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ABSTRACT

This thesis is divided into two parts. Part I is devoted to the development of
numerical techniques for simulating fluid-structure interaction (FSI) systems and
for educing important physical mechanisms that drive these systems’ behavior; part
II discusses the application of many of these techniques to investigate a specific FSI
system.

Within part I, we first describe a procedure for accurately computing the stresses on
an immersed surface using the immersed boundary method. This is a key step to
simulating FSI problems, as the surface stresses simultaneously dictate the motion
of the structure and enforce the no-slip boundary condition on the fluid. At the same
time, accurate stress computations are also important for applications involving
rigid bodies that are either stationary or moving with prescribed kinematics (e.g.,
characterizing the performance of wings and aerodynamic bodies in unsteady flows
or understanding and controlling flow separation around bluff bodies). Thus, the
method is first formulated for the rigid-body prescribed-kinematics case. The pro-
cedure described therein is subsequently incorporated into an immersed boundary
method for efficiently simulating FSI problems involving arbitrarily large structural
motions and rotations.

While these techniques can be used to perform high-fidelity simulations of FSI
systems, the resulting data often involves a range of spatial and temporal scales in
both the structure and the fluid and are thus typically difficult to interpret directly.
The remainder of part I is therefore devoted to extending tools regularly used
for understanding complex flows to FSI systems. We focus in particular on the
application of global linear stability analysis and snapshot-based data analysis (such
as dynamic mode decomposition and proper orthogonal decomposition) to FSI
problems. To our knowledge, these techniques had not been applied to deforming-
body problems in a manner that that accounts for both the fluid and structure leading
up to this work.

Throughout part I, our methods are derived in the context of fairly general FSI
systems and are validated using results from the literature for flapping flags in
both the conventional configuration (in which the flag is pinned or clamped at its
leading edge with respect to the oncoming flow) and the inverted configuration
(in which the flag is clamped at its trailing edge). In part II, we apply many
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of the techniques developed in part I to uncover new physical mechanisms about
inverted flag flapping. We identify the instability-driving mechanism responsible
for the initiation of flapping and further characterize the large-amplitude and chaotic
flapping regimes that the system undergoes for a range of physical parameters.
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NOMENCLATURE

χ. Discrete or continuous displacement of the structure immersed in fluid.

δ. Dirac-delta function.

δh. Smeared delta function used in immersed-boundary methods.

Γ. Domain defining the structure.

γ j . jth eigenvalue in a dynamic-mode decomposition.

û j . jth singular vector in a proper-orthogonal decomposition.

ŷ j . jth global mode in a global linear stability analysis.

λ j . jth eigenvalue in a global linear stability analysis.

Ω. Domain defining the fluid.

ω. Discrete or continuous vorticity.

σ j . jth singular value in a proper-orthogonal decomposition.

W. Weighting matrix used in defining a norm for proper-orthogonal decompo-
sition.

ζ . Discrete or continuous velocity of the structure immersed in fluid.

f . Surface stresses that impose the no-slip boundary condition and drive struc-
tural deformation.

KB. Dimensionless flexural rigidity: ratio of structural flexural rigidity to fluid
‘rigidity’.

Mρ. Mass ratio: ratio of structure-to-fluid inertia.

p. Fluid pressure.

Re. Reynolds number.

s. Discrete or continuous streamfunction.

St. Strouhal number.

u, v. Discrete or continuous fluid velocities.
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C h a p t e r 1

INTRODUCTION

In flow-structure interaction (FSI) systems, fluid moves past an immersed structure
and the dynamics of both the fluid and the structure are coupled to one another.
High-fidelity numerical simulations can aid experiments and theory in providing
physical insights into these systems that can lead to improved bio-inspired propulsion
vehicles, medical devices such as heart-valve prosthetics, and renewable energy-
harvesting technologies. To this end, a variety of numerical methods have been
developed and used to study blood-flow through deformable heart valves [10, 26,
62], flow past flapping flags [17, 26, 32, 82], and insect flight involving passively
deforming insect wings [82], to name a few examples.

Of the many methods developed for simulating FSI problems, we focus here on
immersed-boundary (IB) methods, which are attractive because they treat the fluid
and structure with separate grids and therefore do not involve the computationally
expensive task of re-meshing. While IB methods have been extensively developed
and used (see Mittal and Iaccarino [56] and Peskin [63] for reviews), there remain
open challenges to making them more accurate and efficient. First, many IB meth-
ods yield inaccurate surface stresses and forces on the immersed body, both in FSI
problems and in rigid-body problems where the structure is either stationary or un-
dergoing prescribed kinematics [38, 74, 92]. Second, in FSI problems the nonlinear
coupling between the fluid and structure often results in a large nonlinear algebraic
system of equations that must be solved iteratively to evolve the FSI system in time
(see Hou, Wang, and Layton [34] for a review), and performing these iterations
efficiently remains a challenge.

We address these challenges in chapters 2 and 3. In chapter 2 we discuss the source
and remedy of the unphysical surface stresses and forces provided by IB methods for
rigid-bodies undergoing prescribed kinematics. We then incorporate this remedy
into an FSI formulation in chapter 3, where we present an IBmethodwith an efficient
iteration procedure for treating the nonlinear fluid-structure coupling (even in the
presence of large structural motions). This method is formulated for fairly general
thin deforming bodies and validated from results in the literature on flapping flags
in both the conventional configuration (in which the flag is pinned or clamped at its
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leading edge with respect to the oncoming flow) and the inverted configuration (in
which the flag is clamped at its trailing edge).

Themethod described in chapter 3 is capable of performing high-fidelity simulations
that, along with companion simulations and experiments, is a tool for understanding
FSI systems. Yet, the dynamics of FSI systems often involve a range of spatial and
temporal scales that makes it difficult to identify driving physical mechanisms from
simulation or experimental data alone. We therefore devote chapters 4 and 5 to the
extension of global stability analysis and snapshot-based data analysis techniques to
FSI problems, respectively.

Global stability analysis and snapshot-based data processing techniques have been
widely used to identify significant flow features in flows without bodies or involving
stationary rigid bodies (see e.g., Bagheri et al. [4], Ehrenstein and Gallaire [22],
and Noack and Eckelmann [60] for some applications of global stability analysis
and Berkooz, Holmes, and Lumley [8] and Rowley and Dawson [67] for reviews
on snapshot-based data processing techniques), and to a lesser extent in rigid-
body FSI problems [50, 58]. To our knowledge, however, these techniques have
not been applied to deforming-body FSI problems, and in chapters 4 and 5 we
present methods that achieve this aim. The global stability solver of chapter 4 uses
a linearization of the fully-coupled nonlinear FSI equations described in chapter
3, and therefore identifies instability-driving phenomena in both the fluid and the
structure. This method is validated using results from the literature on conventional
flag flapping. Chapter 5 develops a framework for performing proper orthogonal
decomposition (POD) and dynamic mode decomposition (DMD) of FSI problems,
and this framework is demonstrated on flapping flags in both the conventional and
inverted configuration. We emphasize that the algorithm presented is agnostic to
whether the data was obtained from simulations or experiments. Moreover, while
the focus in chapter 5 is on POD and DMD because of their widespread use,
straightforward extensions exist for other data processing techniques.
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C h a p t e r 2

ACCURATELY COMPUTING SURFACE STRESSES AND
FORCES WITH IMMERSED BOUNDARY METHODS1

2.1 Introduction
The original IBmethod of Peskin introduced a singular source term in themomentum
equations that imposed the stresses from the immersed body onto the flow grid [62].
In that work, a specific structure was assumed and the surface stresses were derived
using the constitutive law for that structure. A different set of IB methods retains
the use of a singular source term to impose the surface stresses, but derives these
stresses using velocity boundary conditions rather than by directly linking them to
deformation of the solid [15, 36–38, 45, 79, 87, 92, 94]. Because they are derived
from the boundary conditions on the immersed body, we refer here to these IB
methods as surface velocity-based IB methods. These methods produce surface
stresses that are poor representations of the physical surface stresses. A subset of
these also produce unphysical oscillations in time traces of surface force quantities
such as the coefficients of lift and drag, since they enforce the boundary constraint
approximately rather than explicitly [36, 87, 94]. Yang et al. [92] reduced the
unphysical oscillations in these surface force quantities, but to our knowledge the
inaccuracies in the surface stresses have not been addressed. This is likely due to the
fact that the velocity field converges in spite of these erroneous surface stresses, so
surface velocity-based IB methods may be used without modification for problems
where accurate knowledge of the surface stresses is not required.

However, correct information about surface stresses and forces is important in many
applications, such as characterizing the performance of wings and aerodynamic
bodies in unsteady flows, understanding and controlling flow separation around
bluff bodies, and simulating fully coupled flow-structure-interaction (FSI) problems
with deforming bodies. In this chapter, we characterize and remedy the spurious
surface stresses and forces obtained by surface-velocity based IB methods. We do
this in the context of flows past rigid bodies undergoing prescribed kinematics in

1This chapter is based on the publication Goza et al. [31], for which my contributions were
establishing the equation for the surface stresses as a first-kind integral equation, identifying the
connection between differentiability of the smeared delta functions and the quality of the resulting
stresses, running all simulations, and being the primary author of the article.
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this chapter and the procedure is extended to FSI problems in chapter 3.

It should be noted that there is a class of IB methods called “sharp-interface” meth-
ods, which includes ghost-cell [57], cut-cell [86], ghost-fluid [24], and immersed
interface methods [49]. While spurious surface stress and force oscillations have
been observed for a subset of these methods [53, 75], their cause and remedy is
different from what is presented in the current work [53]. A key distinction between
this subset of sharp-interface methods and the methods considered here is the use
of local flow reconstructions that obviate the need for a singular source term in the
momentum equations.

We restrict our attention to methods that contain a singular source term in the
momentum equations, and that compute surface stresses and forces using that term.
We show that, for any choice of smeared delta function, the equation for the surface
stresses is an integral equation of the first kind whose ill-posedness leads to an
inaccurate representation of the high frequency components of the surface stresses.
The error in these high frequency components was also observed by Kallemov et
al. [38] for a six point delta function. We demonstrate that there is an inverse
relation between the smoothness of the smeared delta function and the amplitude
of the high frequency components for the physically correct stress. Thus, when
sufficiently smooth delta functions are selected, the high-frequency components
that are erroneously amplified when solving the integral equation may be effectively
filtered out of the solution without damaging the overall surface stress. By contrast,
filtering out the incorrect high frequency components for insufficiently smooth
smeared delta functions obscures important physical information.

We develop an efficient filtering technique for penalizing the erroneous high fre-
quency stress components. The filtering procedure is performed as a post-processing
step, so the convergence of the velocity field is unaffected. We demonstrate that, for
all smeared delta functions considered, the filtered stresses are better approximations
to the physical stresses than their unfiltered counterparts. However, because of the
aforementioned inverse relationship between the smoothness of the smeared delta
function and the magnitude of the high frequency components required to repre-
sent the physical stresses, this filtering procedure only provides convergent surface
stresses when applied to sufficiently smooth smeared delta functions. These results
are illustrated for several problems using the immersed boundary projection method
(IBPM) of Colonius and Taira [15].
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2.2 Demonstrating and resolving inaccurate computation of source terms for
a model problem

The difficulty in solving integral equations of the first kind that arise from surface
velocity-based IB methods is illustrated and remedied for a model problem in this
section. Section 2.3 will demonstrate that the same type of integral equation arises
from the Navier-Stokes equations. Thus, the same techniques developed here may
be used to compute surface stresses and forces that arise in fluid flows.

The model problem considered is the Poisson equation for an unknown function ψ
on a 2D square domain Ω = {x = [x, y]T : |x |, |y | ≤ 1} with an unknown singular
source term f that takes nonzero values on an immersed surface denoted by Γ:

∇2ψ(x) = −
∫
Γ

f (χ(s))δ(x − χ(s))ds

ψ(x) = ψ∂Ω(x), x ∈ ∂Ω∫
Ω

ψ(x)δ(x − χ(s))dx = ψΓ(χ(s))

(2.1)

where s is a variable that parametrizes the IB (e.g., arc length),χ(s) is theLagrangian
coordinate of a given point on the IB, ∂Ω is the boundary of the domain Ω, ψ∂Ω(x)
is a function of prescribed values for ψ on ∂Ω, and ψΓ(χ(s)) is a function defined
on the immersed body. Note that the delta function δ(x − χ(s)) is used to relate
quantities between the immersed surface and the solution domain. An error analysis
of numerical solutions to (2.1) has been performed in the case where f is prescribed
[83, 93]. To mirror surface velocity-based IB methods, we leave f as an unknown
that is solved by explicitly incorporating the third equation as a boundary constraint.

We take Γ to be a circle of radius 1/2 centered at x = 0, ψ∂Ω(x) = 1 − 1
2 log(2|x|),

and ψΓ(χ) = 1. The exact solution to (2.1) is then

ψex (x) =



1, |x| ≤ 1
2

1 − 1
2 log(2|x|) |x| > 1

2

(2.2)

fex (χ) = 1 (2.3)

Another quantity of interest is Fex =
∫
Γ

fex (χ(s))ds = π. This term is analogous
to the integrated surface force, which is often of interest for IB flow solvers.

To make IB methods suitable for computation, the Dirac delta function in (2.1)
is replaced with a smeared delta function, δh(x − χ(s, t)), that is continuous and
has nonzero but compact support defined in terms of the grid spacing, h, of the
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discretized domain on which the numerical solution is obtained (see, e.g., refer-
ence [63]). Thus, the numerical solution for a given grid spacing h has as its
corresponding continuous solution

ψ(x) = −
∫
Ω

∫
Γ

f (χ(s′))δh(x′ − χ(s′))G(x; x′)ds′dx′ (2.4)

where G(x; x′) is the Green’s function for the Poisson problem evaluated at x due
to a source at x′, and δh is the (continuous) smeared delta function. The equation
(2.4) is written in terms of the unknown source term f . To arrive at an equation for
this source term, we multiply both sides of (2.4) by δh(χ(s) − x) and integrate over
the domain Ω:∫

Ω

∫
Ω

∫
Γ

f (χ(s′))δh(x′ − χ(s′))G(x; x′)δh(x − χ(s))ds′dx′dx = −ψΓ(χ(s))

(2.5)
The solution ψ(x) is then obtained by substituting the solution f of (2.5) into (2.4).

Since δh is continuous for a given grid spacing h, the kernel in the integral equation
(2.5) is continuous and has finite support. Thus, the integral operator is compact and
formally does not have a bounded inverse [41]. As a consequence, discretizations
of this equation lead to inaccurate surface source terms. To highlight that the
difficulty in computing the source term occurs for all smeared delta functions, we
will use four different functions that are common in the literature. In all cases, the
two-dimensional smeared delta function is defined by the tensor product of two one-
dimensional smeared delta functions; i.e. δh(x − χ) = δh(x − χ)δh(y − η), where
x = [x, y]T and χ = [χ, η]T . The four one-dimensional smeared delta functions we
consider are given below.

• A 2-point hat function:

δhat
h (r) =




1
h −

|r |
h2 , |r | ≤ h

0, |r | > h
(2.6)

• A 3-point function:

δ3h(r) =




1
3h

(
1 +

√
1 − 3

(
r
h

)2)
, |r | ≤ h

2

1
6h

(
5 − 3|r |

h −

√
1 − 3

(
1 − |r |h

)2)
, h

2 ≤ |r | ≤
3h
2

0, |r | > 3h
2

(2.7)
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• A 4 point cosine function:

δcos
h (r) =




1
4h

(
1 + cos

(
πr
2h

))
, |r | ≤ 2h

0, |r | > 2h
(2.8)

• A Gaussian function:

δG
h (r) =




√
π

36h2 e
−π2r2
36h2 , |r | ≤ 14h

0, |r | > 14h
(2.9)

A Gaussian function formally has infinite support. The parameters and cut-
off used in (2.9) lead to a truncation error on the order of machine precision.
Other parameter choices may be selected to satisfy different error tolerances
[93].

To solve the problem numerically, we discretize the system (2.1) as (after replacing
the Dirac delta functions with the smeared delta functions δh)

Lψ = −H f + bL (2.10)

Eψ = ψΓ (2.11)

where the variables ψ, ψΓ, and f are understood to be the spatially discrete versions
of their continuous counterparts; L is the discrete Laplacian; bL is a boundary
condition term that arises from discretizing the Laplacian operator; and H (·) and
E(·) are discretizations of the operations

∫
Γ

(·)δh(x − χ)ds and
∫
Ω

(·)δh(x − χ)dx,
respectively. Note that the different choices of smeared delta function change E

and H . Since E and H have dimensions on the order of the number of solution
domain grid points by the number of immersed boundary points, the computational
complexity of the algorithm scales linearly with the support of the smeared delta
function.

Equations (2.10) and (2.11) may be combined to arrive at an equation for f , given
by

EL−1H f = −ψΓ + EL−1bL (2.12)

which is a discretization of the integral equation (2.5). Following Colonius and Taira
[15], we construct E and H such that EL−1H is positive definite and symmetric.
Note that the square matrix EL−1H has small dimensions (on the order of the
number of immersed body points), and can therefore be stored without difficulty.
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The matrix is constructed by solving a Poisson problem for each column of H and
then applying the action of E.

The simulation for this problemwas performed using a finite difference discretization
on a uniform grid, with the standard 5 point stencil used for L. The grid spacing of
the immersed body was chosen to match that of the solution grid. The numerical
solution was obtained on the finite domain [−1, 1]× [−1, 1]; the boundary conditions
for ψ were obtained by the exact solution (2.2). In what follows, nb and ng are the
number of points on the immersed body and the solution domain, respectively.

Figure 2.1 shows that regardless of the choice of smeared delta function, the source
term from (2.12) contains spurious oscillations. Moreover, Figure 2.2 demonstrates
that these inaccuracies persist as the grid is refined, so that f does not converge to fex

as the grid spacing is decreased. Despite this lack of convergence in f , the integrated
source term F and solution ψ converge at first order to Fex and ψex , respectively
(see Figure 2.2). Convergence of F is a feature of solving (2.12); methods that
enforce the boundary constraint approximately contain inaccuracies in F as well as
f [36, 87, 94], though these were improved by Yang et al. [92]. When used with
sufficiently smooth smeared delta functions, the method we propose at the end of
this section produces convergent approximations for both.

points), and can therefore be stored without difficulty. The matrix is constructed by solving
a Poisson problem for each column of H and then applying the action of E.

The simulation for this problem was performed using a finite di↵erence discretization on a
uniform grid, with the standard 5 point stencil used for L. The grid spacing of the immersed
body was chosen to match that of the solution grid. The numerical solution was obtained
on the finite domain [−1,1] × [−1,1]; the boundary conditions for  were obtained by the
exact solution (2). In what follows, nb and ng are the number of points on the immersed
body and the solution domain, respectively.

Figure 1 shows that regardless of the choice of smeared delta function, the source term from
(12) contains spurious oscillations. Moreover, Figure 2 demonstrates that these inaccuracies
persist as the grid is refined, so that f does not converge to fex as the grid spacing is
decreased. Despite this lack of convergence in f , the integrated source term F and solution
 converge at first order to Fex and  ex, respectively (see Figure 2). Convergence of F is a
feature of solving (12); methods that enforce the boundary constraint approximately contain
inaccuracies in F as well as f [2, 3, 4], though these were improved by Yang et al. [5]. When
used with su�ciently smooth smeared delta functions, the method we propose at the end of
this section produces convergent approximations for both.
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Figure 1: Computed source term (f) versus arc length along the cylinder for the Poisson
model problem; : fex. All plots used h = 1�640.

As shown in Figure 3, f has the property that Hf does not converge to Hfex but EL−1Hf
converges to EL−1Hfex. By virtue of (12), the convergence of EL−1Hf is a statement that
using the exact force, fex, to enforce the boundary condition would lead to a boundary value
that is not equal to  � but that converges at first order. This intuitive result was also shown
by Tornberg and Engquist [17], and will be exploited in what follows to compute accurate
approximations to fex.

To better explain the results of Figure 3, we compute the singular value decomposition
(SVD) of EL−1. Let EL−1 = U⌃V T , where U ∈ Rnb×nb and V ∈ Rng×nb are matrices of left
and right orthonormal singular vectors of EL−1, respectively; and ⌃ ∈ Rnb×nb is a diagonal
matrix containing the positive singular values of EL−1. The singular values �1, . . . , �nb

are

5

Figure 2.1: Computed source term ( f ) versus arc length along the cylinder for the
Poisson model problem; : fex . All plots used h = 1/640.

As shown in Figure 2.3, f has the property that H f does not converge to H fex but
EL−1H f converges to EL−1H fex . By virtue of (2.12), the convergence of EL−1H f

is a statement that using the exact force, fex , to enforce the boundary condition
would lead to a boundary value that is not equal to ψΓ but that converges at first
order. This intuitive result was also shown by Tornberg and Engquist [83], and will
be exploited in what follows to compute accurate approximations to fex .

To better explain the results of Figure 2.3, we compute the singular value decompo-
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Using this decomposition, Hfex may be written as a projection onto the basis of vectors
formed by V :

Hfex = nb�
j=1↵

ex
j vj (13)

and EL−1Hfex may be expressed as

EL−1Hfex = nb�
j=1↵

ex
j �juj (14)

where ↵ex
j ∶= (vT

j Hfex). Analogous expressions exist for Hf by replacing fex with f in (13)
and (14). We denote the corresponding coe�cients as ↵j ∶= (vT

j Hf).
Using (13) and (14), Figures 3 (a) and (b) show that the sum ∑nb

j=1 ↵j does not converge to∑nb
j=1 ↵ex

j under grid refinement, but does converge when scaled by the �j. Since EL−1 is a

6

Figure 2.2: Errors in f , F, and ψ versus grid spacing (h) for the Poisson model
problem. : δhat

h , : δ3h, : δcos
h , : δG

h , : first order convergence.

sition (SVD) of EL−1. Let EL−1 = UΣVT , where U ∈ Rnb×nb and V ∈ Rng×nb are
matrices of left and right orthonormal singular vectors of EL−1, respectively; and
Σ ∈ Rnb×nb is a diagonal matrix containing the positive singular values of EL−1.
The singular values σ1, . . . , σnb are arranged such that σ1 ≥ σ2 ≥ · · · ≥ σnb > 0,
and the singular vectors are notated such that u j (v j) is the left (right) singular vector
corresponding to σ j .
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Using this decomposition, Hfex may be written as a projection onto the basis of vectors
formed by V :

Hfex = nb�
j=1↵

ex
j vj (13)

and EL−1Hfex may be expressed as

EL−1Hfex = nb�
j=1↵

ex
j �juj (14)

where ↵ex
j ∶= (vT

j Hfex). Analogous expressions exist for Hf by replacing fex with f in (13)
and (14). We denote the corresponding coe�cients as ↵j ∶= (vT

j Hf).
Using (13) and (14), Figures 3 (a) and (b) show that the sum ∑nb

j=1 ↵j does not converge to∑nb
j=1 ↵ex

j under grid refinement, but does converge when scaled by the �j. Since EL−1 is a
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Figure 2.3: Errors in H f and EL−1H f versus grid spacing (h) for the Poissonmodel
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Using this decomposition, H fex may be written as a projection onto the basis of
vectors formed by V :

H fex =

nb∑
j=1

αex
j v j (2.13)

and EL−1H fex may be expressed as

EL−1H fex =

nb∑
j=1

αex
j σ ju j (2.14)

where αex
j := (vT

j H fex). Analogous expressions exist for H f by replacing fex with
f in (2.13) and (2.14). We denote the corresponding coefficients as α j := (vT

j H f ).
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Using (2.13) and (2.14), Figures 2.3 (a) and (b) show that the sum
∑nb

j=1 α j does
not converge to

∑nb
j=1 α

ex
j under grid refinement, but does converge when scaled

by the σ j . Since EL−1 is a discrete integral operator, the σ j decay to very small
values [33] (see Figure 2.4). Thus, the error in the sum

∑nb
j=1 α j stems from the high

index coefficients α j corresponding to the small σ j . The key to computing accurate
source terms is to use a smeared delta function for which the coefficients αex

j decay
as rapidly as possible. The spurious high index coefficients α j may then be filtered
out to obtain physical source terms. By contrast, it is difficult to accurately compute
source terms using smeared delta functions for which the αex

j decay slowly, because
the incorrect high index α j obscure important physical information.

discrete integral operator, the �j decay to very small values [21] (see Figure 4). Thus, the
error in the sum ∑nb

j=1 ↵j stems from the high index coe�cients ↵j corresponding to the small
�j. The key to computing accurate source terms is to use a smeared delta function for which
the coe�cients ↵ex

j decay as rapidly as possible. The spurious high index coe�cients ↵j may
then be filtered out to obtain physical source terms. By contrast, it is di�cult to accurately
compute source terms using smeared delta functions for which the ↵ex

j decay slowly, because
the incorrect high index ↵j obscure important physical information.
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Figure 4: Singular values �j of EL−1 versus index (j) for the Poisson model problem. A grid
spacing of h = 1�80 was used.

Since EL−1 is a discrete integral operator, the basis vectors vj are closely related to the
standard Fourier basis [21], and (13) behaves like an expansion of Hfex in this basis. The
decay rate of the coe�cients ↵ex

j is therefore governed by the smoothness of Hfex, which is
determined by the smoothness of the smeared delta function. This is true because Hfex is a
discretization of ∫⌦ fex(⇠)�h(x − ⇠)dx, and

d

dx �⌦ fex(⇠)�h(x − ⇠)dx = �
⌦

fex(⇠) d

dx
�h(x − ⇠)dx (15)

To demonstrate the e↵ect of the smoothness of the smeared delta function on the decay
rate of the coe�cients ↵ex

j , we consider a sequence of successively smoother delta functions
using the recursive formula developed by Yang et al. [5]. Define the operator S acting on a
function g(r) by

S[g(r)] = � r+1�2
r−1�2 g(r̃)dr̃ (16)

Then the functions we consider are �3,∗
h (r) = S[�3

h(r)], �3,∗∗
h = S[�3,∗

h (r)], and �G
h , which as a

Gaussian may roughly be thought of as the limit of applying S to �3
h infinitely many times.

Note that �3
h ∈ C1, �3,∗

h ∈ C2, �3,∗∗
h ∈ C3, and �G

h ∈ C∞. Figure 5 shows that the decay rate of
the coe�cients ↵ex

j increases as smoothness of the smeared delta function increases (note the
log scale of the y-axis). Note that the compactness of a function in Fourier space is roughly
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Figure 2.4: Singular values σ j of EL−1 versus index ( j) for the Poisson model
problem. A grid spacing of h = 1/80 was used.

Since EL−1 is a discrete integral operator, the basis vectors v j are closely related
to the standard Fourier basis [33], and (2.13) behaves like an expansion of H fex

in this basis. The decay rate of the coefficients αex
j is therefore governed by the

smoothness of H fex , which is determined by the smoothness of the smeared delta
function. This is true because H fex is a discretization of

∫
Ω

fex (χ)δh(x − χ)dx,
and

d
dx

∫
Ω

fex (χ)δh(x − χ)dx =
∫
Ω

fex (χ)
d

dx
δh(x − χ)dx (2.15)

To demonstrate the effect of the smoothness of the smeared delta function on the
decay rate of the coefficients αex

j , we consider a sequence of successively smoother
delta functions using the recursive formula developed by Yang et al. [92]. Define
the operator S acting on a function g(r) by

S[g(r)] =
∫ r+1/2

r−1/2
g(r̃)dr̃ (2.16)

Then the functions we consider are δ3,∗h (r) = S[δ3h(r)], δ3,∗∗h = S[δ3,∗h (r)], and δG
h ,

which as a Gaussian may roughly be thought of as the limit of applying S to δ3h
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infinitely many times. Note that δ3h ∈ C1, δ3,∗h ∈ C2, δ3,∗∗h ∈ C3, and δG
h ∈ C∞.

Figure 2.5 shows that the decay rate of the coefficients αex
j increases as smoothness

of the smeared delta function increases (note the log scale of the y-axis). Note that
the compactness of a function in Fourier space is roughly inversely related to its
compactness in physical space (see, e.g. [93]), so it is important to pick smeared
delta functions whose support is not too narrow.
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Figure 5: Coe�cients ↵ex
j for successively smooth smeared delta functions. Obtained using

h = 1�80. Note the log scale on the y-axis.

inversely related to its compactness in physical space (see, e.g. [18]), so it is important to
pick smeared delta functions whose support is not too narrow.

We now discuss the e�cient filtering of the spurious high index coe�cients ↵j. One may in
principle filter out the high index coe�cients using the SVD of EL−1, but this is a costly
procedure. Instead, we penalize the spurious components of f by pre-multiplying it with the
matrix ẼH, where Ẽ = EW is a weighted interpolant that takes the smeared source term
Hf back onto the immersed body while preserving its integral value. The filtered source
term is then f̃ = ẼHf . To give the specific form for W , define 1 = [1,1,�,1]T ∈ Rng×1 and
let (H1)i be the ith entry in the vector H1. Then W is a diagonal matrix with entries given
by

Wii = �������
1�(H1)i, (H1)i ≠ 0

0, else
(17)

Note that W only applies a nonzero weight if the grid point is within the support of the
smeared delta function.

The filter ẼH redistributes the source term f by convolving it with a kernel of smeared
delta functions. The weighting matrix leads to a kernel of the same form as is used in
nonparametric kernel smoothing techniques [22], and was inspired from work in this field. As
shown below, ẼH filters the high index coe�cients at a rate proportional to the smoothness
of the smeared delta function being used. This is due to the fact that ẼH is itself an integral
operator, and therefore the decay rate of its singular values is governed by the smoothness
of its kernel [21].

Figure 6 demonstrates the e↵ect of filtering by showing the coe�cients ↵ex
j , ↵j and ↵̃j ∶=(vT

j Hf̃). Consistent with the observations made above, the high index coe�cients ↵j are
substantially di↵erent from those of ↵ex

j . For all smeared delta functions, the filtered coef-

ficients are better approximations to the exact coe�cients. Noting that �hat
h ∈ C0, �3

h ∈ C1,

8

Figure 2.5: Coefficients αex
j for successively smooth smeared delta functions. Ob-

tained using h = 1/80. Note the log scale on the y-axis.

We now discuss the efficient filtering of the spurious high index coefficients α j . One
may in principle filter out the high index coefficients using the SVD of EL−1, but
this is a costly procedure. Instead, we penalize the spurious components of f by
pre-multiplying it with the matrix ẼH , where Ẽ = EW̃ is a weighted interpolant that
takes the smeared source term H f back onto the immersed body while preserving
its integral value. The filtered source term is then f̃ = ẼH f . To give the specific
form for W̃ , define 1 = [1, 1, · · · , 1]T ∈ Rng×1 and let (H1)i be the ith entry in the
vector H1. Then W̃ is a diagonal matrix with entries given by

W̃ii =




1/(H1)i, (H1)i , 0

0, else
(2.17)

Note that W̃ only applies a nonzero weight if the grid point is within the support of
the smeared delta function.

The filter ẼH redistributes the source term f by convolving it with a kernel of
smeared delta functions. The weighting matrix leads to a kernel of the same form as
is used in nonparametric kernel smoothing techniques [23], and was inspired from
work in this field. As shown below, ẼH filters the high index coefficients at a rate
proportional to the smoothness of the smeared delta function being used. This is
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due to the fact that ẼH is itself an integral operator, and therefore the decay rate of
its singular values is governed by the smoothness of its kernel [33].

Figure 2.6 demonstrates the effect of filtering by showing the coefficients αex
j , α j

and α̃ j := (vT
j H f̃ ). Consistent with the observations made above, the high index

coefficients α j are substantially different from those of αex
j . For all smeared delta

functions, the filtered coefficients are better approximations to the exact coefficients.
Noting that δhat

h ∈ C0, δ3h ∈ C1, δcos
h ∈ C0, and δG

h ∈ C∞, it is clear from Figure 2.6
that the absolute error in the high frequency α̃ j decreases as the smoothness of the
smeared delta function increases. This is because the magnitude of the high index
coefficients αex

j is smaller for smoother smeared delta functions, so the spurious
high index α j may be filtered more aggressively.

Figure 2.7 shows the filtered source terms as a function of arc length along the
cylinder. By comparison with Figure 2.1, it is clear that the filtered surface stresses
are better representations of fex than their unfiltered counterparts. Moreover, note
from Figure 2.7 that the approximation to fex improves as the smoothness of the
smeared delta function increases. This argument is shown quantitatively by the
error plot from Figure 2.8. Indeed, the infinitely differentiable δG

h yields an f̃ that
converges to fex . The inability to compute convergent source terms using δhat

h , δ3h,
and δcos

h stems from the slow decay rate of the coefficients αex
j . By contrast, accurate

approximations to fex can be obtained for δG
h by simply removing the high index

coefficients of α j .

Note also that it is only the smoothness of the smeared delta functions that matters;
δhat

h , δ3h, and δ
G
h all satisfy the same number of discrete moment conditions, and

the derivative of δ3h satisfies two more discrete moment conditions than δG
h . Last,

see from Figure 2.8 that filtering does not affect F by virtue of the way ẼH was
constructed, and that the error in the solution ψ is unchanged because computing
f̃ is a post-processing step. For these reasons, we may write F and ψ without the
tilde.

It would be desirable to determine a priori the appropriate differentiability of a
smeared delta function for a given tolerance in the accuracy of the surface stress.
Yet, this is perhaps not possible, as each smeared delta function is associated with
a distinct decay rate in singular values and a unique set of singular vectors. For
example, δcos

h , δhat
h ∈ C0, but each is associated with different error bounds in the

computed surface stress (see figure 2.3). Thus, this chapter provides the general
result that smeared delta functions of increasing differentiability have associated sin-
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�cos
h ∈ C0, and �G

h ∈ C∞, it is clear from Figure 6 that the absolute error in the high frequency
↵̃j decreases as the smoothness of the smeared delta function increases. This is because the
magnitude of the high index coe�cients ↵ex

j is smaller for smoother smeared delta functions,
so the spurious high index ↵j may be filtered more aggressively.

Figure 7 shows the filtered source terms as a function of arc length along the cylinder. By
comparison with Figure 1, it is clear that the filtered surface stresses are better represen-
tations of fex than their unfiltered counterparts. Moreover, note from Figure 7 that the
approximation to fex improves as the smoothness of the smeared delta function increases.
This argument is shown quantitatively by the error plot from Figure 8. Indeed, the infinitely
di↵erentiable �G

h yields an f̃ that converges to fex. The inability to compute convergent
source terms using �hat

h , �3
h, and �cos

h stems from the slow decay rate of the coe�cients ↵ex
j .

By contrast, accurate approximations to fex can be obtained for �G
h by simply removing the

high index coe�cients of ↵j.

Note also that it is only the smoothness of the smeared delta functions that matters; �hat
h ,

�3
h, and �G

h all satisfy the same number of discrete moment conditions, and the derivative
of �3

h satisfies two more discrete moment conditions than �G
h . Last, see from Figure 8 that

filtering does not a↵ect F by virtue of the way ẼH was constructed, and that the error in the
solution  is unchanged because computing f̃ is a post-processing step. For these reasons,
we may write F and  without the tilde.
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Figure 6: Coe�cients ↵ex
j (×), ↵j (open markers) and ↵̃j (filled markers) for the Poisson

model problem. Note the log scale on the y-axis. The grid spacing h = 1�80 was used.

It is worth mentioning other possibilities for accurately computing source terms. First, there
might be adequately di↵erentiable functions of narrower support than �G

h that are su�ciently
compact in Fourier space to provide convergent source terms. Second, one may use standard
regularization techniques that have been developed for first-kind integral equations, such as
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Figure 2.6: Coefficients αex
j (×), α j (open markers) and α̃ j (filled markers) for the

Poissonmodel problem. Note the log scale on the y-axis. The grid spacing h = 1/80
was used.
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Tikhonov reguarization, to compute convergent source terms irrespective of delta function.
The di�culty in using these techniques is that they involve a free parameter, and our expe-
rience has been that a costly SVD is required to determine this parameter so that the source
term converges.

3 Extension to accurately computing surface stresses

and forces

In this section, we consider surface-velocity based IB methods that use a singular source
term in the momentum equations. We show that these methods require the solution of a
discrete integral equation of the first kind to compute the surface stresses on an immersed
body. Therefore, the conclusion that smoother smeared delta functions lead to faster decay
of coe�cients for the exact surface stresses still holds. Moreover, su�ciently smooth smeared
delta functions may be used in combination with the filter ẼH to obtain surface stresses
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Figure 2.7: f̃ vs arc length along the cylinder for the Poisson problem. The exact
solution fex is given by the solid line ( ) for reference.
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The di�culty in using these techniques is that they involve a free parameter, and our expe-
rience has been that a costly SVD is required to determine this parameter so that the source
term converges.

3 Extension to accurately computing surface stresses

and forces

In this section, we consider surface-velocity based IB methods that use a singular source
term in the momentum equations. We show that these methods require the solution of a
discrete integral equation of the first kind to compute the surface stresses on an immersed
body. Therefore, the conclusion that smoother smeared delta functions lead to faster decay
of coe�cients for the exact surface stresses still holds. Moreover, su�ciently smooth smeared
delta functions may be used in combination with the filter ẼH to obtain surface stresses
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Figure 2.8: Errors in f̃ , F, and ψ versus grid spacing (h) for the Poisson problem.
: δhat

h , : δ3h, : δcos
h , : δG

h , : first order convergence.

gular values and exact stress coefficients αex
j that decay more quickly, and describes

a procedure to compute accurate surface stresses from this result. Establishing error
bounds for specific smeared delta functions or classes of smeared delta functions
remains an open question.
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Finally, it is worth mentioning other possibilities for accurately computing source
terms. First, there might be adequately differentiable functions of narrower sup-
port than δG

h that are sufficiently compact in Fourier space to provide convergent
source terms. Second, one may use standard regularization techniques that have
been developed for first-kind integral equations, such as Tikhonov reguarization, to
compute convergent source terms irrespective of delta function. The difficulty in
using these techniques is that they involve a free parameter, and our experience has
been that a costly SVD is required to determine this parameter so that the source
term converges.

2.3 Extension to accurately computing surface stresses and forces
In this section, we consider surface-velocity based IB methods that use a singular
source term in the momentum equations. We show that these methods require
the solution of a discrete integral equation of the first kind to compute the surface
stresses on an immersed body. Therefore, the conclusion that smoother smeared
delta functions lead to faster decay of coefficients for the exact surface stresses
still holds. Moreover, sufficiently smooth smeared delta functions may be used in
combination with the filter ẼH to obtain surface stresses and forces that converge
to the actual stresses and forces on the immersed body.

The nondimensionalized Navier-Stokes equations are considered here on a domain
Ω containing a body whose boundary is denoted by Γ. The governing equations for
surface velocity-based IB methods are written as

∂u
∂t
+ u · ∇u = −∇p +

1
Re
∇2u +

∫
Γ

f(χ(s′, t))δ(x − χ(s′, t))ds′ (2.18)

∇ · u = 0 (2.19)∫
Ω

u(x)δ(x − χ(s, t))dx = uΓ(χ(s, t), t) (2.20)

where f(χ(s′, t)) represents the surface stresses that arise to enforce the boundary
condition (2.20). As with the previous section, all IB methods replace the Dirac
delta functions in (2.18) and (2.20) with smeared delta functions δh.

It is well known that many discretizations of (2.18)–(2.20) involve solving a dis-
crete Poisson or Poisson-like equation for either the pressure (primitive variable
formulations) or for the streamfunction (vorticity-streamfunction formulations). An
analogous situation occurs for the surface stresses, except that the equation is an
integral equation. This can be seen by multiplying (2.18) by δh(x − χ(s, t)) and
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integrating over the domain. Doing this gives∫
Ω

∫
Γ

f(χ(s′, t))δh(x − χ(s, t))δh(x − χ(s′, t))ds′dx =∫
Ω

[(
∂

∂t
−

1
Re
∇2

)
u(x) + u · ∇u + ∇p

]
δh(x − χ(s, t))dx

(2.21)

The key point is that all IB methods replace the delta function with a smeared
delta function in the governing equations. Had the Dirac delta function been kept,
the integral equation (2.21) would trivially reduce to an expression for the surface
stresses f(χ(s, t)). As in (2.5), the integral operator of (2.21) has an unbounded
inverse because it contains a continuous kernel for any finite h.

Many discretizations of (2.18)–(2.20) involve solving a discretized integral equation
of the first kind for the surface stresses. Spatially discretizing (2.18)–(2.20) leads to
a system of differential algebraic equations given by

u̇ +N (u) = −Gp + Lu + H f (2.22)

Du = 0 (2.23)

Eu = uΓ (2.24)

where the overdot denotes differentiation with respect to time; u, p, and f denote the
spatially discrete velocity, pressure, and surface stresses; N (u) is a discretization
of the nonlinear term; G, L, and D are discretizations of the gradient, Laplacian,
and divergence operators, respectively; and H (·) and E(·) are discretizations of the
operations

∫
Γ

(·)δh(x − χ)ds and
∫
Ω

(·)δh(x − χ)dx, respectively.

Consider a time discretization that treats the nonlinear term explicitly and the viscous
term implicitly. Then (2.22)–(2.24) become a linear system of equations of the form



A G H

D 0 0
E 0 0





un+1

pn+k1

fn+k2



=



r1
r2

uΓn+1



(2.25)

where 0 < k1, k2 ≤ 1, A = 1
∆t I − αL (α ∈ R) comes from the implicit treatment

of the viscous term, and r1 and r2 are known right hand side terms arising from
the explicit time discretization and boundary conditions of the spatial derivative
operators.

The system (2.25) is valid for a variety of discretizations. Multistep methods lead
to a system of the form of (2.25), and many Runge-Kutta methods involve solving a
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system such as (2.25) at each stage. If the viscous term were treated explicitly then
A would be replaced with 1

∆t I, though none of the ensuing conclusions would be
affected by this change.

Solving (2.25), as is done in the current work, leads to a velocity field that satisfies
the boundary conditions on the immersed body at time tn+1 [15, 38, 45, 79]. Other
surface-velocity based IB methods compute fn+k2 using un, rather than un+1 [36, 87,
92, 94], which produces a velocity field that does not exactly satisfy the boundary
conditions at each time step. We argue in this section that in either case the equation
for the surface stresses is an integral equation, and therefore that the results of section
2.2 are valid for either approach.

For the methods that solve (2.25), the equation for the surface stresses may be
derived by a block-LU factorization of (2.25) (see reference [79]). Doing this gives

EBH fn+k2 = r3 (2.26)

where r3 is known and B = (A−1G(DA−1G)−1D − I) A−1. The form of B arises
because of the time discretization of the system (2.22)–(2.24) and the factorization of
(2.25). Equation (2.26) is an approximation of the continuous equation (2.21), and
therefore is a discrete integral equation of the first kind. Thus, the logic of section 2.2
applies: smoother delta functionsmay be used to expand the exact surface stresses on
the body using very few terms, and may therefore be combined with the filter ẼH to
compute accurate surface stresses and forces. It should be mentioned that an analog
of the system (2.25) can be formulated in a streamfunction-vorticity formulation
[15]. It can be shown that this formulation still leads to a discrete integral equation
of the first kind whose kernel is modified from (2.21) by the presence of discrete
curl operators. The conclusions of section 2.2 are thus still applicable.

We now show that the methods that use un to compute fn+k2 also contain an integral
equation of the first kind for the surface stresses. In the notation of the current work,
the expression for the surface stresses used in references [36, 87, 92, 94] is given by

EH fn+k2 =
uΓn+1 − Eun

∆t
+ E(N (un+k3 ) + Gpn+k4 + Lun+k5 ) (2.27)

where 0 ≤ k3, k4, k5 < 1, and all terms on the right hand side are known. This
is a discrete integral equation of the first kind whose kernel corresponds to that of
(2.21).

As an approximation, references [36, 87, 92, 94] replace the matrix EH in (2.27)
with the identity matrix, which corresponds to replacing the kernel in (2.21) with an
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invertible kernel given by the Dirac delta functions. This approximation produces
non-convergent surface stresses and forces, though Yang et al. [92] reduced the error
in the surface forces. We argue that the root cause of the spurious surface stresses
computed by these methods is the nature of the underlying discrete integral equation
(2.27), and that the methods of section 2.2 may be used to obtain convergent surface
stresses and forces.

Both (2.26) and (2.27) have a time-dependence that was not present in the Poisson
problem of section 2.2. For time-dependent problems, the filtering procedure is
performed at the end of a given time step. Note also that since the spurious stresses
do not affect the accuracy of the velocity field, the filtered stresses do not need to
be incorporated into the time-stepping algorithm, even if it requires information of
the surface stress at previous time steps (multistep methods) or stages (Runge-Kutta
methods). Thus, the time-dependence of the Navier-Stokes equations does not affect
the view of the filtering technique as a post-processing procedure.

In the remainder of this paper, we use the IBPM [15] to illustrate that computing
surface stresses and forces using the filter ẼH leads to increasingly accurate surface
stresses as the smoothness of the smeared delta function is increased. We further
show that a sufficiently smooth smeared delta function may be used to obtain
convergent stresses and forces. These results are demonstrated for multiple test
problems.

2.4 An impulsively rotated cylinder
Consider an infinitely long (2-D), infinitely thin cylinder of radius R in a quiescent
fluid that is impulsively brought from rest to constant angular velocityω. Fluid exists
inside and outside of the cylinder. All quantities in this section are dimensionless:
length scales are nondimensionalized by R, velocities are nondimensionalized by
ωR, and time is nondimensionalized by ω.

The exact velocity field is in the azimuthal direction, and is given in polar coordinates
by uex = uex (r, t)eθ . It may be written as

uex (r, t) =




r + 2
∑∞

n=1
J1(
√
λnr)

√
λn J0(

√
λn )

e
−λn t
Re , r ≤ 1

L−1
[

K1
(
r
√

sRe
)

sK1(
√

sRe)

]
, r > 1

(2.28)

In the above, Re is the Reynolds number; Jp is the pth Bessel function of the first
kind;

√
λn is the nth root of J1; K1 is the 1st modified Bessel function of the first kind;
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and L−1[·] represents the inverse Laplace transform with respect to the variable s.

The exact surface stress is also in the azimuthal direction (fex = fexeθ), and is given
by summing the contributions on the inside and outside of the cylinder surface:

fex (t) =
2

Re

[
∂

∂r

(uex

r

)]

r=1−
+

2
Re

[
∂

∂r

(uex

r

)]

r=1+
(2.29)

=
4

Re

∞∑
n=1

e
−λn t
Re +

2
Re

[
∂

∂r

(uex

r

)]

r=1+
(2.30)

The second term on the right hand side of (2.30) is difficult to express analytically
by virtue of the inverse Laplace transform in (2.28), but it can be evaluated using
numerical routines. Note that the exact stresses are not spatially constant in the
Cartesian coordinate system in which the IBPM is formulated, which makes this
model problem a more stringent test than if the numerical solution was obtained
using a cylindrical polar coordinate system.

The exact surface force in the azimuthal direction (Fex) is obtained by integrating
(2.30) along the surface of the cylinder:

Fex (t) = 2π fex (t) (2.31)

The inverse Laplace transform was computed using the built-in MATLAB imple-
mentation of the Talbot inversion procedure. The inversion is poorly conditioned
near the surface of the cylinder, and computations within a radial distance of 0.05 of
the cylinder surface were performed in variable precision arithmetic. All quantities
in the exact solution (2.28), (2.30), and (2.31) were converged to within 10−10. We
compare this exact solution to the IBPM using the smeared delta functions intro-
duced in section 2.2. We ran tests for Reynolds numbers ranging from Re = 10 to
Re = 200. In the interest of brevity, we primarily show results for Re = 10, with
supplementary results given for Re = 200.

All simulations used a multidomain approach: fine grids were placed near the
immersed body and coarser grids were employed as distance from the immersed
body increased. In all results shown below, the cylinder of dimensionless radius 1
was centered at [0, 0]; the finest meshwas placed on a subdomain of size [−2.5, 2.5]×
[−2.5, 2.5], and the total flowdomain sizewas [−20, 20]×[−20, 20]. The grid spacing
on the immersed surface was selected to match that of the [−2.5, 2.5] × [−2.5, 2.5]
sub-domain, and the time step was selected so that the CFL number with respect to
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the angular velocity of the cylinder was kept at 0.1. In what follows, h is defined as
the grid spacing on the [−2.5, 2.5] × [−2.5, 2.5] subdomain.

Figure 2.9 demonstrates that for Re = 10, the filtered stresses are better approxima-
tions to fex than the unfiltered stresses. Morever, the quality of the approximation of
the filtered stress is better for smoother smeared delta functions (see also the error in
the filtered stresses from Figure 2.10). Indeed, the use of δG

h leads to filtered surface
stresses that converge to the analytical solution fex .

In analogy with section 2.2, the surface forces converge irrespective of smeared
delta function (see Figures 2.10 2.11). This is a consequence of solving the discrete
integral equation (2.26) to explicitly enforce the boundary condition. The surface
velocity-based IB methods that use (2.27) to approximately enforce this condition
are known to obtain non-convergent surface forces [92]. Note also that the velocity
field converges at first order for all smeared delta functions. In keeping with the
notation of section 2.2, tildes are not placed on the variables F and u to emphasize
that these quantities are not affected by the filtering procedure. Figure 2.12 shows
the errors in f̃ , F, and u at Re = 200 to highlight the applicability of these results
over a range of Reynolds numbers.

and u to emphasize that these quantities are not a↵ected by the filtering procedure. Figure
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Figure 9: Top row: tangential surface stress without filtering (f) versus arc length along the
cylinder for the rotating cylinder problem at Re = 10. Bottom row: filtered surface stresses
(f̃) versus arc length along the cylinder at Re = 10; : fex. All plots used h = 5�200.
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5 A cylinder in cross-flow

We now consider the canonical problem of flow over an infinitely long (2D) cylinder of diam-
eter D that is impulsively brought to translation at speed U . As with section 4, all quantities
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Figure 2.9: Top row: tangential surface stress without filtering ( f ) versus arc length
along the cylinder for the rotating cylinder problem at Re = 10. Bottom row: filtered
surface stresses ( f̃ ) versus arc length along the cylinder at Re = 10; : fex . All
plots used h = 5/200.
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and u to emphasize that these quantities are not a↵ected by the filtering procedure. Figure
12 shows the errors in f̃ , F , and u at Re = 200 to highlight the applicability of these results
over a range of Reynolds numbers.
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Figure 9: Top row: tangential surface stress without filtering (f) versus arc length along the
cylinder for the rotating cylinder problem at Re = 10. Bottom row: filtered surface stresses
(f̃) versus arc length along the cylinder at Re = 10; : fex. All plots used h = 5�200.
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Figure 2.10: Errors in f̃ , F, and u versus grid spacing (h) for the rotating cylinder
problem at Re = 10. : δhat

h , : δ3h, : δcos
h , : δG

h , : first order convergence.

0 1 2 3 4 5

−6
−4
−2
0

t

F

�hat
h

0 1 2 3 4 5

t

�3
h

0 1 2 3 4 5

t

�cos
h

0 1 2 3 4 5

t

�G
h

Figure 11: Tangential surface force, F , versus time for the rotating cylinder problem at
Re = 10; : Fex. The same grid spacing as in Figure 9 was used.
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simulations using an asymmetric body force at early time. In the interest of brevity, we only
present the filtered stresses f̃ for this problem, though the result from sections 2 and 4 that
filtering provides better approximations to the physically correct surface stresses remains
true here as well. The surface stresses associated with this flow exhibit substantial spatial
variation, which attests to the ability of this method to compute convergent surface stresses
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the CFL number with respect to the translational speed of the cylinder was 0.1. In what
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Figure 2.12: Errors in f̃ , F, and u versus grid spacing (h) for the rotating cylinder
problem at Re = 200. : δhat
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2.5 A cylinder in cross-flow
We now consider the canonical problem of flow over an infinitely long (2D) cylinder
of diameter D that is impulsively brought to translation at speed U. All quantities
are dimensionless; length scales, velocity scales, and time scales are nondimension-
alized by U, D, and U/D, respectively. Since there is no known analytical solution
to this flow, we will present results at Re = 200 to compare with other numerical
and experimental results. This flow is well known to exhibit a vortex shedding
instability, which we trigger in our simulations using an asymmetric body force at
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early time. In the interest of brevity, we only present the filtered stresses f̃ for this
problem, though the result from sections 2.2 and 2.3 that filtering provides better
approximations to the physically correct surface stresses remains true here as well.
The surface stresses associated with this flow exhibit substantial spatial variation,
which attests to the ability of this method to compute convergent surface stresses for
a variety of complicated flows.

In all results shown below, the cylinder of dimensionless diameter 1 was centered at
[0, 0]; the finest mesh was placed on a subdomain of size [−1.5, 2.5]×[−2, 2], and the
total flow domain size was [−12, 20]× [−16, 16]. The grid spacing on the immersed
surface was selected to match that of the [−1.5, 2.5] × [−2, 2] sub-domain, and the
time step was selected so that the CFL number with respect to the translational
speed of the cylinder was 0.1. In what follows, h is defined as the grid spacing on
the [−1.5, 2.5]× [−2, 2] subdomain. We define the quantities of interest for this 2-D
flow as f̃ = [ f̃ x, f̃ y]T , F = [CD, CL]T , and u = [ux, uy], where CD and CL denote
the dimensionless x and y surface forces, respectively.

Figure 2.13 demonstrates that the unphysical oscillations of the surface stresses
f̃ = [ f̃ x, f̃ y]T are reduced for the smoother smeared delta functions. To demonstrate
this quantitatively, we perform a convergence analysis by computing the infinity
norm of the difference between f̃ x , CD, and ux and the corresponding quantities
obtained on a fine grid solution using δG

h with grid spacing h = 4/3072 ≈ 0.001.
Similar results would be obtained using the y-components of f̃ , F, and u. As with
sections 2.2 and 2.3, δG

h yields surface stresses f̃ that converge to the fine-grid
surface stress, but all smeared delta functions lead to convergent surface forces
and velocities (see Figure 2.14). As before, the tildes are removed from force and
velocity variables to emphasize that they are not affected by filtering.

As seen in Figure 2.15, the present work faithfully replicates the well known peri-
odic oscillations exhibited by CD and CL once the flow enters its limit cycle vortex
shedding behavior. Table 2.1 shows that the amplitude and dimensionless frequency
(St) associated with these oscillations agree well with several previous experiments
and simulations. This further demonstrates that accurate integral force values may
be obtained irrespective of smeared delta function. Note by Figure 2.14 that the
integrated force is the same to within 10−3 for all smeared delta functions con-
sidered. For simplicity we therefore only provide one value in Table 2.1 with the
understanding that it is representative of all smeared delta functions.
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the quantities of interest for this 2-D flow as f̃ = [f̃x, f̃y]T , F = [CD, CL]T , and u = [ux, uy],
where CD and CL denote the dimensionless x and y surface forces, respectively.

Figure 13 demonstrates that the unphysical oscillations of the surface stresses f̃ = [f̃x, f̃y]T
are reduced for the smoother smeared delta functions. To demonstrate this quantitatively, we
perform a convergence analysis by computing the infinity norm of the di↵erence between f̃x,
CD, and ux and the corresponding quantities obtained on a fine grid solution using �G

h with
grid spacing h = 4�3072 ≈ 0.001. Similar results would be obtained using the y-components
of f̃ , F , and u. As with sections 2 and 4, �G

h yields surface stresses f̃ that converge to the
fine-grid surface stress, but all smeared delta functions lead to convergent surface forces and
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Figure 13: Filtered x and y component of the surface stress versus arc length along the
cylinder for the cylinder in cross-flow problem. All plots used h = 4�768.

As seen in Figure 15, the present work faithfully replicates the well known periodic oscil-
lations exhibited by CD and CL once the flow enters its limit cycle vortex shedding behav-
ior. Table 1 shows that the amplitude and dimensionless frequency (St) associated with
these oscillations agree well with several previous experiments and simulations. This further
demonstrates that accurate integral force values may be obtained irrespective of smeared
delta function. Note by Figure 14 that the integrated force is the same to within 10−3 for
all smeared delta functions considered. For simplicity we therefore only provide one value in
Table 1 with the understanding that it is representative of all smeared delta functions.
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Figure 2.13: Filtered x and y component of the surface stress versus arc length along
the cylinder for the cylinder in cross-flow problem. All plots used h = 4/768.
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6 Conclusions

The source of the inaccurate surface stresses and forces obtained by a class IB methods
was identified: for any smeared delta function used, the equation for the surface stresses is
an ill-posed integral equation of the first kind. As a result, the surface stresses computed
from this equation have high frequency components that are erroneously amplified. We also
demonstrated that the amplitude of the high frequency components of the physically correct
surface stresses decreases as smoother smeared delta functions are used. Thus, for su�ciently
smooth smeared delta functions, the incorrectly computed high frequency components may
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Figure 2.14: Errors in f̃ x , CD, and ux versus grid spacing (h) for the cylinder in
cross-flow problem. : δhat

h , : δ3h, : δcos
h , : δG

h , : first order convergence.

St CD CL

[7] 0.193 1.19 ± 0.042 ±0.64
[52] 0.192 1.31 ± 0.049 ±0.69
[44] 0.190
[65] 0.19
[79] 0.196 1.35 ± 0.048 ±0.68

Present 0.198 1.35 ± 0.046 ±0.70

Table 2.1: A comparison of of the dimensionless frequency (St) and amplitude of
surface force oscillations

2.6 Conclusions
The source of the inaccurate surface stresses and forces obtained by a class IB
methods was identified: for any smeared delta function used, the equation for the
surface stresses is an ill-posed integral equation of the first kind. As a result,
the surface stresses computed from this equation have high frequency components
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6 Conclusions

The source of the inaccurate surface stresses and forces obtained by a class IB methods
was identified: for any smeared delta function used, the equation for the surface stresses is
an ill-posed integral equation of the first kind. As a result, the surface stresses computed
from this equation have high frequency components that are erroneously amplified. We also
demonstrated that the amplitude of the high frequency components of the physically correct
surface stresses decreases as smoother smeared delta functions are used. Thus, for su�ciently
smooth smeared delta functions, the incorrectly computed high frequency components may
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Figure 2.15: Coefficients of lift and drag on the cylinder versus time for the cylinder
in cross-flow problem. The same grid spacing as in Figure 2.13 was used.

that are erroneously amplified. We also demonstrated that the amplitude of the
high frequency components of the physically correct surface stresses decreases as
smoother smeared delta functions are used. Thus, for sufficiently smooth smeared
delta functions, the incorrectly computed high frequency components may simply be
filtered out to obtain accurate approximations to the actual stresses. We developed
an efficient filtering technique that leads to better representations of the physical
stresses than those obtained without filtering, and established that combining this
filtering techniquewith an adequately smooth smeared delta function leads to surface
stresses and forces that converge to the physical stresses and forces on the body. The
filtering procedure is applied as a post-processing step, so it does not alter the
convergent velocity field. We demonstrated the efficacy of the technique on two
flow problems, flow in and around a rotating cylidner and flow over a circular
cylinder, and demonstrate converged surface stresses in both cases.
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C h a p t e r 3

AN EFFICIENT IMMERSED-BOUNDARY METHOD FOR
FLUID-STRUCTURE INTERACTION1

3.1 Introduction
Wepresent in this chapter an IBmethod for fully-coupled FSI problems. Ourmethod
is strongly-coupled; i.e., it strictly enforces the nonlinear constraint between the fluid
and the structure at each time instance. Enforcing this constraint is necessary for
simulations involving large structural motions (weakly coupled IB methods do not
impose the constraint and are unstable for small structure-to-fluid mass ratios and
large body motions [10, 12, 25]).

Due to the nonlinear nature of the constraint, most strongly-coupled methods must
solve a large nonlinear system of equations at each time step. The block Gauss-
Seidel procedure is one approach to solving this nonlinear system. It is attractive
for its ease of implementation, but requires relaxation to converge for a wide range
of mass ratios. Employing relaxation requires a heuristically chosen parameter, and
can involve dozens of iterations to converge for small mass ratios [82], thoughWang
and Eldredge [88] improved this convergence behavior using information about the
system’s added mass. Alternatively, the nonlinear system can be solved with a
Newton-Raphson method. This removes the need of free parameters, and typically
requires a small number of iterations irrespective of the mass ratio. However, this
approach often involves computing several matrix-vector products per time step,
each involving large Jacobian matrices [19, 34, 59].

In the context of rigid body FSI problems, some strongly-coupled methods evaluate
the constraint equation at the previous time step, which allows for the resulting
equations of motion to be linear [43, 91]. Thus, these methods do not require
iterations, though the temporal accuracy is reduced to first order due to the time
lag introduced in the constraint. It is difficult to avoid iteration in deforming
body problems, since the structure equations have a nonlinear stiffness term that is
frequently treated implicitly when discretized in time.

1This chapter is based on the publication Goza and Colonius [28], for which my contributions
were devising and implementing the numerical method, running all simulations, and being the
primary author of the article.
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Our strongly-coupled IB method iteratively solves the nonlinear algebraic equations
using a linearization of the system, as is done in the Newton-Raphson approach.
Therefore, our method does not require free relaxation parameters, and has exhibited
fast convergence behavior for all problems we have considered so far. A distinction
between our method and a standard Newton-Raphson implementation is that we
avoid large Jacobian matrices by performing a block-LU factorization of the lin-
earized system. This reduces all iterations to subsystems whose dimensions scale
with the number of discretization points on the immersed surface, rather than on the
entire flow domain.

Our method treats the fluid with the two-dimensional (2D) discrete streamfunction
formulation of Colonius and Taira [15], and the structure with a finite element for-
mulation that applies to various structural materials undergoing large deformations
and rotations. Our method is valid for problems involving fairly general thin elastic
structures, and we verify it on 2D test problems of flow past deforming flags. The
test problems involve large body motions and a wide range of mass ratios, and for
all cases our proposed iteration process required a small number of iterations to
converge. To supplement the 2D method, we derive an analogous method that treats
the fluid with primitive variables at the end of this chapter. This primitive-variable
formulation has a similar iteration procedure to the proposed 2D formulation, and
can be applied in both 2D and 3D.

3.2 Governing equations
The governing equations take the same form as in (2.18)–(2.20), though there is
now an additional equation associated with the deformation of the structure. The
fully-coupled equations are written as

∂u
∂t
+ u · ∇u = −∇p +

1
Re
∇2u +

∫
Γ

f(χ(s, t))δ(χ(s, t) − x)ds (3.1)

∇ · u = 0 (3.2)
ρs

ρ f

∂2χ

∂t2
=

1
ρ f U2

∞

∇ · σ + g(χ) − f(χ) (3.3)∫
Ω

u(x)δ(x − χ(s, t))dx =
∂χ(s, t)
∂t

(3.4)

where ρs is the structure density, the term g represents a body force per unit volume
(e.g. gravity) applied to the immersed body, the other variables retain their same
definition as in chapter 2, and the structural equations (3.3) were divided by ρ f U2

∞/L

to arrive at the form seen above.
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Note that making the structural displacement χ an unknown leads not only to the
new equation (3.3), but also results in a modification to the no-slip condition (3.4):
this boundary condition still reflects the interface constraint between the fluid and
structure, but now the right-hand-side term is the unknown structural velocity rather
than a prescribed body velocity. As in chapter 2, the term f(χ) arises to enforce this
no-slip constraint. The presence of f in (3.1) represents the surface stress imposed
on the fluid by the immersed body. This can be seen by multiplying the momentum
equations (3.1) by δ(x − χ(s, t)) and integrating over the domain Ω to get

f(χ(s, t)) =
[(
∂

∂t
−

1
Re
∇2

)
u + u · ∇u + ∇p

] ����x=χ(s,t)
∀ χ ∈ ∂Γ (3.5)

Note that −f is present in the structural equations (3.3) since by Newton’s third law
this term represents the stress imposed on the immersed body by the fluid (including
added mass effects). The presence of f in the structural equations (3.3) requires
that the surface stresses be computed accurately, and we therefore incorporate the
procedure of chapter 2 into the numerical method described in the subsequent
section.

In (3.3), the time derivative is understood to be a Lagrangian derivative, and the
stress tensor used is the Cauchy stress, which is related to the second Piola-Kirchoff
stress in the undeformed configuration, σK , by

σmn =
1
J
∂xm

∂ χ0i

∂xn

∂ χ0j
σK

i j (3.6)

where χ0 is the position of the body in its undeformed configuration, and J =

det(∂xi/∂ χ
0
j ). The second Piola-Kirchoff stress is related to the strains within the

structure via
σK

i j = Di j kl Ekl (3.7)

whereD depends on Young’s Modulus, E, the bulk shear modulus, G, and Poisson’s
ratio, νs; and E is the strain tensor given by

Ei j =
1
2

*
,

∂ χi

∂ χ0j
+
∂ χ j

∂ χ0i
+
∂ χm

∂ χ0i

∂ χm

∂ χ0j

+
-

(3.8)

(summation implied on repeated indices). Again, all variables that comprise Ewere
nondimensionalized using the characteristic length L.

Finally, we note that we restrict our attention to thin structures. This restriction
is not required by the structural equations; indeed, the formulation described in
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(3.3); (3.6)–(3.8) is valid for a variety of structures. The reason for the thin-
structure restriction is due to the fact that the immersed-boundary method places
fictitious fluid inside of bodies that produces unphysical contributions to the surface
stress in (3.5). For rigid body FSI problems (e.g., freely falling cylinders), the
stress contribution from the fictitious fluid can be explicitly removed to obtain the
correct stress [43], but this procedure is difficult to extend to deforming bodies. We
therefore consider thin bodies, such as shells or membranes, where these unphysical
contributions are negligible.

3.3 Numerical method
In this section, we discretize the equations of motion in space to arrive at the coupled
semi-discrete equations of motion: the fluid equations are discretized using the 2D
discrete streamfunction formulation of Colonius and Taira [15], and the structure
equations are discretized using a finite element formulation. We then discretize in
time and introduce an efficient iteration procedure for solving the resulting nonlinear
algebraic equations.

Semi-discrete equations
As noted in chapter 2, the spatially discrete equations of motion for the fluid on a
staggered uniform Cartesian grid are

u̇ +N (u) = −Gp + Lu + H ( χ) f (3.9)

Du = 0 (3.10)

where the various operators are defined in chapter 2 (see also reference [79] for
more details). One distinction from chapter 2, however, is that we write the explicit
dependence of H on the unknown structural displacement χ.

Following Colonius and Taira [15], we avoid the incompressibility constraint by
using a discrete curl operator that lies in the null space of the discrete divergence
operator D. That is, DC ≡ 0, which implies that CT G = −(DC)T ≡ 0. The discrete
curl operator engenders the use of a discrete streamfunction, s, that is related to the
discrete velocity field by u = Cs. Using this and premultiplying (3.9) and (3.10) by
CT then gives the final form of the semi-discrete fluid equations that we consider:

CTCṡ +N (Cs) = CT LCs − CT ET ( χ) f (3.11)

The equations for the structure are discretized in space using a finite element pro-
cedure: the body is broken up into isoparametric finite elements with an associated
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set of compatible shape functions [6]. A variable (·) belonging to the surface may
be expressed with these basis functions as

(·)(χ) =
Nnode∑

j=1
(·) j b j (χ) (3.12)

where (·) j is the nodal value of (·) and b j is the shape function corresponding to
node j. Using this expansion of each variable in (3.3), we arrive at a system of
ordinary differential equations in time by multiplying (3.3) by the various shape
functions and integrating over the volume of the immersed body. Letting B be a
matrix containing the various shape functions b j , we write the spatially discretized
form of (3.3) as

M χ̈ + R( χ) = Q(g +W ( χ) f ) (3.13)

where

M =
ρs

ρ f

Nel∑
j=1

∫
Γ0j

BT Bdχ0 (3.14)

R( χ) =
1

ρ f U2
∞

Nel∑
j=1

∫
Γ0j

BT
Eσ

K dχ0 (3.15)

Q =
Nel∑
j=1

∫
Γ0j

BT Bdχ0 =
ρ f

ρs
M (3.16)

In the above, Γ0j denotes element j of Γ in its undeformed configuration, BE is a
matrix containing the derivatives of the shape functions with respect to the nodal
positions, and σK contains nodal values of its continuous analog. Note that σK is
arranged as a vector so that R( χ) is also a vector. The nonlinearity of R( χ) is due
to the dependence of BE and σK on χ.

Note the presence of W ( χ) = Ẽ( χ)H ( χ) in (3.13), which is the filtering operator
described in chapter 2. The effectiveness of this operator in producing convergent
surface stresses depends on the smeared delta function used, withmore differentiable
functions providing increasingly accurate approximations. Our experience is that
the infinitely differentiable Gaussian function, δG

h , was not necessary for performing
accurate FSI computations, as the time-stepping procedure and spatial operators
associated with the structure equations of motion provide some regularization to the
high-frequency surface-stress oscillations. At the same time, the use of δcos

h was
found to introduce high frequency dynamics into the structure that spuriously alter
the system behavior. In the present work, we use the delta function of Roma, Peskin,
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and Berger [64], which we found to provide a good combination of computational
efficiency and accuracy. Note also that W f is a discretization of∫

Ω

∫
Γ
f(χ(s′, t))δh(x − χ(s′, t))δh(x − χ(s, t))ds′dx∫

Γ
δh(x − χ(s′, t))ds′

(3.17)

so introducing W into (3.13) represents a first-order modification in the grid spacing
h of the structural equations of motion.

Equation (3.13) and the corresponding definitions of M , R, and Q are valid for a
variety of structural materials undergoing large deformations, displacements, and
rotations. In this work we restrict our attention to flags, for which we employ a
corotational formulation [18]. In this formulation, arbitrarily large displacements
and rotations are accommodated by attaching a local coordinate frame to each flag
element. The strains are assumed to be small in this frame, and the corresponding
internal stresses R( χ) are well known (see, e.g., reference [18]). Materials other
than flags would require changes in the choice of elements, shape functions, and
model for σK . However, these changes would not affect the structure of (3.13) or
the ensuing time discretization procedure.

Using these discretizations of the fluid and structure equations, the discrete form of
the constraint (3.4) is written in terms of the streamfunction as

E( χ)Cs − ζ = 0 (3.18)

Defining ζ := χ̇, the fully coupled FSI equations may be written as a first order
system of differential-algebraic equations given by

CTCṡ = −N (Cs) + CT LCs − CT ET ( χ) f (3.19)

M ζ̇ = −R( χ) +Q(g +W ( χ) f ) (3.20)

χ̇ = ζ (3.21)

E( χ)Cs − ζ = 0 (3.22)

Note that (3.9)–(3.10) and (3.13) are valid in both 2D and 3D; the restriction to 2D
is due only to the discrete streamfunction formulation (3.11). We derive in section
3.5 an alternative method that treats the fluid using (3.9)–(3.10). This method has an
analogous iteration procedure to the one proposed in the next section and is readily
extendible to 3D.
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Time discretization and efficient factorization procedure
We discretize (4.1) using an Adams-Bashforth scheme for the nonlinear term and a
Crank-Nicholsonmethod for the diffusive term. Equations (4.2)–(4.3) are discretized
using an implicit Newmark scheme. The constraint equation (4.4) is evaluated at
the current time step. That is, the method is strongly-coupled, which is necessary
for the method to be stable for a wide range of mass ratios and in the presence of
large body displacements [10, 12, 25]. We discretize the equations of motion in
the aforementioned way to illustrate the iteration procedure on a commonly used
scheme. However, the proposed iteration approach can readily be extended for a
variety of time stepping schemes.

Discretizing (4.1)–(4.4) as described in the previous paragraph leads to a system of
nonlinear algebraic equations given by

CT ACsn+1 + CT ET
n+1 fn+1 = r f

n (3.23)
4
∆t2

M χn+1 + (R( χn+1) −QWn+1 fn+1) = r ζn (3.24)

2
∆t
χn+1 − ζn+1 = r χn (3.25)

En+1Csn+1 − ζn+1 = 0 (3.26)

where A = 1
∆t I − 1

2L, r f
n = ( 1

∆t C
TC + 1

2CT LC)sn +
3
2CTN (Csn) − 1

2CTN (Csn−1),
r ζn = M ( 4

∆t2 χn +
4
∆t ζn + ζ̇n) + Qg, and r χn = ζn +

2
∆t χn. Note that the operators E,

ET , and W are given subscripts to indicate their dependence on χ.

We now describe an iteration procedure for using a guess for the solution at iteration
(k) to compute a new guess at iteration (k + 1) (We use the solution at time step
n as the guess for (k) = 0). To do this, we write χ(k+1)

n+1 = χ(k)
n+1 + ∆χ, ζ

(k+1)
n+1 =

ζ (k)
n+1 + ∆ζ , where the increments ∆χ, ∆ζ are assumed to be small. Substituting this
decomposition into (3.23)–(3.26) and retaining first order terms in the increments
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and ∆t gives the linear system2



CT AC 0 0 CT E (k)T
n+1

0 0 4
∆t2 M + K (k) −QW (k)

n+1
0 −I 2

∆t I 0
E (k)

n+1C −I 0 0





sn+1

∆ζ

∆χ

f (k+1)
n+1



=



r f
n +O(∆t)

r ζn − 4
∆t2 M χ(k)

n+1 − R( χ(k)
n+1) +O(∆t)

r χn − 2
∆t χ

(k)
n+1 + ζ

(k)
n+1

ζ (k)
n+1 +O(∆t)



:=



r f
n

r ζ (k)

r χ (k)

rc (k)



(3.27)

where K (k) = dR/dχ |
χ=χ(k )

n+1
. For flags this stiffness matrix has well known analyti-

cal expressions [6, 18].

The linear system (3.27) may be factored using a block-LU decomposition. Defining
K̂ (k) := 4

∆t2 M + K (k) and B(k)
n+1 := E (k)

n+1C(CT AC)−1CT E (k)T
n+1 , the factored equations

are

s∗ = (CT AC)−1r f
n (3.28)



B(k)
n+1 I

− 2
∆t QW (k)

n+1 K̂ (k)





f (k+1)
n+1

∆ζ



=



E (k)
n+1Cs∗ − rc (k)

2
∆t r

ζ (k) − r χ (k)



(3.29)

∆χ =
∆t
2

(∆ζ + r χ (k)) (3.30)

sn+1 = s∗ − (CT AC)−1CT ET
n+1 fn+1 (3.31)

The LU-factorized equations (3.28)–(3.31) are analogous to the classical fractional-
step procedure used for the Navier-Stokes equations. In fact, Perot [61] showed that
the fractional-step procedure for the Navier-Stokes equations can be derived by a
block-LU factorization of the associated semi-discrete system. Taira and Colonius
[79] used a block-LU factorization to derive an analogous fractional step procedure
for an immersed boundary method applied to rigid bodies undergoing prescribed
kinematics, and Lācis, Taira, and Bagheri [43] extended this analysis to allow for
rigid-body flow-structure interaction. Our method applies this block-LU fractional-
step philosophy to FSI problems involving deforming bodies.

2Derivative terms that arise in the expansion of E (k+1)
n+1 , E (k+1)T

n+1 , and W (k+1)
n+1 may be neglected

to within O(∆t). For example, the fourth block equation of (3.27) including this extra term is
E (k )
n+1Csn+1 + (DE (k )

n+1∆χ)Csn+1 − ∆ζ = ζ
(k )
n+1. The DE term is of order O(∆t) compared with the

∆ζ term, since by the third block equation ∆χ = O(∆ζ∆t).
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The fractional-step procedure (3.28)–(3.31) has a physical interpretation: first, a
trial streamfunction that does not account for the updated body position and velocity
boundary conditions is computed through (3.28). Then the surface stress and the
associated body position and velocity are computed through iteration in (3.29)–
(3.30). Finally, in (3.31) the updated surface stress is used to remove the part of the
streamfunction that does not satisfy the updated boundary conditions.

Note that (3.28) does not depend on information at time step n + 1, and (3.29)–
(3.30) do not require knowledge of sn+1. Thus, (3.28) can be solved once and for
all at the beginning of each time step, and sn+1 only needs to be computed once,
after (3.29)–(3.30) have been iterated to convergence. This has the benefit that all
iterations are restricted to (3.29)–(3.30), which have dimensions on the order of the
number of body points, rather than the total number of points in the flow domain.
We do not write a superscript on sn+1 since it does not need to be iterated on.
Wang and Eldredge [88] also restricted iterations to small dimensional subsystems
like (3.29)–(3.30). In their case, the structure equations were replaced by the rigid
body equations of motion, and a block Gauss-Seidel procedure with added mass
relaxation was used to solve their analogous nonlinear system.

A Poisson-like problem (CT AC)−1 must be solved in (3.28), (3.31), and in each
matrix-vector multiply with B(k)

n+1. Solving the Poisson-like problem may be done
efficiently using fast Fourier transforms, but this requires a number of operations
that scales with the number of points on the flow domain. Thus, the computation and
storage of (K̂ (k))−1 may be small compared with solving the Poisson-like problem.
In this case one may analytically perform a block-Gaussian elimination of (3.29) to
get (

B(k)
n+1 +

2
∆t

(K̂ (k))−1QW (k)
n+1

)
f (k+1)
n+1 = E (k)

n+1Cs∗−

rc (k) −
2
∆t

(K̂ (k))−1r ζ (k) + r χ (k)
(3.32)

∆ζ =
2
∆t

(K̂ (k))−1(r ζ (k) +QW (k)
n+1 f (k)

n+1) − r χ (k) (3.33)

One may therefore equivalently solve (3.28)–(3.31) with (3.29) replaced by (3.32)–
(3.33), which has the benefit of avoiding the inhomogeneous block structure of
(3.29). We use this formulation for the results shown below, as we found it to
be more efficient for the test problems considered. We solve (3.32) using the
BiCGSTAB method, which typically requires 2–8 iterations to converge using f (k)

n+1
as the initial guess. Moreover, the number of iterations required by BiCGSTAB
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often decreases as k increases, since f (k)
n+1 becomes an increasingly good guess for

f (k+1)
n+1 .

It is also worth noting that the updates for χ(k)
n+1, ζ

(k)
n+1, and f (k)

n+1 do not depend
on a heuristic relaxation parameter, as is often required when applying the block
Gauss-Seidel iterative procedure to FSI solvers. Moreover, the proposed iteration
procedure has required a small number of iterations to converge for all problems we
have considered so far.

3.4 Verification on flapping flag problems
We verify our method for several test problems of 2D flow past thin deforming flags.
The dynamics of this system are governed by the Reynolds number, dimensionless
mass ratio, dimensionless bending stiffness, and Froude number. These are given,
respectively, as

Re =
U∞L
ν

, Mρ =
ρsh
ρ f L

, KB =
EI

ρ f U2
∞L3

, Fr =
U∞
√
gL

(3.34)

where h is the thickness of the flag, EI is the bending stiffness of the flag, ν is the
kinematic viscosity of the fluid, and g is the gravitational constant.

We consider problems with the flag pinned at the leading edge (conventional con-
figuration) and with the flag clamped at the trailing edge (inverted configuration).
Schematics of the different problem setups are shown in figure 3.1.

gU1

x
y

✓

gU1

x
y

✓

Figure 3.1: Flowmoves from left to right past a flag in the conventional configuration
(top) or the inverted configuration (bottom).

Each configuration presents different challenges: flags in the conventional configu-
ration are typically associated with smaller mass ratios, whereas those in the inverted
configuration often undergo larger motions and have greater dimensionless bending
stiffnesses.
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The flow equations are solved using a multidomain approach: the finest grid sur-
rounds the body and grids of increasing coarseness are used as distance from the body
increases (see reference [15] for details). The immersed-boundary spacing must be
large enough with respect to the flow grid to avoid ill-conditioning of the matrix
B(k)

n+13, but sufficiently small to keep the body from being porous. We found that
setting the immersed-boundary spacing to be twice that of the flow grid on the finest
sub-domain gave the appropriate balance (Kallemov et al. [38] also found this ratio
to be preferable). We used a convergence criteria of | |∆χ | |∞/| | χ(k+1)

n+1 | |∞ ≤ 1× 10−7

when iterating between (3.30), (3.32), and (3.33).

Flow past a flag in the conventional configuration
We first consider flow past a deforming flag in the conventional configuration with
Re = 1000, Mρ = 0.075, KB = 0.0001, and Fr = 0 (i.e., no gravitational body
force). This choice of parameters leads to limit cycle flapping, which we triggered
in our simulations by initializing the flag at θ = 1◦ (see figure 3.1 for the definition
of θ). We show the transverse tip displacement and lift coefficient in figure 3.2.
After an initial transient, the trailing edge of the flag has oscillatory transverse
displacement of fixed amplitude and frequency. The lift and tip displacement share
the same frequency but are out of phase. As the flag nears its peak amplitude, the lift
force opposes it enough to overcome the flag’s inertia, which initiates flag motion
in the other direction. This interplay of fluid and flag forces modulates and sustains
the limit cycle flapping behavior seen for this set of parameters. Our computed
amplitude and frequency of the flag tip displacement in the limit cycle regime agree
well with published values for these quantities (see table 3.1).

The finest domain for this simulation was of size [−0.2, 1.8] × [−0.3, 0.3], and the
entire flow domain size was [−15.20, 16.80] × [−4.78, 4.78]. The grid spacing on
the finest subdomain was h = 0.0025, and the time step was ∆t = 0.0006. Using a
grid spacing of h = 0.003 changed our results in table 3.1 by less than one percent.
There were a total of 960,000 points in the flow domain, and it took 30.83 hours
to run this simulation on a single CPU core. Five iterations of (3.30), (3.32), and
(3.33) were required for the first time step, and a maximum of three iterations were
required for all remaining time steps.

3The ill-conditioning associated with small immersed-boundary spacing arises from the fact
that as the number of immersed-boundary points increases relative to the grid spacing, more surface
quantities are being distributed to a given point on the flow grid, and redistributing that information
back onto the surface becomes increasingly difficult.
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Figure 3.2: Transverse displacement of the flag’s trailing edge (black) and coefficient
of lift (gray) for Re = 1000, KB = 0.0001, and Fr = 0.

Amplitude Frequency (St)
Connell and Yue [17] ±0.096 0.93

Gurugubelli and Jaiman [32] ±0.098 0.95
Present ±0.097 0.94

Table 3.1: Amplitude and frequency associated with the transverse displacement of
the flag’s trailing edge; obtained for Re = 1000, Mρ = 0.075, KB = 0.0001, and
Fr = 0.

Limit cycle flapping also occurs for Re = 200, Mρ = 1.5, KB = 0.0015, and Fr =

1.4. We show in table 2 the associated amplitude and frequency of the transverse
trailing edge displacement. For comparison with the literature, we initialized the
flag at θ = 18◦. Our finest sub-domain for this problem was of size [−0.2, 1.8] ×
[−0.9, 0.9], and the total domain size was [−15.20, 16.80]× [−7.95, 7.95]. The grid
spacing on the finest domain was h = 0.00625, and the time step was ∆t = 0.0001.
Using h = 0.005 changed our reported results from table 3.2 by less than one
percent. There were a total of 460,800 points in the flow domain, and it took 10.42
hours to run this simulation on a single CPU core. Three iterations of (3.30), (3.32),
and (3.33) were required for the first time step, and a maximum of two iterations
were required for all remaining time steps.

Figure 3.3 gives a time history of the trailing edge transverse displacement for the
parameters corresponding to table 3.2 (results from references [35, 47] are included
for comparison). To emphasize the robustness of the method for a range of mass
ratios, figure 3.3 also shows the trailing edge displacement for Mρ = 0.0001 and
Mρ = 100. To our knowledge, the Mρ = 0.0001 and Mρ = 100 cases have not
been simulated before. Moreover, we were not able to simulate the Mρ = 0.0001
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Amplitude Frequency (St)
Huang, Shin, and Sung [35] ±0.35 0.30
Wang and Eldredge [88] ±0.35 0.31

Lee and Choi [47] ±0.38 0.31
Present ±0.38 0.32

Table 3.2: Amplitude and frequency associated with the transverse displacement
of the flag’s trailing edge; obtained for Re = 200, Mρ = 1.5, KB = 0.0015, and
Fr = 1.4.

case when solving (3.23)–(3.26) with the Gauss-Seidel method, even when using
extensive relaxation. Using (3.30), (3.32), and (3.33), a maximum of three iterations
per time step were required after the first twenty time steps. During the first twenty
time steps, up to fifteen iterations were required due to the impact of the impulsive
start on a flag with such small inertia.

Figure 3.3: Transverse displacement of the flag’s trailing edge for Re = 200,
KB = 0.0015, and Fr = 1.4. Left panel: Mρ = 0.0001, middle panel: Mρ = 1.5,
right panel: Mρ = 100. Present: , Lee and Choi [47]: , Huang, Shin, and Sung
[35]: . The insert on the left panel is a zoom-in of the Mρ = 0.0001 case for
t ∈ [0.5, 2]. Note the different horizontal axis values on each panels.

In figure 3.4, we show vorticity contours at different time instances for Mρ = 0.0001,
Mρ = 1.5, and Mρ = 100. When Mρ = 0.0001, the impulsive start pushes the flag
down quickly towards the θ = 0◦ position. At t ≈ 0.5, the vortical structure
created during the impulsive start reaches the trailing edge of the flag. Due to
the flag’s small inertia, this substantially affects the trailing edge displacement (see
insert in figure 3.3). The vortical structure then advects away from the body, and
the fluid wake becomes symmetric as the flag fully reaches its θ = 0◦ position.
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This symmetric wake is a well known feature of flow past thin rigid bodies at low
Reynolds numbers, and the small inertia of the flag does not allow for any minor
flag deformations to break the flow symmetry. Thus, the flag stays in this neutral
position for all remaining time. When Mρ = 1.5, the limit cycle flapping of the
flag is associated with a periodic vortex street [35, 47, 88]. As the flag becomes
increasingly massive, the flapping amplitude increases. This is associated with a
thicker, more irregular wake profile and more chaotic flapping behavior. Figure 3.3
shows that the Mρ = 100 case does not enter into limit cycle flapping after 250
convective time units and several periods of flapping. The destabilizing nature of
increasing the mass ratio was also noted by Connell and Yue [17].

Flow past a flag in the inverted configuration
An inverted flag initially placed at θ = 0◦ can enter a wide range of possible
dynamical regimes. Three of these are the undeformed equilibrium (UE), deformed
equilibrium (DE), or small-deflection deformed flapping (SF) [32] (see figure 3.5
for an illustration). In table 3.3, we summarize the regimes we obtained by varying
KB for Re = 200, Mρ = 0.1, and Fr = 0. Our finest sub-domain for this problem
was of size [−0.2, 1.8]× [−0.5, 0.5], and the total domain size was [−15.20, 16.80]×
[−16, 16]. The grid spacing on the finest domain was h = 0.005, and the time step
was ∆t = 0.001. Using h = 0.004 change our reported results by less than one
percent. There were a total of 400,000 points in the flow domain, and it took 5.56
hours to run one simulation on a single CPU core. Three iterations of (3.30), (3.32),
and (3.33) were required for the first time step, and amaximum of two iterations were
required for all remaining time steps. The table also shows the regimes computed
by Gurugubelli and Jaiman [32] for the same parameter ranges.

KB
0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51

[32] SF SF SF SF DE DE DE DE DE UE
Present SF SF SF DE DE DE DE DE DE UE

Table 3.3: Flapping regimes obtained for different KB values. SF = small-deflection
deformed flapping, DE = deformed equilibrium, UE = undeformed equilibrium.
The other parameters were Re = 200, Mρ = 0.1, and Fr = 0.

We next consider the case when Re = 1000, Mρ = 0.1, KB = 0.4, and Fr = 0. For
this set of parameters, the flag enters large amplitude limit cycle flapping. Table
3.4 shows the amplitude and frequency of the leading edge transverse displacement
computed in our work and in reference [32]. Our finest sub-domain for this problem
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Figure 3.4: Vorticity contours of flow past a deforming flag for Mρ = 0.0001 (top
row), Mρ = 1.5 (middle row), and Mρ = 100 (bottom row). Left column: t = 1.2;
middle column: t = 18; right column: t = 31.2. Contours are in 15 evenly spaced
increments from −5 to 5. The other parameters were Re = 200, Mρ = 1.5, and
Fr = 1.4.
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Figure 3.5: Snapshots of the flag at various times for the unstable equilibrium (left),
deformed equilibrium (middle), and small-deflection deformed flapping (right)
regimes. Only one curve is visible for the unstable equilibrium and deformed
equilibrium regime, since the flag does not deflect about these equilibrium posi-
tions.

was of size [−0.2, 1.8] × [−1, 1], and the total domain size was [−15.20, 16.80] ×
[−14.35, 14.35]. The grid spacing on the finest domain was h = 0.0033, and the
time step was ∆t = 0.0003. Using h = 0.0025 did not change our reported results.
There were a total of 1,800,000 points on the flow domain, and it took 106 hours
to run the simulation on a single CPU core. Three iterations of (3.30), (3.32), and
(3.33) were required for the first time step, and a maximum of two iterations were
required for all remaining time steps.

Amplitude Frequency (St)
Gurugubelli and Jaiman [32] ±0.83 0.204

Present ±0.82 0.198

Table 3.4: Amplitude and frequency associated with the transverse displacement of
the flag’s leading edge; obtained for Re = 1000, Mρ = 0.5, KB = 0.4, and Fr = 0.

Figure 3.6 shows vorticity contours at four different times during a flapping cycle.
The figure shows features consistent with what was observed by Gurugubelli and
Jaiman [32]. As the flag reaches its negative peak displacement, a positive leading
edge vortex forms (leftmost figure). The flag then moves back towards the centerline
and the leading edge vortex detaches and advects downstream (second from leftmost
figure). As the flag continues to swing towards its positive peak displacement,
a negative trailing edge vortex forms and advects downstream to form a vortex
pair with the leading edge vortex shed earlier (second from rightmost figure). At
the same time, a new negative leading edge vortex forms as the flag reaches its
peak displacement and detaches once the flag moves back towards the centerline
(rightmost figure). The result of this upward-downward flag motion is limit cycle
flapping that repeats indefinitely.
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Figure 3.6: Vorticity contours during a flapping cycle for Re = 1000, Mρ = 0.5,
KB = 0.4, Fr = 0. Contours are in 15 evenly spaced increments from −5 to 5.

3.5 An efficient iteration procedure in primitive variables
The above method was derived in a discrete vorticity-streamfunction formulation,
which is perhaps best suited for two-dimensional problems. We derive here an
analogous formulation using primitive variables for the fluid that can be applied
in 2D or 3D. In this primitive variable representation, the differential-algebraic
semidiscrete FSI system is

u̇ +N (u) = −Gp + Lu − ET ( χ) f (3.35)

M ζ̇ = −R( χ) +Q(g +W ( χ) f ) (3.36)

χ̇ = ζ (3.37)

Du = 0 (3.38)

E( χ)u − ζ = 0 (3.39)

Using the same time discretization schemes as in section 3 and introducing the
decomposition χ(k+1)

n+1 = χ(k)
n+1 + ∆χ, ζ

(k+1)
n+1 = ζ (k)

n+1 + ∆ζ , we have the following
system to within first order in the increments and ∆t:



A G 0 0 E (k) T
n+1

GT 0 0 0 0

0 0 0 K̂ (k) −QW (k)
n+1

0 0 −I 2
∆t I 0

E (k)
n+1 0 −I 0 0





u

pn+1

∆ζ

∆χ

f (k+1)
n+1



=



r̃ f
n

r̃p
n

r ζ (k)

r χ (k)

rc (k)



(3.40)

where the right hand side terms are known and analogous to those in section 3.
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Performing a block-LU decomposition of (3.40) gives the sequence of equations

u∗ = A−1r̃ f
n − A−1G(GT A−1G)−1(GT A−1r̃ f

n − r̃p) (3.41)

p∗ = (GT A−1G)−1(GT A−1r̃ f
n − r̃p

n ) (3.42)


B̃(k)
n+1 I

− 2
∆t QW (k)

n+1 K̂ (k)





f (k+1)
n+1

∆ζ



=



E (k)
n+1u

∗ − rc (k)

2
∆t r

ζ (k) + r χ (k)



(3.43)

∆χ =
2
∆t

(∆ζ + r χ (k)) (3.44)

pn+1 = p∗ − (GT AG)−1GT A−1E (k) T
n+1 fn+1 (3.45)

un+1 = u∗ − A−1(I − G(GT A−1G)−1GT A−1)E (k) T
n+1 fn+1 (3.46)

where B̃(k)
n+1 = E (k)

n+1A−1(I − G(GT A−1G)−1GT A−1)E (k) T
n+1 .

As in section 3, all iterations are restricted to (3.43)–(3.44), which have dimensions
on the order of the number of body points; (3.41)–(3.42) may be computed once
and for all at the start of a time step, and (3.45)–(3.46) need only be solved after all
iterations are completed to convergence.

Again, when (K̂ (k))−1 can be computed and stored, the system (3.43) may be
reformulated as the sequence of equations given by(

B̃(k)
n+1 +

2
∆t

(K̂ (k))−1QW (k)
n+1

)
f (k+1)
n+1 = E (k)

n+1u
∗ − rc (k) −

2
∆t

(K̂ (k))−1r ζ (k) + r χ (k)

(3.47)

∆U =
2
∆t

(K̂ (k))−1(r ζ (k) +QW (k)
n+1 f (k)

n+1) − r χ (k) (3.48)

A similar block-LU based immersed boundary method was developed for bodies
undergoing prescribed kinematics [51, 79]. The method we propose in (3.41)–
(3.46) is different from these in the nonlinear iterations introduced in (3.43)–(3.44).
Since these iterations are restricted to small dimensional subsystems, we do not
believe they will drastically affect the effectiveness of the method.

3.6 Conclusions
We presented an immersed-boundary method for fully coupled flow-structure inter-
action problems involving thin deforming surfaces. Themethod is strongly-coupled,
and is therefore stable for wide ranges of structure-to-fluidmass ratios and large body
motions. As with many strongly-coupled methods, our method requires the solution



43

of a nonlinear system of equations at each time step. This system is solved by
iteration, using a linearization of the nonlinearly coupled equations and a block-LU
factorization of the linearized system to reduce iterations to small-dimensional sub-
systems of equations. The iteration process does not involve heuristic relaxation
parameters. We derived the method for general deforming surfaces, and verified it
for 2D flow past deforming flags. The test problems involved a wide range of mass
ratios and large body motions, and the method required a small number of iterations
to converge for all cases considered. It is straightforward to extend the method to
fully coupled problems involving rigid bodies.
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C h a p t e r 4

GLOBAL STABILITY ANALYSIS OF FLUID-STRUCTURE
INTERACTION1

4.1 Introduction
Global stability analysis has been used to elucidate important instability-driving
mechanisms in a variety of fluid flows without immersed bodies or with rigid bodies
undergoing prescribed kinematics, such as bluff body flows [60], jet flows [4], and
boundary layers [22]. In the context of FSI systems, this technique has been applied
to the problem of an elastically mounted cylinder allowed to vibrate in the transverse
direction [58], but, to our knowledge, has not been extended to problems involving
deforming bodies.

We present here a global stability solver for general thin deforming bodies that may
be used in concert with the nonlinear solver described in chapter 3. We validate our
global stability solver using results from the literature on conventional flag flapping,
and show in particular that a global mode analysis of conventional flags accurately
predicts the onset of flutter and the associated flapping frequency once flapping
ensues.

We note that previous stability analyses have been performed on conventional flag
flapping to accurately predict the onset of flapping and the associated flapping
frequencies [2, 17]. These studies focused on the governing equations of the flag
with the effect of the fluid modeled as a source term using either inviscid [2] or
laminar boundary layer [17] theory. Thus, the associated modes provided the least
damped flag shapes, but did not reveal the corresponding fluid structures that drive
the system to instability. Our present analysis is based on a linearization of the fully-
coupled equations of motion, and therefore identifies both important flag shapes and
fluid structures.

4.2 Numerical method
We derive the linearized equations of motion in this section and describe the algo-
rithm for computing global modes of the fully-coupled FSI system. Note that an

1This chapter is based on the publication Goza and Colonius [27], for which my contributions
were devising and implementing the numerical method, running all simulations, and being the
primary author of the article.
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equilibrium (steady-state) solution about which to linearize the system is required,
and we define our algorithm for computing this equilibrium at the end of this section.

Linearized equations and global stability solver
The spatially discrete, temporally continuous equations of the nonlinear fully-
coupled flow-structure system may be written as (see chapter 3 for more details)

CTCṡ = −CTN (s) +
1

Re
CT LCs − CT ET ( χ) f (4.1)

M ζ̇ = −R( χ) +Q(g +W ( χ) f ) (4.2)

χ̇ = ζ (4.3)

0 = E( χ)Cs − ζ (4.4)

For ease of notation in developing the linearized equations, we define the state vector
y = [s, ζ, χ, f ]T and let r (y) be the right hand side of (4.1)–(4.4). We write the state
y as y = yb+ yp, where yb = [sb, ζb, χb, fb]T is a base state and yp = [sp, ζp, χp, fp]T

is a perturbation. Plugging this expression for y into (4.1)–(4.4), Taylor expanding
about yb, and retaining only first order terms in the perturbation variables gives the
linearized equations:

B ẏp = A(yb)yp (4.5)

where

B =



CTC

M

I

0



, A(yb) =



J ss 0 −J χs −CT ET

0 0 −K + J χ χ QW

0 I 0 0
EC −I J χc 0

 y=yb

(4.6)

and the remaining sub-blocks of the Jacobian matrix A are given in index notation
as

(J ss)ik = −(CTC)2ik − CT
i j
∂Nj

∂sk
(4.7)

(J χs)ik = CT
i j

∂ET
jl

∂ χk
( fb)l (4.8)

(J χ χ)ik = Qi j
∂W jl

∂ χk
( fb)l (4.9)

(J χc)ik =
∂Ei j

∂ χk
Cjl (sb)l (4.10)

Note that we used B ẏb = r (yb) in arriving at the linearized equations (4.5).
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Global modes are eigenvectors v of the generalized eigenvalue problem Av = λBv,
where λ is the corresponding eigenvalue. We build and store A and B sparsely
and solve the generalized eigenvalue problem using an implicitly restarted Arnoldi
algorithm (see Lehoucq, Sorensen, and Yang [48] for more details).

In the results below, 1 × 10−10 was used as the tolerance for convergence of the
computed eigenvalues and eigenvectors. Global eigenfunctions are unique to a
scalar multiple, and were scaled to unit norm, | |y | |2 = 1.

Equilibrium computations
Undeformed and deformed equilibria are steady state solutions to the fully-coupled
equations (4.1)-(4.4) with all time derivate terms set to zero; i.e., these equilibria
satisfy 0 = r (y), where y = [s, ζ, χ, f ]T is the state vector and r (y) is the right hand
side of (4.1)-(4.4). This is a nonlinear algebraic system of equations that we solve
using a Newton-Raphson method. With this method, the kth guess for the base state,
y(k), is updated as y(k+1) = y(k) + ∆y, where

∆y = −(A(y(k)))−1r (y(k)) (4.11)

Note that the Jacobian matrix A in (4.11) is the same matrix as in (4.6) evaluated at
y = y(k).

The guess for the state y is updated until the residual at the current guess is less than
a desired threshold (i.e., until | |r (y(k)) | |2/| |y

(k) | |2 < ε). In the results shown below
we used ε = 1 × 10−6.

4.3 Validation on conventional flag flapping
We use known results about the onset of flapping of conventional flags to validate
our global stability solver. We also investigate the structure of the global modes for
different parameters along the flutter boundary to identify how instability-driving
mechanisms are affected by changes to these parameters.

We do not consider the effect of gravity in these results (i.e., Fr = 0). As mentioned
in chapter 3, the driving dimensionless parameters are the Reynolds number and
mass and stiffness ratios, defined as

Re =
U∞L
ν

, Mρ =
ρsh
ρ f L

, KB =
EI

ρ f U2
∞L3

(4.12)
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Simulation Grid
The flow equations are solved using a multidomain approach: the finest grid sur-
rounds the body and grids of increasing coarseness are used as distance from the
body increases (see reference [15] for details). For all cases, the immersed boundary
spacing is set to be twice that of the flow grid spacing on the finest sub-domain.
The domain size of the finest sub-domain was [−0.2, 1.8] × [−0.6, 0.6] and the total
domain size was [−31.04, 32.04] × [−19.04, 19.04]. The grid spacing on the finest
domain was h = 2/400 ≈ 0.005. To determine the suitability of these simulation
parameters, a grid convergence study was performed for Mρ = 0.1, KB = 0.00069
– decreasing the grid spacing by 30% and increasing the total domain size to
[−40.1, 41.1] × [−27.08, 27.08] caused a change in leading eigenvalue of less than
2%.

Flapping Stability Boundary
Akcabay and Young [1] plotted a flutter map as a function of Mρ and KB using simu-
lation and experimental data at Reynolds numbers ranging from O(100− 100, 000),
and showed that the onset of flutter is largely independent of Re. From this large
set of experimental and simulation data they identified empirical fits for the flutter
boundary as a function of Mρ and KB in the low- and high-mass ratio regimes. Ak-
cabay and Young [1] found that at lowmass ratios the fluid inertia plays a substantial
role in the flapping dynamics, and that the stiffness at which flapping initiates is sen-
sitive to flag mass. In this low-mass regime, the fit nearly satisfies Mρ ≈ KB, which
shows that flutter occurs when the flag inertia is in balance with the internal stresses
in the flag. Akcabay and Young [1] then showed that at higher masses the fluid
inertia becomes less important and the critical stiffness at which flapping initiates
is roughly constant. In the left plot in figure 4.1, we superimpose our global mode
prediction of the flutter boundary onto these empirical fits, and good agreement is
seen.

Akcabay and Young [1] also demonstrated that the flapping frequencies at the flutter
boundary were largely independent of Re, and determined an empirical fit to this
flapping frequency for the large data set they considered. We demonstrate in the right
plot of figure 4.1 that the global mode prediction of the flapping frequency (given
by the imaginary part of the leading eigenvalue) agrees well with this empirical
fit (depicted by the solid black line). We also show that for very massive flags
(large Mρ) the frequency tends towards the value of an Euler-Bernoulli beam in a
vacuum (illustrated by the dashed line). Note, however, that the vacuum-scaling is
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not reflective of the frequency behavior in the low Mρ regime where fluid effects
dominate.

Figure 4.1: Left: modal prediction of the flutter boundary ( ) for various mass
(Mρ) and stiffness (KB) values (stable modes are in blue and unstable modes are
in red), along with empirical fits ( ) for small masses (Mρ < 1/3) and large
masses (Mρ > 2) computed by Akcabay and Young [1] from experimental and
computational data over Reynolds numbers O(100 − 100, 000). Right: modal
frequencies of the unstable mode near the flutter boundary ( ), empirical fit of
Akcabay and Young [1] to the aforementioned numerical and experimental data
( ).

Mode Characteristics For Different Parameters
We show in figures 4.2–4.4 the leading global modes on the flutter boundary for
Mρ = 0.05 (KB = 0.005), Mρ = 1 (KB = 0.042), and Mρ = 50 (KB = 0.06). Note
that we change stiffness for the various masses to remain on the flutter boundary,
which allows us to identify the modal structure associated with the transition to
flapping. In each figure, the real and imaginary part of the modal vorticity is shown
on the left and the real and imaginary part of the modal flag shape is shown on the
right.

The flag shape has a higher spatial frequency for the low mass (Mρ = 0.05) case
than for the other cases [1]. Note that this is reflected in the modal vorticity, as there
are more vortical structures on the flag compared with the higher mass modes. In
addition, the higher temporal (flapping) frequency of this low mass flag (as given in
the right plot of figure 4.1) is reflected in the wake structure – there are more vortical
structures in the wake, and each structure is compressed compared to the heavier
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Figure 4.2: Real and imaginary parts of the modal vorticity (left) and flag shape
(right) of a conventional flag for Mρ = 0.05, KB = 0.005 (an unstable mode near
the flutter boundary). Contours of vorticity are in twenty evenly spaced increments
from -0.2 to 0.2.

Figure 4.3: Real and imaginary parts of the modal vorticity (left) and flag shape
(right) of a conventional flag for Mρ = 1, KB = 0.042 (an unstable mode near the
flutter boundary). Contours of vorticity are in twenty evenly spaced increments
from -0.2 to 0.2.

flag modes. When the flag and fluid inertias are in balance (Mρ = 1), “lower mode”
flapping occurs, with the spatial frequency of the flag decreased from in the light flag
case [1]. This is matched by fewer vortical structures on the flag. In addition, the
lower temporal flapping frequency is marked by an elongation of vortical structures
in the flag wake. In the heaviest case, “lower mode” flapping persists with a similar
vortical structure on the flag to what was seen in the Mρ = 1 figure. However, the
substantially reduced flapping frequency causes a corresponding lengthening of the
wake structures.
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Figure 4.4: Real and imaginary parts of the modal vorticity (left) and flag shape
(right) of a conventional flag for Mρ = 50, KB = 0.06 (an unstable mode near the
flutter boundary). Contours of vorticity are in twenty evenly spaced increments
from -0.2 to 0.2.

4.4 Conclusions
We presented a global stability solver for FSI problems that may be applied to fairly
general thin deforming body problems. We validated this solver on the problem of
conventional flag flapping, and demonstrated that the global stability analysis of the
system accurately predicted the onset of flapping along with the associated flapping
frequency. The main purpose of this chapter was to present and validate this global
stability solver. We use this analysis in part II to elucidate new physical mechanisms
in inverted flag flapping.
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C h a p t e r 5

DATA ANALYSIS OF FLUID-STRUCTURE INTERACTION1

5.1 Introduction
Data-analysis techniques such as proper orthogonal decomposition (POD) and dy-
namic mode decomposition (DMD) have been used to elucidate important physical
mechanisms and develop reduced-order models for turbulent wall-bounded flows
(see, e.g., Berkooz, Holmes, and Lumley [8] for a review), flow past a cylinder [3,
14], and a jet in cross-flow [68, 73], to name a few examples.

These techniques were developed for flowswithout bodies or flows involving station-
ary bodies, and have been applied less extensively in the context of fluid-structure
interaction (FSI) where the fluid motion is coupled to deformation and/or vibration
of an immersed structure. In this FSI setting, data analysis is typically done on
data of either the fluid or the structure without incorporating the other. The former
approach has been used to identify important flow phenomena for flow past a flex-
ible membrane [73], a cantilevered beam [13], and an elastically-mounted cylinder
undergoing vortex-induced vibration [9]. The latter approach has allowed the deter-
mination of physics-driving structural behavior in fish swimming [11, 81] and flag
flapping [40, 55]. At the same time, incorporating only fluid or structure data does
not allow for identification of physical mechanisms in the omitted quantity. Thus,
the way in which significant fluid and structure modes are correlated to one another
is not revealed through these approaches.

We propose here a framework for data analysis of FSI systems where the fluid and
structure are treated together, which allows for important flow features, structural
behavior, and their correlation to be identified. As part of this formulation, we
define a norm in terms of the total energy of the FSI system. This combined fluid-
structure data-analysis procedure is then demonstrated on flapping flags in both
the conventional configuration (with the flag pinned at its leading edge) and the
inverted configuration (with the flag clamped at its trailing edge; see Kim et al.
[40] for details). We first consider limit-cycle flapping for both flag configurations.
For the conventional configuration, the dominant mode is shown to contain both

1This chapter is based on the publication in preparation Goza and Colonius [29], for which my
contributions were devising and implementing the data analysis techniques, running all simulations,
and being the primary author of the article.
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flapping and vortex shedding that are correlated to one another. Subsequent modes
are then identified to not be associated with flapping; they instead reflect harmonic
responses of the fluid to the dominant flapping motion. For the inverted configura-
tion, large-amplitude flapping occurs with significant flag motion occurring in both
the transverse and streamwise directions. The modal decompositions reflect this,
and identify the vortical structures correlated to each distinct motion.

We then use our FSI data-analysis framework to elucidate the driving physical
mechanisms of chaotic flapping of conventional flags. Chaotic flapping has been
observed in inviscid fluids [2] and for flows at Reynolds numbers of O(1000) [17],
and can be triggered by increasing the flag mass: with increasing mass the flag
goes from a stable equilibrium state to limit-cycle flapping. Further increasing
the mass leads to a growth in the limit-cycle flapping amplitude, and eventually to
chaotic flapping. Connell and Yue [17] showed that for viscous flows at moderate
Reynolds numbers, the onset of chaos is associated with the appearance of an
additional flapping frequency that is a non-integer harmonic of the dominant flapping
frequency.

We identify the mechanism responsible for the appearance of this non-integer har-
monic. We first show that the increase in flapping amplitude associated with in-
creasing flag mass leads the flag to become sufficiently bluff to the flow at its peak
deformation to trigger the bluff-body wake instability. The frequency of this bluff-
body mode is not a sub- or super-harmonic of the dominant flapping mode, and is
instead reflective of a new physical mechanism. Wemoreover show that the flapping
motion at the non-integer harmonic is a result of a triadic combination of the bluff-
body wake-instability with the dominant flapping motion. This triadic consistency
is required by the quadratic nonlinearity in the Navier-Stokes equations [21].

We focus here on proper-orthogonal decomposition (POD) and dynamic-mode de-
composition (DMD) because of their widespread use and their expected suitability
for the problems considered here. The limit-cycle cases described in section 5.3
are associated with one dominant frequency, and thus DMD is a natural candidate
because of its localized harmonic nature [54]. POD is also expected to be suitable
because of the near-harmonic decomposition it typically yields for limit-cycle flows
(such as occurs in vortex shedding past a cylinder near the critical Reynolds number
of approximately 47; see, e.g., Kutz et al. [42]). For the chaotic flapping problem
described in section 5.4, the non-broadband (‘peaky’) nature of the system again
makes DMD a fitting technique. However, POD and DMD are not ideal for all con-
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texts. For example, Towne, Schmidt, and Colonius [84] observed that in statistically
stationary flows with broadband frequency content – as are observed in the majority
of turbulent flows – spectral POD provides an optimal decomposition. The major
goal of the current work is to demonstrate the utility of performing data analysis in
a manner that accounts for both the fluid and the structure, rather than advertise a
specific decomposition technique. Future work should incorporate the methodology
presented here into the appropriate technique for the intended application.

5.2 POD and DMD of fluid-structure interaction
We consider snapshot-based methods of discrete data with associated data matrices
organized so that each column provides the state of the system at an instance in time
and each row contains the time history of a specific state variable. For simplicity
we present our formulation in a two-dimensional setting; the extension to three
dimensions is straightforward.

We assume fluid data is given on a stationary Cartesian grid, Ω, made up of n f

points (Ω ⊂ Rn f ), and let the streamwise and transverse fluid velocities at the
ith time instance, ti, be ui, vi ∈ Ω. Fluid data is often provided in this format by
immersed boundarymethods and experiments; some numericalmethods usemoving
meshes at each time step that conform to the moving structure, and data obtained
from these methods would have to be interpolated onto a single stationary grid for
all time instances to use the method we propose here.

We assume structural data is provided in a Lagrangian setting, with the structural
domain, Γ, comprised of ns points (Γ depends on time). We letχi,ηi ∈ Γ denote the
streamwise and transverse structural displacements from an undeformed reference
configuration at the ith time instance, and ξi, ζi ∈ Γ be the corresponding structural
velocities. We define the total state vector at ti as yi = [ui, vi,χi,ηi, ξi, ζi]T ∈
R2n f +4ns , and define the data matrix, Y ∈ Rn×m (n = 2n f + 4ns is the size of the
state and m is the number of snapshots), as Y = [y1, . . . , ym].

POD modes are computed from the mean-subtracted data matrix, Ỹ, whose ith

column is defined as Ỹi = Yi − µ, where µ = 1/m
∑m

k=1 yk is the sample temporal
mean of Y. For DMD, Chen, Tu, and Rowley [14] found that the use of Ỹ reduces
DMD to a discrete Fourier transform in time, and that instead using Y allows for
growth-rate information to be retained. For this reason, DMD is performed on Y
below.
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Proper orthogonal decomposition
POD decomposes the data into orthogonal uncorrelated modes that are ordered such
that the leading k modes (k ≤ m) provide the most energetically dominant rank
k representation of Ỹ. This energetically optimal representation is defined with
respect to a norm, and we propose a norm based on the mechanical energy of the
FSI system. Defining x as an Eulerian spatial coordinate and s as a Lagrangian
variable that parameterizes the structure, and letting u(x, t), v(x, t), χ(s, t), η(s, t),
ξ (s, t), and ζ (s, t) be continuous analogues of the discrete variables defined earlier,
the mechanical energy in the system is

E(t) =
1
2

∫
Ω

u2(x, t)+ v2(x, t)dx+
∫
Γ

κ( χ(s, t), η(s, t))+
1
2

Mρ(ξ2(s, t)+ ζ2(s, t))ds
(5.1)

where Ω and Γ are continuous analogous of the discrete domains defined earlier.
The terms corresponding to the fluid and structural velocities represent the kinetic
energy in the system (Mρ is the solid-to-fluid mass ratio) and κ( χ(s, t), η(s, t)) is the
potential energy within the structure (for deforming bodies this is the strain energy).
The potential (strain) energy for flapping flags will be defined in the next section.

While there are a variety of definitions of energy one could use (so long as the result
induces a norm), the mechanical energy is a natural choice because it is nonincreas-
ing in time and accounts for the transfer of energy between the fluid and structure
apart from viscous dissipation in the fluid. That is, through a straightforward com-
putation one can show that in the absence of body forces and under the assumption
that the shear stress is negligible on the boundary ofΩ (which occurs for sufficiently
large Ω),

dE(t)
dt
= −

2
Re

∫
Ω

(
∇u + (∇u)T

)
:
(
∇u + (∇u)T

)
dx ≤ 0 (5.2)

In the discrete setting of interest, the corresponding norm is defined as | |(·) | |W ≡
||W(·) | |2, where

W =



1
2I

2n f 0 0
0 L 0
0 0 1

2
√

MρI2ns



(5.3)

In the above, In is the n × n identity matrix and L is the operator that maps the
structural displacements to the potential energy of the structure. We assume that
L is formulated to be positive definite and symmetric so that W is positive definite
and symmetric.
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The inner product associated with this weighting matrix is defined as 〈q, p〉W ≡
qTW2p = (Wq)T (Wp) ∀q, p ∈ Rn and the induced norm is | |q| |W ≡

√
〈q, q〉W =√

(Wq)T (Wq) ∀q ∈ Rn, which is a discrete approximation of the square root of (5.1)
scaled by one on the length between data points, ∆x. (This assumes that the distance
between points of the fluid and structural domains is equal; unequal spacings can be
incorporated intoW).

The energetically ordered PODmodes with respect to theW-weighted normmay be
written in terms of the singular value decomposition (SVD)WỸ = UΣVT , where Σ
is a diagonal matrix containing the singular valuesσ1, . . . , σm ordered by decreasing
energy, and U (V) has columns u j (v j) containing the left (right) singular vectors
that correspond to σ j . In this notation, the POD modes are Û ≡ W−1U (note that
they are orthogonal with respect to the W-weighted inner product). These modes
are written in terms of the SVD, but may be computed more efficiently using the
method of snapshots [78]. The energetically optimal rank k (k ≤ m) approximation
of a snapshot yi may be expressed through an orthogonal projection onto the POD
modes as

yi ≈

k∑
j=1

ûT
j (Wyi)û j (5.4)

Dynamic mode decomposition
Whereas POD modes define an energetically optimal representation of the data,
DMDmodes are obtained from a linear regression that best represents the dynamics
of a (potentially nonlinear) data set. Though there are more general variants [85], we
compute DMD modes from the matrix A that best maps the progression of the state
from one time instance to the next; i.e., the A that best satisfies min

∑m−1
j=1 | |y j+1 −

Ay j | |22. This relation can often be satisfied exactly under reasonable conditions on
the data (such as linear independence of the columns of Y), and the best-fit matrix
is A = Y′(Y′′)#, where Y′ = [y2, . . . , ym], Y′′ = [y1, . . . , ym−1], and (Y′′)# is the
pseudo-inverse of Y′′.

DMD modes are the eigenvectors of A, denoted as Φ = [φ1, . . . ,φm−1]. These
modes may be computed efficiently without forming A explicitly (see [85] for
more details). The corresponding eigenvalues, γ̂1, . . . , γ̂m−1, are structured such
that γ̂ j = eγ j∆t , where ∆t is the time step between two snapshots and γ j is a
complex number whose real and imaginary parts give the growth rate and frequency,

2The minimization can also be performed with respect to the W-weighted norm, but we retain
the use of the standard 2-norm for consistency with most approaches in the literature.
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respectively, of mode j. Note that γ j can be computed from γ̂ j via γ j = log(γ̂ j )/∆t.
A kth order (k ≤ m − 1) representation of the system at the ith time instance ti may
be written in terms of the DMD modes as

yi ≈

k∑
j=1

c jeγ j tiφ j (5.5)

where c j = (Φ#y1) j represents the initial condition in terms of the jth DMD mode.

The above describes the DMD formulation derived for flows without bodies or flows
involving stationary bodies, and may be used without modification for FSI problems
to obtain the coupled flow-structure behavior that best represents the full system
dynamics.

5.3 Limit-cycle flapping of conventional and inverted flags
The dynamics of conventional- and inverted-flag flapping are governed by the
Reynolds number (Re) and the dimensionless mass (Mρ) and bending stiffness
(KB), defined as

Re =
ρ f UL
µ

, Mρ =
ρsh
ρ f L

, KB =
EI

ρ f U2L3 (5.6)

where ρ f (ρs) is the fluid (structure) density, U is the freestream velocity, L is the
flag length, µ is the dynamic viscosity of the fluid, h is the flag thickness, and EI is
the bending stiffness.

The potential (strain) energy in the flag is given by the flag displacement in the
direction normal to the flag. This displacement is written as χn(s, t), where s is the
arclength of a material position relative to the leading edge. In this notation, the
strain energy is κ( χn(s, t)) = KB (∂2 χn/∂s2)2/2. In the case of inextensible flags
considered here, this may be expressed in terms of the streamwise and transverse
displacements as κ( χ(s, t), η(s, t)) = KB (∂2 χ/∂s2 + ∂2η/∂s2)2/2. We therefore
define the L-submatrix of W using the standard second-order central difference
formula for the χ and η sub-blocks, which results in a symmetric positive definite
weighting matrix.

The data for this analysis was obtained using the immersed-boundary method de-
scribed in chapter 3. The method allows for arbitrarily large flag displacements and
rotations, and is strongly-coupled to account for the nonlinear coupling between the
flag and the fluid. The method was validated on several flapping flag problems. The
physical parameters for each run are described in the subsequent subsections; see
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Figure 5.1: Transverse displacement (left) and spectral density (right) of conven-
tional flag flapping for Re = 500, Mρ = 0.1, KB = 0.0001.

Figure 5.2: Vorticity contours at four snapshots of a flapping period of a conventional
flag in limit-cycle flapping with Re = 500, Mρ = 0.1, KB = 0.0001. Vorticity
contours are in 18 increments from -5 to 5.

chapter 3 for details about the simulation parameters such as the grid spacing and
time step that were used for the different simulations.

Limit cycle flapping of conventional flags
We consider a POD and DMD analysis of limit-cycle flag flapping of a conventional
flag with Re = 500, Mρ = 0.1, and KB = 0.0001. Figure 5.1 shows the transverse
displacement of the trailing edge of the flag as a function of time along with the
corresponding power spectral density. Our analysis is performed after the transient
region, once the system enters periodic behavior of fixed amplitude and frequency
(beginning at t ≈ 20 in figure 5.1). Figure 5.2 shows contours of vorticity at four
snapshots in time during a period of flapping in the limit cycle regime. Snapshots
were obtained over the range t ∈ [20, 40] in increments of ∆t = 0.05.

Figure 5.3 shows the singular values σ from POD along with the DMD eigenvalues
γ of largest growth rate (real part). The four leading POD modes (which represent
approximately 66% of the total system energy) are shown in the top row of figure 5.4.
Apart from the mode corresponding to the temporal mean, DMD modes typically
come in complex conjugate pairs (e.g., the two leading modes areφ1, φ̄1). We show
in the bottom row of figure 5.4 the real and imaginary parts of φ1 and φ2 (the mode
corresponding to the temporal mean is not pictured here). The POD and DMD
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Figure 5.3: POD singular values σ normalized by σ1 (left) and γ obtained through
DMD (right) for limit-cycle flapping of a conventional flag with Re = 500, Mρ =

0.1, KB = 0.0001.

Figure 5.4: Leading POD (top row) and DMD (bottom row) modes for the limit-
cycle conventional-flag problem.

modes are nearly identical since this system is characterized by a specific frequency
(c.f., figure 5.1). The energetically optimal modes are therefore driving behavior at
this dominant frequency and its harmonics. In both decompositions, the first two
modes oscillate at the peak frequency of approximately 0.8 depicted in figure 5.1,
and the subsequent modes correspond to the higher harmonic of roughly 1.6. The
flag behavior is conveyed through the leading two POD modes (leading complex-
conjugate pair of DMDmodes): these modes represent phase-shifted flapping at the
dominant frequency to create the traveling wave behavior of high spatial frequency
that the flag undergoes for these parameters [17]. The two leading modes also
demonstrate the creation and advection of vortices associated with flapping. The
higher modes are not associated with flag flapping (this information is conveyed
entirely through the leading modes), and instead describe the higher-harmonic fluid
responses to this dominant flapping motion.

Finally, we note that low-order decompositions accurately reproduce the system
dynamics. Figure 5.5 shows snapshots of the same four time instances as shown
in figure 5.2 using reconstructions from the six leading modes for both POD and
DMD.
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Figure 5.5: Six mode POD (top row) and DMD (bottom row) reconstructions of the
system for the snapshots in figure 5.2. Vorticity contours are in 18 increments from
-5 to 5.
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Figure 5.6: Transverse displacement (left) and spectral density (right) of limit-cycle
flapping of an inverted flag for Re = 200, Mρ = 0.5, KB = 0.35.

Limit cycle flapping of inverted flags
We now consider a POD andDMD analysis of limit cycle flag flapping of an inverted
flag with Re = 200, Mρ = 0.5, and KB = 0.35. Figure 5.6 shows the transverse
displacement of the trailing edge of the flag as a function of time along with the
corresponding power spectral density. Our analysis is performed after the transient
region, once the system enters periodic behavior of fixed amplitude and frequency
(beginning at t ≈ 30 in figure 5.6). Figure 5.7 shows contours of vorticity at
four snapshots in time during a half-period of flapping in the limit cycle regime.
Snapshots were obtained over the range t ∈ [100, 165] in increments of ∆t = 0.05.

Figure 5.3 shows the singular values σ from POD along with the values γ with
the largest growth rate (real part) obtained through DMD. The four leading POD
modes (which represent approximately 88% of the total system energy) and DMD
modes (omitting the mode corresponding to the temporal mean) are shown in figure
5.9. As with the previous example, the dominant frequency signature of this system
leads to similar POD and DMD modes (i.e., POD essentially results in a harmonic
decomposition). In this case, the first and third POD modes (leading complex-
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Figure 5.7: Vorticity contours at four snapshots of a half-period of an inverted flag
in limit-cycle flapping with Re = 200, Mρ = 0.5, KB = 0.35. Vorticity contours are
in 18 increments from -5 to 5.

conjugate pair of DMD modes) oscillate at the dominant frequency of roughly 0.18
and the other pictured modes correspond to the higher harmonic of 0.36.

For this large-amplitude flapping problem, significant flag motion occurs in both
the transverse and the streamwise directions, and both POD and DMD decompose
this different behavior into separate modes. In the case of POD, the leading mode
expresses the transverse motion of the flag. It also identifies the creation of the
leading edge vortex at the flag’s peak displacement, and the downstream advection
of this vortex. The third POD mode oscillates at the same frequency of the leading
mode and does not convey any flapping information, but instead provides a phase-
shifted set of vortical structures to those of the first mode that, along with the leading
mode, represent the dominant vortex-shedding behavior. By contrast, the second
POD mode describes the streamwise displacement of the flag, which oscillates at
double the frequency since for every period of flapping there are two peaks in
streamwise displacement for each peak in transverse displacement. The second
mode also describes a fine-scale leading-edge vortical structure that beats at twice
the frequency of the leading-edge structures depicted in the first mode, as well as
the creation and advection of the trailing edge vortex formed when the flag is at its
peak displacement. Analogous to the third POD mode, the fourth POD mode does
not describe flag motion, and instead provides phase-shifted vortex shedding to that
of the second mode to provide the dominant fluid behavior at the higher frequency
harmonic.

The DMD modes are similar to the POD modes, except that the imaginary part of
the leading mode corresponds to the third PODmode and the real part of the second
mode corresponds to the second POD mode, as DMD requires that a given mode
oscillate at the same frequency. Note also that the imaginary part of the leading
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Figure 5.8: POD singular values σ normalized by σ1 (left) and γ obtained through
DMD (right) for limit-cycle flapping of an inverted flag with Re = 200, Mρ =

0.5, KB = 0.35.

DMDmode is associatedwith a slightly deflected flag, and therefore describesminor
modifications to the flapping behavior described in the real parts of modes 1 and 2.
This is unlike in POD, where the first and third modes entirely describe the flapping
motion. This distinction attests to the energetic efficiency of conveying flapping
information for this system using a minimal number of modes. It also provides an
explanation for why the singular values are not ordered in pairs in figure 5.8: the
first PODmode conveys both fluid and flapping information, whereas the third POD
mode only conveys fluid motion that occurs at the same frequency as the first mode
(this conclusion applies to modes two and four as well).

We note that one consequence of decomposing transverse and streamwise displace-
ments into separate modes is that a given mode may not correspond to motion of
an inextensible flag. However, as seen from the six mode-POD and DMD repro-
ductions of the dynamics shown in figure 5.10, only a few modes are necessary to
describe the inextensible nature of the flag for this problem.

5.4 Chaotic flapping of conventional flags
Chaotic flapping of conventional flags can be triggered for flags of low stiffness
(KB) by increasing the flag mass (Mρ). For flows at moderate Reynolds numbers of
O(1000), the system transitions with increasing mass from a stable equilibrium to
limit-cycle flapping of increasing amplitude, then to chaotic flapping [17]. Similar
transitions occur in inviscid fluids [2]. We focus here on the case of moderate
Reynolds number; establishing similarities in the driving mechanisms is an avenue
of future work.

We show in figure 5.11 the tip displacement and spectral density of conventional-
flag flapping for Mρ = 0.18 and Mρ = 0.25 (the other parameters were Re = 500
and KB = 0.0001 for both cases). These Mρ values are near the critical value for
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Figure 5.9: Leading POD (top row) and DMD (bottom row) modes for the limit-
cycle inverted-flag problem.

Figure 5.10: Six mode POD (top row) and DMD (bottom row) reconstructions for
the same snapshots as in figure 5.7. Vorticity contours are in 18 increments from -5
to 5.



63

0 10 20 30 40 50

t

-0.4

-0.2

0

0.2

0.4

T
ra

il
in

g
ed

g
e

d
is
p
la

ce
m

en
t

0 0.5 1 1.5 2

Frequency

0

0.5

1

P
ow

er
sp

ec
tr

al
d
en

si
ty

0 10 20 30 40 50

t

-0.4

-0.2

0

0.2

0.4

T
ra

il
in

g
ed

g
e

d
is
p
la

ce
m

en
t

0 0.5 1 1.5 2

Frequency

0

0.5

1

P
ow

er
sp

ec
tr

al
d
en

si
ty

Figure 5.11: Transverse displacement (left) and spectral density (right) of
conventional-flag flapping for Re = 500 and KB = 0.0001. Top row: limit-cycle
flapping (Mρ = 0.18); bottom row: chaotic flapping (Mρ = 0.25).

which chaos is triggered. For Mρ = 0.18, limit cycle flapping occurs with a single
dominant frequency (note the increased flapping amplitude from the Mρ = 0.1 case
of the previous section due to the increase in mass ratio). The flapping amplitude
increases for Mρ = 0.25 and flapping becomes chaotic with multiple frequencies
present. Connell and Yue [17] observed that the sub-dominant frequency coincides
approximately with the 3/2 harmonic of the dominant frequency in this chaotic
regime. While the half-harmonic is not present in a spectrum of the flag’s motion,
Connell and Yue [17] argued that chaos is related to period doubling in the sense
that the 3/2 harmonic is periodic over a period of the half-harmonic. Using a DMD
analysis within our FSI framework, we propose in this section that the onset of chaos
is caused by a different mechanism. DMD is selected to isolate behavior at distinct
frequencies; this can be done in a POD context using spectral POD (SPOD) [84],
and an avenue of future work is to compare the results of DMD and SPOD for this
problem.

To contrast DMDmodes in the chaotic regime with those from a limit cycle near the
onset of chaos, we first show in figures 5.12 and 5.13 theDMDeigenvalues γ and four
leading modes φ (omitting the mode associated with the mean) for the limit-cycle
case of Mρ = 0.18. Note that the modal decomposition is similar to that of the lower
mass ratio despite the increase in amplitude. The leading mode captures nearly all
flapping behavior, has vortical structures similar to those for the lower mass ratio,
and has a corresponding eigenvalue at the dominant flapping frequency. Moreover,
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Figure 5.12: DMD eigenvalues γ for limit-cycle flapping of a conventional flag with
Re = 500, Mρ = 0.18, KB = 0.0001.

subsequent modes have eigenvalues at harmonics of the dominant frequency and
are associated with negligible flag motion. That is, they correspond to harmonic
responses in the fluid to the flag motion captured by the leading mode.

We now show in figures 5.14 and 5.15 the DMD eigenvalues γ and four leading
modes φ (omitting the mode associated with the mean) for the chaotic case of
Mρ = 0.25. The dominant and non-integer harmonic frequencies from the nonlinear
simulations manifest themselves in DMD modes φ1 and φ3. Note that despite the
significant change in behavior from the limit-cycle regime, φ1 remains largely
unchanged. Yet, due to the increased system complexity, flapping is no longer
conveyed entirely through the first mode, and both φ1 and φ3 are associated with
flapping motion and a correlated set of flow features.

By contrast, φ2 is not associated with flapping (the flag mode in the insert is un-
deformed). This is consistent with the absence of the γ2 frequency in the spectral
density plot of figure 5.11 (the small peak at low frequency in figure 5.11 corresponds
to γ4 ≈ 0.27). Thus, themode represents a response of the fluid to the dominant flap-
ping motion. The pronounced shear layers at the top and bottom peak displacement
and the corresponding wake vortices are reflective of a bluff-body vortex-shedding
mode that appears because of the increased flapping amplitude compared with the
limit-cycle case. This is further evidenced by the modal frequency, which agrees
with the classical 0.2 Strouhal scaling [66] when normalized by the projected length
of the maximum peak-to-peak-amplitude (0.35 × 0.5 ≈ 0.18). Note also that γ2 is
not a sub-harmonic of the dominant flapping frequency γ1, and thus this bluff-body
mode is reflective of the appearance of a new physical mechanism rather than of
resonance or harmonic interactions.
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Figure 5.13: Leading DMD modes for the limit-cycle conventional-flag problem
with Re = 500, KB = 0.0001, Mρ = 0.18.
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Figure 5.14: DMD eigenvalues γ for chaotic flapping of a conventional flag with
Re = 500, Mρ = 0.25, KB = 0.0001.
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Figure 5.15: Leading DMD modes for chaotic flapping of a conventional flag with
Re = 500, Mρ = 0.25, KB = 0.0001.

This bluff-body mode is key to understanding the sub-dominant flapping behavior
of the flag occurring at frequency γ3: the sub-dominant frequency is a triadic com-
bination of the frequencies of the dominant flapping mode and the bluff-body mode;
i.e., γ3 = γ1 + γ2. Moreover, the other sub-dominant frequency of approximately
0.27 in figure 5.11 is manifested in φ4, which is also a triadic combination of φ1

and φ2 (γ4 = γ1 − γ2). The triadic interaction of oscillatory behavior are required
by the quadratic nonlinearity of the advective term in the Navier-Stokes equations
[21].
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5.5 Conclusions
While data analysis of fluid systems is a pervasive tool for understanding driving
physical mechanisms, its application to FSI problems remains limited. For these
FSI problems, data analyses are often performed only on data of fluid or structure
variables, rather than incorporating both. Thus, modes are not identified for the
omitted quantity. Moreover, correlations between physical mechanisms in the flow
and structure can not be determined through this approach.

We presented a formulation for performing data analysis on FSI problems that
accounts for both the fluid and the structure. We designed this formulation to be
compatible with the manner in which data is typically obtained for experiments and
nonconformingmesh simulations. As part of this framework, we defined a physically
meaningful norm for FSI systems. We considered POD and DMD because of their
widespread use, but extensions to other methods are straightforward. The main
goal of this work was to demonstrate the utility of performing data analysis on
FSI problems in a way that accounts for both the fluid and the structure, rather
than promote a specific data-analysis method. Future work should incorporate the
above-described methodology into the appropriate decomposition technique for the
problem of interest.

Our formulation was first applied to limit-cycle flapping of flags in the conventional
and inverted configuration. Because of the dominant frequency associated with
this limit-cycle behavior, both POD and DMD give similar decompositions. In the
conventional-flag case, the leading two POD modes (leading complex-conjugate
pair of DMD modes) convey both the flapping information of the flag and the dom-
inant vortical structures associated with this motion. Subsequent modes describe
harmonic responses in the fluid to the flapping described in the leading modes. In
the inverted-flag case, large-amplitude flapping occurs and significant flag motion
is exhibited in the transverse and streamwise directions. POD separates these mo-
tions, with the leading mode describing flag and fluid structures associated with
transverse motion and the second mode conveying correlated flag and fluid behavior
from streamwise motion. All flapping information is conveyed through these first
two POD modes, with the remaining modes again presenting harmonic responses
in the fluid to this dominant flag motion. DMD yields a similar decomposition,
though slight mixing of the transverse and streamwise flag motion occurs for the
two leading modes.

Finally, the physical mechanism driving chaotic flapping of conventional flags was
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clarified. Connell andYue [17] identified that the transition from limit-cycle flapping
to chaotic flapping coincides with the appearance of a new flapping frequency
that near the 3/2 harmonic of the dominant flapping frequency. We identified the
mechanism driving this non-integer harmonic through a DMD analysis. We first
demonstrated that at the onset of chaos, the flag becomes sufficiently bluff at its peak
deflection to initiate a bluff-body wake instability. This is in contrast to limit-cycle
flapping, where flapping amplitudes are smaller and this bluff-body instability is
not instigated. The associated shedding frequency of this new behavior coincides
with the Strouhal scaling of 0.2 common to bluff-body flows [66]. Moreover, we
demonstrated that this bluff-body mode combines triadically with the dominant
flapping behavior to produce the observed flapping near the 3/2 harmonic.

Finally, we note that data analysis is often used to develop reduced-order models of
complex flow. For FSI systems, these models are typically derived by performing a
data-driven decomposition of the fluid and coupling this to the full governing equa-
tions for the structure (see Dowell and Hall [20] for a review). This approach may
require more modes than those derived from a combined fluid-structure treatment,
and there are avenues for future work in evaluating the efficiency of our proposed
data-analysis technique in the context of reduced-order models.
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C h a p t e r 6

OUTLOOK

In part I of this thesis, we developed numerical tools for performing high-fidelity
simulations and analysis of FSI systems. Yet, there are many opportunities for
further development of the work described in chapters 2–5. For computing accu-
rate surface stresses (chapter 2), we demonstrated that more differentiable smeared
delta functions lead to smoother, higher fidelity stresses. Smoother delta functions
typically have a wider support and therefore involve a larger computational cost,
and future work could identify narrower-width delta functions that retain sufficient
smoothness to preserve the desired accuracy in the computed stresses and forces.

In the context of the FSI method we developed (chapter 3), the solver is based
on a two-dimensional (2D) discrete streamfunction-vorticity formulation. While a
primitive-variable formulation was presented that could be applied in 2D or 3D, this
has yet to be implemented, and accomplishing this (particularly in 3D) could enable
simulations of a wider range of FSI systems. Finally, for either the streamfunction-
vorticity or primitive-variable formulation, the IB method places fictitious fluid
inside of bodies that produces unphysical contributions to the surface stresses for
any body of finite thickness. For this reason, the current FSI algorithm is only valid
for thin structures. While the unphysical contributions of the fictitious fluid can be
removed in rigid body problems [43], doing so for thick deforming bodies remains
a challenge.

For global stability analysis of FSI systems (chapter 4), the same restriction to thin
structures applies, and again extending the applicability of the solver to thick bodies
would allow for a wider range of FSI problems to be studied. In addition, the
linear systems involved in FSI problems are typically large, and there are inherent
challenges to computing the associated eigenvalues and eigenvectors. Our current
approach uses a shift-and-invert procedure, which involves an LU factorization of
the linear system. Performing this decomposition may be infeasible for problems
of larger dimension than we have considered, and other means of computing the
eigenvalues and eigenvectors would have to be adopted (e.g., using an Arnoldi
method based on snapshots from the linearized time-stepper [4]). We note that
the use of these alternative methods would be particularly important if the 3D
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primitive-variable formulation is adopted due to the increase in dimensionality of
the system.

For data analysis of FSI systems (chapter 5), we have thus far only consider problems
in which behavior is associated with a specific frequency, and applying this analysis
to dynamical systems with more broadband frequency content could elucidate phys-
ical mechanisms in this more complex scenario. Additionally, our formulation was
developed for POD and DMD, and extending this derivation to other snapshot-based
methods would provide a larger tool set for understanding FSI systems.
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Physics of inverted flag flapping

71



72

C h a p t e r 7

INTRODUCTION1

Uniform flow past a conventional flag – where the flag is pinned or clamped at its
leading edge with respect to the oncoming flow – has been studied widely beginning
with the early work of Taneda [80] (see Shelley and Zhang [76] for a recent review).
By contrast, studies of flow past an inverted flag, in which the flag is clamped at its
trailing edge, have only been reported recently. The inverted-flag system displays a
wide range of dynamical regimes [32, 40, 69], many of which are depicted in figure
7.1. This figure is produced from the numerical simulations described in section
8.1.

One of the dynamical regimes depicted is large-amplitude flapping (figure 7.1d),
which is associated with a larger strain energy than that of conventional flag flapping.
These large bending strains make the inverted-flag system a promising candidate
for energy harvesting technologies that convert strain energy to electricity, e.g., by
using piezoelectric materials. Shoele and Mittal [77] studied this energy harvesting
potential in detail by performing numerical simulations of a fully-coupled fluid-
structure-piezoelectric model.

Transitions between the various regimes in figure 7.1 depend on the Reynolds
number (Re), dimensionless mass ratio (Mρ), and dimensionless bending stiffness

1This part of the thesis is based on the publication in preparation Goza, Colonius, and Sader [30],
for which my contributions were identifying the mechanism responsible for the onset of flapping,
distinguishing parameters under which vortex-induced vibration occurs in large-amplitude flapping,
characterizing the chaotic regime, running all simulations, and being the primary author of the article.

(a) (b) (c) (d) (e)

Figure 7.1: Time lapses of flag position for (a) the undeformed equilibrium, (b)
small-deflection stable, (c) small-deflection deformed flapping, (d) large-amplitude
flapping, and (e) deflected-mode regimes. In all figures, the flag is clamped at its
right edge and the flow direction is from left to right.
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(KB), defined as

Re =
ρ f UL
µ

, Mρ =
ρsh
ρ f L

, KB =
EI

ρ f U2L3 (7.1)

where ρ f (ρs) is the fluid (structure) density, U is the freestream velocity, L is the
flag length, µ is the shear viscosity of the fluid, h is the flag thickness, and EI is
the flexural rigidity of the flag. In experiments, regime transitions are triggered by
increasing the flow rate [40]. This coincides with a decrease in KB and an increase
in Re for fixed Mρ, by virtue of (7.1). In contrast, numerical simulations often
decrease the flag’s stiffness at fixed Re and Mρ, which isolates the effect of various
parameters and facilitates comparison to previous numerical studies of flow-induced
vibration.

Simulations show that for moderate Reynolds numbers (. 1000), a systematic
decrease in KB causes a change from a stable undeformed equilibrium state (figure
7.1a) to a small-deflection stable state (figure 7.1b). This is followed by a transition
to small-deflection deformed flapping (figure 7.1c), then to large-amplitude flapping
(figure 7.1d), and finally to a deflected-mode regime (figure 7.1e) [32, 69]. These
simulations have been performed primarily for Mρ ≤ O(1) (heavy fluid loading),
though Shoele and Mittal [77] considered large values of Mρ.

The same regime transitions persist at higher Reynolds numbers, Re ∼ O(104), ex-
cept that the small-deflection stable and small-deflection deformed flapping regimes
discussed above are no longer present. That is, the undeformed equilibrium directly
gives way to large-amplitude flapping [40]. Moreover, Sader et al. [71] experimen-
tally identified a chaotic flapping regime (not shown in figure 7.1) at these higher
Reynolds numbers that has yet to be reported using numerical simulations with
Re ≤ O(1000).

At low Reynolds numbers (Re < 50), numerical simulations have shown that the
inverted flag’s dynamics can change significantly: no flapping occurs, with the only
observed regimes being the undeformed equilibrium and stable deflected states [69].
These simulations were performed over a wide range of KB for only one value of
Mρ, and the system’s dependence on these two parameters remains an open question
at these lower Reynolds numbers.

Several driving mechanisms of the various regimes illustrated in figures 7.1(a)–(e)
have been identified. The bifurcation from the undeformed equilibrium is caused by
a divergence instability (i.e., the instability is independent of Mρ). This mechanism
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was originally suggested by Kim et al. [40], and subsequently found computationally
[32] and mathematically via a linear stability analysis [71]. For large-amplitude
flapping, Sader et al. [71] used experiments and a scaling analysis to argue that
this regime is a vortex-induced vibration (VIV) for a range of parameters. The
primary role of vortex shedding in large-amplitude flapping is further evidenced
by the above-mentioned observation of Ryu et al. [69] that flapping does not occur
below Re ≈ 50 (for certain values of Mρ). The aforementioned scaling analysis of
Sader et al. [71] was also used to predict that VIV should cease as the mass ratio, Mρ,
increases – a prediction that is yet to be verified. With respect to the deflected-mode
regime, small-amplitude flapping about a large mean-deflected position occurs, and
Shoele and Mittal [77] showed that the flapping frequency is identical to that of the
vortex shedding caused by the flag’s bluffness.

We use here high-fidelity nonlinear simulations and a global linear stability analysis
to further characterize the regimes in figure 7.1 and explore their driving physical
mechanisms. We emphasize that our global stability analysis is based on a lin-
earization of the fully-coupled fluid-structure system of equations. Moreover, the
computed equilibria are steady-state solutions of the fully-coupled nonlinear equa-
tions described in section 8.1. Our results are presented for Reynolds numbers of 20
and 200, various values of KB, and values of Mρ spanning four orders of magnitude.

Using this approach, we (i) study the mechanisms responsible for the onset of small-
deflection deformed flapping, (ii) probe the role of vortex shedding and VIV in
large-amplitude flapping, and (iii) investigate whether chaotic flapping occurs at
low-to-moderate Reynolds numbers (Re = 20 and 200). To explore (i), we first
demonstrate that the small-deflection stable state is an equilibrium of the fully-
coupled fluid-structure system. Through a global stability analysis, we show that
the subsequent transition to small-deflection deformed flapping (figure 7.1c) as the
bending stiffness decreases is a supercritical Hopf bifurcation of this deformed
equilibrium. For point (ii), we confirm the arguments of Sader et al. [71] that
large-amplitude flapping is a VIV for Re = 200 and lower values of the mass ratio,
Mρ < O(1). We then show that the nature of flapping in this large-amplitude
regime qualitatively changes for large Mρ, consistent with the scaling analysis of
Sader et al. [71]. Large-amplitude flapping is also shown to occur for large Mρ at the
lower Reynolds number of Re = 20. Vortex shedding is absent at this low Reynolds
number, and flapping thus occurs through a non-VIV mechanism. Consistent with
the simulation results of Ryu et al. [69], we find no flapping at this low Reynolds
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number for Mρ < O(1). Finally, with respect to (iii), we confirm that chaotic
flapping persists at moderate Reynolds numbers (Re = 200) for light flags with
Mρ < 1, and demonstrate that the structure of the associated strange attractor is
controlled by a combination of the large-amplitude and deflected-mode regimes.
Chaos does not occur for heavy flags at Re = 200 or for any mass ratio considered at
Re = 20. Thus, chaos is associated with parameters for which VIV flapping occurs.

We contextualize the simulation results over this wide range of parameters using
bifurcation diagrams. These provide an overview of the equilibria, their stability,
and the flapping dynamics. Figure 7.2 shows an illustrative bifurcation diagram that
summarizes what will be shown in later sections. In these bifurcation diagrams, the
leading edge transverse displacement (tip displacement) is plotted versus the flag
flexibility (1/KB) for a particular choice of Re and Mρ (see the caption for details).
Note that even though the undeformed and deformed equilibria become unstable
with a decrease in KB, they nonetheless remain as equilibria of the system. We
demonstrate below through a global stability analysis that these unstable deformed
equilibria are key to understanding a variety of flapping behavior of the inverted-flag
system.

Two-dimensional (2D) simulations are presented throughout. As mentioned above,
many similarities exist between the 3D experiments of [40] and 2D simulations
of [32, 69, 77]. This suggests that features of the 2D dynamics persist in 3D
(though Sader, Huertas-Cerdeira, and Gharib [70] demonstrated that substantial
differences occur for low-aspect ratio flags). Yet, 3D effects could alter the critical
parameters at which bifurcations occur, as well as the mechanisms driving these
bifurcations. Exploring these similarities and differences between 2D and 3D
geometries is a subject of future work and is not considered here. Quantities
presented below are dimensionless, with length scales, velocity scales, and time
scales nondimensionalized by L, U, and L/U, respectively.
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Figure 7.2: A schematic bifurcation diagram that summarizes the results obtained for
various parameters considered in the present work. Equilibria are presented by lines
( , stable equilibria; , unstable equilibria; , stability depends on parameters).
The lines with the double arrows indicate regimes where flapping occurs, with
the top and bottom lines representing the peak-to-peak flapping amplitude. The
diagram shows that with decreasing KB (moving left to right), the system transitions
from the undeformed equilibrium to a stable deformed equilibrium. Following this,
the system bifurcates to small-deflection deformed flapping, then large-amplitude
flapping (chaotic flapping can also occur in this regime depending on parameters),
andfinally to a deflected-mode regimewhose dynamics depend onReynolds number:
for Re = 20, no flapping occurs and the large-deflection state is an equilibrium of
the fully-coupled system; for Re = 200, the large-deflection state is characterized
by small-amplitude flapping. The above diagram only corresponds to cases when
flapping occurs. For Re = 20 and Mρ < O(1), no flapping occurs and the only two
regimes are the undeformed and deformed equilibria.
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C h a p t e r 8

NONLINEAR SIMULATIONS AND GLOBAL MODE ANALYSIS
OF INVERTED FLAG FLAPPING

8.1 Simulation parameters
The results presented below use the nonlinear solver described in chapter 3 of part
I and the global stability solver described in chapter 4 of part I.

The flow equations are treated using a multidomain approach: the finest grid
surrounds the body and grids of increasing coarseness are used at progressively
larger distances [16]. In all computations below, the domain size of the finest sub-
domain was [−0.2, 1.8]× [−1.1, 1.1] and the total domain size was [−15.04, 16.64]×
[−17.44, 17.44]. The grid spacing on the finest domain was h = 0.01 and the grid
spacing for the flag was ∆s = 0.02. For computations involving time marching, the
time step was∆t = 0.001, which gave a maximumCourant-Friedrichs-Levy number
of ≈ 0.15.

To determine the suitability of these parameters, we performed a grid convergence
study of the nonlinear solver using Re = 200, Mρ = 0.5, KB = 0.35. For these
parameters the flag enters limit cycle flapping of fixed amplitude and frequency.
Using the grid described above, the amplitude and frequency of these oscillations
were a = ±0.81, f = 0.180, respectively. Refining the grid spacing to h = 0.0075
on the finest domain and increasing the domain such that the finest sub-domain
size was [−0.2, 2.8] × [−1.5, 1.5] and the total domain size was [−22.58, 25.18] ×
[−23.88, 23.88] changed these values to a = ±0.80, f = 0.183, respectively.

8.2 Dynamics for Re = 200
We now consider the inverted-flag system for Re = 200. We demonstrate the
existence of a deformed equilibrium that is stable over a small range of stiffnesses and
becomes unstable as KB is decreased. The transition to small-deflection deformed
flapping associated with this decrease in KB is shown through a global stability
analysis to be a supercritical Hopf bifurcation of the deformed equilibrium. We
next consider the large-amplitude flapping regime, and confirm the arguments of
Sader et al. [71] that this regime is a VIV for small values of Mρ – flapping and
vortex shedding synchronize to a common frequency. This large-amplitude regime
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is then shown to be qualitatively different for larger mass ratios, consistent with the
scaling analysis of Sader et al. [71]. In this large-Mρ case, flapping occurs at a
lower frequency than vortex shedding, and similarities and differences to VIV are
discussed. We then use a global stability analysis to confirm the argument of Shoele
andMittal [77] that small-amplitude flapping in the deflected-mode regime is driven
by the bluff-body vortex-shedding instability. Finally, we show that for a range of
KB, light flags with Mρ ≤ O(1) exhibit chaotic flapping characterized by switching
between large-amplitude flapping and the deflected-mode state. No chaotic flapping
is observed for heavy flags, i.e., Mρ > O(1).

Bifurcation diagrams and general observations
Figure 8.1 shows bifurcation diagrams at four different masses for Re = 200. Each
plot gives the transverse leading edge displacement (tip deflection, δtip, nondimen-
sionalized by the flag length L) as a function of the reciprocal stiffness (1/KB). Solid
lines represent stable equilibria, and dashed lines correspond to unstable equilibria.
Information for unsteady regimes is conveyed through the markers. A set of markers
at a given stiffness corresponds to tip deflection values from a single nonlinear simu-
lation at moments when the tip velocity is zero (i.e., when the flag changes direction
at the tip). From a dynamical systems perspective, the markers correspond to zero
tip velocity Poincaré sections of a tip velocity-tip displacement phase portrait. All
nonlinear simulations were started with the flag in its undeflected position and the
flow impulsively started to its freestream value. A small body force was introduced
at an early time to trigger any instabilities in the system. All simulations contain
a minimum of 15 flapping cycles except for the chaotic flapping regime, where a
minimum of 55 cycles were used. To avoid representing transient behavior in the
figures, we omit the first several flapping cycles in the diagrams. The bifurcation
diagrams were insensitive to starting conditions – the results were unchanged by
running a corresponding set of simulations with the flag initialized in its deformed
equilibrium state.

To illustrate the meaning of the markers in figure 8.1 further, consider 1/KB ≈ 4
for Mρ = 0.5. The system enters into large-amplitude limit cycle flapping with a
fixed amplitude of ≈ ±0.8, and the bifurcation diagram reflects this with a marker
at these peak tip displacements, which are the only tip displacement values where
the tip velocity is zero. Note that there are actually several markers superposed onto
one another at this stiffness since multiple flapping periods were used to plot these
diagrams, though only one marker is visible because of the limit cycle behavior
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exhibited. As another example, the bifurcation diagram at 1/KB ≈ 6 for Mρ = 0.05
depicts chaotic flapping. Many markers are visible at this stiffness because the
flag changes direction at several different values of δtip. The value of using zero
tip-velocity Poincaré sections for the bifurcation diagrams is seen through chaotic
flapping: these Poincaré sections demonstrate the variety of transverse locations
where the flag changes direction – a fact not captured through, for example, plotting
the peak-to-peak flapping amplitudes at a given stiffness.

The bifurcation diagrams in figure 8.1 depict the undeformed equilibrium (I), de-
formed equilibrium (II), small-deflection deformed flapping (III), large-amplitude
flapping (IV), deflected mode (VI), and chaotic flapping (V) regimes. In small-
deflection deformed flapping, flapping is seen about the upward deflected equilib-
rium. There is a corresponding deformed equilibriumwith a negative flag deflection,
and different initial conditions would result in flapping about this equilibrium. We
refrain from plotting this behavior to avoid confusion with large-amplitude flapping.

The undeformed equilibrium becomes unstable with decreasing stiffness due to a
divergence instability (the critical stiffness for instability is independent of the mass
ratio) [32, 40, 71]. We see from figure 8.1 that this instability causes a transition to a
regime where the flag is in a steady deflected position. As stiffness is decreased, this
steady deflected state is characterized by increasingly large tip deflections (see figure
8.2). This regime was first observed by Gurugubelli and Jaiman [32] and Ryu et al.
[69], and we note that it represents a deformed equilibrium state (i.e., in the notation
of section 8.1 it satisfies the steady state equations r (y) = 0). Moreover, even for
masses where flapping occurs, the deformed equilibrium still exists as an unstable
steady-state solution to the fully-coupled equations (4.1)–(4.4). Note also that for
a given stiffness the tip deflection of the deformed equilibrium is constant for all
masses, since the equilibrium is a steady state solution of (4.1)–(4.4) and therefore
does not depend on flag inertia. Figure 8.2 provides illustrations of deformed
equilibria for various stiffnesses (some of which are unstable).

Figure 8.3 gives the peak flapping frequency for the various regimes where flapping
occurs. For all masses considered, small-deflection flapping is associated with a low
frequency that is not indicative of VIV behavior: using themaximal tip displacement
as the length scale, the largest Strouhal number over all masses is 0.02. We show in
the next section that this regime is caused by the transition to instability of the leading
global mode of the deformed equilibrium. Note that the frequency is dependent on
flag mass in this regime, illustrating the fully-coupled nature of the problem.



80

Figure 8.1: Bifurcation diagrams of inverted-flag dynamics at Re = 200 that show
leading edge transverse displacement (tip deflection, δtip) versus inverse stiffness
(1/KB). I: undeformed equilibrium, II: deformed equilibrium, III: small-deflection
deformed flapping, IV: large-amplitude flapping, V: chaotic flapping, VI: deflected
mode. See the main text for a description of the various lines and markers and
details on how the diagrams were constructed.
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Figure 8.2: Vorticity contours for equilibrium states of the flow-inverted-flag system
at Re = 20. From left to right: KB = 0.5, 0.35, 0.22, 0.11. The three rightmost
equilibria are unstable for all masses considered. Contours are in 18 increments
from -5 to 5.

Large-amplitude flapping is qualitatively different for light flags (Mρ = 0.05, 0.5)
and heavy flags (Mρ = 5, 50). Light flags: the flapping frequency is roughly
constant across an order-of-magnitude change in Mρ, which demonstrates the flow-
driven nature of flapping in this regime. Sader et al. [71] found that for a range of
parameters large-amplitude flapping exhibits several properties of a VIV, and we
confirm below that for light flags the fluid forces on the flag and flag displacement
oscillate at the same frequency to form a VIV.Heavy flags: the flapping frequency is
decreased relative to light flags, and we show in a later section that this corresponds
to additional shed vortices per flapping period. Thus, for heavy flags the fluid forces
and flag displacements are associated with different dominant frequencies. This is
consistent with the scaling analysis of Sader et al. [71], and we discuss similarities
and differences to VIV in section 8.2.

For all masses, the deflected-mode regime (occurring at low stiffness/ high flow rate)
has a peak frequency that matches the bluff-body shedding frequency (depicted by
the dashed lines). This regime is therefore flow-driven and caused by the canonical
bluff-body wake instability irrespective of flag mass [77]. We show in section 8.2
that the global stability analysis reflects this behavior.

Finally we note that for light flags (Mρ = 0.05, 0.5), large-amplitude flapping bi-
furcates (with decreasing stiffness) to chaotic flapping before entering into the
deflected-mode regime. The frequency plot for Mρ = 0.05, 0.5 in figure 8.3 illus-
trates this transition further: in the large-amplitude flapping regime (region IV),
decreasing stiffness leads to a corresponding decrease in flapping frequency. Even-
tually the decrease in frequency becomes significant enough that de-synchronization
between flag flapping and vortex shedding occurs. At this point, chaotic flapping
(region V) characterized by multiple frequencies ensues. The multiple frequencies
in region V of figure 8.3 were obtained from a power-spectral density plot at each
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Figure 8.3: Markers: peak flapping frequency at Re = 200 for the parameters
corresponding to the bifurcation diagrams shown in figure 8.1; ( ): bluff-body
shedding frequency (= 0.2/Lp, where Lp is the projected length of the flag to the
flow defined using the maximum tip deflection at a given stiffness).

stiffness: frequencies accounting for at least 20% of the total spectral energy were
plotted. The chaotic regime is discussed in more detail in section 8.2.

Small-deflection deformed flapping
Table 8.1 demonstrates that the bifurcation to small-deflection deformed flapping
is a supercritical Hopf bifurcation of the deformed equilibrium. For all four mass
ratios (Mρ), the onset of flapping is associated with the transition to instability
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Mρ KB
Leading mode Peak frequency of

Growth rate Frequency nonlinear simulation
0.05 0.415 -0.0021 0.110 N/A (stable equilibrium)
0.05 0.41 0.0052 0.110 0.108
0.5 0.42 -0.0031 0.104 N/A (stable equilibrium)
0.5 0.415 0.0073 0.103 0.101
5 0.425 -0.0014 0.073 N/A (stable equilibrium)
5 0.42 0.0039 0.072 0.071
50 0.435 -0.0022 0.028 N/A (stable equilibrium)
50 0.43 0.0045 0.027 0.028

Table 8.1: Growth rate and frequency of the leading global mode of the deformed
equilibrium compared with nonlinear behavior for parameters near the onset of
small-deflection deformed flapping.

of the leading mode of the deformed equilibrium. Table 8.1 also shows that the
leading mode accurately captures the flapping frequency observed in the nonlinear
simulations near this stability boundary where flapping amplitudes remain small.

Figures 8.4 and 8.5 show the leading mode of the deformed equilibrium near the
critical stiffness values where bifurcation occurs for M = 0.5 and M = 5, respec-
tively. Flapping is associated with vortical structures isolated near the flag surface.
Note that the vortical structures are longer for Mρ = 5 (figure 8.5) than for Mρ = 0.5
(figure 8.4), which is commensurate with the lower flapping frequency seen for the
more massive case.

To demonstrate how the leading mode manifests itself in the nonlinear simulations,
we show in figure 8.6 snapshots during a flapping period of a flag with Mρ =

0.5, KB = 0.41 (i.e., in the small-deflection flapping regime). Note in particular
the absence of vortex shedding – the entire flapping period is associated with long
vortical structures that extend from the flag into the wake. This is distinct from the
large-amplitude flapping behavior discussed in the next section, and emphasizes that
even at the moderate Reynolds number of Re = 200, inverted flags have a flapping
mechanism devoid of vortex shedding.

Large-amplitude flapping
Decreasing stiffness in the small-deflection deformed flapping regime is associated
with an increasingly unstable leading mode (see table 8.2) and a corresponding
increase in flapping amplitude. Eventually, the amplitude is sufficiently large for
the flag to reach past the centerline (δtip = 0) position, and large-amplitude flapping
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Figure 8.4: Real (top) and imaginary (bottom) parts of vorticity (left) and flag
displacement (right) of the leading global mode of the deformed equilibrium for
Mρ = 0.5, KB = 0.41 and Re = 200 (corresponding to small-deflection deformed
flapping). Vorticity contours are in 20 increments from -0.05 to 0.05.
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Figure 8.5: Real (top) and imaginary (bottom) parts of vorticity (left) and flag
displacement (right) of the leading global mode of the deformed equilibrium for
Mρ = 5, KB = 0.41 and Re = 200 (corresponding to small-deflection deformed
flapping). Vorticity contours are in 20 increments from -0.2 to 0.2.
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Figure 8.6: Vorticity contours at four snapshots of a flapping period of a flag in
small-deflection deformed flapping. The figures were obtained from a nonlinear
simulation with Re = 200, Mρ = 0.5, KB = 0.41. Contours are in 18 increments
from -5 to 5.

KB Leading mode growth rate
0.41 0.022
0.38 0.123
0.35 0.250
0.33 0.313

Table 8.2: Growth rate of the leading global mode of the deformed equilibrium
for Mρ = 0.5 for stiffnesses in the small-deflection deformed flapping and large-
amplitude flapping regimes.

ensues.

At this Reynolds number, the large-amplitude behavior is associated with sufficient
bluffness to the flow that vortex shedding occurs. As discussed in section 8.2, the
resulting dynamics are dependent on flag mass, and we therefore consider light flags
and heavy flags separately in what follows.

We emphasize that in either the light- or heavy-flag case, vortex shedding inter-
acts with intrinsic flapping behavior that can be understood through the deformed
equilibria of the system. In large-amplitude flapping, the deformed equilibrium is
unstable and has a sufficiently large saturation amplitude for the flag to flap past the
centerline position and into the region of attraction of the deformed equilibrium on
the other side of the centerline. This newly sampled deformed equilibrium is also
associated with a saturation amplitude that leads the flag to flap past the centerline,
so an indefinite process ensues with flapping occurring around these two equilibria.
The existence of this intrinsic flapping mechanism is particularly pronounced at
Re = 20 for large values of Mρ, for which flapping occurs without vortex shedding
(see section 8.3). This result attests to the presence of non-VIV flapping mecha-
nisms and to the potential for large-amplitude flapping in the absence of any vortex
shedding.
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Figure 8.7: Vorticity contours at four snapshots of a flapping period of a flag in
large-amplitude flapping for Mρ = 0.05 (top row) and Mρ = 0.5 (second row). The
other parameters were Re = 200, KB = 0.32. Contours are in 18 increments from
-5 to 5.

Large-amplitude flapping of light flags

For sufficiently light flags (Mρ ≤ 0.5 in our studies), flapping was shown to syn-
chronize with specific vortex-shedding patterns [32, 77], and Sader et al. [71] used
experiments and a scaling analysis to argue that this regime is a VIV. To illustrate
the synchronization of vortex shedding and flapping, we show snapshots from a
half-period of large-amplitude flapping for Mρ = 0.05, 0.5 in figure 8.7. Note that
despite an order of magnitude change in mass, the vortex-shedding pattern in the
top two rows of the figure is similar: when the flag reaches its peak amplitude the
leading edge vortex formed during the upstroke grows (left plot); as the flag begins
its downstroke the leading edge vortex is released and a trailing edge vortex forms
(second from left plot); the vortices grow in size as the flag reaches its centerline
position (second from right plot); while the leading and trailing edge vortices ad-
vect downstream to form a P vortex pair (see Williamson and Roshko [89] for a
description of this vortex characterization), a leading edge vortex forms as the flag
continues its downstroke (rightmost plot). When the flag reaches its peak position,
an analogous process to the one just described occurs during the upstroke (with
oppositely signed vorticity).

To confirm that this regime is a VIV, we show in figure 8.8 time traces of the coef-
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Figure 8.8: Tip displacement (−) and coefficient of lift (·−) for an inverted flag in
large-amplitude flapping with Re = 200, KB = 0.32.

ficient of lift and tip displacement for Mρ = 0.05, 0.5. The lift and tip displacement
are synchronized and share a common dominant frequency, and therefore satisfy the
definition of VIV [39, 72].

Large-amplitude flapping of heavy flags

The interaction between vortex shedding and flapping is qualitatively different as
the flag mass is increased further. Figure 8.9 shows that for Mρ = 5, 50 additional
vortices are shed per half-period. The flapping cycle for Mρ = 5 is similar to the
lighter flag cases, except that during the downstroke an additional leading edge
vortex forms (first row, second from rightmost plot) and advects downstream along
with the original leading and trailing edge vortices (rightmost plot). The additional
vortex leads to a P + S wake structure. For Mρ = 50, even more vortices are shed
during the downstroke: the first leading and trailing edge vortices are shed when the
flag is still near its peak amplitude (second row, leftmost plot); the flag begins its
downstroke and another leading-trailing edge vortex pair are formed (second from
leftmost plot); as the flag nears its centerline position, a third leading edge vortex
forms (second from rightmost plot); this leading edge vortex combines with a newly
formed trailing edge vortex during the downstroke phase to form a third pair that is
advected downstream; at the end of the downstroke phase, new vortices form at the
leading and trailing edge as the flag reaches its peak amplitude (rightmost plot).

The different frequency behavior of flapping and vortex shedding is illustrated
further through time traces of the coefficient of lift and tip displacement (see figure
8.10). Unlike in the light-flag case, heavy flags contain multiple lift peaks for a given
peak in tip displacement. Moreover, for Mρ = 50, there is a slight departure from



88

Figure 8.9: Vorticity contours at four snapshots of a flapping period of a flag in
large-amplitude flapping for Mρ = 5 (first row) and Mρ = 50 (second row). The
other parameters were Re = 200, KB = 0.32. Contours are in 18 increments from
-5 to 5.
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Figure 8.10: Tip displacement (−) and coefficient of lift (·−) for an inverted flag in
large-amplitude flapping with Re = 200, KB = 0.32.

periodicity that can be observed in figure 8.10 (and is reflected in the bottom right
bifurcation diagram in figure 8.1). The disparity between the dominant frequency
of the coefficient of lift and tip displacement is reflective of a break from canonical-
VIV behavior, and is consistent with the scaling analysis of Sader et al. [71] that
VIV should cease for sufficiently large Mρ.

Yet, similarities to VIV persist for large values of Mρ. For Mρ = 5, it is clear from
figure 8.10 that the lift coefficient is periodic over a period of flapping, and thus the
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large-amplitude response could be a result of synchronization between flapping and a
higher harmonic in the vortex-shedding response of the fluid. This relation between
the dominant flapping motion and a harmonic response in the fluid could also be
occurring for Mρ = 50, though the slight aperiodicity in the system emphasizes the
continued departure from canonical VIV behavior with increasing mass ratio.

Deflected-mode regime
For low stiffnesses the system transitions to a large-deflection state about which
small-amplitude flapping occurs. As seen in figure 8.1, this flapping is not centered
about the deformed equilibrium position (i.e., the mean and equilibrium states are
different).

The nature of flapping in this regime is qualitatively distinct from that of small-
deflection deformed flapping and large-amplitude flapping. Shoele and Mittal [77]
observed that when the flapping frequency is scaled by the freestream velocity and
mean tip amplitude (i.e., the mean projected length to the flow), it agrees well
with the classical 0.2 value found for vortex shedding past bluff bodies [66]. They
used this finding to argue that the bluff-body wake instability is responsible for the
small-amplitude flapping in this regime.

The global stability analysis of the deformed equilibrium confirms this previous
conclusion. Figure 8.11 shows that the least damped mode is characterized by a vor-
tical structure in the wake of the flag similar to the leading mode of a rigid stationary
cylinder [5]. This is in contrast to the leading mode found for small-deflection de-
formed flapping and large-amplitude flapping, which has isolated vortical structures
near the flag surface1. Moreover, as seen in table 8.3, the flapping frequency of
this leading mode is independent of mass ratio (Mρ). This is also distinct from the
mass-dependent flapping frequency of the least damped mode for the previously
discussed regimes. The similar vortical structure of the mode to other bluff-body
flows and the independence of the structural parameters on the modal frequency
demonstrate that the leading instability is associated with vortex shedding and is
flow-driven.

The presence of vortex shedding in this deflected-mode regime is also the cause
of the difference between the mean and equilibrium flapping positions. Vortex
shedding is associated with an increase in the mean forces on the flag compared

1The analogous mode to the leading global mode for small-deflection deformed flapping and
large-amplitude flapping is also unstable in the deflected-mode regime, but is associated with a
smaller growth rate.
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Figure 8.11: Real (top) and imaginary (bottom) parts of vorticity (left) and flag
displacement (right) of the leading global mode of the deformed equilibrium for
Mρ = 0.5, KB = 0.12 and Re = 200. Vorticity contours are in 20 increments from
-0.2 to 0.2. The eigenvectors are identical for Mρ = 0.05, 0.5, and 50.

Mρ Leading mode frequency
0.05 0.205
0.5 0.205
5 0.205
50 0.205

Table 8.3: Frequency of the leading global mode of the deformed equilibrium for
KB = 0.12 and four different masses. All cases correspond to the deflected-mode
regime.

with the equilibrium state (which is devoid of vortex shedding; c.f., figure 8.2). To
demonstrate this increase in fluid forces, we ran a simulation with the flag fixed in
the deformed equilibrium position corresponding to KB = 0.1. With the flag fixed
in this position, the bluffness of the body causes the flow to enter limit-cycle vortex
shedding with a mean lift and drag of 0.356 and 0.583, respectively. By contrast,
when the fully-coupled system is in the deformed equilibrium and vortex shedding
is absent, the lift and drag forces are 0.192 and 0.344, respectively. The increase
in mean forces causes a corresponding increase in flag deflection, and thus in the
nonlinear simulations flapping occurs about a mean position that is raised from the
equilibrium state.

We emphasize that this vortex sheddingmode is stable for small-deflection deformed
flapping and large-amplitude flapping found at higher stiffnesses (and studied in the
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Figure 8.12: Tip displacement as a function of time (left) and spectral density of tip
displacement (right) for a flag in the chaotic flapping regime, with Mρ = 0.05, KB =

0.17, Re = 200. The left plot shows a zoomed in version of the total time window
used for the spectral density computation, t ∈ [20, 500].

previous sections). For example, the growth rate of the vortex shedding mode for
the large-amplitude flapping parameters KB = 0.2, Mρ = 0.5 is -0.392. The vortex-
shedding mode is therefore not the cause of instability of the deformed equilibrium
in those regimes.

Chaotic flapping
For sufficiently light flags (Mρ ≤ 0.5 in our studies), large-amplitude flapping
(region IV in the bifurcation diagrams of figure 8.1) bifurcates to chaotic flapping
(region V) before entering into deflected-mode flapping (region VI). Figure 8.12
shows that the time trace of the tip displacement is aperiodic and associated with
broadband frequency content.

To demonstrate mathematically that this behavior is chaotic, we compute the Lya-
punov exponent of the system using the time-delay method of Wolf et al. [90] (this
approach was also used by Connell and Yue [17] to identify chaotic flapping of
conventional flags). The method computes an approximation of the distance in
time, d(t), of two trajectories starting close to one another at an initial time t0. The
evolution of this distance is written as

d(t) = d(t0)eγ(t−t0) (8.1)

where γ is the Lyapunov exponent that represents the departure or convergence of the
two trajectories. A zero value of γ corresponds to a stationary state where the system
is in limit cycle behavior; a positive value of γ corresponds to divergence of the two
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Mρ KB Lyapunov exponent (γ) Flapping regime
0.05 0.35 -0.0012 Large-amplitude flapping (region IV)
0.05 0.17 0.068 Chaotic flapping (region V)
0.05 0.08 -0.0023 Deflected-mode (region VI)
0.5 0.35 -0.0015 Large-amplitude flapping (region IV)
0.5 0.17 0.059 Chaotic flapping (region V)
0.5 0.08 0.0009 Deflected-mode (region VI)

Table 8.4: Lyapunov exponents for different flapping regimes. For each regime,
the corresponding region from the bifurcation diagram of figure 8.1 is indicated in
parentheses.

trajectories, and thus to chaotic flapping. Table 8.4 shows the Lyapunov exponent
computed for various values of Mρ and KB. For large-amplitude and deflected-
mode flapping, the exponent is approximately zero, coincident with limit-cycle
flapping. In the chaotic regime that occurs at stiffnesses between large-amplitude
and deflected-mode flapping, the exponent is positive and larger by an order of
magnitude, indicative of a transition to chaotic behavior in this regime.

The bifurcation diagrams in figure 8.1 demonstrate that increasing mass reduces
the chaotic behavior. In moving from Mρ = 0.05 to Mρ = 0.5, there were certain
stiffnesses within the chaotic flapping regime that exhibited periodic flapping instead
of chaotic flapping (see figure 8.1). We believe that this is an artifact of only running
the simulations for finite time, but the absence of chaotic flapping over a minimum
of 55 flapping periods for certain stiffnesses at Mρ = 0.5 speaks to the effect of
increasing inertia on reducing the chaotic behavior. For the heavier flag cases of
Mρ = 5, 50, chaotic flapping disappears altogether. Thus, chaotic flapping is only
associated with mass ratios (Mρ) for which VIV flapping occurs.

To elucidate the nature of chaotic flapping, we show in figure 8.13 phase portraits
of tip velocity versus tip displacement for inverted flags in the large-amplitude
flapping, chaotic flapping, and deflected-mode regimes. The figures demonstrate
that the chaotic flapping phase portrait contains both the large periodic orbit of
large-amplitude flapping and the small-amplitude large-deflection periodic orbit
of deflected-mode flapping. Thus, chaotic flapping is a regime in which large-
amplitude flapping and the deflected mode hybridize to form a new strange attractor
involving both states. The chaotic nature of the regime is associated with the
apparent randomness in switching between these two orbits.
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Figure 8.13: Tip velocity-tip displacement phase portraits for Mρ = 0.05 and
KB = 0.32 (left), KB = 0.17 (middle), and KB = 0.11 (right).

8.3 Dynamics for Re = 20
Previous numerical simulations of Ryu et al. [69] demonstrated the absence of
flapping for flags with Mρ ≤ O(1) and Re < 50. We now consider Re = 20
to investigate the stability and dynamics of the inverted-flag system below this
previously identified critical Reynolds number. In agreement with Ryu et al. [69],
we find that light flags with Mρ = 0.05, 0.5 do not flap. Heavy flags with Mρ = 5, 50
are shown to undergo both small-deflection deformed flapping and large-amplitude
flapping. Such behavior has yet to be reported, andwe demonstrate that for this heavy
flag case neither flapping regime is a VIV. As was observed for Re = 200, small-
deflection flapping is caused by a supercritical Hopf bifurcation of the deformed
equilibrium associated with the transition to instability of the least damped mode of
the deformed equilibrium. Large-amplitude flapping is characterized by an increase
in saturation amplitude of small-deflection flapping until eventually the flag swings
past the centerline and begins a process where it samples both deflected equilibria.
Finally, we show that at this low Reynolds number the deflected-mode state is not
associated with flapping, and is instead a formal stable equilibrium of the fully-
coupled system.

Bifurcation diagrams and general observations
Figure 8.14 gives bifurcation diagrams of the inverted-flag system at four different
masses. These figures were plotted as described in section 8.2. The bifurca-
tion diagrams reveal four distinct regimes: a stable undeformed equilibrium (I),
a stable deformed equilibrium (II), small-deflection deformed flapping (III), and
large-amplitude flapping (IV).
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While many of the same bifurcations found at Re = 200 remain for Re = 20,
there are also distinctions between them that are visible through the bifurcation
diagrams. First, flapping does not occur for all masses considered at this lower
Reynolds number, which demonstrates the stabilizing effect of fluid diffusion for
inverted-flag dynamics. Second, the deflected-mode state no longer corresponds to
flapping at this lower Reynolds number, and is instead a formal stable equilibrium of
the fully-coupled fluid-structure equations of motion. Finally, chaotic flapping does
not occur for any of the considered values of Mρ at this lower Reynolds number.

As was seen for Re = 200, the divergence instability of the undeformed equilibrium
(caused by decreasing KB) leads to a stable deformed equilibrium that is independent
of the mass ratio, Mρ. This follows from the fact that the deformed equilibria are
steady state solutions and therefore do not depend on flag inertia.

As stiffness is decreased, light flags remain in this deformed equilibrium regime –
no flapping occurs at this Reynolds number for Mρ = 0.05, 0.5. Moreover, since
the equilibrium states do not depend on flag inertia, their bifurcation diagrams are
identical. By contrast, with decreasing stiffness heavy flags transitioned from the de-
formed equilibrium to (respectively) small-deflection flapping and large-amplitude
flapping before returning at even lower stiffnesses to a stable deformed equilibrium.
To demonstrate the non-VIV nature of flapping at this low Reynolds number, we
show in figure 8.16 the peak flapping frequency for the parameters corresponding
to the bifurcation diagrams in figure 8.14. For all cases, the flapping frequency
from the nonlinear simulations (denoted by the markers) is substantially different
from the bluff-body vortex-shedding frequency. In the remainder of this section
we explore the physical mechanisms behind the various regimes and the transitions
between them.

Small-deflection deformed flapping
We show in table 8.5 that the transition from the deformed equilibrium to small-
deflection deformed flapping is associated with the least damped global mode of the
deformed equilibrium becoming unstable. Thus, as was seen for Re = 200, small-
deflection deformed flapping is a supercritical Hopf bifurcation of the deformed
equilibrium state. Table 8.5 also shows that the corresponding eigenvalue accu-
rately predicts the flapping frequency of the nonlinear simulations near the stability
boundary.

To illustrate the vortical structures and flag shapes associated with the instability
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Figure 8.14: Bifurcation diagrams of inverted-flag dynamics at Re = 20 that show
leading edge transverse displacement (tip deflection, δtip) versus inverse stiffness
(1/KB). I: undeformed equilibrium, II: deformed equilibrium, III: small-deflection
deformed flapping, IV: large-amplitude flapping. See the main text for a description
of the various lines and markers and details on how the diagrams were constructed.

Mρ KB
Leading mode Peak frequency of

Growth rate Frequency nonlinear simulation
5 0.374 -0.0061 0.083 N/A (stable equilibrium)
5 0.371 0.0039 0.082 0.080
50 0.40 -0.003 0.031 N/A (stable equilibrium)
50 0.397 0.001 0.030 0.030

Table 8.5: Growth rate and frequency of the leading global mode of the deformed
equilibrium compared with nonlinear behavior for parameters near the onset of
small-deflection deformed flapping.
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Figure 8.15: Vorticity contours for equilibrium states of the inverted-flag system at
Re = 20. From left to right: KB = 0.5, 0.41, 0.35, 0.2. The two rightmost equilibria
are unstable for Mρ = 5, 50. Contours are in 18 increments from -5 to 5.

Figure 8.16: Markers: peak flapping frequency at Re = 20 for the parameters
corresponding to the bifurcation diagrams shown in figure 8.14.

mechanism at this lower Reynolds number, we plot the real and imaginary parts of
the leading global mode near the critical stiffness for Mρ = 5 in figure 8.17 (the
plot is similar for Mρ = 50). Flag motion is associated with four vortical structures
isolated near the flag surface.

We emphasize that a linear stability analysis of the undeformed equilibrium state
is associated with a zero-frequency (non-flapping) unstable mode, and therefore
does not capture the flapping behavior observed in the nonlinear simulations. This
demonstrates that the divergence instability derived by Sader et al. [71] for inviscid
fluids persists at lower Reynolds numbers.



97

0 0.5 1

x

-0.01

0

0.01

y

Re(@p)

0 0.5 1

x

-0.01

0

0.01

y

Im(@p)

Figure 8.17: Real (top) and imaginary (bottom) parts of vorticity (left) and flag
displacement (right) of the leading global mode of the deformed equilibrium for
Mρ = 5, KB = 0.37 and Re = 20. Vorticity contours are in 20 increments from
-0.05 to 0.05.

Figure 8.18 shows the leading global mode of the undeformed equilibrium. The
mode has a similar flag shape and set of vortical structures to the real part of the
leading mode of the deformed equilibrium. A noticeable distinction between the
two, however, is that the vortical structures of the undeformed equilibrium mode
are symmetric about the equilibrium flag position while those of the deformed
equilibrium mode are not. The presence of asymmetry associated with flapping is
indicative of the interplay between fluid forces, flag inertia, and internal flag stresses
necessary to sustain flapping. To explore this interplay, consider a perturbation of
the deformed equilibrium that sets the flag into motion in the direction of increasing
deflection. This causes an increase in internal flag stresses that act to restore the
flag to its deformed equilibrium. These stresses are opposed by the flag inertia
and by forces from the oncoming fluid, which tend to destabilize the system further
away from its deformed equilibrium. By contrast, if the flag is set into motion the
other direction (towards the undeformed state), the fluid forces act to restore the
flag to its deformed equilibrium and the flag inertia and internal flag stresses act
as destabilizing forces. The exchange of internal flag stresses and fluid forces as
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Figure 8.18: Real part of vorticity (left) and flag displacement (right) of the leading
global mode of the undeformed equilibrium for Mρ = 5, KB = 0.37 and Re = 20.
Vorticity contours are in 20 increments from -0.05 to 0.05.

destabilizing quantities is a unique feature of flapping about the deflected state –
an analogous perturbation to a flag in the undeformed equilibrium results in flag
stresses that are always restoring and fluid forces that are always destabilizing.

Large-amplitude flapping
We now consider the transition from small-deflection deformed flapping to large-
amplitude flapping. Within the small-deflection deformed flapping regime, the
bifurcation diagrams show that decreasing stiffness causes an increase in flapping
amplitude. This is associatedwith an increase in growth rate of the leadingmode (see
table 8.6). The mechanism through which the increasingly unstable leading mode
develops into large-amplitude flapping is similar to what was discussed for heavy
flags at Re = 200. Eventually, the growth in saturation amplitude leads the flag to
deform past the centerline position and into the region of attraction of the deformed
equilibrium on the other side of the centerline. This newly sampled deformed
equilibrium is also associated with a saturation amplitude that leads the flag to flap
past the centerline, and indefinite flapping occurs around these two equilibria. We
emphasize that at this low Reynolds number, vortex shedding does not occur, and
the flapping frequency from figure 8.16 demonstrates that flapping is not a VIV
in this regime. The nonlinear behavior characterized by flapping around the two
unstable deformed equilibria provides the necessary non-VIV flapping mechanism.

We note that this non-VIV flapping mechanism is distinct from what is observed in
large-amplitude oscillations of elastically mounted cylinders at subcritical Reynolds
numbers. In the elastically mounted cylinder case, Mittal and Iaccarino [56] showed
through nonlinear simulations and a global stability analysis that VIV persists at sub-
critical Reynolds numbers for certain parameters, and that large-amplitude vibrations
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KB Leading mode growth rate
0.37 0.008
0.35 0.039
0.32 0.120
0.29 0.342

Table 8.6: Growth rate of the leading global mode of the deformed equilibrium for
Mρ = 5 for stiffnesses in the small-deflection deformed flapping and large-amplitude
flapping regimes.

are a result of this VIV. They moreover demonstrated that for these parameters the
vibration frequency matched the bluff-body shedding frequency. By contrast, in the
case of large-amplitude inverted-flag flapping, the flapping frequency is substantially
smaller than the bluff-body vortex-shedding frequency.

Large-deflection equilibrium (deflected-mode regime)
A continued decrease in stiffness leads to a bifurcation from large-amplitude flap-
ping back to a stable deformed equilibrium with large deflection. This transition
corresponds to the re-stabilization of the leading global mode (e.g., for Mρ = 5,
KB = 0.17 the growth rate of the leading mode is -0.032). Note that this deflected-
mode state is distinct from that found at higher Reynolds numbers, where the flag
undergoes small-amplitude oscillations driven by vortex shedding [71, 77]. Since
vortex shedding is absent at Re = 20, the deflected-mode regime is a formal equi-
librium of the fully-coupled equations of motion.

8.4 Conclusions
We used 2D high-fidelity nonlinear simulations and a global linear stability analysis
of inverted-flag flapping to (i) investigate the physical mechanisms responsible for
the onset of flapping, (ii) study the role of vortex shedding in large-amplitude flap-
ping, and (iii) further characterize various regime bifurcations that were previously
identified and explored [32, 40, 69, 71, 77]. We performed studies at Re = 20 and
200 for a wide range of KB and over a four-order-of-magnitude range of Mρ. For
Re = 20 and Mρ ≤ O(1), no flapping occurs and the flag transitions with decreasing
stiffness from an undeformed equilibrium to a deformed equilibrium. For all other
combinations of Re and Mρ considered, with decreasing flag stiffness the system
transitions from a stable undeformed equilibrium to a stable deflected equilibrium
via a divergence instability, to an unstable deformed equilibrium through a super-
critical Hopf bifurcation that exhibits small-amplitude flapping, to large-amplitude
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flapping, and finally to a deflected-mode state. Belowwe summarize the key features
of each of these regimes.

Stable deflected equilibrium: we demonstrated that for all parameters considered
the stationary deflected state identified by Gurugubelli and Jaiman [32] and Ryu
et al. [69] is a formal equilibrium of the fully-coupled equations, and that even
when flapping occurs this equilibrium persists as an unstable steady-state. A similar
deformed equilibrium was found at Re = O(30, 000) by Sader et al. [71] through
the addition of damping; establishing similarities between these findings is an area
for future work.

Small-deflection deformed flapping: the deformed equilibrium becomes unstable
and transitions to small-deflection deformed flapping with decreasing stiffness (KB).
This occurred at Re = 200 for all mass ratios considered and at Re = 20 for heavy
flags (Mρ > O(1)). This transition was shown to be initiated by a supercritical
Hopf bifurcation of the deformed equilibrium state (i.e. a complex-conjugate set
of eigenvectors becomes unstable). For all parameters that exhibited this small-
deflection flapping regime, the leadingmode and ensuing nonlinear behavior are both
devoid of vortex shedding and have a flapping frequency that is not commensurate
with a VIV.

Large-amplitude flapping: light flags (Mρ < O(1)) at Re = 200 exhibit VIV
behavior in which the fluid forces on the flag oscillate with the same dominant
frequency exhibited by the flag. This coincides with the arguments of Sader et al.
[71] based on experimental measurements and a scaling analysis. By contrast, heavy
flags (Mρ > O(1)) flap at a lower frequency and additional vortices are shed per
flapping cycle – also consistent with the scaling analysis of Sader et al. [71]. This
behavior is distinct from canonical VIV, but could be reflective of synchronization
between flapping motion and a higher-harmonic response in the fluid. We also
showed that large-amplitude flapping occurs for heavy flags at Re = 20, which
highlights the existence of an intrinsic flapping mechanism even in the absence of
vortex shedding. No flapping was observed for flags with Mρ < O(1) at Re = 20,
which is in agreement with the simulations of Ryu et al. [69].

Deflected-mode: for Re = 200 we used a global stability analysis to confirm the
argument of Shoele and Mittal [77] that this regime is driven by the canonical bluff-
body wake instability. For all masses considered, the leading mode has vortical
structures similar to the leading global mode found in canonical bluff-bodies [5] and
a flapping frequency commensurate with the St ∼ 0.2 bluff-body scaling [66]. We
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then showed that the deflected mode does not exhibit any flapping at any mass ratio
for Re = 20, and the system is instead in a large-deflection equilibrium state.

Chaotic flapping: we identified chaotic flapping for light flags at Re = 200 and
characterized this regime by switching between large-amplitude flapping and the
deflected-mode regime. No chaotic flapping was observed at Re = 200 for Mρ >

O(1) or at Re = 20 for any of the mass ratios considered.

These findings demonstrate a wide range of physical mechanisms that drive the
various dynamical regimes of the inverted flag system. Moreover, they highlight
that the system dynamics depend on both the Reynolds number and mass ratio. At
the same time, these results motivate future work that compares our low-to-moderate
Reynolds number computational findings with results at higher Reynolds numbers
and in three dimensions.
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C h a p t e r 9

OUTLOOK

In part II we built on previous studies to further characterize and understand inverted
flag flapping. Yet, there remain unanswered questions and opportunities for further
study. First, the inverted flag system depends on the Reynolds number and mass and
stiffness ratios, but previous work has primarily focused on the effect of the stiffness
ratio. We provided some observations about the effect of mass ratio and Reynolds
number on the resulting physical regimes and associated physical mechanisms, but
further studies into the effect of these parameters is warranted. Along these lines,
simulations and experiments are being conducted at disparate Reynolds numbers
(by orders of magnitude), and further characterizing the similarities and differences
among them would aid in understanding its effect.

There are also open questions about three-dimensional (3D) effects on the system.
Experiments at high Reynolds numbers of high aspect-ratio flags [40] identified
many similar features as 2D simulations at lower Reynolds numbers [32, 69, 77].
However, the difference in Reynolds numbers makes it difficult to isolate the cause
of differences that do appear. Moreover, a recent study by Sader, Huertas-Cerdeira,
and Gharib [70] demonstrated that in the limit of very small aspect-ratios significant
differences arise from the 2D and large aspect-ratio cases. Future work could
characterize the effect of intermediate aspect-ratios in more detail.

There are changes to the configuration that could also provide insights into the
system, both scientifically and in terms of its energy harvesting potential. Shoele
and Mittal [77] coupled the fluid-structure equations to an electrical model to study
the effect of coating the flag with a piezoelectric material. Yet, there are other means
of harvesting electrical energy from the flag, such as placing a transducer at its base
[46]. Future work could model these alternative energy-harvesting approaches to
determine their efficacy. In addition, one could consider the effect of nonzero
initial inclination angle of the flag. This was initially investigated by Shoele and
Mittal [77], but several questions such as the mechanism responsible for the onset
of flapping at nonzero inclination angle remain unanswered. Finally, future efforts
could also consider the effect of nonuniform mass or stiffness distribution in the
flag, as either of these could influence the system dynamics significantly.
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