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ABSTRACT 

A scheme for the practical estimation of power spectrum 

from randomly-timed samples is proposed and investigated for wide-

sense stationary stochastic processes. The sampling process {t } 
n 

is assumed to be a stationary point process statistically indepen-

dent of the sampled process X(t) • Stationarity of {t } 
n 

admits 

that joint statistics of tk , tk+n do not depend on k . Closed 

form analytical formulae are derived for the spectral window 

~(f) and for cov{S(f ),S(f )} , var{S(f )} for the particular 
r q r 

case of independent identically distributed sampling intervals. 

Results confirm the alias-free character of the Poisson sampling 

scheme even for non-bandlimited spectra. It is shown further that 

for gaussian processes with very smooth spectra Poisson sampling 

process can yield more reliable estimates (i.e., with a smaller 

variance) than the well-known method of periodic sampling. 



-vi-

Table of Contents 

INTRODUCTION 

I. EMPIRICAL SPECTRAL ESTIMATION 

1.1 Statement of the Problem 

1.2 Designing Estimation Algorithms for Practical 
Use 

1.2.1 Review of Numerical Integration Schemes 

1.2.2 Algorithms for Estimating from Randomly 
Sampled Data 

1.3 The Sampling Process {t } 
n 

II. FIRST ORDER STATISTICS 

2.1 Introduction 

2.2 Analytical Derivation of the Spectral Window 

2.3 Desired Properties of the Spectral Window 

2.4 Windows Resulting from Some Common Sampling 
Densities 

2.4.1 Periodic Sampling: The Blackman-Tukey 
Window 

2.4.2 Poisson Sampling Process: The Poisson 
Window 

2.4.3 Rectangular Sampling Process: 
Rectangular Window 

1 

4 

4 

6 

6 

8 

10 

12 

12 

12 

14 

16 

17 

17 

19 

2.5 Details on the Periodic and Poisson Windows 20 

2.5.1 

2.5.2 

Integrability and Absolute 1ntegrability 21 
u p 

Behavior of Qm(w), ~(w) for Large m 24 

2.5.3 Computation of Side Lobes 

2.6 Aliasing of Spectral Estimates 

2.7 Modification of Spectral Windows 

2.7.1 Application of the Bartlett Function 
to Nonperiodic Sampling Scheme 

25 

30 

32 

33 

2.7.2 Application of Hanning, Hamming Functions 39 to Nonperiodic Sampling Scheme 

2.8 · Aliasing: Extension to Nonuniform Sampling and 
Criteria for Alias-Free Estimation 

41 . 



-vii-

III. VARIABILITY AND COVARIABILITY 

3.1 Introduction 

3.2 Analytical De rivation of cov[S(f ) , 
S(f )], var{ S(f )} r 

q r 
3.3 Derivation of the Blackman-Tukey Result for 

Periodic Sampling 

3.4 Results for the Poisson Sampling Scheme 

3.4.1 An Exact Result for cov[S(f ),S(f )] 
var{S(f )} r q 

r 

3.4.2 lim cov[S(f ) ,S(f )] 
jf-fj-+-0) r q 

r q 

3.4.3 An Approximation for var{S(f )} 
r 

3.5 Special Cases of Practical Interest 

3.5.1 Estimation of Spectral Spikes 

46 

46 

47 

54 

57 

59 

61 

62 

73 

73 

3.5.2 Estimation of Slow-Varying Spectra 76 

IV. SUMMARY AND CONCLUSIONS 

4.1 Summary and Conclusions 

4.2 Poisson vs. Periodic Sampling 

4.3 Practical Implications of the Random 
Sampling Scheme 

APPENDIX A 

APPENDIX B 

REFERENCES 

4.3.1 Communications Technology 

4.3.2 Seismic Data Processing 

· 4.3.3 Oceanography 

4.3.4 Structural Design 

80 

80 

81 

83 

84 

84 

84 

85 

86 

90 

94 



-1-

INTRODUCTION 

Power spectral techniques have found many useful applications 

not only in communication engineering but also in such diverse fields 

as Astronomy, Meteorology, Structural Dynamics, Oil Exploration and 

Economics. From measurements of power spectra, it has been possible 

in the case of linear systems to obtain useful estimates of the 

stochastic r elations generating such time series (see, for example, 

reference [19)). In turn, identification of linear systems via spec

tral analysis provides a means of constructive fault-finding and 

subsequent modification of the design of radio receivers, aircraft and 

other linear (or approximately linear) systems which are subject to 

stochastic excitation. In areas of application involving natural sys

tems (which cannot be modified) scientists and engineers have b een able 

by extrapolation to predict responses of those systems to well- defined 

random excitations. Symbols from a communication source [10], radar 

echoes from distant planets [12],[13] , swell recordings from distant 

storms [11], reflections from seismic explosions [19], wind velocities 

in atmospheric turbulence, and even day-to-day price fluctuation in the 

stock market are all examples of random signals with which engineers 

and scientists have to cope. In general, amplitudes of these signals 

are random and in some cases significant readings of these amplitudes 

arrive at random times. 

For many of the applications mentioned above analog methods of 

spectral estimation have proved inadequate due, for the most part, to 

the degree of frequency resolution demanded by modern noise studies. 

Since the advent of digital computers, discrete-time estimation of power 
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spectra has been widely carried out using the standard procedure of 

R. B. Blackman and J. W. Tukey [1]. For a certain class of signals, 

the standard procedure utilizing ampli tude readings taken periodically 

has produced useful results, while for others it has led to erroneous 

estimates. Of particular concern is the error due to aliasing or 

unwanted contribution (by "folding over" replicas of the true spectrum) 

f rom frequencies which are even multiples of the Nyquist frequency 

(fN = l/2~t). The attractive possibility of using randomly-timed 

samples as a means of eliminating aliasing was suggested by Blackman 

and Tukey [1] and investigated by H. S. Shapiro and R. A. Silverman [9], 

F. J. Beutler and 0. A. Z. Leneman [2]-[5], all of whom have shown that 

Poisson sampling is alias-free even for non-bandlimited spectra. Whereas 

the works cited above have provided the groundwork for this investiga-

tion, much-desired processing algorithms utilizing this particular 

technique together with qualitative analysis are still lacking. 

In this :thesis, a scheme for the practical estimation of power 

spectra from randomly-timed samples is outlined and fully investigated 

for a real wide-sense stationary stochastic process X(t) • The scheme 

requires the sampling process {t } to be a stationary point process 
n 

whose statistics are independent of those of X(t) • Stationarity of 

{tn} admits that joint statistics of tk+n' tk are independent of k. 

Chapter I provides the basic formulation of the problem together with 

relevant assumptions on the sampling process • An algorithm for 

practical estimation of power spectra from non-uniform sampling is 

outlined briefly. In Chapter II the first-order statistics of the 

estimator are fully investigated. An analytical expression for the 
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characteristic spectral window is developed in its most general form. 

Methods of modifying spectral windows are discussed and windows aris

ing from Hanning, Hamming and Barlett modifications are derived 

analytically. The notion of aliasing is generalized and testing 

criteria are discussed. Results on covariability and variability of 

estimates are presented in Chapter III. Closed form expressions of 

the Blackman-Tukey type are derived for the Poissson sampling scheme. 

It is further shown that for very smooth spectra, Poisson sampling 

scheme can achieve a better variance than the method of periodic 

sampling. For wildly fluctuating spectra, on the other hand, results 

show that Poisson sampling is equally unreliable. 
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Chapter I 

EMPIRICAL SPECTRAL ESTIMATION 

1.1 Statement of th e Problem 

In the empirical estimation of power spectral density S (f) of a 
X 

real stationary stochastic process X(t) , the following procedure is 

customary: 

(i) X(t) is sampled at prescribed times t
1
,t2 •••tN . 

(ii) A processing algorithm is set up to utilize the sampled 

data X(t1),X(t2)···X(tN) along with appropriate information on the 

sample intervals to obtain an estimate 

at some frequency f 
r 

" 

" s (f ) 
x r 

of the noise spectrum 

(iii) The estimator S (f ) 
x r 

is evaluated and modified appropri-

ately. Evaluation consists in an analysis of the mean and variance 

of Sx(fr) . The need to modify the estimate usually arises during the 

" 
analysis of the mean of Sx(fr) . 

Sampling may be done periodically as in the Blackman and Tukey 

algori thm or in a non-uniform manner as has been suggested and studied 

in the literature (1]-(5],(9]. In practice, a statistical description 

can be imposed on these intervals by either (a) sampling the process 

X(t) according to some well known distribution like Poisson, periodic, 

rectangular; or (b) observing, in the case of natural phenomena like 

ocean waves, the arrival times of records and approximating their 

statistical behavior as best as possible. 

The goodness of estimating spectra by methods described above 

depends to some extent on how accurate the sampling interval statistics 
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have been approximated. In general, one does not need to know the 

actual sampling times for practical estimation, but a statistical 

description is required for a qualitative analysis. The scheme to be 

developed later in this thesis admits of data whose sampling intervals 

are additively random. Thus, it will be less sensitive to sampling 

jitter than the procedure of R. B. Blackman and J. W. Tukey in which 

the sampling intervals are fixed and equal. 

The equations fundamental to spectral estimation procedures for 

a real stationary (wide-sense) stochastic process X(t) are: 

where 

s (f) 
X 

00 

J 
-00 

R (T) cos WT dT 
X 

R (T) ... E {X(t +T) X(t)} 
X 

S (f) is the power spectral density X , 

R (T) is the autocorrelation function of X(t) 
X 

(1.11) 

(1.12) 

For ergodic processes ensemble averaging implied in equation 

1.12 may be replaced with time averaging defined by 

R (T) 
X 

= lim 
T-+oo 

1 
T 

T 

I X(t+T) X(t) dt 

0 

(1.13) 

Equations 1.11 and 1.13 underlie theoretical spectral estimation in 

continuous time or in discrete time with infinite data. Since empiri-

cal spectral estimation is carried out in discrete time with finite 

data, a great deal of the efforts in the area is directed to developing 
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improved sampling schemes. In what follows, we will develop some 

processing algorithms for randomly sampled data, modify one of them 

and evaluate its first and second order statistics. 

1.2 Designing Estimation Algorithms for Practical Use 

The first step in designing a spectral estimator for a 

stationary process X(t) which is assumed ergodic is to obtain a 

suitable numerical approximation to the defining equation: 

oo T-T 

S(f ) • 
r 2 J lim T:Tf X(t+T) 

OT-+oo 0 
X(t) cos 2TI f "C dt d"C 

r 
(1. 21) 

Numerical integration schemes for doing this abound in the literature, 

varying in complexity from the rectangular and trapezoidal approxima-

tions to quadrature formulas of the Lagrangian and Gaussian types (cf. 

Todd [22]). In this section some estimation algorithms are developed 

from first and second order integration schemes. The most suitable of 

these is selected and modified for subsequent evaluation. 

1.2.1 Review of Numerical Integration Schemes 

Let f(t) be Riemann integrable in the interval [a,b] and let 

f( t ), n • 0,1,2· • •m be samples of f(t) at the times t t ••• t • 
n o' 1 m 

The area defined by the integral 

b 

I 
!:. 

J f(t) dt -
a 

can be approximated by either of the following sums of rectangles 
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t:, m-1 
IF - I f(t )(t +1- t) 

n=O n n n 
(1. 22a) 

t:, m 
IB = I f(t )(t - t 1) 

n=l n n n- (1.22b) 

The subscripts on I indicate that the base of corresponding rectangle 

is obtained by taking the forward step (F) or the backward step (B). 

A better approximation to the integral is obtained from an average of 

the last two sums, namely: 

(1. 23) 

which is none other than the trapezoidal approximation of an integral. 

To see this, we write out the sum (letting ~n+l ~ tn+l - tn , 

f ~ f(t )) 
n n 

and rearrange to . have 

m-1 
• ~ {foal + L 

n=l 
f (a + a +l) + f . a } n n n m m 

Higher order integration schemes result from fitting the 

sampled data to polynomials of degree less than the number of sample 

points. Details leading to well known quadrature furmulas can be 

found in texts on numerical analysis (see, for example, Todd [22], 

pp. 59-61). As a rule polynomial fitting can be regarded as weighting 

the rectangles in the sums defined by 1. 22a, 1 .• 22b. 
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1.2.2 Algorithms for Estimating from Randomly Sampled Data 

Let X(t . ), i= 0,1,2,""",N be samples from a wide-sense station-
1 

ary stochastic (real) process {X ( t)} and t.' 
1 

i=0,1,2,···,N 

points of the stationary point process {tk} whose properties we 

define later. Numerical approximations to the double integral 

equation 1.21 will proceed as follows. For simplicity, we will 

approximate the inner integral as 

1 
T-T 

T-T I X(t+T) X(t) dt 

0 

'\.. 
= 

(letting 

T - Na 

be 

will 

in 

and apply equations 1 . 22a, 1.22b and 1.23 to the outer integral to 

obtain respectively (w = 2nf ): 
r r 

and 

m-1 N-n 

SF(fr) = 2 n~O (N=n)a k~l Xk+n ~cos wr(tk+n- tk)a~ ak+n+l (1.24a) 

m-1 
+ \ 1 

L (N- n)a 
n=l . 

(1. 24b) 

N-n 

k~l Xk+n~cos wr(tk+n- tk)(ak~+ ak+n+l)ak 

(1.25) 

Each of the above is a valid estimator as far as the integral in 1 . 21 

is concerned and , in fact, §T(fr) is Blackman and Tukey's estimator 

for equi-spaced samples . (To see this, put tk+n - tk = n~t , 
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ak+n = ak+l = ~t , tk = k~t in equation 1.25.) We remark in passing 

that there are infinitely many such valid estimators corresponding to 

the various integration schemes already mentioned. However, in order 

to obtain useful averaging filters or spectral windows, as they are 

commonly referred to in the literature, it is sometimes necessary to 

modify these estimators somewhat. For example, an earlier pilot analy-

" sis showed that using either SF(fr) for general non-

uniform s ampling schemes is equivalent to averaging with windows which 

" are not integrable. SB(fr) , on the other hand, averages with a 

Poisson window whose area is zero and whose bandwidth is therefore 

infinite . Detail discussion on the averaging capability of the spec-

tral windows is presented in Chapter 2. 

In general, modification of estimators can be viewed as con-

veniently weighting the rectangles in the sum of 1.22a, 1.22b. A 

systematic way of choosing these weights is that provided by higher 

order schemes of polynomial fitting. (See, for example, Todd, pp. ' 59-

61). Since higher order schemes will usually present analytical dif-

ficulties, any choice of weights which does not hinder analysis 

considerably will be quite acceptable. Further accuracy in the inte-

gration scheme can then be achieved by taking samples closer on the 

average. A simple such modification which we present here for further 

investigation assigns an approximate weight of 2 to the first rec-

tangle and a weight of l to the other rectangles in the sum of equation 

1.22b. Thus we have 
m· N-n 

S" ( f ) = 2 \ -----:-1--:-- \ ( ) ( J: ) L -("' ) k=L_
1 

Xk+nx.. cos wr tk+n- tk ~+n + aunl ~ r n=l N-n k 

(l. 26) 
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where 

={1 
n = 1 

0
nl 

n f 1 0 

The Blackman and Tukey estimator is easily derived from equa-

tion 1.26 above, by excluding the term a6nl and replacing the sum 
m 

I 
n-1 

m 
with the sum Z 

n=O 

m 

defined by 

m-1 
z {a + 2 

0 I a + a } n m 
n=O n=l 

1.3 The Sampling Process {t0 } 

The sampling sequence {t } 
n 

employed in the scheme outlined 

above is assumed stationary with independently distributed intervals. 

Furthermore, the processes {t } and {X(t )} are assumed statisti-
n n 

cally independent. It is implied by the stationarity of the {t } 
n 

that the joint statistics of the respective number of points in any 

set of intervals are invariant under a translation of these intervals . 

Additional details on the theory of stationary point processes are 

provided by Beutler and Leneman, Ref. [3]. Summarized below are some 

relevant properties and assumptions on the sampling sequence {t } . 
n 

(i) 
~ 

t~+l- t~ =a~,~ =1,2,·· · are independent and identically dis-

ributed with mean a , common probability density p (~) , and 

characteristic function 

~(iw) ~ E[exp(-iwa~)] 
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(ii) t~+V ~ t~ , v ~ 0 with equality iff V = 0 • 

(iii) E[X(t~+v) X(t~)] 

changeable. 

- E {E (X(t + ) X(t )]} with E , E 
t X ~V ~ t X 

* /::, (iv) ~ (iw) = ~(-iw) where * implies complex conjugate. 

Furthermore, ~(iw) satisfies the following: 

(v) l~(iw)l< I~CO)I • 1 w :f: 0 

(vi) lim ~(iw) "' 0 
w+±ClO 

inter-

The above conditions (v) and (vi) can be derived easily from definition 

~(iw) 

()C) 

• J exp(iwT) p(T) dT 

0 

and the Riemann-Lebesgue lemma. 
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Chapter II 

FIRST ORDER STATISTICS 

2.1 Introduction 

In this chapter we proceed to examine the first basic property 

of the scheme outlined in Section 1.2--the expected value of the 

estimator defined by equation 1.26. In particular, we will derive a 

general analytical expression for the spectral window Q (w) 
m and 

investigate how certain of its properties affect the resulting spectral 

estimates. The notion of aliasing for periodic sampling is reviewed and 

generalized to the non-periodic case. Testing criteria for alias-free 

estimation simpler than those of Beutler [5], and Shapiro and Silverman 

[9], are discussed and presented without proof. 

2.2 Analytical Derivation of the Spectral Window 

To derive an expression for the spectral window we apply the 

expectation operator 

A 

E E E 
t X 

to S(f ) in equation 1.26. Thus, 
r 

E{S(f )} = 2 
r 

(2.21) 

Interchange of expectation and summation is justified, since we are 

dealing with finite sums here. By the stationarity of the sampling 

process {t } , the summand in equation 2.21 does not depend on k , n 
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so that 

Next, we take expectation with respect to X and introduce the Wiener-

Khinchin relations to have: 
00 

E{S(fr)} a ; Il I S(f) Et{cos w(tk+n- tk)cos wr(tk+n- tk) 
n• ...co 

Now, (Re - "Real part of") 

Et {cos w(tk+n- tk) cos wr(tk+n- tk) ak('\+n+ aon1)} 

• ~ Et {"k("k+n+ aOnl) Re (exp[i(w+wr)(tk+n- tk)] 

+ exp[i(w-wr)(tk+n- tk)] )} •; [qn(w+wr) + qn(w-wr)] 

where 

The last equality follows from the assumption that the sampling inter-

vals are independent and identically distributed. Finally, we write 
00 

E{§(f )} • I S(f) H (w;w ) df r m r 
(2.22) 

...co 

where 
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H (w;w ) b. 1 { '<m (w+wr) + ~ (w-wr)} ""-m r 2 

t, m a ~n ¢ + a¢} ~(Q) = 2 Re{ I ¢n(Q) (2.22a) 
n=l aH1 

m a ~n ¢ + a¢} = 2 Re {¢(1 - cp ) (2. 23) 
1 - ¢ aH2 

Equation 2.23 gives an analytical expression for the so-called spectral 

window for non-uniform sampling in which the intervals are independent 

and identically distributed. For the uniform sampling scheme of 

Blackman and Tukey, the spectral window takes the form: 

Ou(n) ~ Re{ (1 + p)(l- pm) a t ~} 
~ 1 - ¢ ain n ~ (2.24) 

2.3 Desired Properties of the Spectral Window 

" By equation 2.22 E[S(f )] 
r 

can be interpreted as a convolution 

of the true spectral density S(f ) 
r 

and the window function 

" H (w,w ). m r It is also customary to regard the mean value of S(f ) r 

a weighted average of the true spectrum over the bandwidth of the 

spectral window when the latter's main lobe is at f 
r 

For the 

purpose of useful-interpretation we can rewrite equation 2.22 in the 

following more general form: 
00 

f S(f) H (w;w ) df m r 

as 

E{S(f )} 
r 

-oo 
(2.31) - f H (w;w ) df m r 

--00 
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Whence it is expected that 

(i) ~(w) < ~(0) with equality iff w .. 0 = 

00 

(ii) I ~(w) dw = a O<a<oo , any m 

-oo 

For absolute convergence of the convolution integral (see, for example, 

Apostol [25] p. 490), and since S(f) is assumed bounded on (-eo,+oo), 

it is sufficient that 

(iii) J l~(w) I dw < oo 

Finally, it is desirable to have spectral windows ~(w) , indexed on 

m ' which form a defining sequence for the generalized function o(w) 

i.e. , 

(iv) lim Q (w) = a o(w) m 

"' This last requirement guarantees that s (f ) 
r 

is asymptotically un-

biased. Throughout the preceding it has been taken for granted that 

. ~ (w) is continuous, real and even in w • 

2.3.1 Bandwidth of Spectral Windows 

The bandwidth over which averaging of the true spectrum is done 

plays a major role in the stability of spectral estimates. For example, 

if the spectral window is "too wide", satisfactory resolution becomes 

rather difficult to achieve. In particular for spectra with bandwidths 

of the order of the window bandwidth, estimates at all frequencies will 

be very highly correlated. We are not concerned, at the moment, with 
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how wide or how narrow the spectral window should be. Discussion on 

the trade off between resolution and stability will be taken up later. 

Rather, we are interested in establishing a working definition of 

bandwidth. 

Of the several definitions of bandwidth that abound in the lit-

terature, the one that lends itself to easy calculation is that of Parzen 

[8]. It is simply that the bandwidth Sm(Q) of a spectral window 

~(w) is the base of the rectangle whose height is the peak of ~(w) 

and whose area equals that of ~(w) . Symbolically we write: 

.. 
00 

f ~(w) dw 
-oo 

max ~(w) 
w 

(2.32) 

The above definition assumes property (ii) of Section 2.3. Use will 

be made of equation 2.32 and property (i) of Section 2.3 to compute the 

bandwidths of periodic and Poisson windows later in this chapter. 

2.4 Windows Resulting from Some Common Sampling Densities 

In Section 2.2 we derived general analytical formulae for 

~(w) under the assumption that the sampling intervals are indepen

dent and identically distributed. By suitably defining the character-

istic function ~(w) in equations 2.23 and 2.24, particular expressions 

can be obtained for spectral windows resulting from any sampling scheme 

for which our basic assumption is valid. In what follows, we shall 

derive particular expressions for the periodic, Poisson and rectangular 

sampling densit"ies, and exhibit some graphical plots as visual aids. 
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2.4 .1 Periodic Sampling: The Blackman-Tukey Window 

When sampling is done periodically without jitter as required 

for the Blackman-Tukey algorithm , we have 

~t - sampling period, with sampling density 

O(T - ~t ) 

and characteristic function 

which, with 

puts equation 2.24 in the form: 

(1 + exp(in~t)) (1 - exp (i~t)) 

1 - exp(ill~t) 

Multiplying the R.H.S. by 1 - exp(-in~t) 

1 - exp(-in~t) 
before taking the real part 

leads to 

n6t 
~t sin m n 6t cot -2-

which is Blackman and Tukey's result Q (w) (cf. [1], p.35). 
0 

2.4.2 Poisson Sampling Process: The Poisson Window 

(2.41) 

Here the sampling times are the occurrence times of events in a 

Poisson process (e.g., shot noise, radioactive decay). The interval 

between successive events ak has the density 
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exp(-T/a) , 

p (T) 
~ 

T < 0 

and characteristic function 

<P (in) = (1- iS"2a)-l (2.4la) 

where 
-1 

a is the mean sampling rate and the mean sampling inter-

val. The joint density for n successive intervals is 

n-1 
(T) .,. T exp(-T/a) 

Pet a. · ·· a n k.+n' l:<.+n-1' ' k+l a (n-1) I 

from where we have the probability F(n,T) that there are n samples 

in an interval of length T , given as 

F(n,T) = 
n 

T exp(- -r/a) 

an nl 

These last two expressions can be derived easily from the inverse 

Fourier transform of the joint characteristic function 

<P (in) = 
n 

-n 
(1 - H2a) 

Now , from equation 2.4la, we have 

and consequently, (from equation 2. 23) 
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Multiply R.H.S. by (1- ~*)(1- ~*)-l to get 

where 1~1 :magnitude of the complex function ~ • To simplify, note 

that we can write 

~ • cos ~ exp(i~) 

with 

~ • arc tan (na) 

so that 

QP (n) • 2a { cosm+2~ sin(m+l) ~/~in ~} 
m 

(2.42) 

2 . 4.3 Rectangular Sampling Process: Rectangular Window 

As a final example we consider the rectangular sampling process 

by which sampling intervals are uniformly distributed in [0,2a) with 

mean a , i • e. , 

{ 
O

l/2a 

p"' (T) • 
'""'k . 

otherwise 

The corresponding characteristic function is 

. -1 
~(n) • (2illa) [exp(i2na) - 1) 

and after carrying out the indicated differentiation, 
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a[l + i(~a- cot na)] 

whence equation 2.23 gives 

The above expression for does not lend itself easily to 

further analytical investigation. However, we shall use the form 

~(n) - 2a ( s~;;,zna + 1 
+sin nna(cot na - l_)]} 

na 

for obtaining graphical plot of the rectangular window. 

(2.43) 

Shown in Figure 1 are the periodic, rectangular and Poisson 

windows as given in equations 2.41, 2.43 and 2.42 respectively . They 

are plotted for m = 25 and a = 1 Based on the figure, one is . 

inclined to deduce that both Poisson and rectangular sampling pro-

cesses are "alias free" for non-bandlimited spectra, while the 

periodic process is not. Analytical confirmation of this observation 

will proceed in subsequent sections for periodic aQd Poisson windows. 

As was pointed out earlier, the rectangular window is not tractable 

analytically. 

2.5 Details on the Periodic and Poisson Windows 

In what follows we take a closer look at the periodic and 

Poisson windows (the rectangular window will not be investigated fur-

ther due to lack of a suitable closed form expression for 
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In particular, we will verify properties (i) - (iv) of Section 2. 3 and 

compute analy tically the bandwidth and sidelobes for each of the 

windows for comparative analysis. 

2.5.1 Integrability and Absolute Integrability 

(a) Periodic window. To see tha t Qu(w) has repeated major 
m 

lobes at multiples of 2n/~t , we write 

u Q (w) a 
m 

m-1 
~t {1 + 2 L cos n~t + cos m~t} 

n=l 

and apply cos 9 c cos (9 + 2nTI), n ~ 1,2,3,••• to have 

(2.51) 

Equation 2.51 suggests r estricting the periodic window to the band 

lwl ~ n/~t otherwise Qu(w) 
m 

is neither integrable nor absolutely 

integrable. On the other hand, 

·Qu(w) w 
m rect 2TI/~t 

is both integrable and absolutely integrable, 

t { 01 rect 2T "' 

It! < T 

t < T 

In particular, we have from tables 

TI/~t 

J 
-TI/~t 

sin mw ~t 
~t 

tan - 2-
dw "' 2TI , (cf Ref. [21], p. 366) 

Absolute integrability follows from the finiteness of the integration 

limits and ordinary integrability demonstrated above. Further, we note 
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that 

~(w) lwl 

(b) Poisson window. From equation 2.2a, we have 

n+l 
cos \jJ cos (n+l) \jJ, 

. -1 
\jJ • tan wet. 

whence it follows that 

~(w) ~ ~(0) a 2(m+l)et. 

Further, is integrable, since 

oo TI/2 

I ~(w)dw • 2 I 
-oo -TI/2 

cosm\jl sin(m+l)\jl 
sin \jJ d\jl 

m 2TI (cf. (21), p. 377) 

It follows too that QP(w) · b 1 1 i t bl fi it ~s a so ute y n egra e over any n e 
m 

interval. .Now,using the result 

. p 
lim ~ (w) 

w-..oo 
.. 

derived in the appendix, we can write for large L 

L • I IQ~(w)ldw + 0(1/1
5

) 

-L 

whence it follows that ~(w) is absolutely integrable. 
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2.5.2 Behavior of ~(w) , Q!(w) for Large m 

The main interest here is to see whether or not the window func-

tions approach the delta function as m increases without bound. For 

our purpose it will be sufficient if for F(w) continuous, bounded and · 

absolutely integrable, 

lim 
m-+oo 

00 

J ~(w) F(w)dw • a F(O) 
-00 

where a is the area under Q (w) • 
m 

(a) Consider the integral 

rr/6.t 

Iu • I Q~(w) F(w) dw 

-rr/6.t 

and assume that F(w) is "good" in 

the sense described above. Then 

rr/6.t 

I J sin mw 6.t w6.t 
dw • cot - 2- F(w) 

u 
-rr/6.t 

mrr 

• I F(y!m) 
sin :t: .£y_ 

-mrr 

i.e., 
lim 

m-+oo 

Consequently, 

lim 
m-+oo 

I 

t.an(y/2m) m 

00 

I sin :t: • 2F(O) u y 
-oo 

u w q;<w) rect 2rr/6.t 

(b) In a similar manner 

• 

dy • 2rrF(O) 

2rro(w) 
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00 

J Q:(w) F(w) dw 

rr/2 

- f 
m 

cos ~ sin(m+l)~ F(tan ~) d~ 
sin ~ 

-rr/2 

(m+l)¥ 

.. 2 I Tr 

-(m+l)2 

lim RHS = 2 
m+oo 

implies that 

lim QP (w) 
m+oo m 

cosm(~) sin y 
---- --- F(tan ~) !;1 sin~ 

00 

I sin y_ F(O) dy "' 27T F(O ) y 
- 00 

- 2rr6(w) 

Additional evidence is provided by the observation that the major peaks 

of ~(w), ~(w) given respectively by 2ma , 2(m+l)a tend to infinity 

with m . Also the bandwidths obtained from equation 2."32 as l/2filf,t 

cps , l / 2(m+l}a cps respectively , tend to zero with increasing m • 

2.5 . 3 Computation of Side Lobes 

(a) Periodic. u ~t Qm(w) ~ ~t sin mw ~t cot --2-

has zeros near wk = krr/ filf,t , k=l , 2, 3 so that its side lobes have 

peaks near 
Tr 

wp = (2p+l) 2~t 

given approximately by 

p ... 1 , 2 , · ·· 
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(b) Poisson. 

QP (w) = 
m 

has zeros near 

~k = krr/m+l 

-28-

2a cosm+2~ sin(m+l)~ 
sin ~ 

(2.52) 

or 1 
wk = a tan(kTI/m+l), k= 1,2,·. • 

and consequently, peaks near 

or 1 (2p+l) 1T 1 2 
wp "" a tan m+l 2 ' P.. ' '· • • 

approximately equal to 

(2. 53) 

Using equations 2.52, 2.53 we have computed some coordinates 

for the first three side lobes (corresponding to p=l,2,3) and 

m = 50,100,··· ,300. Results for m = 50,100 agree quite well with 

those shown in Figures 2 and 3. It is observed from Table 1 that side 

lobes move closer to the origin but do not decrease with increasing m 

as is expected. ~ather, the side lobes increase with m but do not 

exceed a fixed fraction (namely, about 1/5 for the first side lobe) of 

the main lobe. Figures 2 and 3 lead to the conclusion that side lobe 

contributions are less pronounced with Poisson sampling than with 

periodic sampli~g. However, this discrepancy disappears if m is 

sufficiently large. Finally, we remark that the results of this sec-

tion confirm the known result that Poisson sampling is alias free even 
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(a) First Side-lobe p = 1 

wn Q~(wl) 
p 

Q! (wl) m 
1 wl 

50 0.0942 -0 . 21205 0.0927 -0.16945 
100 0.0471 -0.21217 0.0467 -0.18980 
150 0.0314 -0.21219 0.0312 -0.19702 
200 0.0235 -0.21220 0.0234 -0.20072 
250 0.0188 -0.21220 0.0188 -0.20297 
300 0.0156 -0.21220 0.0156 -0.20449 

(b) Second side-lobe p = 2 

m wu 
2 ~(w~) wr 

2 ~(w~) 
50 0 . 1570 0.12706 0.1552 0 .06761 

100 0 . 0784 0.12726 0.0779 o. o·9329 
150 0.0522 0.12729 0.0521 0.10357 
200 0 . 0392 0.12731 0.0391 0.10908 
250 0.0314 0.12731 0.0313 0.11252 
300 0.0261 0.12732 0.0261 0.11486 

(c) Third Side-lobe p • 3 

u 
Q~(w~) 

p 
Q!(w~) m w3 w3 

50 0. 2191 -0.09058 0.2190 -0.02567 
100 0.1099 -0.09085 0.1093 -0.04929 
150 0.0732 -0.090.90 0.0729 -0.06062 
200 0.0549 -0.09092 0.0548 -0.06714 
250 0.0439 -0.09093 0.0438 -0.07136 
300 0.0366 -0.09093 0.0365 -0.07432 

Table 1. _Some Coordinates for the first 

three side-lobes. 
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for non-bandlimited spectra (c.f., Beutler [5], Shapiro and Silverman 

[9]) 0 

2.6 Aliasing of Spectral Estimates 

In the practica l estimation of spectra from uniformly sampled 

da ta, errors have been known to occur in the estimates due to the 

periodic nature of the sampling scheme. These errors come as unwanted 

addition of estimates of the true spectrum at certain integral mul-

tiples of the Nyquist frequency (f = 1/~t , ~t = sampling interval). 
n 

Furthermore, estimates at these multiples of the Nyquist frequency are 

indistinguishable from one another. For bandlimited spectra, this 

problem, often referred to as aliasing, is easily surmounted by taking 

samples at or above the Nyquist rate. For non-bandlimited spectra, 

random sampling schemes (namely, the Poisson sampli~g scheme) have 

been found to reduce or even eliminate aliasing effects. In this 

section we derive the basic concept of aliasing for periodic sampling 

directly from the corresponding window function 

to nonuniform sampling schemes. 

To this end, let us rewrite equation 2.22 ~as: 

00 

E {S (fr).} = J S (f) Qm (f - fr) df 

0 

and generalize 

(2.61) 

and assume for the moment that S(f) is non-bandlimited. With uni-

form sampling interval we showed in Section 2.5.1 that ~(f) is 

periodic with period f = 1/~t cps. Consequently, we may write 
p 

00 

~(f) .. ~(f) rect 1J~t@ L c (f + vf ) (2. 62) 
\)=-00 p 
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where ~ defines the convolution integral. Now, using 2.62 in 2.61 

and recalling (from Section 2.5.2) that 

lim {~(f) rect 1J llt } "' 211'0 (f) 
m-+oo 

we get 
A 

lim E{S(f )}= 211' 
r 

S(f + vf ) 
r P (2. 63) 

m-+oo \)=..00 

and 

A 
oo+k 

lim E {S(f + kf )} 
r p = 211' 2 s (f + \)f ) 

r P 
(2. 64) 

V=-oo+k 

Equations 2.63, 2.64 together define aliasing for uniform sampling 

scheme. Both equations show that on the average, estimates at 
A 

f , f + kf k=l,2,··· 
r r p 

are indistinguishable. Each estimate S(f ) 
r 

is the true spectral density S(fr) at the frequency of interest f 
r 

plus magnitudes of S(f) at fr + vfp v=1,2,···. The latter inter~ 

pretation becomes obvious when we write equation 2.63 (leaving out the 

211' for convenience) as: . 

"' lim E {S(f )} = 
r 

00 

S(fr>+ L 
\)=..00 

vi'O 

s (f + vf ) ~ 
r P 

To recover S(f ) from S(f ) with periodic sampling, the 
r r 

above equations suggest that we make f large enough (by sampling 
p 

closer together) so that S(f) is zero outside (-f ,f ) • 
p p 

For band-

limited spectra this is possible to within the capability of the 

sampling equipment. However, for non-bandlimited spectra nonuniform 

sampling patterns must be used,. since it is practically impossible 
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to sample uniformly at an infinite rate. 

Definition 1: An estimate is said to be aliased in the ordin-

ary sense iff for some integer k and sampling interval ~t 

lim 
m~~ 

EjS(f)- S(f + k/~t)l 
r r - 0 

In terms of definition 1 above, a sufficient condition for estimates to 

be aliased in the ordinary sense is that the spectral window ~(w) be 

a periodic function of w , with period 

2. 7 Modification of Spectral Windows 

w - 2~/~t . 
p 

One peculiarity of the estimator under investigation is the 

term aonl which was included to insure that the resulting averaging 

filter ~(w) is integrable in (-~,~) • As we have shown 

earlier, integrability is only one of the essential features of a 

usable averaging window. The need for modification of this type did 

not arise for the periodic sampling, since the latter scheme is 

restricted to bandlimited spectra by which integrability of the spec-

tral windows is virtually guaranteed. All efforts in the past have 

been directed primarily at de-emphasizing side lobes of windows and 

forcing Q (w) m to become positive definite--a necessary condition for 

realizability of filters and other transfer functions. Tailoring of 

the spectral window in this manner is usually accomplished by weight-

ing the mean-lagged products with an even,positive definite function. 

Several weighting functions bearing the names of their innovators abound 

in the literature for the periodic sampling~ In this section we extend 
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these tailoring techniques to the nonuniform sampling scheme and 

examine in detail the effects on the Poisson window of Hann's and 

Bartlett's weighting functions. 

A general modification of the scheme under study can be written 

as: 

X 

where 

T 
m 

T 
m 

(2. 71) 

By appropriately defining D (T) , the resulting modified window can 
\) 

be derived analytically as was done in Section 2.2. - To illustrate, we 

wi l l derive the Poisson-Hanning and Poisson-Bartlett windows. 

2.7.1 Application of the Bartlett Function to Nonperiodic Sampling 

Scheme 

The weighting function suggested by Bartlett is given as 

and the corresponding spectral estimator is 

m N-n 
SB(fn) ~ 2 \ --

1
-- \ (1 

1.. N-n k!::.l n•l -

T 
m 

T 
m 

(2.72) 
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Proceeding as before, we get 

00 

m 

J 
( tk+n- tk E {S(f )} Cl 2 I s (f) E (1 - ) cos w (t - tk) r 

n=1 t ma r k+n 
-00 

X cos w(tk+1- tk)~(ak+n+ acn1)} df 

00 

J S(f) 
B - H (w;w ) df m r 

-oo 

with 

HB(w·w ) c 
1 {QB(w+w ) + OB(w-w )} 

m • r 2 m r 1n r 

where ~(n) . is the unmodified window derived in Section 2.2 and 

with 

B tJ, 
qn(n) "'Et { ~(~+n+ acn1)(tk+n- tk) Re[exp H1(tk+n- tk))} 

. k+n k+n 
.. Et {Re[~c~+n+ ac 1)( L a) exp(iQ L a )J} 

n k+1 ~ ~=k+1 ~ 

Taking expectations as indicated, and noting that 
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and 

it can be shown that 

~ · ~} + aunl <Hn 
(2.73) 

Finally, we have the Bartlett window arising from nonuniform sampling 

given by 

m 
QB(n) = 2 Re L 

m n=l 
(2.74) 

The Poisson-Bartlett Window 

With Poisson sampling intervals, 

so that the Poisson-Bartlett window can be written as (substitute 

above into 2.73, 2.74): 

~B(n) • 
m m 

2~ Re{ L ~n+l - a L (n+l) $n+2(iSG) 
n=O m n=O 

(2. 74a) 

m 
= 2a Re{ L 

n=O 

Now the second summation on the R.H.S. of 2.74a can be carried out by 

rewriting it as· 



and noting that 

s .. 
m 

<j>S =-
m 

-36-

m+l L n<j>n+l 
n=-1 

m+2 
L (n-1) <l>n+l 

n=2 

Subtracting the latter from the former, and manipulating accordingly, 

we obtain 

Next, substitute 

-1 
tjJ = tan na 

and take real parts as before, to obtain 

- (m+l) cos tjJ cos(m+2)tjl] - 2a
2 

cos 2tjl } 

2,1, -i { m+2 = (m sin ~) 2a cos tjJ [m sin(m+l)tjl sin tjl- a(m+2)cos(m+l)tjl cos tjJ 

(2.75) 

Shown graphically in Figures 4 and 5 are the normalized 

Poisson window, Q!(w)/~(0) and its Bartlett modification ~B(w) I 

~B(O) for m = 50 and m = 100 respectively. The main peaks are 

respectively, -~ (0) • 2 (m+l)a and 
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2ci m 
~~0) • ~ (0) - --;- L (n+l) 

n•O 

2 
• 2 (m+l)a _ 2a [(m+l)(m+2)] 

m 2 

a .2(m+l) a[l - m+2 a] 
2m 

While reducing the side lobes considerably, the Bartlett modifi'cation 

tends also to increase the bandwidth as the plots inFigures 4 and 5 

indicate. Again, results are improved with increased m • 

2.7.2 Application of Hanning, Hamming Functions to Nonperiodic 

Sampling Schemes 

A general expression for the weighting function of the type 

proposed by Julius Von Hann and R. W. Hamming can be written as: 

where 

D(T) • 

a • a ... 0.5 
0 1 

for "Hanning" 

a
0 

• 0.54, a 1 • 0.46 for "Hamming" 

-The corresponding estimator is (w • 7T/ma) 
m 

Taking expectations as before and noting that 

< T 
m 

> T - m 
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we have 

(2.73) 

where ~(w) has been defined in equations 2.22a and 2.23. 

The Poisson-Hanning Window 

Application of the Hanning function to the Poisson scheme leads 

to the Poisson-Hanning window defined as: 

where as before 

p ~2~ ~ 
0- (w) • 2a cos sin(m+l) 
1n sin iJJ 

,,, -1 
, 't' • tan wa 

Further, 

"v 
"' ma for large m 

since for 
"v 

~ .. 'IT/m and very large m ' cosm+2 'IT/m ~ 1 and 

sin(m+l)'IT/m = -sin 'IT/m. 

HP HP P P 
The plots of Qm (w)/~ (0) , Qm(W)/Qm(O) shown in Figures 6 and 7 for 

m = 50, 100 respectively, show a similarity between the Bartlett effect 
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and the Hanning effect on the Poisson scheme. The Hanning modifica-

tion leads to smaller side lobes but larger bandwidth than the 

Bartlett modification. 

2.8 Aliasing : Extension to Nonuniform Sampling and Criteria for 

Alias-Free Estimation 

In references [4] and [9] the authors have laid down some 

criteria for a sampling process to lead to alias-free estimates. 

Beutler [5] defines alias-free sampling in terms of the capability to 

recover the true spectrum of x(t) from the "correlation sequence" 

r(n) via 

A 

s (f ) 
r 

= (2.81) 

where 

r(n) -
00 

2'JT J S(w) ~:(iw) dw (2.82) 1 .. --
-co 

According to Beutler, alias-free recovery of spectra from correlation 

sequence requires that s(f > r be uniquely defined by equation 2.81. 

Equation 2.82 relates spectral recoverability from r(n) to the 

* sampling process by means of the joint characteristic function ~ (iw) 
n 

of n successive intervals. From 2.82 it is inferred that sampling 

is alias-free if a one-to-one mapping between r(n) and S(w) is 

implied by equation 2.82. Some criteria for alias-free sampling have 

been laid down by the authors mentioned above. Whereas Shapiro and 

Silverman restrict their findings to spectra which are square 
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integrable, Beutler considers a more general class of spectra. Their 

criteria provide sufficient conditions for a sampling process to yield 

alias-free recovery of spectra from the correlation sequence. In other 

words, they provide conditions on ¢> (iw) 
n 

sufficient to make equation 

2.82 a one-to-one mapping of r(n) into S(w). Further details on 

this can be found in the cited references. In what follows we shall 

define alias-free estimation of spectra from the sampled data X(t ) 
n 

and establish some simple criteria in terms of the spectral window 

~(f) • 

We refer to Section 2.6 and note that, whereas equations 2.63, 
A 

2.64 together imply that on the average S(f ) 
r 

and 
A 

S(f + kf ) 
r p 

are 

identical, this does not necessarily hold in general. For example, it 

is conceivable to have a spectral window function ~(f) of the form: 

where 

00 

~(f) = Qm (f) rect f ~a) @ L 
p \1=-00 

p(v) o(f+vf (a)) 
p 

p (v) :f 1 and f (a) is fixed for each a • 
p 

Then we will have corresp'onding to equation 2. 63, 

00 

lim E {s(f )} - I p(v) s(f + vf' (a)) 
m -+ oo r \1=-oo r p 

and to equation 2.64 

oo+k 

(2. 83) 

(2.84) 

lim E {s<f + kf (a))}r p 
L p(v+-k)S(f + vf (a)) 

v~-oo+k r P m-+oo 

(2.85) 

Now suppose there exist constants such that 

then it follows that 



lim 
m-+oo 

Thus we have 
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~k ,.. 
E {crkS[f + kf (a) J} • L p(v) S[f + kf (a)] 

r p \P-~k r p 
(2.86) 

Definition 2: A spectral estimate is said to be aliased in 

the generalized sense, if for some integer k and average sampling 

interval a , there exist O'k' fp(a) such that 

lim EjS(f) - crkS(f + kf (a))j r r p • 0 

The above generalizes Definition 1 to include spectra which are iden-

tical to within a multiplicative constant. Thus a sufficient condition 

for aliasing in the generalized sense is that the spectral window 

~(f) exhibits main lobes at fk= kfp(a); k .a ·,··,-2,-l,O,l,2,••• • 

Finally we have: 

An estimation scheme is said to be alias-free with 

respect to non-bandlimited spectra iff the characteristic window has 

one and only one main lobe at f • 0. 
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Chapter III 

VARIABILITY AND COVARIABILITY 

3.1 Introduction 

In the last chapter we investigated the first -order properties 

of our estimation scheme. One consequence of the subsequent analysis 

is that the question of whether an estimate is aliased or not can be 

answered directly from the characteristic spectral window ~(w) . At 

the first order level there is also the question of bias. Because of 
A 

the finiteness of data, S(f ) given in equation 1.26 is necessarily 
r 

biased. However, it can be shown from property (iv) of Section 2.3 
A 

that S(f) is asymptotically unbiased, i.e., 
r 

lim 
m~oo 

E{S(f )} 
r 

S(f ) 
r 

Thus far, the quality of our estimation scheme has not been well 

related to the amount of data N used. It has, however , been related 

through m where m is chosen to be always less than N • In the 

last chapter we found that for certain classes of spectra (band-

limited for periodic, non-bandlimited for Poisson sampling) estimates , 
A 

S(f ) r on the average approach the true spectra S(f ) 
r 

as m increases 

without bound. We will see later in this chapter that unless N is 

increased accordingly, the stability of estimates will be adversely 

affected. Consequently the pertinent questions to be investigated in 

this chapter are: 

(a) How close to the true value is the estimate available from 

a finite data size, N ; and what is the covariability of the estimates 



-47-

" " S(f ),S(f ) 7 
r q 

(b) What is the effect of increased data on the quality of our 

estimation scheme? 

In particular, we will derive analytical formulae for 

S(f )} and var{S(f )} • 
q r 

cov{S(f ), 
r 

3.2 Analytical Derivation of cov[S(fr), S(fq)] , var{S(fr)} 

To derive a formula for the covariance of two spectral estimates 

" " S(f ),S(f ) obtained from the same record via equation 1.26, we will 
r q 

assume that an effective length Ne, of data has been selected. Details 

on how to choose Ne are given in [1] (see for example, [1], p.l02) but 

for our purposes here it suffices to point out that N- m < Ne < N . 

Also, we shall make use of 

(3.21) 

Equation 3.21 assumes that x1 ,x2 ,x
3
,x4 are joint gaussian variates 

with zero means and is derived in Parzen [23], pp. 92-93. 

For analytical convenience we shall make us~ of the following 

approximately equivalent form of equation 1.26 

w - 27Tf r r 

to write 



-48-

"' "' 4 m Ne Tk Tkn 
cov{S(fr) ,S( f ) } =- 22 L L E {cov[X(t - 2 n) X(tk+ - 2-), 

q Ne a j,n=l i,k=l t k 

Now , assume that X(tk) 's are gaussian with zero means and apply 

equation 3.21 to get: 

(3.22) 

where R (T) = E (X(t+T) X(t)) is the autocorrelation function of the 
X X 

process X(t) • Next substitute the Wiener-Khinchin relations to get 

00 

RHS a J J S(f1) S( f 2) {cos w1 [t i- tk- t<-rij- Tkn)] 
- 00 

which, upon expanding the cosine functions, becomes 
00 

~ J J S(f1) S(f2) {cos[(w1+ w2)(ti- tk) - ~(w1- w2)(Tij- Tkn)] 
-00 

1 
+ cos[(w1~w2)(ti- tk) - 2<w1+ w2)(Tij- Tkn)] 

1 
+ cos[(w1+ w2 )(ti- tk)- 2<w1- w2)(Tij+ Tkn)] 
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The last result suggests the following substitution w1 • w' + w , 

w a w' - w and consequently 
2 

00 

df
1
df2 = 2dfdf', whereby 

T. . Ti . 
X(t .; - ~2 ) X(t + ~)] 

... i 2 

• J I S(f+f') S(f-f') {cos[2w'(t1- tk)- w(Tij- Tkn)] 
-oo 

+ cos[2w'(t . - tk) - w(T .. + Tk )] 
~ ~J n 

(3. 23) 

Using equation 3.23 we can now write an expression for the covariability 
A A 

of two spectral density estimates S(f ), S(f) 
r q 

in the form: 

00 

cov{S(fn) S(fq)} • 4 I I S(f'+ f) S(f'- f) {A
1

(w',w,w ,w) 
r q 

where 
b. 

A
1

(w' ,w,w ,w ) • 
r q 

..00 

+ A2(w' ,w,w ,w )} df df' 
r q 

+ cos[2w(t1- tk) -w'(Tij- Tkn)]) (cos wrTkncos wqTij) 

ai~(ai+j+ aojl)(ak+n+ aonl)} 

and 

(3.24) 
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(3.24a) 

Again, we expand the cosine functions using 1 
cos a cos b •2[cos(a+b) 

+cos (a-b)] to rewrite defining equations 3.24, 3.24a compactly as: 

A (w' ,w,w ,w ) 
~ r q 

• 4
1 {>. (w' ,w+w , w+w ) + A (w' ,w-w , w+w ) 

~ r q ~ r q 

+ A (w' ,w+w ,w-w ) + A (w' ,w-w , w-w ) 
~ r q ~ r q 

+ A (w,w'+w ,w'+w ) + A (w,w'-w ,w'+w ) 
~ r q ~ r q 

+ A (w,w'+w ,w-w) + A,(w, w'-w w'-w )}. 
~ r q ,.. r' q 

A1(w', w+w, w+w) r . q 

A
2
(w', w+w , w+w ) 

r q 

Finally, we have 

~ •1,2 



-51-

(3.25) 

(3.25a) 

In taking expectation as indicated in equations 3.25, 3.25a, 

overlapping of the intervals must be taken 

into account. One way to get around this is to consider a given per-

mutation of the times ti' tk, ti+j' tk+n and break up the intervals 

ti-tk, ti+j-ti' tk+n-tk into non-overlapping intervals so that we 

can use the assumed independence of disjoint intervals. Subject to 
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the requirement that the sampling instants form an ordered sequence, it 

is shown in the appendix that there are only six permutations of the 

times 

(i) ti+j > ti ~ tk+n > tk 

(ii) tk+n > tk ~ ti+j > ti 

(iii) ti+j ~ tk+n > t. > tk l.. 

(iv) tk+n > ti+j > tk > ti 

(v) tk+n > ti+j > ti ~ tk 

(vi) ti+j ~ tk+n > tk ~ ti 

Now for each permutation given above, we can proceed to take 

expectation as stated earlier. This is done in detail in the appendix 

for all six permutations. The results are summarized in the following 

expression for the covariability of spectral estimates. 

00 

• I I S(f'+f) S(f'-f) {A(w' ,w;w ,w ) +A(w,w' ,w ,w ) } df df' 
r q r ~ q 

where 

A(w,w' ,w ,w ) 
r q 

• 4
1 {A(w' ,w+w ,w+w ) + A(w' ,w+w , w-w ) 

r q r q 

+ A(w', w-w , w+w ) + A(w', w-w , w-w ) } 
. r q r q 



A(w', w+w, w+w) 
r q 
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[~ (2w'+w+w) + ~ (2w'-w-w) + ao 1(~(2w'+w+w) + ~(2w'-w-w >)l 
n r n r n r . r 

* * + I ~k_._.(2w')(~j(2w'+w+w )+ao. 1 ~(2w'+w+w >) [~n(w+wr) 
R (k j k n) l. J q J q 2 , , , 

* * + ~ (w+w) + ao 1(~(w+w) + ~ (w+w )] 
n r n r r 

\ ( * i-k-n+1· ) + L ~.+. k (w+w )+ao . 1~ (w+w) [~. k(2w'+w+w) • 
R ( . . k ) l. J - -n q J q l.- r 

3 l.,J, ,n 

k-i+1 ) *' 
(~k 1

(w -w )+ao 
1

Q (w -w ) +~1 k(2w'-w-w ) (~k+ 1 (2w+w +w ) +n- r q n r q - r n- r q 

.+ao Q*k-i+1< 2w+w +w ) ) 1 n1 r q 

+ I [C k(2w'+w+w )(~k+n. j(w+w )+ao 
1 

Qk-i-j+1 (w+w )) 
R (i,j ,k,n) .l.- r -1.- r n r 

4 X (~j(Wr-Wq)+aoj 1 Q(Wr-Wq)) 

+ ~ . k(2w'-w-w ) (~k*+ .. (w+w ) +ao 
1 

Q*k-i-j+1 (w+uJ )) (~j*(2w+w +w ) 
1.- r . n-l.-J r n r r q 

\ * ( * i-k-n+1 ) 
+ L ~-· (2w'+w+w ) ~i+ ' -k- (w+w ) +aojlQ (w+w ) 

R (i j k n) l. q J n q q 6 , , , 



-54-

[1; (w -w) + ~;*(2w+w +w) + ao l(<ll (w -w )+<ll*(2w+w +w )) ) } (3.27) n r q n r q n r q r q 

where I; (n) 
b. <ll~-l(n) ~ ~ (0) D. ~ (in) ... = 

~ <:Hn ' 

R1 (i,j ,k,n) b. (i,j,k,n) t.+. > t > > tk "' tk+n ~ J i-

R2(i,j ,k,n) b. (i,j ,k,n) tk+n > tk ~ ti+j > t. 
~ 

R/i,j ,k,n) b. (i,j,k,n) ~ tk+n > ti > tk = t ,+ , 
~ J 

R4 (i,j ,k,n) b. (i,j ,k,n) tk+n > t.+. > tk > tk 
~ J 

R5 ( i , j , k, n) D. (i,j ,k,n) > > ti > tk = tk+n t .+. 
~ J 

R6 (i ,j, k,n) 
D. 

(i,j,k,n) ~ tk+n > tk ~ ti = ti+j 

i,k = 1,2, • • • ,Ne } b. 6 
::& u R 

lJml ~ 
n,j = 1,2,···,m 

Note: - 0 

3.3 Derivation of the Blackman-Tukey Result for Periodic Sampling 

The Blackman-Tukey result can be derived from the general 

result given in equation 3.27 by setting the terms containing aojl' 
m m 

aan1 equal to zero and replacing the ordinary sums r a I a. with 
n=l n j=l J 

the "trapezoidal sums", 

m m-1 
z a = a + 2 L a +a 

n=O n 0 n=l n m 

in accordance wit;h the Blackman Tukey estimator. In addition, we will 

need the following properties of the periodic sampling process: 
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= e ~t 

(3.31) 

i6t(r21+ $"22+ $"23) 
= e 

(3.32) 

(3. 33) 

Substitute 3.31, 3.32, 3.33 into the expression so derived from 3.27 

to get 

A.(w',w+w, w+w) 
r q 

a 6t~ Re { ZI ~i-k(2w') ~*j(w+w) [~n(w+wr) + ~*n(w+wr)] 
Ne R

1 
q 

Z L ~i-k(2w') ~*j(w+w )[ ~n(w+w ) n* + + ~ (w+w ) ] 
R2 

q r r 

+ z I ~i-k(2w ') ~*j(w+w )[ ~n(w+w) + ~*ncw+w )J 
q r r 

R3 

z I ~i-k(2w') ~*j(w+w ) [~n(w+w ) 
*n 

+ + ~ (w+w )] 
R4 

q r r 

+ Z L ~i-k(2w') ~*j(w+w )[ ~n(w+w) + <l>*~w+w ) ] 
R5 

q r r 

+ Z L ~i-k(2w') $*j(w+w )[~n(w+w) + ~ *(.,..,r) 1 } 
R6 

q r 

Conseq uent1y: 



A.(w' ,w;w ,w ) r q 

and 

J\(w,w' ;w ,w ) 
r q 
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Now, with equation 3.33 it can be shown easily that 

K (w' ,Ne) 
u 

IJ. 1 Ne . k 
a -2 l: ~1- (2w'> .. 

Ne i ,k=l 

(sin New' IJ. t ) 2 
Ne sin w'IJ.t 

is real, whence we write: 

1\(w,w';w ,w) • -2
1 Ku(w' ,Ne) H (w;w) H (w;w) 

r q m q m r 

where 

~(x) 
m 

2/J.t Re z ~n(x) 
n=O 

x/J.t 
= /J.t sin mx /J.t cot --2- (from 2.41) 

Finally, we use .the evenness of S(f) to write 
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00 

cov{S(f ),S(f )} - J H(w;w ) H(w;w ) f(w) df r q q r 
-00 

with 
00 

r(w) 
!:, 

J s (f '+f) S(f-f') K (w,Ne) df' ... 
u 

-oo 

Also, 
00 

var{S(fr)} = J [H(w;wr)]
2 

f(w) df 
-oo 

Both of these are Blackman-Tukey's results (see, for example, p. 125 

of [1)), 

Note further, that the periodic variance kernel 

periodic with period 

and 

7T /2 t.t 

J 
-7T/26t 

w' .. 7T/llt 
p 

K (w' ,Ne) dw' u 
... 

.. 

or 

1 
6t 

f I a l/2flt 
p 

7T /2 

J 
(sin Ne 
Ne sin 

-7T/2 

7T/Ne 6t 

3.4 Results for the Poisson Sampling Scheme 

x2 
x> 

For the Poisson distributed sampling intervals 

1 
1- Wa 

(1 - i!1a) 2 

~ (!1) • a~~+1 (n) 
~ 

-

dx 

K (w' ,Ne) is 
u 
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so that 

t.(w' ·w+w w+w ) , r, q 

- a22 Re r I ~i-k-n+l(2w') (~*j+l(w+w) +O.l~*(w+w )) 
Ne l R

1 
(i,j ,k,n) q J q 

(~n+l(2w'+w+w) + ~n+l(2w'-w-w ) + o 1 (~(2w'+w+w) + ~(2w'-w-w )) 
r r n r r 

+ o.l~i-k-n+l(w+w ))[~i-k+l(2w'+w+w) (~k+n-i+l(w -w) 
J . q r r q 

+ 0 ~k-i+l(w -w )) + ~i-k+l( 2w'-w-w ) (~*k+n-i+l(2w+w +w ) 
nl r q r r q 

+ 0 ~*k-i+l (2w+w +w ) ) J 
nl r q 

+ \ [. ~i-k+l (2w '+w+w ) (~k+n-i-j+l (w+w ) + 0 ~k-i-j+l (w+w ) ) 
'- r r nl r R

4 
(i,j ,k,n) 

(~j+l(w -w ) + o ~(w -w )) + ~i-k+l(2w'•w-w ) (~*k+n-i-j+l(w+w ) 
r q jl r q r , r 

+ o ~*k-i-j+l(w+w) (~*j+l(2w+w +w) + o. ~(w -w ))] 
nl . r r q Jl r q 

+ I ~*k-i+l(2w'+w+w) [ (~k+n-i-j+l(w+w) +o ~k-i-j+l(w+w )) 
( · . k ) q r nl r R

5 
~ ,J, , n 

(~i+j-k+l(w -w ) + 0 ~i-k+l(w -w )) + (~*k+n-i-j+l(w+w ) 
r q jl r q r 

+ 0 ~k-i-j+l (w+w )) (~*i+j-k+l(2w+w +w) +o ~*i-k+l(2w+w -w ))] 
nl . r r q jl r q 
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+ I ell*k-i+l(2w'+w+w) (ell*i+j-k-n+l(w+w) +o . ell*i-k-n+l(w+w >) 
R

6
(i,j,k,n) q q Jl q 

[ n+l *n+l ( * )]~ ell (w -w ) + ell (2w+w +w ) + ao 1 ell(w -w ) +ell (2w+w +w ) rq rq n rq rq 
(3.41) 

The ranges of summation R~ (i ,j, k ,n) ~"' 1, • • ·, 6 are those given fol

lowing equation 3.27. 

3.4.1 An Exact Result for cov[S(fr),S(fq)], var{S(fr)} 

Equation 3.41 can be simplified a step further by noting that 

0 ell -nl 

By appropriately replacing 

m m 
L with I 

n=l n=O 

we have for the Poisson sampling scheme 

cov{S(f ),S(f )} • 
r q 

00 

I f 
+ A(w,w';w ,w )} df' df 

r q 

S(f+f') S(f-f') {A(w' ,w,w w ) 
r q 

where 

+ A(w';w-w ,w+w) + A(w' ,w-w ,w-w )} 
r q r q 

and 



A(W I ,w+w ,w+w ) 
r q 
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... a~ Re( I [ <l>i-k-n+l( 2w') <I>*j+l(w+w ) (<I>n+l(2w'+w+w ) 
Ne l~(i,j,k,n) q r 

+ <I>n+l(2w'-w-w >)]+ I [<t>*k-i-j+l(2w') <I>*j+l(2w'+w+w) 
r R2(i,j,k,n) q 

(<I>n+l(w+wr) + <I>*n+l(w+wr)) J + I [ <I>*i+j-k_:n+l(w+w ) 
R

3
(i,j,k,n) q 

(~i-k+l(2w'+w+w ) ~k+n-i+l(w -w ) + <I>i-k+l(2w'-w-w ) 
r r q r 

<t>*k+n-i+l(2w+w +w >)] + I [ <I>i-k+l( 2w'+w+w )<I>j+l(w -w ) 
r q R (i . k ) r r q 4 ,J, ,n 

<I>k+n-i-j+l(w+w ) + <I>i-k+l(2w'-w-w )<I>*j+l(2w+w +w )<I>*k+n-i-j+l(w+w >] 
r r r q r 

+ L [<t>*k-i+l(2w'+w+w) <I>*i+j -k-n+l(w+w) 
R

6
(i,j,k,n) q q 

+ w•n+l (2w+wr+wqll]} (3.42) 

i,k .. 1,2, • • • ,Ne n,j • 0,1,···,m 

To obtain an expression for the variance of spectral estimates, we 

simply note that 

var {S(f )} • cov {S(f) S(f )} 
r r'' r 
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3.4.2 

From the Blackman-Tukey result derived in Section 3.3, we can 

again relate the covariability of spectral density estimates s (f ) ' r 

s(f > 
q 

to the spectral window ~(w) . For example, if H (w,w ) m r and 

H (w,w ) 
m q = 0 • With 

Poisson sampling intervals, the results obtained so far do not make 

this so obvious, but intuitively we expect a similar correspondence 

between covariability of estimates and overlapping of spectral windows . 

Now consider A(w ' ,w+w ,w+w) as given in equation 3.42 and 
r q 

note that 

IA(w' ,w+w ,w+w >I r q 

The last inequality 

Making use of 

(i) ~(w) 
'V -

( ii) ~(w+w ) r 

I Re[ ] I+ • .. 

I [ ll + 0 0 o+ I I [ ll } 
~6 

follows, since 

IRe zl < lz I -

1/iwa w~oo 

• ~(w+w +w -w ) q r q 
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and taking the leading term in each summation it can be shown that 

1 lim 
lw -w I r q 

.A(w' ,w+w ,w+w ) 
-+ oo r q 21 14 2 Ne w -w a 

r q 

and consequently, 

cov{S(f ), S(f )} 
r q 

as If-f I -+ oo • 
r q 

0 ( 1 ) 
(f -f ) 4 

r q 

3.4.3 An Approximation for var{S(fr)} 

In Section 3.3 we were able to derive a closed-form expression 
A A 

for cov{S(f ), S(f )} for the periodic sampling scheme. The proce
r q 

dure outlined in Section 3.3 exploited certain properties of the 

corresponding characteristic function (cf. equations 3.31, 3.32, 3.33) 

which do not hold for the general nonuniform sampling scheme. In 

particular, the characteristic function for the Poisson sampling 

intervals does not satisfy equations 3.31, 3.32 and 3.33 exactly. 

However, an approximate closed form expression for vadS(f ) } 
r 

can 

be derived from equation 3.41 for values of w' n~ar w' = 0 and w 

near 4l .. ± w 
r 

Such an approximation is the most natural one to seek 

since the effective bandwidths of ~(w), K(w' ,Ne) are of the order of 

1/m and 1/Ne respectively, where m, Ne are typically very large. 

Specifically, we will derive an approximation for var{S(f )} 
r 

valid in 

lw' I ~ 1/Nea and lw ± wr I ..5. l/2ma • 

We begin .by assuming the following form for .A(w',w+wr,w+wr) 
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A. (w' ,w+w ,w+w ) a r r 

+ ~*n+l(w+w ))] + R(w' ,w+w ) 
r r (3.43) 

and proceed to derive an approximation for the remainder function, 

R(w',w+w) valid in lw' I~ 1/Nea and lw + w I <l/2ma From 
r r 

equations 3.42, 3.43 we can write the remainder f unction exactly as: 

R(w' ,w+w ) 
r 

+ L [(~i-k+l(Zw'+w+wr)~k+n-i-j+l(w+wr) · 
R4 

_ ~i+l(Zw')~*k+.l(Zw')~*j+l(wtw )~n+l(w+w )) + 
r r 
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+ L [ (cl>*k-i+l( 2w'+w+w ) cl>k+n-i-j+l(w+w ) _ cl>i+l( 2w')cl>*k+l( 2w') 
R r r . 

5 

cl>*j+l(w+w )$n+l(w+w )) + ($*k-i+l(2w'+w+w )$*i+j-k+l( 2w+2w ) 
r r r r 

(3.44) 

where the ranges R (i,j,k,n) ~ =1,2,··· ,6 are as previously specified. 
~ ' 

Now consider the sum over R1(i,j,k,n) which, for convenience, 

we rewrite as 

and note that 



- 1 
1 - i(2w'+w+w )~ r 
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1 
(1- 2iw'~)(l- i(w+w )~) 

r 

-2w' (w+wr)~2 -------------~-------------------------------[1- 2w' (w+w )~2- i(2w'+w+w )~] [1 - i(2w'+w+w )~] 
r r r 

By maximizing the numerator and minimizing the denominator of the above 

expression in I w' I ~ 1/Ne~ , I w '+w I ~ 1/m~ , obtain that. 
r 

I~C2w'+w+w)- ~C2w')~Cw+w )I 
r r 

2w' (w+w )~2 • ----------------------~r ________ ~------------------~ 
2w'(w+w )~2)2+ ( 2w'+w+w )2~2 1 112 [l+ (2w'+w+w )2~2]1/2 [(1- r r r 

< 2 ( 2 )-1 _2_(1 + _2_ + 4 + •• ·) 
Nem 1 - Nem • Nem Nem N 2 2 

em 

·whence we have 

Similarly, 

~i-k+2( 2w') ~ __ ..:;..._ __ ___::o=~--- • 1 , near w' • 0 
~i+1(2w')~*k+l(2w') 

Next, we write, using 3.45a and 3.45b, the sum over R1 (i,j,k,n) 

approximately as 

L ~*j+l(w+w )~i+l(2w')~*k+l(2w') [ (Hw+w ) 2 ) n+l 
~ r . r - Nem H2w') 

_ ~n+l(w+w ) + ' (~*(w+w ) _ 2 )n+l _ ~*n+l(w+w >] 
r r Nem ~(2w') r 

(3.45a) 

(3.45b) 
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~ ___ 2 2 [~*j+l(w+w )~i+l(2w')~*k(2w') (~n+l(w+w ) 
Ne R . r r 

1 

+ ~*n+l(w+wr)) + 0(1/Ne)J (3.46) 

The latter is obtained from the former by taking the first term in the 

binomial expansion of 

2 )n+l 
(~(w+wr) - Nem ~(2w') 

m+l and noting that n+l/m ~--- ~ 1. m 

Approximations similar to equation 3.46 can be derived for 

each of the composite summations in equation 3.44 by first establish-

ing approximations similar to equations 3.45a, 3.45b and then sub-

stituting into appropriate terms. Summarized below are some useful 

approximations whose derivations follow closely that of equation 

3.45a: 

~(2w'+w+w )~*(w+w ) 
r r 

~*(2w+2w ) r 

~(2w'+w+w ) ~*(w+w ) 
r r 

* ~ (2w+-2w ) 
r 

* ~ (w+w ) 
r 

,v 
• ~(2w') + 0(1/Nem) (3.45c) 

"' • ~(2w') + 0(1/Nem) (3.45d) 

(3.45e) 

(3.45f) 

They are valid in lw' I ~ 1/Nea , lw ± w I ~ 1/ma and can be derived r 

quite easily. To illustrate further, we derive an approximation for 
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the sum over R
3
(i,j,k,n) which, for convenience, we write as 

I ~*j+l(w+w ) ~i+l(2w') ~*k+l(2w') 
R

3
(i,j ,k,n) r 

Introducing equations 3.45, we have 

j +l i+l k+l [( (~(2w') +0(1/Nem))i-k+l I ~ * (w+w ) ~ ( 2w' ) ~ * ( 2w' ) -.,...,. -=------:-,.-:-----
R3(i,j ,k,n) r ~~+l(2w')~*k+l(2w') 

+ 

(~(w+w ) + O(l/m2)) n+l _ ~n+l(w+w >) 
r r 

(~(2w') + 0(1/Nem))i-k+l 

~i+l(2w') ~*k+l(2w') 

which, on taking the first terms in the binomial expansions a·s before, 

reduces approximately to 

l ~*j+l(w+w )~i(2w')~*k(2w')[~n+l(w+W) 
m r r 

R3(i,j ,k,n) 

1 

+ ~*n+l(w+wr) + 0(1/Ne)] (3. 4) 

Except for the multiplicative constants 1/m, -2/Ne, equations 3.47 

and 3.46 are identical. In a similar manner, it can be shown that 

approximations to the other sums are identical to equation 3.46 to 

within multiplic?tive constants and that these constants are of the 

order of 1/m, 1/Ne • Since m is typically a fraction of Ne (i.e., 

m • O(Ne)) we can write finally: 
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R(w' ,w+wr) = 0(1/Ne) { a
2

2 Re L ~*j+l(w+w )~i+l(2w') 
Ne R3 (i,j~k,n) r 

~*k+l(2w') (~n+l(w+w) + ~*n+l(w+w )) + 0(1/Ne)} 
r r 

Consequently: 

A. (w' ,w+w ,w+w ) 
a r r 

which, by the method of Section 3.3, leads to 

A (w' ·w w ) • l K (w' Ne)H2 (w·w ) (1 + 0(1/Ne)) a ' 'r 2p' m'r 

where, as before: 

K (w' Ne) • p ' . 

Ne 
l/Ne2 L ~i+l(2w') ~*k+l(2w') 

i,k=l 

H (w·w ) • qP(w+w ) + oP(w-w ) 
m ' r m r 'In r 

~(w) 
m 

• 2a Re L ~n+l(w) 
n=O 

Thus we have 
00 

A } 1\J var{S(f ) • 
r I I S(f+f') S(f-f')K (f',Ne)H2(f;f )[1+0(1/Ne)]df df' 

p m r 

(3.48) 

icp -1 Substitute ~(2w') • cos cp e , cp = tan 2w'a. to obtain the following 

closed-form expression for the Poisson variance kernel K (w',Ne): 
p 
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4 (l 2 Ne C 2Ne ) K (w, Ne) • cos cp - cos cp cos Ne cp + os cp 
p , 2 2 

Ne sin cp 

Obtai n further, 

co TT/2 Ne 

J K(w' ,Ne)dw' J I cosi+k cp[cos(i-k)cp + i sin(i-k)cp] dp 

-oo - TT/2 i ,k=l 

and i ntegrate term by t erm using (cf. tables, [21]) 

rr/2 

J 
0 

cosp+q-2x cos(p-q)x dx • ----~--~TT~------
2p+q-l(p+q-l)B(p,q) 

and the fact that K(w' ,Ne) is real 

to get 

co 

I K (f',N )df' • 
p e 

Ne 

2
1 

I 
N a i,k=l 

e 

TT 

2i+k+l(i+k+l) B(i+l,k+l) 

where B(p,q) is the well known beta function, viz., 

B(p,q) • f(p) f(q ) 
f (p+q) 

Shown graphically i.n Figures 8a,b,c are the variance kernels 

(3.49) 

K (w',Ne) , K (w' ,Ne) for Ne • 200, 500, 1000 respectively. Observe 
u p 

that for sufficiently large data (namely, Ne > 1000) both kernels 

coincide. 
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3 .5 Special Cases of Practical Inter est 

From the results of the preceeding sections, a number of useful 

results bearing on assumptions about the spectrum S(f), can be 

extracted, In (1] pp, 104-106, we find results based on four such 

assumptions. Here we shall examine the two most useful of these, 

namely: (i) Slow-varying spectra, and (ii) Spectral spikes. Usually 

in practice, we are faced with estimating spectra which are fairly 

smooth except for one or two jumps; in which case (i) and (ii) can be 

applied piecewise. Analytically we shall be deriving approximations 

to the integrals: 

Cov {~(f ) ~(f )} = ~H (f,f )H (f,f )r(f) df r q _oo m r m q 

f(f) = J00

S(f+f' )S(f-f' )K(f',Ne) df' 
_oo 

3.5.1 Estimation of Spectral Spikes 

Suppose S (f) consists of very sharp peaks (of widths << width 

of K(f',Ne) ) at f = ±f
0 

with area= A, so that we can write: 

and 

S(f+f')S(f-f') 
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= A 2{6 ( f+f '+f )6 (f-f '+f ) + 6 (f+f' -f ) 6 (f-f'+f ) 
0 0 0 0 

+ 6(f+f'+f ) o(f+f'-f ) + 6(f+f'-f )6(f-f'-f )} 
0 0 0 0 

Now, let 

I(f,f ) ~ J00

6(f+f'+f )6(f-f'+f )K(f',Ne) df' 
0 _

00 
0 0 

= 6(2f+2f )K(-f-f',Ne) 
0 0 

= i 6(f+f )K(f+f',Ne) 
0 0 

The last equality follows from the evennes:: of K(f,Ne) and its 

boundedness and absolute integrability (cf. Lighthill), 

so that, 

2 
f(f) ~ ~2 {6(f+f )K(f+f',Ne) + 6(f)K(f-f ,Ne) 

0 0 0 

+ 6(f).K(f+f ,Ne) + 6(f-f )K(f-f 1 Ne)} 
0 0 0 

A2{ ~ 2 6(f+f
0

)K(01 Ne) + 6(f)K(-f01 Ne) 

+ 6(f)K(f 1 Ne) + 6(f-f )K(-O,Ne) l 
0 0 J 

Where the last equality follows from 

~ (x) 6 (x) = ¢ (0) 6 (x) 

and the observation that K(f,Ne) is a fairly good function (cf Light

hill p. 42) Next~ substitute K(01 Ne) = l to have 
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Whence 

cov{s<fr),s(fq)} = J~H (f;f )H (f;f )f(f) df 
~ m r m q 

A2{ = -2 H (-f ;f )H (-f ;f ) + H (f ;f )H (f ;f ) m o· rm oq mo· rmo· q 

+ 2H (O,· f )H (O,·f )K(f ,.Ne)} m r m q o 

By the evenness of Hm(f1;f2) we can write: 

cov{s (fr) ,s(fq)} 

= A2{H (f ;f )H (f ;f ) + H (O;f )H (O;f )K(f ;Ne)} mormoq m rm q o 

For 

cov{S(fr),S(fq)} 

and 

~ A2{H (f ;f )H (f ;f )} m o r m o q 

In particular, 

so that 
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Thus, we see that even with large data size reliable estimates of 

spectral spikes are difficult to obta~ regardless of the sampling 

scheme being used. 

3.5.2 Estimation of Slow-varying Spectra 

Here we are considering S (f) which vary slowly enough so that 

within the bandwidth of K(f',Ne) the quadratic terms in its Taylor 

series expansion may be neglected. Then for f'~ 1/ Ne~ ~ 
NeCX ' 

we write: 

s (f+f') S(f) + f'Sf' (f) 
f'2 ::! + 2: sf'f'(f) + ......... 

s (f-f') ::! s (f) - f'Sf' (f) 
f' '2 

+ 2T sf'f' (f) + ......... 
and consequently 

s(f+f')S(f-f')::! s
2

(f) + f'
2
{s(f)Sf'f'(f)- s~,(f)} + ..... 

::! s2(f) + o (l/Ne2a2) 

The last approximate equality follows since S (f) is assumed bounded 

1 and continuous and f' ~ INca , Ne~ ~ Consequently for S(f) 

bandlimited to lfl~ B , we have 

f(f) 

and in particular, 

where 
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(B+f) CX) 

o(Ne) ~ J K(f',Ne)df ~ JK(f',Ne)df 1 

- (B+f) _oo 

1 for B > > /Nea. 

Note that, 

so that 

= + O(m '2) ' 
Ne 

where the equivalent width, We 1 is defined as: 

Now, for both the periodic and Poisson sampling schemes, we saw in 

Chapter II that E{~(fr)} is approximately the same when the spectrum 

is restricted to the Nyquist band, and m is very large. Also, the 

equivalent width of estimate can be shown to approximate the correspond-

ing window bandwidths. Since the bandwidths of the windows are for all 

practical purposes equal, we look to the quantity o(N ) e for a measure 

of the variability of estimates which w.e define as 



cr(Ne) 

We 

where for both schemes, 
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+ 

We~ 1
; m:x 

For the periodic scheme we have from section 3.3 

and for the Poisson (cf eqn. 3.49) 

Ne 
cr (Ne) 1 L: --:--:--"::"'1 ______ _ 

P = rf!ea . i, k = 1 2i+k+l( i+k+l) B(i+l, k+l) 

where B(p,q) is the beta function. 

Figure 9 exhibits graphical plots of cr (Ne) and cr (Ne) in the 
p u 

range 10 $ Ne $ 100 computation of cr (Ne) for large values of 
p 

Ne consumes excessive machine time. However, to see that cr (Ne) is 
p 

monotone decreasing, note from figures 8 a,b,c, that K(f',Ne) is 

positive definite and narrows with increasing Ne while its peak remains 

equal to 1 for all· Ne Consequently we conclude that crp(Ne) is 

asymptotically bounded from above by cr (Ne) 
u 

Tl}us we can ( cf section 

4.2 below) say that it is possible to achieve a smaller v~iability with 

Poisson sampling than with the method of periodic samp~ing. 
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CHAPI'ER IV 

SUMMARY AND CONCLUSIONS 

4 .1 S umma.ry and Conclu.s ions 

For readers unfamiliar with the work of Blackman and Tukey [1], 

the research reported in this thesis is by no means complete. Details 

on 'planning for measurement' - 'prewhitening', 'post greening', etc. 

have been purposely left out of this account to avoid undue repetition 

of the main reference cited above. Primarily this thesis has been 

concerned with: 

(i) Outlining an estimation scheme admitting of data with random 

sampling intervals, and, 

(ii) Analyzing the mean and variance of such a scheme. 

The assumption of independent, identically distributed random 

variables which governs most of our analysis, is a useful one since it 

includes most of the practical sampling schemes. Although the 

analytical results contained in Chapters II and III seem to take advantage 

of this assumption, similar expressions can be derived for the most 

general sampling scheme. For this case, closed-form expressions for 

windows and kernels will present great analytical difficulties. On the 

question of aliasing, we found in this thesis a more practical way of 

testing for aliasing - obtain a plot of the spectral window, ~(rn) 

and check for maxima. In particular, we verified via an estimating 

algorithm that the Poisson sampling process is alias-free even for non

bandlimited spectra. One shortcoming of our algorithm is its non

general nature, since, in fact, it was tailored for the Poisson sampling 

process. As was pointed out in Chapter I, it is quite possible using 
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techniques of numerical calculus to design algorithms to suit some 

particular sampling schemes, Our algorithm which invokes the rectan

gular approximation (instead of Blackman and Tukey's trapezoidal 

approximation) to the fourier cosine integral was found unsuitable for 

a detailed investigation of the rectangular sampling process. 

The gaussian assumption to which most of the analysis in Chapter 

III has been subjected, is not merely for analytical convenience since 

we are dealing with very large data size and the central limit theorem 

validates this assumption even when the process is not gaussian. On 

variability and covariability of estimates we were able to obtain 

closed form analytical expressions of the Blackman-Tukey type for the 

case when sampling intervals are Poisson distributed. These results, 

though approximate, are just as useful as any others derived in this 

thesis since they make use of the governing assumption of very large 

data size. Making use of these results we found further, that the 

Poisson sampling process achieves a smaller variability than the 

periodic sampling process for spectra which are very smooth, On the 

other hand, for rapidly varying spectra the Poisson is just as un

reliable as the periodic scheme. However, this is not to say that the 

algorithm of Blackman and Tukey should be discarded as we will see 

presently. 

4.2 Poisson Vs Periodic Sampling 

In the last section we inferred that for the same number of samples 

of the process the .Poisson sampling scheme achieves a smaller variance than 

the periodic scheme. This presumes that data are available for as long as 
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we want. In some cases of practical interest, the duration of data is 

limited somewhat, so that one is constrained to sample more closely to 

increase the number of samples or estimate from fewer record samples 

than needed. Already, we know that increasing the data size achieves 

smaller variance, so that it is quite possible that in a given time T 

we can obtain more samples by sampling periodically than with Poisson 

sampling. Even when signal duration is not limited, the question of 

how much longer one waits for say, N samples by sampling one way 

instead of the other, is worth looking into. Answers to these questions 

can be sought only in a probabilistic sense such as outlined below. 

Let TN = ai + 1 + ai + 2 + • • • + ai + N be the length of time it 

takes to obtain N data samples in a general non-uniform sampling 

scheme with mean sampling interval equal to a. If sampling is done 

uniformly every a sees., TN = N:X sees. For large N1 TN is asymp

totically normal with mean 

= cf- ~N(.n.) = N:X I 
i.n. 

.t\.=0 

E{Ti} 
a2 N 

= aw ~ (.n.) 
.t\.=0 

= N(N+l) a 2 

and variance, 

2 2 2 = E(T ) - ~ (T ) = N a n n 

From statistical tables we have 
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i.e. 

Na - 3CX /N < T < Na + 3CX /N n 

with probability 0.99. 

Alternately, we write 

3 Tn 3 
1--< -<1+-

/N N:l IN 

with probability 0.99. 

Now, for the case when the waiting time T, is fixed, the prob-

ability of obtaining between N-K and N+K samples by Poisson sampling 

i 1/ w th mean rate a is given by 

Pr{ 80 s NT .s 120} = 0.954319 

Pr{ 70 S NT S 130} = 0.997057 

4.3 Practical Implications of the Random Sampling Scheme 

In certain fields of application, prior statistical information 

on the sample times is not readily available, in which case, it may be 

necessary to record these sample times simultaneously. In sane cases 

this will require modification of the existing recording hardware and 

possibly more computation time. On the other hand, the scheme allows 
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a greater flexibility in data acquisition and errors due to small jitter 

are less significant in this scheme than they are in the Blackman and 

Tukey scheme. In what follows we outline the relevance of random 

sampling in some areas of application. 

4.3.1 Communications Technology 

In some coded communication systems the time of channel avail

ability are random. By sampling a time sequence in a random manner 

corresponding to the random availability of the channel rather than 

sampling periodically, the need for buffer storage can be eliminated. 

4.3.2 Seismic Data Processing 

In future design of field experiments to investigate random 

seismic noise by means of correlation or spectral techniques, geophone 

arrays may now be set up randomly spaced in a manner that will optimize 

seismic data acquisition. It may also be possible to filter out, using 

appropriate geophone distributions, the propagating modes or coherent 

noise as is sometimes called. This will eliminate the need for delay 

lines as is the usual practice (cf [19]). 

4.3.3 Oceanography . 

Whether it be swells from distant storms or ocean waves, the times 

of arrival are a random phenomenon and it will no doubt be more expedient 

and space-saving to take readings whenever they are available rather than 

periodically as is. usually done. In this application arrival times have 

been known to follow certain well known distributions • 



-85-

4.3.4 Structural Design 

In the design of tall structures and aircraft, destructive power 

of atmospheric turbulence is of very great concern. Engineers must 

design to accomodate oscillations due to wind gusts whose magnitude and 

direction are random phenomena with random occurence times. Estimation 

of spectra of wind velocities and of ground motion (velocity and 

acceleration) due to earthquakes normally preceeds actual structural 

design. 
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Appendix A 

A-1 Behavior of ~(ill) for large ill , 

Recall that ~ = arctan ill a and write 

lim ~ (ill) = 2 a lim 
~ ... lt/2 

m n+l 
~ cos ~ cos(n+l) ~ 

n=o 

l' { 2 3 2 a ~ ~lt/2 cos ~(1 + cos 2~) + cos ~cos3~ 

+ cos 
4~ cos4~ + ........ ,+ cosm+1~cos(m+l)~} 

lim RHS ~ 2 a im 2 cos ~ + cos3~cos3~ + cos ~cos4~ L 1 { 4 4 ' 
~ .... lt/2 J 

Expand the cosine functions noting that sinlt/
2 

= 1, coslt/2 = 0 etc., 

and get 

lim ~(ill) = 2 a .lim { 2 sin
4

€ + sin
4

€ cos4€ - sin3€sin3€} 

ill ... co € ... 0 

6 = - 16 a € 

Now, ~- € 
-1 I = tan ill a ~ € ~ 1 o:a 

so that 
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6 = 0( -€ ) 

A-2 Behavior of ~(w) for large w • 

PB { m n+l 
~ (w) = aa ~ (1-i) cos ~ cos(n+l) ~ + cos2~ 

n=l 

Note from A-1 that we can write 

Proceeding as in A-1 we write 

PB P aa lim { 2 -lim ~ (w) = lim ~ (w) - - ..... !Cos ~cos2~ 
(l) ..... CXI • (l) ..... CXI m ~ 1{ /2 

+ 2'Cos3cp-cos3~ + 3cos ~.cos~ + ••••• 4 ' } 

Now, lim {cos2~cos2~ + 2cos3~cos3~ + 3Cos 
4~cos~} 

~ ..... 7!/ 2 

= lim {cos2(1f/2-e)cos(7!-2e) + 2 cos3(¥- e)cos(~l! 3e) 
€ ..... 0 

+ 3cos
4(1!/2-e)cos(27! - 4e)} 

= lim {-sin2e cos2e - 2 sin3esin3e + 3 sin
4

e cos4e} 
€ ..... 0 



-88-

= 
2 2 4 4 --- 2 

- € (l-2€ + ••• ) - 6€ + 3€ (l-8€ + ••• ) 

2 
~ - € 

Thus, 

whence we say 

A-3 

~(oo) 

PB l 
~·(oo) = 0 ( 2 2 ) 

~m>ex 

max 
.1\. 

{ 
m ncx n+l ( ) = 2CXR:l r: (1-m) cos cp cos n+l cp 

n=o 

~(oo) 
&p = 2 ex Re{ r: (l - :XHn+l)[ -cosncp cos (n+l) cp sincp 

= 0 when cp = 0 , ~ 1 2~ 1 3~ , 

- (mtl) (mt2 ). ex cos~ cos (mt2) cp . 2 2 } 
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It can be deduced from above that 

< 0 

q> = o, 2kn 

Further, we note that 

which implies 

max 
J\. 

= ~(0) 
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Appendix B 

B-1 Permutations of ti, tk, tk+n' ti+j 

First, assume also that 

and 

subject to: 

so that only the following four permutations are possible (subject to 

(1) and (2) above): 

(3) ti ~ .tk < ti+j < tk+n (v) 

(4) ti ~ tk < tk+n ~ ti+j (vi) 

(5) tk < ti ~ ti+j < tk+n (iv) 

(6) tk < .ti < tk+n ~ ti+j (iii) 

Now relax restrictions in· (2) to have from (3) and (6) respectively, 

(7) ti < ti+j ~ tk < tk+n 

(8) tk < tk+n ~ ti < ti+j 

(ii) 

(i) 

An interval tree for the above permutations is illustrated in 

Figure Bl. Note that the permutations are unique only as far as 

absolute inequalities are concerned. 
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B-2 Derivation of . A(W' ,w+wr,w+wq) subject to inequalities 

(i) through (vi) of Section B-1 

so that equation 3.25 becomes: 

A(i)(w' w+w w+w) 1 , r, q 

- 21 2 L Etraiak(~+n+ aonl)(ai+j+ aojl) 
Ne a R1(i,j,k,n) l 

cos[2w' (ti-tk+n) + (2w'+w+wr) (tk+n-tk)- (w+wq) (ti+j-ti) 1} 

i(2w'+w+w) 

(<~+n+ ~nl) e r 

Define: 

and 

~*(n) 

2 1 i 
i w E . a ) 

k+n+l l.1 
e 

and take expectation as indicated to get 



-93-

A(i)(w' w+w w+w) 
1 ' r' q 

• ___,...;;1~ L Re 
N! a R1 (i,j,k,n) 

~i k (2w') ~ (2w'+w+w ) + ae 1~(2w'+w+w >) - -n n r n r 

X 

Similarly, from equation 3.25a, obtain 

A(i)(w' w+w w+w) 
2 ' r' q 

To obtain equation 3.27, follow the above procedure and derive 

A~t), A~i) i • (ii),•••,(vi), then note that equation 3.27 is given 

by 

A(w',w+w ,w+w) • r q . 

6 
L L {A1

1 <w',w+w ,w+w )+A1
2(w',w+w ,w+w )} 

( ) r q r q i•l R
1 

i,j ,k,n 
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