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ABSTRACT 

The optical rotatory power of a fluid system of mole­

cules is calculated. The result is the same as obtained 

by previous investigators using similar but less satis­

factory arguments. Various means of calculating the opti­

cal activity of a substance are discussed, one previously 

used by Kirkwood being employed to discuss theoretically 

the absolute configurations of trans-2,3-Bpoxybutane, 

1,2-dichloropropane and 1,2-dibromopropane. An experimen­

tal investigation of the molecular structure of 1,2-dichloro­

propane by electron diffraction methods is described. 
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INTRODUCTION 

The rotation of the plane of polarization of a beam 

of linearly polarized light during its passage through a 

material medirnn was first observed by Arago(l) in 1811, in 

crystalline quartz. In 1815 Biot and Seebeck( 2 ), during 

experiments designed to investigate the effect of sur-

rolu1ding media on the optical rotatory power of quartz, 

noted that several liquids as well as aqueous solutions 

of certain substances also exhibited the same ability to 

rotate the plane of polarization of the light beam. In 

1817 Biot( 3)observed optical activity in the vapor state 

of certain substances. 

Pasteur( 4 ) in 1848 made the very important and famous 

discovery of the existence of two isomers of sodium 

aT!Lrnonium tartrate, differj_ng in the signs of their opti­

cal rotations, and having crystal habits related to each 

other as mirror images. He produced these by crystalli-

zation from the racemic mixture at temperatures slightly 

below room temperature, this being the first resolution 

of a racemic mixture. From the experimental evidence, 

Pasteur<5) empirically deduced as the criterion for the 

possibility of existence of optical isomers the non-super­

posability of the molecule with its mirror image. He 

realized at the same time the necessity of using three-

dimensional molecular models, but did not propose a spec­

ific geometrical structure. The latter was done nearly 
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simul taneously by van't Hoff(b) and LeBel(7) , with their 

famous suggestion of the tetrahedral carbon atom, and 

their correlation of optical activity with the presence 

of an asymmetric carbon atom in the molecule. Both exper­

iment and theory have since shown that the latter require­

ment for optical activity is too special, the correct one 

being the more general criterion of Pasteur. 

Soon after the discovery of optical rotatory power, 

Fresnel CS) proposed a theoretical explanation for the 

phenomenon in crystal s such as quartz, where the rotatory 

power disappears on fusion or solution in optically inactive 

solvents. He postulated a helicoidal arrangement of the 

atoms, there being two such arrangements identical except 

for one being right-handed, the other left-handed. Since 

then modern x-ray crystallography has indeed confirmed this 

postulate of Fresnel. With this hypothesis, he showed 

that the refractive indices of a given (right- or left­

handed) helicoid w-0uld be different for right and left 

circularly polarized light, and that this would result in 

the rotation of the plane of polarization of a linearly 

polarized light beam. 

Such an explanation is obviously not applicable to 

those substances exhibiting optical rotation in the liquid 

or vapor states, and indeed an adequate theory for these 

cases was much longer in forthcoming. Drude(9) developed 

a theory in which the electrons in the molecule were 

supposed constrained to vibrate in helicoidal paths. 
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Besides the artificiality of the model, it has since been 

shown by Kuhn(lO) that Drude's calculations contained an 

error, and that the model correctly treated gives no opti-

cal activity. A satisfactory explanation was first found 

nearly simultaneously by Born(ll), Oseen(l2) and Gray(l3). 

These authors perceived that it was essential to consider 

the retardation of the light wave over the molecular dimen-

sions; when this was taken into account optical rotatory 

power was found to be a natural consequence of the molecular 

theories then extant. Born and Oseen based their theories 

on the classical coupled-oscillator models of the disper-

sion theory, making no specific correlations with the mole-

cular structure. Gray, on the other hand, considered a 

specific molecule, postulating harmonic oscillators located 

in particular groups or atoms in the molecule, and developed 

the theory in terms of the polarizability of these groups~ 

The Born-Oseen and the Gray theories are similar in prin­

ciple, differing only in the specific assumptions made 

about the model. Gans(l4 ) has pointed out several errors 

in the original Born-Oseen theory. A specializa t ion of 

this classical theory has been extensively applied by 

Kuhn. A brief discussion of his method will be given later. 

The polarizability theory has been improved by de Mallemann(l5) 

and by Boys(l6 ) but usually unwarranted assumptions of 

optically isotropic groups in the molecule have been made. 

A general quantum mechanical formulation of the problem 

of optical activity was given by Rosenfeld(l7) in 1929. 
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The quantum mechanical foundations of the Rosenfeld argu­

ment naturally are free from the defects of the classical 

oscillator theories, and the general formula obtained is 

the appropriate starting point for discussions of the 

optical rotatory power of specific quantum mechanical 

systems. 

Here we shall devote ourselves first (Section II) to 

the derivation of the Rosenfeld formula, following the 

general lines of Rosenfeld's argument, but treating cer­

tain points in greater detail. In Section III the genera­

lized polarizability theory of Kirkwood will be described, 

and application made to the determination of the absolute 

configurations of several optically active compounds. The 

one-electron theory of Eyring and his co-workers and Kuhn's 

application of the classical coupled-oscillator theory will 

be briefly discussed in Section IV. There we shall also 

give a brief summary of the problem of the absolute config­

uration as 'it stands at present. Section V will describe 

an electron diffraction investigation of the molecular 

structure of 1,2-dichloropropane, one of the substances 

considered in Section III. 
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QUANTlJ1JI IvIECI-IANICAL AND STATISTICAL MECHAN ICAL 
THEORY OF THE OPTICAL ACTIVITY OF FLUID SYSTEMS 

Introduction 

The published derivations(l7,lB,l9) of the Rosenfeld 

formula proceed in the following scheme. The effective 

external electromagnetic field on the molecule is taken to 

be that of a simply periodic plane light wave; the induced 

electric and magnetic moments are then calculated, an 

average be ing taken over the angular orientations of the 

molecule with respect to the light wave, treating all 

orientations as equally probable. This last step is intro-

duced since we desire to calculate the induced moments for 

the gaseous or liquid states in the absence of other 

orienting electric or magnetic fields, rather than in the 

presence of such fields or for the crystalline state. The 

Lorenz-Lorentz relation for the effective field in terms of 

the macroscopic electric intensity and polarization is then 

introduced in a not wholly consistent way to obtain the 

polarization and magnetization in terms of the macroscopic 

field vectors. Using these equations as materia l equations 

and Maxwell's equations for a dielectric medium, it may be 

shown that the medium exhibits circ1Jlar double refraction 

and therefore optical activity. 

It is to be noted first of all that in a fluid system 

of polarizable particles through ·which a plane light wave 

is propagating, the electric (and magnetic) field acting 

on a given molecule at a given instant does not correspond 
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to a simply periodic plane wave, in spite of the fact 

that this may be the character of the incident wave. 

This is due to the radiation fields of the induced mom-

ents in the other molecules. If the other molecules were 

stationary the effective field would be simply periodic 

with the frequency of the incident wave, though not in 

general plane wave in form, depending on the configuration 

of the molecules. The actual motions of the molecules in 

a fluid system result in an extremely complicated time 

dependence of the effective field at a given molecule. 

However, for frequencies in the range of visible light, 

the electromagnetic field due to the incident light will 

have completed many cycles over a period of time required 

for appreciable variation in the field due to the molecular 

motions. Consequently we may to a good approximation treat 

the induced moments as simply periodic with the frequency 

of the incident light wave. 

The average electromagnetic field at a given molecule 

is a plane wave, as indicated by experiment and demon­

strated theoretically by Lundblad( 20) for the case of an 

infinite medium in which the molecules composing the system 

are optically isotropic. However, such a quantity as the 

average of the curl of the electric field at a given mole-

cule will not in general be identical with the curl of the 

average electric field at the molecule, since the statisti­

cal weighting function will in general depend on the coor­

dinates of the given molecule, as well as those of the 
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other molecules. As will be seen later, such quantities 

as those of the former type enter into the theory, so that 

it is essential to avoid the assumption of plane wave de-

pendence of the instantaneous effective electric field. 

The distinction between the two types of quantities may 

also be drawn from arguments based on the Lorentz cavity, 

as was pointed out by GansC 14~ however, because of the 

added clarity of arguments based on statistical mechanics 

it seems preferable to follow the latter reasoning, espe­

cially since the exact nature of the assumptions involved 

may be more clearly seen. 

Accordingly, we will first (Part I) develop the quan-

tum mechanical formulas for the electric and magnetic 

moments induced in a molecule initially (before the appli-

cation of the electromagnetic field) in a given quantum 

state. The electromagnetic field will be assw11ed to be 

simply periodic, but otherwise arbitrary, except that it 

must satisfy Maxwell's equations for a vacuum. Having 

done this, the remaining problem will be the statistical 

mechanical one of averaging the resulting formulas over 

the various quantum states of the system. 

Part I: Quantum mechanical theory 

We formally suppose the Schrodinger equation to have 

been solved for the molecule in the field-free condition; 

the time-dependent Schr6dinger equation is then set up 

and solved by the me thod of variation of constants, the 
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expansion being in the eigenfunctions of the Hamiltonian 

in the absence of the field, treating the part of the 

Hamiltonian arising from the presence of the field as a 

perturbation. If we denote the complete Hamiltonian (in­

cluding the field terms) by H, the time-dependent Schro-

dinger equation is 

H 'l' =ii; dq> 
at • 

(1) 

In accordance with the above, we write 

0 
+ H1 (t), H = H (2) 

0 

where H is independent of time, and is the Hamiltonian 

for the system in the absence of the electromagnetic 

field; H' (t) is the time-dependent term arising from the 

presence of the light field. To obtain a solution of 

equation (1) we write 

' 
(3) 

0 

where the o/K are independent of time, and satisfy the 

equation 

• (4) 

Substitution of equation (3) into (1) with use of (4) then 

gives, after the familiar multiplication by any arbitrary 
0 

~ and integration over configuration space, the well-known 
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system of equations 

d.Cj 

d. t 
j = 1; .... 

( 5) 

I I 

where Hjl< is the usual matrix element of H(t) in the repre-

sentation of the eigenfunctions of ~ and VjK :.1..(Ej-EK) . 
I n 

We suppose H(t) to be small, as can evidently be done 

by making the light intensity sufficiently weak. The 

system of equations (5) is then solved approximately by 

replacing the coefficients CK(t) on the right-hand side by 

their values cl<(to) at some initial time to' the latter 

values being supposed known from the statement of the 

problem. If we also specialize to the case of present 

interest, that is, periodic H
1
(t), we may write 

' 
(6) 

where A is independent of the time. It is necessary, 

however, to consider the initial condition. In order to 

avoid the appearance of incoherent terms depending on the 

manner of turning on the perturbation at time t 0 , we will 

use a device due to Born(2l) and write, in place of 

equation (6), 

= 0 , t ~ to (7) 
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where er is real and positive. This represents an approxi-

mately periodic perturbation of slowly increasing amplitude; 

by suitable choice of () we will obtain the purely periodic 

case of equation (6) in the limit as () approaches zero and 

t 0 approache s minus i nfinity. ~Ve further suppose that at 

t 0 the system is known to have been in quantum state i, 
0 

with eigenfunction \fJi • Thus 

• (8) 

Using equations (7) and (8) in (5), we obtain 

d.cj 1 (A0 
.. 2.nivt A0 + .. e-2.lTLVt)e<rt+2.1TiiiJLt 

-- =-:-- ~Le + JL 
dt tfl ' ( 9) 

an approximation valid for t not too far removed from t 0 • 

Integrating equation (9) between t 0 and t, one finds 

0 2.ni(v· ·+11) t A··e JI. 
Jl 

°At .. e2ll'i(~i-v Jt + ~J~l ____ _ 

z 7Tl(vji. -v )+<r 

crt e 
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Now <1" and t 0 are at our disposal, and the Born device is 

to allow <r to approach zero and t 0 to approach minus in­

finity in such a way that CJ""t 0 approaches minus infinity, 

' for instance by set ting <J"'= €.. , t 0 = - E, 2. , where £ > 0 , 

and allowing e to approach zero. Then <rt approaches 

zero, ~to approaches minus infinity, and in the limit we 

have 

A~i ~2ir4!~ 1 -11Jt) 
J-1~-)I . 

(11) 

Substituting in equation (3) we obtain as the first 

order equation for the wave function under the influence 

of the perturbation 

tiJ -21tl ~·t 
Ti e L 

l 

L (A
o . -271'L(v~-v)t 

.J_ Kl e + 
h v. .+ y 

I<. KL 

where the subscript i has been added to 'P to indicate 

(12) 

that it corresponds to that state of the perturbed system 
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which is derived from the ith state of the unperturbed 

system. 

The diagonal matrix elements of an observable f in 

the perturbed system are then given by 

0 O• 

f.. 
ll 

AiK f ki 

h(1'il< +JI) 
+ 

(13) 

where the zero over a matrix element of f indicates that 
0 

the matrix element is in the representation in which H is 

diagonal. 

The Hamiltonian for a system of particles in an electro-

magnetic field is 

~ 

where H is the Hamiltonian in absence of the field; AT 
and ~T are respectively the vector and scalar potentials 
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at the position of particle T' ,e,. and m1 are respectively 
.... 

the charge and mass of particle 1' ; and p,. is its momen-

tum operator. The sum goe.s over all particles of the 

system. Condon, Altar, and Eyring< 22 ) have shown that the 

neglect of contributions of the particle spins of the form 
.... ~ 

S,. • { ~ x A )T in the above expression is justified in dis-

cussing the phenomenon of optical rotatory power. 

Since we are interested in forming a linear theory 

and since the perturbing field is supposed to be small, we 
·2 neglect the term in AT • We then have 

In accordance with our supposition of a simply periodic 

field we 1ITi te 

A- _ , (A!a. 2ntvt A~* -l.lfiJ't ) - 2 e + e , 

( 16) 

0 0 
where A and ~ are functions of the coordinates but not of 

the time. Substituting equation (16) into (15), and com­

paring with (6) we find 
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0 ~ 

f\ =,[ { ;~c t( p,..A*cr,.1 + A*c~ > ·P,. )+ te,.~* c~> J. 
(17) 

The next step is that of introducing the Taylor expansions 

' 

~(r,.): ~(R)+ ~·\7R 1(R)+t~r~:\7R\7R ~(R)+ .. , 
(18) 

... 
where we will neglect the higher terms of the series. R 

is the vector position of the center of mass of the mole-

cule with respect to a convenient fixed external origin; ... 
Y~ is the vector position of the particle T of the mole-

cule with respect to the molecular center of mass . The 

double dot multiplication of two dyadics is defined by the 

equation 

3 

A:B =~A·. B .. L lJ Jt. 
i j:t , (19) - -

.A .. 

With respect to the field vectors E and B, inspection of 

equation (18) shows that we are retaining the first two 
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~ 

te~ms in the expansion of E, but only the first term of 
~ 

B. This means that we are considering the retardation 

of the electric intensity, but neglecting the retardation 

of the magnetic induction. 

Introduction of equation (18) into (17) leads to 

(20) 

By use of the commutation rule 

to 'r" - l': . IO • ::. ii J. · 
ITj ,.i. 'l'll,.J T ~J , 

(21) 

where the subscripts i and j now refer to components of 

the vectors along one or the other of three orthogonal 

unit vectors, it is immediately found that 

(22) 

Use of equation (22) and the self-adjoint character of the 
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... 

Opera tors rT and p,.. leads to the relation 

(23) 

Here the subscripts i and j denote the usual quantum mech­

anical matrix elements. The dipole moment operator of the 

molecule is given by 

' 
(24) 

0 
and in the unperturbed representation, in which H is dia-

gonal, the relation 

025) 

is valid, the sums in equations (24) and (25) being over all 

particles of the molecule. It is convenient also to intro­

duce the quadrupole moment tensor opera tor Q : 2:,e'T rT rr 
't' 

Substitution of equation (20) into (13) with use of 

equations (21 - 26), after a considerable amount of alge-

• 

braic manipulation, gives t he following expression for the 

moment induced by the electroma gnetic field in the molecule, 

if the latter is originally in the quantu~ state specified 
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by the index i (which should be considered as representing 

a set of quantum numbers): 

• 0 L , \/·A ....... e,. 
2ir1. v" ( ) f 1.1. 2m c. 

T T 

., 

• 

(27) 

In writing equation (27) we have omitted indicating expli-
..... 

citly the dependence of the fields on the position R. The 

notations ~ and Im indicate that the real and imaginary 

parts (respectively) of the quantity are to be taken. A 

dot over a quantity is used to denote differentiation with 

respect to time. 
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In the same way we calculate the induced magnetic 

moment in the quantum state specified by the index i, 

obtaining 

• 0 

- 1 (V'·A)m .. ' e,. 
2ir"'J.1"' "" L 2m c ,. T 

.9. 0 

lm[u..I( m . 
I L KL 

+ vA:L_ 21m[~,.~ •• 1 
I( TI' ti ( ji)(~ - J)~) 

• 

(28) 

... 
Here m is the magnetic moment operator (neglecting spin) 

defined by 

• 
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Part II: Statistical mechanical theory 

Equations (27) and (28) of Part I give the moments 

induced by a periodic electromagnetic field in a molecule 

originally (i.e., before the application of the electro­

magnetic field) in the quantum state specified by the 

index i. 

For discussion of the macroscopic properties of the 

system it is convenient to introduce the macroscopic polar-
.... 

ization P. 
.... ~ 

The instantaneous value P(r,t) of this quantity 
~ 

at the position r and time t is the sum of the' moments of 
.... 

all the molecules which are in a fixed region ~ about r 

at the time t, divided by the volume of the region (J.j • 

The dimensions of the region ~ are to be small compared to 

the wave length of the radiation, but large enough to 

contain a large number of molecules. The observed polar-
~ 

ization P is the statistical average of this value over the 

various states of the system of N molecules. This quantity 

may be taken as the product of the mean nrnnber of molecules 

per unit volu.me times the mean moment induced in a molecule 
....i. 

fixed at the position r, the mean being taken over all the 

states of the syste~ consistent with the given molecule 

fixed at r. 
Proceeding in this fashion, we have to average expres-

sions (27) and (28) in the fashion just mentioned . Inasmuch 
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as we intend to obtain expressions for the induced moments 

only to the first order in the field vectors, which already 

appear in (27) and (28), it will be appropriate to use the 

distribution functions valid for the unperturbed system. 

In our discussions of the averaging process we will continue 

to consider averages over quantum states as regards the 

internal degrees of freedom of the molecules, but rather 

than consider explicitly the quantum mechanical transla­

tional states, we will treat these classically. We suppose 

that the averaging over the translational degrees of freedom 

(i.e., the positions of the molecules of the system) and 

the averaging over the internal configurations (including 

the quantum states associated with the orientation and rota­

tion of each molecule as a whole) may be carried out inde­

pendently, as well as the averaging over internal quantum 

states of one molecule independently of that of the others. 

We allow intermolecular interactions of a type giving mole-

cules their physical size, but neglect dependence of inter­

nal quantum states on the presence of other molecules. 

Stated otherwise, we suppose the internal quantum states of 

a given molecule (including the orientation of the molecule 

as a whole) to be independent of the states (i.e., position 

and internal quantum states) of the other molecules of the 

system. 

We will consider the system composed of N molecules 
~ 

in internal quantum states ir at position rr, r = 1, ••••• N. 
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An index i, wi thout subscript, will be used to represent 

the set of indices ir, r = l •••• N. The vector potential 
.... 

at the position rr of the rth molecule is given by 

.... (•') ... ' A Cr,. , t) 
N 

_..Ce) ..a. \-A .... 
- A ( r,.. , t) + LA ( r,. , t 

.S:: I 
t- 't' 

(2 9 ) 

.,.(t) _. 

Where A(rr,t) is the vector potential at the position rr 

and time t, due to external charge distributions and 
.... - .... Ci> _. 
A(rr,t;rs ) is the vector potential at position rr and 

time t due to the induced moments in molecule s in quan-

tum state is at position 

A 
... ... (i) 

( rl" ,t ; r;) ' -c. 

... 
r : s 

(30) 
.... w .... (() 

Here fJ' s and ms are, respectively, the electric and magnetic 

moments induced in molecule s in quantum state is and at 
.... 

position rs, and the square brackets mean that retarda tion 

is to be ta ken into account, i.e. , the moments are to be taken 

time t- Rrs , 
... -' .... =IRrsl• at the where Rrs = r - rr, Rrs Strictly s 

C-
speaking the positions vary with time, and Rrs should also 

be evaluated at the retarded time. We will ~eglect this 

however inasmuch as we may suppose the molecular velocities 

to be small compared to the velocity of light. 
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Similarly we f ind for the scalar potential the equa-

tions 

(
.... .... (l.) 

cp r ..... t; ~) , 
(31) 

• 
(32) 

Equations (27 - 32) give a system of 2N equations for 

the determination of the electric and magnetic moments in-

duced in each molecule for the system as specified by the 

internal quantum states and positions of each molecule. 

These could in principle be solved for the moments in terms 

of the externally imposed potentials, the geometry of the 

system, and the molecular parameters involved in (27) and 

(28 ). The resulting expressions might t hen be averaged 

over the internal quantum states and all positions of N- 1 

of the molecules relative to t he Nth molecule considered 

fixed at a given position in order to arrive at the average 

electric and magne tic momehts per molecule at the given 

position. 

Rather than attempt this method we shall here proceed 

by a simpler path with the aid of certain approximations. 

Instead of solving the system of 2N equations just mentioned 

we immediately perf orm the averaging over internal quantum 



- 23-

states. A typical term on the right-hand side of the 

equation giving the induced moment in molecule r in quan­

tum state ir, at the position r r, the other molecules 

being in quantum states is, at the positions 
...a 
r 5 (s =1,2 •••• N, 

. ~ -CL> ~.. ~ -w s :; r), is F(Rrs, f s ) • ~ where F(Rrs, P. s ) is a field 

function (a vector or a tensor; for instance, the electric 

intens.ity) at the position rr due to the moment p.~> at r s, 
l 

and °''"is a molecular tensor determined entirely by the -
quantum state ir of molecule r. Indicating an average over 

internal quantum states of all molecules by a bar, the appro-

ximation which we will introduce is 

F ( R ul''). ex 1.r 
l"s ., r-s - F ( R rs ., P, ~i.)) • ~Ly --

where the second step, an equality, is by virtue of the 

fact that in the field functions typified by F the only 

(33) 

factors depending on the internal quantum states are the 

moments typified by p.~i.) . 
According to our earlier assumptions, the internal 

quantum levels of each molecule will be degenerate, corres­

ponding classically to no dependence of the energy of a 

molecule on its orientation. It is convenient for these 

reasons to introduce the uber-matrix notation of Born, 

using a superscript index to represent the totality of quan-

tuJn numbers except t he degenerate orientational quantum 

number, and a subscript indicating the latter. 
e> ' -1\.\'\.. Thus Ll · , 
I Wt VV\ 
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is the matrix element of the dipole moment between the unper-

turbed state specified by the quantum index n 1 and the quan­

tum number m1 and the state specified by n and m. The nota-
0 !.. f\'r\ 

tion fJ.. - n:~ represents the rectangular matrix ( tJ-rt\m ) of gn' 

columns and gn rows, obtained from the set of all quantum 

numbers m1 and rn existing for the states specified by the 

indices n 1 and n, respectively, where gn is the degree of 

orientational degeneracy. We will use the usual abbrevia­

tion Sp Ann ~Agfil, where the sum is over the orientational 
WI 

substates of state n and A is any matrix. As is well known, 

such a quantity is a rotational invariant, which is to say 

that the quantity does not depend on the choice of the axis 

of quantization of the total angular momentum. The energy 

of the unperturbed quantum states we denote by ~<~> , an 

orientational index being superfluous because of the assumed 

degeneracy. The quantum statistical weight factors are 
0 (") -W € ~ , here k being Boltzmann's constant, T the absolute 

temperature. 

In the new notation, and with the approximation of 

replacing the average over internal quantum states of the 

product of two functions by the product of their averages, 

the moment in molecule r fixed at rr averaged over internal 

quantum states, but with the other molecules in fixed 

positions, is 
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T VA .. :.[ ::. ( L 4ii ·~·.Re { .5.p( .:;rn,n; ~;~"• JJ)e ~;r 
hr n~ Jr h ( V n;. "r'" - JI '") 

• , 

• 

(34) 
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A similar formula holds f or M('r') . Here, in using equations 

(29 - 32) for the fie ld vectors, the unaveraged moments there 

appearing are to be replaced by the averaged moments, in 

accordance w1th the approximation of equation (33) . The 

rotational invariance of the spurs in equation (34) results 

in a far-reaching simplification. In a freely rotatable 

system, to which class these zero-order spurs belong under 

our assumptions, the following relations hold( 23): 

(3 5) 
? 

Sp [ An"l.' en'n.] = (' . _Ls [ A""'1

• en'n] (36 ) 
J Cj~J 3 p , 

.... ... 
A and B are vectors w1 t h constant components with res pect 

to a set of axes fixed in the molecule, and T is a tensor -
with constant elements with respect to the same axes. If 
... .... ... . 
e1 , e2 , e3 are a given triad of orthogonal unit vectors 

_. .... 
fixed in space, the A1 is defined by Ai =A • ei, i = 1,2,3, 

... ... 
and Tij in dyadic notation by Tij = ei • 1. • ej, i, j = 1,2,3. 

J,j is the usual Kronecker de lta symbol; ~UK' i, j, k = 1,2,3, 

is the alternating symbol, defined as equal to zero unless 

the indices i, j, and k are all different, and as equal to 

plus or minus one according as the sequence i j k is an even 

or odd permutation of the sequence 1 2 3. 
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Considering now the terms on the right-hand side of 

equation (34) , the first and sixth evidently vanish by 

virtue of equation (35) . The second and third terms each 

contain a factor , which 

can evidently be The spur 

in this is evidently real, so that the Re in the second 

term may be omitted, while the third term vanishes. The 

fourth and fifth terms each contain a factor of the form 

, which may be written, temp-

orarily droppihg the molecule-identifying subscripts and 

adopting a coordinate notation, 
3 

~ e ~ s [.5".": u.,.,'n J . .?- K dX· p \.J I - K 
~,.J,K J 

"'' 

., 
... 

where the Xj, j = 1, 2, 3 are the components of R in the 

notation of equations (35-37), and similarly for the Ai. 

From (37) one obtains immediately 

Using this, we may write the preceding expression as 

3 

. ! L eK ( 'dAi. - dAj ) 5p[(J'\~ - J.,~~) ~~n J' 
K=• d XJ d xi 

(38) 

where i and j are the two indices different from k. We 

note that the components of the magnetic moment may be 

expressed as 

M" =,:Ju -,Jrz. ,etc.. 
( 39) 
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Thus we may finally write the factor in the fourth term, 

using equation (36) and returning to vector notation in 

the form 1/6 ( V' x A) Sp(W\ nn' • µ. n' n] • If we notice that 

the dyad Q appearing in the seventh and eighth terms is -
symmetric, we see that these terms vanish by virtue of 

equation (38). Thus equation (34) simplifies to 

, (40) 

while a similar procedure gives 

(41) , 

where 

L , (42) 
n' 

(43) 

> ( 44) 
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o o o n 

t-1 = \ ( 2 a \ iJn'n Sp[ m nn: °Mn'n]) e-tr 
L ?ah g"' L .. ~~·W\~ .,a. 

't\ n' ,, - ,, 
(45) 

B= 
~ (46) 
~ 

In equations ( 42 - 46 ) we have omitted the molecule-identi-

fying subscripts, since we are supposing the system to con­

sist of a single variety of molecules. 

For the majority of substances of interest in a dis -

cussion of optical activity, tA- is very small . Since, more­

over, it does not contribute to the optical activity, we 

will therefore omit it from further discussion so as not 

to unduly complicate our formulas . The quantities (?- and 't 

are also small , but the latter will be shown to be the term 

responsible for the optical activity, and so cannot be neg­

lected. We will retain p in order to show that it does not 

contribute to the optical activity. The field vectors in 

(40) and (41) depend on the positions of all the molecules , 

and we must still average these expressions over the posi-

tions of the molecules. 

In the following wa will use the complex representation 
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of the fixed vectors and moments, in which 

(47) 

~ 

where rr is the vector position of the center of gravity 

of mo lecule r with respect to any convenient origin. De­

pendence on the positions of the other molecules is still 

to be understood. 

Using equation (47) and the following one of Maxwell's 

equations, 

_. 
V' x E 

~ 

_...!... B c. ? (48) 

equations (40) and (41) may be written in abbreviated form 

- ~ <:.( ) -u.· =O(E.· + - a +Lw't ~ xE· r-.. "' t w \- "' " 
(49) 

( 50) 

where we have changed the index designating the various 

molecules to avoid confusion with the molecular coordinates, 

and use it now as a subscript rather than superscript. The 
...,\ -ce> 

explicit dependence of E1 on E and the induced moments 

and positions of the other molecules may be written, using 
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equations (29 - 32) 

N -- -ce> \ [- ] E ( ~ ,t) = E ( TLt) + L__ curl~ cu.rl~ P-j 
J:.! Ru 
f;l 

N -- f Lcurli. [~j] 
~=• Ru 

(.51) 

' 
~i. 

~ - ... R .. = r. -r. · 
~J .J ~ , R .. =IR··I LJ 1.J • 

( 52) 

Substituting equation (51) into equations (49) and ( 50) and 

indicating the spatial averaging by a second bar, we obtain 

the equations 

• 

( 54) 

The averaging indicated by the second bar is to be done with -molecule i considered fixed in space at the position ri, 

all spatial configurations of the other molecules being 

weighted appropriately. In both (53) and (54) a term in 

which (p±i~l ) multiplies an expression containing the 
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magnetic moment has been omitted since inspection of (50) 

shows that such a term is of second order in the retarded 

quantities ~ and ~ • The latter are small, and furthermore 

we have throughout the discussion considered only first 

order retarded terms. In (51) and (52) we have neglected 

the contributions of quadrupole and higher multipole moments 

to the electric intensity. 

In solving (53) and (54) for the average induced 

moments we will follow a procedure similar to Born 1 sC24) 

account of the "Oseen processtt(l2)(see also C2o)) for the 

case in which the terms in ~ and '( are absent. Implicit 

in the method, but not explicitly stated by him, is a 

further approximation similar to the one used earlier to 

simplify equations (27) and (28) . We approximate 

curli curliitlPj1 by 

the other averages. 

curli curli..L [=] and similarly for 
Rij f'Aj 

This evidently involves neglecting 

certain translational fluctuations. The functional depen-
- = ..... .... .... .... 

dence of ~j and ~t on the positions r j and r i and on the 

time is now evidently the same, and further there is evi-

dently now no distinction between the molecules previously 

designated by the index j. To simplify writing we will 

now drop the double bars; we will further discontinue the 

use of the subscripts to designate the various molecules, 
...... 

and use instead p. (r, t) to denote the average moment in a 
• ..A _. .A. I 

molecule fixed at r, and r cr,t) to denote the average 
_a I 

moment in a molecule at r. The averaging process referred 
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to is that previously denoted by the double bar. The 

operations curl, grad, etc., (orV) without any identifi­

cation will refer to vector differentiation with respect 
... 

to r; where there is occasion to use vector differentiation 
... 

with respect tor', the notations curl', grad', etc., (or~) 

will be used. We obtain in place of equations (53) and (54) 

... Ce> c. ) _.< ., ( ... (-, ] f Cr, t) = «E c;. t) + ·~ (~ + i.W't c.url E e c~. t) + tJ°' cu.rl curl f r, t) 
R 

c.url [ ~ (r:t )] 
' R 

( 55) 

m (r, t) : ( ~- l wt) E Ce.tr. t) + N (p-iw~) turl cu.rl [p.(;: t)) , 
R 

( 56) 

... - ... , R = r-r 
' 

R = IRI • 
( 57) 

The next step in the "Oseen process 11 is the introduc-
~ 

tion of the experimentally observed form of f (r' ,t), 

..a. -~wt 
~(r:t) = u (r'J e 

- .. ~, _. - . .!!J!! s . l"' 

Ucr'> = U0 el c. 

( 58) 
v '. p. t r ·, t ) : o 
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corresponding to the propagation of a plane wave through 

the system in the direction of the unit vector s with 
~ 

velocity c/n. lJ 0 is a constant (complex ) vector. Act-

ually, experiment gives the average polarization. In our 

approximation the polarization and the average moment per 

molecule have the same functional dependence. 

The assumption previously made, that the averaging 

over internal quantum states could be performed indepen-

dently of the averaging over intermolecular distances, 

permits the pair distribution function for the latter to 

depend only on the magnitude of the distance. Therefore 

we introduce the radial distribution function g(R), such 

that g (R)/V~~ 1 is the probability of finding one member 

of a given pair in the volume element d-r ' at position r' 
if the other is at 1. The normalization condition is 

t /g(R)d:r': l 
v ( 59) 

~I 

where the integral is w~th respect to r, and extends over 

the space occupied by the system, the voltrrne of the latter 

being denoted by V. The mean value f(r) of a function 
~ . ~ ~ 

F(r,r') for fixed rand variable r' is then given by 

f(Yl = -&-f F(Y. Y') gCR)dT '. • 
v 

(60) 
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For a system of noninteracting mass points g (R) = 1. For 

a system of hard s pheres of diameter a, g(R) = o, R<a 

while for R) a a series of peaks and troughs of decreasing 

amplitude is obtained ( 25), with g (R)-+l as R-+oo . The 

latter boundary condition is a general one f or fluid systems. 

Indeed, in order for the normalization inte gra l to converge, 

we must have \~m R3 ( g(R ) -1 ) = O. 
R-.oo 

In general g ( R ) will vanish within a region fi in the 

neighborhood of R = 0 due to the short range interraolecular 

repulsive forces which give molecules their effective size. 

In our discussion we will suppose n to be sufficiently well-

approximated by a sphere, the radius of which we will take 

to be a. Indicating the omission of the sphere 0 from the 

region of integration, and using the identity g (R) = 1-(1-g(R)), 

equation ( 60) may be written 

f(fl - f jF(Y,r')d -r' - ~ J F(t.r·l(1-g(R)) d.1' 

v-n v·n. 
(61) 

The first of t he integrals in ( 61 ) is of t he type considered 

by Born(24); the second is related to the inte gral deter-

mining t he scattering of x-rays by fluids. 

The first of the averages in (55) may then be written, 

using ( 58 ) and (61), as 

[~ ..A1 t ] f (- -i.u.>{t- ~)) c.url cur( ,._ilr, ) = -&- cu.rl c.u.r1 U<i~') e R cl T1 

R . . V·Jl 
. . R 

-V jcu.rl curl (0CY') e•w(t-el )(1-g(Rl) cl. -r' 
v-n. R 

(62) 
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If we define 

q>(R) ? 
(63) 

note that 

(64) 

and from (58) that 

,2. -\J U(r') = r?-wa. U Cr') 
ci. ( 65) 

we may ·write for the first inte gral of (62) 

J (_. -i:w(t-.B..)) 
curl c.url U(t') e e d. i' = 

v-n. R 

-LWt J 1- i ( ( ) 2.- ) I c.2 e tv.r\ curl\U(r')\7' c:r' R)-~ R '7' U(r'> dr = 
w'l. (n"-l) '1-Jl. 

.....;c~'L e_-_~u.J_t Jc\.lr\ CV.r\ f { u • cp 1 J d. er I ? 

wi.(~1.-\) 
Sv-n 

(66) 

where we have introduced the notation 

{{ U1 ~}1 = U Cr') d q>{R) _ q>(R) c}Ucr') . 
dV 1 dll1 
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Green's theorem has been used to obtain the second equality, 
-' the integral now being over r' on the surface Sv-.n. of the 

region V-.n. ,L indicating the directional derivative along 
;w' 

the outward-dravm normal. 

This last integral may be written as t he sum of an 

integral over the external surf ace ~ of V and an integral 

over the surface er of the sphere .n. . Reversing the sign of 

the latter integral so that the notation ~ may uniformly 
c)v 

mean the derivative along the outward-drawn normal to the 

surface of integration, equation (66) may be written 

jcurl c.u.rl 
V-t'L 

- -~w(t-.B..) _ -
ucr·) e c d,..' = I, + 12. 

R 

-I, = :a. -i.wt j {{ 1 _c_e_ c.u.rl c.u.r\ U, ~} d.<1' 
w-i.(n~-1) 

a-

- a. -i.UJt l {{- }) I,_= ce cu.rlcu.r\ U,;> d.o-' 
w'I.( "'-I) 

I: 

(67) 

(68) 

(69) 

It will be convenient for the sake of completeness to carry 

out here the evaluation of 11 as given by Born( 24). Perform­

ing the vector differentiations we have 
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I = c.,.i.t\Ut f {(~ l'ofR> _ '-'PlR>) aU<r'l + l(~'CRl)'RR. dU(r'> }do-' 
' w1.fni._,) '1' c.i. 1 R dR R R dR 

(70) 

where the priBes mean differentiation with respect to the 

indicated argument of the function. With the notation -... Ji. e = R , ( 71) 
, ... 

\f(R} ~~CR> 
- +ca' 

R ' 
c/>(R) = (72) 

' 
(73) 

A : - + n o.z. </> CCl) , (74) 

B = -41T cf "1{~) , (75) 

I I 

A = -i1fo.~ </>(~) ., (76) 

(77) 

equation (70) may be written 

(78) 
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..... 

where the bars indicate averages over all directions of e. -Expansion of U ( r') and c:p (R) in powers of R, leads 

after performing the averaging indicated in equation (78), 

with use of the third of equations ( 58), to the relation 

n2+2. 

n'I.-' 

where Ao is the vacuum wave length. Since a is of the order 
0 

of 10 A, the second and following terms will be negligible 
0 

for visible light ( A 0 ~ 5000A ). Equation (7 9) is that 

obtained by BornC 24) except he did not compute the {~)~ term. 

The second of the integrals in equation (62) may be 

approximated as follows. The factor (1 - g(R)) in the 

integrand is non-vanishing only for small R, so that the 

integral may be taken over t he region between the surface 

R = a and some larger spherical surface R = b beyond which 

there is effectively no contribution to the integral; i.e., 

J {tllrl tu.rl Ul;·i e'"'(t-~) )( 1- g(Fo) d ,., =j(cu.rl (JI>"{ u (;''l e'"'(t-~))(1- t<R>) d:r' 
V-A R R a. ~ R f ,l,. R 

L - ~ -\i» lt--) =[_ j(c.u.ricu.rl Ulr')e c. )(1-g(R)) dt'', 
. R ( 80) 
\":0 Ri. ~R~Ri +6R 

where 

Ro =a.. ., 

R =t.. , 
1..tl 

~R -:. t.- 0.. (81) • 
L 
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We approximate 1 - g(R) in the interval Ri f R < Ri + A R by 

(1 - g(Ri)), and take this factor outside the integral. 

The integrand is then the same as that in the first of the 

integrals in (62), and may be transformed in the same way 

to surface integrals over the spherical surfaces R = Ri and 

R = Ri +AR. 

providing that 

These may be evaluated using equation (79) 

32 1t' 3 

'3 

cl )2 << 
Ao 

1. In this way we find 

n1-+10 -10 

L 4 

u(~ t) _!_ \(1-g(~>)Rtc1R -t 0( .EL) , 
I ' A a. L \ . Ao 

0 . 
\,:Q 

which for large 1 becomes 

00 + 
3l. lt' 1 n"uo il ( ~ t) ~ J(•-glR>) R d.R + 0 (..2..) . 

3 \0 I Ao ,\o 
0 

This term is of the order of ( ~0 )
2 , and for visible 

light may be supposed negligible. 

(82) 

(83) 
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Using equations (67, 79 and 83 ) in (62), we obtain 

c.a. jc.url cu_r\ {{ f · cp~} d.a--
1 

+ 0 ({;) ~ . 
w2.V(n.,.- t) r: 

The second of the averages in ( 55) may be written 

curl c.u.rl c.u.rl [p. ( ?: t)] 
R 

A calculation similar to the foregoing gives 

curl c.u.l"( cu.rl [µ ( -r: t)] = 
R 

Again in the same way one finds 

(84) 

( 85) 

(86) 
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• c:u.t"\ tintF;t>) _ c. <\n Q ~ mtr,t) + 
C . R - lW \l(W\ ... ·\) 

1. 

~ I ( c.url\<m .. '9\\ c\<r' .. O(t) . (87) 
~Q) V(vt"-1) 1:: '\. " 

Using (84 - 87), equations (55) and (56) may be written 

.... , ... ) -Ecel c ) -ce)..-
~ \ l'") t = °' ( ~It) + ~ ( ~ .. ~ u.>" " >( E t"" ~ t ) + 

+ c.3 -

• 
) 

(88) 

(89) 
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The essence of the "Oseen process" is that the inte­

grals over 2:. , the exterior surfa ce of the system, just 

cancel the terms involving the external electric intensity 
~ (¢) 

E • That these latter must be canceled is apparent from 

the fact that they would correspond to excitation of the 

medium with the vacuwn wave length and propagation vector, 

which is not observed. That the cancellation should be due 

to surface terms in mutually destructive fashion is physi-

cally plausible, since this leads to the effective field 

inside the system not depending on the f orm of the bound-

ing surface, other than as determined by the refraction at 

the surface. Attempts to demonstrate this cancellation have 

been made, for example by Born< 24). If we assume this to 
2 be true and omit the explicit inclusion of the terms 0 (~ / ~ 0 ) , 

we find 

~(r, t) = 
- n,., +2. p(r, t > + .~ 4- 7r t\i ( ~ + L w ~) 'V J( µcf, t) 4rrNo< 

1la. - I 3 l. uJ l\i. -1 

_S::_ 4-1TNo( V' x m(~,t) 
' i.w lli.. - I 

m c ;, t) = + 1t N ( f- L UJ ~ ) 
3 

( 90) 

t1<r, t) . 

(91) 

Substituting equation (91 ) into (90) and writing the 

macroscopic polarization P(r ,t), instead of the average 

moment per molecule, we obtain 
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P<r.t> = 
- n"+z. - - + ~ 41\' N ( ~+i.~rr) v x per, t) 4;r N « PC r, t) 

3 \1~-1 lw l'la.-1 

-47t N (~-Lwi) +tt N c< c. na.+2. 'V x p (~. t) . ---i.W ni..-1 3 'n1 - I 

(92) 

It is evident from this equation that to terms of the order 

of the retardation terms ~ and J 

41T'No< Y1:t..+2 

3 11a.- I ' 
which is just the classical Lorenz-Lorentz formula. 

(93) 

Thus 
' 

neglecting a term involving the squares of the retarded 

quantities and using equation (58), one finds 

.... -P ( r, t) -= ? r r. t > + +ir N z i. w r 11 ~ x P ( r~ t) 
-01 - I 

(94) 

If a right-handed set of orthogonal lmit vectors 

~l' ~2 , ;
3 

such that ~3 coincides with ~ is chosen and it 
........ 

is noted from eauation (58) that S• f = o, equation (94) 

written in component form gives 

..... -a t61T 4 N i. v '! Yl 
a., . p -: Pi -:=. - -----------==--~ p 

(1- 41t'No<)( l'l'l.- I +81r~OC/~) i. ., 

3 I - 41\' N«/ ~ 
( 95) 

,~ n-2. N i. v -r n P. 
- I 

(1- +irNo< )(ni. i+81'C~°'/3\ 
3 t-+71'Noc/~-J 

• 
(96) 
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Solution of the secular determinant gives 

ni. -

and therefore 

1 + srrN«/3 

I - 41\' Noc./~ 
= ± 1E>1"2Nvrn 

r-41r N«/3 

. 
± t. 

' (97) 

(98) 

where in equation (97) and (98) the same choice of sign, 

upper or lower is to be made. With the upper sign, one 

finds 

which corresponds to left circularly polarized light: i.e., 

the electric vector rotates clockwise when the observer is 

looking in the direction of the propagation vector. Con­

sequently equation (97) with the upper sign determines the 

index of refraction n1 for the left circularly polarized 

light. 

Similarly I3fl' the index of refraction for right cir­

cularly polarized light, is given by the same equation but 

with the lower sign. 

It is convenient to define a mean refractive index by 

the equation 

ni. 
0 

1 +a irN «/s 
I -4TC N «/3 

• 

(100) 
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This is, of course, the familiar equation for the re­

fractive index in a non-optically active, isotropic med-

ium. From equation (97) we then obtain 

na ... ni - tE.ni. N 1' ~ (na. +nrt) - , 
L. lit 

1- 4n N «/~ 
(101) 

or, using equation (100), 

• 
(102) 

Equation (102) determines the circular double refrac­

tion in terms of the parameter 't of equation ( 44 ) . The 

Fresnel formula for the rotation in radians of the plane 

of polarization per centimeter of travel t hrough the medium 

is ( Ao in centi!11eters) 

(103) 

In the conventional units, degrees rotation per decimeter 

path length, 

;J= ISOO(n -n ) 
l\o i. ~ 

., 
(104) 

where ~ 0 is still to be taken in centimeters . Using (102), 

the specific rotation (ocl , defined as de grees of rotation 

per decimeter travel per gram per cubic centimeter, is then 

given by 

[«] 
a. 

no;~ g , 
(105) 
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where N is now Avogadro's number, M the gram molecular weight, 

and 

(106) 

Inserting numerical values we have for the specific rotation 

at the frequency of the sodium D line 

5 a 
[ o(.] = 4. 9 3 0 " f 0 no +a. g 

D 3M 
(107) 

if g, with the d~mensions of length to the fourth power, 

is computed with the angstrom as the unit of length. 

Equation (102) is the commonly used relation between 

the circular double refraction and the molecular parameter 

~ • It will probably be well to summarize here the assump-

tions which have been made in the course of its establish-

ment. From the qe§inning of our discussion we have assumed 

the effective electric field in a given molecule to be 

simply periodic with the frequency of the incident wave, 

thus ignoring the irregular fluctuations due to the motion 

of the surrounding molecules and their induced moments . We 

have neglected alterations of the distribution functions 

due to the presence of the light wave . The internal quantum 

states of a given molecule have been assumed independent of 

the positions and internal quantum states of the other mole­

cules; on the other hand we have allowed the position of a 

given molecule to be dependent on the positions of the 

otherse In taking account of the retardation in the fields 
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of the induced moments we have neglected the finite diffu­

sion velocity of the molecules; this can hardly be expected 

to materially change the result, particularly because of the 

smallness of their velocity relative to the velocity of 

light, but also because of the final averaging over the 

positions. 

The two major approximations involved in the discussion 

are the neglect of the fluctuation of such orientational --........ - ~ 
averages as ~ · E from ~ · E, and the fluctuations of the 

translational averages curl cur1ft11/R from curl curl[~l/R . 

The use of these approximations was originally set forth in 

explicit fashion by Kirk:wood( 2$) in his treatment of the 

static electric polarization of a dielectric, in which it 

was sho\Am that with these approximations the Clausius-IVIossotti 

relation for the effective field can be derived statistical 

mechanically. We have not attempted to estimate the errors 

introduced by these approximations in the present case; 

Kirkwood has estimated them for the case of static polariza-

tion. 

We have neglected the contributions of quadrupole and 

higher multipole moments to the effective electric field. 

In the static case it may easily be shown that in the approx­

imation of replacing the trans1ationa1 average cur1 curlft!VR 

by curl curl C~l/~ ' the quadrupole and higher moments make 

no contributions to the average effective field. 
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If we suppose that each of the molecular wave functions 

'Pn may be sufficiently well approximated by a product of a 

translational wave function depending only on the coordi-

nates and velocities of the center of mass, an electronic 

wave function in which the nuclear coordinates are considered 

fixed and appear only as parameters and a vibrational - rota-

tional - nuclear spin wave function involving only the co-

ordinates of the nuclei, i.e., 

ti! _ t.J}t \ \JJ (c) ll}Vr) 
Tn - Tn t Tne Tnvr tt 

(108 ) 

equation (44), defining the parameter T , may be simplified 

in an illuminating fashion. First it may be readily seen 

that the translational quantum levels have no effect on ~ 

.... -since the operators ~ and m do not contain the coordinates 

of the center of mass, their matrix elements contain a factor 

of either unity or zero, according as n and n' of equation 

"'" (44) are equal or unequal; when n = n', however, ~ = o, so 

that t he translational quantum numbers may be omitted from 

both sums. The additional factoring into an electronic 

part and a vibrational-rotational part has t he further effect 

of splitting r into two terms, each of the same form as 

equation (44), one involving only matrix elements of the 

nuclear part of the dipole moment and ma gnetic moment oper-

ators with the nuclear wave functions, t he other involving 

only matrix elements of the electronic part of the dipole 
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moment with the electronic wave functions. 

The nuclear part of l will in genera l be small, 

because of the large masses of the nuclei compared to those 

of the electrons. In agreement with this expectation, 

measurements in the infra-red have obtained no indication 

of rotatory dispersion due to t he infra-red absorption 

bands( 28 , 29). Furthermore usually only the ground elec-

tronic state will have an appreciable Boltzmann factor at 

room temperatures, so that the averages over electronic 

energy states will be superfluous. With these approxima-

tions we may write the equation in the simple form 

n JI. z. - 'II 2. 
\'10 ' (109) 

where the electronic ground state is indicated by the index 

zero. The sum is over all excited electronic states, the 

electronic wave functions being for fixed nuclei in the 

field-free state. The matrix elements are now numbers, 

rather than matrices, so the uber-matrix notation has been 

abandoned. 

Kirkwood(lS) has shown how an important decomposition 

of equation (109) may be achieved. It is convenient to 

consider the molecule as composed of N substituent groups 

coupled to a central N + 1th group. It is supposed that 

each electron in the molecule may be unambiguously assigned 

to one or the other of the N + 1 groups. Evidently if 

resonance between substituent groups is absent, there will 

be no ambiguity in the assignment of non-bonding electrons 
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between substituent groups. The partition of bonding 

electrons between the central group and the various 

substituent groups is less direct, but we may suppose as an 

adequate approximation that the bonding electrons are in 

each case divided equally between the central group and 

the corresponding substituent group. 

Indicating the position of electron s of group k with 
..a 

respect to the center of mass of group k by rs and the pos-

ition of the center of mass of group k relative to the 
..Ji. 

center of mass of the molecule by Rk' we have for the elec-

tronic part of the electric moment of the molecule as a 

·who l e 

j1 (Kl : [.(I() e ySCK) 

s 
• 

( 110) 

In equation ( 110) the not a ti on ~<'°means a summation over 
s 

all the electrons of group k. Similarly, the magnetic 

moment of the molecule as a whole may be written as 

H+I N+1 

m = L iYlc", + .JL [ "R"' ~ P(I() ., 

l(:cl 2mC. K~\ 

-'Ck'> _ e \Ct<) ~c.o b 
m - -L r\ xrs 

2m<:. s 

..a (K) \(K)...a 
p =L P~ 

s 

(111) 



-52-
.a. 

where Ps is the momentum of electron s. ... 
It is immediately seen that the t er m containing Rk 

in equation (110) drops out on substitution in equation 

(109) because of the orthogonality property of the wave 

functions. Substituting equations (110) and (111) into 

(109), we obtain 

tOI 

g :. g(o} + g(I) +[ g~ 
' I( :.1 

' 

6 (IC) :. C.. 
0 3nh 

• 

(112) 

Here the prime on the summations over electronic states 

means that the gro1md state n = 0 is to be omitted; the term 

corresponding to the latter is evidently zero in any case . 

Analogous to equation (25), we have the relation 

' (113) 
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which permits g (o) to be written in the form 

I N+I 

g'o) = - ,~ L [ 
"' ~,I<:\ 

~*I( 

11i ·II'­
"• 

( 114) 

It may be mentioned that while the operators in equations 

( 112) and ( 114) are those associated with the electrons of 

a given group, the wave functions with which the matrix 

e l ements are computed are those for the entire molecule. 

The sign of gM as given by equation (114) is opposite 

to that originally obtained by Kirkwood, due to an error 

in sign in the third of equations (16 ) in his paper. 

Subject to the accuracy with which it is possible to 

consider each of the electrons of the molecule as associated 

with a particular group, equations (112) and (114 ) are equi-

valent to equation ( 109). 
(0) . 

The term g evidently corresponds 

to the interaction of the dipole moments of different groups, 

while gu> is characterized by coupling of the magnetic mom-

ent of one group with the electric moments of another. The 

terms gK , one for each of the groups, correspond to the 

interaction of the electric and magnetic moments induced in 

the same group. 



SECTION III 
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POLARIZABILITY THEORIES OF OPTICAL ACTIVI'.rY; APPLICATIOIJ 
TO THE DETERTHNATION OF THE ABSOLUTE CONFIGlJRATIONS OF 

OPTICALLY ACTIVE MOLECULES 

Part I: The polarizability theories of Gray, de Malle­
mann and Boys 

It is convenient to designate as polarizability theories 

those which relate the optical rotatory power of a molecule 

to the optical polarizabilities of the atoms or groups of 

atoms composing the molecule. The first of these theories 

was deve l oped by Gray(l3), who showed that a molecul ar model 

consisting of po l arizable atoms, each considered concent rated 

at a point, would exhibit optical activity providing the 

mo l ecul e was dissymmetric. Gray discussed only the spe-

cific case of a mo.l ecul e consisting of five atoms, four atoms 

being at the corners of an irregular tetrahedron, the fifth 

inside the tetrahedron, corresponding to such a compound 

as CHIBrCl. He considered the atoms to be isotropic .Q_er ~' 

the induced moment in each atom being in the direction of 

the total electric field ariting on that atom. The equations 

are exceedingly complex, and he did not succeed in obtain­

ing a formula compact enough to be completely written down. 

Perhaps because of this, he did not perform explicit cal­

culations for a definite molecule . Gr ay's treatment is of 

interest only in that it was the first of the pol arizability 

theories. 

The polarizability theories may properly be called 

specializations of the Born coupled oscillator theoryCll). 

The latter was very general in that no explicit assump tions 
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were made about the molecular structure other than that 

oscillators were present, spatially separated, and some 

sort of coupling existed between them. Nothing was said 

about the location of the os cillators or the nature of 

the coupling. The t he ory wa s t herefore a very general 

one, but precisely because of the generality it was not 

suitable for calculation of the optical activity of a 

given molecule without specialization of some sort. The 

polarizability theories correlate the polarizability of 

the various groups with oscillators assumed localized with-

in the group, the coupling being assumed to be produced 

through the electromagnetic fields of the induced moments 

of the oscillators. 

Theories similar to Gray's have been developed by 

de Mallemann ( l5) and by Boys <16 ) . The term considered by 

Boys is essentially the same as the one treated by Gray, 

the molecule being considered as consisting of a number 

of isotropic polarizable atoms (or groups of atoms) whose 

moments may be represented by point dipoles. The compli-

cated problem of the interaction of the induced moments 

in t he different groups is attac ked by means of a method 

of successive approximations. The moment induced in each 

group is treated as a sum of ter:ns corres ponding to the 

order of interaction with the moments of the other groups. 

Considering a given group D, the zero- order term is the 

moment induced in D by the external field alone, with 
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neglect of the scattered radiation from the other groups. 

This may be called, in Boys' nomenclature, a "relay system 

of zero order", indicated by {n} . The first-order term 

corresponds to the moment induced i n D due to the part of 

the moment of each of the other molecules which is induced 

by the external field alon~. Such a term is denoted by 

{en}; for given D there would be a term of this order for 

each choice of the other groups as c. Similarly, the 

third- order contribution to the moment of group D, indi­

cated by {BCD } , is induced by that part of the moment in 

group C which is itself due to t he portion of the moment of 

a third group B induced by the external field alone. As 

mi ght be anticipated the magnitude of t he contributions 

to the total moment decreases rapidly in the higher order 

relays. It is found that with isotropic groups the relays 

{D}, {en }, and {BCD l do not result in optical activity, 

the first relay producing this phenomenon being {ABCD } 

involving four groups. Higher order terms such as {ZABCD} 

will also contribute to the optical rotation but may be 

expected to be small compared to the fourth-order terms. 

Boys developed a compact formula for a molecule com­

posed of four groups A, B, C and D, but its applicability 

is somewhat limi ted by assumptions he made concerning 

molecular structure. The groups were taken to be spheres, 

with radii corresponding ap proximately to the presently 

accepted "normal covalent radii". However he suppo s ed the 

four groups to arrange themselves in a fashion determined 
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only by closest packing of the four spheres. In applying 

his theory Boys treated an optically active compound such 

as ~-butyl alcohol as being composed of five groups, namely, 

the asymmetric carbon a tom and its four s1.Jbsti tuent groups. 

The size and polarizability of the asymmetric carbon atom 

were apportioned equally among the four substituents, and 

a four-atom model applied. 

The assumption of close packing of the four spheres 

permits the six inter-group distances to be specified in 

terms of the radii of the four spheres. In actual molecules 

the six distances can vary independently and so cannot be 

specified by four distances. Often however four distances 

can be chosen, the sums of pairs of which reproduce the six 

actual inter-group distances fairly well, and use made of 

Boys' formula in this fashion. The assumption of c l ose 

packing coupled with the values t aken for the radii by Boys 

lead, as pointed out by Kirkwood ( lS ) , to a wholly untenable 

structure, the worst feature being that in sec-butyl alcohol, 

for exampl e, the resulting linear dimensions of the mole-

cule are approximately only two-thirds those indicated by 

modern structura l knowledge. Because in Boys 1 formula the 

specifi c rotation is inverse l y propor tional to the eighth 

power of this l inear scale factor, Boys considerably over­

estimated the magnitude of his term. Thus for sec-butyl 

a l cohol he obtained a value roughly 140 times larger than 

that indicated by present structural knowl edge. It seems 
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likely that in most cases the Boys term will be too small 

to account for an appreciable part of the observed optical 

activity. 

The classical polarizability theory has also been dis­

cussed at some length by de Mallemann(l5). He considered 

the various terms contributed to the optical activity by 

interactions of two anisotropic groups, of three groups 

one of which is anisotropic, and of four isotropic groups. 

The latter is the same term as calculated by Boys; de Malle­

mann did not make the same simplifying assumptions as did 

Boys, however, so that his relation is somewhat more com-

plex. The first-mentioned term is essentially the same as 

that calculated by Kirkwood and described in the next section. 

De Mallemann did not apply his theory to the actual calcu-

lation of optical activity for specific molecules. 
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Part II: The polarizability theory as developed by 

Kirkwood 

The theories of Gray, Boys and de Mallemann, as is 

evident from the preceding discussion, were based on 

classical mechanics. Kirkwood(l8) has shown how the polar­

izabili ty theories may be obtained from the g (o) term of the 

quantum mechanica l equations (112) and (114). The hypo-

theses of Gray and Boys regarding the isotropy of polar-

izability of the groups composing the molecules are 

probably incorrect, as it seems likely that the formation 

of a chemical bond will provide perturbation of an orig-

inally spherical atom sufficient to establish at least 

one preferential direction of polarization. Since lower 

order "relay systems" suff ice to give optical activity 

when anisotropic groups are involved, and since these 

lower order terms do not fall off as rapidly with increas-

ing distances between the groups as do the higher order 

terms required with isotropic groups, it seems clear that 

in genera l the most i mportant term of the polarizability 

theory was not considered by these authors. De lvlallemann 

obtained formulas for anisotropic groups but did not use 

them in actual calculations. The latter was first attempted 

by Kirkwood(l8), who obtained these anisotropic terms from 

a quantum mechanical treatment of the g<o) term of equation 

(112). Because attempts at assigning absolute configura-

tions to several or ganic compovnds on the basis of this 

first-order term of the polarizability theory are to be 
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described, it will be of interest to sketch the method 

used by Kirkwood in obtaining his final formulas. 

The problem is the computation of g'0> as given by equa­

tion (112), which evidently requires knowledge of the mole-

cular electronic wave functionse Approximations to these 

are obtained formally by means of the usual first-order 

perturbation theory, it being supposed that the following 

zero-order problem has been solved. The molecule is con-

sidered as being composed of N + 1 groups, N of which are 

bonded to the N + 1th group, which is called the central 

group. The zero-order wave functions just mentioned are 

to be solutions of an approximate Hamiltonian in which 

electron exchange is in every case excluded between each 

pair of the N + 1 groups, and in which all interactions 

among the N substituent groups are excluded. Exchange with-

in the various groups, and the coulomb interaction between 

the central group and each of the N substituent groups are 

supposed included in this zero-order Hamiltonian, in a gen-

eralized "self-consistent field" approximation. This per-

mits the zero-order wave function for each electronic level 

to be written as a product of N + 1 group wave functions, 

each of which contains as variables only the coordinates 

of the electrons of one of the groups: 

o N+I 
d1 _ .,.,.. (-m ~<i> ·) Tn - 1t ~h· r, , ra. ... 

i ':I ~ (115) 

Each quantum state of the molecule as a whole may then be 
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specified by a set of N + 1 group quantum numbers ni, 

i = l ••• N + 1, which we shall indicate simply by the 

letter n. The zero-order frequencies will then be given 

by 

Nfl 

V.,o= [_ Vn.:o 
i-: I 

(116) 

We will use the subscript zero to represent the set of the 

group quantum humbers specifying the electronic ground 

state of the whole molecule as well as any one of these 

ground state group quantmn nrunbers. 

The potential energy of dipole-dipole interaction 

between the N substituent groups is then introduced as the 

first-order perturbation in the Hamiltonian, 

N 

V = [ VcJ ' i,j =• 
i >i 
~<u T -c.B v, j = p. . _i.; . p. , 

- ..a 

Tij - I [1- 3 R,j ~ij] - - J - R,J R·· 'J 

- - -Ro - R· R~ - J 

' 

(117) 
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Thus electron exchange among the N i 1 groups is completely 

ignored in both the zero-order and the first-order stages. 

Consequently our wave functions may be expected to be poor 

representations of the valence bonds between the central 

and substituent groups, and therefore poor approximations 

for use in calculating any property of the molecule, such 

as bond energies, to which the bonding electrons make pre-

dominate contributions. Similarly the energy differences 

between levels in which the quantum states of these bonding 

electrons change appreciably may be poorly approximated. 

On the other hand, for properties to which all the electrons 

contribute a pproximately equally, such as the refractive 

index, the present analysis should give a reasonable esti­

mate, as the number of electrons bonding substituent groups 

to the central group will generally be small compared to 

the total number of electrons. Similarly, unless these 

bonding electrons contribute excessively to the g<•> term, 

which seems unlikely, our approximations should give a 

reasonable estimate of the optical activity. 
0 

If the ~~ are degenerate we suppose the set diagonalizing 

V of equation (117) to have been chosen . By means of 

equation (115), molecular matrix elements of a function of 
.. m 

the coordinates of a single group, such as f~n , may be 

written as group matrix elements: 

(118) 
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With use of equations (115 - 118) and the usual first-order 

perturbation theory, we find for the perturbed wave functions 

( 119) 

The final formulas are much simpler when real, rather 

than complex, zero-order wave functions are taken in equa­

tion (115). That this is in fact possible follows from the 

fact that the Hami ltonian operator does not contain i ='f=l 
except in squares in case no external magnetic field is 

present. It is then readily seen t hat if a complex function 

is a solution of the Schrodinger equation with a given 

energy eigenvalue, then both the real and imaginary parts 

mus t also be eigenfunctions corresponding to the same eigen-

value. If a level is nondegenerate, this argument shows the 

wave function for that level is necessarily real, barring a 

possible complex multiplying constant of modulus one. If a 

level is degenerate, then a real set of orthonormal wave 

functions can obviously be chosen. Furthermore, since the 

potential energy of equation (117) is real, it can be diag-

onalized v.ri th a set of real wave functions for each de gen-

erate level, these sets then being the "correct zero-order 

wave functions" for use in equation (119). 
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It is readily seen that because of the characteristics 

of our zero-order wave functions as given by (118), the 

zero-order term of (114) calculated with these wave func­

tions vanishes. Calculation of g<0 >correct to first-order 

terms, with use of the fact that the group wave functions 

(and therefore the matrix elements of the group dipole 

moment operators) are real, gives 

(120) 

It is instructive to notice that the polarizability tensor 

of the molecule, in the zero-order a pproximation, is given 

by 

, 

• 

(121) 

That this may be expected to be a rather good approximation 

is suggested by the well-known additivity of atomic refrac-

tivities. It may be mentioned that the nature of these 
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zero-order wave functions for the groups assumes that at 

least a part of the empirical variation in atomic refrac-

tivity with the nature of the particular atom's chemical 

bonds (e.g., the difference in the Eisenlohr refractivities 

for oxygen depending on whether the atom is in a hydroxyl 

group or a carbonyl group) has in principle been taken 

into account. 

Using equation ( 121) , g~ may be written in the form 

g'., = t_ <er,. RK Her. ·~'0 • I•K · oc:1•> • ik 31 
i,K: I 

'~ t( 

, 

(122) 

where the average is over all orientations of the nuclear 

framework relative to a set of external orthonormal vectors 
-A ..... _. 

a1 , a2 and a3• If the group polarizability tensors are 

written in their principal axis representations 

3 <o_L lil -bco ... bcn °' - O(Yr r r - l :: I .•..• N , , ., 
't": I 

(123) 

where the br , r = 1,2,3, are orthogonal unit vectors, 

g<G> may be expressed in the form 



N 3 ..l.' ~ O((i) 
~LL l"r 

,,1<:=1 r, s 
ltK ~I 
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( ) ..a. ( ) ) _. _.. (a· ) _,. ( K) 

,.._,.(!\) (-" ~ • -r. ·b K R 6 b "" b l>K ,,• -r-X S • 
S'i l"' ~ S " 

(124) 

This is the first-order expression for g~ in terms of 

the polarj_zabili ty tensors of the subs ti tuent groups and 

the geometry of the molecule. The sign in equation (124), 

as well as in several of the preceding expressions for g~ , 

are the reverse of those in Kirkwood's original paper, due 

to his error in sign mentioned in Section I. Kirkvirood (l8) 

has indicated how the second-order term corresponding to 

de Mallemann's treatment of the interaction of three groups 

may be obtained, as well as the third-order term corres-

ponding to Boys' treatment. 

Equat ion ( 124) is the Bxpression for the f irst-order 

term of the polarizability theory, applicable to any molecule 

to which the plausible assumptions already introduced may 

be applied. Unfortuna tely present knowledge of the group 

polarizability tensors is not usually sufficient to make 

application of the formulas possible. Structural difficul-

ties may also present themselves, particularly in molecules 

having one or more internal rotations. The points will be 

discussed at greater length below. In the special case 
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when all the N groups have an axis of optical symmetry the 

formula may be further simplified to 

N 

g101 = t [ °'i «. p1 ~·(b,. ~k • b .. H R,~ · b, x b,.) , 

.... 

l,K=I 
i>K 

( 125) 

where bi is a unit vector in the direction of the axis of 

optical symmetry of group i; « i is the mean polarizability 

of group i, equal to one-third the trace of ~i). The 

anisotropy ratio of group i, denoted by ~ i' is given by 

H> lL> °'" -°' .L 

°'~ ' 
(126) 

in which CX: 11 indicates the polarizability of group i parallel 

to its cylindrical axis, <X~> the polarizability perpendicular 

to this axis. 

From e qua tion (109) we see that g'0)can be written in 

the form 

' 

• 

(127) 
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One sees immediately that the R
0
n, called the rotatory 

strengths, satisfy the i mportant su.rn rule 

, 

(128 ) 
~ _. 

inasmuch as.· the diagonal elements of f-i•m must be real, this 
.... .... 

operator being Hermj_tian because '1 and m commute and are 

Hermitian themselves. Inasmuch as the smn is zero, positive 

and negative terms must both occur among the Ron• A conse -

quence of this is that often the rotatory power in the 

visible re gion of the spectrum is controlled by a very few 

of the near-ultraviolet absor ption bands. The contributions 

of bands farther in the ultraviolet, although possibl y having 

appreciable Ron' become small due to the higher frequencies 

in the denominator and may tend to cancel because of differ-

ent signs. The latter is important because otherwise the 

behavior would be similar to that observed for t he polariza-

bility, where the far-ultraviolet terms may be small, but 

obey a different srnn rule. The somewhat similar expressions 

for the mean polarizability are 
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' 

(129) 

where the f 0 n are called the oscillat6r strengths, and Ne 

is the total number of electrons in the molecule. The 

expression for g'0> given in equation ( 114) may be written 

in simi l ar form 

L (o) 

gfo) - I g 
- E.h Oft ' 

"' V.'-V" no 

lO) ~ go .. =-L 
l,K 
i.#K 

(o) . 

gon =O • 

The treatment so far has been based on the tacit 

(130) 

supposition that only one relative configuration of the 

nuclei requires consideration . In cases where several 

stable nuclear configurations are possible, as for instance 

in molecules having several potential minima associated 

with one or more internal rotat ions, a statistical average 

is to be taken over the torsional vibrat ional states. 



-70-

Probably the most interesting application of equation 

(125) lies in its possible use in establishing absolute 

configurations for organic compounds. However, it is 

necessary to keep in mind that g '~ is only a part of the 

total rotatory parameter g, as given by equation (112). 

It is worth-JNhile to point out that if the difference in 

phase of the electromagnetic field at the different groups 

is considered, but the phase everywhere within each group 

is approximated by the phase at the center of mass of that 

group, then gw and all the gk vanish, leaving only g~ • 

Thus g '~ may be expected to be an increasingly good approxi -

mation to g as the sizes of the groups become small compared 

to the intergroup distances. Nevertheless it is not possible 

to say that the negligibility of g c•> and the gk in actual 

molecules has been demonstrated, particularly so since 

Eyring and his co-workers( 22 ' 29,30) have made attempts to 

calculate some of the latter in special cases of certain 

molecules. Attempts were made in the present series of 

researches to find alternative ways of estimat ing these 

other terms, but without success. .At present there seems 

no other way than actually attempting to find molecular 

wave functions (excited as well as ground state) accurate 

enough to give good approximations to the matrix elements 

entering the formulas. This is the method of Eyring and 

his co-workers, which will be discussed in Section IV . 
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In applying Kirkwood's polarizability theory just 

outlined, it is necessary to know t he pola.rizabili ty tensors 

of the groups, i.e., the principal polarizabilities and the 

principal axes of each group, as well as the geometrical 

structure of the molecule. As mentioned before, present 

knowledge r egarding t he first point in practice restricts 

one to molecules in which the substituent groups are cylin-

drically symmetrical. Even here, as will be presently shown, 

difficulties are found. 

It will be recalled that the zero-order polarizability 

tensors, to which O(c: and ~~ of equation ( 125) refer, include 

interaction of substituen t group i with the central group, 

and include the effects of interaction of group i with the 

other substituent groups only through interaction of the 

latter with the central group themselves. These effects 

might ·be expected to be small, so that to a good ap proxima-

tion the zero-order polarizability tensor of a given substi-

tuent group bonded t o a given central group may be expected 

to be the same from mo lecule to molecule, as is indicated 

by the success of the rule of additivity of atomic refrac-

tivity. 

The mean polarizability 0(4 of equation (12 5) may be 

obtained from the well known Eisenlohr(3l) atomic 

refractivities, 

(131) 
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where N is Avogadro's number, Ar is the Eisenlohr atomic 

refractivity of atom r of group i, and the sum goes over 

the atoms of group i. 

The determination of the anisotropy ratios of the 

various groups is more difficult. For this purpose the 

results of two different optical experiments are useful, 

namely, measurements of the degree of depolarization of 

scattered light and measurements of the Kerr constant. 

The degree of depolarization ~ of Rayleigh light scattering 

perpendicular to the direction of the incident beam, the 

latter being unpolarized, is related(32) to the principal 

po l arizabilities by the formula 

4 t. l.. 
( o( 11 - oC 2,'I.) + ( C( tl. - ~ :n) + ( 0( 1"\ - cc' U) 

~ oe. i. 

(132) 

The quantity p is called ~he optical anisotropy of the 

molecule. For a cylindrical l y symmetrical molecule the 

equations become 

.q.5~ 

~-7A 

' 

' 

(133) 
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which is equivalent to equation (126), but it is evident 

that knowledge of .A and °' determines the magnitude but not 

the sign of 13 • The mean polarizabili ty o< may be computed 

either from the Eisenlohr atomic refractivities or the 

measured index of refraction by means of the relation 

, 
(134) 

n being the refractive index, N the number density of the 

molecules. 

In many cases however the sign of ~ can be predicted 

with confidence from the geometry of the molecule by use 

of arguments due originally to SilbersteinC33). Thus in 

the case of a diatomic molecule supposed to consist of two 

isotropic polarizable point masses, an external field applied 

along the figure axis results in induced moments which rein-

force each other, while an external field perpendicular to 

the axis induces moments whose fields oppose each other. 

On this basis the figure axis should be the axis along which 

the polarizability of the molecule is greatest, or in other 

words the polarizability ellipsoid of a diatomic molecule 

should always be prolate. Since the dipole moment of a 

diatomic molecule must lie along the figure axis, the usual 

theory of the Kerr effectC34 ,35) leads to the conclusion 

that diatomic molecules would not be expected to have a 

negative Kerr constant, in agreement with experiment. Con­

siderations of this kind may be applied in qualitative fash-

ion to polyatomic molecules. The cases of methyl chloride 
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and chloroform are examples. Both have a threefold axis 

of syrnmet:ry, along which the dipole moment must lie. In 

methyl chloride the polarizability along the axis would 

be expected to be greater than that perpendicular to it, 

as it appears that of the various interactions only those 

involving hydrogen with hydrogen would favor the opposite 

possibility. In the case of chloroform however the greater 

polarizability of the chlorines may be expected to result 

in the polarizability perpendicular to the symmetry axis 

being the greatest. The correctness of this conclusion is 

verified by the observation that chloroform has a negative 

Kerr constant, methyl chloride a positive one. In general, 

it may be supposed that these Silberstein arguments will 

give correct qualitative results; rigorously accurate state-

ments require quantum mechanical calculation of the polar-

izabilities, which is not practicable. 

Quantitative information may also be obtained from the 

Kerr effect, or electrical double refraction. If n 11 and 

n~ represent the refractive indices of light polarized 

parallel and perpendicular, respectively, to the applied 

electrostatic field E0 in the Kerr experiment, for not too 

large values of the latter a quadratic dependence of the 

electrical double refraction on the field str ength holds 

according to relation 

nu - Yl.L KE~ = 0 
Y\ 

(135) 
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n being the index of refraction for the field-free medium, 

while K, the constant of proportionality, is called the 

Kerr constant(35). 

For gases and vapors at not too high pressures, so that 

n =l, it may be shown(35) that the Kerr constant is related 

to the principal polarizabilities and dipole moment by 

the equations 

K - K, + K z. 

K,= {E.-1)(n-1)~a. 

&OWNkT 

Ka.= Tl' N f" ( 20C \ - °'i. -oc.,) 
lS 1ei. TL 

(136) 

for the special case where the direction of the dipole mom-

ent coincides with one of the principal optical axes, which 

we denote by the subscript 3. Here e is the static dielec­

tric constant, n the refractive index for the field-free 

medium at the frequency of light used in the experiment, 

~ the anisotropy as given by equation (132), N the average 

number of molecules per unit volume, ~ the magnitude of the 

permanent dipole moment. 

In molecules not having a permanent dipole moment K2 

is ze r o, and from knowledge of Ki, € , and n, the anisotropy 

ratio f may be calculated (apart from its sign), a check 
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thus being obtained on the values found in the measurements 

of depolarization of scattered light. In molecules having 

permanent dipoles, unless the latter are very small, K2 is 

usually much greater than K1 • The latter may be estimated 

from the experimental depolarization of scattered light, 

and K2 then obtained from K using this result. The separa­

tion of K1 and K2 may also be achieved by measuring the 

temperature dependence of K. If the latter is plotted 

against the reciprocal of the absolute temperature a straight 

line should result; K1 (i.e., p ) may be estimated from the 

intercept and K2 (i.e., 2~3 - ~2- ~1 ) from the slope. 

If the molecule, besides having its dipole (if any) 

along one of the principal axes of polarizability, is also 

cylindrically symmetrical (the axis of symmetry necessarily 

being that along which the dipole moment lies), the aniso­

tropy ratio (.9 can be determined from measurements of the 

refractive index and of the Kerr constant at a single tern-

perature, without reference to the depolarization measurements, 

because K1 and K2 then depend on the same function of the 

principal polarizabilities. 

Recapitulating, the measurements of the Kerr constant 

or the depolarization of scattered light, or both, for 

suitable molecules, leads to information regarding the 

polarizability tensors of the molecules. In molecules 

having no dipole moment, the measurement of the Kerr constant 

and degree of depolarization both provide estimates of the 
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anisotropy ratio ~ • The latter and the mean polarizability 

~ determined from measurement of the refractive index give 

two relations between the three principal polarizabilities. 

If two of the latter are equal (cylindrical symmetry), the 

values of the principal polarizabilities are determined, 

but not their assigmnent to directions parallel and perpen­

dicular to the sym.~etry axis. The latter may usually be 

deduced from the Silberstein arguments. If the molecule 

has a dipole moment lying along one of the principal polar­

izabili ty axes, as is often required by s~nmetry, then 

measurements of the refractive index, degree of depolar­

ization, and Kerr constant determine the polarizability 

in the direction of the dipole moment uniquely, as well as 

the values of the polarizabilities along the other two axes, 

but not the assignment of the latter two values to the one 

or the other of their axes. Here again, the Silberstein 

criteria may make possible the removal of this ambiguity. 

Thus in the case of cylindrically symmetrical molecules, 

possibly with qualitative use of the Silberstein theory, we 

can determine the polarizability ellipsoid. Proceeding 

from this to the polarizability ellipsoid of the groups 

which we may regard as composing the molecule requires 

further assumptions. It has been mentioned that the zero­

order wave functions used by Kirkwood result in additivity 

of the polarizability tensors of the gro~ps giving the polar­

iza bili ty tensors of the molecule in the zero-order. The 
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theory as formulated by Kirkwood specifies these group 

polarizability tensors as including the effects of coul-

ombic interaction between the given group and the central 

group , and we have mentioned how this sti ll results in a 

dependence of the polarizability tensor of a given group 

on the nature of the other substituents in the central 

group, stating however that this dependence might be slight, 

and its neglect not serious. I n practice, this and still 

further assumptions are necessary. 

I n estimating the group anisotropies we have followed 

the procedure used by Kirkwood(lS). Considering the mole-

cule of ethane as composed of two methyl groups, each of 

which have the direction of the carbon-carbon bond as an 

axis of cylindrical syrn.metry, on the basis of the above 

assumption it is readily seen that 
' 

~cH~ being the anisotropy of the methyl group, ~c~H~ 

the anisotropy computed for ethane from the degree of de-

polarization of scattered l ight or from the Kerr constant. 

On the basis of the qualitative Silberstein theory, ~c~~' 

should be positive, and therefore ~,H3 also. This is the 

anisotropy of a methyl group bonded to a methyl group, and 

therefore not of immediate applicability to methyl groups 

in compounds other than ethane. However, if the further 

approximation of considering the anisotropy of the methyl 

group to have the same values in other compounds, such as 

methyl chloride, is made, then use of the observed values of 
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the anisotropy ratios of such other compounds permits the 

determination of the anisotropy of other groups, such as 

chlorine. This assumption, though not without its dif­

ficulties, seems to be the only feasible one if actual 

quantum mechanica l calculations are to be avoided. For 

groups such as the phenyl radical which may be expected to 

have a large intrinsic anisotropy, apart from the effects 

of interaction wit~ the central group (in contrast to 

chlorine, for instance ) , it appears reasonable to proceed 

again in a way utilized by Kirkwood, namely, t o treat the 

group in question as having the symmetry and numerical 

anisotropy of the parent hydrogen compolmd - in the case of 

the phenyl group, benzene. 

A practical difficulty is encountered in that measure­

ments of the degree of depolarization of light scattered by 

molecules in gases and vapors are experimentally quite dif­

ficult owing t o the smallness of the effect, and different 

values are often obtained by different investigators. The 

experimental degrees of depolarization and Kerr constants 

for several compounds are shown in Table I, with the calcu­

lated values of the anisotropy ratios. 

The uncertainty in the anisotropy of ethane is parti­

cularly troublesome, inasmuch as the resulting uncertainty 

in the anisotropy of the methyl group results in uncertain­

ties in the anisotropies of other groups obtained using 

the former value. The values obtained using the different 

sets of measurements are shown in Table 2. It is seen that 
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TABLE II 

Source of experimental values Group Group anisotropy 
ratio 

Ananthakrishnan, CH3 0.19 
Cl • 59 

light scattering Br • 55* 
CH2Cl ·39** 

Cabannes, light scattering CH3 0 .35 
Cl • 35 
CH2Cl 0 35** 

Stuart, Kerr constant CH3 0.31*** 
.35 

* 

** 

*** 

Cl 
Br . 41 
CH2Cl 0 33**,*** 
CH2Br .37 

Ananthakrishnan did not determine6 for cH3Br; 
calculated with his value for CH3 and an 
estimated A for CH3Br of 0.022 

Taken as equal to the anisotropy ratio of CH3X 

Average of Stuart's and Breazeale's values 



-82-

the Kerr constant values agree fairly closely with the values 

obtained from the depolarization data of Cabannes, while the 

discrepancies between these two sets and the values calculated 

from the depolarization data of Ananthakrishnan are greater, 

most of the difference being due to the latter's very low 

value of b. for ethane.. Both the depolarization measurement 

and the Kerr effect measurement are difficult for the small 

effects concerned; however the fair agreement between the 

depolarization data of Cabannes and the independent deter­

minations of the Kerr constant by Stuart and Breazeale lead 

one to believe the Ananthakrishnan measurements to be in 

error. 

Part III: Absolute configurations of several organic 

compounds on the basis of Kirkwood's polar­

izability theory 

Several more or less obvious features of equation (125) 

which affect its use in discussing absolute configurations 

may first be mentioned. It applies only to molecules com­

posed of groups each having an axis of optical synune try. 

The polarizability theory is of course not restricted in 

principle to such molecules, but in practice this limitation 

exists because of the paucity of our knowledge concerning 

the optical properties of the groups. Evidently g~> as 

given by equation (125) vanishes for interactions involving 
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isotropic groups - for such groups the higher approximations 

considered by Boys and de ivlallemann must be used. Even if 

the groups are anisotropic, g ~l vanishes if all pairs of groups 

have their optical axes coplanar with the line joining the 

group centers, for in this case the triple scalar product 

appearing in equation ( 125) vanishes. Furthermore, this 

will also be true if in the case of free rotation around 

valence bonds the coplanarity of the three lines holds on 

the avera.ge. Thus for such compolmds as CHCIBrI, where all 

substituent groups to a first approximation would be treated 

as having the directions of their bonds as cylindrical axes 

of symmetry, gco) wil l vanish in the first order. It is 

possible that the interactions with the central carbon atom 

might result in distortion of the sy.rmnetry of the groups, 

and so give rise to a nonvanishing g~ • The higher order 

po l arizability terms of de tra llemann and Boys do not vanish 

for such molecules, and would therefore make some contri­

butions to g~ The compound cited has not been resolved, so 

that its rotation is not known. 

In considering the application of the theory to spec­

ific substances, the points just mentioned must be kept in 

mind, as well as the fact that resonance bet·ween subs ti tuent 

groups is forbidden. The approximations involved are ex­

pected to become worse as the size of the individual groups 

relative to that of the who l e molecule increases, so that the 

smaller the groups the better the approximation. Furthermore, 
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it seems desirable to assign configurations to sever al dif­

ferent molecules which can be configurationally related 

by the ordinary techniques of the organic chemist, thus 

affording a check of the theory (assuming the interpretations 

of the organic chemist to be correct). If this is to be 

done, some attention must be paid to selecting compounds 

which can be conveniently resolved, etc. The various 

requirements are not easily satisfied simultaneously, so 

that fewer compounds are suitable than might be expected. 

Besides the features d i scussed, the calculation of g (o) 

as given by equation (125) requires a knowledge of the struc­

ture of the molecule. The term is not in general greatly 

sensitive to small changes in bond distances and bond angles 

in the molecule, so that in the majority of cases the normal 

covalent bond radii, and tetrahedral or near-tetrahedral 

geometry of the carbon atoms may be assumed. However in 

mulecules having internal rotations which change the relative 

orientation of one or more pairs of substituent groups, the 

optical activity will often be found to depend critically 

on the conformation with respect to this degree of freedom 

(actually often being of different sign for various orien­

tations, and avera gi ng to zero in the case of free rotation; 

see above). In such compounds rather precise information 

ma y be required concerning t he internal conformation in 

order to make unequivocal calculations. Because usually 
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several different orientations with respect to the internal 

rota tion wil l correspond to positions of stable equilibrium, 

and because these may correspond to different potential 

energies and contribute unequally to the rotatory power, 

strong temperature dependence of the latter may result. 

Conversely, rigid molecules (i.e., those having no low fre­

quency internal rotational degrees of freedom) would be 

expected to have specific rotations depending only on the 

temperature through variations of the density and therefore 

the refractive index. 

The compounds selected for application of the g l~ 

theory in the present series of researches are trans-2,3-

epoxybutane, 1,2-dibromopropane and 1,2-dichlor opropane. 

The first of these seemed desirable since the nuclear frame-

work is presumably nearly rigid, except for the rotation of 

the methyl groups, and since the molecular structure had been 

previously investigated by Brockway and Cross(39) using the 

electron diffraction method. Furthermore, the relative con­

figurational studies of Lucas and Garner C40) relate the con­

figurations of the compound in the D and 1 series, so that 

an assignment of absolute configuration to trans-2,3-epoxy­

butane results in an assignment for the members of the whole 

series. The other two compo1mds have internal rotational 

degrees of freedom which may be expected to have a profound 

influence on their optical activity. An electron diffraction 

investigation of the molecular structure of 1,2- dichloropropane 
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is to be described in Section V of this thesis. The struc-

ture of 1,2-dibromopropane had been previously investigated 

by Schomaker and Stevenson( 4l), again by electron diffraction. 

trans-2,3-Epoxybutane 

The spatial configuration for which the calculations 

have been performed is indicated in Figure 1. Inasmuch as 

we will have occasion to refer to the related compound pro­

pylene oxide, it is also shown. In the figure the heavy 

solid lines lie in the plane of the paper; the light solid 

lines project above the paper toward the reader; the dotted 

lines project be low the paper away from the reader. Also 

shown in Figure 1 are the projection formulas of these enanti­

omorphs according to the projection convention of Fischer( 43)~ 
The prescription for obtaining these projections from 

a t hree d imensional model is the following: the main carbon 

chain of the mo lecule is arranged so that it lies in a plane 

and so that each carbon-carbon bond is cis with respect to 

bo t h of its next-but-one neighbors. The carbon-carbon chain 

is then imagined to be straightened out by the bending of 

each C-C-C bond ang l e of the chain, the relative orientation 

of three of the bonds of each of the chain carbon atoms being 

preserved in the process. The straightened chain is then laid 

in the plane of the paper and rotated about its axis until 

a ll the substituent groups are oriented towards the reader, 

away from the plane of the paper. The structur e is now project-

ed onto the paper. In this way a unique correlation betvveen 
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CH H 
I 3 I 

H-y7 H-17 
0 0 

L6-H 16-H 
I I CH

3 
CH

3 

trans-2,3-Epoxybutane Propylene 

\ (~ 1 ( = 59° 
I) 

lr<XJJ = 

Figure 1 

Top, absolute configurations to which the 
discussion in the text applies; bottom, the pro­
jection formulas of these isomers according to 

oxide 

13° 

the Fischer projection convention. Fischer's 
assuJnption for the absolute configuration of 
glucose assigns these configurations to the levo­
rotatory isomers. Independent of any assumptions 
about absolute configuration, the relative config­
urational studies show these two isomers to have 
specific rotations of the same sign. The calcu­
lations in this thesis assign these configurations 
to the levorotatory isomers. 
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spatial configuration and a two dimensionaJ f ormula is ob-

tained. Although not essential to the latter, with some 

classes of compounds certain orientations of the two dimen-

sional formulas have become customary; for instance, with 

the sugars t he planar formula if written with the chain 

vertical is oriented so that the more highly oxidized end 

of t he molecule is on top. 

There is a second convention due to Fischer, to be 

sharply distinguished from the projection convention just 

described, which relates to the absolute configuration of 

optically active compounds. Lacking a solution to the 

latter problem, FischerC 43) for convenience assumed dextro­

rotatory glucose to have the configuration implied by the 

projection formula s hown in Figure 2. This assu.rnption, 

coupled with the relative configuration.al studies of organic 

chemistry, results in assignments of absolute configuration 

to a large number of substances. In particular the work 

of Lucas and GarnerC 4o)for 2,3-epoxybutane and the experi­

mental work of Levene and WaltiC 42 ) on propylene oxide as 

reinterpreted on the basis of modern conf i gurational know-

ledge result in the assignment of the absolute configurations 

of Figure 1 to the levorotatory isomers of both these com-

pounds, on the basis of Fischer's absolute confi guration 

assumption . Apart from the latter, and of importance for 

our later discussion, t he significance of the relative con­

figurational investigations may be stated in more geometrical 
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terms as follows: the replacement of either methyl group 

of a given enantiomorph of traq§_-2,3-epoxybutane without 

inversion gives the enantiomorph of propylene oxide having 

the same sign of rotation. 

ECO 
I 

HCOH 
I 

HOCH 
I 

HCOH 
I 

HCOH 
I 
CH20H 

Figure 2. Dextrorotatory glucose, according to 
the Fischer projection convention and the 
Fischer absolute configuration assrnnption. 

The magnitudes of specific rotations given in .Figure 1 

are for the pure liquids at 25° C. As will be clear from the 

discussion of Section I, the theory a pplies mo st rigorously 

to dilute vapors. Specific rotations in the vapor are not 

available; however FickettC 44) has made a rough measurement 

of the rotation of the epoxybutane in 2% fl.eptane solution, 

finding a change of only a degree or so in the specific 

rotation. This is what the theory of Section I would predict 

if recklessly applied to the liquid and solution measure-

men ts, inasmuch as through a coinciden ce 2, 3-epoxyb11tane and 

heptane have nearly identical i nd ices of refraction. Apart 

from this, the constancy of the specific rotation upon solu­

tion indicates that no special liquid effects are acting in 

2,3-epoxybutane, and presumably none in propylene oxide. 
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The structural parameters of interest here as reported 

by Brockway and Cross(39) are 1. 54 ~ for the carbon-carbon 

bonds, 57°26
1 

for the ring carbon-carbon-oxygen angles, and 

125°10' for all the other bond angles of the ring carbon 

atoms. 

The first step, and a very important one, in applying 

the polarizability theory is the decomposition of the mo le-

cule into groups. The structure of the theory as formulated 

by Kirkwood assigns a special role to a central group, to 

which all the other groups (called substituent groups) are 

bonded, there being no bonding or electron exchange of 

other kinds between any of the substituent groups. As a 

consequence of this formulation of the theory, groups such 

as a chlorine bonded to an asymmetric carbon may be treated 

as having anisotropic polarizability ellipsoids due to the 

interaction with the asymmetric carbon atoms. It is however 

possible to construct the theory in an alternative manner, 

in which the molecule is considered as composed of N + 1 

groups of atoms, between whi ch in the zero-order approxima­

tion no interactions occur - i.e., there is no central group 

specially considered. The first-order perturbation is then 

taken, as before, as the dipole-dipole potential energy of 

interaction of pairs of groups all of which are now consider-

ed, whereas previously no pairs involving the central group 

appeared in the perturbation, inasmuch as such terms were 

assumed to be included in the zero-order Hamiltonian. The 
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analysis proceeds in exactly the same manner as before, 

the only change in the final result being that in equation 

(125) all group s are included in summing over the pairs. 

This procedure ·would be unsatisfactory for the purposes 

of the first-order gM theory in the case of a group such 

as our previous example of a chlorine atom, as such a group 

would be isotropic in this approximation, and in general 

this method would be expected to be less accurate than 

that used by Kirkwood. However, it might occasionally be 

more convenient and also reasonably satisfactory in case 

all the groups have appreciable intrinsic anisotropy. 

In the case of the epoxybutane, perhaps the most 

obvious division into groups is that in which the carbon-

oxygen ring with the two attached hydrogens is treated as 

the central group, the two methyl groups being considered 

, t. t t E t. ( 12 h' ) th . (a) . 1 as suos i uen s. qua ion / en gives g as a sing e 

term involving the methyl -methyl interaction. Using the 

same scheme for propylene oxide, the central group is the 

same as before, while g c .. ) is given as a term involving the 

interactions of the methyl groups with the trans hydrogen. 

The other hydrogens bonded to the ring could in both cases 

be considered as separate constituent groups; however if 

they are treated as cylindrically symmetrical around their 

bonds, and the methyl groups similarly, it is readily seen 

that if the Brockway and Cross assumption of all bond angles 

outside the ring on the middle carbon atom being equal is 
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correct, then all the interactions of these other hydrogens 

with a methyl group or with the hydrogen traJ:?& with respect 

to the me thyl group vanish. Even if smal l deviations from 

the Brockway-Cross values for the angles occur, the terms 

would still be expected to be small. The only nonvanishing 

term involving these other two hydrogens is t hen the inter­

action of one with the other. This also would be expected 

to be small, considering the small polarizability of hydrogen 

unless it should have an anisotropy ratj_o approaching the 

maximum value of three, ·which seems unlikely. On the basis 

of this scheme of s1ilidivision, the smallness of the contri­

butions of hydrogen terms to g~ is supported by comparison 

of the magnitudes of the rotations of the two compounds l.mder 

discussion. 

The subdivision just described, although relatively 

simple in principl e, has the disadvantage that relatively 

little is known of the optical properties of a methyl group 

bonded to t his central group. Inasmuch as the l atter has a 

relatively large dipo l e moment, and also because of the 

strains involved in the bonds of the ring carbons, it might 

be expected that the cylindrical symmetry of the methyl group 

would be somewhat distorted, as well as possibly some alter-

ation in the value of the anisotropy ration, even if the 

first effect should be small. Indeed it wil l be seen from 

the calculations below that use of optical parameters for the 

methyl group derived from the experimental data for ethane 
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fall rather short of reproducing the experimental rotatory 

power of 2,3-epoxybutane, the calculated value being approx­

imately one-third to one-quarter the observed. 

It is also possible to pro ceed in the alternative ver­

sion of the theory described previously. Abandoning the 

designation of a special central group, we may consider the 

molecules as composed of a methyl group or groups, the carbon­

oxygen ring with two attached hydrogens, and in the case of 

propylene oxide the third hydrogen atom may be considered as 

another group. In the zero-order approximation appropriate 

to the present discussion, however, the hydrogen will be 

isotropic and so not contribute to the first-order optical 

rotatory power. Under this scheme, the optical activity of 

2,3-epoxybutane will appear as the sum of three terms, a 

methyl-methyl interaction and two methyl-ring interactions. 

It is readily seen, because of the twofold axis of symmetry 

of 2,3-epoxybutane, that the latter two are completely 

equivalent; furthermore, if in propylene oxide the bond 

angles of the ring carbon to which the methyl group is attached 

are the same as those in 2,3-epoxybutane, then each methyl­

ring interaction in the latter compound contributes alge­

braically the same rotation as the single similar interaction 

in propylene oxide. But with the present subdivision in 

the latter compound, its rotatory power is due to the single 

methyl-ring interaction. 

It may be here mentioned that although we have been con­

sidering the carbon-oxygen ring and the attached hydrogens 
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as comprising a group, there is no necessity of doing so 

we can, if we like, consider each atom as a group. The 

advanta ge of doing the latter has been previously mentioned; 

1 th (o) • t · b · - · 1 ' tt th name y, e g approxima ion ecomes increasing y oe er e 

smaller the size of the groups compared to the molecular 

dimensions. Opposing this advantage, however, is the disad­

vantage that as we decompose large groups into smaller ones, 

the structure of the theory forces us to neglect more and more 

bonding interactions in the zero-order approximation. Put in 

other words, if we eventually decide to consider each atom 

of the molecule as a separate group, then we have to neglect 

in our zero-order wave functions all interactions between 

the atoms. The groups then become isotropic, and we have 

reduced the problem to the one considered by Boys. It seems 

likely that an intermediate procedure is preferable. 

It is probably not an adequate approximation to consider 

the carbon-oxygen ring as cylindrically symmetrical, so that 

the calculation of the principal polarizabilities requires 

knowledge of both the Kerr constant and the degree of depolar­

ization of scattered light. The latter is not available; the 

term as a result eludes calculation at the present time. The 

argument of the preceding paragraph shows, however, how the 

experimental value for the rotatory power of propylene oxide 

may be used to estimate the methyl-ring term; in this way we 

obtain a quasi-experimental value of 33° as the magnitude of 

the methyl-methyl contribution to the specific rotation of 

2,3-epoxybutane. 
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I n ca lcul a ting theoret ica lly t h i s l as t i n t er action 

using e quat ion (125), t he str uctural da t a of Broc kv.;ay 

and Cross have been used , the methyl groups being treated 

as cylindrically symmetrical about their bonds, with their 

cen ters at t heir carbon atoms. For t he isomer of Fi gure 1, 

use of t he value ~ = O. 3 5 for the anisotropy of t he methyl 

groups leads to the value [oc:]n = -17° for the contribution 

of the methyl-methyl interaction for a medium of refract i ve 

index 1.37, corresponding approximately to that of both the 

pure liquid and the dilute heptane solution. The ma gnitude 

is roughly one-half the "experimental" value; t he discrepancy 

may be due to use of too small an anisotropy ratio, or to 

distortion of the polarizability ellipsoids. It seems un-

likely that the error could be so large as to result in 

the wrong sign . 

The calculation just described results in the assignment 

of t he configuration given in Figure 1 to the levorotatory 

isomer of trall§.-2,3-epoxybutane, thus verifying t he Fischer 

convention for the absolute configurations of the whole 

series of optically active compounds. 

1,2-Dichloropropane ( Propylene chloride) 

The configuration to which the calculations to be des-

cr i bed wil l app l y is s hown in Figure 3, where the carbon-

chlorine bond of the -CH2c1 group, the 1,2 carbon-carbon 

bond, and the dotted line t hrough c2 lie i n the plane of 

the paper. The internal rota tion arom1d t he 1,2 carbon-carbon 
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bond will be shown to have a profound effect on the optical 

activity; as the coordinate specifying this degree of free­

dom we choose the angle between the two planes formed by the 

1,2 carbon-carbon bond with the two carbon-chlorine bonds. 

The angle is called ~ and is taken as zero when the two 

chlorines are trans with respect to each other. The posi-

tive direction of rotation from the trans position is taken 

as that which brings the methyl group into the cis position 

with respect to the chlorine bonded to c1 • Put otherwise, 

the positive direction of cp corresponds to clockwise rota­

tion of the -CH( CH3 )Cl gtoup relative to the -CH2Cl group 

when viewed along the 1,2 carbon-carbon bond looking fr om 

C1 towards C2. When <::(> is zero, the chlorines being trans,, 

then the methyl group projects towards the reader, away 

from the plane of the paper. In Figure 3 the projection 

formula of the same isomer is also shown according to the 

convention of Fischer. 

C,l Y CH3 
I~ /H I / 
I / 

- - - - - + - - - - - c'- - - - - - -- - - - - -
I ("()~,..........-"" 
I I ,.... 
I ,..... ...... 
I-- ..... 

Cl 

rH3 
H-C-Cl 

I 
CH2Cl 

Figure 3 1,2-Dichloropropane 
Left, the enantiom?rph to which the.ca~culations app~y; 
right, the projection formula of this isomer, according 
to the Fischer projection convention. 
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In a ppl yi ng equation (125) to the calculation of the 

rotatory power of propylene chloride, the molecule has been 

considered as being composed of the three substituent groups 

-CH2Cl, -Cl, and -CH3, with the asymmetric carbon atom play­

ing the role of the central group. The terms involving the 

hydrogen bonded to the latter have been neglected, as they 

may be supposed small co~pared to the others. The chlorine 

atom and the methyl group were considered cylindrically 

sym.rnetrical about their bonds to the asYiffiITletric carbon, 

while the -CH2Cl group was treated as cylindrically symmetrical 

around the carbon-chlorine bond axis, in accordance with the 

procedvie described earlier for groups having large intrinsic 

anisotropy. The optical center of the chlorine atom was 

taken at its nucleus, that of the methyl group at the nucleus 

of its carbon atom, while t he center of the -CH2Cl group was 

placed at the cent er of ma ss of its carbon and chlorine atoms. 

As has been previously indicated, t he optical activity 

de pends critically on the internal angle cf . Considering 

the low frequencies and large moments of inertia involved in 

this internal degree of freedom, it is doubtless an adequate 

approximation to utilize classical statistical mechanical 

phase integrals rather than the quantum me chanical sums-over­

states in performing the required averaging. Furthermore the 

discussion of Section V indicates that it will be a suffi cient 

a pproxima tion to perform this averaging using as the weight­

ing function the Boltzmann factor exp(-V(cp}/RT) , (V Ccp ) 

being t he potential energy restricting the internal rotation) 
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rather than using the rigorous (in the classical approxi­

mation) weighting function and integrating over all vibra-

tional and rotational coordinates and the corresponding 

momenta. Adopting this approximation, we require the opti­

cal activity of the molecule as a function of the internal 

angle ef . In performing this calculation tetrahedral carbon 
0 

bond angles were assumed, and the distances C-C = l.54A, 

C-Cl = 1.77~ used. These values are somewhat different 

than the values found in the electron diffraction investi-

ga ti on; however, inasmuch as the rotatory povver does not 

depend critically on the exact values of these parameters 

it has not seemed worthwhile to repeat the calculations. 

The term contributed by the interaction of the methyl 

group and the chlorine atom bonded to t he asymmetric carbon 

atom vanishes, so that only two terms need be calculated, 

namely, the Cl----CH2Cl term and the CH
3

---CH2Cl term. 

The calculated specific rotation as a function of the inter-

nal angle is shovm by the curves of Figure 4, for different 

values of the anisotropy ratios of t he groups calculated 

from the experimental data of different investigators given 

in Table 2 of this section. A fourth curve is also sho'lim, 

in which the anisotropy ratios der ived from Cabannes' data 

were again used, the optical center of the -CH2Cl group 

being taken at the chlorine nucleus. Comparison of this 

curve with the other one calculated from Cabannes' data 

illustrates how the optical activity depends only slightly 

on exact values of the distances. The curves of Figure 4 

are computed for a medium of refractive index 1.44, the 
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value corresponding to the pure liquid at room temperature. 

For comparison with experimental values of the rotatory 

power and for assignments of absolute configuration, the 

average specific rotation must be computed, for which compu-

tation we need to know the functional dependence of the 

potential energy hindering rotation V ( ~ ). For this purpose 

the electron diffraction investigation described in Section V 

of this thesis was undertaken. There recent dipole moment 

data for propylene chloride in the vapor state are a l s o dis­

cussed and analyzed. The determination of V ( ~ ) is there 

discussed at some length, particularly the range of varia­

tion of V ( ~ ) within which satisfactory interpretations of 

the dipole moment and electron diffraction data may be ob­

tained. Tables 6 and 7 in that section also give the average 

specifi c rotation computed from curves C or C' of Figure 4 

for a variety of potentials in the aforementioned range. 

Here the discussion will be limited to a statement of the 

general features of the problem and to the results obtained. 

Three positions of stable equilibrium with respect to 

rotations around the 1,2 carbon-carbon bond would be 

expected, corresponding to the three nonequivalent conforma-

tions in which the bonds of c1 and c2 are staggered, i.e., 

in the neighborhood of cf> = 0, ± 2 1\' 13. There is no symmetry 

requiring the minima to occur at exactly thes e angles; in-

deed, it seems likely that steric forces will displace the 

minima somewhat. Of these t hree, the one wi th cf = 2 1l' 13 
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is expected because of steric effects to be of sufficiently 

high energy relative to the other two so as to be of negli­

gible importance at temperatures of interest here. Of the 

other two minima the one near c:(J = o, which we shall call the 

trans minima, is expected to be of lower ener gy , by analogy 

with other compounds and as proven by the discussion of 

Section V. However, the minimum near <:p = -2 w/3, designated 

as the gauche or skew minimum, is expected to be of appre­

ciable significance by comparison with the related compolmds 

ethylene chloride and 1,1,2-trichloroethane, as discussed in 

Section V. 

From Figure 4 it is evident that the contributions of 

these two conformations to the optical activity will very 

likely be opposite in sign. Furthermore, the exact position 

of the trans minimum is uncertain, inasmuch as the structure 

investigations can only be interpreted safely as requiring 

it to lie in a range of twenty-five to thirty degrees either 

side of c:{) = 9. Steric repulsi0ns between the methyl group 

and the chlorine bonded to c1 may become effective in the 

neighborhood of q> = o, tending to give a potential minimum 

displaced slightly from q> = 0 towards negative values of tj) • 

The possibility arises that this displacement, which carries 

the trans potential energy minimum toward the node of the 

computed specific rotation curve, combined with a sufficiently 

large contribution of the skew minimum may result in the 

sign of the average rotation being opposite to that of the 

trans minimum. However, it is found, when the averaging is 

done wi t h curve C of Figure 4 at T = 300° K, that all paten-

tials which are satisfactory for the interpretation of the 
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dipole moment and electron diffraction data result in giving 

a negative specific rotation for the isomer of Figure 3, of 

the general order of magnitude of -20 deg./dm., the ranee 

of values being approximately -10 to -50 deg./dm. On the 

other hand, if cuxve A of Figure 4 is used, the sign of the 

specific rotation is not determined by the range of poten­

tials acceptable on the basis of the aforementioned criteria, 

so that no conclusions regarding absolute configuration can 

be drawn from comparison with experimental rotations at this 

singl e temperature. 

I t is however interesting to noint out that measurement 

of the temperature dependence of the optical activity will 

make possible an assignment of absolute configuration with 

only the two assumptions that, as indicated by Figure 4, the 

specific rotation of the skew isomer is algebraically greater 

that that of the trans isomer, and that the sign of the rota­

tion computed for the skew isomer is correct. 

Suppose, for example, that the magnitude of [Q(.] 0 /n-i.+3 

increases on raising the temperature. It then follows that 

the sign of the contribution of the skew isomer to the opti­

cal activity is the same as that of the average rotation in 

the temperature range in question. Our assumption is that 

the former is correctly determined by the theory as being 

associated with a definite one of the two isomers. Conse­

quently the experiment permits an assign.rnent of absolute 

configuration to the two antipodes: if the magnitude of 
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[oc:: 1 /rt?·+3 increases with raise of temperature then the 

dextrorotatory isomer has the configuration of Figure 3; 

if this quantity decreases with rising temperature, the 

levorotatory isomer has this configuration. It is desirable 

that these measurements be carried out in the vapor state, 

as only in this case can the theory lay claim to rigor. 

If the Ananthakrishnan measurements coul d be completely 

discounted, the configuration of Figure 3 could be assigned 

to levorotatory propylene chloride without reference to 

measurements at different temperatures, although the latter 

would of course be a valuable check. This assignment may 

be re garded as quite probable, but must be considered tenta­

tive until confirmed by the temperature dependence. 

Propylene chloride has not been resolved; this problem, 

along with the determination of the relative configuration, 

is being attacked by Ur. Wildon Fickett under the direction 

of Professor Lucas. When this work is brought to a success-

ful conclusion, particularly if it proves possibl e to mea­

sure the temperature dependence of the rotation in the vapor, 

then a check of the theory will be afforded by the compari-

son of the resulting assignments of configuration. 

1,2-Dibromopropane (Propylene bromide) 

The isomer to which the discussion will apply is that 

of Figure 3 with the chlorines replaced by bromines. With 

the same subdivisions of groups, the same assumptions as 

regards the symme try of the latter, and so forth, as for 
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propyl ene chl or ide, the curves of Figure 5 were ca l cul ated 

using the ani s otropies given in Tab l e 2 , f or a medium of 

r efractive index 1.52, this va l ue corresponding to t hat 

of t he pure l i quid. The curves are similar to those fo r 

propyl ene chl oride, an important difference however being 

that with pr opylene bromide t he node of the curve is closer 

to the conformation ~ = O. 

The e l ectron diffraction investigation of Schomiker and 
( 41 ' 

Stevenson J did not consider explicit l y the po s sib l e exis-

tence of potentia l minima o t her than trans, nor in detail the 

possib l e variations of the trans equi l ibrium posit i on from 

<f = O. Furthermore, no vapor dipole moment data (or even 

solution measurements over a temper ature range ) have been 

published, so that practically no inf ormation is available 

concerning V ( 9' ) for propyl ene bromide. Eowever by analogy 

with the results of Gwinn and Pitzer C45) for ethyl ene chl oride 

and bromide, a sma l ler amount of the skew conformation would 

be expected in propylene bromide than i n propylene chloride, 

so that we might expect to obtain an upper limit (algebrai-

cally) for the op t ical act i vity of the isomer of propylene 

bromide unde r di scussion by using the potentia l s which were 

found satisfactory for the chl oride. Ca l cul at i ons of t his 

s or t u s ing curve K of Figure 5 a gain r esult j_n a uniforml y 

ne gative sign for the specific rotation , but some va lues ar e 

quite close t o ze r o, t he r ange of va l ues of [°'1o be i ng roughl y 

- 2 t o - 25 deg. / dm. The cal cul ation does not therefore assure 
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levorotation even using curve K. Thus the absolute config ­

uration of propylene bromide is even less certain than that 

of propylene chloride on the basis of similar calculationso 

Here again, however, measurement of the temperature 

dependence of [oc::} 0 will afford a remedy to the situation, 

and make possible an assignment of absolute configuration 

to the isomers of propylene bros ide. The relative configur­

ational study of this compound is being carried out by 

Mr. Fickett and Professor Lucas along with the previously 

mentioned work on propylene chloride. 



SECTION IV 
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0THER THEORIES OF OPTICAL AC'rIVITY 

Part I Kuhn's application of the coupled oscillator theory 

to .§_££-butyl alcohol 

We include this brtef discussion of W. Kuhn's( 46) use 

of the classical coupled oscillator theory in this section, 

although it is rather similar to the polarizability theories 

discussed in the preceding section. 

The isomer considered by Kuhn is shown in Figure 6, 

z ..,. 
I 
I 
I 
I 
I 

Figure 6. Levorotatory sec-butyl alcohol 
according to Kuhn. 

where the cH3 and c2H5 groups proj ect toward the reader, the 

H and OH groups away from the reader (behind the plane of the 

paper). The x and z axes lie in the plane of t he paper wl1i le 

t he y axis is perpendicular to the latter, the positive dir­

ection pointing away from the reader. The carbon atom of the 

c:a3 group and the secondary carbon atom of the C2H5 group are 
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in the xy plane; t he oxygen of the hydroxyl group and t he 

hydrogen bonded to C* are in the yz plane . 

Kuhn assumes the methyl and ethyl groups as well as the 

as yr~~etric carbon atom to be isotropic per se, becoming aniso -

tropic t hrough the interactions of t he moments induced in 

them in the Silberstein manner . The hydroxyl group is taken 

to be anisotropic J?_EIT_ se, with t he principal axes u1 parallel 

to the x axis, u2 along the C-0 bond and u3 in the yz plane. 

The hydrogen bonded to the asymmetric carbon is neglected . 

He supposes t he "sterically preferred" orientation of the 

hydroxyl group to be that in which it lies in the yz plane, 

and gives argur..1ents to show that the plane det ermined by C* 

and OH (under his structural assumption , t he yz plane) would 

be expected to contain the direction of greatest polariza-

bility (Silberstein ar gument), and further that this last ­

mentioned direction would be the direction of vibration of 

the induced moment in t he absorption band of longest wave 

length. It is the rotatory contribution of this band which 

he calculates, supposing it to dominate the rotatory power 

in the visible spectrum, a fact which he claims is supported 

by an analysis< 47) of experimental rotatory dispersion data; 

t his however is disputed by Levene and Rothen( 4B>. 
In computing the interactions of the induced moments 

in the c, ctt3 , c2H5 and OH groups Kuhn considers only terms 

involving pairs of groups bonded to each other; for these he 
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uses the potential energy of dipole-dipole interaction . The 

theory is entirely similar in principle to the polarizability 

theory of de Mallemann involving the interaction of three 

groups one of which is anisotropic, the only difference being 

the restriction of the calculations to the contri bution of 

a single absorption band rather than summing over all absorp­

tion bands. It is found with Kuhn's assumptions concerning 

t he principal axes that the rotatory contribution of the 

normal mode u2 (so called because it reduces to the u2 mode 

of the hydroxyl group in the absence of the interactions with 

the other groups) vanishes, vrhile the u
3 

mode contributes 

levorotation, the u1 mode dextrorotation. Under the above­

mentioned assumptions it follows that the molecule of 

Figure 6 should have a levorotatory contribution from the 

absorption band nearest the visible; supposing this band to 

determine the sign of the rotation in the visible, the 

enantiomorph shown should be levorotatory. 

Two major ob jections to the analysis of Kuhn suggest 

themselves, the first being the treatment of the ethyl and 

methyl groups as isotropic . Kuhn supports t his assumption 

by citing the fact that the sign of the rotation does not 

change in replacing the ethyl group by such groups as the 

cyclohexyl or propyl groups. A second objection is that it 

is not at all clear that the orientation of the OH group 

assrnned by Kuhn actually corresponds to the most stable 

position of equilibrium. Inasmuch as other equilibrium 
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positions are probably at least as important, and because 

the sign of the calculated rotation de pends on t he orienta-

tion assumed, it seems clear that the result should be regard­

ed as open to some question . This point will be discussed 

at somewhat greater length when we take up the Eyring t heory 

in the next part of this section. 

The configuration found by Kuhn for levorotatory sec­

butyl alcohol is the same as that obtained from relative 

configurational studiesC 43) combined with the absolute con­

figuration of dextrorotatory glucose assigned by FischerC43) 

on a postulatory basis. Thus the projection formula of the 

isomer of Figure 6 according to Fischer's projection conven-

tion is shown in Figure 7; it will be reco gnized as the usual 

formula for levorotatory sec-butyl alcohol. 

Figure 7 Levorotatory sec-butyl alcohol, as 
postulated by Fischer and calculated by 
Kuhn . Projection formula according to 
Fischer convention 

Part II The one-electron t heory of Eyring , et al. 

The polarizability theories previously described and 

the Kuhn theory are to be regarded as derivatives of the 

Born coupled oscillator optical activity t heory. The theory 



-111-

developed by Eyring and his co-workers attributes the optical 

rotatory power to the motion of a single oscillator (electron) 

in a suitably asymmetric potential field . 'rhis idea (the 

basis of Drude's(9) previously mentioned model, later shown 

erroneous by Kuhn(lO~ was for some time believed to be with-

out foundation, inasmuch as in the reference quoted Kuhn 

purported to prove that a single oscillator could not show 

optical activity. Since the original paper of Condon, Altar 

and Eyring (22 ) , however, Kuhn( 47) has noted that his proof 

requires the assumption of only infinitesimal displacements; 

with the finite displacements implicit in quantum mechanica l 

theory optical activity can be produced by the motion of a 

single oscillator in an asymmetric potential field. The 

contributions of such terms to the optical rotation are in-

eluded in the gk terms of equation (112) in Kirkvvood' s break­

down of the Rosenfe ld formula in terms of the groups compos-

ing the molecule. 

The procedure adopted by the Eyring school is similar 

in one res pect to that of Kuhn in that instead of calculating 

the complete rotatory parameter gk of a given group, only the 

contributions from one or more of the ultraviolet absorption 

bands lying closest to the visible are calculated, it being 

supposed that their rotatory contributions predominate in the 

optical activity observed in t he visible re gion . It is further 

supposed that transitions respons ible for t hese bands may 
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be adequately represented in terms of ''ohe-electron tran-

sitions 11 , i.e., that t he upper and lower quantum states in 

question may be represented by wave functions having the 

form 

• 
' 

( 135) 

here \.f 0 and 'f., are the molecular wave functions for the lower 

and upper levels, respectively ; i:, and i'" are the wave functions 

of the electron, one or more of whose transitions are assumed 

to account for the absorption band in question; 'fo is the 

wave function for the other electrons of the molecule, ideal-

ized as being the same in both u pper and lower states. 

Under these conditions the contribution gk (o-+n) of 

the absorption band in question to gk, where k denotes the 

chromophoric group, reduces to 

g (o-+\'\) 
h 

... _,. 

- c --3'1t'h 

Im {fA..n·rnh.1 
11,.!' -ZI i. 

, 

(136) 

where f and m are now t he dipole moment and ma gnetic operators 
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of the chromophoric electrons, the matrix elements being 

taken with the wave functions lf0 and o/"' of equation ( 13 5) . 

The gk of the other groups , as we ll as and g<•> vanish in 

this approxLri.atj_on. It may however be mentioned that vvhj_le 

the approximation of neglecting the change of quantum state 

of the other electrons with the transition of the chromo-

phoric electron may not be serious for the purpose of cal-

culatj_ng the one-e l ectron rotatory power, the vanishing of 

g co> and g <•> upon its introduction in no way de111onstrates 

that these terms are really neg ligible. 

The probl em now reduces i ts e l f to the computation of 

the wave functions ~ and ~"' for the chromophoric electron, 

and the eval uation of the matrix elements appearing in equa-

tion (136 ) . Different procedures ar e poss i ble in obtaining 

approximations to the wave functions , and it will be simplest 

for the purpose of the presen t discussion to outline the 

method used by Gorin, Walter and Eyring ( 29) for the specific 

case of .2._ec-butyl a lcohol. 

For this mo l ecul e it is assumed with Kuhn that the 

optical activity is due to the absorption band of the hydroxyl 

group lying nearest the visible. This band is attributed to 

transitions of a nonbonding electron on the oxygen atom. 

The wave functions of this chromophoric electron are taken 

to be solutions of the Hartree equation 
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(137) 

V(r) represents the potential energy of the chromophoric 

electron due to the oxygen nucleus and electrons, and is 

taken as hydrogen-like with effective nuclear charges for 

the various levels which give the empirical ionization and 

resonance potentials for the given molecule or a related 

one. The first sum, with dummy index s, is over the other 

nuclei of the molecule. The second sum is over t he elec-

trons associated with nucleus s. The wave function ~~s is 

that of the electron i associated with nucleus s, whi le r i:s 

is the distance between the chromophoric electron and elec-

tron i. The double sum is thus the potential. energy of the 

chromophoric electron in the field of the other electrons 

in the Hartree approximation. 

The last term is the potential energy of the chromo-

phoric electron in the field of the other nuclei of the 

molecule, Zs being the atomic number of nucleus s , rs the 

distance of t he chromophoric electron from this nucleus. 

Exchange is neglected, bonding electronic pairs being 
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assigned one each to the atoms forming the bond. 

First-order perturbation theory is used, the last two 

terms within the brackets in equation (137) being treated as 

the perturbation. The zero-order wave functions for the 

chromophoric electron are thus ordinary hydrogen- like func-

tions. It is readily seen thnt no optical activity is obtain-

ed in the zero-th order. In evaluating the integrals appear-

ing in t he perturbation terms, approximate screening constant 

wave functions are used for the electrons of t he hydrogen 

and carbon atoms of t he mo lecule. 

The enantiomorph to which their calculations apply and 

the mo l ecular structure assumed for it are shown in Figure 8 , 

where t he heavy lines are in the plane 

TH3 
HOCH 

I 
C2H5 

Figure 8. Left~calculated configuration and 
as sw;1ed mo lecular structure of l evoro ta tory 
sec-butyl alcohol according to Gorin, Walter 
and Eyring. Hi ght,,projection formula of the 
isomer on t he l ef t according to the Fischer 
proj ection convention. The absolute config­
uration agrees wi t h that deduced from Fischer's 
assmned absolute configuration of ghJ.cose. 
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of the paper, the dotted lines project away from the reader, 

the solid light lines toward t he reader. 'rhe Fischer pro-

jection formula for this isomer is also shown. 

The perturbation previously mentioned is subdivided into 

two parts, H' indicating that due to the carbon and hydrogen 

atoms bonded to t he oxygen, H'' t hat due to all the other 

atoms. Because of the proximity of the atoms giving rise 

to H', this te rm is l arger than H11 , so t hat the latter can 

be ne gl ected in comparison with the former except in t hose 

cases where symmetry re sults i .n a null contribution from ~= 1 • 

(E 1 is syr'1r:1etric with respect to the C*-hydroxyl pl ane and 

of itself woul d not give rise to optical activity. H' ' has 

no symmetry with respect to this plane.) 

The zero-order ground state wave function of the chroma-

phoric electron is taken as the hydrogen-like wave function 

lV-z.px wi t h an appropriate eff ec ti ve atomic number; the y and 

z axes of the coordinate system are taken in the plane of 

the paper in Figure 8, the x axis perpendicular thereto. I n 

this treatment the effect of the perturbation E 1 ' on the 

ground state is ignored, so t hat only hydrogen-like functions 

odd with respect to t he yz plane w~ll appear in the expan-

sion of the ground state in terms of the zero-order wave 

functions. The authors limit their calculations to the 

inclusion of only one such terin , namely ~3P"' • 

Three zero-order excited states are considered, namely 

~ , ~ and 'Y ... , it ·ceing supposed that the rotatory power 
~s !py !P" 
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in the visible is dominated by the contributions of trans-

itions to t he se excited states. These three states are degen-

erate in zeroth order; all are symme tric with res pe ct to the 

yz plane, so that the degeneracy is removed by t he perturba-

tion H 1 • The correct set of zeroth order vvave functions are 

t hen individua lly cor.1bined with t he wave functions ~.ipy , fz.p'I. , 

~ldu and ~Sd.Ky by means of the perturbation H' f or the first 

t wo, by means of H' ' for the last tw·o, to give the first-order 

approximat ions to the t hree excited levels. It is the contri­

butions of the l ast t wo wave functions, ~3 d:xz and ~~<h~ , whi ch 

remove the even symmetry character of t he excited states with 

respect to t he yz plane. Thus the initial state is odd with 

respect to t his plane, whi le t he final sta tes are nearly even. 

With these sy:Mne try characters of the initial and fina l states 

there arises t he possibility of a large electric moment and 

a small magnetic moment matrix element perpendicula r to the 

yz plane, as we ll as a small e lectric moment matrix element 

and a large magne tic moment matrix elemen t in this plane. 

However with the wave functions selected by Gorin, Wa lter and 

Eyring for inclusion in t he expansions of the grounq and 

excited states, it is found that in t hese transitions the 

components of the ma gnetic moment perpendicular to the plane 

vanish, due to elements of syrmnetry cor:nnon to this component 

of the operator and to t he various zero-order wave functions 

utilized in the expansions of the ground and excited states. 
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For similar reasons t he expected large magnetic moment in 

the yz plane fails to materialize, the magnetic moment in 

this direction being that due to the perturbation H'. The 

electric moment in t his plane is found to be due to the per-

turbation E' 1 , so that the term calculated by Gorin, Walter 

and Eyring is of the order H1 H' 1 • 

With these assumptions the problem is reduced to the 

evaluation of the integrals involved. The procedure is 

lengthy though not particularly difficult, the integrals 

being amenable to analytical evaluation. For the configur­

ation and conformtion of Figure 8 these authors calculated 

g = -2.70 x lo-35. The magnitude of g comput ed from the 

experimental rotation for the pure liquid is 1.4 x lo-35. 

Gorin, Walter and Eyring also computed the rotation for the 

orientation in which the hydroxyl group in Figure 8 is turn­

ed into the position coplanar with the C*-H bond, finding 

for this orientation g = -9.67 x lo-35, They proposed these 

two conformat ions as being the orientations of greatest pro-

bability, suppos i ng them to be stabilized by internal hydro­

gen bonding, and so concluded that the isomer of Figure 8 is 

levorotatory, thus verifying t he absolute configuration 

assumed by Fischer for glucose. 

Objections may be raised to the calculations of Gorin, 

Wa lter and Eyring at several points. It has not been convin e-

ingly demonstated that the sign of the total rotation in 

the visible is actually the same as the sign of the contri-

butions of the absorption band for which the calculation is 
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carried out. Suppos i ng this actually to be t he case however 

the adequacy of the approximations made seem open to question. 

The success of first-order perturbation theory depends on the 

closeness of approximation of the zero-order wave functions; 

whether the perturbation calcul ation converges sufficiently 

rapidly when hydrogen-like wave functions are used for the 

latter is not demonstrated. 

The effects of electron exchange are completely neg­

lected in the calculation of the Hartree perturbing poten­

tials due to the electron clouds of the surrounding atoms. 

Even supposing the approximations so far mentioned to be 

valid, omission of the state ~~px from consideration with 

t he t hree other excited levels with the remark that "it 

would considerably complicate the calculation w~thout 

giving an important contribution to the optical activity" 

seems questionable . This state is degenerate wit h the 

three excited s t2. tes used by these authors. The pertur­

bation H1 1 wi ll combine it in the zeroth order with the 

three functions considered as excited states previously, 

and in the first order with such states as ~i1py and ~.tpl. ; the 

perturbation H' will combine it in the first order with 

other odd (with respect to the yz plane) states such as 

~~cl.x.t and i;dxy • Taking the same ground state as before, non­

vanishing matrix elements for the electric and magnetic 

moments in the y z plane are found which result in a con-

tribution to the optical activity of the same order H1 H11 
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as folmd for these other states. There is no apparent reason 

why this contribution s houl d be small compared to those pre­

v iously cal cul ated. If i t i s of the same order of magnitude, 

it might easi l y change the cal culated sign. The omission of 

f and higher l eve l s in the expansion of the excited state 

wave functions is a l so questionabl e, inasrnuch as their in­

c l usion (due to the perturbation H1 1 ) would result in com­

ponents of the magnetic moment perpendicul ar to the pl ane 

in the transitions t o the three excited states considered by 

Gorin , Wa l ter and Eyring. These same excited states give an 

electric moment in this direction in the zeroth order, so 

that incl usion of such terms woul d give rise to a contribu­

tion to the optical activity of the order H' 1 • 

Final ly, certain exceptions may be taken to the confor­

mations assun18d by Gorin, Walter and Eyring. The orientation 

of the hydroxyl group in Figure 8 pr obably corresponds to a 

potential energy minimum due to steric repul sions between t he 

hydrogen of the hydroxyl and the groups bonded to C*. On 

the other hand, the orientation of the ethyl group with 

respect to its rotation arovnd tl':>.e 2,3-carbon-ca.rbon bond is 

very like l y unstable, the great weight of experimental evi­

dence favoring the sta~ility of staggered rather t han eclipsed 

conformations in co~npolmds having internal rotation, except 

where strong hydroxyl bonds may stabilize the eclipsed con­

formation. It is lmlikely that hydrogen bonds involving 

hydrogens bonded to carbon will be suff iciently strong to 
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overcome the steric repulsions opposing the eclipsed orien­

tations. The staggered conformation in which the ethyl 

group is rotated 180° from its position in Figure 8 would 

be expected to be approximately at a potentiai minimum. 

For the orientation of the hydroxyl group s hown in Figure 8 

t he ethyl group makes no contribution to the rotatory powBr 

in either of these two positions in ~1ich its carbon atoms 

lie in the yz plane, in the approximations introduced by 

Gorin, Walter and Eyr ing. Thus their calculation may be 

considered as applying to t he more stable conformation 

suggested. The second orientation considered by these 

authors in which the hydroxyl group, the asymmetric carbon 

and t he latter's hydrogen are coplanar probably makes no 

appreciable contribution to the experimental ro tation due 

to the instability of such eclipsed orientations . There are 

however two other orientations of the hydroxyl group which 

would be expected on the basis of modern structural know­

ledge to correspond to positions of stable equilibrium: 

first, that in whi ch t he hydrogen of the hydroxyl group is 

trans wi th respect to the methyl group bonded to C*; second, 

that in which it is trans with respect to the hydrogen bonded 

to C*. These were not considered by Gorin, Walter and 

Eyring; inasmuch as at least the first might be expected to 

have a statistical probability of the same order of magnitude 

as the original orientation considered by these authors, 

t h is omission serves to cast further doubt on the validity 
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of their calculations. Furthermore there are probably other 

stable orientations of the ethyl group which have statistical 

probabilities of the same order of magnitude as the one to 

which their treatment applies. 

Calculations very similar to those just described for 

sec-butyl alcohol have been applied by Gorin, Kauzmann and 

Walter(30) to the sugars « -methylarabinopyranoside, p -methyl­

arabinopyranoside, o< -methyllyxopyranoside and 0 -methyllyxo-

pyranoside. The calculations for « -methylarabinopyranoside 

were based on the enantiomorph shown in Figure 9, the confor­

mation being the chair form in which the carbon-oxygen bonds 

of the hydroxyl groups attached to carbons 1, 2 and 3 are 

approximately perpendicular to the mean plane of the ring, 

rather than the other chair form in ~1ich these bonds are 

approximately in the mean plane of the ring. In the structur-

al formula the two heavy lines lie in 

HCOCH3 I 
HOCH 

I 
HCOH 0 
I 

HCOH 
I 

HCH 

Figure 9. Fischer projection formula of levorotatory 
oL.... -methylarabinopyranoside, as calculated by Gorin, 

Kauzmann and Walter, agreeing with that derived by 
relative configurational studies from the absolute 
configuration assumed by Fischer for glucose. The 
conformation to which their calculations apply is 
also shovm. 
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the plane of the paper, t he light solid lines project upwards 

toward t he reader, t he dotted lines downward. No attempt is 

made to indicate the orientations with respect to t he inter­

nal rotations of t he hydroxyl and mett oxy groups, for which 

reference may be made to the original paper. Gorin, Kauz­

mann and Walter calculated g =-1.06 x 10-34 (observed 

lg l = 0.46 x lo-34 ) for this isomer. The projection formula 

of Figure 9 is in fact the one assigned to the levorotatory 

isomer of this sugar, thus again supporting the correctness 

of the original assumption of Fischer. The agreement between 

the calculation for this sugar and that for seq-butyl alcohol 

in this respect is a support f or the one-electron theory 

in that a disagreement on this point (i .e., finding agree-

rnent with the Fischer assumption in one case, disagreement 

in another) would be embarassing. Such agreement of course 

does not prove the calci.;.la tions are valid, particularly in 

the face of the objections made above. Similar a greement 

vvi t h the relative configurational studies of organj_c chem-

istry was found by Gorin, Kauzmann and Walter among all four 

of the sugars t hey investigated. 

The one-electron theory was originally applied in some­

what different form by Condon, Altar and Eyring( 22), in that 

the zero-order wave functions were taken as t hose for the 

three-dimensional harmonic oscillator, and the perturbing 

potential taken as that due to the field of the dipole mom-

ents assigned to the different bonds. Such calculations 
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were applied to methyl phenyl carbinol nitrite, the calcu­

lated rotatory contribution of the nitrite absorption band 

being used to assign the absolute configuration implied by 

the Fischer projection formula 

fH3 
HCONO 

I 
C6H5 

to , the levorotatory isomer. A magnitude of the same order 

as that deduced for this bond from rotatory dispersion 

measurements was obtained. However the same sort of calcu-

lation applied to sec-butyl alcohol gave a calculated rota­

tion si;:lveral hundred times too small. The Eyring school 

has since abandoned this procedure in favor of that previous-

ly described. 

Part III Present status of the problem of absolute config-

uration 

Waser(49) has given arguments leading to an absolute 

configuration of tartaric acid based on correlation of the 

crystal structure of tartaric acid as determined by Beevers 

and Stern(50) and the obs erved crystal habit, using quali­

tative arguments as to the expected rate of growth of crystal 

faces as affected by the number and ease of formation of 

intra.molecular hydrogen bonds. Schomaker( 5l) however has 

pointed out that the crystal habit used by Waser in his de-

ductions is that from the aqueous so l ution, where solvent 
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molecules may be expected to compete with tartaric acid 

molecules for the hydrogen bonding sites on the crystal 

faces. It is therefore not obvious from a discussion 

involving only tartaric acid molecules which faces will 

tend to grow more rapidly. The result obtained by Waser 

for the absolute configuration of dextrorotatory tartaric 

acid is shown in Figure 10, where the heavy lines 

COOR 
I 

HOCH 
I 

HCOH 
I 
COOH 

Figure 19. Left, absolute configuration 
of dextrorotatory tartatic acid accord­
ing to Waser. Right, the projection 
formula of the isomer on the left 
according to the Fischer projection 
convention. 

lie in the plane of the paper, the light solid lines point 

upwards, the dotted lines downwards. The planar tr.Jill.§. con­

formation of the four carbon atoms is that found by Beevers 

and Stern; no attempt has been made to show in Figure 10 

the orientations of the carboxyl groups with respect to 

their rotations around the bonds to the neighboring carbon 

atoms as found from the x-ray studies. Figure 10 also shows 

the projection formula of t his isomer according to the Fischer 
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pro j ection convention. The result is 9pposite to the 

absolute configuration obtained for tartaric acid on the 

basis of Fischer's assumption regarding the absolute con­

figuration of glucose. 

S1immarizing the results obtained for the absolute 

configuration~, the calculations of Kuhn, those of Eyring 

and his co-·workers, and those of the present work on 2 ,3-

epoxybutane all agree in finding the same absolute config­

urations as those currently in use by organic chemists, 

namely, those derived from Fischer's original assumption 

of an absolute configuration for dextrorotatory glucose and 

the relative configurational studies of organic chemistry. 

These results disagree with the deduction of Waser described 

above. 

'rhe result of Kuhn is open to objection as to the correct­

ness of the molecular conformation assumed, as well as on 

other points as discussed above. The absolute configurations 

assigned by Eyring and his co-workers have the advantage of 

internal consistency With the relative configurational data 

of organic chemistry, but are nonetheless open to question 

as to the conformations assumed, certain details of the cal­

culations, and the adequacy of the general approximations 

introduced. A check of the consistency of the g theory, or 

first-order polarizability theory, awaits completion of the 

exper i menta l work described in the previous section. 

It is interesting to point out ap~opos of the Eyring 
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one- elect ron t heory t hat its application to t he compounds 

t1~-2 ,3-epoxybutane and propylene oxide with the same sort 

of approximations as introduced in the treatment of sec-

butyl alcohol would lead to the calculated optical activity 

of the butylene oxide being only twice that of the propylene 

oxide. No term corresponding to the in t erac tion of the two 

methyl groups appears. Inasmuch as the exper i mental rota-

tion of the butylene oxide is far different from this pre-

dieted value it must be concluded that a calcula tion of this 

sort would be inadequate for a discussion of the rotatory 

power of trans - 2,3-epoxybutane. While t his ar gument cannot 

be said to definitely prove the one-electr on contributions 

to be unimportant, inasmuch as higher approxima tions can be 

introduced so as to bring in a methyl-methyl term, neverthe­

less it is necessary to observe t ha t there is no a pparent 

reason why the methyl-ethyl interaction in _!Lee-butyl alcohol 

should be of a s ma ller order of magni tude (barr ing unfavor­

able orientations) than the methyl-methyl interact ion in 

trans-2,3-epoxybutane. Thus it must be considered probable 

t hat in the calculation of Gorin, Walter and Eyring for 

sec-but yl alcohol important contributions have been omitted. 

Moreover it seems very likely that the omitted terms are of 

the g '
0
> type. 



SEC:LI OH V 
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MOLECULAR STRUCTURE OF 1,2 DICHLOROPHOPANE VAPOrl AS 

DE'l'ERMI NED FROM ELECTRON DIFFRACTI ON AND FROM 

ANALYSIS OF DIPOLE MOMENT DATA 

Part I : Electron Diffraction Investi ga tion 

This i nvestigation was undertaken in order to obtain 

structural info r ma tion particularly with respect to the 

internal rotation around the 1,2 carbon-carbon bond, for 

the calculation of the optical activity according to the 

theory of Section III. Only one structure determination 

has been reported in the literature, that of Berger (52) 

using x-ray diffraction from t he gaseous mo lecules. He 

assumed approximate values for the bond distances and 

tetrahedral bond angles, and r eported satisfactory agree­

ment between his intensity measurements extending to 

q = 22 (for definition of q, see below) and theor~tical 

intensities calculated with t he hindering potential V (~ ) -

~ (1-cos~), Vo= 0.88 kcal/mole, being the angular dis­

placement between C-C-Cl bond planes, taken as zero at 

trans. Considering the low a ccuracy of the x-ray method 

applied to gases, it seems clear that these results should 

not be taken as conclusive. The structure of the related 

mo lecule 1,2-dibromopropane was determined by Schomaker 

and Stevenson( 41) using electron diffraction methods. They 

reported the molecule to have normal values for the bond 

distances and bond angles, and to have a root mean square 
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torsional vibration of ± 20° around t he tr~ns position. 

Two independent samples were used in the experiments. 

Sample I was t he cormnercial Paragon product which had been 

redistilled through a short packed column. It had a boil­

ing range 95.6 to 96.4° c, n]f
0 

1.4367. Sample II was 

prepared from propylene glycol in this laboratory by 

Dr. H. K. Garner: b.p. 96 .3 to 96.4° c, n~5° 1.4368. These 

values, particularly t hose for Sample II compare favorably 

with those recently reported by Dreisbach and Martin(55), 

namely b.p. 96.2° c, n?o5° = 1.43638. The diffraction 

apparatus has been descr ibed by Brockway(54). The camera 

distance used in this investigation was about 11 cm. for 

Sample I, while with Sample II photographs were taken at 

both 11 cm. and 20 cm. The wavelength of the electrons 
0 

was about 0.06 A. The photographs whi ch were utilized in 

t he measur ements and in t he drawing of t he visual curves 

were made with the gas near room tempera ture. 

The two sets of photographs closely resembled each 

other for the mo s t part, those of Sample II being in gen-

eral clearer. Measurements of t he diameters of the appar-

ent maxi ma and minima were made on both sets, corrections 

being made for f ilm expansion. Di f ferences between t he 

measurements on two sets appeared where the pictures of the 

first set wer e ver y diffuse and difficult to observe, and 

also on the outer r ings, where t hos e of t he second set 

were much easier to observe. There were no systema tic 
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differences between the t wo sets, or betwe en the long 

and short camera sets with Sample II. 

Figure 11 shovvs t he visual curve V 1 as dravvn from the 

photographs obtained from Sample I. I n the course of our 

use of the correlation method certain dif f iculties exper­

ienced in fitting theoretical intensity curves with V1 made 

it seem likely that several features had been erroneously 

interpreted. This was borne out by the independent obser­

vations of a third person, an experienced observer, Dr. Kenneth 

Hedberg of this laboratory. The changes arising from these 

considerations have been incorporated into visual curve v
2

, 

as well as other changes resulting from observation of the 

more distinct photographs of Sample II. In v2 the depth of 

rn inimLun 2 compared to minimum 3, the height of maximum 2 

co;:npared to maximum 3 , the position of shelf 4 on maxi mum 3, 

and the position of shelf 9 on maxi mum 10 represent reinter­

pretations in line with the views of the third observer. 

The relative dep ths of minima 6 and 8 represent a compromise 

between the opinions of different observers; the feature 

is difficult to observe as re gards this point. The relative 

heights of the maxima 11, 12, and 13, and the shape and meas­

urements of minima 19 and 20, and maximrnn 19 , represent change s 

arising from observation of the second set of pictures. The 

last mentioned features were already difficult to observe; 

beyond them the appearance seemed to be that indicated, but 
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the exact appearance was very uncertain. 

The radial distribution curves RDI1 and RDI 2 shown in 

Figure 11 were calculated from v1 and v2 , respectively, 

using the equation 

(138) 

and the usual punched card mettods (55,56 ,57). The conver-

gence factor a was so chosen that exp(-aq2) = 0.10 at q = 100 . 

Well defined peaks are seen to occur at the distances ex-

pected for the C-C, C-Cl, C ••• Cl, and Cl ••• Cl bonds in the 
0 

mo l ecule*: in RDI1 at 1.56, 1.82, 2.73 and 4.32 A respec-
o 

tively; in RDI 2 at 1.53, 1.81, 2.72 and 4.30 A, respectively. 

In both curves the C-H peak is distorted by low frequency 

errors. The small, rather undulatory peaks of about one­

tenth the height of the major ones may in some cases corres-

pond to minor distances in the molecule, but may also be 

caused by errors in drawing the visual curves. The peak at 
0 

2.72 A is appreciably broadened, corresponding to a temper-

ature factor aa ••• Cl (de fined below) somewhat less thab 

10-4 , or to a symmetrical splitting of the three distances 
0 

with separations about 0.05 A on either side of the central 

* A connecting dash indicates a bonded pair; dots, a non­
bonded pair. 
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value. The peak at 4.30 A is broadened also, indicating 

some motion of the chlorines. Perhaps the most striking 

feature of the radial distribution curves is the high value 
0 

obtained for the C-Cl distance, some 0.04-0.06 A larger 

than the usual value. The dis crepancy is greater than is 

to be expected to arise through error, and there can be 

litt l e doubt that the C-Cl bond is at least slightl y longer 

than found in the chl orinated methanes. The C-C peak is 

not well resolved, and its position provides no certain 

indication of the distance in the ~olecule. Consequently 

the bond angles and, more interesting for the present study, 

the angle ~ specifying the interna l rotation are not accur­

ately determined. The latter has been defined in Section 

III. The indeterminacy in f resulting from the indetermin­

acy in C-C is illustrated in the . follow~ng calcul ation: 

if we set C-Cl = 1. 81, C• ••Cl = 2.72, Cl•• •Cl = 4.JO, 

then C-C = 1. 50 gives c:p = 27°, v·;hile C-C = 1. 60 gives ~ = 18°. 

It is perhaps not out of place to include a few remarks 

on the rel?tionships to be expected between radial distri­

bution curves obtained by use of equation ( 138) and the 

actual probability distribution of an internuclear distance 

depending on an internal rotation as typified by the present 

instance. For the sake of simplicity we will suppose that 

the contribution IA-B ( q ) of this distance to the total 

scattering I ( q ) has somehow been iso l ated from the latter, 
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and further that it has been determined exactly within a 

range of scattering angle O ~q ~ qmax• In our discussion we 

sha.11 i gnore the dependence of the x-ray form factors on 

q (see below). Under these conditions the actual probabil­

ity distribution function r2D(r) and the scattered inten-

sity are related by the equation 
00 

1AB (s) 0( J rD(r) sin rs dr 
' 

0 

s - 7" q - 10 
., ( 139) 

which may be inverted to give 

00 

rDAB(r) o(J IAB (s) sin rs ds • 
0 

(140) 

Because the conditions of the experiment do not permit the 

observation of I(s) for s greater than a certain maximum, 

resort is had to the introduction of the convergence factor 

previously mentioned, a new function rD'(r ) being defined as 

00 

1 -a• s 2 
r D ' ( r ) ex I AB ( s ) e s in rs d s , 

0 

a' : lOOa 1rT . (141) 

The Fourier fo l ding theorem then gives as the relationship 

between rD(r) and rD'(r) 

.,, - (r-r')2 
rD' (r) o( J r 'D(r') e 4a dr' • (142) 

-oo 
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Thus the effect of the introduction of the convergence 

factor for the case when the distance AB is completely rigid 

is to give rD'(r) the form of a gaussian peak instead of the 

ideal delta function corresponding to rD (r); the position 

of the peak of the former corresponds, however, to the 

position of the latter . If rD(r) is itself a gaussian due 

to thermal motion of the atoms A and B with a Hooke's l aw 

force, rD'(r) becomes a gaussian of somewhat greater width, 

the peaks of both being located at the same value of r. 

Wi th more complicated forms of rD (r) , especially with asym­

metric rD(r), the relationship between it and rD'(r) becomes 

more complex; in part icular, the positions of the modes of 

the two distributions wil l no longer coincide. As an 

example, in the case of a torsional oscillation in such a 

mo lecule as propylene chloride with the trans position as 

the mode, the peak of the radial distribution fl..mction 

obtained from equation (138) does not correspond to the 

trans value of the distance, even in such an idea l case as 

that just discussed. Sample calculations indicate that a 
0 

difference of t he two modes of as much as 0.05A or more 

might result in a typical case. Va l ues of the angle 

calculated from the Cl ••••• Cl peak in the RDI do not, 

therefore, have necessarily any direct significance in 

terms of the angular coordinate of the mode of the actual 

probability distribution of the distance. 
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Turning now to the minor distances in the molecule, moder­

ately heavily temperature factored distances are expected 
0 0 

near 2.16 A and 2.45 A corresponding to the non-bonded 

C·· •Hand Cl••• H pairs having a common ligand. The c. ,.c 

term occurs near 2.52 ~with even smaller amplitude (about 

one-seventh of that of the C-Cl term). For l<=PI '- 30° a small 

and possibly very heavi l y temperature factored term due to 

the rotation dependent C···Cl occurs in the range 2.8-3.5 i. 
If the internal rotation (torsion) is appreciable, the peak 

nay well be missed entirely. A variety of other terms due 

to hydrogen interactions exist in the molecule but would 

not be expected to a ppear in the RDI. 

The distortion of the C-H peak is not unusual in mole-

cules as complicated as this. It was thought nevertheless 

desirable to investigate more close l y these obvious errors, 

particularly when certain points in the correlation treatmen t 

required a compa rison of nonadjacent features of the visual 

curve as to their relative heights and depths. To t h is end 

a peak corresponding to t 11e position and shape expected for 

C-I-I was sketched in, as shown by t he dotted curve in v2 at 

t h is neighborhood. The difference between t his and the RDI 

a ctually obtained was treated as a correction, Fourier-

inverted, and the result ( after modification to allow for the 

use of the convergence factor) considered as a correction 

' v2 to visual curve v2 • There are presumably other errors 

in the RDI, but because of its unique low frequency 
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character, we consider th i s to be of particul ar interest. 

The positive hump in v2
1 at small q corresponds to a rather 

obvious but not too important mi stake i n drawing V?. Other 
I:.-

than this, and of great interest, there is the negative peak 

in the region of maxima 18 and 19. All observers were agreed 

t ha t the relative intensities of the pair of max i ma 14 and 15, 

maximum 17, and the pair 18 and 19 were as drawn in v2 • But 

great difficulty was found in fitting this wi t h models accep-

tab l e otherwise. This, comb ined with the ne ga tive correction 

obta ined in v2
1

, lead us to believ~ that an error in inter­

pretation was made. This is not too surprisine, since at 

sucl1 lar ce scat ter ing angles observation is difficul t; also 

the disturbance of the edge of the film begins to be bother-

some there. 

I n the course of our application of the corre l ation 

method it became desirabl e to consider the possibility of 

moderate temperature factors in the C···Cl and Cl •••Cl 

distances due to vibr at ional mode s ( in addition to the 

torsional 'node i n the latter case ) . Thus we were led t o 

look into t he normal coordinate analysis of simpler related 

mo l ecules. In past electron diffraction i nve stiga tions it 

has been usual to assume a rigid heavy atom skeleton unless 

large amplitudes of vibration were obviously to be expected, 

or unless the assumption 'nade it impossible to obtain a fit. 

The latter was the case wi th the C•••Cl distance in the 
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present investiga tion. But it is possible fo r conf usion 

t o arise from the existence of a Cl•••Cl temperature factor 

of this sort: t he attenuation which it produces in the amp-

litude is comparable to that of a reasonably large rotation-

al libration. Fail ure to differentiate between the two may 

r esult in erroneous va l ues for the potential hindering 

interna l rotation. The situation is perhaps not as bad as 

appears at first sight, since the difference in the inten-

sity dependen ce is quite marked for l ibrations about tr_~; 

consequently if the calcul ations are performed careful ly 

the effect may in some cases be detec t ed. I n practice , 

however, this point seems not to have been no t iced; the 

investigation of propylene bro~ide by Schomaker and 

StevensonC41), of ethylene chloride by Beach and Palmer C58) 

and by Yama guchi, Morino, Watanabe and Mi zushima ( 59 ) are 

examples where the possibility of such an effect was not 

discussed. 

Normal coordinate ana l yses of tran§_ 1 ,2-dichloroethane 

have been publ ished by Mizushima and Morino(60~ Because 

these authors did not require for their pur ~)oses the com-

plete determination of the forms of vibration which is nee-

essary for the ca l cul ation of the temperature factors, we 

have repeated their ca l culations (neglecting the mot i ons 

of the . hydrogens as in their first paper ) using the same 

force constants and obtaining the same frequencies. For 

the averages of the squares of the displace~ents from the 
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e quilibri um position we obtained ti r6-c1 = 0.0030, 

6 r§_c = 0 .0026, 6 r§ ••• Cl = 0.0063 and Ar21. •• Cl - 0.0070. 

Calculation of the temperature factors defined in equation 

(143) below then gave after reduction by a constant amount 

such as to make aC-C = O: aC-Cl ~ o, ac ••• Cl = 0.00018, 

acl ••• Cl - 0.00020. 

The skeletal motion in ethyl chloride was subjected 

to normal coordinate analysis by Cross and Van Vleck(61 ) . 

We have very crudely estimated t he temperature factors from 

t he frequencies and diagrams of the normal modes given by 

them with t he result, a gain re f erred to ac-c = 0 

ac-ci ~ 0, ac •.• Cl = O. 00027. These calcu lations seem to in-

dicate but of course do not prove ( because of the question 

of the adequacy of t he simple valence force potential 

as SUL'led ) t hat temperature factors of a r:1odera t e rna gn i tude 

are possible f or t hese molecules. For obvious reasons we 

have not attemp ted a nor mal coordinate analysis of 1,2-

dichloropropane. However it seems reasonable that a simi-

lar order of ma gnitude :~1 i ght occur in corresponding dist-

aEces. 

Proceeding now to t he di scussion of our use of the 

correlation method we first list the various terms followe d 

by a number indicating t h e a pproximate relative scattering 

wei ght. Of bonded nairs t here are two C-C, 19; two C-Cl, 45; 

six C-H, 17. Of nonbonded pa i rs which are bonded to a 
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common atom there are one c ... c, 6; three c ... cl, 45; seven 

C••• H, 10; three Cl···H, 11. There are two i mportant dist-

ances de pending on the internal rotation: Cl···Cl wi th 

weight 27 at 1;r:'_@.§,, and the C···Cl, weight 13 for the same 

configuration. The remaining interactions are hydrogen-

hydrogen, or hydrogen with a carbon or chlorine not bonded 

to its ligand. These have a total wei ght of very roughly 

Theoretical intensity curves were calculated using 

punched card methods(56,57). In all the calculations un­

less otherwise specified C-C was fixed at 1. 54 ~. 'I'he se-

lection of optimum values for the other parameters determines 

the shape of the molecule, the actual size being then cal­

culated from the scale factor ( average of qcalc/q0 b 5 ). 

Except where otherwise stated the follovJing as surnpt ions 

have been made: both C-C's equal, both C-Cl's equal, three 

C···Cl's e qual. In the case of the last, however, it should 

be ment ioned that we fom1d it necessary to a ~)ply a small 

temperature factor to the term, as is made plausible by the 

normal coordinate analysis mentioned; consequently, we could 

also explain our results with three rigid C•••Cl distances 

sy1:1metrically distributed wi tb. separation of about 0. 05 .R. 
We have assumed the C-C-C bond angle to be tetrahedral, 

and also all bond angles ( insofar as we have considered the 

interactions concerned ) involving hydrogen to be tetrahdral. 
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Furthermore we have neglected the contribution of the 

hydrogen-hydro gen terms to the scattering, as well as the 

terms involving hydrogen and carbon or chlorine when the 

latter are not attached to the carbon bonding t h e hydrogen 

concerned. The total weight of these neglected terms is 

perhaps i~pressive, but it mus t be remembered that they 

undoubtedly have severe temperature factors due to the 

bending and stretching motions of the hydrogens and, in 

the case of the second variety mentioned, depend also on 

one or both of the internal rotations. An approximate 

calculation, using reasonable values for the hydrogen force 

constants and frequencies, assuming no rotation arolmd the 

1,2 C-C bond but free rotation of the cH
3 

group, gave a 

contribution for these terms which damped out very rapidly, 

decreasing to one-tenth at q = 35; the changes in the theo-

retical intensity curves even at s maller scattering angles 

were rather minor. In the calculation just mentioned, and 

all the fo llowing calculations of intensity curves, WB have 

used aC-H = 0.00016, ac .•• H and ac 1 ••• H = 0.00030. 

Wi th the above assumptions the remaining shape para-

meters may be taken as 1) C-H; 2) C-Cl; 3) C• •• Cl; 4) posi­

tions of the minima of the potential hindering internal 

rotation around the 1,2 C-C bond; 5) shape of the potential 

barriers, especially in the neighborhood of the minima; 

6) skeletal vibrational temperature factors. 
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The a ppro priate equation for the intensity function is 

r c q) = -=(=z=~ -=f="=H=z=j -=f=j=-J [' c z, - ~,;r z.;-fJJ 
l,J 
.l * j 

Q. . . = 1f1. A"""' ~ 
~J . 1-11 .. 

zoo lJ 

' 

(143) 

The swn is over all the pairs of nuclei in the molecule, r .. lJ 

b e i n g t he distance separating nuclei i and j. Zi is the 

atomic number, f 1 the x-ray form factor for nucleus i. In 

t he f irst equation t h e bar indicates an avera ge over all 

pairs of nuclei. In the second equation the bar indica tes 

t he statistical avera ge in the equilibrium ensembl e. Use 

of .t he f actor exp ( -aijq2) i mplies t he assmnption of simple 

harmonic motion. Where the latter assrnnption is not pe r mis-
1 -0.·. dz. - e LJ "} d sible, t he factor flj s~n~ ~J '1. mu s t be r eplaced by 

J'f"': .. Der:.) ~i.o 1l' r,~ q d.1c.i , r,/ Dt~J) ch"i;j being the 
&.J \J lO' 

probability that atoms i and j are to be f ound a distance 

apart between rij and rij + drij' and t he inte gr a l be ing 

over the range of variation of r· · • In t he calculations lJ 

reported here the x-ray form factors have not been included, 

inasmuch as trial calculat i ons s howed the changes occurring 

on t heir inclusion to be rather minor. 

The i n te r nal rota tion was f irst treated on the assuinp-

tion that but one sign i f icant potential minimum is present, 
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and that the form of the potential may be sufficiently well 

Vo [ represented by V(cp ) = 2 1-cos (9> -fc)] • The effect of the 

possible existence of other minima is described later. 

The correlation of the theoretical curves is to be 

done with v2 ; it is necessary to bear in mind, however, 

that there will in general be a range of acceptability for 

each feature. Examples of this will be mentioned in the 

course of the description below. The number of parameters 

involved, as well as the complicated nature of some of them, 

permit no more than give a rather brief summary of the work. 

It was not found possible to find acceptable correlations 

with models having a single rigid C•••Cl distance. The 

features primarily r equiring a temperature factor in this 

term were the tripled maxima 11, 12, 13 and the doubled maxima 

18 and 19; however it is possible to fit both of these features 

with a rigid C···Cl, the difficulty being that other featur es 

cannot be made acc eptable. 

Theoretical intensity curves are shown in Figures 11 and 

12, the parameters being given in Table 3. Curves Dl, D2 

and D3 of Figure 11 illustrate the effect of varying the 

equilibrium angle 'f 
0 

while retaining the same "barrier 

height" Vo and other shape parameters. Of the features 

which vary considerably with this change we may discuss 

pa.rticularly the relative arnpli tudes of maxima 6 and 7, Which 

are seen to be quite sensitive to this variation. .A best 
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value of <f 0 , sub,j ect to the arbitrary assumption of the 

other shape parameters is easily chosen. To illustrate 

our differentiation between acceptability and nonaccepta-

bility for this particular feature, we mention that in Dl 

and D3 we regard it as being unacceptable, while D2 is 

quite good. An i mportant and interesting effect is evident 

in these three curves, namely, the amount of attenuation of 

the Cl• • •Cl 

This is due 

term varies, although Vo is the same for all. 

to the rather ranid increase of ~ as <'D in-, Q."f I 

creases from zero . The maximum of rCl ••• Cl as a function 

of f at c:p = 0 has a further result in that the probability 

distribution of distances is asymilletrical. The effect of 

this may be roughly described as follows: given an asymrnet-

rical distribution of distances, in which there is a single 

mode which does not coincide with the average, the " effective 

value" of the distance for small scattering angles is the 

average; at large scattering angles it is approximately the 

mode, the transition taking place gradually. The attenua-

tion of the amplitude increases as the range of distances 

included in the range of highly probable values of ~ in-

creases . Thus for a given value of Vo, with ~. at tr~ms the 

asymmetry is at a maximum, and the deviation of the effect-

ive value of rcl ••• Cl in the first part of the scattering 

pattern from the mode (which is the trans value) is at a 

maximum. With <:p0 away from trans the range of variation of 

the effective value of the distances decreases, while the 
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Figure 11 Radial distribution, visual and 
theoretical intensity curves. 
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Figure 12 Theoretical Intensity Curves 
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TABLE 3 

Distances* and angles in the models of Figures 11 and 12 

k cal 
Model C-Cl C ••• Cl V0 , mole f 0 degrees ac ••• Cl aCl ••• Cl 
- ---... - ·----·~------·-

Dl 1.79 2.70 30 -10 0.00010 0.00010 

D2 1.79 2.70 30 -20 0.00010 0.00010 

D3 1.79 2.70 30 -30 0.00010 0.00010 

D6 1.79 2.70 10 0 0.00010 0.00010 

C83** 1. 80 2.73 4 0 0.00010 0 

Dll 1.82 2.74 60 -25 0.00010 0 

Dl5 1.76 2.64 60 -20 0.00010 0 

C57 1.79 2.72 30 -20 0.00010 0.00010 

Dl4 1.76 2.68 60 -15 0.00010 0 

D7 1.76 2. 66 30 -20 0.00010 0.00010 

C65 1.73 2.60 30 -15 0.00010 0.00010 

C81** 1.80 2.73 10 0 0.00010 0.00010 

H9 1.79 2.70 30 -20 0 0 

HlO 1.79 2.70 30 -20 0 0 

Hll 1.79 2.70 30 -20 8 0 

c66 1.79 2.70 0 0 

c67 1.79 2.70 0 0 

c68 1.79 2.70 0 0 

* C-C and C-H 1. 54 and 1.09 , respectively, unless other-
wise noted. 

** c-c = 1. 57; C-H = 1.06. 



-147-

attenuation of the amplitude increases for the same Vo. 

Thus there is a rather subtle interaction of t he parameters 

Vo and c:.1>
0 

• An example of this can be seen in Figure 11: 

although curve Dl with Vo = 30 kcal/mole and ~ = -100 is 
0 

unsatisfactory because l<#!I is too small, curve D6 v1i th cp
0
= o0 

and Vo = 10 kcal/mole is acceptable. 

and Vo = 4 kcal/mole is unacceptable. 

Curve C83 vdth c:(> : o0 
0 

We have investigated a corresponding range of angles 

for a series of values of both C-Cl and C•••Cl, using a 

simple device to investigate the effect of varying C-H where 

this appeared worth-whi le. As described above one soon obtains 

a qualitative understanding of the nature of the interdepen­

dence of Vo and ~o , so that the order of magnitude of Vo 

may be anticipated. Thus for angles greater than about 300, 

no satisfactory curves were found; for angles near 20°, Vo 

in the neighborhood of 30 kcal/mole is satisfactory; for the 

trans position, V
0 

in the neighborhood of 10 kcal/mole is 

required. Curves for different comb i na tions of C-Cl and 

C •••Cl are s hown in the figures, the best value of ~0 having 

been already chosen for each combination. 

It is convenient first to discuss the curves in regard 

to the shape and size of the doublet maxima 18 and 19. Thus 

in D2, Dll, and D 15 the feature lacks the proper shape 

required by our interpretation, maximum 19 being not sufficient­

ly pronounced relative to maximum 18. In C57 the shape is 
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satisfactory, but the overall height of the feature somewhat 

small. The shape is also satisfactory in Dl4, and the size 
0 

somewhat improved. If C-Cl is chosen as low as 1.73 A and 

C•••Cl then selected so as to give a satisfactory shape to 

maxima 18 and 19 , there is then no choice of c[>0 which makes 

the inner features, particularly maxima 6 and 7, satisfact­

ory. If a somewhat larger c ••• c1 distance is chosen ( same 

C-Cl ) the situation is reversed; there seems to be no satis-

factory choice with C-Cl this small. For C-Cl equal to 
0 

1.82 A and greater the curves have satisfactory shapes at 

t hese two features, but the height of maxima 18 and 19 de-

creases. Other defects arise also: the tripled maxima 

be gin to degenerate into a high doublet on the outside, and 

a small, separated inside member. 

In all the curves whi ch we have so far called accep-

table, there are in one respect or another certain deficien-

cies associated with the height of maximum 10 relative to 

that of maximum 8 and the tripled maxima 11, 12 and 13, with 

the depth of minimum 9 relative to that of minima 8 and 11, 

and vrith the depth of minimrnn 11 relative to that of minima 

9 and 14. Two experienced observers both gave as their 

opinion that maximun1 10 should be higher than the line join-

ing maximum 8 and t he triplet, rninimm11 9 deeper t han the 

line joining minima 8 and 11, and minimum 11 shallovver than 

the line joining minima 11 and 14 ; in each case t he limit of 

acceptability was thought to be the tangency of the feat-ctre 
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and the line. This requirement is already a revision of the 

original observation, which implied more stringent require­

ments. These were concerned with the relative amplitudes of 

pairs of adjacent features: thus, maximurn 10 was interpreted 

as being higher than maximum 8. It is indeed difficult to 

avoid this interpretation of the photographs. However we 

regard an observation of this kind as being easily in error 

due to the difficulty of estimating sufficiently accurately 

the behaviour of the effective background. The comparison 

of three adjacent peaks ( or minima ) we regard as being more 

reliable. We were led to make this reinterpretation by dif­

f i culties in fitting the first type of observations. 

Thus, as regards maximum 10, curves C83, D6, Dll, Dl5 

are bare l y acceptable, curves D2, Dl4, C57 unacceptable. 

Curves D2, D7, Dll , c83, C57, Dl4, and C65 are barely 

acceptable or acceptable at minima 9 and 11. Dl5 is un-

acceptable at minimum 11, border l ine with respect to minimum 

9. No curve is everywhere satisfactory; Dll , whi l e satis­

factory at the features just discussed, is not so at maxima 

18 and 19. Models similar to Dll, except in having a longer 

C•••Cl (equal to 2.76 i, say) are even better as regards 

maximum 10, as well as minima 9 and 11, and have a symmetri­

cal doubled maximum 18-19, but the latter is rather too 

small to agree with our interpretation (even considering 

the correction v2 • ) , while the triplet suffers the deter­

ioration of its shape previously mentioned. Also, the 
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height of the outer two of its members becomes equal to 

that of the folJowing doublet ( 15-16 ) . The observations 

give distinct l y the impression that the following doublet 

is the stronger; however our understanding of the visual 

process would suggest that this is a natura l type of mis-

interpretation if the tripl et feature may be considered 

as a general maximum of greater width than the doublet. 
0 

Curves with still l arger values of C-C l (l .85 A) 

were calculated, but cannot be regarded as satisfactory 

because of an accentuation of the defects already com­
o 

mented upon for C-C l = 1.82 A, and other defects as well : 

maximum 9 occurs too far up on maximum 10, and maximum 

13 tends to become higher than 12. 

Finally, in the hope of re l ieving the difficul ties 

which have just been described we have investi gated briefly 

the effect of varying C-H. The difficulty at maximu .. m 10 
0 

may be removed or reduced by shortening C-H to 1.04 A or 

some intermediate value. Sometimes this wi l l adversely 

affect the relations at minima 9 and 11, sometimes not. 

Such a change has appreciable effect only in the middle 

part of the scattering curve, be coming small at large 

scattering angles due to the temperature factor in the 

term. 

As the best choice of shape parameters subject to the 

assl!.ITlption of a cosine barrier with a single minimum we 

give C-H = 1.04, (C-C = 1.54) , C-Cl = 1.76, C•••Cl = 2.67, 

O ~l~\~ 25°; V0 ~ 4 kcal/mole; ac ••• Cl = 0.00010. There is 
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not sufficient difference between the curves calculated for 

different values of ~o provided an appropriate choice of 

V0 is made, to justify a choice among them. For ~. = o, 

V 0 = 10 kcal/mole; for ~. = -25°, V 0 = 30-Ll-O kcal/mole are 

optimu.'11 values. For the l arger values of V0 (and lcp. I) a 

temperature factor aCl···Cl = 0.00010 is helpful, to remove 

a hump on the outside of maximu .. m 17 v1hich does not corres­

pond to the observation. It also results in the coalescence 

of maxima 18 and 19 into a single broad maximum, but this 'Ne 

regard as entirely compatible with our observation. For 

lower values of Vo, for vvhich ~0 r.ms t be at or near trans, 

inclusion of such a Cl•••Cl temperature factor results in 

but l itt le change in the optimum choices of the parameters. 

In many of our calculations vrn have not included t his temp­

erature factor because of the amolmt of l aoor involved. 

The application of an interpolated scale factor to the 

values just chosen gave C-H = 1.06, C-C = 1.57, C-Cl - 1.80, 

C•••Cl = 2.73; C81 is the curve for this mode l. Table 4 

shows the compar ison of the q values of the maxi ma and minima 

calculated from this model with the observed values. The 

average value of qcalc/qobs deviates from lmity due to un­

certainty in the interpolation. The distances in this mode l 

after correction yfi t h the average of qcalc/qobs are shovm 

1.'Ji th their relative weight s in nD I 2 , where the dashed bolmd­

aries indicate teuperature-factored distances. The distances 

thus calculated are not the optimuxn values due to the fact 
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Observed and calculated positions of a pparent maxima 
and minima 

Max Min q " * ODS qcalc(C81) 

4.2 
5.8 
7.4 

qcalc/qobs** 

(0 .913 ) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

* 

** 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

4.6 
6.2 
7.4 
9.5 

12.2 
15. 6 
17.2 
19.0 
20.9 
24.3 
27.3 
29.9 
31.2 
33.0 
35.3 
38.4 
41.2 
43.7 
45.1 
47.0 
50.0 
53.0 
54.8 
57. 5 
59.4 
60.6 
63.6 
67.3 
68.8 
70.2 
73.0 
76.0 
78.3 
81.8 
85 .6 
89.6 
92.4 
95.2 

10.1 
12.6 
15.4 
18. 2 
19.8 
21.0 
24.4 
27.4 
29.0 
31.6 
33.4 
35.0 
37°.3 
41.4 
43.1 
44.6 
46.9 
50.0 
52 .6 
54. 5 
57 .2 
58.7 
60.5 
63.8 
66.8 
68.3 
69.8 
73.0 
75.5 
77.0 
80.2 
86.3 
89 .9 
91.5 
93 .1 

( • 93 5) 
(l .000 ) 
( 1. 063) 
( l.033 ) 
0. 987 

( 1. 058) 
( 1. 042 ) 
1.005 
1.004 
1.004 
0.970 
1 .013 
1. 012 
0.992 
0.971 
1.005 
0.986 

.989 

.998 
1 .000 
0.992 

.994 

.995 

.988 

.998 
1.003 
0.992 

• 993 
.994 

1 .000 
0.993 

• 983 
.980 

1.008 
( 1. 00.3) 
(0.990) 
( • 978) 

ave: 0.995 ± 0.008 
Scale factor* = 0.993 

The values of q005 were calculated from the rigg measure­
ments using a tentative wave length of 0.0608 I. The 
value of the wavelength interpolated from calibrations 
preceding and following the experiment is 0.06065. This 
decreases the scale factor to 0.995 x O.Q~2.2 = 0.993 • 

• Oo08 
The parenthesized figures were omitted from the averaging. 
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that the wave leng th 0.0608 used in comput ing qobs from the 

measured ring diameters is somevrhat l arge r t.han the value 

0.06065 indicated by calibrations. Use of the scale factor 

obta i ned in t his vray, and consideration of the expected 

limit s of error in the size determina tion as we ll as of the 

range of acceptability of the shape parameters give as the 
0 0 

optimum va l ue s C-C = 1. 56 A, with limits 1. 49-1. 60 A; 
+ 0 + C-C l = 1.79 - 0.035 A; C•••Cl = 2.71 - 0.025; V0 ~ 4 kcal/mo le; 

1~0 !~ 30° 7 with the previous ly discussed correlation in the 

optimum values of V0 and <:f>0 • It is difficult to choose 

best values of Vo and 9'0 ; t hos e of C81, viz. Vo = 10 kcal/mole, 

~0 = 0 are as good as any. We refrain from reporting a det-

ermination of C-H, since except for the finer points of 

interpretation which have been ment ioned , the scattering is 

not very sensitive to its variation. We have indication of 

errors in the visual curve corres ponding to t his dis t ance 

in t he distorted a ppearance of t he C-H peak in the RDI. I ts 

small weight, short distance, and temperature facto r combine 

to make it ra ther inaccessible to the electron diffraction-

visual me t hod . The difficulty in obtai ning a rea lly good 

fit to our observations i s a lso an indica tion of error in 

t he estimation of t he delicate intensity r el ations , a nd it 

does not seen l ike l y that the rather close choi ce of the 

C-E va l ue which is bes t r ea lly corres)onds to an accurate 

determination . I ndeed , it woul d s een unlikely that the C-H 
0 

distance is 'much different fron 1.09 A. 
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The uncertain ty in the sign of 4>0 indicated by the 

absolute value signs arises because the only i mportant term 

which depends on t he sign is the odd C···Cl, with an ampli­

tude for a ri gid molecule of about half t hat of Cl•••Cl. 

The values of Vo which have been seen to be necessary result 

in very heavy temperature factors for t his term since it, 

unlike Cl•• •Cl, is well reraoved from its extremal values for 

the r equired values of <:.f>0 • For Vo = 30 kcal/mole and ;>0 near 

trans, t he C···Cl term has decrea sed to one quarter of its 

initial value at q = 35. This initial value being itself 

small, the t er m has little effect. For s~aller Vo, it is even 

less important. For larger Vo, tending toward rigid models, 

the term becomes more important, and indeed, for the larger 

values of the magnitude of ~o the positive sign is unsatis­

factory . We have not made a detailed investigat ion of the 

question of t he upper limit of Vo, primarily because its exact 

value is no t of particular i mpor tance in the computation of 

the optical activity. The longer persistence of the C···Cl 

term for ver y large Vo results in these values tending in 

general to be somewhat unsatis f actory. I:t seems .§: wiori 

like ly if the equilibriurn position de parts from trans, that 

it will be displaced tovvards negative cPo , due to the repul­

sion between t he CH3 and Cl. The van der Waal ~' radii of 

methyl and chlorine are approximately equal; if the repul­

sions are sufficiently similar, the conformation would be 

expec ted to be like that of 1, 1, 2-trichloroethane, for 
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which Turkevich and Beach reported a displacement of about 

10° in the corresponding direction (62 ). 

The above limits on C-C are considerabl y larger than any 

l ikely variation of the distance from the covalent bond dis-

tance 1.54. Because of this uncertainty, the value of the 

C-C-C l bond angle varies over a wide range also: taking the 

central values f or C-Cl and C···Cl and the extremes for C-C, 

the corresponding range for this bond angle is 111. 3°-106.2°; 

the quoted optimum C-C distance gives 108.0°. 

Thus far the correlation method has been based on the 

assumption of but one significant minimum of the potential. 

We wish now to investigate the effect of the existence of 

other minima. That such exist woul d be predicted from the 

work of Gwinn and Pitzer C45) on ethylene chloride, and the 

confi guration found for 1, 1 , 2-trichloroethane by Turkevich 

and Beach( 62 ). \Te believe the importance of staggered con-

figurations over eclipsed to have been sufficiently well 

established to rule out appreciabl e contributions of the 

latter compared to the former for temperatures of interest 

here. Considering t he work just mentioned we regard the 

three most likely isomers to be: the tr~ or near-tr_ans 

form, which has already been considered; the gayche or skew 

form in which the CH3 is tran~ with respect to the Cl (equi­

valent to skew isomer of ethylene chloride if H replaces 

CH
3

); the "staggered cis 11 in whj_ch the H of the CH(CH3)cl 
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group is t:r_ans with respect to the Cl of -cH2c1 . We suppose 

that in t he latter the steric repulsions are sufficiently 

large to render it unstable relative to the other two f or 

temperatures of interest, as was found to be the case in the 

corresponding isome r of 1, 1, 2-trichloroethane (A E 2500 cal/mole) 

b~r r.i.nho·0nas and G·wi· nn( 63). If' the net reac+i· ons c n d r _ !J " _ _ ,, o cerne a e 

repulsive, as seems likely, t hen we expect the weight of the 

skew isomer to be intermediate between half the value found 

forethylene chloride ·co.1) and that for trichloroethane (0.5). 

As is apparent from the discussion of Section III, in order 

to obtain an unambiguous sign for the calculated optical 

activity it is necessary to place an upper limit on the amount 

of the skew isomer present . Our treatment of the problem i s 

directed toward this end. 

The amount of labor involved and the result obtained 

with the approximate treatmen t to be described have led us 

not to make a detailed examination of this parameter along 

with the rest. Ra ther we have simply performed a few cal-

culations for various relative amounts of the two isomers 

by adding the corresponding curve's in the appropriate ratios. 

In the discussion to follow we will for brevity refe r to the 

near-trans isomer as simply the tr~ isomer, for which we 

have used the parameters of model D2, except that we have 

not included t he C···Cl temperature factor previously men-

tioned. While this model is not the best final choice, it 

is sufficiently close to make the results reliable. We 
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approximate the ~indering potential in the neighborhoods 

of the tr'l!-E and the ga-qche minj_ma by separate one-fold 

cosine barriers. For the values of the parameters used in 

U:e calculations the intersect i ons of the t vw baI-riers occur 

at ener gies hizh enough to make the exact manner of their 

joining inconsequenti~l. The parameters of the one-fold 

cosine barrier in t he neighborhood of the _gauche minimum 

will be indicated by V0 g and ~og• 

Curves H9 , Hl O and Hll represent ,just the basic trcg}Ji 

nodel , but with the amplitudes of the rotation- dependent 

terms 25>, 50~c and 75;$ , respectively, of their actual 

values. The utility of these curves lies in the fact that 

for reasonable values of Vo at the ga"!::lQhe minimum the Cl•••C l 

contribution decreases rapidly to a snall value at quite 

s '·1all sea ttering angles. 'l.'he rota tioh dependent C ·••Cl 

distance, it is true, is now at its maximum value, and so 

retains its initial amplitude for some time; however the 

l atter is now even smaller than before , due to the longer 

distance, being less than one - third of the Cl·· ·Cl ampli-

tude. Its effect is not large. These three curves a llow 

us to pl ace a limit on the amount of gauche present. Thus 

E9 is so unsatisfactory as to rule out a 75j; contribution 

of g_aucj:le. HlO , 50;;_; ga\:.ch~, is quest i onabl e at nany points 

and is probably rejectable. lill, ~ith 2~~ gauche , is as 

sa tj_sfactory as the ioo;; tr<i~l~ curve. 
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Turning now to curves containing specific gauche terms 

C66 composed of 75;0 of the basic trans conformation and 25% 

of a g_au.:...che conforrna ti on vvi th V 0g = 30 kcal/mole and <:{> og = 
-120°, is acceptable. Its similarity to Hll illustrates the 

rapid diminution of the C•••Cl term already mentioned. c67, 

which is 50% _g_~hE2_ with V og = 30 kcal/mole and ~ og = 120°, 

is at least as unsatisfactory as HlO. C68, containing 25% 

KfillChe with V0 g = 80 kcal/mole and <:(>0 g = -120° has a dif­

ficulty in the relation between maxima 6 and 7; this however 

can be rectified by a slight change in q>0 for the tr.:_ans model 

and the curve is probably satisfactory. Smaller values of 

ltf>0 I for the gauche model also help. Other values of the 

parameters were also tried; in general no essential improve-

ment results on inc l uding the l@_Uche. Amounts between 0-25% 

seem equally acceptable for reasonable Vog. Amounts of 50% 

or more are not compatible with the electron diffraction 

experiment. It does not seem possible to set the upper limit 

of the am01mt of gatl_Che . much lovrer than this on the basis of 

the electron diffraction experiment. 

It should be mentioned that though we have quoted the 

barrier heights on the basis of cosinusoidal potentials, 

the actual calculations have been for the most part made 

with quadratic potentials having the same curvature at the 

minirJ11.Jit1 as the quoted sinusoidal value. The two potentials 

agree satisfactorily up to energies high enough to make the 

procedure essentially equivalent to use of the cosinusoidal 

barriers. 
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Part II Analysis of dipole moment data 

It has been seen that t he electron diffraction me thod 

is able to show clearly that at least half, and probably 

more, of t he molecules may be assigned to the trans minimum. 

However, it is desirable to investiga te more closely the 

magnitude of the gauche contribution. Possible sources of 

additional data are the dipole moment and its temperature 

dependence, as well as infra red and Raman spectra. The 

dipole moment of the vapor over the temperature range 

340 -500° K has been determined by Oriani and Smyth C64 ). 

We are grateful to t hese authors for making available to 

us their data before publication. Their dipole moment values 

are sho'\t\m in Table 5, as well as values calculated from 

t heir polarization measurement using a different treatment 

of the atom polarization PA. Their calculation was made 

setting Pg + PA = MRD' PE being the electronic polarization, 

MR the molar refraction for the sodium D line. We have esti-
D 

mated PE from HR by utilizing the correction resulting upon 
D 

extrapolation of IvIR to infinite wavelength in the case of the 

related compound ethylene chloride, and estimating PA as 10% 

of PE. The di f ference between the two sets, while sir;nifi­

cant wi t h respect to the value of the dipole moment at a 

given temperature, is nearly constant through the range of 

measurements, and affects only the value used for the bond 

moment in the calculations to follovv. This latter value must 
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TABLE 5 

Dipole moment of propylene chlortde from the data of 
Oriani and Smyth\b4J 

Dipole moment as Dipole moment cal-
calculated by Oriani culated using an 
and Smyth alternative value 

of PA 

Temp . OK u x 1018 u x 1018 

344.7 1.46 1.40 

3 ~n.7 1. 50 1.44 

393.8 1. 53 1.47 

432.2 1. 59 1. 52 

465.6 1.63 1. 56 

505.7 1.68 1.61 
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be considered uncertain to an ex t ent large compared to the 

differences here discussed, so that the choice of one or 

the other of the t wo sets of moment values makes little 

difference. 

We shall first describe the assumptions we have made in 

discussing the relationship of the dipole moment and the 

internal configuration. These are: (1) that the group 

moments of the -CH2c1 and -C(CH3)HC1 groups lie in their 

respective C-C-Cl bond planes, have the same magnitude, and 

make sµpplementary angles with the 1,2 carbon-carbon bond; 

(2) that these group moments move with the C-C-Cl bond 

planes as the molecule carries out its tor sional motion 

around t he 1,2 carbon-carbon bond, but remain constant as 

re gards t heir magnitude and orientation within the bond planes. 

Under t hese assumptions the dipole moment of the molecule is 

given as a function of by the equation 

(144) 

where f .J. = fA 
0 

sin (LC-C-Cl), ~ 
0 

being the common ma gni.tude 

of t he moments of the groups. 

Inasmuch as t he bonds to the two chlorines are not 

equivalent, the first assumption is not necessarily valid. 

The effects of induction will in gen~ral render the second 

also incorrect. It turns out however that most of the dipole 

moment is contributed by the g_auche conformation, so that 
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the variability of ~~ should not be very serious; the value 

of r~ obtained by correlation with the observed dipole mom­

ents w~ll approximate its value at the gauche position. The 

effect of failure of the f irst category of assumptions would 

be to change the de pendence of t he tota l moment to the form 

( 145) 
(t) (\.) 

where f• and ~· represent the projections of the two bond 

moments onto a plane perpendicular to the 1,2 C-C bond, and 
u I ('\) 

~tt and ~U represent the components parallel to the 1,2 C-C 

bond. The angle & is a constant determining the departure of 

the orientation of zero dipole moment fr om the position ~ = 0 

(trans). Providing that the magnitudes of the bond moments 

differ by no more than 0.10 Debye units, the effect of the 

first two terms will not be large. The displacement of the 

zero dipole moment position, if it is small compared with 

the uncertainties i n the positions of the potential minima, 

wil l lead to no essential change; the temperature dependence 

of ~ calculated from equation (145) with a potential of given 

shape with mini ma at ~t and cp
0
g will be the sa.me as that cal­

culated from equation (144) with a potential of the same 

shape and minima displaced by the amount 8 • Inasmuch as 

neither the electron diffraction nor the dipole moment data 

(even without consideration of equation (145)) permit a 

precise determination of the positions of the minima, a small 

displacement of this kind will result simply in a change of 
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the optimum values of the barrier heights and positions 

of the minima, the new values in general lying within the 

range of uncertainty in the parameters. 

Pitzer (65) has shoV'm that in calculating the classical 

partition function the effects of the dependence of the 

vibrational frequencies and t he external moments of inertia 

on the internal angle cancel each other, if the potential 

ener gy is free of cross terms between the vibrational coor-

dinates and the internal angle. As a result one may use the 

simple wei ghting factor exp(- V(cp) / tff ) in calculating class-

ica l averages of functions of the internal angle. Further, 

Gwinn and Pitzer(45) showed for ethylene chloride, where a 

detailed assignment of the vibrational frequencies of the 

two isomers is available, that the cancellation holds approx-

imately in the quantum mechanical case. We shall suppose 

this to be also the case for the closely related propylene 

chloride. 

If the gauche and trans minima were very narrow, bounded 

by very steep potential hills, the equation 

( 14-6 ) 

would be va l id, mt and m being the moments in t he tr~ and g 

_g_auche configurations; a is t he ratio of the s ta tis ti cal 

weights, depending on the form of ve ep ), and being roughly 
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measured by the widths of the two potential minima or by 

the vibrational frequencies; 6 E is the energy separation 

of the two minima. The equation may be conveniently put 

in the form 

In 'Mg - ~~TT') 

p.itT)-rfl~ 

-lno.. -t- ~ 
RT 

(147) 

a plot of the left-hand side against l/T should be a straight 

line. To make such a plot one must know values of mg and mt 

which depend on the bond moment and equilibrium angles. If 

we put mt = 0 and choose various values of mg we obtain the 

results shmvn in Figure 13. It is seen that the choice of 

different values of mg does not influence the linearity very 

much, although the dependence is perhaps more nearly linear 

for the h i gher values of mg • The value of a, determined by 

the intercept, is very sensitive, however. There is a slow 

systematic variat ion of 6 E, as given by the slope. The 

linearity is seen to be satisfactory if the measurement at 

the lowest temperatur e is disregarded; this discrepancy may 

be due either to inadequacy of equa tion (146), or to an 

erroneously hi gh experimental value per hap s due to absorp-

tion on the condenser plates. 

In the calcula t ion just described, of the variables a, 

~g ' ~J. ' and A E, the las t is determined with in not too l arge 

a range . The other three may vary within rather wide limi ts, 
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assumed: mt::O, mg=3.46 D_~Uo 
aalcu.lated: ll E : o.·sa kcal/mole 

am0 . 65 

assumed: mt=O 11 ron:2.83 D .. U .. 
calculated~ A E e 0 ';'96 kcal/ mole 

a.:1.23 

0.0025 

VT 

mt:O, mg=t2.24 D.U.o 
A E 3 l., 32 kcal/ mole 
a: 4 .0 

0.00.30 

Fi 0i-ure 13. Plot of ·tho left-hand side of eqtrn.tion (147) !.!!. l / T. 
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subject to the fact t hat if t".J.. and cf g are s pecified mg is 

determined (mg = 2. f-'-J. sin ~ g/2), and a can then be determined 

from a graph as in Figur e 13. To proceed further we need 

s ome further a s sumptions. 'r he value of p.~ would be expected 

to be similar to that f ound by Gi:vinn and PitzerC 4 5) in 

ethylene chloride, namely, 1.59 D. U. It may however be 

larger dl&t to induction in the cn3 group, as is observed in 

ethyl chloride. It would hardly be expected to be this high, 

however, due to induction from the ot~er C-Cl dipole. The 

ratio of statistical weights a would hardly be expected to 

differ much from unity - in ethylene chloride the correspond-

ing ratio is a pproximately one, in 1,1,2-trichloroethane 

necessarily one. Steric repulsions may be expected to force 

cpg slightl y towards the trai:is position, away from its ideal 

value of - 120°. The latter effect would probably not be 

any greater in propylene chloride than ethylene chloride, 

v1here a value very close to -120° was f01.md to be satisfact­

ory(45). We have made some calculations for as large a 

displacement as ~g = -90°, which seems larger t han would 

be expected. Table 6 s hows the resul ts of e; iving p.J. and ~ g 

values of the sort just discussed; t he values of ~(T) used 

are t hose obtained by our treatr:1ent of PA· .Also shovm are 

the specific rotations calculated using t hese statistical 

probabilities for the two conforma tions and curve C of 

Fi gure 4 and curve K of Figure 5 (Section III). If we con­

s id er cf>t~ O, so t hat mt :4: 0, the chief e f fect is to lovver the 
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TABLE 6 

Average specific rotations and statistical probability 
of the gauche conformat ion according to equation (146) 

____________ ca l.~~1~~ ed _______________ _ 
)00°K 

Cf 0 
g a 

1.59 0 -120 1.36 

1.59 0 -90 3.60 

l. Bo o - 120 o.86 

1. 80 0 -90 1.86 

2.00 o -120 o.64 

2.00 0 -90 1.18 

1.59 -25 -120 1. 41 

1 .59 -25 -90 3.53 

A E 
kcal/mole 

o.88 

1.04 

o.84 

0.92 

1.20 

1.44 

?raction 
of gauche 
at 300° K 

0.21 

.Jl 

.17 

.25 

.14 

.20 

.16 

.24 

300•1( 

[Pl:'] J) 

propylene 
chloride 
deg./dm. 

-39 

-34 

-44 

-40 

-47 

-45 

-26 

-24 

[o< J l) 
propylene 
bror:1ide 
deg./dm. 

-17 

-13 

-22 

-18 

-25 

-23 

-4 

-2 
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'.lABLE 7 

Various poten tial barriers hindering internal rotation and 
the calculated avera ge specific rotations 

1 . V (~ ) cal/mole = oO 4o0 <c9~ 1so0 

•500012 (1-cos'f) -40°~1~ 40° 
=2100 -700 <~< -400 
=~E+ 5000/2 1-cos (~ + 120° ) - 160°~~~ -70° 
:: 00 -180° ~'-f< -160° 

E = 1 . 1 kcal/mole, ~.J. = 1.76 D. U., [°'] boooK :: -35 deg/dm 

2. V (~ ) cal/mole = 00 4o0 ~f$ 180° 
=30000/2 1-cos (q> +200) - 500$cj>~ 400 
=2090 -80° 1\cf>< -50° 
=llE+5000/2 1-cos (~ +1200) -160° ~qt~ -8o0 
:: DO 

[oe] 3go°K 
-180°~~< - 160° 

E = 1.3 kcal/mole , ~.!. = 1.52 D. U., = -22 deg/dm 

3. V (~ ) cal/mole = oO 40°~~~ 180° 
=30000/2 1-cos (<:9 +200) -50°~"'' 40° 
=1640 -60° ~;>, -50° 
=AE+5000/2 1-cos (~ +90°) - 1400fcf~ -600 
= oO 

[e><: J3BOoK 
- 180°~et< - 140° 

E = 1 .3 kcal/mo le , ~ ... = 1.74 D. U., = -27 deg/dm 

4. V (~)cal/mole =V1/2 (1-cos~) + 
= 00 

V1 = 1. 5 kcal/mole, p~ = 1.83 

440/2 ( l-cos3~ ) -150°~'1'~ 30° 
oth~rw~~ e 

D.U. (AE = 0.96 ) , [()(JJ£O \:=-30 
deg/ dm 

5. V (~)cal/mole =V1/2 (l-cos -P ) +2200/2 
= 00 

Vi = 2.0 kcal/mo le, p.J. = 1.62 D.U. (~ E 

6. V(9>)cal/mo le = oo 
= O 
=2100 
=6E 
= oc 

E = 1.3 kcal/mo le, ~~= 1 .29 D.U., [ocJ3go°K 

7. V(~ ) cal/mole = oo 
= 0 
= 2100 
= ~ E 
= OQ 

E = 1.1 kcal/mole, ~~ = 1.42 D. U., [oc:']30£°K 

- 10°,,,f 180° 
-300 ~~~ -100 
-800 <Qj>< - 300 
- 160°~cf~ -800 
- 180°~cf>< -160° 

- - 12 deg/dm 

0 < cp~ 180° 
-4o0~cff 0 
-80°< c:p, -40° 
-160°~cp~ - 80° 
- 180°~cf ~ -160° 

= -19 deg/dm 
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value of a, for a given value of mg ~with little change in E. 

The results obtained from the approximate formula are 

probably reasonably correct, the agreement with more refined 

calculations in the case of ethylene chloride being f~ir. 

However, it was thought wortr.r:-\'Jhi le to perform a few calcu-

lations for more realistic barriers. We have assumed several 

different sets of values for the curvature and position of 

the two mini ma, leaving AE and ~~ as parameters to be fitted 

to the data. We have followed the procedure of choosing f-l.J. 

so that the calculated and experimental moments agree at 432° K, 

AE being adjusted so as to give the best correlation with the 

other temperatures. There seems to be no difficulty in ob-

taining acceptable fits over the rather small temperature 

range of the experiments, except for the behavior of the low 

temperature point previously mentioned. The results are given 

in Table 7, including the specific rotations calculated with 

these potentials and curve C' of Figure 4 (Section III). 

The genera l behaviour may be summarized roughly as follows. 

To reasonably reproduce the observed temperature dependence 

of the dipole moment allowing for a possibly high experi-

menta l result at the lowest temperature, AE must be chosen in 

the neighborhood of 1000:1: 200-300 cal/mole f or values of the 

curvatures and positions of the minima within reasonable 

limits. The value of ~J.then depends on the positions and 

relative widths of the minima. 
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We have considered rather large widths of the gauche 

minimum relative to those of the trans minimum, although 

it seems unlikely that there would be much difference, as 

mentioned before. It is also to be noted that potentials 

6 and 7 of Table 7, in which the ,g_auche is respectively 

four times and twice as wide as the tr:ans, result in too 

low values for f~ , and may for this reason be considered 

unlikely representations of the actual potential. The 

other potentials of Tab le 7 must be regarded as satisfactory 

representations of the electron diffraction (except poten­

tial 5, which has too narrow a minimum at the tra..Q§_ posi­

tion) and of the dipole moment dependence, although poten­

tial 2 gives a value of /AJ.. which is approaching rejectable 

smallness. We believe that the range of potentials inves­

tigated sufficesto give estimates of average values of 

quantities depending on the internal parameter which will 

be reasonable, but conservative in favor of avoiding an 

underestimation of the contribution of gauche. 

In their paper Oriani and SmythC64) have fitted poten-

tials of the form V(c(J) = ~o (1-cos cf) , -n ~ 4' ~ TI' , to their 

dipole moment data, finding Vo = 2.5 kcal/mo le. This value 

for a one-fold barrier is incompatible with the electron 

diffraction results. This contradiction is evidence favor-

ing the existence of auxiliary potential minima, direct in 

the sense that no appeal. to analogies with related compounds 
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are required, but indirect in the sense t hat it is not 

obvious t ha t t he existence of other minima is the unique 

resolution of the diff iculty. It seems easy to understand 

why a potential· of t he form mentioned is a satisfactory 

form for t he discussion of the electron diffraction, even 

when other significant ndnima are pres ent, and at the same 

time leads to an erroneous answe r when a ppli ed to dipole 

moment data. The dipole moment receives its important con-

tri butions from positions we ll re•1oved from trans, even if 

t heir ener gy is quite hi gh , due to the behavior of the 

f1mction sin2cp. The electron diffraction pattern on the 

othe r hand, receives its predominant contributions from the 

posi tions close to tr3_~s. 

The Raman ~nd infra red spectra of the vapor have 

a pparently not been investiga t ed . It would be of great 

interest to study t hem, particular l y their temperature de­

penden6e. The spectra of the liquid have been examined( 67, 

68,69 ) though not their temperature dependence, apparently. 

The liquid spectra show clearly the existence of at least t wo 

isomers in the same way as was noted in t he case of ethylene 

chloride: see, for instance , t he work of hlizush i maC71) and 

h is co-wor kers, which i s summarized i n t he reference quoted. 

Smmnari zj_ng the results de scribed in t his section, the 

electron dif f raction investigation of the structure of 

1,2-dichloropropane has yie l ded t he following structure 

t d th t . o~, -v c~o ) = v20 parame ers un er _ e a s sump ion _ ,. 
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for the potential hindering rotation; C-Cl = 1.79 ± 0.035; 

c. ··Cl = 2.71 ± 0.025; c-c = 1.56, limits 1.49-1.60; Vo ~ 

4 kcal/mole; I cf. I~ 30°, a snall negative value being perhaps 

most probable, and where there is the previously discussed 

correlation between satisfactory values of c:f> 0 and V0 • The 

effect of contributions of the _g_~.clJ& conformation was 

examined; the statistical probability of the lat ter is 

permitted by our interpretation of the data to have a maxi-

mum value of perhaps one-half. The diffraction pattern may 

be interpreted satisfactorily, with ne glect of guche 

contributions, however. Examination of published dipole 

moment data, subject to reasonable assumptions concerning 

the parameters involved, leads to a somewhat lower upper 

limit on the ar10un t of _g_~~9he, of the order of one-fourth 

to one-third. 
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PHOPOSITIONS 

1. In the analysis of the temperature dependence of the 

dipole moment of a molecule such as ethylene chloride 

under the assumptions leading to equation (144) of this 

thesis, the further assumption of a one-fold sinusoidal 

hindering potential with minimum at the position of zero 

dipole moment (trans in the case of ethylene chloride) has 

been shown(70,71) to lead to the equations 

f''-(T) = 2 ~: (1-x) , 

X =- -;:r(<Va/2-kT)jJ.(iVc/zkT) 
Here f (T) is the observed moment, JA~ is defined as in this 

thesis following equation (144) . V0 is the barrier height. 

The functions appearing in the second equation are the ordin-

ary Besse l functions of the first kind with imaginary argu­
(72) 

ment, and are tabulated • 

It may be noted that a very similar formula can be 

obtained when the potential minimum does not coincide with 

the position of zero dipole moment. If cX.. is the angle be-

tween these t wo configurations, the first formula holds with 

the new definition 

x 

2. It is proposed 

_ ~ J; ( i Vo/2- k T) 
J

0 
( ~ Vo/2- kT} 

that the molecular 

cos c;;( • 

structure of methyl-

isopropyl ether be investigated by electron diffraction with 

particular attention to the internal rotation around the bond 

between oxygen and the secondary carbon of the isopropyl 

group. Designat ing the two equivalent staggered positions 

as the trans isomers, the third staggered configuration as 
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Ci§., there should be a good possL)ili ty of putting an upper 

limit on the relative amount of the latter present. It 

woul d be expected to be somewhat le ss than one-third. If 

this prediction is verified it will render doubtful the 

assumption of Rometsch and Kuhn (73) that in methyl-~-

butyl ether the conformation in which the me thoxy group is 

trans with respect to the hydrogen bonded to C* is the mos t 

stabl e. 

(3) The analysis of the temperature dependence of the 

rotativity (defined as ["l /n2 + 2) of ~~-butyl alcohol 

recently published by Bernstein and PedersenC74) is pro-

bably inadequate, in that only the internal rotation of the 

ethyl group around t he 2,3 carbon-carbon bond has been 

considered. The rotation of the hydroxyl group may also 

be expected to influence the temperature dependence of the 

rotativity. The superposition rule used by these authors 

assumes the equilibrium positions to be in exactly the ideal 

staggered configurations, which is not required by symmetry. 

(4) It is proposed that a possible one of the causes of a 

variation of the rotativity between liquid and vapor states 

is the occurrence of asymmetric molecular a ggre gates in the 

1 · · d t t r;i h lo) t' · · · 1 ld b · t bl iqu1 s a e. l _e g neory in pr1nc1p e wou e su1 a e 

for calculation of such contributions, but the averaging 

process required is not practicable at present. Among other 

causes of such variations wi ll be differences in internal 

conforma tion of the molecules in the t wo states, especially 
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in compounds having internal rota.tions. 

(5) The resolution of 2,3-epoxy-2 1 -methyl butane and the 

determination of its configuration relative to trans-2,3-

epoxybutane would afford an interesting test of predictions 

of the g ~> theory. The rotativity would be expected to be 

intermediate between those of the epoxybutane and propylene 

oxide, and isomers of the same sign of rotation should be 

configurationally related. 

Also interesting in the same way but probably more 

difficult to carry out woul d be the resolution and determin-

ation of the relative configurations of trans-1,2-dichloro-

cyclopropane, 1,2,2 1 -trichlorocyclopropane and 1,1'-trilll§.-

2,3-tetrachlorocyclopropane. All sho~ld have the same ro-

tat ivity val ues, and isomers having the same sign of rota-

tion should be configurationally related. 

(6) The parameter ~ of e quation ( 43 ) of this thesis vanishes, 

inasmuch as the wave functions f or the mo l ecule in the 

absence of external magnetic fields may be taken as real. 

The second-order contribution of this term to the refractive 

index predicted by CondonC9) accordingly does not exist. 

(7) It is proposed t hat an attempt be made to estimate the 

translational fluctuation correction to the Lorentz-Lorenz 

law, using methods analagous to those used by KirkwoodC 26 ) 

in the case of the Clausius-Masotti law. Experimental 

data(75) for argon at room temperature are available for 

comparison with theory. The term calculated in equation ( 83 ) 

of this thesis is a part of such a theory, but appears to 
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be too small to account for the observed effect. 

(8) A phase diagram study of the arsenic-sulfur system is 

suggested. While it is not likely that stable compounds 

of lower sulfur content t han As 4s
3 

. .... t' . e:x:is t.., rns possibility 

would be worth investigation, as well as the general 

question of the nature of the changes accompanying the 

transformation of As4s4 to As4s6, and the latter to As4s10 • 

(9) A relation similar to the Silberstein(33)formul a may 

be deduced from a set of zero-order wave fu11ctions similar 

to those introduced by Kirkwood(lB). Further terms are 

obtained, however which vanish only if special as surnptions 

are made concerning the interacting groups. As would be 

expected, the classical and quantum mechanical expres sions 

a gree in the case of harmonic oscillators. 

(10 ) If it be assumed that the molecular wave functions 

can be expressed as products of atomic wave functions, that 

portion* of the molecular magnetic susceptibility not due 

to spin and orbital angular momentum may be approximately 

expressed in terms of a sum of terms of the same form, one 

for each atom of the molecule. This may be taken as the 

theoretical explanation of the empirically observed rule 

of additivity of diamagnetic susceptibilities. 
~~~--------------------------------------------------------* The quantity in question is that given by equation (11), 

p. 275 of J. H. Van Vleck, "Electric and Magnetic Suscep­
tibilities", Oxford University Press, 1932. 
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