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iii. 

Complete circle characteristics of per cent head and per cent 

torque plotted parametrically 1vith per cent capacity as ordinate and 

per cent speed as abscissa are generally derived for an idea~ case. 

The experimental circle characteristics are presented as de

termined for an axial flow and mixed flow pump of representative 

commercial practice and a comparison of the three basic types of 

turbomachine; axial flow, mixed flow and radial flow (or centri

fugal) is made. A new method of plotting power ratio radially on 

the same axes is also presented and compared for the same three 

units. 
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v. 

NOTATION 

A Area 

b Width of section 

CH F.xperimental head-speed coefficient 

Ch Cascade correction factor to head 

~ Lift coefficient 

CQ Experimental capacity coefficient 

CT Experimental torque-speed coefficient 

c Absolute velocity (used only with subscripts); also 

chord length (without subscripts) 

Dh Hub diameter 

D Outside diameter 
0 

DR Representative 

F Force 

g Acceleration due to gravity 

H Head 

KH F.xperimental head-capacity coefficient 

Kn Experimental speed coefficient (reciprocal of CQ_) 

KT Experimental torque-capacity coefficient 

n Rotational speed in revolutions per minute 

n
5 

Specific speed 

P Power 

Q Capacity 

r Section radius 

s Slant height of truncated cone 

T Torque 



vi . 

t Airfoil cascade spacing 

u Rotational velocity in feet per second 

w Relative velocity 

w® Vector mean of w1 and w
2 

z Number of blades on impeller 

ex. Angle of attack of w00 with respect to chord line of airfoil 

13 Angle between wand u in velocity triangle; also angle be

t\veen chord line and perpendicular to c 
m 

f> 
7' 

w 

Specific weight of f1.uid 

Reciprocal of 

Power ratio 

Ratio of D /D ; also fluid density 
n: 0 

Torque coefficient 

Euler flow coefficient 

Euler head coefficient 

Rotational speed in radians per second 

Additional Subscripts 

1 Refers to inlet 

2 Refers to outlet or exit 

m Refers to meridional component 

p Refers to pump 

T Refers to turbine 

u Refers to rotational component 



PART I 

INT~ODUCTION 

The idea of determining operating characteristics at conditions 

other than those for which a machine (pump) was primarily designed was 

first presented by Kittredge and Thoma (1, 2) in 1931. The characteris

tics were given on a percentage basis and merely extended beyond the 

normal limits. For example, the capacity was carried beyond the value 

of that for zero torque to where the pump was being run as a turbine, 

or in the opposite direction to normal (with the normal speed direction 

maintained) to give a forced power dissipating device. This could be 

done both for the normal and reverse direction of operation. The re

sults were presented on two basic plots; one at constant speed with head 

and torque plotted against capacity and the other at constant capacity 

with head and torque plotted against speed. These can be seen in Figs. 

4a and b of Ref. 4. In 1932 tests were begun here at the California 

Institute of Technology to obtain the complete characteristics for a 

four inch double suction, centrifugal pump. These were published in 

1937 in a paper by Professor R. T. Knapp (J). In this paper the di

mensionless characteristics are combined into a single parametric 

percentage plot of capacity vs. speed with constant percentages of 

head and torque as parameters. Since this plot gives the complete 

operating characteristics through every possible phase of operation, 

through 360 degrees, it was called a circle diagram, or as it is also 

referred to, the Karman-Knapp circle diagram. The idea of this type of 

representation was suggested by Theodore von Karman and first worked 

out and presented by R. T. Knapp. 

1. 



2. 

This paper presents a method of determining what might be called 

the ideal complete characteristics of a unit knowing only its geometry. 

A comparison of the ideal and the actual experimental results is given 

for the radial flow pump (3) and for an axial flow pump of representa

tive commercial practice • . The complete circle characteristics are pre

sented for an axial flow unit for the first time, and also those of a 

mixed flow unit. In addition to the usual circle characteristic plot, 

a circle power ratio diagram is introduced which represents the ratio 

of hydraulic to mechanical power, or its inverse plotted radially on 

the same per cent capacity (ordinate) vs. per cent speed (abscissa) 

coordinates. This power ratio circle plot gives the complete history 

of the pump and turbine efficiencies and power ratios under conditions 

of no useful output for all possible operating conditions. 

The various applications of such methods of characteristic repre

sentation in determining design features of installation are quite well 

covered in many references (1, 2, 3, 4, and 5) and will not be repeated 

here. 

The operation of machines under conditions for which they were 

not designed poses some verry interesting questions when noting the re

sults that are obtained. It is seen that most simple pump units oper

ate about as efficiently, or sometimes even better, when operated as 

turbines. This would suggest the use of a single unit in some instal

lations where both types of operation are dictated. In designing such 

a unit, care would have to be taken to match both turbine and pump 
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requirements . This would not be difficult to do if the heads, torques 

and capacities were fairly close in both cases. To put out the same 

torque as the pump requires a higher capacity to speed ratio for tur-

bine operation. Thus the conditions could not be merely reversed in 

going from one type of operation to another. For example, to run one 

of the pumps tested as a turbine at 100 per cent speed and 100 per cent 
~< 

torque would require about 135 per cent capacity and 140 per cent head. ' 

It also presents the question as to how might the reverse be, or how 

good a pump would a Kaplan or Francis turbine make. It should make an 

interesting experiment. 

The axial flow unit subject to these tests was designed on what 

may be termed an extended one-dimensional theory. In Appendix A, a 

brief comparison is made between the experimental results and two me-

thods of two-dimensional cascade theory as applied to this axial flow 

geometry. 

* This , however, is not at the maximum turbine efficiency. At maximum 
efficiency for 100 per cent torque, the speed is 74 per cent. 



PART II 

DEVELOPMENT OF A THEORETIC.AL CIRCLE DIAGRAM 

For almost any type of turbomachine it is possible to represent 

the machine as a two-dimensional airfoil lattice or cascade. The flow 

pattern and the characteristics of a machine can be developed after 

first making the following assumptions: (a) there is no prerotation af 

the flow; (b) the flow is irrotational, two-dimensional and steady; (c) 

the fluid is ideal and incompressible and (d) there are an infinite 

number of blades with zero thickness. All of these are not necessary, 

but simplify the following development. 

First, consider the case of a purely axial flow machine where 

the two-dimensional representation is obtained by unwrapping a coaxial 

cylinder passed through the impeller as shown in Fig. 1. 

Assume the machine is operating as a pump, then the head developed 

can be calculated from the vane geometry and mass, momentum, and energy 

conservation conditions. Referring to the cascade as shown in Fig. lb 

with the airfoils moving to the right with the velocity u and the fluid 

approaching with the velocity c, consider what happens as the fluid 

moves through the vanes. For further simplification consider the flow 

relative to the blades, then the direction and magnitude of the veloci

ties will be as shown in the velocity diagrams of Fig. lb and le. 

Because of assumption (d) the relative flow will leave the vanes at 

the exit vane angle, (3 2• There will be no change in the axial com

ponent of momentum of the fluid since the axial component of the abso

lute velocity must remain constant assuming the flow is continuous, 

4. 



incompressible, and two-dimensional. In the tangential or rotational 

direction, however, the absolute velocity gains a component. The force 

needed to move the cascade is equal to the change in the momentum in 

this direction, or in the case of the cylinder, the torque equals the 

change in moment of momentum, or 

T = (f Q)(c - c )rand c = 0 by assumption (a). 
u2 ul u1 

Assuming no losses, the power input from this moment nrust equal the 

hydraulic power output, or 

u2 c 
u2 

H =~~~ foot pounds per pound of fluid flowing. 
g 

This is the ideal head developed for the machine running at a given 

speed (u.>) with a given through velocity, 

Q/A = c = c = c = c 1 m1 m2 m 

where c is the through flow or meridional component of the absolute 
m. 

velocity. The head for zero capacity or zero through flow velocity 

can be seen from Fig. 1 to be u;/g where cu
2 

= u2 • A dimensional 

head coefficient can be arbitrarily defined as the ratio of the head 

at any capacity to this shut-off head and will be 

= =t 
g g 

A capacity coefficient can similarly be defined for the through flow 

velocity, ~=c /u2 • 
m2 

Now the ideal characteristic for a pump 
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can be pl otted in terms of these coefficients between the limits of 

zero flow and zero head. For zero flow, cJ> = 0 and t(= 1; for zero 

head, cu
2 

= o, cu = 0 and from Fig. 1, c and d, ¢ = tanp 2 and f= o. 

The characteristic curve is seen to be a straight line between the 

two points . Fig . 2 shows this ideal character istic with an intermedi-

ate point showing the linear correspondence with the velocity triangle . 

It is possible to allow for the more realistic conception of a finite 

number of vanes but retaining the assumption of a potential flow. 

Since the actual flow cannot be controlled completely so that all the 

fluid leaves tangent to the exit vane angle, it will not be turned as 

much as indicated by the vane geometry; therefore, there will be a 

smaller increase of the rotational component of momentum, resulting 

in a smaller head generated than that indicated by the Euler velocity 

triangles . The actual effective c will depend on both the vane angle 
u 

and the gap-chord ratio, t /c (Fig . 1) . This correction will vary 

linearly as the head increases i:n that the head may be expressed as 

u2 cu2 u 2 
H = Ch , or the shut-off head as Ch -1._ • This Ch f 9ctor 

g g 

was determined by Weinig (6) and is presented by Wislicenus (7, 8). 

The modified theoretical characteristic will now appear as in Fig . J. 

So far the method of obtaining this ideal characteristic has 

been derived for but one radius on a specific type of machine . The 

same method of analysis is valid for any type of machine yielding the 

same results . Since u
1 

will not equal u2 , etc ., for a radial flow 

runner, the subscripts 2 have been retained in the above analysis . 



The total characteristic for all meridional radii is found by inte-

grating over the entire flow passage. Characteristics for three radii 

at a chosen design condition are shown with their corresponding velocity 

triangles in Fig . 4. This is for a "free-vortex" type runner where 

the head developed (u2 cu
2 

or r cu ) is constant over the passage so 
2 

that a pressure equilibrium exists across the passage to maintain 

assumption (b). The runners or blades are designed for~ particular 

operating condition that will produce the desired head at a lift co-

efficient for the cascade at a relatively small lift-drag ratio. 

(For a calculation of the characteristics for an actual pump from 

airfoil casc~de data, see Appendix A.) Such a condition might be 

the head at the point indicated on the r;, vs. ~ plot of Fig. 4. It 

can be noted here that for an ideal (no loss) characteristic, that at 

higher values of head (r.fr), something strange appears to happen and 

above the value of Ch at the hub, the desired head line no longer 

appears to intersect a characteristic. vVhat happens will become more 

apparent and will be discussed in a later section. 

Now consider what happens outside the one quadrant for which 

this characteristic has been determined and again consider the charac-

teristic of the next quadrant. If there the capacity is higher than 

that for zero head, hydraulic power instead of shaft power is being 

supplied and shaft power is the pr.oduct or output. There will be a 

head drop across the pump instead of an increase, the shaft torque 

will be of the opposite direction and the pump becomes a turbine. 



8. 

Before continuing, this is a good place to establish direction 

or sign conventions. All the quantities Q, n, H, and T will arbitrarily 

be designated positive for operation as a normal pump. The hydraulic 

power (HQ) as an output and shaft power (Tn) as an input will be posi

tive by definition. These quantities will be negative when opposite 

from the direction of operation of the normal pump. A positive head 

is an increase of head across the pump in the normal pump direction end 

conversely. The signs of the parameters for all types of operation 

necessary are shown in Fig. 19. 

Again consider the region of operation of over capacity maintain

ing a normal rotational direction. The head and torque are negative, 

the capacity and speed positive; therefore, the lzydraulic power 

(-H x +Q) is negative, or hydraulic power is being supplied (opposite 

from pump hydraulic power). The shaft power (-T x +n) is also nega

tive, or an output is resulting. This zone of operation is,by defini

tion, a turbine zone. Note that the ratio of shaft to hydraulic power 

is positive . 

Now consider the extension in the other direction, through shut

off into a region of negative capacity, or reverse flow direction 

still maintaining the same direction of rotation. The quantities here 

are -Q, +n. +H, and +T or ne gative (input) hydraulic power and positive 

(input) shaft power, or the machine is acting as a forced power-dis

sipating device. The characteristic now covers all possible modes of 

operation in the positive rotational direction. 
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The same type of analysis can be applied if the runner is rotated 

in the reverse direction (-n). The exit angle, (J 2 (formerly 131) is 

seen in Fig. 5 to be smaller, thus the value of Ch and tan 13
2 

will be 

smaller. In this zone of operation the quantities are -Q, -n, -H and 

-T, or again the shaft and hydraulic power are positive, or shaft input 

and hydraulic output. Combining the resulting characteristics, a com-

plete characteristic as shown in Fig.6 is obtained. This is essentially 

a plot of the head vs. capacity at constant speed. 

Now consider a power curve of HQ vs. Q, or dimensionless hydraulic 

power, ~f vs . cf> • This curve is 

with its maxiIJIUm. at </> = ~ tan;d 2, 

the dimensionless shaft power curve will be coincident and the ideal 

pump efficiency will be everywhere 100%. 

It was previously stated that ever·y possible mode of operation 

was derived and shown on Fig. 6. This is true; however, to get every 

operating condition the characteristics shown would have to extend to 

infinity for the zero speed conditions. To overcome this difficulty 

the characteristics can be given on the basis of 1/ ~ so that the 

points that go to infinity in the~ direction will be transformed into 

zeros. The inverse of¢ is u2/cm
2 

and a 
Cu 

be made for the head coefficient, -t{ = 2 

similar transformation must 

/ u2 u2 Cu2 u22 
or g / --g- • If 

u c ('_22 
this is divided by ¢ 2 , Y,, / ~ 2 = 2 u2 / -m or a head coefficient 

g g 

based on the through-flow velocity or capacity ( Q) is obtained . If 1/ ¢> 
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is denoted by S and Y,. /cf> 2 by ). then a plot of these quantities as 

derived from Fig. 6 will appear as in Fig. 7 for the positive flow di-

rection . The equation for the +n characteristic of Fig. 6 was 

2 
Since A = rfr/cp , ). = Ch 8 ( 8 - cot,.13 2 ) 

is the equation of the constant capacity head characteristic of Fig. 7. 

The curve for the negative flow direction is also sketched in as it 

would be derived from Fig. 6. The characteristics in the zones of 

power dissipation are shown dotted since they are not too well defined 

for some types of turbomachines as will be shown later. Fig. 6 and 7 

now contain all the possible modes and conditions of operation. In both 

these curves it is somewhat deceiving to show both curves on the same 

coordinate axes, for al though the coefficients </> and r are both posi

-- +cm,_ tive on the right hand abscissa, for the +n curve, ~ ··~ and for 
+u2 

-c~ . 
-n ,/,. - - (The same is true for B .) 

' 'r - -u2 • 

To make the picture somewhat more complete a development of the 

torque characteristics will be briefly considered. On the constant 

speed reference the torque curve will necessarily be a parabola since 

the head was derived from the equation 

w -T = f' QgH oc Tn ae P • 

A power, or iff curve will be a parabola when plotted against ¢ • 

With a constant speed reference the torque vs.¢ must also be para

bolic. A schematic representation is shown in Fig. 8. A torque co-

efficient, '( , is also difficult to define on an ideal and dimension-

less basis so that here it will not be shown. From the development of 



11. 

Figs. 6, ?, and 8 it is not difficult to induce that the torque when 

plotted dimensionlessly on a constant capacity basis would be a straight 

line as shown in Fig. 9. 

Consider next a meam Euler curve with the exit flow triangle so 

calculated as to give equal magnitude of absolute and relative velocities 

(c2 and w2) at the design operating condition as a normal pump . (Fig. 10). 

If this design point is arbitrarily designated as 100% cp and 100% y 
and the characteristic is then reduced to a percentage basis, it wi.J..l 

appear as in Fig. 11. Fig. 12 would be representative of the negative 

rotational direction. The principal reasons for different characteris-

tics in the -n direction are different inlet conditions and a different 

exit vane angle. All of the characteristics can now be expressed as 

percentages of design point. 

Now consider a method to combine them into a single circle plot 
u2 cu u 2 u 2 

of per cent Q vs per cent n. Since yr ::: 2 / 2- ::: H/ 2... 
g g g 

the characteristic of Fig. 11 is essentially per cent H/n2 vs Q/n for 

any one particular machine geometry. Choosing any arbitrary point on 

this characteristic, for example point a, this point can be transformed 

to any desired parametric head as follows: at point a suppose Q/n=0.25 

and H/n2 = 1.50, in the Q vs n plot (Fig. 13). Next a value of Q or n 

for the head desired must be located to locate the point on this line. 

Suppose it is desired to find the Q and n for 100% H at this Q/n ratio 

of 0.25. Fig. 11 gives 150% H/n2 at 25% Q/n, this means that the head 

is 150% relative to 100% n, or for 100% H, n = ~x 100 = 82% n. 
h.50 
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Thus the head is +100% at 25% Q/n and 82% n as shown. For the entire 

+100% H curve on this plot the procedure is as follows: from Fig. 11, 

H/n2 = (2 - Q/n), or for 100% H (H = +1), 

2 1 
n =---

2 - Q/n 

2n2 - Qn = 1 or in general n(2n - Q) = H 

In the +n half plane this is half of a hyperbola with the H = 0 at 3 = 2 
n 

and n = 0 assymptotes as shown. For H = -1, the equation can be seen 

to be 2n2 - Qn = -1 • It is also a hyperbola, half of which is shown 

with the same assymptotes. If any other per cent head line is desired 

it is only necessary to substitute the fractional head in the equation 

2 
2n - Qn = H 

Fig. 13 has been completed for the case of a very simple machine 

with straight vanes and no guidance at the in.Let for either direction 

of flow. 

Since the machine is still considered as operating under ideal 

conditions, the percentage torque characteristic will be easily con-

structed even if the dimensionless coefficients are not easily or clearly 

defined. Knowing that the curve is (a) a straight line, (b) must pass 

through the T/Q2 = n/Q = 100% and (c) must have a slope of 2, completely 

defines this curve (Fig. ~). Its equation is 

T/Q
2 = 2n/Q-1 

or ~(2n-Q) = T 
' 

again a hyperbola with assymptotes Q = 0 and Q/n = 2. Making the same 

assumptions as above and using the same procedure, the 100% T lines 
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can be plotted on the circle diagram as shown dot-dashed in Fig. 13. 

This circle diagram is for one ver-j special case. For ijlly par

ticular machine, however, the procedure would be similar. First, the 

characteristic would be laid out in the zone of normal operation. If 

the machine were designed as a turbine it may be desirable to call the 

design turbine condition the 100% condition and begin with the charac

teristics referred to constant capacity (the straight line torque 

characteristics). With this type of representation the limits are 

essentially those of zero shaft power, i.e., zero speed and zero 

torque. The reverse operation curve (-n in the case of a pump) can 

be determined from the vane geometry of the guide vanes (determining 

the inlet flow) and the impeller exit vane angle (formerly the inlet 

angle for normal operation). These characteristics may be determined 

from cascade theory or various other two- and three-dimensional 

theories (8, 9, 10 and others), whichever is the best method of de

sign available for the machine. The percentage characteristics are 

then determined and the circle diagram plotted from these. 



PART III 

METHOD OF EXPERIMENTAL REPRESE.N1'ATION 

For a real machine the original assumptions cannot be maintained 

and the characteristic curves will not be as simple as those shown in 

some cases and for some conditions will bear little resemblance. The 

shaft and hydraulic power will not be coincident because the efficiency 

will vary from zero to maxinnun and back to zero and not approach the 

ideal efficiency of 100%. 

Dimensionless coefficients of head, torque, capacity and speed 

can be defined in much the same manner as were the theoretical coef-
2 

ficients. The dimensionless head can be de1'ined as CH = H/ u2 where 
g 

H is the measured experimental head and u
2 

is, as before, equal tow r. 

The dimensionless capacity will be ~/A • The torque coefficient can 
u2 

be derived in the same way as was the head coefficient. From above, 

or 
T = pgQH • 

w 

u 2 
2 Now H is proportional to ~ and Q to u2A ; therefore an experimental 
g 

T 
torque coefficient may be defined as CT= (u A)(u/g) where 

g 

Tl' 'l'l' Il 
A = '4 DR , u =wr, w = bO"' r 

DR = 2 and DR is some representative 

diameter, so that 

, 

14. 
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C - T 
T - X ·~ n2 5 

g 14400 DR 

These are the coefficients based on constant speed. The dimensionless 

coefficients based on constant capacity are easily defined as follows: 

Kn= 1/CQ , 

KH =CH/ cq2 ' 

KT = CT/ CQ 2 • 

The ideal head and torque characteristics for positive rotation 

would appear as in Fig. 1.5. Fig. 16 represents those for negative 

rotation. Both the resulting power curves v~uld be similar in shape 

to the torque curve and the power ratio would be everyi~here unity, or 

100%. The significance of the zone marked ? is somewhat strange to 

contemplate and impossible to achieve. It is easily visualized if one 

considers a single airfoil and the flow necessary for this condition. 

The torque power is a turbining type power arrl so is the shaft power 

since both are negative. Therefore, the flow condition to produce such 

a phenomenon would be as represented in Fig. 17. The deviation of the 

actual to ideal flow in this case is in the realm of the ridiculous. 

The actual case is also easily visualized. The machine remains running 

in the same direction while the direction of flow is reversed. This 

means that fluid is being forced through the machine and the machine 

is trying to force it back again. The torque is positive pumping 

torque and the speed is positive; therefore, the shaft power is posi-

tive. The hydraulic power is negative. Therefore, the ratio is 
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negative denoting no useful power from the device unless it is desired 

to use it as a fancy water heater. 

Another deviation will result from some small losses at zero head 

and zero torque. It will take a small amount of torque to maintain the 

actual machine at zero head across the unit due to friction losses in 

the passages. At zero torque, some head will have to be supplied. The 

resultant power curves could then be conjured up to look like those in 

Fig. 18. The dotted line represents a plausible ideal power curve. 

Before going further, the notation for the zones of operation 

and the signs of the components will be established. With reference 

to Fig. 19, start with all quantities, n, Q, H and T positive for 

normal pump operation. The zones on the circle diagram will then be 

as shown. The zone of reverse turbine is in the positive flow and 

rotational directions but since the machine operates more efficiently 

in the reverse flow and rotational directions (third quadrant) this is 

referred to as the normal or high efficiency turbine zone. The zones 

B and F are friction loss zones as explained above while D and H are 

differentiated as being intentional dissipation zones. It may be 

noted that everywhere the ratio of (QH)/(Tn) (or the reciprocal) is 

positive, there is a usei'ul power output. 

Experimental characteristics of dimensionless head and torque 

on a constant speed basis are presented in Fig. 20 for a commercial 10 

inch, low head propeller pump. These were obtained by running the 

machine in the positive direction and varying the head and capacity 

from slm.t-off through zero head and torque into the turbining region, 
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and in the other direction by starting at shut-off and running with the 

flow direction reversed. The experimental apparatus with which this was 

done will be described in another section. This was done for from 3 to 

5 various speeds over a speed variation factor of two and bracketing the 

design speed of the unit where the limits of the machinery and cavita-

tion would allow. In some cases it was necessary to use lower speeds. 

By reducing the data to dimensionless values, the accuracy was greatly 

increased and the adherence of the operating conditions to the similar

ity or affinity laws* could be checked. In every case these laws were 

found to hold. Stepanoff (10, p.293) states that propeller pumps do 

not follow these laws in the case of zero rotation (locked rotor). 

This condition was examined. It was found that the similarity laws 

were valid in so far as the head and torque were proportional to the 

square of the through-flow velocity (for all non-cavitating flow rates) 

providing the rotor position was held fixed at one position. But it 

was also found that if the head and torque were plotted against the 

square of the capacity, different straight lines would be obtained de-

pending on the position in which the rotor was locked. Since these 

propeller pumps have straightening vanes to convert the rotational 

component to pressure head, at each position the rotor is locked there 

will be a different correspondence of the rotor and stator vanes . 

This will cause geometrically different types of flow with different 

losses resulting. There is no good reason to give supporting the idea 

that the flow should not obey the proportionality to flow-velocity 

2 2 
.;~ Hoen , Toe: n , Q"' n • 
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squared law (as long as the critical Reynolds number is exceeded). 

It seems logical that if a mean value of the slope were taken for the 

dimensionless head and torque vs. capacity curves for all positions of 

the rotor at zero speed, this mean value should be the same as a value 

obtained by extrapolating to the zero speed condition the characteristic 

plots of head and torque vs. speed at constant capacity. Unfortunately, 

this was not experimentally verified. 

The straight line is an ideal characteristic calculated for the 

mean diameter of the rotor using available cascade data (8, 6) and the 

blade angles of the machine. 

The efficiency curve was next calculated and the point of maxi-

mum efficiency determined. The values of CQ , CH and CT were then read 

off and assigned as the 100% values. By dividing the curves point by 

point by these values, a per cent plot was obtained as shown in Fig. 21 . 

This procedure ivas repeated for the -n direction and Figs. 22 

and 23 obtained. 

In a similar manner experimental constant capacity curves were 

obtained. These are shown i n Figs. 24, 25, 26, and 27. 

Next a point by point calculation of 100% +H and T, and 100% 

-H and -T circle characteristics were obtained as described in Part II 

and plotted to obtain the circle diagram as shown in Fig. 28. The data 

were plotted on a much larger scale than those shown in these figures. 

Reproductions of the plotted originals of Figs. 20, 24 and 28 are en-

closed in the pocket on the back cover . 

By making measurements of the actual blade configuration, the 
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zero lift angle and cascade head correction factor were determined at 

the geometric mean section radius. From these data the ideal charac

teristics were determined and are shown as the straight lines on Figs. 

20 and 21. The circle characteristics for the positive directions in 

the circle diagram are shown dotted on Fig. 28. The coincidence is 

quite good in the normal pump zone. Within the accuracy of the plots, 

the head and torque are coincident for all values above 60% Q. Due to 

the strange behaviDr of the ideal flow as sketched in Fig. 17, the devi-

ation below this point is quite large. The agreement in the reverse 

turbine zone (C) is not too good. 

Only the 0 and 100% H and T curves are shown; however, the re-

mainder can be derived from these, or they can be derived point by 

point by substituting the desired head value as described above. Since 

Hoc Q2, Hoc: n 2 and Q ex: n, given any two, the third is easy to find. Some 

examples follow. 

(A) Find the positive head at +50% and +100% n. From Fig. 28, 

on Q/n = 0.5, the 100% H occurs at Q = 36%, n = 72%, or at H = 100, 

Q = 36 and it is desired to find H at Q = 50. Since H ocQ
2 

, 

H = 100(50/36)
2 = 193%; or at H = 100, n = 72 and at H, n = 100. There

fore, H = 100(100/72)
2 = 193%. 

(B) The same procedure as (A) would be used if the ojn ratio 

and either Q or n were given. 

(C) Given H and either Q or n, find the other. For example, 

find Q at H = -75% and n = -120%. From Fig. 28, at n = -110% H = -100% 

at Q = -70%. Therefore, H = -75% will be along the line n = -120%, at 

Q = -70( "-75/ " -100) = -60.6%. 
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It can be seen that Fig. 28 is merely the superposition of two 

latitudes of a three-d.Dnensional plot, namely the plus and minus 100% 

levels. If the solid figure is constructed, it will appear as repre

sented in Fig. JO. Any H-n (constant Q) planes through that figure 

will cut the figure with a parabolic line of intersection as will any 

H-Q (constant n) planes. The constant H(Q-n) planes will all have 

geometrically the same shape as Fig. 28, degenerating into a straight 

line broken at the origin at H = o. 

As yet there has been no consideration of efficiencies, or more 

generally, power ratios. It was previously mentioned that the ideal 

efficiency would everywhere be 100%. The real machine will naturally 

show a different behavior. These efficiencies or power ratios can be 

followed through in detail by closely adhering to the sign conventions 

noted in Fig. 19 and by calling any operation where the hydraulic power 

(HQ) exceeds the shaft power (Tn) a turbine-type operation, and a pump

type operation will be the converse. First regard these quantitatively 

in the different zones. In Fig. 21 (or 20) in zone A, the normal pump 

zone, the hydraulic power (+H x +Q) is positive by arbitrary choice of 

definition and so is the shaft power (+T x +n). In zone C the conditions 

are -H x +Q or negative hydraulic power denoting a hydraulic input and 

-T x +n, a negative shaft power denoting a mechanical power output. 

The ratio is, however, positive. In the negative speed direction in 

the reverse pump zone, all the quantities are negative; therefore, 

both powers are positive, as is their ratio, or again hydraulic output 

and mechanical input. In the normal turbine region the shaft power is 
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again negative, or an output (+T x - n) and the hydraulic is input or 

negative (+H x -Q) and again the region is positive . It should be noted 

that the normal turbine zone is so called because it would be the zone 

where the machine would operate (with respect to the normal pump de

finition) if it had been designed as a turbine, and is consequently the 

region of the higher turbine efficiency. Another apparent fact is that 

in all these four zones the power ratios are positive, denoting a use

ful output. In the other zones it will be seen that there is only one 

quantity of a different sign, thus the power ratio in any of these, B, 

D, F, or H, will be negative. In zone B, for example, only H is nega

tive; therefore, (-H x +Q) is l\ydraulic input and (+T x +n) is shaft 

input; no useful output. Very fortuitously, exactly the same regime 

exists in these other three regions . It is possible to plot the power 

ratio on beyond the points of zero power as seen in Fig. 24 . If the 

ratio is hydraulic to shaft power ( ~P) the ratio will approach minus 

infinity as the shaft power approaches zero (T--0) . Now it was shown 

that in the turbine region (C, Fig. 43) the ratio is positive. If%- is 

the turbine efficiency ratio (shaft to hydraulic power) then it will be 

positive in zone c, go to zero at T=O, become negative for negative T and 

approach minus infinity at H = O. Suppose the absolute value of these 

powers is plotted across zone B between H = 0 and T = O. The shaft 

power, Tn, will have the same shape as the torque line since these are 

essentially constant speed characteristics . The hydraulic power curve 

will approach a parabola . Somewhere in this zone the two power curves 

must cross and where they do, ~ = - 1. Here the operation will change 
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from one type to another. From left to right (in Fig . 43) the sequence 

would be as follows . In zone A the operation is definitely pump type 

with a useful output; therefore, "'} is positive. As H = 0 is passed, 

~ becomes negative, or there is no useful output , but the operation is 

still designated as a pump type since HQ is greater than Tn in absolute 

value. As the point where 'YJ = -1 is traversed, Tn becomes greater, 

the inverse ratio is now considered and a turbine-type operation exists . 

The ratio becomes positive in zone C and useful mechanical output is 

the product. The same procedure is seen to be applicable to all such 

zones between pump and turbine operation. 

It would again be advantageous to be able to represent all the 

power ratios on a single diagram . If the same axes are used as for 

the characteristics circle and this power ratio plotted radially between 

the limits of plus and minus one on arbitrarily designated radii, a 

power circle as shown in Fig. 29 is the result . In one glance this 

gives a comparison of all the zones of operation with respect to rela

tive efficiency. The angle of best normal pump efficiency will be 45° 

by definition. This method of complete power ratio representation and 

its derivation was suggested by Professor A. Hollander of this Insti

tute . The cusp points are interesting in that they would be desig

nated as the points of zero and perpendicular angle of attack on the 

vanes respectively for each zone of loss and power dissipation . 



PART IV 

COMPARISON OF RESULTS OF TYPES OF MACHI:N'ES 

As stated previously, the only complete circle plots in existence 

were for centrifugal (radial flow) machines. When such a machine is 

operated as a reverse pump, its impeller operation is similar to that 

of a forward curved vane compressor. The rotational direction is re

versed but the flow direction remains the same. Thus, the zone E is 

in the second quadrant. An entire set of curves for an eight inch 

double suction pump is presented in Figs. 32 through 41. The axial 

flow or propeller type pump when run in the reverse direction will 

pump in the reverse flow direction, obviously. Both conditions are 

quite logical and can easily be seen by the construction of the simple 

Euler velocity triangles. 

If an ideal circle diagram were to be constructed for a radial 

flow machine it would appear as in Fig. 31. liihere the H and T go to oo 

along the Q and n axes, they have been connected across (solid line 

for H, dotted for T) showing what happens for a real fluid. The signi

ficance of these infinities of torque and head is of interest. It can 

most easily be described by visualizing an airfoil in these flow con

ditions. Consider first the Q = 0 axis. For no flow the relative 

and rotational velocities will be coincident, or the vane is in a 

flow field that is perpendicular to the axis of rotation, or the only 

force that can be exerted by an ideal fluid is also perpendicular to 

the shaft; thus there is no force to exert a torque and T = 0 for Q = o. 

At first this would seem to signify that H must also be zero. However, 

23. 
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considering that Tn = QH, Q and T are zero (since T -- oo as Q- o or 

for any finite n, T must be zero), while n is finite shows tha t H must 

also be finite. A similar analysis can be made for the infinities along 

the Q axis. In a real machine there will be losses due to mismatching 

of guide vanes and volutes,and separation losses due to incorrect angles 

of flow relative to the vanes resulting in a finite mechanical power 

absorption (in the case of then axis). 

From only a casual observance it would appear that the radial 

flow machine follows the ideal somewhat more closely. At first it might 

be ascribed to the fact that radial flow machines have a higher vane 

solidity than the axial flow and would have more control and entail fewer 

losses. On the other hand, during normal pump operation (Fig . 32) the 

radial flow macbine is seen to stall off at low relative flow rates 

more than the axial flow. Yet the torque curve is seen to more nearly 

comply to the ideal for the radial flow; also the efficiency is rela-

tively better near shut-off for the radial-flow or lower specific speed 

type. This general trend is shown by Stepanoff (10, Ch. 9) . However, 

there are a few finer points to be considered than specific speed alone . 

Near shut-off the axial flow pump designed on the free vortex method 

will be pumping at one section radius (tip) and acting as a dissipating 

~·-
device trying to pump the other way at another radius (hub) . " This is 

not a general type of behavior, but is due in this particular case to 

the decreasing solidity with increasing radius resulting in the curves 

* At first glance this seems like the reverse should be true, However, 
considering the development in Appendix A, the above is correct. 



shown in Fig. 4 and due to the fact that the blades are nearly con

stant chord. 

It is interesting to visualize the flow around the vanes of a 

machine in the various zones of operation. Fig. 42 shows a simple 

representation of a mean section radius for an axial flow machine with 

the approximate resultant flows . The section line divides the stator 

from the rotor so that each is shown with the flow moving relative to 

it. At the off-design points there will also be circulatory flows in 

the radial plane which further decrease the efficiency. 

This basic difference in the reverse pump zones gave rise to some 

speculation about which direction a mixed flow machine would pump in 

the reverse rotation direction, in which quadrant would zone E lie . 

Another complete set of characteristics and the resultant circle dia

gram were determined and are presented in Figs . 43 through 52 . It 

can be seen that the reverse pump zone is in the third quadrant, or 

the axial effect predominates . This was expected since the mean pas

sage angle was at an angle of 35° to the axis of rotation (Appendix C) . 

This unit shows a loop in the normal pump zone of operation 

(Fig . 43) . This instability of operation was obtained experimentally 

and showed a curious behavior. Approaching from the high capacity 

side, the operation was smooth up over the peak to the drop off point . 

At this point there was a sudden decrease of head and the operation 

became noticeably noisy . Since this noise did not seem to be affected 

by any changes made in the static head, it was attributed to separa

tion and unstable vortex motion. This noise continued on into the 
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zone of power dissipation . On approaching from the other side this 

regime of less efficient flow continued along the lower portion of 

the loop until a point was reached where the flow again became some

what unstable with no further variation in the external circuit . 

This rise was not as unstable as the drop, however, and the operation 

was stable for periods long enough to get good H and Q readings, while 

the drop was sudden ~ The beginning of this loop (with decreasing Q) 

seems to be initiated by the sudden and violent inception of second

ary circulatory flows. The corresponding loop in the efficiency 

curve would also point to this conclusion. Why these should start 

and stop at different points depending on the approach direction is 

another question that still remains to be answered . 

Comparisons of the power ratio circles (Figs . 29, 41 and 52) 

are of interest with respect to a comparison of the efficiencies at 

the useful zones other than the normal pump . Comparing zones E, the 

axial flow pump is seen to have a best efficiency of 34%, or 42.5% of 

the normal pump maxi.mum efficiency. This is quite good, especially 

considering that the blades are running as upside-down-backwards 

airfoils , the guide vanes are running in reverse and the three bear

ing hub support vanes are disturbing the exit flow. The airfoil 

difficulty is not as effective as it might, however, for even though 

the blades were patterned after NACA 44.xx airfoils, they are quite 

blunt at the trailing edges also as shown in a comparison of the 4407 

airfoil with a measured blade profile (Fig . 53)o This rounding of 

the trailing edge has the effect of decreasing the maxi.mum normal 
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pump efficiency, but increasing all the others. In reverse pumping, 

the radial flow pump suffers from poor angles of attack (shock losses), 

high relative speeds, large separation losses since Q is still posi

tive, and a bad mismatch of volute. The efficiency here is only 9%, 

or 10.8% of normal pump. For any normal flow direction operation 

where there is little energy supplied, or energy is taken out, the 

centrifugal machine is under a great disadvantage due to expanding 

flow. Since the mixed flow machine is torn between the two, large 

circulatory motions are set up resulting in poor reverse pump efficien

cy, 9% maxinmm as a reverse pump which is 11% of the value of best 

efficiency as a normal pump. 

In the reverse turbine zone (C) the axial flow machine is running 

with the blades at an excessive angle of attack giving a large drag 

and the guide or diffusor vane angles are off. The efficiency is 

surprisingly good however; 50% at the point of best reverse turbine 

efficiency or 62.5% of the best efficiency as a normal pump. The 

radial flow shows a poor efficiency here which may be primarily 

attributed to separation losses with mismatched inlet angles and 

volute. The maximum efficiency is again only 9% as a reverse turbine . 

The mixed flow is between the two with 26% maximum as a reverse turbine 

or 32% of the normal pump maximum. 

As a normal turbine, the axial flow gives nearly as good efficien

cy as when operating as a normal pump . Since the flow is reverse, the 

rounded edge is at the trailing edge instead of the leading edge. This 

is of little effect since these blades are thin and nearly symmetrical 
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with respect to the thickness function and since they are sand cast . 

The same is nearly true of the impeiler vanes as seen in Fig . 53. In 

the case of the impeller the effect is shown by a narrower and more 

peaked efficiency curve . The maximum normal turbine efficiency is 78% , 

or 97 .5% of the normal pump efficiency . The radial flow case is not too 

representative of what is usually found . The maximum normal turbine 

efficiency is only 70%, or 84% of normal pump . Usually the unit will 

show a better efficiency as a turbine than as a pump . In turbine opera

tion the flow is convergent into the eye from the volute, a desirable 

condition with respect to separation . It is true that energy is also 

being extracted from the fluid; however, the ratio of this energy loss 

to the static bead increase would be the deciding criterion. Usually 

the vanes are thin and symmetrical so that they operate as well one 

way as the other . Since the efficiency is for the unit, the reason 

for the low efficiency sho~m may be attributed to the split inlet 

nozzle and the fact that the passages would be designed for flow in 

the other direction . The mixed flow unit is fairly close with 78% 

maximum normal turbine efficiency or 95% of maxinrum normal pump 

efficiency. The reason that it is not greater may be due to dif-

fusion of the entering flow as well as reversed fore and aft blade ends . 

A short discussion was previously given on the cusps shown on 

the power ratio circles . If the unit were a two-dimensional axial 

flow with flat plate blades, the cusps would be diametrically opposite 

to each other, those in zones B and F (Fig . 29) being at the zero 

attack angss and those in D and H for a 90 degree angle of attack . 
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For a synnnetrically cambered plate, the D and H cusps would be opposed, 

but the B and F zones would vary from a 180 degree intersection by the 

included camber angle. A rough comparison was made; the angle given 

by the cusps measured 8 degrees and the camber angle measured at the 

geometric mean section radius is 8 1/2 degrees. If the camber were 

symmetric this angle should be evenly divided with respect to the D 

and H cusp line. The fact that it is not indicates a non-symmetrical 

camber. The camber here is at 40% of the chord. 

In the case of a radial flow machine, a log spiral vane should 

give the B and F cusps on a straight line through the centero It may 

be noted that these zero angle of attack angles are also noted on the 

characteristic circle diagram as the H = T = 0 lines on the ideal dia

gram and somewhere between H = 0 and T = 0 on the experimental diagram. 

In the case of the radial flow in the reverse directions, these zero 

angles are difficult to define since there is so rrn.lCh interaction of 

impeller, inlet, and volute effects. The T = 0 lines being in opposite 

quadrants of the characteristic circle diagram is easily visualized. 

The H = 0 in the second quadrant is not so easy. This is a case of 

effective zero lift angle of attack but without having the flow para

llel to the leading and trailing edges. This also explains the finite 

value of T being relatively large at H = o. The finite H at T = 0 and 

the sloping right end of the efficiency curve shown in Fig. 36 are 

similarly explained. The H cusp for +n should be closer to 90 than 180 

degrees for the radial flow. As the solidity increases, this angle will 

vary increasingly from 90 degrees. A11 of these phenomena are further 

complicated by three-dimensional effects. 
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The mixed flow shows a mixture, but predominantly axial tenden-

cies. 

There has been made available an axial flow pump of the same 

specific speed as the mixed flow, the experimental characteristics of 

which are shown here. Obviously, the two will not have similar charac

teristics. Completion of the characteristics for this unit would pro

vide an interesting comparison with respect to different designs based 

on the same specific speed. 

To get a better comparison of all three types of unit, a large 

print Ydth all six circle diagrams is presented and will be found in 

the pocket of the back cover. This shows at a glance the basic dif

ference between the radial and axial flow units with the mixed flow 

between the two, but showing more resemblance to the axial flow type 

of characteristic. 



PART V 

EXPERIMENTAL EQUIPMENT AND TECHNIQUE 

Since this project was purely experimental, the pump mod.ifica-

tions were designed and the circuit modifications and installation 

were made as part of the project . 

The circuit used including service pump, dynamometer, throttle 

valve, venturis and power supplies is a multiple unit in use at the 

Hydraulic Machinery Laboratory of the California Institute of Techrrilogy. 

This circuit is used for basic research on turbomachinery. The cir-

cuit and its components and the method of measurements are described 

in detail in Ref. 11. Fig. 54 is a sketch showing the installation of 

the units into this circuit. The circuit is shown for the normal flow 
I 

direction with the unit operating as a normal pump. ~J.ow enters from 

the inlet header, then passes through the straightening vanes; the in-

let static pressure goes to one side of a mercury manometer that can 

be read to one thousandth of a foot of mercury with the aid of a vernier, 

through a high efficiency vaned elbow, through a 10 to 8 inch reducer 

(14 inches in length), into the bowl unit, into another reducer, through 

a standard 10 inch pump elbow as supplied with the pump by the manu-

facturer, passes through another set of straightening vanes. The 

outlet pressure is led to the other side of the manometer, and to 

the outlet header. Since it was desired to determine the efficiency 

of the bowl unit alone, the losses of the various components were 

measured between the points a through f (shown in the sketch) for 

both directions of flow and plotted on log paper. They were found 

to be the same for both directions and proportional to the square 

31. 
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of the flow velocity for all flow rates used. The velocity profiles 

in two perpendicular directions were determined at points b, c, d, e, 

and f for positive flow and at a, b, d, and e for negative flow. All 

of these were not necessary but it was desired to determine the action 

of the elbows and vane sections. It is interesting to note that the 

loss in the lower elbow was only about one quarter of that for the top 

elbow. The lower compared very closely with the losses expected due 

to pipe friction alone for the equivalent lengths of passage. For 

negative flows the manometer was connected to piezometer rings a 

and e so that the pressure was always measured downstream of the vanes 

where the flow was axial. A velocity profile taken at c showed the 

velocity distribution to be nearly uniform at the impeller approach. 

The head was read to the nearest 0.001 foot of mercury and 

readings could be repeated to plus or minus 0.002 feet. The speed 

was set and controlled with a negligible error as described in Ref. 

11. The capacity was determined to the nearest 0.01 cfs by reading 

a mercury manometer and getting Q from a calibration chart. The torque 

was measured with a combination of dead weights for coarse increments 

and a hydraulic bellows and precision pressure gage for the fine incre

ments . A make-up system in the hydraulic line made it possible to 

measure the torque on a null point basis so that the dynamometer 

was always at the same position in the cradle bearings during measure

ment. The bellows was mounted to the frame with the free end against 

the dynamometer torque arm. There was a fair amount of scatter in the 

torque readings; however, the overall accuracy was considered good since 
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from 3 to 5 complete sets of data were independently taken for each 

zone of operation. The accuracy of the data can be illustrated from 

the points that were plotted for four runs in the reverse pump quadrant 

for the axial flow pump. An average of 28 points per run was taken; the 

points of H vs. Q plotted for the four speeds and reduced to dimension

less form plotted such a uniform and even line that it was hardly 

necessary to draw a line through them. For this particular set, the 

torque data plotted up equally well. 
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APPENDIX A 

COMPARISON OF EXPERI:MENTAL DATA WITH AIRFOIL CASCADE CALCULATIONS 

In his Engineer' s Degree thesis (12), R. L. Hobinson calculated 

the relationships of lift coefficient vs. angle of attack for three 

section radii for the axial flow pump. He used a cascade theory uti

lizing a method whereby the slopes of the airfoil rather than the air

foil ordinates were used, thus getting around the operation of a 

differentiation in order to obtain the velocity and pressure distribu

tion. The primary object of this was to be able to predict the zones 

of low pressure and consequently the cavitation behavior of the im

peller . However, since no experimental determinations were made under 

cavitating conditions, it is only possible to check the ideal character

istics predicted by this method. 

The two-dimensional cascade theory as applied to turbomachinery 

deals with the vector mean relative velocity, w es> which would be the 

free stream velocity far from the cascade, or would be the flight

path direction of the cascade moving through a fluid at rest (Fig. 55). 

This can be shown to be the vector mean of w1 and w2 by considering 

the combination of uniform and vortex flow in a plane where the airfoil 

is transformed into a circle, or by other methods such as considering 

that this vortex is equal in strength to the starting vortex that is 

washed downstream on initiation of the movement of the cascade or 

airfoil through the fluid . The simplest method, suggested by Wislicenus, 

is to assume that the for ce acting on the flow must be normal to the 

direction of w.a> so that the rotational component of w00 is ~(wu1+wu2 ). 

94. 
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(This is more a demonstration than proof, however.) 

For axial inlet (Fig. 55), 

where 

F = L sin (fd - a.) 

~ 
L=C c~ 

L 2 ' 

and for three blades, 2 
L = C (Jc) fWc:n 

L 2 

as before the power is given by 

or 

Fw r = (p Q) (cu )r = pQgH, 
. 2 

Fu 
H=- • 

pgQ 

The capacity per unit radius is 

and 

therefore, 

Q=21Tr c m 

c = w sin(A - ll'.) ; m a> 'I 

3CL c u w00 H= 
4 1f gr 

The dimensionless head coefficient is defined as 

u2 
1fr = H/- ' g 

the capacity coefficient as <P = c / u = Q/A so that 
m u 

y = JCL C wa:i 

4 11 r u 

3CL (c/r) cb 

tf = 4 rr sin(; - a ) 

= JC1 (c/r) 

41T 
. -

u 
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1 Also since w ex> is the mean of w
1 

and w2, C = - e ; therefore, from 
u 00 2 u

2 
the velocity triangle with w~ (Fig. 55) 

Solving for 1 , 

t = 2 [ 1 -

o/=--2 __ _ 
cos (p - <X. ) 

l+ (3G_r. c) 
Brr r 

¢ = sin (f3 - a:) 
cos(A -a..) - JCtc 

r 8'!Tr 

, or eliminating ep , 

These two equations will give the characteristic for varying angles of 

attack. 

The data determined from the theory as presented by Robinson 

gives the following: 

r c {3 
CL inches inches degrees 

1.80 (hub) 3.25 33.60 6.59 sin (a'..+ 2) 

2.90 (av.) 2.91 18.65 7.18 sin ( d+ 3.84) 

4.00 (tip) 2.88 11.88 6.89 sin (ct+ 3.84) 

The results are plotted in Fig. 56 for the three radii along with 

the curves as predicted by Weinig. This pump was designed after still 

another method as worked out by Folsom and 0 1 Brien (13) using NA.CA 

single blaceairfoil data and assuming a lattice coefficient of 1. The 

lattice coefficients obtained by Robinson compare quite closely with 

those determined by Weinig as is seen; 



Robinson 

Weinig 

97. 

Lattice Coefficient 

Hub 

1.05 

1.04 

Av. Tip 

1.14 1.10 

1.14 1.13 

It is seen from Fig. 56 that the two methods give nearly the same 

results, the deviation being only a small percentage. This is interest-

ing since Weinig's results are for a flat plate airfoil cascade and 

Robinson's are for cambered airfoils of finite thickness. Both methods 

were developed by the same basic mapping procedures. 

Having obtained the curves of y vs. (> , these may be integrated 

in some fashion to give a mean characteristic. Since 
u c 

l/J' = __ u , or 
u 

2 2 2 
H/2:... and u = w r, if 7/F is multiplied by r , the product (H/ ~ ) is 

g g 

directly proportional to H, or u c which is constant for all radii at 
u 

the design point (assuming the free vortex or constant energy criterion 

of design). Also, assuming no prerotation and a uniformly distributed 
Cm 

inlet velocity, cm must be constant for all radii, or since f = 11 , 
Cm 2 

r cf, = w . Thus if r f is plotted vs. r + , the curves for all 

radii should intersect at the design point. For the three section 

radii calculated in Robinson's paper, these curves are plotted in 

Fig. 57, both after the method of Robinson and that of Weinig. These 

also fall in close proximity to each other for each radius. However, 

no single point of intersection is noted for either set. This is not 

surprising considering that a totally diff'erent design method was 



98. 

employed, a constant lattice coefficient of unity was assumed and single 

airfoil data used. 

The manner in which to integrate, or sum these characteristics 

is the next problem. It can be done either by summing the head over a 

line of constant capacity, or c , or summing the through flow over a 
m 

line of constant H, or u c • Neither of these is accurate in so far as 
u 

the assumptions of irrotational and two-dimensional flow can be main-

tained at any condition other than that occurring at the point of inter-

section. Also the two methods will not produce the same results. This 

can be seen by considering the shut-off condition and the results 

obtained if both methods are compared.. The means were calculated in 

both ways and found to be essentially coincident (due to a not too 

large spread between the three curves in each case). These mean values 

based on the mean section radius of J.10 inches are plotted in Fig. 58. 

The ranges of possible design points are noted on the curves as the 

ranges of intersactions of the section curves in Fig. 57. Since these 

mean curves indicate the hydraulic input head, the value of experimental 

head coefficient (CH) must be divided by the maximum efficiency to 

obtain a representative comparison. This point is also indicated on 

Fig. 58 and is seen to be in good agreement. However, it must be 

remembered that this efficiency is for the complete unit so that 

there are fluid and bearing friction losses entering into the experi-

mental determination even if these are, for the most part, compensat-

ing effect~. 
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From either of these types of analyses it would seem like a good 

method to begin with a single curve in a plot such as Fig. 58 and derive 

all section characteristics from this one plot. This would mean that 

both the head and through-flow velocity would be constant for all radii 

at any one operating point. 



APPENDIX B 

DERIVATION OF COEFFICIENTS FOR AN AXIAL FLO'rl :MACHINE 

The experimental dimensionless head, capacity and torque coef-

ficients were determined as shovm below. The coefficients referred 

to a constant speed basis are referred to as head-speed coefficients, 

etc., while those based on a constant capacity reference are called 

head-capacity coefficients, etc. 

This appendix gives the coefficients generally for any purely 

axial flow machine of constant passage area. These are given in terms 

of the geometric parameters of the machine and the flow parameters. 

These general parameters are then specialized to give the conversion 

from the quantities of Q, n, H and T as they vrnre read in the laboratory 

directly into the dimensionless values as plotted. 

This particular axial flow unit was a 10 inch PL unit manufactured 

by the Peerless Pump Division of the Food Machinery Corporation. 

The following definitions and values of terms apply to the 

derivations: 

D = 8 in. (Bowl diameter) 
0 

Dh = 3.6 in. (Hub diameter) 

f = 3.6/8 = O.Li.5 (Radius ratio) 

(1 -p 2
) = 0.7975 

2 1 +p = 0.60125 
2 

100. 

2 (1 - p ) square feet. 
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V D2+D2 
1 

D 1 Do , ( 1 + p 
2 )2 m --- 0 h = feet. 

12 12 2 12 2 

1 

D Do (~)2 1Til m _ f!'n 
u m = bO 12 - bO 12 • fps. 
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CAPACITY-SPEED COEFFICIENT 

= Q -- Q x 1 1S - 1 
1rn D0 ~ 11 (l-p2)(1+p2 )"2 
bO -12 4 2 

Q 
CQ = 3 nD 

0 

CQ= 132.5 ~ 
D0 = 811 f= .45 

HEAD-SPEED COEFFICIENT 

c - H 
H- 2 u m 

g 

1728 
2 • 1 

TT' (1- p~(1+p2) 2 
2 

= gH 

[11!1 Dm r 
b5 12 

H [ 32.2(3600)(144)] CH = 2 2 rf. 1+p2 n D 
0 2 

C = 0.04395 H(ft H20 
H [ J 2 1~00 

D
0 

= 811 ,P= .45 

= gH 

@TI ~r t1t 2

j 
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TORQUE-SPEED COEFFICIENT 

C =--T __ _ 

T (rY~)3 u 2 
gh2 m 

T 
CT= 2 5 

n D 
0 

T , Ft. lbs. T In. lbs. 

D = 811 p= 0.45 
0 

PUMP EFFICIENCY 

WHP _ QH 
WP - 2m 

T· bO 

• 

46,800,000 
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SPEED-FLOW COEFFICIENT oc n/Q2 

I Kn=~=~ I 

HEAD-Fl.OW COEFFICIENT oc H/Q2 

H 
-· 2 
em -g 

TORQUE-FLO'iV COEFFICIENT 

TURBINE EFFICIENCY 

SPECIFIC SPEED 

1 
Q2 

ns = 3 • n 
H4 

I n 8 = 13500 (Based on gpm.) I 

n CQ 
Q= -

132.5 

n 2 c 
H = H 

43950 

CQ = 0~2301 
CH = 0.115 

at b . e.p. 



CQ CH 
7} p = 0.520 CT 

!° = .45 

105. 

EXAMPLE: Run No.5, Data Sheet 5-11-50(2) 

Q = 1.605 c.f .s. 

n = 1000 r.p.m. 

H = 0.239 ft. Hg. 

T = 44.6 in. lbs. 

C = 132 5 1
•
605 = 0.213 = CQ Q • 1000 

CH = 0.04395(.239)(12.65) = 0.556(.239) = 0.133 = CH 

CT = 0.4255 • 10-3(44.6) = 0.019 = CT 

~ p = 0.520 ( .21:6l9133) = 77 .5% = JP 



APPENDIX C 

DERIVATION OF COEFFICIENTS FOR A MIXED FLOW MA.CHINE 

These are derived in the same general way as those for the axial 

flow unit. However, since there is so much possibility for variation 

in the various geometric parameters of a mixed flow unit, no attempt is 

made to present a general form for the coefficients as was done with 

the axial flow unit. 

The particular unit tested was a 10 inch MF unit manufactured 

by the Peerless Pump Division of the Food Machinery Corporation. 

The following definitions, sketch and values apply to the deri-

vations of coefficients for this unit: 

r D + Dh] 
A2 = 'ff L 0 2 ' s 

[8 1 + 4 19] 
=ff 4 b4 

2 

A
2 

= 4~48 sq • . in • . 
0.311 sq. ft. 

D = 6.67 in. 
m2 

D . 
m2 - = o.548 ft. 

12 

106. 

2 9 50 32 cos 
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D . o., 

I 
I 

I 

I 
I 

I 
I 

i / 
. ~3oj 

I 
I 



CAPACITY-SPEED COEFFICIENT 

I c~ ~ iu.s ~ 

HEAJ)..SPEED COEFFICIENT 

- H c - 2 
H u 

m2 
g 

CH= o .0391;H(ft.H20) 

(n/1000)
2 

C = 0 .49~ H(ft. Hg) 

H (n/1000) 2 

TORQUE-SPEED COEFFICI~T 

108. 

= 32.14 · H/n
2 

-;-(.548) 2 

bo 
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C = 3810 T (ft. lbs.) 
T 2 n 

= 0.3174 x 10-3 T(in. lbs.) 

(n/100) 2 

PUMP EFFICIENCY 

QH 
?'J P = T 2m 

• bO 

SPEED-FLOW COEFFICIENT 

K = o.895 n/100 
n Q 

HEAD-FLOW COEFFICIENT 

c 
H 

c 2 
Q 

K ___ 3.96 H(fto Hg.) 
-rI - ri 

TORQUE-FLOii COEFFICIENT 

K = T 

T !(Dm2)3 (c ) 2 
g 12 m2 

_ 62.h (60)3810 n n2 CQ CH 

2~(111.8)39100 n n
2 CT 

_ 1 n _ o.895 n/100 
- 111.8 Q - Q 

= 39100 H/n
2 = 3.13 H(ft. H2,Q} 

(111 .8)2 Q2/n2 Q2 

2 _ 3810 T/n (ft. lbs.) 
- (111.8) 2 Q/n2 
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K = O.J05 T(ft. lbs.) 
T Q2 

0.0254 T (in. lbs.) 

Q2 

TURBINE EFFICIENCY 

= 

'>'1 _ 1.922 Kn KT 
rT------

SPECIFIC SPEED 

n 
s 

= 

1 
Q'-
T 
4 

KH 

n 

n = 356 on c.f .s. s 
7550 on g.p.m. 

3 
(39100) 4 

- 1 

= 

(111.8) 2 

1 

263 (.23333) 2 

3 
(.253) Ii 

1 
n2 

3 
n2 

n 


