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Introduction and Summary

In mathematical literature, the term pseudo-norm has no one specific
definition but is used for functionals satisfying some but not all of the
postulates for a norme. The notion of such functionals or "™pseudo-norms"
is common in the study of linear topological spaces})’which, from one point
of view, may be regarded as generalizations of normed linear spaces. The
particular type of pseudo-norm considered in this thesis is the triangular
norm of Menger's "“generalized vector space".2 Menger noticed that only
the triangle property of the norm was necessary in order to obtain certain
results in the calculus of variations, and thought that a linear space with
a generalized triangular "distance" might prove to be a fruitful concept.

We first consider spaces (type K, see text) which are more specialized
than those treated by Menger. In this thesis, spaces of the latter type
are termed "spaces of type G"o Apart from the intrinsic interest of type K
spaces, certain aspects of their theory are applied in Chapter IV to the
treatment of spaces of type G

In Chapter I a space of type K is defined, the independence of the
pseudo-norm postulates is established, and the question of the continuity
of the pseudo-norm is treated. In Chapter II the notion of equivalence
classes leads to a vector space of type K/2, the existence of which depends
only on the presence of a pseudo-norm in K. The more general spaces of
type G are then introduced. A metric topology defined in terms of the
pseudo-norm is discussed in Chapter IIT and functionals linear with respect

to this topology are considered.

1)e See, for example, Hyers, Ref. 7; LaSalle, Ref. 9; von Neumann, Ref. 16;
Wehausen, Ref. 19,
2)e Menger, Ref., 13, p 96.
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The question of the Giteawdifferentiability of the pseudo-norm is
taken up in Chapter IV and a connection is established between this
property and the existence of functionals linear in the topology of the
pseudo-norme

Chapter V investigates connections between the pseudo-norm and order=
ing relations in a real vector space. Conditions are found under which a
partial ordering can be defined in terms of a given pseudo-norm, and

converselye.
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CHAPTER 1

Spaces of Type K

1.1, Definition, A space of type K is a set of undefined elements x, y,

Zy eeey Satisfying the following postulates:

1l.1.1s Postulates for a linear space., K forms a real linear space (vector

space), This means
1.,1.1(a)s The elements of K form a commutative group under an operation
termed addition and denoted by 4. The group inverse of an element x is de=
noted by =x, the identity element by 8, and the operation x + (=y) by x=y.
1.1,1(b)e There is defined in X an associative and doubly=distributive
multiplication of elements of K by real numbers a, by ¢, see ¢ This oper-
ation is called scalar multiplication and is denoted by a dot, thus « o It
is subject to the following explicit rules:

a real, x € K, then a.x € K;

a realy, X, ¥, € K, then a.{x4y) = aex + a.y;

as b, real, x € K, then (atb)ex = aex + box;

ae(bex) = (ab)exs

l.x = x,

1)
1,1.2, Postulates for the strong norm Xx. There exists a function defined

for all x € X denoted by llxll and called the (strong) norm of x such that

1.1.2(a), lxll is real;

1.1.2(b)e lIx + ylI £ Ixll +lyll;

1.1.2(c)e a realy, lla.xll = lal lxl;

1.1.2!d). X # 6 => “X" > 0.

1). The adjective is used merely for convenience in distinguishing this
norm from the pseudo-norm of l.l.3.
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1.1.3., Postulates for the pseudo-norm or P-norm, P(x). There exists a

function defined for all x € K denoted by P(x) and called the pseudo-norm
of x such that

1.1.3(a)s P(x) is real and is not identically zero;

1.1.3(b)e P(x +y) £ P(x) + P(y);

1.1.3(c)e a > 0, P(acx) = a P(x),

3:325:_ The pseudo-norm is bounded from above, i.c., there exists a con=-
stant M such that P(x) € M lixll for all x € Ko We shall suppose M to be the

infimum of all such possible numbers.

Remarks on the Postulates.

The strong norm of l.l.2 is the usual positive definite norm of normed
linear spaces. The pseudo=norm of 1l.l.3 is much more general., It can take
on negative values and P(x) can be zero without x being the zero element.
The pseudo-~norm may be described verbally as a sub-additive positively-
homogeneous functional. It will shortly be proved (theorem 1l.3,10) that
postulate l.1l.4 is equivalent to the continuity of the P-norm with respect

to the metric topology of the strong norme

1.2, Some Immediate Consequences of the Postulates.

We assume for the moment that mathematical entities exist which satis-
fy 1.1.1 to 1l.1l.L (examples will be produced later), and proceed to write
down for purposes of reference some known simple consequences of the

postulatess,

Consequences of Vector Space Postulates,

le2.1s Oex =8
Proof: a.x = (a + 0)ex = aex 4 Oox by 1.1.1(b),

oo Dex = 60



Proof.

2.9 = 6.
2eX = ao(x + 8) = acx + 2.9 by 1.1.1(b).

... a.e = e.

(=1)ox = =x.

8 = 0,x by 1e2.1,= (=1 4 1)ex = (=1)ox + lox ® (=1)ox + X by

1,1.1(b)s Hence (=1).x is the inverse of X, ie2e, (=1)ex = =X,

Consequences of Strong Norm Postulatess.

102.h.

Proof.

llell = 0.
llell = 12,8l by 1.2.2, = 2 ll6ll by 1.1.2(c)e

& llell = o,

Ixll = 0 if and only if x = &,
Sufficiency: le2ele
Necessity: Suppose llxll = O but x # 8. Then, by 1l.1.2(d), lxll > 0,

which is contrary to hypothesise

lIxl = ll=xll.

l=xll = I<1.xll by 1.2.3, = |=1| lxl by 1.1.2(c), = Ixll,

| hxll = Nyl | £ lix + 3l

Ix +y =yl £lix + yll 4+ l=yl by 1.1.2(b), = lix + yll + Wyl by 1.2.6,
iceey lIxll € lx + Fll + ylly lxll < Uyl € Uz + yllo

Interchange x and yo lyll = lixll € llx + yllo

Hence l xll = lyll ! €lx + yl

| el = Uiyl | £ 0x -yl
Put =y for y in 1.2.7 and use 1l.2.6.

| sl = Uzl | = | il =l | £ 0x 4+ G = dx = w0
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Consequences of Pseudo-Norm Postulates.

1.2.9. P(8) = 0,
Proof. P(8) = P(28) = 2 P(8) by 1l.1l.3(c).
oo P(G) = O,

1,2.10s P(x) = P(=y) € P(x + y) and P(x) = P(y) € P(x = ¥)o
Proofs By lele3(b), P(x +y + =y) € P(x + 7) + P(=y),
iceey P(x) £ P(x + y) + P(=y), P(x) - P(-y) € P(x + ¥).

The second part now follows if y is replaced by =y

w

1.2,11s P(x) 2 =P(=x) and P(=x) 2 =P(x).

Proof, Put x = @ in the first part of 1.2.10.

P(8) - P(=y) € P(6 + y), hence
<P(=y) € P(y) which is the first part.

By replacing y by -y, we get P(=y) = <P(y).

1.2.12, For all real a, P(a.x) = a P(x).

a P(x) by loloB(C)o

Proofe If a > 0, P(a.x)

If a =0, P(a.x) = P(8) = 0 = a P(x).
If a < 0, P(x) 2 =P(=x) gives a P(x) € ~a P(=x) = P(~g.=x) by

1.1.3(c)y 1e2ey a P(x) £ P(=ao=x) = P(a.x), hence P(a.x) 2 a P(x).

1l.3. Strong Continuity of the P-Norm.
1)

Magur ’ states without proof that condition l.1l.l, P(x) € Mixll, is
equivalent to the continuity of P(x) with respect to the strong norm

topology. We first give precise definitions and then prove this resulte.

l.3.1. Definition of Strong Continuity.

A real-valued function f(x) defined on a subset E C K is strongly con-

1)s Mazur, Ref. 11, p 130,
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tinuous at x5 if, corresponding to any € > O, there exists a &(€, xo) >0
such that llx - xoll < § implies ,f(x) - f(xo)l < &

1.302. Definition of Strong Upper Semi-Continuity.

A real=valued function f(x) is strongly upper semi=-continuous at Xq
if, corresponding to any £ > O, there exists a &(€, xo) > 0 such that

lix = x5l < 8 implies f£(x) < £(xg) + .

l.3.3. Definition of Strong lower Semi-Continuity.

A real-valued function f(x) is strongly lower semi-continuous at Xq
if, corresponding to any € > O, there exists a 8(&, xo) > 0 such that

flx = xll < & implies £(x) > £(xg) = &

1304 Lemmao. The pseudo-norm P(x) is strongly upper semi-continuous at

any point Xne
Proof. The constant M of P(x) € Mixll is positive since P(x) is not identi-
cally zero, and, if P(x) < 0, then by le2.11l P(=x) > = P(x) > 0.

P(x) - P(xo) € P(x - xo) by 1l.2.10

IN

M Ilx = xgll by 1.1k

< € when |lx - xoll < M,
Choose 3 = €/M, Then P(x) < P(xg) + € when llx - xgl < 8, that is
P(x) is strongly upper semi-continuous at X, by the definition

1.3.2,

1.3.5. Lemma. The pseudo-norm P(x) is strongly lower semi-continuous at

any point Xqe
Proof. P(xg) - P(x) — P(xg = x) by 1.2.10

€M lIxg - xll =¥ lIx - xgll < € when lix = xyll < €/,

o P(x) > P(xg) = € when llx = xgll < 8 = &/M,
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iec€ey P(x) is strongly lower semi-continuous at X.e.

1.3.,6. Theorem. P(x) is strongly continuous at any point x5 € Ko

Proof. By the preceding two lemmas we have P(x) - P(xgp) < € and
P(xg) = P(x) < € when lx - xgll < & = &/M. This is the definition

of strong continuity at xge

1.3.7. Definition of Functional. A functional is a mapping of an abstract

space into the set of real numbers.

1.3.8. Definition of Positively-Homogeneous Functional. A positively-

homogeneous functional is a functional f such that f(a.x) = a f(x) for all

a > 0.

1.3.9. Theorems For a positively-=homogeneous functional f defined on a

space of type K to be strongly continuous at x = 8, it is both

necessary and sufficient that there exist a constant A (independent

of x) such that |£(x)| £ A llxl for all x € K. (This theorem is a

slight generalization of a result of S. Banach}))

Proof, Necessity: If there is no such A, there exists a sequence of
points {xn} s Xy € K, and a sequence of positive numbers A, such
that A, => o0 and ‘f(xn)j > Alix,lle
Define yy = xy/Ajlixplle Then liyyll = 1/A,, hence %;ngollynll = 0,
|f(yn)‘ = 'f(x.n/Aonnll)’ = 1/Ayllxy|l , £(xy,)
homogeneous. Therefore ‘f(yn)’ > 1. Also £(8) = £(2.8) = 2 £(8),

since f is positively-

whence £(8) = 0, So }f(yn) - f(G)I = lf(}'n)

> 1 for all Yne Bub
this is impossible since, by strong continuity, ‘f(yn) - £(8)| <¢€

when lly, - @l = liy,ll is sufficiently small,

1). Banach, Ref. 2, p 5kLe
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Sufficiency: If(x) - f(G)} = [£(x)| since £(8) = 0, € Alxll < € for

lxll < /A, This means that £(x) is strongly continmuous at © (see

section le3el)e

1.3.10, Theorem. In the space K the following relations are equivalent to

one another:

(a) There exists a constant M such that P(x) € Mixll for all x € K;

(b) The P-=norm is strongly continuous at x = 3

(¢) There exists a constant A such that IP(x)‘ € Allxll for all xeK.
Proof, We show that (a) implies (b), (b) implies (c), and (c) implies (a)e

That (a) implies (b) is stated in theorem l.3.6e

That (b) implies (c) follows immediately from theorem le.3.9 since
P(x) is a positively-homogeneous functionale

That (c) implies (a) is clear.

We point out that the equivalence of (a) and (b) proves the remark

of Mazur noted above,

Effect of Boundedness from Below (Only) on Semi=Continuity of P(x)e

Ks a matter of interest we next inquire whether P(x) necessarily re-
mains either upper or lower semi-continuous if postulate l.l.); is changed to
1l.1.li%#, There exists a constant N such that P(x) 2 Nixll for all x € K.

The answer is no in both cases. This is shown by the following counter
example, Let Ky consist of the set of all absolutely convergent series of
real numbers under the ordinary rules of term=by-term addition and scalar
multiplication. Every element x of Ky is an enumerable set of real numbers
up such that ni:;lunl exists as a finite number, For this we use the nota-
tion x = {un}, nz;ilun\ < @. Define llxll = sup |u,|s and P(x) = ;/:_|un|.
Then Ky satisfies postulates l.le1l, lele2, lele3, and leloli,
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Verification of l.1l.1. Kl is a vector space since absolutely convergent
series may be added, subtracted, and multiplied by real numbers, term by
term, and remain absolutely convergent. In this space the identity element

@ is {0, 0, 0, eo}e

Verification of 1.1.2. llxll as defined above for K, is a strong norm. It

is readily seen to satisfy 1.1.2(a), l.1l.2(c), and 1l.1.2(d)e We show that
1.1.2(b) is satisfied as follows:

Let x £ {un)> 7 2 {vn}e

For all n, |uy| + |vu| € sup [ug| + sup [v,| and

|un + V) = |up| + |vyl € sup og| + 8ip |Val

<+ s lug + vy| & sup |ug| + sup V4]

oo llx + yll € Ixll ¢ llylle This is 1.1.2(b).

Verification of l.1¢3s P(x) as defined in K, is a pseudo-norm. 1.1.3(a)

and 1l.1.3(c) are clearly satisfied, and for 1l.1.3(b) we have

Px +y) = i [y + vy % Z;o lun| + Z;o |v,| = P(x) + P(y)e

Verification of l.l.i%, We have P(x) 2 lIzll sin 2
er on e have P(x) 2 lixll s ce:z_:_z [y sup |unl.

This shows that l.l.li* holds with N = 1.

Denial of Strong Upper Semi-Continuity, We have to show that for some

€ > 0, there exists no 8 > 0 such that llx - x,ll < & implies P(x) < P(xg)
+ € We choose € = 1, suppose there does exist such a 3, and establish a
contradiction.

Let xq = {1/:12 }. Then X, is in K; since > 1/n® converges.

P(xg) = fl/nz. Now consider the element x = {un‘) € Ky with
u, = 1/n2 + §/2 for n € ng S [2/6 + 1] where ]:2/6 + 1] denotes the great-

est integer in 2/8 4 1, and w, = 1/n2 for n > Nge
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Another way of writing x is

B, 1 .8 1.9 wsep 2 .8 1 Ly ses
Sl =2 St D D ’ :
x‘{ 2 22 2 3 2 ng® 2 (ngl)® (ng#2)2 }

= -1/ = y
Then lx = xgl = sup |u, - 1/n®| = 8/2 < 8

= = 2
However P(x) ni:l. || i; 1/n¢ + ng 8/2

P(xg) + n, 8/2 > P(xg) + 1 since
ny = [2/5 + 1] implies that ny > 2/8, hence ny 3/2 > 1. Thus
P(x) > P(xg) + 1 even though |[Ix - xpll < 8. This is the contra-

diction sought.

Denial of Lower Semi=Continuity of P(x).

We have to show that for some € > O there exists no & > O such that
llx = xgll < & implies P(x) > P(xg) = €+ The demonstration parallels the
case immediately above.

Take xg = {1/n2}, € = 1, but put

" 418 L8 e 1 8 1,1 ...
p {uﬂ}’% 2 22 o n02 2 (n0*1)2 (n0+2)2 }

where as before ny = {2/5 + 1].
Then P(x) = 2. 1/n° - n, 8/2 = P(xgy) - ng &/2 < P(xg) =1 since
ng 8/2 > 1. However lix - xgl = &/2 < 8. Thus P(x) cannot be strongly lower

semi=continuous at XQe

lohe Examples of Spaces of Type Ko

Example I, A Finite Dimensional K-Space,

Let K be the set of ordered n-uples of n real numbers. An element
x of K is represented as x = {xl, Xoy eeey xn}. Then K forms a linear
space with addition and scalar multiplication defined componentwise. De=

fine lIxll = (_ﬁllxilp)]’/p where p is an arbitrary fixed positive integer,
1=
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Tt is readily seen that llxl/l satisfies postulates

and P(x) S m?-x Xg0

1.1.2(a), lele2(c), and lele2(d)e To verify l.1.2(b) we make use of the

inequality of Minkowski,

Ve .

(@ ey + 5P E (B PP (B ey

feces lx + 3l € lixll + lylle
Clearly also P(x) satisfies postulates l.1.3(a) and 1l.1¢3(c)e lele3(b)

holds since me (x3 +y;) E maX Xj + mEX ¥ie Finally we have

n
max xy & (iillxilp)l/p so that P(x) € llxl This is postulate l.leke
=

Example II, An Infinite Dimensional K-Space.

Consider the Banach space (m) consisting of the set of all bounded
sequences of complex numbersl) with scalar multiplication restricted to
real numbers. (m) being a Banach space, postulates l.l.l and 1l.1.2 are
valid, the strong norm being defined as lxl| = sup \§n| where x is the
sequence {}‘n}' The space is made into a K-space by defining the pseudo=-
nornm as P(x) = sup (Rl ¥,)e We proceed to verify that lele3 and lelel holde

1.1.3(a): P(x) is certainly real.

1.1.3(b): et x = {;n}, 7 = {ip} be elements of (m)e

For all n, Rl ¥, € sup (R1 §,) and R1 n,, € sup (RLE,)e

Hence R1 (¥, + ) € sup (R1 fn) + SUp (RL np)e

So Sup RL (fy +2,) = sup Rl £ + swp (RL My ieeo,

P(x +y) €P(x) + P(y).

1l.1.3(c)s For a > 0, P(ax) = sup Rl (a §y) = a sup (R1 ¥,) = aP(x)e

l.lhs P(x) € lIxll since R1 g, S I;‘n‘. This verifies that the

space is of type Ko

1) Banach, Ref. 2, pp 11, 53.
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Example II1,

This example makes evident the convexity properties implicit in the
positive homogeneity and subadditivity of the pseudo-norm. Let Ky be any
strongly normed linear space, that is, one satisfying l.l.l and 1l.1.2, and
let B be a convex bodyl) containing the zero of Ky as an interior point,
Define P(x) as the Minkowski functional of B, i.c., P(x) = %Eg h for all
x € Kﬁf Then Ky is a space of type Ko x/h ¢B
Proof. From Ascoli?) it follows that P(x) 2 0; P(x+y) € P(x) + P(y);
P(tx) = t P(x) for t > 03 P(x) £ Mlxll,

Hence all the postulates l.1l.l to l.l.4 are valid, But in this
case the pseudo-norm cannot assume negative values. Further examples are

given at a later stage (Chapter III), when some of the deeper properties of

these spaces are investigated.

1.5, Independence of Pseudo=Norm Postulates.

In view of 1l.1.3(b) and l.l.; it is meaningless to try to obtain a
system in which 1l.1.3(b) and l.1l.L hold but P(x) is not real. In this
section it is established by means of examples that postulates 1l.1.3(Db),
lele3(c), and 1l.1l.li are independent of each other and of the remaining
postulates. For instance, in order to show that postulate 1.1.3(b) is in-
dependent of all the remaining postulates we describe a system in which all

the postulates hold except lel.3(b).

System Showing the Independence of lole3(b)e

Consider the Banach space of bounded sequences of real numbers. An

element x of this space is of the form x 8{:?1, Fé, eoey Fns ...} with

1l)e Mazur, Ref. 10, p 72, A convex body is a convex set closed with re-
spect to the metric topology of the strong norm in K, and containing
interior points,

2)e Ascoli, Ref. 1, pp L8-50,
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Ixl| = SUp \En\, where the §, are real numbers. Define P(x) = :..gf Fne This
system is known to be a Banach space, which means that postulates l.l.l and
1.1.2 are satisfied.

1.1.3(a) holds since P(x) is reals

1.1.3(c) holds since, if a > 0, P(ax) = igf afp,=a iﬁf Fp = aP(x)e

lelelt holds since P(x) = 1Inlf E, £ sup ]?,,] 2 |Ixlle

But l.1le3(b) is not satisfied for we have P(x + y) = igf (&n + )

2 inf £ + inf 0 2 Plx) + P(y), where y ={ pg)e

System Showing the Independence of l.l.3(c)e

Iet X be the set of real numbers and define lxll = Ix|,

Define the pseudo-norm P(x) as follows: P(x) = -/l_;cT when x| 2 13
P(x) = Ix| when Ix| < 1. Then it is readily seen that postulates 1l.1l.1 and
1.1.2 hold,

1.1.3(a) is immediate,

The proof of l.le3(b) requires consideration of several casese

Case 1. Ix‘, |Yl, lx + Yl, 2 1.

Then P(x +¥) = /Ix+yl £ /x|l «lyl & /lxl + |yl= B(x) +

P(y)e

Case 2, |x|, lyly, 21; Ix +yl < 1.
Then P(x + 7) = Ix + yl < 1.
P(x) + P(y) = /1xl + /lyl 22 since Ixl, Iyl 21,

oo P(x +¥) £ P(x) + P(y)e

Case 3o Ixl 21, Iyl <1, Ix+y| 21,

Then P(x +y) = {/lx +yl 2 Jixl + Iyl,
Now ly| + 2 7/lx| > 1 since Ix] 21, Hence y2 + 2lyl 7/ |zl >ly] on
multiplying by lyle Therefore y2 4 2lyl ¢/ Ixl + Ixl > ly| + |xl,
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ieeey (lyl + 7=l 32 > ly] + |xle Hence lyl & #lxl >7/‘yl + x|
2 J/Ix +y| by the first line of this proof, ie.ec., P(y) + P(x) >

P(x + ¥)e

Case Lo Ix| 21, lyl <1, Ix+yl <1l Then P(x+y) = |x + ¥l
<1< /x| + Iyl since lx| > 1,
< P(x) + P(y)e

Case 5, Ix| < 1, lyl< 1, Ix+yl 21,
Then P(x +¥) = 7lx +yl % |x+y| since [x+yl 21, € Ix| + Iyl
= P(X)+P(y)o

Case 6o Ixl < 1, lyl <1, Ix+yl < 1,

Then P(x + y¥) S Ix + y| € Ix| «lyl = P(x) + P(3)e
The above six cases establish that 1l.1.3(b) is satisfied.

But 1.1.3(c) does not hold. This can be seen by considering the

case where a > 1 and x > 1,

Then P(ax) = 7/;;:—=7/; ;/x- = A— P(x) # a P(x)e

Postulate l.1l.4 holds since llxll = |x| and P(x) = 1/l_x_\— for |x| 21,
= |xl for |x| <1,
Now '/l—x—l € |x| for |x| 1 so that, for all x,P(x) € llxlle Thus
the constant M of 1l.l.l4 has the value 1. This shows that l.1.3(c) is in-

dependent of the other postulates,

System Showing the Independence of Postulate l.loli.

We again make use of the example on page 7, there used to show that
continuity of the P-norm does not hold if it is merely bounded from below.

K is the set of all absolutely convergent series of real numbers. We recall
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that |Ixl| = Sup ]un‘, P(x) = 2; [unl, where x = {un}. We have seen (pages 7
and 8) that these definitions satisfy postulates lelely, lele2, and lele3e
But l.l.Li does not hold; i.e., there is no number M independent of x such
that P(x) € Milxlle For any given M, no matter how large, it is always pos-
sible to construct a convergent series with a sufficient number of terms
each equal to sup |uy| so that the sum is greater than M Syp |unls decey
greater than Mlilxlle

Otherwise thus: we have seen that a space satisfying postulate l.l.h
has a strongly continuous pseudo-norm. But we have also seen (page 8) that,
in the space of the present example, P(x) is not strongly continuous. Hence
postulate l.l.l4 cannot be valid, and so it is independent of the other

postulatese



CHAPTER II

The Factor Group K/Z as a Pseudo-Normed Vector Space

The results of this chapter do not depend on the existence of the

strong norm in K but only on that of the pseudo-norme

201le Equivalence Relations based on the Pseudo=Norme

We proceed to discuss two methods of obtaining equivalence relations
in a space of type K by means of P(x).

2,101e Method 1.

Define x ~ y to mean P(x) = P(y)e

Proof that the relation ~ is an equivalence,

l.) =~ is well-defined, since for any elements x, y either
P(x) = P(y) or P(x) # P(y).
2.) =~ is reflexive: X = x, since P(x) = P(x).
3.) = is symmetrics if P(x) = P(y), then P(y) = P(x). Hence, if
X=Yy, theny = x,
o) =~ is transitive: if P(x) = P(y) and P(y) = P(z), then
P(x) = P(z)e Hence x~y and y =~ 2z implies X = 2.

So = is an equivalence relation.

20162o Lemma, P(x) = 0 if and only if x = 6,

Proof, Sufficiencys
If x ~ © then by definition P(x) = P(8) = 0,
Necessity:
If P(x) = O, then P(x) = P(8) since P(8) = 0,
Hence x = 8,
The lemma shows that under the relation = the pseudo-norm has property
1.2,5 of the strong norm, namely lixll = O if and only if x = €,

We now regard two elements of K as "identical under ~" if they have
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equal pseudo=norms. K can then be split into equivalence classes such that
all elements in any one class are identical under =~ However, elements in
the same equivalence class do not have equal strong norms. It is easgy to
get examples from the space K of bounded sequences to show that x = y does
not imply that lixll = liylle

2.1030 Method 2.

This is an essentially deeper method than 2,1l.1 and consists in obtain-
ing a subgroup of elements of K and establishing an algebraic homomorphism
by the method of residue classes (cosets)s In this we follow the procedure

1) but by virtue of our pseudo=-norm being more general

of Morse and Transue
than the one treated in their investigation we require more stringent con-
ditions in order to obtain as starting point a subgroup of the set Ko

We define Z to be the set of elements x of K such that

2)

P(x) = P(=x) = 0, / In the usual notation

7= {x € K ' P(x) = P(=x) = 0}.

201lelie Theoreme The set Z = {x €K I P(x) = P(=x) = 0} is a subgroup of Ko

Proof. Z is non-empty for P(8) = P(-8) = 0 =» @ € 2,

The necessary and sufficient conditions for Z to be a subgroup of K

1l,) Closure, ieceey X € Zy, Yy € Z implies x + ¥ € Z3

2.) Existence of inverse, i.2., x € 2 implies =x € Zo

1), Morse and Transue, Ref. 15, p 779

2)e The condition that P(x) = O is not sufficient to make Z a subgroup,
since all that this implies is that P(=x) 2 0 under our postulates on
P, This is in contrast to the case treated by Morse and Transue, loce
cite

3)e Van der Waerden, Ref. 18, p 21,
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Proof of closure: ILet x, y be elements of Z, By the definition of
Z, P(x) = P(=x) = P(y) = P(~y) = O,

We have to show that P(x + y) = P(~(x +y) ) = 0

(1) P(x+y) 2 P(x)+ P(y) =0,
P(x +y) = P(x = («y) ) 2 P(x) = P(=y) by 1.2,10, 20 = 0 = O,

(2) From (1), it follows that P(x + y) = Os
Now P(- (x+y) ) 2 P(=x = y) 2 P(=x) = P(y) by 1.2,10,
20-0=0,

Also P(- (x + y) ) € P(=x) + P(~y) by postulate l.1.3(b), £ O.

Hence P(~ (x + y) ) =0,
From (2), P(x + y) = P(— (x +3) ) = 0, Therefore X + y € Zeo

Proof of existence of inverse: This is immediate from the defi-
nition of Z, If we write out the proof, we have that x e Z implies
P(x) = P(=x) = 0, Hence P(=x) = P(~ (=x) ) = 0, which means that

=X € Zo This concludes the proof of the theorem.

The question arises: is such a subgroup Z confined solely to the zero
of K? If so, then any theory based on Z will be essentially triviale In
other words, are there any elements of K other than € for which P(x) = P(-x)
= 0? The following example shows that such elements exist in the most
general case.

Let K be the space (m) of bounded sequences x = {En% of complex numbers
with lxll defined as Sgp |§n| and P(x) defined as sup (R1 Fy)e We have
previously showm (1., Example II) that this is a space of type Ko Then
P(x) = P(=x) = O means that the element x is a sequence of pure imaginaries

and the subgroup Z consists of all bounded sequences of pure imaginary



=] 8=

numbers. Thus our considerations are non-trivial, and we may return to the
general theory.

Let Q be the group of residue classes (cosets) of K with respect to Z.
Q is called the residue class group (factor group) of K with respect to Z
and is denoted by K/Z. An algebraic homomorphism exists between the ele=
ments of K and the elements of Q. This mapping divides K into equivalence
classes which are the residue classes of Z and constitute the elements of Qe
A necessary and sufficient condition that two elements, x, y of K belong to
the same residue class is that x = y is in Z.l) This is written x = y (mod
Z)e
201e50 Lemma, For real a # 0, aZ = Z, where Z = {x e X l P(x) = P(=x) = O}

and aZ denotes the set of elements axz) of K such that x is in Z.
Proof, Case 1o a > 0y, x € Zo
P(ax) = a P(x) = 0 = a P(=x) = P(a.=x) = P(-ax), Hence
ax € Z for a > 0,
Case 2o a < 0y x € Z,
P(ax) = P(=2.=x) = (=2) P(=x) by lele3(c), = 0 = (=a) P(x)
= P(-ax), Hence ax € Z for a < O,
Cases 1 and 2 show that aZ ¢ Z. Conversely if x € 2, 1/a x € Z by the
preceding. So l/ax =y € Z, x = ay € aZs Thus Z C aZ. Together with the

result that aZ C Z, this establishes the lemma.

2,16, Theorem., The residue class group Q = K/Z, which has as elements the

residue classes of K (mod Z), where Z = {x € K l P(x) = P(=x) = 0}, forms a
linear space.

Proof, We have to show that Q forms a commutative group under addition, and

1l)e TFor the fundamental ideas of coset and factor group, see van der
Waerden, Refs 18, pp 25-3L.

2)s Here and in future, where convenient, we omit the dot hitherto used to
denote scalar multiplication (l.l.1(b))e
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that under a suitable definition of scalar multiplication Q satisfies
postulates 1l.1.1(a) and l.1.1(b)e
In what follows, elements of Q are denoted by Ql’ Qs eeey but Q is

not necessarily denumerable,

261.7¢ Definition of Addition of Elements of Q = K/Z.

Q1+Q25{q1+q2\q1€ KN0Qp gp€ K“Q2}°

2.1.8, Definition of Scalar Multiplication of Elements of Q = K/Z.

For real a, Q; € Q, define aQy = {aql | ;e xn Ql} for a # 0,

= the subgroup Z for a = O,

The proof of theorem 2.1.6 depends on a series of lemmas.

2.1.9, lemma. Under addition, Q = K/Z forms a commutative group with Z as

identity.
Proofs This is a classical algebraic resulte.

261,10, ILemma, If a is real, Ql € Q, then aQ; € Q.

Proofe Q; is a coset of the subgroup Z = ix €K | P(x) = P(=x) = 0}.
Hence Ql = q + Z where q € Ko
Then aQ; = the set of elements a(qy + Z)

the set aqy + aZ

agy + Z by lemma 2.1.5 and definition 2,18

a coset Qf € Q.

Hence Q = K/Z is closed under multiplication by real numberse

201,11, Temma, a(Q) + Qp) = aQ; + aQp, where a is real and Qp, Q, are

elements of Q.
Proofe If x € KN a(Q + Q) x = a(ql + qz) where g; € K N Q and

a0 € KN Qo Thus x = aq; + aqy, € aQ; + aQp
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Hence a(Q; + Q) € aQ) + aQpe Conversely, if x € K N (aQ; + aQy),
x=aql+aq2where @€ KNQyy a0 KNQ
= a(qy + ap) € a(Q) + Q)e Therefore aQy + aQ € a(Qy + Qe
Hence a(Q + Qo) = aQ; + aQq.
If a =0, a(Q; + Q) = Z by definition 2,1.8 and aQy + aQy =2 4 Z
= Z since Z is the group identity. So the lemma is valid for all

real ae.

lerma. (a + b)Q‘l = aQ; + bQ; where a, b are real numbers, and

Proof,

Qler
Ifa=b=0, (2+b)Q =2=2+Z=aQ +bQ.

If a0, b =0, then (a +b)Q; = aQdy = aQy + Z = aQy + bQy by 2.1e86

If a#0, b #0, suppose x € KN (a +Db)Q and @ S qy + 2, Q

being a coset of Z.

Then x = (a + b) (q; + qp) where qp € 2
= a(qy + ap) + blag + q) € alag + 2) + blgy +2) € aQ + b
o (3 + b)Q]_ C an + leo

Conversely, if y € KX N (an + le)s

y = alay + o)) +blg + q'(')) where qf, qff are elements of Z
= (a + b)gy + ag} + bal
= (a + blgy + 27 + 3, by lemma 2,15, where 2;, 2y, are in Z
= (a4 b)ql + 25 where 35 is an element of the subgroup Z
= (a4 b)ql + (a ¢+ 'b)qo by lemma 2.1.5, where qy is in Z
=(a+b)(g +q9) € (2 +b)Q

Hence aQ; + bQ; € (a + b)Qy.

This result together with the one above proves the lemma.



2.1.13. Lemma, a(bQ;) = (ab)Qy where a, b are real, Q € Qo

Proof, a(bgy) = (sb)gy for each o € Qqe

20101k, TLemma, 1.Q; = @y for Q) € Qo

Proof. Clear.
Theoren 2.1.6 now follows from lemmas 2.1.9 to 2.1.1li inclusive.

2.2 Definition of a Pseudo-Norm in the Linear Space Q = K/Z where

z=f{xek|Px)=px) =0}

202¢1e We shall call a space satisfying postulates l.1.1 and l.1.3 a
pseudo-normed vector space:}

For Q € K/Z, define P,(Q) = P(x) where x is any element of X belong-
ing to Qqe Before proving that Pz(Ql) satisfies the pseudo-norm postulates

1.1.3 we justify this definition by proving

202+20 lemma, All elements x in the same coset Q have equal P-normse.

Proofs Let X, y be elements of K N Q, where Q3 is the coset gy + 2Z,
qp € Ko Then x = qy + 33, ¥ = q1 + 2, Where zy, Z, are in the
subgrouvp Ze
e X =y = Zy = 22 € Z since Z is a subgroupe
oo P(x = y) ® P(y = x) = 0 by definition of Z.
By 1¢2.10, P(x = y) 2 P(x) = P(y) and P(y - x) 2 P(y) - P(x).
Hence 0 2 P(x) - P(y) and O 2 P(y) = P(x), so P(x) = P(y) = 0 and

P(x) = P(y). This proves the lemma.

202030 Theoreme If Q; is any element of the linear space K/Z (theorem

241,6) and if a functional P, is defined on K/Z so that P,(Q;) = P(x) where

1)s Menger uses the term "generalized vector spaces (Ref. 13, p 96.)
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x € KN Q, then P,(Q;) satisfies the pseudo-norm postulates 1l.l.3(a),
1.1.3(b), and l.1.3(c)e
Proofe l.l.3(a): Pz(Ql) is real since P(x) is real.
1.1.3(b): P,(Qy + Q) = P(qy + qp) where q € Q; and gy € Q,
€ P(qy) + Pla2) = P,(Q1) + Py(Qp)e
lole3(c): a >0, P,(aQy) = Plaqy) = aP(qy) = aP,(Q)e

2,2.40 Corollary. The linear space K/Z, P-normed as above, is a pseudo=-

normed vector space (2.2.1),

2630 Summarys

The cosets of K (mod Z) where Z = Sx €KX \ P(x) = P(=x) = O} form a
linear space K/Z onto which K is mapped homomorphically. Group addition,
scalar multiplication, and pseudo-norm relationships are preserved by this
homomorphisme The last follows from the fact that if x = Qq andy < Q
where =5 denotes the homomorphic mapping, then P(x) = P(y) implies P.z(Ql) s
P,(Qg), and conversely (by lemma 2¢262)s We may note that P(x) = P(y) does
not imply that x and y are in the same coset Qy. This is made evident from

the following illustrative examples

203ele The Subgroup Z and the Space K/Z when the Space K is the Space of

Bounded Sequences of l.li, Example II.

We recall that x € K is a complex sequence {Fn} with lIxll = sup |Eal
and P(x) = sup Rl ¥F,e P(x) = P(=x) = O implies that R1 §, = O for all n.
Hence x is a sequence of pure imaginary numbers and the subgroup Z consists
of the set of all bounded sequences consisting of pure imaginsries. All
elements in a particular coset of Z consist of sequences which, term for

term, have equal real partse.
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To show that P(x) = P(y) does not imply that x and y are in the same
coset, consider
x = {0, <1, <1, =1, <1, +..}
y= {1, 1, 1, 1, 3, eeef, where 1= /-1
Then P(x) = 0, P(y) = 0, P(=x) = 1, P(=y) = 0,

Hence, y is in Z but x is note.



CHAPTER III

The P-Topology and P-Linear Functionals

In this chapter we introduce notions of limit and continuity based on

the P=norm.

3.1, The P-Topology in Spaces of Type G/Z.

3elele

Definition of Space of Twpe G, or Pseudo-Normed Vector Space.

A space of type G, or a pseudo-normed vector spacey'is a real linear

space satisfying postulates l.l.l and lele3, ie.€e, a space G differs from a

space K in not having a given strong norm (see also 2.2.1).

3ele2.

Theoreme If (i) x is an element of a pseudo-normed vector space G,

Proofe

3ele3e

(ii) P(x) = P(=x) = O implies x = O, the zero of G,
then B(x) = mex {P(x), P(qxji has the properties l.le2(2) to
1l.1e2(d) of a strong norm,

The theorem is a direct consequence of the following lemmas,

Lemma, B(x) 2 0 where B(x) = max {P(x), P(=x)}e

Proofe

30101&0

By 1.2.,11, P(x) 2 <P(-x) and P(=x) 2 -P(x), Hence, if either P(x)
or P(=x) is negative, B(x) = max {P(x), P(-x)} > 0e So, in general,

B(X) 2 Oe

lemma, B(x) = O implies x = @ under the hypotheses of theorem

Proof,.

36156

30102.
If B(x) = 0, it is clear from the proof of lemma 3.1l.3 that neither
P(x) nor P(=x) can be negative. Hence P(x) = P(=x) = 0, Then by

hypothesis (ii) of theorem 3.1.2, x = 6,

Lemma. B(x + y) € B(x) + B(y).
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Proofs P(x +y) € P(x) + P(y); P(- T#7) € P(=x) 4 P(=y)e
Hence max {P(x +3)y P(= i?-f')} € max {P(X), P(-x)} + max {P(Y):

P(-y)}, iceey B(x + y) € B(x) 4 B(y)e

3.1¢60 Iemma. B(ax) = lal B(x) for real a.

Proof, B(ax) = max {P(ax), P(-ax)} = max {aP(x), aP(-x)} if a >0
= max {-—a;P(-x), -aP(x)} if a < Oe

max {Ial P(x), lal P(-x)} for any real ae

lal max {P(x), P(-x)} = |al B(x)e
Lermas 3.1.3 to 3.1.6 prove that the strong norm postulates l.1.2 holde

This establishes theorem 3.1.2e

3+s1le7e Corollarye, If G is a pseudo-normed vector space in which hypothesis

(ii) of theorem 3.1.2 does not hold, the functional B(x) = max fP(x) 5
P(-x)} is a positive semi-definite norm, ie.ee, B(x) satisfies
1le1le2(a), lole2(b), 1lele2(c), but not lole2(d).

Proof, Lemma 3.1l is the only one the proof of which makes use of

hypothesis (ii) of theorem 3.1.2,

3ele8. Lemma, If (i) x is an element of a pseudo-normed vector space G,

(1) max {P(x), P(=x)} < 7,
then lP(x)} <n and l P(-x)l < e

Proofs By hypothesis (ii), P(-x) < %, hence =P(=x) > =%,
By 1e2.11, P(x) 2 =P(=x) > =%
Again, by (i1), P(x) < 7, hence |P(x)} < e
Similarly }P(-x), < e

The Space G/Z.

We have previously noted (page 15) that the existence of the pseudo-
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normed vector space K/Z of corollary 2.2.); depends only on the pseudo-norm
P(x)o Consequently for any pseudo-normed vector space G we obtain in
similar fashion the factor group space G/Z where Z is the subgroup {x € G‘
P(x) = P(=x) = O}. Now in spaces of type K or G it is not generally true
that P(x) = P(=x) = 0 implies x = 6 (see example 2.3.,1l)s However, this

property holds for spaces K/Z and G/Z, as is shown by the next theorem.

3ele9s Theorems If (i) G is a pseudo-normed vector space, {see 3.1l.1),

(i1) Z is the subgroup = {x € G l P(x) = P(=x) = 0},
(iii) Q is any element of the space G/2, {see immediately above),
(iv) B(Q) 5 max {P(Q), P(-Q’)}%)
then the space G/Z is a strongly normed linear space under the
definition [IQI 2 B(Q).
Proofs By corollary 2.2.), G/Z is a pseudo-normed vector space and hence
satisfies hypothesis (i) of theorem 3.1.2,

If P(Q) = P(-Q) = 0, all the elements x of G present in the coset Q
satisfy the relation P(x) = P(=x) = O, since all elements in the same coset
have equal pseudo-norms (definition 2.2 and lemma 2.2.2)s Therefore Q = Z,
the zero of G/Z, and G/Z satisfies the remaining hypothesis (ii) of theorem
3ele2s Accordingly, B(Q) has the properties of a strong norm in the space

G/Ze

301.10, Definition of P=Topologye The (strong) metric topology of G/Z,

based on the strong norm B(Q) = max {P(Q), P(-Q)}, Q € G/Z, will be termed
the P=topologye

The usual concepts of the theory of normed linear spaces can now be
applied to G/Z with its P-topology. In particular, we have the notions of

limit, continuity, linear functional, and sequential completeness, all in

1) Here and in future we omit the subscript z hitherto used for the P-norm
in the factor group space K/Z.



terms of the strong norm B(Q) = max {P(Q), P(-Q)}. In order to distinguish
this topology from the strong norm topology of 1l.1.2 in the space K we use

the prefix P and speak of P=limit, P=continuity, etce.

3026 P=linear Functionals in Spaces of Type G/Z.

3.201e Definition of P=Linear Functional in G/Ze A P-linear functional in

G/Z is a functional defined over G/Z that is additive, homogeneous}) and P=
continuous. This means that, if F(Q) is a P-linear functional, F(aQ; + bQy)
= aF(Q) + bF(Q2)s a, byreal, and for any point Qy and any € > O, there
exists a S(Qo, £) > 0 such that lF(Q - Qo)l < € when B(Q - QO) < e

The existence of linear functionals on a strongly=-normed linear space
is a classical result. Before using it, we treat a simple case directly in

terms of the pseudo=norme.

3022, TLemma., If Qy is an element of G/Z and t is a real variable, then

the functional F defined over the vector subspace S = {tQy} by
F(tg) § sign t [P(tQ) + P(=tQy)| is P-linear over S (definition
3e261)0

Proof, Homogeneity:
t > 0. F(tQp) = tP(Qg) + tP(=Qy) = tF(Q,)
t < 0. F(tQg) = =[P(tQg) + P(=tQy)]

- [-tP(=qg) =tP(Qp)] since =t > 0,

& [P(=20) + P(Qp)] = tF(Qp)e

Additivity:
Since we are restricted to elements of S = {tQO} s

F(Q + Q) = F(xQp + B Q) = F(oC+ B Qp) where Q) = xQys Q =13Qg,

1), It is sufficient to define a linear functional on a normed linear space
as one which is additive and continuous. Banach, Ref. 2, p 36, proves
that such a functional is also homogeneous,
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le2ey F(Q4Q) = (x + ) F(Qp) by homogeneity,
o« F(Qg) + B F(Qp)
FaxQp) +  F(( Q)

= F(Qq) + F(Q)e

P=Continuity:
Let @ = aQp be an arbitrary fixed element of § = {tQy),
and Q = tQq be an element of S such that Q # Q.

|F(Q) - P(a)|

|F(Q - @) by homogeneity and additivity
|F(E=x qo)|

|sien (4 - o) |P(E= Qp) + P(- ¥=a Q)]
£ 2 max iP(t—-_oc Qo) P(- T=x Q)] since

max iP(x), P(-xj} 2 0 (lemma 3.1.3),

22 B(B-x Qy) =2 B(Q - Q) <& for B(Q - Q) < &/2,
Thus F(Q) is continuous at Q, in terms of the strong norm B(Q).
The lemma now follows from the definition (3.2.1) of P-linear

functional.

302030 Functional Moduluss

We denote the functional modulus (or norm) of a P-linear functional F
defined on G/Z by o That is, is the smallest number k such that
(F(Q)l € k B(Q) for all Q € G/Z%)

The existence of P-linear functionals defined over the full space G/Z
can be shown by applying the Hahn-Banach extension theorem to lemma 3.2.2.

However, we go directly to the following result of Banac ?)

3e2.lte  Theoremo For every Q € G/Z there exists a P=linear functional F(Q)

1). See Banach, Refe 2, pp 5L=55, and also theorem 1l.3.9 of this thesis.
2)e Banach, loc. cit., p 55, theorem 3.
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defined on G/Z such that F(Qp) = B(Qp) and = 1, where B(Qg) =

max {P(Q)s P(=Qp)]

3s2e5s _Corollarys If Qp is an element of G/Z different from the zero

element Z, then there exists a P-linear functional F(Q) defined on G/Z such

that F(Qg) = P(Qp) + P(~Qp), and

min {P(Qg), P }
B =1+xTp Q) P(=Qq
Proof. By 3e2.li there exists a P-linear functional L such that

L(Qy) = B(Qy) and [ = 1.

_ min {P(Qp)s P(=Qp)}
e A “{1 ¥ Tmax {P(Qp), P(-Qo)}} s

Then F(Qp) = max {P(Q), P(=Qp)} + min {P(Qp), P(~Qp)} =

P(Qp) + P(~Qo), and |F(0)| £ (1 4 min h;(gg), §§%)§ )B(Q),
max 3

since |Q)| £ B(Q).

Hence [F] € 1, _min {P(%)é P(-q0)} .
B

But the possibility of less in this inequality is excludedy since
F(Qy) o [1-'_ min{P(gE%a)P(-QQz}_} B(Qg)e

This establishes the corollary,

303 Functionals P-Linear over the Original Space Ge

1)

In this section we generalize a result of Morse and Transue ° and obe

tain the existence of non-zero functionals defined on the original pseudo-

l)e M. Morse and W. Transue, Ref. 15, p 779, These writers consider the
case of a positive semi-definite "pseudo-norm" ||xll which satisfies the
conditions IIxll 2 0, WIx + vl € x|l + llyll, lxxll = |x|ellxll, but which
can be zero without x being zeroe
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normed vector space G which are P=linear in a sense to be made clear,

Elements of the space G will be denoted by small latin letters x, ¥, Ze

3.3.1le Definition of P-Limit of a Sequence {xn}, Xp € Geo

A sequence {xp}, xn € G, is said to P-converge to a limit xye€ G if,
for all n > ng(€), B(x, = xg) < €, where B(x) = max iP(x), P(-x)}. This is
written xp £ xp and xg is called the P-limit of the sequence {xn}.

The P-limit of a sequence of elements of G is not necessarily unique.
This eircumstance is a direct consequence of the fact that B(x) can be zero

without x being zero. It is made evident by the following lemma,

363020 Lemma, If (i) G is a pseudo-normed vector space,

(i1) %9 € G is a P-limit of a sequence {xp}, X, € G for all n,
(1ii) Z is the subgroup = {x € G | P(x) = P(-x) = 0),
(iv) y is any element in the same coset of Z as x;,
then y is also a P-limit of the sequence {xj)e
Proof. By definition, xn -E» x5 =% B(x, = x5) < € for n > ny(€)e
¥s ¥g in the same coset =Py = xg€ Z =P P(y - x5) = P(xg -~ y) = 0.
P(xp = y) = Plxy = xp + X9 = ¥) € P(x,; = xp) + P(xg - ¥)
€ P(xy = x9) < € for n > nge
Similarly P(y = x,) <€ for n > nge
o B(x, = ¥) < € for n > ny(€)e Hence xy 8> y and y is a P-limit

of {xn}.

Definition of P-Continuity of a Functional Defined over G. We give two

definitions and then prove they are equivalent.

36363e A functional f is P=continuous with respect to G at Xg € G if to

any € > O there corresponds a & (xg, €) > O such that B(x = xg5) < & implies
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'f(x) - £(xg)| < €

3e3sle A functional f is P-continuous with respect to G at xg € G if, for
any £ > O and any sequence {xn}, X, € G, that P-converges to Xqe there

exists a positive integer np(€) such that |£(x,) - £(xg)| < € for n > ny(€)e

30305+ Lemma. Definitions 3e¢3.3 and 3.3¢l are equivalent,

Proof, We first show that 3.3.3 implies 3e3el.

By definition of P-convergence, X, £> X = there exists a ng(8)
such that B(x, = xo) < 8 forn> ng(d)e Hence, by 3e¢3e3, lf(x) - £(xg)| < &
It remains to prove that 3.3.L implies 3.3.3

Deny 3¢3.3. Then for some € >0 there exists a sequence of positive
numbers {5n3 and a sequence {xn} of elements of G such that 8, —» O,

B(xn - xg) < &, and |f(xn) - f(xo)l 2§, sSince Sn ~> 0, B(x, = x5) < &,
means that x, -B’-xo. So definition 3.3.4 applies and If(xn) - f(xo)‘< &

for all n sufficiently large. This establishes the contradiction soughte.

3,3.6. Definition of Functional P-Linear over a Vector Subspace E of a

Pseudo=Normed Vector Space Ge

A functional f defined on E C G will be called P=linear with respect

1)

to G if it is additive ° and P-continuous with respect to G at each point

of Ee

363070 Theorems If f is a functional P=linear with respect to G on a

pseudo-normed linear space G in the sense of 3.3.6, then f(ax) = a £(x) for
all real a, that is; f is homogeneous.
Proof. The proof is similar, mutatis mutandis, to that of Theorem 2, page

36, of Banach's book (Ref. 2)e First, the additivity of f(x) is sufficient

1)e M"Additive" means it satisfies f(x + y) = £(x) + £(y) for all x, y € Ge
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to establish by purely algebraic means that f(rx) = r £(x) for any rational
number r. For any real number a, let {rng be a sequence of rational numbers
converging to a. Then for arbitrary fixed x € G, B(rpx - ax) = lrn-al B(x)
< 81 for Irn-a) < El/B(x), i.e.y, for n > no(ﬁl). Hence rpx £ ax by 3¢3e1le
By continuity, ‘f(rnx) - f(ax), < & forn > no(fz). Hence f(ax) =
!]i;ngof(rnx) = %;ngorh £(x) since r, is rational, = £(x) I]i;ngorn = a f£(x)e

This proves the theorem.

3elte A Functional P-Linear over G/Z Induces a Functional P-ILinear with

Respect to G Defined over G, and Conversely.

3olele Theorem. If (i) G is a pseudo-normed vector space, and Z denotes

the subgroup {x € G ’ P(x) = P(=x) = 0},
(ii) F is a functional P-linear over the pseudo-normed space G/Z
of cosets of Z,
then there exists a functional f defined over G which is P=linear
with respect to Go
Proof, For x € G, define f(x) = F(Qx) where Q, is the coset of G/Z contain-
ing X
Additivity of f:
flx+y)= F(Qx+y) by definition of f
= F(Qx-rQy) by the algebraic homomorphism between G and G/Z
= F(Q) + F(Qy) since F is additive
= £(x) + £(y)e
Hence f is additive.
P=continuity of f:
For any sequence {xp}, x, € G, that P-converges to xy € G, the corre-
sponding sequence {an" of elements of G/Z converges to on in the strong
topology (3.1.10) of B(Q)s This is so since B(x, = xo) = B(Q‘xn-QxO) by
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section 2.2, where B(x) = max {P(x), P(=x)} for x e @, and B(Q) = max{P(Q),
P(-Q)} for Q € G/Z, Hence, by P-contimuity of F, F(Qx,) —> F(Qx,) and so,
by definition of f, f(x,) —» f(xg)s This means f is P-continuous at the
arbitrary point xje Thus f, being both additive and P=continuous with re-

spect to G, is P-linear with respect to G.

3.2 Theorems (Converse of theorem 3ol.1) If

(1) G and G/Z are the spaces of the preceding theorem,
(ii) £ is a functional defined over G which is P-linear with respect

to G})

then there exists a P-linear functional F defined over G/Z such that
F(Q) = f£(xq) where Q € G/Z and Xq is any element of G in the coset Qo
Proof, We have seen that if a sequence {xn}, X, € G, P=converges to an
element x, € G, then {x.n} P-converges to every element in the same coset as
X0 (lemma 3¢3¢2)e Since f is P-continuous with respect to G, the definition
of 3¢3.l implies that f(x,) —» f(xy) and also that £(x,) -» f(y) where y is
any element in the same coset as Xge Hence f(x) is constant for all x in
the same coset., This justifies our defining F(Q) = f(xQ) where Xq is any
element in the coset Q.
Additivity of F:
F(Q + Q) = f(le,,.Qz) by definition,
= f(le + xQz) by the algebraic homomorphism,
= f(le) + f(xQz) since f is additive,
= F(Q1) + F(Qo)e
P=continuity of F:
For Q, Qgs € O/, |F(Q) = F(Qg)| = |£(xq) = £(xqy)| < € for Blxgxq)
< 8(€), since f is P-continuous. As in the proof of theorem 3.l.1,

1). See 3.3.6 for the definition.
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B(xg-xqp) = B(Q=Qp)e Hence \F(Q) - F(Qg)| < € when B(Q = Q) < 8§(€), i.eey
F is continuous at arbitrary Qp € G/Ze Then F, being additive and P-con-

tinuous in G/Z, is P-linear (see footnote, p 27)e

3elie3s Theorem. If f(x) is an additive functional defined on a pseudo-

normed vector space G, and B(x) denotes max {P(x), P(-x)} s then, for f(x)
to be P-linear with respect to G} it is both necessary and sufficient that
there exist a number C such that ‘f(x)) € ¢ B(x) for all x € Go

Proof. Necessity:

If £(x) is P-linear over G, then by theorem 3.4,2 there exists a
corresponding P-linear functional F(Q) in the strongly normed topology of
G/Z such that f(x) = F(Q,) where Qg is the coset containing x. Using the
fact that in strongly-normed linear spaces linear functionals are boundedg)
we have |F(Q)| € ¢ B(Q) for all Q € G/Z, Hence |f(x)\ € ¢ B(x) for all x €
G, since B(x) = B(Qy) by 2.2,

Sufficiencys

Since f(x) is additive, £(20) = £(© + 6) = £(8) + £(8), i.ec, £(8) =
2 £(8), hence f(8) = 0, Therefore 0 = £(8) = £(x + =x) = £(x) 4+ £(=x) by
additivity. Hence f(-x) = ~f(x)o Using this result, lf(x) - £(xo)| =

£(x) + f(-xo)l = !f(x - xo)l by additivity, £ C B(x - x5) by hypothesis,

<€ for B(x - xy) < €/Co This means f(x) is continuous at any point xpe

3oltete Corollary. If f(x) is P-linear with respect to G over G, there

exists a smallest number such that If(x)\ — B(x) for all x € G
Moreover, = s the modulus of the functional F in G/Z induced (theorem
3.462) by £o (For definition of [F], see 3¢2¢3)6

Proof, From the properties of linear functionals in strongly normed linear

1). See 3346
2)e Banach, Refe. 2, p She
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spaces, we know that is the smallest number such that \F(Q)\f B(Q)
for all Q € K/Z, Since the range of values of £(x) is the same as that of
F(Q) and since B(Q) = B(xg), it follows that a smallest number exists
and [£] = [H.

Theorems 3oltel and 3.)ie2 show that a given functional P-linear over
the quotient space G/Z induces a P-linear functional on the original space
G, and conversely., This result is similar to that obtained by Morse and
Transuel) but is more general inasmuch as their "pseudo=norm" is restricted

to nonenegative valuese

Existence of Non-Zero P-Iinear Functionals on the Space G. From theorems

302el, 3eltel, and corollary 3.li.li; we obtain

3elte5s Theorem. Corresponding to any point Xg € G such that B(xo) =
max {P(xo) s P(-xo)} # 0, there exists a non-zero functional f(x), P-~linear

with respect to G, such that £(x,) = B(xg) and lf(x)\ £ B(x) for all x € Go

3¢5 Completeness in Pseudo=Normed Vector Spaces G and G/Z.

In the space G/Z where B(Q) = max {P(Q), P(—Q)} is a strong norm
(theorem 3.1.9), completeness is the usual notion that every Cauchy sequence
has a limitg) But the space G is not a metric space and for it we need the

following definitionse.

3s501s Definition of P-Fundamental Sequence of Elements of G

A sequence {xn}, X, € G, is P-fundamental if, for any & > 0, there
exists a positive integer ng(€) such that B(xy - xp) < € for all m, p,> n,

where B(x) = max {P(x), P(-x)}.

1), Morse and Transue, Refe 15, pp 779=780,
2)e See, for example, Hille, Ref. 6, p 5.
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3s5020 Definition of a P=-Complete Space G. A pseudo-normed space G is

P=complete if, for any P-fundamental sequence {xn} s X, € Gy there exists an

element X € G such that the sequence {x.n} P=converges to xo%)

305030 Theorem, If a pseudo-normed vector space G is P-complete, so is

the pseudo-normed vector space G/Z, and conversely.
Proof. Let {Qn}s Qu € 6/Z, be a Cauchy sequence, icee, B(Qy = Q) < € for
all my p, > ny(€)s Let x, be an element of G in the coset Qp, n =1, 2, 3,
esees o Then the sequence {xn} is a fundamental sequence in G since B(xm-xp)
S B(Qy - Qp).z) Hence, by hypothesis, there exists X € G such that X, -2>
Xge Then if QO is the coset containing X0s Qp = QO in the strong topology
of G/Z. The existence of Qyproves that G/Z is P-complete.

Conversely, if {xn} is a fundamental sequence in G, B(x, - xp) < &€ for
my Py > ng(E)e Hence B(Qy - Q"p) < € where Q, is the coset containing xp,
n =1, 2, 3, eeey 50 {Q,} is a Cauchy sequence in G/Z. By hypothesis there
exists Qp € G/Z such that %igbB(Qn - Qp) = 0. Hence, for any xq in the
coset Qp, %;%B(xn - Xg) = 0, 50 Xp £> Xo and G is P-complete. This

completes the proof,

3.6 Examples of Spaces of Type K.

We now consider further examples of spaces of type K and give a more
detailed discussion than in l.4e It is to be carefully noted that in spaces
of type K we have the metric topology of the given strong norm lixl and we
have defined the notion of P=limit and P=continuity in terms of the pseudo-
norm P(x). Also, in the vector space X/Z we have a normed topology based on
P(Q), Q € K/Z. In spaces where the subgroup Z = {x €K ’ P(x) = P(=x) = 0}

reduces to the single element ©, the spaces K/Z and K are identical and we

1) See 3.3.1 for definition of P-convergence in Ge
2)e See definition 2.2,
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then have two normed topologies in K, the N Il topology and the P-topologys
This case arises in some of the examples discussed belows It will appear

that the two metric topologies are not necessarily equivalent.

3¢60le The Two-Dimensional Real Vector Space.

Iet K be the set of ordered pairs of real numbers with addition and
scalar multiplication defined componentwise in the usual way. An element x
of K is represented as (xy, Xp)e Define lxll = y&q? + x22 s P(x) =
max (x7, Xp)e It is readily verified that llxll and P(x) satisfy the postulates.
The normal subgroup Z consists of only one element, the zero & = (0, 0)s It
is easy to show that the metric topology based on P(x) is equivalent to the
strong topology of lxll (use the Hausdorff equivalence theorem). Similar
results hold for n-dimensional real vector space with llxll = (Eﬁllfi\p)ljb,

p any fixed positive integer, and P(x) = max Ei where the element x is
-

represented by (?l, ?2, ee0 9 ;n)o

306620 The Space of Bounded Sequences of Complex Numbers with Scalar

Multiplication Restricted to Real Numberse

If the element x is the sequence {fn}, we define lIxll = syp ‘51‘ and
P(x) = Syp (R1 ?i). We have seenl) that the subgroup Z consists of sequences
of pure imaginaries and a coset (element of K/Z) consists of all sequences
having identical real parts in corresponding terms. But the strong norms of
elements in the same coset take on a wide range of values so that in K/Z
there is only one metric topology, the P=topology. For example, P(Z) = O
but there is no restriction except finiteness on the imaginary parts of

sequences belonging to the coset Z, so that Z contains elements of K whose

strong norms take every non-negative value.

1). Discussed in 1l.h, example II, again on p 17, and in 2.3.1.
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30503, Theorem, The space K of example 3.5.2 (bounded sequences) is

P-complete in the sense of 3.5.1.
Proof, We prove the space K/Z is complete in its metric P=topology. The
result then follows by theorem 3+5.3e

The elements of K/Z consist of classes of sequences having the same
real parts. We take as representative of each class (coset) a sequence of
real numbers only. Then the norm is B(x) = max (sgp Fis sgp —Ei) where
x = {Fn}, s sgp (Ei\ since the ?i are reale Thus B(x) becomes the class-
ical norm in the Banach space (m)l) which is known to be complete., Appli-

cation of theorem 3.5.3 gives the result.

3.6, The Space of Convergent Sequences of Complex Numbers with Scalar

Multiplication Restricted to the Reals and Definitions of Strong Norm and

Pseudo-Norm as in the Previous Example,.

This space of convergent sequences is clearly a subspace of the space
of bounded sequences. From the discussion in 3.5.2 it follows that there
exists a one-to-one norm=preserving correspondence between the K/Z space of

2
this example 3.6.4 and the Banach space (c) ~ of convergent sequences.

P-Linear Functionals in the Space of Convergent Sequences,

The remark immediately preceding allows us to prove the following

result very readilye

30605. Theorem, Every functional £(x), P-linear with respect to the space

K of convergent sequences of 3.6.4, and defined on K, is of the form

f(x) =¢C %&gb En + %g; Cn Fpns where the sequence {Eﬁs is the sequence of

l)o Banac}l, Refo 2, pp ll a.nd 53“5’.‘0
2). Banach, ibid,
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= 8

real parts of the terms of the sequence x, and where |Cl + . \cnl = .
Proof. It is known that any real linear functional F(q), where q = {?n},

defined over the real Banach space (c) of convergent sequences is of the form

P(@) =0 m Fy + 3 G fy

where ICI + f ICnI = 'F,.Z)

n=sl

From 3.6.2 and 3.6.l it follows that in the space K/Z, where K is the space

of convergent sequences of 3.6.lL, any P-linear functional F(q) is of the form
() =0 lta %+ 2,

where |C| + %:L lc,| = and where i?n} is a real sequence
representative of the element q € K/Z. By theorem 3.4.1, F(q) induces in
the space K a functional f(x) P-linear with respect to K such that £(x) =
F(q) where q is the coset containing x. Conversely, by theorem 3.Le.2, to
any functional f(x) P-linear with respect to K there corresponds a P-linear
functional F(q) on K/Z. The proofs of theorems 3ol.1 and 3.4.2 show this
correspondence to be biunique. Moreover, by corollary 3el.l, K = K /7°

These facts establish the theorem,

366066 Ilet K be the Space (C) of Real-Valued Continuous Functions x(t)

Defined on 0 £ + £ 1, Normed by lixll = magﬂ:llx(t)l , and Pseudo-Normed by

P(x) = max (4 ) u
1

The subgroup Z reduces to the single element © and the elements of the

space K/Z are the same as those of K. The P-topology is the same as the

topology of the strong norm, since B(x) = max {P(x), P(-x)} =og€§1lx(t)| =|xll o

1) For s See 3.2.3 and corollary 3e.lele
2)e See Banach, loc. cit., pp 65=67.
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Consequently the same class of functionals is linear with respect to both

topologies,

3066Te Let K be the Space (C) of Real-Valued Continuous Functions Defined

on0%t 21, Normed by lixll = ma§1lx(t)|, and Pseudo-Normed by P(x) =

ft () d
Oi'ggl OXS Se

It is easy to verify that the pseudo-norm postulates are satisfied. We

note that P(x) 2 0 but P(x) may be zero without x being zero.

The Subgroup Z Consists of only One Element, ie.e., P(x) S P(=x) = 0 =% x = 6,

To see that this is so, suppose that x(t)#0 for all t, 0 £t £ 1, Then
x(t), being continuous, is greater (say) than zero over some interval of
length & > O, Thenfsx(t) dt > 0o As t increases from O to 1, such an
interval & cannot occur before a value of t where x(t) < 0, otherwise
Spp j: x(s) ds > O But, similarly, x(t) cannot take a value < O before
x(t) > O since, by hypothesis, Spp J: ~x(s) ds = 0, Hence x(t) = 0 identi-
cally. Hence K = X/Z and in the space K we have two normed topologies, one

based on lixll and the other on P(x)e We next prove that

The Topologies of the Strong Norm and the Pseudo-Norm in the Space K of

3+507 are Not Eguivalent,

Proof, It is sufficient to show that a neighborhood in the \xll topology
does not contain any neighborhood of the P(x) topology. Let Ng = {xl flx <E}
be a given neighborhood of the origin in the [Ixll topology. Any neighbore
hood of the P(x) topology is of the form N = {x l B(x) < 81)] where

B(x) = max {P(x), P(-x)}.
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Define the function y(t) as follows (also see Figure 1):

y(t) = 8 €2 t/Cl for 0 ¢ £ €1/l
= -8 € /6, + 4E for &/UE £t £ & 2€
= 0 for /28 £ 21
y
A
NG
v X ' S Gee
\?
z % : g\e(x
| l Zo
|
|
|
S K
L€ 2€

Figure l.
yv(t) is continuous, so y € K,

t
= &/2 <&, and ft-=o<e.
S, fo y 1/_ 10 oI, . Y 1

Hence, B(y) < 81 SOy € Nb. But Ogiélly(t)’ =28 > € Thus y is not in Nge
This means that there is no P-neighborhood contained in a given llxll neigh-

borhood and so the topologies are not equivalent.

Completeness, It is known that this space of continuous functions is

complete with respect to the topology of the strong norm ( (C) is a Banach
space). This is no longer true in the P-topology. We prove the following

result:
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The Space of Continuous Functions of 3.6.7, Pseudo-Normed by P(x) =
1)

s x(g) ds, is not P=Complete,
02t2) f: k8) de; =

Proof. Consider the sequence of continuous functions x,(t) defined as

follows:

x,(t) =0 for 0 €+t €%
=n(td) fori€t€%+1/m
=1 for2+1/mEt €1,

1l

-
I
-
3
&\

i
3

r-—§l

b e e e e — — e e e S, ]

Figure 2
Then form >n 2 2,
xp(t) - % () =0 for 0 £¢ €3
= (m-n)(t=%) for1 €4 524 1/m
= -n(t-t~1/n) for 4+ 1/mEt £241m
= fory+ 1/t 1,

This computation is more easily followed by referring to Figure 2.

1)0 For the definitiOn, see 3.501, 305020
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It is readily seen that P(x, - x,) & Og\églj:(xm - :51) = (m - n)/2mn, and

that P(x,, = x.) = 0s <% B -x) = = 1 1 <€ for all
at P(x, = x (xp = x, xgmz___ - or

2n

positive integers m, n, > 1/2f, Hence {xn(t)} is a P-fundamental sequence.
From Figure 2 it is clear that the step function with value O for 0 £ ¢ £ %
and value 1 for 2 < ¢t £ 1 is the P=limit function of the sequence {xn(t-)}

but it is not continuous and so is not an element of the space K/Z (here

the same as K)o Hence the space is not P-complete.

P-Linear Functionals in the Space 3.6.7 of Real-Valued Continuocus Functions

x(t) on 0 € ¢t £ 1, Pseudo-Normed by P(x) = sxrplg x(s) dse

We prove the following analogue of the theorem of F. Riesz on linear

functionals in the Banach space (C) of continuous functionse

30608, Theorem, Every P-linear functional f(x) defined on the space (C) of

real-valued continuous functions x(4) on O £ t £ 1, pseudo-normed by

P(x) = qug g x(s) ds, is of the form f(x) = &l x(t) dg where g(t) is a
£t=]1 0

function of bounded variation independent of x.

Proof. The method of proof is to approximate continuwous functions by step

functions. We first define a P-normed linear space containing both classes

of functions. Let (M) be the set of measurable functions bounded in the

interval [0, 1}. From a result of measure theory to the effect that fg is

integrable if f is integrable and g is essentially bounded and measurable})

it follows that any function x(t) € (M) is integrable on [0, 1] and on any

subinterval of {0, 1]. (Define f =1 on the subinterval in question, O

elsewhere, and take for g the function x(t) ). Hence we may define P(x) =

Og%glﬁx for x € (M) Then P(x) is a pseudo-norm, and if in (M) we adopt

a common procedure and regard functions differing on sets of measure zero

1l)e See, €+g., Halmos, Ref. L¥*, p 113, Theorem D.
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as identical, then the subgroup Z in (M) reduces to the single element 6 as
in the space of continuous functions (C) of 3.5.7. This space (C) becomes
a linear subspace of (M) with the same definition of pseudo-norm in both
(C) and (1),

By the Hahn-Banach extension theorem, if f(x) is a P-linear functional
on (C), there exists a P-linear functional F on (M) such that F(x) = £(x)
for x € (C) and @M) .(C)’ where @M)’ @C)’ are the respective
functional moduli (see 3¢203)e

Define the step function ¥, S F(u) 21 for 0% u <t

Z0 fort<ugl
and place F(§y) = g(t)e Note that ¥y is in (M)e We next show, following
Banach, that g(t) is a function of bounded variation. Iet 0 =ty < %, <

< t =1 and E,_- sign [g(ti) - gt _1)] for i =1, 2, eesy Nne Then

il | e(ty) - elty4)| = Zx-] {e(ty) = (b)) &

F( i (t;‘t )ai) by linearity of F,

'(M) {Z (Fey - Fo 1)813)

Now B{Z (?ti Eti 1)5:& = max of the pseudo-norms of ‘ti (Fgy- Etl 1 €

and so will have its greatest possible value when all the Gi are positive,

n
H - €t £ 1 by the definiti £ th do= "
ence B{%-.-.l(?ti ?ti-l) 53 y the definition o e pseudo=norm

i

'o Ef t G t'_
va.gé%gion of g(t) = [EkM) s E}C) by the Hahn=Banach theorem, i.c., g is a

@M)’ which is independent of n. % total

function of bounded variation.
The next step consists in approximating a given €ontinuous function

x(t) by the following sequence of step functions {zn}, nEL 25 seey

1). See 362030
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where z, & z,(u) = ; x(r/n){ /n ﬁ( _Ya (u)%. From this, B(x = 3,)

=>0 as n=>®, i.2sy 2, ~£> x, From the P=continuity of F we have

lim F(z,) = F(P-lim z,) = F(x) = £(x) since x € (C)o From the additivity

N0 N0

and homogeneity of F, it follows that F(z,) = ilx(r/n) ig(r/n) - g(l'-r'-l-l)}.
=

Since x(t) is continuous and g(t) is a function of bounded variation,
1

lim F(z,) is the Riemann-Stieltjes integral, So x(t) dg(t)e Hence f(x) =

N=00

f’ x(t) dg for all x € (C)s This proves the theorem,

0
We remark that this investigation does not yield an exact value for the

functional modulus (contrast the classical result of F. Riesz). The best

result this proof allows is that 2 total vaé'}%%l‘on of g(t).

3.6.9. The Space (C) of Real-Valued Contimuous Functions Defined on

02 +¢ 21, Normed by lIxll = mag‘cl lx(t)‘, and Pseudo-Normed by P(x) =

suglj-;xgs) ds,

This space is more general than that of 3.6.7. Here P(x) may take
negative values. We prove that P satisfies the triangular inequality. If

X, ¥y are elements of the space,

P(x-i-y)" IY(x-t-y) ®(=x+y)+ suEIS_(JHY)

Sox-f- &)yi» suglglxé- iR Sl
CRIERE

P(x) + P(y).

L1N

1)

]

The other postulates are readily seen to be satisfied,

Nature of the Subgroup Z = ix_l P(x) = P(=x) = o}.

w

1 %
P(x) = 0 =% X; x(s)d8=0 since %Z%gl g% x(s) ds 2 0, Similarly

1
2
P(=x) = 0 = X -x(s) ds € 0. Therefore &) x(s) ds
0

O for x € 2, and
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consequentl; U ‘Jt x(s) ds and .su g[b ~x(s) ds are zero for x € Z. As
WM 1248, Jy e

£+t €1, Hence the

j=

in 3.6.7, the latter result implies that x(t) = O for
© functions x(t) of Z are zero over 3 £t £ 1 and their integrals over the

interval [O, %] are zero. Two functions x(t), y(t) are in the same coset

3

. (x(t) = y(t))dt = 0. Figure 3 helps

if x(t) =y(t) for 3 €t € 1,.and if X

to explain the situation.

\\\

\ P o
& /\/ \\
/) [\ \
[ )\
II \ / |\ [
| S
-\ — \

\\// ¢
Functions in the Subgroup Z Functions in the Same Coset
Figure 3e

The pseudoenorm of 3.6.9 is more general than that of 3.6.7. Hence
the space K/Z of 3.6.9 is not P-complete, €lse the space of 3.6.7 would

also be complete.
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CHAPTER IV

The Pseudo=Norm as a Functional

In this chapter we shall confine ourselves to pseudo-normed vector

)

spaces of type Gl and G/Z, where Z = ix € G l P(x) = P(=x) = O}.

liele Continuity of P(x)e

We have seen (theorem 3.1.9) that a space G/Z can be made into a
strongly normed linear space under B(Q) = max {P(Q), P(-Q)}, Q € K/Z, and
that for x € G, B(x) = max {P(x), P(=x)} is a positive semi-definite norm
in the space Ge Also theorems 3.4l and 3.4.2 show that there exists a bi-
unique correspondence between P-continuous functionals defined on G/Z and
P=continuous functionals defined on Ge This being so, it is immaterial in
dealing with questions of continuity with respect to the norm B whether we

work in a space of type G or in the more special space G/Ze

Lhols1s Theorem, The pseudo-norm is P-continuous, i.e., continuous with

respect to the topology of the norm B(x)e

Proofs We have just pointed out that we may work either with a pseudo=
normed vector space of type G or one of type G/Z. Select the latter. For
Q € 6/2, P(Q) € B(Q), where B(Q) = max { P(Q), P(-Q)} is a strong norm in
G/Z. This means that G/Z is a space of type K2) in which llxll is replaced
by B(Q) and P(x) € Mixll is replaced by P(Q) € 1 B(Q)e Theorem lo3+6 now

applies and completes the proof,

Lhele2s Definition of Convex Functione

A real-valued function f(u) of a real variable u is convex if

£(aiuq + Qus) = qif(1y) + gof(u,) for any uq, and any g, g, such that
191 + U2 1t\y/ + gl 1 U2 10 92

1)0 See 3.1010
2)e See pp 1, 2 for the definition of a space of type K.
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G 20, @20, 3 +aq 31

liele3e Theorem, For arbitrary but fixed x, ¥, € G, and a real variable u,

P(x + uy) is a convex and continuous function of u.
Proof, Denote P(x ¢ uy) by f(u)e
Convexity:

£(qquy + ao%) = P(x + qquqy + Gousy)

P(qlx + Wy + X + uzy) since g + Qo =1y

A

q P(x + wy) + 9 P(x + uwy)
&

Continuitys

P(x + uy + yAu) = P(x + uy)
P(yAu) by 1le2,10, £ lAu\ max {P(y), P(-y)} by

f(u + Au) - £(u)

L1

l.1e3(c) and lemma 3.1.3.

A similar result holds for f(u) = f(u + Au)e Hence \f(u + M) - f(u)\‘-‘s
lAuI B(y) < € for |Au‘ < &/B(y) when B(y) # 0, and = O when B(y) = 0. Thus
£(u) is continuous. This completes the proof of theorem l.le3e

By applying certain resultsl) of the theory of convex continuous
functions to the above function P(x + uy), we immediately obtain the follow=

ing theorem.

L;ioh. Theoremes For arbitrary fixed elements x, y of a pseudo-normed

vector space G, the real-valued function f(u) = P(x + uy) of the real
variable u possesses a right derivative and a left derivative at each point
u; moreover f£(u) has a derivative except perhaps at an enumerable set of

values of e

1), Hardy, Littlewood, and Polya, Ref. 5, pp 91, 9lL.

2). Using distinct methods, Mazur, Ref. 10, page 75, and James, Ref. 8,
Theorem 6.6, prove the first part of this theorem, and Mazur, ibid,
page 77, then applies a result of Siérpinski to obtain the second part.
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o2, GAteamxDifferentiability of the Pseudo-Norm,

he2.le Definition of GiteawxDifferential. The functional P(x) is said to

be Gateawedifferentiable at the point x if %i_’xon P(x ¢ hy) = P(x) exists for
h

all y in the space G. The value of this limit, if it exists, will be de-

noted by Pg(x; y) and called the GAteawxdifferential of P(x) at x with

increment yeo

o220 Definition of Right and Left Differentials of P(x)., Theorem Lol.h

gives the existence of both right and left derivatives of P(x + uy) with

respect to u. For u = O, this means that %*n& B(x: = and
%13-6- P{xmg = P(x) exist for all x, y, € Go (But these limits are not
necessarily equal.) We set P (x; y) = lim ngigz} = P(x) and P_(x; y) =

hs04

135-3;18- P{g—_}gg) = P(x) and term these the right dii‘ferentlal and the left

dlfferentlal respectively of P(x) at the point x with increment ye.

he2:3 Theorem})

For fixed x € G, the right differential P+(x; y) of P(x)
has the following properties:
(1) +>0, P (x5 ty) =t P (x5 ¥),

(i1) P+(x; y+z) € P+(x; y) + P+(x; 2)y

thtozl);._ﬂxl = lim ﬂF_(Js_LK_LI’.(Js)J
t lim P(x«+h = P(x
hoO+ HZ
=t 1lim - =+t P (x Yo
hg 0+ M%)"t —Rla +3 7
(i1) P(x+h 3%2) = P(x) = P(&igy-h?hzg = P(x) = P(x)

€ P(x+2hy) - P(x) . P(x+2hz)-P(x) for h>0,
2h + 2h

(iii) P+(x; y) € P(y)e
Proof. (i) t > O, P;*_(x; ty)

1), Proved alsc by Mazur, Ref. 10, p 75e



B

Now lim P(x+2hy) = P(x) exists and is in fact P (x5 y)e Similarly
haO+ 2h +

lim P(x+2hz) = P(x) _ P (x; z)e Therefore, as h =» O+, the above
heO4 2h
inequality gives P+(x; y+z) € P+(x; y) + P+(x; 2)e

(iii) For h > 0, 2(.2;_'!-__13&.})1._-_2.(1).5 P(hy) = P(y)s Hence
h

lim E_(.x.:_fsxﬁ.;ﬂzl £ P(y)s i.eey P (x5 ¥) = P(y)e
h+0+ +

1
Le2slte Corollary. For fixed x, the right differential ) P +(x; y), regarded

as a function of the increment y, is also a pseudo-norm in the vector space G
Proof, Properties (1), (ii) of theorem L.2.3, are postulates 1.1.3(c) and
1l.1.3(b) which a pseudo-norm satisfies in a space of type Gg) We can assure
that P +(x; y) is not identically zero in y (postulate 1l.1.3(a) for a pseudo-
norm) by selecting the fixed x so that P(x) # O. Since P+(x; x) = P(x),
P+(x; y) £ 0o This establishes the corollary,

We can now apply theorem lL.l.L and definition L.2.2 to the right dif=-
ferential of P(x) and obtain the result that the right differential at y
with increment z of the right differential of P(x) at x with increment y
exists. If we denote this second right differential by P.H_(x; ¥ zy) s and

apply Le2.3 we get the following result.

Lo2,5. Corollary. (i) t > 0, P(x; y; 'bz.y) = tP (x5 3 zy),
(11) Pyylxs 73 (zawnly) € Pyl 75 2y) + Pyylxs 3 wy)s
(111) Po(xs 75 z) S P(x5 y)o

lhe2.60 lemmae, P_(x3 y) = -P+(x; =y) where P_(x; y) is the left differential

of P(x) with increment y, and P+(x; =y) is the right differential of P(x)

with increment =y,

1), For definition of P.(x; y), see Le2.2,
2)e See 3.1.1 for definition of a space of type G.
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Proof. By definition, P_(x; y) = lim 2‘“&% = P(x)
- haQ=

= 1113»%- _P(x « Ihlglar) ) = P(x)

i %1..1&. P(x + h(-{) ) - P(x)

= P, (x3 =y) by definition.

he267o ILemma., A necessary and sufficient condition for the existence of

the Gateawdifferential of the pseudo-norm P(x) at x € G is that

Py(x; y) 2 lim P(x+hy) = P(x) and =P (x5 -y) = - lim P(x-hy) = P(y) be

W ol = h wE T haO+ h

equal for all y € Geo

Proof. This follows readily from the definition L.2.1 of Gateawdifferential
and lemma Le2.6. In detail, the existence of the GAteawdifferential

Pg(x; y) 8 lim E(ximg = P(x) is equivalent to %%4- P(x+hy) = P(x) =

h=0- h
Pg(x; y) = %*118- P§x+mh) = P(x), i.ee, P (x5 y) = P_(x; y), both limits ex-

isting in virtue of L.2.2, Then by lemma h.2.6, P (x; y) = =P.(x3 =y)e

lie2,8s Theorem. If the Giteawdifferential of the pseudo-norm exists at

X € Gy it is P=linear with respect to Gl)in the increment y, i.c., additive,
homogeneous, and continuous in the P—topology.e)
Proof: Homogeneitys
For t > O, theorem L.2.3 gives P (x; ty) = tP,(x; y) and for t < 0,
P.(x; ty) = P+(x; (=t)(=y) ) = ~tP (x; <y)e Since Py (x; y) exists,
Polx; 7) = Pylxs y)o For t > 0, Polx; ty) = Pylx; ty) = tPy(x; ) = tPg(x; ¥)o
For t < 0, Polx; ty) = Pu(x; ty) = =tP,(x; =y) by the first part of
the proofe Since Pg(x; y) exists, lemma Le2.7 gives Pg(x;-y) =P (x5 =y) =
P (x5 y)o Using this and the above, we get P (x; ty) = =tPp(x; =y) =

(=t)(=Py(x; ) ) = tP.(x; y)e This completes the proof of homogeneity,
+ +

1l)e See Chapter III, in particular definition 3.3.6 and theorem 3.3¢7e
2)e An equivalent result is stated without proof by Mazur, Ref. 11, p 130,
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Additivitys

Since Pg(x; y) is homogeneous in y, Pg(x; F¥z) = -Pg(xs y+2)e
Now Pg(x; §¥2) = Po(x; =y-2) € Py(x; =y) + P.(x3 =2) by theorem L.2.3,
= Pg(xs =¥) + Pglx; -2) € = Py(x; y) = Pglx; 2) since Py(x; y) is homo-
geneous in y by the first part of this proof. Thus -Pg(x; y+z) €
—Pg(x; ¥) = Pylx; %), hence Pg(x; yez) 2 Pg(x;y) % Pg(x; z)e But
Pg(x; y+z) = P+(x; y+z) € P(x; y) + Py(x; 2) by theorem L.2.3. Therefore
Pg(x; y#z) = Py(x; y) + Pglx; 2).

P=continuity:

By theorem Le2¢3, Py(x; ) = P(y) and P(y) € B(y), where B(y) =
max {P(y) " P(—y)} is the norm for the P-topology. The method of theorem
Liel.1 then shows immediately that Pg(x; y) is P-continuous in y. This

completes the proof of the theorem.

Remark on Fréchet differential: Theorem L.2.8 does not prove that the

existence of the Gateamdifferential of P(x) implies the existence of the
Fréchet differential. For the latter it is necessary in addition that the
approach to the limit be uniform with respect to y in some y-neighborhood
of the origin.l) In fact, Fréchetz)has shovn that in the space (C) of real-
valued continuous functions of 3.6.6, pseudo-normed by P(x) = 02%1 x(t),
the pseudo-norm nowhere possesses a Fréchet differential although there are

points where its Gateawxdifferential exists.

.29 Theorem. A necessary and sufficient condition that the pseudo-norm

be Gateawedifferentiable at x € G is that lim [P(ux+y+z) = P(ux+ y)] <
U400

lim [P(ux+z) - P(ux)] for any y, z, in the space G'E)
U=»00

1l). See Mazur, Ref. 11, p 130, and, under much more general conditions,
Michal, Ref. 1L, p 412,

2)s Fréchet, Ref. L, pp 2L5-2L9,

3). This theorem was suggested by a similar result of James, Ref. 8, p 28
concerning the differentiability of a strong norme
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Proofe. MNecessitys:

1]’.‘-):.1'.1’10 [P(ux-q-y-\-z) -P(ux+y)1 o %_’n&. P(-ﬁ]x+y +2) = P(%x-&- y)
- Jim +h v4z) = P
~ haO+ h

lin P(xth ¥5) - P(x)h- {P(x +hy) - P(x)}

Pg(x; y+z) - Po(x; y) = Pg(x; z) by linearity (theorem L.2.8),

= 1im P(x+hz) = P(x) = lim u{P(x + z/u) - P(x)}
h=0+ h =00

= lim [P(ux-b z) - P(ux)] o This proves the necessity.
U0

Sufficiency:
Both limits appearing in the enunciation always exist since, Jjust
as in the proof of necessity,

1lim [P(ux+ y+2) = P(ux+ y)]
U0

= lin [__(___x_l____(_leh“ﬁ - P(x .131;:;1_11)_-_1’_(;1]
ha0+ h = h

= Pu(x; y+2) = P(x; y)o Similarly,
1im [P(uxi- z) - Plux )]' =P +(x; z)e Hence the hypothesis becomes
=00

P*(x; y+2) = P(x; y) = Pu(x; 2)3 and this holds for all y, 2z, € Ge

Putting z = =y we get
Pu(x; 8) = Py(x;s y) = Pu(x; =y), ieee, Py(x; y) = <Py (x; <y)e By
lemma Lo267, this last relation is equivalent to the existence of the

Gateawxdifferential of the pseudo-norm at x. This proves the theorem.

GateawxDifferential of P(x) at Zero.

It is easy to see that a strong norm cannot be Gateawkdifferentiable



-

at x = 6, for

lim ll® < = lyl while

h0+

lim i@ + hyll - liell : hl | = =lyl # lyl for all y.
= a _E_I' vyl # lly y

However, the notion of pseudo-norm applies to a wider class of functionals
than that of a strong norm, and under special conditions a pseudo-norm is

differentiable at zeros

2,10, Theorem. P(x) possesses a Giteawxdifferential at € if and only if

P(=y) = <P(y) for all y in the pseudo-normed vector space Ge

Proof, Necessity:

Pg(83 ¥) = }11_.1& ﬂe_t_uﬁ)_:_ﬂ&). = P(y) and

1]'.1-»1%- P(e «+ h,Y) - P(8) = 1:!.1118- PE(—h)( z)}

= lim =h P(=y) = -P(-y)
hoO~ = h 4

Pg(8; ¥)

Thus P(y) = =P(=y).

Sufficiency:
P(~y) = =P(y) =2 P(=hy) = <P(hy) for h > 0. Hence

P( -}ﬁy_} = -thm;) = P(mh ) for h > O, This implies that

P(® - h.v})1 - P(8) = P(e + h;[})1 - P(8), h > 0, therefore

- lim P(8 = ml P(8) = lim P(6 + hy) = P(8), i.ee,
hs0+ h

- P.(8; -y) = P,(8;5 y), and this, by lemma Le2.7 implies the

existence of the Gateawxdifferential at €.

ho2,11, Theorem., If, in a pseudo-normed vector space G, the Gateauxdif-

ferential of P(x) exists at zero, then it exists at all non-zero points and
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Pg(x; y) = P(y)s Thus Pg(x; y) is independent of x, and in particular
Py(x; y) = Pgl=x; y)o

Proof. By theorem 4.2.10, P(=y) = <P(y).

For h > O, P_(;L:n_m%l)_:ﬂxlﬁ_l’(mh ) — P(y) and

P(x + ml? = P(x) = P(x) ~ P(-}-‘mr) = P(x) by 1.2,10,

= .-:.R(ﬁlm). - :'lﬂil(l.:}d = =Pl=y) = P(y)e

Hence }11‘%+ng + hzh2 = P(x) = P(y)e Similarly

%ﬁ ng-m[hz = P(x) = P(~y) = <P(y)s The former result is

P.(x; y) = P(y) and the latter is Py(x; ~y) = <P(y), ie2e, =P,(x; =y) = P(y)e
Thus P.(x; y) = -P+(x; =y) = P(y) and this implies, by lemma 4.2.7, that

the Gateawxdifferential Pg(x; y) = P(y)e This completes the proof.

}.2,12, Theorems, (A converse of Theorem L.2,11.) If the GAteawxdiffer-

ential of the pseudo-norm exists at all non-zero points x of a vector space
G, and is such that Pg(x; y) = Pg(-xs y) for all increments y, then the
pseudo=norm is Gateawedifferentiable at zero.

Proof, By the existence of the Ghteawdifferential, P (x; y) = Pg(x; y) =

Pg(-x; y) = P.(=x; y)s Putting y = x, we get Py(x; x) = P (~x; x), i.e.,

11153+ P(x + hxt)1 - P(x) = }J{.’iz&_ P(=x -‘-vh_:_z_%l = P(=x), i.c.,

lim (1 + h) P(x) = P(x) = lim (] = h) P(=x) = P(=x) since 1 = h >0,
ha0+ h h=0+ h

This yields P(x) = ~P(=x), Since this holds for all x € G, we obtain the
existence of the Gateawxdifferential at © by means of theorem l4.2,10. This

concludes the proof.

42,13, Examples of Py(x; y) and Pp(x; y) in Simple Cases,
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ie2.13(2)e Let G be the two dimensional vector space of real number
couples, x = (x7, Xp) for x € G, with P(x) = max (x3, xp).
The Giteawdifferential of P(x) does not exist at zero since P(y)#~P(~y)
for all y € G (theorem Lio2.,10), Neither does P (x, y) exist at x = (1, 1)»

To see this, put y = (y1, ¥p)e Then

lim P(x+hy) = P(x) = 1lim 1 + h max ) = 1 = max( s
i ( hyh P(: . (3{113 ¥ Yis ¥2);

but }11.,118._ P(x+1’5r)h- P(x) = }Ji-’i%x_ maxil+h;y],}3.+ hys} = 1

- lin max } = lin homin = min (y1, ¥p)
Lin {hylll,fvz {zzh,yz 1 Tple

Since max (y1, ¥p) # min (yy, ¥yp) for all y, Pg(x; y) does not exist at

= (1, 1)e In fact it is easily seen that it exists nowhere,

Le2.13(b)e Iet G be the two-dimensional vector space of real number
couples with the almost trivial pseudo-norm P(x) = x, where x = (x3, Xp).
In this case P(=x) = -P(x) for all x € G, so by theorems 4.2.10 and L.2,11
the Gateaxdifferential of P(x) exists everywhere and, in fact, Pg(x; y) =

P(y) = yp, where y is the element (yy5 ¥p)e

h.2.13§c). Iet G be the vector space of real-valued functions of the form
x(t) = a(t% - t) defined on 0 £t £ 1, Define P(x) = max a(t2 -t)e

Then P(x) = -a/l} if a < O,

0 ifa=0,

Lemma. The GAteawdifferential of P(x) does not exist at zero.

Proof, Let y = a(t? =~ t), 2 > 0, Then P(6 + hy) - P(8) = P(ha(t? - t) ).

Hence P.(8; y) = lﬁ P(ha(t2 - t))-- O since a > Os On the other hand,

P(8; y) = llm P(ha(t? - %) sl ==~a/L£0=P (6, y)e This establishes the
h

lemmas,



Lemma., The P-norm is Gadteauwedifferentiable at x = -(t2 - 1t)e

Proof, lLet y be any element of Go Then y = a(t? - t)e

P(x +hy) = P(x) = PL(1-ha)(b = £2)] - Pl-(32- )
b B

= (1-ha) P(t~%2) = 2 since 1-ha > O for |hl
h

sufficiently small, = (1=-ha)i =« 3 = -a/he
h

Therefore gl.*:.zcx)x P(x +hy) = P(x) = =a/li and exists for all increments y. This
h

means that P(x) is GiAteawedifferentisble at x = -('b2 = 1t)e

le3s A Connection Between GiteaweDifferentiability of the Pseudo-Norm and

P-Linear Functionalse

lhe3.1l. Theorem, Let G be a pseudo-normed vector space and Xg an element

of G such that P(xg) > P(=xg)e Then, in order that the Gateawxdifferential
of the pseudo-norm should exist at xg, it is necessary and sufficient that
there exist one and only one P=linear functional F such that F(xo) = P(xo)
and = 1 where (F] is the functional modulus of F.l)
Proofs By 1.2.11, P(xy) > P(~xg) implies P(xg) > 0. Hence B(xy) (Lec.,
max{P(xO), P(-xo)} ) = P(xg)e

Necessitys:

Define F(y) = Pg(xo; y), the Giteawxdifferential of P(x) at X with
increment y. Then F(y) is a P-linear functional of y by theorem Le2.8, and

F(xg) = Pg(xo; xo) = I]if(l)l P(xg + hxg) - P(xg) = P(xp)e Moreover, by theorem

42,35 F(y) = P,(xgs ¥) & P(y); hence F(y) & max{P(y), P(-y)} =B(y), so
that €1, since F(xg) = P(xg) = B(xg), = 1, This establishes the

1), See definition 3.3.6 and corollary 3.lj.l4 for explanations of"P-linear
functional® and “functional modulus®,
A similar theorem concerning the Giteawdifferential of a strong norm
is stated by Mazur, Ref. 11, p 130,



existence of one such functional F. To prove its unigueness, we need the
following lemma which is the analogue of a result obtained by Mazur, dJames,

1)

and McShane,  for the case of a strong norme

Lemma. If P(xg) > P(=xg), and F(x) is a P~linear functional on a pseudo-
normed vector space G of functional modulus = 1 such that F(xo) = P(xg)s
then =P (x03 =) £ F(y) £ P (x05 ¥)e

Proof. Our method is an adaptation of that used by McShane?) For any real
number a and any y € G, the homogeneity and additivity of F give

F{xo 4+ a(y - —-(—(-‘L} xo)} = F(xg) + aF(y) - QFK:-(I-} F(xg) = F(xg), since F(xg)

= P(xp)e Since F is P-linear,
{xo + aly=- P( y xo)} 7 B x0+ aly - —-(1% xo)}

Since =1, B{xo + a(y - E%x%} xo)} = P(xo) for all real a.

For a = 3% _?,’in_r_ s L real, this becomes
P(xgp)
t
B{xo + i-m-(;s— (y - ;Z'(‘I‘)) Xo)} - P(xo)o
P(xo)

For |t sufficiently small, 1 + t F%% > 0, hence the identity

Xg + ty = (L +t -ggg)) {x -—-—t—'&-@ I;.('x%% xo)} yields
P(xq)

Blxg +ty) = (1L + ¢ flg- ) B{xo + -—-—; TR (y - --(I% xo)}

é(1+t§ﬁl>mw>=m%>+tmw.

1)e Mazur, Ref. 10, p 75; James, Ref. 8, p 102; McShane, Ref. 12, p L02,
2)e McShane, ibid.
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Since B(xg + ty) = max{P(xo + ty)s P(=xg - ty)}, since P(xg) > P(=xg), and
since P(xg + ty) is a continuous function of t (theorem Lele3), it follows -
that, for \t| sufficiently small, B(xgy + ty) = P(xp + ty)e Under this con-

dition the above relation becomes P(xy + ty) - P(xg) 2 t Fy).

Hence, F(y) € lim P(xq + ty) - P(xq) = Py(xgs )
t20+ t

and F(y) 2 %-»i%- P(xp + ty) = P(xg) =-P.{x0;-y) by lemma L.2.6.
t

Thus -P+(x0; -y) EF(y) € P.(xy; ¥), which proves the lemma.

Uniqueness of F(y) when Pg(xp; y) Existse

By the above lemma, any P=linear functional F with F(xo) = P(xo) and
= 1 must satisfy the inequality =P.(xg; =y) € F(y) & Polxps y)o The
existence of Pg(xo; y) implies that these three members are all equal to
Pg(xo; y)e Hence F is unique. This completes the proof of necessity for

theorem )-103 olo

Sufficiency: We use the following result of Mazur].') If x5 and 2

are distinct elements of a linear space G pseudo-normed by P(x), and a is
a real number such that -P+(xo; -z)£a€p +(xo; z), there exists in G an
additive and homogeneous functional F(x) such that F(xo) = P(xo) s F(z) = a,
and F(x) € P(x) for x € Gs

It is to be noted that no question of the continuity of F(x) is in-
volved explicitly in this result. Suppose P(x) is not Giteauwedifferentiable
at xg. Then there exists at least one element Jyo€ G such that = +(x03 -yo)
# P(x05 Yo)o Corollary L.2. justifies the application of consequence
1.2.11 to P+(xo; ¥)o This yields the inequality- +(xo; ¥o) < P+(xo; Yo)e
Hence there exist distinct real numbers a, b such that -P,',(xo; -yo) €a<hb

- *(xo; yo). We now apply the above result of Mazur with z replaced by yg

1) Mazur, Ref. 10, p 75
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and obtain the existence of two additive homogeneous functionals in G, F(x)
and H(x), such that F(xo) = H(xq) = P(xg); F(yg) = a, H(yg) = b; F(x) € P(x)
and H(x) € P(x) for all x € Go Moreover this last implies that both F(x)
and H(x) are P-continuous, for F(x) € P(x) £ B(x) = M B(x) where M = 1,
Since an additive and homogeneous functional F(x) satisfies the pseudo-norm
postulates 1l.1.3(a), 1l.1.3(b), 1.1.3(c), and B(x) is the norm for the P-
topology, the methods of theorems 1.306 and Le1l.1 show that F(x) is P-
continuous. Also [F] = 1 since F(xy) = P(xy) = B(xg)e As a similar result
applies to H(x), we have two P-linear functionals F(x) and H(x) such that
F(xg) = H(xg) = P(xp), and = [H = 1. This is contrary to the hypothesis
of only one such functional. Hence P(x) is Gateauedifferentiable at Xge

This completes the proof of sufficiency and, consequently, of the theorem.



=61~
CHAPTER V

The Pseudo=Norm and Ordering Relations

5.1l Ordering Relations Based on a Given Pseudo-Norm.

5.1l.1s Definition of Quasi-Ordering Relation%)

Iet X be a set of elements between certain pairs of which there is
defined a relation £, £ is termed a quasi-ordering relation if it satisfies
0l: For all x € X, x € xo (reflexive)

02: IfxeX,yeX,zeX, xSy, 5y %32, then x € g, (transitive)

Sele2s Theoreme. If G is a real vector space in which is defined a pseudo-

norm P(x), x € G, there exists in G a quasi-ordering relation € with the
following propertiess
l. x€G,y€G, xZy, a>0, =Pax £ ay,
2 XEGQG, Y E€G, Xy, =¥y £ =x,
3¢ X;€ Gy Xy € Gy y7 € Gy Yo € Gy xlfyl, Xy £ ¥o,
=X + X -‘-yl + Yoo
be x€ Gy, ® = the zero of G, x £ 6, a and b real, a > b,
= ax € bx,
5 x€86,a>1, =>ax € x.
6o If y, is an element of G such that P(-yg) < O, then for any
x € G there exists a real number a depending on x, a(x), such
that x £ ayge
To Archimedean Property. If P(y) 2 0 and x € €y for all € > 0,

then x € 8, the zero of G.

in

Proof. We define x £y to mean P(x - y) € 0, Then 01 is satisfied since

N

P(x -x) =P(6) =0£€0 for all x € G To prove 02, let x § y and y £ 3,

iceey P(x ~y) £0and P(y =2) €0, ThenP(x - 2) S P(x =y +7 - 2)

1). See Birkhoff, Ref. 3, p L.
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£P(x -y) + P(y - 2) £0. Hence x € z, This proves 02, so by definition

5.1.1 G is quasi-ordered.

Proof of Properties 1 = 7o
1. P(ax=-ay) = aP(x-y) since a > 0, £ O since x £ y. Therefore
ax £ ay.
26 P(-Y - (=x) ) = P(x-y) £ 0 since x £y, Therefore =y £ —x.
3. P(XgF%5 = T1#¥2) € P(xq-y;) + P(x5-y,) £ 0 since %y €y and
%, € ¥y« Therefore Xy +Xy € ¥ +¥pe
he P(ax-bx) = (a=b) P(x) since a > by, £ 0 since x £ 8, There-
fore ax £ bx.
5. P(ax-x) = (a-1) P(x) since a~1 > 0, £ 0 since x = 8, i.e.,
ax £ x.
6. There are two cases to be considered.
First Case: P(x) > Q.
Then P(x -ay,) £ P(x) + a P(<yo) £0 for a = Tg%E%JT,
Therefore x £ ayg.
Second Case: P(x) € 0.
Then P(x~ay,) £ P(x) + a P(~y,) € 0 for any a 2 0,
ie€ey X € ayye
7o Archimedean property, x € €y for all € > 0 = P(x -£y) £ 0
for all € > 0, =0 2 P(x) - £P(y) by consequence 1.2.10
Hence, for any % > 0, P(x) € €P(y) < x by suitable choice of
€ « Therefore P(x) £ 0, P(x=6) £ 0, and x € 6,

Sele3. Definition of Partial Ordering,.

A set X is said to be partially ordered if there exists a binary
relation £ defined for certain elements of X that satisfies the following

postulates.
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Ol: For all x € X, x £ x. (reflexive)
02: xeX,yeX, z€X, x%y, y €2, =x <z, (transitive)
03: X, ¥y, € X, x2y,7y€x, x=y. (antisymetric)
That is, a partial ordering is a quasi-ordering which satisfies the

additional postulate 03,

Selelte Theorem. The pseudo-normed vector space G/Z}) whose elements are

the cosets of the subgroup Z = {x € G ‘ P(x) = P(=x) = 0}, is partially
ordered by the defining relation Q; £ Qy = P(Q) - Q) = O where Q;, Qo are
elements of G/2Z. Also this partial ordering satisfies properties 1 - 7 of
theorem 5.1626

Proof. Since G/Z is a pseudo-normed vector space, 01, 02, and properties
1 - 7 of theorem 5.1.2 are satisfied. It remains to prove 03. So suppose
Q) £y and Qy € Qo Then P(Qy - Q) £ 0 and P(Q, - Q) £ 0. By 1.2.11,
P(Q; - Qz) 2 P(Q - ;) 0. Therefore O £ P(Q - Q) € 0, whence

P(Q - Q) = 0. Similarly P(Qp - Q1) = 0. Hence Q -Qp = Z, the zero

element of G/Z. Therefore Q) = Qe+ This completes the proof,

We note without proof that the partial ordering of theorem 5.1.4 can
be obtained from the quasi=ordering of theorem 5.L2 as a special case of a
result of Schrdder quoted by Birkhoff in his book "Lattice Theory".z)
Birkhoff shows that any quasi-ordering can be made into a partial ordering
by means of an equivalence relation.

In future cases where a partial ordering is called for we shall drop

the notation G/Z and speak of a pseudo-normed vector space G in which P(x)=

P(~x) = 0 implies that x = 8.

1). For the definition of G/Z, see, inter alia, sections 2.2 and 3.1,
2)e Birkhoff, Refe. 3, p Lo
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The Moore-=Smith Property.

1
5.1.5s Definition of Moore-Smith Proper‘by.)

A set X with a (quasi- or partial) ordering relation € possesses the
Moore-Smith property if, for any x, y, € X, there exists an element z € X

such that x £ z and y £ 2.

5,1.6, Theorems Let G be a pseudo-normed vector space in which x £ y is

defined to mean P(x-y) £ 0 as in theorem 5.1.2. If in G there exists an
element y, such that P(-y,) < O, then the set G under the relation £
possesses the Moore~Smith property.

Proof. By property 6 of theorem 5.1.2 there exist positive numbers a, b
such that x £ ay, and y £ by, for any x, y, € Ge Put c = max(a, b)s Since
@ € y_, properties 1 and 3 of theorem 5.1.2 give ay, £ ay, + (c-a)y, Zcy,s
and similarly by, € cype Hence z = ¢y, is such that x £ z and y € 2. This

proves the theorem.

5.2, Definition of a Pseudo-Norm in Terms of a Given Ordering Relation.

5e201le Theorem. Let E be a real vector space with a given partial order-

ing relation (01, 02, 03, of 5.1.3) denoted by € and satisfying the follow-
ing conditions:
(i) x, y, €B, a >0, x €y, =Pax £ ay;
(11) %) Sy % 2y, x4+ %, Sy, + Tos
(iii) There exists in E an element e # © such that & £ e and such
that for any x € E there exists a positive real number a

depending on x such that x € a.e,

1) See Birkhoff; Refs 3, p xi. This concept is due to E. H. Moore,
Proc. Nate Acad. Sci. (1915), pp 628-632,
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Then a functional T(x) can be defined on the space E with the properties
1.1.3(a), 1.1.3(b), 1.1.3(c) of a pseudo-norm.

Proof. The proof makes use of the following lemma.

Ds2¢2. lemma. Under the hypotheses of theorem 5.2.1, x £y =P -y £ —x,

Proofs By Ol; =X =y € =x - y. Since x £y, hypothesis (ii) gives
X=X=yEy=-x-y, ie€ey =y £ «x, This establishes the lemma.

To prove the theorem, define mM(x) = inf s, x € E.
X<see

Proof of 1.1.3(a) that mw(x) is a real numberl) not identically zero.

First, m(e) # 0 for, if m™(e) = 0, by the definition of inf there would
exist, for any € > O, an & such that 0 £ & <€ and e € €iee Now -Ele £
-{1e, hence, by hypothesis (ii), e = §;e £ @, that is, (1-& )e £ 6, hence
e £ 6 by (i), on multiplying by 1/ (l-Cl) s which is positive for € < 1.

But e £ @ is contrary to hypothesis, so that m(e) # 0.2)

The possibility that m(x) = +® for some x is excluded by hypothesis
(iii). Finally we proceed to show that m(x) # - . Suppose x is such that
;{lgge s © -, This means that for any A > O, there exists A' > A such that
x € «Ate, Hence, by lemma 5.2.2, Ale £ —x, Now choose A as the positive
number of hypothesis (iii) applied to =x. Then =x £ Ae. By (i), © € (A'=A)e,
hence =x + © € Ae + (A'=A)e by (ii), i.eo., =x € A%e, 03 applied to the
results Ale € =x and -x £ Ate gives x = =A'e, From this it follows that
m(x) cannot be less than =A? for, if it were, there would exist b > O such
that x € (=A'=b)e and so A'e + bee € =x by lemma 5.2.2, The above result
that =A'e = x then yields bee £ 8 by (ii)., This is contrary to hypothesis

(1ii) since ® 8 e and b > 0, Hence there is no x € E for which ©(x) = -,

1) We are excluding oo and -0 as real numbers.
2), The)met.hod of proof can easily be adapted to show that, in fact,
me) = 1.
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Proof of l.l.3(c) that m(tx) = tn(x) for t > Oe

tx) = =i b thesis (i), = t
(tx) mgs.g ch%%es y hypothesis (i), ﬁﬁu‘.er

-t %gf..er = tm(x)e

Proof of lele3(b) that ™(x+y) € n(x) + n(y)e

Let m(x) 2 inf s =Db, n(y) £ igf s = c. By the definition of T,
XEs.e y=so€

for any € > O there exist numbers b?, ¢! such that b= bi< b+ § cZct<cc+ &,
and such that x € blee, ¥ £ ctees Then x+y=(b? + ct)e by hypothesis (ii)e

Therefore inf s £ b'+ c?< b+c+2f Since £ is an arbitrary positive num-
X+y=5e.8

ber, this implies inf_s £ b+c, iceey, Wx+y) € N(x)+ n(y)s This completes
X+y=s.e

the proof of theorem 5.2.1,

De2e3s Corollary. If, in addition to the hypotheses of theorem 5.2,1, the

partial ordering in E possesses the Archimedean property that x € £e for all
€ > 0 implies x = ©, then the pseudo-norm T(x) is such that m(x) = M(=x) = 0
implies x = €.

Proof. If m(x) =0, ):‘c.gg.es = 0, Hence for any € > O there exists £y such

that 0 = €9 < & and x £ €ye. Since 8 £ (€ - &;)e, this gives x = {je +

(€ =€q)e by hypothesis (ii), i.es, x € £es This being true for all € > 0O,

the Archimedean property implies x € 8, Similarly m(=x) = 0 leads to

~x £ 8, and hence 8 £ x by lemma 5.2.2, Therefore x = @ by 03, This proves

the corollary.

De2slis Corollary, Iet E be a real vector space with a partial ordering

relation £ under the hypotheses (i), (ii), and (iii) of theorem 5.2.1s Then
the set E under the ordering £ possesses the Moore-Smith property (5.1e5),
Proof, The proof proceeds exactly as in the case of theorem 5.l.6, the

element e of hypothesis (iii) of theorem 5.2,1 being used in place of yge
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5.3, Connection Between Set-Ups of Sections 5.1 and 5.2,

Let us summarize certain aspects of theorems 5.l.. and 5.2.1l. In
theorem 5.1, a given pseudo-norm in a vector space leads to a partial
ordering, while in theorem 5.2.1 a given partial ordering in a vector space
leads to the existence of a pseudo-norm. Thus we may start with a given
pseudo-norm P(x) and obtain a partial ordering £ in terms of which we can
define another pseudo-norm 7(x) as in theorem 5.2.1l. The question arises
how the P=topology (Chapter III) based on P(x) will compare with the P-
topology based on T(x). Conversely, being given a partial ordering £, we
can define a pseudo-norm ™(x) as in theorem 5.2.1, then define a new
partial ordering < based on T(x) as in theorem 5.l.lis What connection, if

)

any, will exist between the two partial orde-r:i.ngs'.-‘:L The rest of this

chapter attempts to answer these questions.

5.3s1le Lemma o Enunciation of Lemma 5.3.1e

Let G be a pseudo-normed vector space in which P(x) = P(=x) = O implies
x = © and in which there exists an element y, such that P(<y,) < O. Define
x € y to mean P(x-y) £ 0, By theorem 5.l.4y, x £y (x, y, € G) is a
partial ordering in G satisfying hypotheses (i), (ii), (iii), of theorem
5¢201, and the hypothesis of corollary 5.2.3, the element y, taking the
place of the element e. Hence, by theorem 5.2.1 and corollary 5.2.3,
m(x) = inf s is a functional defined on G with the properties of a pseudo-
norm such tiolat m(x) = M(=x) = 0 implies x = 8, So max {'lr(x), 'n‘(-x)} is a
strong norm in G (theorem 3+1¢9)e
Then, under these hypotheses, the following results hold:
(1) If m(x) =0, P(x) = 0.
(2) If n(x) > 0, P(x)/P(y,) & m(x) € P(x)/-P(~7,)e

1) These ideas are largely adapted from a paper by M. He. Stone, Ref. 17,
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(3) 1If m(x) < 0, P(x)/-P(=y,) £ m(x) £ P(x)/P(¥o)e
This completes the enunciation of the lemma.

Proof of Lemma 5e3ele

Since m(x) = x‘infsyi’ for arbitrary € > 0 there exists a real number a
such that n(x) £ a < 7(x) + £ and x £ ay,.

(1) m{x) =0, Then 0 £ a <€ and x € ay,e This means that
P(x-ay,) £ 0, hence 0 2 P(x) - aP(y,), iecey P(x) £aP(y5)e
Since € is arbitrary and O € a < &, and P(yo) = =P(=y,) > 0O,
it follows that P(x) £ 0, Also i fe=0 = x £ -ty, =
P(x+&y,) #£0 = P(x +€yo) > Os Thegefore 0 < P(x) +EP(y,)s
P(x) > = €P(y,)s hence P(x) = O since € is arbitrary and P(y,)
> 0o Then P(x) = O by the above opposite inequality.

(2) m(x) > 0. As above, m(x) = a < Mx) + £ and x € ay,. Hence
0 2 P(x=-ay,) = P(x) - aP(y,) since a > Os Therefore a =
P(x)/P(yo)e Since mx) € a < ™(x) + € for arbitrary positive
€, this last result implies that m(x) = P(x)/P(y,)e In order
to prove the remaining half of the inequality, we note that
mx) € a < n{x) +€ implies a = E<Mx)e Choose € so that
0<E€<n(x)e Thena =€ > 0, Nowa=¢€< Tm(x) =>x g
(2=E)yo =P P(x-3-E yf 0=>0 < P(x=3=F yo) < P(x) +
(a-€)P(=y,) since a- £>0, Hence =(a=E€)P(<y,) < P(x) and
therefore a - € < P(x)/=P(~y,) since, by hypothesis, P(=y,)< 0.
Since the inequalities a = € < P(x)/—P(-yo) and a =£<n(x) =
a < (x) + € hold for arbitrary small €, m(x) £ P(x)/=P(=y,)e
This is the second half of the required relation, and completes

the proof of case (2) of lemma 5.3.1.

(3) m(x) < O, Choose positive € so that m(x) € 4< &(x) + £ < 0,
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hence a < 0. As in the previous cases, 0 = P(x-ayo) >
P(x) - P(ayo) 2 P(x) + aP(-y,) since a < Os Hence -aP(-y,)
P(x), a 2 P(x)/=-P(-yo)e Since this is true for arbitrary
small positive & m(x) 2 P(x)/=P(~yo)e For the second part,
we have a = £ < M(x) < O, Hence x £ (a- €)yoe Therefore
P(x - a=yy) > Oy O < P(x) + P(= a=€y,).= P(x) ~ (a=€)P(y,)s
ie2ey (a=E€)P(yo) < P(x)y, a = €< P(x)/P(yo). Since £ can be
arbitrarily small, this gives m(x) € P(x)/P(y,)e This completes

the proof of lemma 5.3.1e

5¢3+2. Theorem., Under the hypotheses of lemma 5.3.1, the (strong) P-

topology induced by m(x) is equivalent to the (strong) P-topology induced by
the original pseudo-norm, P(x).
Proof, We use the Hausdorff criterion and show that, if Np(x) is a given
neighborhood in the topology of P(x), there exists a neighborhood Np(x) of
the 7(x) topology contained in Np(x), and converselye

Let Np(x) = {x | max [P(x), P(-x)]} < &

Define Np(x) ={x | max [n(x), M-x)] < &P(x,) o
To prove Ny(x) ¢ Np(x): From lemma 5.3.1 (2), n(x) > O implies P(x) > O
and P(x) € n(x)P(y,)e Also lemma 5.3.1 (3) shows that m(x) < O implies
P(x) < 0 and P(x) = Wx)P(y,), i.eo, | p(x)\ = —P(x) € -n(x)P(y,) =
]n(x)‘P(yo). Also 7i(x) = 0 = P(x) = 0 by 5.3.1 (1), hence, for all x,
|p(x)| £ |n(x)| P(yo)e

By lemma 3.1.8, max {'n(x), 'T\’(-x)} < n implies i'ﬂ(x)l <% and

!'n(-x), <pe If x € Ny(x), IP(x)I & |’n(x)lP(y°) <€ since q = §/P(yy)e

Similarly P(-x)‘ < €o Therefore max {P(x), P(-x)} < € Hence x € Np(x)

and Np(x) € Np(x)e
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Conversely, let Nq{x) = {x )max('n(x), m(=x) ) < f}. Define Np(x) =
{x \max (P(x), P(=x) >< - E,P(-yo)}.

To prove that Np(x) ¢ Na(x).

Again we use lemma 5.3.1. Then T(x) > 0, n(x) = P(x)/-P(-y,); for
m(x) < 0, =m(x) € =P(x)/=P(=yo); for m(x) = 0, P(x) = 0. So in all cases
|m(x)| £ )P(x)| /B(¥o)e If x € Np(x), |P(x)| < - EP(=y,) and lP(~x)\<""
€P(<y,) by lema 3.1.8, hence |m(x)| < € and |n(-x)| < € Therefore
maxivx(x), ﬂg-x)} < €, which means that x e Ny(x)o Thus Np(x) C Np(x)e

This completes the proof of theorem 5.3.2.

We now consider the following set-up. A given partially ordered
vector space E allows a pseudo-norm 7(x) to be defined in it (theorem
5.2.1)s Then a second ordering relation 3_ is defined in terms of m(x).

We seek to compare the two ordering relations in E.

50303 Lemma. Let E be a real vector space partially ordered by means of

the relation £ (01, 02, 03 of 5.1l.3) which satisfies the hypotheses of
theorem 5.2.1s By theorem 5,2.,1, m(x) = inf s is a pseudo-norm in E,
Then x £ y implies wx) £ n(y)e o

Proof. Suppose T(x) > M(y)e Choose € > O such that n(y) + £<m(x)e By
the definition of T, there exist real numbers a, b such that T(y) b«
My) +€ < n(x) £a<mix) +& y£he, x Fbeeo But x £y and y £ bee

implies x £ b.e, a contradiction, Hence m(x) £ ™y)e

5.3elie Corollary, Under the hypotheses of lemma 5¢3.3, x € y implies

ﬂ(x"Y) £ Oe
Proofe X £y =P x - y £ 6 by hypothesis (ii) of theorem 5.2.1, since
-y € <y by Ol, Hence M(x=-y) = n(6) by lemma 5.3.3. Since 7 is a pseudo-

norm, T(8) = 0, hence n{x-y) £ O,
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5.3¢5, Lemma. Iet E be a real vector space with a partial ordering relation

£ satisfying the hypotheses of theorem 5.2.1, and let n(x) = iag S be the
pseudo-norm of theorem 5.2.1le Then T(x) £ 0 = x £ fe for all € > 0,

Proof. From the definition of m(x) = }ic.gg.g, m(x) € 0 implies that for any

£ > 0 there exists a real mmber a such that n(x) £ a < € and x £ a.e.

Since © £ e and £ - a > 0, hypothesis (i) of theorem 5.2.1 gives @ £ (£ - a)e,

whence hypothesis (ii) of theorem 5.2.1 gives x2 €e since x £ a.e, This

proves the lemma,

5e3¢6s Theorem: Let € be a given partial ordering relation in a real

vector space E such that the hypotheses of theorem 5.2.1 are satisfied, and
let m(x), x € E, be the consequent pseudo-norm of 5,2.1 and lemma 5e3¢3s
Suppose, in addition, that the given partial ordering £ satisfies the
Archimedean property of corollary 5.2.3., Define a new binary relation <
in E as follows: x < y if and only if m(x-y) £ 0 for x, y, € Eo Then,
under the above hypotheses, x £ y if and only if x <. y, where x, ¥, € Eo
Proof., Necessity: x £y =Px 2 vy,

By corollary 5e3.h, x £y = n(x-y) £ 0 =»>x =2 y by definition.

Sufficiency: x 2y =»x £y,

x 2y =»n(x-y) €0 by definition, Therefore x-y £ €e for all
€ > 0, by lemma 5¢3.5. Then, by the Archimedean property, x =y € 6, iece,

x €y, This completes the proof.

5e3s7s _Corollary, Under the hifpotheses of theorem 5.3.6, the binary

relation = is a partial ordering.
Proof, The relation £ is a partial ordering, and theorem 5,3.6 states that

the relation < is logically identical with £,
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