TRANSFORMATION OF LINEAR SPACES

AND LINEAR OPERATORS

BY INVERSE REVERSION

Thesis by

Victor Elconin

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1952
Acknowledgment

The author gratefully acknowledges
the inspiration, assistance and good counsel
he has received from Professor A. D. Michal,
under whose guidance this thesis was prepared.
Summary

This thesis develops a new method for transforming and extending the classes of operators and operands which appear in certain linear operations in such a way that restrictions on the ranges and domains of the operands and on the algebraic manipulation of the operators are reduced or removed. In particular, the method leads to a complete rationalization of the operators and impulse 'functions' employed by Heaviside, Dirac and others in the analysis of certain linear systems.

In this method, the operators A of a primary class \mathcal{K} are, in effect, first reversed, forming A^\dagger, then inverted, forming A^{-1}, the inverse reverse of A, and these operators are utilized to effect the remaining transformations and class extensions. The method is therefore epitomized by the phrase inverse reversion.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>General Definitions</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Derivators</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Integrators</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Reversion of Derivators</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Commutation</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Derigrators</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>The Method of Integrator Transforms</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>The Method of Inverse Reversion</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Sectionally Continuous Matrices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shift and Jump Operators</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>Strong Limits of Matrix Functions</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>Weak Limits of Matrix Functions</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>Appendix</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>56</td>
</tr>
</tbody>
</table>
Introduction

Let F be an abelian additive group and L the class of additive operators A on subsets of F to F. A is complete, unrestricted, univocal according as (1) the range of A is F, (2) the domain of A is F, (3) $AF = 0$ implies $F = 0$ for F in the domain of A; otherwise A is respectively incomplete, restricted, equivocal. A is perfect on F if (1), (2), (3) hold; then A has a unique inverse $A^{-1} \in L$ (i.e. $A^{-1}AF = AA^{-1}F = F$ for $F \in F$).

Suppose $K \subseteq L$ is a commutative ring containing the unit element 1 of L and such that every non-zero $A \in K$ has a (right) reverse $A^* \in L$ (i.e. $AA^* = 1$ for $F \in F$). Then A is complete, but possibly restricted or equivocal, and A^* is unrestricted and univocal, but possibly incomplete.) Let K^* be the class of all A^* for $0 \neq A \in K$, and $K_g = K^* K^*$, the class of all products AB^* for $A, B \in K$. The commutator of A, B is $(A, B) = (A^*, B^*) \in L$ it vanishes if A^{-1} exists. In particular, let $\tilde{A} = (A, A) = 1 - A^* A$. Then $\tilde{A} A = 0$ and $AA^* = 1$.

Suppose further that $(AB^*) = A^* B^*$ for $A, B \in K$ (then K_g is closed under addition and subtraction: $A, B, C, D \in K_g$, $A, B, C, D \in K_g$, and that K_g includes a ring K_j such that (1) for any $A \in K, AB^* \in K_j$ for some $B \in K$, (2) every non-zero element of K_j is unrestricted and univocal, and (3) $(A, B) (A, B) = A, A, B, B \in K_j$ if $A, B, C, D \in K_j$ (then K_j is commutative and contains K^*.)
Our main result is that under the foregoing suppositions F may be extended to an essentially unique abelian additive group $\hat{F} = \hat{F}_d / \hat{K}_d$ and K_d may be extended to a unique field $\hat{K}_d = K_d / K_d$ within the class \hat{L} of additive operators on \hat{F} to \hat{F}.

The classes \hat{F} and \hat{K}_d are the ranges of $A^{*^{-1}}\rho$ and $A^{*^{-1}}\chi$ respectively, with $A \in K$, $\rho \in F$, $\chi \in K^*$, where $A^{*^{-1}}$ is the inverse reverse of A. Hence the process which generates \hat{F} and \hat{K}_d is called inverse reversion (see Section 3).

Each non-zero element of \hat{K}_d is perfect on \hat{F}. In particular $A^{*^{-1}}$ is perfect on \hat{F}, whereas $A \in K$ is merely complete on F (since $A^* \exists$ exists). We can therefore reduce the algebraic restrictions and limitations on equations involving operators $A \in K$ by replacing them with expressions involving their perfect counterparts $A^{*^{-1}}$. This is the essential idea of the 'Heaviside' calculus. It is implemented by the following considerations:

1. The correspondence between A and $A^{*^{-1}}$ is an isomorphism (Theorem 23):

 $$(A \pm B)^{*^{-1}} = A^{*^{-1}} \pm B^{*^{-1}} \quad \text{and} \quad (AB)^{*^{-1}} = A^{*^{-1}}B^{*^{-1}}$$

2. For any f in the domain of A (see Theorems 32, 41):

 $A^{*^{-1}}f - A f = A^{*^{-1}}(1 \cdot A) f$. i.e. $A f = A^{*^{-1}}(1 \cdot A) f$

The form of $A f$ will of course depend upon the interpretation of f, K, K^*, K_d. In Sections 1 - 8 below, the relationship between A and $A^{*^{-1}}$ is developed (Sections 2, 3, 4), the form of $(A, B) = A B^{*^{-1}} - B^{*^{-1}}A$ is determined (Section 5), the classes K_d and K_d are studied (Section 6), a useful 'transformation' calculus is outlined (Section 7) and finally the inverse reversion process is carried out.
(Section 8) for the case where F is the class of everywhere continuous matrices $[f(t)]$ on the real numbers to a complex Banach space (see Section 1), K is the class of 'derivators' $A = a_0 A^0 + a_1 A^1 + \cdots + a_n A^n$, K^* is the class of 'integrators' A^* characterized by the system $AA^*f = f, A^*p = 0, A A^*p = 0, \ldots$, $A^*p = 0$ (a constructive definition is given in Section 3) and K_f is the class of 'derigrators' $A A^*$ of non-negative rank. It is shown that the isomorphism between A and A^*^{-1} provides a satisfactory rationalization of the methods employed by Heaviside for lumped linear systems, without ad hoc transformations of the operands. Thus Heaviside's mystical operator P becomes A^*^{-1}, the inverse reverse of the elementary derivator, and Dirac's 'function' S becomes $A^*^{-1} [I]$, where $[I]$ is the matrix of the unit function.

In Section 9, the essential steps of the inverse reversion process are given for the case where F is the class of sectionally continuous matrices $[f(t)]$, with $f(t) = 0$ for all sufficiently small t, K is the class of derivators A, as above, K^* is the class of integrators A^* characterized by the equation $AA^*f = 0$ and the condition that A^*f and its first $(n-1)$ derivatives be everywhere continuous and vanish for all sufficiently small t, and K_f is the class of derigrators, as above, of non-negative rank.

'Strong' and 'weak' limits, derivatives and integrals of sectionally continuous matrix functions $[f_x(t)]$ are introduced in Sections 10 and 11, and the representation of elements of F and K_f as infinite superposition integrals is given. These sections barely outline the calculus of such matrix functions; the details will
have to be presented elsewhere.

Various other interpretations of \(F, K, \, K^x, K_f \) have been studied. Thus \(F \) may be taken as the class of sectionally continuous matrices \([f(\theta)]\) with \(f(\theta) = 0 \) for \(\theta < 0 \) (Heaviside case), \(K \) and \(K_f \) as above, and \(A^x \) characterized by the equation \(AA^x f = 0 \) and the condition that \(A^x f \) and its first \((h-1)\) derivatives be continuous for \(t > 0 \) and vanish for \(t < 0 \) (and hence for \(t = 0 \)). Or \(F \) may be taken as the class of matrices \([\mathcal{F}(\theta)]\) (essentially sequences), where \(\mathcal{F}(\theta) \) is a function on the non-negative integers to a linear space, \(K \) as the class of operators
\[
A = a_0 E + a_1 E^{h-1} + \cdots + a_n,
\]
where \(E [\mathcal{F}(\theta)] = [\mathcal{F}(h+1)] \),

\(K^x \) as the class of operators \(A^x \) characterized by the system
\[
AA^x f = f, \quad \beta_0 = 0, \quad E f_0 = 0, \quad \cdots, \quad E^{h-1} f_0 = 0,
\]
and \(K_f \) as the class of operators \(AB^x \) of rank \(> 0 \) (a valid interpretation also results if \(E \) is replaced by \(\Delta \), where \(\Delta [\mathcal{F}(\theta)] = [\mathcal{F}(h+1) - \mathcal{F}(h)] \). With this latter interpretation (or others which are less familiar but more convenient), the method of inverse reversion and the related concepts and techniques of reversion, commutation and 'integrator' transformation have proved very useful in the theory of linear difference equations, including fractional differencing and summation. The method may also be applied to certain 'differentiators' of the Frechet and Gateaux type in arc-wise connected spaces, the right reverses then being given by appropriate line integrals. These and other applications will be presented elsewhere.
1. General Definitions and Notations

Unless the contrary is explicitly indicated, $F(x)$ is the class of everywhere continuous functions f of x on the real numbers \mathbb{R} to a complex Banach space S, $F_n(x)$ the subclass of $F(x)$ whose elements are n-fold continuously derivable, $F^*_n(x)$ the subclass of $F_n(x)$ whose elements, together with their first $(n-1)$ derivatives vanish initially (at $x = 0$). $\Phi(x), \Phi_n(x)$ and $\Phi^*_n(x)$ are the corresponding classes of functions f of x on \mathbb{R} to \mathbb{C}, the complex number class. The notations $V^*_x f, f|_{x=a}$ will be used for the value of f at $x = a$.

The mark $[f]$ is the matrix of the function f at x. F is the class of matrices corresponding to the functions $f \in F(x)$ and similarly for F_n, F^*_n, etc. Equal matrices correspond to equal functions: $[f] = [g]$ is equivalent to $f = g$ i.e. to $f(x) = g(x)$ for every x. The sum $[f] + [g]$ and difference $[f] - [g]$ of $[f], [g]$ and the product of $[f]$ by $\phi \in \mathbb{C}$ are defined as the matrices respectively equal to $[f + g], [f - g]$ and $[\phi f]$. If $f \in \Phi$ and $\sigma \in S$, $\sigma [f]$ is the matrix equal to $[\sigma f]$. When considering functions with different arguments, the more complete notation $[f]_x$ is convenient.

Thus $[\phi(x-1)]_x = [\phi x - \phi]_x$. The value $V^*_x [f]$, or $[f]_x$ of $[f]$ at x is $V^*_x f$.

In practice, contrary to the usage above, single letters will be used for matrices and the same letters with the argument in parentheses for the corresponding function: $f = [f(x)]$

An operator on a subclass K of a space Σ to a subclass K' of a space Σ' is a mark \mathcal{A} such that $\mathcal{A}K$ is a function of K on K'.
The domain of \(A \) in \(\Sigma \) and range of \(A \) in \(\Sigma' \) are those of \(A \times k \).

Operators \(A, B \) defined in a space \(\Sigma' \) are equal on \(K < \Sigma \) if \(A \) and \(B \) are equal on that domain. If \(B \) is on \(K < \Sigma \) and \(A \) is on \(K' < \Sigma' \), then the product \(AB \) is the operator defined by \((AB) \kappa = A(B \kappa) \) for \(\kappa \in K \).

We shall be mainly concerned with linear operators, i.e. additive homogeneous operators on linear manifolds of linear spaces to linear spaces. The null domain \(N_A \) of a linear operator in a linear space \(\Lambda \) is the linear manifold of all \(\kappa \in \Lambda \) such that \(A \kappa = 0 \).

A set \(\Lambda < \Lambda \) spans \(\Lambda' \) with \(\mathbb{C}(\mathbb{R} ; \mathbb{R}) \) if every element of \(\Lambda' \) is a finite linear combination with coefficients in \(\mathbb{C}(\mathbb{R} ; \mathbb{R}) \) of elements of \(\Lambda \); if moreover every such linear combination belongs to \(\Lambda' \), then \(\Lambda \) is a basis with \(\mathbb{C}(\mathbb{R} ; \mathbb{R}) \) of \(\Lambda' \). For linear operators \(AB \) defined in a linear space \(\Lambda \), the sum \(A + B \) and difference \(A - B \) of \(A \) and \(B \) and the product of \(A \) by \(\lambda \in \mathbb{C}(\mathbb{R} ; \mathbb{R}) \) are the linear operators respectively defined by \((A + B) \kappa = A \kappa + B \kappa, (A - B) \kappa = A \kappa - B \kappa, \lambda A \kappa = (\lambda A) \kappa \).

The operators \(\delta \), \(\iota \), \(\kappa \) are defined as follows: \(\delta \kappa = [\int_{a}^{b} f(t) \, dt] \) for \(f \in F \) or \(\Phi \); \(\iota \kappa = [\int_{a}^{b} f(t) \, dt] \) for \(f \in F \) or \(\Phi \) (\(\int_{a}^{b} \) is replaced by \(\int_{a}^{\infty} \) after Section 9); \(\kappa \kappa = [\int_{a}^{b} f(t) \, dt] \) for \(f \in F \) or \(\Phi \). These operators belong to the class \(L \) of all categorical linear operators with ranges and domains in \(F \), i.e. operators which may be defined without specifying \(S \).

A correspondence \(P(\kappa, \gamma) \) between classes \(\kappa, \gamma \) is univocal in \(\kappa \) if for any \(\kappa, \kappa_1 \in \kappa \) and any \(\gamma \in \gamma \), \(P(\kappa, \gamma) \) and \(P(\kappa_1, \gamma) \) implies \(\kappa_1 = \kappa \). The correspondence is biunivocal if it is univocal in \(\kappa \) and in \(\gamma \).
If \(A \) is an operator between \(\mathcal{K} \subseteq \Sigma \) and \(\mathcal{K}' \subseteq \Sigma' \), then
\[Ax = y \]
is a correspondence between \(\mathcal{K} \) and \(\mathcal{K}' \). If this correspondence is univocal in \(\mathcal{X} \), then \(A \) has a unique right reverse \(A^r \) on \(\mathcal{K}' \to \mathcal{K} \). If \(Ax = y \) is equivocal in \(\mathcal{X} \) (i.e., not universal), then a right reverse exists but is not unique (a supplemental condition may then be applied to make it unique). Similar remarks apply to univocality in \(\mathcal{Y} \) and left reverses \(A^l \) on \(\mathcal{K} \) to \(\mathcal{K}' \). If \(Ax = y \) is biunivocal, then a unique inverse \(A^{-1} = A^* \) exists on \(\mathcal{K}' \) to \(\mathcal{K} \).
2. Derivators

Let \(p, p', \ldots, p_m \) be the coefficients of a \(\mathcal{D} \)-polynomial \(P \). The coefficient sequence of \(P \) is the sequence \(\{ a_k \} \) such that
\[
 a_k = p_k \quad \text{for } k = 0, 1, \ldots, m \quad \text{and} \quad a_k = 0 \quad \text{for } k > m .
\]
Two \(\mathcal{D} \)-polynomials \(P, Q \) are cogredient: \(P \sim Q \) if they have the same coefficient sequence. Clearly cogredience is an equivalence relation (reflexive, symmetric, transitive) and cogredient \(\mathcal{D} \)-polynomials are equal (as elements of \(L \)).

THEOREM 1 For any two \(\mathcal{D} \)-polynomials \(P, Q \), the following statements are equivalent:

1. \(P = Q \) on \(F_n^* \) for some \(n \),
2. \(P \) and \(Q \) are cogredient,
3. \(P = A \).

Proof: Suppose (1). The matrix
\[
 \begin{bmatrix}
 \frac{2}{(n+1)(n+2)} & \cdots & \frac{2}{(n+m)(n+m+1)} \\
 \end{bmatrix}
\]
for \(k = 0, 1, \ldots \).

Let \(\{ a_k \}, \{ b_k \} \) be the coefficient sequences of \(P, Q \) and let
\[
 R = \sum_k c_k D^k ,
\]
where \(c_k = a_k - b_k \). Then \(R = 0 \) on \(F_n^* \), hence
\[
 \lim_{\tau \to \infty} \tau^{-n} V_\tau R [t^m] = c_0 = 0 ,
\]
so that \(R = c_0 \mathcal{D} + c_1 \mathcal{D}^2 + \cdots \).

Hence
\[
 \lim_{\tau \to \infty} \tau^{-m} V_\tau R \left[t^m h \right] = c_0 = 0 ,
\]
so that \(R = c_0 \mathcal{D} + \mathcal{D}^2 + \cdots \).

Continuing in this way, \(c_k = 0 \) for \(k = 0, 1, \ldots \), i.e. (2) follows. Of course (2) implies (3), and (3) implies (1), since \(F_n^* \) is within the domains of \(P, Q \) for all sufficiently large \(n \).

A derivator \(A \) is an element of \(L \) equal to a \(\mathcal{D} \)-polynomial, say \(P \). The coefficients, degree and coefficient sequence of \(A \) are those of \(P \); this is unambiguous since, by the preceding theorem, any other \(\mathcal{D} \)-polynomial equal to \(A \) is cogredient with \(P \). In particular,
every \mathcal{A}-polynomial is a derivator. Derivators are cogredient if they have the same coefficient sequence.

A sequence $\{a_k\}$ of complex numbers is nearly null if almost all of its terms vanish, i.e. $a_k = 0$ for all sufficiently large k. For each nearly null sequence $\{a_k\}$, there exists a \mathcal{A}-polynomial P whose coefficient sequence is $\{a_k\}$. Let $\sum_k a_k \mathcal{A}^k$ be an element of L equal to P. Then $\sum_k a_k \mathcal{A}^k$ is a derivator and $\{a_k\}$ is its coefficient sequence. Conversely, the coefficient sequence of every derivator is nearly null. Thus $A = \sum_k a_k \mathcal{A}^k$ is a bimivocal correspondence between derivators A and nearly null sequences $\{a_k\}$.

Let A, B be any derivators, and let $\{a_k\}, \{b_k\}$ be the coefficient sequences of A, B. From the algebra of L, it follows that $\sum_k (a_k + b_k) \mathcal{A}^k = \sum_k (a_k + b_k) \mathcal{A}^k$ and $\alpha A = \sum_k (\alpha a_k) \mathcal{A}^k$, and hence that the coefficient sequences of $A + B, A - B, AB, \alpha A$ are respectively $\{a_k + b_k\}, \{a_k - b_k\}, \{\sum_k a_k b_k \mathcal{A}^k\}, \{c a_k\}$. The class $K(\mathcal{D})$ of all derivators is therefore a commutative ring \mathcal{L} which is isomorphic, through the cogredience correspondence $\sum_k a_k \mathcal{A}^k \sim \sum_k a_k \mathcal{A}^k$, with the abstract ring $K(\mathcal{E})$ of polynomials in the 'indeterminate' \mathcal{E} with coefficients in \mathcal{C}. Through this isomorphism, all the factorization and distribution theorems for $K(\mathcal{E})$ are applicable to $K(\mathcal{D})$. In particular, if a_0 is the leading coefficient and $\alpha_1, \alpha_2, \ldots, \alpha_n$ the zeros of a polynomial $P(\mathcal{E}) \in K(\mathcal{E})$, then $P(\mathcal{D}) = a_0 (D - \alpha_1)(D - \alpha_2) \ldots (D - \alpha_n)$ is the factorization, unique except for the order of the α's, of the \mathcal{D}-polynomial $P(\mathcal{D})$ cogredient with $P(\mathcal{E})$ into
D-polynomials of degree ≤ 1. Moreover, $D - \alpha = \epsilon_\alpha D \epsilon_{-\alpha}$, i.e., the simple derivator $D_\alpha = (D - \alpha)$ is the transform (in the group-theoretic sense) of the elementary derivator D by ϵ_α, whence

$$D^k_\alpha = \epsilon_\alpha D^k \epsilon_{-\alpha}$$

We summarize the foregoing in

THEOREM 2 For any complex numbers $\alpha_0, \alpha_1, \ldots, \alpha_m$ with $\alpha_0 \neq 0$,

$$P(D) \equiv \alpha_0 D^{m_1} + \alpha_1 D^{m_1-1} + \ldots + \alpha_m = \alpha_0 (D - \alpha_1) \ldots (D - \alpha_m)$$

$$= \alpha_0 D_{\delta_1} D_{\delta_1} \ldots D_{\delta_{m_1}} = \alpha_0 D_{\gamma_1} D_{\gamma_1} \ldots D_{\gamma_{m_1}}$$

where $\delta_1, \delta_2, \ldots, \delta_{m_1}$ are the zeros in C of $P(\theta)$ and $\gamma_1, \gamma_2, \ldots, \gamma_{m_1}$ are the distinct zeros with multiplicities $m_1, m_2, \ldots, m_{m_1}$. Moreover, if

$$P(D) = \beta_0 (D - \beta_1) \ldots (D - \beta_{m_1})$$

then $\alpha_0 = \beta_0$ and $\beta_1, \beta_2, \ldots, \beta_{m_1}$ is a permutation of $\delta_1, \delta_2, \ldots, \delta_{m_1}$.

Thus a derivator A of degree m is characterized either

by its $m + 1$ coefficients $\alpha_0, \alpha_1, \ldots, \alpha_m$ or by its module α_0 and indices $\delta_1, \delta_2, \ldots, \delta_{m_1}$ where the first, second, \ldots, m_1 elementary symmetric functions of the indices are respectively equal to

$$\frac{\alpha_1}{\alpha_0}, \frac{\alpha_2}{\alpha_0}, \ldots, (-)^{m_1} \frac{\alpha_m}{\alpha_0}.$$ The derivator is **normal** if its module $= 1$.

THEOREM 3 For any complex numbers $\delta_1, \delta_2, \ldots, \delta_{m_1}$ and $\beta_1, \beta_2, \ldots, \beta_{m_1}$ and any $f \in F_m$,

1.

$$f, D_{\delta_1} f, D_{\delta_1} D_{\delta_1} f, \ldots, D_{\delta_1} D_{\delta_1} \ldots D_{\delta_{m_1}} f$$

are linear combinations with coefficients in C of

2.

$$f, \beta_1 f, \beta_2 f, \ldots, \beta_1 f, D_{\beta_1} f, \ldots, D_{\beta_1} \ldots D_{\beta_{m_1}} f.$$

Proof: For $k = 1, 2, \ldots, m_1$,

$$D_{\delta_1} D_{\delta_2} \ldots D_{\delta_k} f = D_{\delta_1}^k f - (\delta_1 + \delta_2 + \ldots + \delta_k) D_{\delta_1}^{k-1} f + \ldots + (-)^{k-1} \delta_1 \delta_2 \ldots \delta_k f.$$ These equations determine $D_{\delta_k}^k f$ recursively as a linear combination of $f, D_{\delta_1} f, \ldots, D_{\delta_1} D_{\delta_1} \ldots D_{\delta_k} f$.

with coefficients depending only on \(\lambda_1, \lambda_2, \ldots, \lambda_k \).

If \(\lambda_1, \lambda_2, \ldots, \lambda_k \) are replaced by \(\beta_1, \beta_2, \ldots, \beta_m \), equations (3) give \(\mathcal{D}_{\lambda_1} \mathcal{D}_{\lambda_2} \ldots \mathcal{D}_{\lambda_k} f \) as linear combinations of \(f, \mathcal{D} f, \ldots, \mathcal{D}^k f \), hence \(\mathcal{D}_{\beta_1} \mathcal{D}_{\beta_2} \ldots \mathcal{D}_{\beta_m} f \) is a linear combination of \(f, \mathcal{D}_{\beta_1} f, \ldots, \mathcal{D}_{\beta_2} f, \ldots, \mathcal{D}_{\beta_m} f \).

If \(P(t) \) is a polynomial in \(t \) of degree \(\gg \) with coefficients in \(S \), then \(P = [P(t)] \) is a polynomial matrix and \(e^{t} P \) is an exponential-polynomial matrix or simply an exponential. The degree and the coefficients of \(P \) and of \(e^{t} P \) are those of \(P(t) \); the exponent and type of \(e^{t} P \) are \(\langle \lambda, m \rangle \). The elementary exponential of type \(\langle \lambda, m \rangle \) is \(e^{t} [t^m] \).

Theorem 4. If \(P(t) = \sum_{i=0}^{m} \sigma_{i} t^i \) for \(i = 1, 2, \ldots, m \) where the \(\sigma_{i} \in S \) and \(\lambda_1, \lambda_2, \ldots, \lambda_m \) are distinct complex numbers, then

\[
\sigma_1 P_1 + \sigma_2 P_2 + \ldots + \sigma_n P_n = 0
\]

implies \(P_i = 0 \) i.e. \(\sigma_i = 0 \) for \(j = 1, 2, \ldots, m \).

Proof: The theorem is certainly true for \(m = 1 \): \(\sigma_{1} P_{1} = 0 \) implies \(P_{1} = 0 \) which implies \(\frac{d}{dt} \mathcal{D}_{\lambda} P_{1} \big|_{0} = \sigma_{1} = 0 \) for \(k = 0, 1, \ldots, m \). Assume the theorem for \(n = k \). Suppose

\[
\sigma_1 P_1 + \sigma_2 P_2 + \ldots + \sigma_{k+1} P_{k+1} = 0.
\]

Then

\[
(4) \quad \beta_1 P_1 + \beta_2 P_2 + \ldots + \beta_{k+1} P_{k+1} = -P_{k+1},
\]

where \(\beta_i = \lambda_i - \lambda_{k+1} \) for \(i = 1, 2, \ldots, k+1 \); the \(\beta_i \) are distinct and \(\neq 0 \). Clearly the derivative of an exponential with non-zero exponent is an exponential of the same type. Hence if \(\kappa \) is greater than the degree of \(P_{k+1}, \mathcal{D} \mathcal{D}_{\lambda} \frac{\mathcal{K}}{\mathcal{D}_{\lambda}} \mathcal{D}_{\lambda} P_{i} = \mathcal{D} \mathcal{D}_{\lambda} \mathcal{D}_{\lambda} P_{i} = 0, \]

where

\[
\mathcal{G}_{ij} \quad \text{is a polynomial matrix of the same degree as } \mathcal{P}_{i}.\]
From the inductive assumption, the Q_j vanish, hence each is of degree 0 and so are the P_j for $j = 1, 2, \ldots, k$. From (4), $P_{k+1} = 0$.

Let $X_i = \xi \lambda P_i$. Suppose $\sum_{i \in \lambda} \lambda_i X_i = 0$ where the $\lambda_i \in C$. Then by the preceding theorem $\lambda_i P_i = 0$, $i = 1, 2, \ldots, n$. Hence the λ_i vanish if each $P_i \neq 0$. Thus non-zero exponentials with distinct exponents and with coefficients in S are linearly independent with respect to C.

Now suppose the coefficients of the P_i are in C. If $\sum_{i \in \lambda} \sigma_i X_i = 0$, where the σ_i are in S then by the preceding theorem, $\sigma_i P_i$ (which equals a polynomial matrix with coefficients in S) equals zero for $i = 1, 2, \ldots, n$, and hence the σ_i vanish if each $P_i \neq 0$. Thus non-zero exponentials with distinct exponents and with coefficients in C are linearly independent with respect to S.

Since $A^k \{ e^{a \xi \xi \xi \xi} \} = 0 \{ e^{a \xi \xi \xi \xi} \} = 0$ if $l > k$, the linear manifold M of the elementary exponentials $\{ e^{a \xi \xi \xi \xi} \}$ for $j = 1, 2, \ldots, n; \xi = 0, 1, \ldots, m - 1$ is certainly within the null domain of the derivator $A = a_{0,0} m_{0,0} m_{m-1} \cdots a_{0,m}$. It will be shown below (see page ??) that they span this domain.

Since they are linearly independent with respect to S, they form a basis with S for the null domain of A. Other bases with S for the null domains of derivators (i.e. linear combinations of the elementary exponentials, with coefficients in C, which are linearly independent with respect to C) are given in Theorems 11 and 24.

3. Integrators

Let $I_\xi = \xi I_\xi I_\xi \in \xi L$ clearly the domain in F of I_ξ.
and hence of \(I_\alpha^m \) is \(F \). An integrator is an element \(A \in L \) equal to \(\mu I_\alpha, I_\beta \ldots I_\lambda m \) for some \(\mu, \lambda_1, \ldots, \lambda_m \in \mathbb{C} \).

The module and order of \(A \) are \(\mu \) and \(m \); the indices of \(A \) are the \(\lambda \)'s. \(A \) is normal if its module = 1. Any complex number \(\mu \neq 0 \) will be regarded as an integrator of order zero, with module \(\mu \), but without indices.

It will be shown below that for \(\mu, \nu \neq 0, \mu I_\alpha, I_\beta \ldots I_\lambda m = \nu I_\beta, I_\alpha \ldots I_\lambda m \) if and only if \(\mu = \nu \) and the \(\beta \)'s are a permutation of the \(\lambda \)'s so that the module and order of an integrator and the set of its indices are unambiguous (the set of indices \(\lambda_\alpha, \lambda_1, \ldots, \lambda_m \) always contains exactly \(m \) elements, whereas the number of elements in the class of indices is the number of distinct indices). Integrators of the first order are simple. The integrator \(I \) of order 1 with index 0 and module \(1 \) is elementary. The product of two integrators is an integrator; the order of the product is the sum of the orders of the factors; the indices of the product are those of the factors together. The module of the product is the product of the modules.

THEOREM 5 The product \(AB \) of two integrators \(A, B \) is commutative:

\[
AB = BA
\]

Proof: Suppose, without loss of generality, that \(AB \) are normal. Let \(A \) and \(B \) be replaced by equal products of simple integrators. Since multiplication in \(L \) is associative, the theorem follows if \(AB \) is unaltered when the elementary integrators are permuted. This will be the case if \(I_\alpha I_\beta = I_\beta I_\alpha \) for \(\alpha \neq \beta \). But the latter is true: for any \(f \in F, I_\lambda I_\beta = \frac{I_\alpha - I_\beta}{\alpha - \beta} \), as may be seen from

\[
I_\alpha I_\beta = \left[e^{\alpha x} \int e^{(\beta - \lambda) x} \tau \right]_0^{\tau} e^{-\beta x(\sigma)} d \sigma d \tau
\]
either by integrating by parts or by reversing the order of integration.

Theorem 6
For any distinct complex numbers \(\lambda_1, \lambda_2, \ldots, \lambda_m \)

\[
\int_{\lambda_1}^{\lambda_2} \cdots \int_{\lambda_m} = \frac{\int_{\lambda_1}^{\lambda_2}}{d_1 d_2 - \cdots - d_m} + \frac{\int_{\lambda_2}^{\lambda_3}}{d_2 d_3 - \cdots - d_m d_1} + \cdots + \frac{\int_{\lambda_m}^{\lambda_1}}{d_m d_1 - \cdots - d_{m-1} d_2},
\]

where \((d_1 d_2 \cdots d_m) = (\lambda_1 - \lambda_2)(\lambda_2 - \lambda_3) \cdots (\lambda_m - \lambda_1)\), and the denominators of the terms following the first are obtained from that of the first by cyclical permutation of the \(\lambda_j\).

Proof: Since \(\int_{\lambda_1}^{\lambda_2} = \frac{\int_{\lambda_1}^{\lambda_2}}{\lambda_2 - \lambda_1}\), the theorem is true for \(m = 2\). Assume it is true for \(m = k\). Then

\[
\int_{\lambda_1}^{\lambda_2} \cdots \int_{\lambda_{k+1}} = \left\{ \frac{\int_{\lambda_1}^{\lambda_2}}{(\lambda_1 \lambda_2 - \cdots - \lambda_k)} + \frac{\int_{\lambda_2}^{\lambda_3}}{(\lambda_2 \lambda_3 - \cdots - \lambda_k \lambda_1)} + \cdots + \frac{\int_{\lambda_k}^{\lambda_{k+1}}}{(\lambda_k \lambda_{k+1} - \cdots - \lambda_1 \lambda_2)} \right\} \int_{\lambda_{k+1}}^{\lambda_1}
\]

The theorem follows for \(m = k+1\) and hence for any \(m \geq 2\) if the coefficient of \(\int_{\lambda_{k+1}}^{\lambda_1}\) equals \(\frac{1}{(\lambda_{k+1} \lambda_1 - \cdots - \lambda_k)}\). It does, as may be seen from the following

Lemma 1
For any distinct complex numbers \(\lambda_1, \lambda_2, \ldots, \lambda_m\),

\[
\frac{\lambda_1^k}{(\lambda_1 \lambda_2 - \cdots - \lambda_m)} + \frac{\lambda_2^k}{(\lambda_2 \lambda_3 - \cdots - \lambda_m \lambda_1)} + \cdots + \frac{\lambda_m^k}{(\lambda_m \lambda_1 - \cdots - \lambda_{m-1} \lambda_{m-2})} = \delta_{k, m-1}
\]

for \(k = 0, 1, \ldots, m-1\).

Proof: For any polynomial \(f(z)\) on \(C\) to \(C\) of degree \(\leq m\)

\[
f(z) = f(\lambda_1) \frac{z \lambda_1 - \cdots - \lambda_m}{(\lambda_1 \lambda_2 - \cdots - \lambda_m)} + f(\lambda_2) \frac{z \lambda_2 - \cdots - \lambda_m \lambda_1}{(\lambda_2 \lambda_3 - \cdots - \lambda_m \lambda_1)} + \cdots + f(\lambda_m) \frac{z \lambda_m - \cdots - \lambda_1 \lambda_{m-1}}{(\lambda_m \lambda_1 - \cdots - \lambda_{m-1} \lambda_{m-2})},
\]

this is the Lagrange interpolation formula. In particular, the equation holds for \(k = 0, 1, \ldots, m-1\) with \(f(z) = z^k\), and the result
follows upon equating the coefficients of \(J^{m-1} \) in the left and right members. The case \(k = 0 \) completes the proof of the preceding theorem.

THEOREM 7 For any \(f \in F \), \(J^m f = \left[\int_0^x \frac{(k-r)^{m-1}}{(m-1)!} \alpha (k-r) f(r) dr \right] \)

Proof: Since \(J^x f = \left[\int_0^x \alpha (k-r) f(r) dr \right] \), the theorem is true for \(m = 1 \). Assume it is true for \(m = k \). Then \(J^k \cdot f = J^k \int_0^x f \)

\[
= \left[\int_0^x \frac{(k-r)^{k-1}}{(k-1)!} \alpha (k-r) \int_0^r \alpha (r-\sigma) f(\sigma) d\sigma dr \right] \\
= \left[\int_0^x \frac{(k-r)^{k-1}}{(k-1)!} \int_0^r \alpha (r-\sigma) f(\sigma) d\sigma dr \right] = \left[\int_0^x \frac{(k-r)^{k}}{k!} \alpha (k-r) f(r) dr \right]
\]

after the inevitable integration by parts. Hence the theorem is true for \(m = k + 1 \) and by induction for any \(m \geq 1 \).

Other important properties of integrators can be inferred directly from the definition by methods like those used above, in which the intimate connection between integrators and derivators does not appear conspicuously. It will be more convenient, however, to obtain these results after the derivator-integrator relationship has been fairly well developed.
4. Reversion of Derivators

The derivator \(A = \alpha_1 \mathcal{D}_1 \alpha_2 \ldots \mathcal{D}_n \) and the integrator \(\chi = \int \xi \alpha_1 \int \alpha_2 \ldots \int \alpha_n \) are coincidental if \(\alpha_1, \alpha_2, \ldots, \alpha_n \) is a permutation of \(\xi, \alpha_1, \ldots, \alpha_n \); if moreover \(\alpha_1 = 1 \), then \(A \) and \(\chi \) are reciprocal.

For any \(f \in \mathcal{F}, \mathcal{D}_\chi f = \xi \mathcal{D} \xi f = f \), since \(\mathcal{D}^m f = \left[\int \int_0^1 \int f(t) \, dt \right] = f \). Hence \(\mathcal{D}_\chi \) is a right reverse of \(\mathcal{D}_\xi \). More generally, suppose \(A \) and \(\chi \) are reciprocal. Then

\[
(5) \quad A \chi f = \mathcal{D}_\chi \mathcal{D}_\xi \ldots \mathcal{D}_\xi \mathcal{I}_n \mathcal{I}_{n-1} \ldots \mathcal{I}_1 f = \chi f
\]

in applying the preceding result \(m \) times. Hence \(\chi \) is a right reverse of \(A \) and the notation \(A^\chi = \chi \) for the integrator reciprocal to \(A \) is justified (see Sec. 1) and will be used hereafter.

From (4.5), for any \(f, g \in F \), \(f = A^\chi g \) implies \(A f = g \). The converse is false for some \(f, g \), since the correspondence is equivocal in \(f \). But if the linear condition \(f \in F_m^\star \) is subjoined to \(A f = g \), the result is univocal in \(f \) and equivalent to \(f = A^\chi g \) for any \(f, g \in F \). Many properties of \(A^\chi \) may be inferred more readily from this equivalence than from the definition in the preceding section.

Theorem 8 For any derivator \(A \) and any \(f, g \in F \), \(A f = g \) and \(f \in F_m^\star \) if and only if \(f = A^\chi g \), where \(A^\chi \) is the integrator reciprocal to \(A \).

Proof: Without loss of generality suppose \(A \) is normal. We remark that, since \(g \in F \) is continuous, \(\mathcal{D}_\chi f = g \) is equivalent to

\[
f = \mathcal{I} \xi g + \xi \left[f_0 \right] = \mathcal{I} \xi g + f_0 \left[e^{-\xi} \right].
\]

Hence \(\mathcal{D}_\chi f = g \) and \(f_0 = 0 \) is equivalent to \(f = \mathcal{I} \xi g = \mathcal{D}_\chi^\star g \).
Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the indices of A, so that $A = D_{\alpha_1} D_{\alpha_2} \ldots D_{\alpha_n}$. Now suppose $Af = g$ and $f \in F_m$. Then $D_{\alpha_1} (D_{\alpha_2} \ldots D_{\alpha_n} f) = g$ and by Theorem 3, $D_{\alpha_1} D_{\alpha_2} \ldots D_{\alpha_n} f \bigg|_F = 0$. Hence by the preceding remark, $D_{\alpha_2} (D_{\alpha_3} \ldots D_{\alpha_n} f) = I_{\alpha_2} g$. Again by Theorem 3, $D_{\alpha_3} D_{\alpha_4} \ldots D_{\alpha_n} f = I_{\alpha_3} I_{\alpha_4} \ldots I_{\alpha_n} g$.

Repeating this argument, we finally obtain $f = I_{\alpha_m} I_{\alpha_{m-1}} \ldots I_{\alpha_1} f = g$.

Conversely, if the latter is true then $Af = D_{\alpha_1} D_{\alpha_2} \ldots D_{\alpha_n} I_{\alpha_m} I_{\alpha_{m-1}} \ldots I_{\alpha_1} f = g$.

We can now show that the indices of an integrator are unique except for order:

THEOREM 9 Equal integrators have equal modules and the same set of indices.

Proof: Suppose that the integrators $X = \lambda I_{\alpha_1} I_{\alpha_2} \ldots I_{\alpha_n}$ and $Y = \mu I_{\beta_1} I_{\beta_2} \ldots I_{\beta_m}$ are equal. Let A, B be the derivators reciprocal to X, Y. Then $AX = BY = 1$ on F, and since $X = Y$, $(A - B)X f = 0$ for any $f \in F$. Let $x = \max (m, n)$. By the preceding theorem, $A^x = B^x = X$ hence the domain of X includes F_x^x.

By Theorem 1, A and B are cogredient, and by Theorem 2 the modules of A and B are equal and their indices are the same except for order. The conclusion now follows, since the modules of A and B are λ^{-1}, μ^{-1} and their indices are $\alpha_1, \alpha_2, \ldots, \alpha_n$ and $\beta_1, \beta_2, \ldots, \beta_m$.

Let $A = D_{\alpha_1}^{m_1} + A_1, D_{\alpha_2}^{m_2} + \ldots + A_m = D_{\alpha_1} D_{\alpha_2} \ldots D_{\alpha_m}$ be a normal derivator of degree m. For $g \in F$, let $f = A^x g = I_{\alpha_1} I_{\alpha_2} \ldots I_{\alpha_m} g$.
By Theorem 6,

\[T = \{ A_1 \Delta \xi, + A_2 \Delta \xi + \ldots + A_m \Delta \xi_m \} \bar{q}, \]

where \(A_i = (\ldots A_m \ldots) \), \(A_2 = (\ldots A_3 \ldots) \), \(A_m = (\ldots A_2 \ldots) \).

The individual terms on the right in this equation belong to \(\mathcal{F} \), since \(\bar{q} \notin \mathcal{F} \) is continuous, but in general they do not belong to \(\mathcal{F}_k \) for \(k > 1 \). Yet the entire right member belongs to \(\mathcal{F}_{m^k} \), since by Theorem 8, \(\mathcal{A} \bar{f} = \bar{g} \) and \(\bar{f} \notin \mathcal{F}_{m^k} \).

It will be instructive to verify this by means of Lemma 1.

Since \(\mathcal{A} \Delta \xi = (\mathcal{A} - \Delta \xi) \Delta \xi = (\mathcal{A} + \Delta \xi) \Delta \xi = \mathcal{I} \Delta \xi \) on \(\mathcal{F}_\xi \),

\[\mathcal{A} \bar{f} = \{ \Delta A_1 \Delta \xi + \Delta A_2 \Delta \xi + \ldots + \Delta A_m \Delta \xi_m \} \bar{g} \]

+ \(\{ A_1, A_2 + \ldots + A_m \} \bar{g} \).

Now by Lemma 1, the second expression in braces vanishes, hence \(\mathcal{A} \bar{f} \in \mathcal{F}_\xi \) and

\[\mathcal{A}^2 \bar{f} = \{ \Delta^2 A_1 \Delta \xi + \Delta^2 A_2 \Delta \xi + \ldots + \Delta^2 A_m \Delta \xi_m \} \bar{g} \]

+ \(\{ A_1, A_2 + \ldots + A_m \} \bar{g} \).

Again by the lemma, the second expression in braces vanishes, so that \(\mathcal{A}^2 \bar{f} \in \mathcal{F}_\xi \).

Continuing in this way, we obtain

\[\mathcal{A}^k \bar{f} = \{ \Delta^k A_1 \Delta \xi + \Delta^k A_2 \Delta \xi + \ldots + \Delta^k A_m \Delta \xi_m \} \bar{g} \]

for \(k = 0, 1, \ldots, m-1 \),

and

\[\mathcal{A}^m \bar{f} = \{ \Delta^m A_1 \Delta \xi + \Delta^m A_2 \Delta \xi + \ldots + \Delta^m A_m \Delta \xi_m \} \bar{g} \]

+ \(\{ \Delta^m A_1 + \Delta^m A_2 + \ldots + \Delta^m A_m \} \bar{g} \),

where this time the second expression in braces = \(\bar{g} \).

From (7) we verify that \(\mathcal{A}^k \bar{f} = 0 \) for \(k = 0, 1, \ldots, m-1 \).
i.e. \(f \in F^{m} \). From (7) and (8)

\[
A f = \left(\sum_{k=0}^{m} \alpha_{m-k} X^{k} \right) f = \left\{ \sum_{k=0}^{m} \alpha_{m-k} X^{k} \right\} g + g = g,
\]

since \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \) are the zeros of \(\sum_{k=0}^{m} \alpha_{m-k} X^{k} \)

in \(C \).

If the derivator \(A = \prod_{k} D_{\alpha_{k}} \) is applied to the matrix

\[
h_{k} = I_{\alpha_{k}}^{k} \quad \text{for} \quad k \quad \text{of the derivator factors annihilate the integrator, i.e. reduces it to} \quad I \\
\]

and one of the remaining factors nullifies \(\sum_{k=0}^{m} \alpha_{m-k} X^{k} \) i.e. reduces it to zero. Thus \(h_{0} = [\alpha_{i} X^{k}] \), and \(h_{1}, h_{2}, \ldots, h_{m-1}, \)

are in the null domain of \(A \) and it is easy to see that they are linearly independent with respect to \(S : \text{if} \quad h = \sum_{k=0}^{m} \sigma_{k} h_{k} \)

\[
= \sigma_{0} \left[\alpha_{i} X^{k} \right] + \sigma_{1} I_{\alpha_{k}}^{k} \left[\alpha_{i} X^{k} \right] + \ldots + \sigma_{m-1} I_{\alpha_{k}}^{k} \left[\alpha_{i} X^{k} \right]
\]

with \(\sigma_{0}, \sigma_{i}, \ldots, \sigma_{m-1} \in S \), then \(D_{\alpha_{k}} h_{0} = \sigma_{i} \),

\[\ldots, D_{\alpha_{k}} h_{1}, D_{\alpha_{k}} h_{2}, \ldots, D_{\alpha_{k}} h_{m-1}, h_{0} = \sigma_{m-1} \]

imply \(\sigma_{0} = \sigma_{i} = \ldots = \sigma_{m-1} = 0 \). Moreover, it is shown below (Theorem 11) that the \(h_{0} \) span the null domain of \(A \) and hence form a basis with \(S \) for that domain.

Theorem 10 For any \(f, g \in F \), \(A f = D_{\alpha_{k}} D_{\alpha_{k}} \ldots D_{\alpha_{k}} f = g \)

and \(f \big|_{0} = \sigma_{0}, D_{\alpha_{k}} f \big|_{0} = \sigma_{i}, \ldots, D_{\alpha_{k}} D_{\alpha_{k}} \ldots D_{\alpha_{k}} f \big|_{0} = \sigma_{m-1} \)

is equivalent to \(f = A^{k} g + h_{0} \), where \(h_{0} = \sigma_{0} h_{0} + \sigma_{i} h_{0} + \ldots + \sigma_{m-1} h_{0} \).

Proof: From the remarks in the preceding paragraph, \(A h_{0} = 0 \)

and the initial values of \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \)
are respectively \(\sigma_0, \sigma_1, \ldots, \sigma_{m-1} \). This and Theorem 3 imply that the simultaneous equations \(A f = \mathbf{g}, f_0 = \sigma_0, \frac{\partial}{\partial x_1} f_0 = \sigma_1, \ldots, \frac{\partial}{\partial x_r} f_0 = \sigma_r \), where \(A_{m-1} f_0 = \sigma_{m-1} \), are equivalent to \(A(f - h) = 0 \) and \(f - h \in F_m^* \); by Theorem 8 this conjunction is equivalent to \(f - h = \mathbf{r^* g} \), whence the theorem. The important case \(\mathbf{j} = 0 \), corresponding to the null domain of \(A \), is repeated as

THEOREM 11 For any \(f \in F \), \(A f = 0 \) and \(f_0 = \sigma_0 \),

\[
\frac{\partial}{\partial x_1} f_0 = \sigma_1, \ldots, \frac{\partial}{\partial x_r} f_0 = \sigma_r, A_{m-1} f_0 = \sigma_{m-1},
\]

is equivalent to

\[
f = \sigma_0 h_0 + \sigma_1 h_1 + \cdots + \sigma_{m-1} h_{m-1}.
\]

Replacing \(\mathbf{g} \) by \(A f \) in Theorem 10 yields

THEOREM 12 For any \(f \in F_m \)

\[
f = \mathbf{A}^* \mathbf{A} f + \mathbf{h}
\]

where \(\sigma_0, \sigma_1, \ldots, \sigma_{m-1} \) are the initial values of \(f, \frac{\partial}{\partial x_1} f, \ldots, \frac{\partial}{\partial x_r} f, \ldots, \frac{\partial}{\partial x_{m-1}} f \), and \(\mathbf{h} = \sigma_0 h_0 + \sigma_1 h_1 + \cdots + \sigma_{m-1} h_{m-1} \).

Thus associated with each derivator \(A \) of degree \(m \) is the resolution (9) of \(f \in F_m \) into its projection \(\mathbf{A}^* \mathbf{A} f \) on \(F_m^* \), and its projection \(\mathbf{h} \) on \(N_a \). By Theorems 3 and 11, the intersection of \(F_m^* \) and \(N_a \) contains only \(\mathbf{0} \in F \). Hence the resolution (9) is unique, in the sense that if \(f = \mathbf{g} + \mathbf{h} = \mathbf{g'} + \mathbf{h'} \) where the \(\mathbf{g'} \)'s are in \(F_m^* \) and the \(\mathbf{h'} \)'s in \(N_a \), then \(\mathbf{g} - \mathbf{g'} = \mathbf{h} - \mathbf{h'} = \mathbf{0} \), since \(\mathbf{g} - \mathbf{g'} \in F_m^* \) and \(\mathbf{h} - \mathbf{h'} \in N_a \).

There is another very important way of regarding (9): It determines the matrix \(f \in F_m \) in terms of the following data: (1) the matrix \(\frac{\partial}{\partial x_1} f, \frac{\partial}{\partial x_r} f \in F \) and (2) the elements \(\frac{\partial}{\partial x_1} f_0, \ldots, \frac{\partial}{\partial x_{m-1}} f_0, \ldots, \frac{\partial}{\partial x_1} f_0 \) of \(S \). In many practical problems (differential equations of physics and engineering in which \(f \) is the 'unknown') these data are given and (9) solves the problem.
\section{Commutation}

For any two elements P, Q of L, the operator $\Gamma = PQ - QP$ is the \textit{commutator} of P and Q. Let Δ_1, Δ_2 be the domains in F of PQ, QP. The domain in F of Γ is $\Delta_1 \cdot \Delta_2$. The null domain of Γ is in general a proper subset Δ of $\Delta_1 \cdot \Delta_2$. P and Q commute (see Sec. 1) if $\Delta = \Delta_1 = \Delta_2$. This is certainly the case if P, Q are derivators of degree σ_1, ν_1 ($\Delta = \Delta_1 = \Delta_2 = F_{\sigma_1, \nu_1}$) or integrators of order ν_1, ν_2 ($\Delta = \Delta_1 = \Delta_2 = F_{\nu_1, \nu_2}$). If P is a derivator of degree $\sigma > 0$ and Q an integrator of order $\nu > \sigma$, then $\Delta_1 = F_{\sigma}$ and $\Delta_2 = F_{\nu} \neq \Delta_1$, so that P and Q do not commute. The domain of Γ is then $F \cap F_{\nu} = F_{\nu}$, but the null domain of Γ is not so simple: it is F_{ν}^* if $\sigma \leq \nu$ (Theorem 13) but is harder to describe if $\sigma \geq \nu$ (Theorem 14).

A commutation condition is a condition $C(f)$ on $f \in F$ such that $C(f)$ implies $\Gamma f = 0$. A commutation rule is an equation $\Gamma f = \phi$, where ϕ is an expression in f, valid for all f in the domain of Γ. In this section we shall give several commutation conditions and commutation rules for $\Gamma = AB^* - B^* A$, where A, B are derivators of degree σ_1, ν_1 respectively.

Theorem 13 If $\sigma \leq \nu$, then the null domain of Γ is F_{ν}^*, i.e.,

\[(AB^* - B^* A) f = 0 \quad \text{if and only if} \quad f \in F_{\nu}^*.\]

Proof: Since the domain of Γ is F_{ν}, suppose $f \in F_{\nu}$. Then $\beta \Gamma f = \beta (AB^* - B^* A) f = 0$, since operator multiplication is distributive, and associative, derivators commute and $\beta \beta^* = 1$ (we shall usually omit such formal details). Hence by
Theorems 11 and 3, $\prod^\prime f = 0$ is equivalent to $\prod^\prime f \in F'_n$, and this is equivalent to $AB^*_\alpha f \in F'_n$ since $B^*_\alpha f = B^*_\alpha f \in F'_n$.

(by Theorem 8 the range of B^*_α is F'_n.) Clearly $D^\alpha B^*_\alpha f_0 = 0$ if $k < n - h$, since the degree of the derivator $D^\alpha A$ is then $\lambda + k < h$. Hence $AB^*_\alpha f \in F'_n$ if and only if $D^\lambda h + k A^*_\alpha f_0 = 0$ for $k = 0, 1, \ldots, h - 1$.

There exist unique derivators Q_k of degree k and R_k of degree $< h$ such that $D^\lambda h + k A = Q_k B + R_k$, as may be seen by applying the division algorithm to the abstract polynomials $A(x)$, $B(x)$ cogredient with A, B. Then $D^\lambda h + k A^*_\alpha f_0 = Q_k f_0 + R_k B^*_\alpha f_0$ and the last term vanishes since the degree of R_k is less than the order of B^*_α (the degree of B).

Hence $\prod^\prime f = 0$ if and only $Q_k f_0 = 0$ for $k = 0, 1, \ldots, h - 1$, and this is equivalent to $f_0 = D^\lambda f_0 = \cdots = D^{h-1} f_0 = 0$.

since $Q_k f_0$ is a linear combination of the initial values of $f, D^\lambda f, \ldots, D^{k-1} f$ in which the coefficient of $D^k f$ is $\neq 0$.

THEOREM 14 If $h > h$, then $(AB^*_\alpha - B^*_\alpha A) f = 0$ if and only if $f_{m-h}, f_{m-h+1}, \ldots, f_{m-1}$ are certain linear combinations of $f_0, f_1, \ldots, f_{m-h-1}$, where $f_k = D^k f_0$ for $k = 0, 1, \ldots, h - 1$.

Proof: As in the preceding proof, $\prod^\prime f = 0$ if and only if $AB^*_\alpha f \in F'_n$. There exist unique derivators Q_k of degree $h - n$ and R_k of degree $< h$ such that $A = Q_k B + R_k$. Hence for $k = 0, 1, \ldots, h - 1$, $D^k A B^*_\alpha f_0 = D^k Q_k f_0 + D^k R_k B^*_\alpha f_0 = 0$ is a linear equation in $f_0, f_1, \ldots, f_{m-h+k}$ in which the coefficient of f_{m-h+k} is $\neq 0$. Expressions for these coefficients will be given in Section 9.

Let \(g = R_n R_{n-1} \ldots R_k \ldots R \) where (1) \(f \in F_\lambda \) and \(f \in F_\lambda^\times \) (2) either (i) for every \(k \) \((i.e. k = 1, 2, \ldots, n)\), \(R_k = P_k \cdot Q_k \) or (ii) for every \(k \), \(R_k = Q_k \cdot P_k \), and (3) for any \(k \), \(P_k \) is an integrator of order \(p_k \) and \(Q_k \) is a derivator of order \(g_k \). Let \(\lambda_k = \lambda - (p_k - g_k) + (p_k - g_k) + \ldots + (p_k - g_{k-1}) \). (To avoid exceptions, let \(p_0 = g_0 = 0 \)).

Theorem 15 In case (i): \(g \) exists \(\in F \) if for every \(k \), \(g_k \leq \lambda_k \). If this condition is satisfied, then \(g \) is unaltered when \(P_k, Q_k \) are transposed if \(g_k < \lambda_k \) where the \(\mu_j \) are defined recursively by \(\mu_0 = \rho \) and \(\mu_j = \mu_{j-1} + <\mu_{j-1} - g_{j-1}> \).

In case (ii): \(g \) exists \(\in F \) if for every \(k \), \(g_k \leq \lambda_k + p_k \). If this condition is satisfied, then \(g \) is unaltered when \(Q_k, P_k \) are transposed if \(g_k < \nu_k \), where the \(\nu_j \) are defined recursively by \(\nu_0 = \rho \) and \(\nu_j = <\nu_{j-1} + \nu_{j-1} - g_{j-1}> \).

Proof: Since the domain of the integrators is \(F \) we need only ascertain that the operands of all the derivators are within the domains thereof. Suppose case (i). The operand of \(Q_k \) is \(R_k = R_{k-1} R_{k-2} \ldots R \) if \(k \geq 1 \) and \(f \) if \(k = 1 \).

If \(g_1 < \lambda_1 = \lambda \), clearly \(Q, f \) exists \(\in F_{\lambda - g_1} \) and since the range of \(P_1 \) is \(F_{\rho + \lambda_1 - g_1} \), certainly \(f_1 = R Q, f \in F_{\rho + \lambda_1 - g_1} = F_{\lambda_2} \). Repeating the argument, \(Q_2 P, Q, f \) exists \(\in F_{\lambda_2 - g_2} \) and \(f_2 = P_2 Q_2 P, Q, f \in F_{\rho + \lambda_2 - g_2} = F_{\lambda_3} \), etc., and finally \(g \) exists \(\in F_{\lambda_{n+1}} \). Assume that the conditions \(g_k \leq \lambda_k \) are satisfied.
If \(\gamma_i \leq \mu_i = 1 \), then \(Q, f \in F_{\mu_i - \gamma_i} \) and \(P \), if \(\gamma_i > \mu_i \), we can only assert \(Q, f \in F_{\mu_i} \) and then \(P, Q, f \in F_{\mu_i} \); in either eventuality, \(f = P, Q, f \in F_{\mu_i + \gamma_i - \gamma_i} = F_{\mu_i} \).

Continuing the argument, we see that \(F_{\mu_i} \) for \(k = 1, 2, \ldots, m-1 \). Hence for any \(k \), if \(\gamma_k \leq \mu_k \), then \(F_{\mu_k} \) and by Theorem 13 commutation of \(F_k, Q_k \) will not alter \(g \). The proof for case (ii) is similar.

Theorem 16

Let \(A = \sum_k a_{m-k} A^k \) be any derivator of degree \(m \), and \(B \) any derivator of degree \(\geq m \). Then for any \(f \in F_m \),

\[
(AB^*-B^*A)f = (A_0 \hat{=}^* + A_1 \hat{=}^* + \ldots + A_{m-1} \hat{=}^*) B^* [1]
\]

where \(A_k = \sum_k a_{k-l} A_I \) and \(f_k = \hat{=}^* f \).

Proof: Let \(g = (A \hat{=}^n - I^n A)f \), where \(n \geq m \). Then \(\hat{=}^n g = 0 \) and hence by Theorem 11 (with the \(\hat{=}^n \)'s there equal to one)

\[
g = (c_0 + c_1 I + c_2 I^2 + \ldots + c_{m-1} I^{m-1}) [1]
\]
where $\sigma_k = \mathcal{D}^k \chi \big/ \chi \mathcal{D}^k A \mathcal{I}^{-n} f \big/ \chi$. For $k < n - m$

$\sigma_k = 0$, since the degree of $\mathcal{D}^k A$ is $< n$. For $k = 0, \ldots, m - 1$,

$\sigma_{n - m + k} = \mathcal{D}^{n - m + k} \mathcal{A} \mathcal{I}^{-n} f \big/ \chi = (a_0 \mathcal{D}^{n - k} + a_1 \mathcal{D}^{n - k + 1} + \cdots + a_m \mathcal{D}^{n - m + k}) \mathcal{I}^{-n} f \big/ \chi = (a_0 f_k + a_1 f_{k-1} + \cdots + a_m f_{-m}) = A_k$

Moreover, $\mathcal{I}^{n - m + k} = (\mathcal{D}^{m - k} \mathcal{I}^{m - k}) \mathcal{I}^{n - m + k} = \mathcal{D}^{m - k} \mathcal{I}^{-n}$.

Hence

(11) $(\mathcal{A} \mathcal{I}^{-n} - \mathcal{I}^{-n} \mathcal{A}) f = (a_0 \mathcal{D}^{m} + a_1 \mathcal{D}^{m - 1} + \cdots + a_m \mathcal{D}) \mathcal{I}^{-n} [\mathcal{I}]$.

Now $\mathcal{I}^{-n} = \mathcal{B}^{-n} = \mathcal{D}^{-n}$.

By Theorem 8, $\mathcal{B} \mathcal{A} f$ and $\mathcal{D} n f$ belong to $\mathcal{F}_m \mathcal{A}$. By Theorems 13 and 5, $\mathcal{B} \mathcal{A} \mathcal{I}^{-n} f$

$= \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{I}^{-n} f = \mathcal{D}^{-n} \mathcal{A} \mathcal{B} \mathcal{A} f$.

Hence applying $\mathcal{B} \mathcal{B}$ to (11), with $Q \equiv (a_0 \mathcal{D}^{m} + a_1 \mathcal{D}^{m - 1} + \cdots + a_m \mathcal{D})$, (12)

$\mathcal{I}^{-n} (\mathcal{B} \mathcal{B} - \mathcal{B} \mathcal{A}) f = \mathcal{B} \mathcal{B} \mathcal{I}^{-n} [\mathcal{I}]$

$= Q \mathcal{B} \mathcal{B} \mathcal{I}^{-n} [\mathcal{I}] = \mathcal{I}^{-n} Q \mathcal{B} \mathcal{B} [\mathcal{I}]$

where the commutation of $\mathcal{B} \mathcal{B}$ and $Q \mathcal{B} \mathcal{B}$ is justified by Theorem 13, since $\mathcal{I}^{-n} [\mathcal{I}]$ and $\mathcal{B} \mathcal{B} [\mathcal{I}]$ belong to $\mathcal{F}_m \mathcal{B}$. Theorem follows on applying \mathcal{D}^{-n} to (12).

THEOREM 17 With \mathcal{A} as in the preceding theorem, for any $f \in \mathcal{F}_m$

(13) $f = \mathcal{A} \mathcal{B} \mathcal{B} f + (a_0 \mathcal{D}^{m} + a_1 \mathcal{D}^{m - 1} + \cdots + a_m \mathcal{D}) \mathcal{A} \mathcal{B} [\mathcal{I}]$.

Proof: Application of $\mathcal{B} \mathcal{B} \mathcal{A}$ to (10) or (11) yields (13) after commutations and reductions justified by Theorem 13 and $\mathcal{A} \mathcal{A} \mathcal{B} = 1$.

Or simply take $\mathcal{B} = \mathcal{A}$ in Theorem 16.
6. \textbf{Derigrators.}

For any derivator A of degree m and integrator X or order n, the operator AX is a derigrator of degree m, order n and rank $n-m$. If Y and B are the reciprocals of A and X, i.e. $Y = A^*$ and $B = X^*$, then $AX = YX = AB^*$.

If $AX = A, X$, where A, is of degree m, and X, of order m, then $X^*A = X^*A$, after left multiplication by X^*X, or $X^*A = X, A^*$, after right multiplication by X^*X^*, and by Theorems 1 or 9, $m + n = m + n$, i.e. $m-n = n-m$. We have, in effect proved the following:

Theorem 18 Derigrators AB^* and $A, B, ^*$ are equal if and only if $AB_1 = A, B$. Equal derigrators have the same rank.

Theorem 19 For any derigrators $AB^*, A, B, ^*$, $AB^* + A, B, ^* = (AB^* + AB)(BB^*)_k$. If the rank of $A, B, ^*$ is > 0, then $(AB^*)(A, B, ^*) = (AA)(BB^*)_k$. Proof: The first part follows from $AB^* = A(B, B, ^*)B^* = (AB_1)(BB^*)_k$. The second part follows from Theorem 13.

A derigrator AB^* is dextral or sinistral according as the rank of AB^* is > 0 or < 0 (thus derivators of rank zero are dextral and sinistral).

If AB^* is dextral, then by Theorem 13 $(BA^*)(AB^*) = 1$ i.e. AB^* has an unrestricted left reverse $*(AB^*) = BA^*$ and is therefore univocal (see Sec. 1). In particular, the integrator B^* is a dextral derigrator of degree zero with unrestricted left reverse $*(B^*) = B$.

If AB^* is sinistral, then $(AB^*)(BA^*) = 1$,
i.e. $A B^* \text{ has an unrestricted right reverse } (A B^*)^* = B A^*$, but $A B^*$ is equivocal: by Theorem 11, the null domain of $A B^*$ contains (in fact is spanned by) the non-zero matrices $A_n, A_{n+1}, \ldots, A_{m-1}$. In particular, the derivator A is a sinistral derigrator of order zero with unrestricted right reverse A^*.

The derigrator concept may be extended as follows. Any element of L will be called a derigrator if it equals a derivator-integrator product $A B^*$, hereafter called a primitive derigrator. The rank of a derigrator is that of any equal primitive derigrator (by Theorem 18, this is unambiguous). By Theorem 19, the class K of derigrators is closed under addition and subtraction, and the product of two elements of K belongs to K if the rank of the second factor is ≥ 0. Derigrators are dextral or sinistral according as equal primitive derigrators are dextral or sinistral.

Theorem 20 The class $K_d < K$ of all dextral derigrators is a commutative ring containing the unit operator I. Every element of K_d is univocal.

Proof: Let $A B^*, A, B, * \text{ be primitive derigrators equal to } P, Q \in K_d$. By Theorem 19, $P \times Q = (A B^* \times A, B) (B A^*)^*$ and $P Q = (A A,) (B B^*)^*$. The order of $(B B^*)^*$ (i.e. degree of $B B^*$) is the sum of the orders of $B^*, B, *$; for each of $A B^*, A, B, A A, \$, the degree of the product is the sum of the degrees of the factors; the degree of $A B^* \times A, B$ is not greater than the degrees of the terms. Hence the ranks of $P \times Q$ and $P Q$ are ≥ 0. Clearly $P + Q$ and $P Q$ are commutative, and P
is univocal since A^B is.

Let P be an element of K_j of positive rank. Let A, B be derivators with no common indices such that $P = A^B$. These conditions uniquely determine the indices of A, B and the quotient μ of the module of A by that of B (if A, B also satisfy the conditions then by Theorem 18, $A^B = A, B$). By Theorem 2, the indices of A and B together must be those of A, B together, hence A, A_1 are coincidental and so are B, B_1. Moreover, the product of the modules of A, B must equal the product of the modules of A_1, B_1). Let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be the distinct indices of B with multiplicities n_1, n_2, \ldots, n_m.

Theorem 21 There exist unique complex numbers $\rho_{j,k}^{(i)}$ such that

$$P = \frac{1}{\mu} \sum_{j=1}^{r} \sum_{k=0}^{m_j} \rho_{j,k}^{(i)} I_{j,k}^{n_j-k} \cdot$$

Proof: Let $A(\Theta), B(\Theta)$ be abstract polynomials cogredient with A, B. Unique complex numbers $\rho_{j,k}^{(i)}$ exist (partial fractions algorithm) such that

$$A(\Theta) = \frac{1}{\mu} \sum_{j=1}^{r} \left(\sum_{k=0}^{m_j} \rho_{j,k}^{(i)} (\Theta - \alpha_j)^k \right) \prod_{l \neq j} (\Theta - \alpha_l)^{n_l}. $$

Hence

$$A = \frac{1}{\mu} \sum_{j=1}^{r} \left(\sum_{k=0}^{m_j} \rho_{j,k}^{(i)} \alpha_j^k \right) \prod_{l \neq j} (\Theta - \alpha_l)^{n_l}. $$

Equation (2.3) follows on applying this expression for A to

$$B^* = \frac{1}{\mu} \prod_{k} I_{k}^{n_k}. $$

Any sinistral derigrator (or dextral derigrator of rank zero) may be resolved uniquely into a derivator and an element of K_j of positive rank, to which (2.3) may be applied.
For any $P \in \mathcal{K}_A^*$, the matrix $P[i]$ is the indicial matrix of P and of its reciprocal P^*. If the rank of P is positive, the matrix $P[i]$ is the weighting matrix or density of P and of its reciprocal P^*. In particular $A^*[i]$ and $DA^*[i]$ are the indicial matrix and the density (if the degree of A is positive) of both the derivator A and the integrator A^*.

Theorem 22: With the notion of the preceding theorem, for any derigrator P of positive rank and any $f \in \mathcal{F}$,

$$Pf = \left[\int_0^t \sum_{j} \sum_{k} p_{ji}(m_{j-1} - k) \frac{j}{k} e^j (t - \tau) \right] f(\tau) d\tau. $$

This is an immediate consequence of Theorems 7 and 21.

Theorem 23: If the rank of P is positive, the density $G = DP[i]$ is given by

$$G = \left[\sum_j^{\infty} \sum_k^{\infty} p_{ji}(m_{j-1} - k) \frac{j}{k} e^j \right].$$

This follows immediately from the preceding theorem. Thus equation (15) may be written as

$$Pf = \left[\int_0^t G(t - \tau) f(\tau) d\tau \right].$$

Theorem 24: With the notation of Theorem 23, if A is a derivator of positive degree λ_1, then for any $f \in \mathcal{F}_\lambda$ and $g \in \mathcal{F}$, $Af = g$ is equivalent to

$$f = \left[\int_0^t G(t - \tau) g(\tau) d\tau \right] + (A_0)^{\lambda_1} + A_1^{\lambda_2} + \ldots + A_{\lambda_1},$$

where $G = DA^*[i]$.

Proof: The direct part of the theorem follows immediately from Theorem 17 and equation (17) with $P = A^*$. For the converse, suppose (18). From (16), $G \in \mathcal{L}$, hence applying A to
If \(A \) is a derivator of positive degree \(m \), then for any \(f \in F_m \), \(g \in F \) and elements \(\sigma_0, \sigma_1, \ldots, \sigma_m \) of \(S \), the system of equations

\[
(\text{19}) \quad Af = g, \quad f' = \sigma_0, \quad \partial f'_0 = \sigma_1, \ldots, \partial f'_m = \sigma_m,
\]

is equivalent to

\[
(\text{20}) \quad f = A^g + Q A^k [I] = \left[\int_0^t G(t, \tau) g(\tau) d\tau \right] + \sum_{k=0}^m (D^m)^{-k} \partial f'_0 = \sigma_m
\]

where

\[
\begin{align*}
Q_k &= \sum_{k=0}^m a_{m-k} \sigma_k \quad \text{for} \quad k = 0, \ldots, m-1, \\
Q &= \sum_{k=0}^m Q_k (D^m)^{-k} \quad \text{and} \quad G = \sigma A^k [I]
\end{align*}
\]

Proof: Assume (19). Then \(\sigma_0, \sigma_1, \ldots, \sigma_m \) are respectively equal to \(f_0, f_1, \ldots, f_m \) (which are defined as \(f'_0, \partial f'_0, \ldots, \partial f'_m \) in Theorem 16), hence (20) follows by Theorem 24. Conversely, assume (20). Then \(Af = g \) follows, as in the proof of Theorem 24. We must verify \(\partial f'_0 = \sigma_k \)

Applying \(AI^m \) to (20) yields

\[
AI^m f = AI^m A^g + AI^m Q A^k [I] = AA^g I^m + AA^k Q I^m [I]
\]

where the commutations of \(Q, A^k \) and \(Q, I^m \) are justified by Theorem 13. Now applying \(D^k \) we obtain
\[(a_0 D^k + a_1 D^{k-1} + \ldots + a_k + a_{k+1} + \ldots + a_m I^{m-k})f \]
\[= I^{m-k} + (b_k + b_{k+1} I + \ldots + b_m I^m)^{-1} \] (1)

Evaluating at 0,

as
\[a_0 \beta_k + a_1 \beta_{k-1} + \ldots + a_k \beta_0 = b_k = a_0 \gamma_k + a_1 \gamma_{k-1} + \ldots + a_k \gamma_0 \]
for \(k = 0, 1, \ldots, m-1\), which imply \(\beta_k = \gamma_k\).

7. The Method of Integrator Transforms

For \(j, k = 1, 2, \ldots, m\), let \(A_{j,k}\)

be a derivator of degree \(d_{j,k}\), \(d_k = \max_j d_{j,k}\), \(\beta_k \in \mathcal{F}_{d_k}\)
and \(\gamma_j \in \mathcal{F}\). Consider the equations

\[A_{11} \beta_1 + A_{12} \beta_2 + \ldots + A_{1n} \beta_n = \gamma_1,\]
\[(21)\]
\[A_{21} \beta_1 + A_{22} \beta_2 + \ldots + A_{2n} \beta_n = \gamma_2,\]
\[\vdots\]
\[A_{m1} \beta_1 + A_{m2} \beta_2 + \ldots + A_{mn} \beta_n = \gamma_m,\]

subject to the initial conditions

\[\beta_{01} = \beta_{01}, \beta_{02} = \beta_{02}, \ldots, \beta_{0m} = \beta_{0m},\]

for \(k = 1, 2, \ldots, m\).

Suppose \(A_{j,k} = \sum_{l=0}^{d_{j,k}} a_{j,k} \delta_{j,k} \ldots \delta_{j,k}\) for

\(j = 1, 2, \ldots, d_{j,k-1}\), let \(b_{j,k} = \sum_{l=0}^{d_{j,k}} a_{j,k} + \beta_{j,k} \delta_{j,k}\)
and

\(Q = \sum_{l=0}^{d_{j,k-1}} q_{j,k} \delta_{j,k} \ldots \delta_{j,k-l}\) for

an integrator of order \(N = \max_k d_k\).

Suppose (21) and (22). Then by Theorem 16,

\[Q \sum_{k} A_{j,k} \beta_k = \sum_{k} Q A_{j,k} \beta_k = \sum_{j,k} \left\{ A_{j,k} Q \beta_k - Q_{j,k} Q \beta_k \right\} = Q g_j ,\]
and hence

\[(23) \sum_{i,k} A_{ik} Q_{ik} = Q_{ij} \sum_{i,k} Q_{ik} Q_{ij}\]

Conversely, if \((23)\) holds then by an evident extension of the proof of Theorem 25, \((21)\) and \((22)\) follow. Thus the single system \((23)\) is equivalent to \((21)\) and \((22)\).

Let \(M_{jk}\) be the cofactor of \(A_{jk}\) in the determinant \(M = |A_{jk}|\) (defined in the usual way as a sum of products). Then \((23)\) implies

\[
\sum_{i,j} M_{ij} A_{jk} Q_{ik} = \sum_{i,j} M_{ij} A_{jk} Q_{ij} = M Q_{ij} = \sum_{i,j} M_{ij} Q_{ij} + \sum_{i} M_{ij} Q_{ik} Q_{ij}
\]

and hence

\[(24) M Q_{ij} = \sum_{i,j} M_{ij} Q_{ij} + \sum_{i,j} M_{ij} Q_{ik} Q_{ij}\]

provided that the order \(N\) of \(Q\) is large enough to ensure that \(Q_{ij}\) and \(Q_{ik}\) are within the domains of the derivators applied to them (see Theorem 15). Moreover, by Theorem 13, if \(N\) is large enough,

\[(M^* M - MM^*) \phi = 0\]

where \(\phi\) is any of the \(Q\) transforms appearing in \((24)\), and hence

\[(25) Q_{ij} = \sum_{i,j} M_{ij} M_{ik} Q_{ij} + \sum_{i,j,k} M_{ij} Q_{ik} M_{kj} Q_{ij}\]

the commutations in the right member being justified, by Theorem 13, if \(N\) is sufficiently large.

Conversely, \((23)\) follows from \((25)\) on applying \(A_{ij}\), summing on \(i\) and reducing the right member by

\[\sum_{i} A_{ei} M_{ij} = S_{ij} M\]
and $M^* M = I$, provided that N is sufficiently large.

Let $\bar{f} = Q^x f$ for any $f \in F$, and introduce the equivalence relation \bar{a}, meaning equal for all a with sufficiently large N. Then (23) becomes

$$\sum_{k} A_{jk} \bar{f}_k = \bar{a} \bar{g}_j + \sum_{k} Q_{j;k} M^x [j]$$

the subsidiary systems for (21) and (22). (25) becomes

$$\bar{f}_i = \bar{a} \sum_{j} M_{i;j} \bar{M}^y \bar{g}_j + \sum_{j} Q_{i;j} Q_{j;k} M^x [j]$$

and the systems (27) and (26) are each equivalent to the double system (21), (22).

Since $\bar{f}_i \in F_N^x$, a necessary condition for the existence of matrices \bar{f}_i satisfying (27) (and hence (21), (22) is that the right member belongs to F_N^x, and a sufficient condition for this is, by Theorem 13, that the ranks of $M_j = \left(\sum_{j} M_{i;j} \right) M^*$ and $Q_i = \left(\sum_{j} M_{i;j} Q_{j;k} \right) M^*$ be positive, for then the right member of (27) may be written as

$$Q^x \left\{ \sum_{j} M_{i;j} \bar{M}^y \bar{g}_j + \sum_{j} Q_{i;j} Q_{j;k} M^x [j] \right\} \in F_N^x$$

Indeed, the condition that the M_i, Q_i be dextral derivators is sufficient for the existence of unique roots \bar{f}_i of (27) given by

$$\bar{f}_i = \sum_{j} M_{i;j} \bar{M}^y \bar{g}_j + \sum_{j} Q_{i;j} Q_{j;k} M^x [j]$$

which follows from (27) upon application of Q.

In general, if the M_i, Q_i are not all dextral, then the condition that the right member of (27) belong to F_N^x becomes a necessary condition on the \bar{g}_j in order that roots of (27) exist.
We have tacitly assumed that \(M \neq 0 \). If this is not the case, then (24) becomes a necessary condition on the \(q_i \) for the existence of solutions of (21), (22); if it is satisfied, some of the equations in (21), (22) become dependent on the others and the system (21) becomes, in effect, a rectangular rather than a square array. This more general case can be treated by the methods used above.

8. The Method of Inverse Reversion

In the preceding section it was shown that the system

\[
A(\theta) \varphi^2 = g, \quad p_0 = \rho_0, \quad \rho_i^2 = f_i, \ldots, \quad \varphi^{n-1} p_0 = p_{n-1},
\]

is equivalent to the equation

\[
(29) \quad A(\theta) \overline{\varphi} \overline{Q} = (A_0 \varphi^m + A_1 \varphi^{m-1} + \cdots + A_{n-1}, \varphi) \overline{[\ell]},
\]

where \(\overline{\kappa} = Q^x \kappa \) for any \(\kappa \in \mathcal{F} \) and \(\overline{a} \) means 'equal for any \(Q \) of sufficiently high degree'.

The binding variable \(Q \) can be eliminated from \(\overline{\varphi} \) in (29) in the same way that \(t \) was eliminated from \(\overline{\varphi} \) in \(f(\varepsilon) \overline{\varphi} = g(\varepsilon) \).

We introduce 'matrices' \(\left[\phi(Q) \right]_Q \), where \(\phi(Q) \) is a function of \(Q \) on \(K \) to \(F \), just as we introduced the matrices \(\left[f(Q) \right]_Q \), where \(f(\varepsilon) \) is on \(E \) to \(S \). After appropriate definitions of equality, addition, etc., the class \(\left[F \right] \) of all matrices \(\left[\phi(Q) \right]_Q \) is an abelian group with operators \(K \) and equation (29) may be written as

\[
A(\theta) \left[Q^x \varphi \right] = \left[Q^x g \right] + (A_0 \varphi^m + A_1 \varphi^{m-1} + \cdots + A_{n-1}, \varphi) \left[Q^x \ell \right]
\]

(the subscript \(Q \) having finally been dropped). The class \(K \) is a field of operators on \(\left[F \right] \).
This is a very satisfactory procedure in many respects and we shall present it in detail elsewhere. We wish here to examine another way of eliminating the binding variable φ.

Suppose that the ring K_λ has been extended to a field \overline{K}_λ and the class F correspondingly extended to a complex linear class \overline{F}. Then $Q^{*-'}$, the inverse of the reverse of Q, will exist in \overline{K}_λ, and applying it to (26) yields

$$Q^{*-'}A(A)\overline{Q}^{*\ell} = \varphi' + Q^{*-'}(A_0 \overline{\varphi}^{m_0} + \ldots + A_{m-1} \overline{\varphi}) \overline{Q}^{* \ell}.$$ \hfill (30)

Assuming that $Q^{*-'}A \overline{Q}^{* \ell} \in \overline{K}_\lambda$ if the order of φ is sufficiently large, $Q^{*-'}A \varphi \overline{Q}^{* \ell} = (Q^{*-'}A \overline{Q}^{* \ell})^k$, and distributing $Q^{*-'}$ forward and Q^* backward in (30) yields

$$A(\varphi)f = \varphi' + (A_0 \varphi^{m_0} + A_1 \varphi^{m_1} + \ldots + A_{m-1} \varphi) \overline{\varphi}^{* \ell},$$ \hfill (31)

where $\varphi = Q^{*-'}A \overline{Q}^{* \ell}$. Thus the dependence of the equation on φ is lodged entirely in the operator $\overline{\varphi}$.

We shall show that K_λ and F can be extended in such a way that the foregoing heuristic argument is justified.

The range \mathfrak{F} of any non-zero element $x \in K_\lambda$ of positive rank is a proper subset of \mathfrak{F}; for some $f \in \mathfrak{F}$, the equation $x \varphi = f$ has no root $\varphi \in \mathfrak{F}$. We now construct an extension \mathfrak{F} of \mathfrak{F} such that this equation has a unique root $\varphi \in \mathfrak{F}$ for every $f \in \mathfrak{F}$.

We wish this extension \mathfrak{F} to be minimal, i.e. to contain only such elements φ extraneous to \mathfrak{F} as are necessary to satisfy the equation $x \varphi = f$. Thus \mathfrak{F} should be the range of the quotient $\frac{x}{x}$ for $f \in \mathfrak{F}$ and $0 \neq x \in K_\lambda$, with $x \frac{x}{x} = f$. Moreover, \mathfrak{F} should be an abelian group with operators in K_λ. We begin therefore
with the following postulates for \(\overline{F} \).

With \(\phi, \psi \in \overline{F} \); \(\frac{\phi \cdot \psi}{x} \in \overline{F} \); \(x, \psi \in \mathcal{K}_j \):

1) \(\phi = \psi \) is a reflexive, symmetric, transitive relation.

2) Every quotient \(\frac{\phi}{x} (x \neq 0) \) belongs to \(\overline{F} \), and every element of \(\overline{F} \) equals such a quotient.

3) \(\phi \pm \psi, x\phi \) belong to \(\overline{F} \).

4) \(x = \psi \) implies \(x\phi = \psi \phi \), and \(\phi = \psi \) implies \(x\phi = x\psi \).

5) \(x\phi = x\psi \) and \(x \neq 0 \) implies \(\phi = \psi \).

6) \((x\psi)\phi = x(\psi\phi) \)

7) \(x(\phi \pm \psi) = x\phi \pm x\psi \).

8) \(x \frac{\phi}{x} = f (x \neq 0) \)

From these postulates, we infer that, with \(x \psi \neq 0 \) (and hence \(x \psi \neq 0 \) since \(x, \psi \) univocal):

9) \(\frac{\phi}{x} = \frac{\psi}{x} \equiv \psi \)

10) \(\frac{\psi}{x} = \psi \phi \equiv \psi \phi \)

whence \(\frac{\phi}{x} = \frac{\psi}{x} \equiv \psi \phi \equiv \psi \phi \)

11) \(\psi \phi \equiv \psi \phi \equiv \psi \phi \)

These inferences suggest the following definitions:

Let \(\overline{F} \) be the class of quotients \(\frac{\phi}{x} \) for \(\phi \in \overline{F} \) and \(o \neq x \in \mathcal{K}_j \), and for any element \(\frac{\phi}{x}, \frac{\psi}{y} \) of \(\overline{F} \), let (i) \(\frac{\phi}{x} = \frac{\psi}{y} \) be equivalent to \(\psi \phi = x \phi \).

(iii) \(\frac{\phi}{x} \pm \frac{\psi}{y} \equiv \frac{\psi \phi + x \phi}{x y} \), (iiii) \(\frac{\phi}{x} \equiv \frac{\phi}{x} \).

and (iiiiv) \(\frac{\phi}{x} \equiv \frac{\phi}{x} \). With these definitions 1) -7) are satisfied, but instead of 8) we have

8') \(x \frac{\phi}{x} = \frac{\phi}{x} (x \neq 0) \).

Let \(\overline{F}' \) be the range in \(\overline{F} \) of \(\frac{\phi}{x} \) for \(\phi \in \overline{F} \). For any
\[f' \in F', f \in F, \text{ write } f' \sim f \text{ if and only if } f' = \frac{f}{f}. \] Then \(f' \sim f \) is an isomorphism (this follows from (i), (ii), (iv) and 12) below) between \(F', F \), so we may without contradiction identify \(\frac{f}{f} \) and \(f \), thereby making \(F' = F \) and \(F \) an extension of \(F \) such that (8) holds for \(f \in F \) (and hence from (iii) for \(f \in F' \) :

If \(g \in F, 0 \neq x \in K', \) then \(x \frac{g}{x} = x \frac{g}{x} = \frac{xg}{x} = \frac{xg}{y} = 0 \).

Thus the quotient class \(F \) satisfies postulates 1) - 8), and it is easy to see that any other class \(F \) satisfying these postulates must be isomorphic with \(F \) (for \(\phi \in F, \phi \in F' \), let \(\phi' \phi \) be equivalent to \(\phi = \frac{f}{f} = \phi \) for some \(f \in F \), \(0 \neq x \in K' \). The relation \(\phi' \phi \) is an isomorphism between \(F', F' \). Hence the postulates are consistent and categorical (but not independent). In addition to 9), 10), 11) we shall need

12) \[\phi \oplus \psi = \phi + \frac{\psi}{x}, \] and

13) \((x \oplus y) \phi = x \phi \oplus y \phi \)

for \(\phi, \psi \in F \) and \(x, y \in K' \). These follow readily from (i) - (iii) and 1) - 8). The foregoing is summarized in

Theorem 26. The quotient class \(F \) is an abelian group with operators \(x \) in the commutative ring \(K' \). \(F \) is a sub group of \(F' \). For any \(\phi, \psi \in F \) and \(0 \neq x \in K', x \phi = \psi \) if and only if \(\phi = \frac{\psi}{x} \) (in particular \(x \phi = \phi \) is equivalent to \(\phi = \frac{\phi}{x} \) for \(f \in F \)).

With \(g \) constant in \(F \), the range of \(x \frac{g}{x} \) for \(x, y \in K' \) and \(y \neq 0 \) is of course more extensive than if only one of \(x, y \) varied.

We wish now to define operators \(\frac{x}{y} \) such that the transform \(\frac{x}{y} g = \frac{x}{y} \).
Let \mathcal{L} be the class of all linear operators on \mathbb{F} to \mathbb{F}.

For any $X, Y \in \mathcal{K}_\mathbb{F}$ with $Y \neq 0$, let \mathcal{L} be an element of \mathcal{L} such that for any $\phi \in \mathcal{L}$, $\mathcal{L} \phi = \frac{X}{Y}$ ($= \frac{X}{Y}$; this follows readily from 8) and (iii)). Then with $\phi \in \mathcal{L}$; $X, Y, Z \in \mathcal{K}_\mathbb{F}$; $\cup, \cap, \circ \in \mathcal{K}_\mathbb{F}$ and $\neq 0$ (and hence \cup, \cap univocal):

14) $\left(\frac{X}{Y} + \frac{X}{Y} \right) \phi = \frac{X}{Y} \phi + \frac{X}{Y} \phi$ (by definition of operator sum and difference) $= \frac{X}{Y} \phi + \frac{X}{Y} \phi = \frac{X}{Y} \phi + \frac{X}{Y} \phi$, by (iv), 12) and the postulates.

15) $\left(\frac{X}{Y} \phi \right) = \frac{X}{Y} \left(\frac{Y}{Y} \phi \right)$ (by definition of operator product) $= \frac{X}{Y} \frac{Y}{X} \phi = \frac{X}{Y} \phi$, by (v) and the postulates.

16) $\frac{X}{Y} \phi = \frac{X}{Y}$ (by definition of operator product) $= \frac{X}{Y} \left(\frac{X}{Y} \phi \right) = \frac{X}{Y} \left(\frac{X}{Y} \phi \right)$ $= \frac{X}{Y} \phi = \frac{X}{Y} \phi$, if $X \neq 0$.

17) $\frac{X}{Y} \phi = \frac{X}{Y} \phi$.

Let $\mathcal{K}_\mathbb{F}$ be the class of quotients $\frac{X}{Y} \in \mathcal{L}$ for $X, Y \in \mathcal{K}_\mathbb{F}$ and $Y \neq 0$. From 14), 15), $\mathcal{K}_\mathbb{F}$ is closed under addition, subtraction, multiplication, and the multiplication is commutative. From 16) $\mathcal{R}_\mathbb{F}$ is closed under division by non-zero elements. Hence $\mathcal{K}_\mathbb{F}$ is a field of operators on \mathbb{F}.

Let $\mathcal{K}_\mathbb{F}$ be the range in $\mathcal{K}_\mathbb{F}$ of $\frac{X}{Y}$ for $X \in \mathcal{K}_\mathbb{F}$ and $Y \neq 0$. For $X' \in \mathcal{K}_\mathbb{F}$, $X \in \mathcal{K}_\mathbb{F}$ write $X' \sim X$ if and only if $X' = \frac{X}{Y}$. Then $X' \sim X$ is an isomorphism between $\mathcal{K}_\mathbb{F}$, $\mathcal{K}_\mathbb{F}$; by 17), we may identify $\frac{X}{Y}$ and X, thereby making $\mathcal{K}_\mathbb{F} = \mathcal{K}_\mathbb{F}$ and the field $\mathcal{K}_\mathbb{F}$ an extension of the ring $\mathcal{K}_\mathbb{F}$.
THEOREM 27 The quotient class, class $\mathcal{K}_*\lambda$, is a field of linear operators on F to \overline{F} which contains the ring K_λ. For any $\phi, \psi \in F$ and $0 \neq \chi \in \mathcal{K}_*\lambda$, $\chi \phi = \psi$ if and only if $\phi = \chi^{-1}\psi$

Let K be the class of derivators and K^* the class of integrators (including 0, which is not the reverse of a derivator). Let K^{*-1} be the class of inverse reverses A^{*-1} of elements $A \in K$ (with $0^{*-1} = 0$).

Suppose $\mathcal{A}P^*, BQ^* \in K_\lambda$ (i.e. are dextral derigators) with $B \neq 0$. Then $x = \frac{\mathcal{A}P^*}{BQ^*} \in K_\lambda$, $\frac{B^*}{\mathcal{A}^*} = \frac{A(BQ^*)^*}{BQ^*} = A(BQ^*)^{*1}$. If $A \neq 0$, multiplication by $\frac{A^*}{A^*}$ yields $x = \frac{(BQ^*)^*}{(\mathcal{A}Q^*)^*} = (AQ^*)^{*-1}(BQ^*)^*$, and the last expression is still valid if $A = 0$, since $0^{*-1} = 0$.

If $\phi \in F^*$, then for some $BQ^* \in K_\lambda$ with $B \neq 0$, $\phi = \frac{1}{BQ^*} \in K_\lambda^*$ (on multiplying on the left with $\frac{B^*}{B^*}$ and using Theorem 13)

Hence

THEOREM 28 The classes $\overline{F}, \mathcal{K}_*$ are the ranges of the transforms $A^{*-1}f$, $A^{*-1}x$ for $A \in K_\lambda$, $f \in F$, $x \in K^*$.

This result is the main reason for referring to the process of generating the classes $\overline{F}, \mathcal{K}_*$ as inverse reversion.

The image of A by x is the group-theoretic transform $x^{-1}(A \times \chi)$. If $\mathcal{A}P^* \in K_\lambda$ then $P^{*-1}(\mathcal{A}P^*) = \frac{P^*}{A^*P^*} = \frac{A}{A^*} = A^{*-1}$ independent of P (the last expression is valid for $A = 0$), i.e. the image of A by P^* equals the inverse reverse of A. Hence for all $Q \in K$ of sufficiently high degree

$$(A \pm B)^{*-1} = \left(\frac{(A + B)Q^*}{\mathcal{A}^*}\right)^* = \frac{AQ^*}{\mathcal{A}^*} + \frac{BQ^*}{\mathcal{A}^*} = A^{*-1} \pm B^{*-1}$$

and

$$(AB)^{*-1} = \left(\frac{A(QB^*)^*}{\mathcal{A}^*}\right)^* = \frac{A(QB^*)Q^*}{\mathcal{A}^*Q^*} = \frac{A(QB^*)^*}{\mathcal{A}^*Q^*} = \frac{A(QB^*)}{\mathcal{A}^*} \frac{BQ^*}{Q^*} = A^{*-1}B^{*-1}$$

(assuming Theorem 13).
Thus we have proved

THEOREM 29 For any derivators \(A, B, (A \otimes B)^* = A^* \pm B^* \) and \((A \otimes B)^* = A^* \pm B^* \), i.e., the correspondence between \(A \in K \) and \(A^* \in K^* \) is an isomorphism.

Let \(P = \mathcal{O}^* \). Then

THEOREM 30 If \(A = \sum_{k=0}^{m} A_{m-k} \mathcal{O}^k \), then

\[
A(\mathcal{O})^* = \left\{ \sum_{k=0}^{m} A_{m-k} \mathcal{O}^k \right\}^* = \sum_{k=0}^{m} A_{m-k} \mathcal{O}^k = A(P),
\]

and hence

\[
A(\mathcal{O}) = \frac{1}{A(\mathcal{O}^*)} = A(P).
\]

This follows immediately from the preceding theorem.

THEOREM 31 If \(A(\mathcal{O}) = \sum_{k=0}^{n} A_{m-k} \mathcal{O}^k \) and \(B(\mathcal{O}) = \sum_{k=0}^{n} B_{m-k} \mathcal{O}^k \) are \(\mathcal{O} \) - polynomials of degree \(m, n \) with \(m \leq n \), then

\[
A(\mathcal{O}) B(\mathcal{O})^* = \frac{A(P)}{B(P)}.
\]

Proof: The image \(B(\mathcal{O})^* \{ A(\mathcal{O}) B(\mathcal{O})^* \} \) of \(A(\mathcal{O}) \) equals

\[
A(\mathcal{O})^*.
\]

Hence by the preceding theorem

\[
A(\mathcal{O}) B(\mathcal{O})^* = A(P).
\]

THEOREM 32 With \(A(\mathcal{O}) \) as in the preceding theorem, for any \(f \in F_m \)

\[
A(p) f - A(\mathcal{O}) f = (A_0 p^m + A_1 p^{m-1} + \ldots + A_{m-1} p) [1],
\]

where \(A_j = \sum_{k=0}^{j} A_{j-k} \mathcal{O}^k f \) for \(j = 0, 1, \ldots, m-1 \).

Proof: By Theorem 31, equation (32) follows from (13) on applying \(A(p) \).

Let \(\mathcal{J} = \mathcal{F} [1] \). Then

THEOREM 33 With \(A(\mathcal{O}) \) as in Theorem 31, for any \(f \in F_m, g \in F \)
and any \(\sigma, \sigma_2, \ldots, \sigma_m \in S \), the system
\[
A(0)f = g, \quad f|_0 = \sigma_0, \quad \mathcal{D}f|_0 = \sigma_1, \quad \ldots, \quad \mathcal{D}^{m-1}f|_0 = \sigma_{m-1}
\]
is equivalent to
\[
(33) \quad A(p)f = g + (A_0 p^{m-1} + A_1 p^{m-2} + \cdots + A_{m-1}) \delta,
\]
where \(A_j = \sum_k \alpha_{j-k} \delta_k \) for \(j = 0, 1, \ldots, m-1 \).

Proof: By Theorem 31, equation (33) follows from (20) on applying \(A(p) \).

Theorems 29 - 33 provide a rational basis for the methods employed by Heaviside for lumped linear systems, with his mystical operator \(p \) defined as \(\mathcal{D} x^{-1} \) and \(\delta_k \), the impulse matrix of the \(k \)th order, defined as \(p^k \lfloor 1 \rfloor \). Actually, Heaviside used these methods in the case to be considered in the next section, where the elements of \(F \) are sectionally continuous matrices, but the theorems of this section remained valid, mutatis mutandis.

9. **Sectionally Continuous Matrices. Shift and Jump Operators\#**

Let \(f(t) \) be a function of \(t \) on \(\Delta < \mathbb{R} \) to \(S \), where the complement \(\Delta' < \mathbb{R} \) of the domain \(\Delta \) of \(f(t) \) is scattered, i.e., the intersection of \(\Delta' \) and any finite interval of \(\mathbb{R} \) is a finite set. Then \(f(t) \) is defined nearly everywhere, or for nearly all \(t \). Let \(g(t) \) be another function of \(t \) defined nearly everywhere, or for nearly all \(t \) and \(f(t) \) and \(g(t) \) are equal nearly everywhere, or for nearly all \(t \) : \(f(t) \equiv g(t) \) if the values of \(t \) for which \(f(t) \neq g(t) \) form a scattered set.

\#In this and the following sections the theorems are given without proofs. The demonstrations will be given in detail elsewhere.
THEOREM 34 \(f(x) \xrightarrow{\delta x} g(x) \) if and only if for any \(T \in \mathbb{R} \), \(f(x) = g(x) \) for all \(x \) sufficiently near \(T \) but \(x \neq T \).

\(f(x) \) is continuous nearly everywhere if its points of discontinuity form a scattered set. Similarly, \(f(x) \) is derivable nearly everywhere if \(\frac{f(x)}{x - T} \) exists for nearly all \(T \).

The jump operator \(J^*_T f(x) = (\lim_{x \to T^+} f(x) - \lim_{x \to T^-} f(x)) \).

\(f(x) \) is sectionally continuous if it is continuous nearly everywhere and \(J^*_T f(x) \) exists for all \(T \). Then values of \(T \) for which \(J^*_T f(x) \neq 0 \) form a subset of the scattered set of discontinuities of \(f(x) \).

\(f(x) \) is scattered on a scattered set \(\sigma \) if \(f(x) \) is defined everywhere and vanishes on the complement of \(\sigma \).

THEOREM 35 For any scattered set \(\sigma \), \(f(x) \xrightarrow{\delta x} \sum_{T \in \sigma} \delta_x T \cdot f(T) \) if and only if \(f(x) \) is scattered on \(\sigma \), where \(\delta_x T = 1 \) or 0 according as \(x = T \) or \(x \neq T \).

Let \(F(x) \) be the class of sectionally continuous functions \(f(x) \) such that \(f(x) = 0 \) for all sufficiently small \(x \), \(F_m(x) \subset F(x) \) the class of \(m \)-fold sectionally continuously derivable \(f(x) \) and \(F_{m}^*(x) \subset F_m(x) \) the class of \(m \)-fold continuously derivable \(f(x) \) (i.e., \(f(x) \) and its first \((m-1)\) derivatives are continuous everywhere and vanish for all sufficiently small \(x \)). Let \(F \) be the class of matrices \([f(x)]\) for \(f(x) \in F(x) \). Let \([f(x)] = [g(x)]\) be equivalent to \(f(x) \xrightarrow{\delta x} g(x) \), and define the sum, difference and numerical multiple of elements of \(F \) as in Section 1. Let \(F_m, F_m^* \) be the classes of matrices of the elements of \(F_m(x), F_m(x)^* \) respectively.
Let L be the class of all linear operators on subsets of F to F and define the elements \mathcal{O}, \mathcal{C} as in Section 1. Define $I \in L$ by $I[f(t)] = \left[\int_{-\infty}^{\infty} f(t) \, dt \right]$. Define $J_\lambda \in L$ by $J_\lambda[f(t)] = \left[J_{\lambda t} f(t) \right]$. Define derivator, integrator, derigrator, the classes $K, K^*, K^\alpha, K^\lambda, K^\alpha, K^\lambda$ as in the preceding sections (except that the integrals in integrators are all from $-\infty$ to t).

For any real number λ, define $E_\lambda \in L$ by $E_\lambda[f(x)] = \left[f(x-\lambda) \right]$. Let $U = \left[U(t) \right]$, where $U(t) = 0$ or 1 according as $t < 0$, $t > 0$ (undefined for $t = 0$).

THEOREM 36 For any $f \in F$, any $\lambda, \mu \in \mathbb{R}$, $J_\lambda E_\mu f = J_{\lambda-\mu} f$. In particular, $J_\lambda E_\mu U = \delta_{\lambda,\mu}$.

THEOREM 37 For any derigrator $A \in K^\mu$ and any $x \in \mathbb{R}$, $E_\lambda A$ commutes with A:

$E_\lambda A = A E_\lambda$.

THEOREM 38 Let $A = \sum_{k=0}^{m} \lambda_{k} x_{k} \, A_{x_{k}^{k}}$ be a derivator of degree m. For $k = 0, 1, \ldots, m-1$, let σ_{λ}^{k} be a scattered set and ϕ_{λ}^{k} a function of λ on \mathbb{R} to S scattered on σ_{λ}^{k}. Then for any $f \in F_m$ and $g \in F$, the system

$A f = g, \quad J_\lambda f = \phi_{\lambda}^{0}, \quad J_\lambda x_{k} f = \phi_{\lambda}^{k}, \quad \ldots, \quad J_\lambda x_{m-1} f = \phi_{\lambda}^{m-1}$

is equivalent to

$$(34) \quad f = A^* g + (A_0 x_{m} + A_1 x_{m-1} + \ldots + A_{m-1} x_{1} + A_{m} x_{0}) a_{0}$$

where

$A_{j} = \sum_{k=0}^{m} \lambda_{j} \, \sigma_{\lambda}^{k} \, \phi_{\lambda}^{k} \, E_{\lambda}$

for $j = 0, 1, \ldots, m-1$.

THEOREM 39 With A as in the preceding theorem, for any $f \in F_m$

$$(35) \quad f = A^* A f + (A_0 x_{m} + A_1 x_{m-1} + \ldots + A_{m-1} x_{1} + A_{m} x_{0}) a_{0}$$
where for \(j = 1, 2, \ldots, m - 1 \), \(A_j = \sum_{k=0}^{\infty} (J_{\lambda} \mathcal{D}_k \phi) \mathcal{E}_\lambda \), and \(\mathcal{D}_j \) is the set of discontinuities of \(A_j \).

What shall we mean by \(\mathcal{E}_\lambda \phi \quad \text{for} \quad \phi \in \mathcal{F} \)?

Let \(\chi, \gamma \in K_{\lambda} \) be such that \(\chi \phi, \gamma \phi \in \mathcal{F} \) (clearly such derigators exist, since the elements of \(\mathcal{F} \) are quotients of elements of \(\mathcal{F} \) by those of \(K_{\lambda} \)). Then \(\gamma \mathcal{E}_{\lambda} \chi \phi = \mathcal{E}_{\lambda} \gamma \chi \phi = \mathcal{E}_{\lambda} \gamma \phi = \chi \mathcal{E}_{\lambda} \gamma \phi \), i.e. \(\chi \mathcal{E}_{\lambda} \gamma \phi = \mathcal{E}_{\lambda} \gamma \chi \phi \). This motivates and justifies the following definition:

For any \(\phi \in \mathcal{F} \), let \(\mathcal{E}_{\lambda} \phi = \chi^{-1} \mathcal{E}_{\lambda} \chi \phi \) where \(\chi \) is any element of \(K_{\lambda} \) such that \(\chi \phi \in \mathcal{F} \). This reduces to the earlier meaning of \(\mathcal{E}_{\lambda} \phi \) if \(\phi \in \mathcal{F} \).

THEOREM 40 For any \(\chi \in \mathcal{F} \) and \(\lambda \in \mathcal{R} \), \(\mathcal{E}_{\lambda} \) commutes with \(\chi \).

Let \(\mathcal{F} = \mathcal{A}^{x^{-1}} \). Then

THEOREM 41 If \(\mathcal{A} (\mathcal{D}) = \sum_{k=0}^{m-1} \mathcal{A} m-k \mathcal{D}^k \) is a \(\mathcal{A} \)-polynomial of degree \(m \), then for any \(\phi \in \mathcal{F} \),

\[
A (\phi) f = A (\phi (f)) f = (A_0 \phi + A_1 \phi^{m-1} + \cdots + A_{m-1} \phi) f,
\]

where the \(A_j \) are as in Theorem 39.

Let \(\mathcal{D} = \mathcal{F} \). Then

THEOREM 42 If \(\mathcal{A} (\mathcal{D}) = \sum_{k=0}^{m-1} \mathcal{A} m-k \mathcal{D}^k \) is a \(\mathcal{A} \)-polynomial of degree \(m \) and \(\mathcal{D}_{\lambda}, \mathcal{D}_\lambda^k \) are as in Theorem 38, then for any \(\phi \in \mathcal{F} \), and \(\gamma \in \mathcal{F} \), the system

\[
A f = \gamma, \quad J_{\lambda} f = \phi_{\lambda}, \quad J_{\lambda} \mathcal{D} f = \phi_{\lambda}', \ldots, \quad J_{\lambda} \mathcal{D}^{m-1} f = \phi_{\lambda}^{m-1}
\]

is equivalent to

\[
A (\phi) f = \gamma + (A_0 \phi^{m-1} + A_1 \phi^{m-2} + \cdots + A_{m-1}) \mathcal{D}
\]

where the \(A_j \) are as in Theorem 38.
These theorems form the basis of a rational 'operational calculus' completely adequate for the analysis of lumped linear systems driven by linear combinations of sectionally continuous matrices F and 'impulse matrices' $\delta_k = P^k U$ for $k = 1, 2, \ldots$.
10. **Strong Limits of Matrix Functions**

A function f_x on a class Σ to F is a matrix function of x on Σ. Let $\{ f_h \}$ be a sequence in F, i.e., $f_h = \left[f_h(t) \right]$ is a matrix function of h on the positive integers. Then

$$\lim_{h \to \infty} f_h(t),$$

the strong limit of f_h as $h \to \infty$, is an element

$$f = \left[f(t) \right] \in F$$

such that $\lim_{h \to \infty} f_h(t)$ exists uniformly in t on every finite continuity interval of $f(t)$ (i.e., every finite interval not containing a discontinuity of $f(t)$). $\lim_{h \to \infty} f_h(t)$ is clearly unique if it exists. $\lim_{h \to \infty} f_h(t)$ is a linear operator on the class of matrix functions of h to F.

Similar remarks apply to the meaning and properties of

$$\lim_{x \to a} f_x(t),$$

the strong limit of f_x as $x \to a$, where f_x is a matrix function of x on an interval of \mathcal{R} including a.

$f_x(t)$ is strongly continuous in x at a if $\lim_{x \to a} f_x(t)$ exists and equals $f(a)$.

Theorem 43 If $f_x(t) \in F(t)$ for all x in an interval I of \mathcal{R} including a and $f_x(t)$ is continuous in t, x for nearly all t and for all $x \in I$, then $f = \left[f_x(t) \right]$ is strongly continuous in x at a.

$$\frac{d}{dx} f_x,$$

the strong derivative of f_x in x at a, equals

$$\lim_{x \to a} \frac{f_x - f_a}{x - a}.$$

$\frac{d}{dx}$ is of course a linear operator on the class of matrix functions of the real variable x.

Theorem 44 If $\frac{d}{dx} f_x(t) \in F(t)$ for all x in an interval I of \mathcal{R} including a and $\frac{d}{dx} f_x(t)$ is continuous in t, x for nearly all t and for all $x \in I$, then $\frac{d}{dx} \left[f_x(t) \right]$ exists.
THEOREM 45: If $\lambda(v)$ is a complex-valued function of v and $f_k = [f_k(t)]$ a matrix function of v on an interval I of R including a, and the ordinary derivative $\lambda(v)$ and the strong derivative $\frac{d}{dv} f_k$ both exist at a, then $\frac{d}{dv} \lambda(v)f_k$ exists equal to $\lambda(v) \frac{d}{dv} f_k + \lambda'(v)f_k$.

It can be shown that equation (17) is valid for sectionally continuous matrices $f = [f(t)]$ (and with all integrations from $-\infty$ to ξ), i.e.,

(38) $P(\overline{0})f = \int_{-\infty}^{\xi} G(x-T)f(t) dT$.

Where $f \in F$ and $P(\overline{0})$ is a primitive derigrator $\Lambda(\overline{0}) \Lambda(0)^+$ of positive rank and $G = [G(x)] = \Lambda P(\overline{0}) U$.

With the notion of strong integral introduced above, (38) may be transformed as follows:

$$[\int_{-\infty}^{\xi} G(x-T)f(t) dT] = [\int_{-\infty}^{\xi} f(t) G(x-T) dT],$$

since now $G(\xi) = 0$ if $\xi < 0$ (this was not true in the preceding sections, where $[l]$ was used instead of U),

$$= \int_{-\infty}^{\xi} f(t) [G(x-T)] dT = \int_{-\infty}^{\xi} f(t) E_T [G(x)] dT$$

$$= \int_{-\infty}^{\xi} f(t) E_T \{ \Lambda P(\overline{0}) U \} dT = \int_{-\infty}^{\xi} f(t) E_T \{ \rho P(\rho) U \} dT$$

$$= \int_{-\infty}^{\xi} f(t) E_T P(\rho) \delta dT$$, where $\delta = \rho U$.
Thus we have shown (the details will be given elsewhere),

\[p(\lambda) f = \int_{-\infty}^{\infty} f(\tau) e^{i\lambda \tau} d\tau, \]

which is a resolution of \(p(\lambda) \) into a spectrum of 'retarded impulses'. It should be carefully noted that the derigrator \(p(\lambda) \) on the left is proper, i.e., an element of \(\mathcal{K}_d \), whereas the 'derigrator' in the integrand is the inverse reverse of \(p(\lambda) \), i.e., the image of \(p(\lambda) \) in \(\overline{\mathcal{K}_d} \). Nevertheless, since the rank of \(p(\lambda) \) is positive, \(p(\lambda) \) belongs to \(\mathcal{F} \), i.e., the integrand, and the integral, belongs to \(\mathcal{F} \). If the rank of \(p(\lambda) \) were zero, the integral would be interpreted in the 'weak' sense of the next section.
11. Weak Limits of Matrix Functions

Let \(\{ \phi_n \} \) be a sequence in the complement of \(F \) in \(\overline{F} \), i.e., the terms \(\phi_n \) are 'improper' matrices. Since \(\phi_n \) is not the matrix of a function \(\phi_n(t) \), what meaning can be given to \(\lim_{n \to \infty} \phi_n \)?

Consider the 'images' \(x \lim_{n \to \infty} x \) and \(y \lim_{n \to \infty} y \) of \(\lim_{n \to \infty} \phi_n \), where \(x, y \in \mathcal{K} \). Suppose \(x \phi_n, y \phi_n \) are in \(F \) and \(\lim_{n \to \infty} x \phi_n, \lim_{n \to \infty} y \phi_n \) both exist. Since the operator \(\lim_{n \to \infty} \) is homogeneous with respect to multipliers \(\xi \mathcal{K} \),

\[
\lim_{n \to \infty} y \phi_n = \lim_{n \to \infty} y x \phi_n = x \lim_{n \to \infty} y \phi_n = x \lim_{n \to \infty} x \phi_n,
\]

hence \(x \lim_{n \to \infty} x \phi_n = y \lim_{n \to \infty} y \phi_n \), i.e.,

the image operators cannot produce unequal results. Moreover \(\lim_{n \to \infty} \) itself is included, with \(x = 1 \). These considerations motivate and justify the following definition:

\[
\lim_{n \to \infty} \phi_n \quad \text{the weak limit of} \quad \phi_n \quad \text{as} \quad n \to \infty \quad \text{equals} \quad \lim_{n \to \infty} x \phi_n \quad \text{for any} \quad x \in \mathcal{K} \quad \text{such that} \quad x \phi_n \in F \quad \text{and} \quad \lim_{n \to \infty} x \phi_n \quad \text{exists. Since the existential distinction between weak and strong limits is often important, we have used the distinct notation} \quad \lim_{n \to \infty} \quad \text{it is possible to regard the improper elements of} \quad \overline{F} \quad \text{as limits of sequences of proper elements} \quad \xi \mathcal{F} \quad \text{thereby giving the improper elements an intuitive significance which they have hitherto lacked. Thus}
\]

\[
\delta = p U = p \lim_{n \to \infty} \mathcal{K}^* \lim_{n \to \infty} \mathcal{K}^* [n \rightarrow \mathcal{K} e^{\lambda t} U(e)] \quad \text{i.e.,} \quad \delta = \lim_{n \to \infty} \mathcal{K} e^{\lambda t} U(e)
\]

This interpretation of the impulse matrices and the other improper elements of \(\overline{F} \) is very helpful in building a 'picture' of \(\overline{F} \) adequate for the physical applications.
The notions of weak continuity and weak derivability are evident modifications of the corresponding 'strong' notions and we shall not stop here to give the explicit definitions and state the principal properties.

We are especially interested in the notion of 'weak' integral:

$$\int_{a}^{b} f_{x} \, dx$$

the weak integral of \(f_{x} \) in \(x \) from \(a \) to \(b \),
equals \(\chi^{-1} \int_{a}^{b} f_{x} \, dx \) for any \(\chi \in \mathcal{H} \) such that \(f_{x} \in F \) for any \(\chi \in (a, b) \)
and the strong integral \(\int_{a}^{b} f_{x} \, dx \) exists. The weak integral, if it exists, is independent of \(\chi \). The formal properties of \(\int_{a}^{b} f_{x} \, dx \)
follow from, and are the same as those of \(\int_{a}^{b} f_{x} \, dx \).

THEOREM 47 For any \(f \in F \)

$$\int_{a}^{b} f(\tau) \, d\tau = \left[f(\tau; a, b) \right]_{a}^{b},$$

where

$$f(\tau; a, b) = \begin{cases} f(\tau) & \text{if } a < \tau < b, \\ 0 & \text{if } \tau < a \text{ or } \tau > b \\ \text{is undefined for } \tau = a \text{ or } \tau = b \end{cases}$$

The proof of this theorem depends upon the following

LEMMA For any \(f(\tau) \in F(\tau) \)

$$\int_{a}^{b} f(\tau) \, d\tau = \int_{a}^{b} f(\tau; a, b) \, d\tau$$

Proof: It is easy to verify that

$$\int_{-\infty}^{b} f_{\tau} \, d\tau = \int_{-\infty}^{b} f_{\tau} \, d\tau = \int_{-\infty}^{b} f_{\tau} \, d\tau$$

Hence

$$\int_{a}^{b} f_{\tau} \, d\tau = \int_{a}^{b} f_{\tau} \, d\tau - \int_{a}^{b} f_{\tau} \, d\tau$$

$$= \int_{-\infty}^{b} f_{\tau} \, d\tau - \int_{-\infty}^{b} f_{\tau} \, d\tau$$

$$= \int_{-\infty}^{b} f_{\tau} \, d\tau = \int_{a}^{b} f_{\tau} \, d\tau.$$
The proof of Theorem 47 may now be outlined as follows:

\[
\int_a^b f(\tau) \mathcal{E}_y \mathcal{S} d\tau = \mathcal{O}^{-1} \int_a^b \mathcal{O} f(\tau) \mathcal{E}_y \mathcal{S} d\tau = \mathcal{O}^{-1} \int_a^b f(\tau) \mathcal{E}_y \mathcal{O}^\ast \mathcal{S} d\tau
\]

\[
= \mathcal{O}^{-1} \int_a^b f(\tau) \mathcal{E}_y \mathcal{O} d\tau = \mathcal{O}^{-1} \int_a^b f(\tau) \left[\mathcal{O} (t-\tau) \right] d\tau = \mathcal{O}^{-1} \left[\int_a^b f(\tau) \mathcal{O} (t-\tau) d\tau \right]
\]

\[
= \mathcal{O}^{-1} \left[\int_a^b f(\tau; a, b) d\tau \right] = \mathcal{O}^{-1} \left[f(t; a, b) \right] = \left[f(t; a, b) \right]
\]

THEOREM 48 For any \(f = \left[f(t) \right] \in \mathcal{F} \)

\[
f = \sum_{t=\infty}^t f(\tau) \mathcal{E}_y \mathcal{S} d\tau
\]

This is comparable with the resolution (39) of the preceding section, but here the integral is weak, whereas that in (39) is strong.
12. Appendix

Satisfactory rationalizations of the 'Heaviside' operational calculus have been developed recently by L. Schwartz\(^1\) and J. G. Mikusinski\(^2\) (the superscripts refer to the Bibliography), using very different methods. These methods will now be compared with the method of inverse reversion by reinterpreting the fundamental equation (32) in terms of the ideas of, first, Schwartz and then Mikusinski.

Let \(F \) be as in Section 1, i.e. the linear class of all matrices \(f = [f(t)] \) where \(f(t) \) is everywhere continuous on \(\mathcal{R} \) to \(S \). Let \(\Phi \) be the class of all matrices \(\phi = [\phi(t)] \) where \(\phi(t) \) is on \(\mathcal{R} \) to \(C \), is \(\infty \)-fold derivable everywhere, and vanishes for all sufficiently large \(|t| \). For any sequence \(\{\phi_n\} \) in \(\Phi \), let \(\lim_{n \to \infty} \phi_n \) be the element \(\phi \in \Phi \) such that for \(m = 0, 1, 2, \ldots \), \(\phi_m(t) = \frac{d^m}{dt^m} \phi(t) \) as \(n \to \infty \) uniformly in \(t \) on every bounded subset of \(\mathcal{R} \). Let \(\mathcal{F} \) be the class of linear operators \(\lambda \) on \(\Phi \) to \(S \), i.e. \(\lambda \phi \) is an additive homogeneous function of \(\phi \) on \(\Phi \) to \(S \) and \(\lim_{n \to \infty} \lambda \phi_n = 0 \) for any null sequence \(\{\phi_n\} \) in \(\Phi \). Let \(\mathcal{L} \) be the class of linear operators on \(\mathcal{F} \) to \(\mathcal{F} \).

For \(f \in \mathcal{F} \), \(\phi \in \Phi \), let \(f \phi = \int_0^{\infty} f(t) \phi(t) \, dt \).

Then \(f \phi \) is a linear function of \(\phi \) on \(\Phi \) to \(S \), and it is easy to see that \(\mathcal{F} \) is isomorphic with a linear subclass \(\mathcal{F}' \) of \(F \). Hence \(\mathcal{F} \subset \mathcal{F}' \), upon identifying corresponding elements of \(\mathcal{F} \) and \(\mathcal{F}' \).

If \(\Delta f = [\Delta f(t)] \in \mathcal{F} \), then...
\[(D f) \phi = \int_{-\infty}^{\infty} f'(t) \phi(t) \, dt \quad \text{for} \quad f \in F, \quad \phi \in \Phi.\]

More generally, if \(D^nf = F\), then
\[(40) \quad (-)^n \int_{-\infty}^{\infty} f(t) \phi^{(n)}(t) \, dt = (D^n f) \phi + f^{(n-1)}(0) \phi'(0) + \cdots + (-)^r f^{(n-r)}(0) \phi^{(r-1)}(0).\]

Define \(p \in \mathbb{L}\) by \((pj) \phi = -f D \phi \) for \(f \in F, \phi \in \Phi\).

Then \((p j) \phi = -f D \phi\), and in general, \((p^n f) \phi = (-)^n f D^n \phi\). Hence if \(f \in F,\)
\[(p^n f) \phi = (-)^n f D^n \phi = (-n) \int_{-\infty}^{\infty} f(t) \phi^{(n)}(t) \, dt.\]

In particular, \(p^n [1] \phi = (-)^n \int_{-\infty}^{\infty} \phi^{(n)}(t) \, dt = (-n)^{-1} \phi^{(n-1)}(0),\) or \((p^n \delta) \phi = (-)^n \phi^{(n)}(0)\) with \(\delta \equiv p [1]\).

Equation (40) may now be written
\[(p^n f) \phi = (D^n f) \phi + \{f^{(n-1)}(0) p + f^{(n-2)}(0) p^2 + \cdots + f(0) p^n\} [1] \phi,\]
which is equivalent to
\[(41) \quad f^n = D^n f + (f_{n-1} p + f_{n-2} p^2 + \cdots + f_0 p^n) [1]\]
with \(f_k = f^k(0)\). Equation (32) now follows, with the notation of Theorem 32.

The elements of \(\overline{F}\) are essentially \underline{distributions} in the sense of Schwartz (except that Schwartz takes \(f \phi \equiv \int_{-\infty}^{\infty} f(t) \phi(t) \, dt\) for \(f \in F\), where we have \(\int_{-\infty}^{\infty}\). With Schwartz's definition and \(\overline{F}\) as in Section 9, the preceding discussion, mutatis mutandis, leads to equation (36). We have had to take some liberties with Schwartz's notation in order to preserve the form of (32), but on the whole the
changes seem to be improvements.

For a detailed comparison of inverse reversion with Schwartzian distributions, the exact relationship between \bar{F} as defined above, i.e., the class of linear operators on \bar{Q} to S, and \bar{F} as defined in Section 8, i.e., the range of $\frac{f(t)}{x}$ for $f \in \bar{F}$, $0 \neq x \in K_x$, must be determined. This has not yet been done.

For the comparison with Mikusinski, let \bar{F} be the class of matrices $f = \left[f(t) \right]$ where $f(t)$ is on \mathbb{R}^+, the non-negative real numbers, to C, is continuous for $t > 0$ and right-continuous at $t = 0$. Define sum and difference of elements of \bar{F} as in Section 1 (but not numerical multiples, for reasons given below).

For $f, g \in \bar{F}$, let $f + g = \left[\int_0^t f(t) + g(t) \right] dt$.

Then (c.f. Mikusinski2) \bar{F} is a commutative ring without divisors of zero, and hence may be extended to the essentially unique quotient field $\bar{F} = F/\bar{F}$. F has no unit element (there is no function $\delta(t)$ such that $\int_0^t \delta(t) f(x-t) dt = f(x)$, i.e., Dirac's 'function' is not a function). However, $\delta = \frac{f}{F}$, for any $0 \neq f \in F$, is the unit element of the field \bar{F}.

Let $\mathcal{P} = \left[I \right]^{-1}$, so that $\delta = \mathcal{P} \left[I \right]$. Let $F' \subset \bar{F}$ be the class of elements $f \left[\xi \right]$ for $\xi \in C$. The correspondence between $\xi \in C$ and $f \left[\xi \right] \in F'$ is an isomorphism. Hence $C \subset \bar{F}$, upon identifying ξ and $f \left[\xi \right]$. Moreover, for any $f \in F$,

$$f \left[\xi \right] f = \mathcal{P} \left[\int_0^t f(t) \xi(t) dt \right] = \left[\xi f(t) \right],$$

from which it follows readily that F is now a commutative algebra (linear ring) and \bar{F} is a linear field (this result makes unnecessary
the definition of numerical multiple of elements of \mathcal{F} as in Section 1).

If $\mathcal{D}f \in \mathcal{F}$, then
$$f = \left[\int_{0}^{t} f'(t) \, dt + f_0 \right] = \left[\int_{0}^{t} f'(t) \, dt \right] + [f_0]$$
and
$$p \, f = \mathcal{D}f + f_0 = \mathcal{D}f + f_0 \, p \, [1] .$$
In general if $\mathcal{D}^n f \in \mathcal{F}$, then
$$p^n \, f = \mathcal{D}^n f + \left(f_{n-1} \, p + f_{n-2} \, p^2 + \cdots + f_0 \, p^n \right) [1] ,$$
i.e. (41) holds, and (32) follows immediately.

Thus in this very special case, with $S = \mathbb{C}$ and the domain of $f(t)$ restricted to \mathbb{R}^+, the classes \mathcal{F}, $\overline{\mathcal{F}}$ play the roles of the operator classes \mathcal{L}, $\overline{\mathcal{L}}$ in the more general theory.
BIBLIOGRAPHY

The literature in the fields of abstract algebra, abstract analysis and operational calculus is enormous. Extensive references to the first two fields are given in Hille13 and Michal14 below. Gardner and Barnes9 and Doetsch10 contain comprehensive bibliographies of the literature on operational calculus. The history of this field is reviewed in Cooper8. Of the remaining references below, Banach12 and Hase11 are standard classics, and to the author's knowledge, Schwartz1 and Mikusinski2,3,4 contain the only satisfactory rationalizations of the 'Heaviside' calculus thus far published which do not impose unnatural (i.e. physically irrelevant) conditions on $f = [f(k)] \in F$; brief appraisals follow Heaviside5, Jeffreys6 and Brown7.*

Operational Calculus

3. ________________, "L'Anneau Algébrique et ses applications dans l'analyse fonctionelle", *Annales Univ. Mariae Curie-Skłodowska* III (1949) 1-82

*Professor A. Erdelyi kindly called my attention to this paper.

6. H. Jeffreys, *Operational Methods in Mathematical Physics*, Camb. Univ. Press, 1931 (Cambridge Tracts in Mathematics and Mathematical Physics, No. 23). Clearly outlines the relation between cogredient polynomials in \mathcal{L}_α and $\int_0^\tau \tau' (\alpha \cdot \beta)'$ (cf. Section 7 and the proof of Theorem 25 above) but introduces and uses the p-operator with no more rigor and less vigor than Heaviside.

7. B. M. Brown, "Solution of Differential Equations by Operational Methods", *Mathematical Gazette* XXXI (1947) 145-153. First 'defines' the reciprocal $\frac{1}{\mathcal{R}(\beta)}$ of a p-polynomial as essentially $\mathcal{R}(\alpha)'$ (see Section 3 above), then gives a 'definition' of $\mathcal{R}(\beta)$ that can only be described as incomprehensible. Contains vague adumbrations of some of the theorems in Sections 3 and 6. Does not mention 'impulse' functions.

Abstract Algebra and Analysis

11. H. Hasse, Hohere Algebra I (2nd ed.), W. de Gruyter, Berlin, 1933 (Sammlung Göschens, No. 931)

