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Summaxy

This thesis develops a new method for transforming
and extending the classes of operators and operands which appear in
certain linear operations in such a way that restrictions on the
ranges and domains of the operands and on the algebralc menipulae-
tion of the operators are reduced or removed, In particular, the
method leads to a complete rationalization of the , operators and
impulse 'functions' employed by Heaviside, Dirac and others in the
analysis of certain linear systems,

In this method, the operators A of a primary class A
are, in effect, first reversed, forming /4ﬁ, then inverted, form=-

X~/
ing A , the inverse reverse of A , and these operators are

utilized to effect the remaining transformations and class exe
tensions., The method is therefore epitomized by the phrase

inverse reversion.
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Introduction

Let F be an abelisn additive group and 4 the class of
edditive operators A on subsets of £ to < . A is complete,

unrestricted, univoeal according as (1) the range of A is £~ ,

(2) the domain of A s F s (3) Af= o implies /‘0:0 for /@ in
the domain of A 3 otherwise A is respectively incomplete, re=-
stricted, equivocal. A is perfect on A~ if (1), (2), (3) hold;

then /4 has a uwnigus inverse

N el (ie AAF=AAF=F for FEFE)

Suppose A</ is a commutative ring conbaining the unit

element / of Z gnd such that every none-zerc A<K has a(right) re-
verse Afgl (i.ee AA*/’ s £ for FEF. . Then A is come
plete, but possibly restricted or equivocal, and /47\c is unrestricted
and univocal, but possibly incomplete,) Let A *he the class of

all /’*for 074 €K, and /“é & KK* , the class of all products

ABY tor ABEA . The commtator of 4B is(A,B)= (AR £YA) €L
it vanishes if A exists. In particular, let /I4A = (AA) =17 W
ton A =0 s AA T/

, X
Suppose further that (AB) = /4*/3* Lox AR =K (then

A/g is closed under addition and subtraction: . .
!

¥ *
A,/S,*;'LA—L/SI%: (/‘, 3 i-ALBI)(B,ﬁ‘L) /FA,B/)ALIBI 5-07 J

X
and 'bha&/% ineludes o ring Ay such that (1) for any A ¥4, A8 €A

for some B €A , (2) every non=zero element of £/ is imrestricted
' ¥
end wnivocal, znd (3) (A4 B%) (A.BT) = A A (B F)

¥ X
if 4,8 , /42/31)\‘ € /f:/ (then £y is commutative and contains K )




Our main result is that under the foregoing suppositions
/ may be extended to an essentially unique sbelian additive group
F— = /7,{3 and /Z/ may be extended to a unique field /?J =/ ';/Ag
within the class Z of additive operators on F o & N

The classes A and /E/ are the ranges of A * ﬂﬁ and /7'x~/)’
respectively, with AEK, /[) &F X € £* s Where /4“’ is the ine-
verse reverse of A , Hence the process which generates £ and

£y is called inverse reversion (see Section 8).

Each non=zero element of A;/ is perfect on F o In par-
¥-1 o
ticular A is perfect on £ , whereas A€k is merely complete on

¥ .
F (since A exists)., Ve can therefore reduce the algebraic re=
strictions and limitations on equations involving operators AR by
re‘placing them with expressions involving their perfeel counterparts

¥~1
A « LIhis is the essential idea of the 'Heaviside! calculus., It

is implemented by the following considerationss
~1

¥ o
(1) The correspondence between A4 and A is an isporphism

X/ ¥-~r

Thy : -
e R T ¥ 12 5% and (4B = 4

428)"

(2) For any £ in the domain of A (see Theorems 32, %/ ):

Wl Lo AR e AP AT (A

The form of )44 £ will of course depend upon the interpretas
tion of £ A, k‘:/ﬁ, . In Sections 1 = 8 below, the relationship
between A and AY is developed (Sections 2, 3, 4), the form of
(A,B)= /4/3,{" 3fﬂ is determined (Section 5), the classes )(’g and A
are studied (Section 6), a useful'transformation' caleculus is outlined

(Section 7) and finally the inverse reversion process is carried out



(Section 8) for the case where /£ is the class of everywhere con-

tinuous matrices [ fe fl] on the real numbers to a complex Banach bt

T
space (see Section 1), A is the class of 'derivators' A~ @)49 ;4/0 7o b
2

e is the class of ‘integrators! / xcharac'berized by the
system /4/4;\‘/[:/3 A’I(’/o -9, /OA)F/)/O: oy AN *’% =9
(a constructive definition is given in Section 3) end /l/f/ is the
class of 'derigrators? ABXQf non=negative rank, It is shown that
the isomorphism between A and /4%‘/ provides a satisfactory ration-
alization of the methods employed by Heaviside for lumped linear
systems, without ad Aoc transformations of the operands. Thus
Heaviside's mystical operator P becomes 49;\‘_,, the inverse reverse
of the elementary derivator, and Dirac's 'function! S) becomes
/0*—/[ 1], where [/] is the matrix of the unit function.

In Section 9, the essential steps of the inverse reversion
process are given for the case where F is the class of sectionally
continuous matrices [ @] , with F© =0 rfor a1 suficiently
small & , A is the class of derivators A , as above, A ¥ is the
class of integrators /1 ' characterized by the equation AA Y=o
and the condition that Aflp and its first b ~1)derivatives be every~
where continuous and venish for all sufficiently small 7 , and £
is the class of derigrators, as above, of non-negative rank,

IStrong! and ‘weak® limits, derivatives and integrals of
sectionally continuous matrix funetions [ £ o é)] of X are introduced
in Sections 10 and 11, and the representation of elements of F
and @ as infinite superposition integrels is given. These sections

barely outline the calculus of such matrix functions; the details will



have to be presented elsewhsre,

Various other interpretations of 7, A, A/T Aq have
been studied, Thus / may be taken as the class of sectionally
continuous matrices [)QZ[] with f(4)-0 fer £<0 (Heaviside case),
K and /ﬁ] as above, and /4*:chafacterized by the equation
AA®F=0 and the condition thet A'F and ite firstOi-1) deriva-
tives be continuous for #’;Oaﬂd vanish for Z'(<’0(a’:3,ml hence for
Z=0), Or F may be taken ss the class of matrices [ f(w](essen~
tially sequences), where /%hlis a function on the nonenegative
integers to a linear space, K as the class of operators
A= a, £y @£ an , Where ELP0= [F o),

Fad as the class of operators A" characterized by the
v =
T e p e R, £,
and /l:/ as the class of operators ABY of rank > o (a valid intere
pretation also results iff £ is replaced by A , where 4 L[F ]

- [ﬁ ( "")‘ﬁh’j, With this latter interpretation (or others which
are less familiar but more c@nwenient), the method of inverse re-
version and the related concepts and techniques of reversion, commu~
tation and 'integrator'! transformation have proved very useful in
the theory of linear difference equations, including fractional
differencing and summation. The method may also be applied to cer-
tein 'differentistors' of the Frechet and Goteaux type in arc-wise
connected spaces, the right reverses then being given by appropriate
line integrals., These and other applications will be presented

elsewhere,



1as General Definitions and Notations

Unless the contrary is explicitly indicated, A(#£) is the class of
everywhere continuous functions # of & on the real numbers < to
a complex Banach space S, /4, (£/) the subclass of /A~ (Z/ whose
elements are 77-fold continuously derivable, /5:*(£/ the subclass of
/57 (Z) whose elements, together with their first (77—/) derivatives
vanish initially (at E=o). @(t&@w(ﬁand $,T (£) are the corres-
ponding classes of functions 7 of & on/R to C , the complex number
class. The notations \/‘f 7€ £ /,5: - will be used for the value of A
at £ =a .,

The mark [# ] is the matrix of the function o~ . / is the
class of matrices corresponding to the functions & A~ (¥)and similarly
for ng = * , etc, Equal matrices correspond to equzl functions:
[/] - [7] is equivalent to / /:7‘ ? i.66 t0o F = 7 for
every £ « The sm [F] f-[j]and. difference [f]-—[j] of [A] [;]
and the product of [#] by <£C are defined as the matrices respect-
ively equal to [ff?]/ [f—;] and [</A], 1£fz & and o< S, L7
is the matrix equal to[f 7 J o Then considering functions vith dif-
ferent arguments, the more complete notation [ 7+ ] £ 1is convenient,
thus [ £ (£~ = [£*~%] . Thevdlve V[
or [F]fp o [t ais VEF .

In practice, contrary to the usage above, single letters will be
used for matrices and the same letters with the argument in parentheses
for the corresponding function: f = [ F(£/]

An operator on a subclass K of a spacez to a subclass K’

/ /
of a space >’ is a mark A sueh that AXis a function of ¥ on K to K1



The domain of A inZ and range of A inZ 'are those of A .
Operators A, 8 defined in a space S are equal on KR <Ef Ax =8 %
for kK€K, /7 =C if they have the same domain in 2: and are equal on
that domain, If 3 is on K<l K'< X’ and A ison K < Z,
to K“< 37, then the product 445 is the operstor defined
vy @#8) ¥ = 7(B¥) o= X &K
Ve shall be mainly concerned with linear operators, i.c.
additive homogeneous operators on linear manifolds of linear spaces to
linear spaces. The pull domain A4 of o linear operator in a linear
space < L is the Linear menifold of all X&/lsuch thet 7 ¥ =o .
A set A\ </lspans A with C(er R)if every element of AU is a finite
linesr combination with coefficients in C (0RALf elements of A ;
if moreover every such linear combination belongs to Al , then A is
a basis with C(o# R) of A’ , For linear operators < & defined
in a linear space~"L, the sum 4 #3 and difference /7-Gof /7and L5
and the product of A by < & C(92F)aye the linear operators respective=
1y defined by (2 £B) S = AF #BF,(A-B/F= A7 ~5F R Y= (<) /.

The operators =& L, £ ave defined as follows: o2& v d =[é/ (’d]
FoR [ &£ oe leilﬁf:[lﬁ/(’r)l/f] for
F&EF =R CE ( /o o is replaced by / ﬁaf'ter Section 9);

o ForR fefoed. T
Ef=[e™FCE )/ A These operators belong to the class L of all
categorical linear operators with ranges and domains in ~ , i.e. opera=
tors which may be defined without specifying S ,

| A correspondence (%, & ) between classes X, ¥ is unie-
vocal in ¥if for any ;¥ & Xand any g€ ﬁg%})and /:(/fé./y/implies

Y, =¥, . The correspondence is biumivocal if it is univocal inKand in 7 .



I A is on operator between A< Zand K ICZ" : then
Ax= Y is a correspondence between A, A " . If this correspon=
dence is univocal in X , thenA has e unique right reverse A " on
K' te K, 12 AX= Y is équivocal in X (i.es not universal),
then a right reverse exists but is not wmique (a supplemental condi-
tion may then' be applied to meke it unique)., Similar remarks apply
to univoca®lity in ‘g and left reverses */4 on K Ito K, If

- X ¥
Ax= Y is biunivocal, then a unique imverse A =A = Aexists

on K’to K



2e Derivators

Iet I £, P be the coefficients of a ,{0 polynomial

P . The goefficient sequence of 7~ is the sequence {ak} such

Ry = Ly for A=07/ 11, m and 2, =0 for > . Two

A - polynomials P, @ ave cogredient: A~ @ if they have the same coe
efficient sequence., Clearly cogredience is an equivalence relation
(reflexive, symmetric, transitive) and cogredient &- polynomiels are
equal (as elements of L ),
THEOREM 1  For any two A)- polynomiels £ &  the following state=
ments are eguivalents

(1) P=Q on th for some h ,

(2) P and @ are cogredient

G rP=R -
4
£:  Suppose (1). The matrix [()m) (nt2) o (htk) /:" k36,
Let { akz S éé} be the coefficient sequences of /; @ and let

P= ch/@ , where Cp = dy - éé . Then #-0 on /;%)
hence f,&_’;‘oo 7V, REE J=C 20, 50 that ©=CR4C, O 7,
Hence ;'Z_fio 7‘-)'1/7 /3[;_%’7? ¢, =0, so that P:C’L/@?? e ,
Continuing in this way, Cj <o for £=6 1/ ¢ i.e0 (2) fol-
lows, Of course (2) implies (3), and (3) implies (1), since A, ¥ ie
within the domains of £, Q for all su.fficientiy large 1 o

A derivator A is an element of L equal to a A)- polynomial,

say £ « The coefficients, degree and coefficient sequence of A are

those of P ; this is unambiguous since, by the preceding theorem, any

other A~ polynomial equal to A is cogredient with /A . In particular,



every /9- polynomial is a derivator. Derivators are cogredient if they
have the same coefficient sequence,

A sequence { ak? of complex numbers is nearly null if ale
most all of its terms vanish, i.e. &y = O for all sufficiently
large £ . TFor each nearly null sequence { Q@ é{ s there exists a
,&« polynomial /° whose coefficient sequence is ga k; o lLet
Z;dk/Sk be an element of £ equal to P , Then Ze“/e@k
is a derivator and { Qa l:} is its coefficient sequence., Conversely,
the coefficient sequence of every derivator is nearly null, Thus
A= 22 ay /{9é is a biunivocal correspondence between derivators A and
nearly null sequences [ @k? .

Let A,B be any derivators, and lot §@uf § 44 ve the
coefficient sequences of A, 8 , From the algebra of £ , it follows
that A 2B = Z, (% 1‘44)’9/5 AB =Z—,—@(%€‘?45é~1//9/(
and of A = Z—k(a( a,é)@k , and hence that the coefficient sequences
ofk/i #B,A-B,AB, ¥4 are respectively [Q/z # Jé f} {Q;e~ Aé?

{ .;Z‘; 2 éé~p}l { c “L-} o The class A (D) of all derivators is there-
fore a commutative ring <l whienh is isomorphic, through the cogre=-

£ with the sbstract

. S % S~
dience correspondence % Q& O 2 y @, 6
ring A (6) of polynomials in the 'indeterminate! € with coefficients
€ C , Through this isomorphism, all the factorization and distri-
bution theorems for A(6) are applicable to A (D) , In particular,
if Q, is the leading coefficient and o ofy .+, ofy the
zeros of a polynomial 7C6) ER(6) s then FP(p)= 4, (p—af,)(pw(l)...@.o(h/

is the factorization,unique except for the order of the

s 5 of the A - polynomial P(p) cogredient with Fle) into
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D - polynomials of degree <), loreover, D-& = € pe .,
i.es the gimple derivator 2, = (D~°() is the transform (in the groupe
theoretic sense) of the elementary derivator 2 by €, , whence

£ &
Dq, €y D€y o Ve summarize the foregoing in

THEOREM 2 For any complex numbers Ko, @ 00,2y, , with
/
QO#OI P(D) = aoDl" £ @,D)hm/* vegp P Qh‘ = @O(DNO(I)“' (D‘dh,‘)

)11_,.

by, by
=aOD¥,Dq/z""porh‘: QODb,’ 496’1 ’.’Dryb

where °(rp°(1.,"'; o), are the zeros in C of A(6) znd %, ¥, ¥
are the distinct zeros with multiplicitles w7, s, /v, hrp .
Horeover, if Ptp) = 4, (D‘/‘f)"' (D%,,) then @, = 4, and
/8, :/37.,"',/‘“ is a permutation of o{,’ 0(1/ vir, o em

Thus a derivator A of degree W is characterized either
by its Wi # ! coefficients 4, y Ay, e, Q. or by its module

A, and indices "(o,°(1,"'z 0/;,‘ where the first, second, /., )u.“ elemen=

tary symmetric functions of the indices are respectively equal to

Y
T L a3 . The derivator is pormsl if
Qo Qo Qo

is module = [/ .
hi

For any complox numbers o, o, .ii, %, ad 0,0, L
and any £ £/ ,
(1) [’) Do(lpl Dq/: Dc/,_/i ry D"(: Q\/L "'D"/)up

are linear combinations with coefficients in (C of

. Dg f oo

i [.) %f’ p/s’ p‘f' 4 D/"o Dﬂt 96». £,

Eroof: For =z / 2 i m,
’ P é-l é

() P BBy P 7 DY (et e p ) D SO RRPA S

These equations determine 2 é/'(':,1:-ecurs3”.veil!:§/‘ as a linear combination

of p' Dq/,/,) uu) 'DO(,DO(—L IHDQ/&,;F
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with coefficients depending only on <, % , — - —, < »
If «, «, —~--_, <5, are replaced by 3, /Z=~, ~-—_, Fom ,
equations (3) give ,4% ﬂ‘f/)ﬂz S 00/54 7~ as linear combinations
of S DS, ~-- S, hence <5, s, ~- -, is
a linear combination of /5 O/, - - ~ Ly Ly~~~ B S "
It P is a polynomial in L of degree »»>» with coefficients

in § , then P=[A+%]is a polynomizl metrix and €< <~ is an

exponential=polynomial matrix or simply an exponomial. The degree
and the goefficients of 4 and of &€ P are those of /~(¥/; the ex-~

ponent and type of &, £ are <X and (<, 727) . The elementary ex=

ponomial of type (X, 27 ) is €4 [£7]

i SN 7’7,‘ ) ==
THEOREN 4 I /OA::'_OZ}@/.[/{'J] for ¢c= 4 2, ~=~, 2
where the o%; £ S 1 PR AT S 7 «~, are distinect complex

numbers, then

éx,’?*éf(z'pzf-~~~7¢ Ctr P = ©

implies £, =oO i.e. 6;-_} =o for J=i2 - 2y o
Proof: The theorem is certainly true for 7 =,/3: € F~F =0
implies /2 = o  which implies z7 O%F [ = T =o for
= o / ~--, 7> ., Assume the theorem for =»7=4& . Suppose
R+ Sht---+6€, R, =9° Then

(4) éﬂ’r ’*6ﬂzp2f""7h6ﬁ/e'ak=’"‘pfe1—/

where 8, = & ~ <oy, for =42, ~~~, & ; the /5« are

distinet and # o0 . Clearly the derivative of an exponomial with
non-zero exponent is an exponomial of the same type. Hence if <X is
& 3
3 o L PRy o i
greater than the degree of P4,+/’ <9 ?_'/ CpJ = % Sy @ =o,

where &} is a polynomial matrix of the same degree as s
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From the inductive assumption, the @} vanish, hence each is of degree
© and so are the <, for,= 4 2, --—, 4. From (4), Flosy =0 o
Let Xi = &, F& . Suppose %,; AL XA; = O where the
A, & C . Then by the preceding theorem A /2 = O, o =42,--,7,
Hence the A . vanish if each /% ¥ © , Thus nonezero exponomials
with distinet exponents and with coefficients in O are linearly in-
dependent with respect to C .,
Now suppose the coefficients of the /% are in C , If ;A g X,
/
= O, where the 0% are in S  then by the preceding theorem,
9. F. (which equals a polynomial matrix with coefficients in S )
equals zero for <= 4 2z, ~~-, 77, and hence the 0 vanish if each
PeF# o . Thus non=zero exponomisls with distinct exponents and with
coefficients in C are linearly independent with respect to S .
Since Ag(l[zdéék]iex’&l [£*%] = o if
L 7 %, the linear manifold /M1 of the elementary exponomials [€ ¥ %¢% [

for /.: L2, k=04 e 7 is certainly

’
within the null domain of the derivator A= o(@,maé?,,:" = 0@,:?% .
It will be shown below (see page ) that they span this domsin.
Since they are linearly independent with respect to S , they form a
besis with S for the null domain of 7 . Other bases with &
for the null domains of derivators (i.e. linear combinations of the

elementary exponomials, with coefficients in C , which are linearly

independent with respect to C ) are given in Theorems // and 2“%‘ .

3. Integrators

Let £ = CuL € €L  clearly the domain in <~ of Z,
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m . 5
and hence of 4« is £ . An integrator is an element /2 <L equal 7o
L, Lu, ~ -~ T, for some «t(, <, ~-~,=<(m & C

The module and order of A are P and 777 ; the indigces of ~7 are

the <5, /7 4is normal if its module = /. Any complex mumber ¢« %O
will be regarded as an integrator of order zero, with module A but
without indices,

Tt will be shown below that for s, 7~ # Oy s Jey Loty ="~ Lt =# Ls
Z/;L--- Zs, if end only if 44=2/ and the 3's are a permutation of the 'S
so that the module and order of an integrator and the set of its in=-
dices are unambiguous (the set of indices <o, <, ~~~, <7 always
contains exactly 777 elements, whereas the number of elements in the

class of indices is the number of distinct indices). Integrators of

the first order are gimple. The integrator £ of order / with in-
dex O and module / is elementary. The product of two integrators
is an integrator; the order of the product is the sum of the orders
of the factors; the indices of the product are those of the factors
together, The module of the product is the product of the modules,
THEOREM 5 The product ~#Bof two integrators A./3 is commutative:
RAB =&~
Proof: Suppose, without loss of gemerality, that A, 5 are normal,
Let /4 and /3 be replaced by equal products of simple integrators.
Since multiplication in £ is associative, the theorem follows if A G
is uvnaltered when the elementary integrators are permuted, This will
be the case if Z L, = [; L, for X #3 . But the latter is
trues for any f & /<, Lxls = —é:;:;*g@”;
as mey be seen from Z_ Ly = [6"("4 é“"‘/T[ 2—6?(6‘1176{ T]



either by integrating by parts or by reversing the order of integration.

THEOREM 6 For any distinet complex numbers o) «= _, ~- —_ <22
&r-zv'(z~‘"z:<m:'~———“'—’fa(’ +~ ____—_—-—-—-L"' Kol k- o Lot o,

(retz = Am) (<o g et ls) (Ko ity ko)
where () «; - ~~ctom ) = (K1~ ) (o —~(5) - ~~ (g —~<=%,) , and the

denominators of the terms following the first are obtained from that of

the first by cyelical permutation of the =<'5 .
Loty ~doe,

Proof: Since L. Z., = , the theorem is true

~<i =Ly
for 7772=2 , Assume it is truve for =z =4, Then
Liee

. L o<, e —‘Z:‘z_ + # o
R =~ e e o . 4, T .
Loc, Loty %t (X2 == k) (Aucts ——— ) (Ceetety - “J@_,)}/Ld’éﬂ

_Z;(l — 1;/3_,., I, ~,Z:( Z..
== (-(1-(1.“"’{&)(’{:"6@”} +(—(c/ ~——l-(}(°:4—-f./ o o= ey
2%3 V-2 2z kw) G’(Ie‘(’ - “4-/)(‘/‘?‘ ‘/va)J

~ Z., f o e -Z;(,Q . /
= (et oz =t ) % Sers %, - ~~Key) (eele ey )

— —-_._!_\__
G’(Ie "(k4/°(/‘ "04-/)

The theorem follows for »77=A%/and hence for any 7» = Z if the co-

efficient of L, ., equals (m . It does, as may
t T T T T

be seen from the following

Lemma 1 For any distinet complex mumbers =7 _ <z, ~ - -, <my
e . -5 & P
e Zxe =

O e R ey e i T
fox =0/, - -2 5,
Proof: For any polynomial #(3/on € to C of degres < »»

- o elm (3~ )

//3’/=f(o4)((k(l L) | ) L35 M) f,) LB acal

J
A A — N pap— R (omet, == ~Ao-r)
this is the Lagrange interpolation formula., In particular, the equation

holds for £ =o, {, ~~~, 97—/  with #(3/ = é"? ) and the result
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follows upon equating the coefficients of ; 777 =/ in the left and right

members., The case £ = © completes the proof of the preceding theorem,.

7 P~y
THEOREM 7  For any + =~ , 7.7 [/ (f= 7)ok O~ ,)f(ﬂx,,_]
(722~7) /
- L < (£-T)
Proof: Since 4x /= [f & ATILT ], the theorem

sesr £
is true for 2=/ o Assume it is true for 7=, ., Then 4 F* =L, L, F*

£~/
[/° 6(2—7/ 6'(“"1/7— < r/(f}p(rlfr]

e /e 7‘
[/((Z /?/ s P /Jro/’/‘“/ﬁ / (,f r)" <~ T o) A7

°
after the inevitable integration by parts. Hence the theorem is true for
?71 =#&#/ and by induction for any 7» > / .

Other important properties of integrators can be inferred directly
from the definition by methods like those usged above, in which the in-
timate connection between integrators and derivators does not appear
conspicuously., It will be more convenient, however, to obtain these re-
sults after the derivator=integrator relationship has been fairly well

developed .
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be Reversion of Derivators

The derivator ,qzazg, Ay -~ Aga and the integrator
X= 5 Ls, L4~~~ Ls,, are coindicial if 4,, 4 ,-~-/3,, is a permutation
of «,,«2, —~~«» ; if moreover « § =/, then A and X

are reciprocal.

For any feF, 4(1’—(f=e‘,@r61{f= X since
OLf =[4é /oi‘(/f) dt] = F o Hence L, is a right reverse of
LDy o lore generally, suppose A and X are reciprocal. Then
(5) AXF = By Dy =" Pony Lty Loy = ~ L) £ =7,

in applying the preceding result 1 times. Hence X is a right reverse
of A and the notation A* = X  for the integrator reciprocal to A
is justified (see Sec. 1) and will be used hereafter,

From {}45) , for any f y ~ ,f=/}#7 implies AF = Z -
The converse is false for some 7/ 7 + since the correspondence
is equivoeal in / . But if the linear condition /¢ /= Sy i stbe
joined to A/ = 4 » the result is univocal in 7 and equivalent to
F = A% 4 for any % &/ . Dlany properties of A%
mey be inferred more readily from this equivalence than from the de-
finition in the preceding section.

THEOREM §  For any derivetor A endany A4 <F , AF =g
*

and FE& /5, if end only if f:ﬂ*? , where AN is the

integrator reciprocal to A .

Proof: Without loss of generality suppose A  is normal. We remark
that, since yé /~ is continuous, «<9<,< f = 7, is equivalent to

Felegt €alh] ~Togrrs [e<F]. .
Hence ,@(fa-j and / =O is equivalent to 7‘=.Z:(7:4<*7,
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Let ¢, <=, - -—, 5, be the indices of “? , so that
’7:“(9(,’4—)&"-’@(,". Now suppose A £ = ? and £ ¢ Fom 7(~. .
Then &, (O <o~ Ly #) = 4 ond by Theorem 3 ,

%Yy, - - <Y, [, =© . Hence by the preceding remark, <9, (49,(3 ~ -
Ao F) =214 G .+ Again by Theorem 3 , 2, LDy~~~ 4y, f% X7
and as before Sy Qg -~ - Ly £ = Len L i "
Repeating this argument, we finally obtain /= Zotm, 4dmy ~-~ L 7 :/7?

« Conversely, if the latter is true then
AF s 4y '@o(z_ ~~= Ay, Loty Tty === Lty F = Fo
We can now show that the indices of an integrator are unique
except for order:

THECREM 9 Egual integrators have equal modules and the same set

of indices,

Proof: Suppose that the integrators X = Adog L~ £ ko,

and V= als Ly --- Ls_ are equal, Let A. S
be the derivators reciprocel to X, ¥ . Then AX =81 = /

on ~ ,and since X=T, (H~/3)X ~£ =0 for any
fer~ o Let X = vemay (#9,%) o By the preceding theorem,
A* = B%=X hence the domain of X includes /A < .
By Theorem .1, . A and B are cogredient, and by Theorem 2 the
modules of /7 and & are equal and their indices are the same ex-

cept for order. The conclusion now follows, since the modules of /7

and B are AT, and their indices are < , <., ~-~, <
and A// %Z/ —\"'—, ﬂ?" . °
Let /7:Am*a/ﬁm—l*“‘"*am:”&u(,’@e(z.""ﬂé’.(‘rn

be a normal derivator of degree 77 o For 7 ¢ let

f:ﬁ)*;:r«, Z;<L “‘-Z;(y;,;[.
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« By Theorem 6,

(6) 7= {ﬂ,Z(,+ﬁZZj<l+~__fg%f¥m} )

where A= (Mt ~otyy,) g, = (el e iy )y Ay T (i aty,
e The individual terms on the right in this equation be-

long to /#, since 7 £/~ is continuous, but in general they do not

belong to 7% for #>/, Yet the entire right member belongs to

Fom’ < /Ze , since by Theorem 8,77 f = 7 end fErm* .
It will be instructive to verify this by means of Lemma 1.
Since I = (O~L+ )i = (B +<) Lt = f+LT

on

L = {a(,ﬁ,Z_.(, *F Ao AT, # ~~ - F Lnm An, -Zlm/j

-+ {/?,+/ﬁf “‘*'4»;};-

Now by Lemma /. / the second expression in braces vanishes, hence

L S € F and

O = A< A L, + L ATy £ -~ <om A Lt | §

+ {"///q/ # Aa Hy *“—7‘“4”"4”'}?.

Again by the lemma, the second expressicn in braces vanishes, so that

82F & A

®

Continuing in this way, we obtain

kil & o
(7) BFF = {=5RA,1q + GRRAL L+ ~ —— f Ky A9y Ly, }?1
for =104 - om,
(&) B f =2 L TA Lo, * <o AL 4~ f Ay A, L, }j
+— {u(,md,/?, f’a(zm—/ﬁz,'/‘ el o 0(7”77’_',%]77, j;/
where this time the second expression in braces = /

From (7) we verify that a&k}f/o = 0 for £ =0/ --~, nr~y
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ie. FE [ * . From (7) ana (8)
n ) o) k., —
A = (OZ/e a‘rm-/e.xgk)ic: {IZ( ﬁ((zo'?a’”‘—’ia(l )Lo(x}7+j'

:7,

n

since «<,, <2, ———, Lo are the gzeros of OZ,Q QA s 5’°
in C.
m

If the derivator A = /7% Do, ie applied to the matrix
b= T, Loy ~= - I, [€@“"*] & of the derivator fac-
tors annihilate the integrator, i.e. reduces it to / and one of the
remaining factors millifies [ & “~*/ A ] i.e. reduces it to

L, 2

zero, Thus Ao = [e J ) and ﬁuj 1?\7-, ==y #l-m—/

are in the null domain of /7 and it is easy to see that they are

-~/
linearly independent with respect to S e A= OZ r e A e

7 7 il 7 ’(m£
= G [e<*t ]+ Iy [e X+~ + T, Lo Ly~ Iz, [@ [
with O, 0 ,~- ~10p,_, & S/ then "d-?,ﬂ/o:(/—f )

B fégo(, 7<D"‘L TE W A‘(Vn-/ ﬂ) /0 = f;’n.‘/ ; hence f‘, = O
implies ¢ =0 = .- - = g3, _, = 9 o lNoreover, it is shomn be-

low (Theorem 11) that the % span the null domain of A and hence

form a basis with S for that domain.,

THEOREM 10 For any f,?ff‘, Hf:ﬂdld,(lwavé@,(mfzj
ﬁ-_rld, f/oagzjﬂég(l/:/ozdl_/‘__/ p(g,(loé,ﬁ(L-—~~,<2(yn_l/C/°:(f7n,_,
is equivalent to f:ﬁ*j + 4o, where fo= G ko + 7, A, +

= Ao Oga g ﬁ’m% )

Proofs From the remarks in the preceding paragraph, 4 A = o

and the initiel velues of A, L, K, -~ -, L, --..0, ¥
*= =y
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are respectively @2, ¢;, ---, &, » This and Theorem 3 imply that the
simultaneous equations A7=2, Flo = 7, 4 Flo =07, == =,y By -~
A #/ = 07, ave equivalent to A (F-A)=o and F-h* £
by Theorem 8 this conjunction is equivalent to /A =7 *2,

whence the theorem, The important case 7 =o , corresponding to the

null domain of ~ , is repeated as

THEOREM 11 For any A€, gf=-0 2nd //ozg:J
'Q(,’C/:‘:(’.’j’ ~ B, oMy -~ - 4(m_/ f/) =0a-, Ais eguivalent 1o
f:U.;/Lof'd/_{'/*“"‘ * oy Bomsr =

Replacing by A f in Theorem 10 yields
g

THEQREM 12 For any F & Frm
(9) f' =< ﬁ*ﬂ}["‘ﬁ"

\

shere G, o7, - -, , &ke the initizl values of £ &£ -, K En S
and X =0sbo+ K, + — - # Oomy Ao,

Thus associated with each derivator /7 of degree > is~the
resolution (9) of #¢ “minto its projection 4*% 7 on /C;n*, and
its projection K on M. « By Theorems 3 and 11, the intersection of
Fr" axd NMa contains only ©¢ F, Hence the resolution (9) is unique,
in the sense that if 7= g+ K, = 7 + A+ vwhere the j's are in Frr
and the K5 in NV, then 2 ~Fa2 = ka~h, = o, gince 3 =3~ £Fm
il K — By € Ma.

There is another very important way of regarding (9): It
determines the matrix /Z/min terms of the following data: (1) the
metrix & &~ - - B, f ¢F and (2) the elements L, Ly --- & f/o,
»f-@a(, e - '~‘ﬂ&’(m—-,.f/o )T T Ty 4 £ lo

of § « In many practical problems (differentizl equations of physics

and engineering in which ¥ is the 'unknown') these data are given and

(9) solves the problem.
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B Commutation

For any two elemermbs ~ ¢ of L , the operator /' = QP - QF
is the commutator of 2 @ o Iet ©,,A, be the domains in ~ of
P 3 ®@Fs The domain in ~ of 7 is A,  A,, The null domain
of /7 is in general a proper subset © of A, A2 o A~ and G commute
(see Sece 1) if A = A, =z, This iscertainly the case if
P 4 @ are derivators of degree 777,77 (4 = = Lz = Foups 5)or ine
tegrators of order 77217 (A=, =D, =F) . If /7 is a derivator
of degree 777 >O and ) an integrator of order 77;;" then A, =7~
ard Dy =F i L, | 50 that @ and @ do not commute, The domsin
of 77 1is thea ~ N /5, = <5, , bub the nmull domain of 77 is not
so simple: it is &5, if 727< » (Theorem 13) but isharder to de-
seribe if 727 > 77  (Theorem 1h)e

A commutation condition is a condition C (#) on <</

such that < (// dimplies 77 =0 « A commutation rule is an

equztion 77/ = @ , where & is an expression in / , valid

for all # in the damain of 77 , 1In this section we shall give

several commubtation conditions and commutation rules for
r=r8%_-3%A where ~# , & are derivators of de=

gree 777 4, 77 respectively.

THEOREM 13  If 77 < »7 , then the null domain of 7 is /5, /&
(AB*—08%7)F =0 if and only if £ & /5, .

Proof:  Since the domain of 7/ is /5,, , suppose < & < o

BIf =3 (As3™- B%a) 7 =0, since operator multi-
plication is distributive, and associative, derivators commute and

BB =/ (we shall usually omit such formsl details)s Hence by



. : ¥
Theorems 11 and 3, [f =0 is equivalent to /7/) €4 , and

* x
since /3’;1/7 £ £

x
this is equivalent to AB F € A,
¥ * £k x

(by Theorem 8 the range of B is /A, )e Clearly ,{9/1/3 /Z: 0
if k<h-W s since the degree of the derivator /@(/4 is then

X * etk X5 o
miB<h o Hence ABR'L €/ if and only it & AB 14
for £ =0/, i W~y | "

PR
There exist un:i.qu?1 iefx}vators Qe of degree £ and S of degree
<n swhthat ) A= OB V&, s as may be seen Ly ap~
plying the division algorithm to the abstract polynomials A(e)
B(e) cogredient with 4,3 . Then /9}7%#%/3*/% = ‘@/t/z "@c@*’%

s and the last term vanishes since the

degree of Ek is less than the order of A" (the degree of B ),

Gence /7f =© if and only QkF[,:O for zé=0,l, weey b d s
. s _

and this is equivalent to ,P/oz "9’%: o= A f/o =

since (Qé F /0 is a linear combinstion of the initial values of

&
FOF oo P in which the coefficient of A £ is #0 ,

THEOREM b If h>» , then (4B™—3%)f =0 if and only
u’
. /)h.—w/, .. /’)"_, are certain linear vome

nations of £, L ..,
k = o) /' ‘"o I )“ -,
Proof: As in the preceding proof, / £ = o if and only if

"p”"'h‘l s Where &:/Ofp/o Loy

AB ¥p g A ¥ o There exist unique derivators Q of degree

m-n and R of degree <h such that A= &B + R o Hence for
k=0 1, et %A SE] =D QH, +D%es"E = o

is a linear equation in /’,_,J /’,Jm,[’,,,_,,“g in vhich the

coefficient of p),,-;, 4R /s F o °
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Let o Cn Ry ~~~Re == R ghere (1) A= ~a
and £ s F & (2) either (L) for every & (<& k =/ =, - - -, %),
e =~ @, or (£4) for every %2 ,, = @e Fe , and

(3) for any £, 4 is en integrator of order %, and ®e is a
derivator of order Je o Iet A, = /\#(;,_f,} =~ (po ~Fe) F o~
(Pa-"Fe+ ) o (To avoid exceptions, let o =70 =0 )s

THEOREM 15  In case (<) : ﬂ? exists & /~ if for every 4,

;,(,_ <A & If this condition is satisfied, then 2 is unaltered when
% ) @ are transposed if Je S, where the Ay are
defined recursively by o = and/u/- = f}ﬂ * </a/_, —;/_/ >

o (For any integer < < A7 =.< gor
o acecording as < > O or <« <o ).
In case («A) @ 7 exists £/~ if for every #, Fe € XN Pr

If this condition is satisfied, then 7 is unaltered when @, 72

are transposed if Je < 2 s Where the 7 are defined
recursively by Z, = P aw~o 2= < oy T T >- .

Proof: Since the domain of the integrators is /4~ we need only as-
certain that the operands of all the derivators are within the domains
thereof, Suppose case (£ ) o The operand of Pg is /& = e~ Kk
e -= PR F if A7/  and F itk =/ .

Ir e < A, =\, clearly @ f exists £ Fa,~5, and
since the range of =/ is ~g, * < Fa o, certainly

4= 79, P /—;, A, g = FA?. « Repeating the argu-
and S = AR QL QS

Xz

ment, @, P, @, F exists £ /Ay, 5
£ Fa.y A—se = o etc., and finally ¢ exists

& f‘,\,’ ., Assume that the conditions 7&, < A . are satisfied.
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If 7/ s/(/ =F J then QI 7£ < f:“f"'j/ end
%

= Q f fﬁ“ﬁf#,_j/ , bub if 2 2,
we can only assert F 25 andthenff'q),ff/f;ﬁ;
o . * PN
in either eventuglity, £ = A &, F ¢ /C/:’*</"‘"j/> I oy .
Continuing the argument, we see that J/f, E < *

A
for % = /, 2, -, v o Hence for any #£&

>

iIf 9. S e, s then /gzﬁj‘e and by
Theorem 13 commutation of 2, O will not
alter ; e The proof for case (ii) is similar,
& i % 93 7?)

derivator of degree - , and 3 auny derivator of degree
> 7, Ihen for any <</,

(r0) (ARB"-B"A)F =(A-07» 4,07 LA, _O)E*[1]

he ~
Here Ae = 3, Ay A

ad /£ = ©w* //o .

Procf: let 7: (AL 7_774)F s wheve 7> 77,
Then Y ”; = & and hence by Theorem 11 (with
the «<'s there equal to one)

7: (75 ﬁdjjqfa;_' sz- ikt P 1—-”-1) [/]
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& & 7
where d‘k - aLO ?_/o = O%g9 7 f/O < For << -2
0, =0 , since the degree of A4 is<n, For £ =/, -~~~ w-/,

- A t A fe~
Towmrt = 7RG L Sy = (00O a7, -

/

#lom BT 7)) = (@ far @, Syt - p A S ) = Ak

» — 27~>m £ -
R) T TR a4

Moreover, / ya

77

27 ~237 +/ar (.0 71~R

Hence 7
1) (AL T7%) F = (Ao % 3, B s -t A, D)L L1

. * 5 n X ’
Now 7 = O = o By Theorenm 8, v
& *
and <4 7 belong to /5, o By Theorems 13 and 5y B 77 F
= HB%-A’”*]( = ag’“‘,qg?"f
Hence applying G~ 70 (7)) 4 vith @ = (o O "+ A7 % cont Ay ),

(12) T (E* —gFg)r = sz [/]
= @8 7] = 70 B% 1]
where the commutation of 8% @ and of &.Z 7 is justified by
Theorem 13, since Z 7 [/] and 5" [/]belong to 4, * s The
Theorem follows on applying & 7 70 (/2),

THECREM 17  With 4 as in the preceding theorem, for any < .~

(13) f:/q*/q/f—(ﬂo'@m‘l‘ﬁ,@m"{/_~—-7Lﬂm_‘, ) AT L]
Proof:  Application of B A4 * to (/0) or (77) yields (/3) after
commutations and reductions justified by Theorem 13 amd <~ 7 Fea 2

Or simply tske & = A4 in Theorem 15,
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6. Derigrators,

For any derivator A of degree 777 and integrator X or order »7 ,
the operator /4 X is a derigrator of degree 77, order 77 and rank z-s7.
If 7 and O are the reciprocals of 4 and X, i.ee ¥ =4 * and
8= "‘X, then 42 X = "7’/\’:/46’* %

If AX =A, X, , where /£, 1is of degreery,, and X, of order
77, 4 then *X, 4 = "X A4, , after left multiplication by X *X . n
or XA* =X,A% , after right nultiplication by "4 %7 , and
by Theorems 1 or 9, 7277 29, = 27277 27 4 de@e P27=277 = 272,-277,
e have, in effect proved the following:

Theorem 18 Derigrators o z* amd 4, 5 * are equal if and only

if 495 =A,/3 . Equal derigrators have the same rank.

Theorem 19 For any derigrators 428 %, 4, 3, ‘

AB* Xt A B* = (RE T //',5)(56’,)’f If the rank of 23 %
is 20 , then (96%)A5 %) = (FAIGEI . .
Proof:  The first part follows from #57%* = F(8,8%)s5*
:(‘?6’, )(GE, )%—o The second part follows from Theorem 13,

A derigrator # 5 * is dextral or sinistral according as the

rark of A B8% is > O or £ O (thus derivators of rank zero
are dextral and sinistral),

1f 7 B % 1is dextral, then by Theorem 13 (4 *)(FB*) =/
icee 23% has an unrestricted left reverse (787 = GB7* am
is therefore univocal (see Seces 1) In particular, the integrator
B8 * is a dextral deidgrator of degree zerc with unrestricted left
reverse ~ (8% )= 23

If /7 & ¥ is sinistral, then (R *) (B2 %)=/



ieee # & * has an unrestricted right reverse (/7*6")* = 82%
but #8 * is equivocal: by Theorem 11, the null domain of 73 ¥
contains (in fact is spanned by) the nomezero matrices X, 5 A,, #/, - aat
Ao o In particular, the derivator /4 is a sinistral derigrator
of order zero vi th unrestricted right reverse -7 "
The derigrator concept may be extended as followse Any clement

of L will be called a derigrator if it equals a derivator-integrator
product 4 & * , hereafter called a primitive derigrators The rark
of a derigrator is that of any equal primitive derigrator (by Theorem
18, this is unambiguous), By Theorem 19, the class K of derigrators
is closed under addition and sibtraction, and the product of two ele~
ments of K belongs to &K if the rank of the second factor is >0 .
Derigrators are dextral or s nistral according as equal primitive
derigrators are dextral or sinistrale.

Theorem 20 The class K, < K of all dextral derigrators is a

commutative ring containing the unit operator , . Every element of

Ka 1is univocal,
Proof: Let #8%, 4 3,  be primitive derigrators equal to
P,Q £ K4 o By Theorem 19, F£Q = (RS T A,8)(58)%F
ad PQ =(AA,)(638,)" o The order of (BB,)* (i.e. degree
of 33, ) is the sum of the orders of 8%, &S, *; for each of

AL 4 A/3 4 A , the degree of the mwoduct is the sum of
the degrees of the factors; the degree of ~#/3 L A, 5 is not greatw
er than the degrees of the terms, Hence the ranks of F< ¢ and

P® are >0 . Clearly P+ ¢ and P9 are commutative, and /~
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is univocal since ARY  is,

Iet P be an element of Ay of positive rank. Let 4,8 be
derivators wi th no common indices such that /~ <48 ® « These con=
ditions uniquely determine the indices of A , 8 ard the guotient A
of | the module of A by that of B8 (if 4, , 8/ also satisfy the
conditions then by Theorem 18, A8, = 4,2 . By Thecrem 2 , the
indices of A and /3  together must be those of A, amd B to=
gether, hence A, A, are coindicial and = are /5, B, . More~
over the product of the modules of A, B, must equal the product
of the modules of A, AB Jo Let o, , A, v, .
be the distinct indices of B y with multiplicities )7, , Wy, v/, e o

Theorem 21 There exist unigue complex numbers

f’.sk(é"z” ¥ k= o/'b,,)ﬂ'filjb_ait.

b~k
V) P Z Z Pir Iy "
Proof's et Ale) , B(e) be abstract polynomials cogredient

with 4 , B . Unigue complex numbers Fik exist ('pertial frac=

tions?! algorithm) sueh *hat "

pcor = 35 (Z puomi)) Tlowi (01

Hence S Zégﬁl P 7 A) W,
A= 2 (20 Py ) [lerj P
. ot

Equation @-ejfollows on applying this expression for A to

X _ 1 7 ]hfr
B - /u /7/_-; ,;\’/(

Any sinistral derigretor (or dextral derigrator of rank zero)

may be resolved uniquely inte a derivator and an element of A:/ of

/%
positive rank,to vhich (P9 mzy be applieds
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For any P& Ky o the matrix FP[/] is the indicial matrix

#
of £ and of its reciprocal ~~ o If the rank of / is positive,
the matrix P/F[+/] is the weighting matrix or demsity of P  and

X X
of its reciprocal *P o In perticilar A L/] anda PA L] are
the indicial matrix axd the density (if the degree of A is positive)
*
of both the derivator A and the integrator A o

att
Theorem 22 With the notion of the preceding theorem, for any

derigrator P of positive renk and any L& £

2 g R e em
Ve  FF :[[(J’ZJ OZ; 0 Omj st ¢ /e7.:) e’ f('r)/fj.

This is an immediate consequence of Theorems 7 and 2/

Theorem 23 If the rank of P is positive, the density @ =2F/°[/]

sy

is given by
> E’”_J-l Z k o ¢ J
74 G ~[§; Lk '3':(’",-‘/'“ %7€ ;
This follows immediately from the preceding theorems Thus equation

()5) may be written as "
v A= S G- mdr],

Theorem 2}  With the notation of Theorem /¢ , if A is a derivator

of positive degree Wy , then for any Fe A and g Iy //ffg

is equivalent to

¢ J W2
V) ﬁ:ﬁé’(z—r)j(ﬂc/rjvf (A: P 7’/4,/0 fooo #Am-, )G,
Whgl"e c ‘_’: DA X[/]

Proof's The direct part of the theorem follows immediately from

*
Theorem /7 and equation (/7) vwith P = A » For the converse,

suppose (/%) o From (/¢) , 6 €A , hence applying A to
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(/) 5 AF= g tAQG = g-f@/]é’ where
Y~y /'9 -2
Q= A,N0""4 4, Fove t Amey o But the
ke o5t )
elementary exponomials [Z e © J  in (/¢) velong o the null
damain of A o Hence AG=0
With 3 =0 , it is clear from (/%) and (J6) that every element

of the null domain of A is a linear combination with coefficients in
S of the elementary exponomialse Since these are linearly indepen-

dent with respect to § , they form abasis ith S for A

™
Theorem 25 If 4 =< 2}{ @, 4 A £ is a derivator of
Rt R SR S A ° -

positive degree ), , then for any f & /5; ’ 8 ¢ £  and elements

o, 0 e, T, of S , the system of equations

o AF=g, Fl=a, O -, ... 0" f= T,

is equivzlent to

(2o) f= ,4 q +QA R [fG({ 7)q(7 J¢]+Z/9 ‘ »~+g», ,)é,

il

where

zk‘g‘eﬁk.‘ej g_l é: OJ’I”IL”—/‘,

- o= Y | *

Q-g}eg&/@ £ andd @ = OA /T
Proof: Assume (/9) o Thea o7 77, ¢ , Op,_, are re-
spectively equal to /o , f, L, /')," iy (which arf defined as

b1~/

/’/o, /0/% e ﬁ /Z in Theorem 16), hence (29) follows by

Theorem 2lj, Conversely, assume (20)  Then AF = g follows, as
: 9
in the proof of Theorem 2l We must verify ,9 /70 =

Applying /A " 4 (z0) y:l.elds e
A" = 47 ,4*3 fAZ‘ %A [,] AA*r g FAARI [T
= 7% + q1 ['
where the commutations of & A and @, 7 ™ are justified by

Theoren 13 Now applying /Qé we obtain
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k- )
(ao/Qéfa, I f@,é"a‘e I+- "thk k/[“

W~ fo~t
=7" g+(3/<+gk,,~’*~'*g~.,z ).

Evaluating at 0O,

as
RoFle 4@ Pyt it @eho= Ga™ QoTat AT #17" # R4 T

for k= o, l, vie, =1, whick /h-/o/y /,Z:(T'

7 The Method of Integrator Transforms

For [ k=2, 0, let A4
be a derivator of degree O{I'/t 9 J/c = bvc;X /J'k ) /2 & ;;%
and 3 ] &€ £ . Consider the equations
A, # A o # e # A/h/jh S S
CZ,) /42/1[: 7‘/422/; * ”'7‘/42),/[;,, :gz,
/4)",/: 7‘/4);,2[:71‘ L ‘//4h1 )!p)n = g’h,
stbject to the(initial) conditions
k ¢
(22) li/or,f’/eo,,@/’/=&, D%V = Fedp,
for A = , 1. .
Suppose "k < ¢ For
4 </ ZL QWAQ s
2 L, F wree : _
’ i LA ?JI:P“ gwad'k—r /»)é;’?“" and
Jk N ak £
@ ¢ Bike A o Iet @ be

an integrator of order N 2 M/eax 0{4

Suppose (2/} and (22 )« Then by Theorem 16,

el 2 h
Q 2k = ZoQAnF = 24 A, -qu000f = 0gi
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anl hence Yoy )

(20 2, A Oh=Qg; + 2k Qi QLT
Conversely, if (23) holds then by an evident extension of the proof
of Theorem 25, (2/) amd (22) followe, Thus the single system (23)
is equivalemt to (2/) and (22) »

Tet Mg be the cofactor of Ajk  in the determinant
M= /4 J’C/ (defined in the usual way as a sum of produchts)e

Then (23) implies
» I
ZJM,J LAk @k = Zk g zi M"J'Afkf@f*
! ' o .
:M@E:EJ/‘ZJQJ"*ZZ— A/L~.

Ie‘ ’ J QJ'/C@[IJ

and hence Yoq b

(29) M6f, ,ZJ M Qg # 25k My € QLT
provided that the order /' of Q islarge enough to ensure that QF
and Qg s @are within the domains of the derivabtors applied to them
(see Theorem 15)s Morsover, by Theorem 13, if AN islarge enough,
*
(MM ~ mm¥)@ =0 s there @ is any of the Q transforms
appearing in (24) , and hence
. X W ¥

®s) @ =Z;Mi;m@g;t Tin My Cuerral T,
the commutations in the right mewber being justified, by Theorem 1.3,
if N is sufficiently large.

Conversely, (23) follows from (25) on applying Ay; 5 summing

m
on 4 and reducing the d ght member by 3. Ay 5 /‘7“-/‘ = ij' M
/
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* —
and MM =/ | o provided that A/ is sufficiently large.
0. AX
tet £=QF for any FeF s and introduce the equiva-
lence relation @ , meaning equal foi_' all @ with sufficiently

large NV . Then (23) becomes
” _ . |
(26) Z;Ad)é/,i a3 ";/( O,
the gubsidiary sys temu for (21) and (22 ) (25) becomes
CON Z MM G # 2 My iy MYLTT

and the systems (27) and (26) are each equivalent to the double
system (21), (22),

Since /’ F s @ necessary condition for the existence
of matrices /j, satisfying (27) (and hence (21), (22) is that the
right member belongs to F/v* , and a sufficiex)x:‘t condition for this
is, by Theorem 13, that the ranks of /W ( Z )M d and

( Z ik /J JIQ)M be positive, for then the right member
of (2’7 ) may be wr:.“t ten as

Q{Z MJJ+Z-k @JMZ’]}E
Indeed, the condition that the M, , @, be dextral derigrators is

sufficient for the existence of unique roots /4, of (27) glven by
Ine

(28) /’—fM Mat > M., MLT
T L Y T L K

which follows from €27) upon application of (X .
In general, if the M. , (Q, are not all dextral, then the
¥
condition that the right member of (27) belong to /A:, becomes a

necessary condition on the j} in order that roots of (27) exist,
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We have tacitly assumed that M #0 , If this is not the
case , then (24) becomes a necessary condition on ths gg' for the
existence of solutions of (21), (22); if it is satisfied, some of
the equations in (21), (22) become dependent on the others and the
system (21) becomes, in effect, a rectanguler rather than a square
array., This more general case can be treated by the methods used
aboves

8 The Method of Tnverse Reversion

In the preceding section it was shown that the system

/;,,,,/’:j) fls A, /o/Z:,/,’/ n /9”“7’[: Facei
is equivalent to the 'equation? _
@) AmF 5 34 ALTIAL e i A BT,
where -% = @)% for any £er and F  means
tequal for any R of sufficiently high degree!,

The binding variable ® can be eliminated from g in (29)
in the seme way thet 7 was eliminated from ¥ in f(d T g (¢) .
Ve introduce 'matrices! [/ ,d (@)]& , where $(Q) is a function of
@ on A7 to F , just as we introduced the matrices [ FPE(, , where

FC) 35 0n R toS . After appropriate definitions of equality,

eddition, etc., the class LF] of a1l metrices [ g @DQ is an

abelian group with operators €AY and-equation (29) may be written

as AC) QT =10%9T + (Ao B eA 0"t e # A PR “ral

(the subscript @ having finally been dropped). The class Ay is a

field of operators on JFJ s
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This is a very satisfactory procedure in many respects and
we shall present it in detail elsewhere, Ve wish here to examine
another way of eliminating the binding variable G .

Suppose that the ring K, has been extended to a field
K a and the class ~ correspondingly extended to a complex linear
class <~ o Then @ , the inverse of the reverse of @ , will
exist in Ky , and applying it to (26) yields
(30) OF7ACOIOF = g+ O (Ao 74 -+ Am ) LI
Assuming that Q* 70 @ ¥ € €4 ir the order of @ is sufficiently
large, @ 0% ©*= (@77 9 ®*)*, and distributing Q*
forward and @¥ backward in (30) yields
(B31) Ap)Sf = g7 (A PTAFAPTIE - Ams ) 1],
where p= @74 Q¥ , Thus the dependence of the equation on Q
is lodged entirely in the operator 7“ N

Wie shall show that K and #~ can be extended in such a way
that the foregoing heuristic argument is justified,

The range r# ~ of any non-zero element X < KA of positive
rank is a proper subset of /=~ 3 for some / € ~ , the equation

Xj, =  has no root y A F~ . Te now construct an extension <~ of

Z
X

We wish this extension /~ to be minimal, i.e. to contain only

/= guch that this equation has a unique root 2 €/~ for every £ /A ,
such elements 7 extransous to # as are necessary to satisfy the
equation X 7 =F . Thus /~ should be the range of the quotient
;‘fi for £/ and O # X& Ky, with X)—f— = f o Moreover, /=

should be an abelian group with operators in Ki . We begin therefore
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with the following postulates for F
with ¢, ¥ €F 5 53 €F 3 X, m Ay
1) % =¥V is a reflexive, symmetric, transitive relation.
2) Every quotient 3 (X #o0) pelongs to £ , and every
element of A~ equals such a quotient,
3) fZ2Y, X belomg to F .
1) X= Y amplies Xf =FF, and = ¥ implies 4g= XV
5) X¢=XP and X7 O implies/‘—"}é
6) y)P = x (79
7) x(g iy = AFLXY
8) X _)5 =y [’ (x# o)
From these postulates, we infer that, with XV % 0 (and

hence X ¥ ¥ o s:.nce X, Y umivocal):

9) _- j @fo/u Y (x p)‘."(v&) efwv G 7(3

yfng
Ft8)=vir £ tx(rg)=xr “xv

10) xy(x
whence 7’6 .y j‘} = y/’ = Xj

i For 2= X B = D wbencs X & = 3

These inferences suggest the following definitions:

Let F be the class of quotients 3 for FEF and o# X €4 A
and for any element 3 £ 3 of F let () ;P. 33 equivalent to
‘/F:?(g ,(zc)P ﬁ fo)(g (o %{’.EX[;

end (C&) X ‘%: —3 With these definitions 1) =7) are satisfied,

but instead of 8) we }w.ve

g)’ X 5 < £ (z\'?(o)'

Let £ be the renge in F of £ / for £€F » For any
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L £, FeF, write £~ F if and only if/,:;j‘(. Then £~ £
is an isomorphism (this follews from (/) (i), ( { v) and 12)
below) between ~ s /~— 5 80 we may without contradiction identify
{f and £ , thereby making £/ =/~  and  an sxtension of
/~ such that 8) holds for £/ (and hence from(ii1) for Ffe /< 3

if?e # . o # X = Ky » then )(‘\:%___:x;(i; = XTZ;::%(;:=V o
Thus the quotient elass /= satisfies postulates 1) = 8),

and it is easy to see that any other class % satisfying these postu-

lates must be isomorphic with ~ (for ¢ £ 5 ¥z /~ f let

#~ ™ be equivalent to ¢=;? =B % for some Fe s OFXe Ky

The relation ¢~ @ #is an isomorphism between ~ s ~ %), Hence

the postulates are consistent and categorical (but not independent).

In addition to 9), 10), 11) we shall need

R frvy LN
J

X 7 J
and o

13) (x*V)F = xédt ve
for ¢, £~ axd X, P& Ky o These follow readily from (i) — (i)
and 1) = 8)s The foregoing is summarized in

THEQOREM 26 The quotient class ~ is an abelisan group with operators

A in the commiitative ring Kj « ~ is a sub group of . Fer any

G e sl oo Xeky xp=phadonlyif ¢= ¥ (G
particular x¢ = F is equivalent to @ = )—’:— for FeF ).

With 7 constant in 4~ , the range of X j5771‘01' x, V& kg
and T# Ois of course more extensive than if only one of ¥, yvaried.

X (V) X — x_&_
e wish now to define gperators i~ such thet,the tremsform ¢ j = 7y -
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Iet L be the class of all linear operators on F o A,
For any X, © K4 with Y’ # O, let 5 be an element of £ such
that for any #< /“:,_ i.r b =X *g (= )%)é ; this follows readily from
8) and (¥i1)), Then with $ ¢ <~ ; X, Z e ki3 U V, W £Ky

and # © (and hence YV # O since < V univocal):s

W (Etn)d=F5+# = = B (by definition of
operator sum and difference) = %’é - Ye _ YX@)x HAPP)
o ¥R B WG VKt ur i
- VAV, = R d

by (i¥), 12) and the postulates,
15) ( —5—%) g=X(L ¢) (by definition of operator

product) = 5 ( 52) = (XR) 7 = 5T £, by (v) axd the

postulates,
AR E e HpREY N E v _ Uz
l6)u v W PG x("’v)"—xw eq)U)(/_‘:m
1 XF o.
17) L ¢ =xd.

Let K, be the class of quotients 3£ L for X,¥ £ Kiand
Y 0. From 14), 15), K4 is closed under addition, subtraction,
multiplication, and the multiplicetion is commutative., From 16)
K4 is closed under division by non~zero elements, Hence K. 4 is a
field of operators on /~ .

Iet K, be the range in Kiu of % for X & Ky , Tor
X'e K&, X& Ka write X'~ X if and only 4f X' = - , Then
x' ~ X is an isomophism between R—Jr , Ka o By 17), we may iden=
tify X and X , thereby making Ky = Ka and the field A4 an

extension of the ring K,.
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THSOREM 27  The quotient cless, class Ky , is a field of linear
operators on /~ to ~ which contains the ring K{ e+ FYor any
BNV s F and OANEKY, K= Alend oy if of = X U

Iet K be the class of derivators and IS *the class of
integrators (including O s which is not the reverse of a derivator),
I T inverse reverses A% ' of elements
AK (with 0¥ =0,

Suppose A~ X, 1B Q" = Ky (isee are dextrel derigrators)

. . /—?ﬂ*‘ -~ * x ¥
with 3 £0, Then X= S € kX, Zo =/ AR* 5 _AGH .

Bo* Bx Q%

e y A* .
A #Z0 , multiplication by yields X = &%} =A@AR)* (5P *,

and the last expression is still valid if A= , since o™ 7"=o0,

If g ~ , then for some B@* ¢ Nlwith 3 #o , ¢:é7_f§>" = 3(;2‘

G ¥
(on multiplying on the left with ,, and using Theorem 13)=@” &%)

Hence

THEOREN 28 Ihe classes = s E are the ranges of the transforms
s 2
A 7(} ,47‘//\/ f;o—x-‘ﬁéK) JLEF: Xé/(%-

This result is the main reason for referring to the pro-

cess of generating the classes ~ , AL a8 inverse reversion,

The image of A by X is the group-theoretic transform
X '(CAX) . 1£ #P%s Ky then P*7(AP¥) = _ﬂ’_:;%*",cl;x—”'q*
independent of A (the last expression is velid for A=0O ), i.e,

the image of A by P* equals the inverse reverse of # , Hence

for all @ ¢K of sufficiently high degree
(ArB)¥7 - (AtB)9*% _ AT 5 BOX R i

P* - @P* T p*
¢ (#8)*' _ (5% _ (28)*B* _ AG* 8%
- @ o oFro* o* Te*

= X gH*¥ (using Theorem 13),
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Thus we have proved
THEOREM 29  For eny derivators g5 (A2 &* = A* "2 8% Lo np)*L 4% 5> N

i.e. the corresvondence between #<, gnd A% & k%

is an isomorphism.
let P=-9%7', Then

»
IHEOREM 30 I£ A= 3, Qe 8" is 8 - polynomial of

degree »», 4 then
’ ”

o * =
A =L Oomn 877 = f,cam—/e(a@'el*—'=”(?},

[2]

and hence

/ -
AlCS) 40T N
This follows immediately from the preceding theorem.
THEOREM 31 If #(4) = e Aomse % and
»”
B(L) = é?'e Cp OF are A - polynomials of degree 7n, »»
with »»< » , then
¥ AZCp)
Q@ )" = -
ACB) B¢ 1

Proof:  The imege 6(0)*7 { ACO)B800)* | or 2c0) equals

A4(0)% 77 o Hence by the preceding theorem

() { #0)BCO)F} = #(p).

THEOREM 32 With A o) as in the preceding theorem, for any » ¢,
(32) ﬁ(z"))‘c—ﬂ(@)}: ('qe'%'h’fﬂ’;m\/*" - o F Aoy o) [/]/
where ,41': Oi"e ad-k Akf/o ~oRrR J’ = o !, -, 71

Proof's By Theorem 31, equation (32) follows from (13) on applying
AlE) o
let J= p 1] , Then

THEOREM 33  With A(A) as in Theovem 31, for any £ /5, » [ 2ad



and ay o, G, , --- o £ S s the system

s 0~/

ACB) =g, flo=as , BF[, =T, -~ 87 f] = Oy
is eguivalent to

BG3) A Fgr (Fep™  r A FT s g ) S,
4
Where Aj = §Q aJ—kG;? oL s B L, - el

Proof: By Theorem 31, equation (33) follows from (20) on apply-
ing ACp)e

Theorems 29 = 33 provide a rational basis for the methods
employed by Heaviside for lumped linear systems, with his mystical
operator /P defined as £ *7 and Iy, , the'impulse matrix of the
kY order!, defined as ]’E [1], actually, Heaviside used these
methods in the case to be considered in the next section, where
the elements of /~ are sectionally continuous matrices, but the
theorems of this section remained valid, mutatis mubtandis,

% Sectionally Continuous latrices. Shift and Jump Operators¥

Let #(#)ve a function of # on 4 < £ 0 S , where
the complement A’c R of the domain A of A(%)is scattered, i.e,
the intersection of A  and any finite interval of /< is a finite
set, Then / (%) is defined nearly everywhere, or for nearly
all X, Iet (%) ve another function of £ defined nearly every-
where, 7(#/and 7ff/are equal pearly everywhere, or for nearly all
x ,f(,{)/:{_—l: j(’{// if the values of £ for which A &/ % (¥

form a scabtered set,

#In this and the following sections the theorems are given without

proofs, The demonstrations will be given in detail elsewhers,



AT F(X)  if and only if for any T < R, </ = 3(£)
for all # sufficiently near 7-but ¥ 7
#(#)3s continuous nearly everywhere if its points of
discontinuity form a scattered set, Similgrly, #(¢/ is derivable
nearly everywhere if A,’f‘ F(4) exists for mearly a1l T ,
The jump operator Jx #(#) = (femm,— Lira ) AC£).
#(#)is sectionally continuous if it is comtinuous nearly

everywhere and f#, £(#) exists for all T ., Then values of T
for which J% #(#) # © form a subset of the scattered set of
discontinuities of #(A),

A& is geattered on a scattered set O if #(¥£)is defined

everywhere and vanishes on the complement of 0 ,
OQT A(7)

AaMs

THEOREM 35 For any scattered set ¢~ , #(#) =%
if and only if A(#/is scatlered on 0 , Where dp,~=/eoe © accord=
ing as £=T or £#T.
Let F(4)be the class of sectionally continuous functions

F£(£) guch that £ (£)=0O for all sufficiently small £ , /A, (£) < FH)
the class of »1-fold sectionally continuously derivable #¢ #) gnd

o () < £, (#) the class of 1-fold continuously derivable

F4£) (i,e, A#) and its first (1) derivatives are continuous
everywhere and venish for all sufficiently small Z ). Iet /~ be
the class of matrices [A(4)] for A14) € F(#), let [A(t)]= [?MQ]
be equivalent to A(#/ f 3(£) , and define the sum, difference
and numerical multiple of elements of /~ as in Section 1. Iet

= /:'m# be the classes of matrices of the elements of

Fon (), 155 (£) * respectively,
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Iet L be the class of all linear operators on subsets of
/~ to A~ and define the elements &, €. as in Section 1, Define
Ls o vy r[t8]= [/ Aemd7] . Detfine Jy el ey
Ia [#04)] = [T¢ 047,
Define derivator, integrator, derigrator, the classes K, K K ¥a
Ks, Ka, K, , < as in the preceding sections (except that the
integrals in integrators are all from —o- 72X),
the SAIfE opperatar
For any real number A , define &, ¢ L by £, [#0¢)] = [
let U= [U(A)] , where U(¥)= © o= / gecording as £ <,
Z 7o (undefined for £ =o ),
IHEOREM 36  For any A€/ ,any A, « < R, Jj\é;u/:‘];\yxf'
In particular J, Eu U = Jru -
THEOREM 37  For any dexigrator #£Kg and any x < &, £ N

commutes with A s

m
THEOREM 38  Let A= §k4m~k A% be a derivator of degree > .
Yor k=90, ---, 9/, let 05 De a scaltered set and ¢§

a function of A on R g § scattered on G, o Ihen for

any #é Fm gm_?eff,the system
I © - ‘ m-/ —_ >r—f
AFeg, FFasBs T, OF =@, -, L7/ TPT"

is_eguivalent to

*
GL) F=A*g + (A BT+ A7 % - - s A, DN,
' i
where ﬂl: ék &‘J_kz\;gﬁl;fé—" Lor /=2l -~ -, rm-y7,
THEORENM 39 Vith A g8 in the preceding theorem, for any £ ¢ ~,,

¥
(35) = A*AS # (Al 1 2,07 5 . . . o A, I,



Miere for = 42, - -, el Ay = Elpn 5 (T0%5) £,
and 7 j s the set of discontinuities of bI£

What shall we mean by & @ ~oF & = ~ '
Iet X,Y & Ki be such that Xé , ¥ % #F~ (clearly such
derigrators exist, since the elemsnis of £ are guotients of ele~
ments of A~ by those of Ku )o Then VY E X P = E4 Y XB =E, X7
= X E,\ re, iee X' X = Y ELTYP o This
motivates and justifies the following definition:
For eny ¢ ¢ ~, &7 ErO = XT"E x&

where X is any element of K, such that X & € ~ o This

refuces to the earlier meaning of £, ¢ if. ¢ ¢ —
THEQREM 40 For any X & 1?0( and AR, £, gommutes
with X ¢ & X = x &,
et =A% . Then
TEORGN L IL ACO) = 3 dmee 4* is 8.0 - polynomial
of degree 77 , then for any F ¢4,
(36) 4[79)]&_/4(,40}% = (A p 72 A, 77 A - # ﬂm~,/v)‘/,
where the Ay axe as in Theorem 39.

Let dJd=pU, Then

THEOREM 42 I£ AGO) = 2, Am-e S5 is 8 40- polynomial

o

of degree and 0, , &% are ag in Theorem 38, then for any £ e/,
ang, géF, the system

arzg, Hf 582, "hdF5Bh, - ROATS 3 T
is equivalent to
7) AERIf =g+ (Ao p 774 ApT " p o ir Armay)d

where the ~/j are as in Theorem 38.
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These theorems form the basis of a rational ‘operational
calculus! completely adequate for the analysis of lumped linear
systems driven by linear combinations of sectionally continuous

motrices € /A~ and Vimpulse matrices? de =7”@ Ufor # =142 ---



10, Strong Limits of Metrix Functiong
A function /é)( on a class Z 4o/ is a matrix function

o X onl . Iet {/-1)7 be a sequence in /~ , i.e, /Q'-'[A){z(ﬂ
is a matrix function of h on the positive integers, Then

/ém' /i , the stroneg limit oi‘jp ag » —><, is an element

/[) [ /) ] & F such that “4’“ /) @) exists uniforme
ly in ¢ on every finite conbtinuity intervel of p (<) (i.eo every
finite interval not containing a discontinuity of /p €) 1s }/@A)

is clearly umique if it exists. is a linear operator on

Y2
the class of matrix functioms of h to F
Similar remarks apply to the meaning and properties of

7(,,.@ p?( s the strong limit of fx as A-—> KR , where /)x
is a matrix function of X on an imterval of K including & .
/[) X is strongly continuous in X at @ if wém /p exists
and equels fp( a) e
THEOREM 43  If ,f 8 € FCE) for all X in an interval

of £ including & and /,)(( ¢/ is continuous in Z(, X for
nearly all € and for all X € 7 , then /{?:[/f(f/] is

strongly continuous in A at A »

e,“; /-p » the strong derivative of /) in X at &,
equals 7\%:;% [7)‘ - /) # ji— is of course a linear operae

tor on the class o:E‘ matrix functions of the real variable ¢X -
THEOREM 44 If 3, f(é/ & Fce) for all X in an
interval I of A including @ and Sy /-’ ¢)  is continuous in

Z() X  for nearly all ¢ and for all ¥ €7 , then J%[/;({)J

exists.
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THEOREM A If (- v) i8 g complex=valusd function of ¥ and
/} = [A (£)] amstrix function of ¥ on an interval T of R
including A , and the ordinary derivative — /%)and the strong derivae

tive A—’%c /4 ~ both exist at < , then j%c <(¥) £, exists equal to
<(¥) 3 £, A.,('(w/y- |
/ /[]C Ay, the strong integral of /<. x inxfrom

w 10 4, is an element € / such that //p (£) Av exdets
uniformly in £ on every finite continuity interval of 7#(£)
THEOREM 46 If A, (t) & ~(£/ for all x in the closed inter=
val (4,4/) of R and is continuou.s in £ ]( for nearly all £ and for
all % ;(a/,&-)} then/[fy(fjjﬁ(y exists,

It can be shown that equation (17) is valid for sectional=
ly continuous matrices f= [ F(£) ] (and with all integrations
from —o9 to £ ), i.e. |
(38) pPo)f = | [%G(f—r/f('r) AT
Where £€/~ and F(Y) is primitive derigrator‘ Ao) BD) * of
positive rank and G = [G(£) ] = 0 PO) U . With the
notion of strong integral introduced above, (38) may be transformed
as follows:

[LLatt-TrAnLT]= [ [“em) G Ch=rd 7],
since now G (f) = o if ¢ <o (this wes not true in

the preceding sections, where [/ ] wys used instead of U ),
=,.,/,of/’f) [6a -7 ]dT = f For) & [Git)T LT
oo

= _{_%/(7) & Prp) LT , wHeres S = p UL
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Thus we have oghovm (the details will be given elsewhere),
(9 PR =_[FrE Tp1d T,
which is a resolution of / //40) into a spectrum of ‘retarded impulses’;
It should be carefully noted that the derigrator /7 ﬂo/ on the left is
proper, i.e. an element of A/ , whereas the 'derigrator! in the ine
tegrand is the imverse reverse of /(A), i.e, the image of A(A)in
/El » Nevertheless, since.the rank of /7 ) ig positive /Tp) e~ 3
i.ee the integrand, and the integral, belongs to /~ . If the rank-

would

of /”my were O , the integral sws$ be interpreted in the ‘weak! sense
4 :

of the next section.
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n, Veak Limits of latrix Functions
Let 2, A; be 2 sequence in the complement of ~ in £ ,

i.6. the terms %h are ‘improper'! matrices. Sincs ﬂ;‘ is no‘t the

Lo I

matrix of & function ¢, (¢) , what meaning can be given to

~f ' = . .
Consider the 'imsges' X ,,&,,1)( end ¥ '/&”‘ '/of i

n—> 2

where X,V €Ay . Supposex%.j V% are in / and /4”' 7‘)@2

P>

R

" p—=>f

both exist, Since the operator%/‘é: is homogeneous with respect

to multipliers 5"/1:/ )

o, X, = s VAP = Ll xvh=x Ly
hence w"%mx s/;’ém V@Q e

h PR

the imege operators cannot produce uequal resulis, Moreover fém G .,

itself is mcluded, with X=/ , These considerations motivate and
justify the following definition:

,&Qr ﬁ,_l s the weak limit of % as h—>C gquals
=P o0

“/,,ZM % # for any X €‘/g sueh that 7(%;, g and

jt_»;p@ 7(;@/,‘ exists, Since the existential distinction between weak
g’

and strong limits is often important, we have used the distinct no=-

tation /éw

N —>
In terms of *&ﬂ' it is possible to regard the improper

elements of F as limite of sequences of proper elements € /~ , there-
by giving the improper elements an intuitive significance which they
have hitherto lacked, Thus

= p0=A" o W[ € 7 o] o, P Ha e 0ee]

This interpretation of the impulse matrices and the other improper

elements of F is very helpful in building a ‘picture! of £

adequate for the physical applications,
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The notions of weak continuity and weak derivability are
evident modifications of the corresponding 'strong' notions and we
shall not stop here to give the explicit definitions and state the
prinéipal properties,

Wie are especially interested in the notion of 'weak' ine

f}ﬁc/x ,theweak“_}_ggra"of/{()j_gxma_@é,
equals A f?(/:/)rfor any 7( €/f°// such that X/; €F for any7(€(a:1’)
and the strong integral f X f dx exists, The weak integra.l, if it
exists, is independent of X . The formal propertles of f /) Jx
follow from, and are the same as those of j) X f d X,
IHEQREN 47 Ferewy Jf= [F(9] cF

ff(’m)é",r §gr = [Fsad)]
*

uhexe Fltsab) = Fro) f a<l<éb,
- o 4_/_1’ Z.1<4 oY Zé>b

is undefined for Zza OY Z=4
The proof of this theorem depends upon the following
LEMMA  For any /’(é) € F(&

f/‘mua I E f/’(’““ 2

Proof: It is easy to verify that

%//’h({ra)b)f fl‘('r)(}(é T f/‘mw/a - dT
— = f P U(4-7) U(a-1dT

f Pr) v(t-7) Jr = f’/’(ﬁy(g 2d7 f Lo V(-1
fﬁfﬁ O(4-7)d1r - f/’(r)(/(a 7) 7 .
f}P(T){U(é 7)- U(a- 'r)}c/f' fzp('f‘ a,b)dr

Hence
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The proof of Theorem 47 may now be outlined as follows:

g 9 £, S ) £ WS
Fhen 547 = 97 8% £, 547 =P e ,
_ ;*«ﬁf@@ vdr _ 7 [ e[ o] 4r- g R o]

= @*ff}/m,uw]:/p*;’@"[/‘(z;a,é)] =[Fesa, )]

THEQREM 48 Forany £ = [ FcOf € F
e
2 f P 5, §d7

This is comparable with the resolution (39) of the preceding
section, but here the integral is weak, whereas that in (39) is

strong.
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12, Appendix

Satisfactory rationalizations of the 'Heaviside'! operational
calculus have been developed recently by L. Schwartzl and J. G.
Mikusinski? (the superscripts refer to the Bibliography), using very
different methods., These methods will now be compared with the
method of inverse reversion by reinterpreting the fundamentel equa-
tion (32) in terms of the ideas of, first, Schwartz end then
Mikusinski,

Let /~ be as in Section 1l; i.e, the linear class of all ‘
matrices ~ = L/ (#)] where F(Z) is everywhere continuous on
R 40 S . let ¢ be the class of all matrices &=/ & ]
where @7 £/ is on & to C , is o ~fold derivable everywhere, and
vanishes for all sufficiently large / 4/, For any sequence { & f

in qg , let K #,, be the element < @  such that for
77— <0 .

RO 2, OF Poct) — OF BE) 88 w7
uniformly in & on every bounded subset of /&, ILet ~ be the
class of linear operators Aon @ t0 S , i.ee A & is an ad-
ditive homogeneous function of @ on ¢ to S and v/éh—:gé Acf,, =L
for any mill sequence {¥»} in ¢ , Let L be the class of lineer
operators on ~ to ~,

For fs /= o ¢ , let f P ———éb;&‘)fﬁ(f)‘&[-
Then /* # is a linesr function of ¢ on @ to S, and it is easy to
see that /= is isomorphic with a linear subclass F' of ~ , Hence
Fe ~ , upon identifying corresponding elements of <~ and £ 7

T &f= [, A&)] ¢~ 5 then
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(D o=/ Ti) dE) L = F(E) B(E) /;io [ St & oL,
i.e.
- [ TR FCE) 4= (AF) D v flo) (o).
More generelly, if O~ #=F, then
40) ()™ Fe) g™ (&)l = (O7F)F + F ) de) ~ # "oy #(0) &

-+ ()7 Flo) g7 (O) .

Define el by (fpF) #=—fAF for £eF g 4.
Then (pif) @ =p(fr) g = - (pFAlOF = <0,
and in generel, (/o’?/)gi:(—)” AO7 & o Hence if £e& ~,
(P7F)B = "L O = Com) [ 21k) 67 k) £E.
In particular, ])”[/]qg = () »[?h(}éj# 5 g ¢m-//(0)

7
o (70)16)¢ = (‘}»¢(M/(O) Wi J'_:_: ffl]‘
Equation (40) may now be written

(p"#)¢=(0"F) ¢ + {/(""}{o)/aw‘/{"—”(o)/qw - /(o)f”f (11,
which is equivsalent to
(41) PF = B+ e b P+ A PTIUT
with A = # (o) o Equation (32) now follows, with the notation
of Theorem 32.

The elements of = are essentially distributions in the
sense of Schwartzl (except that Schwartz tekes /& =/ oj’?f £) (L) LE
for £¢ £ , where ve have /o With Schwartz's definition and ~ as
in Section 9, the preceding discussion, mutetis mutandis, leads to
equation (36),) We have had to take some liberties with Schwabtz's

notation in order to preserve the form of (32), but on the whole the
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changes seem to be improvements,

For a detailed comparison of inverse reversion with
Schwartzian distributions, the exact relationship between 7~ as de-
fined above, i.e. the class of linecar operators on QT to S , and
£~ as defined in Section 8, i.e, the range of }f for /&~
© £ X &Ky , must be determined, This has not yet been done,

For the comperison with Mikusinski, let #~ be the class
of matrices F= [A(¥) ] where #(¥)is on £+ , the non-negative
real mmbers, to C , is continuous for & > O and right-contimous
at £=0, Define sum and difference of elements of /~ as in Section
1 (but not numerical multiples, for reasons given below).

For ,{;‘ £/ teT 74;;- [/af/ffrjjf,(—fr)a{’/“].

Then (cofs Mikusinski?) /A is a commutative ring without divisors
of zerc, and hence may be extended to the essentielly unique quo~-

Sk o 7 has no unit element (there is no func~

tient field A =
tion J (4 such t;hat[/j'('r) FE-T) LT = FC£) | i,e, Diracts
tfunction' is not a funection)., However, d =";‘ s for any o F &,
is the unit element of the field ~ .

Let £=1/1", sothat &= FLU], Lot F'c A be
the class of elements f [£ I for <¢C , The correspondence between
L&C and pI<] £ F'is an iscmorphism, Hence C< A~ , upon iden—
tifying < and 7 (<], Moreover, for any A€/,

LF=pl]f=p [[f{ fea) €] = [£ A€
from which it follows readily that /~ is now a commutative elgebra

(linear ring)and F is a linear field (this result mekes unnecessary



the definition of numerical multiple of elements of /~ as in Section
1).

IAfeF , then P
Vi 22 ERVARAC SR
and ;,f:‘»@;ﬁwao:,(p/y-;gﬁ[/] o In general if

OV L€/~ 5 then

275 = S h (S prSrn e - AP
ices (41) holds, and (32) follows immediately.

Thus in this very special case, with S = C and the
domain of (%) vestricted to £+ , the classes / , £ play the

roles of the operator classes £ N /. in the more general theory,
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