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Sunun~ 

This thesis develops a new method for transforming 

and extending the classes of operators and operands which appear in 

certain linear operations in such a way that restrictions on the 

ranges and domains of the operands and on the algebraic manipula-

tion of the operators are reduced or removedo In particular, the 

method leads to a complete rationalization of the ~ operators and 

irrrpulse 1functions' employed by Heaviside , Dirac and others in the 

analysis of certain linear systems. 

In this method, the operators A of a primary class k 
Jl 

are, in effect, first reversed, forming A ~ then inverted, form-
:it-/ 

ing A , the inverse reverse of A , and these operators are 

utilized to effect the remaining transformations and class ex .. 

tensionso The method is therefore epitomized by the phrase 

inverse reversione 
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Introduction 

Let F be an abelian additive group and L the class of 

additive operators A on subsets of F to ,F • A ·is com2lete, 

~~trictfill, univocal according as (1) the range of A is F , 

(2) the domain of A is f , (.3) Af::: o implies /-::o for / in 

the domain of A ; otherwise A is respectively incomplete, re

stricted, equivocal. !/ is ~ect on ;: if (1), (2), (.3) hold; 

then A has a unique inverse / / 
A~r EL (t'.e. A~! =AA-(= I lo>- E F:) 

SuQJ;lOS§?. KcL is q_qommutative ring con:taining thELunit 

element I of L and §.Bgh tha~ _every non-:~~ A~ I< ~tight)_~ 

verse A'~ L (i$e. AA Jff :::- f foy f E" ;:= · • Then A is com ... 

plete, but possibly restricted or equivocal, and Aif is unrestricted 

and univocal, but possibly incomplete.) Let ,(*be t he class of 

* ~ all A for 0 I A- f" K , and Ag :: KI: , the class of all products 

AB~ for A
1
i3 € ;t .. The .£Qm!11Utator of A/3 is (/-1

1
13)-= (/-llS)(_/.5'-VA) ~L 

~t """' / ) A JfLJ 
it vanishes if /J exists. In particular, let A ::- l/-1 ,,A ~ I - / 1 17 ' 

~ ~ 

Then AA= D and A A : I • 

Suppose further that (A 13 /f = ;f~ /3 jf 

kiJ is closed under addition and subtraction: *' t- ~ ) 
An~ fA R *~(A t3i. ±A1 .. J3,)(f3,f5'-) 1f A,f3,J/-}1..13, €,{q 

/11 f.>1 - 1. fJ-z. I d 

}\< 
and that '13 inclu.des. a,_Iing /(/ §~h,_j;hat (1) foL.,anX A Cl( A.13 <{J 

for some /$ ~ /( , (2) even_nQD":"Ze:ro element of /(/ ~~ 

. *' * ( )°* and univocal, and (.3) (A, 13, ) (Al.. 13.,_ ) ::- A, ,4t.. 13, ~l. 

il A, /.3
1

: A-d3, ~ ~ (/ (then I({ is commutative and contains k~ o) 
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Our main result is that under the foregoing suppositions 

F may be extended to an essentially unique abelian additive group 

F -::: ~ and A:/ may be extended to a unique field /(J = llJ /!rJ 
within the cla~s l of additive operators on F to F .. 

Jf -( 7f -I 
The classes T and !rJ are the ranges of A 'f and A X 

respectively, with AEK/ f fF; X ck* , where ,Af-r is the in-

verse reverse of A • Hence the process which generates F and 

~ is called inverse. rgversion (see Section $). 

Each non-zero element of Ki is perfect on F • In par-
t-1 -

ticular A is perfect on ;: , whereas A< A' is merely complete on 

~ r (since A exists). We can therefore reduce the algebraic re-

strictions and limitations on equations involving operators A E" K by 

replacing them with expressions involving their .Il§Afect counterparts 
-}{-/ 

A ># !his is the ess~:qt;bal idea_.Q!:,.;the 'Heaviside 1 calculus.. It 

is implemented by the following considerations: 
~ -( 0 

(1) The correspondence between A and A is an ismorpbism 
" 

(Theorem lj): _ _ *-I / )*-r_ ')f..-/ "lf--f 

(A t8f* '=Alf '±13 ahc (A/3 - A 13 

(2) For any f in the domain of /~ (see Theorems 3 :2. 1 If. I ) : 

A~-f°-A · f = A*-1,,t ""·.~. Af =A'<-'r i-AJf 

"" The form of A r will of course depend upon the inter-preta~ 

tion of f'; /(, k ~ lfc1 • In Sections 1 "' 8 below, the relationship ,., 
between A and A is developed (Sections 2, 3, 4), the form of 

(A, B}-=- A/3'K- ll!I is determined (Section 5), the classes ~ and /(/ 

are st,udied (Section 6), a useful' transformation' calculus is outlined 

(Section 7) and finaJJ.y the inverse reversion process is carried out 



(Section 8) for the case where F is the class of everywhere con

tinuous matrices [ fUJ] on the real numbers to a complex Banach 
l., i.. -1 

space (see Section 1), K is the class of 'derivators' ,A= ao AP I a, JJ f '" ftl-,.,.; 

* ~ K is the class of 1integrators 1 A characterized by the 

syst.em A A Jff-::: f At'/= lJ ;{)Alf/=- 01 '" J ID ~'1A K!/o = 0 
J lo 1 lo 

(a constructive definition is given in Section 3) and Aj is the 
"X 

class of 'derigrators 1 A 13 of non-negative rank., It is shown that 

the isomorphism between A and l~-f provides a satisfactory ration-

alization of the methods employed by Heaviside for ltunped linear 

systems, without rAef f cc transformations of the operands. Thus 
jf- ( 

Heaviside's mystical operator !' becomes .k9 , the inverse reverse 

of the elementary derivator, and Dirac 1s 'function' r becomes 
7(-1 

JD [ t] , where [ t J is the matrix of the unit function. 

In Section 9, the essential steps of the inverse reversion 

process are given for the case where F is the class of sectionally 

continuous matrices [ f(tJ] , with fa)-= o for all sufficiently 
y 

small t , K is the class of derivators A , as above , fi: is the 
K ~f 

class of integrators A characterized by the equation AA = O 

and the condition that Ak f and its first (n -(} derivatives be every~ 

where continuous and vanish for all sufficiently small t , and tfJ 

is the class of derigrators, as above, of non~negative ranko 

'Strong' and 'weak ' limits, derivatives and integrals of 

sectionally continuous matrix functions [ fx ( c) J ()} x are introduced 

in Sections 10 and 11, and the representation of elements of ~ 

and 1:J as infinite superposition integrals is given. These sections 

barely outline the calc'UJ.us of such matrix functions; the details will 
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have to be presented elsewhereo 
')(' 

Various other in·terpretations of G A-:, K, lrJ have 

been studiedo Thus F may be taken as the class of sectionally 

continuous matrices [ f(f)] with f { 6) -- o for i < o (Heaviside case), 

* k and .k'.J as above, and A characterized by the equation 

A ;4Xf. =- O and the condition that A~! and its first (}i-1) deriva"' 

tives be continuous for t ,;;.o and vanish for i < o (and hence for 

t = o ) o Or /= may be taJcen as the class of matrices [ K>\J](essen

tially sequences), where .fl~/ is a function on the non-negative 

integers to a linear space, A::' as the class of operators 
hi \,,'I T/ 1l A= q0 E f tf,E -f ''• f t?i., , where E(/lli)]-=L.J (•-d-IJ)1 

k }!'" as the class of operators A~ characterized by the 

system )i - f , I 
A ,4X;!::: f J?/:: 0 L= fl :: OJ '" 1 E ffo = OJ 

I lo J 0 

and /(J as the class of operators A Blf. of rank >r o (a valid inter

pretation also results if £ is replaced by A , where L1 [ f (~JJ 
= [fCli 4-t)- .Pl.i1J . With this latter interpretation (or others which 

are less familiar but more convenient)~ the method of inverse re-

version and the related concepts and techniques of reversion, commu-

tation and 'integrator' transformation have proved very useful in 

the theory of linear difference equations, including fractional 

differencing and summation.. The method may also be applied to cer-

tain 'differentiators' of the Frechet and G~teau.~ type in arc-wise 

connected spaces, the right reverses then being given by appropriate 

line integrals. These and other applications will be presented 

elsewhere. 
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1. General_Jlefinitions and Not§..tjons 

Unless the contrary is explicitly indicated, F(~J is the class of 

everywhere continuous functions r of /i' on the real numbers /C to 

a complex Banach space S / ~ ( :L) the subclass of F ( L) whose 

elements are 77- fold continuously derivable, /.;*(:£ J the subclass of 

~ ( L-) whose elements, together 'With their first (-n-1 ) derivatives 

Vanish initially (at /= 0 ). cprcl<P-n(~ and q,.: { x-J are the COrTeS

ponding classes of .functions 7 of ;l on /? to C , the complex number 

class. The notations \.(::t- ...c 'I 
ct_// Tf;C=a.. 

at ,L- =a... . 

will be used for the value of ~ 

The mark [I] is the matrix of the function /er-/ " F is the 

class of matrices corresponding to the functions ~ /-[;:t-) and similarly 

for r;; r=; -t(- , etc. Equal matrices correspond to equal functions: 
./ 

[I ] = [ 'J ] is equivalent to / /C 'j Le" to ,/- :::- J for 

every j o The sum [~ J -f lJ]and difference [I]- [ /] of [r.l [ 7} 

and the product of [f} by o< z C are defined as the matrices respect-

ively equal to [./ -1-J J / [ :f - J J and [.,,; f] o and aE S v[f] 
/ 

is the matrix equal to[or] • When considering functions with dif

ferent arguments, the more complete notation [ / J t is conveniento 

Thus [ il (;t-1)];6 = [ Y.. 2 
- ~] 1:- • The value 

or [f J Jc;.._ £!'.. [I} at a is V f f • 

In practice, contrary to the usage above, single letters 'Wi.11 be 

used for matrices and the same letters with the argument in parentheses 

for the corresponding function: / =: [/Le}} 

An operator on a subclass K of a spa.ce1;: t.o a subclass K 1 

of a space E' is a mark f1 such that A-:k is a function of 7c on K to K{ 
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The domain of A in "E' and rrui.ge of A in L ' are those of A -y: o 

Operators A/ !3 defined in a space Z' are egual on l{<E'H /1 J: := 6 J::' 

for K-t: K. If =13 if they have the same domain in L: and are equal on 
I 

that domain. If 13 is on t<c[; ko t<' c 'E.' and /1 is on K' <- 6 

to I<'' C ~ " , then the product /1 .8 is the operator defined 

by fl B) ~ -= /l ( 1.3 v) F'O/.I? "Jc c 1<. 

We shall be mainly concerned with linear operators, i.e. 

additive homogeneous operators on linear manifolds of linear spaces to 

linear spaces. The null domain #A- of a. linear operator in a linear 

space /l is the linear manifold of all xz.A such that /-1 y = o • 

A set r\ <ll.§]2fills ?\.._' with c(oic R) if every element of A is a finite 

linear combination with coefficients in C (o..e A;bf elements of f"\ ; 
I 

if moreover every such linear combination belongs to A: , then r\ is 

a basis with C (oR I?.) of i\.
1 

• For linear operators ~ 13 defined 

in a linear- spacer-A ., the sum /J r.13 and difference /1-8of /-1 and 8 

and the product of 11 by ~ ~ C (oa R ) are the linear operators respective-

ly defined by (/7- :/- /.3) / == /4 / r-L3 -0 (/-7-13 J / = /1- r-.8 ;5 c4)I /).::: ( o( A)/. 

The operators .,,6)1 :( ~ are defined as follows: ~ f =f ;i (( ,L J J 
Fo/C r ~ F, CJR <£,, ; I ;f' =: [ .i~r•J ,/._ r 1 for 

f ~ r <>t< <f ( /.., ,t- is replaced by /_~ after Section Q); 
,,,(,/' , 7 Po~ /~FOi(? ~. -o.. 

~ .f = {<Z ./( ,.{ !J A These operators belong to the class L of all 

categoric~ linear operators with ra.~ges and domains in r:" , i.e. opera-

tors which may be defined without specifying S • 
A correspondence P{ le/ :f J between classes X; Y is uni

vocal in Y i i for any 1(,, ;vl.. t X and any 'J:~ 'r', ~1)(1/,i}}ind /::C-'11:.'L;/j)implies 

-V.1 = VL . The correspondence is biunivocal if it is uni vocal in""K and in '/ • 
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If A is on operator between l<cZ and 
I I 

KcZ' , then 

A ~ -= ~ is a correspondence between K, K ' • If this correspon
~ 

dence is univocal in ")( 1 then A has a unique right reverse A on 

K' to K • rr Ax-=~ is equivocal in -x (i.e. not universal), 

then a right reverse exists but is not unique (a supplemental condi• 

tion may then' be applied to make it unique)~ Similar remarks apply 

. * I 
to uni vocalltli ty in 1J and left reverses A on K to /'( • If 

_, ~ ff 

AX= 1;f is bitmivocal, then a mique inverse A =-A= A exists 
I 

on I< to K • 
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2. Derivat~ 

be the coefficients of a /fl- polynomial 

P e The coeffj.cient segue nee of P is the sequence [ a k f such 

for .f = £$ 1, •,,, hi and a.le = o for k ;> ~ • Two 

.'1 - polynomials ?, Q are cogredie,.nt: r' rv Q if they have the same co-

efficient sequence. Clearly cogredience is an equivalence relation 

(reflexive, symmetric, transitive) and cogredient .D- polynomials are 

equal (as elements of L ). 

For _an:v two JiO _ polynomials /', ~ the following state-

rnents are eguivalent: 

(1) p :::- Q 

(2) l' and Q ye cogredient 

(.3) 

Let [ a1c 1) f b~ ~ be the coefficient sequences of ~ Q and let 

IC= ~ C'k 1t9k , where C'k ~ Cli: - /,It • Then IC= a on ~ Jt' 
1 

hence A 'r ->t v..,. JC [ t,, J= lo :: o, so that R = c, l:) f cl.. ;f)"l...f , ,, I ,_o() 
Hence 4 ,-hV...,, R. [tj =- ('

0 
-= o , so that R=-C'z.~f. "' . 

,,,_,. c<> I h+ I 

Continuing in this way, Ck : o for k ==- ~ 1, .. • 1 i,.e o (2) fol-

lows. Of course (2) implies (.3), and (.3) implies (1), since fh ~ is 

within the domains of f', Q for all sufficiently large >-i • 

A,_derivator A is an element of L. equal to a ..40- .12.Qlynomi~, 

say P • The coefficients, ~r..fill and coefficient sequence of A are 

those of P ; this is unambiguous since, by the preceding theorem, any 

other ~- polynomial equal to A is cogredient with P • In particular, 
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every 1)- polynomial is a derivator. Derivators are cogredient if they 

have the same coefficient sequence. 

A sequence [ a1e] of complex numbers is ~k..Bull if al-

most all of its terms vanish, i.e. tlk -= o for all sufficiently 

large k • For each nearly null sequence [ e< k f , there exists a 

IJ- polynomial P whose coefficient sequence is f a k ~ • Let 

2.~ Clk iJ ~ be an element of I.. equal to !' • Then ~ ale IS~ 
is a derivator and [ ak. j is its coefficient sequence o Conversely, 

the coefficient sequence of every derivator is nearly null. Thus 

A ~ Lk, Cf le. A9 k is a bi uni vocal correspondence between derivators A and 

nearly null sequences {erk f • 
Let A, /3 be any derivators, and let f ai:f J f i.,~ be the 

coefficient sequences of A J B • 

that A ± 13 = 2~ ( C(k t .b-'J ~~ 
From the algebra of L , it follows 

A 13 -== 21e ( t C/-f bfe-.t)J[) k 

and al A == 0(o( a,e)~k 
of A f/3 1 A-B ,A!3, <¥A 

k 

, and hence that the coefficient sequences 

are respectively [ak.f6,tfJ {e<k-J,kf 
[ ~ a.e /, k-.e J, [ c a kt • The class /\ (D) of all derivators is there-

fore a connnutative ring <: L which is isomorphic, through the cogre-

~ -t - .t 
dience correspondence Lk qk !) ......v L1c qk e with the abstract 

ring /( ( e) of polynomials in the 'indeterminate 1 8 with coefficients 

E C o Through this isomorphism, all the factorization and distri-

bution theorems for 1((6) are applicable to K(l>) • In particular, 

if ao is the leading coefficient and o(, I o( <.. I I I , / c( >i..i the 

zeros of a polynomial !Ye) E /((8) , then P(D} = t(
0 

(LJ-4,)(f)-o(.J,,, tp.d,.,, 

is the factorization> unique except for the order of tne 

o/ 's , of the iJ- polynomial P(D) cogredient. with f(e) into 
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lJ - polynomials of degree ~ / • Moreover, D- o( = €,,( ,D €'"_c( , 

i .. e., the §im12le., derivator ~ ~ (o-o{) is the transform (in the group-

theoretic sense) of the elementary derivator D by f:o( , whence 
k. k 

Do( ::- E.o( D €-At • Vie summarize the fore going in 

THEOREM 2 

ao =f o, 

are the zeros in c of Pf e) m Y,, ti I ".I r-y-

are the distinct zeros with multiplicitiera Jn, 
1 

ln 1 , ,, ', ),,,._ • 

Moreover, if PrD):::: 60 (D/,),., {!>;19,,) then C(
0 

:;- 6
0 
~ 

~' , (31. .1,,. J (3 .,_ is a permutation of cf, 
1 

o( 7..., ,, , 1 qi'"" , 

Thus a derivator A of degree >., is characterized either 

by its ).,., + I Coefficients 4'
0 

Q 1 , , q ~ Or by its mod.uJ.e 
I 11 I ""' 

a 0 and ~ice§ o(, o( 1. , ' • , o/ "- where the first, second.1 ', , , li. 'f{ elemen
' I 

tary symmetric functions of the indices are respectively equal to 

- ~ > a 4 
, • • • , (- )~ Q ~ 0 The derivator is normal if 

Clo ao ao 
t 

is module -= I • 
/I 

TP'.J50REM 3 

a,nq ~!'!I f' E F,..,, 
1 

(1) F, Do(, I', De:{, ~1 ~ ,, I J De(, 4'1. , ,, lJc(i.. p 

lire linear combinations with coeffiq:i&n~§ in C .Q!: 

(2) r1 ~ r, v~ o A ... 1 ,, . l>A D13 ••• D r 
I , r, r- ' ' r• r... ~i... • 

For k :- / i , , . ~ 
I I I I k 

l>o(, Do('l.,, I Dot.+. f = DY -( o{, f af-i. f ", f o(k) D k-:e f ,,, f (-) ;r, o(1.", {f. 

equations determine ..O,,,recursively as a linear combination 

(3) 

These 
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with coefficients depending only on ~ / c/ 2 / - - - ./ <>< k 

If o<,..1 -<-...../ - - - ,,. ..< ~ are replaced by ~,/ / :f= / - - - ,, ,d?->-> ./ 

equations (J) give ~ 4z 
of /, ~ r --- -~ /e r , 

as linear combinations 

.I .I J hence ~ ,Lf}/3~ - - - ~.1e is 

a linear combination of /; ~""' r, - - -, ~..<, ..& ... ,,. - - - 4k :1-

If P ( ;(} is a polynomial in .L- of degree -:rn with coefficients 

in S -' then P = [ .P( :E/ J is a polynomial matrix and S< P is an 

exponential-polynomial matri..~ or simply an e~onqmial. The degree 

and the coefficients of P and of <.?',( P are those of P( ;(') ; the ex

m~ and ~ of B.t P are ..<.. and ( -<.1 Jn) • The element~~ ex-

ponomial of type ( oL:. 1 7n ) is ~ J... [ :i >'>-1 J • 
13;::; 

717,<_ 
THEOREM 4 If :t-; 0 I L:t- J] f;Q! ~::::: ~ 2/ - - - n / 

where the 5 
~ 

~ distinct com12le~c r7j_ j ~ .12.m ~//,.1--/ c>(---n 

J.mlies ~ =-o i.e. o; . =o fg_r j :::: 0 2 / • ,<.I - - -./ 77l,.L. 

Proof: 'I'he theorem is certainly true for 77 =/ : E«, p = 0 

implies I-? =O which i~plies. ,// ,f!J k P, /o = V/k ~a for 

" Assume the theorem for -n ~ k • Suppose 

c=-.,(, P; + c.,( z.. Pz. r - - - -t- ~kt-i fk.,_, == o • Then 

(4) €13, P, --f- c;L Pi -f - - - 7- C~k ~ -::;: - Ptert 

where ;S,i.. :::::: o<A. - o<k+-1 

distinct and r 0 • 

for A-=/., z../ - --,, k ; the fl.A are 

Clearly the derivative of an exponomial with 

non-zero exponent is an exponomial of the same type& Hence if A: is 

k k 
greater than the degree of P.e+ 1 ,,<J> !'<. 2:'1· ~l fj' = 2 . c-. • ~ . 

, ( <T I I /S; 't' ;- = 0 .} 

where Cl> J is a polynomial matrix of the same degree as P/ • 
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From the inductive assumption, the 4> j vani sh, hence each is of degree 

0 and so are the 0· for I == /.,, z/ - --_, /e . From (4) , ~+/ =- 0 

"7; 

• Suppose :E.;. I\,<. ~ = O where the 
I 

A,,.:. Z. C • Then by the preceding theorem <\. ~ A :=::- o _,, k. =- ~ 2_, - - J??. 

Hence the /'\.--<... vanish if each • Thus non-zero exponomials 

with distinct exFonents and wit h coefficients in .5 are linearly inM 

dependent with respect to ~ • 

Now suppose the coefficients of the P<. are in C • 

= o / where the er--<- are in S then by the preceding theorem, 

0. P,._ (which equals a polynomial matri.>:: with coefficients in S ) 

equals zero for -<. ::: ~ z / - - -,, 71 1 and hence the VA- vanish if each 

P...<.. ~ o • Thus non-zero exponomials with distinct exponents and with 

coefficients in C' are linearly independent with respect to S • 

Since 4,e { eo<'l k j = ~ ,,<9 £ [_;{ kj = o if 

J. /' -k ./ the linear manifold N1 of the elementary exponomials [ e ~ ;C ;t. k ] 

for j . == /.; 2/ - - - ;t. • k::::: o / _ _ _ 7?'1
1 
-I is cert ainly 

J J J ./ / 

777 '71 ,r, -n?A, 

within the null domain of the derivat or /1 = ~ ~/ .. - - - ~/'t • 
I ""z. 

It will be shown below (see page :--- ) that they span this domain. 

Since they are linearly independent with respect to S , they form a 

basis with S for the null domain of r:l .. Other bases with S 

for the nuJ.l domains of derivators (i.e. linear combinations of the 

elementary exponomials, with coefficients in C: , which are linearly 

independent \'V'i.th respect to C ) are given in Theorems I/ and 2'f . 

3. Integrators 

Let _Lo<. = c-~ IC-.< e L clearly t he domain in r:- of _Lo( , 
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and hence of ~ »t is F . An j,ntegrator is an element /-i .t L equal To 

for some ,(.A. ..c, - - - / -< ~ <E C 
/ / / • 

The module and order of /1 are / .u and 7?? ; the indi~ of fl are 

the o!' 5 • /-1 is normal if its module = / . Any complex numbe~ ~ o 

will be regarded as an integrator of order zero, with module~ , but 

without indices. 

It will be shovvn below that for ~ / -,....; -7 0 1 ,,£< Lor, hi. - - - L«?h =:, 71-<~, 

115; -- -71"' if and only if,,£< =- J./ and the /3 '5 are a permutation of the ~ $ 

so that the module and order of an integrator and the set of its in• 

dices are unambiguous (the set of indices o<'o / .,,1, _, - - - , o(' h7 always 

contains exactly '7?7 elements, whereas the number of elements in the 

class of indices is the number of distinct indices). Integrators of 

the first order are iaimgle. The integrator I of order I with in-

dex O and module / is elementary. The product of two integrators 

is an integrator; the order of the product is the sum of the orders 

of the factors; the indices of the product are those of the factors 

together. The module of the product is the product of the modules. 

THEOREI\11_2 The product 1113 of two integratot§ 11..,, 13 is commutative: 

lfl.3 =8/1 

Proof: Suppose, without loss of generality, that ~1.3 are normal. 

Let 11 and 13 be replaced by equal products of simple i ntegrators. 

Since multiplication in L is associative, the theorem follows if 1'913 

is unaltered when the elementary integrators are permuted& This will 

be the case if .L.~ ~ = L/5 Io( for o( .I~ • But the latter is 

- - - L-.L~ 
true: for any / ~ ~ .L~ -1,,.s - ..<-/-3 1 

as may be seen from -'--,< ~ = [ e o< k £ ~01-"'-J 7 
.{ ~ -/S/-rv-) wl, v- d r J 



either by integrating by parts or by reversing the order of integration. 

TBEORmJl 6 For a11L..distinct_ comnle* _nu.mbers o( _/ c<,_ ./ - - - / ,,,<??? 

[ I L -7.x-, L L 
..<, ~ 2. - - - ..<,..., -::-(. -f- 2- -f- - - - +- --.:.°'~?">->~----

c(, ..< z - -- ..('-,.,..,} (-<z...<3---..(?>,o<,) (o<.,..,.,o<,o(z - --,,(,.,.,_,) J 

where (-0 .,(2 - - -o/-,....,) =- (~, -..<z..) («; -c/5 )- - - (d, -.,,.(~) .1 and the 

denominato:r.a_of the terms following the_j'irst ~re oq~~ined from i~t~ 

~_irs t by cyclical permutation of the <><: s . 

, the theorem is true 

for 777 == 2. • Assume it is true for 7-?? =k. Then 

The theorem follows for 7n =/U/ and hence for any 777 ~ z if the co-

efficient of 4~ f-1 equals I 
• It does, as may 

be seen from the following 

Lemma 1 Egr any distlnct complex n_umbers 

Proof: For any polynomial /f;J on C to C of degree <>?? 

/(j::./{ot,) (}.t4---./.,.._,) + /(.t._) ()o<~ ---./,,..,.,4)+ ---+/(o<'n,) (j~t --- ot,.,.,_,) I 

J (,,..(, ..( >- - - -..l'?n) (..:'._.,{ 3 - - -ol-,~1) (..f-,,.,D("I - - -,,.('-n.-1' J 
this is the Lagrange interpolation formula. In particular, the equation 

holds for k = o,. t/ - - -./ -rn-1 with /(J).::: J k / and the result 



follows upon equating the coefficients of J 777 -/ in the left and right 

members.. The case k = D completes the proof of the preceding theorem. 

,C-
Since _/..,,( r = [ L cz..<(£-rJ /(rJL r 1} the ·t;heorem 

is true for m ~1 • Assume it is true for 7n= /e. • Then ~k~~ :::;..z:/·_z; r 
== { /_,;!(:t--r)k-t .<(,t-r) /r a<(r-trJ/ II } 

/ 0 ( k-/J / e L e" (<r) d <r a 7 
• 0 

= f1t-r)le-1 ;f.-<{,i-rr) /(<rJdcrclrl = [ r ;i(;l-r)k o<Ji-r) f(r.l d r 
. 

0 -1J/ o J /<J k 1 e r / 

after the inevitable integration by parts. Hence the theorem is true for 

?71 ""kt-I and by induction for any rn ~ / • 

Other important properties of integrators can be inf erred directly 

from the definition by methods like those used above, in which the in-

timate connection between integrators and derivators does not appear 

conspicuously. It will be more convenient, however, to obtain these re-

sults after the derivator-integrator relationship bas been fairly well 

developed. 
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4. Revers:k9.,n of Derivators 

The derivator fl::: C<. 4
1 

..&2-<t. Al-< 77 and the integrator 

X= f ~' Itfz. --- ~..., are coindicial if 15, / ;Sz. /- --/S>t is a permutation 

of -G, J o(.l. 7 - - - -<,, j if moreover C<.. f =-I 7 then A and X 

For any f eF, ~L;:.f =~~,(JI ~--x: r ==: ~ since 

l of.. fl: 
-<Sr r = ;a. .lo ./'( ,t) dt] : T • Hence Ioe is a right reverse of 

• More generally, suppose A and X are reciprocal. Then 

(5) AXf = L9<><::, A1..cz. ---..&.(~ Ic!_'h? IcX.n,_,·- -I-<-,-/ ::./, 

in applying the preceding result ~ times. Hence ][ is a right r everse 

of A and the notation If~· ::: X for the integrator reciprocal to A 

is justified (see Sec. 1) and will be used hereafter .• 

From (~5) , for any f, f £ F , f =A -1>-T implies fl f :: ? . 
The converse is false for s~~ /, 't, since the correspondence 

*" is equivocal in /- • But if the linear condition T t! F..,..., is sub-

joined to fl T = 'j , the result is univocal in f and equivalent to 

:f :::: If ~ ;-- for any . / 't ~ F . Many properties of A * 
may be inf erred more readily from this equivalence than from the de-

finition in the preceding section. 

THEORE1Vi 8 For any deri~ator rl 

and f E. F..,..., *" if and only if · 

integrator reciprocal to fl • 

and any ;'5 / ~ F J 

/- ::::: /I * l , where 

f-1 ;l .= 't 
A~ is the 

Proof: Without loss of generality suppose fl is normal. V\\e remark 

that, since J e F is continuou.s, ..<'.9-.,c f:::: 1 is equivalent to 

r = I..<:. i ~ E ~ fro] =I,,(_ 1 ~ 7o [ e-<.J]. • 
Hence .6).( f.; 'J and / 0 = O is equivalent to f = I.c '/ = .:&..( 1f {, 
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be the indices of 11- ' so that 

and 
1f--

/ ~ ~»7 • fi =-~ 4~- --Alh-i.' Now suppose /I/ = / 

Then 4, ( ~<><~ - - - ,,&lo<)'>, f) -== 1 and by Theorem . J 

~"L4?..&..(4 - - - ~~ f /o :::; c • Hence by the preceding remark, ..6).t, (-&of 
3 

- - -

/SJo<b-1 f) ::: Lt, 'j . Again by Theorem 3 , ~-r:~ A<>l4 ,<l)of'I?? / J, ::: o, 

and as before .67.c 3 "'9.,(q_ - - - ,.,&-< n, f =- .Loe;>.. Io<, f • 

Repeating this argume~t, we finally obtain / = .[o<..,..., ..t.o{,_,, --1 

• Conversely, if the latter is true then 

A- f == .&./ .&/ --- A"J,, L / r £ ..c • ..._, ""'t. ......,""' "' o<.,,.., 4-o{.,..., -1 - - - .L oe, r == / • 

Vle can now show that the indices of an integrator are unique 

except for order: 

THEOREM 9 Egua1 int§_grators have equal modules and the same set 

of indices. 

Proof: Suppose that the integrat ors X ~ A I..<, T-< ~ - - ~ Z-< n-, 

are equal. Let A~ 13 

be the derivators reciprocal to )C 'r' • Then AX == J3 'r' .::: / 

on F , and since X = 'T , ( R ~ /3 ) X r == o for any 

/~ F • Let ./t ;:::: ???~ (rn, "'n) • By the preceding theorem, 

,q j{.. = ~j(r-= x hence the domain of x includes r: x-
;t • 

By Theorem .1, . .. II and 13 are cogredient, and by Theorem 2 the 

modules of fl and 13 are equal and their indices are the same ex-

cept for order. The conclusion now follows, since the modules of /9 

and B are A.-' / ~ _, 

and ,/.3 11 /52. / - - - , /3.,, • 

and their indices are o<, , -< l. ; - - - " o( ~ 

• 

be a normal derivator of degree 7?? • For / t F .1 let 

I *' - ~ ::: A l ::0:: L .... , L.,,::z.. - - - Lo(n-, 1 · 
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• By Theorem 6, 

(6) T = { /],../...,(, i- Az. .L~l.. T f-- An, L.e<",_,_, } I) 
where /1, = (<><, ot,_ - --o<.,..,J-'.1 ,q, = {-<z. ..<3 -- _ ..<'>-> o<tF' - - -/ A,., = (..<n-, -<r ..(i. - - -./m-, 

• The individual terms on the right in this equation be-

long to r---; since i l. r is continuous, but in general they do not 

belong to fk for k // • Yet the entire right member belongs to 

F n-. ~ < F-;o-n / since by Theorem 8 1 /1 r = J and .f ~ F,,,,., -Jf 

It will be instructive to verify this by means of Lemma 1. 

on F_, 

,,& f- = [ o(, /-}I Io(, -f .(, A z.. I.( z. 7- - - - 'I- ,,(n, /.1 ">'>-? r:. n, } i 

+ { 1-l, -f- ;c:lz_ I- - - - r- An-, } l. 

Now by Lemma /. / the second expression in braces vanishes, hence 

.& I- i F, and 

}!} "i.j- =- { ~ 2. R, ~I f- ..{,_ 7.. 4. L-<L -1- - - - 7- -<.,,., ~ /-l~ Z:ofl?-i} i 
-(- { o!, A I -1- ~ .... /-} l.. f - - - f- .o( ?->? /-J.,,.,., } I . 

Again by the lemma, the second expression in braces vanishes, so that 

~7-J t Fr • 

Continuing iu this way, 
(7) /SJ If>,/- = { ..<., k A,--'-<, 

we obtain k 
-1- .<, k /'12. I-<1... -1- - - _ r- <'(,.,., ,Kl.,_,., .L. ~,,_, 

for k = o,. ,,_, - - -, )?-7 _, 
/ 

and 
{ 

7-n L ...<, ,....., ~ 7>? ~ } 't (.BJ .(),,,,., / ~ cl., /], «, -;- 2. /-1 -z.. 4 ~.... f- - - - r- o(.,.,., /?,_,_, L.<_,,,, if 

l / "J'n-1 /I / Jn-y 771-/ 
-f-- °" / r71 f- Ol z. r-/ ;z. -f - - - r ,,,( J?? /-j ??; j J) 

where this time the second expression in braces = / • 

• 

From ( 7) we verify that for le:::: q I/ - --/ m-1 
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rn 

fl f == ( 2: k a ~ -k 
0 

ni 

since o<., / =< ... ./ / 
. k are the zeros of {' 1e ct .,..,., -11:.. ~ 

in c. 
m 

If the deri va tor 19 == Tr.: ..<'.9.,... N is applied to the matri."t: 

~ of the derivator fac-

tors annihilate the integrator, i.e. reduces it to I and one of the 

remaining factors nullifies [ t:? o<k+r I: J i.e. reduces it to 

-/. ~ =- [ <Z ~,:t:-] Jl p zero. Thus n.. ~ · - 1 and n.,, ; n.. -z. ./ ---,It_.,,,,,_, 

are in the null domain of A and it is easy to see that they are 

linearly independent with respect to S : 1 F 

-/- <T,.,,,_I 10(, j_.,(~ - -- Lo<.,,..,_, [ (?-<..,,,,. :i 1 
With 0-0 / v; J - - - I 0-:;n _ / ~ 5 J then 4, -t.., / o = V, J 

. hence ~ :::- o 
J 

implies ~ == u; ::: _ = er,,,., _
1 

-::= ~ • Moreover, it is shown be-

low (Theorem 11) that the A-.:., span the null domain of A and hence 

form a basis with .S for that domain. 

,,<9/ f/ = 0. -- -°"' o I J I 

is .eguivalent...:!!.Q f ::: r-1 1'- 'J -f- lu 
1 

- - - -f- 0.,.,... -I -/.__,.,,,.._, -1 • 

tf9.t., 4 .._ - - - ..<'.9.,1,...., -1 ;: lo ::: U ?'>? - I 

where fu :::::. v; ~ 0 ~ rr; fu, -r-

From the remarks in the preceding paragraph, /1 ~ -:::::: o 
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are respectively o;;_., <J, / -- / q;;.,,_1 • This and Theorem 3 imply that the 

simultaneous equations /1 ;I= j 1 f lo = <To / "'°°" :f/o = rr, 1 - • - / ~ o&l..c1. - - -

~,,.,_1 l/o =er;._, are equivalent to f-1(/-£) =o and ;/--A.~ Fm* ; 
J(. 

by Theorem 8 this conjunction is equivalent to / -4 == /1 ? 1 

whence the theorem. The important case 7 == o , corresponding to the 

null domain of R , is repeated as 

;8 f I -u. o6l odJ..- ___ 4 f-1 =~-1 i§ eauivalent to 
O<, lo - 1 .J - - -_, '..11 >.. rn-1 f o 

f .::: u;, { O -f- er, £I f- - - - f- {) _.,..., -/ h h"> -/ • 

Heplacing tj by fl f in Theorem 10 yields 

THEOP.E?~ 12 For any r .?' F,..,, 

(9) /::: /}~/7/-r-A. 

where oo o. - -- r.- .fil.:e the in~l values of r,
1 

4 f - - -, ..<O.,i:, "'2.r ... · - -4 .,,..,_/ ' ./ , .) v..,,,,,_, / 

~ A. -=:; u;, t.b + <:r,-fu, 1- - - - +- cz;...._, A. »->-1 • 

Thus associated with each derivator /-l of degree J-n is~, the 

resolution ( 9) of f ~ ~into its projection /I -JI. .4 / on ;::::;.,,, .;..' and 

its projection t.. on ;Vfl- • By Theorems 3 and 11, the intersection of 

F,,., !P and /./"' contains only o ~ F. Hence the resolution ( 9) is unique, 

in the sense that if /-= d' + t..., = J-.. +A.~ where the ;J's are in Fn-, 11-

and the X 
1
.s in /VA , then 

a.nd 'A-.. - t..., ~ ~. 

'3' -1• = /......_ -"', = o , since J' - ;r .. ~ G 

There is another very important way of regarding (9): It 

determines the matrix /~~in terms of the following data: (1) the 

*-

matri..X AJt, 4,_ ' - - ~ ...... f f ~ and (2) the elements ~°"' ...£'.9.J,_ - - - ptf}_,,,,.._, f' lo I 

..61.r, T /o 
J 

of S . In many practical problems (differential equations of physics 

and engineering in which f is the 1unknmm ') these data are given and 

(9) solves the problem. 
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~.. Commutation 

For any two elements !::; <iJ of L , the operator r .::: P Q - Q P 

is the commutator of /-? Q o Let ~ , ,, 4 2 be the domains in F of 

p Q , ~ p . The domain in r 0£ r is ~ I • 4 2-• The null domain 

of r is in general a proper subset ~ of Ll , · ~ 2 o P am Q commute 

(see Sec. 1) if ~ = 4, = Ll z_ $ This iscerta.inly the case if 

P , G are deri vat ors of degree rn,, n ( 4 = L.:l , = LI z. ::= Fn-rf >J) or in-

tegrators of order m n (A-:::.~ 1 ==-A 2.- ==.r) l!l If P is a derivator 

of degree ?n >O and Q an integrat.or of oroer /'! ~r then 4, = F 

arrl ~ 2. = F>'>'I ~ Ll / , so that P and Q do not connnute. The do.T11ain 

of T> is the11 F n F~ = rn-, , but the null dome.in of r is not 

so simple: it is F?'>) *- if ???~ n (Theorem 13) but isharder to de ... 

scribe if 7n > n (Theo1"em 14). 

A connnutation condition is a condition C ( ./ J on :/ < r 

such that C {I'} implies r /-== o • A. commutation rule is an 

equation r T = ~ , Where ¢ is an ~Jtpr:ession in / , valid 

for all / in tre domain of r . In this section we shall gi·ve 

several commutation conditions and commutation rules .for 

where /f , .8 are deri vators of de-

gree P7 , --n respectively• 

THEOREM 13 If 7n ~ n , then the null domain of T' is F,.,_, --x- /. E - - / 

( 413 + - e * ,.c;) / = 0 if and only if /-: r-.,;; . 
Proof: Since the domain of r :ts ~ , suppose / E r-, o 

since operator mul·lii-

plication is distributive, and associative, derivators commute and 

{3 13 I'- == I (we shall usually omit such formal details )a Hence by 



. * 
Theorems 11 and .3, rf = o is equivalent to /

7
( c Fn , am 

A nlf/J c r;_:Jf X- /' -Jf this is equivalent to 1..J t c r,,., since ?.> A E F,.. 

(by Theorem 8 the range of /3 -lf is F.,. "*' ). Clearly Jr9~r./ffo = 0 

if k < >i-»t , since the degree of the derivator ~~A is then 
./) }f Jf ,{) '>i. J,, 1-R ¥Pf - 0 

», 1 /( < k e Hence AP.> r € ~ if am only if I& If.Id t4-

for ~ = o 1 , · • k-. - , J J I • • 
There exist unique derj.vators Qk. of degree k arrl 1C'k of degree 

}, -hr f.K 
< ~ such that JP A:: /)le 13 I .e* , as may be seen by ap-

plying the division algorl thm t,o the abstract polynomials A ( GJ , 

/.3(e} cogredient with A
1

t3 o Then ~h-h.f.~13*ft ~ ifVkf/o 1-1\ic!J*ffo 

, and the la.st term vanishes s :ince the 

degree of f!1c is less than the order of ~ -7t (the degree of 13 ) e 

Hence l'f =- o if and only Qkf l = o for ,t := 01 11 '" J),,., - t 

and this is equivalent to f ~-:: IJ!la = '· • = A>J..-tf/o =- 0 

since ~1- f / is a linear combination of the in.i.tial values of 
~ 0 k k r , If)/ J • • • ' lr9 /? in which the coefficient of j) f' is :/:- 0 • 

THEOREM 14 If ~ > J.i , ~ (A/3 )(-_ 131fA) f = o if am only 

P...,_1' I!...,_ i,.,,, ... !...,, -1 
nations of f 0 , /!,, .. o, f i,, ->r _ / 
k = 0) I, I I ' J h, - I . 

Proof: As in the preceding proof, 

,J,4' 
are certain linear vom-

11'\ 

r1 = 0 if and only if 

• There exist unique derivators Q of degree 

),., -)., and R of degree <,, such that A ~ Q 13 f R. 0 Hence for 

k_ -: 0, I J • " 1 n - f lt9 ~ J3 *fl =: ~ ~ f /0 f lJ ~ /3 *f lo ::: O 

, 

is a linear eq ua.tion in f 0 , f, , , · / / P ),y _ >11- if. in "?hich the 

coefficient of f >., _ Jt f I_ 1 s =F o • B!£19;pe J?J :":. e:::..s fgz• tke;;e 
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Let 1 = K'~ Rn-1 - - - I<'~ --- R, / where (1) r ~ rt\ 
and (2) either (,l ) for every le(~-'.£. k =I_,. z/ 

12k = ~ ~ ~ or (i. ...i.) for every .le/ Rk ~ ~At. pk 
1 

and 

(3) for any k/ Pk is an integrator of order l'k and Q1e is a 

derivator of order ffk • I.et i\~-:::: A...,._(P,-j'rJ -r- ("!' ... -/._) -t- - _ _ -1-

(/~11..-1-.fk-1 J • (To avoid exceptions, let f'o =Jo = o ) • 

THEOREM_.1.2 1n case (~ ) : -;--exists ~ F if for e.J!]l.I.Y k_ ./ 

J1e ~ <\k~ If t his condition is satisfied, then 'j is unaltered when 

~ 1 ~k.. are transposed if J'k ~k where the /-<-j ~ 

defined recursively~ ?"7 = f and /Ai= /'J-i .,._ </;-i - J;-1 > 
• (For any int eger ,£. < ,i 7 == ,,£. or 

I -

o according.fill _,,.<... >o .Qr _,.<. ~ 0 ) • 

In case ("-. ,<.) : i exists E r- if for every fi? ./ j' k ~ ~ k r- i6-k. • 

If th.i.s condition is satisfied, then f is unaltered when Q-<u /~ 

are transposed if % k ~ yk , where the 7-J are defined 

recursivel;y b_x Po ::: .? ,4.No "11 == < 171 _1 -t- 7-J -1 -,1;-1 >· • 
Since the domain of the integrators is r=- we need only as-

certain that the operands of all the derivators are within the domains 

·t.hereof. Suppose case (_,t.. ) • The operand of Qk. is Tk ~ Rk-r Rk-z.. 

if and / if k=/ . 

If J ' <: A.1 =- r\ ;I clearly Q, / exists ~ Fi\.,-y, and 

since the range of is r;o, * <:: /)z., 
' 

certainly 

• Repeating the argu-

ment, Q-z.. P , Q, f and /z. = A.. Q ~ P Q, T 

t l-17.,_ .,.. (\ .... - 7.. = r" "3 etc 0' and finally '}- exists 

t Fi\.,,,.,._, Assume that the conditions J'k ~ ?\. k are satisfied. 



If then and 

R Q, f c r-;-rµ/-$1 ' but if' 

We Call only assert QI r ~ r- , and then P,Q, r E ~If-. 
,, I 

L L r- -;If -"K-in either eventUa.li ty, r, =- P, Q, / .t:. r-,, < > F, • 
r'r /<-1-p - ~ L 

Continuing the argument, we see that ~ ~ F * 
_.µ:~ 

for / 77-/ • Hence for any 

, then and by 

Theorem l3 commutation of will not 

alter • The proof for case (ii) is similar. 

'.l.'HEOREM 16 Le:!!, 
'77J 

/-l == :Ek a 7n-k ,,6Jk 

" derivator of degree 7?'7 , ~ L3 any derivator of degree 

~ n-, . Then for any /" .!" ~ 

k 

~ Ak ::- ~,e ak-.( .t1_ 

and ~ ::: ,,,(S ~ /)o • 

Proof: Let I ::::: (A r n - r 7? A ) ;r , ·whe~ 77 ~ /77 • 

Then ,,(J) n I = 0 and hence by Theorem 11 (with 

the there equal to one) 
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• For k. < 77 - ,,.,..., 

, since the degree of _&Ill/I is <.>7 o For k .:;:;: S '~ - - -,, -:>n-1 .J 

'U r ,..,_.,.,,., +-k (Al 71'1-A?. - "7-~; , ?7->-n f-k. J<)~-k n 
moreover, .J.. -::=- .v . .L ..1.. .; ~ I . 

NO\V j
-n __ J<::l*°h __ .1())1* 

8 
f3,...L 

t?'V .r.J o By Theorem , / 

71~ *" 
and ..& r belong to r?>? o By Theorems 13 and 5, L3 * _[ n /' 

== /l B ~ ~ n * T == ,LY n1f-/I 8 /f-/ • 

;>\'- ) • - / ?'t1 L] Al 111-f /1 ~) Hence applying B ro (// , Wl. th q ~ ll'7o ~ -t-- rT1 11V -f - - - 7- rt-,,,.,_, / 

(IZJ r 11 
( r7/.3*-6*/l)r = e *~.z- 77 [ /J 

.::: QB"7f_r'h [!] = I 17<;J 6* [t] 

where the commutation of 8: Q and of Q / .. r n is justified by 

Theorem 13, since I n [ 1] and B ~ [!] belong to The 

Theorem follows on applying ~ 77 To(! 2) 0 

THEOREM 17 ~fl as in the preceding theo1r.em, for any 7 c r 777 

(13) -/- = .rl jf--/1 / r(/lo .15J1'>1T-/}/,<9ni-'+ ----I- /-1,.,.,_
1 

,6) /l:Jf- [I J. 

Proof: Application of 8 /!~ to (10) or (11) yields (13) after 

commutations am reductions justified by Theorem 13 and /? /7 -Jt< = I o 

Or simply take 8 = /l in Thoorem 16. 
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6 • Derigrators • 

For aey derivator // of degree 777 and integrator X or order n , 

the operator /1 X is a derigrator of degree 711, order 77 and rank n-7"7 • 

If Y and l3 are the reciprocals of A and X , i.ea ~ =/I 7(- and 

8 = 7' X J then /-J. X = "'" T1 X == /I B 1f- • 

If /-/ X ==A/ X / , where /1 1 is of degree >?J, , and X, of order 

77 r , then ~ X / R :::::: *X A / , after left multi plication by ~x "'"X, , 

or X /11 ~ = X / ,q * , after right multi plication by ,•;4 ':A/* , and 

by Theorems 1 or 9, 7'17-T n/ -- n?, -r "7 , i.e. -n- -rn :::: n,,, - .>->? / • 

'\ll[e have, in effect proved the following: 

Theorem 18 Derigrators /113 * an:l A, e,,, k are equal if and only 
'""' 

if /-l B, = /l, 13 • Equal derigrators have the sane rank. 

Theorem 19 For aey derigrators /-l /3 ~ /1
1 

f3 * 
.J / I 

/J 13 *"-t- ,q 1 13, k = ( fl Br !: /-7, l3) ( l3 ~) ! If the rank of 

is ~o , ~ (rJ87f-}(/-J,~ *) -:::: (19/1,)(L3e,,)i1r-. 

Proof: The first part follows from /I .e 7f =:. /-1 ( 1.31 13,, ;;tc) 8 iF-

= (/113,) { 88,,,) *o The second part follows from Theorem 130 

A derigrator /1 13 *- is dextral or sinistral according as the 

rank of /I B * is ~ o or ~ O (thus derivators of rank zero 

are dextral and sinistral). 

• 

If /-1 B -)(-- is de:::i:tral, then by 'lhoorem 13 ( B/l ~) (fl t3 *) == / 

ioe• ,q.1.3+ has an unrestricted left reverse 1f(176' 71
) = 8/9 "*" am 

is therefore univocal (see Sece 1). In particular, the integrator 

-K-
13 is a dextral deri.grator of degree zero with unrestricted left 

reverse -x. ( 13 *) = 8 o 

If rl t3 * is sinistral, then (/f t3 ~) ( .6' /-il * ) = / , 
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ieeo //- 8 n- has an unrestricted Ii ght reverse ( /-1- 8 ?'<) *- = 6 .4 ~ , 
but /-1- t3 "*' is equivocal: by Theo rem 11, the null domain of /7 B *" 

contains (in fact is spanned by) the non-zero matrices -/!.. n , l{J? 1- 1 - - -
/ .I 

-It.,., -1 • In particular, the derivator /l is a sinistral derigrator 

of order zero 'th unrestricted right reverse /-1 *o 

The derigrator concept may be extended as follows. Any element 

of L will be called a deri.grator if it equals a derivator-integrator 

product /-11.3' -1- , hereafter called a primitive derigrator. The rarit 

of a derigrator is that of any equs.l primitive derigrator (by Theorem 

18, this is unambiguous)o By Theorem 19, the class )( of derigrators 

is closed under ad.di tion a.n:i si btracti on, and the product of two ele

ments of K belongs to I< i.f the rank of the second factor is ~ o o 

Derigrators are dextral or a itlstral according as equal primitive 

derigrators are dextral or si. nistralo 

Theorem 20 The class Kd. c I< of all dextral derigrators is a 

commutative ring containing the unit operator / 11 Every element of 

f<.:;1._ is univocal. 

Proof: be primitive derigrators equal to . 
P/ Q ~ K.:;1._ o By Tha:irem 19, PfQ = ( 178,, T rl, 13)( 84) 1f-

am P Q "" ( ,q A, ) ( 8 (3, ) * o The order of ( 13 8 1 ) ~ (ioeo degree 

of [3 8, ) is the sum of the orders of B*- , /.3, "1f- ; for ea.ch of 

/J t:'1 , rt-, 13 , R /1,, , the degree of the rroduct is the sum of 

the degrees of the factors; the degree of rl /3; :t:: 4~ 8 is not great .... 

er than the degrees of the t ermso Hence the ranks of P .:f: <iJ am 

P~ a.re ~ O • Clearly P+ 9 and P~ a.re colll!llutative, and F 



28 

is univoea.1 s:ince A !!J * is. 

Let F' be an element of .Kd of pos.l tive ra.nk!J Let A, 13 be 

deriva.tors 'Wi. th no common indices such that ? .: A/$* • These con-

di tions uniquely determine the indices of ,A , 13 am the quotient~ 

of the module of A by that of 13 (if A, , 13, also satisfy the 

oondi tions then by Theorem 18, A 13, ::: A, 13 o By Theorem 2 , the 

indices of A and 13 together must be those of A, ard 13 to-

gether, hence A J // 1 are coindicial and so a.re 13,, 131 e More-

over the product of the modules of A, 13 , must equal the product 

of the modules of ,,4,, 13 )o Let o( 1 1 o( 1.. , 1 • • 1 of_.,.. 

be the distinct indiCeS Of /3 ~l with ffiUltiplieitieS m,} ).,.,.(' J 111 J ),., ........ a 

Theorem 21 Ther e exist unique complex numbers 

f;.,lt. (j=I,.<,"·,~; k. =o,,l,·~~>-.,) sueh that 
y- ,, -1 ),., • ~k 

(l </J P ::: ,:E · L..1... f.ik Iot. J 
I J O ~ J 

Proof; Let A (el , 13 (eJ be abstract polynomials eogredient 

w.i. th A 1 13 • Unique complex nU!llbers fi It. exist ( 'partial frac

tions' algorithm) sueh that 
...,,... \.., - I l. -Y- )),,'1' 
-( ~ ( '()ITT . (e-oS.e A (e) =- µ L · l:k fd·k e -o<J·) lf.Ri=J • 

/ t ~ ti I 

Hence -I- n,.-/ k -r ;J), ~ 
A~ fi (t !'ik ~~·) lft=1J· ~ 
1¥ 

Equation ('f-e7 follows on applying this expression for A to 
'Jf I -r- ht 

13 == / r; I "l.e :;f , 

Any sinistral derigrator (or dextral derigrator of rank zero) 

may be resolved uniquely into a derivator aid an elem::nt of J(J of 
l'f. 

positive rank, to vb ieh (j.i,) IDE.7 be applied. 
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For any ?E ,Y , the matrix F' £1] is t he indicial matrix 

of F and of its reciprocal * P o If the rank of P is positive, 

the matrix PP [1] is the weighting matrix or density of P am 

of i t s reciprocal *" P • In particular A-Jt [I] and /J A -Jt [ 11 are 

the indicial matrix m d tre density (i:f the degree of A is positive) 

* of both the derivator A and the :b1tegrator A o 

a.t 
Theorem 22 With the notion of ttle preceding theorem, for at\Y 

derigrator P of post tive rank aid any r c- F 

(!sJ r'F =-{f f.[f· z·-,f. (t - r; ke ~· (t·7J( f(-rJir]. 
0 ,J ok: J,(n-.j-1-k) k. r 

This is an immediate consequence of Theorems 7 and RI • 

Theorem 23 . If the rank of I' is positive, the density G = t>F'f:1] 

is given by 

--r ~·-, t le ~· tj 
(/ 'J G = [2.· Z 1c ~·,<'In. -1-lcJ -y-r e . 

,J 0 J "' 

This foll ows immediately from the preceding theorem. Thus equation 

(J ~) may be written as t 

(11J rt= Lf G(t-~)f(7)Jr]. 
0 

Theorem 24 With ·the notation of Theorem IC. , if A is a derivator 

of posi ti-cr~ .~~ree l,, , then for agy f E FJ.. and. 

Proof: The direct part of 1he theorem follows immedia:te:cy from 
If 

Theorem 17 and equation (17) vi th f' =A o For the converse,, 

suppose (I 4') o From (!') , hence applying A to 



30 

(!"if) 1 Af == d f AQG. ::: :J f GAG where 

~ = Ao ~},,-ti A,~ >.t-'l f '" f A 'nt-1 o But the 

k o(. t] 
elementary exponomials [t e cd in (!') belong to tm null 

d cma.in of A o Hence A G == O 

vV"ith 3 = o , i ·t is clear from {;8') and (JG) that every element 

of the null domain of A is a linear combination with coefficients in 

S of the elementary exp:momials. Since these are linearly indepen-

dent with resp:ict to S , they form abasis W. th S for ~ • 

m .t 
Theorem 2.5 If A ~ fk qlit-k iJ is a deri vat or of 

.E_ositive degr~ ),, , then for ayW' f €' !;., , d E F arrl elements 

er; , II, .1 , , • , v".i., • / ~ S 1 the system of equations 

(Jct) Af:::q) f.1 ==<i';:; f)f!.,,,rr ... jji,,·'f)/= r>-,,-i 
0 /0 / lo I ) J f /J ) 

is equivale~~ t , ~-i 

{}o) f ~A"~ t QA" [ 1] ~ L )G<t--rJ3<1'J 11']+ ~olJ 1 ... + 6,,,_,)a, 
where 

A.: c) 

i1c. = ~£ £'.?K-.1' a; f?o l- le = 0, I 1 
1

" , 1,., - I J 

~ ~ ~' Q ~ht-k ahel G = A9A -jf[I] 
0 k ok 

Proof': Assume /;qJ o Then n- ~ . • • ~ "' v v 0 I v I I J ht - I 
· are re-

spectively equal to fo 1 f,, ". " />-,.,, _
1 

(which ar~ defined as 

tic, ~k .,. ~)nrl in Theorem 16), hence (~o) follows by 

Theorem 24. Conversezy-, assume (Ro) • Then A I: d follows,, as 

in the .proof' of Theorem 24. We must verify ..(:) ~ = Vk_ 

Applying A I J.t to (z o J yields >,. 

AI"'f': A z":4Jt:J f A l~A"t:1J-= AA"f d f AA"G(Ii..l"J 

:; J~ + aI,.,[iJ 
where the commutations of QJ A and Q, I.,,,_, are justified by 

Theorem 13. NOV"T applying J),e_ we obtain 
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Evaluating at o , 

as 
aofk i- Cf,~ •1 f ,,, fa~ fa= bk= tlo CJk +ct, rrft., f '" tale <ro 

for k=o,1,.,,,~-1, w~1c/i n"'l'/'1 /k=V"fe· 

1~ The Method of Integrator Transforms 

For .i, k == I, 2 1 , ' ' , h-7, 

be a derivator of degree c/;1t , die = h,~ "( ~·k , !Jc c ~ 
J /le 

and ~ j €" F o Consider the equations 

A11F, f A1z fz_ -f ,,, -I Ao, fn. = J' , 
<t1J Az1f, fA22f, f .,, 7..4.i.,,fh,-; d.,_, 

, 
. . 

A »,,f, +A,,, lf:. f · .. 1 AJ,, >t t,,., = g ~, 

• For 

an:i 

• Let (Q be 

an integrator of order N~ 



32 

am hence 

(Z3) 

Conversely, if (.23) holds then by an evident extension of the proof 

of Theorem 25, (RI) and (Z'Z) follO\'To Thus the single system (p3J 

is equivalant to (21) and G?2) o 

be the cof aetor of A J le. in the determinant 

(defined in the usual way as a rum of products) o 

Then f.R3J 

an:l hence 

()</} 

provided that the order /Y of Q islarge enough to enS'J.re that Q~. 

am Q ~a are within the do-mains of the deri vat ors applied to them 

(see Theorem 15). Moreover, by Theorem 13, if N islarge enough, 

(/vi~ M - /vi /Vl'Jf) ¢ = o , 'Vb ere ¢ is arr-J of the <Q transforms 

appearing in (z 4) , and hence 
.,,, ~ ),., ~ 

<.Rs J Q ~· -:: 2_. M .. M Q q . t L . 1c. M;f'.J· Cl i "- M a r' 7 , 
I .J -f_J ~· I ,)J 

the commutations in the right member being justified, by Theorem 13, 

if N is sui'fici.ent.ly largee 

Conversely, (2 ~) follov1s from (..?s-) on applying A.1.l , summing 

"""" on ...c and reducing the Ii ght menber by f · .4.JZ,· /VI 11· :::: d.A/ f'1 



33 

Jf 
and /\1 M -= I , - provided that /\/ is sufficiently large. 

- Jt-
Let f == ~ f. for any f € F , and introduce the equiva-

lence relation ra_ , meaning equal for all () with sufficiently 

large N • Then (2.3) becomes 

n., - ),. 

(26) 4 AJ'k ~ <Q ~J· -f ?-1c {)J.k [I] 
I 

the .§].bsidiary systems for (21) and (22); (25) becomes 

"' ~ 
(27) l· Q ~J· f?,J' /'rr ~ ~~· f fJ,k /vf-<.i ()JI<. /Yf'Jf [ i] 

and the systems (27) and (26) are each equivalent to the double 

system (21), (22)o 

Since ~· f ~ , a necessary condition for the existence 

of matrices f .. / satisfying (27) (and hence (21), (22) is that the 
j' 

right member belongs to F1v , and a sufficient condition for this 
- ; ~ t 

is, by Theorem 13, that the ranks of flt· - ( L J. ~ d ·) frr and 
~ ~ I . 

(Q.-== ( L · M .. (), )/vi be positive, for then the right member 
:A I Jk ..J'J Jf.:.. 

of (27) may be written as h. ) ~ 

f) "f [ ~ . /YT' . /vljf q ' + LJ· k ~·J· Q 'L /vt* [I J J E ~ 
~ . L, J ;Ad (]J ( I J't. 

Indeed, the condition that the /'1~· , ~· be de~tral derigrators is 

sufficient for the existence of unique roots ~· of (27) given by 
p ~ ~ ~ ~ 

( 28) f _. -=: L· /vf" /vf "f f '). ' I /'1.. /\ 'L /vl [ I] 
.A , j -1 J CJ 7J/1.. ..AJ L>(Jt: 

which follows from (27) upon application of (3.. .. 

In general, if the ~· , !t· are not all dextral, then the 
l' 

condition that the right member of {27) belong to /Ir becomes a 

necessary condition on the g;· in order that roots of (27) exist., 
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~[e have tacitly assumed that M =I o • If this is not the 

case, then (24) becomes a necessary condition on the 'Ji for the 

existence of solutions of (21), (22); if it is satisfied, some of 

the equations in (21), (22) become dependent on the others and the 

system (21) becomes, in effect, a rectangular rather than a square 

array. This more general case can be treated by the methods used 

above. 

In the preceding section it was shown that the system 

Aro;/:: q P/:: f>o J1Jl/,=f ··· £n.-l/= IJ.,-1 
d ) Io ' o '1 -' fa 

is equivalent to the •equation 1 

(29) Af1>J/ a j + (Aol2._fA,iJ>..-if ,,. IA-,,,_,/fJ)[7)) 

where i -= a 'J(..f. for a:rzy f €" ;: and 7fi means 

'equal for any t) of sufficiently high degree 1 • 

'rhe binding variable ~ can be eliminated from Q in (29) 

in the same way that t was eliminated from c in ftt) t: Jf6) 

Vfo introduce •matrices r [f c'2J]$ , where ¢r a.) is a function of 

• 

Q on kJ to r , just as we introduced the matrices [ frt-JJ-1. , where 

.f'ri) is on A: to S • After appropriate definitions of equality, 

ad di ti on, etc. , the class [ F J of all matrices [ f ( G)] Q is an 

abelian group with operators t" Ad an,.d,:.C::iquation (29) may be v1ritten 

as Ari)) ["{/Y] = [tJ'lfd J + <Ao iJ~A, lJi.-'1 ,,, +A,.._,~) [Q j(riJ] 

(the subscript Q having finally been dropped) • The class K:; is a 

ii.e~ of operators on [ F] • 



35 

This is a very- satisfactory procedure in many respects and 

we shall present it in detail elsewhere. We wish here to examine 

another way of eliminating the binding variable Q • 

Suppose that the ring l<e:A. has been extended to a field 

K J.... and the class F correspondingly extended to a complex linear 
- :*- -/ 

class F • Then Q , the inverse of t he :reverse of Q , will 

exist in KJ , and applying it to (26) yields 

(.30) Q*-' A ( .1.9) Q.,. r = :J -1- Q+'-r( Ao~m + --- +-A,,,,,_,-<!)) Q* II]. 
* _, .. -

As stuning that Q ~ Q E K cJ- if the order of ~ is sufficiently 

large, Q* _, ,tj k Of-== (q-f- _, .,,& Q -If. )le 
1 

and distributing Q* -/ 

forward and Q *" backward in (.30) yields 

{,31) /-/ ( f') / = <j- -f- (/Jo f ~ -f- Ar f-' >??-If - - - t- fl 1??-1 tf) [I J J . 

where f1 = <!;> ,__/ .& 0 * "' Thus the dependence of the equation on q 

is lodged entirely in the operator r . 
We shall show that ~ and r' can be extended in such a way 

that the foregoing heuristic argwre11t is justified . 

The range '"' F of any non-zero element X .E K,,J.. of positive 

rank :i.s a proper subset of F ~ for some / < F , the equation 

X '} = T has no root /-- ~ P • We now construct an extension i= of 

F such t hat thi s equation has a unique root : <! F for every .r~ r . 
We wish this e~'<:tension ;= to be minimal, i.e. to contain only 

such elements '/! extraneous to r- as are necessary- to satisfy the 

equation X ( = r . Thus F should be the range of the quotient 

: for r ~ F and 0 t XE Kd.. , with )(: = f " Moreover, F 

should be an abelian group with operators in KeJ.. .. We begin therefore 
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with the following postulates :for F o 

With <j, 1f' E' F >' f; ;j € ;= J, X, t/J' In ;f;/ .' 

1) f =- 1t' is a reflexive, symmetric, transiti'folie relation. 
f 

2) Every quotient x ( X ;io) belongs to F , and every 

element of F equals such a quotient. 

3 ) ~ ± Y' / )( f belong to F o 

4) -"' = 'r' implies X f = Vf , and ( = )') implies )(/ = X P 
5) x rj =- x'f and .X-/- o implies j-= tf o 

6) (x'r'J<! = x(Vt) 

7) K( f ±-p) -= -X. f f X: y; 

8) ~ .£ ::- f ( xt o) x 
From these postulates, we infer that, with \ Y :f O (and 

hence X Y ¥ o since X, V uni vocal): 
p q ..,, ( x /!) :::- -x ( v ..a:) e fl w v Y t = -X d 

9) x :::- tr e:orv , x -x ~ 

rf1xd 
io) "'II ~ r f ± ~ > = yr x I J t x ( v ~ J -= x ~ x y 

whence _!__ + ~ =- yf .f X' d x - y XY 

ll) Y(x ~)-= -;;( Y f;J :::: V ~ whence 'X * = V 
These inferences suggest the following definitions: 

I.et F be the class of quotients f for f c F and o :.f /I EfJ
1 

and for any element ! , ~ of F · 1et (t.) f =- f be equivalent to 
. . () + ~ - Yf' i- X q , .. ') ./. f' 

l( r :::- (\" d , ( (. l ) { - f- == X y d} I( l l -v- = X y 

and (l'i,,<,) "X f - ~ . With these definitions 1) -7) are satisfied, 

but instead of 8) we / ave 

gJ' Xx::- ( ()(-:/o)· 

I.et F (be the range in F of .1. for t F r " For any 
I 
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I - I I _f I T /' 
/ 2 F , / E ~, write / ,,..__, .T if and only if 7 = / • Then ---v T 
is an isomorphism (this follows from ( i )

1 
( i l) , ( i v) and 12) 

below) between F,. , F , so we may without contradiction identify 

( and f , thereby malting F / -= F and F an extension of 

F such that 8) holds for rc. r- (and hence from (l i iJ for / c. F : 

if q l /- , a :;! x .E: KJ... , then X -$- = ;< ~ :::: ~ =- x) = +,) . / -X X T XI).-' -y- <j/ 

Thus the quotient class t= satisfies postviates 1) - 8), 

and it is easy to see that any other class F-rf- satisfying these postu .. 

l ates must be isomorphic with r- (for ¢€ 0 ¢~<! r: let 

</> "\.) ¢ fo be equivalent to ¢ =.: = ¢ ;f- for some re F ' 0 ~x ~ K.J.. . 

The relation cj ..-....J ¢*is an isomorphism between F , F :){- ). Hence 

the postulates are consistent and categorical (but not independent). 

In addition to 9), 10), 11) we shall need 

12) 
IF X::::; 0 

J 

and 

13) (x± YJ~ 

for <f ~ ,P E F and X, Y ~ K,J._ • These follow readily from { .i..} - ( i "it) 

and 1) - 8). The foregoing is summarized in 

THEOREM 26 ~_g:y.oti~nt, clas.§. F is an abelimi. group with OJ2e.r.ato:t;:§ 

:><. in tha~inmtitative ri~ Ka • F is a sv.b .~pup of F • For aux 

<1:> 1 \/; .! F and o =/ X ef<J_ ./ x¢ = ljJ if and only if ¢ ~ ~ Un 

Ilf2;rticular J( t/> :::: :T is eguiyaleµt to ¢ = :. f.Qr r c F ) • 

With /- constant in F , the range of X -9-ror x, Y c kJ 

and Yi- O is of course more extensive than if only one of X/r'varied. 
X (V) X _ -4:._ 

·we wish now to define g:gerators r' such that" the transform y :J - X y · 
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I.et L be the class of all linear operators on F to F o 

For any X J T' t.. KJ. with ~ /:: O , let ~ be an element of L such 

that for any ¢~ F.J ~ ¢ =- X :j ( = x.$ ; this follows readily from 

8) and tbi: i) ) • Then with ¢ c ;:= ; ;( .1 T'., z ~ K:e_ ; u, v, w c Kj_ 

and :f:. o (and hence u V ~ o since ~ V univocal): 

14) ( {; !:. .i:..) ¢ == i ~ .::!:. ..,.., ¢ (by definition of v v 
operator sum and difference) :::: x t:> !:. r:__:j: 

LJ 

=- ( v X. ±:. U 'r) </::i \/ K .:!::. u 'r' V 

vv uv cp, 
by UV..), 12) and the postulates o 

= V(X<f>) ::!:. UC 'r' ¢) 

UV 

15) ( c ~) ¢= ~ ( ~ 1>) 

product) ==- 5 ( 'r'.:) ==- r x ~Jr- _ 
LJ v 

(by definition of operator 

~ ~ ;:- .. by ( v) and the 

postulates. 

16) ~ y=~ 
v v w 

II= X .;£ 0. 

17) + ¢ = x¢. 

::: uz 
xw' 

x -
I.et Ket be the class of quotients y t- L for x., 'r' .E Ke1.. and 

'f I:- o . From 14), 15), K,J,. is closed under addition, subtraction, 

multiplication, and the multiplication is commutative. From 16) 

'i<J... is closed under division by non .. zero elements.. Hence K J is a 

field of operators on ;=:- • 

-1 ~ x 
Iet /'(,,_ be the range in Kci of T for i. ~ Kd. • For 

)(' ~ i(j , X t K J. write X '"'J X if and only if J(' == -f o Then 

X' A.. X is an isomophism between l<(,1 r , f<'J.. o By 17), we may iden-

tify ~ and X , thereby making KcJ..' = !<,)... and the field /<,f an 

e:x:tension of the ring K.J.. • 
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!Jl£L.QUotient c]&§§; cla,s,.l:l K,,t , is a field of line~ 

012erators on F to t= which contains t~e ring K.{ • For any 

¢/ Vr E P ~ o F XE K..1. x <rf> = ijr- if a.fill only if ej :::: X _, 1/.t 
/ 

Let /( be the class of derivators and I'( ~the class of 

integrators (including O , which is not the reverse of a derivator). 

Iet t<*-t be the class of inverse reverses ,4 if- -/ of elements 
L/ jf--f 

A~r-.. (with C> - o ). 

Suppose !+P-Jf--, 13 9-t:- ~ Iv (i.e. are dextral derigrators) 

with 13 =lo . Then X= !J~:: c K:J.
1 

13 ~ =/ /1-,1.1~ 5*- - r/(8/j:··z;1 B* 1 89* B* - Q-.. ., .. 

,4 ~ o , multiplication by ~= yields X == /:;!.-.~ =- (rl <?;))-If -r ( 13 P) 1f
1 

and the last expression is still valid if .4 = o , since o * _, = o . 

If d>~ F , then for some L3Q~ £/\.J with f3 :lo , tP=Ly,. == 6 ~/ 
BQ <;>-l'-

B * rl YI (on multiplying on the left with B* and using Theorem 13) = cp {If .r.1. 

Hence 

The_gl.assea F , ~ are the range§....of the tran§.forms 

.,.-1£ 
/I / J 

This result is the main reason for referring to the pro

cess of generating the classes F ./ ~ as iAV:!3.X:§e reversio.n.11. 

The image of ~ ~ X is the group-theoretic transform 

>(-I ( ;:/ x) 
• 

7f-- -I *) p "If - J -Jf -1 
If RP .! K<A then p* (fl P ::: fl 1'-P""'" - ,q*- = R 

jnderendent of P (the last expression is valid for rl == o ) , i oe • 

the image of A by P * equals the in'irerse reverse of 11 • Hence 

for all Q t 1< of su!'ficiently high degree 

(.
L:J. ± a J "*- -/ _ (11 ± B) Q -1- _ ~ r B C5l 11- __ ,,., ~ -1 _+ /,?11'- -/ 
'7 U/ - q::>"'° - q::>* - Q" /7 <(...I 

and (r:l/3) *--'.: (p.B}Q~ = (/-lt3)G-t.<4>~ - ..f!.9-!" Bey*" 
9.;t <?*"Q-;'f- - 9*" ~* 

= /l ;If--, '3 ,r- -/ (u.'3ing Theorem 1.3). 
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Thus we have proved 

THEOREM 29 

is an ~.QD2,hi..[.m. 

I.et f = ~ *"-'. Then 

THEOREM 30 

degre~ ?rJ , then 

,q.c.19J r---' = { ~ t> a..,.,.,_k. ~" J If-_,-== f:t a nt-k ( ~ '9 ;I._, = /-l(r), 

a,n,d hence 

* I . 
,4 ( .& J - ,4 (,,iP 4-1) == 

This follows immediately from the preceding theorem. 
7?7 

If /1 r ,& J = F le a~-~ ,(]) k 
..,,, 

13(.lS>J == D -t-n-1e ~ k 
0 If! 

with 7?7 ~ n , thes 

;7{.tP) 8{.&Jjl-= /7{f>). 
fj{ I' ! 

Proof.:: 'rhe image 6 (.(pr~-/ t ,4 ( .f5)) 6( ~) 1- } 0 I"'" ,4 (,,,<D) 

/I (~J * -i • Hence by the preceding theorem 

nrpJ { 1+ ct&J 6(.&J * J = /Jr1>J. 

equals 

THEOREM 32 ~ ,4 c & ) as in the :greqeding theorrun, for any / Er~ 

(.32) 11 C;p) r - /I ( ~) r = (A& 'fo l'n-t- /J,-; .,.,.,_, .,_ - - · r l'ln-,-1 f'J ltJ 
} 

where /Ii= tie {)J-le. at} le f lo FoR ; = C:, I, - . • J ?Tl-I• 

By Theorem 31, equation (.32) follows from (1.3) on applying 

I.et J =- f' [ I J • Then 
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and any o; <i;._ --- <T ~ s 
~ ,I ,I ?>J-/ 

, the system 

/l(..<JJ) ./ = :J J ://o-::: tr;, .1 ,<P /Jo= U,./ - - - ~ ~ m-i f }
0 

= U-777 -I 

is equivalent to 

(33) /-J.{1) ~ =? r (/Jo I' n-i-/ -f- /11 t -,.,.,_<. f- - - - f- /-Jrn-1) tJ
1 

. J v:.. 
,4J = E:'~ t'.A.J-le le r 0 .te. 1 - o I - - - yn -I 0 I'll::: (I - / ..I ..I • 

Proof: By Theorem .31, equation (.3.3) follows from (20) on apply-

ing 11r-;). 

Theorems 29 - .3.3 provide a rational basis for the methods 

employed by Heaviside for lumped linear systems, with his mystical 

opera tor f' defined as ~ ~ -I and ~ , the 1 impulse matrix of the 

k t.h order 1 , defined as /' le [I J • Actually, Heaviside used these 

methods in the case to be considered in the next section, where 

the elements of F are sectionally cont.inuous ma trices, but the 

theorems of this section remained valid, mutatis mutandis. 

9. Section~.J,ly_Qontinuous Matrices. Shift and Jm...Q12erators1 

I.et /(;I} be a function of ,,t on L1 C: R to S , where 

the complement L1
1 

c R. of the domain L'.l of //;t) is scattered, i.eo 

I 

the intersection of b.. and any finite interval of R is a finite 

seto Then / ( r J is defined nearly everywh9re, or for nearly 

all ;t • ~t d'(-L} be another function of / defined nearly every

where. rf ;i-J and J ( i) are equal near~ evernyhere' or for nearJ:I all 

;t : f{;f) "7= j ( ,/-) if the values of / for which / (~.Jr= ? ( ?',) 

form a scattered set. 

*In this and the fol.lowing sections the theorems are given without 

proofs. The demonstrations will be given in detail elsewhere. 



THEORFJ~ 34 f(;f} ~- '} {~ J if and only if for any r ~ IC
1 

:rr~J = J(i!) 

for all ,,£- ,2Yf...£ic;i.~Jl~l::.Y: near r but :/. r • 

/(;1-J is continuous nearly.e:iz:.~:i;:;zwhere if its points of 

discontinuity form a scattered set. Simil§.rly, ;C( ~) is derivable 

,llill;!.rly everywhere if .,& /: f(;I) exists for nearly all 1"' • 

The jum:g_ onerator J* f(;/} = ( ~ i - ~ _) ~(£). 
, - -- ""' '7" ""_.,.,.,r ~-r 

/(~Jis sectionally continuous, if it is continuous nearly 

everywhere and .T~ /{1'-) exists for all r • Then values of r 

for which .T;, f (IJ :;!: o form a subset of the scattered set of 

discontinuities of /(;i}o 

;/( L) is .§.Qattere!i on a scattered set CJ if ~(;i) is defined 

everywhere and vanishes on the complement of <r • 

'l'._HEOREM 35 
<T 

For any scattered §et <r , /[c) -t- 2; df 1 ;/("r) 
"f" 

~d only if .f-( L) i§ scat·t;ered on o , ,!her§. 4r = / c>1e o ,g.,gQord

ing as ,t = "7" ore ,L- ::i T. 

let tc°( ,,/) be the class of sectionally continuous functions 

f(.1-J such that /(,/}=o for all sufficiently small ~ , F-n? (;f) < ;:=(,t) 

the class of 7?1-fold sectionally continuously derivable /-f ,;I J and 

F-rn*Lt) C F,,...., (:I) the class of "n1 - fold continuously derivable 

:f- { ±-J (i.e. /(;I J and its first (-yy.-J) derivatives are continuous 

everywhere and vanish for all sufficiently small ,L- ) • L=t F be 

the class of matrices [:f( ,.!.) ] for /r/.J E r::-( ./) • ~t [ .r::·[;;(J J = [ ;j( A) J 
be equivalent to /( ,f) JI- J- ( ~) , and define the sum, difference 

and numerical multiple of elements of F as in Section 1. let 

be the classes of matrices of the elements of 

r?'Y> (t J, ~ (L) ~respectively. 
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Let L be the class of all linear operators on subsets of 

F to F and define the elements ..<9
1 

6 c.(. as in Section lo Define 

I.! L by I [fr ,I)]=- Lt: ./rrJ £r] • Define J,... ~ L a>-' 

J~ [ .f ( ;t) J = [ Jf. ~(~}]. 
1'

Define derivator, integrator, derigrator, the classes K/ K _, I< l _, 

l\'5 , K.1., Ko1. J F as in the preceding sections (except that the 

integrals in integrators are all from - c.o 70 ,i-) • 
th~ sll1fe opera ~or 

For MY real number t\ , define ~ E L by Et\ [II,IJ] = r~rr-,u]. 
11 . 

Let U-:::: [UC~J] , where U(.;tJ = 0 ~1e I according as ;E < J 

(undefined for ,C = o ) • 

THEOREM 36 For anY /E F , an;y- ?\.// E R., J"" ~ ~ = ~;-u /. 

ln...J2articular Ji\ ~ U =- d ¥ . . 

THEO~__l7 

commutes with A : -
~A ,L1 = /+ B"A • 

THEORi"SM 3 8 
.,.,., ,n k.. 

Let A= IJ~a,,.,,_k p(.Y be a derivator of degree 77? • 

l.2*: k = s 1, - - - , -rn- 1 .J ;le_i!, o; be q_ scatt,ereu~ ¢ ~ 

a funct:i,pn of A .QD R !Q S .§.Qattered .Q!l er-"=- o lhfill..!:Qr 

any / t Fm and ._ ~ e F , .the ~stem 

A f ::: ) I J~ ~A. A ¢ ~ , JA .0 f- A 

~ eauivalent to 

ct>~ ---
" J J 

(34) /=/! . .,(..'} f- (/lo .6;-rn-f- /J,.6Jn-r-.1 f- -

i;yhern A; =- tk aJ-k ~ ¢ ~ E 
" " >-. ~ 

f.Qr_ 1 =.o I - - - Yr>-/ fl ~ ,,,I / • 

THBOREM 39 Xillfh A as i:g t~mzeceding th~~!!4 for any / E- !-,,,., 

(35) 
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. Ok 

where for J--== 1J z1 - --, ">n-tJ t41 = i;kaJ-le f (~t4)1er JE.i\ 

and ({ i is the set of ~Q..ontinu.i. ties of .!:) j r • 
-

What shall we mean by L..=; <!/> F"0 R </J ~ F ? 

Iet X 1 'r' ~ K.J.. be such that x <P .1 }-' ¢ E F (clearly such 
-

derigrators exist, since the elements of ;=- are quotients of ele-

ments of F by those of !<"- ) • Then 't' C:.ii._ ~ ¢ = e:-A._ 'r' X ¢ =:- ~ X 'r<!/J 

motivates and justifies the following definition: 

For any ¢ e F .1 Le:--r EA ¢> ::::: X _, .E;._ X <!/:> 

where X j.s any ele.[l£m1 of KJ.. such that X ti ~ F 

reduces to the ear.lieF. meaning bf L-~ </> if .71i e F • 

-

• This 

o This 

.IHEOREM 40 For anY x E K ~ ~ ,\ ..f K:.) E <'\ commutes 

with x : ~ x <:::: x s1 . 
,.()*-I 

Iet f' == t?'..J • Then 

THEOREM 41 
777 

If /!{~) = ~k ltwr-le ~k 

of cl.egree 7n , then for any / E F-rn 

)/ (
/1 n... /1 -,..._, A ~;u 

(.36) A-rpJf- ,,q rr& = , .... 0 1' + n, 'I° r- . .. + ,..,n-._, r ' 

where the l+j are as in Theorem .39. 

Let cf .:::rf U . Then 
.,.... 

If A(~)=- ~ie a."'n-k ~1e_ ~ 19- pol:vnomial . 

are as ill, Theorem 38, then for ruJY / f F-.-... 

lmSi d t !=" , the system 

f /ii, J 4) f = </J ( - - - J ..& 'n>-1 / == ¢7'1·/ /l/=7 ./ Ji\ A 'f"'AJ A A A, ) I\ i\ A 

is equivalent to 

(.37) fl r 1-7 JI = 'i -1- <A" r 77?-I -r- /l, r Yn- 7.. ~ • • • -r /J n-.-1 ) J' 

where ,]h§. t4j are as in Theorem .38. 
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These theorems form the basis of a rational 'operational 

calcuJ.us' completely adequate for the analysis of lu.mped linear 

systems driven by linear combinations of sectionalJ.y continuous 

ma.trices e F and •impulse matrices 1 dk ::: ~ k U for R ::: 1, z, - - -



10. Strong Limits of Matri..~ Functions 

A function ;; on a class r to F is a matrix function 

.Qf It on "2' • let [ f,,_] be a s:equence in ;:- ' i.e 0 t. =rt t'tJ} 

is a matrix function of >-i on the positive integers. Then 

A fn. , the 
.,., _,>o(' 

f-=: [fttJ] E F 

strong limit g£ J:, ~ }, ~t>0, is an element 

such that~ /?. (t) exists uniform-

ly in i on every finite continuity interval of f(t} (i.e. every 

finite interval not containing a discontinuity of f {c) ). -{!!:;~ 
is clearly unique if it exists. J..i-£ is a linear operator on 

the class of matrix functions of "1 to F • 

Similar remarks apply to the meaning and properties of 

k· fx 
~_.a x , the strong limit of ~ §§ ;\-> a. , where fx 

is a matrix function of -X on an i:nterval of .e including tl. • 

f X is s,:trongly continuous in X at ~ if £. ~ h exists 

and equals fc a.) • 

'l'HEOBEM l.J. If J1 {c) c F {t:) for all X in an interva:J.. 

I of A, including a. ~ /; (CJ is continue~ in t, X for 

~ly all t and for all ~ f' T , then fx = ["f;rtJ] ~ 
strongly continuous in 7\ at a. • 

d~ fx , the strqng derivati.v<t_Qi: /j in fr at Ci.. , 

equaJ.s ~C\ ~ _-f . d ~ is of course a linear opera-

tor on the class of matrix functions of the real variable ?< · 

THE:OREM M If d t ;: (I:} € r (c) for all Y .i..n...Jm 

interval I .Qf IC includinf£ ~ ~ ~~ !; (t) 1:§. continug.!!2 j.y 

t
1 

X for nearly all c and for all tr f" I , ~ cl~ J:/; (t}) 
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THEOREM 45 l!: o( (v) is a complex-valued function o:f )( ~9. 

/J: = [ 0 (;/-)] a matrix function of )c on an interva1 I ~ R 

including Cl , and the ordinarY derivative ~ YrtJ and the strong deriva

tive&.;,,;_ both exist at ct. , then h_ o(('lt) !; exists equal to 

o((-y) A 1~ 1-- .('r111 /-y • 
~ . 

L A d-v , the strong i~tegral of Tx in k~ 
a ~ 

{;.(. ~ Jr ' is all element ;? c r such that £ rl< ( ,j.) cl_,-y:; eJdsts 

U.lliformly in / on every finite continvi ty interval of T (~) • 

THIWREM 46 :.M_ .f ~ ( t ) ~ r-r ;f) for all x in the closed inter.., 

~ (a.1 .Ir} of R.. and is continuous in J-/ Jc for nearly all f- and for 
J, 

S:Jl 1( f (a. / lr J 1 then { [ f ic ( t-)] c:1. y. erlsts o 

It can be shown that equation (17) is valid for sectional-

ly continuous matrices /.::. f f ( j-) ] (and with all integrations 

from - C><3 to /- ) , i .e • /:-

(38) p(~}r = [ L~ Gr~-rJ/rrJdr 1, 
. .;... 

Where ft/- and p(~) is a primitive derigrator A (LD) 13(,&) of 

posi-t;ive rank and 6 ::: [ 6 ( J{ J J = .& P(~} U • With the 

notion of strong integral introduced above, (38) may be transformed 

as follows: 

{.!_!:, G(f-1)/(r),,i r) = [ j~{r) G (L-1Jcf 1]/ 
-QO 

since now G ( f) :::: o if r < o (this was not true in 

the preceding sections, where [I 1 was used instead of V ) , 

=- .... L7(7) [ c, {~- -r) ]d r ==-OerJ E,, [Ci (:/-J J d T 

-==_{./(rJ F, { /S} p(,!!Y)U jd T =-... .C,/-(r}E
7 

( f' P(fa) U }d r 

= _{./r7) c:, Pr11 d .i. r,, \4/l·/C/e5 cf= r u. 
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Thus we have shown (the details will be given elsewhere)1 oG 

(39) f'{~JF = J~('r) c,,,. ?r?JJ> c/7', 
-oo 

which is a resolution of ~(,/P) into a spectrum of •retarded impulses'. 

It should be carefully noted that the derigrator ;='(,{;)on the left is 

proper, ioeo an element of N , whereas the 'derigrator' in the in

tegrand is the inverse reverse of ~(,(}) , ioe• the image of ,P(....O) in 

kj • Nevertheless, since . the rank of .ff/P) is positive ?c_pJ ~ c- F , 

i.e. the integrand, and ' the integral, belongs to r . If the rank . 
1Yj)} ~oultf 

of / u VJ were e> , the integral ~be interpreted in the 1weak' sense 
/\. . 

of the next section. 



49 

n. Weak_Limit~~t~ix__fu.nctions 

Let ! A J be a sequence in the complement of F in F , 

i.e. the terms pf,,. are 'improper ' matrices. S.ince IJ.. is not the 

matrix of a function '3'>. (t} , what meaning cru1 be given to 6.f~ ? 

Consider the •images' X.-
1 A Y and Y -'A,.· V of ~ 
.,,~ o0 ,., _.,..., ,, _ e>Q 

where x, '( { /(/ • Suppose A~),} YI,, are in r and ~u(l -xA,/~~ v1~ 
both exist. Since the operator ~· is homogeneous with respect 

..,., ---'> oCi 

to multipliers c ,(/ J 

v~ x ,,,( =- L· vx.<I~ -= ~- 'Xv~ -=--XL· YAi 
""'~ o() f'!.,, 7,~o<> -n~o<' >t~~ J 

hence -X -I ~ X ~- =- Y ~ · Y ~ J --c ~ ~, 
'h - pC 'f/i, "1-t ~ o<> 

the image operators cannot produce unequal results. Moreover ..4,... ~" 
-,., - OI.' 

itself is included) with X = I • These considerations motivate and 

justify the following definition: 

~~ 
""'1--'>' oC ~ 

/\'-(A,: x '"' 

, j{he weak_J,imit of ~ as h ~ oQ equals 

for any I\ f' y such that -x./ J.i E F and 
,, ~-'=' 

.J,..:. X "1.,_ exists. Since the existential distinction between weak 
'1-t - "" y-''\.,, 

and strong limits is often important, we have used the distinct no

tation k 
'"'h ~ oC' 

In terms of -4 it is possible to regard the improper -n-oe 
elements of /= as limits of sequences of proper elements E F , there-

by giving the improper elements an intuitive significance which they 

This interpretation of the impulse matrices and the other improper 

elements of F is very helpful in building a 'picture 1 of /= 

adequate for the physical applications~ 
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The notions of weak continuity and weak derivability are 

evident modifications of the corresponding •strong' notions and we 

shall not stop here to give the explicit definitions and state the 

principal properties. 

We are especially interested in the notion of 'weak 1 in-

tegral': /, 

£ fx d-x , .t~k..in~r~ !;, in X !!:Qm a :r& /, , 

X ~ E F for a:ny I\ €: ( a., 1') equals~ "X -t J :£ Jx for any A: c ;fj such that 
C\. ~ . /, 

and the strong integral Jx~ ix exists. The weak integral , if it 
~ b 

exists, is independent of X • The formal properties of £ fx dx 
.6 ~ . 

follow from, and are the same as those of f-x f-x j x- , 

where 

t< 
!gr any .f ::- [ froJ E" r 

I:, 
§/'er) 1:-:,, r j?' =- [ .f ( t J a) /,J]_, 
~ r ( t.; a, /,) ::- f { t) _/f Cf < t < b, 

:=- C ,;f f < a. O'f' f > h 
is undefined for t::: a. oY I= h - -

The proof of this -~heorem depends upon the following 

LEiVllVl.A For allY f (t) E F ( c) t 

f}('rJU(t--r)cl'i' t J f(7; a.)6) jr 
~ -~ 

fr.ggi: It is easy to verify that b 

_£f/;;~.,. = j}<.,.Jurt-'rJJr ~_[fr.,->Ofa.-TJ.lr-
-= f e<->f (-rJ U( /, -"r) U( a_ --r) j 7 

Hence _ ct:' a. 

j fr.,.> u( t _,,) cl'f' = f }rrJ V(, _.,.).Ir -J}'(';) U( t-'rJ.!r-

t - '11:" ( 

=- Jtr'iJ U(6-7)d'r- J ftrJU(a.-T)d'r 
-.c> t - <:13 t 
=- _.[,t( -r) [ U(b- 'r) - U (a. -7)] J 1" : _.[ f('r; a., J,) J?-, 
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This is comparable with the resolution (39) of the preceding 

section, but here the integral is weak, whereas that in (39) is 

strong. 
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12. Appendix 

Satisfactory rationalizati ons of the 'Heaviside' operational 

calculus have been developed recently by L. Schwartzl and J . G. 

Mikusinski2 (the superscri pts refer to the Bibliography), using very 

different methods. These methods will now be compared with the 

method of inverse reversion by reinterpreting the fundamental equa

tion (32) in terms of the ideas of, first , Schwartz and then 

Mikusinski. 

Let ;=- be as in Section 1, i.e. the linear class of all 

matrices /:: [ f ( ;//] where fCI:) is everywhere cont:llluous on 

R. to S • Let <P be the class of all matrices ¢ = [ ¢«!;] 

where ¥(:!) is on R to C , is 0o - fold derivable everywhere, and 

vanishes for all sufficiently large I ~I • For any sequence i d-n J 

in cJ , let ~ ¢ 77 be the element ep ~ <J> 
77--rc:>o 

~=- o./ 1) z./ - - - _, ,.&; ¢-nc~· J - ,,<j;' <Jr~) 
uniformly in ,L:- on every bounded subset of I? • 

such that for 

Let F be the 

class of linear operators A on 4 to S , i.e. ?\. ti is an ad

ditive homogeneous function of c/> on i to S and ~ C\.c/77 =o 
-n-C><:J 

for any null sequence { ¢-r, } in ep • Let L be the class of linear 

operators on F to F . 

For ft F , ¢ c i , let r fl> -=£/rtJ <j;{;f) d. 

Then T r/> is a linear function of </> on ~ to S , and it is easy to 

see that F is iso:n1orphic with a linear subclass F' of F • Hence 

F c F , upon identifying corresponding elements of F and F ~ 

If ,,&/ = [ ~ /(~) J c..C , then 
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c:::>o 

{,&f) ¢ =£FrLJ <j(IJff = /r~)tj(LJ(0 - £~r:6J ~ 1 r-"JP, 

-/.c:>o/(~)fF{./)U= (.IJ);/)¢-1- /(o) </(o). 
c 

More generally, if LP-.,/ =F; then 

(40) r-1 .,,,;: /.r ,/;)¢{YI} ( c) d.I =- ( Jj >'/ f) r/ I- ~ ("l'l~ ·IJ{o) ~(o) - I (n--..)( 0) ¢ f ( o) f-

-/- {-J n-i T (o) f{l5 .,..,_1 (O} _ 

Define Jo f L by (-/'I) ¢ == -/AJ 9 for ./ c F/ ¢ c ef. 

Then ( /7 ~ /) ¢ = 17r? r) ¢ -=- - ( f-7 / J ~ r;f ~ / ~ '- ef / 

and in gene1•al., ( /' '7 /)f.j =(-Jn / ,6>'>1 ¢ .. Hence if / c F , 

r 7"'1/)¢ =- r-J'y/ / ~ncj = (-nJ £/r~) ¢c111 (;/) H. 

In particular, Jn [ 1] <j == (-) "i" 9' /7 ( ,t.) ,;Lt- =- (-) 7-7-/ ¢ (>?-/./ (0) 
J 

or ( p" J ) ¥ ::::: (- J '» ¢ r ... ; ( o) w, rl-1' cf = l7 [ 1 J . 
Equation (40) may now be written 

r.,., >7/ J <f = r~..,;1; ¢ f- { /rn-'ro; r + /r"'-z'ro; rl.1 -- - f- l'roJ f ~I [1 J <P / 

·which is equivalent to 

(41) f.., f = ,6) >1 f- + ( ~-1 f + 4-z f .,_I- - • - +- -fi / 11} [I] 

with. ~ = / /t: (o} • Equation (32) now follows, with the notation 

of Theorem 32. 

The elements of ;= ar~ essentially distribu.tions in the 

sense of Schwartzl (except that Schwartz takes /¢-== .f:?r,/J ptl)U 

for /. t- F , where we have £°". With Schwartz's definition and r as 

in Section 9, the preceding discussion~ mutatis mutandis, leads to 

equation (36).) We have had to take some liberties \-ri th Schwai:tz 's 

notation in order to preserve the form of (32), but on the whole the 
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changes seem to be improvements o 

For a detailed comparison of inverse reversion with 

Schwartzian distributions, the exact relationship between F as de

fined above, i.e. the class of linear operators on if to S' , and 

F as defined in Section 8, i.eo the range of t for /c F , 

o ::/c. x ~ Kc£ , must be determinedo This has not yet been doneo 

For the comparison with Mikusinski, let P- be the class 

of matrices /= {;C(L-) J where /(,i) is on R + , the non-negative 

real numbers, to C , is continuous for /- :> o and right-contimious 

at j- = o o Define sum and difference of elements of F as in Section 

1 (but not numerical multiples, for reasons given below). 

For /; ? ,£ r .I I. ET ~j = [;; ,I-/( T) J ( ,:/ -r) d r 1. 

Then (c.f & Mikusinski2) F is a commutative ring without divisors 

of zero, and hence may be extended to the essentitlly unique quo

tient field F = ~ • F has no unit element (there is no fu.nc.., 
,t 

tion tf(i) such that£ cf(r) -/(~-r) d!.'1 = /'c£-J , i.e. Dirac's 

'function' is not a function). 

is the unit element of the field F o 

Let ~ = l I J _, , so that cf :=: f ll 1 o Let F 1 
<:: F be 

the class of elements /' [~ ] for Lt- C ,. The correspondence between 

,( t C and 1 I,,,( 1 c F ' is an isomorphism., Hence C c:: F , upon iden

tifying .L and r [ .t) e Moreover, for any / ~ F .1 

~f == 7 [..t Jr=/' [,(~ /(xJ.U] = [,,.( /f,;&J]_, 

from which it follows readily that F is now a commutative algebra 

(linear ring) and F is a linear field (this result makes unnecessary 
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the definition of numerical multiple of elements of r as in Section 

1). 

If .LJ I ~ r , then 

f::: [t,'1j'(~JU-1-T'o J:::: f.fo" / 'rL-JcM] + [fo 1 
and J f = ~ f f- / 0 = u<!) / + /o f [ I ] • In general if 

~Yl/ E F , then 

-; n / = ,,<J. -,, / + ( 4_
1 
/' + / n-, f' .. + . . • f- /a j -,, } [ I ] / 

ioeo (41) holds, and (32) follows imrnediatelye 

Thus in this very speciaJ. case, with S -=- C and the 

domain of f(;f} restricted to e + ' the classes F ' F play the 

roles of the operator classes L , L in the more general theory .. 
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