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ABSTRACT

This thesis desgribes an experimental method of measur-
ing the hydrodynamic forces induced in fluid containers whén the
containers are subjected to varying accelerations, Experiments
were performed on a model of a rectangular tank and the forces
due to the convective pressures were measured and compared to
those predicted by a simplified linear theory in which the fluid
system is reduced to a system of simple oscillators, An investi-
gation was made to determine the limit of applicability of this
simplified theory and to observe the effect of the non-linearity
of the fluid motion on the predicted forces., It was found that
the natural frequency of vibration diverged significantly from
that for small amplitudes when the amplitude to depth ratio ex-
ceeded 0,05, T he force-amplitude relation remained essentially
constant for amplitude to depth ratios up to 0,20,

An electric analog computer was used to compute the dy-
namic shear forces induced in a typical water tower structure
when its base was subjected to the ground accelerations of an
actual earthquake, The effect of varying the tower stiffness, on
the shear forces induced, was also studied and the results were
compared with a modal type of solution. It was found that the
modal type of solution gave good results and it is recommended
for analyzing earthquake forces on elevated water tanks when an

analog computer is not available.
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I. INTRODUCTION

The problem dealt with in this thesis is one arising from
the need for a simplified method of determining the nature and the
magnitude of the forces exerted by a confined fluid when its con-
tainer is given horizontal accelerations, It is the concern of the
structural engineer to know these fbrces in order that he may be
able to design a structure, such as an elevated water tower, to
withstand loads induced by earthquakes, The problem arises in
the design of oil tanks, aquariums, and many other structures
which confine fluids in regions where earthquakes occur. The
importance of the problem is indicated by the case of the elevated
water tower, whose failure during an earthquake could imperil a
communitjr threatened with fire or a contaminated water supply.

Several solutions have been published for problems con-
cerned with the dynamic forces of confined fluids, Theée are
dealt .with in references (1)%, (2), (3) and (4) and they were ob-
tained by the classical hydrodynamical approach of finding a solu-
tion to Laplace’s equation that satisfies the imposed boundary
conditions, -While these solutions give very precise measures
of the dynamic forces for small oscillations, they prove to be un-
wieldy when one attempts to apply them in designing a structure,

The purpose of the present study was to investigate the
range of validity of a simplified method for determining the dynamic

forces on fluid containers proposed by Housner(s). This method
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¥*Numbers in parentheses refer to references listed at end of
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was derived for only small fluid displacements as a result of
linear approximations regarding the nature of the oscillations,
For sufficiently small oscillations it had been shown that the meth-
od over estimates the force of the oscillating fluid by less than
2 percent, but it had not been established at what amplitude of
oscillation the non-linear character would become important,
To investigate this a series of experiments was perfoi'méd
which measured the forces and frequencies for oscillations of
relatively large amplitudes. The objective of the experiments
was to determine‘at what amplitude the non-linear character of
the oscillations become observable, to evaluate the non.-linear
characteristics at large amplitudes, and to de_termine if at
large amplitudes the velocity field of the fluid was sufficiently
altered so as to give a force-amplitude relation different from

that measured at small amplitudes.
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II. THEORY OF FLUID OSCILLATIONS IN TANKS

The following analysis is for a rectangular tank with vertical
walls and horizontal bottom containing a non-viscous, incompressible
.fluid whose top surface is free. The same analysis can be applied
to cylindrical tanks as shown in Appendix A, The analysis of the
fluid pressures is simplified by distinguishing between the impul-
sive and the convective fluid pressures, The physical significance
of these two types of pressures can be seen by considering the fol-
lowing situation, Let a tank of fluid be at rest and at time t =0
let the walls of the tank be given a horizontal acceleration of mag-
nitude G‘o‘ T he acceleration of the walls imparts an acceleration
to the fluid so that beginning at t = o a fluid pressure is developed
against the walls and the magnitude of the pressure is proportional
to 1'10. After the elapse of some time the fluid will have been ex-
cited into oscillations and this motion will induce additional pres-
sures against the tank walls, At any time '"t" the total fluid pres-
sure will consist of one part that is directly proportional to the
instantaneous wall acceleration, 1'10, and one part, associated with
the oscillations, that depends upoﬁ the sum of all the accelerations,
1'10, that have been imparted to the tank walls prior to time 't',
The first of these is called the 'impulsive pressure' and the second
is called the 'convective pressuref,

The analysis of the impulsive pressures is presented first
and this will be followed by the analysis of the convective pres-

sures.



-4-

Analysis of Impulsive Pressures

Consider a rectangular tank of unit width in which the sur-

face of the fluid is horizontal (fig. 1). If the container is subjected

to a sudden horizontal acceleration, ﬁo, normal to one wall, pres-

sures will be induced which will impart acceleration to the fluid,

- The pressures on the walls of the container due to the acceleration,

X =

<0
"

°
n

P =

h =
e}

u, will now be determined employing the following notation,

Horizontal coordinate measured from the center
of the tank

Vertical coordinate measured from the free sur-
face of the fluid

Horizontal velocity of the fluid

Horizontal acceleration of the fluid

The initial horizontal acceleration of the con-
tainer walls

Vertical velocity of fluid

Vertical acceleration of fluid

Mass density of the fluid

Fluid pressure between two membranes

Total horizontal force between two membranes
The depth of fluid

Liength of container

Pressure of fluid on one wall

Pressure of fluid on bottom of container

Total force acting on one wall

Distance above bottom that P acts
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M = The equivalent mass rigidly connected to the
walls of the container at height,ho,necessary
to produce a force P
M = Total mass of fluid
The assumption is made that the horizontal component of
fluid velocity, u, is a function of x only and is independent of the
y coordinate. Physically this is the same as if the fluid were
constrained by thin, massless, vertical membranes, initially
spaced at a distance dx apart, and free to move in é horizontal
direction, This constraint on the fluid flow is expressed by the

equation
d

which states the condition of conservation of mass for the element
{fige 2). Since incompressible fluid flow is assumed, the fluid
accelerations are proportional to the velocities, The hydrody-
namic equation expressing the pressure of the fluid between two

membranes is

d
.5;3. = - p¥ (2)
and the total horizontal force between two membranes is given by
h
Q= f pdy (3)

o
The above equations may be written as



Figure 1. Rectangular Tank of Unit Width
Subjected to an Impulsive Acceleration

dx

+<+<L<—<——

e

u+a;c- dx

— U

Figure 2. A Fluid Element in a Rectangular
Tank (Impulsive Pressure)




V= (h-Y)-g;
Vo at 2 2
pz-pf(h-y)a;dw-ph [%--}(%’) ]%% (4)

o
hthy lyzdﬁ n> an
Q=-p Rz |[m&v=-r3 %
s}
If the fluid element shown in fig., 2 is to be accelerated in

the x-direction there must be a difference in pressure between

the two membranes., The equation of motion of the element is

g%dx = -(phdx)h (5)

Substituting the value of Q from equation 4 gives the following dif-

ferential equation of motion

2
-3——3- —;32-1'.1::0 (6)
x

The general solution of this equation is
uaAsinhB%+Bcoshx’5% (7)
and the constants are determined from the boundary conditions

(@ =u0)X= i—_L

which give

t

o

A=0 Bz_.__...__..l.:
h
cos ﬂ_ﬁ

Substituting these values for the constants in equation 7 yields

cosh 3 %
=l —— (8)
cosh )3 T



-8-

By using this value of 1 in equations 4 the following expressions

for the pressure and force on the membrane are aobtained.

2+ sinh )3 =
1
RN IR L ek g
cosh)@}?
plt h™ sinh Y?»'H
Q= - T (10)
3 cosh )'?E

The horizontal acceleration, ﬁo, produces an increase of

pressure on one wall and a decrease of pressure on the other wall
of

2
P, = pﬁoh [% - —é (%) }Y? tanh J3 TIl:

(11)
and produces a pressure on the bottom of the tank
sinh J3 X
h
Py -pti_ b 3 I, (12)
cosh J3 T

The integral of equation 11 over the depth of the fluid gives for the
resultant force acting on one wall

pﬁo n? L
Pa__ﬁ___ tanh 3 ¢ (13)

The location of the resultant force is given by

h
f P, Yy
y= 2 5

f‘ P4y

[

(14)
or

z%h

(o)
< |
H
oo} w
=g



-9-

where h,is the distance measured from the bottom of the tank,
The total horizontal force on both walls is the same as

would be produced by an equivalent mass, M, fastened to the

walls of the container at a height 3/8 h above the bottom, where

Mg is determined by

(15)

The moment exerted by the pressure on the bottom of

the tank is given by

+L
p, xdx = - pu h"L (1 - ———) (16)
-L ' 3 h

To give the correct total moment on the tank the mass,
M(—), must, therefore, be at an elevation

L
h =2n(1+4 P E 1
o B 3\ L

(17)
For tall, narrow tanks let it be assumed that there is a

rigid horizontal membrane at a depth, h, below the surface.

Since the fluid below this membrane is restrained so that v=¥= o,

it exerts a moment on the membrane equal to
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Equation 16 gives a moment equal to this when
h
T = 1.6 (19)

. This means that the preceding equations should be applied only to
tanks whose proportions are such that the ratio of (-}ﬁ) is equal to
or less than 1I,6. If the tank is taller, the fluid below this critical
depth should be treated as a rigid body moving with the tank and

exerting a pressure on the walls of

p.. = pﬁoL

w

Convective Pressures

The effect of the impulsive pressures induced by the hori-
zontal accelerations of the side walls of the container is to excite
the fluid into oscillations, The additional convective pressures
caused by these oscillations must be considered together with the
impulsive pressures to determine the total force that is exerted on
the tank by the contained fluid,

To examine the first mode of oscillation of the fluid con-
sider the fluid to be constrained between rigid, massless, hori-
zontal membranes that are free to rotate about a horizontal axis
(fige 3). The notation used in the last section applies to the same
quantities and additional notation is introduced as follows:

e = The angular rotation of a fluid element bounded by two

membranes
e = The angular velocity
) = The angular acceleration
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M = The equivalent mass in a mechanical system that will
produce the same total force on the container walls

as will the oscillating fluid of the first mode

% = The displacement of the equivalent mass M,

F1 = The force produced by the mass M,

Al = The maximum displacement of mass M1

T, = The kinetic energy of M,

K, # The equivalent spring constant of mass M,

T = The kinetic energy of the fluid

\' = The potential energy of the fluid

bo = Maximum angular rotation, measured at the center of

the tank
The conservation of mass requires that the fluid flow into

an element be equal to the increase in volume of the element (fig. 4).
1, d@ do
udy = > (x-a?dy + L Iy dy) (L-x)

This gives

2 2 .
uz(iz'_i‘_l g% (20)
v = 0x (21)

The hydrodynamic equation for the pressure of the fluid

between the membranes is

[+}

Differentiating equation 20 and substituting into this equation for

pressure yields
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3 3 P
L7lx 1,x de
P"'Pz'[t“i(i)]a? (22)

The equation governing the motion of a slice of fluid may
be derived by equating the rate of change of angular momentum of
a fluid element about its axis of rotation to the moment acting on

the element:
I 0 = Moment
For any element dxdy
ap .
Moment % - By (dydx) x sin 0

where for small @
x sin 0 x
Moment = ~ —gl {dydx)x
y
The rate of change of angular momentum of the fluid between two

membranes is

and equating this to the total moment of the fluid element between

two membranes gives

-L

Upon integration one obtains

z-

J

5 0
= (23)
22

a

y

Applying the appropriate boundary conditions and consider-

ing sinusoidal oscillations yields the following expression for the
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fluid oscillation,.

sinh

0=0

sinwt (24)
o

sinh

o G| ™ G
et i

| Equating the maximum kinetic energy of the oscillating
" fluid to its maximum potential energy will give an expression

for the natural frequency of vibration of the system,

h +L L4p02w 20820 t
1 2 2 8 .
T = zp(u™+v )dxdy = -
+L 3 (25)
V = f %pgngisin%etixz %“— pggisin2 @t
-L

Substituting equations 20 and 21 into the above expressions and

integrating yields

2 g h '
® :i/-g-tanh/-; I . (26)

and in a similar fashion one may find the natural frequency of

the nth mode to be

2 _ g hn
mnz-ﬂn/gtanh/—g T (27)

Substituting equation 24 into equation 22 gives for the pres-

sure on the wall of the container

y
LZ /3 cosh)/:z; T, >
pA ™y @ ©

Py = P73 ;1:1175—‘ o, sinwt (28)
Z L :
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The total horizontal force on one wall is
h
dv e o020 o
P = Py, y—.pT(ﬁ OSIHEAHI (29)
o

A force equal in magnitude and in the same direction acts on the
opposite wall giving a total of 2P, One may consider this total
force to be produced by an equivalent mass, M, which is spring

mounted (fig, 5). The mass will oscillate according to

x, = A

1 1 sinwt

and produce a force

2 .
Fl = -MlA1 W sinwt

which is obtained by differentiating twice and multiplying by the

mass, The kinetic energy is, therefore,

A (;.)z'sin2 Wt

1
T) =2MAy

Comparing these equations with equations 25 and 28 of the

fluid yields

OOL
A1 =
/; tanh@

M L h
Ml-.:—?’—/;.-ﬂtanh/gi (31)

(30)

(=2

This equation for M, exceeds the more exact value as given by
Graham and Rodriguez(4) by less than 2%o.
To determine the elevation of M, above the bottom of the

tank one has to equate the moment exerted by the fluid pressures
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on the side walls and on the bottom of the tank to the moment

exerted by M. This gives

cosh)/-g%-z
h1=h 1 -
h . h
/—g-isunh/% 1

In order to obtain the corresponding quantities for the

(32)

higher modes, (%) should be substituted for L in the 'equ'a.tions.
Only the odd modes will yield moments since even numbered
modes represent symmetrical conditions, |

The fluid system has now been reduced to a relatively
simple mechanical system (fig, 5). When the tank i; subjected
to dynamic loads such as those produced by earthquakes, the
various modes of vibration will be excited, The equivalent sys-
tem, therefore, reduces the problem to that of solving for the
response of the simple oscillators,

In the event that the container is an elevated water tower,
the tower structure adds an additional degree of freedom to the

systema,

The Equivalent Mechanical System

Having reduced the fluid system to one of simple oscilla-
tors it becomes possible to investigate the regions of applicability

(5)

and accuracy of Housner's theory'~ ' as the amplitudes of oscilla-
tion increase, by restricting the motion of the tank so that only
the first mode of the system is excited, If this is done the forces

acting in the system are due only to the oscillations of the fluid

in the first mode and to the rigid mass,
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Figure 5, Equivalent Mechanical System of
Simple Oscillators
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The natural frequencies of the various modes are suffi-
ciently separated so that if one investigates a narrow band of
frequencies, near and including the resonant frequency of the
first mode, the oscillating mass which produces forces on the
tank is primarily that corresponding to the first mode,

To facilitate the measurement of the forces acting on
the walls of the container a mechanical system as shown in fig,
6 was studied and experiments were designed to approach this
idealized system, |

Knowing the spring constant, KZ’ and measuring the
spring deflection will enable one to calculate the tot#l force
exerted by the tank, The force due to the oscillating fluid mass
can be determined by subtracting the force produced by the
rigid mass from the measured total force. The following nota-

tion will be used in analyzing the mechanical system,

M1 - = Egquivalent oscillating mass of first mode
MR = The total rigid mass of the system
M = The equivalent rigid mass of impulsive forces

Mé = The rigid mass of the fluid below depth h, the tank,
one third the mass of the springs, and the mass of

the measuring stand

K, = The equivalent spring constant of mass M,
K, = The spring constant of the mounting springs
Xy = Displacement of M1 relative to the tank walls
X = Displacement of Mo relative to the base

v = DPotential energy

Kinetic energy

k|
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Ao = Amplitude of tank relative to the base

A1 = Amplitude of mass, M 1° relative to the container walls

Ai(r) = Amplitude of mass M., in the rth principal mode

The expressions for the potential energy, V, and for the

kinetic energy, T, are

2

V = %le% + %szo

5 .2 (33)
M. % +—§-Ml(s;1+3<o)

T = R o

e

Employing Lagrange's equation,

9 8T _ 8T , &V _
ot 9%, ox; ox;

the equations of motion of the system are

0,

(Mg +M,) x, + Mpx + Kx =0

2
. - 1 (342)
MlxO + Mlx1 + lel =0
For simplicity the following changes in notation are made:
Koo = K, MOO = (MR+M1,) |
Kii=¥; M =M
The equations then become
M, X, + M, X, + K, x =0
0070 1171 0070
(34b)

MIIXO + M.‘”x1 + Kllxl = 0
To determine the natural frequency of the system one as-

sumes a harmonic solution of the form
x, = Aisin (@t + B) (35)

and substitutes into equations 34b, This yields the following set

of equations:
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2 2
(KOO—MOOQ) )A0+ (_Mll (:s))A1 = 0

2 2 36)
(-M;; @) Ag+ (K -M;; @) A =0 (

For a nontrivial solution the determinant of the coefficients must

be set equal to zero which yields the frequency equation

(M00K11+K00M11)J N Koo¥11

M. M., - M%) z
0011 11 (MgoM,,-MT))

4 2
W -

=0 (37)

from which

24| (MooEtEgeM
W =+3 >
(MgMy;-Myp;)

)
11 007117700711} . 00711 (38)

u) .
L(MOOMII'MII) (MgoMy M)

+ 2

2
]IMK+KM 4K . K

i‘ and 0)2

2). These

Equation 38 gives two values of 0)2, (w
are the natural frequencies of the system, Substituting either of
these into equation 36 one obtains

: 2 2

Ay My KM@

— = =
A 2 2

(39)

as the ratio of the amplitudes of the two masses for the mode
being considered,
The general solution is
5 alr)
x, = P Ai 51n((nrt+5r) (40)
r=l
where r corresponds to the mode being considered and i to the
coordinate(6).

In the experiments measurements were made when the
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two masses oscillated in phase with each other, This corresponds
to the first mode or lower frequency, The first principal mode of

oscillation can be expressed as

Xy ® AS) sin (colt + 61)

xy = A(ll) sin (wlt + ﬁl)

(41)

and the masses are in phase when equation 39 is positive,
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III, EXPERIMENTAL MEASUREMENTS

Instrumentation

The experimental model was designed to resemble the

“idealized system (fig. 6), as closely as possible, This was ac-
complished by the apparatus shown in fig, 7, The tank uséd to
contain the fluid was made from plexiglass sheet, 3/16 of an inch
in thickness, and was 8 x 8 inches in cross section aﬁd 11 inches
high, Plexiglass, while supplying sufficient rigidity, had the
advantage of making possible visual observation of the fluid mo-
tion. The tank rested on ball bearings which were f;‘ee to move
on steel tracks, A grid was scribed on one side of the tank to
facilitate the determination of the shape and amplitude of the
waves,

A screw type surface gage was used to determine the
amplitude of the waves, This v:}as done by measuring tf;e differ -
ence in height of the screw thread betweeﬁ the level water surw
face and the crest of the wave with a vernier caliper which gave
accuracy t»o 0.001 inch, A camw~shaft, whose eccentricity could
be varied, supplied a harmonic, horizontal motion to the table
supporting the tank, This motion excited oscillations in the
fluide Power was supplied from a Bodine variable speed D,C,
motor driven by a Sola Constant Voltage Transformer, Fre-
quency measurements were made with a Strobotac strobe light
and a Federal Dial Indicator read the deflection of the tank

relative to its supporting table,



Figure 7, Experimental Apparatus




Procedure

At a given fluid depth a series of experiments was run at
frequencies within + 8 percent of the natural frequency of the first
mode so that the amplitudes of oscillation induced were large
enough to obtain sufficient accuracy of measurement, The mode
of fluid oscillation éxcited was virtually only the first mode since
the experiments wex;‘e confined to this narrow band of frequencies,
A typical set of readings for a particular condition of fluid motion
consisted of a frequency measurement, a measurement of the de-
flection of the tank relative to its table support and a determina-
tion of the amplitude of oscillation of the fluid, Readings were
taken throughout the selected frequency range for fluid depths of
5, 6 and 7 inches, These measurements were intended to give
(1) the relationship of the convective force of the fluid as a func-
tion of the wave amplitude, and (2) the ratio of wave amiplitude
to fluid depth as a function of the ratio of the driving frequency to
the linear, natural frequency of the first mode,

Figs, 8, 9 and 10 show the tank during various phases of

an experiment for a fluid depth of 7 inches,

Experimental Errors

In these experiments three different measurements were
made, These were a measurement of the deflection of the tank
relative to the supporting table, a frequency reading, and a de=~
termination of the amplitude of fluid oscillation,

The dial gage used to read the deflection of the springs

was accurate to 0,0001 of an inch and since it was used at
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frequencies well below its own natural frequency the error it con-
tributed was negligible, A calibration of the Strobotac indicated
that it was accurate to within + 1 percent in frequency determina~
tions and the surface gage which was accurate to 0, 001 inch con-
tributed no error to the computations and negligible error in
measuring the amplitude of the waves, It should be noted that
any error from either or all of these sources would be .an unbiased
error since it could be positive for one computation and negative
for another,

The results actually obtained, shown in figs, 12, 13 and
14, indicate a constant biased error in the experimental determi-
nation of the convective force of about 0,05 pounds throughout a
major portion of the experimental range, This error can most
probably be attributed to the rolling friction force between the
ball bearings and the plexiglass tank, This force 0pposeé the
motion of the tank and would tend to reduce. its maximum dis-

placement relative to the table, This force may be defined as
F = 34N

where N is the normal force and n is the coefficient of rolling
friction between plexiglass and steel, Using an average value

of 15 pounds for the normal force would give a value of n = 0,0033
which appears reasonable when compared to values of this coef-
ficient for various other material and when compared to a mea-
sured value of 0,006 for the coefficient of static friction {(im-

pending motion),
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Figure 11l. Deflection of Tank Wall at the Cage Point
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Method of Obtaining the Force Due to Convective Pressures

In order to compare the experimentally measured forces
to those predicted by Housner's method(>) it was necessary to
establish a relationship between the measured amplitude of the
fluid oscillation and the displacement of the equivalent mass,
Ml’ relative to the container walls, To accomplish this.a rela-
tionship between the measured amplitude of the fluid and the
angle of rotation, O ,of a fluid element was derived. This was
done by finding an equivalent expression for the pressure on the
wall of the container by considering a fluid element dx in width
and of amplitude, a, above the level surface,

The notation used previously is the same except for the

addition of the following:
= Amplitude of fluid oscillation measured at x = L

Equating equation 28 to the net inertia force of the ele-

ment, dx in width, at x = L gives

- p /g - - »
B = pag - apv (42)
Pw 3 tanh/_ \
where . {43)
v=0L
and

Equation 24 becomes

Q=0 sinwt
o

from which nne obtains
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» 2
@ =-0 0 sinwt (44)
Substituting equation 44 into equation 43 leads to
2

V= -Oo w L (45)

Using this value of ¥ in equation 42 and solving for 00 yields

6 = 28

o
LZ/’;“’Z 2
_—— +aw L

h

Since the experiments were confined to frequencies within

(46)

+ 8 percent of the natural frequency of the first mode of vibration
the frequency used for computations of the approximate curve
from equation 46 was the linear natural frequency as given by
equation 26, Therefore, for any given depth the above equation
depends on the amplitude of oscillation, The values for the angle,
00, were then computed and by using equation 30 the amplitude of
oscillation of the equivalent mass, M, could be calculated for
any amplitude of wave, Multiplying this amplitude, Al’ by the
equivalent spring constant, Kl’ gave the force exerted by the
oscillating mass for any amplitude of wave,

The resulting relationship for the force exerted by the
mass, Ml’ as a function of the amplitude of wave has been
plotted for various depths of fluid and appears as the solid curve
in figs, 12, 13, and 14 which also show the results of the ex-

periments,



-34-

In the experiments the only force measurement is made by
use of the dial gage indicator, It measures the displacement of
the tank relative to the base upon which it rolls, This displace-
ment when multiplied by the spring constant of the spring mounts
gives the total force exerted by the tank. This total force includes
the force exerted by the rigid masses (impulsive forces) as well
as the force due to the convective pressures in the fluid, The
problem then reduces to the evaluation of the portion of the total
force contributed by the oscillating fluid.

The rigid mass of the system is composed of the equiva-
lent rigid mass of water in depth h, when the depth does not ex~
ceed 1,61, the mass of fluid below 1,61, the mass of the tank
and partition, the portion of the spring mass that contributes to
the system and the mass of the measuring screw and stand,

The force exerted by the total rigid mass, MR’ is
F,o=M_u | (47)
where for a sinusoidal motion of the tank relative to the base

X = AO singt (48)
and the acceleration is
b = A wz sinwt (49)

where
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Since the measurements are made when the acceleration
is maximum, substitution of equation 49 into equation 47, and

maximizing, yields

2 ‘
Fp = - MgA o (50)

The equation of motion for the system may then be written as

0 2
Mlx1 = FT - MRAOLO

or

2
F|=Fp - MpA (51)

where the force exerted by the rigid mass is the total impulsive

force,
The total force may be expressed as

F =KOA

T 00°70

where the spring constant, Koo’ was equal to’ 167 pounds per inch
for all the experiments,

Previously the container had been assumed to be absolutely
rigide However, the tank does deflect due to the forces exerted
by the springs at the base of the tank., The deflection of the tank
at the point where the dial gage makes contact must be added to the
dial gage reading to obtain the actual displacement of the tank,
Fig. 11 is a plot of the deflection at the gage point as a function
of the force exerted by the springs on the gage side of the tank,
The amplitude used in the calculations was corrected for the de-

flection of the tank,



-36-
Results

The force-amplitude measurements are shown in figs, 12,
13 and 14 which correspond to fluid depths of 5, 6 and 7 inches
respectively and are represented by the plotted points. The solid
curves represent the force-amplitude relationship predicted by

(5)

Housner and the curves composed of long dashes represent the
force-amplitude relationship predicted by Graham and Rddriguez(4).
The measured values agree very favorably with both predictions
when one takes into account the effect of rolling friction,

Fig. 15 shows the amplitude-frequency measurements
for the various depths of fluid considered, The frequency ratio
is that of the driving frequency to the linear natural frequency
of the first mode of oscillation. An inspection of these curves
reveals that the linear natural frequency indicated by them agrees
very closely with the values obtained from equation 38,

The shape of the fluid surface during oscillation changed
considerably over the range of (g—) ratios, This is shown in fig,

16 together with the approximate region of occurrence of each

wave shape,

Discussion of Results

The amplitude-frequency curve for a fluid depth of 5 inches
reveals a very pronounced jump phenomenon, This jump condi-
tion is also exhibited by the curves for fluid depths of 6 and 7
inches, but becomes less pronounced with increasing fluid depths

and with the corresponding smaller (g‘-) ratios, Due to the jump
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i) o< é‘. <0,05
(ii) o.os<§ <0.15

iye <d
(iii) 0.15 I

Figure 16, Wave Shape for Various
Amplitude to Depth Ratios
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condition the resonant frequency could only be attained by decreas-
ing the driving frequency from values higher than the resonant
condition until resonance had been reached. The jump is illus-
trated in the figure below by the dashed lines, The high degree

of instability of the fluid motion at driving frequencies close to the

resonant frequency made it extremely difficult to maintain the
resonant condition for any period of time and as a result of this
non-linear characteristic the measurement of the wa{re‘ ampli-
tude had to be made very quickly,

An experiment was attempted for a fluid depth of 4 inches
but the motion was so unstable that accurate measurements were
impossible,

In exciting greater amplitudes, one would expect that at
a sufficiently large (S‘-) ratio a turbulent type of fluid motion
could be reached where the fluid would fall back upon itself,
This would add to the energy dissipation in the system and in
all probability would be an upper limit to the motion ofr the os-

cillating fluid, Although these experiments did obtain an (g-)
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ratio slightly higher than 0.2, this turbulent type of motion did
not occur,

The non-linearity exhibited by the frequency curves for
high (%) ratios shows that the region of applicability of any linear
theory in describing the motion of the fluid for these regions has
been exceeded. However, despite the non-linearity of the oscilla-
tion, the force-amplitude relation predicted by Housner(s) is
- consistent with that actually measured, at least up to an (g) ratio
of 0,2, The theory takes into account the force exerted by the
oscillating fluid from a depth h to the initial water surface, as
shown by equation 29. However, in this experiment one mea-
sures the force exerted by the fluid to a depth (h + a), on one side
of the tank and to a depth (h - a), on the other side, T hese ex-
periments indicate compensating effects since the forces mea-
sured are consistent from small amplitudes to the largest ones

encountered in these experiments,



-41-

IV. APPLICATIONS TO SPECIFIC TANKS

Elevated Cylindrical Water Tower

To illustrate the application of Housner!'s method(s) in
the analysis of an elevated water tower, the typical small, cyl-
indrical water tower shown in fig, 17 was selected. If only the
first mode of fluid oscillation is considered, the system may
be reduced to an equivalent mechanical system with two degrees
of freedom (fig. 18). The quantities shown in this figure were
obtained by using the equations in Appendix A, The tower stiff-
ness, which corresponds to the spring constant, Koo’ in.fig, 18,
was varied from 2000 pounds per inch to 10, 600 pounds per inch
to provide a range of approxim:ately one second in the undamped
fundamental period of vibration, Table I gives the undamped
natural period of the fundamental mode for each tower stiffness
considered and equation 38 was used to calculate these periods,

Viscous damping was introduced into the mechanical
system to simulate the structural damping in the tower and also
the viscous damping of the fluid, The damping coefficients used
were 3 percent of critical damping for the tower and 1 percent
of critical damping for the fluid, The assumption of viscous
damping simplifies the mathematical treatment of the problem

(7)

to be discussed and has been shown by Jacobsen to satisfac-
torily describe the behavior of vibrating systems with various

types of damping,
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2
Mass of Contained Fluid = 275 11'1:13.‘?.9.

Figure 17. A Typical Small Cylindrical Water Tower
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Table 1
T ower Stiffness, Koo Fundamental Period, %

(lb. /in.) (seconds)
2000 2,802
2500 2,572
3000 2,421
3500 2,321
4000 2.248
4500 2,206
5000 2.152.
5500 2,147
6000 2,128
6500 . 2,113
7000 2,102
7500 2,092
8000 2.084
8500 2,077
9000 2.072

10000 2,063
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The problem considered was the determination of the maxi-
mum shear force induced in the tower structure when the water-
tower system was subjected to an earthquake representative of
those occurring in the West Coast areas of the United States,
This requires_ a solution for the response of the structure when
its base is subjected to an irregular, transient acceleration, The
earthquake selected for this purpose was the Olympia, Washing—
ton earthquake of April 13, 1949, its recording consisting of a
component in a S10°E direction and a component in a $80°W di-
rection, The accelerograms of these components are shown in
figs, 19 and 20,

Two methods of obtaining a solution to this problem were
carried through, The first method(s) involved the representation
of the lateral displacement, y, of the structure at any point by
the sum of the normal modes of vibration. Having accomplished
this each mode was then independently analyzed when acted upon
by the earthquake accelerations and the sum of the maximum shear
forces produced by each mode were added without regard to time
of occurrence, This method gives shear forces greater than
that actually occurring in the structure since the sum of the
maximum values is greater than the maximum of the sums, The
advantage of this method is that once the modal systems and
their corresponding natural periods have been determined it is
possible to use response spectra already obtained for various

earthquakes (9)

to calculate the maximum shear force,
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The second method was fo subject a model of the water-
tower system to the recorded ground accelerations of the actual
earthquake components, The maximum shear force induced in
the tower structure by each earthquake component was then meé-
sured for tower stiffnesses throughout the selected range.> This

0)

‘was done electrically on the Analog Compui:er(1 .

Modal Analysis

The calculation of the forces induced in a structure re-
quires that the response of an elastic, damped system of many
degrees of freedom to an irregular, transient base motion be de-
termined. Considering the structure to be linearly elastic and
having freedom to move in one direction only, the displacement,
y, at any point in the structure can be represented by the sum

of the normal modes of vibration
y= ?c.q:.e sin p;t (52)

where
c, = Undetermined coefficient
¢; = ith normal mode

th mode

p; = 27 times the frequency of vibration of the i
n, = Ratio of damping in the ith mode to critical damping
(small damping)

t = Time

Initiating the free vibrations so that at time t = o the dis-

placement is zero and the velocity is v_ at every point in the

(o]
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structure, the coefficients c; are then evaluated in the Fourier

manner
v0
= — W.
5, (53)

where p is the density and the integrals are evaluated over the

total mass of the structure, The free vibrations are then

mgpgt
W. e sin p.t (54)

= 2
Y i i

*:'dl0<

Subjecting the base of the structure to a variable accelération, a,

the displacement at time, t, is

3 Wi -nipi(t-"t) .
y= ¢ —E 9. ae sin pi(t-’c )d<e {55)
o
or
5 i
where
t
-nipi(t"T) .
Xi :f ae sin pi(t-'li) dv (57)
o]

The integral, X;s was maximized to give the peak response
of each of the two normal modes of vibration used in the solution
of this problem. The factor ‘Wi/pi is a function of the mass, rig-

idity and dimensions of the structure, $; is a function of the
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8pace coordinates and Xi is a function of the ground acceleration,
damping ratio, undamped period of vibration and the duration of
the excitation. . The square of equation 6, Xiz, represents the
kinetic energy of an oscillator with frequency pi/ 2w which is sub-
jected to the ground acceleration,

Alford, Housner, and Martel(g) have evaluated -Xi for
periods of vibration between 0,1 second and 3,0 seconds for sev-
erél values of damping ratio, Using the maximum response for
particular values of p; and n, they have plotted spectra consisting
of maximum response versus period of vibration, with damping
ratio n, as a parameter, The maximum values of X, when
plotted against periods give the '"velocity spectrum' and the maxi-
mum values of (1/p)X correspond to the value of acceleration re-
sponse., Figs, 21 and 22 are the velocity spectrum of the earth-
quake components considered in this problem,

Applying modal analysis to the water tower system yields
a maximum shear force of 42, 000 pounds induced 1n the tower
structure by the S1 0°E component of the earthquake and a. maxi-
mum shear force of 40,000 pounds by the s80°w c'omponent.
Both of these forces occurred when the tower stiffness was very

nearly 7,000 pounds per inch,

Analog Computer Technique

The mathematical calculation of base shear forces in
structures would be a formidable task even when applied to an

equivalent mechanical system of two degrees of freedom (fig. 18).
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This would involve a solution for the response of the system
when subjected to an irregular, transient ground _acceleration.
However, the use of an electric analog computer provides a
' fast and reliable method of analyzing such systems when sub-
jected to the recorded seismic accelerograms (figs. 19 and 20).
| The shear forces may be read directly and the effect of tower
stiffness can be observed as a single set of dials is tﬁrnéd.
The components of the electric analog are analogous
to the components of the mechanical system and the equations
governing the electric circuit are of the same form as _the equa-
tions of motion of the mechanical system, The properties of
the circuit can be changed rapidly and the voltage and current
at any point can easily be read. |
The equations of motion of the mechanical system shown
in fig, 18 are |

MRgo + coico + cl(ico -x1)+Kc'0xo + Ku(x0 -xl) =2 Mp

(58)
Mllx 1 + S (5{1—}'{0) + Kll(xl-xo) =Z Mll

where

M, = Equivalent rigid mass of water tower system

g
1

Equivalent mass of first mode of fluid oscillation

c = Critical damping

0
H

Damping in tower structure = 0,03 .

¢, = Damping of fluid = 0,01c
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o]
N

Displacement of Mo relative to base

w
N

Displacement of M, relative to base

N
H

Absolute displacement of ground

‘The shear force in the tower is
F = K34%0 (59)

and it is the maximum value of this shear force occurring during
an earthquake that is of importance in the design of the tower
structure,

A list of the mechanical electrical analogies used appears
in Table 2 and fig., 23 shows the electrical analog of the mechan-
ical system (fig., 18). For this particular problem an inductance
of 1 henry corresponded to a mass of 104 -1—]2-—5139—2, a capacitance
of 1,670 microfarads corresponded to a spring constant of 411, 7
pounds per inch, and the value of N for the earthquake records
used was 389. The excitation was supplied from a function gen-
erator(lo) which applied voltages generated from a .film record
of the actual earthquake components, The excitation was supplied
to each circuit in proportion to its inductance and fhe effect of
varying the tower stiffness was obtained by changing the value
of C_ from 0. 334 microfarads down to 0,069 microfarads, This
was done for each of the earthquake components,

The shear force corresponds to the voltage at the capaci-

tor, Co' Since only the maximum shear force was desired the

voltage was read on an oscilloscope adjusted so that a stationary
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Table 2

MECHANICAL SYSTEM ELECTRICAL SYSTEM
M = mass of system L = inductance = a—z M

: N
K = spring constant C = capacitance ElK
c = damping constant R = resistance %I c
% = actual period of vibration Tl= % = simulated period
F = exciting force E = applied voltage
x = displacement q = electrical charge

alF

N = ratio by which time is reduced in analog

a = arbitrary impedance base factor
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transient response pattern was obtained from which the maximum
response could be read directly., This maximum value was obtained
as an amplification of the peak input acceleration, The maximum

shear force could then be expressed as

E -
F=(g—) ZMy (60)
in

in which the maximum value of the ratio (Eout) is used for each
simulated tower stiffness and % is the peak earthquake accelera-
tion. This was done for each of the earthquake components and
the results are shown in figs, 24 and 25, The maximum shear
force induced in the tower structure for the range of stiffness con-
sidered was 37, 500 pounds by the S10°E component and 34, 000
pounds by the S80°wW component, These correspond respectively
to 0,312¢g's and 0, 284g's equivalent horizontal acceleration, The
corresponding forces given by the modal analysis were 42, 000

pounds and 40, 000 pounds respectively.

Cylindrical Tank with Hemispherical Bottom

Most elevated water tanks of cylindrical cross-section
have a rounded bottom., No exact solution for the period of the
fundamental mode of fluid oscillation exists for the case of such
a rounded container, However, an approximation for the period

of a hemispherical container may be found by means of Rayleigh's

(11)

principle. T his has been done by Binnie and yields

1

2
T =5.115 (.gf.‘.)
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for the fundamental period where R is the radius, This gives
values of ¥, approximately 3 percent higher than those measured
by Binnie's experiments,
Replacing a hemispherical bottom with an equivalent cyl-
inder of radius R, and equating volumes gives a cylinder of depth,

3

period of the equivalent cylinder gives
1

.2

T =5,052 (Bg_)

d = z R. Using equation A-5 in Appendix A for the fundamental

which is 1 percent lower than that found by Binnie,

Since the periods agree quite closely it appears that a
logical approach to the analysis of this type of water-tower sys-
tem would be to replace the rounded bottom with an equivalent
cylinder, The problem then becomes the same as that previously

studied,
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V. SUMMARY

This thesis presents the results of experimental measure-
ments of the hydrodynamic forces induced in fluid containers when
. the containers are subjected to varying accelerations, Experiments
were performed on a model of a rectangular tank and the measured
forces due to the induced convective pressures were compared
with the convective forces predicted by a simplified linear theory
in which the fluid system is reduced to a system of simple oscil-
lators. | An investigation was made of the limit of épplicability of
this simplified theory, which assumes small fluid displacements,
and to observe the effect of the non-linearity of the fluid motion
on the predicted forces,

The electric analog computer technique was employed to
determine the shear forces induced in a water tower structure by
an actual earthquake, The circuitry used was completely analogous
to the physical model of the water-tower system which was reduced
to a mechanical system of two degrees of freedom,l and the forces
obtained by this method were compared with those obtained by a
modal analysis,

The conclusions drawn from the body of the material in
this report are as follows:

1, The non-linear character of the fluid oscillation becomes ob-~
servable at ratios of amplitude of wave to depth of fluid, (':1; s equal
to 0,05,

2, The amplitude-frequency curves exhibit a very pronounced

jump phenomenon during which the (%) ratios jump suddenly from
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small values to comparatively high values at frequencies greater
than the resonant condition. The non-linearity becomes exceed-~
ingly strong for shallow depths of fluid and the motion of the fluid

is highly unstable at frequencies close to the resonant frequency.

3. Although experimental measurements were made for (%-) ratios
as greé,t as 0,20, there was no indication that the velocity field of
the fluid was sufficiently altered so as to give a force-amplitude
relation different from that measured at small amplitudes,

4, An analysis of a typical water-tower system can be done easily
with an electric analog computer. In the absence of this type of
equipment, a modal analysis can be performed employing previous-
ly computed response spectra. In this paper the modal solution
yielded forces up to 18 percent greater than those obtained on the
analog computer. This magnitude of error is reasonably repre-
sentative of the error encountered in the application of modal
analysis to an earthquake type acceleration functiqn(lz).

5. The fundamental frequency of fluid motion for a hemisphere
is almost the same as that for a cylinder of equal radius and vol-
ume, It is concluded, therefore, that when applying Housner's

method(s) to the analysis of a tank with a rounded bottom, the

bottom can be replaced by an equivalent cylinder of equal volume,
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APPENDIX A

EQUATIONS FOR A CYLINDRICAL TANK

The equations for a cylindrical tank are derived in the same
manner as those for a rectangular tank, The only change in nota-

tion is as follows:
R = Radius of the cylinder

Impulsive Pressures

Mtanh )3 %—
M = (A'l)
(s} 7-3-5
h
h
R
3
h, *gh 1+§<__}3____—E-- 1) (A-3)
tanh B T‘l—

Convective Pressures

(A-4)

w?=§ /@ tanh (/57 2 (A-5)
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