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ABSTRACT 

Elliptic divisibility sequences were first studied by 

Morgan Ward, who proved that they admit every prime p as a 

divisor and gave the upper bound 2p-t- l for the smallest place 

of apparition of p. He also proved that, except for a few 

special primes, the sequences are numerically periodic modulo P• 

This thesis contains a discussion of equianharmonic divisi­

bility sequences and mappings. These sequences are the special 

elliptic sequences which occur when the elliptic functions involved 

degenerate into equianharmonic functions, and the divisibility 

mappings are an extension of the notion of a sequence to a function 

over a certain ring of quadratic integers. 

For equianharmonic divisibility sequences and mappings an 

arithmetical relation between any rational prime of the form 3k -t- 2 

and its rank of apparition is found. 

It is also shown that, except for a few special prime ideals, 

equianharmonic divisibility mappings are numerically doubly periodic 

to prime ideal moduli. 
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SECTION ONE 

Introduction 

In the first volume of the American Journal of Mathematics, 

Edouard Lucas [ I ] published his theory of the functions 

UYI 

"1 (3.., 
0( -

where Ol and /3 are the roots of '2. 
x - Px + Q = O, P and 

rational integers. These functions satisfy the linear recursions 

u,,+2. - PUn+I - QU ,., 

VY\ -t7. = PV'>l+I - QV,,,. • 

Lucas also showed that U'l1 satisfies the difference equation 
"l'l-1 

Q u u = . ""'+-M ,,,,_'I'\ ' 
and stated that this formula was fundamental to the theory of 

"doubly periodic numerical functions" [ I, p. 203] . No explanation 

was given as to what he meant by double periodicity. Although he 

published nothing on the subject of such functions, he stated else­

where [ cf. II) that the proof of the last theorem or Fermat could 

be reduced to the proof of the fact that the solutions of this 

difference equation a.re at most "doubly periodic." No account of 

this reduction has been preserved •. 

The difference equation occurs in the theories of the real 

multiplication and the complex multiplication of elliptic functions. 

Morgan Ward has made a study of the solutions or this recursion 

1 
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arising in the theory of the real multiplication of elliptic 

functions [ III] ; and he found that the solutions are simply periodic 

when taken modulo p, p a rational prime. It is shown here that 

in one case of complex multiplication {the equianharmonic case) a 

species of double periodicity occurs. Similar results hold in the 

1 emni scat e case [ IV] . 

The remainder of this sect ion contains results from analysis 

and arithmetic, collected here for convenient reference. 

The Weierstrass functions cY (u), C (u), ~ (u), ~1(u), 

defined for the fundament al parallelogram 

o, 2w, , 2w., , 2 w, + 2w ... , 

where Im( w.,/ w, ) > o, have the following expansions: 
2 

er (u) IT'{( u ) ( u u 1 - exp + i 
2mW1 t- 2nw2 2mw1 +- 2nwz ...,,">! 

(2mw
1
u+ 2nw, )')} 

[, (u) = 

g:> {u) = 

1 o-'(u) 1 I'l 1 =-+ + 
er (u) u M\1'1-\ u - 2mw, - 2nwz. 

1 
I 

+ b'{ - Z: {u) = 
2. u {u -

1 

3 
(u - 2mw, - 2nw2 ) 

2mw, + 2nWz. 

1 

2m w, - 2nw2. ) 
'L 

' 

+ 
(2mw,:2nw,J'} 

(2mw,

1

r 2nw.)'} 

where the indices m, n run from - 0<0 to +oo , and the accents 

on Tf and Z mean, as usual, that m and n do not vanish 

together. 

The invariants g 2 and g3 are given by 

'?' __ 1 __ 

L t ' (2m w1 + 2nw2.) ' 
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where the indices m, n have the same range as before. 

In terms of u, w, , w2. , the homogeneity properties of the 

Weierstrass functions are given by 

CJ ( A u, .A. w, , i\. w2 ) == A. er ( u, w 1 , w, ) 

l; ( A. u, .Aw, , Awl. } = A_-I C:., {u, w, , w'l. ) 

S' ( A u, i\w, , Awl.. ) - A_-2..cfJ (u, w, , wz. ) 

8' 1
( Au, Aw1 , ;\wz. } - A_-3 &'(u, w, , w 1 ) ; 

and, in terms of u, g2 , g3 , the homogeneity properties are 

<f" ( A u; A_-'f g2 , >.-" g3 ) ACl{u;gi. ,g
3

) 

C ( A u; A_-'t g z, :x_-'- g
3

) - _A-i~ (u;g 2 ,g
3

) 

~ ( A u; A-'tg2 , A.-"g 3} - i\-"2.f> {u;g2,g 3) 

g:> ' ( A u; A -'I g z ' A.-6 g~ ) - ).. - 3 8'> ' ( u; g 2. ' g3) • 

The functions fP (u}, g.>' (u) are doubly periodic with 

periods 2w 1 , 2 Wz. . The pseudo-periodicity of 0- ( u) is given by 

,.,.... ( .1- 2 + 2 ) - ( l) /l.S-tll.-tS l(ll'11+Srii.}(c.t.+ttw,tsw2 ) () 
v u -, r w 1 s w"" - - e er u , 

where 7 1 = ( ( w 1 ) , ~ i. = t:, ( w"L } • 

The function er (u) further satisfies the three-term sigma 

formula: 

<J (u + u 1 ) 0- (u - u 1 ) cr (u2 -+- u 3 ) <r(u z.- u 3 ) 

+Cf (u -t Uz. ) o- (u - Uz. ) er (u3 + u , ) <r (u 3 - u 1) 

+a-(u + u3) cr (u - u,) c>(u ,+ u2) o- (u, - u, ) = o. 

These formulas may all be found in any treatise on elliptic 

functions; for example, Tannery et Molk [ V, vol. 2, pp. 234-236 ] . 

The ring E of the Eisenstein integers consists of the 

numbers a + b p , a and b rational integers and 

p = exp(2 11i/3). 
2 

Since p +- p + 1 = o, the conjugate and 
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norm in this ring are 
2. 

a + bf = a + bp , 

N{a + b p ) = a '2.- ab+ b :z. . 

The ring has six units E: , for which NE - 1: 

± 1, ±p , +fz= -t- (l +p ); 

and the smallest twenty-one values of N,_,.. , for p.. in E, are 

o, 1, 3, 4, 7, 9, 12, 

13, 16 
. ' 19, 21, 25, 27, 28, 

31, 36, 37, 39, 43, 48, 49. 

The parity, modulo 2, of N~ is simply: 

N(a +- bp ) - O{mod 2) if and only if a = b = 0 (mod 2). 

Since E is a principal ideal ring, the Mobius function 

M('1M. ) of the ideals of E may be defined by 

M( €- ) - 1 

M( f- ) - ( - 1) 
II.. 

if NE. = 1 

if ( JA- ) is a product of r distinct 
prime ideals 

if ( /A- ) is divisible by the square 
of a prime ideal. 

A discussion of the ring E is given by Hardy and Wright 

( v1, sections 12.9 and 15.3] . 

The equianharmonic case of the Weierstrass functions occurs 

when the period ratio w2.. / w, is p . [ VII, vol. 1, P• 136 ] 

In this case the expansi ons for <J (u), Z: {u), 8J (u) and 

~ / (u) may be written 

cJ (u) = 
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l 
?:_ =r 0 

1 1 
~L { (2:w, »I ( (u) = - + + 

u ft ;,.,. E u - 2/Aw, 2 JALAl1 

I' =Fo 
1 -L{ 1 

~ (u) = -
u }A- I,_ E (U - 2 fAW1 ) 

1 
[? 1 

(u) = - 2 2_ 
)A'- E 

3 
(u - 2 }AWi ) 

2. (2~ w1 ) 2 } 

' 

where the index fA runs through E. Hence, if NE - 1, the 

homogeneity relations imply 

<J ( € u, w, ' f w, ) = E- o (u, w 1 , pw 1 ) 

?'; ( E u, ) = -I 
W1 ' P""• E l; (u_, w 1 , f w 1 ) 

g.> ( E: u, w, , fl.\Ji ) = E-'g:> (u, w 1 , fWI ) 
I B7 { €. u, ) -3 '( w 1 , pw1 =E 8°' u, w, , pw, ) • 

When wi. = ~ lV 1 the pseudo-periodicity of <J (u) takes 

the form 

N ,...._ 2 f- ~ 1 ( LA.. + JA w,) 
cr(u -t- 2 J-"-w, ) = ( - 1) e cr (u) ' fA. in E, 

since 'J:L = t; ( wl. ) ·= p-i z; ( w 1 ) = r:i 
2 

>'Ji • 

The expansion for <> (u) shows that <J (u) - 0 if and only 

if 

U = 2 J-A-w 1 , f-A- in E. 

The differential equation satisfied by [p ( u), 

s-:7' (u)
2 = 4 ~ (u)

3 
- g 2. f-7 (u) - g3 , 

is simplified by the fact that g 2 == O; for 

~' (p u) '-= 4 f-7 (f u) 3 - g 2 p (f' u) - g 3 

or 
I '2... 3 (l ( u) = 4 g=> ( u) - f> g 2 ~ (u) - g 3 , 
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hence g 2 = O and 

I -:z. 3 
~ (u) = 4 if:'( u) - g 3 . 



SECTION TWO 

This section contains a discussion of the properties of the 

function 1f "'1 ( u), which Morgan Ward used in his theory of elliptic 

divisibility sequences [ III] , for the case in which the Weierstrass 

functions on which it is based degenerate into equianharmonic 

functions. The notion of a divisibility sequence, as a mapping of 

the set of natural numbers into the ring of rational integers pre-

serving division, is generalized for this case into that of a division-

preserving mapping of the ring E into itself. This generalization 

is the key to the arithmetical structure of such sequences. The 

argument relies constantly on the fact that the equianharmonic func-

tions admit a complex multiplication, which fact may be expressed in 

this case by the equation 8°1 ( p u) = p 8-=' (u). 

Since cr (u) is an entire function of u, the function 

er ( ,.,._ u, w, , p w 1 ) 

1r (u) = -----N.- , 
U- (u, w 1 , pw1 ) 'f'-

f<- in E, 

is a meromorphic function of u. Furthermore H is an elliptic 

function since it has the periods 2 w 1 and 2pw 1 

cr ( µ u + 2 ,1Aw1 ) 

O"" (u + 2 w1 ) Jlf'-

N f' 2 fa '7.( J-< u + I-< w, ) 
( - 1) e O" {ft u) 

{- e 2Yj1 (1..<.+wi) IJ (u>} Nµ. 

- Y,u Cu>, 

7 



8 

from the pseudo-periodicity of CJ (u). Likewise 

CJ ( fA- U+ 2 JA-fW1 ) 

() (u + 2 f ""1 ) NfA-

= 1',Ju) • 

Theore~ !• )bµ. (u) satisfies the recursion 

for IA , v and E in E, where N€ = 1. 

Proof. Replacing u, u 1 , u2' u 3 in the three-term sigma 

f ormula by O, E u, )AU, v u, respectively, yields 

E' 2 cr\u) <:T (<-JA + -v )-u) a- ( ( /A - v ) u) 

- (f (<f-A+E )u) o( ( JA--E- )u) 0-~ ( v u) 

- (f {( "Jl + € )u) <J ( (-v - E )u) CT2- (f- u) • 

Since 

2t- N( ,,.. + v ) +- N( JA- -v ) = N( }A -r E ) + N( }"- -€ ) -t- 2N v 

= N ( iJ + f ) + N ( 71 - € ) -t 2N }'<- , 

division by 

gives 

2 + N(f<f.t-V) +-JICµ-v) 
er( u) 

which proves the theorem. 
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Nf = 1, 

and the recur si on of theorem 1, every value of 'J'r- (u) may be 

computed from the initial values 

Yo {u) = O, 'lj, {u) = 1, 

~~ !.• If Nft> 12, Nft- even, 

NJ-'- '? 20, N ~ odd, 

t hen ;t',.u (u) may be computed from the recursion if the values of 

~ (u), N-V ( Nj( , are known. 

Nf<- = 0 (mod 2) if and only if f- = 0 (mod 2), j ust one of 

the f our po ssibilities 

~ - 0 {mod 2) 

t<- - 1 (mod 2) 

r-- = f (mod 2) 
2 

}-"-- - f (mod 2) 

must hold. Replacing fA- ' v ' E in the recursi on by 

v+ fJ ' -iJ-f ' 1 

-v + 1 ' 
v ' f 

-;J +-f ' -iJ ' 1 

-v -t f2 ' 
pl 

' 1 

yield, respectively' 
~l 2 2 

fJ 72v ~ == '1f-r-rt-tf Yv-1+f Y.rJ11 - ~-V+i-~ '1f-Y-1f° 1fv+f' 
L 2 

/2.1f2v+1 11J+l+p 1-v+i-;:i 111 - 'f-v+/ 1fY-/' '1/-y+1 

~ 2 

;J 12-Y+f - 'fv+i-tf Y-zJ-1+;0 'iv - 7f-JJ+1 '1'-v-1 ~-v-f/' 

//z'1fzv+f :i. - Yvf-1-tf'z "f-v-1-r(:? 2 1f'l)
2 

- 1f-v+1 Y'-v- 1 Y-v:l"'z. 
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Since N(l -p ) = N(l -f 2 ) = 3, every subscript appearing on 

the right side of any of these equations lies in or on the circle 

of radius {3 and center v . 

Case 1. r- even. If Np.. / 12 or I fA- I > 2 {3, 

I ~I - t )p.\ ===' t \fA I > f3 
so that /A. lies farther from the origin than any point in or on 

the circle of radius f3 and center t f'\- . 

Case 2. f- = E {mod 2), NE= 1. If NfA/ 20, or ltA-1 > 2{5, 

IJ-ll - t\~-tl ~ \~I - t< Iµ\+ 1) 

~ t ffAI - t 
7 6- t //3 , 

and JA lies farther from the origin than any point in or on the 

circle of radius J3 and center t( p-.- E ). The lemma is proved. 

~of~ ih!2~· For n = 7, 9, 12, 13, 19 the equations 

Nf = n have the following solutions: 

Nr- = 7 

NJA == 9 

N ~ == 12 

N~ = 13 

Nf'l = 19 

~ - (1 - 2p ) E. , (3 + 2f ) E 

fA - 3 € 

/A- - (4 t- 2p ) t 

~ (1 -t- 4f ) c ' (3 +- 4f ) 6 

/A - (3 - 2,P ) E' ' (5 -t-2f )e . 

The cases N~ = 19 and Np.. = 13. Taking }A- = -zJ-t- 1 and 

E = 1 in the recursion gives 

- 2 +p 
- 3-p 

2p 
- 2 - 2p 

2.V+ 1 

- 3 +- 2p 
- 5 - 2f 

1 + 4f 
- 3 - 4p 

N(2 :Vt- 1) 

19 
19 
13 
13 

3 
'f v-t 'lf-v +I 

N( iJ-t-- 2) Nll N( Jl- 1) 

3 
3 
4 
4 

7 
7 
4 
4 

13 
13 
7 
7 

N(vr 1) 

3 
3 
3 
3 
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Thus 'lf-J+2f ' "lf-s-- 2! , rfi+"fj' , 1f_ 3 _~1 may ea ch be com­

puted from values with indices of smaller norm. The ot her ten "f ~ 
for Nr- = 19 and for NfA = 13 are unit multiples of t hese. 

The case NJA === 12. Although ,.,._ lies on the circle of radius 

f3 and center t r<- , the first formula employed in proving the 

lemma may be used to compute 1f lf+2f . For, if 1/ = 2 +f , 

N( -P- ,,.0 ) =- 4 
N( .P+ l +f ) = 7 
N( -i1 - 1 +f ) = 3 

N( -ii+ ;O ) - 4 
N( ;J+ 1 -p ) = 9 
N(v- 1 -,..o ) = 1. 

The other five Y, f" , Nft = 12, are unit multipl es of f 4 -t- 2/) • 

The case N f- == 9. }1
3 

may be computed from the second formula 

used t o prove the lemma, for, if µ. === 3, 

ffk' - tlfA- 11 = 2 > {3 ; 

and the other five 'fl"-' , Nfl = 9 , ar e unit multiples of 13 • 

2 
The case N}A = 7. Taking }A- = y +- 1 and E = f° = - 1-1' 

in the recursion gives 

P 1121/-1- 1 == 1v-n-t,o ""fv-;; 'If;; - ip-11-1-1' 1'-v-1-/' 
2. 

Y'.,;-1-1 ' 

andif P=-;i , then 2 'J/+ l = l - 2p and 

N( v+ 2 +f ) = 4 N( :V-J- l t-f ) = l 
N(v -f ) = 4 N( 1-' - l -(' ) = 3 
N,, = 1 N(-V+ l) = 3, 

which exhibits a method of computing 1f 1_2p • The second formula 

in the lemma proof suffices for r'//3 +2f , since if v = 1 +f , 

then 2v + 1 = 3 + 2p and 

N( -V+ l +P ) = 4 
N( P' t- 1 -(7 ) = 4 
N-P = 1 

N( :V -1- p ) = 3 
N( r-;0 ) = 1 
N( ;J+ l) = 3 

The other ten are unit multiples of these two. 

The equations 

NJA- = 1, 3, 4, fA- in E, 

• 
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have the six solutions 

€ , (1 - f ) E , 2E , NE = 1, 

respectively. Therefore every value of 1-'/A- , NJA ~ 4, is a 

unit multiple of one of tif0 , ~ , -Y,1 _f' , ~ • But every 'f fl. may 

be computed from various 't , Nv' ~ 4; hence the theorem is proved. 

If NI"-> 0 and 

1'µ.+;i1 (u) '1µ.-v (u) 

N'P / O, the two elliptic functions 

() (( ,,.. +v )u) er (( µ. - 'V )u) 

If .. ( fA u ) er 2 (-v u) 
and 

tf;(u) 1~/ (u) 

~ (-V u) - ~ {f- u) have the same poles, whose orders and principal 

parts are equal. Hence 

J'µ+v(u) 1/µ-v (u) 

1/ ( u) 1f 112- ( u) 

Taking f- = 1 and v =f , 

1f1+1 ( u) 1/', -;' ( u) 
2 = 0 {f u) - V.:. (u), 

~ (u) 1) (u) O 
0 

and since ff (f u) = ff (u) and 1-'f (u) = € , for N€- = 1, 

~7° (u) = (1 -f ) ~ (u). 

The other initial value 

12 (u) = - 8-'/ (u) 

may be found in Tannery et Molk ( v, vol. 4, p. 98] . 

:!'.!!~ ~· J'_µ. (u) = P~(z,g), NfA- odd, 

"fµ.. (u) = 8'' (u)P,._ (z,g3 ), NJ.A- even, 

where z == £f (u) and P~ (z,g3 ) is a polynomial in z and g 3 

over E. 

· f!:£of by i~£ii2!!. The theorem holds for the initial values 
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n = o, rr, = 1, 1ft-;; = (1 -f1 )z, ~ = - r 1
(u) 

and for any unit multiple of them. Since g 2 = o, 
2 3 3 

8'' (u) = 4 ~ (u) - g3 = 4z - g 3 • 

Case 1. NI"'- odd. If ft=- 2 P+6
1 

, N c-1 = 1, taking 

/A- = // + 6 1 in the recursion gives 

E 2. ~ "]) + ..... , '\f e, = 1:,, ~ .,,1 ..,;, i. 11_, '\I, "lb 2-
"" .. -r .. ,-r-e T-v+61 -e rv - Tv+€ Tv-E- Tv r- Gi 

or 

ri!J - -2. c - J {ri/,, ri/, 1/. z.. lh ,,;, ,,;, '2. } 
r211+£, - E I rv+E,+€- 1-v+~,-€ r11 - T1lr€ 'rv-t Tvt-E-, • 

The formulas used to compute 1,.,.. , N14 = 13, 19 , are special cases 

of this expression for which € = €, ; all the other f ormulas used 

in the proofs of lemma 1 and theorem 2 for N ~ odd are special cases 

for which E =f:. € 1 • Since (in either case) 

V+-€ 1 +-€- - -v-+ e-, - c (mod 2) 

and 1) + € == -z)-€ (mod 2) , 
wherever 8-'' (u) may occur in this expression for ~2-zl-t-61 (if 

it occurs at all), it does so t o the second power. Ca se 1 is there--

fore proved by induction on ~· 

Ca se 2. fl- = 2 ).) , 71 = E (mod 2). Replacing ft- and -z/ in the 

recursion by 1/ + ~ and -Y-€ , respectively, gives 

~'ZJ 12.E = 1)1 ( ~7JfZ€- '1/7:€- - "'f-v-:i.~ 'lf"])'Z-+(:-). 
Suppose that Nf- > 4, and that if N(2 K' ) <: Nf , ~2 r< is 

~ 1 (u) times a polynomial in z,g5 over E. Since 

Nf" = N{2 >' ) > 4, \VJ > l and 

2 IJJI ~ \-v l + i ~ 111 ± e J , 

or 

N(2V' ) > N( :V±e ). 
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Because 

-i-1 - € :::: .P -t- € = 0 (mod 2) 

but 7/ = -V + 2 G = -v - 2 € "¢= 0 (mod 2) , 

~ 1(u) occurs on the right side to the second power; and since 

'lfi.E = - € r/ (u), %-,,; is ~ 1 (u) times a polynomial in 

z ,g3 over E. 

Case 3. ~ = 2 v , -i/ = 0 (mod 2). Direct computation shows that 

1f (u) = -~ 1 (u) { 2z 6 - 1og3 z 1 - g;J . 
Suppose that NJA > 16 and t hat if N(2 K' ) < NJA- , '11.J is 

T2t< ?'(u) 

times a polynomial in z,g 3 over E. Since 

Nf- = N(2 P ) > 16, l-Vl~ 2 and 

21-YI / l"Jll + 2 ~ 1-V± 2 t:-I 

or Np..> NY , N( v ± 2 ~ ) • 

But y - v + 2f = 0 (mod 2) 

and 1/ + E - v - c ¥= 0 (mod 2); 

so ~t (u) occurs on the right-hand side of 

1' 2. )I '12 € - 1v ( "f V-fZ c 11-v~~ - Y-r-:z.t ~v~~) 
to the second power, and the theorem follows by induction on NfA- • 

The nature of the pole at u == 0 gives an immediate corollarv 

to theorem 3: considered as e. polynomial in z, the leading 

coefficient of P~ (z,g3 ) is 

- t p. 

and the degree of P~(z,g 3 ) 

t{N~ - 1) 

t{N~ - 4) 

if 

if 

in 

if 

if 

Nt-L odd 

N µ. even, 

z is 

N fA odd 

N,..,_. even. 
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Theore!£ !• If N /A= 0 (mod 3 ), 

11'/l.. in E, 

and if N /A = 1 (mod 3 ) , 

1-f 4 in E, 

Ji== 0 

where D]k is the degree of Pr (z,g3 ) 

!I£of. First: 

in z. 

DJA = 1 (mod 3) if and only- if N f- = 0 (mod 3) 

DfA = 0 (mod 3) if and only if Nf"- = 1 (mod 3) , 

but N~ 

Cf ( u)' 

Hence 

and 

is never congruent to 2 modulo 3. The homogeneity 

~ (u)' 8'' (u) as functions of the invariants are 

CJ ( A. u; /...-ct g 2. ' A_i;. g 3) - A. <r (u; g :z. , g ) ) 

~ (::\. u; A - 'I g 2 , A_ - t. g , ) A-l. j' (u; gz ,g3) 

r' (.,\ u; _A.-'f g ~ , )_-'g 3) - A_-3 8-' I ( u; g2 'g 3) • 

l J -6 
o (u; O,g3) g 3 <r(g ~ u; 0,1) 

~ (u; O,gl ) -
l .L g: ~ (g; u; 0,1) 

8'7' (u; O,gl) g3i: r'(g .t u; 0,1) 

<J ( ,u. u; o,g3) 

er ( u; o,g3 ) N-"' 

I 
-6 I 

g 3 <T ( JA. g 3
6 u; O,l) 

of 

given by 
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J_ 

'ft- (g : u; O,l) • 
I 

then y = zg ; 3 
• Writing Let y 

1JA. {u; O,g3 ) = E l"- (u) P .,. (z,g3 ), 

where E f ( u) = 1 if N t-' odd 

E ,..._ (u) = ~ 1 (u) if Np- even; 
.1. ..!.. /l'f'- ( g : u; 0 , 1 ) = E r' { g 3 

6 u) P /A ( y , 1 ) • 

Hence, if Ny- odd 
~ 

1JJ- (u; O,g3) = g3 6 P,.._ (y,1) 

and if N fA even, 

l 

~I {g ; u; 0,1) Pf {y,1) 

.J._ ' t g 32. ~ ( g 3 u; 0' 1 ) p ,.J y '1 ) 

~ 1 (u; O,g3 ) P~ (y,1). 

Consequently, in either case, 
j-DJ.A 

P~ (z,g3 ) == g
3 

P~(y,1). 

On the other hand, 

hence 
1-Nµ 1r ( f u; 0,1) = f J//'- (u; 0,1) 

and 

But, by theorem 3 and its corollary, 

therefore 

]) ...... 

pfA (y,1) = 2-
S=o 

s 
'As y ' As in E, 

s=o 

s s /-NI-' 
As f Y =f P,_,. (y,l). 
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:Pµ. 
'S°" is s 2( 1- Nµ) 

PJA C/2 .. y,l) = L As f y =f Py.. {y,1). 
S =-o 

Now if NfA ::= 1 (mod 3), 
1-,v/A-

f = 
2(/-Np) f = 1, so 

j)~ 

pf- (y,l ) = 2 
S==-o 

and, adding, 

3P/A {y, 1) 

But 

s 2.s 
3 1 -t-p +f 

1 + J°s +f 'l - 0 

so 

Pf- (y,l) 

>=o 

Df(.. 
s :z. -ls (1 + f 

S=o 

S-=o 

if s = 

if s -=!=-

3S 
A.ls y 

S=o. 

'2.S ) .s + f y • 

0 (mod 3) 

0 ( mod 3), 

r ( ) 1-NfA- 2(1-N)A) i. 

But , i N fA = 0 mod 3 , f = f ' ~ -= f' ' 
so 

])µ. J>}A-

p,.,. (y,l) - ;2. As Y s = P ,_ :2.. As l's y s -
2S S 

As I' Y ' 
S=o 5=u 

and, adding, JJJA. 

But 

so 

3PJA (y,l) -
'S" l ( 2 + 5 I +2.S 

L "s l + f +f 
S=o 

1 + f 'HS +f H-25 - 3 

1 +f2-t5 +f 1+2.5 - 0 

if s = 1 (mod 3) 

if s =/=:- 1 (mod 3) , 
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pr' (y,l) - A 3s+1 
3S-+ I y 

S=o 

and 
"3S+I 

z 

• 

Theorem. _5. If vjLL t hen P (z g) I P ( ) ,-- 7/ ' 3 ~ z ' g 3 • 

Hence, if NA and N v are odd, 
N,\ 

Pf- (z,g3 ) = PA{~ ( 7J u),g3) P-v (z,g3 ) • 

But DA. = -!(NA- 1) and 

so 

where 

~ ( v u) = ~ (u) -
1-v_, (u) 1fv+1 (u) 

pl' ( z 'g3 v-
2. 

zPv (z,g3) - rtfv-1 (u) 1fv+1 (u) 

P,_,( z,g3 ) 
2.. 

Pf" (z,g3 ) = P(z,g3 ) P .. )z,g3 ) 

NA-1 
P(z,g3 ) = Py (z,g3 ) P A.(~ ( Y u),g 3) J>A-J-1. 

= L >1'11. g; ( zPi1 (z,gJ )
2 

- )i'.,;_, (u) 'lf'..v+,(u)) 

is a polynomial in z and g3 over E. The cases where one or 
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both of NA , N v are even may be carried out in a similar manner. 

This theorem may also be deduced directly from the recursion by 

an argument similar to the proof of theorem 4.1 of Ward's 

Memoir [III]. 



SECTION THREE 

Fix z and g 3 in the ring of rational integers. Then the 

correspondence /"'--P- PfA {z,g3 ) is a mappin$!: of E into itself 

which preserves division (theorem 5). Let '1j be a prime ideal 

of E. An integer )._ of E is called a !!!2 of 'j if 

PA. ( z, g3 ) :::::: 0 (mod :f ) • 

A zero o<.. of "j with minimum positive norm is called a ~ of 

a1rnari t i,2.!l of y • 

By an argument similar to the proof of theorem 5.1 of Ward's 

Memoir [ III] it can be shown that every nrime ideal appears some-

where. The object of this section is to find an arithmetical rela-

tionship between ':f and ex.. • For this purpose the prime ideals 

:f of E are divided into two classes according as P1_p (z) is 

or is not congruent to zero modulo :; • The le.tter :J will be called 

regular prime ideals, and the former irregular. 

If z - 0 (mod 'Y ) , then theorem 4 implies 

if N ~ = O (mod 3) 
..L J) fL 

_ K..-t. g
3

3 {mod :; ) if NfA = 1 (mod 3) , 

where ;(ll. - P,..J 0,1) is an int Ager of E. 

20 
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~ ~· If' NfA - 1 (mod 3), then Pr(O,l) is a 

unit of E. 

mor. For any ,,... in E, just one of the three 

possibilities 

f' 0 (mod 1 -p ) 

/A- - 1 (mod 1 -f ) 

fA- = - 1 (mod 1 - p ) 

holds, and Nr-= 1 (mod 3) means f- - + 1(mod1 -p ). Re­

placing )A- and v in the recursion by ( 1 - fl ) v and ( 1 +- f ) v , 

respectively, and taking € = 1, gives 

'¥'2 v 1:yn1 = 'fr1-f'Jv+1 1f1-11Jv-1 "f(1 ~~Jv - 1'o+pJv+11f(1-t171v-11/(,~f'Jv • 
and when z == o, 

Since l l?" (u) r ~ (2u) = i - 2 ~ {u) ' 8'' (u) 

2. 

~ II ( U) = 6 ~ { U) 

( I, vol. 4, P• 97] ' 8'(tl ) = 0 implies If (2u) = o, and hence 

taking f<- = 2, z = 0, g 3 = 1 in 
Nv 

~v{u) = 1v (f- u) 1f14 (u) 

gives 

Consequently 

_ '1U Nv = 
- Tz. 

Nv 
( - i) ' 

at z = o. 

N((/-fh'+-') 
P ,1_171 -v+i ( 0 ,1) P u_f',.,_,_ 1 (0,1) = ( - 1) 

Therefore, both of the quantities Pu-pJ-Y+i (0,1), 

Pc >-' (O,l), being integers in E, are units in E. 
I -f "' - I 

• 

• 
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If g 3 "¢=: z == 0 (mod y; ) , then 

Pfl (z,g3 ) = 0 (mod y ) if and only if NI<- = O (mod 3). 

And if g3 = z= O (mod y ), then P,. (z,g3 ) ::::. o (mod "f ) 

if and only if Nf-=f= 1,4. 

In either ca se ot - (1 -f ) c . 

~!· The first part is a consequence of the lemma., and the 

second part is immediat e for DJA = O if and only if Ni"-= 1, 4. 

'3 
If g3 ;/=. z (mod 1 -p ), then 

Pf'- (z,g3 ) = O (mod 1 -f) if and only if Nr = o {mod 3). 

And if g3 :::= z 3 (mod 1 -p ), then P,µ. (z,g3 ) == 0 (mod 1 -p ) 

if and onl y if N f'- =t= 1, 4. 

In either ca se ex. = (1 -f ) e . 

~· Suppose g3 ¢. z 
3 

(mod 1 -p ). Repla cing }A- and t/ 

in the recursion by ( 1 -f' ) JJ a nd ( 1 t- f ) ii , respectively, 

and t akinf!: €. = 1, gives 

"Y"a.v '1-:_2f'J.I = 1<1-pJ-V+1 

= 1ft1-pHI ~I 

2 ~ 

-P11-pn1-1 lfr1-rf'Jv - 1<1+f1'v+1 'f<1+pJ1l-1 1ft1-pJ"11 

'1ft1-,o>'ll-1 ir~l'w (mod 1 -1' ), 

by theorem 5. But 

and 

#JI 
1/iz.1 (u) = 1fv (2u) '1(2- (u) 

2.. 2. 

~ ( 2u) = t ~ 6 ~ (u) }-28' (u) 
l 4z - g 1 

- ~ ( u) (mod 1 - ,o ) 

since 3 = o, 2 =: - 1, g3 =fE z 3 (mod 1-p ). Hence 

'1L... N~ "X.,., ( u) = 1'v ( u) r2. ( u) (mod 1 - p ) , 

and , consequently, 
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:iNv == -Jl'2(u) (mod 1 -p) 

So, if g3 ¥==. z 3 (mod 1 - p ), then 

;t'_µ(u) = 0 (mod 1 -p) if and only if NJA- =. O (mod 3). 

On the other hand, if g3 = z 3 (mod 1 - p), then 

But 

and 

( - :I>J', P/A z,g3 ) = z P~ (1,1) (mod 1 - p). 

~ 1 (u)'2. = 4z 3 
- g3 = 3z

3 == 0 (mod 1-f) 

Pe (1,1) E 

p2. E (1,1) = - E 

p ,., ( 1, 1) = 0 (mod 1 - f ) 

if N f: = 1 

if N/"' =i= 1,4~ 

Iheorem §• If z ~ O (mod 2), then the rank of apparition 

of 2 is 

4E if g3 = 0 (mod 2) 

3 E: if g ] = 1 (mod 2) 

(l - 2p )E 

(3 + 2p) E 

if g 3 = p (mod 2) 

if g3 =f '2. (mod 2). 

.f!£of. If g 3 .= 0 {mod 2), then 

Jl~ 
P fA ( z , g3 ) == JJ-- z (mod 2) if N /A odd 

])"" 
PJA (z,g3 ) ::::::::: - t t-A- z (mod 2) if Np.. even. 

On the other hand 

ri/o = O, 1J - 1, 1f1_1° = / ·z, 'l2_ = ~ / (mod 2), 
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where 
I 2. 8' = g 3 (mod 2), and direct computation shows that 

"2. 
1 + r° g 3 (mod 2 ) 

'f
3 

+-Zf - 1 + f g 3 (mod 2) 

1'o _ z(l + g3 ) (mod 2) • 

~~ ~· If 'f = ( 1T) is a prime ideal of E and N?T = p, 

an odd rational prime, then 

(mod 'f ) , all z. 

(A result of thts nature for Jacobi lemniscate functions may be 

found in Eisenstein's Works [ VIII, P• 131 ] .) 

f!:2£f• If 'ii = 1 -p , the lemma is trivial. Suppose 

N11 == 1 (mod 6). Logarithmic differentiation of the definition of 

Jt'.'7r (u) gives 

I 
o 1 ( 1T u) ()/ ( u) 1'7r (u) 

- rr - N1T ' ']b?r' (u) <J ( 1T u) cf (u) 

where the accents denote differentiation with respect to u. 

Differentiating again yields 

1f ;_ ( u) ~ - 1 rr- ( u) 1 ; 1 
( u) = 'Yv ( u) 

2 

{ 77' ~ ~ ( 1T u) - ~ ( u) N 7T J = 11 P( z ) ~ 
where P(z) is a polynomial in z over E, since 

V:J (u) = _ ~{ v' (u) } 
0 du () ( u) 

~ ( ?J u) = (p (u) - '17r-1 (u) li'/T+1{u) 
f77 (u) 2 

But since N 1r is odd, 

and 

r-y; (u) -:-­

fJ!' (u) = 

Jt'o- (u) = Prr (z) 

I 8'' (u) P.,,- (z) 
2 If 

~ II ( u) p; ( z ) + B7 1 
( u) p 1T ( z ) , 

• 

where the accents on ]L-71 (u) and ~ (u) denote differentiations 
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with respect to u, but the accents on Pff (z) denote differ­

entiations with respect to z. Hence 

/ '2. 11 I 2. 2 1'7T - Yo- "'/7r = p (P;. - p11 p; ) - g=i" p,,, Pr/ • 
And since 

Nn- =. 1 (mod 3) 
' 

tJJJr Jhr- 3 ~ 
P-rr {z) ~ 

12. 
- Yl'1t g3 z • 

/);o 

By the corollary to theorem 3, since N'lf is odd. If 

g,3 == 0 (mod 1T ) , there is nothing to prove. Suppose 

11"s =fr l<s_1:= · · · == K 1 ==. Ko .:::: 0 ~ g .3 (mod 1T ). 

Then 

P r (z) -

P.JT/ (z) 

])11-3.IL 
z 

JJrr-3~-1 
z 

P1/' ( z) 
ll.. Jl//-31.-Z 

(D Tt - 3r)(DF- 3r - l) l11t. g 3 z 

; '2- 3 II 
and since ~ = 4z - g 3 , 'if7 = 6z , 

ril I 2. 1L '1J I/ 
O = 1 1T - r 7T 7 71 (mod 7T ) , all z 

4 3(D -rr 3 ) 2 v:i. 2s 2.(JJJl-35-1) 
- Z 11 - s "S g 3 Z + · · · 

3 l. 2..S 2(1JTT-3S)-2. 
- 4z ( D 1T - 3s)(D11 - 3 s - 1 ) }'(5 g3 z + .. · 

{mod 11" ) , 

- 6z :i (D il- 3s) ~2. g ; 5 z 1.(J>rr- 3 s)-I+··· (mod 7T ), all z 

=- 2(D /T- 3s) K'/ gJs z 2(lJn-3s)+I + · .. (mod 11 ) , all z , 

where all the terms omitted contain lower powers of z. When 

N11 = p = 1 (mod 3), ( 7T , 7r ) = 1 by lemma 7, page 31. And 

when p = 1 (mod 6), D /T = -!-(p - 1) so that (Dv- 3s, 1T ) = 1 
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if 0 ~ s < y D'ir . Hence Ks = 0 (mod 7T ) if O ~ s < -}D7r. 

Theo re~ 2.• If :f = ( 11 ) is regular and N'iT = p, an odd 

rational prime, then ex =Jr€ if and only if g3 =: O (mod y ). 

f.!22!• Immediate from lemmas 2 and 3. 

The notation 

will be used to indicate that g 3 is a rational integer, but that 

z is an indeterminate. 

By theorem 5, 

n M<tfJ 
QJ-l- (z) = P (z) 

a>/qA) IA/l · 

(here ( o ) runs through the divisors of ( f- ), and M( J" ) is the 

Mobius function for the ideals of E) is a polynomial in z over 

E. By the inversion formula of Dedekind, 

p (z) - n Q (z) 
/A (0 /q .... ) 6 

up to a unit factor in E. In particular, if (JA-) is a prime ideal, 

Q~(z) = P,v- (z). 

Since 6""(u) = O if and only if u = 2 -Vw1 , 7/ in E, the 

roots of QJA (z) = 0 are 

' 
()} ,r) - i. 

And since ~ (u) is even and of order two, 

2. :z. 
if and only if Y, = ~ (mod }A ). 

If are distinct prime ideals of E and 

(µ) =1T71Q., 

then the degree of Qr-(z) is t ~ (fA-), where T ( f-l ) is the 



27 

Euler <f -function for the ring E: 

Tf N"llja.-i (N ry- 1). 

~It,.,.> 

Let R be the field of rational numbers; and let G/'4 be 

the galois group of Qi"'- (z) = 0 over R(f ), its coefficient field. 

'.fheor~ 10. Gr is transitive and abelian. 

!2:£2.£• Let SK be the substitution 

For any two v 1 , -V-z.. in E, ( -V, , µ ) 

exists an SK, ( K , }A. ) = 1, so that 

because the congruence 

S z _, 
II( "2. 

( -V:z. , ft- ) = 1, there 

(mod ~ ) 

has a unique solution K prime to }.A. • Hence the group is 

transitive. Since 

the group is abelian; and, indeed, it may be represented by the 

multiplicative group of the quadratic residues of jA- , for 

s]', = 5 1' .,_ implies or 

Theorem ll.• If ol is a rank of apparition of f , then 

Qo<(z) and P°'(z) split into linear factors in E/'j . 

!2:.22!• By the definition of ol , 

but 

for the same rational integers z and g3 , when N & < Noc:. . 
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P« ( z o) = Tf Q ¢ ( z 0 ) - 0 (mod 'J' ) , 
mt(«) 

z0 a rational integer, then 

for, otherwise, 

Q8(z o) = 0 (mod 1 ) , NS<:. No<.. , 

and P6 ( z 0 ) == 0 (mod rip ) , N & <::: N o< . 

But, since 

Q« ( z " ) = 0 (mod y ) ; 

z0 lies in E/ J' • Let . 

z o = f> ( 2: w') ' ( K , o< ) - 1. 

Since ( K , o( ) = 1, the congruence 

V K = /\ (mod OG ) 

has solutions v for any A. in E. When A =/= O (mod ol ) 

J/ may be taken so that o< N v < No<.. . Hence 

' 

A =/= 0 (mod o<. ) , all lie in E/'f , since the denominator is not 

divisible by :f • Therefore Q~(z) and P~ (z) split into linear 

factors in E/'f • 

Let FJA be the root field of Q,.._(z) = O, and let c,, (x) = 0 

be the equation, irreducible over R, satisfied by the primitive 

n-th roots of unitv. If n =F 3, Cn(x) is irreducible over R( f ). 

Lemma !• If C.,, (x) splits in F>-4- , it splits into factors 

of equal degree. 

Proof. Suppose 
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C~ (x) == f(x}g(x)h (x) ... 
is the decompo sition of C~(x} into irreducible factors in F~ . 

Let H~ be the subgroup of G~ which leaves f(x) fixed, and let 

f 1 (x), f 2 (x), ••• , fi (x) 

be the values of 

Sf(x) , S in GJ4. / H,.._ • 

Then 

C~ {x) == f 1 (x) f 2 (x) ••• fi (x) , 

where all of the f i (x) have the same degree 

d = ? (n} 
R. • 

~ ~· If n is an odd rational integer, then C~ (x) splits 

into at least two factors in F~ . 

!:!22!• The abel i an relations assert that if n is an odd 

rational integer, then 

'Yl-1 p 2.ti.5 1 

2 (r + s p )) 
= O 

~I ( 2:1 
S=o 

11- I 
2.11. s ~ (2:J (r + s p >) 

2 /) = 0' 
s::: 0 8' I (2 :' (r + s p )) 

where & =- exp( 2 '1r i/n) and r = 0,1, ••• ,n - 1 [ VII, vol. 2, P• 242] . 

Since 8' 1 { u) is odd and 8' ( u) even, the equations for r = o 

are trivial and the equations for n - r merely duplicate those for 

r. Consequently, r may be restricted to the range 

1, 2, ••• , t(n - 1). Now, differentiating 

fp-1 { u) 1'f<-t-t( u) 

'jJA {u) 2 
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which expresses 8' (f- u) as a rational function of 8b (u), shows 

that 

~'(~) 
~'(2nw') 

is in F11 • Therefore, if d is any divisor of n, removing a 

factor %'' ( 2;') from each of the equations 

J-1 ( 

L f/2.11.s J 1 
0 

~'(~· ( r + s p >) 
S=o 

,,,/ - I tJ 211.sJ / ~ (-~· (r + s p ) ) L 0 
s == 0 8''(2:1 (r +- s ,o }) 

where B = exp(2 7T i/n) 

r = 1, 2, ••• ,-~( d -1 ) 

n = dd 1 , 

yields a set of polynomials over Fn sat isfied by 0 • There are 

t 2.. (d - 1) 
el /->t 

pair of equations, each of degree at most n - 1. Notv 

d > 1> { d) if d.> 1 and n = .2. 4' ( d), hence if n >l, 

d<..1'\. dc::'h.. 
.,,( ;,,,. 

2. d ~ 2 i>(d) and 
di- d/-.... 

adding, 
J< >\. J>1 

..2. d > 22 4' (d) =2{n -.f (n)) 
d/1'.. 4/'k. 

~ n -.f (n) + 2_ l = n - 1-+(n) + L l, 
ill,,, "I...._ 

d>1 . 
for n - .p(n) ~ 2.. 1 , so 

d/k 

f:. (n) + 2 (d - 1) > n - 1 • 

"'~ Therefore systematic elimination of the highest powers of leads 

to an equation over F11 , of degree less than cf (n), satisfied by 9 . 
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~ Q. If OC. is a rank of apparition of "f , then DI'. 

is a rank of apparition of ;f • 

!!£of. This lennna is an immediate consequence of the relation 

p iA (z,g3) = P~ (z,g 3 ), 

which follows f rom theorem 2 by an induction on N~ . 

~ J_. If OZ. = OZ e / , then Cl = a E or 0\. = a(l - p ) e , 

where a is a rational integer. 

Proof. If a + bp = p (a + b f 2
) = ap + b, 

then a + bp = a(l + p ) ; 

and if a + bp = - p (a + $f2
) = - af- b, 

then a + bp =- a(l -p ). 

·The four remaining cases are omitted since these two are typical. 

Theorem 12. If p =:. 2 (mod 3), 0(. is a rank of appariti on 

of p, and ex ¢ O (mod p), then 

c c 
0( - 2 b €- or o( - 2 b(l -p ) E , 

b is odd divisor of 
e 

- 1 and and where 1, 3, or an p c e 

are rational integers, c ~ O and e <f {b). 

E!:£.2f. If p := 2 (mod 3), then ( p) is a prime ideal of 

E, say "f [ VI, P• 221] . Since p is rational, y = Y1 , and 

so o<. = OZ E 1 , by lemma 6. And by lemma 7, either 

ex = a E or o<.= a(l -p}c . 

Suppose a = 2cb, b odd. Since b}Cl , 

F<>< ~ F4 ::::> R(f ) ' if b > 1. 

By lemma s, C-6- (x) definitely splits into two or more factors in 

FA.- , and by theorem 11 



32 

FrX. /p = F.t,/P = E/p ; 

therefore Gk {x) splits in E/p. Hence, if b =I= 3, then 

p e = 1 (mod b), where e is the common degree of the irreducible 

factors of C4 (x) in E/p. 

If p == 1 (mod 3), then p = Ny>, where ".f is a prime 

ideal of E [vr, p. 221]. In this case the apparition problem 

is an open question. 



SECTION FOUR 

Let ry be a regular prime ideal of E. This section con­

tains a studv of the periodicity modulo "f of the divisibility 

mapping fl---?> P ( z ,g3 ), z and g 3 in E. 

Le~§. If J",u {u) = Yp+& (u) = 0 and NO"=!== 1, then 

rf& {u) = O. 

froof. If S = o, there is nothing to prove. If Nd' = 1, 

then ~J (u) = g is never zero. Suppose N 8 > 1. Since 

u = 2 -vw1 , J,) in E, is a pole of 'ftt- (u) and 

u = 
2vw, 

}A {v 
IA- ' 

are the zeros of 'fJA (u), the hypotheses imply 

fl u = 2 ,,,, w, ' !-<- -t v, ' 
( fl+ o )u = 2 i/1 W / , }A+ J f V:1. 

But NS> 0 implies Y2 =f. -P1 , so 

<) u = 2( "))2- - v 1 )w, =/=:. O. 

Furthermore £ f V-z. -v1 , for otherwise u would be a pole of 

~/A (u). (In particular, this excludes the case N J = 1.) 

Hence 16 {u) = o. 

~~ ll• If 1 is a regular prime ideal, then the zeros 

of 'f form an ideal 01. of E. If Ol is a rank of apparition 

of y; , then 01.. = ( ()(. ). 

33 
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f!.£2.f• First '/'µ {u) :=:. 0 (mod y ) implies 

~;<-v {u) = 0 (mod y ) by theorem 5. If 

]1'14 (u) = rifv (u) = 0 (mod y ) 

then (from t h e recursion) 

1'r+v ( u) '¥µ-v ( u) = O (mod y; ) • 

Replacing f<-. and v in the recursion by µ + v and µ - v , 

respectively, gives 

€ 2. 0/J 1/J _ 2 1l ?/, '1 l -i.. 

T214 T2v - "fµ+v+c riff<+V-e 1fJA.--U - Tµ-V-1-€-Tf<-V-€ lµ+v • 

Consequently, if 'Y'r- _11 (u) "¥= 0 {mod ':f ), then Yµ+v = 0, 

~ '¥, = 0 (mod '\fJ ) 
/ µ -rv -t €- P. +-v - E .J 

for all E , N E: = 1. But the norm of a sum or difference of two 

units is 1 or 3, hence by the lemma '1'0 ( u) = 0 (mod y ), Nd' = 3, 

contradicting the hypothesis on 'f • Therefore 1f ~--v (u) == O (mod "f ) 

and the zeros of y f orm an ideal. The ideal bl. is non-void 

by an argument similar to the proof of theorem 5.1 of Ward's Memoir 

[ III ). Since E is a principal ideal ring oz. = ( ~ ), where 

0(.. is a rank of apparition of 1j • 

An integer cf of E i s call ed a period of y if 

"'f !"- -t & ( u) = 1' f' ( u) ( mod 'f ) , N ( > 0 , 

for all fl in E. The existence of periods follows from the 

conditions stated in lemma 11. 

~ 2.• The periods of '1 f or.m a module /JM. which is 

contained in 01 • 

~· If 

1'µ+$ (u) = 1f~ (u) (mod 'f ), all f- in E 

then 

tf fA._ 6 {u) - 1,,.. (u) (mod 'f ), all /"'- in E 
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since J"r-(u) is an odd function of _µ.. • Furthermore if 

1r+&, (u) = Jbft+S,.(u) .::= 1-'fA (u) (mod '!I) , all /A. in E 

then 'f f'o. -rt, -rt" ( u) = '1f JA +- G, ( u) == Jr< (u) (mod y ) , all /-"- in E. 

Taking )'\- = o, 

P; (u) ==: 1r> (u) =:: 0 {mod 'j' ) 

so J is in Ol • Since tTl, = ( Cc:'.) , there exists an integer (3 

in E so that 8 = o< (3 • 

~ 10. If ./A = m+ np and (3 = b + cp , there exist 

integers 11, , r<z., K'} , K'f in E so that 

nl ( ) v N (J .,(, c )m ( c. t ..... 1// r JA-tot.(3 u == ''' ( K... tf'l Kz. r<,, ) Tr- (u) 

where 0( is a rank of apparition of 'f . 

~· Since yOl (u) = O (mod 'f ), 

8'J( u) ~ ~( 2~w') (mod "f ) 

for some -V in E, and 

(mod yi ) 

for any y. in E. In particular 

rij ..U+ocf3 (u) == 1 µ+ot.p (2;.w) 
But 

( 
2 zJw1) 

1f'-+c<(3 ~ 
Cf (2 ~:w,: + 2pvw 1 ) 

Cf" ( 2~w1 ) N (fl'-+ o(.ft) 

(mod f ). 

<J (2:w') }/ µ. +fl. «P + "F 0<(3 + N<ot.(3) 

(mod ?f ) 
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cr- (2 :w ') N C~(J) 

K/'13 KS">-'1 W /"·f3 

1 

'1L>u_( 2 ~WJ) 
a-- ( 2 :w•) 1-< f3 oz + Pf3 Cl( 1,_ .... 

' 

where 

'f'Y[1W1 Nrl 

e 

11' b - CJ e:w~ -°'-

are all independent of fA and (3 • If 

M = mb - mc + nc , L = nb - mc , 

then f-i = M+p L and 

and ""' ,/-1 ,,,,_, 
11 3 n, "'t • 

Hence 

'1b ( ) K N(3 ( .(, c ll1 <: .(, '>t 'lLJ T fA.+al..(3 u - 1 l(i.. K1 ) ( >{2. 1-(.,. ) rJA (u) (mod 1 ). 

Taking 

fl'- == /3 := 1 

}A- = 1, /3 - 1 +p 

r-= l, (3=f 

f'- =/>t (3 = 1 

gives, respectively, 

"fot.+1- Y(, y( "L 

ry(l-ff) ti. +I YI', H' ... M3 
(mod f ) 

'J f7« +I >{, >(3 

1'"' 1-f 
p K, K1 
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Hallee 1(1 t(._ , K'l 112. ~3 , K; J.<3 , Ji(, K't are congruent modulo '1f 

to integers of E. Therefore, so are K°1 , H'~ , K'3 , K',. . 
Lelli!!!~ 11• The conditions 

11, N (3 = K zk )'(; = ><z.' y('t .t- - K'-/r Y(''tc = 1 (mod 1' ) 

are necessary and sufficient for 

~ {u) = j,µ(u) (mod y ), all f<- in E. 
µ+o<.(I 

f!.9.£!• The sufficiencv is evident. And so is the necessity, 

for if 

"ff'-t-o<(J(u) = 1fp.. (u) {mod'f), all f- in E 

then t(
1 
Np ( Ka."- W/ )Wt ( K/ 11.,. t- )"' = 1 (mod "f ) 

for all m, n. In particular 

{m = n = 1) >(1 N;.3 Kf'vr
3
c K2..' II(.;'' _ 1 (mod '!f ) 

(m = 1, n = 0) 11'/f3 K
1
.,,11

3
' _ 1 {mod "I ) 

( m = 0, n = 1) )1
1 
N(j Ki.' 'r(,/ .:=. 1 (mod "f ) • 

Hence K'/'fJ = r<'l.t- t{./ = K: 't('ttr - 1 {mod "f ) • 

But rli. K., II( 't =l 

so K3' - K/r rr,/,. l(tt <.- = }{3 c 1(41 c (mod 1' ) 

or .....,(,. = ,/C ,_,,-fr. 
"3 - n 3 ri., ' J( 't c = )(, -c 'rl'/' (mod Y' ) 

and 

Theorem 14. If o1..p is a period of "f and y is any 

integer of E, then « {J y is a period of 'f • That is, the 

module .IVVl- is an ideal of E. 

!:!£2!• If (3 = b +cp and y = d + f p , then 

(3 y = bd- cf + (de+ bf- cf) p 

and 
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j-}A-+o((3 (u) = r(, lv'((5y) ( 1(2--IJ-d-cf ){
3
clc:-rfrf-c/ ) t?t 

• ( Y(,_"c+t.f-4 Kt ~d-~f( J'p.( u) 

:: Y'.u( u) (mod 'Y ) 

11' z.. 11' 1 11''t = 1 and 

K, N(J = ,_,.,(,.,.,,c 
- n1. "J t<2-'- K.,~ ==:: >t'/ n ... ' = 1 (mod 1/ ) • 

This theorem states that, modulo regular prime ideals, 

equianharmonic divisibility mappings are doubly periodic in the 

same sense that f?o (u, w 1 , f w, ) is doubly periodic. The 

function ff (u) has the fundamental period 2 w, , everv other 

period of ~ (u) is a multiple 2 r--w 1 , any f- in E, of 

2w1 • Modulo 1f , "f'/A- (u) has a fundamental period ol.(J , where 

/'lt1l1t = ( o<.(3 ) , and every other period of 1f }A- ( u) modulo "J is a 

multiple o<(3 y , any ;I in E; of «.(3 . 
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