

energy for long times of observation T. This expression (32)



is then handled in the usual way to obtain the cross-section

formula (3.03), with H given by (2.05), replacing E by'ﬂqug.
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III. ANNIHILATION OF ANTIPROTONS.

(a) Annihilation into Charged Mesons.
As shown in the previous section, the differential cross-
section for the process
(5.01)  P(P) + P~ (-B)—= M"(@) +» [17(-)
with the pseudoscalar coupling is, by (3.14),

quqq (E? — P cos *0) simb dE
8PEz(E +7——2F7c059)2

(3.02) de =

To get the total cross-section, we integrate over the angle e ,

so that

4 3 i 2 z
m9 9 E4q Mt (pt+q)
(3.05) 6’ - [ — | -+ >3 Ioj 2 1 . T qu 1.7,]

~ mwg’ - E E+p M
= __8_%_5%[ I + F IOj E_p + O(ﬁq)]

Let E be the energy and momentum of the incident

o’ Po
antiproton in the system in which the proton is initially at

rest (laboratory system). Then

(3.04)  E2 = hu(E, + W), pf = du(E, - m), -2 B= Zo b Po

...p M

These give

(3.05) & =—Z—(,€%)1 —?—; [\ —M-#—ﬁ(;m)}[- +L log E;‘ro +o(ﬁ—:)

as the total cross~section for annihilation in the laboratory

system. Non-relativistically this is

(3.08) s :_7;— 1rr;z — [:,,——If‘: + o(ﬁl!:,)]

where r, = g2/M = 2.1 x 10-14(g2/fic) cm., and v is the relative



e

velocity of proton and antiproton. For very high energies,

(3.07) & _4,': pe B ( 2E,

—

The scalar theory gives, with O = 1,

(5.08) g = 5"qdﬂ.[ 7"(E"‘—f’zos‘9)+M‘F(P—4?cos 9)}
8pE? (B5+q%~2pqees 0)°

which becomes, upon integration,
l.’
¢ = oF=t [ —1
(3.09) 2 2 2 1\
AM 4 2E —p lo Ml+(l,+ﬂL~ 4™ *r) -
ZPCl J M‘Hfﬂ,)‘ /‘44'4”111
This reduces to (3.08) and (3.07) in the limits of low and high

energies, respectively, so that we need not consider the scalar
case further.

Another interesting case is that of pseudoscalar mesons
with gradient coupling. Here we have O = 7?‘1/ , 80 that H be-

comes

ZHQL — ~ - ~
Fe Er’" ‘-\’(f;)'ys ?,_IFN—M) Ys'1| ‘-}/(r,) sz

(3.10)

’ \«"(Pz) 7,( ~ M)“[ ‘H)’l) 2n ‘Hf’z )[Fn M)‘I’ )
2_3_ 12 ') ———3—-

=r e Ep” P =M™
since
(3.11) 4 $lpy) = (B - By) ¥ (py) = -(By - W) ¥ (p7)
(3.13) ¥ (pg)dg = Y (p3) (By = Bo) = ¥ (pg) (By - M).

We can write (3.10) as

(3.13) H = "‘i“ Y Fz)[ZM“L('—ﬁT_iQ“)? J“P(}”')

Squaring and averaging by the usual spur technique give



= T“) 15"“9d9 2 2 2 1.9) M’L ”~+
(5.14) d6 = - (E* —pTcos™®) +2M
4E> i p 1
ZMmrq 3 4M“f‘“‘
E1+11——Zr«:l cos P (El+‘1"'—-2f¢i cosb)*

If we integrate this expression over B and neglect terms of

order PB/ME, we find at low energies

q 2
(3.15) & e ST _PT &
e
At very high energies, on the other hand, we get
“
(5.16) 4 = T(’j MEo
Cpt

Thus the cross-section for snnihilation increases with the en-
ergy EO of the incident antiproton. It was this anomely which
led McConnell5 to apply the Heitler theory of radiation damping
to this calculation. But as we have seen, the pseudoscalar di-
rect coupling yields the expression (3.07), which drops off at
high energies in a reasonable manner. When McConnell wrote his
pepers, the pseudoscalar direct coupling was in disrepute be-
cause of a misconception as to the nature of the nuclear poten-

tial it yields. This difficulty has since then been cleared up.

(b) Annihilation into Neutral Mesons.

In the following work, wherever the effects of neutral me-
sons are included, we use the form of meson theory which assumes
coupling through the isotopic-spin operator T, » so that there
is a difference in sign depending upon whether the neutral meson

is emitted by a proton or by & neutron. For a virtual neutral
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meson, the sign of the term is positive when emission amd ab-
sorption are by the same type of nucleon, and it is negative
when the meson is emitted by one type and absorbed by the other
type of nucleon. The coupling constant will be g, For the
symmetric theory of Kemmer, take g, = g/ /2.

We shall now study the following process:
(3.17) P+ () + P~ (-B) — N%(Q) + M°(-3).
In this case there are two possikble Feynman diagrams, depend-
ing upon which of the neutral mesons is emitted first. These
are given in Fig. 3.1.

TG G/ \N°(3) (34
\ 7 \ //

\ / \\

/
/ \ /

/

(%3]

A
\ r

\

P Pl P(p,) P()

(Fig. 3.1)

AL A ~ ~ A A _ A A A A
(3.18) T=p) ~-dy = pg+ dy, 8= p1 - dy = pg + q;
where f, § are the four-momenta of the intermediate protons.
Then the operator H, in the pseudoscalar theory, becomes
=1 = o~ =1
H =2117ng [W(FL)VS(r"M) ’Vr +(f’l)+
- ~ -1
(3¢19) \*’(rl) 'Yg(s*"M) ')/g \P(P')]:

Z’T .’L | ! —_— ~
é ( AT _ Mt —"S;—l:_'\:\—) "I’(Tl)‘il "l"(r')

since ¥ (p3)ds \]»' (p1) = -JI(P3> a’l""(pl)‘



This gives, in the center-of-mass system,

clo‘ — jo 1 Pcos 9[(5 -&,,L?-) ——4-'; 10:5 0 — /-« }g,y\eégdj

The integration on ¢ runs only from O to @ , since the two

neutral mesons are indistinguishable. Integrating on f and

H 9
¢ =122 1 }—H—

(3.21) 4E" - M Pt 9 /“‘/
(E +7 2(E*q ) jl%%(fj) 2(rﬂ+4M27}.

4;:1

Transforming to the laboratory system by use of (3.04), and

neglecting terms of order Pé/M4,

7T 03 E.+ po Zpe _.__E:;—
(5.22)6=m §l°j : ';;f‘,?{} (' M(E°+M))'

Non-relativistically, with v the relative velocity of proton

and antiproton,

(5.25) : 9.0 ) X (’”’ﬁi)

.33 g = 2‘?-( ) c v o

while for very high energies,

(5.24) Lo 9.2 lo -2
¢ = 7 ( M) ( j )

Thus we see that annihilation at low energies is predominantly
into charged mesons. This also follows from the fact that for
very low energies, the initial nucleons form an S-state with
J=0or J= 1. The parity of such a state with a particle
and an antiparticle is odd. The neutral mesons, having spin
zero and Bose statistics, can be proiuced only in states of
even parity and even J. Thus the annihilation into neutral me-

sons 1s forbidden in the limit of zero relative velocity, be-
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cause of the necessity for the conservation of angular momentum

and parity. (This argument is due to Mr. M. Ruderman.)

(c) Annihilation with a Neutron.

Since our theory treats protons and neutrons on an equal
basis, we must expect that an antiproton could react with a
neutron, producing a negative meson and a neutral meson:
(3.25) P=(-F) « N(D) —=TT (3) + T1°(-q)

Here again there are two possible processes, . illustrated by

the accompanying diagrams (Fig. 3.3). In the former case, the

\ o & n-—- ,\') / \ n- A‘ no(sz) /
\\F\ (1,) (4 )/ \ (3 ) f2)/

P(F;) N(F|) P(f;z.) F'

(Fig. 3.3)

intermediate nucleon is a proton; in the latter, a2 neutron.

As noted above, the symmetric theory then recuires a difference

in sign of the corresponding terms of H, which we can write

down as follows:

Ho=2mg9 BT | $lp)ye (F=mM1 o (p)) —
¢bolpe) s (5"P4)~‘ys\¥(f.)} =

Zngq B [(F =)+ (M) T F 5, 8 ()

This gives the differential cross-section in the center-of-

(3.28)

mass system:



=2 O

T EE * 4 °
A _L‘_Z%—éj-_:—j‘- {_(E1+:1z) "‘4";3 1 cos e"'/’* ]

[(7+q)” *4r‘1 cos” OF

The totel cross-section is

& = "31 301(E1+‘ll) f[‘__ Eq ] M"'(t"’j)l

(5.27) T (E9Y) s BdE

s ) EE” p= 2(E%q7)N 0T miap-q”

2pq p!
I TROCErD
In the laboratory system this is, to terms of order P4/M4’
(5.29) o - T3°3e° [, __pt M . EotPe
TV MI(E,+M) M J M

At low velocities,

& =

(3.30) - m9" 9.0 |- #i)
) # = M 7 ( 2M™
while at high energies,
(3.51) s = T3 9 M s 2to
ZM* J

Thus the cross-section for annihilation of an antiproton with
a neutron is twice that for annihilation with a proton, non-

relativistically, if we put gog = ﬁgz as in the Kemmer theory.

(d) Annihilation with a Bound Neutron.

It is of interest to consider the possibility that a slow-
ly moving antiproton will annihilate with a neutron bound in a
nucleus, with only one meson being emitted, the nucleus taking
up the extra momentum. In this case, we can write the wave-
function of the neutron as a unit Dirac spinor for a state of
positive energy times the Schrbdinger wave-function JI(r) of

the neutron, supposed bound in some sort of potential well
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which represents the rest of the nucleus. The neutron will e-
mit a negative meson and become a proton of negative energy,
filling the hole which corresponds to the antiproton. Thus the
final wave-function will be a unit Dirac spinor for a state of
negative energy (and proper spin) times a factor exp [-iﬁ'-?/ﬁc],
where D' is the momentum of the antiproton. With pseudoscalar

coupling, the Hamiltonian operator will be

(5.32) H ="‘Jt°\/—%—":f43r‘ (“{’P* B'}/s“hl) Palh /e

where G is the momentum of the emitted meson. E" ==vg;:]:z-= en-
ergy of emitted meson £ 2M. The spinor parts of the wave-func-
tions, combined with ﬁ}/s will give unity, provided the nem-
tron is of spin opposite to that of the antiproton, and they
give zero otherwise. Thus annihilation will occur with about
half of the neutrons in the nucleus, namely those of proper

spin. Thus (3.32) becomes
. [Ze (3= (=)0 307 /ae
(s.53) H =-ighe Eﬂfa vl )e

the integration being teken over all space. Now |§l is of the
order of 3M, while |§'| is small compared to M, in the non-rela-
tivistic limit we are considering. Hence (3.33) represents the
Fourier component of the bound-neutron wave-function correspond-

ing to a momentum of about 8 Bev. Let P = -p' + 4. Then

{5.54) H ‘—".-—-lj i;_].‘__- ﬁf( )

where we have taken i = ¢ = 1. Also

- =

(3.35) ?(F) = (Zw)_% ] *(F)Q—IF”’JaF
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is the momentum representation of the wave-function of the

bound neutron. The cross-section for annihilation is then

. . 2T ki 2
(3.36) 5 = e i |H | Pr

where v is the velocity of the incident antiproton, and f%

the density of final states, given by

f451 - 4ﬂﬂEH

(8.57) fr = (zn)3 (2 )?

(3.58) fLd = 87r331v"’ 1!37([3)'1

with ¢ = \au® - Pg 2 ou.
To compute <?(p), we write the Schrbdinger equation
(5.59) R gy 4 = =
t 9Ty F VY = Ey
where V is the potential binding the neutron. Now substitute

the inverse of (3.35):

(5.40) (Y =(20)2 [ q(ple P d*p
so that

(3.41) 2“)

i

_ ip-r )3 - - -
Jle=F2) g (51T = VRN,
Take the inverse Fourier transform of this eduation:
-3 z g ~ipeF a_
(s.12) ¢ (F) =l2n)7* (€ - £5) 'f\/(?)\p(F)e P

Now for \i\ Z 2M, the exponential varies rapidly, while \P(f),
being the ground-state wave-function, varies relatively slowly
over the nucleus, where V(r) is different from zero. Hence we
can replace 41(5) by its average ovdr the nucleus, 4/& , and

write, since ‘02/21‘.1 >>E,

Ey
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il

(3.43) ?(F) .—'_'.-—-ZMF—z(zn)—l/,_\hLfV(F)e-c’;.FJa

=-2 M P_.z (2n )-% "l"a- V(F)

where v(p) is the Fourier component of the potential for large
momentum transfer p. This can be estimated from high-energy
neutron-proton scattering, for the differential cross-section

of which the Born approximation gives the formula

M* 2
(5.44) do,, = —= Iv(F)l" dJL.
4w

Replacing df by 4w to estimate the total scattering cross-

section, 6% , we can combine (3.38), (3.43-.44) to obtain
(3 2 -3

iy i— £ G

z( C)VHJ“‘ ™ e

2
We can estimate '\#al by the reciprocal of the nuclear volume

“ R .
per nucleon, which is approximately |+x| e a"é, where

1

(3.45) g

o - 2 nBL
a T 1.5 x 1001° cu., so that || 15 ~ (1,)"%; M2 T 0.14.

r . ~ T o < -3

(5.48) e = ( %‘c) » (Ma) e .

At the highest energy available, about 270 Mev, the total n-p
scattering cross-sectiont® is <§CE 0.038 x lO"64 cm® = 86(ﬁoAﬁa

This corresponds to a momentum of about 0.38M in the center-of-
mass system, or an average momentum transfer of about M, so
that our result will be somewhat too high. We get for this

one-meson annihilation cross~-section

2 + 2 C
(3.47) g < %r" i"c ('FZ) ¥ (0.2)

This is seen to be about 1/5 or less of the cross-section (3.30)
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for annihilation into two mesons.

(e) Annihilation in Matter.

When an antiproton passes through matter, it may annihi-
late by any one of the processes (3.01), (3.17), and (3.235).
For energies of more than 1 Bev. or so, the annihilation cross-
sections are small, and the antiproton may be expected to lose
energy by the same processes as does an ordinary proton. The
ionization energy-loss would be approximately the same for an
antiproton as for a proton at all energies. For kinetic en-
ergies less than 1 Bev. or so, the cross-sections 6] for anni-
hilation with a proton into two charged mesons, and (Z for an-
nihilation with a neutron as in (3.25), will become large, and
the antiprotons will disappear in this manner. We can neglect
the cross-section (3.523) for annihilation into two neutral me-
sons, for this is smaller than the others by a factor of nearly
1/100 at these low energies.

Let n be the number of atoms per cmg., each atom contaih-
ing Z protons and N neutrons. Then the probability that the
antiproton is annihilated in going a distance dx is
(5.48) dY =nl2¢ +Ns, )dx
where 6,6, are given in (3.05) and (3.39) respectively.

In & distance dx, the antiproton loses an energy dE =(dE/dx)dx.
Thus in slowing down from an energy Egy to energy Ey, the prob-

ability of annihilation is

(3.49) Y(E,, E/) = n[
E

E

Mz +Ne)(4E) dE.
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Values of the energy loss (dE/dx) and the range of pro-
tons in S.T.P. air and in aluminum hawe been calculated by
Smithll. e use his results and evaluate (3.49) by numerical
integration, taking g, = g/\[§ and gz/ﬁc = 1. (For antipro-
tons in air of kinetic energies less than 10 Mev, we use the
energy-loss curve for protons given by Bethelg.) Thus we ob-
tain the following tables, where Eq, EB are kinetic energies
in Mev, and AR is the range traversed by the antiproton in

slowing down from energy Es to energy El.

Air
E; (Mev) E; (lev) Y AR (cm) AR (%—?nﬁ-g)
2000 1000 1.89 x 10~1 4.36 x 10° 564
1000 400 1.45 2 B3 289
400 300 2.58 x 102 2.82 x 10% 38.5
300 200 2.54 2. 34 30.3
200 100 2.37 1.687 5 8l.6
100 45 1.09 _5 5.40 x 10 6.99
45 25 3.23 x 10 1.11 1.44
25 15 1.89 0.352 0.455
10 6 4.05 x 10~% 88 88 x 10~9°
8 2 5.42 40 52
2 1 1.88 4.85 6.3
1 0.6 1.02 1.30 1.7
0.6 0.2 0.88 0.78 1.0
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Aluminum®
Ez (Mev) E; (Mev) Y AR (cm)
2000 1000 9.93 x 10™° 218
1000 400 7.69 112
400 300 1.38 14.2
300 200 1.36 11.8
200 100 1.27 8.51
100 45 5.92 x 109 2.77
45 25 1.77 0.574
25 12 9.56 x 10~4 0.236
12 3 5.11 0.077

It is seen that an antiproton of a few Bev. energy has a
good chance of annihilating in flight, with a probability of
about 0.35 (g@/%c)® for a kinetic energy of 2 Bev. in air.

If it escapes annihilation in flight, the antiproton will
be slowed down and eventually stop, being captured by a posi=-
tively charged nucleus. Wightmanl4 has calculated the modera-
tion times of antiprotons in hydrogen gas and finds times on
the order of lO’lO sec. for slowing down from 10 Mev. to cap-
ture by an Hs molecule. In heavy substences the times would
be expected to be somewhat shorter than this. We note that
the antiproton would arrive in the lowest Bohr orbit about one
of the nuclei by radiating photons in & time T]z given roughly

by the ordinary radiation formula

ez.v’3CLZ
(3.52) T |~ -
=
B Note that a standard photographic emulsion such as is used

in nuclear investigations has TBStOpping power and average Z
comparable to that of aluminum™*. Hence we can use these re-
sults for aluminum to get the annihilation probability in an
emulsion by multiplying the Y of the table by the ratio of the
densities, which is about 1.45.



s Bl
2, while hv would be on the

order of the ground-state energy, (Zeg/hc)2M02‘

where & is the Bohr radius £°/Zle
Thus we get
T ¥ n 2 (%ZC )s % or TR~Z”4-3 -1071% sec.

The lifetime T, of an antiproton in the ground state a-
bout a2 nucleus can be estimated by noting that it is given ap-
proximately by the cross-section Z6,+ l\’o’z = —473 ro (2+2 N) \“C,‘
multiplied by the relative velocity v, times the density h#(o”z
of antiprotons at the nucleus. Here q/(o) is the value at the
origin of \Y(r), the wave-function of the antiproton in the

lowest Bohr orbit. Taking this as the hydrogen-like wave-func-

tion
3 ‘3 _Zr
(8.58) V) = (2/ras )z e e
N 2.
where o :*f"c , M = A M L A =2+N

we find

(.50) |gloll® =5 ()" (B) (A +r)?

Z+2N (261)3 M

2
(8«55) 2 Ta_‘ = ‘é (% ) (\‘I’A_‘)J e —E‘

(We have divided by two to account for the fact that the anti-
proton will annihilate only with nucleons of opposite spin, in
the non-relativistic limit.) This gives
- -1h3
(3.58) T, = (%) 2—%‘1—@—2—- x 1.44 x 10717 sec.
Z2° (Z+2N)
Of course for most nuclei, the ground-state radius is of the

same order of magnitude as the nuclear radius, so that the
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antiproton will spend most of its time within the nucleus,
and the annihilation time T will be much shorter than the
estimate (3.56). (For the special case of the antiproton
bound to a proton, see Appendix I.) This time is very short
compared with the time taken by the antiproton to slow down

and be captured by the atomic nucleus.
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IV. PRODUCTION OF ANTIPROTONS IN MESON-NUCLEON COLLISIONS.

The first production process we shall consider will be the
result of the collision of a positive meson and a neutron:
+ ,A A - A n [
(4.01)  T7(ky) + N(k )—=F"(8;) + P(Dg) + P(D3)

This is described by the diagram of Fig. 4.1.

P(g,) P(5) P(p;)
S M N X
\
%
N (k. AN
. kN
(Fig. 4.1)

Here we have, in the center-of-mass system,

(4.02) '120 = (B, X}, ky = (€, -%)

(4.03) 51 = (Bq, ﬁl)’ 52 = (Ez, P2l b3z = (Ez, P3)

The antiproton is considered as a proton going backward in

time, and the associated spinor q/(pl) satisfies

(4.04) (-pp - ) Ylpy) =0
For the other protons,
(4.05) (Bz - 1) (pg) = O, (kg - M) \}J(ko) = 0, etc.

The intermediate neutron has the four-momentum

A

A
(4.08) P' = pz - k1 = P + Q!
where a' is the four-momentum of the intermediate meson:
A

(4.07) §'=k, - pg=D' -y

Since the emergent protons are identical particles, we
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must consider also the process obtained by interchanging 62
and 55 in the diagram. The momenta of the intermediate parti-
cles are then designated by a double prime:
(4.08) Br =By -k, 8= Ko - By

We note that if T is the total energy in the c.m. systemn,
(4.09)  2TE, = 1% « u° - p®, 2re = 1% - P 4 B, T = E; 4e,
Dividing by two to average over spins of the incident neutron,
the differential cross-section for the process (4.01) is given

by

(4.10) de :‘22—,‘_‘“\:2}!-!!2 Pr

The relative velocity of neutron and meson is v, given by

(4.11) v k _ k _ kT

-

c = RYE™ e
The density of final states Pr is

3 = 3.
(4.12) = R YR b7 de
Pe (2rkc)®dT | Zay :

where dT is given by (1.30). Z:\le ig the sum over the states

of the initial and final nucleons of the proper transition ma-
trix element in momentum space. Assuming pseudoscalar charged
mesons, this can be written down from the diagram of Fig. 4.1,
according to our prescription of Section II. Ve thus obtain
(4.13) H :(4n)3/‘73t’ *(2¢)7.27% (0,-0,)

where
al?2 z)-l

(e.12) O, =¥ (pa) ps blke) (§'=p
Flpdys (5'=M) Tps ()

and Og is obtained by exchanging ﬁg and 55 everywhere, changing

primes to double primes. Redquirements of anti-symmetry between
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1
the final proton states cause us to write 2372(0; - 05) in
place of 07 alone. Using (4.05) and (4.06), we can simplify
(4.14) to obtain
o = - Mrdvsﬂ“) eyl v (p)

) (Alz M ) Al?. )
P -M
(ef. (2.10)). Combining (4.10-.13),

*E,dT
(4.16) d¢ = 34“2t‘CLTZ,|O.“Oz|z

(4.15)

Using the spur technique, and noting (4.04), we have

(4.17)3 10,1 = Sp(fFat M)'YS'“‘ M)y - SP(P;"’M I, (- P,+M)L
(ZM) (Mz_M )z ("fn‘l“ )z,

(4.18) Sf’ (F‘+M)'yg (h,,+M);YS =—4(M*- ;;L'l«.,) = —2512

(4.19) SF(M+F3)E. (M—F:)E. =
k T(l F\ T‘-"

Z‘O“z: %11[4( l‘)(f’l k ) - ’),+’>3) J
4_M /\l _ z.) “'I—'M )z

(il o - gl y, u. ) 3o )y mq) (po) b lp ) Hp) o #lps)

t An. N all A
\3 (3" =p ) (f )(r ~M* )
(4.23)
26,02 SP(M+f3)'yS' (M*l'lco)'ys. (M-}r;_) L (M - F. H(
(ZM) AI'L /.A )(ﬁul"r)( M )( Aln_M)
A somewhat tedious apollcatlon of spur metnods ylelds
(4. ﬁS)S (M"’F_;)'YgLM"'L)'Y; M“‘F)L(M’ :}LU"'
4 (¢ “')[(rs“)(f‘“Fz)L+(/’2“)(l‘ F2)*- = (ferler )54 Pt]
- > L p+p) (=P )T (B (L ]5)"(L+FJ Fi-fa )]
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Then we can write

@GPyt 4e K )R = U+ 7, )]

“ 4 O =
(4.24) ™ ZO‘OZ lé’(%u”ﬁ ) [ &7 z)( A2 ppT )(Mcz_ 1)

hl?. (‘\'1 7~)
PRI 1
4. Z'O Auz

+ 4 7_(7 —-/» )(A“ MI)
L)( Atz ) 4- ™ Z'O [ .n. 1)[“"‘ 1)'

These sums Y, must be multiplied by -M4/EOE1E8E5 to correct
the normalization.

It is easiest to complete the evaluation of the total
cross-section in the case in which the total energy T is just
above the threshold energy 3l. Then the produced particles
are non-relativistic. We then have

(4.85) T & 3M, By = U - pi/eM, £ 2+ p6N

(4:26)Z10,=0, ) = J10,1* = 2 (mt~pp™) (P4 4p7)

Using (1.25) we have

3
(4.27) [d= = -—ﬁ’i u*

e note that if E5 is the energy of the incident W-meson in
the laboratory system (neutron at rest), and if OE; is the

energy in excess of the threshold energy of 4 - FB/ZM,
4.28 = =L — *
(4:38) U = 3 88 =g (Ex —4M+ M)
Combining these results and substituting into (4.18),
2

. .-t - 313(tc)2(AEn)
oﬁ 2 = w
o o = 275w () (35) (45

where

I

L

(4.30) w = (Hé#&l)—z(Hf&)i ( l~3’§z) 5 1—%L



D
) - 2.3 1 AER)* 2
(4.31) - & = 1.3, =107%° (%c) (;‘—) em?

For energies much larger than the threshold, it is ne-
cessary to take into account the angular dependence of the ex-
pressions (4.20) and (4.24), and these must be integrated over
the momentum space of the final particles. This integration
is feasible only if certain approximations are made. The first
of these is to set the mass of the meson B = 0. The error in-
duced by this will be on the order of PZ/MB. The second will
be to neglect the first term in (4.234), which is an exchange
term proportional to (ﬁg - ﬁS)B, and which vanishes in the non-
relativistic limit. (4.20) now becomes, after some simplifica-
tion, using (4.08) and (4.07),

2 5,k
s.52) —MP 200" = — —
kS 2 1o AT - T (k)

while (4.234) can be written
. =z 2
(4.53) 5 g, 0, :i-glo,ll+;';zzoll

Since 07 and Og differ only in the interchange of ﬁz and ﬁs,
they give the same result after the integration over momentum
space, so that only one need be considered, and we obtain for
the total cross-section

(4.34) 6 = _,[f 36&61“11&?3&& (16 £+ P ) =
|6trlﬁcl<T[(|<.,—fgz.) ‘rz](e Eq +F3-L)

~

since ﬁl *ky = EE] + P1 * k etc. o is a polar angle measur-

—

ing the location of the vector 55 with respect to a plane taken
for convenience through 52 and k. (v. Fig. 4.2). All the re-

sults of section I can be used by replacing ﬁl by ﬁg and §2 by
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65. The angle between §2 and 55 is 0 , while that between Do

and k is }r. Then we have, by spherical trigonometry,

(4.35) Pu + kK 5 p3k(cose cosy+ sin @ siny cosoL)

S

YTEE, 45, -k s E,)-5.-k
(4.56)[ E' L =/[£(T- Lt £ 36 l] da =
] & 3+f»3-|< / EE *’Fa'l‘

3
Zﬂ’[ E(T—Ez)—-|:?_l<co$'}/ —l}:
ﬂg, E; ¢ Fak cos B Cosy)t-— (rsk sin b s:»y)"

% o T"‘EZ’_‘PLC°SV .—'
(E3 ces y + P3 ces B)* + Mzsinl’y

where we have used P = 0 to replace g by k = Vs‘—rf'. This
expression is now to be integrated on Eé 3 E5 s Eg, where we

(4.37)  pgpg cos @ = H(T% + ¥®) - TEg - (T - E,) Eg

and
(4.38) EY + E§ = T - Eg, E} - B! = pgR
(4.39) p§ + pL = (T - E5)R, p - pf = Py

where by (1.07), (1.18),

2 108 - " 2 .
(4.40) R=YE =4 82 p2 = 0B 3Ry 4 43, B = 15N




Let

(4.41) X =

-l

E5 cos 7/ 5 P5 cos @

Then it can be shown that

(4.42) dE3

-
-

-pg dx
T-Eg-pg cos o

with the limits of integration x" £ x £ x', where

(4.43) x! = Eg' cos Y + 95" x "= E.‘S" cosy - p5"

(4.44)  x"™ + ™M

s.‘vx"')/ = E3, + P3'cos }/

xul n M'L Sf\"l'y - EB” _ P3” 55 }/
(4.45) d x +py’ I+ R -1
\/,1+ ~ ‘ej—-j—-— = loj . ~Z‘t‘oml\ R

i X M StV 'Y "'-F3 |

where
0
(4.46) 2= E° -E g = I% 4+
E, - Eg 2 aT

by (4.09) with p=0

. Now put these results into (4.34), using

(4.47) (k, - 52)3_rf = -23(Eghg - 1% + & u? - pk cosy )

and dJ1 = 2rn sin

YY

(2 tauh ' R=R ) sinyd
P2 Y°v
(4. 48) 6 = h T ‘[ dlE'[

B, EZ -~ M*+ E‘/ul-— Plk coS }/

Before integrating over 7/ , we do a partial integration on Eg,

to obtain

jé

-]

€2

(s.89) ¢ = FAT )

J dFEZ lt“nL_’R-—R)(Eo'—EZ)'

2

N G 2.
[(E-E M43 p EZ}I(E,EZ- RV

Integrating over yr

™M -\'-—Z/“ = Pz_l“"s)/)L

, we get
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o

E

. 36 szZ e
(4.80) & === ~ (E.—E, ) [M*(E,~E, )+3 e &)
m P2

-1

~1 ° 2 by L l q
(tanh R —R)[M*(E,-E,) +pn*(E,E,-M )HI‘J ~
Inspection shows that at E5; = M the integrand become infinite
with 1/pg, so that for very high energies we can approximate
(4.80) by putting Ej = M in the integrand:

6 M(En'—'M)
(4.51) g = —2

T h
° EL AE
ccsk"\/-—————f"”"‘ —\(E“M j 2
E.—E)° Jada M Pz

o

E, o -1 E
Then using J (E:_M‘l—) ZJEZ:cosk ,.';": and cos Wtz ~ log 2x
™M

for large x, we can estimate 6 Dby
6

(4.52) - 9 - !51 T T
s RelT™mM?) {HZM(EO—M)](‘% ™M ‘)|°3M
6
8he ME, °3 (l°3 M

using the transformation formuls to obtain the energy E“_ of
the incident meson in the laboratory system:

(4.53) BuE; = 1% - 1P - pu?

The graph, Fig. 4.3 at the end of the text, gives values of ¢
obtained by numerical integration.

It is of interest to ascertain the effect of the inclusion



of virtual neutrsl mesons on the result of such a calculation.
If we do this, we have two more diagrams to consider. They

are given in Fig. 4.4 below.

Plg) P(p,)

X S s o

N L (@)
Nike)  \TT*(k,)

(Fig. 4.4)

Each diagram represents two processes, the second being ob-
tained from the one shown by int erchanging ﬁg and ﬁs every-
where, replacing primes by double primes.
(4.54) £ = kg + kq, = pg - Ry, fg = 85 - I
(4.55) §' = Py + Dz, 8" = Py + By

Remembering our rule about signs in the symmetric theory,
we get for the matrix element of H in this case
(4.56) Hy = (41(')5/2 ggOB(Za )"% . 2"5(05 - Og)
where
(4.57) 03 = ¥ ps) s ¥ (pi) ( f'z—rz)_i '

[ (p) e (Fo=00) "y ¢ Lo = Fpa e (B=01) oy )] =
\T’(fs\ vs ¥ pd § Lpa) e, (eo) -
2 [(A-MA) T H (Rem) T,

and where Oy is obtained from Oz by interchanging ﬁg and ﬁs in

all terms. Then the cross-section is proportional to
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(4.58) IH\z = HC-+¥4NIZ =
2= (2n)? (ke)® g™ | 3"(0l—oz)+jf(03—0,{)|z

where H, is the H of (4.13). Working this out in the non-rela-
tivistic limit and substituting into (4.10), we obtain for the
total cross-section, neglecting Fd<< MZ,

(a.50) g = {30 ¥297) 9° (tc)z (AEW)Z
2¢ 3% [Kc)? M M

so that in the Kemmer theory, with g% = égg, the cross-section
is 18/9 the value obtained by including only chearged virtual
mesons, in the non-relativistic limit.

We should consider also the effect of negative mesons
colliding with protons, so that antiprotons might be produced
in the reaction
(4.60)  B(k,) + T7(Ky)—>P(D) + P~ (Bz) + N(By)

Again considering only charged mesons in intermediate states,
we now have two diagrams, which correspond to the interchange
of the two protons entering the reaction-- the initial proton
and the proton going backward in time which represents the an-

tiproton produced.

N/ \P7( g,) P(e)  N(a)
~u %2
// —————
//
Fi (k)
PRy \ (k) /) P(k)
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) N
(4.61) Bt =k, + kg, D' = -pg v Ky
A A N
(4.623) 61 = P2 * ﬁN, ag = —ﬁN + kg
(4.63) B1 (p1) = u ¢ (p1): Bz ¢ (p2) = -u P (pp)
By len) = 1 o), ko (k) = M (ko)

Then the matrix element can be written as
(4.60) H = (4r) g3 k3 (26)72 (0,-0,)
where
(4.65) O, = ylpy) vs ¥ (p2) (,\’1_#1)4.

\y(,v.) yg("" M) Vs ‘i’“‘}

_F (pur) ops ¥ (pa) Blp) T plle)

(3 -¥") (F7-M7)
(4:68) 0, = $lpa) ys ¥ (ko) (52 -p)7
§lp) ys [pm-m)” s Ylpa)=
G lpu) s wllo) Flpd Ty ipa)

w $PL__ 2
(‘11 —}‘*)( ! )
(4.66) is seen to be the same type of term as (4.15), while

(4.65) is new. Here we must omit the factor 2‘% which appeared
in (4.13) because the final integration over momentum space in
this latter case includes only one of the "identical" protons,
the antiproton observed, while in the former case, both the
protons are observed as produced in the reaction. Then the
cross-section is given by (4.18), with an additional factor of

two, where now

(4.67)2°10,1* = EM’rrw)Yr(” Palyi YP(P‘HP,)L M+ ) L,
(2M)* (g —p)T (Fr=m)?

Az _A A T l(i;c~n )1]
lO‘ 9 [4'““ I")(!" l(')+lu P
R T (i

(4.88)



As in (4.20), Az 4 a)(“ i; s )2]
(4.69)Z|Oa‘z _ [ 405, k) (5 ')—I“ f,ﬂai

M"l (o' )'2- { A 1.)
A long spur calculation shows
§1+f<°)1{4(fl’tl)(f;~'?‘l)+)‘*1(F|"FN)1J
4(1 -rl)lﬁf‘rl)(‘ﬂ—Ml)(‘ﬂ~b4)

v (3PN () 2 (42 ) ()
+MTT o 1T L L m95 10, | %
. (G (p7-M) 2 L3e-p Hp™m)

Proceeding as before, in the non-relativistic limit, we find

(4.70) M) B0, =

for the total cross-section, neglecting P2<< i

(4.71) ¢ = 2‘7.n3“lz ('&;)3 (1’:"2)1 (‘é"—"_—&r)?~

This is 14/9 the cross-section (4.239) for the process (4.01).

For higher energies it is again not possible to carry out
the integration over momentum space except by setting p=
and neglecting the first term of (4.70). This latter approxima-
tion introduces a more serious error here, however, for even
in the non-relativistic limit, the term neglected contributed
2/7 of the total cross-section (4.71). Hence our final result
can be expected to be in error by about this amount. As in

(4.33), the cross-section reduces to

(A

The second term of this will give the cross-section (4.34) or
(4.80). The first term is smaller by a factor of 1/10 or less.

If we call the contribution of this term (l , we easily obtain

(4.73) S :__ii__ ol Py E,dE, [E°-E,
’ 8t\CkT& Eo"E' Eo—'E,




e B

Numerical integration then gives the following values, tabu-
lated against the energy E, of the incident meson in the
laboratory system:

Eqg /M 6.1 18.0 34.5 58.4 100.5

(o))
jav;
D

~3 =g 4
T3 (55 } : .75 ) .09 .
gl(_kc) = 10 2.75 7.80 7.0 5.89

We can thus conclude that the total cross-section for the pro-
duction of antiprotons in the collision of negative mesons and
protons according to (4.80) is of the same order of magnitude
as the cross-section for the positive-meson-neutron process
(4.01), and in later work we shall take them equal, using the
more precisely known cross-section (4.50) for both.

Inspection of the integrand of (4.34) shows that it is
largest when 58 is in the direction of k. Hence the protons
are emitted mostly in that direction, and the antiprotons most-

ly in the direction of the incident meson.
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Ve PRODUCTION OF ANTIPROTONS IN NUCLEON-NUCLEON COLLISIONS

-- PERTURBATION METHOD (NON-RELATIVISTIC)

We shall now calculate the cross-section for the process
by which a proton and a neutron collide to produce a pair:
(5.01) N(81) + P(&)—=PF (D)) + P(Hy) + N(Bz) + P(By)

We assume for simplicity that there are only charged mesons in
intermediate states, so that there are two possible diagrams

(Fig. 5.1), the one being obtained from the other by the inter-
change of the two protons entering the reaction-- the original
proton and the proton moving backward in time which corresponds

to the antiproton produced.

Plfl) F'(f.) iy (f., ) N (F,)
A A
I S S
A (a) [ 3
N (§) P(4.)
(Fig. Bal)

In the center-of- mass system, we have

(5.08) al = (EO’ als ag = (EO’ ‘&)7 ﬁl - (El’ bl): etc.

with the Dirac equations
(5.05) G Vay) =% ylay), g Plag)= u ¢ (ay),
51 \¥(pl) = =l \P(pl); Fi 4’(pi) = M 1’(pi): 1= 2)5,4'

T is the total energy in the c.m. system, and T = 4M is the

il

threshold for the reaction in that system. Let E be the energy
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of one of the incident nucleons in the laboratory system, i.e.,
the system in which the other initial nucleon is at rest. Then
the Lorentz transformation gives

(5.04) 78 2 (E+ M)® - 3° =

2M(E + )
and we find that E = 7M is the threshold energy in the labora-
tory system.

Because of the number of variables involved and their com-
plicated relationéhips, we have not been able to evaluate the
total cross-section for this process by integration over the
momentum space of the four particles produced, except in the
limit in which these particles have kinetic energies small com-
pared to M. Then the energy E of the incident nucleon is only
slightly greater than 7M. The absolute square of the collision

matrix element H reduces to a constant, and the total cross- sec~

tion is given by
= 2 . k “J[
(5.05) st el STIHI® (2rkc) dt

where .[Ar is given by (1.33), and can be written

4 2 7
L 8 [E-TM |2
—— fdt T o5 - 2VzZ & ( ™M )

using T - 44 = U = 4(E - 7M) for U<< 4M. In (5.05), v is the
relative velocity of the initial nucleons in the c.m. system,
and it is given by

(5.07) v/e = 3q/E,

The factor % in (5.05) comes from the average over the spins of

the initial nucleons.
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The matrix element can be written down from the diagrams

of Fig. 5.1 in the usual manner, and we obtain
232 112 L (q/_og") ——= ’~O"]

= 7= (4rg™h<")" (0/ -0 ~0,'+0,"),
where from Fig. 5.1 (a),
/ - A2 2\~!
(5.09) O, 2‘{1(]’2.)’}/5' ‘{’('1:) (7 —'f“)
B EVCOU TRV TR ICES RPN IR TN
From diagram (b) of the same figure,

(5.10) 0, = {o(pz)ygnlzby.) (ﬁ'z~r~"‘)_'-
\?(Fq)'ys (£ -M) ')/S"PH") ,.1_#1_)-'(}3([’3))/5-‘{’([’1)

1
all terms. From the diagrams we also obtain the relations be-

. A _ . . S A
o, Og are obtained from Oi, Oé by interchanging Py and py in

tween the four-momenta of the particles involved:

n A A
(5.11) £ = &) - B, T3 = B3 - dp, Tz = Py + D3
AL A
T = fy v Ty = -By - By v G

A A ~ A A "~
4 =41 * 4y = Py = Pl *+ Py *+ Py

$+
o>

(5:12) o7 _ w&) «ygq (g )P ) Bl ) & s ) e (52
| ) (M) (R o)

ETE ([’z)’Y:‘P(ﬁ)‘P(F‘l) Ylg) #lps) e )
: (A -p) (1=m) (A -

after some simplification. In the non-relativistic limit, the

Dirac equations for the final particles become simply

(5.14) Y'-I \,}»(Pl) :—\.y(r, ) \»Y,_' \-k([)‘) ':+\-P{.Pi) ; [—;2,31‘},
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while for the initial nucleons

(5.15) E, 2 2U, q* MY3
(5-18) (2M vy —97:) ¥ (q) =M ylq)
(2Myy +9Y: ) ¥ 92) = My (q2)
if we take the x-axis in the direction of the incident nucleons.

In addition we have

(5.17) My..—-qy,

(5.18) AIT-pT = Fz—,‘ = — [2M +/»)

AT - =AM pT
oM = -4 MY t'z~M L

S
(5.19)  $lpa) A/ wlpi) = @(f«)(M Yq—ﬂ/‘)\l'(f‘)
= —clqlqu)'qu/(}’\)
since by (5.14) @(rq)vmxylr.)z Qifq)\¥[f\)=—-qﬂfq)¢(f|)-
(5.20)  Wlpa) A9 (92) = Plpa) (Myy-1y ) ¥9a) =
F pa) (3My—M) ¥ (42 =2M § pa) g2 )
since by (5.16), —q, ¥lg.) = (2M Y™ ¥ ()

and by (5.15) ¥ lpadayy = § Lpa)

(5.21) OII - Cl ‘-I-’ (Pz)yS‘ ‘{’(11) ‘{-’(f'i )'yn q‘(fl) “F(ﬁ)'}/s “P(?z)
4t (LMT+ p7)"

(5.22) O, = — Y ys ¥lg) Flpa) ¢ (g2 ) ¥lp)ys ¥ (po)
‘£ 4M [ 4M> - p¥) (2MY 4 p2)

(5.25) Z1¥L) ye 4117 =z, Splpar M)y (4 M)y
= =g (o f)” =40 = Zl\F(fa)ys-dr(jz)lL
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(5.24) 3 1§ (paly, q»(F.)":—i—Sr(Hy,)y. (1-va )y,
=""2_— SF (|+'Y‘i)1:—2'

2 wy L
(5.25) . lo/1* =-— 81\41(23'\4”#1)4 = 2'10,"|
(s.26) 2 1 ¥lpa) wlqu) 1™ = (4M7)" Sp(Fut M )(5+ M)
= (2M?)7 [ Pyt 4, )" = 3
(5.37) _ ) A|+F )7-— B
2.V (s ys ¥ (R ._._.._,l’_.z_lq% = =

(5:38) .. 210,/ 1" = 2710,"1% == 8M®(ZM™+ ™)  (4M*-p )=

Similarly the cross-product terms can be evaluated:

(5.29) J. 0,0/ = é >10/1*

(5.50) 3 6,'0," = T 8" 0" =—3]16 M‘(ZM‘+r’)3(4MX"r‘x)]"
(5.51) S 6, 0" =+ 310/1"

(5.52) > 8,0," =2 5,0 =0

Combining 21l these and multiplying by M*/E (-E1)EgEz = -3,

| 29 4 42 \4 2 E .
G =2 VT 7 T (L)) (B2 =
(5.55) Ops =35 V3 2 (tc) (M = w
= 9.40 =031 (i)q E;;lﬂ 'h cm®
' kc M

where
. . A
(5.34) W= (1 -3 x +& xg)(l # Fx)%(1 -Ex)"R, x = }*/Ma.
The case of scalar coupling is obtained by replacing Ys

by 1 in (5.09) and (5.10). Then in (5.10) the factor ¥(pz)y (p)
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will give zero because of the orthogonality of states of posi-
tive and of negative energy in the limit of zero momentum.
Thus only diagram (&) above contributes to the cross-section
non-relativistically. Working out the spurs in the same man-

ner as above, we find
25 92\ he V2 E-M VR, ey
=& 3 — 1+

(5.54) Gy =3V 3 2 Z(tc) (M) ( M ) (v 4)

which is about 12 times the pseudoscalar result if the same

coupling constant g is used in each.

In the case of pseudoscalar mesons with gradient coupling,

(5.09) becones _
(5.35) /uq O,' % (}’1) Ys O CRRACTY (7 )“1)
‘-I)(fq]’yg r}_(s —M) 'Ysrl ‘{’(f’l)
(A=) Blpadys ARy lga ),

Using (5.11), we can rewrite the middle term as follows:

Al

(555 Plra)ye BT My Ryl ) (57=MY)7 =
¥(p) BT A e () s
Flg) (3 -F ) (=M )T+ 5 ) vip] $'-mT)”
Jlpg) (57 -m)° 4»(,“)1*" MY)T
Flpe) [ (57 43M*)5 M (337 + M) Jw(p) ) (5=

Von-relativistically, by (5.18), 818 4 31° = 0 and ¥ (pg) ¥ (p1)

i

1

= 0 (orthogonality of positive- and negative- energy states),
so that O = 0, and only diagram (b) of Fig. 5.1 contributes in

this case. This gives
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(.57) pt 0" = ¥ ) ys Al wlg) (A7)
:\’(Fq)')’sr's(%’“M)-j'ys?’ﬂlkﬂjz)-
(;'\'31"]“1) | \T,[lo3)')/$- N \\a(f,) =
M) P ) s v 90) Flpy ) (5'-Mm)° wlq2) -

21—

C[:(fs)'yc‘\’(fn) ( l:.n*/f‘)—' (Eom) (A% p7)

where we have used q«(rz)ys E'\}’ (7. ) =
F Gulys 5 -F ) ¥l = § (padye (M=f)wl90) =
Y (MeF sy lg)) = 2M G (p2)ys H (9, ete.

Working out the cross-section as before, we obtain

(5.38) & pev :EziT},‘ 27 % (,2_7_;)"(—2_'?)8
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VI. APPLICATION OF THE WEIZSACKER-WILLIAKS METHOD.

The Weizskcker-Williams (W.-W.) method was first applied
to problems involving the electromegnetic interaction of fast

moving electron815’16.

If an electron is moving with nearly

the speed of light, its electromegnetic field is compressed in

the direction of motion because of the Lorentz contraction.

To an observer this field appears as & pulse of very short du-

ration, and such a pulse can be represented by a certain dis-

tribution of quanta moving in the same direction as the elec-~

tron. Thus the interaction of the moving electron with a

given system, say an atom, can be calculated from the previous-

ly known interaction cross-section for high-energy photons with

the system. Many examples are given in the paper of WilliamslG.
The W.-W. method was first applied to meson-nucleon inter-

actions by Heitler and Peng17 in calculating meson production.

We shall follow their treatment in developing the necessary

equations for the case of pseudoscalar mesons, in order that we

might understand the approximations involved. For pseudoscalar

mesons, the source-free field equations are (A= ¢ = 1)

(6.01) oVt = pm¢

(6.02) pro= A 4 B

(8.03) ,a%/at :P\I/’FV‘F

where F is the mass of the meson in these units. These can be

combined to give the Klein-Gordon equation

(6.04) 31\1{ = * —_
e = YO




=H0=

with a corresponding equation for %» and for each component

of . These have plane-wave solutions of the form
' = = . —_ . ~4
(6~05)\y:AexPL(P‘X‘E{),P:—-LF,A ¥, %-—"LE#Y

where
(8.08)

The density P and current S of mesons are given by
(6.07) p=(4n) (T*T+3&"&+V¥"Y¥)

S =(4n)" (p*T+2T7)
satisfying the continuity equation

(6.08) . 9 —
V:S -lr—'a—f‘ O

The meson field of a resting nucleon, which is treated as a2
point source of mesons, is given by

(5.00) ' = £ (5-V') olr') | g(r')= Salall

r..l

)

= gF/BM, where g is the usual coupling constant. ¢ is the
spin vector of the source nucleon. (Quantities referred to
the system in which the nucleon is at rest will be denoted by
primes.) By (8.01) é,: 0.

Now consider a system in which the nucleon is moving in a

straight line with a speed v. ©Since ' and 'é together form

a four-vector, we have

(6.10) \'",‘=y(l","+v<l-"), <I>=}/(4"+er')

. I
or, since é = 0,

,._.
(6.11) T, = yl",’) ¢ :yvrx = v Iy

T
where W/= (1 = y=)7e,
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We seek the field at time t at & point P a distance Db

from the nucleon path. (v. Fig. 6.1) If the nucleon passes

P
(Fig. 6.1)

P at time t = 0, then by the Lorentz contraction rule,
(6.12) r/ =y + b7 =y vt bt

since x' = Yx = 71vt. By (6.03), (6.09), (8.11),
g v

(6.13) Ty :—% 39;1/ =T v )

3 led ok

\

—

d—

¢ (
-£ gt[:xv'éa?*‘j@]c"{)

where r' is expressed by (6.12). The meson current in the x-
direction passing the point P is given by

(6.14) Sy =———~(c}>"" +¢nY) _--—v|l_l

Now we make a Fourier analysis of the meson field observed

at P. Let oo
(6.15) (P(r') = (2n)‘2'/e"“thlw)dw

where
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—'J m’c exp [-pfytviETHb ]

(6-26) |, (w) = (2n) 7
- W'Lv’).tl_'__bl.
| ’ . w
- __v\/;% K, (b secw) | with tan « = S

To prove this last formula, make the substitution

(6.17) ’YV{ = b Sn'n‘n((f-fo(), r’ = lo Cosl\ (Cf-l.'o()l
Jf = ~)—Ii~v coSL(tf—Co()chf

Then we get

hlw) =  sweia
(6.18) \2")“i ;’L};J exp[-i 9_;-% s.'hL\(cf—Co()—/uB cosL(?—t'v()]Jtr
oo +iot
b +00 4t
= vu]_explopbsecs skl dg

if we pick tan ol = w/f.yv so that the terms in sin h ‘f’ in the
exponent vanish. Deforming the path of integration to lie a-

long the real T-—axis, we get the standard integral form
e cosh ¢
\ — o
(6.19) Ko (3 ) =—-zf e clcr
—00

This gives (6.18).
Substituting from (6.168) into (6.13),

§%J+Zle;wt K, (/,L,seco()clw

N
(6.20) Iy = ,,va/,.

—CG§J wp sec o S [—(0, (/ubseca )dw

The integrated current in the x-direction past the point P is

then given by
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400

(6.21) J, =J_®chH: = _;T- |r‘x\"4t =

ZZV(F{Z:V"",T) i YV f ‘*[K (pbsecsd)] " d e
+ V’ZJ ww" sec® [ K ()w'o sec x)]zdw},

where we have used the theorem that if g(w ) is the Fourier

transform of f(t),

(6.22) [ [#(0)]* dt = 2| Iglell™de.

~ 00

If we now integrate over all impact parameters from b = bmin

to b =00 , where by;, is some minimum impact parameter to be

determined later, we find that the total momentum in the pulse

f J, (2nbdb) =

V\

o 3#’“];, "f 29K, (pbsecw )] dw +
» j st sectie [ pheecs]]'du f bd b

Let z = }lb sec o, Z = Fbmin sec ol .

4L ¥ widw
(6.24) IX = T3 2 ’LLSECLOL

Tl"y v ,4.
2 o 12
e seclo( Ko A j
{ vV 7 : ’

Now using

o [3[Ko ()] 3 =33 { I G- K G

and

is

(6.23)
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(6.26) J;[«o' (3))7d3 = ~3K, (;)K,l;)+é;’-{[w,(;)]‘—[k,(;)]7,

and tan & = we get

_2f" j“muw.
W-Yzwlvut A
{ 23 Ko(g) K,(g) — 'ilcos‘u( [K.(i)]l—[l{,(?)r)}

Now assume that this pulse can be represented by a distri-

-

(6.27) I, =

bution of mesons such that there are q(w )dw mesons of energy
between w and w+de . If we assume the energy E = Yy M
of the nucleon is very large, then we can take uJ>:>,L y SO
that each meson carries a momentum w in the x-direction.

Then the total momentum transfer is aporoximately
oo
(6.28) Ix -"—"—j wcl(w)clw.
o

Comparing with (B.37) we see that we can take

2‘(:'1 -2 2 2.___ 2
(6.29) Cl(w) = _rr—;/—;r% [2? Ko |‘<| "3 ces (l(l l{o )J)

where we have put v = ¢ = 1l. Using f = gF/BM and E, = va, we

can write this as
(9" wd W
(6.30) 1(“)4“ = 2nm (T:c) E.*
[2; Ko K, —pibT (k-]

putting :
b bopes @ o b [1+(—’1)l(9~ )z]i
. - - séec = .
(6.81) b=b,, , 3 =M s »1\E,
Now if a high-energy nucleon interacts with a given sys-

tem, the cross-section can be found by first calculating the
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cross-section for interaction of a meson of energy @ with the
system. This is then to be multiplied by q( w)ded and inte-
grated over w , to get the nucleon interaction cross-section.
In this it must be assumed that the nucleon is very little de-
flected during the collision, since we had to take the path of
the nucleon as & straight line in the above derivation. Hence
the method is applicable only for nucleon energies E, >> M, the
nucleon mass. The spectrum g(w)dew holds only for w>>m since
we had to assume the meson momentum \];‘T,FT—E @ in setting up
(6.28). On the other hand, we do not expect to have mesons in
the spectrum of energy comparable to or greater than the nucle-
on energy, and indeed, the interaction of such mesons would
cause such a large momentum transfer to the nucleon that the
path could no longer be considered straight. Hence we must cut
off the spectrum at a meson energy of w = BEn , Where ﬁ is
a fraction less than 1. We shall follow Heitler and Peng in
taking ﬁ “'%_T.

It is &lso necessary to pick a reasonable value of the
minimum impact parameter b. For a collision with a nucleon at
rest, take b = fic/M, the Compton wave-length of the nucleon.
The momentum transfer must be much less than M in order that
the path of the moving nucleon be considered straight relative
to the position of the other nucleon, so that we then see from
the Uncertainty Principle that b~ Ax 2 fic/M. Since then we
have bP.<<Il, the quantity in brackets in (8.30) can be shown
to be roughly 2 log 8/Cz, where C = Euler's constant = 0.5772.

Thus q(w ) depends on the impact parameter b only logarithmical-

lv.

v
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0f course, with a2ll these approximations and uncertainties
in the various cquantities b, ﬁ , etc. which occur in the ex-
pression (8.30) for the meson distribution g(ed), it is clear
that we can expect the method to give no more than an order-of-
magnitude estimate of the cross-sections calculated therewith.
Our results may be in error by as much as a factor of five or
ten. It should be noted also that we are using the theory of
a neutral meson field and neglecting any effects which may be
due to the change of isotopic spin of the nucleon. We are
forced to assume that the distribution of positive mesons in
the field of a moving proton, or of negative mesons in the field
of a neutron, is given also by (6.30).

We shall now apply this method to the producticn of nucle-
on pairs in the collision of a fast moving nucleon of energy E
with another nucleon at rest. It is assumed that the mesons in
the field of the moving nucleon beget nucleon pairs on the rest-
ing nucleon through processes like (4.01) and (4.80), and the
cross-sections for such processes are taken as that calculated
in the first part of Section IV and expressed in (4.50). Call
this cross-section, as a function of the incident meson energy
Ep =W, ¢'(w) . Then the total cross-section for the produc-

tion of a2 nucleon pair in the collision is
RE

(8.33) ¢ (E) =2 o"(w)1(b>)dw
4M

The upper limit of integration will be taken as pEI*'%E in ac~
cordance with the above arguments, while the lower limit is

W = 4}, the threshold of the meson-nucleon process. The fac-
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tor of two occurs pecause we must consider the two Lorentz sys-
tems in which first the one nucleon and then the other is taken

as initially at rest. Write c'(w) as
2 \3 fe)?
. ! = (3 2&) £
(6.33) ¢ lw) (tc) (M) (w)

where f(w ) is the quantity plotted in the graph of Fig. 4.3.
Put (6.30) in the form |
T

(6.34) lu) de = o= "%E) "’é{’_’ G (3)

where

(6.35) G (3) = 23 K, (7] K (3) . .
R A R U A S

(6.36) 3 =\/(%)1 +(%)'L = \Vattx~

with a = P/M = 0.156, x= W/E.

o
(6.37) . ¢ (E) = %;(%%)q(%%)LquF(Ex)Gfi)Jx.
E

G(z) is evaluated from tables of modified Bessel functions,

and it is tebulated below.

X 0 0.05 0.10 0.15 0.20 0.35 0.30
G(z) 3.017 23.993 2.930 2.783 23.582 2.362 23.143
X 0.35 0.40 0.45 0.50
G(z) 1.933 1.741 1.566 1.408

The integration in (6.37) is carried out numerically and
the results are tabulated below.

E/M 15.83 186 20 26.7 40 80 160

3?_)-“('5—(1 3
1 (ic p1) 10" 0.14 0.39 0.55 0.87 1.32 1.76 1.75
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VII. PRODUCTION OF MESONS IN NUCLEON-NUCLEON COLLISIONS

For sake of comparison it is of velue to estimate the
cross~section for the production of mesons in nucleon-nucleon
collisions. We shall consider the process
(7.01)  N(kg) + (k) —=N(B)) + N(By) + M17(8)

This calculation has been carried out by C. MorettelS, but her
method of momentum-space integration is so complicated and dif-
ficult to understand that we shall repeat it using the methods
and formulas developed above. The pertinent diagram is given
in Fig. 7.1 below.
N (5) /TS N(p,)
/

/
/
/

ré' Al
VA

N(L) Pl )

(Fig. 7.1)

From this we can write down the transition matrix element
L] \
3 = - ’ "
(7.08) H = (VAn gkc)” (2e)7* 272 (0" -0
where

! -

Q = Y (Pl) ’Yg ( Fi-™M )_l 7@—\P [hoJ'
, ('S\,L—/"l)—l ‘F ((’7-) YS' +(k,)

and O" is got by interchanging ﬁl and

(7.03)

A
Po everywhere.
A

A A A A
(7.04) T'=p; 434, s'=Dpg -k
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In the center-of-mass system let

(7.05) kg = (B,,E), %k = (Eo, ~¥), $1 = (E1, By),
B, = (Ez, Bg), 8= (g, @), T = 2E,

We can simplify (7.03) to obtain

P ps) s YU ) PLpIF ¥ (k)
(87— p7) (F‘Z—Ml)

The differential cross—-section for the process is given by

— 2m %
(7.07) de¢ = v & 2 IHI Pr

(7.08) @)

where we have a factor i to average over the spins cof the ini-
tial nucleons. The relative velocity v is given by

(7.08) v/c = Zk/EO

while the density of final states is, by (1.30),

(7.09)  pp = |2nke) ® E\E, e dE, df2, dedx

where ol is a polar angle locating the vector § and measured
from the plane through Ps; and k. Combining (7.028) and (7.07-
.09), we get

¢ JE AJ). cl&cJO( I} TE
O b et~ M4 lo'-0"l

where we have already multiplied by the factor M4/E4E 1E5 which

corrects the spurs for normalization. Evaluating the sum of
the absolute squares of H by the same methods as previously,
we again obtain from 216'0“ an exchange term proportional to
(ﬁi - ﬁé)g which we are obliged to neglect in order to carry
out the integration. Since we are interested only in high-en-
ergy collisions, we may also neglect the meson mass P Then

we find for the total cross-~section



5% (T, .5 ) dE, 4, de dx
(7'11) g = m AL nn. =
N (£ = ™M*) (85 -p7)

gb (Eoe—-3-k)dE,dfl;ded
32mhe kT2 [ (T-2E, ) (E,E, + purk—M +3p%)

The first integration is over &ll positions of 4, which lies

on & surface given by (cf. (1.08))

(7.12) Po'q = paa cos @ = 3F° - (T - Ej) g,
Fo = 72 . 2TE, - & p(r - 2E,) = e® - u°
1
\
\
X
0 af\\ -
= 'y

/
"4

{FPig. T=2)

Let the angle between P, and k be 7/. Then Fig. 7.8 gives
(7:13) Gk = gk (cos @ cos Y+ sin @ siny cos ol )

Thus the integration over « 1is easily carried out, after
which we integrate over &€ , and use the relations

{(9:12) & »g'e PPPlr - By), £~ = parige

(cf. (1.12-.13)). Integrating then over 7/ , we obtain

6 _ j‘ '%_T AEI(T_ZEI)
(7.15) 1thck? A (TL_ZTEI+M1)L

z ! e EoEl—Mz'}kd ! 1 ot
{(T ~2TE' +2M7%) |n M (E.-E) +2kf’})y =g'-M;

since the maximum value of nucleon energy is given by (1.18)

as
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o

(7.16)  E'© =[18 4 wB-(u 4 p)?]/ar =[T3-—”M}1 + pf)/ar T 4t
for T - 2M>> P

We note that if En is the energy of one of the nucleons
in the Lorentz system in which the other is at rest,
(7.17) T3 = 2m(E, + M), k° = BU(E, - M)
(7.15) is integrated numerically, and it gives the following
typical values:

En/M 5.5 12.5 19.5 41.3 80.9 161
9% =3 (ke .J: 2
s —‘E_(-.) ™M 0™ 1.37 0.97 0.80 0.47 0.30 0.18

(7.15) is quite well represented at high energies by
¢

=3 []oq %E-~ _
hTiadst) « = qoienE, (1 5 ')

It appears that meson-production and pair-production become

of comparable probsability at very high energies.
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VIII. PRODUCTION OF ANTIPROTONS IN COSMIC RAYS.

Using our calculated cross-sections we can now estimate
the numbers of antiprotons produced in the atmosphere by cos-
mic radiation. Consider first the interaction of pi-mesons
with nucleons to produce pairs by processes like (4.01).
Since the energy required is so high, we can neglect the ef-
fect of the nuclear binding, and we can use the cross-section

expressed by (4.50). This will be written as
2,3 i 2
9 1

(8.01) &(E) =(kc) (—I\—,\E) f(E)

where f(E) is plotted in Fig. 4.3, and E is the energy of the
incident pi-meson in units of l, the nucleon mass.

According to the work of Sandslg

, mu-mesons are produced
in the upper atmosphere with a spectrum of the form g7 dE,
with 7’252.5, for high energies, and we can take this form al-
so for the spectrum of pi-mesons in the atmosphere. Thus the
probability that & pi-meson will have energy between E and

E + dE is given by

(8.03) p(E)dE = ('Y‘ 1)(E;) ¥ - 1g-7 GE, E,< E<®

Me

e

where E, is a cut-off energy on the order of
We shall consider loss of pi-mesons only by decay, neglect-
ing nuclear interactions. The fraction of mesons which survive
a distance x in the atmosphere is given by exp(-x/ct') =
exp(—xP/ot‘E), where =T = (E/F)'c is the lifetime of the me-
sons corrected for relativistic time-dilation. T is the life-

time of the meson at rest, approximately 2.8 x 10~8 sec.zo If
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P(X) is the density of nucleons at distance x, the probability
that a2 meson of energy E will interact before reaching sea-

level or before decaying is

(8.05) g lE) =er(x)e_xP/°tE c(E)dx.

H is the distance of production of pi-mesons above sea-level,
and P(x) = Po €Xp [-o(H - x)] , where Po = 7.8 x 10290 cm™9 is
the density of nucleons at sea level. o = 1.4 x 1078 cmt.
If we assume mesons produced at about 100 gm/cmz below the top

of the atmosphere, é'“}{: 0.1, and H = 1A.4 KlM. (8.03) becomes

3(E) = FOK(E)Ede (l*@ySH)S-I

>
§ =Erté —o = (H‘I g— —l-‘*)~|o" e

(8.04)

Thus the probability that a pi-meson will make an antiproton

in the atmosphere is given by
[~ -]

. _ 1 , E)dE =— p, € - '
(8.05) Y =3 LMg(E)p(MdE 2 {’ (kc M

oo
-1 e —~SH -1
\y-l)Ech e Ye(E)(1-e *") s dE,

a4M
where the factor 5 occurs because a positive meson produces an
antiproton only in interacting with a neutron, a negative me-
son only with a proton. Numerical integration with )/ = 2.5
gives a value of 93.1 for the integral, so that
(8.08) Y = 2.4 x 1076 (£ /m)1® (gR/8c)5
or about lO‘G(gg/ﬁc)s.*

i WWe leave all results expressed in terms of the coupling
constant, since its value will probably be revised when current
calculations of the nuclear interaction potential taking into
account exchanges of two mesons are completed (R.P. Feynman,
class lectures). It should be remembered that we use unration-
alized units, in which the Yukawa potential is of the form
gzexp(-pr)/r for the scalar theory. In pseudoscalar theory,
gd/fic is of the order of unity.
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We can also calculate the production of antiprotons by
the primary cosmic rays. Since the energies are so high, col-
lisions can be considered as between individual nucleons only,
neglecting nuclear binding, and we can use the cross-sections
estimated in Section VI.

The spectrum of primaries can be taken as that in (8.02),
with a cut-off energy determined by the latitude. For a lati-
tude of 41°N., Eo = 4.7 Bev. or 4.44. In penetrating a dis-

2

tance equivalent to d gm/cm® of atmosphere, the number of anti-

nucleons produced per incident primary nucleon is

(8.07) Y= Nadf ¢ (E)p(E)GE
™

where N = 6.02 x 10°°

is the Avogadro number, and ¢ (E) is
the cross-section calculated in Section VI, as a function of
incident nucleon energy. Numerical integration is used to ob-
tain, _With 'y= SeDy

PR o)t =

4.9 x 10~8d(gR/fic)*

(8.08) Y= 5.3 x 109a(E_ /i)

Thus, considering that a primary nucleon penetrates to

an average depth of 100 gm/cmz

before losing most of its ener-
gy by meson production and other processes, we see that we can
expect only about 5 x lo‘s(gz/‘hc)4 antiprotons per primary cos
mic-ray nucleon.

It is instructive to compare the effectiveness of differ-
ent parts of the primary cosmic-ray spectrum for antinucleon

and for meson production, by evaluating (8.07) for different

cut~off energies, using the cross-sections calculated in Sec-
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tions VI and VII. Carrying out the numerical integrations,
we obtain for the yields Y, of anti-nucleons and Y, of mesons,
per primary nucleon, the following values. (gg/ﬁc = 1 and

d = 100 gm/cm8 here.)

E,/M 4.4 100 1000
Y, 4.9 x 100% 4.3 x 107 1.9 x 107°
Yy 2.9 x 100° 4.7 x 10°° 7.0 x 107°
Y, /Y, (e/fc)7t 1/80 1/1.1 2.8/1

Thus it is seen that meson production exceeds anti-nuclem
production by a factor of the order of 80 for the entire pri-
mary spectrum, but that the two are comparable for primaries

of energies 2 10! or 1018 e.v.
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IX. CONCLUSION.

In the preceding sections we have used standard perturba-
tion methods and the pseudoscalar meson theory to compute the
cross-sections for the production of antiprotons in meson-~-nuc-
leon and in nucleon-nucleon collisions. These were then ap-
plied to determine the numbers of antiprotons to be expected
due to these processes in the interaction of energetic cosmic-
ray particles with the nucleons of the atmosphere. These num-
bers were found to be very small, on the order of lO"B(gz/‘ﬁo)4
per primery particle, so that it is not too surprising, on this
basis, that antiprotons have not yet been observed in cosnmic
radiation. However, it is of value to compare antinucleon pro-
duction with meson production, as was done at the end of the
last section. There it was found that meson production exceeds
antinucleon production by a large factor of about 80 for the
entire primary spectrum. (Note that the meson production calcu~
lated is itself too small to account for the observed numbers
of mesons in cosmic rays.) But for primaries of extreme ener-
gies, the cross-sections become comparable, and one would ex-
pect about as many antinucleons as mesons to be produced. Of
course, there is evidence that at such energies multiple produc-
tion occurs, and one is inclined to doubt that the simple per-
turbation treatment used here is adequate.

Fermi7 has gone to the opposite extreme and used a statis-
tical treatment to estimate the numbers of pi-mesons and anti-

nucleons to be expected in energetic collisions. He assumes
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that the entire energy of the collision is concentrated in a
smell volume which is & sphere of radius ﬁc/r but contracted
in the direction of motion by a Lorentz factor 3M/VW, where W
is the total energy in the center-of-mass system. This energy
is assumed to be distributed among states containing different
numbers of pi-mesons and nucleon pairs, according to their
statistical weights. By so doing he finds reasonable numbers
for the multiplicity of meson production. At low energies of
about 10 to 100 Bev. for the incident nucleon, only about 0.002
times as many antinucleons as mesons are produced. (The cross-
sections calculated by perturbation methods are in a ratio of
about 0.1 gg/ﬁc at these energies.) At extreme energies, great-
er than about lO3 Bev., the nuwber of mesons to be expected is
given as about.O.SS (En/M)ﬁ, with the number of antinucleons
as 0.76 (En/M)ﬁ. Here E, is the energy of the incident nucleon
in the laboratory system. Both these numbers are on the same
order of magnitude, in vague agreement with our results as to
the cross-sections. Fermi assumes a total cross-section for
all processes of abouttdﬁc/F)g =129(ﬁc/M)2 = 5.7 x 107°% cn?,
This is much larger than any of the cross-sections obtained
here, unless one takes a very large value of the coupling ocon-
stant. The maximum of our cross-section for the prcduction of
antinucleons in nucleon-nucleon collisions, from the table on
p. 86, is about 1.8 x 10~S(fc/10)%(g8/ac)? = 8.0 x 107°1
(gg/‘hc)4 om®.

While both methods give comparable values for the ratio

of the numbers of pi-mesons to antinucleons produced in colli-
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sions at extreme energies, Fermi's statistical treatment would
seem to predict a smaller relative total production of anti-
nucleons than the perturbation method. Since antiprotons have
not yet been observed, this may indicate that his method and
viewpoint are somewhat closer to reality than the conventional
theory used here.

Antinucleons produced in the very energetic collisions
observed in photographic emulsions would have such a high en-
ergy that they would not be expected to be annihilated in the
same emulsion, and they would thus be indistinguishable from
ordinary nucleons. One could hope to observe antiprotons only
lower down in the atmosphere after they had lost most of their
energy, and it seems indicated that their total number would
be very much smaller than the numbers of mesons or nucleons in

cosmic radiation.
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APPENDIX I. ANNIHILATION OF ANTIPROTONS IN BOUND STATES.

An antiproton in hydrogen will ultimately be captured in-
to an S-state orbit about a proton. It is of interest to de-
termine the lifetime against annihilation in such a state.
First, it can be shown that annihilation is forbidden if the
state is a singlet (180). The parity of such an S-state with
a nucleon and an antinucleon is odd. (This is the same as the
case of positronium, cf. reference 231). The two mesons coming
off can then have only odd values of total J, i.e., J = 1, &,
etc., since they have zero spin. Hence annihilation into two
mesons can occur only from the triplet (581) state, and not
from the singlet state, since total angular momentum must be
conserved.*

It is instructive to obtain this conclusion using previ-
ous methods. Using pseudoscalar coupling, it is shown in
Section II that the matrix element for the transition is pro-
portional to ‘.FF 'i \h :\PF* (g —EE-?I ) \h , where \.h. is
the Dirac wave-function for the initial proton and \h that
for the proton in a negative-energy state which fills the hdle
which represented the antiproton. §1= (€, q) is the four-
momentum of one of the emitted mesons. In the non-relativis-

R
tic limit, xh: Y. = O because of the orthogonality of states

e In the singlet state, annihilation would be most likely
into two charged mesons and a neutral meson, each taking on
the average 1/3 of the available energy.
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of positive and negative energy. Hence our result depends
only on the term \h*o’(-’i \-h. or ul»F*O‘} \-h , if we take the
z-axis along the direction § of the meson. (This is permis-
sible in a singlet S-state, which has spherical symmetry and
no preferred axes.) The same result would follow from the
scalar coupling, in this limit.

We must, however, take into account that the initial
singlet state must be anti-symmetric in the spin parts of
the wave-functions of the initial particles (proton and anti-
proton). To convert the matrix element into a form in which
the wave-function of the antiproton appears, we use the
charge-conjugation operator C, which has the property that
if + represents a particle of positive charge, and satisfies
the Dirac equation, then ?*:: C:*' represents a particle of
negative charge which is really a hole in the sea of negative-

energy states of the former positive particlegg. Then our

matrix element can be written down, putting &, = C)’

Yp =" ‘f* v et o= (FC-.*» R
(1.01) M = POy, = ?; Yea Oup ¥ip =

?% (‘PC"*L Oup¥p i%‘fvc;; Ouptp= %:y NYP ‘Pv% )

where N = ¢~10. Now let superscripts (1) and (2) refer to

3

the two spin states (up or down) of the initial particles.
For the singlet state (total spin zero), we must use, instead

of {I.01);

), (2) (2) ()
(r.oz) M =‘Vl'7' % Nyp[‘fy Ys — Pr Ve )
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In the usual system of '&,p matrices, in which they are Her-

mitian, a suitable charge-conjugation operator C is given by

( 000 -1
I.03) -~ —{Bwx. — | 001 0
C =-iB 1= {o10 0
-1 00 O
-
Then C = C, and
01l 0 O
— — 10 0 O
(I.04) N _Cd's_— 00 0 -1
00~1 O
() (2) (2
Non-relativistically, (P = \P“): (0 010), cr - q/ )=

(00 0 1l). Putting these into (I.03), we see that M = 0 so
that the transition is forbidden in the singlet state.¥®

The annihilation into two charged mesons for an S-state
of the bound proton and antiproton must therefore go only in
the triplet state. The lifetime T is simply given by
(1.05) =} :4v ((O)l{:[o)‘t‘:n‘r‘,‘_clé(o),l
where |‘<b (O)lz is the density of nucleons at the origin, and
v is the relative velocity of the proton and antiprotone.
6 (0) is the zero-energy limit of the annihilation cross-sec-
tion, which is given by (3.068). We multiply by a factor of

four since we must use the sum over initial spin states, and

W In the annihilation of & positron and an electron, in the
ground-state of positronium, into two gamma-rays, it turns out
that one obtains for M, “""Ys ‘h‘ , 80 that 0= Ys» and

_1w ; 1 0
NE U R= 0 g 0 0
0 0

so that M ¥ 0, and the process is allowed in the singlet state.

It is_forbidden in the triplet state from other considera-~

tions8 ®
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not the average, which is used in determining the cross-sec-
tion. @»(r) is the wave-function of the ground-state of the

proton-antiproton system, given by the usual formula

%(r} = (ﬂ'ag)“i e_r/"L

(1.08)
where a = B‘hgcg/Me8 is the Bohr radius, using the reduced

mess of %M. Then (I.05) becomes
2 y i T 3 M
- _ A [ 97 e s §
(1.07) T ~ g kc) (’Rc) +

or T = 1l.44 x 107%7 (gg/ﬁc)“g sec.
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APPENDIX II. MU-MESON DECAY SPECTRUIM.

As a further application of the formulas of section I
for momentum-space integration, we shall work out the energy-
spectrum of the electrons from the decay of the mu-meson.
Such spectrz have been worked out by Tiomno, VWheeler, and Raug"j
for the five usual beta-interactions. We shall use the com-

pletely anti-symmetric interaction of Wigner and Critchfielén.

Then the matrix element for the interaction can be written

VK 23R 1

(11.01) — o 2 O 7
F* =1 "QE' P; P ﬂ;
VYob, e W

where q! is the plane-wave Dirac spinor for the decaying
meson, and $ VP, ‘,L are spinors for the particles produced,
which have momenta 51, 52, 53, energies El, Eg, ES’ and masses
my, Mg, Mz, respectively. M is the mass of the mu-meson.

The components of the Dirsc plane-wave spinors are tabulated
in HeitlerlB, p. 86, and we can use them to evaluate the sum
of the absolute squares of H over the spin states of the fi-
nal particles. In the c.m. system, the state of the initial
(resting) meson is given by”{( = (000 1). Then we get, us-

ing also conservation of energy and momentum as embodied in

(1.08), 3
2
(11.02) SIHIY = D | H;]
=1
where

. . . 2
(11.08) ) 3= 63(E; + my)[uP + B~ (my + mg)®- 2uE,]/8E;EgE;,

and |H8|2,|H3'2 are obtained by cyclic permutation.



=83~

Assuming the decay to produce an electron of mass my =m
and two neutrinos of zero mass, we obtain
(11.04) 2 |H1% = 62 [(E] + n) (u® + n® - 2ME;) «

E,(M° - m® - 2ME3) + Egz (M° - m® - 2MEg) | /8E1EEs.

o
The decay probability per second is given by the usual

formule y

(1I.05) dw = Zér‘ ALY Pr

where fF is the density of final states, given according to

(1.20) as

= _6
(11.08) pp = 3(3m)%(3rhc)  E3EgE.dEGE

2
where we have already integrated over angles, which do not
appear in 2: |H]2 . In the integration over neutrino energies

E,, Ez, the last two terms of (I1.04) give an equal contribu-

tion. Using (1.12-.13), we obtain for this case,
(z.07)  [amp = py,  [Eam, = dpy (x - By,
5 _
]E. U.Eg -

2 2 8.

where py~ = E{%- m

5

Hence the probability that an electrm

is emitted with an energy between Eq and E; + dEl is given by

— Gl? T_2 . M+m?®
(I11.08) dw —4(2“)3'1‘.‘1& { m (M 3 M )

+ 2E, (Ml—wsM +W\1) - l’;‘ ME|2} dE" o &

with B = (¥° + m®)/aM, by (1.16).

E,<E,

Neglecting m <<}, this simplifies to

6" M _5 dE ,m(E(—'M
(II-09> A"\) :2(2")3t1céfIE|(M 3El) ' 2
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Then the mean-life of the mu-meson, T , is got by integrat-

ing over Elz

H . G*™M*S
(I1.10) — =JJ“ = 3 N
T Z(er) Y C6

Teking the meson mass as M = 210m, and T= 3.15 x 10-6 sec. ,

we find G = 3.33 x 1074° erg-cm®.
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APPENDIX III. ADDITIONAL PROCESSES WITH ANTIPROTONS.

(a) Charge Exchange.
A proton colliding with an antiproton could exchange a
charged meson with it to form a neutron-antineutron pair:
A =, A A L '\
(I11.01) P(py) + P(Dg)—=N(qy) + N (qy)

N*(4) NN

This is represented by the diagram of Fig. III.1l, and it is
seen to be analogous to proton-neutron scattering, except
that one of the nucleons is moving backwards in time. In
fact, the cross-section in lowest order will have the saﬁe
form as that for scattering with one meson exchanged. The

matrix element is given by
(111.02)  H =4mg h7e™ plpa) yo b (92)
[ {;?:—ﬁ, )1”1‘3]-' F (9. ps ¥ (o ),
with
(111.03) P Y (prld = M\Hf.) ) Fo b (pa) = —M ‘l‘(fz)
Forle) = My, ), T4 (92) =—M¥ ()

The cross-section is then

\ L
(1T1.04) de = % % 2 IH fr

with
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(111.05)  v= (2p/B)ec  end  p. = pEJN

2
Z(Z'rr’hC)
in the c.m. system. Thus the differential cross-section is
4 (Qﬂ
(111.08) dg =-2 - dJL

IE™ (Q%+ pY)
where Q = \ﬁ - al is the momentum transfer in the c.m. sys-

tem. For large energies the total cross-section is

q 4
=3  -_73
(111.07) ¢ 4AE* o (E°+M)’

where E, is the energy of the incident antiproton in the lab-
oratory system. At low energies, if v is the relative velo-

city of the pair, .

4 q
(111.08) & = 23 (—Pl (—\i)
le'L ’A C

Thus this charge-exchange reaction has small probability in
comparison with annihilation of the pair into two mesons, for
the pseudoscalar coupling.

In the scalar theory, however, with 9= 1 in (I11.03),

the cross-section is larger, and (III.08) becomes

4 z 212
(1I1.09) ds = CEr (et )

so.that at low velocities

(III.10) o y —'-—-T(%L_)Z(,E_)q

This is larger than the annihilaticn cross-section, except
for energies less than about 1 e.v. Of course, if an anti-
neutron is heavier than an antiproton, just as an ordinary

neutron is heavier than a proton, this mass difference would
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act to prevent the exchange of charge at low energies (less
than about 1 Mev.). But on the scalar theory, an antiprotm
slowing down from about 100 Mev. would be seen to disappear
and reappear as it lost and recovered its negative charge in

collisionse.

(b) Scattering of Antiprotons.
In lowest order, the scattering of an antiproton with a
proton would take place through the exchange of a neutral me-

son in accordance with the diagrams of Fig. III.Z.

P(3)  P{)

BT

P PG Py b)) \PG)

(@) (Fig. III.3)

The notation is the same as in III(a). We can write

down the matrix element immediately:

(11n.31) H = 4yl B et [T ) s i) (1307 T
:‘;(‘1' )VS \{’(f') —"‘T’(‘lu)’Ys “}’(‘11.)“"5.-* f:\z)l"/‘t]-,q/(fz)}/s\}'(fa, )}

Working out the cross-section in the usual way, we obtain
4 z
= I SN Skt

(I - f—é—z)—‘( |+ )-'4- (I +€;)—ZJ dJ1

where E is the energy and Q = |p - Q| is the momentum trans-
;i

ar.

fer in the center-of-mass systen. he non-relativistic cross-
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section is & constant:

e -2
(I11.13) ¢ = —[%4—1 (""41%7—)

The scattering of antiprotons with neutrons takes place
through formation of a virtual charged meson. The diagram is
similar to Fig. III.2(B). The cross-section is just the first

term of (III.12), so that the total cross-section in the c.m.

system is
(III.14) & = LGN (l _pmo)2
4E*? f%i)

Non-relativistically this reduces to (III.13), replacing g,
by g. Thus scattering is seen to be of smaller probability

than annihilation at all energies, in the pseudoscalar theory.

(¢) Annihilation into Gamma Rays.

The second diagram of Fig. III.2 above leads one to ask
of the possible importence of & process in Whiéh the anti-
proton combines with a proton to form a virtual neutral me-
son, which then decays into two gamma rays as neutral mesons
have been observed to do. The cross-section for such a reac-
tion can be worked out in terms of the mean-life T of the

neutral meson, as follows.

P,

(Fig. III.3)
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The mean-life is given by

(111.15) —‘f - —2’—5 ‘Hllzrl

where Hl is the matrix element for the decay, and r' is the

volume of momentum space, given by

(I11.16) - -4-1'11—7:—— T

- —
© ol o)
Z(ZNLC, 2(2" S
where q = %P is the energy of each gamma ray in the c.m. sys-

tem. On the other hand, the annihilation cross-section is
TIT.17 - Zm &
( ) ¢ = I IHlw P,

where v/c = 2p/E is the relative velocity in the c.m. systen,
with 51 = (E, D), ﬁz = (E, -P) the four-momenta of the inci-

dent proton and antiproton. Then also

_ 4nE*
(1I11.18) e —ms

and IHI Sv is the average over spins of the square of the

matrix-element, given by

H = v4r j,,’ﬁc \TJ(P:.)'}/:' ‘l’(f')
[(povp) =] Ve B

where the factor 8P corrects for a factor included in Hl

(111.19)

because the initial meson was there free. Thus we get, us-

ing (III.15),

ﬁ 8rrj°Lt_\zcv.E3 ' ’Tjoz 2
I1I.50 cel = - i =
R pp (4B =) 2 pp E
Non-relativistically, with E = M, p = %Mv/c,
2D P .h

(IT1.21) - (Jo ’Ei) . (___

& 4 e (M v lu'r

8

The factor h/ﬁ1;~'lo" for T~10"1% sec. Thus this process
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would have a cross-section even smaller than the direct an-

nihilation into two photons, the cross-section for which is

given by15

e).t.c
{11T.82) s =Tr(—") rige
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