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ABSTRACT

The optical rotatory power of a fluid system of mole-
cules is calculated. The result is the same as obtained
by previous investigators using similar but less satis-
factory arguments. Various means of calculating the opti-
cal activity of a substance are discussed, one previously
used by Kirkwood being employed to discuss theoretically
the absolute configurations of trans-2,3-epoxybutane,
1,2-dichloropropane and l,2-dibromopropane. An experimen-
tal investigation of the molecular structure of 1l,2-dichloro-

. propane by electron diffraction methods is described.
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INTRODUCTION

The rotation of the plane of polarization of a beam
of linearly polarized light during its passage through a
material medium was first observed by Arago(l) in 1811, in
crystalline quartz. In 1815 Biot and Seebeck(Q), during
experiments designed to investigate the effect of sur-
rounding media on the optical rotatory power of quartz,
noted that several liquids as well as aqueous solutions
of certain substances also exhibited the same ability to

rotate the plane of polarigzation of the light beam. 1In

1817 Biot(3)observed optical activity in the vapor state
of certain substances.
Pasteur(4) in 1848 made the very important and famous

discovery of the existence of two isomers of sodium
ammonium tartrate, differing in the signs of their opti-
cal rotations, and having crystal habits related to each
other as mirror images. He produced these by crystalli-
zation from the racemic mixture at temperatures slightly
below room temperature, this being the first resolution
of a racemic mixture. From the experimental evidence,
Pasteur(5) empirically deduced as the criterion for the
possibility of existence of optical isomers the non-super-
posability of the molecule with its mirror image. He
realized at the same time the necessity of using three-
dimensional molecular models, but did not propose a spec-

ific geometrical structure. The latter was done nearly
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simultaneously by van't Hoff(é) and LeBe1(7) s With their
famous suggestion of the tetrahedral carbon atom, and
thelr correlation of optical activity with the presence

of an asymmetric carbon atom in the molecule. Both exper-
iment and theory have since shown that the latter require-
ment for optical activity 1s too special, the correct one
being the more general criterion of Pasteur.

Soon after the discovery of optical rotatory power,
Fresnel(8) proposed a theoretical explanation for the
phenomenon in crystals such as quartz, where the rotatory
power disappears on fusion or solution in optically inactive
solvents. He postulated a helicoidal arrangement of the
atoms, there being two such arrangements identical except
for one being right-handed, the other left-handed. Since
then modern x-ray crystallography has indeed confirmed this
postulate of Fresnel. With this hypothesis, he showed
that the refractive indices of a given (right- or left-
handed) helicoid would be different for right and left
circularly polarized light, and that this would result in
the rotation of the plane of polarization of a linearly
polarized light beam.

Such an explanation is obviously not applicable to
those substances exhibiting optical rotation in the ligquid
or vapor states, and indeed an adequate theory for these
cases was much longer in forthcoming. Drude(9) developed
a theory in which the electrons in the molecule were

supposed constrained to vibrate in helicoidal paths.
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Besides the artificiality of the model, it has since been
shown by Kuhn(lo) that Drude's calculations contained an
error, and that the model correctly treated gives no opti-
cal activity. A satisfactory explanation was first found

(12) and Gray(l3).

nearly simultaneously by Born(ll), Oseen
These authors perceived that it was essential to consider

the retardation of the light wave over the molecular dimen-
sionsj when this was taken into account optical rotatory
power was found to be a natural consequence of the molecular
theories then extant. Born and Oseen based their theories

on the classical coupled-oscillator models of the disper-
sion theory, making no specific correlations with the mole-
cular structure. Gray, on the other hand, considered a
specific molecule, postulating harmonic oscillators located
in particular groups or atoms in the molecule, and developed
the theory in terms of the polarizability of these groupse.
The Born-0Oseen and the Gray theories are similar in prin-
ciple, differing only in the specific assumptions made

about the model. Gans(l4) has pointed out several errors

in the original Born-Oseen theory. A speclalization of

this classical theory has been extensively applied by

Kuhn. A brief discussion of his method will be given later.
The polarizability theory has been improved by de Mallemann(15)
and by Boys(16) but usually unwarranted assumptions of
optically isotropic groups in the molecule have been made.

A general quantum mechanical formulation of the problem

of optical activity was given by Rosenfeld(17) in 1929.
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The quantum mechanical foundations of the Rosenfeld argu-
ment naturally are free from the defects of the classical
oscillator theories, and the general formula obtained is
the appropriate starting point for discussions of the
optical rotatory power of specific quantum mechanical
systems.

Here we shall devote ourselves first (Section II) to
the derivation of the Rosenfeld formula, following the
general lines of Rosenfeld's argument, but treating cer=-
tain points in greater detail. In Section III the genera-
lized polarizability theory of Kirkwood will be described,
and application made to the determination of the absolute
configurations of several optically active compounds. The
one-electron theory of Eyring and his co-workers and Kuhn's
application of the classical coupled-oscillator theory will
be briefly discussed in Section IV. There we shall also
give a brief summary of the problem of the absolute config-
uration as it stands at present. Section V will describe
an electron diffraction investigation of the molecular
structure of 1l,2-dichloropropane, one of the substances

considered in Section III.
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QUANTUM MECHANICAL AND STATISTICAL MECHANICAL
THEORY OF THE COPTICAL ACTIVITY OF FLUID SYSTEMS
Introduction

The published derivations(17918:19) of the Rosenfeld
formula proceed in the following scheme. The effective
external electromagnetic field on the molecule is taken to
be that of a simply periodic plane light wavej; the induced
electric and magnetic moments are then calculated, an
average being taken over the angular orientations of the
molecule with respect to the light wave, treating all
orientations as equally probable. This last step is intro-
duced since we desire to calculate the induced moments for
the gaseous or liquid states in the absence of other
orienting electric or magnetic fields, rather than in the
presence of such fields or for the crystalline state. The
Lorenz-Lorentz relation for the effective field in terms of
the macroscopic electric intensity and polarization 1s then
introduced in a not wholly consistent way tc obtain the
polarization and magnetization in terms of the macroscopic
field vectors. Using these equations as material equations
and Maxwell's equations for a dielectric medium, it may be
shown that the mediuvm exhibits circular double refraction
and therefore optical activity.

It is to be noted first of all that in a fluid system
of polarizable particles through which a plane light wave
is propagating, the electric (and magnetic) field acting

on a given molecule at a given instant does not correspond
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to a simply periodic plane wave, in spite of the fact

that this may be the character of the incident wave.

This is due to the radiation fields of the induced mom-
ents in the other molecules. If the other molecules were
stationary the effective field would be simply periodic
with the frequency of the incident wave, though not in
general plane wave in form, depending on the configuration
of.the molecules. The actual motions of the molecules in

a fluld system result in an extremely complicated time
dependence of the effective field at a given molecule,
However, for frequencies in the range of visible light,

the electromagnetic field due to the incident light will
have completed many cycles over a period of time required
for appreciable variation in the field due to the molecular
motions. Consequently we may to a good approximation treat
the induced moments as simply periodic with the frequency
of the incident light wave.

The average electromagnetic field at a given molecule
is a plane wave, as indicated by experiment and demon-
strated theoretically by Lundblad‘®®) for the case of an
infinite medium in which the molecules composing the system
are optically isotropic. However, such a quantity as the
average of the curl of the electric field at a given mole-
cule will not in general be identical with the curl of the
average electric field at the molecule, since the statisti-
cal weighting function will in general depend on the coor-

dinates of the given molecule, as well as those of the
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other molecules. As will be seen later, such quantities
as those of the former type enter into the theory, so that
it is essential to avoid the assumption of plane wave de-
pendence of the instantaneous effective electric field.
The distinction between the two types of quantities may
also be drawn from arguments based on the Lorentz cavity,
as was pointed out by Gans(142 however, because of the
added clarity of arguments based on statistical mechanics
it seems preferable to follow the latter reasoning, espe-
cially since the exact nature of the assumptions involved
may be more clearly seen.

Accordingly, we will first (Part I) develop the quan-
tum mechanical formulas for the electric and magnetic
moments induced in a molecule initially (before the appli-
cation of the electromagnetic field) in a given quantum
state. The electromagnetic field will be assumed to be
simply periodic, but otherwise arbvitrary, except that it
must satisfy Maxwell's equations for a vacuum. Having
done this, the remaining problem will be the statistical
mechanical one of averaging the resulting formulas over

the various gquantum states of the system,

Part I: Quantum mechanical theory
We formally suppose the Schrodinger equation to have
been solved for the molecule in the field-free conditionj
the time-dependent Schrodinger equation is then set up

and solved by the method of variation of constants, the
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expansion being in the eigenfunctions of the Hamiltonian
in the absence of the field, treating the part of the
Hamiltonian arising from the presence of the field as a
perturbation. If we denote the complete Hamiltonian (in-
cluding the field terms) by H, the time-dependent Schro-

dinger equation is
H QP =1h éi:i:. . (1)
ot

In accordance with the above, we write
(]
H=H + H' (%), (2)

where ﬁ is independent of time, and is the Hamiltonian
for the system in the absence of the electromagnetic
fieldy H' (t) 1s the time-dependent term arising from the
presence of the light field. To obtain a solution of

equation (1) we write .
b -'lE.K't
\P =ZCK(t)\PKe H (3)
K 9

where the \FK are independent of time, and satisfy the
equation
= Ecd
HY = Bk Tk
. (4)
Substitution of equation (3) into (1) with use of (4) then
gives, after the familiar multiplication by any arbitrary

[}
LP, and integration over configuration space, the well-known
J



system of equations

d-c‘ _ | / Zﬂi.{)jK't . .
—;-f' ‘WzCK(t)HJKQ , J=1,

(5)

'
wherelﬂjK is the usual matrix element ofFﬂt) in the repre-
sentation of the eigenfunctions of (IBI and I;JK :-;‘\-(éj“ék) .
We suppose'*zt)to be small, as can evidently be done
by making the light intensity sufficiently weak. The
system of equations (5) is then solved approximately by
replacing the coefficientsC«ft)on the right-hand side by
their values<hdtﬁat some initial time t,, the latter
values being supposed known from the statement of the
problem. If we also specialize to the case of present

interest, that is, periodic H'(t), we may write

/ i + 2wt
H(t) = Aezvrmvt+ A em , (6)

where A 1s independent of the time. It 1is necessary,
however, to consider the initial condition. In order to
avoid the appearance of incoherent terms depending on the
manner of turning on the perturbation at time t,, we will

(21)

use a device due to Born and write, in place of

equation (6),
; ' -2mivt
Hit = (Ae™ 4 ATe™ 57t 434,

=O, 1€ 1, (7)
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where 0 1is real and positive. This represents an approxi-
mately periodic perturbation of slowly increasing amplitude;
by suitable choice of O we will obtain the purely periodic
case of equation (6) in the 1limit as 0 approaches zero and
t, approaches minus infinity. We further suppose that at

ty, the system 1is known to have been in quantum state i,
with elgenfunctlon.q/ Thus

CK(to) =éiK

L (8)

Using equations (7) and (8) in (5), we obtain

. ° y ° I . °"t
dcy _ (Aﬁezmvt_}_ At! e .zmz/’c)e<>"\‘.-r.>.1ru/dL
dt L , (9)

an approximation valid for t not too far removed from t,.

Integrating equation (9) between t, and t, one finds

ih (CJ(H -J;.J) =

: V)t Ti(P;-V)t
AJlez'tn(UJL* ) A 2 (..n ) eO't
ami( o) ZNL(VJD.’V)"'W
I&Jlez“l(%l+y) A 2m( ks e Lo
2mi(V;+V)+E .zvln(z%;-l v)re |

(10)



i

Now O and tg are at our disposal, and the Born device is
to allow O to approach zero and ty to approach minus in-
finity in such a way thatcrto approaches minus infinity,
for instance by setting =g , o=~ "E":'i , where £>0
and allowing & +to approach zero. Then ¢t approaches
zero,o“to approaches minus infinity, and in the limit we

have

A~ ezm(ﬁ +¥)t A‘!iezwl(l%i-V)t
yi J

+ s
v, tv Vi~V .

(11)

Substituting in equation (3) we obtain as the first
order equation for the wave function under the influence

of the perturbation

g{ _ q& G{ZKi;}t _
L

¢ _oxi(Pi-v)t  ° _emi (v ¥t
—|-|-I_ AK'. "( [y ) + A‘:'“. e () °
) [+

Ky

(12)

where the subscript i1 has been added to q? to indicate

that it corresponds to that state of the perturbed system
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which is derived from the ith state of the unperturbed
systeme

The diagonal matrix elements of an observable f. in

the perturbed system are then given by

f. = f° +Z ( ’& f '?ix ’Z‘Ki )ezﬂwt
i e - e +
(— \ k(% +V) h(D*V)

o op .
Au( g - {(.E'Axi )e—zmyt
l-.(z{.K-V) h(7;7)

?

(13}

where the zero over a matrix element of f indicates that
the matrix element is in the representation in which H is
diagonal.

The Hamiltonian for a system of particles in an electro-

magnetic field is

e ) { oz (Behe v Ac) + S A v e

(]
where H 1s the Hamiltonian in absence of the fieldj f\T

and ¢T are respectively the vector and scalar potentials
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at the position of particle T ,€.,andM,are respectively
the charge and mass of particle T ; and FT is its momen=-
tum operator. The sum goes over all particles of the
system. Condon, Altar, and Eyring(zz) have shown that the
neglect of contributions of the particle spins of the form
S‘T'(VKR)T in the above expression is justified in dis-
cussing the phenomenon of optical rotatory powere.

Since we are interested in forming a linear theory
and since the perturbing field is supposed to be small, we

neglect the term in K2 o We then have

H(t) ‘-"-Z{ %(FT'OAT + KT.PT‘)+ e«r¢'r}. -

In accordance with our supposition of a simply periodic

field we write
Y S omivt P _-amivt
A -.:_é_(Ae”"” + Afe*™ )
o X amivt °*-zwivt)
?S == TE-( ¢S€3 +'3ﬁ e y

o) o)
where A and.¢ are functions of the coordinates but not of

(16)

the time. Substituting equation (16) into (15), and com-

paring with (6) we find



The next step is that of introducing the Taylor expansions

AR + ¥ T AR) + -«

gt
v
P
]

B(7)= PR)+ £V R+ 3 T T Ve BRI+
(18)

where we will neglect the higher terms of the series. ﬁ
is the vector position of the center of mass of the mole-~
cule with respect to a convenient fixed external originj
:Er is the vector position of the particle T of the mole-
cule with respect to the molecular center of mass. The

double dot multiplication of two dyadics is defined by the

equation

3
A:B = Z A B )

i, J=i

2
=B =
With respect to the field vectors E and B, inspection of

equation (18) shows that we are retaining the first two
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terms in the expansion of E, but only the first term of
g, This means that we are considering the retardation
of the electric intensity, but neglecting the retardation
of the magnetic induction.

Introduction of equation (18) into (17) leads %o

Ple

A=Z{ Sy f\’(ﬁ)--,s; s .;_(-*-r;zv.fi(ﬁnﬁ.% ®)p,)

2m,C 2m,C TT R v
T
0 = = 9 Lo - o o
| ° + ! 2 Va Vo
tle dRI+Lem VE;HR) 71r.eTxgx;.\7RVR ¢(R)} ‘
(20)
By use of the commutation rule
P Py = j&_q§.-
] TLUIY ]
r;d T i LJ (1)

where the subscripts 1 and jJ now refer to components of
the vectors along one or the other of three orthogonal

unit vectors, it is immediately found that

gl

®)3, = 5% GAR -5 TAR) .

oV .
l (22)

Use of equation (22) and the self-adjoint character of the
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operators Y¢ and ﬁ, leads to the relation

G ARE[(E, B Pl = Proe (Bafe it VA R)

- & F V;'z\(ﬁ) ém

- K
t

(23)
Here the subscripts 1 and J denote the usual quantum mech-
anical matrix elements. The dipole moment operator of the

molecule is given by

=5 e
T Y
’ (24)

0
and in the unperturbed representation, in which H is dia-

gonal, the relation

e‘r - — \ . -‘.
22’;:6 (P"')'LK - 2"”&»& H‘u&

T 2¢C (25)

is valid, the sums in equations (24) and (25) being over all
particles of the molecule. It is convenient also to intro-

=

duce the quadrupole moment tensor operator 9_ 32_67?1.[} .
Substitution of equation (20) into (13) Wig; use of

equations (21 - 26), after a considerable amount of alge-

braic manipulation, gives the following expression for the

moment induced by the electromagnetic field in the molecule,

if the latter 1s originally in the quantum state specified
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by the index i (which should be considered as representing

a set of quantum numbers):

-

Fia = E’Z hz(if-z"') e [f:\"‘ F""] N §Z IM[FW ﬁ“}

K vh(qz-uﬂ

+VA 4’VK.|- '5" vﬁ:: 21"‘['9-';&}1&3.1
Z V“ V‘) [ Mm] g Wh(t?"'i‘Vz)

2w‘v‘

K 2—“"'(".4‘ )

(27)

In writing equation (27) we have omitted indicating expli-
citly the dependence of the fields on the position ﬁ. The
notations Re and Im indicate that the real and imaginary
parts (respectively) of the quantity are to be taken. A
dot over a quantity is used to denote differentiation with

respect to time.
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In the same way we calculate the induced magnetic

moment in the quantum state specified by the index i,

obtaining
o 5 o, 8 - [3 =
'—;‘:i - E;- 2 Vyi Re[,*‘m mnl] + E .Z I i M
< Th(%E - < whfg-r)
+VZ\.:Z 4 Re[ganmkil -+ V/_&: ZIm[Qiumni
< h(3E-v?) “ wh(Z;-v)

~ ol (V‘K)'L“u €r -VV<I>:Z ;niRe[éiurgﬁul]

2Tyt - am,C

VA v 56 :Z lm[é..m:rﬁni.]

K 2anh (;3“’5 -1)

(28)

-- . o .
Here m is the magnetic moment operator (neglecting spin)

defined by

2m . C

~ T ®
T
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Part II: ©Statistical mechanical theory

Equations (27) and (28) of Part I give the moments
induced by a periodic electromagnetic field in a molecule
originally (i.e., before the application of the electro-
magnetic field) in the quantum state specified by the
index 1.

For discussion of the macroscopic properties of the
system it 1s convenient to introduce the macroscopic polar-
lzation 3. The instantaneous value ﬁ(f,t) of this quantity
at the position T and time t is the sum of the moments of
all the molecules which are in a fixed region « about T
at the time t, divided by the volume of the region w .
The dimensions of the region w are to be small compared to
the wave length of the radiation, but large enough to
contain a large number of molecules. The observed polar-
ization ? 1is the statistical average of this value over the
various states of the system of N molecules. This quantity
may be taken as the product of the mean number of molecules
per unit volume times the mean moment induced in a molecule
fixed at the position ?, the mean being taken over all the
states of the system consistent with the given molecule
fixed at T.

Proceeding in this fashion, we have to average expres-

sions (27) and (28) in the fashion just mentioned. Inasmuch
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as we intend to obtain expressions for the induced moments
only to the first order in the field vectors, which already
appear in (27) and (28), it will be appropriate to use the
distribution functions valid for the unperturbed system.
In our discussions of the averaging process we will continue
to consider averages over quantum states as regards the
internal degrees of freedom of the molecules, but rather
than consider explicitly the quantum mechanical transla-
tional states, we will treat these classically. We suppose
that the averaging over the translational degrees of freedom
(i.e., the positions of the molecules of the system) and
the averaging over the internal configurations (including
the quantum states associated with the orientation and rota-
tion of each molecule as a whole) may be carried out inde-
pendently, as well as the averaging over internal quantum
states of one molecule independently of that of the others.
We allow intermolecular interactions of a type giving mole-
cules their physical size, but neglect dependence of inter-
nal quantum states on the presence of other molecules.
Stated otherwise, we suppose the internal quantum states of
a given molecule (including the orientation of the molecule
as a whole) to be independent of the states (i.e., position
and internal quantum states) of the other molecules of the
system.

We will consider the system composed of N molecules

in internal quantum states i, at position ;r’ =1, eesesls
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An index i, without subscript, will be used to represent
the set of indices ipy, r = l....N. The vector potential

at the position ;r of the rth molecule is given by

)

)

el

N
- ) 4 & > L
AG U = A9E N ) At
s;;
(@)

Where A(fr,t) is the vector potential at the position T

(29)

T
and time t, due to external charge distributions and

A(r,,t;r,) is the vector potential at position r, and
time t due to the induced moments in molecule s in quan-

-
tum state ig at position rs

- - ()
A(r ’c;r;)‘ =

T ?

ENE) .
LM ] [m
- + V. x 28
C Ry " Rys

(30)

d(l) () . . . .
Here rls and mg are, respectively, the electric and magnetic
moments induced in molecule s in quantum state 1g and at
position ;s’ and the square brackets mean that retardation
is to be taken into account, i.e., the moments are to be taken
at the timet-f%;, where Rpg = ?s - ;r’ Bos =|§}SL Strictly
speaking the positions vary with time, and Rpg should also
be evaluated at the retarded time. We will neglect this

however inasmuch as we may suppose the molecular velocities

to be small compared to the velocity of lighte
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Similarly we find for the scalar potential the equa-

tions
- ) (@) - N - - (1)
$F 07 = $UE Y $(LGT)
=1 (31)
ir
$(F T = -V 0]
Ry (32)

Equations (27 - 32) give a system of 2N equations for
the determination of the electric and magnetic moments in-
duced in each molecule for the system as specified by the
internal quantum states and positions of each molecule.
These could in principle be solved for the moments in terms
of the externally imposed potentials, the geometry of the
system, and the molecular parameters involved in (27) and
(28). The resulting expressions might then be averaged
over the internal quantum states and all positions of N=1
of the molecules relative to the Nth molecule considered
fixed at a given position in order to arrive at the average
electric and magnetic momehts per molecule at the given
position.

Rather than attempt this method we shall here proceed
by a simpler path with the aid of certain approximations.
Instead of solving the system of 2N equations Jjust mentioned

we immediately perform the averaging over internal quantum
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states. A typical term on the right-hand side of the
equation giving the induced moment in molecule r in quan-

tum state ip, at the position T the other molecules

T
being in quantum states ig, at the positions Fé (5 21s200 sl
. 2 L) by s el ;
s¢r), is F(Rrs’}ks )* X" where P(Rr57}Ls ) is a field
function (a vector or a tensor; for instance, the electric
-
intensity) at the position ?r due to the momentfkg)at ?S,
L
and 2&'15 a molecular tensor determined entirely by the

quantum state i, of molecule r. Indicating an average over

r

internal quantum states of all molecules by a bar, the appro-

xXimation which we will introduce is

~ o = =0 ?
F(RVS’HL:).SEH—: F(Rrs"l‘k;)'ﬁw -

F(Rrs 1M x'T £33}

S

where the second step, an equality, is by virtue of the
fact that in the field functions typified by F the only
factprs depending on the internal quantum states are the
moments typified by Fg) °

According to our earlier assumptions, the internal
quantum levels of each molecule will be degenerate, corres-
ponding classically to no dependence of the energy of a
molecule on its orientation. It is convenient for these
reasons to introduce the Uber-matrix notation of Born,
using a superscript index to represent the totality of quan-

tum numbers except the degenerate orientational quantum

number, and a subscript indicating the latter. Thus Fl;x“
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1s the matrix element of the dipole moment between the unper-
turbed state specified by the quantum index n' and the quan-
tum number m' and the state specified by n and m. The nota-
tion ﬁi’m represents the rectangular matrix (ﬁi:\";‘“ ) of g
columns and g, rows, obtained from the set of all gquantum
numbers m' and m existing for the states specified by the
indices n' and n, respectively, where g, is the degree of
orientational degeneracy. We will use the usual abbrevia-
tion sp A" izzkgﬁ, where the sum is over the orientational
substates of ;%ate n and A is any matrix. As is well known,
such a quantity is a rotational invariant, which is to say
that the quantity does not depend on the choice of the axis
of quantization of the total angular momentum. The energy

0
of the unperturbed quantum states we denote by Wh),

an
orientational index being superfluous because of the assumed

degeneracy. The quantum statistical weight factors are

o (n)
-W
KT s here k being Boltzmann's constant, T the absolute
temperature.

In the new notation, and with the approximation of
replacing the average over internal gquantum states of the
product of two functions by the product of their averages,
the moment in molecule r fixed at ?r averaged over internal
guantum states, but with the other molecules in fixed

positions, is



-25

°n

P‘(Y‘) =Z 5 [_‘"v“r]e KT\' R

Ny

LS Z L2 (Z Im .SP[Frn.-n.— -"\rﬂr]}) e-!"v__

n. Wh(y"r"r-y)

©
wﬂ

gn 5-_-*'(l:":'r“':" =) Re{SP[l“M' "'"']})e'—m-

=D B nrn n‘.“r _.n “r _&—-
zn,.: gny § ? M

ny vrh(v"rhr_y)

WAL gy 5?[5"'“?3'"'1})5"—;25

n Ny
r h'r Th ( 9"1-“1- Vt,)

]

' B, > n,.n,. -whr
2,0 (V' r ( Z 'SP[ e =
2wy 2m C,
oo s (v PRI E
r

Y\; h ( }3 N V'l-)

b

“'r 21”1(13"1:“\-"__1);)

~vvd) Be(y” Infsldr ] ) &xr

(34)

P



D

A similar formula holds for FR“). Here, in using equations

(29 - 32) for the field vectors, the unaveraged moments there
appearing are to be replaced by the averaged moments, in
accordance with the approximation of equation (33). The
rotational invariance of the spurs in equation (34) results
in a far-reaching simplification. In a freely rotatable
system, to which class these zero-order spurs belong under

our assumptions, the following relations hold(23>:

SplA"] =0 (35)
SP[AM BM] § —Sp Ann Bnn]’ (36)

SeLT™, A= 8., Spl T A . 67

- =
A and B are vectors with constant components with respect
to a set of axes fixed in the molecule, and I is a tensor

with constant elements with respect to the same axes. If

-l

31, €0, 53 are a given triad of orthogonal unit vectors

-

-l
fixed in space, the A; is defined by A; = A - ey, 1 =1,2,3,

and Tij in dyadic notation by Tjj = ey + I -2y, i, §=1,2,3.

J-- is the usual Kronecker delta symbol; é

tJ i, j’ k = 17273a

tiK?
is the alternating symbol, defined as equal to zero unless
the indices i, j, and k are all different, and as equal to
plus or minus one according as the sequence 1 J k is an even

or odd permutation of the sequence 1 2 3.
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Considering now the terms on the right-hand side of
equation (34), the first and sixth evidently vanish by
virtue of equation (35). The second and third terms each
contain a factor of the form EI.-Sp[_'“ i Hn;n..} s Which
can evidently be written E Sp[“"fm“'r“*] . The spur
in this is evidently real, so that the Re in the second
term may be omitted, while the third term vanishes. The
fourth and fifth terms each contain a factor of the form
VA :Sp [A3 F1NJ1] , which may be written, temp-
orarily droppihg the molecule-identifying subscripts and
adopting a coordinate notation,
> e, B[ 3% A
LJ K
where the Xj’
notation of equations (35-37), and similarly for the 4;.

j =1, 2, 3 are the components of R in the

From (37) one obtains immediately

Sp(T Ak = - SplTiAnl . (38)

Using this, we may write the preceding expression as

L5g (Bhe _ 2R s[5 - 3ol

K= éXJ éXl
where i1 and j are the two indices different from k. We

note that the components of the magnetic moment may be

expressed as

mx = "jlY —’JYI ,th..
(39)
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Thus we may finally write the factor in the fourth term,
using equation (36) and returning to vector notation in
the form 1/6 (vx 4) sSplm nn'.p_n‘n] . If we notice that
the dyad g.appearing in the seventh and eighth terms is
symmetric, we see that these terms vanish by virtue of
equation (38). Thus equation (34) simplifies to

=) _

m ocE +/sB , Lo

while a similar procedure gives

e -

m® = (SE + T:E- t B‘. , (41)

where
— =26 unnSP[-'nn'—'n'n] _\_:I__“_
O(—Z(ahgn Z Jrin® g ex ? (42)
n n’ =

T (Y S,

Y miErEE
3



=Z( 28 Z onn SP[#M:_:;\“'"] 6-%:
B L \angn 2. T i
" " (45)
B= L
2 e (46)

n

In equations (42 - 46) we have omitted the molecule-identi-
fying subscripts, since we are supposing the system to con-
sist of a single variety of molecules.

For the majority of substances of interest in a dis-
cussion of optical activity,fk is very small. Since, more-
over, it does not contribute to the optical activity, we
will therefore omit it from further discussion so as not
to unduly complicate our formulas. The quantities@ and ¥
are also small, but the latter will be shown to be the term
responsible for the optical activity, and so cannot be neg-
lected. We will retain.@ in order to show that it does not
contribute to the optical activity. The field vectors in
(40) and (41) depend on the positions of all the molecules,
and we must still average these expressions over the posi-
tions of the molecules.,

In the following we will use the complex representation
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of the fixed vectors and moments, in which
a = =20 -iwt
E.=E(r. t)=E(r)e | etc.,
w=27mY (47)

where ;r is the vector position of the center of gravity
of molecule r with respect to any convenient origin. De-
pendence on the positions of the other molecules is still
to be understood.

Using equation (47) and the following one of Maxwell's

eguations,
=D

\..'..b
VxE=-cB , s

equations (40) and (41) may be written in abbreviated form

e =°<—E‘L+I'°‘J((-’*+"“’*)VLXEL W
= (p-iwv)E; (50)

where we have changed the index designating the various
molecules to avoid confusion with the molecular coordinates,
and use it now as a subscript rather than superscript. The
eéxplicit dependence of E} on.Ece)and the induced moments

and positions of the other molecules may be written, using



equations (29 - 32)

EEA=E%nt) +Zcur| curl, (]
#L RLJ
N — (51)
= 'Cl'— Cur'|-L [MJ] 3
n
Ri; =F;‘Fa ; Ru=|Ruy]. (52)

Substituting equation (51) into equations (49) and (50) and
indicating the spatial averaging by a second bar, we obtain

the equations

— -.( [E———
-

N
= ocE:)+i—%J-(P + iwy) CUJ’"(E(':) + OCZ curl; curly ["‘-‘]

t —_—

A
&

(F-nwx ZCurl curl cwrk [ Ki] o Curl.\{r.nj .
C

#L X gz

=-Fn:= (@—LwﬂE +(@-mw5)Z¢.u.rl c,ur'h[
R. :

e “ (54)

The averaging indicated by the second bar is to be done with
molecule 1 considered fixed in space at the position'?i,

all spatial configurations of the other molecules being
weighted appropriately. In both (53) and (54) a term in

which (Pihqr) multiplies an expression containing the
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magnetic moment has been omitted since inspection of (50)
shows that such a term is of second order in the retarded
quantities e and ¥ . The latter are small, and furthermore
we have throughout the discussion considered only first
order retarded terms. In (51) and (52) we have neglected
the contributions of quadrupole and higher multipole moments
to the electric intensity.

In solving (53) and (54) for the average induced
moments we will follow a procedure similar to Born‘s(24)

(12) (see also (20)) for the

account of the "Oseen process"
case 1in which the terms hne and f are absent. Implicit
in the method, but not explicitly stated by him, is a

further approximation similar to the one used earlier to

simplify equations (27) and (28). TWe approximate

curl; curl; by curli ecurlil. = and similarly for
L gl Ris L1 |

the other averages. This evidently involves neglecting

certain translational fluctuations. The functional depen-

— P

dence ofﬁ- andlﬁtt on the positions _fj and 'f'.i and on the
time is now evidently the same, and further there 1s evi-
dently now no distinction between the molecules previously
designated by the index j. To simplify writing we will
now drop the double bars; we will further discontinue the
use of the subscripts to designate the various molecules,
and use insteadp (?‘,t) to denote the average moment in a

molecule fixed at ?, and.F(?;t) to denote the average

@ -/ o
moment in a molecule at r. The averaging process referred
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to 1s that previously denoted by the double bar. The
operations curl, grad, etc., (orV ) without any identifi-
cation will refer to vector differentiation with respect
to ?; where there 1s occasion to use vector differentiation
with respect to T', the notations curl', grad', etc., (orV)

will be used. We obtain in place of equations (53) and (54)

F(ﬁt):oc-é(e%ﬁt) + (g +iwy) curl E%.t) + N curl curl [(F)1)]
R

+ cN(g+iw¥) curl curl curl [B)] - N« curl [ﬁ (F'.U] ,
(W R c R
(55)

(R 1) = (p-iwt E“(70) + N (g-iwy) curlcurl [p0)]
R

(56)
R=F-¥ _  R=IR

’ °
(57)
The next step in the "Oseen process'" is the introduc-
-
tion of the experimentally observed form of F.(r‘,t),
-2 fb oy & -iwt
P,(T':t) =U(¢) e

=2 o
l— SOY'

Uy =U'*

(58)
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corresponding to the propagation of a plane wave through
the system in the direction of the unit vector s with
velocity c/n. fj © is a constant (complex) vector. Act=-
ually, experiment gives the average polarization. In our
approximation the polarization and the average moment per
molecule have the same functional dependence.

The assumption previously made, that the averaging
over internal quantum states could be performed indepen-
dently of the averaging over intermolecular distances,
permits the pair distribution function for the latter to
depend only on the magnitude of the distance. Therefore
we introduce the radial distribution function g(R), such
that g(R)/VdT ' is the probability of finding one member
of a given pair in the volume element dT' at position T

if the other is at'?. The normalization condition is

) ’
"V—/g(R)clT' = |

v ’ (59)
where the integral is with respect to ?; and extends over
the space occupied by the system, the volume of the latter

being denoted by V. The mean value f(?) of a function

F(?,?') for fixed T and variable T' is then given by

f#1= & [FE#) gRIAT | (60
v
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For a system of noninteracting mass points g(R) = 1. For

a system of hard spheres of diameter a, g(R) = 0, R<a

while for Rda a series of peaks and troughs of decreasing
amplitude is obtained(25), with g(R)=—»1 as R=>%, The

latter boundary condition is a general one for fluid systems.
Indeed, in order for the normalization integral to converge,
we must have P}-E)To R3 (g(R)-1) = O.

In general g(R) will vanish within a region11 in the
neighborhood of R=0 due to the short range intermolecular
repulsive forces which give molecules their efrective size.
In our discussion we will supposefl to be sufficiently well-
approximated by a sphere, the radius of which we will take
to be a. Indicating the omission of the spheref\ from the
region of integration, and using the identity g(R) = 1-(1-g(R)),

equation (60) may be written

FF) = - f F7,P)dT - & f F(7.#)(- gR) 47

v-Q V-0
(61)

The first of the integrals in (61) is of the type considered
by Born(24); the second is related to the integral deter-
mining the scattering of x-rays by fluids.

The first of the averages in (55) may then be written,

using (58) and (61), as

=7t ' - "i'w(t' BE) ’
curl curl [H(r’ )] = -\‘7' curl c.ur‘(U(l';') € ) dr
R V-0 g R
- -lwi\t-=
- L [curl cur (U(?’) g:_w_.(._f..
. R
v-0L

)(1-g(R) 477 (62)
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If we define

whR

L
(RA - B C
? R ? (63)
note that
2 wl (R)
VPR = - PRI,
(64)
and from (58) that
42"‘ . Y'?'UJ& - i
VU@ = - T U (65)

we may write for the first integral of (62)

- -tw(t-R
fCurl curl (U(i"') e ; °))d;r'

VL R

;lwt =3 1553 ’
@ f curl curl (U(f')v"cp(m - PRIV Ten)dr’ =

w(nt-1) 4

c"e-i'wt fcur\ curl {{6,%’}}&.0" ,

ustn-1) Sv-n

(66)

where we have introduced the notation

{T o1t =0) 9P(R) _ p(R) 30y .
PRI _
QY oV
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Green's theorem has been used to obtain the second equality,
the integral now being over T' on the surface Sw:L of the

regionV-ﬂ.,a indicating the directional derivative along

the outwardjg;awn normal.

This last integral may be written as the sum of an
integral over the external surface 2: of V and an integral
over the surface 0 of the sphere L . Reversing the sign of
the latter integral so that the notation%—;; may uniformly

mean the derivative along the outward-drawn normal to the

surface of integration, equation (66) may be written

= -Lw(t'%) i -
ﬁurl eurl UFn @ dv=1 +1,
V-Q R (67)

N N ‘Lwt - ’
I, =-°C¢ ‘/curl cur! {{U,QP} do
2 (o
wH(n-1) (68)
- a -twt - ,
1= _.E_e_.__.fcurl curl {{U,QP}E d.o
w?(nt-1)
b3 (69)
It will be convenient for the sake of completeness to carry
-
out here the evaluation of I1 as given by Born(24). Perform-

ing the vector differentiations we have
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-i.uat 4 = - IR -t
_ae { w* (R) - PR U@ 1 rr\RR-UF) | de
L= s L (& R )QR +R(T\ 3R }
t , '

Y Ji EXLE PR G, (LILRIRR) § oo’

T
w(hn)r R R

(70)
where the primes mean differentiation with respect to the

indicated argument of the function. With the notation
=5

R

e

e=rR ., (71)

eP(R) o B
$RI= 5 * <& TR \ (72)

$(r)= (‘_"_‘_R_l) : (73)
= -4Na*P(a) , (74)
B=-4ma’ Y(0) (75)
A=-4To*dla) | (76)
B'=-4ma?¥lw | (77)

equation (70) may be written

1= { éU(r’)) BeE- (éﬁ(?’i)
w2(nz-1) oR “R=a

+K (T + B8 a'(ﬁ(‘:'))am} J

(78)

-
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where the bars ind%igte averages over all directions of g.
Expansion of U (r') and ¢ (R) in powers of R, leads
after performing the averaging indicated in equation (78),

with use of the third of equations (58), to the relation

s ey = imay .
L= &% M2 G(F L) .e;% A m( w{rum(a()?g)

where Ae is the vacuum wave length. Since a 1s of the order
0
of 10 A, the second and following terms will be negligible
0
for visible light ( A,® 50004). Equation (79) is that
(24)

obtained by Born except he did not compute the l%)z ternm.
The second of the integrals in equation (62) may be
approximated as follows. The factor (1 - g(R)) in the
integrand is non-vanishing only for small R, so that the
integral may be taken over the region between the surface
R = a and some larger spherical surface R = b beyond which
there is effectively no contricution to the integral; i.e.,
f (curl curl ﬁ(?') €: wole-2) )( g(R) d.T j (cur! ol U(ir“) e '%‘)](l_ g(R)) dv'

V= asR< M

=5 [(curlcur Utr'Je ) - gw) dr

=0 R; £R4Ri+OR
where

(80)

AR = b-a | (81)
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We approximate 1 - g(R) in the interval R;€ R<R; + AR Dby
(1 - g(Ry)), and take this factor outside the integral.
The integrand is then the same as that in the first of the
integrals in (62), and may be transformed in the same way
to surface integrals over the spherical surfaces R = R and
R = Ry +AR. These may be evaluated using equation (79)
b 2

providing that (—
Ao

¢ 1l. In this way we find

ﬂCurlcurl U('\")e,-L )(\_ (R)) A7’ =
v-n R
3 = 9
32 W7 M+i0 G(#t) L - g(R)RAR + O &
2 fO P.( Ao ;( g(\) ‘ 7\o) ?
(82)
which for large L becomes
- -t t-R_ i
f(wrl curl U(?')ew( "))(l_s(g)) 47 =
V-0 I
o]
3 = ¥
3 [t s f(l-g(R))Rd.R +0(_|9_) .
L Ao
(83)
This term is of the order of (-%; )2, and for visible

light may be supposed negligible.
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Using equations (67, 79 and 83) in (62), we obtain

curl curl[p\(?',t)] = AN n"+z H(-r- 1) +
- R 3V ol
2
_ ¢ feureur! [{iL, 9} da’ + 0L .
w*V(n2-1) “j‘:‘ {{P }} (7“)
(84)
The second of the averages in (55) may be written
- gy wt
curl curl curl [P«(Y.U] = - w e % fcu.rl(U(r )np(R\)d'r +
R et "V .
& -twt -~ ,
s . ﬂcwl U PR))(1- g(R) AT’ .
v ¥ 5
(85)
A calculation similar to the foregoing gives
curl curl curl[é(f’ t) = 4anm Oxf(Ft) —
t R V{nt-1) H
! | ’ b
sy L {popRde + 0(%]
(86)

Again in the same way one finds
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1 curl [RED] - AT _gxmlr,t)+
C R !.uu V(nt<)
b
o Rt L A ELLIC IS

Using (84 - 87), equations (55) and (56) may be written

AED = ESED tE(priwy)vx E€Fa) +

e 2GR+ S ATR(E4nY) gy R -

.
3 nt=1 " -\

_c A-'ITNat Txm(r,t) + C.zN« f(urlcux\ {{P \P}}dd’

Lw \n‘--l m"'(n"-n\ ¥

+ C3 N fe“wx) cur| cwrl curl {{P cp}} de’ -

h-|
)

tw nt-)

o N« {curl{{ﬁ.ef}}o\d"‘l-O(—:-:)z

(88)

# (4) = (@-iw) EE HATNg-n) 2 )

h"-!

+:,; N ((3-
n-

LNX)fcvw-i cw){ A, \p}}dc' +0( T >

N = (89)

N
v
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The essence of the "0Oseen process"" is that the inte-
grals over 2: s the exterior surface of the system, just
cancel the terms involving the external electric intensity
E‘ﬂ. That these latter must be canceled is apparent from
the fact that they would correspond to excitation of the
medium with the vacuum wave length and propagation vector,
which is not observed. That the cancellation should be due
to surface terms in mutually destructive fashion is physi-
cally plausible, since this leads to the effective field
inside the system not depending on the form of the bound-
ing surface, other than as determined by the refraction at
the surface. Attempts to demonstrate this cancellation have
been made, for example by Born(24). If we assume this to
be true and omit the explicit inclusion of the terms O(b/Ao)z,
we find

R(FU = awNec ez G(F) + o 4l (pried) vuE,
3 n*-| Lw e

~ & 4avtN« vx m(F,L) ,
W pr_y (90)

ﬁ(?,t).-.wﬁ(@—th) 2 EL)
3 n*-{

(91)
Substituting equation (91) into (90) and writing the
macroscopic polarization F(f,t), instead of The average

moment per molecule, we obtain
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P(t)= amNa Dsz B(Et) +_c ATN(p+iwY) vy (71)
3 n*-1 Lw -

& 4“!’\7(@—“»!) 4ATNX n*+2 Vx?’(i:.t).
ikt n*-i 3 nt-y

(92)
It is evident from this equation that to terms of the order
of the retardation terms g and ¥

47 Nex n*a2 = |
3 n* -y 3

(93)

which 1s just the classical Lorenz-Lorentz formula. Thus,
neglecting a term involving the squares of the retarded

quantities and using equation (58), one finds

HEE AnNor 142 P(#1) + 47N 2 iwynixP(FL)

(94)
If a right-handed set of orthogonal unit vectors
o <
-t -h - 15 Y . . . - .
81y 8py 23 such that ) coincides with s 1s chosen and it

is noted from equation (58) that E-F.: 0, equation (94)

written in component form gives

- 3 emiNivY N
a,'P=FR = - ' =
| ‘ (1—4%Nd)(n2_ l+3"N°‘/3\P" ’ (95)
3 [ -4nNX/y
ap.P=F = et N ¥
&

(l— Mrﬁx)(nz |+81<N°</3\P' ] (96)
3 =4 Noe/o
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Solution of the secular determinant gives

n® - |+ 87 No¢/3 -+ 1672Nvyn
|- 4wNec/y (-4 Noc/3 (97)

and therefore

P4y

- e

P (98)

where in equation (97) and (98) the same choice of sign,
upper or lower is to be made. With the upper sign, one

finds

Re P = PR.[a, cos w(t- ns: ‘”)+ Qa2 Sin w(t-"s';] ,

which corresponds to left circularly polarized light: i.e.,
the electric vector rotates clockwise when the observer is
looking in the direction of the propagation vector. Con-
sequently equation (97) with the upper sign determines the
index of refraction nr, for the left circularly polarized
light.

Similarly Ny the index of refraction for right cir-
cularly polarized light, is given by the same equation but
with the lower sign.

It is convenient to define a mean refractive index by

the equation

n* = | +8wNe/s

| —4w N
/3 (100)
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This 1s, of course, the familiar equation for the re-
fractive index in a non-optically active, isotropic med-

ium. From equation (97) we then obtain

2 2 _ lem*Nv¥(n_+ng)

N -Ng = ’
Im4mN /s (101)
or, using equation (100),
Y = 2
N-N, = 1I6T*N VY No+2
2 (102)

Equation (102) determines the circular double refrac-
tion in terms of the parameter ¥ of equation (44). The
Fresnel formula for the rotation in radians of the plane
of polarization per centimeter of travel through the medium

is (Ae in centimeters)

g T
= -X:(n,_-n,) .

(103)
In the conventional units, degrees rotation per decimeter

path length,

,\7:: |8;‘o°0 (Y\._-— nR) )

where Agis still to be taken in centimeters. Using (102),

(104)

the specific rotationle], defined as degrees of rotation
per decimeter travel per gram per cubic centimeter, is then
given by

16N Noz'-l'Z

[x] = 1800 T 5 g o

(105)
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where N 1s now Avogadro's number, M the gram molecular weight,

and

g'_' =& (106)

Inserting numerical values we have for the specific rotation

at the frequency of the sodium D line

[<], = 4.950%10° 222 o
(107)

if g, with the dimensions of length to the fourth power,
is computed with the angstrom as the unit of length.

Equation (102) is the commonly used relation between
the circular double refraction and the molecular parameter
¥ . It will probably be well to summarize here the assump-
tions which have been made in the course of its establish-
ment., From the beginning of our discussion we have assumed
the effective electric field in a given molecule to be
simply periodic With the frequency of the incident wave,
thus ignoring the irregular fluctuations due to the motion
of the surrounding molecules and their induced moments, We
have neglected alterations of the distribution functions
due to the presence of the light wave. The internal quantum
states of a given molecule have been assumed independent of
the positions and internal quantum states of the other mole-
cules; on the other hand we have allowed the position of a
given molecule to be dependent on the positions of the

others. In taking account of the retardation in the fields
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of the induced moments we have neglected the finite diffu-
sion velocity of the molecules; this can hardly be expected
to materially change the result, particularly because of the
smallness of their velocity relative to the velocity of
light, but also because of the final averaging over the
positions.

The two major approximations involved in the discussion

are the neglect of the fluctuation of such orientational

) 3
averages as &+ E from &+ E, and the fluctuations of the

translational averages curl curluzygfrom Eﬁ?fazﬁ§iﬁfyk.
The use of these approximations was originally set forth in
explicit fashion by Kirkwood(26) in his treatment of the
static electric polarization of a dielectric, in which it
was shown that with these approximations the Clausius-liossotti
relation for the effective field can be derived statistical
mechanically. We have not attempted to estimate the errors
introduced by these approximations in the present casej;
Kirkwood has estimated them for the case of static polariza=-
tion.

We have neglected the contributions of quadrupole and

higher multipole moments to the effective electric field.

In the static case it may easily be shown that in the approx-

imation of replacing the translational average curl curlﬁi»h

by curl curlfaj/ , the quadrupole and higher moments make
R

no contributions to the average effective field.



i} G
If we suppose that each of the molecular wave functions
4ﬁnmy be sufficiently well approximated by a product of a
translational wave function depending only on the coordi-
nates and velocities of the center of mass, an electronic
wave function in which the nuclear coordinates are considered
fixed and appear only as parameters and a vibrational - rota-
tional - nuclear spin wave function involving only the co-

ordinates of the nuclei, i.e.,

) |, (vr)

() (e
q% - 4%t ‘he 4hvr °

(108)
equation (44), defining the parameter ¥ , may be simplified
in an illuminating fashion. First it may be readily seen
that the translational quantum levels have no effect on¥ :
since the operators ﬁ and m do not contain the coordinates
of the center of mass, their matrix elements contain a factor
of either unity or zero, according as n and n' of equation
(44) are equal or unequal; when n = n', however,”“m= 0, so
that the translational guantum numbers may be omitted from
both sums. The additional factoring into an electronic
part and a vibrational-rotational part has the further effect
of splitting ¥ into two terms, each of the same form as
equation (44), one involving only matrix elements of the
nuclear part of the dipole moment and magnetic moment oper-
ators with the nuclear wave functions, the other involving

only matrix elements of the electronic part of the dipole
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moment with the electronic wave functions.

The nuclear part of ¥ will in general be small,
because of the large masses of the nuclei compared to those
of the electrons. 1In agreement with this expectation,
measurements in the infra-red have obtained no indication
of rotatory dispersion due to the infra-red absorption

bands(28’29).

Furthermore usually only the ground elec-
tronic state will have an appreciable Boltzmann factor at
room temperatures, so that the averages over electronic

energy states will be superfluous. With these approxima-

tions we may write the equation in the simple form

5_ Im[""*on no]

-V* (109)

where the electronic ground state is indicated by the index

zero. The sum 1s over all excited electronic states, the
electronic wave functions being for fixed nuclei in the
field-free state. The matrix elements are now numbers,
rather than matrices, so the Uber-matrix notation has been
abandoned.

Kirkwood(18> has shown how an important decomposition
of equation (109) may be achieved. It is convenient to
consider the molecule as composed of N substituent groups
coupled to a central N 4 1lth group. It is supposed that
each electron in the molecule may be unambiguously assigned
to one or the other of the N 4 1 groups. Evidently if
resonance between substituent groups is absent, there will

be no ambiguity in the assignment of non-bonding electrons



~51-

between substituent groups. The partition of bonding
electrons between the central group and the various
substituent groups is less direct, but we may suppose as an
adequate approximation that the bonding electrons are in
each case divided equally between the central group and

the corresponding substituent group.

Indicating the position of electron s of group k with
respect to the center of mass of group k by Fs and the pos-
ition of the center of mass of group k relative to the
center of mass of the molecule by-ﬁk, we have for the elec-
tronic part of the electric moment of the molecule as a

whole
Ne#t Nel (K)

ZP‘.M_{_ ZZ ,

=i
"‘(K) Z.(K) —l(K)
s (110)
In equation (110) the notation% means a summation over
all the electrons of group k. Similarly, the magnetic

moment of the molecule as a whole may be written as
Ne ) N+t

= (K) - = (K)
_Z + € ZR"‘XP
K=\

P 2mce

(x) .
_\(K)
m = _€ 7. x X Ps

(111)
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where 55 is the momentum of electron s.

It is immediately seen that the term containing ﬁk
in equation (110) drops out on substitution in equation
(109) because of the orthogonality property of the wave
functions. Substituting equations (110) and (111) into

(109), we obtain

N¥|

g =g +g" *'Z;; B«
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(112)
Here the prime on the summations over electronic states
means that the ground state n = 0 is to be omitted; the term
corresponding to the latter is evidently zero in any case.

Analogous to equation (25), we have the relation

= (k) . = (x)
ep = 2““’»‘"‘?"“«, 9 o115
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which permits g“’to be written in the form

N4

4 .
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(114)
It may be mentioned that while the operators in equations
(112) and (114) are those associated with the electrons of
a given group, the wave functions with which the matrix
elements are computed are those for the entire molecule.

The sign of g“)as given by equation (114) is opposite
to that originally obtained by Kirkwood, due to an error
in sign in the third of equations (16) in his paper.

Subject to the accuracy with which it is possible to
consider each of the electrons of the molecule as associated
with a particular group, equations (112) and (114) are equi-
valent to equation (109). The term é”evidently corresponds
To the interaction of the dipole moments of different groups,

while g“)

is characterized by coupling of the magnetic mom-
ent of one group with the electric moments of another. The
terms gx , one for each of the groups, correspond to the
interaction of the electric and magnetic moments induced in

the same group.
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POLARIZABILITY THEORIES OF OPTICAL ACTIVITY3; APPLICATIOW

TO0 THE DETERMINATION OF THE ABSOLUTE CONFIGURATIONS OF
OPTICALLY ACTIVE MOLECULES

Part I: The polarizability theories of Gray, de lalle-
mann and Boys

It is convenient to designate as polarizability theories
those which relate the optical rotatory power of a molecule
to the optical polarizabilities of the atoms or groups of
atoms composing the molecule. The first of these theories
was developed by Gray(lB), who showed that a molecular model
consisting of polarizable atoms, each considered concentrated
at a point, would exhibit optical activity providing the
molecule was dissymmetric. Gray discussed only the spe-
cific case of a molecule consisting of five atoms, four atoms
being at the corners of an irregular tetrahedron, the fifth
inside the tetrahedron, corresponding to such a compound
as CHIBrCl. He considered the atoms to be isotropic per se,
the induced moment in each atom being in the direction of
the total electric field acting on that atom. The equations
are exceedingly complex, and he did not succeed in obtain-
ing a formula compact enough to be completely written down.
Perhaps because of this, he did not perform explicit cal-
culations for a definite molecule. Gray's treatment is of
interest only in that it was the first of the polarizability
theories.,

The polarizability theories may properly be called
specializations of the Born coupled oscillator theory(ll).

The latter was very general in that no explicit assumptions
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were made about the molecular structure other than that
oscillators were present, spatially separated, and some
sort of coupling existed between them. Nothing was said
about the location of the oscillators or the nature of
the coupling. The theory was therefore a very general
one, but precisely because of the generality it was not
suitable for calculation of the optical activity of a
given molecule without specialization of some sort. The
polarizability theories correlate the polarizability of
the various groups with oscillators assumed localized with-
in the group, the coupling being assumed to be produced
through the electromagnetic fields of the induced moments
of the oscillators.

Theories similar to Gray's have been developed by

de Mallemann(ls) and by Boys<16).

The term considered by
Boys 1s essentially the same as the one treated by Gray,
the molecule being considered as consisting of a number

of isotropic polarizable atoms (or groups of atoms) whose
moments may be represented by point dipoles. The compli-
cated problem of the interaction of the induced moments

in the different groups 1s attacked by means of a method
of successive approximations. The moment induced in each
group is treated as a sum of terms corresponding to the
order of interaction with the moments of the other groups.

Considering a given group D, the zero-order term is the

moment induced in D by the external field alone, with



-56-

neglect of the scattered radiation from the other groups.
This may be called, in Boys' nomenclature, a "relay system
of zero order", indicated by {D}. The first-order term
corresponds to the moment induced in D due to the part of
the moment of each of the other molecules which is induced
by the external field alone. Such a term is denoted by
{CD}; for given D there would be a term of this order for
each choice of the other groups as C. Similarly, the
third-order contribution to the moment of group D, indi-
cated by {BCD}, is induced by that part of the moment in
group C which is itself due to the portion of the moment of
a third group B induced by the external field alone. As
might be anticipated the magnitude of the contributions
to the total moment decreases rapidly in the higher order
relays. 1t is found that with isotropic groups the relays
{p}, {cp}, ana {BCD} do not result in optical activity,
the first relay producing this phenomenon being {ABCD}
involving four groups. Higher order terms such as {ZABCD}
will also contribute to the optical rotation but may be
expected to be small compared to the fourth-order termse.

Boys developed a compact formula for a molecule com-
posed of four groups A, B, C and D, but its applicability
is somewhat limited by assumptions he made concerning
molecular structure. The groups were taken to be spheres,
with radii corresponding approximately to the presently
accepted "normal covalent radii'. However he supposed the

four groups to arrange themselves in a fashion determined
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only by closest packing of the four spheres. In applying
his theory Boys treated an optically active compound such
as sec-butyl alcohol as being composed of five groups, namely,
the asymmetric carbon atom and its four substituent groups.
The size and polarizability of the asymmetric carbon atom
were apportioned equally among the four substituents, and
a four-atom model applied.

The assumption of close packing of the four spheres
permits the six inter-group distances to be specified in
terms of the radii of the four spheres. In actual molecules
the six distances can vary independently and so cannot be
specified by four distances. O0ften however four distances
can be chosen, the sums of pairs of which reproduce the six
actual inter-group distances fairly well, and use made of
Boys' formula in this fashion. The assumption of close
packing coupled with the values taken for the radii by Boys
lead, as pointed out by Kirkwood(lg), to a wholly untenable
structure, the worst feature being that in sec-butyl alcohol,
for example, the resulting linear dimensions of the mole-
cule are approximately only two-thirds those indicated by
modern structural knowledge. DBecause in Boys! formula the
specific rotation is inversely proportional to the eighth
power of this linear scale factor, Boys considerably over-
estimated the magnitude of his term. Thus for sec~butyl
alcohol he obtained a value roughly 140 times larger than

that indicated by present structural knowledge. It seems
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likely that in most cases the Boys term will be too small
to account for an appreciable part of the observed optical
activity.

The classical polarizability theory has also been dis-
cussed at some length by de Mallemann(ls). He considered
the various terms contributed to the optical activity by
interactions of two anisotropic groups, of three groups
one of which is anisotropic, and of four isotropic groupse.
The latter is the same term as calculated by Boys; de lalle-
mann did not make the same simplifying assumptions as did
Boys, however, so that his relation is somewhat more com-
plex., The first-mentioned term is essentially the same as
that calculated by Kirkwood and described in the next section.

De Mallemann did not apply his theory to the actual calcu-~

lation of optical activity for specific molecules.
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Part II: The polarizability theory as developed by
Kirkwood
The theories of Gray, Boys and de lallemann, as 1is

evident from the preceding discussion, were based on
classical mechanics. Kirkwood(18) has shown how the polar-
1zablility theories may be obtained from the g“’term of the
guantum mechanical equations (112) and (114). The hypo=-
theses of Gray and Boys regarding the isotropy of polar-
1zability of the groups composing the molecules are
probably incorrect, as it seems likely that the formation
of a chemical bond will provide perturbation of an orig-
inally spherical atom sufficient to establish at least
one preferential direction of polarization. Since lower
order "relay systems" suffice to give optical activity
when anisotropic groups are involved, and since these
lower order terms do not fall off as rapidly with increas-
ing distances between the groups as do the higher order
terms required with isotropic groups, it seems clear that
in general the most important term of tThe polarizability
theory was not considered by these authors. De ilallemann
obtained formulas for anisotropic groups but did not use
them in actual calculations. The latter was first attempted
by Kirkwood(l8), who obtained these anisotroplc terms from
a quantum mechanical treatment of the g“’term of equation
(112). Because attempts at assigning absolute configura-
tions to several organic compounds on the basis of this

first-order term of the polarizability theory are to be
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described, it will be of interest to sketch the method
used by Kirkwood in obtaining his final formulas.

The problem is the computation of g as given by equa-
tion (112), which evidently requires knowledge of the mole-
cular electronic wave functions. Approximations to these
are obtained formally by means of the usual first-order
perturbation theory, 1t being supposed that the following
zero-order problem has been solved. The molecule is con-
sidered as being composed of N 4+ 1 groups, N of which are
bonded to the N + 1th group, which is called the central
group. The zero-order wave functions just mentioned are
to be solutions of an approximate Hamiltonian in which
electron exchange is in every case excluded between each
pair of the N 4 1 groups, and in which all interactions
among the N substituent groups are excluded. Exchange with-
in the various groups, and the coulomb interaction between
the central group and each of the N substituent groups are
supposed included in this zero-order Hamiltonian, in a gen-
eralized "self-consistent field" approximation. This per-
mits the zero-order wave function for each electronic level
to be written as a product of N 4 1 group wave functions,
each of which contains as variables only the coordinates

of the electrons of one of the groups:

\TJ _ Nl sy Sl
“_'-ITQ“&(‘”‘ ,r,. -o.c)

£115)

Each quantum state of the molecule as a whole may then be
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specified by a set of N + 1 group quantum numbers n;,
i=1...N ¢ 1, which we shall indicate simply by the
letter n. The zero-order frequencies will then be given

by

(116)
We will use the subscript zero to represent the set of the
group quantum humbers specifying the electronic ground
state of the whole molecule as well as any one of these
ground state group quantum numbers.
The potential energy of dipole-dipole interaction
between the N substituent groups is then introduced as the

first-order perturbation in the Hamiltonian,

\/:=:§j V&J ’

i,J=t
i>J
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(117)
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Thus electron exchange among the N 4 1 groups is completely
ignored in both the zero-order and the first-order stages.
Consequently our wave functions may be expected to be poor
representations of the valence bonds between the central
and substituent groups, and therefore poor approximations
for use in calculating any property of the molecule, such
as bond energies, to which the bonding electrons make pre-
dominate contributions. Similarly the energy differences
between levels in which the quantum states of these bonding
electrons change appreciably may be poorly approximated.
On the other hand, for properties to which all the electrons
contribute approximately equally, such as the refractive
index, the present analysis should give a reasonable esti=-
mate, as the number of electrons bonding substituent groups
to the central group will generally be small compared to
the total number of electrons. Similarly, unless these
bonding electrons contribute excessively to the g“’term,
which seems unlikely, our approximations should give a
reasonable estimate of the optical activity.

% 3 thei% are degenerate we suppose the set diagonalizing
V of equation (117) to have been chosen. By means of
equation (11%), molecular matrix elements of a function of
the coordinates of a single group, such as Fl‘,::, s may be

written as group matrix elements:

-2 (i) - (1) o
- .
Fown = Fagn, [T Sujn;

L (118)
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With use of equations (115 - 118) and the usual first-order

perturbation theory, we find for the perturbed wave functions

U, = B =

;1'- Z (Vas )y, i" a"‘ 5" (eﬁ—‘f’n )°Pn’,°Pv\'j g

3= ‘ ,n n, +¥
"n '\1 *J Q (119)

The final formulas are much simpler when real, rather
than complex, zero-order wave functions are taken in equa-
tion (115). That this is in fact possible follows from the
fact that the Hamiltonlan operator does not contain i =Wr:f
except in squares in case no external magnetic field is
present., It is then readily seen that if a complex function
is a solution of the Schrodinger equation with a given
energy eigenvalue, then both the real and imaginary parts
must also be eigenfunctions corresponding to the same eigen=-
value. If a level is nondegenerate, this argument shows the
wave function for that level 1is necessarily real, barring a
possible complex multiplying constant of modulus one. If a.
level is degenerate, then a real set of orthonormal wave
functions can obviously be chosen. Furthermore, since the
potential energy of equation (117) is real, it can be diag-
onalized with a set of real wave functions for each degen-
erate level, these sets then being the "correct zero-order

wave functions" for use in equation (119).
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It is readily seen that because of the characteristics
of our zero-order wave Pfunctions as given by (118), the
zero-order term of (114) calculated with these wave func-

©) correct to first-order

tions vanishes. Calculation of g
terms, with use of the fact that the group wave functions
(and therefore the matrix elements of the group dipole

moment operators) are real, gives

()
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(120)
It is instructive to notice that the polarizability tensor

of the molecule, in the zero-order approximation, is given

by

N+)
= Z d(u)
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(121)
That this may be expected to be a rather good approximation
is suggested by the well-known additivity of atomic refrac-

tivities. It may be mentioned that the nature of these
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zero-order wave functions for the groups assumes that at
least a part of the empirical variation in atomic refrac-
tivity with the nature of the particular atom's chemical
bonds (e.g., the difference in the Eisenlohr refractivities
for oxygen depending on whether the atom is in a hydroxyl
group or a carbonyl group) has in principle been taken
into account.

Using equation (121), g™ may be written in the form

N - -
g =Z (& Ry)(Ty o0 Tie - o™ &)
{,K=1
($K

(122)
where the average is over all orientations of the nuclear
framework relative to a set of external orthonormal vectors
aq, 8, and 53. If the group polarizability tensors are

written in their principal axis representations

(0 (y T > - ..
25‘_—_-2 oCl'v-‘:’r bT g LSts 0 N.

(123)
where the b, , r = 1,2,3, are orthogonal unit vectors,

¢ may be expressed in the form
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This is the first-order expression for g in terms of
the polarizability tensors of the substituent groups and
the geometry of the molecule. The sign in equation (124),
as well as in several of the preceding expressions for g,
are the reverse of those in Kirkwood's original paper, due
to his error in sign mentioned in Section I. Kirkwood(18)
has indicated how the second-order term corresponding to
de Mallemann's treatment of the interaction of three groups
may be obtained, as well as the third-order term corres-
ponding to Boys' treatment.

Equation (124) is the expression for the first-order
term of the polarizability theory, applicable to any molecule
to which the plausible assumptions already introduced may
be applied. Unfortunately present knowledge of the group
polarizability tensors is not usually sufficient to make
application of the formulas possible. Structural difficul-
ties may also present themselves, particularly in molecules
having one or more internal rotations. The points will be

discussed at greater length below. In the special case
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when all the N groups have an axis of optical symmetry the

formula may be further simplified to

N
(o) :—;—ZOC O(KP @ (b Tut b )(Rin b Xb )

L, K=l
ik

(125)

where by 1s a unit vector in the direction of the axis of
optical symmetry of group ij «; 1s the mean polarizability
of group i, equal to one=third the trace of gﬁi). The

anisotropy ratio of group i, denoted by‘Pi, is given by

(W ()

(126)
in which &y indicates the polarizability of group i parallel
to its cylindrical axis,C(ﬁ)the polarizability perpendicular
to this axis.

From equation (109) we see that gdcan be written in

the form

= — 9

3xh — J,2 -V?

= Im[Pon. r'_Y.\m) .
(127)
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One sees immediately that the R,,, called the rotatory

strengths, satisfy the important sum rule

(128)
. . . = B 81y 0
inasmuch as.the diagonal elements of p+m must be real, this

. - & 4 & ﬂ a

operator being Hermitian because F.andnn commute and are
Hermitian themselves. Inasmuch as the sum is zero, positive
and negative terms must both occur among the Ry,. A conse-
guence of this 1s that often the rotatory power in the
visible region of the spectrum is controlled by a very few
of the near-ultraviolet absorption bands. The contributions
of bands farther in the ultraviolet, although possibly having

appreciable R become small due to the higher frequencies

on?
in the denominator and may tend to cancel because of differ-
ent signs. The latter is important because otherwise the
behavior would be similar to that observed for the polariza-
bility, where the far-ultraviolet terms may be small, but

obey a different sum rule. The somewhat similar expressions

for the mean polarizability are
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where the f,, are called the oscillator strengths, and Ng
is the total number of electrons in the molecule. The
expression for g“’given in equation (114) may be written

in similar form

N R . .
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(130)
The treatment so far has been based on the tacit
supposition that only one relative configuration of the
nuclel requires consideration. In cases where several
stable nuclear configurations are possible, as for instance
in molecules having several potential minima associated
with one or more internal rotations, a statistical average

is to be taken over the torsional vibrational statese.
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Probably the most interesting application of equation

(125) lies in its possible use in establishing absolute

configurations for organic compounds. However, it is

necessary to keep in mind that g“’ is only a part of the

total rotatory parameter g, as given by equation (112).

It is worthwhile to point out that if the difference in

phase of the electromagnetic field at the different groups

is considered, but the phase everywhere within each group

is approximated by the phase at the center of mass of that

group, then g” and all the g, vanish, leaving only &7,

Thus g may be expected to be an increasingly good approxi-

mation to g as the sizes of the groups become small compared

to the intergroup distances. Nevertheless it 1s not possible

to say that the negligibility of gm and the Ex in actual

molecules has been demonstrated, particularly so since

Eyring and his co—workers(22’29’3o)

have made attempts to
calculate some of the latter in special cases of certain
molecules. Attempts were made in the present series of
researches to find alternative ways of estimating these
other terms, but without success. At present there seems
no other way than actually attempting to find molecular
wave functions (excited as well as ground state) accurate
enough to give good approximations to the matrix elements

entering the formulas. This is the method of Eyring and

his co-workers, which will be discussed in Section IV.
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In applying Kirkwood's polarizability theory just
outlined, it 1s necessary to know the polarizability tensors
of the groups, i.e., the principal polarizabilities and the

principal axes of each group, as well as the geometrical
structure of the molecule. As mentioned before, present
knowledge regarding the first point in practice restricts

one to molecules in which the substituent groups are cylin-
drically symmetrical. Even here, as will be presently shown,
difficulties are found.

It will be recalled that the zero-order polarizability
tensors, to which & and @i of equation (125) refer, include
interaction of substituent group i with the central group,
and include the effects of interaction of group i with the
other substituent groups only through interaction of the
latter with the central group themselves. These effects
might be expected to be small, so that to a good approxima-
tion the zero-order polarizability tensor of a given substi-
tuent group bonded to a given central group may be expected
to be the same from molecule to molecule, as is indicated
by the success of the rule of additivity of atomic refrac-
tivity.

The mean polarizability o4 of equation (125) may be
obtained from the well known Eisenlohr(3l) atomic

refractivities,

%) (131)
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where N is Avogadro's number, A, 1s the Eisenlohr atomic
refractivity of atom r of group i, and the sum goes over
the atoms of group i.

The determination of the anisotropy ratios of the
various groups 1is more difficult. For this purpose the
results of two different optical experiments are useful,
namely, measurements of the degree of depolarization of
scattered light and measurements of the Kerr constant.
The degree of depolarization A of Rayleigh light scattering
perpendicular to the direction of the incident beam, the
latter being unpolarized, 1is related<32) to the principal

polarizabilities by the formula

2
@z = (- a2) +(°‘?~“-°°(33)1+ (“n"“u)L =450
2:? =70
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3

(132)
The quantity P is called the optical anisotropy of the

molecule. For a cylindrically symmetrical molecule the

equations become

2
= ("‘l\' "'-l-) - 450
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(133)
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which is equivalent to equation (126), but it is evident
that knowledge of 4 and % determines the magnitude but not
the sign ofp e The mean polarizability & may be computed
either from the Eisenlohr atomic refractivities or the
measured index of refraction by means of the relation

“ fd n-‘
27N

(134)

n being the refractive index, N the number density of the
molecules.

In many cases however the sign of’p can be predicted
with confidence from the geometry of the molecule by use
of arguments due originally to Silberstein(33). Thus in
the case of a diatomic molecule supposed to consist of two
isotropic polarizable point masses, an external field applied
along the figure axis results in induced moments which rein-
force each other, while an external field perpendicular to
the axis induces moments whose fields oppose each other,
On this basis the figure axis should be the axis along which
the polarizability of the molecule is greatest, or in other
words the polarizebility ellipsoid of a diatomic molecule
should always be prolate. Since the dipole moment of a
diatomic molecule must lie along the figure axis, the usual
theory of the Kerr effect(34’35) leads to the conclusion
that diatomic molecules would not be expected to have a
negative Kerr constant, in agreement with experiment. Con-
siderations of this kind may be applied in qualitative fash-

ion to polyatomic molecules. The cases of methyl chloride
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and chloroform are examples. Both have a threefold axis
of symmetry, along which the dipole moment must lie. In
methyl chloride the polarizability along the axis would
be expected to be greater than that perpendicular to it,
as 1t appears that of the various interactions only those
involving hydrogen with hydrogen would favor the opposite
possibility. In the case of chloroform however the greater
polarizability of the chlorines may be expected to result
in the polarizability perpendicular to the symmetry axis
being the greatest. The correctness of this conclusion is
verified by the observation that chloroform has a negative
Kerr constant, methyl chloride a positive one. In general,
it may be supposed that these Silberstein arguments will
give correct qualitative results; rigorously accurate state-
ments require quantum mechanical calculation of the polar-
izabilities, which is not practicable.

Quantitative information may also be obtained from the
Kerr effect, or electrical double refraction. If n, and

n, represent the refractive indices of light polarized

1
parallel and perpendicular, respectively, to the applied
electrostatic field Ey in the Kerr experiment, for not too
large values of the latter a quadratic dependence of the

electrical double refraction on the field strength holds

according to relation

M-V o KE, (135)
n
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n being the index of refraction for the field-free medium,
while K, the constant of proportionality, is called the
Kerr constant(35).
For gases and vapors at not too high pressures, so that
n=l, it may be shown(35) that the Kerr constant 1is related

to the principal polarizabilities and dipole moment by

the equations

K=K, +K,

K, = (e-1)(n-1) Pz
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(136)
for the special case where the direction of the dipole mom-
ent coincides with one of the princiﬁal optical axes, which
we denote by the subscript 3. Here € 1s the static dielec-
tric constant, n the refractive index for the field-free
medium at the frequency of light used in the experiment,

e the anisotropy as given by equation (132), N the average
number of molecules per unit volume,tu the magnitude of the
permanent dipole moment.

In molecules not haviﬁg a permeanent dipole moment K,
is zero, and from knowledge of K3, € , and n, the anisotropy

ratic\P may be calculated (apart from its sign), a check
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thus being obtained on the values found in the measurements
of depolarization of scattered light. In molecules having
permanent dipoles, unless the latter are very small, K2 is
usually much greater than Kj. The latter may be estimated
from the experimental depolarization of scattered light,
and Ko then obtained from K using this result. The separa-
tion of Kq and K, may also be achieved by measuring the
temperature dependence of K. If the latter is plotted
against the reciprocal of the absolute temperature a straight
line should result; K; (i.e., @ ) may be estimated from the
intercept and K, (i.e., 2u3-mé-dl) from the slope.

If the molecule, besides having its dipole (if any)
along one of the principal axes of polarizability, is also
cylindrically symmetrical (the axis of symmetry necessarily
being that along which the dipole moment lies), the aniso-
tropy ratio @ can be determined from measurements of the
refractive index and of the Kerr constant at a single tem-
perature, without reference to the depolarization measurements,
because K3 and K, then depend on the same function of the
principal polarizabilities.

Recapitulating, the measurements of the Kerr constant
or the depolarization of scattered light, or both, for
suitable molecules, leads to information regarding the
polarizability tensors of the molecules. In molecules
having no dipole moment, the measurement of the Kerr constant

and degree of depolarization both provide estimates of the
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anisotropy ratio @ . The latter and the mean polarizability
KX determined from measurement of the refractive index give
two relations between the three principal polarizabilities.
If two of the latter are equal (cylindrical symmetry), the
values of the principal polarizabilities are determined,
but not their assignment to directions parallel and perpen-
dicular to the symmetry axis. The latter may usually be
deduced from the Silberstein arguments. If the molecule
has a dipole moment lying along one of the principal polar-
izability axes, as 1s often required by symmetry, then
measurements of the refractive index, degree of depolar-
ization, and Kerr constant determine the polarizability
in the direction of the dipole moment uniquely, as well as
the values of the polarizabilities along the other two axes,
but not the assignment of the latter two values to the one
or the other of their axes. Here again, the Silberstein
criteria may make possible the removal of this ambiguity.
Thus in the case of cylindrically symmetrical molecules,
possibly with qualitative use of the Silberstein theory, we
can determine the polarizability ellipsoid. Proceeding
from this to the polarizability ellipsoid of the groups
which we may regard as composing the molecule requires
further assumptions. It has been mentioned that the zero-
order wave functions used by Kirkwood result in additivity
of the polarizability tensoré of the grovps giving the polar-

izability tensors of the molecule in the zero-order. The
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theory as formulated by Kirkwood specifiesg these group
polarizability tensors as including the effects of coul=-
ombic interaction between the given group and the central
group, and we have mentioned how this still results in a
dependence of the polarizability tensor of a given group
on the nature of the other substituents in the central
group, stating however that this dependence might be slight,
and its neglect not serious. In practice, this and still
further assumptions are necessary.

In estimating the group anisotropies we have followed
the procedure used by Kirkwood(l8). Considering the mole-
cule of ethane as composed of two methyl groups, each of
which have the direction of the carbon-carbon bond as an
axls of cylindrical symmetry, on the basis of the above
assumption it is readily seen that Beny = Ceavo s

(auhbeing the anisotropy of the methyl group, szHb
the anisotropyvcomputed for ethane from the degree of de-
polarization of scattered light or from the Kerr constant.
On the basis of the qualitative Silberstein theory, F‘tHé
should be positive, and therefore @Cﬂa also. This 1s the
anisotropy of a methyl group bonded to a methyl group, and
therefore not of immediate applicability to methyl groups
in compounds other than ethane. However, if the further
approximation of considering the anisotropy of the methyl
group to have the same values in other compounds, such as

methyl chloride, is made, then use of the observed values of
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the anisotropy ratios of such other compounds permits the
determination of the anisotropy of other groups, such as
chlorine. This assumption, though not without its 4if-
ficulties, seems to be the only feasible one if actual
quantum mechanical calculations are to be avoided. For
groups such as the phenyl radical which may be expected to
have a large intrinsic anisotropy, apart from the effects
of interaction with the central group (in contrast to
chlorine, for instance), it appears reasonable to proceed
agaln in a way utilized by Kirkwood, namely, to treat the
group in question as having the symmetry and numerical
anisotropy of the parent hydrogen compound - in the case of
the phenyl group, benzene.

A practical difficulty is encountered in that measure-
ments of the degree of depolarization of light scattered by
molecules in gases and vapors are experimentally quite dif-
ficult owing to the smallness of the effect, and different
values are often obtained by different investigators. The
experimental degrees of depolarization and Kerr constants
for several compounds are shown in Table I, with the calcu-
lated values of the anisotropy ratios.

The uncertainty in the anisotropy of ethane is parti-
cularly troublesome, inasmuch as the resulting uncertainty
in the anisotropy of the methyl group results in uncertain-
ties in the anisotropies of other groups obtained using
the former value. The values obtalned using the different

sets of measurements are shown in Table 2. It 1s seen that
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TABLE II
Source of experimental values Group Group anisotropy
ratio
Ananthakrishnan, CH3 Us 19
L «59
light scattering Br « 5%
CH,C1 o 39%%
Cabannes, light scattering CH3 035
Cl 35
CH,C1 w3 ek
Stuart, Kerr constant CHq 05 3 100%
cl .35
Br 41
CH,C1 o 33k Kook
CHSBr «37

* Ananthakrishnan did not determine A for CHyBr
calculated with his value for CH3 and~an
estimated A for CH3BI‘ of 0.022

H Taken as equal to the anisotropy ratio of CH3X

**% Average of Stuart's and Breazeale's values
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the Kerr constant values agree fairly closely with the wvalues
obtained from the depolarization data of Cabannes, while the
discrepancies between these two sets and the values calculated
from the depolarization data of Ananthakrishnan are greater,
most of the difference being due to the latter's very low
value of A for ethane. Both the depolarization measurement
and the Kerr effect measurement are difficult for the small
effects concerned; however the fair agreement between the
depolarization data of Cabannes and the independent deter-
minations of the Kerr constant by Stuart and Breazeale lead
one to believe the Ananthakrishnan measurements to be in

eIr'TOoT .

Part III: Absolute configurations of several organic
compounds on the basis of Kirkwood's polar-
izability theory

Several more or less obvious features of equation (125)
which affect its use in discussing absolute configurations
may first be mentioned. It applies only to molecules com-
posed of groups each having an axis of optical symmetry.
The polarizability theory is of course not restricted in
principle to such molecules, but in practice this limitation
exists because of the paucity of our knowledge concerning
the optical properties of the groups. Evidently g“)as

given by equation (125) vanishes for interactions involving
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isotropic groups - for such groups the higher approximations
considered by Boys and de Mallemann must be used. Even if

the groups are anisotropic, g®

vanishes if all pairs of groups
have their optical axes coplanar with the line joining the
group centers, for in this case the triple scalar product
appearing in equation (125) vanishes. Furthermore, this
will also be true if in the case of free rotation around
valence bonds the coplanarity of the three lines holds on
the average. Thus for such compounds as CHC1Brl, where all
substituent groups to a first approximation would be treated
as having the directions of their bonds as cylindrical axes
of symmetry, g“’will vanish in the first order. 1t is
possible that the interactions with the central carbon atom
might result in distortion of the symmetry of the groups,
and so give rise to a nonvanishing g“). The higher order
polarizability terms of de llallemann and Boys do not vanish
for such molecules, and would therefore make some contri-
butions to g@ The compound cited has not been resolved, so
that its rotation is not known.

In considering the application of the theory to spec-
ific substances, the points just mentioned must be kept in
mind, as well as the fact that resonance between substituent
groups 1is forbidden. The approximations involved are ex=-
pected to become worse as the size of the individual groups

relative to that of the whole molecule increases, so that the

smaller the groups the better the approximation. Furthermore,
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it seems desirable to assign configurations to several dif-
ferent molecules which can be configurationally related
by the ordinary techniques of the organic chemist, thus
affording a check of the theory (assuming the interpretations
of the organic chemist to be correct). If this is to be
done, some attention must be paid to selecting compounds
which can be conveniently resolved, etc. The various
requirements are not easily satisfied simultaneously, so
that fewer compounds are suitable than might be expected.
Besides the features discussed, the calculation of g
as given by equation (125) requires a knowledge of the struc-
ture of the molecule. The term is not in general greatly
sensitive to small changes in bond distances and bond angles
in the molecule, so that in the majority of cases the normal
covalent bond radii, and tetrahedral or near-tetrahedral
geometry of the carbon atoms may be assumed. However in
mulecules having internal rotations which change the relative
orientation of one or more pairs of substituent groups, the
optical activity will often be found to depend critically
on the conformation with respect to this degree of freedom
(actually often being of different sign for various orien-
tations, and averaging to zero in the case of free rotation;g
see above). In such compounds rather precise information
may be required concerning the internal conformation in

order to make uneguivocal calculations. Because usually
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several different orientations with respect to the internal
rotation will correspond to positions of stable equilibrium,
and because these may correspond to different potential
energies and contribute unequally to the rotatory power,
strong temperature dependence of the latter may result.
Conversely, rigid molecules (i.e., those having no low fre-
quency internal rotational degrees of freedom) would be
expected to have specific rotations depending only on the
temperature through variations of the density and therefore
the refractive index.

The compounds selected for application of the g“)
theory in the present series of researches are trans-2,3-
epoxybutane, 1l,2-dibromopropane and 1l,2-dichloropropane.

The first of these seemed desirable since the nuclear frame-
work is presumably nearly rigid, except for the rotation of
the methyl groups, and since the molecular structure had been
previously investigated by Brockway and Cross<39) using the
electron diffraction method. Furthermore, the relative con-
figurational studies of Lucas and Garner(40) relate the con-
figurations of the compound in the D and L series, so that

an assignment of absolute configuration to trans-2,3-epoxy-
butane results in an assignment for the members of the whole
series. The other two compounds have internal rotational
degrees of freedom which may be expected to have a profound
influence on their optical activity. An electron diffraction

investigation of the molecular structure of 1,2-dichloropropane
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is to be described in Section V of this thesis. The struc-
ture of 1,2-dibromopropane had been previously investigated
by Schomaker and Stevenson<4l), again by electron diffraction.
trans-2,3-Epoxybutane
The spatial configuration for which the calculations
have been performed is indicated in Figure 1. Inasmuch as
we will have occasion to refer to the related compound pro-
pylene oxide, 1t is also shown. In the figure the heavy
solid lines lie in the plane of the paper; the light solid
lines project above the paper toward the reader; the dotted
lines project below the paper away from the reader. Also
shown in Figure 1 are the projection formulas of these enanti-
omorphs according to the projection convention of Fischer(43).
The prescription for obtaining these projections from
a three dimensional model is the following: the main carbon
chain of the molecule is arranged so that it lies in a plane
and so that each carbon-carbon bond is cis with respect to
both of its next-but-one neighbors. The carbon-carbon chain
is then imagined to be straightened out by the bending of
each C-C-C bond angle of the chain, the relative orientation
of three of the bonds of each of the chain carbon atoms being
preserved in the process. The straightened chain is then laid
in the plane of the paper and rotated about its axis until
all the substituent groups are oriented towards the reader,
away from the plane of the paper. The structure is now project-

ed onto the paper. In this way a unique correlation between
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CH 1|1
Y
0
Z(.!:—H chz—h
|

CH3 CH3
trans-2,3-Epoxybutane Propylene oxide
lisc] [= 590 |tec], | = 130
Figure 1

Top, absolute configurations to which the
discussion in the text appliesj bottom, the pro-
jection formulas of these isomers according to
the Fischer projection convention. Fischer's
assumption for the absolute configuration of
glucose assigns these configurations to the levo-
rotatory isomers. Independent of any assumptions
about absolute configuration, the relative config-
urational studies show these two isomers to have
specific rotations of the same sign. The calcu-
lations in this thesis assign these configuretions
to the levorotatory isomers.



-88-
spatial configuration and a two dimensional formula is ob-
tained. Although not essential to the latter, with some
classes of compounds certain orientations of the two dimen-
sional formulas have become customary; for instance, with
the sugars the planar formula if written with the chain
vertical is oriented so that the more highly oxidized end
of the molecule is on top.

There is a second convention due to Fischer, to be
sharply distinguished from the projection convention just
described, which relates to the absolute configuration of
optically active compounds. Lacking a solution to the
latter problem, Fischer(43) for convenience assumed dextro-
rotatory glucose to have the configuration implied by the
projection formula shown in Figure 2. This assumption,
coupled with the relative configurational studies of organic
chemistry, results in assignments of absolute configuration
to a large number of substances. In particular the work
of Lucas and Garner(4o)for 2,3-epoxybutane and the experi-

mental work of Levene and Walti(42)

on propylene oxide as
reinterpreted on the basis of modern configurational know-
ledge result in the assignment of the absolute configurations
of Figure 1 to the levorotatory isomers of both these com-
pounds, on the basis of Fischer's absolute configuration
assumption. Apart from the latter, and of importance for

our later discussion, the significance of the relative con-

figurational investigations may be stated in more geometrical
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terms as follows: the replacement of either methyl group
of a given enantiomorph of trans-2,3-epoxybutane without
inversion gives the enantiomorph of propylene oxide having

the same sign of rotation.

HCO
HCOH
|
HOCH

|
HCOH

|
HCOH

I

CH20H

Figure 2. Dextrorotatory glucose, according to

the I"ischer projection convention and the
Fischer absolute configuration assumption.

The magnitudes of specific rotations given in Figure 1
are for the pure liquids at 250 Ce As will be clear from the
discussion of Section I, the theory applies most rigorously
to dilute vapors. ©Specific rotations in the wvapor are not
avallablej however Fickett(44) has made a rough measurement
of the rotation of the epoxybutane in 2% heptane solution,
finding a change of only a degree or so in the specific
rotation. This is what the theory of Section I would predict
if recklessly applied to the liquid and sélution measure=-
ments, inasmuch as through a coincidence 2,3-epoxybutane and
heptane have nearly identical indices of refraction. Apart
from this, the constancy of the specific rotation upon solu-
tion indicates that no special liquid effects are acting in

2,3-epoxybutane, and presumably none in propylene oxide.
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The structural parameters of interest here as reported
by Brockway and Cross(39) are 1l.54 X for the carbon-carbon
bonds, 57026' for the ring carbon-carbon-oxygen angles, and
125010' for all the other bond angles of the ring carbon
atoms.

The first step, and a very important one, in applying
the polarizability theory is the decomposition of the mole-
cule into groups. The structure of the theory as formulated
by Kirkwood assigns a special role to a central group, to
which all the other groups (called substituent groups) are
bonded, there being no bonding or electron exchange of
other kinds between any of the substituent groups. As a
consequence of this formulation of the theory, groups such
as a chlorine bonded to an asymmetric carbon may be treated
as having anisotropic polarizability ellipsoids due to the
interaction with the asymmetric carbon atoms. It is however
possible to construct the theory in an alternative manner,
in which the molecule is considered as composed of N + 1
groups of atoms, between which in the zero-order approxima-
tion no interactions occur - i.e., there is no central group
specially considered. The first-order perturbation is then
taken, as before, as the dipole-dipole potential energy of
interaction of pairs of groups all of which are now consider-
ed, whereas previously no pairs involving the central group
appeared in the perturbation, inasmuch as such terms were

assumed to be included in the zero-order Hamiltonian. The
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analysis proceeds in exactly the same manner as before,

the only change in the final result being that in equation
(125) all groups are included in summing over the pairs.
This procedure would be unsatisfactory for the purposes

of the first-order g“)theory in the case of a group such

as our previous example of a chlorine atom, as such a group
would be isotropic in this approximation, and in general
this method would be expected to be less accurate than

that used by Kirkwood. However, it might occasionally be
more convenient and also reasonably satisfactory in case
all the groups have appreciable intrinsic anisotropy.

In the case of the epoxybutane, perhaps the most
obvious division into groups is that in which the carbon-
oxygen ring with the two attached hydrogens is treated as
the central group, the two methyl groups being considered
as substituents. Equation (129) then gives g as a single
term involving the methyl-methyl interaction. Using the
same scheme for propylene oxide, the central group is the

o)

: () . ; : :
same as before, while g  1is given as a term involving the

interactions of the methyl groups with the trans hydrogen.
The other hydrogens bonded to the ring could in both cases
be considered as separate constituent groups; however if
they are treated as cylindrically symmetrical around their
bonds, and the methyl groups similarly, it is readily seen
that if the Brockway and Cross assumption of all bond angles

outside the ring on the middle carbon atom being equal 1is
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correct, then all the interactions of these other hydrogens
with a methyl group or with the hydrogen trans with respect
to the methyl group vanish. Even if small deviations from
the Brockway-Cross values for the angles occur, the terms
would still be expected to be small. The only nonvanishing
term involving these other two hydrogens is then the inter-
action of one with the other. This also would be expected

to be small, considering the small polarizability of hydrogen
unless it should have an anisotropy ratio approaching the
maximum value of three, which seems unlikely. On the basis
of this scheme of subdivision, the smallness of the contri-
butions of hydrogen terms to gm is supported by comparison

of the magnitudes ol the rotations of the two compounds under
discussion.

The subdivision just described, although relatively
simple in principle, has the disadvantage that relatively
1little is known of the optical properties of a methyl group
bonded to this central group. Inasmuch as the latter has a
relatively large dipole moment, and also because of the
strains involved in the bonds of the ring carbons, 1t might
be expected that the cylindrical symmetry of the methyl group
would be somewhat distorted, as well as possibly some alter-
ation in the value of the anisotropy ration, even if the
first effect should be small. Indeed it will be seen from

the calculations below that use of optical parameters for the

methyl group derived from the experimental data for ethane
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fall rather short of reproducing the experimental rotatory
power of 2,3-epoxybutane, the calculated value being approx-
imately one=third to one-quarter the observed.

It is also possible to proceed in the alternative ver-
sion of the theory described previously. Abandoning the
designation of a special central group, we may consider the
molecules as composed of a methyl group or groups, the carbon-
oxygen ring with two attached hydrogens, and in the case of
propylene oxide the third hydrogen atom may be considered as
another group. In the zero-order approximation appropriate
to the present discussion, however, the hydrogen will be
isotropic and so not contribute to the first-order optical
rotatory power. Under this scheme, the optical activity of
2,3=epoxybutane will appear as the sum of three terms, a
methyl-methyl interaction and two methyl-ring interactions.
It is readily seen, because of the twofold axis of symmetry
of 2,3=epoxybutane, that the latter two are completely
equivalent; furthermore, if in propylene oxide the bond
angles of the ring carbon to which the methyl group is attached
are the same as those in 2,3-epoxybutane, then each methyl-
ring interaction in the latter compound contributes alge-
braically the same rotation as the single similar interaction
in propylene oxide., But with the present subdivision in
the latter compound, its rotatory power is due to the single
methyl-ring interaction.

It may be here mentioned that although we have been con-

sidering the carbon-oxygen ring and the attached hydrogens
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as comprising a group, there is no necessity of doing so =~

we can, 1f we like, consider each atom as a group. The
advantage of doing the latter has been previously mentioned;
namely, the g@’apprdximation becomes increasingly better the
smaller the size of the groups compared to the molecular
dimensions. Opposing this advantage, however, is the disad-
vantage that as we decompose large groups into smaller ones,
the structure of the theory forces us to neglect more and more
bonding interactions in the zero-order approximation. Put in
other words, if we eventually decide to consider each atom

of the molecule as a separate group, then we have to neglect
in our zero-order wave functions all interactions between

the atoms. The groups then become isotropic, and we have
reduced the problem to the one considered by Boys. 1t seems
likely that an intermediate procedure is preferable.

It 1s probably not an adequate approximation to consider
the carbon-oxygen ring as cylindrically symmetrical, so that
the calculation of the principal polarizabilities requires
knowledge of both the Kerr constant and the degree of depolar-
ization of scattered light. The latter is not availablej the
term as a result eludes calculation at the present time. The
argument of the preceding paragraph shows, however, how the
experimental value for the rotatory power of propylene oxide
may be used to estimate the methyl-ring term; in this way we
obtain a quasi-experimental value of 330 as the magnitude of
the methyl-methyl contribution to the specific rotation of

2,3=epoxybutane,
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In calculating theoretically this last interaction
using equation (125), the structural data of Brockway
and Cross have been used, the methyl groups being treated
as cylindrically symmetrical about their bonds, with their
centers at their carbon atoms. For the isomer of Figure 1,
use of the value P==Ch35 for the anisotropy of the methyl
groups leads to the value[“19= -170 for the contribution
of the methyl-methyl interaction for a medium of refractive
index 1.37, corresponding approximately to that of both the
pure liquid and the dilute heptane solution. The magnitude
is roughly one-half the "experimental'" value; the discrepancy
may be due to use of too small an anisotropy ratio, or to
distortion of the polarizability ellipsoids. It seems un-
likely that the error could be so large as to result in
the wrong sign.

The calculation jJust described results in the assignment
of the configuration given in Figure 1 to the levorotatory
isomer of trans-2,3-epoxybutane, thus verifying the Fischer
convention for the absolute configurations of the whole

series of optically active compounds.

1,2-Dichloropropane (Propylene chloride)

The configuration to which the calculations to be des=
cribed will apply is shown in Figure 3, where the carbon-
chlorine bond of the -CH2C1 group, the 1,2 carbon-carbon
bond, and the dotted line through C, lie in the plane of

the paper. The internal rotation around the 1,2 carbon-carbon
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bond will be shown to have a profound effect on the optical
activity; as the coordinate specifying this degree of free-
dom we choose the angle between the two planes formed by the
1,2 carbon-carbon bond with the two carbon-chlorine bonds.
The angle is called Y and is taken as zero when the two
chlorines are trans with respect to each other. The posi-
tive direction of rotation from the frans position is taken
as that which brings the methyl group into the cis position
with respect to the chlorine bonded to C;. Put otherwise,
the positive direction of  corresponds to clockwise rota-
tion of the -CH(CH3)Cl group relative to the -CH5Cl group
when viewed along the 1,2 carbon-carbon bond looking from
Cq towards Co. When 9 1is zero, the chlorines being trans,
then the methyl group projects towards the reader, away
from the plane of the paper. In Figure 3 the projection
formula of the same isomer is also shown according to the

convention of Fischer,

cl CH
. H 3
:
e+ —— == e ——— -
P
L7 ?HB
H—?-Cl
B--=C
/// CHZCl
H
Cl
Figure 3 1,2=Dichloropropane

Left, the enantiomorph to which the calculations app}y;
right, the projection formula of this isomer, according
to the Fischer projection convention.
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In applying equation (125) to the calculation of the
rotatory power of propylene chloride, the molecule has been
considered as being composed of the three substituent groups
-CH>C1l, -Cl, and -CH3y, with the asymmetric carbon atom play-
ing the role of the central group. The terms involving the
hydrogen bonded to the latter have been neglected, as they
may be supposed small compared to the others. The chlorine
atom and the methyl group were considered cylindrically
symmetrical about their bonds to the asymmetric carbon,
while the -CH201 group was treated as cylindrically symmetrical
around the carbon-chlorine bond axis, in accordance with the
procedure described earlier for groups having large intrinsic
anisotropy. The optical center of the chlorine atom was
taken at its nucleus, that of the methyl group at the nucleus
of its carbon atom, while the center of the -CH,C1 group was
placed at the center of mass of its carbon and chlorine atoms.
As has been previously indicated, the optical activity
depends critically on the internal angle q?. Considering
the low frequencies and large moments of inertia involved in
this internal degree of freedom, it is doubtless an adequate
approximation to utilize classical statistical mechanical
phase integrals rather than the quantum mechanical sums-over-
states in performing the required averaging. Furthermore the
discussion of Section V indicates that it will be a sufficient
approximation to perform this averaging using as the weight-
ing function the Boltzmann factor exp('V(%’)/k T), (V ()

being the potential energy restricting the internal rotation)
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rather than using the rigorous (in the classical approxi-
mation) weighting function and integrating over all vibra-
tional and rotational coordinates and the corresponding
momenta. Adopting this approximation, we require the opti-
cal activity of the molecule as a function of the internal
angle °P « In performing this calculation tetrahedral carbon
bond angles were assumed, and the distances C-C = 1.542,
C-Cl = 1.773 used. These values are somewhat different
than the values found in the electron diffraction investi-
gations; however, inasmuch as the rotatory power does not
depend critically on the exact values of these parameters
it has not seemed worthwhile to fepeat the calculations.

The term contributed by the interaction of the methyl
group and the chlorine atom bonded to the asymmetric carbon
atom vanishes, so that only two terms need be calculated,
namely, the Cl----CH5Cl term and the CH3———CH201 term.
The calculated specific rotation as a function of the inter-
nal angle is shown by the curves of Figure 4, for different
values of the anisotropy ratios of the groups calculated
from the experimental data of different investigators given
in Table 2 of this section. A‘fourth curve is also shown,
in which the anisotropy ratios derived from Cabannes' data
were again used, the optical center of the -CH2C1 group
being taken at the chlorine nucleus. Comparison of this
curve with the other one calculated from Cabannes' data
illustrates how the optical activity depénds only slightly
on exact values of the distances. The curves of Figure 4

are computed for a medium of refractive index 1l.44, the
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value corresponding to the pure liquid at room temperature.

For comparison with experimental values of the rotatory
power and for assignments of absolute configuration, the
average specific rotation must be computed, for which compu-
tation we need to know the functional dependence of the
potential energy hindering rotation V (¢). For this purpose
the electron diffraction investigation described in Section V
of this thesis was undertaken. There recent dipole moment
data for propylene chloride in the wvapor state are also dis-
cussed and analyzed. The determination of V (¢ ) is there
discussed at some length, particularly the range of varia-
tion of V (QP) within which satisfactory interpretations of
the dipole moment and electron diffraction data may be ob-
tained. Tables 6 and 7 in that section also give the average
specific rotation computed from curves C or C' of Figure 4
for a variety of potentials in the aforementioned range.
Here the discussion will be limited to a statement of the
general features of the problem and to the results obtained.

Three positions of stable equilibrium with respect to
rotations around the 1,2 carbon-carbon bond would be
expected, corresponding to the three nonequivalent conforma-
tions in which the bonds of Cl and 02 are staggered, i.e.,
in the neighborhood of P = 0, ¥ 2W/3., There is no symmetry
requiring the minima to occur at exactly these angles; in-
deed, it seems likely that steric forces will displace the

minima somewhat. Of these three, the one with 4)3 2T/3
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is expected because of steric effects to be of sufficiently
high energy relative to the other two so as to be of negli-
gible importance at temperatures of interest here. O0f the
other two minima the one near ¥ = O, which we shall call the
trans minima, i1s expected to be of lower energy, by analogy
with other compounds and as proven by the discussion of
Section V. However, the minimum near = -2%/3, designated
as the gauche or skew minimum, is expected to be of appre-
ciable significance by comparison with the related compounds
ethylene chloride and 1l,1,2-trichloroethane, as discussed in

Section V.
From Figure 4 it is evident that the contributions of

these two conformations to the optical activity will very

likely be opposite in sign. Furthermore, the exact position
of the trans minimum is uncertain, inasmuch as the structure
investigations can only be interpreted safely as requiring
it to lie in a range of twenty-five to thirty degrees either
side of #)= 0. Steric repulsions between the methyl group
and the chlorine bonded to Cl may become effective in the
neighborhood of ¢ = 0, tending to give a potential minimum
displaced slightly fron12P= O towards negative values of($ o
The possibility arises that this displacement, which carries
the trans potential energy minimum toward the node of the
computed specific rotation curve, combined with a sufficiently
large contribution of the skew minimum may result in the
sign of the average rotation being opposite to that of the
trans minimum. However, it is found, when the averaging is
done with curve C of Figure 4 at T = 300° K, that all poten-

tials which are satisfactory for the interpretation of the
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dipole moment and electron diffraction data result in giving
a negative specific rotation for the isomer of Figure 3, of
the general order of magnitude of -20 deg./dm., the range
of values being approximately -10 to -50 deg./dm. On the
other hand, if curve A of Figure 4 is used, the sign of the
specific rotation is not determined by the range of poten-
tials acceptable on the basis of the aforementioned criteria,
so that no conclusions regarding absolute configuration can
be drawn from comparison with experimental rotations at this
single temperature.

It is however interesting to point out that measurement
of the temperature dependence of the optical activity will
make possible an assignment of absolute configuration with
only the two assumptions that, as indicated by Figure 4, the
specific rotation of the skew isomer is algebraically greater
that that of the trans isomer, and that the sign of the rota-
tion computed for the skew isomer is correct.

Suppose, for example, that the magnitude of D%]D/ﬁﬂ‘+3
increases on raising the temperature. It then follows that
the sign of the contribution of the skew isomer to the opti-
cal activity is the same as that of the average rotation in
the temperature range in gquestion. Our assumption is that
the former is correctly determined by the theory as being
associated with a definite one of the two isomers. Conse-
quently the experiment permits an assignment of absoclute

configuration to the two antipodes: if the megnitude of
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[e] /49+3 increases with raise of temperature then the
dextrorotatory isomer has the configuration of Figure 3;

if this quantity decreases with rising temperature, the
levorotatory isomer has this configuration. It is desirable
that these measurements be carried out in the vapor state,

as only in this case can the theory lay claim to rigor.

If the Ananthakrishnan measurements could be completely
discounted, the configuration of Figure 3 could be assigned
to levorotatory propylene chloride without reference to
measurements at different temperatures, although the latter
would of course be a valuable check., This assignment may
be regarded as quite probable, but must be considered tenta-
tive until confirmed by the temperature dependence.

Propylene chloride has not been resolved; this problem,
along with the determination of the relative configuration,
is being attacked by lir. Wildon Fickett under the direction
of Professor Lucas. When this work is brought to a success-
ful conclusion, particularly if it proves possible to mea-
sure the temperature dependence of the rotation in the vapor,
then a check of the theory will be afforded by the compari=-

son of the resulting assignments of configuration.

1,2-Dibromopropane (Propylene bromide)

The isomer to which the discussion will apply is that
of Figure 3 with the chlorines replaced by bromines. With
the same subdivisions of groups, the same assumptions as

regards the symmetry of the latter, and so forth, as for
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propylene chloride, the curves of Figure 5 were caiculated
using the anisotropies given in Table 2, for a medium of
refractive index 1.52, this value corresponding to that
of the pure liquid. The curves are similar to those for
propylene chloride, an important difference however being
that with propylene bromide the node of the curve is closer
to the conformation < = 0.

The electron diffraction investigation of Schomaker and
Stevenson(4l) did not consider explicitly the possible exis-
tence of potential minima other than trans, nor in detail the
possible variations of the trans equilibrium position from
P = 0, Furthermore, no vapor dipole moment data (or even
solution measurements over a temperature range) have been
published, so that practically no information is available
concerning V (¢f) for propylene bromide. EKowever by analogy
with the results of Gwinn and Pitzer(45) for ethylene chloride
and bromide, a smaller amount of the skew conformation would
be expected in propylene bromide than in propylene chloride,
so that we might expect to obtain an upper limit (algebrai-
cally) for the optical activity of the isomer of propylene
bromide under discussion by using the potentials which were
found satisfactory for the chloride. Calculations of this
sort using curve K of Figure 5 again result in a uniforaly
negative sign for the specific rotation, but some values are
guite close to zero, the range of values of [«]y being roughly

-2 to ~25 deg./dm. The calculation does not therefore assure
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levorotation even using curve K. Thus the absolute config-
uration of propylene bromide is even less certain than that
of propylene chloride on the basis of similar calculationse.

Here again, however, measurement of the temperature
dependence of DX]D will afford a remedy to the situation,
and make possible an assignment of absolute configuration
to the isomers of propylene bromide. The relative configur-
ational study of this compound is being carried out by |
Mr., Fickett and Professor Lucas along with the previously

mentioned work on propylene chloride.



SECTION IV



L0
OTHER THEORIES OF OPTICAL ACTIVITY

Part I Kuhn's application of the coupled oscillator theory
to sec-butyl alcohol

We include this brief discussion of W. Kuhn's(46) use
of the classical coupled oscillator theory in this section,

although it is rather similar to the polarizability theories

discussed in the preceding section.

The isomer considered by Kuhn is shown in Figure 6,

Q-—=———=>N
\

A

Figure 6. Levorotatory sec-butyl alcohol
according to Kuhn.

where the CH3 and 02H5 groups project toward the reader, the
H and OH groups away from the reader (behind the plane of the
paper). The x and z axes lie in the plane of the paper while
the y axis 1s perpendicular to the latter, the positive dir-
ection pointing away from the reader. The carbon atom of the

CH3 group and the secondary carbon atom of the CoHg group are
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in the xy plane; the oxygen of the hydroxyl group and the
hydrogen bonded to C* are in the yz plane.

Kuhn assumes the methyl and ethyl groups as well as the
asymmetric carbon atom to be isotropic per se, becoming aniso-
tropic through the interactions of the moments induced in
them in the Silberstein manner. The hydroxyl group is taken
to be anisotropic per se, with the principal axes uj parallel

to the x axis, Us along the C-0 bond and u, in the yz plane.

The hydrogen bonded to the asymmetric carbin is neglected.
He supposes the "sterically preferred" orientation of the
hydroxyl group to be that in which it lies in the yz plane,
and gives arguments to show that the plane determined by C*
and OH (under his structural assumption, the yz plane) would
be expected to contain the direction of greatest polariza-
bility (Silberstein argument), and further that this last-
mentioned direction would be the direction of vibration of
the induced moment in the absorption band of longest wave
length. It is the rotatory contribution of this band which
he calculates, supposing it to dominate the rotatory power
in the visible spectrum, a fact which he claims is supported
by an analysis(47) of experimental rotatory dispersion dataj
this however is disputed by Levene and Rothen(48).

In computing the interactions of the induced moments

in the C, CH3, CoHg and OH groups Kuhn considers only terms

involving pairs of groups bonded to each other; for these he
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buses the potential energy of dipole-dipole interaction. The
theory is entirely similar in principle to the polarizability
theory of de liallemann involving the interaction of three
groups one of which is anisotropic, the only difference being
the restriction of the calculations to the contribution of

a single absorption band rather than summing over all absorp-
tion bands. It 1s found with Kuhn's assumptions concerning
the principal axes that the rotatory contribution of the
normal mode us (so called because it reduces to the up, mode
of the hydrokyl group in the absence of the interactions with
the other groups) vanishes, while the Uy mode contributes
levorotation, the uy mode dextrorotation. Under the above-
mentioned assumptions it follows that the molecule of

Figure 6 should have a levorotatory contribution from the
absorption band nearest the visible; supposing this band to
determine the sign of the rotation in the visible, the
enantiomorph shown should be levorotatory.

Two major objections to the analysis of Kuhn suggest
themselves, the first being the treatment of the ethyl and
methyl groups as isotropic. Kuhn supports this assumption
by citing the fact that the sign of the rotation does not
change in replacing the ethyl group by such groups as the
cyclohexyl or propyl groups. A second objection is that it
is not at all clear that the orientation of the OH group
assumed by Kuhn actually corresponds to the most stable

position of equilibrium. Inasmuch as other equilibrium
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positions are probably at least as important, and because
the sign of the calculated rotation depends on the orienta-
tion assumed, it seems clear that the result should be regard-
ed as open to some question. This point will be discussed
at somewhat greater length when we take up the Eyring theory
in the next part of this section.

The configuration found by Kuhn for levorotatory sec-
butyl alcohol is the same as that obtained from relative
configurational studies(43) combined with the absolute con-
figuration of dextrorotatory glucose assigned by Fischer(43)
on a postulatory basis. Thus the projection formula of the
isomer of Figure 6 according to Fischer's projection conven-
tion is shown in Figure 7; it will be recognized as the usual

formula for levorotatory sec-butyl alcohol.

i
HO?H

02H5
Figure 7 Levorotatory sec-butyl alcohol, as
postulated by Fischer and calculated by

Kuhn. Projection formula according to
Fischer convention

Part II The one-electron theory of Eyring, et al.
The polarizability theories previously described and
the Kuhn theory are to be regarded as derivatives of the

Born coupled oscillator optical activity theory. The theory
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“ developed by Eyring and his co-workers attributes the optical
rotatory power to the motion of a single oscillator (electron)
in a suitably asymmetric potential field. This idea (the
basis of Drude's(9) previously mentioned model, later shown
erroneous by Kuhn(103 was for some time believed to be with-
out foundation, inasmuch as in the reference quoted Kuhn
purported to prove that a single oscillator could not show
optical activity. Since the original paper of Condon, Altar

(22), however, Kuhn(47) has noted that his proof

and Eyring
requires the assumption of only infinitesimal displacements;
with the finite displacements implicit in quantum mechanical
theory optical activity can be produced by the motion of a
single oscillator in an asymmetric potential field. The
contributions of such terms to the optical rotation are in-
cluded in the g, terms of equation (112) in Kirkwood's break-
down of the Rosenfeld formula in terms of the groups compos-
ing the molecule.

The procedure adopted by the Eyring school is similar
in one respect to that of Kuhn in that instead of calculating
the complete rotatory parameter g, of a given group, only the
contributions from one or more of the ultraviolet absorption
bands lying closest to the visible are calculated, it being
supposed that their rotatory contributions predominate in the
optical activity observed in the visible region. It is further

supposed that transitions responsible for these bands may
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be adequately represented in terms of "one-electron tran-
sitions", i.e., that the upper and lower quantum states in
question may be represented by wave functions having the

form

¥, = 9. ¥,

i

¥, = 9. ¥,

w o

(135

herechanth‘are the molecular wave functions for the lower
and upper levels, respectively;*ﬁanﬁ.+;are the wave functions
of the electron, one or more of whose transitions are assumed
to account for the absorption band in questionj q% is the
wave function for the other electrons of the molecule, ideal-
ized as being the same in both upper and lower states.

Under these conditions the contribution gk (o=n) of
the absorption band in question to g, where k denotes the

chromophoric group, reduces to

'd Im {F’en'ﬁm}
wh %:'Vz

gh(o-)n) = .

(136)

"y -2 . - :
wherer& andmW are now the dipole moment and magnetic operators
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of the chromophoric electrons, the matrix elements being

taken with the wave functions 42 and %q of equation (135).

(o)

The gy of the other groups, as well as g andg“’

Q

vanish in
this approximation. It may however be mentioned that while
the approximation of neglecting the change of quantum state
of the other electrons with the transition of the chromo-
phoric electron may not be serious for the purpose of cal-
culating the one-electron rotatory power, the vanishing of
g“) and g“’ upon its introduction in no way demonstrates
that these terms are really negligible.

The problem now reduces itself to the computation of
the wave functions‘k and 4% for the chromophoric electron,
and the evaluation of the matrix elements appearing in equa-
tion (13%). Different procedures are possible in obtaining
approximations to the wave functions, and it will be simplest
for the purpose of the present discussion to outline the
method used by Gorin, Walter and Eyring(29) for the specific
case of sec-butyl alcohol.

For this molecule it is assumed with Kuhn that the
optical activity is due to the absorption band of the hydroxyl

m3,

group lyving nearest the visible. This band is attriocuted to
transitions of a nonbonding electron on the oxygen atom.
The wave functions of this chromophoric electron are taken

to be solutions of the Hartree eqguation
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V(r) represents the potential energy of the chromophoric
electron due to the oxygen nucleus and electrons, and is
taken as hydrogen-like with effective nuclear charges for
the various levels which give the empiricel ionization and
resonance potentials for the given moiecule or a related
one. The first sum, with dummy index s, is over the other
nuclei of the molecule. The second sum is over the elec-
trons associated with nucleus s. The wave function ¥ is
that of the electron i associated with nucleus s, while ry
is the distance between the chromophoric electron and elec-
tron 1. The double sum is thus the potential energy of the
chromophoric electron in the field of the other electrons
in the Hartree approximation.

The last term is the potential energy of the chromo-
phoric electron in the field of the other nuclei of the
molecule, zg being the atomic number of nucleus s, T the

distance of the chromophoric electron from this nucleus.

Bxchange is neglected, bonding electronic pairs being
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assigned one each to the atoms forming the bond.

First-order perturbation theory is used, the last two
terms within the brackets in equation (137) being treated as
the perturbation. The zero-order wave functions for the
chromophoric electron are thus ordinary hydrogen-like func-
tions. It 1s readily seen that no optical activity is obtain-
ed in the zero-th order. In evaluating the integrals appear-
ing in the perturbation terms, approximate screening constant
wave functions are used for the electrons of the hydrogen
and carbon atoms of the molecule,

The enantiomorph to which their calculations apply and

O

the molecular structure assumed for it are shown in Figure o,

where the heavy lines are in the plane

CH H CH
3 | 3
\ HOCH
,c 0 |
i/} =
o B
B
2N
C H
/
/
H

Figure 8. Left, calculated configuration and
assumed molecular structure of levorotatory
sec-butyl alcohol according to Gorin, Walter
and Eyring. Right,prcjection formula of the
isomer on the left according to the Fischer
projection convention. The absolute config-
uration agrees with that deduced from Fischer's
assumed absolute configuration of glucose.
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of the paper, the dotted lines project away from the reader,
the solid light lines toward the reader. The Fischer pro-
jection formula for this isomer is also shown.

The perturbation previously mentioned is subdivided into
two parts, H' indicating that due to the carbon and hydrogen
atoms bonded to the oxygen, H'' that due to all the other
atoms. Because of the proximity of the atoms giving rise
to E', this term is larger than H'', so that the latter can
be neglected in comparison with the former except in those
cases where symmetry results in a null contribution from H!'.
(EY is symnetric with respect to the C*-hydroxyl plane and
of itself would not give rise to optical activity. H'' has
no symmetry with respect to this plane.)

The zero-order ground state wave function of the chromo-
phoric electron is taken as the hydrogen-like wave function
wsz with an appropriate effective atomic number; the y and
z axes of the coordinate system are taken in the plane of
the paper in Figure 8, the x axis perpendicular thereto. In
this treatment the effect of the perturbation H'!' on the
ground state is ignored, so that only hydrogen-like functions
odd with respect to the yz plane will appear in the expan-
sion of the ground state in terms of the zero-order wave
functions. The authors limit their calculations to the

inclusion of only one such term, namelyQ’

3px
Three zero-order excited states are considered, namely

v, ana¥

- 3py 3’ it ceing supposed that the rotatory power
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in the visible is dominated by the contributions of trans-
itions to these excited states. These three states are degen-
erate in zeroth order; all are symmetric with respect to the
vz plane, so that the degeneracy is removed by the perturba-
tion E's The correct set of zeroth order wave functions are
then individually combined with the wave functions 297’44P"
q’“,z and 4)3“9 by means of the perturbation H' for the first
two, by means of H'' for the last two, to give the first-order
approximations to the three excited levels. It is the contri-
butions of the last two wave functions,qux;and4gdxq, which
remove the even symmetry character of the excited states with
respect to the yz plane. Thus the initial state 1s odd with
respect to this plane, while the final states are nearly even.
With these symmetry characters of the initial and final states
there arises the possibility of a large electric moment and

a small magnetic moment matrix element perpendicular to the

vz plane, as well as a small electric moment matrix element
and a large magnetic moment matrix element in this plane.
However with the wave functions selected by Gorin, Walter and
Eyring for inclusion in the expansions of the ground and
excited states, it 1s found that in these transitions the
components of the magnetic moment perpendicular to the plane
vanish, due to elements of symmetry common to this component
of the operator and to the various zero-order wave functions

utilized in the expansions of the ground and excited states.
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For similar reasons the expected large magnetic moment in
the yz plane fails to materialize, the magnetic moment in
this direction being that due to the perturbation H'. The
electric moment in this plane is found to be due to the per-
turbation K'', so that the term calculated by Gorin, Walter
and Eyring is of the order H'H'!',

With these assumptions the problem is reduced to the
evaluation of the integrals involved. The procedure is
lengthy though not particularly difficult, the integrals
being amenable to analytical evaluation. ZFor the configur-
ation and conformtion of Figure 8 these authors calculated
g = =2.70 x 10-35. The magnitude of g computed from the
experimental rotation for the pure liquid is 1.4 X 10‘35.
Gorin, Walter and Eyring also computed the rotation for the
orientation in which the hydroxyl group in Figure 8 is turn-
ed into the position coplanar with the C*-H bond, finding
for this orientation g = =9.67 x 10'35. They proposed these
two conformations as being the orientations of greatest pro-
bability, supposing them to be stabilized by internal hydro-
gen bonding, and so concluded that the isomer of Figure 8 is
levorotatory, thus verifying the absolute configuration
assumed by Flscher for glucose.

Objections may be raised to the calculations of Gorin,
Walter and Byring at several points. It has not been convine-
ingly demonstated that the sign of the total rotation in
the visible is actually the same as the sign of the contri-

butions of the absorption band for which the calculation is
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carried out. ©Supposing this actually to be the case however
the adequacy of the approximations made seem open to question.
The success of first-order perturbation theory depends on the
closeness of approximation of the zero-order wave functions;
whether the perturbation calculation converges sufficiently
rapidly when hydrogen-~like wave functions are used for the
latter is not demonstrated.

The effects of electron exchange are completely neg-
lected in the calculation of the Hartree perturbing poten-
tials due to the electron clouds of the surrounding atomse.
Even supposing the approximations so far mentioned to be
valid, omission of the state ¢qn from consideration with
the three other excited levels with the remark that %"it
would considerably complicate the calculation without
giving an important contribution to the optical activity"
seems questionable. This state is degenerate with the
three excited states used by these authors. The pertur-
bation H'' will combine it in the zeroth order with the
three functions considered as excited states previously,
and in the first order with such states as\hpyand\hpz ; the
perturbation H' will combine it in the first order with
other odd (with respect to the yz plane) states such as
qg“z andqghy. Taking the same ground state as before, non-
vanishing matrix elements for the electric and magnetic
moments in the y z plane are found which result in a con=-

tribution to the optical activity of the same order H'H'!
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as found for these other states. There is no apparent reason
why this contribution should be small compared to those pre-
viously calculated. If it is of the same order of magnitude,
it might easily change the calculated sign. The omission of
f and higher levels in the expansion of the excited state
wave functions is also questionable, inasmuch as their in-

P55

clusion (due to the perturbation E'') would result in com-
ponents of the magnetic moment perpendicular to the plane

in the transitions to the three excited states considered by
Gorin, Walter and Eyring. These same excited states give an
electric moment in this direction in the zeroth order, so

that inclusion of such terms would give rise to a contribu-
tion to the optical activity of the order H'!',

Finally, certain exceptions may be taken to the confor-
mations assumed by Gorin, Walter and Eyring. The orientation
of the hydroxyl group in Figure 8 probably corresponds to a
potential energy minimum due to steric repulsions between the
hydrogen of the hydroxyl and the groups bonded to C*. On
the other hand, the orientation of the ethyl group with
respect to its rotation around the 2,3-carbon-carbon bond is
very likely unstable, the great weight of experimental evi-
dence favoring the stability of staggered rather than eclipsed
conformations in compounds having internal rotation, except
where strong hydroxyl bonds may stabilize the eclipsed con-
formation. It is unlikely that hydrogen bonds involving

hydrogens bonded to carvon will be sufficiently strong to
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overcome the steric repulsions opposing the eclipsed orien-
tations. The staggered conformation in which the ethyl
group is rotated 180° from its position in Figure 8 would
be expected to be approximately at a potential minimum,
FPor the orientation of the hydroxyl group shown in Figure 8
the ethyl group makes no contribution to the rotatory power
in either of these two positions in which its carbon atoms
lie in the yz plane, in the approximations introduced by
Gorin, Walter and Eyring. Thus their calculation may be
considered as applying to the more stable conformation
suggested. The second orientation considered by these
authors in which the hydroxyl group, the asymmetric carbon
and the latter's hydrogen are coplanar probably makes no
appreciable contribution to the experimental rotation due
to the instability of such eclipsed orientations. There are
however two other orientations of the nydroxyl group which
would be expected on the basls of modern structural know-
ledge to correspond to positions of stable equilibrium:
first, that in which the hydrogen of the hydroxyl group is
trans with respect to the methyl group bonded to C*; second,
that in which 1t is trans with respect to the hydrogen bonded
to C*. These were not considered by Gorin, Walter and
Eyring; inasmuch as at least the first might be expected vo
have a statistical probability of the same order of magnitude
as the original orientation considered by these authors,

this omission serves to cast further doubt on the validity
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of their calculations. Furthermore there are probably other
stable orientations of the ethyl group which have statistical
probabilities of the same order of magnitude as the one to
which their treatment applies.

Calculations very similar to those just described for
sec-butyl alcohol have been applied by Gorin, Kauzmann and
Walter(3o) to the sugars % -methylarabinopyranoside, 2 -methyl-
arabinopyranoside, % -methyllyxopyranoside and ¢ -methyllyxo=-
pyranoside. The calculations for « -methylarabinopyranoside
were based on the enantiomorph shown in Figure 9, the confor-
mation being the chair form in which the carbon-oxygen bonds
of the hydroxyl groups attached to carbons 1, 2 and 3 are
approximately perpendicular to the mean plane of the ring,
rather than the other chair form in which these bonds are
approximately in the mean plane of the ring. In the structur-

al formula the two heavy lines lie in

I CH3 ///
HCOCH .
: N
HOCH u
HCOH 0
HCH OH 0 H
L v 3
H

Figure 9. PFischer projection formula of levorotatory
A -methylarabinopyranoside, as calculated by Gorin,
Kauzmann and Walter, agreeing with that derived by
relative configurational studies from the absolute
configuration assumed by Fischer for glucose. The
conformation to which their calculations apply is
also shown.
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the plane of the paper, the light solid lines project upwards
toward the reader, the dotted lines downward. No attempt is
made to indicate the orientations with respect to the inter-
nal rotations of the hydroxyl and methoxy groups, for which
reference may be made to the original paper. Gorin, Kauz-
mann and Walter calculated g =-1.06 x lO"34 (observed
lgl = 0.46 x 10‘34) for this isomer. The projection formula
of Figure 9 is in fact the one assigned to the levorotatory
isomer of this sugar, thus again supporting the correctness
of the original assumption of Fischer. The agreement between
the calculation for this sugar and that for sec-butyl alcohol
in this respect is a support for the one-electron theory
in that a disagreement on this point (i.e., finding agree-
ment with the Fischer assumption in one case, disagreement
in another) would be embarassing. Such agreement of course
does not prove the calculations are valid, particularly in
the face of the objections made above., Similar agreement
with the relative configurational studies of organic chem-
istry was found by Gorin, Kauzmann and Walter among all four
of the sugars they investigated.

The one-electron Theory was originally applied in some-
what different form by Condon, Altar and Eyring(22), in that
the zero-order wave functions were taken as those for the
three-dimensional harmonic oscillator, and the perturbing
potential taken as that due to the field of the dipole mom=-

ents assigned to the different bonds. Such calculations



were applied to methyl phenyl carbinol nitrite, the calcu-
lated rotatory contribution of the nitrite absorption band
beilng used to assign the absolute configuration implied by
the Fischer projection formula

i

H?ONO

C6H5
to: the levorotatory isomer. A magnitude of the same order
as that deduced for this bond from rotatory dispersion
measurements was obtained. However the same sort of calcu-
lation applied to sec-butyl alcohol gave a calculated rota-
tion several hundred times too small. The Eyring school
has since abandoned this procedure in favor of that previous-

ly described.

Part III Present status of the problem of absolute config-
uration

Waser(49) has given arguments leading to an absolute
configuration of tartaric acid based on correlation of the
crystal structure of tartaric acid as determined by Beevers
and Stern(So) and the observed crystal habit, using quali-
tative arguments as to the expected rate of growth of crystal
faces as affected by the number and ease of formation of
intramolecular hydrogen bonds. Schomaker(fl) however has
pointed out that the crystal habit used by Waser in his de-

ductions is that from the aqueous solution, where solvent
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molecules may be expected to compete with tartaric acid
molecules for the hydrogen bonding sites on the crystal
faces. It is therefore not obvious from a discussion
involving only tartaric acid molecules which faces will
tend to grow more rapidly. The result obtained by Waser
for the absolute configuratioh of dextrorotatory tartaric

acld is shown in Figure 10, where the heavy lines

COOH
N4
AN COOH
,C |
£ \\\ HO?H
OH i
e HCOH
“0H |
cooH COOH

Figure 10, Left, absolute configuration

of dextrorotatory tartatic acid accord-

ing to Waser. Right, the projection

formula of the isomer on the left

according to the Fischer projection

convention,
lie in the plane of the paper, the light solid lines point
upwards, the dotted lines downwards. The planar trans con-
formation of the four carbon atoms is that found by Beevers
and Stern; no attempt has been made to show in Figure 10
the orientations of the carboxyl groups with respect to
their rotations around the bonds to the neighboring carbon

atoms as found from the x-ray studies. Figure 10 also shows

the projection formula of this isomer according to the Fischer
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projection convention. The result is opposite to the
absolute configuration obtained for tartaric acid on the
basis of Fischer's assumption regarding the absolute con-
figuration of glucose.

Summarizing the results obtained for the absolute
configurations, the calculations of Kuhn, those of Eyring
and his co-workers, and those of the present work on 2,3-
epoxybutane all agree in finding the same absolute config-
urations as those currently in use by organic chemists,
namely, those derived from Fischer's original assumption
of an absolute configuration for dextrorotatory glucose and
the relative configurational studies of organic chemistry.
These results disagree with the deduction of Waser described
above.,

The resuvlt of Kuhn 1s open to objection as to the correct-
ness of the molecular conformation assumed, as well as on
other points as discussed above., The absolute configurations
assigned by Eyring and his co-workers have the advantage of
internal consistency with the relative configurational data
of organic chemistry, but are nonetheless open to question
as to the conformations assumed, certain details of the cal-
culations, and the adequacy of the general approximations
introduced. A check of the consistency of the g theory, or
first-order polarizability theory, awaits completion of the
experimental work described in the previous section.

It is interesting to point out apropos of the Eyring
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one-electron theory that its application to the compounds
Ltrans-2,3-epoxybutane and propylene oxide with the same sort
of approximations as introduced in the treatment of sec-
butyl alcohol would lead to the calculated optical activity
of the butylene oxide being only twice that of the propylene
oxide., No term corresponding to the interaction of the two
methyl groups appears. Inasmuch as the experimental rota-
tion of the butylene oxide is far different from this pre-
dicted value it must be concluded that a calculation of this
sort would be inadequate for a discussion of the rotatory
power of trans- 2,3-epoxybutane. Wnhile this argument cannot
be said to definitely prove the one-electron contributions
to be unimportant, inasmuch as higher approximations can be
introduced so as to bring in a methyl-methyl term, neverthe-
less 1t 1s necessary to observe that there is no apparent
reason why the methyl-ethyl interaction in sec-butyl alcohol
should be of a smaller order of magnitude (barring unfavor-
able orientations) than the methyl-methyl interaction in
trans-2,3-epoxybutane. Thus it must be considered probable
that in the calculation of Gorin, Walter and Eyring for
sec-butyl alcohol important contributions have been omitted.
lioreover it seems very likely that the omitted terms are of

the g“)type.
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MOLECULAR STRUCTURE OF 1,2 DICHLOROPROPANE VAPCR AS
DETERMINED FROM ELECTRON DIFFRACTION AND FROM

ANALYSIS OF DIPOLE MOMENT DATA

Part I: Electron Diffraction Investigation

This investigation was undertaken in order to obtain
structural information particularly with respect to the
internal rotation around the 1,2 carbon-carbon bond, for
the calculation of the optical activity according to the
theory of Section III. Only one structure determination
has been reported in the literature, that of Berger(52)
using x-ray diffraction from the gaseous molecules. He
assumed approximate values for the bond distances and
tetrahedral bond angles, and reported satisfactory agree-
ment between his intensity measurements extending to
q = 22 (for definition of q, see below) and theoretical

intensities calculated with the hindering potential V (¢9) =

Vo
e

placement between C-C-Cl bond planes, taken as zero at

(1-cos?¥), Vo = 0.88 kcal/mole, being the angular dis-

trans. Considering the low accuracy of the x-ray method
applied to gases, it seems clear that these results should
not be taken as conclusive. The structure of the related
molecule 1,2-dibromopropane was determined by Schomaker

and Stevenson(4l) using electron diffraction methods. They
reported the molecule to have normal values for the bond

distances and bond angles, and to have a root mean square
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torsional vibration of T 20° around the trans position.

Two independent samples were used in the experiments.
Sample I was the commercial Paragon product which had been
redistilled through a short packed column. It had a boil-
ing range 95.6 to 96.4° C, n%?o 1.4367, Sample II was
prepared from propylene glycol in this laboratory by
Dr. H. K. Garner: b.p. 96.3 to 96.4° C, n%?o 1.4368. These
values, particularly those for Sample II compare favorably
with those recently reported by Dreisbach and Martin(55),
namely b.p. 96.2° C, n3°° = 1.43638. The diffraction
apparatus has been described by Brockway(54). The camera
distance used in this investigation was about 11 cm. for
Sample I, while with Sample II photographs were taken at
both 11 cm. and 20 cm. The wavelength of the electrons
was about 0.06 E. The photographs which were utilized in
the measurements and in the drawing of the visual curves
were made with the gas near room temperature.

The two sets of photographs closely resembled each
other for the most part, those of Sample II being in gen=-
eral clearer. lieasurements of the diameters of the appar-
ent maxima and minima were made on both sets, corrections
being made for film expansion. Differences between the
measurements on two sets appeared where the pictures of the
first set were very diffuse and difficult to observe, and
also on the outer rings, where those of the second set

were much easier to observe. There were no systematic
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differences between the two sets, or between the long
and short camera sets with Sample II.

Figure 11 shows the visual curve V1 as drawn from the
photographs obtained from Sample I. In the course of our
use of the correlation method certain difficulties exper-
ienced in fitting theoretical intensity curves with W} made
it seem likely that several features had been erroneously
interpreted. This was borne out by the indepéndent obser-
vations of a third person, an experienced observer, Dr. Kenneth
Eedberg of this laboratory. The changes arising from these
considerations have been incorporated into visual curve V2,
as well as other changes resulting from observation of the
more distinct photographs of Sample Il1. 1In V2 the depth of
minimum 2 compared to minimum 3, the height of maximum 2
compared to maximum 3, the position of shelf 4 on maximum 3,
and the position of shelf 9 on maximum 10 represent reinter-
pretations in line with the views of the third observer.
The relative depths of minima 6 and 8 represent a compromise
between the opinions of different observers; the feature
is difficult to observe as regards this point. The relative
neights of the maxima 11, 12, and 13, and the shape and meas-
urements of minima 19 and 20, and meximum 19, represent changes
arising from observation of the second set of pictures. The
last mentioned features were already difficult to observej

beyond them the appearance seemed to be that indicated, but
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the exact appearance was very uncertain.

The radial distribution curves RDI1 and 'EiDI2 shown in
Figure 11 were calculated from Vq and V,, respectively,

using the equation

‘Imw( aqz
(v) = 3 inm qr
rDi(r q=Z”L..I.(epe St _I_éq

(138)
and the usual punched card methods(55’56’57). The conver-

gence factor a was so chosen that exp(—aq2) 0.10 at g = 100.
Well defined peaks are seen to occur at the distances ex-
pected for the C-C, C-Cl, C...Cl, and Cl...Cl bonds in the
molecule*: in RDI1 at 1.56, 1.82, 2.73 and 4.32 E respec-
tively; in RDI, at 1.53, 1.81, 2.72 and 4.30 ﬂ, respectively.
In both curves the C-H peak is distorted by low frequency
errors. The small, rather undulatory peaks of about one-
tenth the height of the major ones may in some cases corres-
pond to minor distances in the molecule, but may also be
caused by errors in drawing the visual curves. The peak at
2u] g is appreciably broadened, corresponding to a temper-
ature factor ag ,  c1 (defined below) somewhat less than

10“4, or to a symmetrical splitting of the three distances
with separations about 0.05 K on either side of the central
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* A connecting dash indicates a bonded pairj; dots, a non-
bonded pair.
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value. The peak at 4.30 K is broadened also, indicating
some motion of the chlorines. Perhaps the most striking
feature of the radial distribution curves is the high value
obtained for the C-Cl distance, some 0.04-0,06 X larger
than the usual value. The discrepancy is greater than is
to be expected to arise through error, and there can be
little doubt that the C-Cl bond is at least slightly longer
than found in the chlorinated methanes. The C-C peak 1is
not well resolved, and its position provides no certain
indication of the distance in the molecule. Consequently
the bond angles and, more interesting for the present study,
the anglecp specifying the internal rotation are not accur-
ately determined. The latter has been defined in Section
IIT. The indeterminacy in ¢ resulting from the indetermin-
acy in C=-C is illustrated in the following calculations
if we set C-Cl = 1.81, C***Cl = 2,72, Cle++Cl = 4.30,
then C-C = 1.50 gives P = 279, while C-C = 1.60 gives®P= 18°,

It is perhaps not out of place to include a few remarks
on the relationships to be expected between radial distri-
bution curves obtained by use of equation (138) and the
actual probability distribution of an internuclear distance
depending on an internal rotation as typified by the present
instance. For the sake of simplicity we will suppose that
the contribution I; p(q) of this distance to the total

scattering I(q) has somehow been isolated from the latter,
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and further that it has been determined exactly within a
range of scattering angle 0¢q¢qp 5 In our discussion we
shall ignore the dependence of the x-ray form factors on
q (see below). Under these conditions the actual probabil-
ity distribution function r2D(r) and the scattered inten-

sity are related by the equation

> -]
I,z (s) & f rD(r) sin rs dr ,
0

- X
5= 369 » (139)

which may be inverted to give

Co
rDAB(r)aZ/’IAB (s) sin rs ds . (140)
(o]

Because the conditions of the experiment do not permit the
observation of I(s) for s greater than a certain maximum,
resort is had to the introduction of the convergence factor
previously mentioned, a new function rD'(r) being defined as

= -a's?
rD'(r) O{/o IAB(S) e sin rs ds ,

X2 (141)
The Fourier folding theorem then gives as the relationship

between rD(r) and rD'(r)

(Y- —(I’—I"22
D' (r) o{}r r'D(r') e %2 dr!' . (142)
- o0
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Thus the effect of the introduction of the convergence
factor for the case when the distance AB is completely rigid
is to give rD'(r) the form of a gaussian peak instead of the
ideal delta function corresponding to rD(r); the position

of the peak of the former corresponds, however, to the
position of the latter. If rD(r) is itself a gaussian due
to thermal motion of the atoms A and B with a Hooke's law
force, rD'(r) becomes a gaussian of somewhat greater width,
the peaks of both being located at the same value of r.

With more complicated forms of rD(r), especially with asym-
metric rD(r), the relationship between it and rD'(r) becomes
more complex; in particular, the positions of the modes of
the two distributions will no longer coincide. As an
example, in the case of a torsional oscillation in such a
molecule as propylene chloride with the trans position as
the mode, the peak of the radial distribution function
obtained from equation (138) does not correspond to the
trans value of the distance, even in such an ideal case as
that just discussed. Sample calculations indicate that a
difference of the two modes of as much as 0.05§ or more
might result in a typical case. Values of the angle
calculated from the Cl.....Cl peak in the RDI do not,
therefore, have necessarily any direct significance in

terms of the angular coordinate of the mode of the actual

probability distribution of the distance.
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Turning now to the minor distences in the molecule, moder-
ately heavily temperature factored distances are expected
near 2.16 X and 2.45 K corresponding to the non-bonded
Cee+H and Cle-++H pairs having a common ligand. The CesC
term occurs near 2,52 ﬁ with even smaller amplitude (about
one-seventh of that of the C-Cl term). Forlq”4-300 a small
and possibly very heavily temperature factored term due to
the rotation dependent Ce..Cl occurs in the range 2.8-3.5 2.
If the internal rotation (torsion) is appreciable, the peak
may well be missed entirely. A variety of other terms due
to hydrogen interactions exist in the molecule but would
not be expected to appear in the RDI.

The distortion of the C-H peak is not unusual in mole-
cules as complicated as this. It was thought nevertheless
desirable to investigate more closely these obvious errors,
particularly when certéin points in the correlation treztment
required a comparison of nonadjacent features of the visual
curve as to their relative heights and depths. To this end
a peak corresponding to the position and shape expected for
C-HE was sketched in, as shown by the dotted curve in V, at
this neighborhood., The difference between this and the RDI
actually obtained was treated as a correction, Fourier-
inverted, and the result (after modification to allow for the
use of the convergence factor) considered as a correction
Vé to visual curve V2. There are presumably other errors

in the RDI, but because of its unique low frequency
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character, we consider this to be of particular interest.
The positive hump in V2‘ at small g corresponds to a rather
obvious but not too important mistake in drawing Vg. Other
than this, and of great interest, there is the negative peak
in the region of maxima 18 and 19. All observers were agreed
that the relative intensities of the pair of maxima 14 and 15,

maximum 17, and the pair 18 and 19 were as drawn in V But

o
great difficulty was found in fitting this with models accep-
table otherwise. This, combined with the negative correction
obtained in V,', lead us to believe that an error in inter-
pretation was made. This is not too surprising, since at
such large scattering angles observation is difficult; also
the disturbance of the edge of the film begins to be bother-
some there.

In the course of our application of the correlation
method it became desirable to consider the possibility of
moderate temperature factors in the CeseCl and Cle«.Cl
distances due to vibrational modes (in addition to the
torsional mode in the latter case). Thus we were led to
look into the normal coordinate analysis of simpler related
molecules. In past electron diffraction investigations it
has been usual to assume a rigid heavy atom skeleton unless
large amplitudes of vibration were obviously to be expected,

or unless the assumption made 1t impossible to obtain a fit.

The latter was the case with the Cee«Cl distance in the
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present investigation. But it is possible for confusion
to arise from the existence of a Cl**°*Cl temperature factor
of this sort: the attenuation which it produces in the amp-
litude is comparable to that of a reasonably large rotation-
al libration. Failure to differentiate between the two may
7
result 1n erroneous values for the potential hindering |
internal rotation. The situation is perhaps not as bad as
appears at first sight, since the difference in the inten-
sity dependence is quite marked for librations about trans;
consequently 1f the calculations are performed carefully
the effect may in some cases be detected. In practice,
however, this point seems not to have been noticedj; the
investigation of propylene bromide by Schomaker and
-Stevenson(41>, of ethylene chloride by Beach and Palmer(58)
and by Yamaguchl, lMorino, Watanabe and Mizushima(59)are
examples where the possibility of such an effect was not
discussed.

Normal coordinate analyses of trans 1,2-dichloroethane
have been published by ilizushima and Horino(602 Because
these authors did not require for tTheir purnoses the com-
plete determination of the forms of vibration which is nec=
essary for the calculation of the temperature factors, we
have repeated their calculatibns (neglecting the motions
of the hydrogens as in their first paper) using the same
force constants and obtaining the same frequencies. For

the averages of the squares of the displacements from the
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equilibrium position we obtained ArC—Cl = 0.0030,

2
Cl. L] .Cl

Calculation of the temperature factors defined in equation

ATE_g = 0.0026, ATZ o = 0.0063 and Ar = 0.0070.
(143) below then gave after reduction by a constant amount
such as to make a, . = 0t ag =0, ag, g1 = 0.00018,
agy,..C1 - 0.00020.

The skeletal motion in ethyl chloride was subjected
to normal coordinate analysis by Cross and Van Vleck(él).
We have very crudely estimated the temperature factors from
the frequencies and diagrams of the normal modes given by
them with the result, again referred to ap_ = O
ac.c1=0, ap,,.0c1 =0.00027. These calculations seem to in-
dicate but of course do not prove (because of the gquestion
of the adequacy of the simple valence force potential
assumed) that temperature factors of a moderate magnitude
are possible for these molecules. For obvious reasons we
have not attempted a normal coordinate analysis of 1,2=-
dichloropropane. However 1t seems reasonable that a simi-
lar order of magnitude might occur in corresponding dist-

nCces.

Proceeding now to the discussion of our use of the
correlation method we first list the various terms followed
by a number indicating the approximate relative scattering
weight. Of bonded pairs there are two C-C, 195 two C-Cl, 45;

six C-H, 17. ' nonbonded pairs which are bonded to a
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common atom there are one C...C, 6; three C...Cl, 45; seven
CeesH, 105 three Cl...li, 11, There are two important dist-
ances depending on the internal rotation: Cle.+.Cl with
welght 27 at trans, and the C...Cl, weight 13 for the same
configuration. The remaining interactions are hydrogen-
hydrogen, or hydrogen with a carbon or chlorine not bonded
to its ligand. These have a total weight of very roughly
45,

Theoretical intensity curves were calculated using
punched card methods(56957). In all the calculations un-
less otherwise specified C-C was fixed at 1.54 X. The se=-
lection of optimum values for the other parameters determines
the shape of the molecule, the actual size being then cal-
culated from the scale factor (average of q,510/9ps?*
Except where otherwise stated the following assumptions
have been made: Dboth C-C's equal, both C-Cl's equal, three
CeeeCl's equal. In the case of the last, however, it should
be mentioned@ that we found it necessary to apply a small
temperature factor to the term, as is made plausible by the
normal coordinate analysis mentioned; consequently, we could
also explain our results with three rigid Ce.++Cl distances
symmetrically distributed with separation of about 0.05 .
e have assumed the C-C-C bond angle to be tetrahedral,
and also all bond angles (insofar as we have considered the

)

interactions concerned) involving hydrogen to be tetrahdral.
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Furthermore we have neglected the contribution of the
hydrogen-hydrogen terms to the scattering, as well as the
terms involving hydrogen and carbon or chlorine when the
latter are not attached to the carbon bonding the hydrogen
concerned. The total weight of these neglected terms is
perhaps impressive, but it must be remembered that they
undoubtedly have severe temperature factors due to the
bending and stretching motions of the hydrogens and, in
the case of the second variety mentioned, depend also on
one or both of the internal rotations. An approximate
calculation, using reasonable values for the hydrogen force
constants and frequencies, assuming no rotation around the

1,2 C-C bond but free rotation of the CH, group, gave a

k-
contribution for these terms which damped out very rapidly,
decreasing to one-tenth at g = 353 the changes in the theo-
retical intensity curves even at smaller scattering angles
were rather minor. In the calculation just mentioned, and
all the following calculations of intensity curves, we have
used ay_; = 0.00016, a Cl...H
With the above assumptions the remaining shape para-

. and a = 0.,00030.

CO..I‘l
meters may be taken as 1) C-H; 2) C-Clj 3) Ce+++Cl; 4) posi-
tions of the minima of the potential hindering internal
rotation around the 1,2 C-C bond; 5) shape of the potential
barriers, especially in the neighborhood of the minimaj

6) skeletal vibrational temperature factors.
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The appropriate equation for the intensity function is

_ (z, f)(z, ) goud’ xv
L@ = ¢ --mtzJ-u Z ER
l.*J
Q(j= 12 Ar .
200
(143)

The sum is over all the pairs of nuclei in the molecule, Tij
being the distance separating nuclel i1 and j. 24 is the
atomic number, f; the x-ray form factor for nucleus 1. In
the first equation the bar indicates an average over all
pairs of nuclei. In the second equation the bar indicates
the statistical average in the equilibrium ensemble. Use

of the factor exp(- aquz) implies the assumption of simple
harmonic motion. Where the latter assumption is not permis-
sible, the factor T%:é-o‘u Sink %4 must be replaced by

fr D(r;;) stn%qum s Nt D) dryg being the
probability that atoms 1 and J are to be found a distance

apart between r;. and r,. + dr

1] i3 i3 and the integral being

over the range of wvariation of Tije In the calculations
reported here the x-ray form factors have not been included,
inasmuch as trial calculations showed the changes occurring
on their inclusion to be rather minor.

The internal rotation was first treated on the assump-

tion that but one significant potential minimum is present,
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and that the form of the potential may be sufficiently well
represented by V(p) = %9 [l-cos (%-ﬁQ]. The effect of the
possible existence of other minima is described later.

The correlation of the theoretical curves is to be
done with V,3; it is necessary to bear in mind, however,
that there will in general be a range of acceptability for
each feature. Examples of this will be mentioned in the
course of the description below. The number of parameters
involved, as well as the complicated nature of some of them,
permit no more than give a rather brief summary of the work.

It was not found possible to find acéeptable correlations
with models having a single rigid CeseeCl distance. The
features primarily requiring a temperature factor in this
term were the tripled maxima 11, 12, 13 and the doubled maxima
18 and 19; however it is possible to fit both of these features
with a rigid CeseCl, the difficulty being that other features
cannot be made acceptable.

Theoretical intensity curves are shown in Figures 11 and
12, the parameters being given in Table 3. Curves D1, D2
and D3 of Figure 11 illustrate the effect of varying the
equilibrium angle¢ while retaining the same "barrier
height" Vo and other shape parameters. Of the features
which vary considerably with this change we may discuss
particularly the relative amplitudes of maxima 6 and 7, which

are seen to be quite sensitive to this variation. A best
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value of ¥,, subject to the arbitrary assumption of the
other shape parameters is easily chosen. To illustrate

our diff'erentiation between acceptability and nonaccepta-
bility for this particular feature, we mention that in D1
and D3 we regard it as being unacceptable, while D2 is

quite good. An important and interesting effect is evident
in these three curves, namely,the amount of attenuation of
the Cle++Cl term varies, although Vo 1s the same for all,
This is due to the rather rapid increase of%ﬁ as ¥ in-
creases from zero. The maximum of Taq,..C1 8S a function

of P at P = 0 has a further result in that the probability
distribution of distances is asymwetrical. The effect of
this may be roughly described as follows: glven an asymmet-
rical distribution of distances, in which there is a single
mode which does not coincide with the average, the "effective
value" of the distance for small scattering angles 1s the
average; at large scattering angles it is approximately the
mode, the transition taking place gradually. The attenua-
tion of the amplitude increases as the range of distances
included in the range of highly probable values of § in-
creases, <Thus for a given value of Vo, with®, at trans the
asymmetry is at a maximum, and the deviation of the effect-
ive value of rc1...01 in the first part of the scattering
pattern from the mode (which is the trans value) is at a
maximum, With Y, away from trans the range of variation of

the effective valve of the distances decreases, while the
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Figure 11 Radial distribution, visual and
theoretical intensity curves.
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Figure 12

Theoretical Intensity Curves
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TABLE 3

Distances* and angles in the models of Figures 11 and 12

Model C-Cl C...Cl Vg, %%%% Yo degrees ag, . .c1 2cl...Cl
D1 179 2+70 30 -10 0,00010 0,00010
D2 1.%79 2.70 30 =20 0.00010 0,00010
D3 1«79 2470 30 =30 0,0001C0 0.00010
D6 L1+79 2.70 10 0 0.,0001C 0,00010
C83** 1,80 2+73 4 o) 0.00010 o)

D11 1.82 2.74 60 -25 0,00010 0
D1% 1.76 2.64 60 -20 0,00010 0

Cc57 179 2.72 30 =20 0,00010 0,00010
D14 1.76 2.68 60 -15 0.,00010 0

D7 1.76 2.66 30 =20 0.00010 0,00010
ce5 173 2.60 30 -15 0.,00010 0,00010
Cc81** 1,80 2.73 10 0 0.00010 0,00010
H9 179 2.70 30 -20 0 0

H10 1«79 2.70 40 -20 0 0

H1ll 179 2.70 30 =20 & 0

C66 i 2.70 - ——— 0 o)

C67 1+79 2470 -- - o) 0

C68 L 2.70 - - 0 0

wise noted.

%  (0=C = 1,573 C-H = 1,06,

, respectively, unless other-
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attenuation of the amplitude increases for the same Vo.
Thus there is a rather subtle interaction of the parameters
Vo and 41. An example of this can be seen in Figure 11:
although curve D1 with Vo = 30 kcal/mole and¢9°= -100 is

unsatisfactory becauselPlis too small, curve D6 with¢,= 0°

and Vo 10 kecal/mole is acceptable. Curve C83 with41= o=

and Vo = 4 kcal/mole is unacceptable.

We have investigated a corresponding range of angles
for a series of values of both C-~Cl and Ce+Cl, using a
simple device to investigate the effect of varying C-H where
this appeared worthwhile. As described above one soon obtains
a gqualitative understanding of the nature of the interdepen-
dence of Vo and 41, so that the order of magnitude of Vo
may be anticipated. Thus for angles greater than about 309,
no satisfactory curves were found; for angles near 209, Vo
in the neighborhood of 30 kecal/mole is satisfactory; for the

trans position, V_ in the neighborhood of 10 kcal/mole is

0
required. Curves for different combinations of C-Cl and
CessCl are shown in the figures, the best value of 9, having
been already chosen for each combination.

It is convenient first to discuss the curves in regard
to the shape and size of the doublet maxima 18 and 19. Thus
in D2, D11, and D 15 the feature lacks the proper shape

required by our interpretation, maximum 19 being not sufficient-

1y pronounced relative to maximum 18. In C57 the shape is
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satisfactory, but the overall height of the feature somewhat
small. The shape is also satisfactory in D14, and the size
somewhat improved. If C-Cl is chosen as low as 1.73 K and
Ce++Cl then selected so as to give a satisfactory shape to
maxima 18 and 19, there is then no choice of ¢, which makes
the inner features, particularly maxima 6 and 7, satisfact-
ory. If a somewhat larger C...Cl distance is chosen (same
C-Cl) the situation is reversed; there seems to be no satis-
factory choice with C-Cl this small. For C-Cl equal to
1.82 E and greater the curves have satisfactory shapes at
these two features, but the height of maxima 18 and 19 de-
creases. Other defects arise also: the tripled maxima
begin to degenerate into a high doublet on the outside, and
a small, separated inside member.
| In all the curves which we have so far called accep-
table, there are in one respect or another certain deficien-
cies associated with the height of maximum 10 relative to
that of maximum 8 and the tripled maxima 11, 12 and 13, with
the depth of minimum 9 relative to that of minima 8 and 11,
and with the depth of minimum 11 relative to that of minima
9 and 1l4. Two experienced observers both gave as their
opinion that maximum 10 should be higher than the line join-
ing maximum 8 and the triplet, minimum 9 deeper than the
line joining minima 8 and 11, and minimum 11 shallower than
the line joining minima 11 and 143 in each case the 1limit of

acceptability was thought to be the tangency of the feature
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and the line. This reguirement is already a revision of the
original observation, which implied more stringent require-
ments. These were concerned with the relative amplitudes of
pairs of adjacent features: thus, maximum 10 was interpreted
as being higher than maximum 8. It is indeed difficult to
avoid this interpretation of the photographs. However we
regard an observation of this kind as being easily in error
due to the difficulty of estimating sufficiently accurately
the behaviour of the effective background. The comparison
of three adjacent peaks (or minima) we regard as being more
reliable. We were led to make this reinterpretation by dif-
ficulties in fitting the first type of observations.

Thus, as regards maximum 10, curves €83, D6, D11, D15
are barely acceptable, curves D2, D14, C57 unacceptable.
Curves D2, D7, D11, €83, C57, D14, and C65 are barely
acceptable or acceptable at minima 9 and 11l. D15 is un-
acceptable at minimum 11, borderline with respect to minimum
9. No curve is everywhere satisfactory; D11, while satis-
factory at the features just discussed, is not so at maxima
18 and 19. lodels similar to D11, except in having a longer
CeeoCl (equal to 2.76 X, say) are even better as regards
maximum 10, as well as minima 9 and 11, and have a symmetri-
cal doubled maximum 18-19, but the latter is rather too
small to agree with our interpretation (even considering
the correction V,'), while the triplet suffers the deter-

ioration of its shape previously mentioned. Also, the
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height of the outer two of its members becomes equal to
that of the following doublet (15-16). The observations
give distinctly the impression that the following doublet
is the stronger; however our understanding of the visual
process would suggest that this is a natural type of mis-
interpretation if the triplet feature may be considered
as a general maximum of greater width than the doublet.

Curves with still larger values of C-C1l (1.85 K)
were calculated, but cannot be regarded as satisfactory
because of an accentuation of the defects already com-
mented upon for C-Cl = 1.82 X, and other defects as well:
maximum 9 occurs too far up on maximum 10, and maximum
13 tends to become higher than 12.

Finally, in the hope of relieving the difficulties
which have just been described we have investigated briefly
the effect of varying C-H. The difficulty at maximum 10
may be removed or reduced by shortening C-H to 1.04 E or
some intermediate value. Sometimes this will adversely
affect the relations at minima 9 and 11, sometimes not.
Such a change has appreciable effect only in the middle
part of the scattering curve, becoming small at large
scattering angles due to the temperature factor in the
term.

As the best choice of shape parameters subject to the
assumption of a cosine barrier with a single minimum we
give C-E = 1,04, (C-C = 1.54), C-Cl = 1.76, Ce++Cl = 2.67,
0,00010. There is

0¢|P|¢25%5 Vo 24 keal/mole; ag,..cl
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not sufficient difference between the curves calculated for
different values of o, provided an appropriate choice of
VO is made, to Jjustify a choice among them. For ¢, = O,
Vo = 10 kcal/mole; for o, = -250, V, = 30-40 kcal/mole are
optimum values. For the larger values of V, (andi{,|) a

temperature factor a = 0.,00010 is helpful, to remove

Cle++C1l
a hump on the outside of maximum 17 which does not corres-
pond to the observation. It also results in the coalescence
of maxima 18 and 19 into a single broad maximum, but this we
regard as entirely compatible with our observation. For
lower values of Vo, for which¢) must be at or near trans,
inclusion of such a Cle+«¢Cl temperature factor results in

but little change in the optimum choices of the parameters.
In many of our calculations we have not included this temp-
erature factor because of the amount of lavor involved.

The application of an interpolated scale factor to the
values just chosen gave C-I = 1,06, C-C = 1.57, C-C1l = 1.80,
CeesCl = 2.7335 C81 is the curve for this model. Table 4
shows the comparison of the g values of the maxima and minima
calculated from this model with the observed values. The
average value of qcalc/qobs deviates from unity due to un-
certainty in the interpolation. The distances in this model
after correction with the average of qcalc/qobs are shown
with their relative weights in RDI,, where the dashed bound-
aries indicate temperature-factored distances, The distances

A

thus calculated are not the optimum values due to the fact
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IABLE 4

Observed and calculated positions of apparent maxima
and minima

lax {in dobs™ Qea1c(CO1) Geale/dohs**
1 4,6 B (0.913)
1 642 50 ( «935)
2 74 744 (1.000)
< 9.5 10.1 (1.063)
3 12.2 12.6 (1.033)
3 15.6 15.4 0,987
4 172 182 (1.058)
4 19.0 19.8 (1.042)
g 20.9 81..0 1.005
5 24,3 o4 .4 1.004
6 2743 27 .4 1.004
6 29.9 29.0 0.970
7 31.2 3146 1.013
7 33.0 33.4 1.012
8 32+3 35.0 0.992
8 38.4 37.3 0.971
9 41,2 41.4 1.005
: 4359 43,1 0.986
10 45,1 44,6 .989
10 47,0 46,9 .998
11 50,0 50,0 1.000
11 53.0 52.6 0.992
12 54,8 54,5 « 994
12 5745 5742 999
13 99.4 5847 . 988
13 60.6 60.5 . 998
14 63.6 63.8 1.003
14 67.3 66.8 0.992
15 68.8 68.3 . 993
15 7042 69.8 . 994
16 73.0 73.0 1.000
16 76.0 795 0.993
14 783 770 . 983
17 81.8 80,2 . 980
18 85.6 8643 1.008
18 89.6 89.9 (1.003)
19 92.4 9.5 (0.990)
19 952 93.1 ( .978)

ave: 0,995 ¥ 0,008
Scale factor* = 0,993

* The values of (gpg Were calculated from the ring measure-
ments using a ten%ative wave length of 0.0608 A. The
value of the wavelength interpolated from calibrations
preceding and following the experiment is 0.06065. This
decreases the scale factor to 0.995 x 0,06065 = 0.993.

. 0608
*%¥ The parenthesized figures were omitted from the averaging.
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that the wave length 0.0608 used in computing from the

Yobs
measured ring diameters 1s somewhat larger than the value
0.06065 indicated by calibrations. Use of the scale factor
obtained in this way, and consideration of the expected

limits of error in the sigze determinstion as well as of the
range of acceptability of the shape parameters give as the
optimum values C-C = 1.56 A, with limits 1.49-1.60 Aj

C-Cl = 1.79 * 0,035 L; Ce+eC1 = 2,71 ¥ 0.025; V, 3 4 keal/mole;
|¢Q|£3OO¢ with the previously discussed correlation in the
optimum values of Vg and P,. It is difficult to choose

best values of Vo and ¢, ; those of €81, viz. Vo = 10 kcal/mole,
41# O are as good as any. We refrain from reporting a det-
ermination of C-H, since except for the finer points of
interpretation which have been mentioned, the scattering 1s

not very sensitive to its variation. We have indication of
errors in the visual curve corresponding to this distance

in the distorted appearance of the C-H peak in the RDI. Its
small weight, short distance, and temperature factor combine

to make 1t rather inaccessible to the electron diffraction-
visual method. The difficulty in obtaining a really good

it to our observations is also an indication of error in

the estimation of the delicate intensity relations, and it

does not seem likely that the rather close choice of the
C-I value which is best really corresponds to an accurate
determination. Indeed, it would seem unlikely that the C-H

‘ 0
distance is much different from 1.09 A.
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The uncertainty in the sign of ¢, indicated by the
absolute value signs arises because the only important term
which depends on the sign is the odd Ce.«.Cl, with an ampli-
tude for a rigid molecule of about half that of Cle.sCl,
The values of Vo which have been seen to be necessary result
in very heavy temperature factors for this term since it,
unlike Cle««Cl, is well removed from its extremal values for
the required values of §,. For Vo = 30 kcal/mole and ¥, near
trans, the C...Cl term has decreased to one quarter of its
initial value at q = 35, This initial value being itself
small, the term has little effect. For smaller Vo, it is even
less important. For larger Vo, tending toward rigid models,
the term becomes more important, and indeed, for the larger
values of the magnitude of q% the positive sign is unsatis-
factory. We have not made a detalled investigation of the
question of the upper limit of Vo, primarily because its exact
value is not of particular importance in the computation of
the optical activity. The longer persistence of the CeseCl
term for very large Vo results in these values tending in
general to be somewhat unsatisfactory. It seems g priori
likely if the equilibrium position departs from trans, that
it will be displaced towards negative 4%, due to the repul-
sion between the CH3 and Cl. The van der Waals' radii of
methyl and chlorine are approximately equal; if the repul-
sions are sufficiently similar, the conformation would be

expected to be like that of 1, 1, 2=-trichloroethane, for
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which Turkevich and Beach reported a displacement of about
10° in the corresponding direction(éz).

The above limits on C-C are considerably larger than any
likely variation of the distance from the covalent bond dis-
tance l.54. Because of this uncertainty, the value of the
C-C-Cl bond angle varies over a wide range also: taking the
central values for C-Cl and C+¢++Cl and the extremes for C-C,
the corresponding range for this bond angle is 111.30-106.20;
the quoted optimum C-C distance gives 108.0°.

Thus far the correlation method has been based on the
assumption of but one significant minimum of the potential.
We wish now to investigate the effect of the existence of
other minima. That such exist would be predicted from the
work of Gwinn and Pitzer(45) on ethylene chloride, and the
configuration found for 1, 1, 2-trichloroethane by Turkevich
and Beach(62). We believe the importance of staggered con-
figurations over eclipsed to have been sufficiently well
established to rule out appreciable contributions of the
latter compared to the former for temperatures of interest
here. Considering the work just mentioned we regard the
three most likely isomers to be: the trans or near-trans
form, which has already been considered; the gauche or skew
form in which the CHj is trans with respect to the Cl (equi-
valent to skew isomer of ethylene chloride if H replaces

CHB); the "staggered cig" in which the H of the CH(CH3)Cl



group is trans with respect to the Cl of -CH201. We suppose
that in the latter the steric repulsions are sufficiently

large to render 1t unstable relative to the other two for
temperatures of interest, as was found to be the case in the
corresponding isomer of 1, 1, 2-trichloroethane(@E 2500 cal/mole)

(63)

by Thomas and Gwinn If the net reactions concerned are
repulsive, as seems likely, then we expect the weight of the
skew isomer to vbe intermediate between half the value found
for ethylene chloride (0.1) and that for trichloroethane (0.5).
As is apparent from the discussion of Section III, in order

to obtain an unambiguous sign for the calculated optical
activity it is necessary to place an upper limit on the amount
of the skew isomer present. Our treatment of the problem is
directed toward this end.

The amount of labor involved and the result obtained
with the approximate treatment to be described have led us
not to make a detailed examination of this parameter along
with the rest. Rather we have simply periformed a few cal-
culations for various relative amounts of the two isomers
by adding the corresponding curves in the appropriate ratios.
In the discussion to follow we will for brevity refer to the
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