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Abstract

Part I describes a theory of antibody=-antigen reac=-
tions employing bivalent and univalent antibody molecules
and rmultivalent antigen molecules, All species in a system
of this kind are defined by a distribution function which
has been derived on the basls that the most probable distri-
bution 1s the appropriate one, Some of the features of
antibody-antigen reactions are discussed in the light of
this theory,

In Part II experiments are describved which measured
the increase In turbidity of an antibody-antigen system
with increasing time of reaction, It was found that the
rate of aggregation of antibody and antigen molecules
into large aggregates i1s dependent on the composition
of the system, The exlstence of,soluble aggregates in
the antigen excess region 1s indicated,

A general theory of Raylelgh scattering due to
composition fluctuations in hulti-component-systems has
been developed with the aid of the grand canonical ensem-
ble of Gibbs,., It is found in Part III. The equation
developed contalins previously neglected terms arising
from thermodynamic interactions between solutes in systems

of more than two components,
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Part I

A Theory of Antibody-Antigen Reactions
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1. Introduction

For a long time it has been attractive to consider
antibody=-antigen reactions as involving combination of
specific sites by which very large aggregates are attained,
To require the existence of aggregates of this kind, one
rmist necessarily assume that the antibody and antigen
molecules responsible for the size of the aggregate are
maltivalent with respeét to each other. 1If one is to
require further that the antibody-antigen molecular ratilo
of these aggregaﬁes be variable and no less than unity,
then he must consider antibody molecules to be bivalent
and antigen molecules to be greater than blvalent, It
should be noted that the existence of unlvalent antibody
molecules 1In the system is still permitted. They cannot,
however, be responsible for the specific growth of the
aggregate to a size involving more than one antigen mole-
cule, since wherever they occur they end chains which
might otherwise have grown longer than they are,

Marréck has suggested that natural protein antigen
molecules have several determinant groups per molecule,
He has reasoned that 1f this is true, then antibody sites
can be expected to repeat in the antibody protein molecule,
In a system of multivalent antibody and antigen molecules
he feels that specific combination of the reactive sites

~

must play a part in the formation of aggregates. He

pictures these aggregates as coarse lattices(l),
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Heildelberger and Kendall have adopted the viewpoint of
multivalence on the basis of variable antibody-antigen
ratios and a curve fitting equation useful for the pre-
cipitin reaction, which they derived on the assumption

of multivalent antibody and antigen molecules, They

regard the final precipitate as consisting of antibody
molecules held together in three dimensions by antigen
molecules (2,3,4). Pauling has propounded a detailed theory
for the formation of bivalent antibody molecules, In

the same paper he has explalned several observations of
antibody-antigen reactions on the basis of bivalent anti-
body molecules and multivalent antigen molecules, the
maximum valence of the antigen belng given by the "ratio

of its surface area to the area effectively occupled

by one antibody molecule, if all regilons of the antigen
surface were active"(5)., He plctures the aggregate as

a three dimensional antibody-antigen network, the ratio

of its components depending on the relatilve amounts of
antibody and antigen in the system. From a theoretical

treatment of antibody-antigen systems, Hershey prefers

3

-

the lattice or network hypothesis employing antibody

J
molecules of low valence, probably two(8),

Experimental evidence favoring the formation of
large specific aggregates has been discussed so extensively
in the past by such capable Investligators as Pauling

-

and Helidelberger that 1t wil

o5
%

not be reviewed here,

However, a general theory presenting the features ol a
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system involving reactions between bivalent antibody
molecules and multivalent antigen molecules has not yet
been achieved, It is the purpose here to present such

a theory, which, 1t 1s hoped, will be of use not only

for predictions based on real systems but also for under-
standing the characteristics of antibody-antigen reactions,

Although threoretical treatments have been developed

in the past, they have not bheen sufficiently general to

3
predict the common charactéristics of the precipitin
reaction, Variable antibody-antigen ratios of the pre-

%

cipitate, which depend on the preparation of the systen,

are of fundamental Ilmportance to a good theory. Inhibition

to preeipitation in reglons of antigen excess and also

antibody excess should be accounted for without relying

on artificlal assumptions of solubility. One sﬁould attempt

to describe the relative amounts of precipitate corres-

ponding to the composition of the system., One should

be able to explain the relative differences of the system

arising from the manner in which compositlon is varied,

The quantitative function of blocking antibody molecules

has yet to be described for the ordinafy systems,
Heidelberger and Kendall have developed an equation

which relates the total amount of combined antibody to

the composition of the system and the equivalence zone

o

1o

antibody-antigen ratio(3), Their equation, however, is

-

only good in regions of antibody excess. It 1s not

applicable lor many systems. Furthermore, the assumpbtions
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they used in the derivation are so unrealistic that one

would think of their equation as hardly anything more than

o

¥

empirical, Fortunately, Kendall derived the equatlon

on a much more sound basls many years later(7). It is

4

nteresting

g

i~e
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and he approached the problem with probability considera-

tions, Although he supposed irreversibility of the anti-

~
d

body=-antigen reactlons was necessary assumptlion for his

derivatlion, such wasgs not the case,

I

Hershey has developed a theory for reactlons of
miltivalent antibody and antigen molecules, He assumed,
however, that the reactlons leading to the Tormatlon of

(]

rates composed of one anbtigen and several antlibody

further aggregation, Te

e
joxs
(e )

molecules are not influenced by

<

came Tinally to the expected conclusion that ™o great

.

disturbance of the iniftial equilibrium occurs durin

g
the formation of precipitatesM(6). It will be shown

presently that this assumption and its conclusion are

n
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e
i
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not Jju

Pauling and his colleagues have applied th

ciples of chemical equilibrium directly to a theory of

n resctlon for relatively simple systems(8,9).

They only considered systems composed of bivalent antibody

(%

and antigen, univalent hapten, certain soluble complexes,

and one Insoluble species, It was Tound that the experi

mental polints showing the dependence of the amount of

preciplitate on the amount of hapben addsd to tlhe system

to note that he used blivalent antibody molecules,
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did not fall on a straight line as the theory predicted
(8,10,11), Pauling explained this deviation from linearity
on the basis of heterogeneity of the antiserum, which he
described by an error function of the free energy of
interaction of antibody and hapten Iin competition with

the precipitating antigen(1l2)., The theory was found to

be in satisfactory agreement with experiment,

Teorell has developed a theory of the precipitin
reaction patterned after the treatment of polybasic acid
equilibria, He, thereflfore, required antibody Lo be uni-
valent and antigen multivalent, He was able to express,
in the usual manner, the concentration of each aggregate
Indirectly in terms of total amount of antibody and antigen
and the dissociation constants, In order to obtaln agree-
ment with exberiment he was forced to make assumptlons

regarding solubllities of the aggregates formed(13,14),

These are highly questlonable and rather artificial,

2., A Theory for Reactlions of Iltivalent Antigen Nolecules

with Bivalent and Univalent Antibody lNolecules

The btheory presented here uses as a basis the concept
of the most probabhle distribution, It will be assumed

as 1s generally done, that the most probable distributlion

s

s the appropriate one, The number of ways of forming a

o4
~
Lo

glven distribution of aggregates in the sysbtem, corres-

ponding to a given number of anbigen slites resctec

2
L]

Sed

. 13
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maximized with respect to bhe occupation numbers(the
number of each kind of aggregate)., The occupation numbers,
which are then evaluated, define the wmost probable dis-
tribution, Hence, an expression is obtained giving the
number of every kind of aggregate in the system correspond=-
ing to the extent of reactlon In the system, that 1is,
the Traction of antigen sltes which have reacted, The
remaining problem is that of using this distribution to
obtain information about the system for different composi-
tions,

Flory was the filrst to discuss this kind of a dis-
tribubtlon for large aggregates, He studlied molecular size
distributions’ of three dimensional polymers(15,16,17),
Stockmayer later obtained the most probable distribution
of molecular sizes for certain types of branched-chain
polymers(18), It i1s this method of Stockmayer which is
used in the following presentatlon, Consequently, the
two assumptions used by Flory and Stockmayer also char-
acterize this work, In bthis theory 1t 1s assumed that
intra=aggregate reactlons ylelding cyclical structures
cannot occur, One result of this is that a fixed number
of bonds is required for the formation of an aggregate
of given composition no matter how the aggregate 1s put
together, This number of bonds is one less than the total
number of antibody and antigen molecules of which the
aggregate 1s composed. It 1is next assumed that any

1

unreacted site is as reactive as any other site regardless
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of the size or shape of the aggregate to which it is
attached,

An antibody site 1s the reactlve area on an anti-
body molecule which permits combinatlon of the latter
with an antigen molecule at one of 1its reactive areas,
The antigen site lg defined in an analogous way. An
gregate 1s defined as a group of antibody and antigen
molecules, any two of which are connected by only one chailn

consisting of alternating antibody and antligen molecules
bound to each other by thelr respective reaction sites,
provided these two molecules are not bound together by
their reaction sites(see Appendix). Therefore, if a
bond in a single aggregate is broken the antibody and
antigen molecules on elther side of the bond are in no
way then connected to those on the other side. Two aggre=-
gates exist, An antibody-antlgen reactlon involves the
combination of one antibody site with one antigen site
in  the formation of a bond. A4n aggregate consisting of
two molecules must be composed of one antibody molecule
and one antigen molecule with one bond between them,
Murthermore, there con be only one bond holding any
antibody molecule to an antigen molecule,

The following terminology willl be used throughout
the discussion,
G = number of antigen molecules in the system,

n

A = number of antlbody molecules 1in the system with

two reactive sites(bivalent antibody).
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number of antibody molecules in the system with one
reactive site(univalent or blocking antibody).
number of aggregates In the system plus the number
of free antlbody and antigen molecules,

number of effective reaction sites on each antigen
molecule (f-valent anticen).

number of aggregates each of which is composed of

i bivalent antibody molecules, J univalent antibody
molecules, and k antigen molecules,

number of ways to construct a single 1,]j,k-aggregate
containing no cyclic structures from 1 gilven bivalent
antibody molecules, J given univalent antibody mole-
cules, and k given antigen molecules.

number of free antibody sites on an aggregate,

raction o ntligen sites in the system which have
fracti f antige 3t in the system which h

[o]]

reacted; 1t 1s also called the extent of reaction,
fraction of antibody sites in the system which
belong %o bivalenﬁ antlbody molecules,

ra/24

molecular weight of the antigen,

molecular weight of the bivalent antibody.
molecular welght of the univalent antibody.

The total number of ways to form the number of

.

cates m, . , for all appropriate 1,], and k values
S l_lk, .|.p = )J’
v

out of the A, D, and % molecules 1is
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In order to find the most probable distribution, that is,
she set of the numbers Mg 5k corresponding to the max-
irmim value of _(l., one must set the derivative of Ll
with respect to the variables mijk’
constant A, D, G, and M, which are expressed by

equal to zero fTor

o
-
-

v

(2)

and

) my, = M (3)

The sums and products of Equations 1, 2, and 3 correspond

to all values of k In the system, On account of the fact
that antibody sites can react only with antigen sites
the indices 1 and j are related to k In the following

way, as demonstrated in the Appendix,
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i k-1 +7
057 fk -2k +2
0% ] fh-2k+2 -7

I\

n

In the sums which follow, these relatlons give the 1limit
unless otherwise specified, fk=-2k+42 1s the number of
free antigen sites on an aggregate consisting of antigen
molecules and k-1 bilvalent antibody molecules, the minimum
number required to hold the aggregate together,

The condition given by Equation 3 lmplies a constant
reacted fractlon of antigen sites p. This can be shown

S

e

ng p in terms of My o 88
L

1
L2

by expre

1951

; . &M
= L5 [atkd) +7+7Imy = A20Y

Y

gsince the number of reacted antigen sites 1In an 1,],k-
aggregate is 2{(k-1)+q+].

(4)

(5)
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On account of the restrictions Imposed by Equations

2 and 3, the number of independent variables m, “y 0 is
ST
13k
reduced by four. Hence, four of the Increments dm, . ,
AU.L

are functlions of the remaining ones and can be elimin=-
') 4

ated with the use of Egquations 2 and 3 in differential

) =

1ls can be accomplished by adding the following

M
s

form,
equations to Equation 6 and choosing the four constants
3’,7 ,?3 and B, known as Lagrangean undetermined mul-

go that the coefficients of four of the incre-

il
(@]

y, don.
”“f}’ “iik @)

/og_ 3 Z_ k dLm;jk

]
G

LWk
10(782 dmy = ©
Wik
Since all of the remalining increments are independent,

thelr coefflcients can be made to vanish geparately,

£y

Therefore, the most probable distributlon becomes

Wik 1,7k
ik TITY T s B (8)

"
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The constants 'g‘,}z s ¥ and B can be evaluated aflter per=-
forming the summations indicated in Equations 2 and 3.

To sum these expressions Wijk 1s needed, In the Appendix

it 1s found to be

i (Fe-W] g

. (§k-2ks2-3-1)! e )

Wijk =

If the running index 1 1s replaced by ¢ the summing can
be accomplished in the followling manner, where Equation

Led

3 1Is used as a typlcal exampls,

M= B (4;;;)"(4};-1,)1
27 (fk-2k+2)! k!

(to)
$h-2k+ Ch-2ks2-3
X 21: Zz !‘)Z(!'L-llzu).' l n?(fk-2ks2-9)!

P (fk-2k +2-7)17! {oo Gh-rhagi)lq)

-
sl

Extending the maximum value of k to infinity for the

purpose of summation involves negligible error, After
evaluating the term for k zero, which ylelds <Y 4 lt )
the sums over ] and q are accomplished with the uvse of

the binomial theorem,
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Equati 0
Equation 10 then becomeg -

2
M/B? = T4+ (44 427) E y’é(v’%-U!’
o k=r erfﬁﬂ.&,gz);k/

! ” - (12)
$ = £Fax(1+g+2 ;—)“'

e SU_ over k LN Laua t} 10 1; a8 We L ,l. as l {1€ (¢ i & e' U(i -
] ile e .]. on o} 3 O
4 ¥ 4 Spo A

o

ine ones in B 4
g ones In Equatlo + —
blon 2 can be expressed in the following
LU g - . ok _.g

WaY o

od

2, o bk ogkb)) L
t Z al(-‘rh-l.hn)lkz ) L=0,! a3)

k=t
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Stockmayer has summed this expression for 1 zero, one,
and two in the paper in which he describes this method
for the most probable distribution of branch-chain poly-

mers(18)., He obtained the results

L (1-2ta)
U=<*F °
£-2

Q—:H- 3w x(r-e) (14)

g, =

A
1

oL () #ot) ‘
T LO=)AN-E]

Consequently, Equations 2 and 3 yleld

| U tnta )™ L(--d3f)
Ml =T rh s SR S

)

o/ = (1 tﬁ;_tlr)l ol

Ly V-« 4 {135
DB = 4 +qlptan) 27(2?,3 n ('+]Z*") oz(:;;fi)
AlB = v+ LRI Ly sar(] gy
- (gay) BT "‘ﬁffj)i/q’g)
The Tagrangean undetermined multipliers are found rather

tediously to be
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T = f,ﬁ (/"JOI‘JL)
2 (1=4)

|

b
1 - £) —/—:'Z"
T = k(/‘ﬁ}-‘m,
f(Pp-e)
B - +&(/=b)(/- FPhr)
Phn

I

(76)

in which

__LZ.
« = P @

ol is the probability that an antigen site has reacted
with a bilvalent antibody molecule, the other site of
) 2L A & v oo o+ 3
which has also reacted,
e

With the use of Equatlons 16 and 17, the dlstribution

glven in Equation 8 becomes

-1 k#i-l
¢hk)! . it P
(ble-rharr-2-d) ! k!glg !

quh = 'S'G'

beiti=! Ll boisjbtl ket
XPb (- G-2hn) (1-9)°

1]

k-~ ~ 7
fh-rk+a

o
IA
o
IA

0¢y s fk-rk+2-7
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Therefore, the number of every kind of aggregate in the

"

system including the free antibody an

L

!

| antigen molecules
can be determined 1f the composition of the system, valence

of the antigen, and extent of reaction are known,. The

te

dilstr

2

bution reduces to omne for a system consisting of

bilvalent antibody molecules and f=-valent antigen molecules
alone, if f’ and ] are given the values unity and zero
respectively,

It should be noted that the terms in the sum of
Equation 13 have importaﬁt properties, These properties
will be explained on the basils of their physical implil-
cations, From Bquation 14, one finds that y has a max-

lrmum value given by

[
41

<L,

(19)

L

+-
§-2)
@-1)*

Jc =

The point at which this occurs will hereafter be desig-
1

nated the critical point and indicated with the subscript
¢, The most provable distributlion m..k, was objained for
1J

a fixed extent of reaction, or a fixed value of y. Once
ms gk was obtained, however, y could take on many values
each corresponding to the system for a definite value

of p, Therefore, as the antibody=-antigen reactions

proceed, p becomes larger and larger, The value of y
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Increases 1n a corresponding fashion up to the critical
point where 1t passes through a maximum, .In order to
understand the nature of the system at the critical point
it is convenient to evaluate the total number of aggre-

gates ™, containing k anbtigen molecules, Thils can be

done by summing the distribution mijk over all allowed

9

values of 1 and j.

_LY)!
My = 2 Mk = "Gu-i‘:x‘;)'.k'
44 " (20)

€ of é-l(/_")ik-z.k+l

Then the rate of change of m, with respect to e« 1s found

to be

k! k-2 $h-2k+i
Gle-b)! k2

d My,
(boc R S-G'Q:(o.-z.lzn.)!(z‘.
(21)

X [ b [1-el$-1)] ‘"('+°‘}))

Bquation 21 shows that the number of k-asggregates for k
unity 1s decreasing from the very start of the reaction,

The numbers of a ggregates for all other values of k are

(9]

ol
4,

-

for sufficiently small values of o . As the

reactlons proceed, that is, for a somewhat larger value

|

for &, my begins to decrease, later mz begins to
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decrease, and so on, In other words, the aggregates
continue to bulld up Into larger aggregates as the reactions
proceed, Just preceding the critical point all m except
those for the largest k values are decreasing. Finally,
at the critical point and beyonci,()mh/)'l)k is negative
for all values of k, This means, ofcourse, that all
sizes of aggregates are dlsappearing at the critical
point, In a real system this cannot be true, however,
since the very largest of the aggregates must be growing
in size. The reason for this difficulty is that the
sum over all finite values of k was replaced by the sum
extending the k values to Infinity. This implies that
aggregates can be infinite and for ‘chese,(v)mh/)d)k would
not be negative. So

, although the physical plcture is

clear, there 1s this difficulty with the model., It can
be avolded to some extent by discussing the relative
magnitudes of the rates of dlsappearance of the aggregates,

With the use of Stirling's approximation Equatlon 21

becomes

R
IMm Y | U =ot)
("" h‘) = & ( 52 2

/a
X {k[ -.:(4-:)]-(».‘)] b (50

[.'211(4—1.)5_]"L 4

k 5> 1
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It is obvious that at the critical point the rate of
disappearance of the very largest aggregates 1s negligible
compared to the rate of disappearance of relatively small
agoregates, The difference beyond the critical point

is even greater, since y is a maximum at V,» Therefore,
all aggregates are growing into a few exceedingly large
ones, The bulk of the system 1s In these few., Equation

20 yields with the use of Stirling's approximation

m ) S Tl
k = G" ( kS/J. ol [1"-(4_’_).}']!/1/

k syl

The changes 1in the numbers of aggregates which occur in

the regilon of the critical point are relatively little
for small aggregates, while they are tremendous for

ocregates, The critical point 1s, there

L3

characterized by the fact that the system at this polint
is changing from one composed chlefly of swall aggre=-
gates Into one composed of relatively few exceedingly

large aggregates,
5/2

It should be mentloned thalt on account of the k

In the denominator of Iquation 23, 3, and S4 of Equation

O

14 can be used beyond the critical point, butb 52 cannot
since 1t becomes Iinfinite at that point, that 1s, the

corresponding series diverges,

[

Fal

The fact that nelther the fractlion of reacted antigen

(23)
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gites nor the fractlion of reacted antibody sites can ex-

ceed unity is expressed by the following relations

P&

Phn < v

Furthermore, from Equation 17, p, 1s found to be

.

a(c’ )I/L [ m ‘ A |/2-
P L+ &

N
Jl
—~

Q. 5)

The extent of reaction at which the material passes into

A e

the form of very large aggregates 1s dependent on the
valence of the anbtigen and the compositlon of the system,

o

BEquations 19, 24, and 25 yleld the interesting result

s—é— ¢ Tl pt (2 6)

i

o
x4

for the attalnment of p,. If the system Is preparec
such a manner that the bivalent antibody-antigen ratio
lies outside the limits given by Equation 26, then p,

can never be reached, Analogous limits exist for any

P

other Tixed value of o , If the attainment of P, is
n o

required for precipitation to occur, then Bquation 28
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ions outside the above limits ars

the antigen excess and antibody excess inhibition zones,

ieh precipitation does not occur, It further predicts

.
i

LN

reginning of the nibition zone of antibody

excess but nob antigen excess 1is altered by altering the

(=

a

value of P . An increase in the amount of univalent
antibody in the system decreases the range of antibody-
antigen ratlos over which precipitation occurs, The

univalent antibody acts as an
also predicts that in a system of bivalent ant]
and vivalent antligen there is only one antibody-antigen
ratlo, namely, unlty, for which the critical polnt can
be reached, Ti, therefore, glves theoretical grounds for

. s

the interesting experimental fact that 1t 1s difficult

to obtain precipltation in a system of this kind, FFigure
1 i1llustrates how these 1limiting antibody-anbigen ratios

are affected by the valence of the antigen for values of
unity and one=halfl, The differences between the correspond-

ing ordinate values for the upper and lower limits gilve

e

the range of ratlos for whilch the crlitical point can be

attained, This ranse increasesgs as the valence of the

antigen increases,

Another Iinteresting hut not surprising leature of
these reactions 1is given by Equation 20, The number of
aggregates my., each of which has the same number of antigen
molecules, is independent of the amount of antibody in the

system at the critical point, This is also true Tor
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LIMITING VALUES OF A/G BETWEEN WHICH

THE CRITICAL POINT

T 1

UPPER LIMIT (p =1)

UPPER LIMIT (p=1/2)

LOWER LIMIT

ANTIGEN VALENCE

8 9 0

a
bw
o
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any other fixed value of o ., Tt can be seen there that
each system of a set with the same constlituents having

o

a different value of A bubt the same value o

T ¢ and o,

R B, P " oL B AR AEEaE @ - p
has the same number of aggregates m., for eac

far]

1 k¥, The

differences lle only in the numbers of antlbody molecules
in these aggregates occupying positlons other than between
two antigen molecules. These differences can be deber-

-

(®)

mined from the average rnumbers of bivalent and univalent

antibody molecules, ix and Ji. respectlvely, in a k-aggre-
cate, They are
L]
Z } Mﬂ-'k
LD )9
= = K- +t(Fh-2k+2)
" 2w e
PO
A 3 ‘1h
iy (27)
.
.
7 = . = CF' -2R+2 / ~
k —
m..
- ik
1)
As the reactlions proceed ik and jL both increase, They
depend on the extent of the reaction p, which 1s different
for each of the systems In the set considered above,

m-

e average namher of Hntﬁhoﬂy molecules of both ¥

s

found tn a k=gaporecate 1is

?‘h 4-;; = é-[ +('Fk"'2.k+l) A—DL

!~

) (2 &)

—
L%

the game number ag there wonld be for
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were no univalent antibody present, Tn other words, the
univalent antibody acts like bivalent anbtibody of which
only one site is used, Thls means thatl ome.can determine
the correct average tobal antibody in a k-aggregate by

using a hypothetical system which contalins no univalent

£x

antibody. In thls hypothetical system, however, the k-
aggregate may not be the one of interest s
formed more easily than that in the real system, That
1s to say, in order to attalin the same value of ¢ in a
system with P unity as in one with P less than unity, »p
need have a correspondingly smaller value in the former
than in the latter, since P ana P are inversely propor-
tional to one another,

An interesting expression obtainable from Equation

£

fraction of the free sites on

o

27, which gives the average

s

an aggregate belonging to antibody molecules, 1is

?I; Pl ~

- = B AL A
-2 kan-gy I ~w~p(1~-P) fu™ bbb (29)

This fraction 1s independent of k, and 1t 1s, therefore,
the same for all aggregates no matter how many antlgen

molecules are IiIn them, It can bhe used Lo determine the

effect of compositlion on the probability of comblnation
of two aggregates, When this fraction is unity, or

when 1t vanishes, the probablillty for combinatlon vanlishes

Y
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and Equation 26 1s deduced.

The average antibody-antigen ratlos of all aggregates
containing k antigen molecules are also obtainable from

Equation 27. They are

- | . Ph-w
L[k = 1+ G-2) — —

$-2)p - k >>1

-~

\
s
1]

—~ol

GeF) = 1+ (F-2)

N -

I — ok

It should be noted that these ratios are independent of k,
Therefore, 1in a given system for a particular extent of
reactlon the average antibody-antigen ratio is the same
for all large aggregates, These ratios Increase as the
extent of the reaction increases and attain thelr maximum

values when p has its maximum value, over wmost of the

AT

o 3

range of composition of interest, This value is f=-1
for the last ratio and also for the First ratio if P
is unity,

Equation 4 can also be used to calculate certain

ratios,

(Fo)
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These ratlios are exact for 811 wvalues

used to determine the valence of the antigen £, from

experimental data, An equivalence ratio can be defined

Y
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which for large values of k strongly resembles Pauling's
expression which relates the antibody=-antigen molecular

ratio of a precipitate in the antibody excess region to
> o L, L - - - o

the corresponding ratio in the equlvslence zone(s),

N I ~ < . | /

(31)

(32)

(33)



At the critlical polnt Bquatlons 30 reduce to

- _ 2(+4-1) A V2
(i/k), = |—% 'e] ;

Ha
@le). =(—'§"'J[2{:‘) 2] . k>t (39

: .Q i/2
i, =+ [5-&]

These ratios for 1,] gregates are independent of
concentratlon and increase as the bivalent antlbody-
antigen ratlo for the system increases, Variations in
the number of univalent antlbody molecules present do notb
FalFal
1k

affect the top ratlo., Thils appears reasonable since a

k-aggregate at the critical point wonld have required
a particular number of blvalent antibody wmolecules to
form it.

If an expression for the theoretical maximum value
of p 1s substituted Into Bquation 30 the corresponding
ratios designated with the subscript max can be obtalned,

The maxlmum value of p 1s, from Equation 5, obviously

,b A+G +~D-M,..
Wmex

E5)

i
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P
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M-
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o2y, 1B the lowest possible value of M which can be
calculated for the system, TFor example, when f’ is

unity,

”m/G ol | € 4/ s $-1

Muin /G * AlG-($1) ; AlG 2 (3¢)

Mu.m./G- 2'/-,4/5.; Ale

"

When univalent antibody 1s not present in the system,

it is found that
(£-3) (A/é) —z(\c-u)(A/cf)—(Lu
2 6-1) AlG (A/C) -/

€ A €5-1

Ci/la)hnur
(37)

Qe = $-1 0 4le

m o )

The relation between 1/k and A/G is shown for the critical

extent of reaction p., and the maximum extent of reaction

- 3
Poax? in Plgure 2,
The Heildelberger-Kendall equation, which expresses
the total amount of antibody combined in bterms of the
composition of the system and the valence of the antigen,

is In the notation here

A, = f6 - 76" ) 39)
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Figure 2

The relation between 1/k and A/G 1s shown Tor the
critical extent of reaction p., and the max lmam
extent of resction ‘/Q is Lqe average anti-

X
body=-antigen ratio ? ATT aggregates csnta»n;np
k antigen molecules, A/G is the anti nodv—dnt1~en
ratio of the entire system., -The antibody molecules
referred Lo here are bivalent, A valence of five
is assumed for the antigen.
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whe re Ab is the total number of bivalent antibody mole=-

Fal

cules bound in one form or another(7). It is usually

written In terms of grams rather than numbers of mole-

cules and Ab/G is assumed to be the antlibody=-antigen

o

ratio of the precipitate. The distribution ms. can

L=

be used quite simply to obtain thelr resulst

o

L,

£ g™
$GPb - el
D (39)

Ab = A-WMpo

[>L =D - Mdolu

If univalent antibody 1s present, Equatlion 38 cannot be

obtained since p cannot have a value greater than unity,

Tf Pp is taken to be unlty, however, the top one of the

BEquations 39 reduces to the Heldelberger-Kendall equation,

.n
!

p can be unity only for the region of extreme antibody
excess, namely, where the antibody-antigen ratio of the

system 1s no less than the maximum ratio f-1, of an

i,k=aggregate, This is readily shown from Equatlons

e

55 and 36, Even in this regilon of extreme antibody excess

the attainment of p is certainly questlonable,
max

Equations 39 at the critical point reduce to
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The top equation indlicstes that the total number of bound
bivalent antibody molecules is nolt dependent on the number
of univalent antibody molecules present, Thls should be

expected in the light of Equation 34, 1In a linear plot

~ 'Y

of (4,/G), against G, as 1s generally the case with experi-

£

mental results in the antibody excess region, Eguatlons

40 predict that the negative slope of the curve should

increase as the corresponding values of G decrease,
Pigure 3 1llustrates this point well with the curve labeled

~

G, Therefore, on this basis one can expect Increa:

2

in

ng
deviation from the Heidelberger-Kendall equation with

decreasing amounts of G{as antibody excess increases),

, 1t places th

fei)

Since this point has been verified

uy)

eidelhergér—KendalI equation on a rather weak foundation,
Equatlons 40 are not required %o obltalin this result,

Any other set of values for p in E
the same effect, provided e 1s assumed to be independent
of composition, an assumption which 1s not unreasonable

in view of the interpretation of e , The appropriate



0.0 2.0 4.0 6.0 8.0 10.0

(A, /G)e

0.0 2.0 40 6.0 8.0 10.0
G (A=I0)
Figure 3

Varlations in (4, /G) with Increasing amounts of

A and G are shown fof the critical extent of reaction,
(4,/G), 1s the ratlo of bound bivalent antibody

to total antigen at the critical point, The curve
labeled A refers to the upper abscissa which
represents additlions of bivalent antlbody to the system,
The curve labeled G refers to the lower sbscissa

which represents additlions of antigen to the system,

A valence of five 1s assumed for the antigen,
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dilutlions of antigen in an experiment of this kind should
be determined, therefore, from the fact that Ab/b depends

on G in an inverse manner,
Although there is a theoretical basis for the use of

Equation 40 over the entire range of precipitation in

=<

{®7]

contrast to the Heldelberger-Kendall equatlion, nevertheless

the quantity Ab/? is not the one of interest since,
obviously, considerable antigen as well as bound antibody
is not precipitated in the region of antigen excess,

The expressions which would be more appropriate, however,

given by Equatlions 30, 34

c
<O e

are those for 1/k or (T+47)/x
and 37, since they determine the antibody-antigen ratios
for agpregates, They do not require the number of free
antigen molecules in the system to be negligible, They
have the same dependence on A/G as Ab/G does, so that

the criticism mentioned sbove is still wvalid,

The welght-average molecular weight of a system

“

Pl

composed of bivalent antibody molecules and f-valent

antigen molecules is defined by

Mp. = ) My fu
1)

l r1A +-LQF1G

,
L3
X
-
i



A
The double sum here can be expanded and evaluated from

Equation 14, The result, after considerable algebra, is

[
x (Matt,) 6
M), ZC Mig i = My (A=6)=2Ma MG +/__'ﬁ_)&

by
1
Ma +Mq Mg 2 e »
+ | LA E 2§Gh + M, SR
[MH) npt MAJ ﬁ A /’(4 )
2.

L /+¢n/:L-QL,4'7"
v\ Ma$(-f) [ U=-np*)* " 4_]

ML—ML(z{"‘)_LH H ({-\) —.G_.é-‘.
+Me="a e 1-G-Unpt

The number-average molecular weight of the system is

W) AMy + G
(M = M; ‘£; -
)" %‘ « ik A+6 -1Gp

4 3)
\W) Mk

Lo
Zi_ Ml




3. A Theory for Reactions of IMiltivalent Antigen

lolecules with Univalent Antibody lNolecules

It 1s of interest to discuss a theory here for
reactions of a system containing univalent antibody mole=-
cules and f=valent antigen molecules., Although such
theories of reaction have been discussed before, they
have not been approached from the point of view adopted
here(20)., The results of thils theory, together with
those of the previous one, will Indicate how valld the
basils for Hershey's theory ls, in which it is assumed

that the reactlons leading to the formation of specific

ageregates are not influenced by further aggregatlion,

s he

13
¥

where all symbols except ¢ have the same slgnificance
as before, The most probable distribublon 1is determined

under the following conditions

4 4)
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where the values for the running indices are described

in Equation 44, Again constant D, G, and M 1lmply constant

Do

R

D+6& -M

G 46)

o~
n

With the aild of Lagrangean undetermined multipliers

—

& (3 ’ and 2 , the most probable distribution 1is found

to be

My = S Ep7 (47)

Since there are f(f-1),..(f-]+1) ways to place

antlbody molecules on one antigen molecule,
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Wi = (u-nzx jokso,

In straight forward fashion Equatlons 45 are

evaluated using BEquatlons 47 and 48,

/

D/» E * 2/;”,”)*'

4

G/ B ( |+ &)

f
pq/)» E + B (/+E)

In terms of p and r, where now r = f£G/D

,A

TS

I~ p

g
F(1-7p)

E

y . AU #6
np

Therefore, the most probable distribution becomes

4 9)

(50)
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| il 1+l-~1 flh tk-741
My = 16 [ ~2 ] P (-4)

X ﬂ—k‘/ (1=np) (51)

If for thermodynamic equillbrium values of m..

1A
L7

.} _ 7 . K ] 2 e
and p, Kj 1s defined by

K.

b WM, M,

o J=i,

(52.)

i
L

then with the use of Eguation 51, one obtains the

familiar results(20)

53)
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and
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BEquation 54 gives the equilibrium ratio of the number of

bound antibody molecules to the number of bound antigen
molecules, It is clear that this system at equillbrium
ls a speclal case of Equation 51,

The weight-average and number-average molecular
weights are found, with the aild of Equation 51, to be

[
M)y 2_Mjuwmyy, = DMo + GMg +2MpMe $6p

ik
My E(54) G BT
(55)
DM, + &M,

. D+ 6 -£6p

el
&
I

argainst the extent of reaction., F

o)
;.‘:,
()]
i

shows such a graph, It 1s convenlent to subtract the

e molecular weight due to the system belore

& S3yS
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6.0 BIVALENT ANTIBODY e |
(16/2A=1)

5.0

40
[(M)..r(M)m]w

X I()'4 30

2.0
|
10— UNIVALENT ANTIBODY
($6/D= 1)
0.0 0.2 04 0.6 0.8 1.0

Flgure 4

ffect of the extent of the reactlon p, on a

n n of the welght-average molecular welght,

C «an,-<D &] W, for a system containing bivalent
antibo dy and one con1a1nnns univalent antivody.

i " 1s the weilght-average molecular welight of the
s em for p zero, W 1is the mass of the sys tem,
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any reactlon has taken place <MD ., and multiply the
result by the mass of the system W, It 1s obvious from
Flgure 4 that Hershey's assumption is not realistic, since
the large aggregates have a predominant effect on the

system even at small extents of reaction,

4, Experimental Evidence for the Theory Tor Reactlons
of Multivalent Antigen lolecules with Bivalent and

Univalent Antibody Molecules

BExperimental evidence from four antibody-antigen
systems has been selected for examination in the light of
the bivalent antibody theory presented here, These systems
were chosen because they arve sufficiently well deflined
to be treated theoretically, All antibody present in
each system is assumed to be bivalent, The antibody-
antigen ratlo of the precipitate is compared with values
for 1/k for the maximum extent of reaction and the critical
extent of reaction, TIf the critical point is the point
at which precipitation is inltlated, then the value of
the antibody-antigen ratio of the precipitate should
1ie between the corresponding values of (I/k)__  and
(E/k)c. In order to evaluate the last two ratlos, the
composition of the system and the vslence of the antigen
mist be known, The experimental data used here were
obtained from the usual kind of titration experiments
(21,22,23). A tiltration experiment is generally set up

in the following manner, A series of test tubes is set



] B

up, each with a known amount of antigen nitrogen., The
amount, of antigen varies logarithmically with the tube
number, The same amount of antiserum is added to each
tube. The system in each tube differs from the others,
therefore, only in the amount of antigen present, and

in & definite way. Systems differing only in this way
will be referred to as a set. The number of antigen wole=-
cules G, in each system was determined from the amount of
antigen nitrogen added and the amount of niltrogen per
antigen molecule{the nitrogen factor)., The number of
antibody molecules in each system wag estimated in the
following way. The total nitrogen precipitated was plotted
against the antigen nitrogen in the system for a particular
set of systems, The point on the curve which represented

-

the maximum amount of antibody precipitated in the set
was used to calculate a trial value for the number of
antibody wmolecules in the system A', with the ald of the
appropriate nitrogen factor, This trial value for A and
the corresponding value for G were substituted Iinto the

following equatlion to determine the fraction of antilbody

molecules In the system which were free,

"
T
l
b
B
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(56)
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BEquation 56 follows from Equations 18, 35, and 36 where
E%ﬁ is negligible, As a second approximation 1t was
vody molecules were elither free or
in the precipitate., Therefore, the fractlion of antibody
molecules in the precipitate l-mq /“, was calculated

from Equation 56 and put equal to A'/A, The value deter-

A

mined for A was then used as a new trlial value for A', and

the process was repeated until the value for A no longer
changed.,

The valence of the antigen £, was in all but one
case determined from the experimental data, or the
extrapolation of them which led to values for antibody-
antlgen ratios of the preciplitates 1In the greatest possible
antibody excess(24). From this information the antigen

valence was calculated according to
) = - ' k)) | 57)
(l/k)w\.,x —g , / (

In the case of Diphtheria Toxin-Antitoxin the data on
soluble complexes in antibody excess taken by Pappenheimer,

Iundgren, and Willlams (25) were applied to

BN

~

/ey = F 5 R (5F)

Two horse antibody systems and two rabblt antibody
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systems have been selected, The experimental values

for the antibody-antigen ratios of the precipitates R,

et

are compared to the values for (Eyk)m and {(T/k) , as
max

C,
shown in Tables 1, 2, 3, and 4,

The value for the valence of the antligen was used
to calculate the theoretlical limlts imposed on the antibody-
antigen ratio for attaining the critical point from
Equation 26, with P unity., These 1limits are compared
to those beyond which precipitation 41d not occur, in
Table 5. It should be noted that precipitation can

a

occur in both of these rabblt antibody systems for composi-

o

tions at which the critical point 1s not attainable,

The horse antibody systems show no such behavior, In

fact, for these systems the precipitation limits are more

F o

1

restricting than the critical polnt limits. The theory Iis
not to be interpreted, however, as requiring the precipi-
tation 1imits to colncide with the critical point limits,
If the critical point is required for precipitation to

occur then the theory lmplies that precipitation cannot

il
o2 g

occur outside these limits, Tt does not predict what

the limits will be., From the point of view of this theory
e 1imits for the horse antibody systems may be as
restricting as they ave either on account of equilibrium
requirements or the presence of univalent antibody.

however, that precipitation can occur before

the eritical polnt is reached in the 'rabblt antibody



Table 1

Theoretical and Experimental Values of Precipitate

Ratios for Egg Albumin-Horse antl Egg Albumin

A/G R (T /% )max (T/x)e
3.1 2. 4% 2.8 2.2
246 s 269 2.0
2.2 2.0 2.0 1:9
2,1 1.9 1,9 1.8
1.8 o 1.7 1.7

#Precipltation was probably incomplete,
The value of (I/k),ax corresponds to

88% of the antigen precipitating.



Table 2

Theoretical and Experimental Values of Precipitate

Ratios for Diphtheria Toxin-Horse Antltoxin

A/G R (T/K)ax  (I/k)c
2.9 DT 2o Bl
2.6 24 22 24l
2.3 2l 2.0 2.0
1.7 1.6 1.6 1.7
Led 1,2 1.8 1.8
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Table 3

Theoretical and Experimental Values of Precipitate

Ratlos for Egg Albumin-Rabbit anti Egg Albumin

s

86 R (Tomsr (T
21 5.9 4,0 -
13 34D 4,0 -

7.6 3e3 4,0 3¢5

4,8 248 4,0 28

3.8 24V Dal 2eD

2.9 2.l 2.6 2.2

2.6 S 2ed 2.0

28 21 - | 1.9



Theoretical and Experimental Values of Precipitate

-
&

ot

tilos Tor Horse Serum Albumin=Rabbilt anti Serum Albumin

g
@
[§o¥]
;.\.:‘.j
oo
1o}
e
ial

17 6,0 6,0 5.3
11 5.6 6,0 4,3
8.2 5.1 6,0 348
5.1 4.0 4,7 3,0
4.4 3.6 348 2.8
4,1 3¢ 345 = §
3,6 3. 3.1 =
53 249 28 24



A Comparison of

System

Bgg albumin-
horse antl egg
albumin

-

Diphtheria toxin-
horse antitoxin

Egg albumin-
rabbilt antl egg

albumin

Horse serum albumine-
rabbilt antl serum

albumin

Table 5

and Critical Point Limits

Experimental 1limit
beyond which preci
4-at;.on does hot oc

3
pl=
cRr

IN

I+ €0/c € 9+

IN
(7

I £ 4/c

~ql

IZa

\T

Inhibition Zone Limits

Theoretical 1limits

beyond which the

critical point is
not attainable

/0

/)

5/¢ ¢ n/c

Zﬁl S /0 & 21

i

S/y ¢ n/c ¢ 1o
i & /5 & 2

-/ A
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systems studied here, One can Interpret this to mean
that this rabbit antibody 1s more insoluble than the

horse antibody. Doyd has mentloned that horse antl-

protein antibody molecules are more soluble than the

corresponding rabblt antibody molecules, since a higher

o

=/

concentration of sodium or ammonium sulfate 1s required
to precipitate the former than the latter(26). This
Feature of the critical point can, therefore, explain the
differences in Inhibition of these rabblt and horse systems,
That is, one would expect to encounter much more difficulty
in observing antlbody excess inhibition In these rabbit
antibody systems than in the horse antibody sysbems,

Flgures 5 and 6 present an interesting experiment
winicth might just briefly be mentioned, They represent
somewhat of a three dimensional dlagram of an Eh agglu-
tination test{27). The abscissas give the ratio of inhib-

iting to agglutinating antibody molecules, a varlable

g
not ordinarily avallable to the experimenter, The
ordinates give the usual antiserum dilutions, The

amount of agglutination is expressed by the different
kinds of crosshatching. In these figures the prozone

1s increased with increasing amounts of inhibliting anti-
body molecules until, finally, complete inhibition exists,
This trend is not apparent when the relative amount of
agglutinating serum present 1s small(the upper values of

the ordinates)., Thils is Jjust the effect predicted by

Equatlon 26 and Flgure 1, Figures 5 and 6 correspond
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The effect of inhibiting antibody on FEh agglutin-
ation. D represents the serum containing agglutin-
ating antibody. E represents the serum contalning
inhibiting antibody. Antiserum dilutions are in-
dicated on the ordinate, The red blood cells used
in this test were considered by Sturgeon to have
the usual combining power,
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The effect of inhibiting antibody on Eh agglutin-
ation. D represents the serum containing agglutin
ating antibody. = represents the gserum containing
inhibiting antibody. Antiserum dilutions are in-
dicated on the ordinate. The red blood cells used
in this test were considered by Sturgeon to have
an abnormal combining power,
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to red blood cells of different origins., In performing
these experiments, Sturgeon has noted that the red blood
cells used in preparing the tests for Figure 6 had
considerably more combining power than those corresponding

(27). Tt 1s obvious that they cause a

(o2}

to flgure
tremendous decrease in the prozone and, hence, tend to
counteract the effect of the inhibiting antibody molecules,
The point at which agglutination occurs at the upper end

of the ordinate remained the same, however, Equatlon

26 and Figure 1 are again in full agreement. They demon=-
strate the insensitlvity of the critlical point composition
to changes in the combining power of the antigen in the
antligen excess reglon{lower 1limit), They do show a very
large effect at the other end. An increaselin antigen

-

for a fixed composition, reduces the

@
O

mbining power f,

ntibody exce:

o

8]

s inhibition zone or prozone conslderably.

¢
{

—~d

- Therefore, the Sturgeon diagrams appear %o be in good

qualitative agreement with this theory.
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The utility of light scattering measurements on protein solutions has been
demonstrated in the past for the determination of molecular weights. The
results obtained by this method agree satisfactorily with those obtained by
the usual procedures. An important early investigation was that of Putzeys
and Brosteaux, who found that the light scattered by ovalbumin, amandin,
excelsin and haemocyanin solutions, was proportional to the protein molecular
weight. (1) More recently investigations of serum globulins and albumins have
been made by Blaker (2). It has been shown that information concerning the
size and shape of a protein molecule any dimension of which approaches the
wave length of the light used can be obtained by scattering experiments (3).
The equation developed by Einstein for a random arrangement of particles,
small compared to the wave length of the scattered light (4) has been modified
by Debye for the convenient treatment of real two-component systems (5).
Debye modified Einstein’s equation by introducing the osmotic pressure; his
final equation may be written in the form:

c 1
H =5 88 g + BC (1)
where
327 , <0n)2
e 2L, o
3A4N on ac T,p
C = weight concentration of solute.

n = refractive index of the system.

X = wave length of light.
Ny = Avogadro’s number.

B = solvent-solute interaction constant (related to that in the osmotic

pressure equation).
T = excess turbidity of the solution over that of the solvent.

M = molecular weight of the solute.

When the particles whose average molecular weight is desired are not small
compared to the wave length of the light, a correction factor is needed which
may be obtained from light scattering data taken at angles symmetrical about
an axis perpendicular to the incident light, if the approximate model for the

1 This work was supported in part by a grant from the U. S. Public Health Service.
? Contribution number 1440.
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particle shape is assumed. These models in relation to the data required have
been previously described by Zimm, Stein and Doty (6).

The turbidity of a solution can be defined as the fractional decrease in the
incident light after transmission through one centimeter of fluid, provided
that absorption is negligible. The excess turbidity arises from spontaneous
concentration fluctuations; it should be a minimum when measured at 90° to
the incident light. There is an increased amount of scattered light at 90°, how-
ever, on account of a small depolarization resulting from orientation fluctua-
tions of the solute molecules. In fact, conclusions can be drawn about the aniso-
tropy of polarizability of these molecules from depolarization data. This subject
has been discussed by Born (7) and Mark (8). The correction for depolarization
has been omitted from the equations presented in this paper.

Since Equation 1 was developed for a two-component system, the only justi-
fication for its use for protein solutions is that it appears to give the right answer
for molecular weights, which turn out to be weight averaged. Hermans has
discussed the reasons why this equation can be used for more than two com-
ponents when electrostatic effects are considered (9). Usually B is positive,
and in cases where B does not vanish data must be taken at different concentra-
tions in order that the extrapolation to infinite dilution can be made in the

plot of H ' against C, so that the molecular weight can be calculated. Theoretical
T

treatments have been given for the turbidity of high molecular weight solutes
polydispersed in solution (10, 11, 12). In these cases electrostatic effects have
been subtracted and the result found by Kirkwood and Goldberg is the following:

¢ 1 ¢ .
g =g "o ‘-él My Aafifs
<M>,y = kzlkok; C = kzl Cy @

H = (327!’3/3No Po )\4)77/2(6771/30)27',;;

<M > ,v is the weight average molecular weight, and C is the total concentration
of solute given in weight per unit weight of solvent; po is the mass of solvent in
unit volume, and A, is the thermodynamic interaction constant originating in
the expansion of excess chemical potentials in terms of concentrations. A
expresses the influence of component k£ on the activity of component 7. It is
seen that if the coefficient of C' on the right side of the equation remains constant
in a given system, then the above expression reduces to Equation 1. In general,
however, this is not the case.

It has been found that the pH of a solution affects its turbidity (2). In the
case of borate buffer at pH 8.3, B vanishes for rabbit globulin, whereas in acetate
buffer at pH 4, B is significantly positive. Accordingly with borate buffer only
one light scattering measurement is necessary for the determination of the
molecular weight of this protein. These facts might be viewed in the light of
Equation 2. If changes in molecular size such as dissociation, occur during the
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dilution process, then it is predicted by this equation that B does not remain
constant.

The purpose of the present paper is the determination of some properties of
an antigen-antibody reaction from turbidity measurements. We shall represent
one mole of antigen by Ag and one of antibody by Ab throughout the discussion.

EXPERIMENTAL

The serological system used throughout this set of experiments consists of crystalline
bovine albumin as the antigen, and partially purified rabbit antibody against crystalline
bovine albumin as the antibody. All solutions were made up in borate buffer at pH 8.3 and
ionic strength 0.15. The antibody preparation was made by a triple precipitation of globulin
by one-third saturation with ammonium sulfate at pH 7.8 and room temperature. After
dissolving the final precipitate in 1%, saline solution, the solution was dialyzed against
distilled water at 0 C and the water-soluble protein was dissolved in 19, saline and dialyzed
against borate buffer. The albumin solution was prepared by dissolving the crystalline
protein in borate buffer and dialyzing against the same buffer. Total protein concentrations
were determined colorimeterically by Nessler’s method according to the procedure adopted
by Lanni and Campbell (13), the factor 6.25 being used in converting nitrogen concentra-
tion to protein. Antibody concentration was determined in the usual manner by adding
serial dilutions of antigen to a constant amount of antibody solution. The resulting water-
soluble fractions contained about 17 per cent antibody in one preparation and 33 per cent
in another (see Tables I and II). All solutions were centrifuged for twenty minutes at
40,000 G to eliminate dust particles. The cell in which the turbidities were to be measured
and the pipettes used for transferring solution from the centrifuge tubes to the cell were
flushed with acetone vapors before use. The light scattering apparatus has been described
earlier (14). All turbidities were determined at room temperature (approximately 25 C).
The turbidity of the antibody solution was determined first in each instance, and then the
selected amount of antigen was added to the cell. An attempt was made at uniformity of
mixing by keeping the ratio of volumes of albumin and antibody the same in each experi-
ment, and by swirling all mixtures in a like manner.

Experiments were first performed in which the mole ratio of antibody to antigen was
varied from 13 to 0.4, the quantity of antigen being held constant. In other experiments
the mole ratio of antibody to antigen was kept constant and the total concentration was
varied.

RESULTS

Figure 1 shows the increase of light scattered by the mixture of antigen and
antibody with time. The mixing was started at zero time. The ordinate indi-
cates relative values of reduced turbidities, which were obtained by subtracting
the solvent readings from those of the solution and dividing the result by the
weight of antibody protein in the system. The curves represent different mole
ratios of antibody to antigen, as given in Table I. The amount of non-specific
protein present was twice the amount of precipitable antibody. The amount of
antigen used was the same in all cases, and the amount of antibody was varied
to give the desired mole ratios. Precipitation was observed in the systems with
Ab/Ag = 13, 3.2, 2.5, and 1.3; the last system had formed visible particles
before the readings were taken. Visible particulation occurred in the first three
at approximately 15, 25, and 50 minutes respectively. Systems with Ab/Ag =
0.8 and 0.4, in which no precipitation occurred during twenty-four hours,
showed much more light scattered than those of the corresponding antibody



Ry
-5

82 R. J. GOLDBERG AND D. H. CAMPBELL

100 T T 1
Ab,
T
ab
a3
Ag
8of ol
ab
Ab,2s
Ag
sol 2
o
2
>
S
3e
S5 a0l Ab,y
-
I Ag
Ab,
20l e aeos |
& Ab
° 8b.04
Ag
00 | bead |
10 20 30 a0

TIME (minutes)

Fic. 1. The effect of antibody/antigen ratio (4b/Ag) on the antibody-antigen reaction
for bovine albumin and partially purified rabbit antialbumin antibody.

TABLE I
The effect of Ab/Ag ratio on the antibody-antigen reaction
Ab/kz:.\gn(;gom ALBUMIN ANTIBODY* | TOTAL VOLUME?} REMARKS
mg mg ‘
13.0 0.10 3.0 30.0 Precipitation
3.1 0.10 0.75 30.0 Precipitation
2.5 0.10 0.60 30.0 Precipitation
1.3 0.10 0.30 30.0 Precipitation
0.8 0.10 0.20 30.0 No precipitation, Turbidity
increase
0.4 0.10 0.10 30.0 No precipitation, Turbidity
increase

* The antibody protein was approximately 339, of the total globulin.
1 In every instance 1.0 ml of albumin solution was added to 29.0 ml of the antibody
solution.

solutions whose reduced turbidities were about 0.2. Controls made with normal
rabbit globulin prepared in the same manner as the purified antiserum showed
less than one per cent increase on the addition of antigen.

Another set of measurements was taken on systems with constant antigen-
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antibody ratio and total concentrations differing by the factor 2. Figure 2 shows
the results for these systems, described in Table II.
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F1c. 2. The effect of total concentration on the antibody-antigen reaction for bovine
gerum albumin and partially purified antiablumin antibody. The concentrations given are
for total protein.

TABLE II
The effect of total concentration of antigen and antibody on the Ab-Ag reaction
Ab/Ag (MOLE RATIO) ALBUMIN ANTIBODY* TOTAL VOLUME} REMARKS
mg mg ml
11 0.10 2.5 21.0 Precipitation
11 0.050 1.25 21.0 Precipitation
11 0.025 0.63 21.0 Precipitation

* The antibody protein was approximately 179 of the total globulin.
1 In every instance 1.0 ml of antigen solution was added to 20.0 ml of antibody solution.
DISCUSSION OF RESULTS

The combination of bovine albumin and its homologous rabbit antibody
appears to be complete in a few minutes. If we consider the average initial
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slopes of the curves to be a measure of the rate of reaction, then we can con-
clude that the antibody-antigen ratio greatly affects the rate of this combination.
Since the data presented are for scattered light 90° to the incident light, they
are not sufficient to permit the determination of the molecular weight of interest
in the region where the particles are no longer small. As mentioned earlier,
light scattering data at other angles would be required for this purpose. If the
ordinate values were directly proportional to molecular weight, the slope in the
region of large aggregates would probably not decrease so rapidly with increas-
ing time as it does. The negative slope of the curve for the system with Ab/Ag =
1.3 can be interpreted to represent the settling out of precipitate. Since visible
particles had formed before measurements could be made, the rate of increase
of reduced turbidity in the early part of the reaction, although not evidenced
experimentally, undoubtedly would have a larger average value than that of the
curve for the system with Ab/Ag = 2.5. Hence the rate of the antibody-antigen
reaction discussed here appears to pass through a minimum in the region of the
equivalence zone. For other rabbit antibody systems, Boyd, in a study of opti-
mal proportions ratios, has reported times of flocculation which also indicate
minima (15).

The curves representing the systems having Ab/Ag ratios less than unity
indicate in the antigen excess region the existence of aggregates which we find
by observation to be soluble. If we neglect intramolecular interference of scat-
tered light and A, interaction terms, for the systems with Ab/Ag values of
0.4 and 0.8, we find by Equation 2 molecular weights of 850,000 and 1,300,000
respectively. By calculating a weight-average molecular weight for the former
system on the assumption that all antibody is bound in aggregates AbAg,,
i.e. a solution containing uncombined antigen, rabbit globulin, and AbAg,, we
find 218,000. The neglect of intramolecular interference always leads to a lower
value of the weight-average molecular weight than that obtaining in the ab-
sence of this interference. Although we have consistently found molecular
than they should be whenever we have assumed A 4 = 0, it is possible that the
A#’s will not always have the same sign. It seems not unlikely that some ag-
gregates such as Ab; Ag,, etc. are present.

The effect of changing the concentration with Ab/Ag kept constant is shown
in Figure 2. Let us first discuss the vertical spread of the asymptotes. It is
possible that the different values of these asymptotes represent differences in
weight — average molecular weight, but it seems not unlikely that they reflect
differences in the enormous correction factors which must be applied to Equation
2 in order to include intramolecular interference.

It seems reasonable that little error would be introduced by assuming that
the ordinate values, one for each curve, which correspond to the same fraction
of the asymptotic values represent the same weight-average molecular weight
for the three systems at these points. We can expect that by taking fractions
of this kind we eliminate to a large extent the effects of differences in the factors
which account for intramolecular interference of the scattered light. The values
of the time corresponding to ordinates equal to 509, of the asymptotic values
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are approximately inversely proportional to the concentrations. This propor-
tionality is characteristic of any complex of bimolecular reactions. Lanni, using
a turbidimeter, has obtained curves very similar to those of Figure 2 in his
study of the specificity of serological reactions (16). His curves also roughly
show this property of bimolecular reactions. Pauling (17) has pointed out that
data in a table of times of flocculation for mixtures of various dilutions of anti-
gen and antiserum presented by Boyd in a study of optimal proportions ratios
(15) are suggestive of bimolecular reactions. Boyd’s data for fixed Ab/Ag lead
to the equation

il

where C is the concentration of the system and ¢ is the time for flocculation
to occur. For a two-fold dilution the time of flocculation increases 2.27 times.
The fact that this factor is 149, larger than that required by the bimolecular
rate equation can reasonably be explained as a dilution effect; namely, in a more
dilute solution the reactions may well have to proceed beyond the apparent
flocculation point for a more concentrated system before the observer recognizes
that the flocculation stage has been reached. Equation 3 was arrived at by first
constructing straight lines 45° to the axes, which give the dilution factors on
the same scale. These lines were drawn through the points labeled with the
first eight antigen tube numbers; they intersect six contour lines (isochrones)
representing the range one minute to 32 minutes for the flocculation time. The
distance between the points of intersection of the first and the last contour
lines with each one of the 45° lines was measured, and the average distance for
the eight lines was calculated. This average distance was then converted to a
concentration factor. The exponent, 1.18, in Equation 3 is the power to which
the concentration factor, 19, had to be raised to give the time factor, 32. We
conclude that as a first approximation antibody-antigen reactions involve col-
lisions of two particles. This conclusion gives justification to the assumption
of a series of successive bimolecular reactions upon which Heidelberger and
Kendall (18, 19) and Hershey (20, 21) base their quantitative theories.

The authors wish to thank Professors Linus Pauling and J. G. Kirkwood
for their helpful criticism in the interpretation of results and to Professor R.
Badger and Dr. R. Blaker for their help on making light-scattering measure-
ments. .

SUMMARY

The utility of light scattering measurements on protein systems is discussed.
Light scattering data for bovine serum albumin and its homologous rabbit
antibody are presented. They describe the turbidity of the system as a function
of time. It was found that the rate of aggregation of antibody and antigen
molecules into large complexes is dependent on the antibody-antigen ratio.
The existence of soluble aggregates in the antigen excess region is verified.
Evidence is discussed which indicates that all reactions occurring in an anti-
body-antigen system are bimolecular.
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Light Scattering Arising from Composition Fluctuations in Multi-Component Systems
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A general theory of Rayleigh scattering due to composition fluctuations in multi-component systems is
developed with the aid of the grand canonical ensemble of Gibbs. It reduces to the usual expression for
systems of two components, but contains previously neglected terms arising from thermodynamic inter-
actions between solutes in systems of more than two components. The theory is used to interpret the turbidity
measurements of polystyrene in benzene-methanol mixtures of Ewart, Roe, Debye, and McCartney.

I

HE utility of light scattering measurements in the
determination of molecular weights and in the
study of thermodynamic interactions in solutions of
macromolecules has been clearly demonstrated in recent

years. Correct theoretical interpretation of the measure-
ments has been achieved for two-component systems
composed of one macromolecular solute in a solvent of
low molecular weight. However, attempts to extend the
two-component theory to multi-component systems
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have led to certain errors and misconceptions, the cor-
rection of which is one of the purposes of the present
article.

A general theory of composition fluctuations in multi-
component systems will be developed with the use of the
grand canonical ensemble of Gibbs. The theory provides
a complete thermodynamic description of Rayleigh
scattering without the use of supplementary molecular
assumptions, although the latter may be of importance
in interpreting the thermodynamic information obtained
from the light scattering measurements.

It is found that thermodynamic interaction between a
macromolecular solute and a solute of low molecular
weight may cause the former to induce composition
fluctuations with respect to the latter of the same order
of magnitude as composition fluctuations with respect to
the macromolecular species itself. This effect, which has
been neglected in previous theories, is shown to be of
importance in interpreting turbidity measurements of
solutions of macromolecules in mixed solvents. To
illustrate the use of the theory, an analysis is made of the
turbidity measurements of solutions of polystyrene in
benzene-methanol mixtures obtained by Ewart, Roe,
Debye, and McCartney.!

II

The turbidity 7o of a fluid arising from Rayleigh
scattering of light of wave-length X is determined by the
well-known relation,? based on the theory of Einstein,

70=(87%/3NY) V{Ae), (1)

where (Ae?)y is the dielectric constant fluctuation in a
region of volume V. We shall be concerned here only
with those contributions to (A€’ arising from composi-
tion and density fluctuations. If we denote by my, - - -m,
the average masses and by N, ---N, the numbers of
molecules of the several components in the region V, and
define

ci=my/my; i=1, -y,
m;= M¢<L?V~;>AV/JV,
AN = Ni—{(Nm, 2)

Ei: AIV'[/<A/V'L'>NI o= AL“\‘T(J,/<A‘\YU>AV7
EZ Z z‘)kAN,C/N V 3
k=0

where N is Avogadro’s number and 7 the partial molar
volume of component &, we may write,

, de de
+ Cib‘k@f&%v(A) (_) ¢ B
i, k 6@- T, cf (')C/C T

=1

1 Ewart, Roe, Debye, and McCartney, J. Chem. Phys. 14, 687
(1946) ; P. Debye, J. Phys. Coll. Chem. 51, 18 (1947).

2 See, for example, Doty, Zimm, and Mark, J. Chem. Phys. 13,
159 (1945).

where « is the compressibility of the fluid, and the sum
extends over all solute species, k=1, - - - », the subscript
zero denoting solvent. The first term of Eq. (3) arises
from density fluctuations at constant composition, and
the second from composition fluctuations. Except for
critical phases, Eq. (3) is exact to terms of statistically
negligible order of magnitude. We now define in the
customary manner the turbidity 7 due to composition
8V (&2

ﬂ‘u‘:tuatlons1
( 0 € ) 2
3>\ K a[}) e

8V, de de
e Z C£C/c<si£/.:>/\v(_“) (—‘)
3)\4 t_,_}i (9(,'1‘ T, p, e Gck T p, ey

where the second term of the first of Eqgs. (4) is the
turbidity arising from pure density fluctuations. In
Egs. (3) and (4), we have anticipated the result,

To=T

(4)

v<$£i>Av:O, presently to be proved.

In order to determine the composition fluctuations we
employ the theory of the grand canonical ensemble in a
manner which has been earlier described by one of us.?
The probability that an open region V' in an infinite
mass of fluid contain exactly Vg, Ny, - - - N, molecules of
the several components, considered as an example of a
grand canonical ensemble, is

P=exp([Q4+> Np/—A(Ny---N,)1/RT),
= (s)
Q= —pV+4EkT loga,

where & is Boltzmann’s constant, 7" the temperature, u,
the chemical potential of component 7, per molecule, and
A is the Helmholtz free energy of the region when it con-
tains the specified numbers of molecules. The term
kT logo is of statistically negligible magnitude relative
to pV, but is important for normalization in the order
required for the calculation of the composition fluctua-
tions. Expansion of the exponent of the right-hand side
of Eq. (5) in the variables N;—(N)a yields, with the
neglect of terms of higher degree than quadratic, which,
except for critical phases make statistically negligible
contributions to mean values,

P=yg exp(——% Z BikOAjviAj\‘Tk),
% %

=0
AN ;= N—{(Nm,
924 (6)
RTB:u = ( — )
f)]\f,'(')x"\’/g T, W, N

(Om’) (auk’)
N,/ T, v, Nj oN;/ 1, v, N].

3 J. G. Kirkwood, mimeographed notes, “Lectures on statistical
mechanics” delivered at Princeton University (Spring term, 1947).
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We now make use of the mathematical relation,
Tk

(9/11', Mk 8“1’ s
()., 7
('“):V}( TV N3 ANQKI/ j\”mo aCk T, p; ¢

where N is Avogadro’s number, 7; the partial molar
volume of component 7, M ; the molecular weight, and u;
is the chemical potential per mole of that component.
The coefficients 8;° may then be expressed in the form,

A\'mfo ,8 ik
.0 o=

6 e I - ]
A"\TZK Vk 4 2 <A‘/ 1’>Av<;Vk>Av

Gt Ly CiCr O (8)
551.»2 (—) = ("_) )
MiRT Gck T, » 65 M}VRT aci T,p,c¢j

Z Bix=0; Bon:Z BioPBro,
) 1,k

k=0 A
=1

Dbk

where the sum rules for the coefficients B4 follow from
the Gibbs-Duhem equation. Introducing the composi-
tion fluctuation variables £ and the reduced density
fluctuation variable £, of Eq. (2)

5;‘ = Al\Yi/<lV'i>Av—' AA\TO//<:\7U>AV,

£=Y BAN/NV;

k=0 "

9)

we obtain from Egs. (6) and (8) the fluctuation distribu-
tion function,

(27,)7(1/4—1/2)(,(1//3]‘)—%
|8

Xexp(— (Nmo/2) S Butii— VEY/2kT)
i, k
=1
|5’ = ’sz J )

where |B| is the determinant of the thermodynamic
coefficients 8. It will be remarked that the transforma-
tion, Eq. (9), has eliminated non-diagonal terms in the
Gaussian distribution involving the composition fluctu-
ations &; and the density fluctuation £.

The distribution function, Eq. (10), yields with the
aid of the theory of quadratic forms the following mean
values,

V{Etm=(V/Nmo)(|B8|a/|8]); 4, k=1---»,
V{&m=r«kT,
(EEn=0,
where | 8| is the appropriate co-factor of the determi-
nant |B|. Substitution of the density and composition
fluctuations of Eq. (11) into Egs. (1) and (3) yields the
following expressions for the turbidity,

ro= 7 (87%/3N) (R T/ 1) (9e/ ).,

871'3 1 4 ‘6Izk (')E Ge (12)
G
3t LVPO 1_? [B‘ ¢/ T, p, ¢j dc,/ T, », cj

P(£1 'gw E)Z

1
]

(10)

(11)
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where po is the mass of solvent in unit volume. Equations
(12) give a complete description of Rayleigh scattering
arising from density and composition fluctuations in
terms of thermodynamically defined quantities and the
derivatives (de/dc;)T, p, ¢;. The non-diagonal terms in
which have previously been neglected in the analysis of
Rayleigh scattering in multi-component systems, make
it possible for a solute of high molecular weight to induce
significant composition fluctuations with respect to a
second solute of low molecular weight as the result of
strong thermodynamic interaction between the two.

111

We shall now present several applications of Eq. (12),
which illustrate the manner in which the turbidity of a
multi-component fluid may be used to obtain thermo-
dynamic information relating to the dependence of the
chemical potentials of the components on composition.
For the case of two components, Eq. (12) of course re-
duces to the expression,

8m3RT f de \? Iu;
/),
3)\41\7/)0 661 T, p 861 T, p
given by the elementary theory of composition fluctua-
tions and which has been extensively used in light
scattering studies. In order to simplify Eq. (12) in the
multi-component case, we suppose all solutes to be non-

electrolytes and expand the excess chemical potentials in
power series in the concentrations ¢;,

wi=RT log7¢6¢+ﬂi°(T> ]7);
p= lim [u;—RT loge:],

(4 e 7

(14)

v

logyi=2_ Aac+0(ckey),
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Fic. 1. Turbidity-composition curves of solutions of polystyrene in
benzene-methanol mixtures.
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retaining only linear terms in the expansions of logy:. In
this approximation, we may write,
((')[J.i/aﬁk) = (RT/C@)(st—f—A iky
(15)
MkA k= M'iAk'i;

where, as henceforth, we abbreviate the derivatives
(3i/dck)T, b, cj as dui/dcx. Using Eq. (15), we find

18| /| Bl =Mida/ci— M Ak,

8x? v de "
e
3NpoAtl k=1 ey

T=
(16)
¥ de OJe
-3 Mida— —cick},
z‘,)i dc; e

where we abbreviate (de/dc;)T.p,c; by d¢/dc;. In the case
of a polymer with a molecular weight distribution, where
it is appropriate to treat de/dc; as independent of 7 in
first approximation, we obtain

Hc¢ 1 " G zv: A
ATk,
T M (M)nPi. k

, » (17)
c=:£,l G <M>Av:k§1 M,

H = (87%/3N po\*)(9¢/dc)?,

where f;is the weight fraction of component of molecular
weight M; In a previous attempt to adapt two-
component fluctuation theory to this case, the non-
diagonal terms in the sum of Eq. (17) were overlooked.

We now turn our attention to the system of three
components. In this case Eq. (12) may be put in the
form,

I]zMgR'[‘ 1— 2aw1+a2w12
s/ dcy 1— (Mz/Mx)wlwz,

32mn? f0on \ 2
H,= (——), e=n?,
SZ\TP())\4 acs

Ar=

Ar=1—17;

w1= (du1/cs)/(Ap/ dcy),
wWy= (ayl/ac'g)/(ap,g/a(fg),
a=(dn/dcy)/(dn/dcs),

where 71 is given by Eq. (13). If all components are non-

4B. Zimm, and P. Doty, J. Chem. Phys. 12, 203 (1944).

SCATTERING

TaBre I. Thermodynamic interaction coefficients in benzene-
methanol-polystyrene solutions.*

Bai» Bs»
5100 0.0

Az Ao
1.1 340

* Subscript 1, methanol; subscript 2, polystyrene; M2 =3.45 X105,

electrolytes, and we employ the power series,
2

logyi=2_ 4 ika'{"i Bijciont -,
Jk

k=1 (19)

=1
a= aytaici+ asc,

for the activity coefficients, ;, and the refractive index
ratio, &, we obtain the following expansion of Eq. (19),

Hoco/ Ar=1/M{1+4G1oc14Gorce
+Gaoer*+GucicatGoaca?}
Gro=2a0A12; Go=As; Goa=2Bas; 20)
Gao=4agBio— 20004 114 12+ 2014 15+ 30?4 192
Gu=2(1+2(M1/M3) ) Boio— (Ms/M1)A15*
+2a0A 124 20+ 2054 1.

We have analyzed the light scattering data of Ewart,
Roe, Debye, and McCartney* on solutions of polystyrene
in benzene-methanol mixtures, by means of Eq. (20),
supplemented by an additional cubic term of the order
ci%s, the coefficient of which we do not interpret
theoretically, although this could easily be done. The
curves from which the coefhcients are determined are
compared with experiment in Fig. 1. It will be observed
that the measurements are reasonably well reproduced.
The coefficients of the refractive index increment ratio «
were estimated to be apy=—1.9; ay=4.8; as=0. The
values of the thermodynamic interaction coefficients,
Au and By, of Eq. (20), calculated from the experi-
mentally determined coefficients Gy of Eq. (20) are
presented in Table I. The coefficients 4 # and B, are, of
course, dimensionless, but it should be remembered that
the numerical values are appropriate to concentrations ¢;
expressed in grams of solute per gram of benzene.

The calculations which have been presented exhibit
the manner in which turbidity measurements may be
used in conjunction with the present theory to obtain
thermodynamic data in multi-component systems con-
taining at least one macromolecular component. The
positive value of the interaction coefficient A5 for
polystyrene and methanol, when interpreted from the
molecular standpoint, means, as Debye surmised, that a
polystyrene molecule exhibits a preference for benzene
molecules in its statistical environment. Such qualitative
considerations should, however, be regarded as supple-
menting the thermodynamic theory presented here,
rather than the basis for an exact analysis of turbidity.



Appendix

The Determination of the Combinatorial Fachor Wiik
o



Wijk 1s defined as the number of ways in which
i bifunctional units(to be oalled'sa—units), i unifunctional

o

units (called Sj-units), and k f-functional units(called

formed into a single 1,],k-aggregate

Sy~units) can be
containing no cyclic structures, All units and all
functional sites theveon are distinguishable, All sites
on the S, -units are equivalent, All sites on the Sy

and Sj-units are equivalent, TFurthermore, sites on

S, and Sj-units are permitted to react only with sites

on Sk-uﬂits and vice versa,

This-broblem can be solved by the device iInvented by
Mayer and Vayer(28) and adopted by Stockmayer in simllar
problems(18). Sp-units are represented by mechanical
frames containing I holes, Indistinguishable bolts are
required to hold the frames together, each bolt passing
through a palr of holes belonging to different frames,
Bolts are also required to f£ill all other holes., These,
however, do not connect different frames with each other,
Bach of them has one free end,

The number of ways to bolt all the frames together
into a so=-called k-aggregate, contalining no eycllec structures,
is W.. It should be noted that the insertion of 1 S,-

s

vunits and j Sj—units into the k-aggregate does not change

o
L2

the number of ways of forming the latter, k=1 of the

Si-units mist take the place of those bolts connecting



“B7 =

two frames together, The rest of the Si~units and the
Sﬁ—units must replace bolts which have one end free, The
number of ways of inserting the 1 5,;-units and j Sj—units
into the k-aggregate is defined as Rijk'

Therefore,
Wik = Wi Ry (A1)

W, 1s determined in the following manner, Since a
k-aggregate requires k-1 bonds, k-1 bolts are required
for this purpose. Since bolts are required to £ill all

other holes, the total number of bolts used 1s then

$h-(k-1) = $k-l+

Any one of the bolted arrangements can be dlssocliated
into k separate frames, each containing -1 holes occupied
by bolts and one empty hole., There will be one free
bolt left over, The bolt chosen as the free bolt uniquely

determines the emwpty hole in each of the k frames,

(V]
It

nce there are rk-k+l bolts altogether, there are like-

I

wise fk-k+1 different dlssociate

~

1 arrangements of the
regulred kind which correspond to the same bolted arrange-
ment, Now, if P is the number of possible dissoclated

arrangements of this kind, and if @ is the number of ways

of bolting each dissocilated arrangement together, the



P e

=

murber of different bolted arrangements 1is

PR

Wk $-k+ (A2)

Since any one of the holes on the frames can be the

empty one,

P = § A%)

To find Q, k-1 indistinguishable washers are Intro-

)

duced, no more than one belng placed on any bolt. The
numbey of ways to choose k-1 out of the fk-k+l bolts,

on which to place washers, is

Gl-k+0)!
(Sl -2k+2)! (k-1)!

Washerved bolts are now inserted into holes in frames with
which they are not already connected, The free bolt is
kept for last, That is, the first washered bolt can select
any one of k-1 empty holes(excluding the one on its own
frame)., There are then k-2 single frames and one double
frame, TIn a like manner the second washered bolt can

select any one of k-2 empty holes. Thils process continues
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until only the one free bolt remains. If the free bolt

has a washer there remain two structures, each with a hole,
which must be bolted together, TIf it does not have a
washer there remains just one hole on one structure which

el

must e filled., Therel

ore, washered bolts can be Iinserted
In (k-1)! ways. Thils number of ways conmbined with the number

of ways of assigning washers 1s

_ G'k—k-l»l).'
Q = Fh -2k+r)!

(A9)

the substltution of Equatlons A3 and A4 in

k

7 @h-k)! 5

= )
wy Uhk-2ksr)! ¥

This proof for W, i1s the same as that given by Stockmayer(1ls).
K

<

Rijk can be obtained in the following manner. k-1

£3

of the 1 Sy-units must be selected for the bonding posi-

tions now occupled by bolts. These can be selected 1n

!

U-k+1!

ways.,

The remainder of the Sy-units, 1-k4l, and all the S3-

i



.
units mast replace any of the fk-2k+2 bolts each of which

has one end free, This selection can be accomplished in

Ghk-vlksr)!

ways .
~ .
[-;k-;_h bu=(1-kn)- J]’
Fow, since each of the 3S.-unlis has two distlnguilshable
o, . L] 2 53 . b Bt [ ol i
functional sltes, Rijk will contalin the Tactor 27,
Therefore

L lk-rhaa)! !

: = : A
R‘i\\ > Bh-k-i-j+)! G-hk+! Aad)

~to

Let the nunber of S,-units o ch only one

Ao

Mancetional site is used be defined by

Z:;—-k*’ (A?)

'n i)

Bquation A

=

With the use of Egquations A5, A6, and A7

v

> 2

hecomes

. ‘)
{_“1‘ $h-k)! L A%)
Gh-ckrr-g-§)! 7! ‘

2
.
~

L



Since the numbers of Sy-units and Si-units cannot
~ o

exceed the total number of bolts, 1t is clear that

I
x~

|

+
=0

6 £7 ¢ +h-2k+2 (A9)
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3.

4.

5.

-7

Proposiltions

I propose an interesting relation which occurs between
the number of ways of forming a branch-type aggregate
(containing no cyclical structures) out of k particles,
each with the same number of reactlion sites, and the
number of ways of forming smaller branch-type aggregates.
I propose a method for obtaining the number of ways of
forming a branch-type aggregate. Thils method produces
results more rapidly than that of Stockmayer and is
useful for aggregates which his method has apparently
not been able to handle(l).

I suggest that three dimensional polyesterifications
like those carried out by Flory(2) should be carried out
in a manner prescribed by the standard procedures of
the precipitin reaction.

The assumptions involved in the use of iodine as a
label in antibody-antigen reactions have not been
justified. It is not unreasonable to suppose that
antibody~antigen ratios determined by means of this
kind of labeling device are incorrect. The use of
double labels may avold this difficulty.

I believe that the determination of the composition

of the precipitate of an antibody-antigen reaction,

as a function of the time of the reaction, may gilve

information regarding the valence of the antibody.
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6+ Calorimetric measurements of an antibody-antigen
reaction as a function of the composition of the system
mey yleld information regarding the state of the antibody-
antigen aggregates in the system,
7. A new expression relating the antibody-antigen ratio
of the precipitate to the composition of the system is
the following.

1/2
R = a(Ab/Ag) /

R is the antibody=-antigen molecular ratio of the
precipitate, Ab/Ag is the molecular ratio of antibody
to antigen for the system, and a is a constant, This
equation can be used for the entire region of precipita-
tion for either the « or g titration procedure.

8. (&) I believe that it is more helpful to one attempting

to grasp the meaning of entropy to stress the expression

as ~ W
W

rather than

S ~ logW

(b) It 1s interesting to regard the energy of a particular

ideal system as a problem of balls in boxes. Each box

represents a degree of freedom and each ball represents



D=

the smallest unit of energy avallable, When the

system is at the absolute zero there are no balls in the
boxes. It is easy, therefore, to see how the entropy

of the system 1s increased by raising the temperature,
i.e., by adding more balls to the boxes.

9. The time rate of a goldfish opening its mouth closely
obeys the Arrhenius equatlion for a monomolecular
reaction with a constant activatlion energy. Since
this energy 1s the same at both high and low temperatures,
there may not be a reversible inactlvatlon of the
enzyme responsible for the rate-limiting reaction.

10, It appears that strength-duration dilagrams may better

be represented by

than by

= = &

t

|

where 1 is the threshold current, i, and b are the
rheobase currents, t is the time of the impulse, and

¢ and a are time constants,
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