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ABSTRACT

Elliptic divisibility sequences were first studied by
Morgan Ward, who proved that they admit every prime p as a
divisor and gave the uppsr bound 2p+1 for the smallest place
of apparition of p. He also proved that, except for a few
special primes, the sequences are numerically periodic modulo po.

This thesis contains a discussion of equianharmonic divisi-

bility sequences and mappings. These sequences are the special
elliptic sequences which occur when the elliptic functions involved
degenerate into equianharmonic functions, and the divisibility
mappings are an extension of the notion of a sequence to a function
over a certain ring of quadratic integers.

For equianharmonic divisibility sequences and mappings an
arithmetical relation between any rational prime of the form 3k+2
and its rank of apparition is found,

It is also shown that, except for a few special prime ideals,
equianharmonic divisibility mappings are numerically doubly periodic

to prime ideal moduli.
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SECTION ONE

Introduction

In the first volume of the American Journal of Mathematics,

Bdouard Lucas [ I] published his theory of the functions
" 7
X "ﬂ K »
Uy‘ s —0(———#——-—-., V"‘I = —Pﬂ .

where O and & are the roots of x"— Px+Q =0, P and Q
rational integers, These functions satisfy the linear recursiouns

Unez = PUy, — QUn

v-y‘.'-i - PV-,,H ——QV‘n ®
Lucas also showed that U, satisfies the difference equation

el 1. 2

Q Uom Upon = Uit Uy Uaa = Uy, Upey Ui s
and stated that this formula was fundamental to the theory of
"doubly periodic numerical functions" [I, p. 203]. No explanation
was given as to what he meant by double periodicity. Although he
published nothing on the subject of such functions, he stated else-
where [cf. II] that the proof of the last theorem of Fermat could
be reduced to the proof of the fact thet the solutions of this
difference equation are at most "doubly periodic." No account of
this reduction has been preserved, -

The difference equetion occurs in the theories of the real

multiplication and the complex multiplication of elliptic functions.

Morgan Ward hes made a study of the solutions of this recursion



arising in the theory of the real multiplication of elliptic
functions [III]; and he found that the solutions are simply periodic
when taken modulo p, p a rational prime. It is shown here that
in one case of complex multiplication (the equianh}armonic case) a
species of double periodicity occurs. Similar results hold in the

lemniscate case [IV].

The remainder of this section contains results from analysis
and arithmetic, collected here for convenient reference.
The Weierstrass functions o (u), & (u), § (u), 5"’/(u),
defined for the fundamental parallelogram
0, 2w, 2w,, 2W + 2wa,

where Im( w2/w; )>0, have the following expansions:
2

/ u u u
O'(u)zu” (—~-————— exp( + & =
2mw, + 2nw, 2mw, + 2nw, (2mw, + 2nw, )

m,n

0”(11) 1 +Z/ 1 1 + u
6wy = T { u 2mw, + 2nw, (mei*'zn“’l)z}

O (u) U gom \u-— 2mw;— 20w,

, 1 /{ L ! }
_— — ) == + o -
£ () Z (u) y Z (2mw, + 2nw )

u e (u — 2mw, — 20w, )"

2’?/(“)=—ZZ - 9

3
s (u—2mw, —2nw, )

where the indices my, n run from — o0 to0 +0° , and the accents
on TT and Z mean, as usual, that m and n do not vanish
together,

The invariants g, and g5 are given by

/ 1 Z/ 1 |
g, = 60 Z ’ gz = 140 ’
m

6
wmn (2mw+ 20w, )‘} w (2mw,+ 2nw,)




where the indices m, n have the same range as befors,
In terms of u, W, y W2, the homogeneity properties of the
Weierstrass functions are given by
o(Auy Aw,y Awy) = X 0(u, w 4w,)
C(Nuy Aw, » Aw, ) = AT G (uy wiyws)
p()\u, Aw, 3 Awy) = A‘“zé’a(u,w.,wl)
FUAu, Awiy Awe) = AP 0 (0, wiywa)
and, in terms of wu, g,, g3, the homogeneity properties are
o (Aus A¥g, A Pe5) = No(usgases)
Z (Nus Xtgas M 0g,) = A7 (use,,e;)
PAus X g, A '83) = A" £ (us8.2583)
g’l(kui A’qus 1—68;3) — >\_3 5’”(%81:33).
The functions & (u), 8)’(\1) are doubly periodic with
periods 2w, , 2w, . The pseudo-periodicity of 0 (u) is given by

RS tN+ts 2(AM +5
O (u+2rw, +2sw, ) = (—1) e WA+ B0t byt o)

o(u) ,
where YI,::C(W,), ,?7__-_—_5(44.:,_).
The function 0 (u) further satisfies the three-term sigma
formule:
G (u+u,)o(u-u,)o(u,+us) s(u,—-us)
t 0 (utu) 0 (u—uz) 0 (ug+u,) o (u;-u,)
+0(u+usz) 0(u-uz) o"(u,+uy) o(u, —u,) = 0,
These formulas may all be found in any treatise on elliptic
functionsj for example, Tennery et Molk [V, vole 24 DDe 234—236].
The ring E of the Eisenstein integers consists of the

numbers a+bP, a and b rational integers and

P = exp(2mi/3). Since Pz-)—/O-i— 1 = 0, the conjugate and



norm in this ring are

2
a+b(0 = atbo ,

N(a+bp) = a® —ab+b?,

The ring has six units € , for which Ne = 1:

+ 1,

o, xp = F@+p)

and the smallest twenty-one values of Nm, for WK in B, are

0y

13,

31,

3, 4, 7, 9, 12,
19, 21, 25, 27, 28,

37, 39, 43, 48, 49,

The parity, modulo 2, of Np is simply:

N(at+bp)
Since E
M(am) of the
M(e) =
M(p) =
M(p) =

0(mod 2) if and omly if a = b= 0(mod 2).

is a principal ideal ring, the Mobius function

ideals of B may be defined by

if Ne = 1

n
(—1) if (m) is a product of r distinct

prime ideals

if (pm) 1is divisible by the square
of a prime ideal,

A discussion of the ring E 1is given by Hardy and Wright

[VI, sections 12,9 and 15.3].

The equianharmonic case of the Weierstrass functions occurs

when the period ratio w, /w, is @ . [ VII, vol. 1, p. 136]

In this case the expansions for o (u), Z (u), Jc(u) and

X:’ (u) may be written

ﬁ#o

G (u) = w W

}A.LV\E

u u u
{(l — ) exp ( +% - )}
2w 2 (2pwi)



1 1 1 u
€(u)=—+2{—~—+ + }
U e uTRpw 2 s (Rpw,)
Ko 7
NULRN, (S S .
& }42,;5 (u— 2;&'».) (2w )

p 1
play=—2 > —
® oo E (u—-2 pwy )

where the index 0 runs through E., Hence, if Ne = 1, the
homogeneity relations imply

o(€uy, Wi ypw )= €0 (uyw,pw:)

Z(euy wyspw ) =€ G(u, wiypuw)

leu, w, e ) =€—zg)(u, Wiy pwy)

&/(eu’ Wy pwy ) =€-38”l(u; Wiy PUI)

When w, = Puw, -the pseudo-periodicity of o (u) takes

the form

Np 2p (u+puw,
0 (ut2 pw,) = (—1) Ikm, a2 )0”(u) p i in E,

since 7, = §(w.) = p*z (w)=p 7.

The expansion for ¢ (u) shows that o (u) = 0 if and only
if

= 2 M w; po in B
The differential equation satisfied by ¢ (u),
g = 25w’ —e, plu)—g;,
is simplified by the fact that g, = 03 for
Fllpu) =4 g(pu)® — g, p(ou) — g5

or F/) =2 p@®—pep) — g3,



hence g, = 0 and

() =14 g’ —gs.



SECTION TWO

Bquianharmonic Divisibility Mappings

This section contains a discussion of the properties of the
function yQ"(u), which Morgan Ward used in his theory of elliptic
divisibility sequences [ III], for the case in which the Weisrstrass
functions on which it is based degenerate into equianharmonie
functions, The notion of a divisibility sequence, as a mapping of
the set of natural numbers into the ring of rational integers pre-
serving division, is generalized for this case into that of a division-
preserving mapping of the ring & into itself, This generalization
is the key to the arithmetical structure of such sequeunces. The
argument relies constantly on the fact that the equianharmonic func-
tions admit a complex multiplication, which fact may be expressed in
this case by the equation §2(pu) = p f(u).

Since o (u) is an entire function of u, the function

Bl =

is a meromorphic function of wu. Furthermore it is an elliptic

O’(qu, Wiy pwy )

9 f'(- in E,
T (uy wy s pw,) VM

function since it has the periods 2w, and Rpw, s

C(pmut2pw )

Yo(ur2w ) =
" 0'(‘A“"'Z“JI)M'“

_(‘1)M‘ezﬂqdpu+ﬁw)a(#u)

{—o BT (a4

== '%/u (u)9




from the pseudo-periodicity of o (u). Likewise

oc(put2ppw,)

(ut2p0 w,.) =
T i G(u+2pw,)”“

Nipp) 2R (e tprpen)

(=33 o (peu)

f—e 2P (4P g (u)f ¥

= )ﬁk(u) "

Theorem 1. }ﬁk(u) satisfies the recursion
€* - w) Y, () = ¥ ) Frae () % (u)

7/7){—6(11) }1;/ € (u) 7&}4. (u) ’
for M ,2 and € in B, where Né = 1.

Proof. Replacing u, Uy, Uz, Ug in the three-term sigmae
formula by 0, €u, pu, 2Zu, respectively, yields
e Uz(»u) g ((}A +7})~u) a‘((’.«—v )u)
= o ((u+e)w) 0 ((p—€m) T (7w
— O"((zl +e)u)<r((7/—-e-)u) O’L(F,u) .
Since

YN + 2 )+ N(p -v) = N(/,¢+é)+N(,lA—E ) +2Nv

!

N(2 +€)+N(7 —€)+2pm ,
division by
2+ M(p+v) + N(pu-2)
6 (u)
gives
£ y (W ¥y = %, NON AN ()
) f ) B,

which proves the theorem.



Theorem 2. Using Vé,u(“): € Yy (u),y Ne == 1,

and the recursion of theorem 1, every value of 7&.(“) may be

computed from the initial values

% (u) = o0, %(u) =1, 74/7{,(‘1)9 ’%(u) °

Lemma 1, If N/A} 12, Np even,
N}A_? 20, N}‘( Odd,
then ’}IJM(u) may be computed from the recursion if the values of
’}Ly(u), N {Npu, are known,

Proof of the lemma. Since, for any M in B,

N = 0 (mod 2) if and only if M = 0 (mod 2), Jjust one of

the four possibilities

/o = 0 (mod 2)
K = 1 (mod 2)
p o= L (mod 2)

woo= ﬁl(mod 2)
must hold., Replacing Ko 2 4 € in the recursion by
v p o YLD
v+ 1 4 s P
7 +p s Vs 1
AR - A

yieldy respectively,
2 2
A 47&27/ q//z — /y/%w,o q//7/—"‘/" ,5//1/-/ - 4//V+/—/ /%’—/-/J 7fw/o
2 2
/}éw+/+/a 7@/#—/ ’%/ - ’}//7,,,_/0 /SLV—/ /V7/+/

|

/02 Vave
0 /'7L2¢+/o = /%'u+/+p r%}—wp /)éyl — %)—H ’PV'/ /9&1/,70
/02/9&27/ 1P £ o= 707/,‘-/ —f/dz '%7/—/ 402 sz - ’%/4-/ y/—-z/—-l V’V—I—/z ,
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Since N(l—/) } = H(1 -—/01) = 3, every subscript appearing on
the right side of any of these equations lies in or on the c¢ircle
of radius V3 and center 2/,
Case 1. m even. If Nm > 12 or Ipl > 2V3,
Ipl — 3l = pl > V3
so that M lies farther from the origin than any point in or on
the circle of radius V3 and cemter k.
Cose 2, . = € (mod 2), Ne = 1. If Nm> 20, or |p1 > 2V5,
It — #Hp-€) > gyl — Il +1)

7 Hwnl - %

by r‘ - & > E—’
and A 1lies farther from the origin than any point in or on the
circle of radius V3 and center #(Mm — € ). The lemma is proved,

Proof of the theorem. For n= 7, 9, 12, 13, 19 the equations

N = n have the following solutions:

Np = 7 w=(1-2p)e , (3+2p)¢

N}A =9 M= 3€

Np = 12 w o= (4+r2p)e

Nm =13 B = (1+4p)e ’ (3«—4,0)6

Np =19 p = (3"2/0)6' s (5+2p2)e o
The cases N = 19 and N = 13, Taking p = 741 and
€ = 1 in the recursion gives

2 3
Bonsi == Voge ¥ = Voig Yoei
2 27+1  N(2¥+1) N@#Z+2) Nv N¥—1) N#+1)
—2+p —3+2p 19 3 7 13 3
-3-p —5-2p 19 3 7 13 3
2p 1+4p 13 4 4 7 3

—2-20 —3-4p 13 4 4 7 3
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Thus '}”_3+77ﬂ, ’{5_5,2/, " ’I/H,f/, % ’;1'3,‘//’ may each be com-
puted from values with indices of smaller morm, The other ten %u
for Ng = 19 and for Np = 13 are unit multiples of these.

The case Np = 12, Although M 1lies on the circle of radius
V3 and center —%}4, the first formule employed in proving the

lemma may be used to compute e Fory, if 2/ =2+
4+20 /p ’

NMz—-p) =4 NzZ+p) =4
N(Z+1+p ) =T N(#+ 1—p) =9
N(1}—'1+/0)r_".3 N(z-1—p) = 1.

The other five ’}4/,_ s Nu = 12, are unit multiples of 7”4+2,a o

The case Nm = 9, }&3 may be computed from the second formula
uged to prove the lemma, for, if pm = 3,

Ikl — 3Hp-1l = 2> {3
and the other five ”}L/u_ s Nm =9, are unit multiples of ’}93 .
The case Nu = 7. Taking W= 2 + 1 and € =— /02 = —l—/o
in the recursion gives

2 2
4 }LZV-(’} = y7)+2 +p ’Wv./o Y, — 7‘,.,;.7 Vz/’/—,o Yosr s
and if 7J==——/J s then 241 =1-20 and

N(7J+2+Io)=4 N(#Z+1+p )=1
Ny —-p) =4 N(p—1—p)=3

which exhibits a method of computing ’%,_Z/J. The second formula

in the lemma proof suffices for ¢3+1/a s since if 2 =1+p,

then 27+ 1 = 3+2p and

N(P+1+pP) =4 N(z+p) =3
N(7/+17o)=4 N(7—p) =1
N2/ =1 N(»+1) =3 .

The other ten are unit multiples of these two,
The equations

N}A= 1, 3, 4, 28 in B,
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have the six solutions
€, (1—p)e , 2¢, Ne =1,
respectively. Therefore every value of ﬁﬁk s Np £ 4, is a
unit multiple of one of %, ¥ , 767p s % . But every 7%4 may
be computed from various ’Y% s N7 £ 43 hence the theorem is proved,
1f NWL> 0 and N? > 0, the two elliptic functions
Yro(®) Fup (@) o ((pevv ) 0(( w=2)u)
1//,:(“) %z(u) 0_1( M u)T *(#Zu)
gb (Fu) — XO(,ku) have the same poles, whose orders and principal

and

parts are equal, Hence
Yk ¥) Prems (0)
Y () % (w)
Teking =1 and V=p ,
Vi (8) Frp (0)
SACKAT
and since © (pu)= g G (u) and F (n)=€, for Ne= 1,

%70(1:) = (1—p) £ (v).

The other initial value

B ) = — /()

may be found in Tannery et Molk [V, vol. 45 D. 98].

== g,(Vu) —_ 8”(/’““)'

= plpw — g (W,

Theorem 3. 76u(u) == Pﬁ(3983)3 Ny odd,
’%M(“) = 8’"’ (u)Pﬂ(z,ga), Np even,
where 2z = gb(u) and ﬁu(z,ga) is a polynomial in 2 and g5

over R

Proof by induction. The theorem holds for the initial values
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_ _ /
fh=0 %=1 Y= Qpdm K= - W
and for any unit multiple of them, Since g, =0,
Pk 3 =
& (u) :4?(‘1) - g3=4z — E3e
Case 1o Nm odd. If pm= 227 +€, » Ne, = 1, taking

{

M = Z+6€, in the recursion gives

2
e 2
€ ,%zv-z—e, (V)e, - %4—6,4—6 yﬂq—e,—e ’)Ly = 794—6 yy_,e ’%vié,

or
/y)“’*“: = €7 6‘-’ {yv+e,+e qkzue,—e %L_ y’ﬂfe/lf - Vvté, }
The formulas used to compute Y’,& s Np =13, 19, are special cases
of this expression for which € = €, ; all the other formulas used
in the proofs of lemma 1 and theorem 2 for Nm odd are special cases
for which € % €,, Since (in either case)
Vt+eE +€ = 2+ € —€ (mod 2)

and 7+ e V- € (mod 2) ,

M

wherever 50’(11) may occur in this expression for /}527,+é, (if
it occurs at all), it does so to the second power, Case 1 is there-
fore proved by induction on Nw.
Case 2 . = 2¥, ¥ =€ (mod 2). Replacing s and 2/ in the
recursion by 2+ € and P/ —€, respectively, gives
/y/zv Yie = 1;; (7&7/,47_6 /}&—,/_Le. — Yy_ze y’wie}-

Suppose that Nu > 4, and that if N(2K') < Ny, Yo 18
g/)’(u) times a polynomial in z,g5; over E, Since

Np=N(27) >4, (V]>1 and

Yl 2 \Wvl+1 2 17k€),
or

N(2Z)> N(z 2e),
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Because
Z-€ = Z+€¢ =0 (mod 2)
but 72 = P+2 € = 2-2€ #F 0 (mod 2),
% /(u) occurs on the right side to the second power; and since
Ye= —€ %/(u), ’%V is (?’(u) times a polynomial in
zZ,85 over &,
Case 3 s = 2%, 2 = 0 (mod 2). Direct computation shows that
7&((11) 2= —«g/(u) 2226 — 1Og3z? - g;} "
Suppose that Npm > 16 and that if N(2K« ) < Np, ’Y/zK is  /(u)
times a polynomial in 2z,g5 over B, Since
Ny = N(22) > 16, |¥vI>2 and
217l >\ Wi+ 2 > |vE2el
or Nmw > Nv, N(w*t2e).
But 7 = 7 * 2 = 0 (mod 2)
and Z+e€ = ¥ —€ # 0 (mod 2);
s0 8:’(11) occurs on the right-hand side of
Yoy Foe = '}Ly (”%—:Mze ?7/2:9 - ,%'—ze 7/2;6)
to the second power, and the theorem follows by induction on N’A.o
The nature of the pole at u = 0 gives an immediate corollary
to theorem 3: considered as a polynomial in 2z, the leading
coefficient of PF(z,g3) is
M if Nm odd
— &p if Nwm even,
and the degree of PM(z,g:,) in z is
F(Np — 1) if Np odd

H(Np - 4) if Np even,
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Theorem 4. If Nu=0 (mod 3),

$(Dw-4) .
Pul(z,85) = 3 v(hg;l e !, g, in B
A=o0
and if Np =1 (mod 3),
m
Plg) = 2 Wyl i T, Win g,
=0

where DM is the degree of 'Pr(z,g:,) in z.
Proof. First:
D=1 (mod 3) if and only if Nu = 0 (mod 3)
DA = 0 (mod 3) if and only if Nm =1 (mod 3) ,
but Nu is never congruent to 2 modulo 3. The homogeneity of
g (u), % (u), y’(u) as functions of the invariants are given by
G (Aus >\~4st 1_653) = AG(us g, 85)
P (Aus X%g, Abgy) = A7 £ (U5 ge585)
PlAus g, A7) = A3 2(w g.,es).

Hence
-3 J
G (us 0,g5) = g_ (g3 u; 0,1)
4 4
& (us 0,85) = g P (=5 us 0,1)
§'(us 0s2,) = gfg,’(gfu; 0,1)
and

0 (mus 0,g5)

¥, (us O,g;) =
# T (us 0,g,)"

ol

- )
g3 O (mg, us 0,1)

N I N
(g8 )" a(g,* w 0,1)7"
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Nu—|
: Y, (e¥ u 0,1)
= g3 £ us 0,1 °
n S
Let y = f (g3 us 0s1), then y = zg_,~ , Writing

P (a5 0,5) =B (u) Py, (2585)s

where Ep(u) =1 if Np odd
Ep(u) = %! (u) if Np evens

o ki
Yuleg ws 0,1) = B (g, u) Py (vs1).

Hence, if Np odd
Nm —~

I3

V,L(u; O,gs) = g Ppu (ys1)
s

= g,*"* P, (v51)

and if Nf* aven,

Nu-—1 a1
Kolus 0sgs) =g, °  $' (g5 us 0,1) Ruly,l)
Ny —4 o g ¥
= g, 6 gf 84 (g.,. u; 0,1) P’*(YQI)

A
=g 7" ©'(w 0,g,) Bulys1).
Consequently, in either case,

Du

1
Bu(z,85) = g, B.(¥,1).

On the other hand,
6—(ﬂu’ Wy sy pwy ) = /OO‘(u, wyy Py ),

hence

1—A,
hulpus 0,1) = p a ¥ (us 051)

2 (1—-~Mu)

and yz/u (/a”-u; 0,1) = o ’ng(u; 041)e

But, by theorem 3 and its corollary,

D <
P/A(Yal) & g )\SY 9 7\5 in &,

therefore

=M
P’A (Y’]‘)'

D
s s
Pu (py,l) = g )\S/oy =
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Dac

25 S 2(1- Nw)
P, (p¥ys1) = pd Asp ¥ =p Pu (¥s1).
’M S =0
(=N 2(1-N p)
Now if Nu =1 (mod 3), P = =1, 80
Pr D
s S 25 S
P,Ly,l) Zky=z7\$/oy ——:SZ/\JFYa
S=o S=s =e

and, adding, P

312*,“L (y, 1) = SZ- As(l-l—/as_’_/azs )YS.

But
1 +/os+/ou = 3 if s = 0 (mod 3)
1+/os+/o” = 0 if s 0 (mod 3),
S0 %’D}&
Z 3s
S=o
and ZOm
D
P (z,g)——g3 Z ) VT I
pE A Iu-32
= K/\_ g3 z .
A=o
2(/-Nu) 2
I-N )
Buty, if Npm = 0 (mod 3), p0 "*_—_/a, /° ="
80
D
-DM 25 S
S
= ¥
) = 2 A= 2 A, o2 AU
S=o S=aq
and, adding, P bus 2 S
3Py, (vs1) = Z AL+ 4p )y’
S<o
But
1 JI—/oQ-fs +/.>'“5 = 3 if s= 1 (mod 3)
1+{o”S +/0'+25 — 0 if sz 1 (mod 3),

S0
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"‘5(]);&— 1)

. 3541
P (y;1) = SZ A35—»\ y

d
s % '%_(Dﬂ"‘) 3S+i
D T s 35+]
P z =
,A_( ’ga) g3 $Z=:a A3S+I 83 4
1Dy -1)
Z N Du-3r
= K,L 83 4 o

=0
Theorem 5. If v,p then Py(z,g3)| PM(z,g3).

Proof. Let M.—:A-z). Then

o (Av u) o (Av u) {O'(Vu) }’V’\

(u) = (B == — ———— ©
% (u Paw (W) o () V(A F(zw)? | c?

V%
= ¥ = % @7,
Hence, if NA and Nz are odd,
N
Pu (2,8,) = Py (& (#u)sg;) P, (258,)
But DA = H(NA—1) and
7411-/(1‘) %Ilal-l (u)

P (vu) = @(u) — WL
_ R(ne) — P, () o, ()
P,(z,8;5)"
50 P/u(z,g3) = P(z,g;) P,(2,8;)
where
P(z,8,) = PV(Zags)m" PA(F (7)) 2-34 6a

=3 gl (7,(8)" — %, (W) %) Blze)

is a polynomial in 2z and gz over FH. The cases where one or
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both of NA, N2 are even may be carried out in a similar manner,

This theorem may also be deduced directly from the recursion by
an argument similar to the proof of theorem 4,1 of Ward's

Memoir [III].



SECTICN THRER

The Apparition of Prime Ideals

Fix 2z and g3 in the ring of rational integers. Then the
correspondence M —> Py (z58;) is a mapping of E into itself
which preserves division (theorem 5)s Let <y be a prime ideal
of E. An integer )\ of E is called a zero of ¥ if

P)\(z,gj) = 0 (mod v ).
A zero « of v with minimum positive norm is called a rank of
apparition of ¥ .

By an argument similar to the proof of theorem 5.1 of Ward's
Memoir [ III] it can be shown that everv nrime ideal appears some-
where, The object of this section is to find an arithmetical rela-
tionship between ¥ and oo , For this purpose the prime ideals
iy of E are divided into two classes according as P,_, (z) is
or is not congruent to zero modulo ¥ , The letter ¥ will be called

regular prime ideals, and the former irregular.

The Apparition of Irregular Prime Ideals

If 2z = 0 (mod ¥ ), then theorem 4 implies
Py (29g5) = 0 (mod ¥ ) if Np = 0 (mod 3)
L
K g; - (mod %) if Np =1 (mod 3) ,

where W, = Pﬁ(o,l) is an integer of B,

20
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Lemma 2, If Npu =1 (mod 3), then P/u(O,l) is a
unit of B.

Proof. For any m in B, Jjust one of the three

possibilities
M = 0 (mod 1—p)
MK = 1 (mod 1—,o)
M = -1 (md 1-p)

holds, and Nu =1 (mod 3) means Hw =1 (mod 1 —p). Re-
placing m and 2 in the recursion by (1—p ) and (1+p)?,
respectively, and teking ¢ = 1, gives

— 2 2
§ 2% %2/02/ = //w(l—-/’)v-f-l %/-—,o)z/—-l ,)b(/f—,wv - —}&(I+p)z)+l /V/(I-I'p)ﬂ-l %I-—ﬁ)qu
and when 2z = O,

Yiw
/y/(:—/)v =1 and /}b(/——p)zj-r/ ’%u—/))u_, == ;7_ .
Since g.)”(u) . :
§ (2u) = é{'—g’-;r)—} —2g(w , ') =6p ()

[I, vol. 4, p. 97, 54(1/.) = 0 implies XJ (2u) = 0, and hence
taking u = 2y 2= 0, g5=1 in

Nv
Yo ) = H () Fulw)

gives
Ny
Yoo _ /}L/VV = (-1i) , at z = 0.
2
%
Consequently N((z-—/o)y . ,)
P([—-/))7)+, (091) P(,_P).’}_l (091) —— (—1) L

Therefore, both of the quantities P("‘F)‘V+l (0,1),

P . (0,1), being integers in F, are units in &,

(a—p)-u -
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Theorem 6. If g33& 2= 0 (mody ), then
P’,‘(z,ga) = 0 (mod % ) if and only if Nu = 0 (mod 3).

And if gz;= z= 0 (mod ¥ ), then P”(z,g.;,) =0 (mod v )
if and Only if N/.L* 1,40

In either case o = (1—p)e.

Proof. The first part is a consequence of the lemms, and the

second part is immediate for D =0 if and only if Nm = 1,4.

Theorem 7. If g, % z° (mod 1—p), then
P/v_(z,g3) = 0 (mod 1—p) if and only if Nu=0 (mod 3),

And if g, = 2> (mod 1 —p), then P/L(z,g3) = 0 (mod 1—p0)
if and only if Nm # 1,4,

In either case o = (1—p)E€,

Proof. Suppose gj 3 z 2 (mod 1-p). Replacing m and 2
in the recursion by (1—p )? and (1+p )?, respectively,
and taking € = 1, gives

2 2
%7/ /}'L'ZPV — 7(/*#)1’—#[ P[‘—p)z/—[ l/’(,.,.p)y - ’;b(,.)./o)y_u ’}&(/f/))ﬂ—[ y(l—ﬂ)lj
/)l'(/—/»v +1 1&(/-,0)?/-—! 'P(;ﬂ,p (mod 1 -r )s

If

by theorem 5, But
Ny
%, (w) = Y, (20) ¥, (u)

2 -2
5 Gl
A{L} —2p(w)

and

Il

g (2u)

4z3- g3

I

§ (u) (mod 1—p)

—1, gy 33 (mod 1—p ). Hence
Nv
(u)

i

since 3= 0, 2

VY, =% 0K

and, consequently,

(mod 1—p),



23
2Ny
%1-70121'—/ 10(/-79)1/-(4 = - ()02(11) (mod 1 -pP)

p— 3 N,
= — (27 —g,) *(mod 1—p) .
So, if g5 & z 3 (mod 1—p), then
'}L/u(u) =0 (mod 1 —p ) if and only if Np=0 (mod 3).

On the other hand, if g; = z>(mod 1 —p), then

D
P/u(z,gs) = g Pu (1,1) (mod 1 —p).
But 50'(u)7'=4z3—g35333=-_=0(mod 1-p)
and
Pe (1,1) = €
if Ne = 1
Pze (151) - "é .

The Apparition of Regular Prime Ideals

Theorem 8. If =z =0 (mod 2), then the rank of apparition

of 2 is
4e if gz = 0 (mod 2)
3¢ if  gy= 1 (mod 2)
(1—2p)e - if gz= p (mod 2)
(3+2p)e if g5 :‘__;Pl (mod 2).

Proof. If g; = 0 (mod 2), then
Ir ‘
P}L(z,g3 = Mz (mod 2) if Nm odd
D
Pu (z2,83) = ~3$NMz * (moa 2) if N®K even,
On the other hand

=0 K =1 ¥ ,=p1 K= (wd2),
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2
where 8?’ = g3 (mod 2), and direct computation shows that
L
Vrezp = 1+p 85 (mod 2)
1/,:3+2/J = 1+p g; (mod 2)

il

Yy z2(1+g;) (mod 2) ,
Lemua 3. If < = () is a prime ideal of E and NT = p,
an odd rational prime, then

B (z,85) = P__(0,g5) (mod ¥ ), all 1z,

(A result of this nature for Jacobi lemniscate functions may be
found in Fisenstein's Works [ VIIT, p. 1311.)

Proofs If T = 1 —p , the lemma is trivial. Suppose
NT = 1 (mod 6). Logarithmic differentiation of the definition of

’V,ﬂ, (u) gives

Y (w) o’ (7 u) o’ (u)
% (u) o (7 u) J (u)

where the accents denote differentiation with respect to wu.

Differentiating again yields

Bl = Fr ) B ) = ) {7 @ re) — @ (o} = 7R(a).
where P(z) is a polynomial in 2z over B, since

ad r a/(u)
8/"(‘1)2'—'37 ?—(‘S—)“ ’

. Yoo, (1) Yo (u)
gJ('Tu) P (u) — = v ME

But since Ng 1is odd,
Vr,—(U) = qu(z)
and p
Yr(w) = g/ () By (2)

B ) = 7w B+ g ) R

where the accents on ’}l’ﬁ_(u) and . fo (u) denote differentiations
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with respect to u, but the accents on P, (z) denote differ-
entiations with respect to 2z. Hence
r? 4 / B X
Yo — Y ¥r =g (bp — P.p))—p'B R/
And since
N = 1 (mod 3) ,
+D
s I
n Dir-34
Pq—(z) = E Wp 83 2 °
By the corollary to theorem 3, W, =T since N7 is odd, If

gz = 0 (mod 7 ), there is nothing to prove. Suppose

WS $ Ks_.'E € oE e = K’ = Ko = O % g3 (modﬁ- ).
Then
2 DT-321 \
A T~
Pﬂ’ (z2) = ,,_:Zs "o &3
LD b
/ n T~32 -1 =
Pp (2} == AZ (DT~ 3r)Wn g5 2z >(mod T ),
S0 A DT-34-2
” 0 -
P (2) = = (DT — 3r)(DT—3r—1) W, g5 2 )
2

/7

/ 3
and since § =4z —g;, F =6z ,

0= “}477./1—— }47/. “/7,” (mod 7 )y all z
= 423(DT- 3s)” n’;‘ g;s z BB T ~g5=1) w3
—4z*(D—38)(D7 —3s —1) rr: g, 2 Bl
— 6z (Du—33)h’5 zs 1(27’\—3’)—’4-—-- (mod 7 ), 2all z
= ~2(Di— 38) # gzs HAT-FRP Y 4, . (mod 77), all z,

where all the terms omitted contain lower power‘s of 2z, When
N = p= 1 (mod 3)y (7s7) =1 by lemma 7, page 31l. And

when p = 1 (mod 6), D7 = #(p—1) so that (DT —3s,7) =
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if 0€s<4Dm, Hence M5 = O (mod7 ) if 0<s <4D7,

Theorem 9., If W = (m) is regular and N7 = p, an odd

retional prime, then o = 7€ if and only if gz== 0 (mod ¥).
Proof. Immediate from lemmas 2 and 3,

The notation
P}.&(Z) = P’A(ZQg3)
will be used to indicate that g; is a rational integer, but that
z 1is an indeterminate,

By theorem 5,
M (§)

9, (2) = [T 2, (2)

® &g M6
(here (6 ) runs through the divisors of (m), and M(§ ) is the
Moébius function for the ideals of E) is a polynomial in z over

Bs By the inversion formula of Dedekind,

Palz) = TT a ()
(§) ey
up to a unit factor in B, In particular, if (}k) is 2 prime ideal,
QIU\(Z) = PP\(Z)‘
Since o0(u) = 0 if and only if u = 2vw,, 2/ in B, the
roots of Q,A(z) = 0 are
27w, e
zp:g)(T—) 9 (’)9/'() =l

And since Xo(u) is even and of order two,

2w, 2,
54( ,f\w) sl o (Tw') if and only if 2} = 2{° (mod @ ).

If 17 are distincet prime ideals of B and
Q.

then the degree of Q,A(z) is 4 £(pm), where ¢ (pn) is the
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Buler ¢ -function for the ring &

EF(p) = T xg"" gy -,
7w

Let R be the field of rational numbers; and let G be

’A
the galois group of Q#(z) = 0 over R(/o )s its coefficient field,

Theorem 10, G),g is transitive and abelian,

Proof. Let SK be the substitution
ZKv = SKZV ®

For eny two V) , . in By, (2 sp) = (22, ) = 1, there

exists an S, (Ksn) = 1, so0 that

zy, = SKZV:.
because the congruence
Ko, = 7 (mod M)

has a unigue solution ) prime to H o Hence the group is

transitive. Since

Sup Bu By T 85 By T Bygy T 858y, 0% = Syt
the group is abeliang and, indesed, it may be represented by the
multiplicative group of the quadratic residues of M , for

Sy, = S5, dimplies 2z, = 2z, or 7, = 2, (mod i ),

Theorem 11. If o is a rank of apparition of ¥ , then

Qfz) and P,(z) split into linear factors in E/Y.

Proof. By the definition of « ,
P (z,85) = 0 (mod ¥)
but
P6(39g3) $é 0 (mod 54 )s

for the same rational integers 2z and gz, when N§ < Nec,
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Hence if

Elz,) = Qg (2,) = 0 (mod ¥ ),

()t=)

2, & rational integer, then
Q(z,) =0 (mod ¥ );

for, otherwise,

Qs(2,) =0 (mod ¥ ), N§<Nex,
and Ps(z,) =0 (mod P) , NE<Ne,
But, since

W(z,) = 0 (mod ¥ );

2, lies in E/y. Let

(-]

VA =

o

(ziw‘), (Rym) = L

Since (W ,x) = 1, the congruence
K = A\ (mod o)
has solutions 2 for any A in BE. When A % 0 (mod o )

7 may be teken so that 0<N2 <N, Hence

Vo ) Y, (52)
LET

A% 0 (modol ), all lie in E/y » since the denominator is not

P = ¢

divisible by ¥ . Therefore Q.(z) and P,(z) split into linear
factors in E/y o

Let F, be the root fisld of Q}*(Z) = 0, and let C (x) =0

}L

be the equation, irreducible over R, satisfied by the primitive

n-th roots of unity. If mn = 3, C,(x) is irreducible over R(/o Yo
Lemma 4. If C (x) seplits in E,, it splits into factors

of equal degrese.

Proof., Suppose
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Culx) = £(x)g(x)h(x) ...
is the decomposition of C,(x) into irreducible factors in Fu o
Let Hu be the subgroup of Gu which leaves f(x) fixed, and let

£(x)s £2(x)y ooy f£5(x)
be the values of

Sf(x) 8 in G, /Hu.
Then
Galx) = £,(x) £,(x) vee £,(x)

where a1l of the f;(x) have the same degree

_ #(n)
A= —

Lemma 5. If n is an odd rational integer, then C,(x) splits
into at least two factors in F,.
Proof. The abelian relations assert that if n is an odd

rational integer, then

§ Bzas 1 o
S=o &/(_%LUJ. (T+SP ))

- Bzas % (‘Z_:TUJ (r +sp )) .
S=o &’(_2_5_!_ (r+sp ))

where & = exp(2Mi/n) and 1= 0,1,0..,0—~1 [VII, vol. 2, p. 242].

Since 54’(11) is odd and g2(u) even, the equations for r =0

are trivial and the equations for n—r wmerely duplicate those for

ro Consequently, r may be restricted to the range

1y 25 seey 5(n—1), Now, differentiating

Fres () Faeas()
W ()

Flpn) = p(a) — =4, (),
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which expresses g"(/&u) as a rational funection of @(u), shows

! (24e)
g ' (22L)

is in F,. Therefore, if d is any divisor of n, removing a

= w'a (5(22)

factor ?I(M) from each of the equations

£l ﬂzasd’ 1

Z (20 =0

P32 (rese)

=it onsd” ? (2w

2 P as e (r+sp )) _

§ (3 (r+sp)
where b = exp(2m7i/n)

r = 192,-0. 9%‘((1"'1)

I

n = dda’/,

yields a set of polynomials over F, satisfied by & . There are

%JIZ (d—1) pair of equations, each of degree at most n—1, Now
n

d> #(d) if d>1 and n= > ¢ (d), hence if n>1,

Ad<n d<n é.,/’n A<

S 4> 24 ad on> > Ad);

A [~ A/ d/~
adding, J<n 45

d > 2 == 2(n— > B— = n—1- 21,
24> 4%#«2 2(n—#()) > n *(H)U/Zhl n=t-fiu)t 2.1
>/

for n—¢(n)> 2 1, so
e
#(n)+2(di=1) > n—1.,
din
Therefore systemaetic elimination of the highest powers of 4 1eads

to an equation over F,, of degree less than ¢#(n), satisfied by 4,
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Lemma 6, If O 1is a rank of apparition of ¥ , then &
is a rank of apparition of ¥ .
Proofe This lemma is sn immediate consequence of the relation
PF (298'3) == ma
which follows from theorem 2 by an induction on N,
Lemmg 7, If o = €;, then & = ae or x=a(l—pe,

where a 1is a rational integer.

Proof. If a+bp = pla+bp®)=1ap + Db,

then at+bp = a(l+p) ;
and if a+bp = —P(a—l-lrfo"):—a/o—b,
then at+bo= a(l—p),

The four remeining cases are omitted since these two are typical.

Theorem 12, If p = 2 (mod 3), o, is a rank of apparition
of p, and ® 3= 0 (mod p), then
®X = 2%be or o = 2 b(1—p)E,

where b is 1, 3, or an odd divisor of pe—- 1 eand ¢ and e

are rationsl integers, ¢ >0 and e <#(b).

Proof. If p= 2 (mod 3), then (p) is a prime ideal of
By sayyY [ VI, p. 221]., Since p is rational, ¥ = ¥ , and
80 o« = &€, by lemma 6. And by lemma 7, either
oK = g€ or « = a(l—p)E.
Suppose a == 2"b, b odd., Since bJ«,
R,2 F, 2 R(pP) if b> 1.

By lemma 5, C[r(x) definitely splits into two or more factors in

F

"s and by theorem 11
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F/p = B /o= Efp s
therefore GC,(x) splits in I/p. Hence, if b 7= 3, then
pe'ss 1 (mod b), where e is the common degree of the irreducible
factors of C,(x) in E/p.
If p= 1 (mod 3), then p = Ny, where ¥ is a prime
ideal of E [VI, Pe 221]. In this case the apparition problem

is an open question,



SECTION FOUR

Numerical Periodicity Modulo Prime Idesals

Let <« be a regular prime ideal of R. This section con~
tains a studv of the periodicity modulo ¥ of the divisibility
mépping//L—eP (zog3)s 2z and g, in E', |

Lemma 8. If ¥, (u) = ’%ﬂﬂ, (u)==0 and N§ 7 1, then
Py () = o,

Proof, If & = 0, there is nothing to prove. If NJ = 1,
then ’)ﬁg (wy=J&  is never zero. Suppose N§ > 1. Since

u= 22w;, 2 in B, 1is a pole of '}bﬁ_(u) and

2PwW,

U= o pt

are the zeros of “)0/,,_ (u), the hypotheses imply

pu= 2w , pty,

I

(m+8)u 2 vVaw,; , M+J/f’7/z "
But N§ > 0 implies 2, 5% 2, , so
Su= 2(2, -2, )w, #F 0,
Furthermore 5«[’ Y.-v, s £for otherwise u would be a pole of

/}fu(u). (In particular, this excludes the case N{& = 1.)

Hence ’}05 fu) = 0,

Theorem 13, If < is a regular prime ideal, then the zeros
of ¥ forman ideal dJ1 of E., If o is a rank of apparition

of v , then oL = (),

33
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Proof. First P, (u) =0 (mod ¥ ) implies
”%/W(u) = 0 (mod % ) by theorem 5, If
Yu(u)= ¥ (v) = 0 (mod )
then (from the recursion)
/}éuﬂ/ (u) Zﬂ#_y(u) = 0 (mod v ).
Replacing . and 2 in the recursion by M+7? and u-v ,

respectively, gives

2
& qlbzlu_ ’l’bzy == (77b/4+v+6 ry)/u+71—c- %ﬂzy %u.—v-fé %,u V- éq/,u-fyo

Consequently, if (y)/* y(u) 7 0 (mod ¥ ), then 7//4 o = G

/y,u+u+e H+o—¢ ¢ (mod}ﬁ )

for al1 € 4 Ne€ = 1., But the norm of a sum or difference of two

I

units is 1 or 3, hence by the lemma ’}%(u) 0 (mody), NI = 3,

contradicting the hypothesis on ¥ , Therefore 7&;4_-1/(“) = 0 (mod )

and the zeros of ¥ form an ideal, The ideal 4t is non-void
by an arggment similar to the proof of theorem 5,1 of Ward's Memoir
[III]. Since E is a principal ideal ring o = («), where
X  is a rank of apparition of V¥ .,
An integer § of B is called a period of ¥ if
Puss (@) = Fu(w) (mody), N&>o0,
for all M in E. The existence of periods follows from the
conditions stated in lemma 11,
Lemma 9. The periods of 7 form a module A4 which is
contained in aJl
Proof. If
(}&,M-FJ (v) = ,}LF (u) (mod w), 8ll m in E
then

f}”/u_‘(u) = Y (w) (mdy), all p in E
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since ’)l«/‘_(u) is an odd function of M , Furthermore if
r}b,vw&, (w) = K%FH’;.(U) = % (u) (mod %7 ), 2ll m in E
then %thh& (u) = ’}L/H_;,(u) = % (u) (mod ¥ ), all m in E.
Teking m = 0,
’}%(u) = Y, (u)= o0 (mod v )
so 4 isin 01 , Since dL = («), there exists an integer /3
in B so that § =@,
Lemma l.Q'_' If . = m+np and f = b+cp , there exist
integers ¥, K.y Wy, K4q in B so that
Frorws® = 17 02 )™ ()™ Ho) (ot )
where & is a rank of apparition of ¥ .
Proof, Since %, (u) = 0 (mod7y ),
P () = g)(z%)—') (mod op )
for some 2/ in B, and

Prlu) = %o ( 2:‘"‘) (mod ¢ )

for any M in Ee In particular

/}LMﬂ(p(u) — /)&,M+v(,8 (_271%9 (mod ¥ ),

But

2MYw,
20w, ¥ i 216"”“'")

I +oB (T) -

o () VHP

2 pvwy
(-4

(_1)N(ﬁv)e 282 "):( +/37/w,) 0"( .2P;7/Wl)

(27/w|) N + paf + ) ff + N(xB)
oL
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= 4w, N
(—1) A/(ﬂp) . 2 ), w, N(/,zz/) . ,up _’7?7_’
= ——— i 2w
0.(21«:.) Np) 0_(27:0')’*/’7“ e q7€u( %)

—— Nﬁ ;E i w
RS HEE o (22

9

Nz = Net
where W, = (—1) o 2 Ny 0‘(————-2::“)’)
4224(}), Ny -
K o e ol o (22/«1,)’—“
5 — <
Qw| — &
— 0 (—
g (% )
are all independent of um and /_’; o If
M=— mb—me+nec , L= nb—mc,
then /u/? = M+pL and
B i Mol 1y M L mb—me+me , nh~mmc
Kg KL == K; Kl K‘M-rf’ = Ho h/q. :KL ” “(q

o Kzau&--fhcrr;mcm"nb-: (Kllr K;C )m ( 1, K"(. )4«

2
where W, = Wy K, Ky = Pf;p W‘p s and My = Sl (AN

Hence
N, & ¢
/V’/Hw(u) = K, /3(;,;_4, W, )‘m(xz w,,f' )y fy,,u(u) (mod 7 ).
Taking
M = B =1
m =1, p=1%p
IS == Vs ﬁ :.:.IO
/A. :/o, ﬂ =1
gives, respectively,
A
Fogasy = i b2 (mod p )
/y'/oocﬂ = N,

qemﬁp P i Ky
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Hence K, W, » WMiHoWy , KiK; s WMy are congruent modulo

to integers of E. Therefore, so are W, , Wz , W3 , Hyo
Lemma ll. The conditions
M = nlni = it = K;’mf = 1 (mod )
are necessary and sufficient for

Vg = Fult) (modp ), all g in 2,

Proof, The sufficiencv is evident., And so is the necessity,

for 4f
’)b/uwﬂ(u) = ¥u(u) (mody), all w in E

then m”ﬁ (> ¢ YV () =1 (mod ¥ )
for all m, n, In particular

(m= n=1) w8 K{’»{;’K,f Pﬁ," =1 (mod ¥ )

(m= 1, n = 0) Y iyt =1 (mod ¥ )

{m = 0, n = 1) K,”ﬁ Ky hﬂ," =1 (mod v ).
Hence KM= n'K = rint =1 (mod ¥ ).
But ooy =1
50 £ =ttt s nE=rnS (mody)
or )'\’3{’ =1 g Kf" " K.,c = ;r;‘m," (mod )
and K;Lh’.‘c =1 (mod ¥ ).

Theorem 14, If «f is a period of o and ¥ is any
integer of E, then g3 Y is a period of /¢ . That is, the

module AV is an ideal of F.

Proof. If (3 = b+cp and Y = d+fp, then
By = bd—cf+(de+ bf—cf)p

and
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/)L//L—l-o(ﬁ (u)___-; f’(, I‘/(/S')/) (Kz'(ra(—-cf KJ/,_—_,_{_)(__C/)”'

(I o) Y, ()

0, VBV ) ity

AR AR R PRI

= Y, (u) (mod )
since Ho sy =— 1 and

Klﬂﬁ = K1<r”3c = chmr(r = hl}‘eyr‘fc =1 (mOd? )e

This theorem states that, modulo regular prime ideals,
equianharmonic divisibility mappings are doubly periocdic in the
same sense that go(u, Wy, pw,) is doubly periocdic. The
function ¢ (u) has the fundamental period 2w, , everv other
period of g (u) is a multiple 2pw, 4 any K in B, of
Rw; ¢ Modulo vy , Yy (u) has a fundamental period %5 , where
My =(«B ), and every other period of }b,u(u) modulo Y is a

multiple o(ﬂ)/ s any )Y/ in B, of B,
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