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ABSTRACT

This thesis addresses the issue of existence and uniqueness of the solution
to the small-scale nonlinear anti-plane shear crack problem in finite elastostat-
ics. The hodograph transformation, commonly used in the theory of compressi-
ble fluid flows, plays an essential role. Existence is established by exhibiting an
exact closed form solution, constructed via the hodograph transformation.
Uniqueness is established by first proving the uniqueness of the solution to a
related boundary-value problem, which is linear by virtue of the hodograph
transformation, and then examining the implications of this result on the origi-
nal problem. The possibility of making some of the conditions imposed on the
solution to the small-scale nonlinear crack problem less restrictive is then
investigated. This leads to several further results, including estimates of the

nonvanishing shear stress component of the stress tensor along the crack

faces.
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Introduction.

Boundary-value problems in the finite deformation theory of elasticity may
or may not possess unique solutions. In fact, in certain cases one neither
expects nor desires unqualified uniqueness. Take, for example, a slender elastic
rod subject to compressive stresses at its ends. One would expect the theory to
predict in addition to a uniformly compressed deformed configuration a number
of "buckled” deformed configurations {see [1] for further examples and a dis-
cussion of nonuniqueness). When the uniqueness of the solution to a
boundary-value problem is not assured, one faces the difficulty of determining
the complete set of solutions and whether one solution may be preferred over
some or all others on the grounds of a supplementary criterion, for example
stability. A complete study of a boundary-value problem with multiple solutions
presents a formidable task. Recently, Abeyaratne [2] has completed a study of
ihe finite twisting of an incompressible elastic tube. Searching in a class of
functions allowing the possibility of discontinuous deformation gradients, he
found that there were infinitely many solutions to his boundary-value problem.

He was, however, able to single out one solution using a stability criterion.

On the other hand, when the existence and uniqueness of the solution to a
boundary-value problem are assured, the only difficulty that remains is finding
that solution. Realizing the importance of existence and uniqueness theorems,
several mathematicians (see [3] and [4], for references) have constructed
existence and uniqueness proofs for a variety of boundary-value problems in
finite elasticity. Among the more recent existence and uniqueness proofs, one
may cite those of Ball (5], Antman [6,7], Spector (8], Gurtin and Spector (9], and

John [10].



This paper focuses its attention on the existence and uniqueness issue for a
crack problem in finite elastostatic anti-plane shear for incompressible materi-
als. Consider an isoiropic, homogeneous, incompressible elastic body in an
unstressed state occupying a cylindrical region whose cross section is the whole
plane with the exception of a line segment of finite length (the crack). Under
appropriate loads all material points displace perpendicular to this plane. Such
a deformation is referred to as one of anti-plane shear (or of mode III type in
the terminology of fracture mechanics). Let the crack be traction-free while
the displacement at infinity is one of out-of-plane simple shear. As shown by
Knowles [11], the corresponding boundary-value problem for a class of
incompressible elastic materials is analagous to the steady, irrotational,
circulation-free flow of an inviscid, compressible fluid past a flat plate at a 90°
angle of attack. In this fluid-mechanical analogy, the displacement function
corresponds to the velocity potential while the stress-deformation constitutive

law for the elastic material at hand plays the role of the density-speed relation.

Suppose for the moment that the crack is replaced by a hole; thus the
cross section of the body is taken to lie outéide a simple closed curve I The
resulting finite anti-plane shear boundary-value problem then has the same
fluid mechanical analogy described previously, except that the flat plate is
replaced by a profile [ If the curve [ is sufficiently smooth and if the governing
quasi-linear partial differential equation is uniformly elliptic, as it is for a cer-
tain class of elastic materials, then the solution to the problem exists and is
unique (see [12], [13], [14], [15], and [18]). This suggests that the finite anti-
plane shear crack problem has a unique solution.

The crack problem is one of considerable complexity not only because the

governing partial differential equation is quasi-linear, but also because of the



nature of the boundary, a line segment. If the prescribed shear at infinity is
small, then it is reasonable to expect the displacement gradient to remain small
throughout the body, except possibly near the crack tips. When the partial
differential equation is linearized under the assumption of small displacement
gradient, it becomes Laplace's equation for the out-of-plane displacement. This
linearized crack problem corresponds to steady, irrotational, circulation-free
flow of an incompressible, inviscid fluid past a flat plate at a 90° angle of attack.
The exact solution to this problem can be found in many books (see, for exam-
ple, [17] and [1B]). It is easily verified that the displacement gradient calculated
from the solution to the linearized problem is small away from the crack tips
but becomes unbounded as the crack tips are approached, contrary to the
underlying assumption that this gradient is small. Thus, while nonlinear effects

are negligible away from the crack tips, they are dominant near the crack tips.

The above discussion suggests a way to determine an approximation to the
solution of the crack problem for the case in which the prescribed shear at
infinity is small. The solution to the linearized problem is expected to furnish a
good approximation except near the crac}; tips, where nonlinear effects are
important. The state of affairs near a crack tip, say the right one, is analyzed
using the nonlinear theory by replacing the crack of finite length by a semi-
infinite one and employing a suitable matching process to connect the nonlinear
and linear asymptotic descriptions. To implement the matching, one assumes
that there is an inner region near each crack tip where nonlinear effects dom-
inate, an intermediate region in which the field is described by the near-tip
approximation supplied by linear theory, and an outer region described by the
full solution to the linearized problem. The mathematical problem generated by

this matching process is called the small-scale nonlinear crack problem. In the



setting of plasticity, (see [19] and [20], for example), it is often called the small
scale yielding problem.

In this paper, the existence and uniqueness of the solution of the small-
scale nonlinear crack problem is discussed. Existence will be established by
explicitly exhibiting a solution. This solution was originally found by Knowles in
[11] using the hodograph transformaticn, a special coordinate transformation
that transforms the governing quasi-linear partial differential equation into a
linear one. Although the boundary conditions for the small-scale problem
stated subsequently in the present paper are much more restrictive than those
imposed by Knowles, his solution is nevertheless shown to comply with these
stronger conditions. The hodograph method is commonly used in compressible
flow theory to construct solutions (see, for example, [12], [21], [22]). It had
previously been used in crack problems by Hult and McClintock [23], Rice [19],
Amazigo [R4.,25], and Freund'and Douglas [26]. Uniqueness is proved here with
the aid of the hodograph transformation. The fluid mechanical analogy sug-
gests that some of the lechniques used in proving uniqueness for compressible
flows past two dimensional obstacles in the original plane of coordinates, some
of which can be found in [12], [13], [14], [15], and [16] may be of use in the
small-scale problem considered here. While this may be the case the use of the
hodograph transformation allows the analysis to be carried out using concepts
from calculus alone without having to resort to such theories as functional

analysis, pseudo-analytic functions, and quasi-conformal mappings.

Section ! begins with a brief discussion of the nonlinear equilibrium theory
of homogeneous, isotropic, incompressible elastic solids. The special case of
anti-plane shear is then introduced, followed by a discussion of the classes of

elastic solids relevant to this study. The crack problem from which the small-



scale nonlinear crack problem is subsequently extracted is formulated in Sec-
tion 2. Two forms of the small-scale nonlinear crack problem are presented, the
first being the one posed and solved exactly by Knowles in [11] and the second
being the more restrictive version of the first alluded to earlier. Section 3
discusses the hodograph transformation. The exact solution to the first form of
the small-scale nonlinear crack problem is presented and is confirmed to be a
solution to the second form of the problem. It is also shown that any solution to
the second form of the solution is related to a solution of a linear boundary-
value problem in the hodograph plane. In Section 4, the solution to this linear
problem is proved to be unique up to an additive constant. This in turn implies
that the solution to the second problem is unique up to an additive constant.
Finally, Section S is devoted to a study of the possibility of deriving the property
that the modulus of the gradient of the solution becomes uniformly unbounded
as the origin is approached, a property of the solution that was previously
assumed in order to prove uniqueness. Although a lot can be proved about the
behavior of [Vu| near the origin, the analysis falls just short of its goal. The
analysis is based on a comparison theorem for the second order elliptic opera-

tors. An interesting byproduct is a stress estimate along the faces of the crack.



1. Finite Elastostatics and Anti-Plane Shear for Incompressible Elastic Solids.

This section presents a brief discussion of finite elastostatics and anti-

plane shear.! Let R be an open region in R3 occupied by the interior of a body in

an undeformed configuration. Consider a deformation 7:# » RS represented by

H

y(z) =z +u

~

Y ), for all z €R, (1.1)

~

which maps R onto its deformation image R£* = ﬁ (R). Here z and y denote the

position vectors relative to a common origin of a material point in the unde-

formed and deformed configurations, respectively. u(z) is the displacement of z.
The mapping (1.1) is assumed to be twice continuously differentiable and inver-

tible on R. The deformation gradient tensor field Fon F is given by the gradient

of {j i.e.

~

Az) =Vy(z) = 1+ Vu(z), for all ze R. (1.2)

~ o~ -~ ~ o~

Deformations of an incompressible body are subject to the constraint

det F(z) =1 on R, (1.3)

which is necessary and sufficient for the deformation to be locally volume

preserving. The left deformation tensor Gis given by

G=Frm (1.4

17or a more detailed discussion of finite elastostatics, see [3] and [4]; for finite anti-plane
shear, see [11] and [27].
The superseript T stands for transpose.



and its three fundamental scalar invarients /;, /; , and /5 are given by
I =trG I, = -%—{(trG)z —tr(G®)] I = detG = 1. (1.5)3

It is easily shown that /; = /; = 3 in the undeformed state, and for all deforma-

tions the inequalities /; = 3 and /7, =3 hold.

Let 7 denote the actual (Cauchy) stress tensor fleld on R*. Balance of

angular momentum requires 7 to be symmetric, i.e.

Let o denote the nominal (Piola) stress field on R defined by
a=z(ﬁ")‘i. (1.7)

It is important to note that although 7 is symmetric, o in general is not. Balance

of linear momentum in the absence of body forces requires
div T = 0 on R*, (1.8)
or, equivalently,

divo=0on kR (1.9)

If S is a portion of the boundary of the region R with normal n, and if S*is

its deformation image with normal n°, then it can be shown using (1.7) that

373, the third invariant of G, is identically unity due to the incompressibility constraint (1.3).



Tn*=0o0on S’ifandonly ifon=00n S (1.10)

Thus, a portion of the boundary of R’ is free of actual tractions provided the
nominal traction vanishes on its preimage in the boundary of A.

The mechanical response of the homogeneous, isotropic, incompressible
elastic body is characterized by a strain energy density W per unit undeformed
volume. More precisely, W is a scalar-valued function of the first two invariants

of G, ie. W:[3,0)x [3,=)>[0,»), is three times continuously differentiable on its

domain of definition, and satisfies W(3,3) = 0. The corresponding constitutive

law is

aw
r=2{ et My _o61-p, (1.10)%
4 al, ~ T aL via T TR

which, in view of (1.7), assumes the following equivalent form,

3w oW
g =2[gF+ 5~ (L 1 - GF-p(fN, (1.12)
l 2 L) ~ ~ ~

where 1 is the unit tensor and p is an arbitrary scalar field needed to accomo-

date the incompressibility constraint. If (1.11) is substituted into (1.8), or (1.12)

into (1.9), the result is a system of three coupled nonlinear partial differential

equations for the three components of y (z).

There are, however, special deformations which lead to simpler boundary-
value problems. One of these is anti-plane shear deformations of cylindrical
regions. Take K to be a cylindrical region and choose rectangular cartesian

coordinates (z,;, Zp, Z3) with the z4 -axis parallel to the generators of £. Let [

4See [3], Section 88, Eqn. (86.18).



denote the cross-section of the cylinder in the z3 = 0 plane. A deformation (1.1)

of the form
Y, =T Yy = Zp Y3 =Ty +u(z) z,) (1.13)

is called an anti-plane shear. An example of an anti-plane shear is a simple
shear, lLe.

u{z,.z3) = kxz,;, k = constant. (1.14)
The matrix of components [ Fj;] of the deformation gradient tensor # and [ G;;] of
the left deformation tensor G in the underlying cartesian frame in the special

case of anti-plane shear are

I 1 0 0 1 o Uy ~
[Fl=1 0 1 0fL[Gs]=|0 1 Ug ' (1.15)°
u; up 1 u, uy l+u Ptug?

It is readily observed that the incompressibility constraint (1.3) is satisfied and

the first invarient /; of G is given by
I, =3+ [Vul? (1.16)

where

Vi (2 =, (1.17)8

SA subseript preceded by a commaea indicates partial differentiation with respect to the
corresponding x-coordinaze.

8Greek subscripts have the range 1,2 while Latin subscripts {to appear shortly) take the
value 1,2,3. Repeated subscripts are summed over the appropriate range.
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When the Cauchy or Piola stresses associated with the deformation {1.13)
are determined from the constitutive law (1.11) or (1.12) and then substituted
into the appropriate form of the equilibrium equations {1.8) or (1.9). a set of
three differential equations for the two unknown scalar fields p and u results.
These equations are not in general consistent unless the strain energy density

function W is suitably restricted. Such restrictions are derived in [28].

A subclass of functions W that admits nontrivial states of anti-plane shear
consists of those functions W that depend only on the first invarient /,. The
analysis presented in this paper will be restricted to those incompressible elas-
tic materials whose strain energy functions W are of this type. When this is the

case, the constitutive equations {1.11) and (1.12) reduce with the aid of (1.8)

and (1.9) to

p =W ([ +do(zg +u) +d,,

T3a = Tag = O3a = RW'([})U,q,

Oaz = [RW'(}) + do(za + u) + d]u,,
Tag = Oag = —[do(Tg +u) + d;]644
Tag = RW'([))|Vu [? — do(zg + u) ~d,,
o33 = — [do(zg + u) + ],

(1.18)7

where d; and dg are constants and 6,5 is the Kronecker delta. Moreover, the set
of three differential equations for p and « can be consistently reduced to a sin-

gle one for u on the two-dimensional domain D,

[2W(3 + Vu|?)u,,|q =dgon D (1.19)

7Henceforth, primes on W wil indicate differentiations with respect to the argument of W.
This notation will also be used for all functions of a single argument.



oy
fu—

Thus far, the only requirement imposed on W is that it be three times con-
tinuously differentiable on the interval [3, =) and the W(3) = 0. Further restric-
tions must be placed on W to ensure physically realistic stress fields. These res-
trictions are most readily interpreted if, for the moment, the region # is taken
to be the unit cube lying in the first quadrant of a rectangular cartesian coordi-
nate frame with one vertex at the origin as shown in Figure 1. Let the cube be
subject to the simple shear (1.14). The shear stress 73, in view of {1.18), is

given by
Taz = T(k) = M(k)k, ~oo<k <oo, (1.20)

where
M(k) =2W(3 + k%), M(0) = u, (1.21)

is the (secant) modulus of shear at an amount of shear k and w is the
infinitesmal shear modulus (upon linearization for small k, (1.20) becomes
T = pk). Intuitively, only a positive shearing stress T3, can produce a positive

amount of shear k in a solid. Thus, it is reasonable to require M(k) > 0 for all k,

or, equivalently,
W'(l,) > 0, for [, = 3. (1.22)8

This restriction on W will be in force throughout the analysis presented here. A
material will be said to be softening in shear if #'(k) <0 for all k > 0 and har-

dening in shear if #'(k) > 0 for all k > 0. A material will be called elliptic if
T k) = 2W(3 + k?) + 4k2W" (3 + k?) > 0, —o<k <o, (1.23)

so that the function ?(lc) is monotone strictly increasing on its domain of
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definition. Condition (1.22) and (1.23) assure that the second order quasi-linear
partial differential equation (1.19) is elliptic® at every solution u and at every

point (z,,z;). A material will be called uniformly elliptic if its shear stress

response function (k) satisfies a slightly stronger condition than (1.23) above,

namely,
kT'(k) = cT(k), for all k=0, (1.24)

for some positive constant c¢. This condition implies that 7'(k) > 0 for all k and
that T(=) = =. When (1.22) and (1.24) hold 7 = T(k) can be inverted to give k as

an odd, monotone, strictly increasing function of 7.k =k (7) with k(=) = =, In

addition, when (1.22) and (1.24) hold, (1.19) is uniformly elliptic.!®

In certain circumstances, W will be required to satisfy the following growth

condition:

lim » o« W (/) = . (1.25)
I

This condition, roughly speaking, says that as the amount of deformation as

measured by |Vu | gets large, so does the strain energy density.

An example of a strain energy density function capable of conforming to
the previous definitions and restrictions is the power law function first intro-

duced in [11] and given by

8This assures that the Baker-Ericksen inequality holds for the materials considered. The
Baker-Ericksen inequaiity holds if and only if the greatest principal stress occurs in the
direction of the greatest principal stretch (see [3]). It reduces to W'(/,)>0 for /,>3 in
the present circumstances.

9This is in accordance with standard definition. See p. 203 of [28].

10See p. 203 of [29].
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ML) = L i1+ -0, -9) - 1y, (1.26)

where u.b,n are positive constants. The functions T(k) and M(k) are given by

7 () = (s ¢ ZREnik, H(E) = p(1 + kE, (1.27)

and 7'(k) and #M'(k) are given by

Tlk) = (1 + kDL (20— 1) k2],
, , (1.28)
H{k) = pln=1)(1 + k)2 2k

Clearly (1.22) and (1.25) are satisfied. Also, the material hardens in shear if n >

1 and softens in shear if n < 1, the case n = 1 corresponding to a neo-Hookean

1
+

> but is uniformly elliptic only

material. Finally, the material is elliptic when n =

when n > é— Figure 2 shows a graph of 7(k) for various values of the hardening

parameter n.

Finally, there is associated with equation {1.19) a path independent integral
similar in structure to those used by Rice [30], Hutchinson [20] and [31], and
Knowles and Sternberg [32]) and [33]. If C is a simple closed curve which,
together with its interior, lies entirely in the domain D in which u is a twice con-
tinuously differentiable solution of (1.19), it can easily be shown using the diver-

gence theorem that

-1 ) )
f{—é—W(S + VDR, - W(3 + Vu|Pu, ugng + dounglds =0, (1.29)
c

where s is the arc length and n is the unit normal vector on C. This integral was
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applied by Knowles to the crack problem analyzed in {11] to determine an ampli-
tude factor left undetermined from an asymptotic analysis of the displacement
field near the tip of a crack, provided the remote loading is "small". It will be

used in what follows to obtain information about |Vu | in the vicinity of the crack

tip.
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2 The Crack Problem and the Associated Small-Scale Nonlinear Crack Problem

The two-dimensional region 0 is now taken to be the exterior of a line-
segment of length 2c¢ centered on the z,- axis as shown in Figure 3. The crack
problem consists of finding an anti-plane shear on K which leaves the plane sur-
face of the crack traction free. In view of (1.10) and (1.18), this free-surface

condition holds if and only if

dy=d, =0, (2.1)
and
u,p =0 at zp = 0%, —~c<z,<c. (2.2)
Equations (1.18) for the true and nominal stress reduce under (2.1) to

T3a = Tay = Ugq = Ugg ~ 2W'(3 + !Vufz)u'“'
Tag = Tag = 0, ' <2.8)
7‘33=2W'(3+ ivufz)wuéz- 033:0

In addition to the free-surface condition the displacement field at infinity should

approach that of a simple shear parallel to the crack surface and perpendicular

to the cross-section 7.

u=kzy +0(l) as z,z,->, (2.4)

where k is a constant specifying the amount of shear at infinity. The governing

partial differential equation (1.19) in accordance with (2.1) becomes

W3+ Vu|®u..],=0on D (2.5)



The solution w to the boundary-value problem characterized by (2.2), (2.4),

and (2.5) is required to be twice continuously differentiable on D and bounded
within any circle of finite radius centered at either crack tip.

If one wishes to determine the effect of a traction-free hole instead of a
crack on a field of finite simple shear, one retains (2.4) and (2.5) and replaces

the boundary condition (2.2) of the crack problem by
du ~
s OonT, (2.6)

where [' is the simple closed curve forming the boundary of the hole and g—:% is

the derivative of © normal to .
As explained by Knowles [11], the crack problem posed above has a fluid
mechanical interpretation. Let g, be an arbitrary constant whose physical

dimensions are those of velocity, and let & be the velocity potential defined by
¢ =qou (2.7)11

It then follows from (2.2), (2.4), and (2.5) that ¢ is a solution to the following

boundary-value problem:

(W3 +49%/98) ®,la=00nD,
¢, =0atzy =0%f~c<z <c,and (2.8)

b =kqou +0(1)as z,z, o

where g = |Vd/| is the speed of a fluid particle. The above boundary-value

11The fact that 1, and hence $, are single-valued corresponds to circulation-free flow.
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problem for & can also be derived in the context of compressible flow theory.
Consider the steady, irrotational flow of an inviscid compressible fluid past a flat
plate at a 90° angle of attack with a free stream speed of kgy. If the density-

speed relation that characterizes the fluid is given by

p= fg— W3 +q2/ q8). (2.9)

then the resulting boundary-value problem is precisely (2.8). In addition, the
anti-plane shear problem in which the stress concentrator is a hole rather than
a crack, so that (2.6) replaces (2.2), corresponds to flow past an obstacle of
profile .

When the stress concentrator is a sufficiently smooth hole and the material
is uniformly elliptic, one can apply the results of Shiffman [18], Bers [13], and
Finn and Gilbarg [15] to infer the existence and uniqueness of the solution to
the problem. However, because their results apply to flows over profiles I that
are, among other things, simple closed Jordan arcs, they cannot be applied to
the crack problem. Moreover, the methods used by them, which include
pseude-analytic functions, quasi-conformal mappings, maximum and com-
parison principles, and variational principles, are not directly applicable to the
crack problem due to the (anticipated) singularity of Vu at the crack tips. A dis-
cussion and extensive list of references concerning boundary-value problems in

unbounded domains may be found in Section 49 of [34].

The boundary-value problem (2.2), (2.4), and (2.5) is one of considerable
complexity and has thus far eluded exact closed form solution for a general
elliptic material. For a power law material defined by (1.28) the behavior of the

solution near a crack tip has been analyzed by Knowles in [11]. At present, only
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the problem for a neo-Hookean material has an exact closed form global solu-
tion. Some understanding of the problem may be gained by formally linearizing
the differential equation (2.5) under the assumption that |Vu |<<1. When this is
done the resulting linear boundary-value problem is an elementary one for
Laplace's equation!? and is mathematically identical to the problem of steady,
irrotational flow of an inviscid, incompressible fluid past a flat plate of width 2¢

at an angle of attack of 90°. In the flow, problem u is identified with the velocity

potential and k with the free stream speed. The exact solution « to the linear-
ized problem may be found in standard textbooks such as [17] and [18]. If r and
¥ are polar coordinates at the right crack tip, the linearized solution exhibits

the following asymptotic behavior:

°

u = k(Rer)!/? sin g—- + o(ri/2),

° °

w, = —kc(zcr)‘l/zsing* +o(rV®) u, = ke (Zcr)‘lfzcos-g; +0(r~1/2) (2.10)

as 7 -0, uniformly in d<[-m ]

o

It is important to notice that |Vu| becomes unbounded as r tends to zero, con-

°

tradicting the underlying assumption that |Yu| << 1.

If the prescribed shear at infinity k appearing in (2.4) is small in com-

o

parison with unity, the linearized solution u can be expected to furnish a good
approximation except near the crack tips, where nonlinear effects must dom-

inate. In order to investigate these nonlinear effects near a crack tip, say the

12%hen W(/,) is given by (1.26) with n = 1, (2.5) reduces exactly rather than approximately
to Laplace’s equation.
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right one, the neighborhood of that crack tip is "magnified” by replacing the ori-
ginal domain D by a new domain D consisting of the points exterior to the half-

axis z, = 0, z, = 0. This half-axis, representing a semi-infinite crack, is required

to be traction free so that
uy=0atz;=0%z,<0. (2.11)
The full nonlinear equation (2.5) is retained, i.e.

[RW(3+ |Vu|®u,]l,=0o0n . (2.12)

o

To connect the approximation to the original crack problem furnished by u
away from the crack tips with the approximation near the right tip furnished by
a solution u to (2.11) and (2.12), the following matching process is used. When
the amount of shear at infinity k is small, « and its first partial derivatives must

satisfy in addition to (2.11) and (2.12) the condition that far away from the

°

crack tip they must tend to the asymptotic forms {2.10) near the crack tip of u

and its first partial derivatives. Thus, if r, are polar coordinates at the origin

of 15 so that

z, =7 cosV, x, =7 sin Y, r>0, —m<I<, (2.13)13

u is required to satisfy the matching conditions
= 172 gin B 172
u =k (2er)/?sin 7t o(rl/?),
= ¢ g 2 (p—1/2 = -1/2 ks -1/2) {2 1
u, = —kc{2cr) sinZ- + o(r ) u g = kc(Rcer) cos-2—-+o(r ).(R.14)

as r»e, uniformly in S —-m m].
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The problem of finding a solution u to (2.11), (2.12), and (2.14) which is twice
continuously differentiable on D, bounded near the origin, and which has the
property that 2 and u , tend to limiting values on the crack faces z; = 0%, z,<0
will be referred to as problem P,{u). This is the small-scale nonlinear crack
problem posed by Knowles in [11] and solved exactly by him for elliptic materi-
als, i.e. materials satisfying (1.23).

The uniqueness issue for problem P,{x) is still unresolved. It is, however,
possible to prove uniqueness if u is required to satisfy conditions that are more
restrictive than those of problem P,(u). Let ph= f (z1.22) | 2220, 2,7 + 2,° # 0
so that p* consists of all points lying on or above the z,-axis except for the ori-
gin. Similarly, let D be the set of points lying on or below the z,-axis except
for the origin. The more restrictive version of problem P,(u), to be referred to

as problem Pp(u) (see figure 4), consists of finding a scalar field u such that

we DY) ncud) n c?D),
(W(3+ [Vul®)u,]a=00n D, and (2.15)

ug, =0 at zp = 0%, 2, <0,

satisfies the matching condition

u =k(2cr)!/? sin -g— +0(1),

u, = —kc(Rcr) /2 sin -g— +0(r 1) uy = kc{2cr) /2 cos -g—+ o{r-1),} (2.16)

as -, uniformly in ¥ €[-m,r],

and the crack tip conditions

13% = mwhenz; <0and Zp = 0%, 8=—mwhenz,<0andz5 = 0.
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for every M>0, there exists a 6>0, (2.17)
such that [Vu |[>M for all 0<r <4, and for all 9€]-m,n],

where r, ¥ are the polar coordinates (2.13), and

2W'(3 + |Vu?)|Vu|r? 53—-(-1:—) = 0(1). as 7~0, uniformly in ¥ €/-m 7). (2.18)
There is one final condition that the first derivatives of u must satisfy, which
may be stated as follows. Given u satisfying the first of (2.15), compute its first
partial derivatives u ,(z,,z3) and u(z,,z,), and using the notation D* =
{(r,9)|r>0,-m<¥<n} and D* = {(r.8)|r>0,—n<B<n] define the transformation

T.D% > R®by & = T,(r.¥) = u (rcosV,7sind), £ = To(r,8) = u p(rcosd, rsing).
The transformation T, which is C(D%)NCY(D*) by the first of (2.15), is required

to be one-to-one on % and have nonvanishing Jacobian at each point of D*.
This final condition on the first derivatives of u will be referred to as the hodo-

graph condition. It follows from standard theorems that T is an open mapping
and the Thas an inverse T1€C{T{D*%)) N\ CH{T{D*)).

Conditions (2.15) are identical to those appearing in problem P,(u). The
matching condition (2.18) is more restrictive than its counterpart (2.14) in
problem P,(u) since the order of the error between v and its leading asymptotic
behavior (and similarly for its first derivates) as r»= is more restrictive. The
crack tip condition (2.17) says that |Vu| is unbounded (uniformly in ¥)in the
neighborhood of the crack tip. The possibility of dropping this condition is
investigated in Section 5. It will be shown for an elliptic material that (2.17) and
(2.18) imply u is bounded near the crack tip. Thus, any solution to problem

Py(w) will be a solution to problem P,{u). The hodograph condition makes it
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possible to use the hodograph transformation as a tool for proving uniqueness.

Several properties of any solution to problem P,(u) can be deduced

directly from (2.15) through (2.18) and the hodograph condition.

Claim 1. Let u satisfy (2.17) and (2.18) and let the material be elliptic., Then u is

bounded near the crack tip.

Proof. (2.17) implies that there exist positive constants a and #, such that

|Vu(r 8)|>a, for 0<r<7,, —~r<B<m. (2.19)
(2.18) can be stated as follows: there exist positive constants 7, and K such that

(2w (3 + jVu[z)‘{Vu[rzaa;—(%-){sK, for 0<r<7,, —n<B¥<m, (2.20)

(2.19) and (2.20) along with {1.20), (1.21), and (1.22) imply

gi(l‘—)gs—:—[f——-—, O<Lr<r, —n<d<m, (.21)
T 27 (|Vu )

where ¥ = min(#,7;). Since T (k) is a monotone increasing function of k, (2.19)

and (2.21) imply

L 0<r<T, —n<d<. (2.22)

Let r, and 7, be such that 0<7r,<r,<F. Integrating (2.22) from r, to r, yields

Ko, wn®) wrd) | k11 o0
L _ Y SIS S

P~ Ty T T2 T Ta) T T2
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0<7r <Tra<LF, —m<Y<m,

which upon rearrangement yields

o~ T ~
—K/7(a) + —u(ry3) + K/ 7(a)] < u(r, )
2

~~ T - ~
< K/7(a) + ;—i—tu(rz,'&) - K/ 1(a)], (2.24)

0<r, <1< T, -nsd=sm.

/

Fix r3. Then (2.24) implies that u(r,,4) is bounded for 0<r,<r,, —n<d< 1.

Claim 2. Let u satisfy (2.17) and (2.18) and let the material be uniformly elliptic.

Then u = o(1) as 7 -0, uniformly in €[ —m ]

Proof. (2.17), (2.18), and T(=) = = imply that

r2 éa?-( %) = 0(1) as r-0, uniformly in d€[-m,m]. (2.25)

Let £ > 0 be arbitrary. By (2.25) and (2.17) there exist ¥ > 0 and a > 0 such that

—-&/2=<r? 5%—(3—:—)58/2. and

\Vu(r ¥)| >a, for OKr<7, -n<¥ < (2.28)

Let 7, and 7, be such that 0<r,<r,<7. Dividing (2.26) through by 7? and

integrating from 7, to 7, yields,

il 1 u(re8) u(r,¥)
(e —— + —)S —

£ 1
Ty T Ty T, = 2 (= * 1)' (2.27)
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0<r <ro<7, —m<d<m.
Rearrangement of (2.27) yields

T

L, 7
‘—'U,\Tg.'a) -
T2

Lty cur ) s ) ¢ S (-2, (2.28)
2 b T2 . 2 T2 |

O0<r <Ta<T, —n<y<T,

Using the inequalities

_7'1 w(ry )| — (1-—-)< —u(rz'zﬁ) é_(l-—:-:_}'

Ty ; £ Ty £ T (2.29)
7y Uira®) 5—@—-——)_ 7y | ulre®) ]+ (1=,
with (2.28) yields
£ 8! u(rz, V)| £
u(r,¥)| < 21 u(ry )| + 2(1—5)57” °—;2—— > (2.30)

0<r <T3<T, —n<P<T,

Fix 75, Let K= max |Vu(ry;,8)(>0 by the second of (2.26). Then, (2.30) implies
—rsdsw

u(r,9)| <7, K + &/2, 0<r <r,, —n<B=m. (2.31)

This in turn implies
u(r,9)i<e for 0<r <min{ 5= ZK T3), —m<8<m, (2.32)

which completes the proof.
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Claim 3. Let u satisfy (2.17) and (2.18) and let the material be uniformly elliptic.
Moreover, let the shear modulus M(k) defined by (1.21) be bounded for all k.

Then Org = a{r™1) as -0, uniformly in B[ -], where

o iny O . . A
Org = 2W'(3+ Vi ?) 2o ege isa component of the nominal stress tensor in
=z ar

~r ~~Z

the orthonormal basis (e , e. e ) associated with a cylindrical coordinate sys-
~Z

~r

tem, 14

Before proceeding with a proof of this claim, we make two remarks. First, M(k)
is bounded for all softening materials since (1.21), (1.22), and M'(k)<0 for ail
k>0 imply that 0<M(k)< u for all k. Not all hardening materials, however, have a
bounded M{k). The power law material given by (1.26), for example, hardens for
n>1, but M(k) is not bounded for all k. Second, if the forces on a wedge in the
domain J with vertex at the crack tip are considered, the result of claim 3
implies that there is no concentrated shear force at the tip of‘the wedge. More
precisely, it the wedge is described by {{r ,49)|0<r<F, 8,<8<8,] where r, 3§ are

plane polar coordinates and 7 > 0 and —n<¥,<¥,<m are constants, then claim 3

2

implies that the shear force at the tip of the wedge F = limfa,, rdd = 0.
r-0%

Proof. (2.17) and (2.:8) imply there exist constants K>0, a>0, and 7>0 such that

-K= 2W'(8+;Vu§2)§Vu§(r%1:— ~u)< K,

Vul{r 8} >a, for 0<r <7, ~n<l<n, (2.33)

147 discussion of orthogonal curvilinear coordinates and transformation formulas to them
from cartesian coordinates can be found in Appendix II of [35].
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Rearrangement of the above and (1.21) imply
—K/ |Vu| + M(|Vul)u S g7 < K/ V| + H(|Vu)u, (2.34)
Q<r<r, —n<d=<m,
This in turn implies

10,7 < K/ |Vu| + M|V )|, (2.35)

The right hand side of the above inequality is o(1) as -0, uniformly in 9€[-m, 7],

since M(|Vu|) is bounded and both 1/{Vu| and [u|, by applying claim 2, are o(1)

as -0, uniformly in ¥€[~m,w]. Hence, a,,zo(%_—) as -0, uniformly in 9€[-n,7].

Claim 4. Let (2.15) and {2.16) hold. Then
”
-i—pckz sf[-%—W(SHVu(rﬂ){z) + W(3+|Vu(r 8)(2)|Vu(r 8)[Rlrds, (2.38)
-

for all »>0.

P
i
_)

Moreover, if W is an elliptic power law material so that (1.28) holds with nzz

then the assumption that |Vu| = o(r-1/2n) contradicts (2.36), and hence this

behavior of Vi | near the crack tip is excluded.

Inequality (2.36) clearly implies that [Vu| cannot be bounded near the ori-

gin.1®> Moreover, it restricts the rate of growth of [Vu| as 7-0, and this
o

15This does not exclude the possibility that | Vi {7,8)| remains bounded as the origin is ap-
proached along certain rays ¥ = constant and hence does not imply (2.17).
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restriction does depend on the function W. When W is given by (1.28), the res-

triction can be explicitly determined.

Proof. Since (2.15) holds, (1.29) holds with dq = 0. Choose the simple closed
curve C to consist of circles C; and (. of radii 7>r>0, respectively, centered at
the crack tip, "slit” by the crack, and connected by linear portions I, running
along the upper crack face and ['_ running along the lower crack face, as shown

in Figure 5. Make the following definition

Jir) = }[—%W(BHVu(r,ﬂ)iz)cosﬂ (2.37)

—W(3+|Vu(r 8) 2 (r 8) g—:—(r,ﬂ)]rdﬂ.

Then, (2.37), the third of (2.15), and (1.29) with a=1 and C the path just

described imply
J(7) = J(z), for any F>r>0, (2.38)

so that J(r) is independent of r. J(r) can be calculated by using (2.18) in (2.37)

and taking the limit as 7 tends to infinity. Doing this yields

J(r) = i—p,ckz(>0). (2.39)

The use of (1.17), (1.22), (2.38), (.39), and standard inequalities yield the fol-

lowing chain of inequalities

0< i—p,ckz = J{r)
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(3+|Vu(r 9)|2)cos8—W' (3+|Vu(r,8) [B)u ,(r 8) _‘("' ¥)Jrd3|

™
1
= Jlz"

m
</ ;— (3+Tu(r 8) 2)cosd=H'(3+|Tu(r) (2w, (r.8) THr 8) [rds

”

sfﬂ —é—-W(BﬂVu(r,ﬁ)}z)coszﬂ

~1t

+ =W (B4 Tulr 8) 2, (r8) 2o ) | Jras

Jiiws vutr 8)[2)lcosB | +H'(3+ Vu(r 8)[2) | = ,(r 8) 2(r 9) | Irds

(2.40)

T

sf[

-

W(3+|Vu(r 8)|2) + W (3+|Vu(r,9)|?)|Vu(r.§)R]rdy,

I\‘)lw

which implies (2.36)
Suppose now that ¥ is given by (1.28) with nzé— and |Vu(r,9)|=o(r-1/2n) as

r-0, uniformly in ¥€[—m,m]. Let £>0 be arbitrary. Then there exists 7>0 such

that
(Vu(r 8)| < (e/ 7)1/ for O<r<7, —n<d<m. (2.41)
Also, make the following definition
G(k) = ZW(3+k?) + -é—?(lc)k, k=0, (2.42)
where T(k) is given by (1.20). By direct calculation
(2.43)

G'lk) = W‘(3+k2)k+—é—
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where equality holds only if k=0. Thus, G(k) is a nondecreasing function for
k=0,

This along with (2.41) implies

G(1vu(r.8)1) s Gl(s/ 7))

R T SN SUR R e S B b Evisnnat (B (
26 iil"'n (r) Jn=-13 + 5 LIt (r) J (T) n, (2.44)

- byE g b
_Qb(n 'r+2<n) ‘T+g(7')

lim
where g(r) has the property that r-0 rg{r) = 0. Thus

J G lyras < 2l A Dy L Bynoy (2.45)

-

+ 2nrg (r), O<r <7, —n<¥<m.

The right hand side of (2.45) can be made arbitrarily small by first choosing ¢

and then r sufficiently small. This contradicts (2.36), completing the proof.

Claim 5. Let u be a solution to problem Py{u) for a uniformly elliptic material.
Also, assume that u is antisymmetric with respect to the =z,-axis, ie.
u(z, ~z5)=-u(z,.z;) on J and w(zx,,07) = ~u(z,,0%) for z,<0. Define

u”on H ={(z, z,)| —w<z <=, £,<0} as follows:

u, for (z,.z)eH N0,
u~ =¢ u(z,,07), for £,<0, z,=0, (2.48)

0, for z,=z2,=0.
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Thenuw~€C(H~) and u <0 on H~.

The proof of this claim makes use of the following theorem of Herzog [36]'4 :

Theorem. Let H be an unbounded domain contained in a half space of R?®. Let

8.4(D;.P2)€C(IR?) be four functions satisfying
@as(P1.P2)iakis>0 for all real u,,u; (not all zero) (2.47)
and all (p,.p,)€R?,

and

@ag = @g, and the determinant of the [a,g] (2.48)

‘is identically one on R?.

Assume u<C? (H) satisfies the inequality

@op(u 1(Z1.22). U 2(T1,Z22))U 45(%1.22)20 in A, (R.49)

and the upper limit of u{z,,z;) is nonpositive as (z,,z,) approaches any point on

the boundary of H. Then, if

lim sup Ms 0, (R.50)
T -»00 T
where M(r)=inf u(z, z,) for (z,°+z§)1/? =r, (z,,z,)€H, it follows that u(z,,z,)<0

throughout H. The proof of this theorem and extensions to unbounded domains

14For a list of references on theorems of Phragmen-Lindeléf type, see [37].
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H of higher dimensions can be found in [36]. The proof relies on a general com-
parison theorem for second order quasi-linear elliptic operators (a discussion of

comparison principles may be found in [29] and [38]).

Proof of Claim 5. The first of (2.15) and claim 2 imply ©«~€C(H"). The condition

of antisymmetry implies that u(z,,0) = 0 for £,>0. It will be shown in the next
section that = ,(z;,07)>0 for z,<0. Taking this for granted implies that

u ;7(z,.0)>0 for z,<0 so that u~ is strictly increasing on z,<0. This in turn

implies w~(z,,0)<0 on z,<0 (for if u=(z,,0)=0 for some z,<0 then by the mean

o
- u(z,,0)-u(0,0) -
value theorem u ,~ (£,.0) = 0 <0 for some z,€(z,,0), a contra ~

z,-0
diction ). Thus, u"<0 on the boundary of H~. Moreover, in view of the first of
(2.16), (2.50) is trivially satisfied.
It remains to show that (2.47), (2.48), and (2.49) are satisfied. The second

of (2.15) can be written in the form
ﬂ'—ap(u’l,ulz)u.aﬁ = on ﬁ. (251)

where

[RW(I)+aW ([ ? 4w (I)u u,

Tog] :l AW (L uyug  2WL) AW (L) 2] (2.52)

ey

and /, is given by (1.18). The two eigenvalues A; A of the matrix (2.52) are

A, = 2W(3+]Vu2)>0,

Ap = 2W(3+|Vu|2)+4 W (3+ 1V 2) [Vu 250, (2.53)
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which are positive in view of (1.22) and (1.23). The determinant of the matrix is
det[@,g] = 4 W (3+|Vu [ F'(3+]Vu [2) + 2W"(3+|Vu|?) [Vu 2], (2.54)
which is also positive from (1.22) and {1.23). Let
(aye] = (det[@op]) "1/ 2[dpg]. (.55)
Then, u satisfles
ays(u, up)u.s=0o0n 5, (2.56)

and the a,; satisfy conditions (2.47) and (2.48). The theorem of Herzog can now

be applied to w~ with A = {(z,.z3)| —=<z,<»,x,<0} and the proof is complete.

If Wis given by (1.26) with n = | corresponding to a neo-Hookean material
so that the second of (2.15) reduces to Laplace's equation for the out-of-plane
displacement u, the uniqueness of the solution to problem P,;(u) can be estab-

lished without the use of the hodograph transformation. In fact, in this case,

uniqueness can be established under much less restrictive conditions as follows.

Claim 6. Let the material be neo-Hookean, so that the governing partial
differential equation for u is Laplace’s equation. In addition to (2.15), require u
to be bounded near the crack tip and to satisfy only the first of (2.16). Then the

solution « to this boundary-value problem is unique up to an additive constant.

The proof of this theorem uses techniques similar to those used by Knowles and
Pucik [39] in proving the uniqueness of the solution to a plane strain problem in

linear elasticity.
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Proof. Let u, and u, be two solutions to the boundary-value problem. Then the

difference of these two solutions uw=u,— u, satisfies

wec( BN N D),
%, +u g5 = 0 on D,
u, =0atz, =0% z,<0,

]u}(Monﬁ.

(2.57)

for some M > 0. Let 7,8 be polar coordinates in the plane given by {2.13) and for
any 0<r<7<w let AL = {(r,9)|z<r<F, —n<¥<m]. Let the simple closed curve C
forming the boundary of Af be oriented as shown in Figure 5. Then, using the

second and third of {2.57) and the divergence theorem,

III

{fn -51-1'— r 9] [r 33 (1' ¥) Rlrdsdr

= [z, 2 + [ go(zi2a)F + ulz o) Se.20)

+ g;g‘(zl-xz)]}“

’f —-—-—fu(:z:, 3’2) (-’31 z5)] + “'—{u(zl.zz) .——(21'22)];

=[tm(z122)w mz)——u 22)] + nap(z 2wz, .20) f’“(zl.zan
=f(F)~f(r)=0 (2.58)

where n, and n, are the components of the unit outward normal to Af and

fir)= }u(r,ﬁ) ?—;’_L—(r,ﬂ)rdﬁ. (2.59)
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Note that (2.58) implies that f(r) is nondecreasing as r increases. By direct cal-

culation
%f_-(r";_) = z§{%F,ﬁ)]a + f;: g—::'('f?.ﬂ)]zifdd =17 (2.60)
zz[ %:—(F,ﬂ)]zfdﬂ
and

D) = [USHE P + [ = T 9) s = £ ) (2.61)
2[:[ &z 9) ords
Also, by the Schwartz inequality,
r)jslf‘r (r.8)] zdml/z;fr ——(r,ﬂ)]del/z; (2.62)

Now, f(r) = 0 for all r is shown in two steps.

Step 1. f(r)<0forallr >0.

° e

Assume there exists r > 0 such that f (r) > 0. Then, since f(r) is nonde-

o

creasing, f(r)=f{(r)>0 for all r=r. For 7>z>r, the fourth of (2.57), (2.58), (2.60),

and (2.82) imply
_ - R T
B o)== [Fu(F 9 pds]| [F 5N 8)fas) (2.63)

<2 MRFf (7).
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This implies

P A
SIS e (2.64)

Integration of the above differential inequality from 7, to 7, where r,>7r,>r>r

yields
S B 1 1
2mi? Og"x = [f T2) ¥ Siry) I= f(ry) (2.65)

which can be violated by keeping 7, fixed and taking r; sufficiently large.

Step 2. f(r)=0 for all r>0.

Assume there exists 7 such that f(r)<0. Then, since {(r) is nondecreasing,

0>f(r)=f(r) tor all r=r. For r=F>r>0 the fourth of (2.57), (2.58), (2.61), and

(2.62) imply

B(F L)< 0)s| [z{u(z.9) a8 [z Sz 5)]2d ] (2.66)
<r2nMf'(r).
This implies
L ro)
i ) (2.87)

1 T2 _. 1 1 1 )
2 M2 log T =l J(r2) * f("l)]s fira)’ (2.68)

which can be viclated by keeping r, fixed and taking 7, sufficiently small. The
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results of steps 1 and 2 imply f(r) = 0 for all r > 0. Thus, £(.z) = 0 for all
7>r>0. This implies ET(T“!?) = -5-5-(1‘.13) =0 tor all r > 0, —m<¥<m , which in turn

implies © = constant, completing the proof of the claim.

The techniques used in the preceding proof cannot be applied directly to
the general case of problem P;(u), since there the governing partial differential
equation is nonlinear. However, with the aid of the hodograph transformation,
which is the topic of the next section, these techniques can be used to prove the
uniqueness of the solution to a related linear boundary-value problem which in

turn will imply the uniqueness up to an additive constant of the solution to

problem P,(u).
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3. The Hodograph Transformation

The hodograph transformation is commonly used in the study of second
order quasi-linear partial differential equations. In particular, it has been
applied extensively in the theory of compressible flow (see [12], [22] and the
references cited there). It has been employed in the analysis of crack problems
in[11]and [40]-[42].

Let v be any solution of problem P,{u) on the domain J in the (z,.z,)

-plane, and let
o = ga(zlvzz) = U ,o(z,.23), (zl-zz)Eﬁ' (3.1)

represent a transformation from D into the "hodograph plane"” in which £;.&
are cartesian coordinates. By the hodograph condition of Section 2, this
transformation is one-to-one; let A be the image of D'in the hodograph plane. It
will be shown below that A is the upper half-plane ¢;>0, and that the positive
(negative) £,-axis corresponds to the lower (upper) crack face, and that the ori-
gin and the point at infinity in the hodograph plane are the respective images of

the point at infinity and the origin in the physical plane.

Let the Legendre transform U of u be defined by A by

Ul¢.62) = sz:p(zhzz)"’u(zpzl)'

Zg = Ep(fx:fa)' (¢1.¢2)€A,

(3.2)

where Eﬁ represent the inverse functions associated with (3.1). From (3.1), (3.2)

it in fact follows that

Zq= 7 alt1 k) = %ﬁ—(sl.sg), (€1.62)<A, (3.3)
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and hence from (3.1) - (3.3) that

w(z,zy) = sp%;%&.m ~ Ulety). (61.62)€A. (3.4)

Moreover,

8q _
'5‘;;(21-‘52) = u'aﬁ(zl-zZ)

2 ~
= H(zl»za)saxfpué,??(é;(l(zl«zz)' £2(z1.22)), (3.5)
(xl,zg)Eﬁ,

J

where &, are the components of the two-dimensional alternator

(811 =822 =0, 82 = ~g5; = 1), and
H = u'“u,zz-'u,lgz on D (36)

is the Jacobian of the transformation (3.1). The hodograph condition requires

that H#0 on 0.

The foregoing relations between z,, v, and ¢,, U may be used to transform
problem P,(u) for u into a problem P(U) for U in the hodograph plane. Let (R,¢)

be polar coordinates in the latter plane:
¢, = Keosg, & = Rsing, >0, O<g<m, (3.7)
and let the relations between (r,%) and (R.¢) induced by (3.1) be denoted by
R=R(r8), ¢=p(r8).7=7(Rg), 8 ==8(Rp). (3.8)
From (3.7), (3.1) and {2.:.8) it follows that

R=FR(r8) = Vu(r8) =(2r/ck?) 12 + 0(r~1) as 7+, (3.9)
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-~ .9
cosg(r,9) = —sing + 0(r~1/2), as r -, (3.10)
o~ e - ,
sing (r,8) = cos 5t 0(r-1/2) as r-w, (3.11)

uniformly in $€[—m,m] .

In view of (3.1) and the free-surface conditions of (2.15), we conclude that
¢£,=0 on the hodograph image of each crack face. Conditions (3.9)-(3.11) then
show that in fact the upper crack face maps onto the negative £,-axis #>0,p=m,
while the lower crack face is carried onto the positive £,-axis. Further, (3.2)-
(3.11) show that a neighborhood of infinity in the (z,,z,)-plane is carried onto
the intersection of a neighborhood of ¢, = £ =0 with the upper half of the hodo-
graph plane. Thus, the image A of the cut physical plane D must be a subset of
the upper half of the hodograph plane. We defer until the end of this section a
proof of the fact that A coincides with £,>0, ~wo<¢, < .

Momentarily taking this result for granted, one may now pose the problem
which must be satisfied by U on A. From (3.9)-(3.11), (3.2) and the matching

condition (2.18), one infers that

U(R(r 8)cosg (r8),B(r 8)sing (r,9))

= Lok 222209 4 o(y) (8.12)
R(r.8)
as r -, uniformly in S€[-m, 7]

It follows imrnediately that

U(R.¢) = U(Rcosg, Rsing) = —é—ckz-c—cg-*w—+ a(1),

18
as R-0, uniformly in ¢€[0,7]. (3.13)
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The free surface condition of (2.15) are readily shown from (3.3) to lead to

gé’-(ﬁ,;a) =0, ¢ = 0.R>0 and g=m R>0, (3.14)

while the crack tip condition (2.18) becomes
T(R)U(R.¢) = 0(1) as R, uniformly in ¢<[0,7]. (3.15)

Finally, the differential equation of (2.15) for u may be transformed with the
help of (3.1), (3.5) and the hodograph condition to a differential equation for U.

One finds this equation to be

~p oy RO Ay 80
T(R) Sz (R) + T(R) Ga(Re) +
T(R) #U
- 352 (E,(P) =0, (316)

(R.p)e{(R.¢)| R>0, 0<p<m].

4

Let A, = §(£;.£5) | —=<& <o, £,20, £§+£3#0). One shows readily that U inherits
from u the following smoothness: UcC!(A,)\C?(A). The problem for U
represented by (3.12)-(3.18) will be referred to as problem P(U).

A solution of problem P(U) was constructed in [11] for a special choice of W
and hence for a special T(R). We generalize this solution here to the case of any
W tor which the associated T(R) satisfies the ellipticity condition (1.23). Let

U(R.p) be defined by

1815 order to avoid unduly cumbersome notation, throughout most of this paper the same
functional symbol is employed for functions on [J and their corresponding altered forms
when expressed in terms of polar coordinates. Here the distinction is critical and so
different functional symbo.s are used.



41

U(R,¢) = RI(R)cosyg on A,, (3.17)
where

[R) = uck? [ —2%— g0, (3.18)17

R t27(t)

Since (1.23), (3.18) imply

I(R)< J{QE— (3.19)
R7(R)

one has

| U(R.)| < % . (3.20)
T

so that (3.15) is satisfied. From (3.18) and the nature of 7(R) for small R, one

can show that
I(R) = ck?[1/ (RR?) + (yv/ u)logﬁ? +0(1)] .as R-0, (3.21)
where
y = RW"(3). (3.22)

It follows from (3.21), (3.17) that (3.13) holds. It is easy to verify directly that
the boundary conditions (3.14) and the differential equation {3.16) are satisfied

when U is given by (3.17), (3.18). Thus, U is a solution of problem P(U).

To obtain the solution u of problem Py(u) from U, one first uses (3.3) and

the relation between cartesian and pelar coordinates in each plane to find that

17The convergence of the improper integral is assured by the ellipticity condition (1.22).
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rcos® = I(R) + Rl '(R)cos?y,

rsind = Rl '(R)singcosy, (3.23)

It is possible to prove that {3.23), (3.18) represent a one-to-one map between 4,
and the (z,z;)-plane cut along the nonpositive z;-axis. The polar-coordinate

version of (3.4) is

IE(R(r9), 5(r®))

~U(R(r.8), ¢(r.B)).

wu(rcosd,rsind) = B(r 9)
(3.24)

Equations (3.23), (3.24) determine u implicitly. One can then verify directly
that u is a solution of problem P,{u). Details are similar to those sketched in

[11]. In the following section, we investigate the uniqueness of this solution.

We turn now to the proof that the hodograph image of the physical domain
D is the upper half of the (¢,,¢;)-plane, regardless of which solution of problem
Py{u) is considered, should there be more than one. To this end, we first con-
struct a sequence {(,}7-, of circles centered at the crack tip z,=z,=0 whose
radii 7, decrease monotonically to zero as n-w=, while the minimum value of
{Vu| on C, tends to infinity as n-e. This is possible by (2.17). It follows that the
image curves {C',}5-, in the hodograph plane of the circles {(;]7-; have the fol-
lowing properties: (i)C', is a smooth curve with one end point on the negative £;
-axis, the other on the positive ¢,-axis; (ii) €'y, and C',, do not intersect if n#m;
(iii) the minimum distance from points on ', to the origin §{; = ¢; = 0 is a mono-
tone increasing function of n which tends to infinity as n-»e.

To construct {G,i7-, . let C, be a circle of radius 7,=1 centered at the
crack tip, i.e. Cy = {{r¥)r=r,, —n<d<m|. Let m, = rg‘i?wui. M, = %‘?%Vui, and

(r,.9;) be a point on C, at which m is attained. By (2.17) there exists a positive



43

constant 4, such that [Vu|>M,; for all 0<7r<4§; and for all —m<8<m. Note that

necessarily &,sr, . Now, choose a number r; such that

O<r2<nnn(dl,—21-)smin(r1,-é~. Let C; be a circle of radius r; centered at the

min max
crack tip. Let my=C, [Vu|, M, = Co|Vu| , and (r,, B;) be a point on ¢, at which

m, is attained. Note that mgy>m,. Again by (2.17) there exists a positive con-

stant 8, such that |[Vu|>#M; for all 0<r <4, and for all —n<¥<m. Let Cy be a circle
of radius O<r3<min(dg.é-)snun(r2,%—). Define mgy, M3, and (r3,35) analogous to
mg, Mg, and (r;,8;). Continue this procedure, constructing circles G, with radii
T, that decrease monotonically as n increases.

As a result of the above procedure, one obtains a sequence of points

{(rn.¥n)in=1. the polar coordinates of a sequence of points in the physical plane,
each lying on C,. Since O<rn§Hnn(rn_l,i—) for each n, the sequence of numbers

{Tninm=) decreases strictly to zero. In view of (2.17), this in turn implies that the
strictly increasing sequence {m,}ys., approaches infinity. The final result of the
above procedure is the construction of a sequence of circles with properties
(i)-(iii) above.

A similar argument using the large r conditions (3.9)-(3.11) can be used to
construct a sequence of circles [, centered at the crack tip, whose radii strictly
increase from one (thus I'| coincides with C;) to infinity and on which the max-
imum value of the modulus of the gradient attained tends monotonically to zero
as n-= The image of each circle [, is a simple smooth curve [, in the hodo-
graph plane with one end on the positive ¢,-axis, the other in £,<0, & = 0.
Furthermore, if A>M,, then the minimum distance between the semicircle
Cp={{£.£5) (£3+¢£5)/% = B, £,>01 and ", strictly increases with n from (B-H,)

to A.
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Figure 8 shows the circles C, and [, , while Figure 7 shows their images C',
and I, in the hodograph plane. It then follows from the assumed properties of
the hodograph transformation that A must be the upper half of the hodograph

plane.
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4. Uniqueness

In the previous section, it was shown that any solution to problem P,{u)
posed in the physical plane has a Legendre transform U satisfying problem P(U)
in the upper half of the hodograph plane. In this section the uniqueness of the
solution up to an additive constant to problems P(U) and P,{(u) both for an

elliptic material satisfying the growth condition (1.25) will be established.

Let the material be elliptic, so that (1.23) holds, and satisfy the growth con-
dition (1.25). Suppose u, and u, are both solutions to problem P,{u). It then
follows that their respective Legendre transforms U,. and U, are solutions to
problem P(U) and their difference U = U, — U, is a solution to problem P(U)
with boundary condition (3.12) being replaced by U = 0(1) as £ - 0, uniformly in
9€[0,m]. Hence, to prove that the solution to problem P(U) is unique up to an

additive constant, it suffices to prove the fcllowing:

Theorem.
Let
A = {(£1.€2)| ~<t <=, £>0]
and
By = {(£1.62) —=<€ <0, €220, £,2+£,2#0],
Let

UeC(bo) M CR(4)

be a scalar valued function satisfying the following four conditions,

2717 7
() 2W'(3+R2)R%}—?%(R,go) ¢ [2W(3+R2) + 42 W"(3+R2)]—g—1%(R,;p) (4.1)
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2
FSI2W (34 RR) + 4R W"(3+R2)]%¢—{2]—(}?.¢) =0,

RL
/ U _ -
(d) 5;—(}?,;0) =0 for ¢ =0.m, >0, : (4.2)
(c) U(R.p)=0(1), as R->0, uniformly in ¢<[0,7] . (4.3)
(d) 2W' (3+R2)RU(R.¢) = 0(1), as F-=, uniformly in ¢€[0,n], (4.4)

where (R,¢) are the polar coordinates of (£,,£;) given by (3.7) and We(C?([3,=))
satisfies (1.21), (1.23), and (1.25). Then U is constant on A. The proof uses the
"energy integral” approach and shares some features with the proof presented
in [38] for plane crack problems in linear elastostatics. It is, however, essen-

tially different from that in [39] and contains several new twists.

Proof. The partial differential equation (4.1) can be rewritten in the form

L[U] = [2 W’(3+R2)R (R @)] + a‘; {2 (3+R?) (4.5)
+4R? W”(3+R2)]-1[-?-Q—;-J-(E,¢); -

Let R and £ satisfy 0<f<R<= and let A§= {(R.¢)| E<R<R, 0<p<n}. Using (4.5),

(4.2), and the divergence theorem gives

[_EZW'(3+R2)R[%1—?—(E p)]° + —[W'/3+R2)+2R2W” 3+R2)][ L ro)}d
Ag

2w 3+1?2)R[ P o) + ~—-[W"3+R2)+2}?2W 3+R2)][ (R.o)]°

m\

+ UL[U]idA

___f/__@._{gW'(3+RE)HU(R.¢)2%(R¢)]
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8 , . 2w 1 auU .
5;3[2W(3+R Y+4REW \3+R2)]};U(R,<p)a—¢—(1?,¢)§/d,4

= /2 W'(3+§2)§%%<§,¢)U(§.¢)d¢ —-{2W'(8+32)E%%(E.¢)U(E.cp)d;a.
0

Make the following two definitions:

¢(Ry) = 2W(B+ROR[SH(R )] + 2w (3+R2)
+ 2w 3+ R[S R
F(R) = { 2W'(3+R2)H%RQ{R,¢)U(H.¢)¢¢ .

These definitions used in {4.8) give

m
m\ Y

of e(p.¢)dyldp = F(R) — F(E) =0, 0<RE<R,

(4.7)

(4.8)

(4.9)

since the restrictions (1.22) and (1.23) on ¥ imply that e(R,¢)=0 on A, and

e{R,¢) = 0 if and only if g—g'(f?,;o) = gg-(}?,gp) =0. (4.9) in turn implies

F(R)> F(E), 0<KRE<RE ;ie. Fis nondecreasing on (0,=) ,

ks

RE) = {e(ﬁ,w)dsp = F'(R)

3ie

n
> ] —%R,o) 12w (@3+R)Rdp =0, R>0,
o]

aE }?E) fe (B.p)dp = F'(R)

(4.10)

(4.11)
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Also, it follows from the Schwarz inequality that

FR) s [R(22(Rr0)) 2 (34 RR)d]
Q

x [ [Rr( U(R,;o))ez W(3+R?)dy
0

1% r>0.

E.¢)]22 W(3+K)Rdyg =0, B>0.

(4.13)

The next step is to show that F{®)=0 for all #>0. This is done by contradiction.

Thus, assume there exist >0 such that F(®)<0. Then, since (4.10) implies

F{R)<F(R)<O0 for all R<(0,R) it follows that

0< E(R.E) = F(R) — F(E) < —F(R) for all E<(0.R) .

Squaring yields,

0 < E?(R.E) < F*(R)

<[ JR(352p) 2w asmiag][ [R(U&p) 2W 3+ £p]

using (4.13);

< [-—%(ﬁ.&)][z&( U(R.) 2 (3+EDdp] .
using (4.12);

= [F'(E)][ZE(L/’(EW)ZE W(3+E2)dy] .

using (4.12) again;

(4.14)
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< [F(R)][BrM?bg], (4.15)
where
bg= sup RW(3+K%) >0, (4.18)
Re(0,B)
sup
p€[0,n]

Note that the existence of M (as a finite real number) is assured by (4.3). Rear-

rangement of terms in (4.15) gives

L _FUR) -
Brbp < F ) M? . B<(0.R) . (4.18)

Integrating (4.18) from R, to Rs; where O<1?1<R2<1_?-yie1ds

1 2 M? M? M? )
mog 8 R, = TRt FR) - T FRy (4.19)
or,
TTMsz'
0 < ~F(Ry) s ——% . (4.20)
2
log 2

Inequality (4.20) is violated if M =0 or can violated if # >0 by taking F,

sufficiently small. Thus,
F(RY=0 , forallR>0. (4.21)

The final step involves showing that E(R.£) = 0 for all 0 < £ < R, from which it
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immediately follows from the definition of E(R.R) given by (4.9) that e(R.¢) = 0

on A,, which in turn implies U is constant on A,. To this end (4.9) and (4.21)

imply
0< E(R.R) = F(R) — F(R) < F(R) , RE(R,=) . (4.22)
Squaring (4.22) and using (4.11) and (4.13) yields the chain of inequalities

0 < E*(R.R) < F*(R)

3R
OB F ) L [[eW(3+B)RU(R ) g

R 2w (3+RHR 4 ' '

aF , = mZ2n
< R Rl 2W(3+RA)R’ (4.23)

where
= e 2 BHRIRIU(RS) 2 0. (2.24)
p€[0,m]

Again, note that the existence of m (as a finite real number) is assured by (4.4).
The differential inequality (4.23) implies £(R E)=0 for all 0<E<FE. For if there
exists F;>£ such that F£(R, £)>0, then (4.11) implies E(EE)ZE(RI,E) for all
ﬁzﬁl so that for any F;>FR,, integrating the following rearrangement of the

differential inequality (4.23)
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8F , =
27 51-:(1?"&)
RW(3+R°)R <€mPm ——=— 4.25
( ) AR (4.25)
gives
= R=Rz 4 R’—"Rg
W@+R*) | =m?r[——="] |
b )gig, m#n E(R.E) ]}7-_11?1
1 1 m2m
=m?2 - < :
" ERD T R - ERLE (4.26)
or equivalently,
2
0< E(RLE) < men (4.27)

W(3+R.2)—W(3+R,?)

Inequality (4.27) is violated if m = 0 or can be violated if m > 0 by taking R,

sufficiently large. Thus, E’(l?,E)=O for all 0<E<R, and the theorem is proved.

Now, if two solutions U, and U, to problem P(U) differ by a constant and
upon inversion yield two solutions u; and u, to problem Py(u), then u, and u,
must differ by that same constant. A glance at (3.3) shows that the functions
relating points in the physical plane to points in the hodograph plane are invari-
ant and respect to the addition of a constant to a solution U. In addition (3.4)
shows that adding a constant to a solution U results in adding that same con-
stant to the function uv. Thus, two solutions to problem Py(u) can differ by at
most a constant, completing the proof of uniqueness for the solution of problem

Pz('!l-)
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5. Fstimates for the Modulus of the Displacement Gradient

The uniqueness theorem for problem Pp(u) would be considerably more
valuable if condition (2.17) could be derived instead of assumed. Recall that
condition (2.17) made it possible to determine the region A into which the region
D is transformed by (3.1). The present section investigates the possibility of
dropping condition (2.17) in problem P,(u). The principal tool used in this
investigation is a comparison principle for second order quasi-linear elliptic
operator (a discussion of comparison principles may be found in [29] and [38]).
Comparison principles have been used extensively in the theory of subsonic flow
and in some cases have been used to establish the uniqueness of boundary-
value problems directly, i.e. without the use of the hodograph transformation,
(see, for example, [43] and [44] and the references cited therein). They have
recently been used in finite anti-plane shear problems to derive boundary stress
estimates. In [45], for example, an estimate for the nonvanishing component of
the stress tensor 73, at the traction free long sides of a semi-infinite strip
loaded at the short side was derived. In [46] an estimate of T = (7g,% + T92%)1/?
at the free surface of a circular hole in an infinite body was derived. In what fol-
lows, a stress estimate like the preceding examples is derived along the crack
faces, and this in turn yields information concerning the behavior of |Vu| along
the crack faces. Certain facts about the behavior of |Vu| as the crack tip is
approached are also derived. The investigation, however, falls just short of its
ultimate goal of deriving (2.17).

Denote by problem Ps(u) problem Py{(u) with condition (2.17) deleted and

(2.16) replaced by

u = k(2cr)t/? sin-g--i- o{1),
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) (8.1)

"1|r»

1
u, = —kc(Rer) /2 sing- + 0(-1-_-). U, = kc(Rer) /2 cosg- +of
all as 7 -, uniformly in ¥.

These slightly stronger conditions are needed in order to apply the comparison
principle mentioned previously. One can verify that the solution to Py(u) given
by (3.23) and (3.24) satisfles (5.1).

Application of the comparison principle requires Dirichlet boundary condi-
tions, and therefore it cannot be applied directly to problem P3g{u). However, as
done in [45] and [46] problem Ps(u) for a uniformly elliptic material with a
bounded shear modulus M(k) can be converted to an equivalent problem for a
related function v which is of the Dirichlet type. For a uniformly elliptic
material with unbounded M(k) the conversion cannot be achieved without a

further restriction on u near the crack tip. It follows from the second of (2.15)

that there is a function u€C‘(ﬁ+)mCI(ﬁ_)(\,Ce(D~) which satisfies
T3a = BW'(S + ivutz)u,a = EhgU g ON D~ (52)

The function v admits an explicit representation in terms of the path indepen-

dent integrall®

0 o
(z1.22)

W(zy22) = [, ao(2H B+ (Tu(E\, 5) 2 o7, Fo)dF, (5.9)

- 2W'(3+|Vu(Z|.2,5)|*)u 1 (£,.2,)dE,],

18The path independence of the integral (5.3) follows from the second of (2.15).
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o [+] 9 9
where (z),zp) is an arbitrary fixed reference point at which v(z,,z,) is assigned

the value zero. From (5.2) and (1.20), one infers
T(|Vul) = |Vu|,
which upon inversion yields
IVu| = k(7).

Equations (5.2) can now be rewritten as

1
Uy =

= EagV g
2wk (wl)) T

It then follows that v satisfies the differential equation

I

U.a}.a = O

Qu —Z
2W(3+E (Vo))

(5.4)

(5.5)

(5.6)

(5.7)

which is elliptic on D since (1.22) and (1.24) hold. For future purposes it is con-

venient to express (5.1), (6.2), and (5.7) in polar coordinates (2.13). These

expressions are, respectively,

u = Ar"zsin%-o- a{l),

ou _ A ey Bty A e B 1
W - o7 sm2+o(r), 35 - 3" c032+o(¢).

all as 7 »=, uniformly in 9€]—m,m], where A4 = k(2c)!/?,

2W'(3+!Vu§2)%u;_—= = gqu—-
1 du v

' ! By = - 2L
2W(3+,Vu; r615 67"

(5.8)

(5.9)
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9 . 1 v 1 1 du
W= o wl T ~ o 010
RW'(3+k (|Vv])) W (3+k ([Vv]))
19, 1 ORI
2 aag - 2 =
T80 Taw(3+k (Ivu)))
The free surface condition u »{(z,,0%), £,<0 , along with (5.2) implies
v (z,,0%) =0, z,<0, {5.11)
so that
v{z,.0*) =c* v(z,,07) =c~, z,<0, (5.12)

where ¢t and ¢~ are constants. That ¢* = ¢~ can be shown as follows. Let C be
the closed contour consisting of two circles Cr and C, of radii 7 and r, respec-
tively, with 7 > r > O centered at the crack tip and regarded as slit by the nega-
tive z;-axis, joined by a line segment ['* running along the upper crack face and
a line segment I'_ running along the lower crack face. Let C be oriented as
shown in Figure 5 and let Af be the area enclosed by C. Integrating the second
of (2.15) over Af and using the divergence theorem with the third of (2.15) yields

0= [12W(3+|Vu|Du 4] d4 = [12W(3+|V [R)u 4]n ds (5.13)
A:t c

= [2W(3+IVu|2u n,ds + 2 (3+|Vu|?)u 4n.ds,

cr ‘z
where n, are the components of the outward normal to A7 . The conditions (5.8)

imply

2
Vu(r8) = f—r— + 0(r 3/2) as r-e, uniformly in 9€[-m, 7], (5.14)
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so that
1 .
RW(3+|Vu(r8)?) = u + D(;—), as 7 -»»,uniformly in $€]~m,r], (5.15)
and thus

.
J2W(3+]Vu 2w gnds = [2H(3+|Vu(F8)12) %%F.ﬂ)’?dﬂ

cF I

=#T[HO(%)][g-(ﬂ"’zsin—g-w(i:)]r‘dzs (5.186)

-~

=uf[§{r‘)1/2smg-+ 0(1)]d® = o(1)

all as 7-e, uniformly in ¥<[-m,m].

(5.16) and (5.13) then imply

™
S2w (3+|Vu(r,8)|3)r %’;r‘—(r,ﬂ)das =0, for all 7>0. (5.17)

Now, (5.12) is equivalent to the polar coordinate form

v(r,m) =c* vir,—m) =c~, r>0. This implies

° du —

f—a-g—(r,d)dzﬂ =y(r.8)—c-,

T for all 7>0, (5.18)
g—;—(r,g)d‘z;: —(r 8)+ct,

d-\:z

Adding the above two equations, making use of the first of (5.9), and then (5.17)

gives
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ct—c r8)d8 = [2W(3+|Vu(r 8)%)r %’:—(r,{i)de? =0.  (5.19)

i
1
4o
2@
IR

Q 9
Thus, ¢* = ¢~ as claimed. For convenience, the reference point (z,,z,) will be

taken to be a point on the upper crack face. It then follows that
v(z,,0%*) =v(z,,07) =0, z,<0. (5.20)

It would be desirable to show for all uniformly elliptic materials that

lim
(z1,22)~(0,0) V{T1.Z2) =0, (5.21)
(z1.z2)eD
so that v would then satisfy
v(z,0) =0, z,<0. (5.22)

While (5.21) can be derived for a uniformly elliptic material with bounded shear
modulus M(k), it cannot be derived for a uniformly elliptic material with
unbounded M(k). For this case (5.21) must bve assumed, and this in turn puts an
additional restriction on the behavior of Vu near the origin. Fortunately, the
solution to problem Ps(u) given by (3.23) and (3.24) does yield a function v

which satisfies (5.21).

To determine v(z,,z;) choose a path between {z,,z,) and (:;1,.;2) like this: go
from (z,,z3) to a point on the upper crack face along a circular arc [, centered
at the origin of radius r and then proceed to (;1,2072) along the upper crack face.
This linear portion of the path contributes nothing to the integral (5.3) defining
v due to the free surface condition. Thus, in terms of polar coordinates, v is

given by
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"
v(rs) = = [2#(3+|Pu(r.8)[r L (r 5)aF (5.23)
3

If M(k) is bounded, Claim 3, Section 2, and (5.23) above imply (5.21). For any
uniformly elliptic material the solution given by (3.23) and (3.24) can be shown

to satisfy {(5.21) as follows:

2H(3+Vu(r8) |2 | 2r 3)| < 2W (3+[Vu(r 8)[?) (Vu(r.8)ir  (5.24)

= T(|Vu(r8))r = T(R)r (R.¢).

where (R.9) are polar coordinates in the hodograph plane determined by (3.23)

and 7 is given by (1.20). Using (3.23 ) gives
2
r (R.¢) = [{(R)+Rl '(R)cos?g? + [RI '(R)singcosyg]? (5.25)
< B(R) + 2R?[I (R)]?,

since I(R) given by (3.18) has the properties I(R) > 0 and /'(R) < 0 for all R > 0.

Simple computation of /7 '{R) and (3.19) yield

P(R)+2R*[I(R))? < [—f{iz—]z + 2RZ[~E-‘1;1 - 3[1‘%55—]2. (5.28)
R7(R) R 2R R7(R)

(5.25) and (5.28) together yield

r(Ry)r(R) < M—@—k————f—i— = a(1), as R~e=, uniformly in ¢€[0,7], (5.27)

which upon inversion to the physical plane implies

T{Vu(r 9))r = o(1) as -0, uniformly in se[-m 7). (5.28)
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Finally, (5.28) along with (5.23) imply (5.21), the desired result.

The conversion of the condition (5.8) as r »= to a condition on v is straight

forward. Integration of the first of (5.9) from - to ¥ yields

,6 —
vird) —vir,-m = f%“-‘l'—r‘/zsing—dg {5.29)
-

s
+ f[z W‘(3+}Vu('r,z‘i‘)jz)r%r,§)~%ﬁ-rl’zsm%}da

-

Now, (5.14), (5.15), and (5.8) imply

2W'(3+§Vu(r,19)i2)r%ru— (r8) - -‘%l‘—rvasmg- = o(1), (5.30)

as 7 -, uniformly in €[ —m,m],

so that the second integral appearing in (5.29) is o(l) as r -, uniformly in
Ye[-mm]. This combined with the fact that v(r,—m) = 0 gives the following far

field condition for v:
v(rg) = -Ap.r‘/"’cos-g— + 0(1), as r-e=, uniformly in 8€[~m,x]. (5.31)

Thus, the differential equation (5.10) together with the boundary conditions
(5.22) and (5.31) compose a boundary-value problem for v on D, henceforth
referred to as problem P(v).

Having arrived at a Dirichlet problem for v, the stage is now set for the
application of a comparison principle for second order quasi-linear elliptic
operators, namely Theorem 9.2, p. 207, of [29]. A version of that theorem

sufficient for the present purpose is as follows:
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Comparison Principle. Let (! be a bounded domain in RZ Let

Qw = a,a(w ; wz)Ww 4 be elliptic at every point in (1 and for every function
wel?(Q) where a,€CY(R?). If uv eC(M)NC?(Q) satisfy Qu=Qu in O and u<v on
80, thenu < v in Q.19

Define the comparison function w~ by

~1/2 '&‘ X, ~
Wz, 25) = -AuF ¥z, 0) cos Lk o

~ 5.32

w{(z,,z3) =0 on 3D, ( )
where r=r(z,.z,) and $=9(z,.z;) are the polar coordinates (2.13) of z, and z,
and 80 ={(z,.x;)| ,<0, 2,=0}. Note w-eC(D)NC? D) and w~=v on 87. Using
the definition of the quasi-linear elliptic operator Q given by (5.10), it is easily

shown that

Ap 1 Ap s o
) cos = on D, (5.33)
/2 ~2 7 3/2
_T 2W (3+k (zfua)) ar 2

Qu ™ = Y(

where

2
_ 4Bk (1) o

o (k" (7). (5.34)
W (3+k (1))

¥(7) =

The properties of the function & (7), (1.22), and the definitions of a hardening

and softening material imply that ¥(7) has the following two properties:

(i) for a hardening material, ¥{7)<0 for all >0,
(5.35)
(i1) for a softening material, ¥(7)>0 for all 7>0.

180) and 80 denote the closure and boundary, respectively, of the point set {). [t can be
shown that } = QM8
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For a power law material whose strain energy function W is given by (1.26),

bk?
+(2n —1)bk?

(k) = y(T(k)) = 2(1 -n) = . (5.36)

which for a hardening material (n > 1) is negative for all k and for a softening

material (é—sn < 1) is positive for all k. Henceforth restricting the analysis

involving w~ to hardening materials, (5.33) - {5.35) imply
Qw-<0onf. (5.37)

Since v(r,¥) —w~(r,Y¥) = a(l) as r =, uniformly in ¥9€[—m, 7], there exists for any

given £>0, a number r.>0 such that

w(r8) + e =v(r8), for r=r,, —m<g<m, (5.38)

Let O, = ﬁm§(zl,z2)10<(r§+z§)1/2<7~8§, Then, it easily follows that

&

w(r¥) + &= vu(r8)on dl,, (5.39)

where 80, = {(z,.2,)| (z8+28)/2 =, or —r,<z,<0, z, = 0}. Also, (5.10) and

(5.37) imply
Qw +g) = Quw-<0on D. (5.40)

(5.39) and (5.40), the assumption that v satisfies problem P{v), and the com-

parison principle imply
w(r8) + e>v(r8)on J,, (5.41)
which along with (5.38) implies

w(rs)+e=u(r8)onD. (5.42)
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Since £ > 0 is arbitrary, it follows from (5.42) that
w(rd)=v(r8)onD. (5.43)

This inequality will be analyzed later concerning its implications for the
behaviar of [Vu| as the origin is approached from within B. To derive boundary
gradient and stress estimates from (5.43) let A>0 be given and formulate the
difference quotient

m—A
cos

v(r.m) —u{r.n-4) _ _ v(r.m-4) e 2
A = A > Aur A , >0, (5.44)

Taking the limit as A goes to zero through positive values yields

-;.1—- —g%;—(r,yr) > .42&.7.—1/2. r>0. (5.45)

In view of (5.5), this implies lim |Vu(r,m)| = =. Repeating the above procedure at
r=0

¥=~m yields lim |Vu(r,—7)| = =. an estimate for the stress 7q, on the upper
=0

crack face is obtained by combining (5.45), (2.3), and the third of (2.15) with the

first of (5.9).

_Ap

T (5.46)

~rou(r.m) = 2W (3 +(2er 1)) 2ot m) =

- "7'5"1“ —Huokean(r .TT). r>0,

where 7§fo Hooksan is the 74, component of the stress tensor associated with the
solution of problem Pz(u) given by (3.23) and (3.24) for a neo-Hookean material.

Thus, (5.48) is a statement of the physically plausible result that |7g,| along the
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upper crack face is larger for a hardening material than for a neo-Hookean
material.
To derive estimates similar to (5.45) and (5.46) for a softening material,

one must consider the comparison function w*eC(J) N C?¥(J) defined by

/72 ’5'(21932) ~

wH(z,,z,) = Ap,;l (z,.z3) cos 5 (5.47)

w*{z,,z3) =0on 8D,

where, as before, 7 = 7(z,.z;) and ¥ = 9 (z,,z,) are the polar coordinates (2.13)

of z, and z;. It can be easily shown that

Au 1 Au 9 ~
Quw* = —y( ) cos = on [, (5.48)
2W'(3+k (—E‘-—aruz))
which along with the second of (5.35) implies
Qw*< 0 on [, (5.49)

for a softening material. In view of (5.31) and (5.47), there exists for any given

£>0, a number r.> 0 such that
wHr 8)+e = —wv(r3d), for r=r,, —n<d<m. (5.50)
Defining [7,, and 6D~£ as before {(see the discussion adjacent to (5.39)) one has
w(r 8)+e > —v(r,8) on 80, (5.51)
Also, (5.10) and (5.49) imply

Qw* +&) = Qw*<0on D, (5.52)
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while the assumption that v satisfies problem P(v) implies

j. (5.53)

(5.51) and (5.52), the assumption that v satisfies problem P(v), (5.53), and the

comparison principle imply

wHr8) + &= —v(r¥) on D, (5.54)
which along with (5.50) and the fact that £>0 is arbitrary yields
(5.55)

u(r8) > —w*{r¥)on D.

To obtain an upper bound for v, one observes from (5.47) and (5.31) that there

exists a number 7,>0 such that

wH(r B) > v(r B), r2r, -n<d<mn, (5.56)

so that

wH(r8) = v(r¥)ondl,. (5.57)

(5.52), (5.53), (5.56), (5.57), the assumption that v satisfies problem P(v), and

the comparison principle imply

w*(r8)=v(r8)on . (5.58)
Following the same procedure leading to (5.45), (5.55) and (5.58) gives
Ap 1 8v __Au -
512 = =3 (r.m= o1/ , 7>0. (5.59)
‘/,. . . 1 a‘l} / H Iy 4
It must be noted that (5.59) implies that 1—7;— B—G—\r,n)f can "blow up” at a rate no
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greater than 772 as r-0; E;l_— R—(r,n)} can remain bounded as r-0. Thus,

whereas for a hardening material it can be <concluded that

;1.- %—(r,ﬁ)%,i%(r.n)i. and |Vu(r,m)| all become unbounded as r-0, no such

conclusion can be reached for a softening material. (5.59) and the first of (5.9)

yield the estimate for 73, on the upper crack face

|Tar(r.m)| < = |rppo—Hooksan| (5.60)

_Aap
2,.1/2

The above estimate, which holds for a softening material, is again consistent
with physical intuition.

At this point it would be desirable to show that |Vu| tends to infinity as the
origin is approached from within 1) using standard techniques for obtaining
interior gradient estimates, some of which are described in [29]. Attempts at
doing this have so far proved unsuccessful. What can be shown is that along
each ray eminating from the origin and extending into J (i.e. for each ¥€(-m,m))
there exists a sequence of points whose polar coordinates are given by
{(rn®)in=1 tending to the origin with the property that |Vu(r,,d)| becomes

unbounded as n tends to infinity. The proof is based on (5.43) and proceeds as

v,

ar {r 8) can be considered as functions of

follows. Since ¥ is fixed, v(r,8) and

the single variable 7. Then, v€C([0,=)) "\ C!{({(0,=)) with v(0) = 0. Let {{(7,.9){2,
be the polar coordinates of a sequence of points tending to the origin along a
particular ray. Thus, {r,]7=; is a sequence of real numbers tending to zero asn

n=1

tends to infinity. By the mean value theorem

v(f,) —v(0) =vu(r,) = %1:7 (Th)Tn. for some r,€(0,7,). (5.61)
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It is crucial to remark that Tn in general will depend both on ¥ and 7,. (5.61)

along with (5.43) yields

v (T,
g%(?”n) = (T-n) < -Au(ﬁ;)"’zcosg. (5.62)

Since lim 7, =0 and 0<r,<7, hold, lim r, =0, implying with (5.62) that

7L >0 T —voo

1im%—rz(r,,,1$) = —, The relation between |Vu| and |Vv| given by (5.5) and the

Ti v

formula |Vu| = [(%:—)2 + (71_— %}2]1/2 then imply that lim |Vu(r,,8)| = .

T ~vas

The preceding result only makes use of the fact that the function v satisfies
(5.43). The fact that v is a solution to problem P(v) was not used directly. It
may be possible to use (5.43) in conjunction with other properties of solutions
to problem P(v) to obtain the desired result. This possibility has not been

thoroughly investigated.
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Conclusion

The existence and uniqueness of the solution to a more restrictive version
of the small-scale nonlinear crack problem first introduced by Knowles [11] has
been established. These restrictions allow the uniqueness part of the proof to
be carried out using simple techniques. The exact solution to the original ver-
sion of the small-scale nonlinear crack problem was shown to be an exact solu-

tion to the more restrictive version.

The ultimate goal would be to establish the existence and uniqueness of the
solution to the original version of the small-scale nonlinear crack problem with
the fewest additional restrictions. Dropping the requirement that |Vu | becomes
unbounded at the crack tip seems most promising. It would also be desirable to
impose a crack tip condition that has a direct physical interpretation such as
the requirement of bounded displacement. Perhaps the uniqueness of the solu-
tion to the original small-scale nonlinear crack problem can be established
directly, without the use of the hodograph transformation, by first applying the
theory of quasi-conformal mappings anq pseudo-analytic functions to a
sufficiently nice portion of the cracked body to avoid difficulties presented by
potential singularities and then letting the area of that part increase, eventually
covering the entire body. It may also be possible to extend the results obtained
in the context of compressible flow over a sufficiently smooth bounded body to

the present case. Still other approaches may be possible.

The small-scale nonlinear crack problem is a very difficult one to analyze
because of the geometry of the body and the singularities at the crack tip.
Although the results of this investigation rely on a large number of hypotheses,
some of which ideally should be derived rather than assumed, they do provide a

first step toward resclving a very important issue.
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