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Abs t11ac t 

Part I describes a theory of antibody-antigen reac­

tions employing bivalent and univa.lent antibody molecules 

and multivalent antigen mole cules, All species in a system 

of this kind are defined by a distribution f unction which 

has been . derived on the basis that the most probab le distt·i­

bution is the appropriat e one. Some of the features of 

antibody-an t i gen reactions are discussed in the light of 

this theory. 

In Part II experiments are described which measured 

the inc1°ease i n turbidity of an ant :i..body":"antigen system 

with increasing time of r•eaction. It was found that t he 

rate of aggregation of ant i body and antigen mole cules 

into la.rge aggregat es is dependent on the composition 

of the system. The existence of soluble asgregates i n 

the ant igen exces s region is indica ted, 

A general theory of Rayleigh scatterj_ng due to 

compos it i on fluctuati ons in mu lti-cornponent systems has 

been developed with the a id of the grand canonic a l ensem­

b le of Gi bbs. It is found in Part III. The equation 

developed contains previously neglected terms arising 

from t hermodynamic :i.ntera.ctions between so lutes in sys tems 

of more t ha n two components. 
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Part I 

A Theory of Ant j_body- Ant igen React j_ ons 
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1. Introduc t i on 

For a long time it ha s been attractive to consider 

ant i bo<;ly-ant i gen r eactions as involving comb i nat i on of 

specific sites by which ve r-J large aggregates are attained. 

To require the exis t ence of aggregates of this kind , one 

mus t necessa1'ily assume that the antibody and antigen 

molecules r espons ible f or the size of the aggregate are 

multivalent wi th r espect t o each othe r. If one is to 

r equire further that the ant:i.body-antigen molecular ratio 

of these age;regates be varia"!-,le and no less than unity , 

then he must consider antibody mo lecules to be b ivalent 

and antigen mole cules t o be greater than b ivalent, It 

should b e noted that the existence of un iva l ent antibody 

mo lecules in the system is still permit t ed . They cannot , 

however , be responsible for the specif ic growth of the 

aggregate to a size involving more than one antigen mol e ­

cule , since wherever they occur they end cha j_ns which 

mie;ht otherwise have grown longer• than t hey are . 

ivrarrack has sue;gested that natura l protein antigen 

molecules have several d e te1'minant groups per molecule. 

He has rea soned that if this is true , t hen ant ibody sites 

can be expect ed to repeat in the antibody protein molecule. 

In a s ys tem of multivalent antibody and antie;en molecules 

he feels that specific combination of t h e react ive sites 

must p l ay a part in the forrna t i on of aggregates . He 

pictures these a egregates as coarse l attices (!). 
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He ide lberge r and Kendall have adopt ed the viewpoint of 

rnultivalence on the basis of variable antibody-antigen 

ratios a nd a curve fitting equation useful for the pre -

c ipi tin l'ea ct ion, which they derived on the as sumption 

of multivalent antibody and antigen molecules. They 

re ga rd the final precipitate as cons istlng of antlbody 

molecules held together in th~ee dimensions by ant igen 

molecu l es (2 , 3 , 4 ). Pauling has p r opounded a detai led theor·y 

for the formation of b ivalent antibody mo lecules. I n 

t he s ame paper he has explained several observations of 

antibody-antigen reactions on the bas is of biva lent anti ­

body molecules and multivalent antigen mo lecules , the 

max5.mum valence of the antigen l"J eine; g iven by the "ratio 

of its surface area to the area e ffectively occup i ed 

by one antibody molecule , if a ll regions of the antigen 

surfac e were active "( 5 ). He pic t ures the a~ere ga te as 

a three dimensiona l antibody-antigen netwo 1•k , the r at i o 

of its components depending on the relative amounts of 

antibody and antigen in t he sys te rn . From a t heoretical 

treatment of antibody- antigen systems , Hershey prefers 

t he latt ice or network hypothesis emp loying antibody 

.molecules of low va lence , p r obab ly t wo {6 ) . 

Experimenta l ev idenc e favoring t he format :.i on o.f 

large specific aeereeates h as been d iscussed s o ext ensively 

in t he past by such capable inves t ieat ors as Pauline 

and 'l-Ie idelherger· that it will not be rev iewed her·e . 

However , a genera l theory presenting t!:ie fe Fttu11 e' of a 
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system involving reactions between bivalent ant ibody 

molecules and multiva lent antigen molecules h as not yet 

b een achieved. I t is the purpose here to p resent such 

a theory , which , it is hoped , will be of use not only 

for predictions based on real systems but als o for under-

standine; the cb.a.1~acteristics of antibod"Jr - anti .:;en reactions. 

Although theoretical treatments have been d eveloped 

in the past , they have not b een suffic iently eenera.l to 

p1~eaict the commo n character· i p·' ic s of t he precipitin 

reaction. Variab le antibody- antig e n r ati os of the pre -

cipitate , which d e pend on the preparation of the system, 

are of fundamental import anc e to a good theory . I nhibit ion 

to precipitation in :ree;ions of anti 0 en excess and a lso 

antibody excess should be accounted for withou t relying 

on artificia l assumptions of so lubi lity. One s h ould attempt 

t o d e scribe the relative amount s of precipitate corres-

poncUng to the composition of the system. One should 

be able to explain the relative differences of the system 

aris ine; from the manner· in which composi tion is varied. 

The qu.antita t i ve f unction of blockine; antib ody mo le cu les 

ha s yet to be described for the ordinary systems. 

Heidelberger and Kenda ll ha v e developed an equat i on 

which relates the total a mount of coMbined antibody to 

the composi tion of the sys tem and the equiva lence zone 

,., a 1:; · t • 'oz) an~100 .y-an·-igen ra 10 l o ,. Tb.eir e r1u.a tion, however , is 

only good in regions of antibody e·cess . I t is not 

applicable for many systems. Fur·thermore , the assmnpt 1ons 
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th~ y used in the d e r ivation are so un re a l istic t ha t one 

wou ld think of the i r equatlon as hardly anything more t han 

e.mp \1. :e i c a 1. Fortunat e ly , Kend a 11 derived the equa t lon 

on a much mo r·e sound bas :ts many y ears l a ter{?). I t is 

inte1,esting to no te that; he used b:i.valent antibody mole cules , 

and le a_pproached the problem with p robRbility cons idera-

t ions . Although he suppos ed i rreve:rs ibi li ty of t h e ant i­

body-ant le;e n rea c t ions was ne cessary assumpt:i.on for h is 

derivation , such wa s not the case. 

Hershey has d eveloped a theory f or reactions of 

mu l tiva lent antibody and antige n molecules . , He assumed , 

however , that the 11 eac tions l eading t o t h e f ormat ion of 

aegregat es compos ed of one a nt i gen and severa l antib ody 

mo l ecule s are no t influene ed by fu1,t h e r aggregation . Re 

came final ly t o t he expected conc l us ion tha t "no ereat 

dis bJ.rba.nce of the inj_ i:i ia l equ:llibl"ium occurs du ring 

the formatio n of pre ci_pitates "( 6 ). It will be s hown 

p Y'esen t ly t hat th:ts assumption and :i.t s cone l u s i on a. :re 

no t j ust Lf ierl. 

Pauling and h l s c olleagues have applied the prin­

ciples of c h emica l equilibrhFri directly to 8, the ory of 

the p:r.ec ipi tin :r.e2 e t i on for r elatively s irnple sys te rns (8 , 9 ) • 

They only conside red s ys tems cornposed of b i va lent antibody 

and a.nt i e;en , unlvalent hap t en , c ert ain so l ub l e complexes , 

and one insoluble speeies . I t was foD nd that the e xperi ­

mental points s how ing t he dependence of t h e amount of 

p r e c ipitB.te on t; be 8.Yt101Jnt of hap t e n ad•J0 r1 t o t he 8yst em 
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did not fall on a straight line as t h e theory predicted 

(8 , 10 , 11 ). Pau ling explained this deviation from l inearity 

on the basis of heterogene:tty of tbe ant~u::erum , which he 

desc r ibed by an error funct ion of the free energy of 

interaction of antibody and hapten 1n competitlon with 

the prec ip itating antie;en (l2 ). The theory wa s fO'lmd to 

be in satisfactory agreement with experiment . 

Te orell has developed a theo~J of the precipit:tn 

reac tion patterned afte r the treatment of polybasic acid 

equilibria . He , therefore, required ant ibody to be uni ­

valent and antigen m1)lt:i.v8.lent. He was a b le to express , 

in the usual manner, the concenti.•ation of each aggregat e 

:lndirectly in te1'ms of total amount of antibody and anttgen 

and the dissociation constants . I n order to obtain agree ­

ment wi t h experiment h e was forced to make assumptions 

regarding solubilities of the ae;gregates formed(l3,14). 

These are highly ques tionable and rather artlficial . 

2 . A 'I'heo!"IJ for React ions of :Mul t 1 valen t Ant :tgen Molecules 

with Biva lent and Univalent An tibody Ivio lecules 

The theo1-y presented here useis as a bas is the concept 

of the mos t p robable distribution. I t will be assumed 

as is generally done , that the most probable d istribution 

is the appropriate one. The numb e r of ways of forming a 

given dist r :lbution of' aggregates in t he system, corres­

ponding to a given number of antlgen sites r eacted , is 
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maximized with respect to the occupation numbers (the 

numbe1~ of each kind of ar;t;ree;ate ) . The occupation numbers , 

which are then evaluated , define the most probable dis ­

tribution. Hence , an expression is obtained giving the 

number of eve ry kind of ae;gregate in the system correspond-

ing to the extent of reaction in t he system, that is , 

the fraction of antigen sites which have reacted . The 

remaining _problem is that of using this dist1°ibut i on to 

obtain :i.nformation about the system for d ifferent composi­

tions . 

Flo ry was the first to discuss this kind of a dis ­

tribution for la:re.;e aggrega tes . He studied molecular size 

distributions 1 of three dimens.ional po l yrners (l5 , 16 ,17). 

St ockmayer later obtained the most probable distribut i on 

of mo l ecular sizes for certain types of branched- cha in 

po l ymers ( l8 ) . It is this method of Stockmayer which is 

used in the followlng presentation . Consequently , the 

two assumptions used by Flory and Stockrnayer als o char­

acter ize this work . In this theory it is assumed that 

intra - ageregat e reactions yielding cyclical structures 

cannot occur . One result of t h is is that a fixed number 

of bonds is required for t he formation of an a gg regate 

of given compos:ttion no matter how the aggregate is put 

together . 'l1h is nu:mber of bonds is one less than the total 

number of antibody and antigen molecules of which the 

aggregate is c omposed . It is next assumed that any 

un1'eacted site is as reactive as any other· sit e regard les s 
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of the size or shape of the aggregate to which it is 

attached. 

An ant:i.body site is the :rea ctive area on an anti-

body molecule which pei-'mi t s combination of the latter 

with an antigen mo lecule at one of its reactive areas. 

The antigen sit e is defined in an analogous way . An 

aggregate is defined as a group of antibody and antieen 

molecules, any t wo of which are connected by only one chain 

cons :tsting of alternating antibody and antie;en mo lecules 

bound to each othe r by their respect ive reactio n s:i.tes, 

provided these two mole cules are not bound together by 

thei r reaction sltes (see Appendix ). Therefore , if a 

bond in a single a gc;regate is broken the antibody and 

antigen molecules on either side of the bond a r e in no 

way then connected to t hos e on the other side . Two aggre ­

gates ex ist. An antibody-antigen r eact ion involves the 

combination of one antibody site with one antigen site 

in· the .format:i.on of a bond . An aggregate consisting of 

two molecules must be composed of one antibody molecule 

and one ant:tgen molecule wj_th one bond between them. 

FUrthermore , there con be only one bond holding any 

antibody mo lecule to an antigen mo lecule. 

The following terminology will be used throughout 

the discussion. 

G :::: number of antigen .molecules in the system. 

A number of a n tibody mo leeules in t he sys tem with 

two reactive sites (bivalent antibody ). -
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D number of antibody molecules in the system with one 

reactive site (univalent or blocking antibody }. 

M = number of ae;grega te~ in t he system plus the number 

of f:r'ee antibody and antlgen molecules. 

f : number of effective reaction sites on ea ch antigen 

mo lecu le(f-valent antigen }. 

mi j~ number of agg r egates each of wh ich is composed of 

i bivalent antibody mo l ecules, j univalent antlbody 

molecules, and k antie;en molecules . 

Wi ~ number of ways to const1~uc t a single i,j,k-aggr ee;at e .., 

containing no cyclic structures from i given bivalent 

antibody molecules , j g iven univa lent antibody mole-

cules , and k given antieen mole cules . 

q :: number of free antibody sit es on an a e;sree;a t e. 

p : fraction of ant:t,sen sites in t he sys tem which ha ve 

react ed ; it is also called the ex tent of r eac tion . 

P : fraction of antibody sit es in the system which 

belong to bivalent antibody molecules . 

r : fG/ 2A 

M~ - molecular we i ght of t he a.nt ie;en . ii" -
7'(f - molecular weight of t he bivalent antibody . -:A_ -
MD - molecu l ar we i ght of the univa lent anti.body. -

The t ot al number of ways to :form the number of 

aggregates m. 'k' f or al l appropriate i,j, a nd k values 
J.. J '" 

out of the A, D, a nd G mo lecules is 
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I n order to find t h e most 9 robable dis tribut :t on , tha t is , 

t h e set of the m:imbers m1 ik ' correspondi.ng to the max-., 

i mum value of SL , one mus t set t he d e r ivative of ...fl-

with r es ... nect t o t he v a riables m .. k , equal to zero f or 
:L J -

constant A, D, G, and M, wh ich are expr essed by 

L L ' ' A I WI D t W\···" - J . ij k -- I iJ 

i,J, ~ i, ), .. 

--

and 

L -- M 
' • L l,J,." 

The s ums and p roducts o f Equa tions 1, 2 , and 3 correspond 

to a ll va lues of k in t h e s y s tem. :Jn a cc ount of t h e fa c t 

that antibody s 1 tes can rea ct on ly wi t h a nt i e;en s ites 

the indices i and j are re l ated t o k in the following 

way , as demonstra t ed in the Appendix . 

((1) 

Cl) 

(3'J 
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~ _, + i 
0~1 ~ fk- -2. k -4- 2. 

" f k - 2. k + 2. -1 o~ ' ~ 

I n the sums which foll ow, these relations give the limit 

unless otherwise specified. fk-2k .f. 2 is the numb er of 

free antigen sites on an aggregate consisting of k antigen 

molecules and k -1 bivalent antibody mo lecules , the minirrJum 

number required to ho l d the aggregate togethe:r . 

The condition given by Equation 3 implies a constant 

r eacted fraction of ant gen sites p. This can be shown 

by expressing p in terms of m. "k as 
l J . 

sinc e the numbe r of reacted antigen sites in an i ,j,k-

aggregate is 2 (k- l )fqf j. 

The d iffe rent i at i on i s performed wi th the help of 

Stirling ' s approximation yielding 

(4-) 
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n account of t h e x•est ri.ctions i mp osed y Equations 

2 a.nd 3 , the number of independent var i ab es m. "k ' i s 
J_ J 

reduced b y four . Hence , four of the incl'e rnents dmi j k , 

are f unct ions of the re:ma. in :tnc; ones and can b e el jmln-

at ed vd.th t he use o f Equations 2 and 3 in differentia l 

fo r m. Th is c a n b e accomp l i s h ed by a dd i ne t h e fo llowing 

equations to Equat ion 6 and choosing the four constants 

) , ~ , f , and B , known as Lagrci.ngea n und e t e rmined mu l ­

t ipl iers , s o that the coef· icj_ent s of f our of the incre -

ments van ish ( 9 ) . 

J1 r -6.~ 
l"ttt. 2-

1,j, ~ 

,;~~ 1 L k ct~ij" 
i,h It 

.J1 a 4- J. ~ &j·" 
&,j,11. 

0 

-- 0 

c 

Si nce a of the rema n ing i nc1,ements are i nd ependent , 

their coe f f. cients can be ma de to v a n ish separate l y . 

Th ere ore , the most p r oba l e d i stribut i on becomes 

m .. L 
&J "' 

VtiLj" 
it j !rk 1 

(.7) 

(8) 
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The constants r, ~ , f, and B can b e evaluated a f ter pe r ­

fo rming the summations indica ted in Equations 2 and 3. 

To sum these exp r essions Wijk is needed . In the Appendix 

it i s found t o b e 

; ' L • 

t! 

If the rtmning index i is replaced b y q tbe summ ing can 

b e ac complish ed in the fo llowing manne r , wher·e Equat ion 

3 is us ed as a typica l examp le. 

M -
(~f.2.T)k(~k-~)i 

(.f It -2k-1t-i) J k I. 

Extending the ms.ximum valu e of k to i nfinlty fo r tb e 

purpos e of summation invo lves neg lie;ib le e 1~ror. After 

evalua ting t h e term f or k ze ro, which yields T + 't , 
the sums over j and a..:. are accomp lished with the use o f 

the binomia l theorem. 

Cto) 
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~ aik+-:L. 1 -fl-Ji.1+;>1 ~i 
' ;-- . (iT) (f~-1.fl.I->.) l 1 'if(ifft .:Jk;2;:~ 
L- Y'-k-1ltf1.- 1) !f ! L:f.fJ..-.Jkr~J.-!1cJJ.Jl ;J.! 
/f-= ... o ?J :;:,;o 

·-

·- ~' -1. k .fl. 
(ll-~J-~r) 

E<luation 10 then becomes 

M/ +- ~ 11-~ 1-2 r/1. ; V '~-It.JI 
B ) .,_ "{ i T f:, (f ~ .. i.i 1-1.)! k ~ 

-f-2. 
f ! '- r t r+t + 2 r) --

The s um over k in Equation 12 a s well as the corres~ond -

ing ones in Equation 2 can be expressed in the following 

way. 

(U)) 

{12.} 
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Stockmayer 112.s surrrrned this expl'ession for i zero , one , 

and two in t he p apel' in which he describes this method 

fol' the most probB.ble d istribution of branch- chain poly-

me1~s ( 18) . He obtained t he results 

Conse quently , Equa t5.ons 2 and 3 yield 

11/13 

r.-/ B 

A/B 

--
1 

('1 ·+-ft -1- i. r J 
~'j, 

The Lagrangean undetermined rnult ipliers are found rather 

tediously to be 



- 5-

) r /;, ( 1- .P!rr..J 
.2. ( 1-jJ) 

(/- f') 
p 

I -fo 
(I 6) 

+-1 - o<(l-fo) -
.f. ( f',b -o1.) 

B - .f..G-( 1-p) (I- I' Pit) -
Pfo~ 

in wh ch 

ol fL f 2.. N . u. 7) 

ol. i s the pro ab ility that an ant ieen site has r ea c ed 

wi th a b va l en - ant ibody rno ecu le , t e ot~ner s i· e of 

which has also r eacted . 

71th t ~ use of Equations 16 and 7 , the distribution 

given in Equation 8 b ecomes 

. k - J 
(J f) 

L - +-1 
0 ~6 < i-lz.-.1..~~ l-... 

. 
+'2.-J..~+.t-j 0~3 ~ 
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'I1he 1•efore , the number of eve "'y kind of aggregate in the 

s ystem including the free antibody and ant :tgen mole cules 

can be determined if the composition of the s y stem, va l ence 

of the antigen , and extent of r eact ion are known •. The 

distr:tbution reduces to one for 2, system consisting of 

bivalent antibody mo l ecules and f - va l ent antlgen molecules 

a l one , if f' and j are e;iven the va lues unity and zero 

respectively . 

It should be noted tba t the terms in the sum of 

Equation 13 have important properties . These proper·ties 

wil l be exp l ained on the b a sis of their physica l i mpli -

cations . From Equation 4 , one f inds that y has a max-

i mum value given by 

+-2. 
l~ -J.) 

u.-1) +-' 

The po int at which t his occurs wi ll hereafter be desig - · - : 

nated the cr·itical point and indicated wi th the subseript 

c . The most nrobab le distr ibut i on m , was ob ta ined for 
L iik ., 

a fixed ext ent of reaction , or a fixed value of y . Once 

mi ·ik was obtained , however , y could take on many values ., 

each corresponding to the system for a definite value 

of p. Therefore , as the antibody- antigen react i ons 

proceed , p becomes lareer and larger. The valu e of y 

(1 '1) 



- 17-

increases i n a. corresponding fashion u.p to the critical 

point where it pass es through a max imum. In order to 

understand the nature of t he sys tem at t he c rltica l point 

it i s convenient t o evaluate t h e tota.11 numbe r of a ggre-

gates n1<: , conte.ining k antigen molecules . This can be 

done b y summing the dist ribution m .. , , over all allowed 
J. J K 

values of i and j. 

~ b- (f k -It.) ! 
~'2.-11.+1-) ! "~ 

k-1 .fh-J..lc+1 
X ,(. (I - P<.) 

Then t h e rate of change of ~ with respect to o(. is found 

to · be 

/e. - J,. .J. ' ... .1 " + I 
ol.. (1-,J.) 

Equation 21 shows that the numb er of k - a ggrega t es for k 

unity is d ecr'easing from the ve ry st a rt of t he 11 e action . 

The numbers of a ggregat es for all o t he r va l ues of k a:t'e 

i nc reasing for s uffic:i.e ntly small values of o( • As the 

reactions proceed , that is , for a somewhat l are;er va l ue 

for o(. , m2 b egins to decrease , l a te r m3 begins to 

t2. 0) 

(21) 
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decrease, and so on. In otheT words , the aggregates 

continue to build up into larger ae;e;regates as the reactions 

proceed. Just preceding the critical point all ~ exce:E)t 

those for the largest k values are decreasing . Fina lly, 

at the critical point and beyond, {)Wli../~-tJk is negative 

fol' a ll values of k. This means , ofcou1'se, that a 11 

sizes of ageregates are disappearing at the critical 

point. In a real system t h is cannot bB true , however, 

since the ve r-<-J largest of t he aggregates must be growing 

in size. The rec son for this difficulty is that the 

s um over all finite values of k was replaced by the sum 

extend ine; the k values to inf·" ni ty. This lmplies t hat 

aggregates can be inflnlte and for these,.(~M~/.lotJk would 

not be negative . So , a lthough the physica l picture is 

clear , there is this difficulty with the model . It can 

be avoided to some ext ent by discussing the relative 

magnitudes of' the rates of disappearance of tbe age;regates . 

With the use of Stirling's approximation Equation 21 

becomes 

x 

k >> I 

(2 2.J 
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It is obvious that at t he cr:i.t ical point the rate of 

disappearanc e of the ver>J l argest aggregat es i s negllgib le 

compa red to the rate of disappearance of re l at ively sma ll 

age;rega tes. Th e d:i.ffere nce beyond the cr itica l p o int 

is even greater·, s:i.nc e y i s a maxinmm a t y . The refore, c 
all aggree;a tes are growing into a few exceedingly l a:cge 

ones . The bu lk of the s ystem is in these few. Equa t i on 

20 yie lds wl th the use of Stirling ' s app1,oxima ti on 

\ 

The changes in the number·s of ae;e;ree;a tes which occu r· in 

the region of the cri.tica l point are re l at ively little 

f o r s ma ll age;ree;at es, whi le t hey are tremendous f or 

l arge aggregates . Th e critical po int is, therefore , 

c haracteri zed by the f act that the s;ystern a t t hj_s point 

i s changing from one comp osed chiefly of s ma ll aggre -

gat es int o one composed of re l at i ve ly f ew exce eding ly 

l arze ae~re ga tes . 

5 / 2 
I t shou l d b e me nt i oned that on account of t h e k ' 

i n the de nom i nat o r of Equation 23 , S
0 

and s1 of Equation 

1 4 can be used b eyond the c rit ica l point , but Sn cannot 
;:.:; 

since it b ec omes inf init e at that point , that is , the 

corresponding se ries dive 1°ges . 

Th e fact that nei t her· the fra ct i on of re e. cteu anti.sen 

(2. "3) 
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sites nor the fraction of reacted antibody sites can ex-

ceed un ity is expressed by the following relations 

I 
(24) 

Fu rt he r:more , from Equation 17 , u is found to be 
.&; c 

,t I h .. 

(II.~,_) = I -f [ 
2. A J V;a.. 

-H-4-1)" ~ 

The ext ent of reaction at which the material passes into 

the f orm of very l aree ae~regat es is dependent on the 

valence of the ant ie;e n and the composition of the system. 

Equations 9 , 24 , and 25 yield the interesting result 

+ 
2. ( .f.-' ) 

(2. (,,) 

for the atta i nment 
_,,. 

O.t Pc • If t h e sy s tem is prepared i n 

such 8, rnB. n ne r t:hat the b:i.vHlent antibody-antie;en r a tio 

lies outside the limit s give n by Eqt.iat on 26 , the n Pc 

can neve r be reached . Ana logou s limi ts exiRt for aDv 
" 

other fix ed value of ol.. . If the a-tta :tmnent of u is 
"' c 

required for precipitat ion to o cc~u:r , t hen Ec11u-i.tio :n ?n 
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p redicts tha t t :'n e ree; · ons out side t be ab ove limi ts are 

the ant i 3en ex cess and a.ntH)ody excess i.nl·d b it1on zones , 

in w }1 tch prec ipi t::i. t :ton does not oc.c ·tn• . I t f 11rther p r edicts 

tha.t the r)ee;:inn J ne; o f the inhill i t i on zone of antibody 

e Ycess hut not ::i.ntigen exces s is alte r eo. b y a lte r i:n~ t he 

V'3. l ue of P. An i nc rea8e 1.:n t he Rrnount of univalent 

ctnt ibody in the sys te rn d ecre8.ses the range of ant ibody-

antie;en ratios ove r which p re,; ipitation occurs. The 

univa l ent antibody act s as a n 1.nhi.b it;o :e . Eq1,1a.tlon 26 

a l so p r edicts that i n a s vstem of biva le nt ent i b odv . ~ . - . . - ~ 

and b :i.va lent a ntige n there is only one ant i b ody - ant i gen 

I'atio , namely, unity , for which t he crit:tcal po i n 'ii can 

be reA.ched . I t , the r e fore , gives ·1,l: ;eoret ica l grounds fo r 

t he interesting expe rimenta l f act the.t it is d iffic nlt 

to obta in p recipitation in a system of this kind . Figure 

l illus t r a -es h ow thes e lim3tlng ant i b ody- ant igen ratios 

are affected by the va lenc e of t he a ntige n for v a lues of 

unity a nd one - ha l f . The diffe rences between the ~orrespond -

ing ordinate va lues for t he upper and lovrnr limi ts give 

the ra.ne;e o.f i~:~tios for wh i eh the c:eitical point can be 

attained . Th is range increases a s the va lence of the 

a ntigen i ncrea s es . 

Another interesting but not surprising fe a ture of 

these react ions is given by Equation 20. The nmnbe1• o f 

a s.e;rega t ea :r1'P eac h of Which has t h e sarne number of antigen 

molecn l es , is independent of t h e a mount of antibody in the 

s ystem at the critica l point . This is a l so true fo:e 
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The ef ect of ant i een va l ence on the c ritica l 
po i nt lim5t s. T es e limits are defined b y 

( lowe r l:tmit ), -r ~H .. 1) i 
~ A/ G ~ J. P, (uppe r l irnit ) 

2(; .. ,) 
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any other fixed va ue o ~ I c an be se e n here t ha t 

e ach system of a set with t e s ame cons tituents aving 

ci. di erent va l ue o f A but the same va hrn of G and .(_ , 

h as the same number of ae;.e;reg tes rr11u f or eac 'rhe 

diff e r ences lie on ly in t h e numbers of antibody mol ecu l es 

i n b.e e atje;ree:a·ues occupy:ng posi i ons o -her than betwe en 

-wo a nt i gen mo le cules . Thes e if ·ere nces can 1e _euer-

mined from the avert1.ge numb ers of biva en 11 a un iva l ent 

antihody rno l ecu es , i k and jk r es p e e ve y , n a - ae;e;re -

.sat e. They a re 

.... -

• 
l W\. • L 

IJ " 

L 
LI j 

~ ~··L 
'--':- LJ Ill. 
l,J 

--

--

Aste reacbions proceed i and j bo·h i ncrease . They 

e p en on he ex t en - of he r e c: c - ion p , wh ich i s d if f'e ren t 

fo x' each of t h e s y stems in jhe se t c ons idered a liove . 

'Th e av :cA.2:e nw1be:c of an- n :i ody mo e cu l e s of ) Ot ' 1 inr s 

-" r>1u1d i n 8. 

k-1 J 

the s8.me muno e r 8.S tbere wou lc5 he :fo r i i , a one iF tl·1e:ce 

ll. ?) 

(2. I) 
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we re no 11.nivalent ant :tbody present. In othe .r words , the 

univa l ent antibody acts like bivalent ant ibody of wh ich 

only one site is used. Th ls means tr.et one can deterrnine 

the correct averase total antibody in a k - aggreea te b y 

using a hypothetica l system which contains no univalent 

antibody. In this hypothetical system, ho·wever , t h e k -

aggregate may not be the one of interest since it is 

formed more easily th.an that in the rea l sys tem, That 

is t o say , in order to at tain the same va. lue of ,(., in a 

system with f unity a s in one with f l ess than un ity , p 

need have a cor:respond ine;ly smaller valu e :i.n t he former 

than in the l atter , since P and p are inverse ly propo:r-

ti ona l to one another , 

An interesting exp r ession obt a inab le from Equation 

27, which gives the av ergge fraction of the free sites on 

an aggregat e belonging t o antibody molecules , is 

I-~ -~(1-P) 
; 4 = "'-/e. l-1 

This fraction is i ndepend ent of k , and it i s, therefore , 

the same fo r a ll a seregates no ma tter h ow many antigen 

mo lecul es ar e in them . I t can be used t o determine the 

effect of compo s ition on the probability of c ombination 

of two age;regates , Vhen this fraction :ts unity , or 

when it vanishes , the p robabil:i.t y fo11 comb :tm1t ion vanishes 

(2. 'J 
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and Equation 26 is deduced . 

The ave r ae;e a:nt:tbody-antie;en r a tios of all aegree;ates 

containing k ant ie;en molec:u les are also obtainab le from 

Equation 27 . They are 

T/k --
f P-ot. 

... tf-L.) I 

I - oJ. 
~ 

l"" -1) p 1-P ' k :>:1 I I 

1-.L l~o) --

I + (t-2.) • 
I - ,,L I 

It should be noted tha t these ratios are independent of k . 

Therefore , in a g iven system .for a particul ar ext ent of 

reaction the average antibody- antigen r at io is the same 

for all laPg e agg1'egates . These ratios i ncrease as the 

ex t ent of the reaction increases and attain thei r max i mum 

values when p has its maximtm value , over most of the 

range of compos it :ton of interest. This val\.ie is f - 1 

for the last ratio and also for the first ratio if P 

is unity. 

Equation 4 can also be used to calculate certain 

ratios . 
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U/~)~ .. ,. - , + 
f ,.,_.,.,. - I 

+. .. I ~ I -
k ~ 

li/k)~~ .f .. l +-
2. -1,.,.,." 

.(. - .2. +- 2. - --
" k 

These ratios are exac t for a l V 8 lues of k and can be 

u s ed to et ermine the va l ence of the a ntigen f, from 

expe r i menta l data. An equiva ence ratio c a n be defined 

from Equa tion 4 as 

(l/k)4. -- I +-
f ... - I 

k 

!M'-/( I 2. 

--

There f ore , from Equation 31 

-- i. ( i/k)4 - I 
I -
"" 

which for l arge va l ues of st :r:one; ly res e mb es Pauling ' s 

express on which relates the antibody- antie;en mo l ecu ar 

rat io of a precipitate in the antibody exces s region to 

' " ' t ' . t i - (r- ' ne correspona i ng ra 10 i n - _ e eg_u. VB enc e z( ne .:i J. 

l-:11) 

(3'2.) 
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At tl e critlcal point Equations 30 reduce to 

(Tl•)c. ( J.(1·1) tJ 
'/ 2. - \ - , 

' 

Lt- 'J L 2(~·1) t] 
, ,,_ 

Cf /~Jc. - k >>I ("3i) - I 

(cr+IJ/kJ.. I [ 
2.( .,. .. ,; t] 

1/2 

- -- f t .I 

These ratios for i ,j,k-aggregates are independent of 

concentration and increase as the bivalent antibody-

antigen ratio for the system increases. Variations in 

the number of urd.valent ant:lbod.y mole cules present do not 

affect the top ratio . This appea rs reasonable since a 

k - age;regate at the critical po:tnt would have required 

2. particular nnmber of biva lent antibody molecules to 

form it. 

I f an express ion for t h e theoret icRl max lmum val1)e 

of p is subs t ituted into Equation 30 the corresponding 

ratios des igna tea · with the subscript max can be obtained. 

The maximum valu.e of p is , from Equation 5, obviously 

I - ( -L _ t ) I . ( I M "-'' "" ) 
f ~ +-T - Gr I tt.. 

' 
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where Ir ni n :Ls the lowe s poss ib. e va ue of M which can be 

calcul ate for the system. For example , when P is 

unity , 

0 

~ A/G--(f-tJ; 

I - A/G- ; A/Cr ~ I 

VV'.o.en univalent an -ibody is not present in the s stem, 

t is found tl at 

t~ -1) (A I") 2.. - i. ( ~ ... iJ (A /G-J - (f.· I) . 

2. l'r-IJ A/b- -f!,./G)i.- I ' 

t-1 I 

The r elation betwe e n i/k and A/ G i s shown for t e critical 

extent of r ea ction Pc , and the max i mum extent of reaction 

u in Fi~ure 2 . "' max ' ..., 

The Heidelberger- Kendal equa.tlon , which expre s s es 

the total amount of antibody combined in terms of the 

composition of the system and the valence of the antigen , 

is .n the notation here 

f 6-
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5.0'----------------~ 

Pmox 
4.0 

3.0 

2.0 

1.0 

0 .0 2.0 4.0 6.0 8.0 10.0 

A/G 

Figu r e 2 

The :-eel.8. tion bet;ween i /k a nd A/G is s hown for the 
c r i t :tea l extent of re ac t i O.£ ,Pc , a nd the max i rmJ.m 
ext ent of reac tlon Pax • i/k i s the a verae;e ant i­
body - an tigen ratio of all aegregates containing 
k a n tigen mo le cu les . A/G is t h e ant i body-antigen 
ratio of t he entire syst em. Th e a n tibody molecules 
r eferred to here are b ivalent. A valence of five 
is assumed for the antigen. 
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where ~U.... is the total number· of bivalent antibody mole ­
o 

cules bound in one form or another (?). It is usual y 

written in terms of s;11ams rather than num Jers of mole -

cules and Ab/ ti is assumed to be the ant lbody- ant igen 

ratio of the precipitate. The istributio:r; mi ·ik can 
... 

be used quite simp ly to obtain the ir resu lt 

Ab ::. A - W\,oo --

- D - ~OID - D 

I f univalent antibody is present , Equation 38 cannot be 

obta i ned since p cannot have a va ue greater than unity. 

If pP is taken to be un ity , however , the top one of t he 

Equat on 39 reduces to t he Heide bereer-Ke nda equat:on. 

p can be unity only fo r t ' 1e ree;ion of ex treme anti ody 

excess , name y , where the antibody - antie;en 11atio of the 

system is no less than the maximum ra lo f-1, of an 

i , k - aeerega te . Tris is readi y shown from Equa ions 

35 and 36. Even in this region of extreme anti o y excess 

the attainment of D is certain y ('juest onab le. .. max - 'l. 

Equations 39 at the critica l point reduce to 

(3 Cf) 
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--
+ 1h. 

r~.A.1 _ 
l ~... Gr J 

~ 1.. 1/1. 
[- ·~] 

.z.< ~~1J A 6-

The top equation ind cat e s that the tota . number of bound 

bivalent antibody mo lecules is not dependent on the number 

of un va ent antibody mo ecu es resent . Thi s shou d be 

expected in the ight of Equation 34. n a inear p ot 

of (Ab/ G)c ae;ain't G, as is general y the c 2se wit experi- · 

menta l resu ts in the antibody excess reg i on , Equations 

40 p l'edict that the negative slope of t he curve s hould 

increase as the correspond ·· ne; va ues of G decrease. 

Figure 3 i l ustrates th s point we ll with the curve l abe ed 

G. Therefore , on riis as · s one can expect ncreasing 

evia ;ion from he Heidelberge r - Ke ndal l equation wi th 

decreas · ng amounts of G(as antibodJ excess inc r eases ). 

Since th · s point has been verified , it places the 

Heide l berger-Kendall equation on a rat er weak foundation . 

Equations 40 are not requ i red to obtain this resu t . 

ny other set of values for p i n Equa uion 36 will e; i ve 

the , ame ef "'ec t , provided ,,{, i s assume to be i ndependent 

of compos ion , an assumpt i on wh i ch is not tmreas onab e 

in view of t h e interpret at i on of ~ T ie app rop riat e 

<4o) 



- 32-

A (G= I) 

0.0 2.0 4.0 6 .0 8.0 10.0 

4.0 
G 

3.0 

2.0 

2 .0 A 

0 .0 2.0 4.0 6 .0 8.0 10 .0 

G (A=IO) 

Fi gure 3 

Var iations in (Ab/ G) wi t h increaPiine; a rnount s of 
A and G are s own fo~ t he critica l extent of reaction . 
( __ b/ t )c i s the rat i o of bound b ivalent antibody 
t o total antigen at the cr itical po i n t . The curve 
labeled A refers to the upper abscissa which . 
repre s ents a 1 it ions of b i valent antibody to the system . 
The curve l a be l ed G r efe rs to t . e lower abscissa 
which r epr esents additions of antigen to he s y stem . 
A va lence of five is assumed for the antigen . 
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dilutions of antigen i n an experime nt of this kind shoul 

be et ermined , therefore , from the fact that Ab/ G depends 

on G in an inverse manner . 

Although there is a · heore ical oasis for the use of 

Equa t :i.on 40 over the entire range of prec ipi tat ion in 

conta:>ast to the Hei elberger- Kenda 1 equation , nevertheless 

the quantity Ab/ G is not the one of interest since , 

obviously , considerab le antigen as we ll as bound antibody 

is not precipita ted i n t e region of an -isen ex cess . 

The expressions which wou l " be more a ~ propriate , however , 

are those for l / k or ( i +j )/k given y E uations 30 , 34, 

Rnd 37, since bey etermine the an tibody-an .. e;en rat · os 

for au;.:;regates . They do not requ ·· re the number of free 

antieen mo e cu es in t _e system to be negligib e . They 

ave the same dependence on .A./ G as Ab/ G doe s , s o that 

the criticism mentioned above i s still valid. 

The weight - average molecu ar weig t of a system 

composed of biva lent antibody rno ecules and f - valent 

antigen mole cu es is defined b 

--

L 
i., k 

H;.1, ~"" 

{_,. M ti.. ~." .. , It 

J 
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The double sum he r e can be expan ed and eva l~a ted from 

Equation 4 . The resu l t , a fter c onsidera ble a lgebra , i s 

The mJrnber- average mole cu ar we j_ght of the sys uem is 

(M)~ --

--

• , 
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3 . A Theory for Reactions of 1fu tiva ent Antigen 

Molecu es with Univalent Antibody ,folecules 

It is of interesu to discuss a theory here for 

reactions of a system containine univalent antibody mole-

cules and f - va lent ant i gen mole r; ules. Although such 

theories of re 1.01ction have been discussed before , they 

have not been approa ched from tbe point of view adopted 

here (20 ), The resu l ts of th · s theor·y , together with 

those of the previous one , will ndicate how valid the 

basis for Hershey ts u eory s , in wh:Lch it is assumed 

that the r eact ions lea ing to the formation of specific 

a gerega t es are not in luenced by further aggrega tion. 

As be Oi'e 

_fL D G- '· 
n[t~t;k I l 

J' M·~\ • J . 
i,~ 

l4 4) 

k ::. 0 ' . 
~ 6 ~I d --

- I S. 'l ~ +-1 

where all symbols exc ept q have the same s e;ni icance 

as be fore. rrhe mos t pro able distribution is determined 

under the following conditions 
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L 
, 

D I_ J Mi fta - k Wtj~ - G-- ) -
;, k i,k 

L 
;', ~ 

M;k M 

where the values for t he running indices are described 

in Equati on 44 . Again constant D, G, and M imply cons t ant 

p. 

With the aid of Lagrangean undeterrn ine mu tipliers 

€ , ~ , and 7 , the most probable distribution s ound 

to be 

vv;· It 
• J J. 

• 
J k 
f y 

Since there are f ( f-1 ) • •• ( f -j~ l ) wa ys to place j 

antibody molecules on one antigen mo le cule , 

fdS-) 

(4(:,) 

l.4?) 
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J (4i) 

In straight forward fashion Equations 45 are 

eva l uated using Equations 47 and 48 . 

0 //' --

r;,./y -- {J . (I+ c) t1'1) 

t1/> c. 1- ~ (l+C.) 

In terms of p and r, where now r = fG /D 
I 

):, -- 1- /, 

/.-1 

- np ( 1-/J) 
(Go) -

i ( 1-llp) 

:: 
(1-,bJ( /-n,f,) J.6-

TLp 
Therefor e, the mos t ~robable distribut i on becomes 
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-- fG-

(SJ J 

.f-1 

If fo r thermody nami c equilibrium va l ue s of m1k 
... 

and p , Kj ls defined by 

k. 
J 

J (52.) 

then with t he use of Equa ti on 51, on e obta :tns t he 

fami l iar results (20 ) 

. 
k· K, "' -' f. I -- -· I 

J f j ~ 

l5°3) 

\<.' p 
--+ w.,o ( 1-p) 

and 
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~-\ 

KI W\ I 0 ( I + K' 'M, 0 I (.) 

Equation 54 gives t he equilibr·ium rat i o of the nmnbe r of 

bound antibody mo lecule s to the number of bound antigen 

mo le cules. It is clear that this system at equilibr:i um 

s a spe ia l case of Equation 5 • 

The weig l - avera,se an nurnber- aver·aee rno ec:ular 

weights are found , with the a id o " Equation 51 , to be 

<S4J 

-::. t) M~ + G- '1~ +- 2. MD Mb +Cr} 

-1- M z. f(J.-1) G-)i.. 
D . 

l55'J 

Dif erences between the two theories presented here 

are :manifested in a : raph of we ic;' 1 - a ve r ae;e mol ecular 

we ight plotted aga inst the extent of reaction. Figure 4 

shows sue _ a grap • It s convenient .o subtract the 

weight - averE2:e mo leculal:' weight due to e system before 
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7.0r----.------r--~--~---

8.0 

s.o 

4 .0 

3.0 

2.0 

1.0 

0 . 0 

BIVALENT ANTIBODY 

(IG/2A•I) 

p 

Figure 4 

The effec t of the extent of the reaction p , on a 
functi on of the weight - ave11 age molecula11 weie;ht , 
( ( M:) i -(:i'II) _] W, for a system cont a in:i.ng b i valent 
ant ib~dy aB~one containing univalent antib ody . 
( IvI )wo is the wei ht - averae;e mo l ecular we i ght of th e 
system fo r p zero. W is t he mas s of t he system. 
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any r eaction has taken place ( Iv! ) WO ' and multiply the 

result by the mass of the system W. It is obv iou.s from 

Figure 4 that Hershey ' s assumption is not rea l istic , since 

the l arge age;ree:,a -es have a predominant effect on the 

system even at small extent s of reac tion. 

4 . Exper:tmenta l Ev idence for· the Theory for Reactions 

of Multivalent Antigen Mo lecules wi th Bivalent and 

Univalent Antibody Mo l ecul es 

Experimental evidence from our antibody- ant i gen 

systems has been selected for examination in the l:i.g t of 

the biva lent antibody theory presented here . These systems 

were chosen because they are sufficient ly we ll defined 

to be treated theoretically. All antibody present in 

each system is assumed to be bi vs.lent . 11.'he antibody-

antigen i~a tio of the p r•ec ipitate is compared w" th values 

for i/k for the maximum extent of reaction and the critical 

extent of reaction. If the critical point is the point 

at which p recipitation ls in :i t iated , then the va u e of 

the a ntibody-antigen ratio of t~e precipitate shou l d 

lie between the co:rresponding values of (T/k )max and 

(i/k )c. I n order to evaluate the la.st two ratios , the 

composition of the system and the v s lence of the a.ntie;en 

must be known . .The experimental data used here we1•e 

obtained from the usual kind o titration expe:r:1111ents 

A titration experirnentj i s generally set up 

in the .following manner . A ser:i es of t es· t ub es is set 
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up , each with a known amount of antigen nitrogen . Tbs 

0,mount of antigen varies l ogarithmica lly with the tube 

numbe1• . The same amount of antiserum. is added to ea ch 

t ube . The system in eac~h tube differs from the others , 

thei:efore , only in the a mount of antigen p r esent , a nd 

in a definite way . Sy stems differing only in this way 

wll1 be referred to a s a set . The number of antigen mo l e -

cul e s G, in each system wa s determined fro m the amount of 

antig e n nitrogen add ed and the amoun t of nitrogen per 

antie;en mo l ecule ( the nitrogen f acto r ). rrhe number of 

antibody molecules in each system was est:tmat ed in the 

followi ng way. The total nitrogen precipitated was plott ed 

agalnst the antie;en n :Urogen in the sys teni for a pa rt:'Lcular 

set of systems. The point on the curve which represented 

t he maximum a mount of anti body pre c ipi ta ted in tb.e set 

was u s ed to calculate a trial va lue ror the number of 

ant ibody rno e cules in t he system A', with the aid of the 

appropriate nitrogen factor . This trial value for A and 

the correspondine; value for G were substituted into the 

following equation to determi ne the fraction or antibody 

mo 1ecules in the sys tern which were free . 

Wll() I A 

l -i- (I -
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Equatlon 56 fol ows ·rom Equations 8 , 35 , and 36 where 

Mmin is negligible . as a second app1~ox·· ma ion it was 

assumed that the antibody molecules we1~e either free or 

in the p r ecipitate. The refore , the fraction of ant i body 

mo lecules in t)e precipitat e l - m10/ A, wa s calculated 

from Equation 56 and put equal to A 1 / A. ~rhe va l ue de ,er-

mined for A was then use " as a new tria value for A', and 

the p rocess wa s repeated until the value for A no longer 

changed . 

The valence of the antie;en f , was in all but one 

case deterrn "ned from the exper:i.mental a ta , or the 

extrapol ation of them which led to va h~es for ant :i.body-

ant · e;en rat:i.os of the p rec 1p1tates in the grea est possible 

antibody excess (24 ) . ·ram uhis informa i on t:te ant ie;en 

va lence wa s calculated according to 

(i/k)~ .. " 1- I J 

I n the case of Diphtheria Toxin- Antitoxin t11e data on 

so lu e complexes in antibody ex cess taken by Pappenheim.er , 

Lundgren , and Wil liams ( 25 ) were app lied to 

(S? J 

-- I 
(SI') 

Two horse antlbody systems anr:1 two rabbit ant :i.body 
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systems have been selected. The experimenta l values 

for t he antibody-antigen ratios of the precipitates R, 

are compared to the values for ( i / k ) and ( i / k ) , as 
max c 

shown in Tab l es 1 , 2 , 3 , and 4 . 

The value for the valence of the antigen was used 

to ca l culate the theoretical lim:its i mposed on the antibody-

antigen ratio for at ain i ng the cr i ica point from 

Equation 26 , with .P unity . These l i mits are compared 

to thos e beyond which prec1pitation did not occtu• , in 

Table 5 . It shou l d be noted that p r ecipltation can 

occur :i.n both of these rabbit antibody systems for composi -

ti ons at which the critical point is not attainab le. 

The horse ant i body systems show no such behavior. In 

fact , for these sys ems the precipitation i m· ts are more 

restricting t an the er tieal point limit s . The theory is 

not to be j_nte r p re ted , however , as requiring the prec :i.pi -

tatlon limits to coincide with the critica.l polnt l rnit s . 

If ~he critical point is required for precipitation to 

oc cur then the theory i mplies that pre c i p itation cannot 

occur out s ide hese limits . It does not predict what 

the limits w:i.11 be. From tbe po i nt of view· of h is theory 

t '1e li :m i ts fo r the horse ant lbody s ys ter s may be as 

restrictlng as they are either on account of equ:i. librium 

requirements o r he presence of uni va le nt antibody. 

It 18 c lea r , however , that p rec ipita tion can occur be f ore 

the critical point is reached in t e rabbit antibody 
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Tab l e 1 

Th e oretica l and Experimenta l Va l ue s of Precipi ta te 

Ratios for Egg Albumi n - Ho1°s e ant i Egg Al bumi n 

R (T/ k )rnax (;f/ k ) c 

3 . 1 2. 4~~· 2 . 8 2.2 

2 . 6 2 . 3 2 .3 2 . 0 

2 . 2 2 . 0 2 . 0 1 . 9 

2.1 1.9 1 . 9 1 . 8 

1 . 8 1.6 1 . 7 1 . 7 

-ll-Precipi t a tlon wa s r:i robab ly inc omp l et e . 

Th e va l ue of ( i /k) max corresponds to 

88% of the ant i gen precip i tat i ng . 
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Table 2 

Theoretica l a nd Experime nta l Va l u es of Precipit a te 

Ratios f or Diph t h eria Tox i n - Hox•se Antitox i n 

R (T/ khoax (I/k) c 

2 . 9 2 .7 2.5 2 . 2 

2 . 6 2 . 4 2 . 2 2.1 

2.3 2 . 1 2 . 0 2 . 0 

1.7 1 . 6 1.6 1. 7 

1 . 3 1 . 2 1.2 1 . 5 
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Table 3 

Theo1'et ica 1 and Experiment a 1 Value s of Pree lpi ta t e 

F.atlos fo r Ege; Album:tn- Rabbit anti Ege .Al bumin 

R ( ilk ) , .. , max 

21 3.9 4 .0 

13 3 . 5 4 .0 

7, 6 3 . 3 4 .0 3 . 5 

4 . 8 2.9 4.0 2.8 

3 . 8 2 .7 3 . '7 2 . 5 

2 .9 2 . 4 2 .6 2 . 2 

2 . 6 2 . 3 2 . 3 2 . 0 

2 .3 2.1 2 .1 1 . 9 
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Table 4 

Theoretical and Experiment a l Val1Jes of Prec:i.pit a 1:; e 

Ratios for Horse Serum Albumin- Rab bit anti Seru:rti Albumi n 

R (T/k )J;llax 1-r " ) \ l / J{ -0 

17 6.0 6.0 5 .3 

11 5 . 6 6.0 4 . 3 

8 . 2 5 .1 6 . 0 3 . 8 

5 .1 4.0 4.7 3 .0 

4 . 4 3 . 6 3.8 2.8 

4 .1 3 . 3 3 . 5 2. 7 

3.6 3 . 1 3.1 2 ,5 

3 . 3 2 .9 2.8 2 . 4 
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Table 5 

A Comparison of Inhibition Zone Limits 

and Critical Point Limits 

3ystem 

Egg albumin­
horse anti egg 
albumin 

Diphthe r ia t oxin­
hors e antitoxin 

Egg a lbumi n­
rabbit anti egg 
albumin 

Horse serum albumin­
rabbit anti serum 
a.lbumin 

Experimental limits 
beyond which precipi ­
tation does not occur 

I+ ~ A/ "' - -~ Lr 

~ A/ G ~ S 

l I 

Theoretica l limits 
beyond which the 
critical point is 
not attainable 

t/t ~ i~/G !: Io 

'1/n. * J:\/G ' J. I 

A.· IG ft I 0 ., 

. ,,.. 
A/\...r ~ 2. I 
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systems studied here. One can interpret this to me 8. n 

that this r abb i t antib ody is mor e i n soluble than the 

h orse antibody . Boyd has ment1oned that horse ant:t -

protein antibody molecu l e s are mo re soluble than t he 

co r responding r abb:t t an tib ody molecules , since a hi.::;her 

concentrat ion of sodium or a mmonium sulfa te is required 

to precipitate the former than the latt e r ( 26 ) . This 

feature o f the critical point can , therefore , explain the 

differenc e s in inhibition of these rabbit a nd horse sys tems . 

That is , one would expect to encounter much more difficulty 

in observing antibody excess inhib ition in these r abb it 

a ntibody systems t han i n the h o r se a ntlb ody systems. 

Flgures 5 a nd 6 p resent an inte r esting experiment 

which mieht just b riefly b e ment i oned . They represen t 

somewha t of a three dime nsional diagram of an F?h ae;e;lu ­

tinat ion test ( 27 ). The abscissas give t he ratio of inhib ­

iting to agelu t ina ting antibody molecules , a variable 

not ordinarily available t o the ex per:tmente:r.1 . The 

onJ.inates g ive the usua l antiserurn dilutions . The 

a mount of aeg lutination is expres s ed by the different 

kinds of crossha tching . In these figUi'es the prozone 

is increa sed with increas i ng amo'lmts of inhibiting anti ­

body molecules until , finally , comp le te inhibition ex ists , 

This trend is no t a pparent when t he r e l a tive a mount of 

a gglutina ting serum present is s ma ll( the upper values of 

the ordinates). This is j ust the effect predicted by 

Equation 26 and Figure 1. Fi gures 5 and 6 c orrespond 
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Figure 5 

The effect of inhibiting an tibody 0n Rh agglut in­
ation. D rep res ents t he serum containing ac;glutin ­
ating antibody , E represents the serum containing 
inhlbiting antibody. Antiserum dilutions are in­
dicated on the ordinate . The red billood cells used 
in this test were considered by Sturgeon to have 
the usual comb:tn:i.ng power . 
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Figur e 6 

T'De effec t of i :q.hi b iting antibody on Rh agg lutin­
at i on . D represents the serum containing agg l utin ­
ating ant i body. E r ep :ees ents t h e serum "c onta lning 
inhibi ting antibody . Ant i serum dilutions a re in­
dic at ed on the ordinate . The red b l ood cells us ed 
in this t es t were considered b y Sturgeon to have 
an abnorma l combin i ng power , 
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to red bl6od cells of different origins. In performing 

these experiments , Sturgeon has not ed that the red b l ood 

cells used in prepa.ring the tests for Figure 6 had 

considerab ly more combining power than those corresponding 

to ?igure 5 ( 27 ). It is obvious that they caus e a 

tremendous decrease in the prozone and , hence , tend to 

counteract the effect of the inhioitine antibody mo lecules. 

The point at which age;lutination oc curs at the 1.:ipper end 

of the ordinate rema :tned the same, however . Equation 

26 and Figure l a:ee again in full ae;reernent . Th ey demon ­

strate the insensitivity of the- critica l point composition 

to c hanges in t he combining power of the an t :l.e;en in the 

ant l e;en excess r eg ion(lower limit ). They do show a very 

large effect at the other end. An increHse in antigen 

combining power f, for a fixed composition , r educes the 

antibody excess inhibit ion zone or prozone cons :tderably. 

- Th erefore , the Sturgeon diagrams appeal' to be in good 

qualitative ac;reement wt th thts theory . 
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The utility of light scattering measurements on protein solutions has been 
demonstrated in the past for the determination of molecular weights. The 
results obtained by this method agree satisfactorily with those obtained by 
the usual procedures. An important early investigation was that of Putzeys 
and Brosteaux, who found that the light scattered by ovalbumin, amandin, 
excelsin and haemocyanin solutions, was proportional to the protein molecular 
weight. (1) More recently investigations of serum globulins and albumins have 
been made by Blaker (2). It has been shown that information concerning the 
size and shape of a protein molecule any dimension of which approaches the 
wave length of the light used can be obtained by scattering experiments (3). 
The equation developed by Einstein for a random arrangement of particles, 
small compared to the wave length of the scattered light (4) has been modified 
by Debye for the convenient treatment of real two-component systems (5). 
Debye modified Einstein's equation by introducing the osmotic pressure; his 
final equation may be written in the form: 

where 

c 1 
H- =-+BC 

T M 

H 321!"
3 

2 (an)2 

= 3"A.4No n ac T,p 

C = weight concentration of solute. 
n = refractive index of the system. 
"A = wave length of light. 

No = Avogadro's number. 

(1) 

B = solvent-solute interaction constant (related to that in the osmotic 
pressure equation). 

r = excess turbidity of the solution over that of the solvent. 
M = molecular weight of the solute. 
When the particles whose average molecular weight is desired are not small 

compared to the wave length of the light, a correction factor is needed which 
may be obtained from light scattering data taken at angles symmetrical about 
an axis perpendicular to the incident light, if the approximate model for the 

1 This work was supported in part by a grant from the U.S. Public Health Service. 
t Contribution number 1440. 
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particle shape is assumed. These models in relation to the data required have 
been previously described by Zimm, Stein and Doty (6) . 

The turbidity of a solution can be defined as the fractional decrease in the 
incident light after transmission through one centimeter of fluid, provided 
that absorption is negligible. The excess turbidity arises from spontaneous 
concentration fluctuations; it should be a minimum when measured at 90° to 
the i,ncident light. There is an increased amount of scattered light at 90°, how­
ever, on account of a small depolarization resulting from orientation fluctua­
tions of the solute molecules. In fact, conclusions can be drawn about the aniso­
tropy of polarizability of these molecules from depolarization data. This subject 
has been discussed by Born (7) and Mark (8). The correction for depolarization 
has been omitted from the equations presented in this paper. 

Since Equation 1 was developed for a two-component system, the only justi­
fication for its use for protein solutions is that it appears to give the right answer 
for molecular weights, which turn out to be weight averaged. Hermans has 
discussed the reasons why this equation can be used for more than two com­
ponents when electrostatic effects are considered (9). Usually B is positive, 
and in cases where B does not vanish data must be taken at different concentra­
tions in order that the extrapolation to infinite dilution can be made in the 

plot of H ~against C, so that the molecular weight can be calculated. Theoretical 
T 

treatments have been given for the turbidity of high molecular weight solutes 
polydispersed in solution (10, 11, 12). In these cases electrostatic effects have 
been subtracted and the result found by Kirkwood and Goldberg is the following: 

c 1 c . 
H - = < M> + <M> 2 .2: MkA;ddk 

T AV AV i,k=l 

• 
<M>Av = .l:JkMk; (2) 

k=l 

H = (32tr8/3NopoX4)n2(an/aC)~.p 

<M> Av is the weight average molecular weight, and C is the total concentration 
of solute given in weight per unit weight of solvent; Po is the mass of solvent in 
unit volume, and A;k is the thermodynamic interaction constant originating in 
the expansion of excess chemical potentials in terms of concentrations. A;k 
expresses the influence of component k on the activity of component i. It is 
seen that if the coefficient of Con the right side of the equation remains constant 
in a given system, then the above expression reduces to Equation 1. In general, 
however, this is not the case. 

It has been found that the pH of a solution affects its turbidity (2). In the 
case of borate buffer at pH 8.3, B vanishes for rabbit globulin, whereas in acetate 
buffer at pH 4, B is significantly positive. Accordingly with borate buffer only 
one light scattering measurement is necessary for the determination of the 
molecular weight of this protein. These facts might be viewed in the light of 
Equation 2. If changes in molecular size such as dissociation, occur during the 
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dilution process, then it is predicted by this equation that B does not remain 
constant. 

The purpose of the present paper is the determination of some properties of 
an antigen-antibody reaction from turbidity measurements. We shall represent 
one mole of antigen by Ag and one of antibody by Ab throughout the discussion. 

EXPERIMENTAL 

The serological system used throughout this set of experiments consists of crystalline 
bovine albumin as the antigen, and partially purified rabbit antibody against crystalline 
bovine albumin as the antibody. All solutions were made up in borate buffer at pH 8.3 and 
ionic strength 0.15. The antibody preparation was made by a triple precipitation of globulin 
by one-third saturation with ammonium sulfate at pH 7.8 and room temperature. After 
dissolving the final precipitate in 1% saline solution, the solution was dialyzed against 
distilled water at 0 C and the water-soluble protein was dissolved in 1% saline and dialyzed 
against borate buffer. The albumin solution was prepared by dissolving the crystalline 
protein in borate buffer and dialyzing against the same buffer. Total protein concentrations 
were determined colorimeterically by Nessler's method according to the procedure adopted 
by Lanni and Campbell (13), the factor 6.25 being used in converting nitrogen concentra­
tion to protein. Antibody concentration was determined in the usual manner by adding 
serial dilutions of antigen to a constant amount of antibody solution. The resulting water­
soluble fractions contained about 17 per cent antibody in one preparation and 33 per cent 
in another (see Tables I and II). All solutions were centrifuged for twenty minutes at 
40,000 G to eliminate dust particles. The cell in which the turbidities were to be measured 
and the pipettes used for transferring solution from the centrifuge tubes to the cell were 
flushed with acetone vapors before use. The light scattering apparatus has been described 
earlier (14). All turbidities were determined at room temperature (approximately 25 C). 
The turbidity of the antibody solution was determined first in each instance, and then the 
selected amount of antigen was added to the cell. An attempt was made at uniformity of 
mixing by keeping the ratio of volumes of albumin and antibody the same in each experi­
ment, and by swirling all mixtures in a like manner. 

Experiments were first performed in which the mole ratio of antibody to antigen was 
varied from 13 to 0.4, the quantity of antigen being held constant. In other experiments 
the mole ratio of antibody to antigen was kept constant and the total concentration was 
varied. 

RESULTS 

Figure 1 shows the increase of light scattered by the mixture of antigen and 
antibody with time. The mixing was started at zero time. The ordinate indi­
cates relative values of reduced turbidities, which were obtained by subtracting 
the solvent readings from those of the solution and dividing the result by the 
weight of antibody protein in the system. The curves represent different mole 
ratios of antibody to antigen, as given in Table I. The amount of non-specific 
protein present was twice the amount of precipitable antibody. The amount of 
antigen used was the same in all cases, and the amount of antibody was varied 
to give the desired mole ratios. Precipitation was observed in the systems with 
Ab/ Ag = 13, 3.2, 2.5, and 1.3; the last system had formed visible particles 
before the readings were taken. Visible particulation occurred in the first three 
at approximately 15, 25, and 50 minutes respectively. Systems with Ab/ Ag = 
0.8 and 0.4, in which no precipitation occurred during twenty-four hours, 
showed much more light scattered than those of the corresponding antibody 
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Fm. 1. The effect of antibody/antigen ratio (Ab/Ag) on the antibody-antigen reaction 
for bovine albumin and partially purified rabbit antialbumin antibody. 

TABLE I 
The effect of Ab/ Ag ratio on the antibody-antigen reaction 

Ab/Ag (MOLE ALBUMIN ANTIBODY* TOTAL VOLUMEf REMARKS 
RATIO) 

mg mg 

13 .0 0 .10 3 .0 30.0 Precipitation 
3.1 0.10 0.75 30.0 Precipitation 
2.5 0.10 0.60 30.0 Precipitation 
1.3 0.10 0.30 30.0 Precipitation 
0.8 0.10 0.20 30.0 No precipitation, Turbidity 

increase 
0.4 0.10 0.10 30.0 No precipitation, Turbidity 

increase 

* The antibody protein was approximately 33% of the total globulin. 
t In every instance 1.0 ml of albumin solution was added to 29.0 ml of the antibody 

solution. 

solutions whose reduced turbidities were about 0.2. Controls made with normal 
rabbit globulin prepared in the same manner as the purified antiserum showed 
less than one per cent increase on the addition of antigen. 

Another set of measurements was taken on systems with constant antigen-
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antibody ratio and total concentrations differing by the factor 2. Figure 2 shows 
the results for these systems, described in Table II. 

0 .71 MG/ML 

7.0 

0.36MG/ML 

6.0 

0.18MG/Ml 

-1~ 3.0 

0 5 10 15 20 25 30 

TIME (minulea) 

Frn. 2. The effect of total concentration on the antibody-antigen reaction for bovine 
serum albumin and partially purified antiablumin antibody. The concentrations given are 
for total protein. 

TABLE II 
The effect of total concentration of antigen and antibody on the Ab-Ag reaction 

Ab/ Ag (MOLE RATIO) ALBUMIN ANTIBODY• TOTAL VOLUMEt REMARKS 

mg mg ml 

11 0.10 2.5 21.0 Precipitation 
11 0.050 1.25 21.0 Precipitation 
11 0 .025 0.63 21.0 Precipitation 

*The antibody protein was approximately 17% of the total globulin. 
t In every instance 1.0 ml of antigen solution was added to 20.0 ml of antibody solution. 

DISCUSSION OF RESULTS 

The combination of bovine albumin and its homologous rabbit antibody 
appears to be complete in a few minutes. If we consider the average initial 
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slopes of the curves to be a measure of the rate of reaction, then we can con­
clude that the antibody-antigen ratio greatly affects the rate of this combination. 
Since the data presented are for scattered light 90° to the incident light, they 
are not sufficient to permit the determination of the molecular weight of interest 
in the region where the particles are no longer small. As mentioned earlier, 
light scattering data at other angles would be required for this purpose. If the 
ordinate values were directly proportional to molecular weight, the slope in the 
region of large aggregates would probably not decrease so rapidly with increas­
ing time as it does. The negative slope of the curve for the system with Ab/ Ag = 
1.3 can be interpreted to represent the settling out of precipitate. Since visible 
particles had formed before measurements could be made, the rate of increase 
of reduced turbidity in the early part of the reaction, although not evidenced 
experimentally, undoubtedly would have a larger average value than that of the 
curve for the system with Ab/ Ag = 2.5. Hence the rate of the antibody-antigen 
reaction discussed here appears to pass through a minimum in the region of the 
equivalence zone. For other rabbit antibody systems, Boyd, in a study of opti­
mal proportions ratios, has reported times of flocculation which also indicate 
minima (15). 

The curves representing the systems having Ab/ Ag ratios less than unity 
indicate in the antigen excess region the existence of aggregates which we find 
by observation to be soluble. If we neglect intramolecular interference of scat­
tered light and A;k interaction terms, for the systems with Ab/ Ag values of 
0.4 and 0.8, we find by Equation 2 molecular weights of 850,000 and 1,300,000 
respectively. By calculating a weight-average molecular weight for the former 
system on the assumption that all antibody is bound in aggregates AbAg2, 
i.e. a solution containing uncombined antigen, rabbit globulin, and AbAg2, we 
find 218,000. The neglect of intramolecular interference always leads to a lower 
value of the weight-average molecular weight than that obtaining in the ab­
sence of this interference. Although we have consistently found molecular 
than they should be whenever we have assumed A;k = 0, it is possible that the 
A;k's will not always have the same sign. It seems not unlikely that some ag­
gregates such as Ab3 Ag2, etc. are present. 

The effect of changing the concentration with Ab/ Ag kept constant is shown 
in Figure 2. Let us first discuss the vertical spread of the asymptotes. It is 
possible that the different values of these asymptotes represent differences in 
weight - average molecular weight, but it seems not unlikely that they reflect 
differences in the enormous correction factors which must be applied to Equation 
2 in order to include intramolecular interference. 

It seems reasonable that little error would be introduced by assuming that 
the ordinate values, one for each curve, which correspond to the same fraction 
of the asymptotic values represent the same weight-average molecular weight 
for the three systems at these points. We can expect that by taking fractions 
of this kind we eliminate to a large extent the effects of differences in the factors 
which account for intramolecular interference of the scattered light. The values 
of the time corresponding to ordinates equal to 503 of the asymptotic values 
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are approximately inversely proportional to the concentrations. This propor­
tionality is characteristic of any complex of bimolecular reactions. Lanni, using 
a turbidimeter, has obtained curves very similar to those of Figure 2 in his 
study of the specificity of serological reactions (16). His curves also roughly 
show this property of bimolecular reactions. Pauling (17) has pointed out that 
data in a table of times of flocculation for mixtures of various dilutions of anti­
gen and antiserum presented by Boyd in a study of optimal proportions ratios 
(15) are suggestive of bimolecular reactions. Boyd's data for fixed Ab/ Ag lead 
to the equation 

1 t cc 
cl.ls 

(3) 

where C is the concentration of the system and t is the time for flocculation 
to occur. For a two-fold dilution the time of flocculation increases 2.27 times. 
The fact that this factor is 14% larger than that required by the bimolecular 
rate equation can reasonably be explained as a dilution effect; namely, in a more 
dilute solution the reactions may well have to proceed beyond the apparent 
flocculation point for a more concentrated system before the observer recognizes 
that the flocculation stage has been reached. Equation 3 was arrived at by first 
constructing straight lines 45° to the axes, which give the dilution factors on 
the same scale. These lines were drawn through the points labeled with the 
first eight antigen tube numbers; they intersect six contour lines (isochrones) 
representing the range one minute to 32 minutes for the flocculation time. The 
distance between the points of intersection of the first and the last contour 
lines with each one of the 45° lines was measured, and the average distance for 
the eight lines was calculated. This average distance was then converted to a 
concentration factor. The exponent, 1.18, in Equation 3 is the power to which 
the concentration factor, 19, had to be raised to give the time factor, 32. We 
conclude that as a first approximatiq'n a,ntibody-antigen reactions involve col­
lisions of two particles. This conclusion gives justification to the assumption 
of a series of successive bimolecular reactions upon which Heidelberger and 
Kendall (18, 19) and Hershey (20, 21) base their quantitative theories. 

The authors wish to th31Ilk Professors Linus Pauling and J. G. Kirkwood 
for their helpful criticism in the interpretation of results and to Professor R. 
Badger and Dr. R. Blaker for their help on making light-scattering measure­
ments. 

SUMMARY 

The utility of light scattering measurements on protein systems is discussed. 
Light scattering data for bovine serum albumin and its homologous rabbit 
antibody are presented. They describe the turbidity of the system as a function 
of time. It was found that the rate of aggregation of antibody and antigen 
molecules into large complexes is dependent on the antibody-antigen ratio. 
The existence of soluble aggregates in the antigen excess region is verified. 
Evidence is discussed which indicates that all reactions occurring in an anti­
body-antigen system are bimolecular. 
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Light Scattering Arising from Composition Fluctuations in Multi-Component Systems 

JOHN G. KIRKWOOD AND RICHARD ]. GOLDBERG 
The Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California 

(Received May 6, 1949) 

A general theory of Rayleigh scattering due to composition fluctuations in multi-component systems is 
developed with the aid of the grand canonical ensemble of Gibbs. It reduces to the usual expression for 
systems of two components, but contains previously neglected terms arising from thermodynamic inter­
actions between solutes in systems of more than two components. The theory is used to interpret the turbidity 
measurements of polystyrene in benzene-methanol mixtures of Ewart, Roe, Debye, and McCartney. 

I 

T HE utility of light scattering measurements in the 
determination of molecular weights and in the 

study of thermodynamic interactions in solutions of 
macromolecules has been clearly demonstrated in recent 

years. Correct theoretical interpretation of the measure­
ments has been achieved for two-component systems 
composed of one macromolecular solute in a solvent of 
low molecular weight. However, attempts to extend the 
two-component theory to multi-component systems 
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have led to eertain errors and misconceptions, the cor­
rection of which is one of the purposes of the present 
article. 

A general theory of composition fluctuations in multi­
component systems will be developed with the use of the 
grand canonical ensemble of Gibbs. The theory provides 
a complete thermodynamic description of Rayleigh 
scattering without the use of supplementary molecular 
assumptions, although the latter may be of importance 
in interpreting the thermodynamic information obtained 
from the light scattering measurements. 

It is found that thermodynamic interaction between a 
macromolecular solute and a solute of low molecular 
weight may cause the former to induce composition 
fluctuations with respect to the latter of the same order 
of magnitude as composition fluctuations with respect to 
the macromolecular species itself. This effect, which has 
been neglected in previous theories, is shown to be of 
importance in interpreting turbidity measurements of 
solutions of macromolecules in mixed solvents. To 
illustrate the use of the theory, an analysis is made of the 
turbidity measurements of solutions of polystyrene in 
benzene-methanol mixtures obtained by Ewart, Roe, 
Debye, and McCartney.1 

II 

The turbidity To of a fluid ansmg from Rayleigh 
scattering of light of wave-length A. is determined by'the 
well-known relation,2 based on the theory of Einstein, 

(1) 

where (6.E2)Av is the dielectric constant fluctuation in a 
region of volume V. We shall be concerned here only 
with those contributions to (6.t2)Av arising from composi­
tion and density fluctuations. If we denote by m0, · • • m. 
the average masses and by N 0, • • • N v the numbers of 
molecules of the several components in the region V, and 
define 

Ci= mJ mo; i= 1, · · · v, 

mi=Mi(Ni)Av/N, 

6.N;=N;-(LV ,)Av, 

~;= 6.NJ(N;)A,-6.No/ (No)Av, 

~= L fh6.Nk/NV; 
k=O 

(2) 

where N is Avogadro's number and fh the partial molar 
volume of component k, we may write, 

+ i, C;Ck(~ih)Av(!_E_) (!!__) ' 
i, k ac; T, TJ. Cj a ck T, )l, 'j 
=I 

(3) 

1 Ewart, Roe, Debye, and McCartney, J. Chem. Phys. 14, 687 
(1946); P. Debye, J. Phys. Coll. Chem. 51, 18 (1947). 

2 See, for example, Doty, Zimm, and Mark, J. Chem. Phys. 13, 
159 (1945) . 

where K is the compressibility of the fluid, and the sum 
extends over all solute species, k= 1, · · · v, the subscript 
zero denoting solvent. The first term of Eq. (3) arises 
from density fluctuations at constant composition, and 
the second from composition fluctuations. Except for 
critical phases, Eq. (3) is exact to terms of statistically 
negligible order of magnitude. We now define in the 
customary manner the turbidity T due to composition· 
fluctuations, 

To= T+ 87r3V (e)Av(~)2 
3)1. 4 

K
2 ap T,c 

(4) 

where the second term of the first of Eqs. ( 4) is the 
turbidity arising from pure density fluctuations. In 
Eqs. (3) and (4), we have anticipated the result, 
(~~i)Av=O, presently to be proved. 

In order to determine the composition fluctuations we 
employ the theory of the grand canonical ensemble in a 
manner which has been earlier described by one of us.3 

The probability that an open region V in an infinite 
mass of fluid contain exactly No, N 1, • · · N. molecules of 
the several components, considered as an example of a 
grand canonical ensemble, is 

P=exp([n+:L Niµ/-A(No· · ·N.)]/ kT), 
i=O 

SJ= -pV+kT logCT, 
(5) 

where k is Boltzmann's constant, T the temperature, µ;' 
the chemical potential of component i, per molecule, and 
A is the Helmholtz free energy of the region when it con­
tains the specified numbers of molecules. The term 
kT log CT is of statistically negligible magnitude relative 
to p V, but is important for normalization in the order 
required for the calculation of the composition fluctua­
tions. Expansion of the exponent of the right-hand side 
of Eq. (5) in the variables N;-(LV;)Av yields, with the 
neglect of terms of higher degree than quadratic, which, 
except for critical phases make statistically negligible 
contributions to mean values, 

P= CT exp(-t L f3ik 06.Ni6.l\h), 
i , k 
=0 

(aµ/) (aµ k' ) 

= aNk T, V, Nj = aN; 1'. V, NJ. 

(6) 

3 J. G. Kirkwood, mimeographed notes, "Lectures on statistical 
mechanics" delivered at Princeton University (Spring term, 1947). 
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We now make use of the mathematical relation, 

( Jµ/) f ivk Mk (aµi) 

aNk T,V,NJ=N 2KV+N2mo ack T,p,c/ (
7
) 

where N is Avogadro's number, Vi the· partial molar 
volume of component i, Mi the molecular weight, and µ i 
is the chemical potential per mole of that component. 
The coefiicients f3iko may then be expressed in the form, 

v;vk Nmo f31k 
f3ik 0 = +------, 

N 2KVkT 2 (Ni)Av(Nk)Av 

c~ (a~) c~ (a~) 
(3 ik = M;RT ack T, p, CJ= MkRT aci T, p, c/ 

L (3 ;k = 0; f3oo = L f31of3ko, 
k=O i, k 

= I 

(8) 

where the sum rules for the coefficients f3ik follow from 
the Gibbs-Duhem equation. Introducing the composi­
tion fluctuation variables ~; and the reduced density 
fluctuation variable ~' of Eq. (2) 

~i= t:,,1V;/(N;)A,-D.No/ (No)Av, 
(9) 

~= L VkM1h/NV; 
k=O · 

we obtain from Eqs. (6) and (8) the flucttiation distribu­
tion function, 

(h )-C,+ 1/2) (K VkT) - 1 
P(h· · ·~,, ~) =------

1 f3 I ! 

Xexp(-(Nmo/ 2) L (3ik~1~k- ve/ 2KkT) 
i, k 
=l 

(10) 

where I f3 I is the determinant of the thermodynamic 
coefficients f3ik· It will be remarked that the transforma­
tion, Eq. (9), 'has eliminated non-diagonal terms in the 
Gaussian distribution involving the composition fluctu­
ations ~i and the density fluctuation ~ . 

The distribution function, Eq. (10), yields with the 
aid of the theory of quadratic forms the following mean 
values, 

V(~i~k)Av=(V/Nmo)(if31ik/l f3i); i, k=l· · ·v, 
V(~2)Av= KkT, (11) 
(~~i)Av=O, 

where I f3 I ik is the appropriate co-factor of the determi­
nant I f3 I. Substitution of the density and composition 
fluctuations of Eq. (11) into Eqs. (1) and (3) yields the 
following expressions for the turbidity, 

To = T+ (87r3/ 3f.. 4) (kT I K) ( JE/ ap )2r,c, 

T=~7r
3

_l_ i:,C;Ckl f3 l 1k (~)- (~) '(12) 
3f.. 4 Npo'.;,~ if31 Jc; T,p,cJ Jck T,p,cJ 

where po is the mass of solvent in unit volume. Equations 
(12) give a complete description of Rayleigh scattering 
arising from density and composition fluctuations in 
terms of thermodynamically defined quantities and the 
derivatives (aE/ Jc;)T, P. cJ. The non-diagonal terms in 
which have previously been neglected in the analysis of 
Rayleigh scattering in multi-component systems, make 
it possible for a solute of high molecular weight to induce 
significant composition fluctuations with respect to a 
second solute of low molecular weight as the result of 
strong thermodynamic interaction between the two. 

III 

We shall now present several applications of Eq. (12), 
which illustrate the manner in which the turbidity of a 
multi-componenf fluid may be used to obtain thermo­
dynamic information relating to the dependence of the 
chemical potentials of the components on composition. 
For the case of two components, Eq. (12) of course re­
duces to the expression, 

87r
3RT(JE) 2 /(Jµi) 

T=3f.. 4Npo ac1 T,pM
1 

ac1 T.p' (l
3

) 

given by the elementary theory of composition fluctua­
tions and which has been extensively used in light 
scattering studies. In order to simplify Eq. (12) in the 
multi-component case, we suppose all solutes to be non­
electrolytes and expand the excess chemical potentials in 
power series in the concentrations c;, 

., .. -
--~ 
~ 

Q 

µi= RT logric;+µ; 0(T, p), 

µ;0 = lim [µ i- RT loge;], 
ci · · ·cv 

logr;= I:: A;kck+O(ckcJ), 
k=I 

(14) 

5.0 ,-----r-----,----,-------, 
c.::-o.oo 

C,: 0.073 
3.0 

C,•0.100 

2.0 
G,•0.129 

C.•0.159 

1.0 "='-===l=--~--4---.,.__-4--~~-~-0~··~· 
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6.0 12 18 

10 4 c, 
FIG. 1. Turbidity-composition curves of solutions of polystyrene in 

benzene-methanol mixtures. 



57 LI G HT SCATTERING 

retaining only linear terms in the expansions of log)';. In 
this approximation, we may write, 

(15) 

where, as henceforth, we abbreviate the derivatives 
(aµ ;/ack)r. P. ci as aµ ;/ack. Using Eq. (15), we find 

(16) 

where we abbreviate ( aEj ac;) T. p. Cj by a~; ac;. In the case 
of a polymer with a molecular weight distribution, where 
it is appropriate to treat aEj ac; as independent of i in 
first approximation, we obtain 

He 1 c 
- =--+-- L: MkA ;kfifk, 
T (M)Av (Af)A, 2 i. k 

=l 

(17) 
c=L: ck; (M)Av=L: fkMk, 

k=l k= l 

where f; is the weight fraction of component of molecular 
weight M;. In a previous attempt to adapt two­
component fluctuation theory to this case,4 the non­
diagonal terms in the sum of Eq. (17) were overlooked. 

We now turn our attention to the system of three 
components. In this case Eq. (12) may be put in the 
form, 

H2M2RT 1-2aw1+a2w12 

l:ir =-----------
aµ 2/ ac2 1-(M2/ M1)w1w/ 

327r
3
n

2
( an )

2 

l:ir=r-r1; H 2=--- -- ; 
3N po"A 4 ac2 

w1= (aµ1 / ac2) / (aµifac1), 

w2= (aµ1 / ac2)/ (aµ2 / ac2) , 

a= (an/ac1) / (an/ ac2) , 

(18) 

where r 1 is given by Eq. (13). If all components are non-

4 B. Zimm, and P . Doty, J. Chem. Phys. 12, 203 (1944). 

TABLE I. Thermodynamic interaction coefficients in benzene­
methanol-polystyrene solutions.* 

A12 
1.1 

B212 

5100 
B 222 

0.0 

*Subscript 1. methanol; subscript 2, polystyre ne; .NJ 2=3.45X105. 

electrolytes, and we employ the power series, 
2 2 

log'}';= L: A ;kck+ L: B;;kc;ck+ · · ·, 
k=l j:: 7 (19) 

a= ao+a1c1+a2c2, 

for the activity coefficients, '}';,and the refractive index 
ratio, a, we obtain the following expansion of Eq. (19), 

H2c2/ l:ir= 1/ M2l 1 +G1oc1+Go1C2 

+G2oc12+Gnc1c2+Go2c22) ; 

G10=2aoA12; Go1=A22; Go2=2B222; 

G20= 4a0Bu2- 2aoA nA12+ 2a1A 12+3ao2A 122; 
(20) 

We have analyzed the light scattering data of Ewart, 
Roe, Debye, and McCartney1 on solutions of polystyrene 
in benzene-methanol mixtures, by means of Eq. (20), 
supplemented by an additional cubic term of the order 
c12c2, the coefficient of which we do not interpret 
theoretically, although this could easily be done. The 
curves from which the coefficients are determined are 
compared with experiment in Fig. 1. It will be observed 
that the measurements are reasonably well reproduced. 
The coefficients of the refractive index increment ratio a 
were estimated to be ao=-1.9; a 1=4.8; a2=0. The 
values of the thermodynamic interaction coefficients, 
A ;k and B;;k, of Eq. (20), calculated from the experi­
mentally determined coefficients G;k of Eq. (20) are 
presented in Table I . The coefficients A ik and B ;;k are, of 
course, dimensionless, but it should be remembered that 
the numerical values are appropriate to conce.ntrations c; 
expressed in grams of solute per gram of benzene. 

The calculations which have been presented exhibit 
the manner in which turbidity measurements may be 
used in conjunction with the present theory to obtain 
thermodynamic data in multi-component systems con· 
taining at least one macromolecular component. The 
positive value of the interaction coefficient A12 for 
polystyrene and methanol, when interpreted from the 
molecular standpoint, means, as Debye surmised, that a 
polystyrene molecule exhibits a preference for benzene 
molecules in its statistical environment. Such qualitative 
considerations should, however, be regarded as supple­
menting the thermodynamic theory presented here, 
rather than the basis for an exact analysis of turbidity. 
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The Determination of t h e Combinatoria l Fa etor Wi-ik 
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Wijk is de fined as the number< of wa ys in which 

i bifunctional units (to be called Si- unit s ), j uni.functional 

units (called sj-units), ahd k f - functional units (called 

Sk-unit s ) can b e formed into a single i ,j,k- ae;gregate 

containing no cycl:tc struc t 1n'es. All units and all 

functional sites thereon are distinguishable. All sites 

on the Sk-u~its are equivalent . All sites on the Si 

and S j-units are equivalent. furthermore , sites on 

s1 and Sj-units are permitted to react only with s ites 
,. 

on Sk- units and vice ve rsa . 

This proble m can be solved by t he device inven ted by 

Mayer and Mayer (28 ) and ad opted by St ockmayer in similar 

problems ( 18). Sk - uni.t s are represented by mechanical 

frames containing f holes . Indist:i.ne;uishable bolts are 

required to hold the frames together , each bo lt passing 

t hrough a pair of holes belonging to different frames . 

Bolts are also required to fill all other holes . These, 

however , do not connect different fra mes with ea ch other. 

Each of them has one free end . 

The number of ways to bolt all the frames toge t;he r 

into a so - called k - aggregate , cont a ining no cyclic structures , 

It sho1;ld be noted ·t;hat the insertion of i s .. -
..L 

units and j Sj-un1-ts into the k - aggregate does not change 

the number of wa ys of forming the_ l atter . k-1 of the 

Si-units must take the pla c ~ of t hose bo l ts c onnecting 
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The rest of t he S.-units and the 
l 

S .-units must reo l ace bolts which have one end free. The 1 ~ ., 

number of waws of insert:tng the i s1-units and j Sj-units 

into the k - agg regate is defined as Rijk• 

The refore , 

W.. L 
q-. 

--

v'v'k is determined in the following manner . Since a 

k - a ggrega te requires k -1 bonds , k - 1 bo l ts are required 

for this purpose . Since bolts are required to fill all 

other hole s , the total numbe r of bolts used is then 

--

Anv one of t h e bolted ar· r anp·eme nts CRn be dissociated u ~ 

lA 1) 

into k separate frames , each containing f -1 h oles occupied 

by bolts and one empty hole . There will be one free 

b olt lef t over. The bolt chosen as the free bo l t unique ly 

determinea the empty hole i n ea ch of t he k frames . 

Since there are fk-k .J. l bolts altoe ethe11
, there are like-

wise fk-k .J. l d j_fferent dis s oc ia ted ar11angements of the 

required kind wh ich correspond to the same bo lted arrange-

:ment . Now , if P is the number of possible dis s oc ia ted 

arra ngements of this kind , and i f Q. i s t he number of ways 

of bolting each diss ociated arrane emen t t ogethe r , the 
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number of different b olted a r rangements is 

Since any one of the holes on the frames can be the 

empty one , 

--
\t 

t 

To fi nd Q, k - 1 indistingu ish ble wa shers are intro-

duced , no more than one being placed on any bolt . The 

mun er of ways to choose k - 1 out of the f k - k +l bolts , 

on which to place washers , is 

lA2) 

.(A3') 

rvashered bo l ts are now inserted into ho l es in f rames with 

wh ch they are not already corinected . The free bo lt is 

kept for l ast . That ls , the first wa shered bo l t can select 

any one of - 1 emp y ho es (exc l uding the one on its own 

frame ). There are then k - 2 single frames and one doub e 

"'rarne . In a like manner the second washered bolt can 

select any one of k - 2 empty bo les . This process continue s 
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unt i.l only t h e one free b olt remains. If the free bolt 

has a washer there remain two s ti~uctures , each wi th a hole , 

v1hi ch must b e b olted together. If it d oe s not have a 

washer there rema ins just one hole on one structure which 

must be filled. 'Therefore , washered bolts can be inserted 

in (k -1) l ways . This number of ways combined with tbe number 

of ways of assigning washers is 

lf~- lt+a} ! 

The ref ore, the subst i tution of Equations A3 and -~.4 in 

A2 gives 

flt ~lc.-lt)~ 
U-k-.1..lt .. i.) ! 

(AS} 

Th:i.s proof for W,_ 
1\. 

i s the same as that g i ven by Stockmaye r (l8 ). 

Hi ik can be obta. i n ed i n the following manner . k -1 .., 

of the i Si-units must be selected for the bond ing p os i-

tions now occupied by bolts. These can be select ed i n 

, I 
l I 

ways. 

The remainder of the Si-units, i -k.t.1, and all the Sj-
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uni ts must l'eplace any of the f k - 2k.f. 2 bo lt s e a ch of which 

has one end free. Th :ts selection can be accomp l ished in 

[ i-lt-i. ~ "\. - ( i-k ~\)- j J ! 
ways . 

Eow, s i.nce eB ch r) f tbe 3~ - nn i ts h8 S 
-'-

t wo d istingliishable 

functional sites , Ri j k will contain the i 
factor 2 • 

. , 
l . 

Let tlle nnrnber of s1 - tmj_ ts of wL j_c;h onl~- one 

_f1rnct::i ona l s:tte is us e d be defined by 

-- i - k +- I 

'v'J lth the use of Equations A5 , A6 , and A7 , Eq1Jation Al 

--
f ~1~ ij-k-~)~ 

t+lt-j,.~ ... i.-J -i J J! 

• I 
l. 

CA~) 

(A?) 
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Since the numbers of S:i. - units and ,3 j - units cannot 

exceed the total number of bolts , it i s clear tr.iat 

l -
4' -

• 

k-1 + i 
t-k -2.lt +-2. (A~) 
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Propos 1 t ions 

l• I propose an interesting relation which occurs between 

the number of ways of forming a branch-type a ggregate 

(containing no cyclical structures) out of k particles, 

each with the same number of reaction sites, and the 

number of ways of forming smaller branch-type aggregates. 

2. I propose a method for obtaining the number of ways of 

forming a branch-type aggregate. This method produces 

results more rapidly than that of Stockmayer and is 

useful for aggregates which his method bas apparently 

not been able to handle{l). 

3. I suggest that three dimensional polyesterif'ications 

like those carried out by Flory{2) should be carried out 

in a manner prescribed by the standard pro,cedures of 

the prec1pit1n reaction. 

4. The assumptions involved in the use of iodine as a 

label in antibody-antigen reactions have not been 

justified. It is not unreasonable to suppose that 

antibody-antigen ratios dete~mined by means of this 

kind of labeling device are incorrect. The use of 

double labels may avoid this difficulty. 

5. I believe that the determination of the composition 

of the precipitate of an antibody-antigen reaction, 

as a function of the time of tba reaction, may give 

information regarding the valence of the antibody. 
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6. Calorimetric measurements of an antibody-antigen 

reaction as a function of the composition of the system 

may yield information regarding the state of the antibody­

antigen aggregates in the system. 

7. A new expression relating the antibody-antigen ratio 

of the precipitate to the composition of the system is 

the following. 

1/2 
R - a(Ab/Ag) 

R is tb,e antibody-antigen :molecular ratio of the 

precipitate, Ab/Ag is the molecular ratio of antibody 

to antigen for the system, and a is a constant. This 

equation can be used for the entire region of precipita­

tion for either the o( or (3 titration procedui"e. 

8. (ai) I believe that it is more helpful to one attempting 

to grasp the meaning of entropy to stress the expression 

rather than 

dW as ,.., _ 
w 

S ,...,, logW 

(b) It is interesting to regard the energ-y of a particular 

ideal system as a problem of balls in boxes. Each box 

represents a degree of freedom and each ball represents 
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uhe slllB.lllest unit of energy available. When the 

system is at the absolute zero there are no balls in the 

boxes. It is easy, therefore, to see how the entropy 

of the system is increased by raising the temperature, 

i.e., by adding more balls to the boxes. 

9. The time rate of a goldfish opening its mouth closely 

obeys the Arrhenius equation for a monomolecular 

reaction with a constant activation energy.. Since 

this energy 1s the same at both high and low temperatures, 

there may not be a reversible inactivation of the 

enzyme responsible for the rate-limiting reaction. 

10. It appears that strength-duration diagrams may better 

be represented by . 
l ir 

I Q.. 
- 't/c.. 

than by 

0.. t- b 
t 

where i is the threshold current, ir and b are the 

rheobase currents, t is the time of the impulse, and 

c and a are time constants. 
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