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ABSTRACT

Approximate solutions for the excitation of an atom
by a colliding charged pasrticle, developed as perturbations
of the state of the system at infinite or asymptotic sepa-
ration of atom and particle and also as perturbations of
the state of the system at vanishing velocity of relative
motion, are extended, in the impact parameter form (suit-
able to collision of heavy particles), to include the inter-
action of states that are degenerate at asymptotic separa-
tion, and to obtain thereby a condition for the Born approxi-
mation that depends on the vhase reiations of degenerate
states in the collision énd excludes the low veloclity region
to the Born approkimation, except for the excitation of S
states. This is a correction of previous theorlies, wnich
conclude that the Born solution is a general approximation
at low velocities for weak interactions.

A low veloclity perturbation solution is established in
terms of the stationary states of the system and developed
to show that, at sufficiently low velocity of relative mo-
tion, the atomic states are coupled to the moving psrticle
in the range of interaction. Differences in coupling energy
affect the coherence of asymptotically-degenerate states in
the collision and influence the orientations of final excited

states.



l. Introduction.

At low velocities of collision, the electronic state
of an atom 1s considerably altered by the presence of the
colliding charged system or particle and becomes the very
slowly changing state assoclated with & nearly stationary
incident charge as the velocity approaches zero. These
stationary states are appropriate bases for a perturbation
theory of the collision and excitation of atoms for low
relative velocity.

Two supplementary theories of collision have been de-
veloped in terms of statlonary states: one by Mott"1in the
approximate impact parameter form where the relative state
of motion is assumed to be constant; and the other by Mott
and Massey in the form of scattered wave motions. Both
developments conclude that, for weak interaction, the ap-
proximate or perturbation solutions at low velocities become
the famlliar Born approximation of the high velocity region.
Applications of the theories to specific collisions have
been made by Frame@in the Mott impact parameter form, which
is appropriate to the ccllision of heavy particles, and by
Massey and Smithin the complete scattering form.

Neilther the theories nor applications develop the
properties of the stationary states on which they are based,
and in consequence, are not complete and contain errors.

The conclusion that the Born approximation appears for weak
interaction is, in general, incorrect.

The purpose of the thesis 1s to make a more exhaustive



analysis of the low velocity collision, to establish the
important coupling property of stationary states at low
veloclties, and to show that, except for S state excitations,
the Born approximation is limited by a veloclty effect and
does not appear for weak interactions at low velocities,

For this study, the collision 1s taken to occur between
an atom and a charged particle with a spherically symmetric
field.

The Hamiltonian of the equation of motion may be separ-
ated into three parts representing the energy of relative
motion, the energy of the atomic state, and the energy of
interaction. Eigenfuntions of the first Hamiltonian oper-
ator are plane waves, and of the gecond operator are asympto=
tic states of the atom at asymptotic or infinite separation
of atom and particle. Eigenfunctiors of the second and third
operators are stationary atomic states which appear at vanishe
ing velocity of the relative motion of stom and particle.
Both asymptotic state and stationary state functions form
complete sets for the electronic variables of the atom, and
the collision may be described in terms of each set.

In the development of the theory, the collision is
first described in the impact parameter form in which the
state of relative motion is assumed constant and the equation
of motion reduces to an equation for the electronic state
of the atom under the influence of a moving charge. In this
form, a perturbation solution is developed in terms oI asymp=
totic states in order to establish a velocity-dependent

condition of validity and to obtain approximate forms of
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solution (elaborations of the Born expression) comparable to
the stationary state forms. The equation of motion is then
developed in terms of stationary states to obtain approxi-

mate solutions for low velocities and, in addition, for weak
Iinteractions for comparison with the asymptotic state forms.

A perturbation solution is next developed for the
complete equation of motion in terms of stationary states
with assoclated wave functions of relatlive action.

In the following arrangement of the theory, the general
forms of the equation of motion together with the approxi-
mate solutions for the excltation or S5 states are well<known
exovressions. The svecial place of the S state excitation
and the developments which concern tne excitation of non-5
states at low velocitles may be considered the contribution

of the thesis,



2. The equation of motion
The solution of the collision and excitation problem

is the solution of the quantum mechanical equation

(Hy#H+ V)P =iF 5 g (")

where the terms of the Hamiltonlian are grouped to form parts
representing the atomic state H,(%) , the state of relative
motion of atom and incident particle (@ in a center of
mass system, and their interaction Wi%), and where the wave
function ¢ (T%t) for the system of particles satisfies the
boundary condition of assoclating a plane-wave relative
motion with the initial ground state of the atom at asympto-

tic separation of atom and particle, where V-0 .



3. The approximate equations of motion in the impact para-
meter form
Writing the solution of (/) in the form

Et

= frmett® R (2)

where the plane wave e ® is the initial state of relative
motion and E 1is the total energy, the equation (1 ) takes
the form 3 , e
(-2 07 + Hor V) f = (B + thy &) f0R) (3)
where B=E}~§§ is the energy of the initial ground state.

If the reduced mass M 1s taken to be arbitrarily large such
that the term g%ﬁf is relatively negligible, an assumption
that does not violate the boundary conditions, the equation

(3) may be written in the approximate form

(HrV)(f ') = ifu d (F <5 7)

o ST _1_@;_
in the form
[Ho7) +ViER)]F = thus & FEA) (5]

This is an equation for the electronic state of the system
in which it is assumed that energy changes from the initial
value E, are balanced by negligibly small changes in the
state of relative motion. Since VA7) contains no deriva-
tives in the relative coordinate @ , the solution of (5 )
may be constructed as a sequence of states for a constant

value of x and y , beginning with an initial state at z-=-»



Since V=0 at z--« , the initial atomic state is isolated,
and, with no distinction between x and y values, the constant
parameter becomes #,=V*+y* =1n*-z2 , Hence, the state of the
system 1s independently established on each straight line
defined by an impact parameter n, .

Writing z-=ut and transforming the equation (5 ) to the
form

(Ha +V) U= z"ﬁé% V(A7) wiTH  a=yrg+zx (6)
the equation of motion can be interpreted as a description
of the electronic state undef the influence of a classical
charged particle moving with constant velocity on a straight
line separated from the atom center by the impact parameter
distance r, « The impact parameter equation (6 ) is an ap=-
propriate equation of motion for the electronic interaction
with very heavy particles, although 1t is also a suiltable
approximation wherever the effect of the term gggﬁi is
relatively negligible. The derivation of (6 ) is equivalent
to the derivation by Mott?

The solution of equation (6 ) is the rrobability ampli-
tude of the electronic state and must, therefore, satisfy the
relation

[gu* P ) dr, = | (7)
for each value of 7 , where the integration is over the space
of all electrons, represented here by the single notation 7, .

For the values t-*o on a given path n , (6 ) becomes

Ho@) Faw = fha% Ptoo 0, 7)



with a solution that may be written as a linear combination
of the individual solutions 4%maéf%t where the functions
Ul y defined by
Ho d= Bttt and [ 9f gmdte=dun ()
and the polar orientation of the set, are the asymptotic
states of the isolated atom, which have a spatial degeneracy
agssoclated with the arbitrary direction of the angular mo-

mentum components.



4, The asymptotic state representation of the solution and
the asymptotic state or Born approximation in the impact

varameter form.

(a) the equation of motion in terms of asymptotic states
If the solution of the equation of motion (6} for a
given impact parameter 1s expressed in terms of the complete

set of asymptotic states ¥, 1in the form

Ent
§ =L tant) pale T

n

then the sum is a solution with constent coefficients at
asymptotic separation and a solution otherwise for coeffi-
clents satisfying the set of equations

[’(A)-nmt

Gulrot) = 7/ Vi (R) dmt) € (10)
m

obtained by substituting (9) in (6 ) and using (8 ), where
Vm03=/#ZMﬁa)%M@hha and wnm=-5g¥;l , and the additional re-
lation %ﬁmn”mﬂfzz [ (i)
obtained from (7 ). The solution of the problem is the solu=-
tion of this infinite set of linear equations for the bound-
ary condition that the initial atomic state is the ground
state Yl or [&(m, «)|=1,

Because of the spatial degeneracy of the functions vy, ,
the forms of the terms in (9 ) depend on the orientation of
the asymptotic atomic states, but since this 1is arbitrary,
the form of ¢ should be independent of the orientation.

That is, distinguishing the members of a degenerate group by

superscripts such that Moy = E )0
8



the form of ofit and of ¢y¥#) will depend on the relative
directions of the polar orientation and the particle path,
Put the expression
CUTERT I T T )
should be invariant, for the degenerate states (§3), of one
orientation are unitary transformations of the degenerate
states (yY), of a second orientation, such that
(") = @)y + @ (wi)y+ e
and (12 ) may be written
- Eq , E
(0 (e + @@+ )& T = (B, hE B )T F
so that any chosen set of states may be reduced to another.
Consequently, an exact solution of (/0) is independent of
the orientation of states, but an approximate solution may
not be, and for this reason the condition of invariance 1is
a measure of its validity.
(b) an approximate solution for the perturbation of an initial
state
If the interaction V(#R) has the effect of a perturba-
tion of an initial, spherically symmetric, ground state
such that lewl=~1 and according to (Jl),7éya¢ﬂﬁz<! or
la, (0] << | (nro) |, then the solution may be obtained by means

of successive approximations. In the first approximstion

to (10), the equation for the coefficient a,¢) becomes

g, 4 % Vo (R) @, = 0 (14)
T
. - 3 f\/ () ¢t
with the solution Q=e HhJ 700 (15)

where t=0 marks a convenlent phase,



For an excited S state, the approximate equation is

s j wWspt
@+%wgmm5=7%%ﬂme%%o (16)

which, substituting from (15), becomes

t
2 (e “fvﬁ(n)dt ] = & Ve et T 'ﬁL[(VSS_V””)dt

s A

- | Vglride [ 9 4 7 | VeV )dz

with the solution a® = e /55 L@//%gme i ﬁ”l (17)
@

This 1s sufficiently small if the velocity is sufficiently

large or the interaction sufficiently weak,

For excited states forming degenerate groups, the first

approximation may be written

(" {142 " . zw,wt
r ) t s 2 (7) |
"t V”" " a” + ?Vnn ) Ay~ +-- Ty V“o ()
@) 1' () (1 _I._ (8) e @_ | (2 (Wt
a, + TFTV (R) ay A V,nn (R) an™ + ~ Vno () a, e (16)
@@ +

where the terms of the same energy state are grouped on the
left. If the effect of the non-diagonal terms is relatively

negligible, then the solution of (18 ) becomes

o [ (W o o ﬂ(vm o) d (19
thU’ ” ¢

d, ' (t) = e

If these first order approximations are designated as

4w » then the second order additiocns

l 4 “ A
lﬁV’/ Vﬂm fl) e a*fﬂ(a)(i) dz.

will be assuredly negligible if

7=
| G -
!ﬂf Vam () €

[ Wam z
Vooge| << |



which 1is of the form !an&H<<l . For the neglected degene

erate transitions of (l8) the condition becomes

(lj) .
jﬁy ’h‘l! (r) t

If the elements Mﬂ%m , defined in terms of some arbitrarily

zz | (21)

oriented set (W), , are transformed to the set (), , oriented
to the atom-particle axis, then, since the symmetric interac-
tion V(R%) of a central field particle cannot connect dife

ferent particle-oriented azimuthal states,

(. 0] )
(VnZJ)a = 0; a4y (le? (/U)| L o+ Ay (Vﬂﬂ (”))1 Eah (22)

where the coefficlients g, are functions of the angle be-
tween the polar orientation (), and 7 . Since
Q@4+~ o+ dyly+e =0 and al +- Ayt = (23)
the magnitude of (22) over the possible range of angles is
bounded by the differences
ﬂdfmﬂ,—(V$ ")

so (21) is ensured if 2

s | ()= (4]

&2 | (24)

The forms of the elements V. and V. in the solution
(19) will depend on the orientation of (y), and hence the

invariance of (12) is assured only where

L [V~ (D) ] e
e 0

= | (25)

since, then, the linear group (12) may be formed within the

integral of (19) where, according to (!3) and (23),

VO @)+ o+ V) = Ve -+ (@



The difference | ﬂM4V$% may also be transformed to show
that, according to (23), it is bounded by the angle~indepen-
dent difference (Vﬁm‘ﬂéﬂ , 80 the phase condition (25) may
be put in the form

<< | (26)

= [ 1 Vo=V, | €2

which is practically equivalent to (24} and hence is a condi=-
tion on the effect of the degeneracy of excited states. If
this condition is satisfied, then the cholce of the lower
bound to the phase integral of (19 ) is arbitrary since it has
an appreciable effect only on the magnitude of a constant
rhase for the degenerate set. Writing x@ﬁ for the anglee
independent elements 0@2% , the condition of approximation

may be written , -

)ﬁ%f <'\/Tf:(rc) —vn(r{)(/z)> dz| << | (27)
0

as part of, and in addition to, the condition |Gm®|<«<|
These are conditions for the sufficlency or the first order

approximation and are related to the perturbation condition
2| ant® [F<<
n+0

The condition (27) is ensured for paths that are suf-
ficiently distant ahd velocities that are sufficiently large.
The elements Vs are the electrostatic potentials between
atom and particle, and so the difference wﬁﬁ—~\42 is the
difference in potential for the atom in the states (U),
and (V¥) , in which large contributions such as from the

nuecleus are cancelled. These same nuclear cancellations

occur in the difference Vin—Ve .



The condition l|ax®)l«| for the first order coefficient
has the same velocity dependence as (27) for sufficiently
high velocitlies, but differs in the low velocity region be
cause of the effect of the phase variatlion. Integrating (19)

by parts, the coefficients may be written in the form

2 @)
i L()/ID Fo ey V
o peifine, ifiafy g vl
dz

m(’t) = - E =07 e no W
Bt Vi = Vo En- Eo+VE-y,

dz
(28)

In the region of t=0 and at sufficiently low velocity, the
second term becomes negligible compared to the first, because

of the large variation in the phase factor in the range of

(7]

O Vo

interaction and since %53

1s not singular, and the magnitude

of the first term 1s independent of the velocity. Because

“’ﬂoz——— \L,mdz ;
v f ““ in the range of V0

of the large variation of ¢'
-at sufficlently low velocity and the corresponding negligie=
bility of the second term, the conditions (21) and (25) lead-
ing to (27) are stronger than necessary fof the existence of
the intermediate first order term of (28). However, the

final value of (28) depends on the second term and this, in

turn, depends on (25) and (27).

(c) an illustration of the approximate soclution
Ag an i1llustration of the approximate solution, consider
the P state excitation oi an effectively single electron,

central field atom for which

[{}]

(¥ )e
(%), = T, () sin 6a cos g @)
(w(a)) = fp () sin 6q sin o

]

ﬁ, (n) cos Oq



where the subscript marks some polar reference. Only two
established directions exist, that of £ and that of @ .
Denoting the former reference by the subscript o and the

m

latter by | , so that (;),=fmicoss , etc., and (Y,

)= fp(im cos o, ,

etec., (29) may be written

(7’!/0))4 = cosA( ([))o + SMACOS/’L(%Z)O + sindsing (%m)"
), = sy, + cos heosp i), + cosh singt (y),
(1"(3)) = = 51'11}“%”)0 -+ COSPL(ZP(B))

where the angles A and g relate 0¢ and z . In turn,

(q,r;)) = cos® (if )), — sin& (), ”
W), = sin®cosp (') + cosmcosg (°) — singp@), b ;W—tf, 30)
(‘W) ~ sinssing (%) + cost sing (t}lp) + 60590(4}”) = ; Ibsz z

lg,

where the angles & and ¢ relatex and z . Since, for a
central field particle, V(iZ) is an axially symmetric function

of 2, , and (%), . is defined by (29),
() = Ve and (V)= (V) =0 2

so from (30), (3/), and (32),

(/z))a (cos h cosw + sin A sin @ cos (k-¢)) VP(Z,)(/I)
\/;?(/?)4 =( sind cos® — cosA sin & COS([L-(P)) -Vm(,() (55)
)) =( - sin & sm(fL-Lp)) v(')(m

In these expressions (33) only # and 1¢%ﬂ are functions of
time. Hence, if

= (02,

= |



the coefflclents (19°) become

d e + e (Vo
) = eW/VPP * ,’ [ }\['V wWcosm e o 45 +
vt .
+ +5m2605(/4¢,50)j \/(’)(,Z sinf- e - ﬁvf(vﬁv Vao) 2. . }
and so forth, yielding the gfoup
Yz +—— V-
(lJ(f)(z}/m +Q(Z)(t)(1.}!;,2)) & a(a’(t) 4,(9) - e"ﬁ"’/ #,}[f (f(fl) o5 @ 70@' f PP (11“
vt =0
l —V,, dz
+I1¢:(&)Sl‘nﬁ e 7’ [?Pﬁ )d 'I_(’-)’P Jocos ¢ +(1P(3) 5”“?]}

- 00

wheih 1s independent of A and p if the form Vﬁ taken for
Q¢Qa is independent of ¥ and p . This condition is satis=

fied, according to (29), (30), and (3/), by the average

(Vi = Vi = $[0ht (et 042)] =5 [V + V4]

With this possible invariance established and taking =z
as the most convenlent polar coordinate for the atomic funce
tions, the P state differences (V,')-(Y% ), , according to (29)
and (3!), take the forms

W), = (s - surtoceste) (YY)
(‘4(5’ - (V) = s (costp- sine) (V- V)
(vm) (Vm) (sin*®@ sin*p - cos*m) (V;; = “Vp(;))

i

and 12)
<\/1£P )o= CO5 @ S{1LEB COSY (’\/(” ‘l))

(23) . : n )
(Vo = sinmrsing cosg (Vyp=Tpp)

(\/?(:” ,= C05®@ Sin®sing (V?(; V?P)
‘where the last three expressions are the neglected terms of
(18). Hence, the condition of validity for this development

is equivalent to the condition

<< | (34)

t’mr Vo \/‘”ov) dz



on the upper bound. The coefficients, with the arbitrarye

taken to be zero, become

- o
d%“(‘f’} -K‘[ 1/?;” 10} 05 1 —(%)ng + #,17. (VF(TVOG)dZ
afﬁzkt) = 2 0 l’t’(]/’ V (Siﬂ @') € [} dz (35)

=00

For the hydrogenlike 2P state with nuclear charge Ze

and coulomb particle of charge Ze , the difference

V-V = 22,6 B [1- (g 4 Sor+ 2%+ g 0%+ dre®) ] which may
be approximated by 22 <2 @& [1+@)*]" where o-zZ2 , yielding
J g 324 P P =Zig
WAL
as a maximum value of (34}, %(—Liﬂffig%%F . Curves of

constant value x % are shown

in figure 2. Included are

curves of constant a‘%mm)

for the approximate form g%
10
0 P
V Z»Z] s 4_ (4 7(,?;!_)3/2‘ ° The .
expression 5%££ is of the
U 0

order of the ratio of the ine

ternal electron to the external

particle velocitye.

(d) intermediate behavior of the approximate solution at low
velocity

With the approximate coefficients in the form (28),
the atomic state (9 ) becomes, absorbing the index () inn ,

t

Z
vt L (BB ViV, e
7 = {1# +] el wn] 7?‘[ e Z{ [ 7 il e }* [Pt
Vin=VYso E) B e n
e (E E)(l+ E“—Eo) nE0 ‘-20 * (Eo ETJ('-l—vnEn'VE) <36)

For a sufficiently low velocity, the second sum becomes



relatively negligible in the neighborhood of t-0 , and on
a path sufficiently distant to admit the approximation (28)
at low velocities, !+—lg?£&-: | . Hence, in this region,
subject to the perturbation condition

2
£ e

n#0o

<< | 37)

the intermediate state of (36) is dominated by the behavior

of (¢
— L (B, + Vo)) dt
F o= {wr)l ol e i el G8)

Fo O n

which has the form of the first order perturbation approxis=
mation for the ground state of the atom in the presence of

the stationary charged particle at the separation n , except

. t
: .
-+ [ Viotrdelt Lyt
e ﬁJ%° N o The exprese

that appears in place of

sion (38) represents an atomic state coupled to the slowly
moving particle, and because of the integral form of the
exponent, both members of the equation of motion (6 ) yield
the average

/7,17*(1—1&4— V)P da = 1‘hf¢*aﬁgipdta = E,+ Voo (7)

to the first order inV . At vanishing velocity where x

™, -
S j Vag)dt

1s no longer a function of time, may be written

L Vet
e 7 and (38) becomes identical with the usual station-

ary approximation.



5. The stationary state representation of the solution and
the stationary state approximation in the impact parameter

form,

In order to obtain an approximate sclution in the region
of low velocities, where the asymptotic state approximation
falls, the description 7®A4t) of the electronic state of the
system will be expressed in terms of the complete set of
functions representing the atomic states that come into exis-
tence when the motion of the incident charge becomes vanlshe

ingly small.

(a) a description of stationary states
In the extreme circumstance of vanishing velocity, the

equation of motion (! ), with H:-0O becomes

[Hom) + VEAD] D = th G T (Rat) (39)
with solutions Eow ; 2
< £ - Elodt
Xp(B7) € Y or X () e Jf‘f (40)

where the statlionary states X, elgenfunctions of the equation

[Hoth) + V@7, | Xo= En X (0 ) ()

are the wave functions of the atomic electron in the presence
of the charged particle at «# . In contrast to the asymptotic
states, the stationary states are not spatially degenerate,

being polarized by the central field of the charged particle.



Because of the symmetry of V(i#) about the atom particle axis,

the possible dependence of X, i%) on the azimuthal angle Y

about the axis takes the complex form e 7 or the real form
(ﬁﬁgﬂ) , and since this is independent of V(i%), the 4 -state

persists over the range of separations. The particle~oriented

states X» form a complete set for each value of x , such that
/x:xmdu =S (42)

Since the operators of (4/) are real, the functions X, can be
established in real form.

At asymptotic or infinite separation, (39) becomes
HQ?SG’ == z‘h-éa%' %sm

and the individual solutions

. i Eat B i Enyg
Via)e * — dn(fle
> 00

so that each stationary state 1s identified by its asymptotic
state. In order for X, to be unique, capture of the electron
must be precluded, either by restricting the nearness of ap=
proach or by restricting the descriptions to systems 1n which
the possible binding of electron to particle is weaker than
the atomic bond.

At sufficiently distant separations 2 , X&) and &, o)
may be expressed as perturbations of their asymptotic state
in the forms _ .
Y B7a) = nlTe) + )w—\ﬁ”j%’—%(fz;)w

MmETT n m (45)
Epo=E, + Mat+-



where 1, 1s the state asymptotically approached by X, , have-
ing the same polar orientation, if it is not spherically sym-
metric. According to (4 ) and (8 ), the representation (43)

is valid where

Fec (44)

Vinn
2 ek,

MEN

(b) the equations of motion in terms of stationary states

The impact parameter equation of motion (.6 ) has the
same form as (3 ) but with the auxiliary relation a-{z*+&dj* ,
for which Ho+V , X, , and &, become functions of time, such
that, at each value of t , X, is the eigenfunction of the
operator HA+V  with the eigenvalue &,00) and represents a:
state coupled to the moving particle. Of the two forms (40),
which are equivalent for the system at rest, the second 1is
the more appropriate fqrtthe system in motion. In this form,
a ground state XJEE)Q#_QMMTOT asymptotic spherical symmetry
becomes, at sufficlently large separations for the approximae

tion (43), )
(b ) o +_,.)€~-ﬁ~[(fo+v,,m+-. )t y

which is to be compared with the same approximation (38) ob-
tained at low velocitles in the asymptotic state development.
In terms of stationary states, the general representation

of the atomic state on a given path becomes
fees

. _L é;’(/z)d?i‘
{P = Z/ Co(t) Xn(BRa) e ﬁof

n

20



where s=In*+@t)* and where t-0 marks a convenient phase.
With constant coefficients, this representation becomes a
solution as the velocity approaches zero. Substituting (46)

in (6 ), the equation of motion becomes

-
2 e (o) M@in) € Flawe g (1)
or with (4/) and (42), the set*
(€ Eq)dt
)= —Z Cm (£) (/Xn £ X d“ca) [ )

(¢) an approximate form of the equations for the perturbation
of a ground state
If the operator g has the effect of perturbing an
initial state X, of asymptotic spherical symmetry such that
|e@®|=~! and accordingly 2 la@|<< | , then a first approximation

n#0

may take the form

nogt

C(i‘) ___/(J‘Xﬂl&() XClTa e%—f(&n Czo dt

or
[ (€, Eo)dz

EHE) = /(f}(n = Ay dT’a.) dz

With the integral written in terms of z , the veloclty ap=
vears explicitly only as a factor  in the exponent. Accord-
ingly, the values of the approximate coefficients become arbi-
trarily small for veloclties that are sufficiently small, if
the integrands fX:ﬁﬂ;Mz are not singular én the path. In

general, negligibility of succeeding orders of approximation,

2!



although dependent on the effect of the operator g% , is
assuref by a sufficiently large variation of the phase factors
e%i(%f%yﬁ in the range of interaction. Since this varia-
tion is least for the terms of (48) that connect asymptoticale
ly-degenerate states, a more reliable first order approximation

at sufficiently low velocity may be obtalined in the form of

the limited set

f («) E Jdt -%—[(5(‘)5(7’}411'

dﬁ)rqﬁwfﬂ%%Ldn> —Z}WMU%“aﬂMﬂ 5

(50)

for the states %, and the asymptotically=degenerate states
f o Since X, is real in this formulation, f%ﬁhf4 and hence

the approximate equation for ¢ becomes

C(t) = — (f%o—b‘)fxodm)cb(t)fo

and Gt)=1 (51)

(d) an approximate form for stationary states of weak inter-
action

Further study of the solution requires more explicit
expressions for X, , which are complex and difficult to obtain,
However, the perturbation representation is accurate on suf=

ficiently distant paths, for which the ground state takes the
(L)

e L iT,) = w<mJﬁ-2z(Eﬁg“(¢£Qa> X - (&)
m+o s



and the excited states, the forms

(ﬂ)

X( )(f-(;j-Z.n) _ b( i (,)P(y) (Z/ 'LF‘SZJ . Z ( mn(ﬂ-) 0 (ZF{J) . (55)

m#n

where possibly degenerate asymptotic states are grouped in
the first order, and where the subscript . denotes the incident
direction as the polar orientation of ¥m

Since the symmetric V(A%) cannot connect different ¢ =

states, (53) may also be written

(! .
XU(”;/?a _ (L))‘ 4 Z t;\/m,,E'Z)( 13))1 o (54)

m+n

in terms of the particle~oriented states (4), .

The representations (52) and (53) are valid for the condi-

tion xﬁ; 2
A=

l (55)

(e) the approximate solution for S state excitation with weak
interaction
For an excited S state, the pertinent term of (52) or

Vo) (451,

Ko(RFa) = Yot =

is spherically symmetric in r . The exclted state to the
first order is

ZS(/Z’_{a) = QFS +
marking an energy difference of

Estn) = Eyr) = Eg—Ey + Vglt) — Vpplrt) + -+



and the approximate solution (50} becomes

2
wit L [(E EyVos~Vao) 42
_ Wy BP0
Csft) = E-E, [ aszo_ e dz
; - . (56)

fof EBtVasVi)dtz T [ (ErE, Vi Voo 2
- Vsomy VY ] Vs Voo |  BF) B
= ES;_EO e +W/V50(’l)[} %+ E-E, J (A dz

vielding a final value ¢ similar to a@) of the asympto-
tic state approximation (/7) but an intermediate form cone
siderably different, for 1t diminishes with the velocity.
The condition lct)l«| is ensured for veloclities and inter-
action gradients that are sufficiently small, although, ace
cording to (55), the condition is also satisfled at suffie
ciently high velocities if the representations (52) and (53)

are admissible,

(f) the approximate solution for P state excitations with
weak 1lnteraction

Turning to the simple construction of an effectively
single electiron atom for the more complex P state exciltation,
the pertinent terms of the ground state take the forms

LEE) = Yot o F —Lf"’g” [C"Sﬁ(%”h+5L'nm°5¢f(¢é”)o+ B SR | ‘éﬂ+~

o Ep

(57)
The unperturbed excited states are degenerate and hence must

be grouped linearly to form the perturbed states

(] .
XLER) = osm (4f)), + sinw cosy (4 + sinm sing (y), + ) Dol

&

Xf(/fﬁ,): —sin (), + cosw cosp (Yf), +cos® sinp(y’), + - - (58

(2)

A0 - s ) eosp (), 4

2



where # 1s tne angle between * and the fixed coordinate = ,

and ¢ 1s the azimuthal angle of 7 about z . Since, for @=0,

=0, LR = ot ok %Lﬂiwﬂ
b Z o e )
X%ﬁ)—(W)~+
R = (), +

the orientation of the asymptotic states to the atom-particle
axls 1s established by the perturbation development of X, .
With the introduction of the relatlon +-{3F+@t? , the states
are attributed a timelike behavior marked by an alignment to
the moving particle,

Thus, the approximate equations of motion fur the group

of P states, upon substitution of (57) and (58) in (%), be=

come t o e

() dt e o el

“@)==a:bfhie /( e %i %ﬂﬁfﬁor%‘%)d
+ Lo t t

. ® L(E-E, +J\/m Vo) d L [(YYA g

e = JﬁwE_ui‘re V5 "”)_ Py b e Fe s (é0)
; Lo

o = 0

In these equations the operator %5 connects the particle=
oriented states @) and @) independently of the intere
action V(®A) . Because of the difference in phase factors,

an exact solution of the equations 1s not easily obtained.

(g) the P state excitation--states in phase
For sufficiently distant paths at a given velocity
( ’V it '\/[Z ) dz
W/ N a

With this approximation, whi¢h 1s equivalent to assuming the



excited states Xy and Z} to be in phase, the equations of

motion reduce to

(2)

5 t et
Q’V(Z/An ) e_‘fl;; (Ep- Eo+v?p _%O) dt

e = EE ° + LT
~Fo t . 62)
® L [(E~E,+ VoV, dt )
e o IR
Lo
With the substitution
O~ Tlicosm + Tsinm

F (63)
c? =--Psin® + CPos®

the equations (62 ) become &
L (B E,+ YY) dt
- 3 2 [(ErEt U Vo
Cp ) = <= 'V (nycoswje °
ErE, ot ( ) . (64)
A (ErE+V -V )z
Cpet) = Ep“Eo 5 (V,Po ) smm) €
with solutions
=
= 1,{ ] = V "V )di
s o cosoy gy ) E Bttt ©5)
CFEZ)('I:} m/é(ﬂ/@(w sinﬁ) € dz
vt
Eg) co ‘F[(EP £, +VPP Vw)dﬁ l m cosﬁ Eg Voo [(E EH/W Voo)
= E~E, (Sljlg) t U{y——/ o smﬁ)l:t G E~E, ] dz
and, from (63), the final values
: . A EA Voo V) dz
CZ)(W) c,,l(oo) ,V(l (co5w) |+V22 VOOJ HY ( *F o
C (00) C( (°°) tﬁ’l/ Stn® E EO (%)
which, like the S state solution (5 ), are similar to the
final values of the asymptotic state approximation.
Intermediately,
Cf”(t ! cos & vat 0 r([:" Eyt Voo Voo )2 sin &- Uat (‘) #'f (B BT Vil
(z\(_t) = {(‘Smm)fﬁ(%o cos@) dz *(cosﬁ)/az( smzﬁ) dz } )
° 5 <0 (67
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(n) the approximate solution in general form for weak
interaction and asymptotically-degenerate states in phase

The reduction accomplished in (5 ) and (65) on the basis
of coherent, first order excited states may be put in general

form, for the equation of motion (47)

4
P 5T
T geae FlE (es)

L
with A2~ @) =7 b9%?),  and e
4

Gdt ; L (B4 V)
may be written at(c" o[ +Z (c Zb(ﬂ)(lp") & ﬁ[( it Yon

or, exchanging sums and writing &d'=2 b
L K

t i
- h/(En‘i'%n)d't i fEde
Z (1)(7_*; )) e o _ _%(Ca?(o)e F/o-

]

Multiplying by &%), and integrating, the solution is

(L}(t) j(f(zptl)x 2, Na.) e%‘(f&rfﬁ)"‘ Vi Voo ot

dt
or, with ¢~ and the representation (52},
i) (u Fr (ErE Vo Voo)
By - E = j (v ) T i

o (70)

o1 ¥n “VYoo)d ,_L_ \En—E "‘Vnn'\/ao) dz
- Vn(:))(_.)) ‘})_[(En Evt o i (V(I’Ui)) Mm‘voo z ﬁrof( ! iz
EE, " g

For this approximation, the state of the system (46)
i .t _
takes the form ) . -é—ﬂf T )dt
'1; e o € Z l(t)(lll )’C

'1-£ 0

or, introducing (69),

¥

R

t . x _
= 504 @ (Ent+Van)dt
ﬁ[’ 2# <) (e +]
s
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Then, from (52) and (),
t T
4 i Vo)t W L (E,+Vou)dE
:( ZWMD(’L}/“)O ]eg!(ﬁ;f )_ (V”"n"(z];(‘)) of + .
%n dt ) %n 00 —"—_ [ (E E+vm~v°a)d% _’LE"‘t
L[t [ k) ﬁ

EvEo dz}ﬁP‘“
or
¢
= e %! ) +é{e_%‘!ﬁmdié—vz[7(@2)o {H%Eg‘f] f(E e oo)d% } 5, e_ftf"t
-® (11)
which, except for the integrand factor Hfﬁfé° is identical
with the asymptotic state approximation (9 ) and (19), and
since the form (52) is admissible only for the sufficiently
distant paths of condition (55), the factor Hf%é%% should
be near one.
Thus, on sufficiently distant paths, the asymptotic

state approximation has been reproduced and for the same

condition, namely, in order to write (69),

") — \/m(/z))di TR (72)

i ¢

The two approximations differ in that the stationary state
development (7/}), in addition to (72) is restricted by the
velocity-independent condition (55), which appears for the
agymptotic state form (28) only at sufficiently low velocity.
The two conditions (55) and (72) have the effect of nearly
eliminating, in the first order, the difference between a
stationary excited state and an asymptotic exclted state.

With the inclusion in the first order approximation, as
in (60), of the terms that connect degenerate states, the

higher order approximations depend on higher orders of the



interaction elements Vin , 80 that where the interaction is
sufficiently weak for a given velocity, the first order ap=-
proximation is adequate, and hence the solution (7} is not

restricted to low velocities.

(1) the P state excitation=-=states not in phase

Writi N
in
g V& = ﬁaﬁ
sie-L ¢ j BBy t VO -Voodz  and  &(8= W[(vﬂ V) de (73)

o

the equations of motion (60) may be put in the abbreviated

form épm _ Vem—g— C(L)lﬁ’ is

g . (%)
(@ = Vo ppe
If &0 1is negligible, then the equations (™) may be
written cg = Vém + P8 )

{z) Vme _ c“’w

and the solution (67) can be obtained by successive approxi=

mations, beginning with the forms
-
= [ Ve'at

£ o )
C;Z):[Vnérel dt
.
and successively reduced in a series of lntegrations by
parts, to yleld the form
i t &
=) cos 5 (A SIE 3 ‘ iA
P = (-51‘14@) a_t(V“’Sﬁ’)e ks 4 (cosﬁ )fa-%— (VS‘"ﬁ’)ﬁ dt (7)

Because the reduction to (77) is independent of the nature
of V and 4 , the modification of (76) is not a second order
effect., If the interaction 1s considered negliglble, the

equations (75) reduce to ¢&'=¢¥s and ¢¥--¢% with solutions
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cf)<Acosm + Bsinm and ¢f'=-Asinw+Bosm , so that, here, the
variation in the coefficients is the variation of the pro-
Jection of some constant vector on the rotating atom=particle
axis and its normal in the plane of = &

If the phagse relation ¢ is not negligible, a coherent
reduction is not possible, and if the veloclty is sufficiente
1y low that, according to (7), the variation of e% is large
in the range of interaction V , the first order approximation

e =-£t\7emdt
¢ef%g;5ﬁ&

is sufficient. For, the higher order modifications orf (B},

(8)

obtained by successive substitution in (4}, are composed of
integrals of successively higher orders of multiplicity, and
these, expressed in terms of z-vt , contain the velocity
only as a factor-% in the exponents of e” and g’ : 80
that, at sufficiently low velocity, the higher order modifi-

cations are proportional to higher orders of velocity v .

Thus, to the second order,
, iA-i$
C(”(a) /V/ELAG’E +/ (/Vﬁr L z)

where primes denote %% and where 4 and 8§ are proportional

to &= . The negligibility of the second and higher order

terms can be attributed to the incoherence introduced by

is . . :
e since if §=0 | the approximations can be reduced in-

dependently of the velocity to the form(77), which is a
consequence of the coherence of ¢’ and ¢’ . With a large

. : . ) . -
variation in ¢ , the terms of(#) in ¢’ are small compared
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to the term in ¢ and incoherent compared to the term in &9 .
At sufficiently low velocitlies the intermediate values

of the coefficients are dominated by the similar forms

ch
2 C(l) V—____ ..

c %-r*"
for (77), and zm-s) for (®B).

iA
@_ @) _
=V ﬁB’——— +-
L s b = v (A S )

However, the final values become

fV(er dt

Cpleo)
o jv (Sm)i)e st for (1), and for (®).
490 oo

(M-8
C ) = /—1%7—5{11@61( glt

~

The solution (%) may also be reduced by absorbing the

vhase factor of (#} in the coefficient ¢ and transforming

the equations according to (63}, but the successive approxi-
mations for this form do not produce higher orders of the

velocity at low velocity, and the expansion is more appropri-
ate in the high veloclity range.
According to (7}, the approximate solutions at suffie-

ciently low velocity take the forms

t 2
, N vt A
ey = mé@% eg[@a+%,wMt_ am%Z,ﬁﬁﬁtﬁ%FWﬁi
; Ep Es h E},—Eo € Z
(l) o )di
o 7 EE e f o 1+ ke e [ (BBl
s e POYEE . PP
EP Eo 1ﬁ1f‘ ’V,,( ) )"}“ } di (79)

(2),

)

vt -
’\/('(/z) % EPEo"'VPP —V4,)dt 0y , (-, + YD)z
/ 2 e offs o Q%M5ﬁ”e“£P e
p Lo

—vo

These approximeations represent independent excitatilions of

particle-oriented states with one depending on the radial
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and the other on the angular components of the particle
motion.
The measure of validity of (79} is not as clear as the
%/

% % = . i Sl :}(u_ 12
condition (6} for (67}, but, since the variation ot e” (el

occurs within the range of interaction, it is certain that

(=)

the solution (67),1eading to asymptotic state or Born ap-

where
> | (60)

proximation is no longer valid. The more extreme the in-
equality (80), the more admissible becomes the approximate
solution (79).

For the 2'P excitation of a hydrogenlike atom by a
coulomb particle, the phase difference (%%lﬁﬁawx%&] is
shown in flgures Z and 3 . For the same system, the magni-
tude of ¢/) 1in the neighborhocd of t=0 , for example,
may be taken to be very roughly of the order %%%%%f@%@

-3
with  Vee=3ERafi- FR(rde gt ge)]

£,
Z

According to the distribution

e T8

i .. R
of values the coefficient Gl

diminishes with diminishing

range as the phase difference

increases with increasing

range. On moderately distant
paths in this system, the

phase difference cannot be neglected for values of f%%?

greater than 3 , for £ =1 , or where the velocity of the
I

varticle is of the order of the average electron velocity.
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(J) the effect of & low velocity on phase relations in a
weak interaction

The importance oif the foregoing solution for a weak
Interaction lies in the effect of the velocity on the co-
herence of asymptotically-degenerate states. These states
are coupled to the particle and differences in coupling
energy appear even for weak interactions, so that, at low
velocities, the states no longer form a coherent group during
the collision. Thus, an interaction energy that is small
compared to the energies of the relative motion and of the
atomlc state is not a sufficlent condition for the asymptotic
state or Born approximation which requires a coherence of the
group of atomic states that has the property of an arbitrary
orientation. For a weak interaction and suffilclently low
velocity, the coefficients (7} and states X$>:<%?x repre-

sent the correct addition to the ground state (38) or (45}.

(x) the aporoximate solution at low velocity in general form
The pvhase effect that appeared at low velocity in the

P state excitation with weak interaction is a part of a

general property of the stationary state description. For,

if the variation ol the phase factors of each of the terms

of the equation of motion (48) is sufficiently large within

the range of interaction, the approximate solution becomes

vt . i me‘ 8a) dx=
e = _f(jx‘;’%x,,dra) emfo[ dz

-0

(81)



The possibility of solution is ensured by a sufficiently low
velocity, for terms connecting degenerate states do not
appear in the equation of motion, since the operator has the
form .3 ) : d 056, i O

oAt By = Af + 8<—c05</>,561 L >0 } (©2)
and the degenerate states differ only in the functions sinecg, ,
and csoy, . BSince the energy differences of the non-degen-
erate states that are asymptotically degenerate iepend solely
on tne energy of coupling, the variation of e#f[&ﬁla?%&
for these states is the critical measure of & sufficiently

low velocity; and since the variation is confined to the

range of interaction,

20

| It 1
) (e )

>> | (83)

for some value of z and for non-degenerate states, is a
necessary condition of the approximation.

According to (82}, the approximation (8! ) may be sepa-
rated into the two parts 3

pe i f(ef€,)da
citt) =“f(f7(,‘;’§ Xadfa)’ieﬁvl " de

Tt L g »
. i 1’_5),1,-:
i 1) . F (En ]
ctho = - [ ([0 %) w2,

with one depending on the radial and the other on the angu-
lar component of the particle motion. With the state 1,
independent of ¢ , the radial motion excites non-¢ states
and the angular motion, cosy, states.

The states X, and X, are coupled to the moving particle,

but where ‘#Fﬂzztéf0d4 < | , XY and ¥ are not independent,



and their connectiocn must be included in the approximate

equations of motion.

(1) the distribution of solutions

The two approximations (19} and (8 ) are the extreme
solutions of the impact parameter-and-velocity range, which
may be roughly divided into three regions according to the
limits of the approximations, based, for the Born approximas=
tion on the in-phase quality of degenerate asymptotic states,
and for the statlonary state approximation on the incoherence
of non-degenerate statlionary states. These regions may be

indicated schematically as in figure 4.

L
LN
For the region between the two approxi= U My A
7, \\ N %e
matlons, a simple solution does not \ e,
55 | X
1 1
. - . / )
exist, although for impact parameter 7
fig 4

greater than some lower bound, an
approximate equation of motion can be developed for the entire
velocity range, such as (60) for the P state excitation.
Where, in the asymptotic state region, the atomic
states have an arbitrary orientation, in the stationary state
region, they are polarized and strongly coupled to the moving
charge.
The total probability of excltation or total cross
gection 1s the sum of fihal probabilities for a uniform

distribution of possible paths, or

In = f l (coeFFICENT), at t=001227r/7,,d/zo . s)

[}
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which is also the number of particles associated with the
excited state n for a unit incident flux. In both approxi-
mations, the final coefficient 1is the coefficient of W), ,
the asymptotic state of polar orientation in the incildent
direction, since the orientatlion 1is arbitrary for the high
veloclty approximation and since the stationary state X-u)
ag t-eo . At low velocities, the major contribution to the
total excitation comes from near paths, and hence the sta-
tionary state approximation is valid for the effective range

of impact perameters.



6. The stationary state representation of the low velocity
collision.

Without approximation, the stationary states A, are as-
soclated with states of relative motion which describe the
collision and scattering of particles as an energy-conserved

DPhenomenon.

(a) the equation of motion in terms of stationary states

Writing

YEat) = (iR P (66)

the equation of motion (! ) becomes the time-=independent
equation
(- Zﬁﬂvﬁ Ho+V )§ - (i) ©7)

for the constant, total energy £ .
Representing the sclution in terms of the complete set
of stationary states,

Bt 10) =) Fonl®) X7l (es)

where X, is defined by
(Het V)X, = £ X (iRa) and S X0 = Siom (89)

and has the particle-oriented asymptotic state @), « The
expressions F.(®) are wave functions of the relative motion
of the system for the atom in the state X, , and are defined

by the boundary conditions

s l:h’o/ :
ooy ~ e 8% &2 ¢ g) (0
for the ground state, and .
() ~ 5Rn f.09) ©1



for excited states, where ¢ and ¢ are polar and azimuthal
angles of the atom-particle axis relative to the incident
direction +2 , and become scattering angles for asymptotic

separations T .

Integrating over the electronic spaces, the expression

fy%(fiﬁudu= RYF o+ ¥ E g ()

becomes the probability distribution of the relative state.
Probabllity of excitation and scattering in the direction

is the relative flux of particles

% an(e"{)) }2‘

and probability of excitation becomes

% / [f, ()| sinodedyp (93)

Substituting (88 ) in (87) and using (89), the equation

(87) becomes the set

2 2
FaWh + [Bw-EIR = Lo (X (205 T+ BB )

or grouping all states n on the left

2z 2 -
_;‘M Vib + [&1(’” o Z)%/\- fX;V/zZXndTn = % [ﬂ;Va Kndtg - ¥, ] . = o
ﬁL 3 ' 2
B ;Z—M(Xﬂ (ZVqu ViXm + Y Xm)dfa_

() angular momentum operators
Consider the transformation®of the operators V, and V?

from the fixed system xy= , with z the direction of 1nitial



relative momentum, to the system zy% , with 3 the atome-

rarticle axis and ¥ for convenlence in the xy Dplane. Then

L = Yycosy —inn?o
Y = —(xcos¢p+ysing)coso + zsine ©5)
3 =  (xcos¢ + y sing)sine + zcos6
Transformed to the fixed system
= Xymzyz) = X, (no4:x47)
J
and D ueopryz) = (5545 + S5 + S5 ) Lubyy)
= <}§% - y%) Xamryy)
(96)

= '—I.Px X?L

and further 2 .
aaez Xn: (‘l P’/‘)Z%n

where P, is the angular momentum operator for the axis of x .

Slmilarly _b@q—)-xnz -i[COSQP%+5in9P?]xn (97)

_()_ xnz —_ [CO59 P? + Sinepy]zXn

where P, , P, , and F% are the angular momentum operators for

axes ¢ , ¥y , and 3 , respectively. Then

WL, = ?4%3%1 + I, 7'? -t ) % A ZP/zs'ine[sine(—il:’?)Jrc‘osa(—iP?)]X,n
©8)

ve. L 0 pz.0 ! 2 5 2
Vs = wdvh T - BRI - 0 B -EBE BB, G

Since the central field of the charged particle does
not alter the ¢-state of X, , which in complex form is e’

the varticle-criented momentum component of the complex .
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has the constant, integral value ¢ , so
P} Xuw) = T Xne) (1o0)
The eigenvalues of the operator (F+P;)X, are, in general,
functions of the separation «# . Since the oc~value of A,m
is not altered by the operators B, and anLP%2 , but is changed
by a unit by the operators B and qu , the elements fZZV,Ede»(,V
and [X}ViAmdt vanish, according to (9) and (99), unless the
- =values of %X, and X, are the same or differ by ={ ; so
each equation (94) connects only states X,n, for whichac=0+/ ,
Because of the persistence of the g¢-state over the range
of separations, the two states X, and X.» are degenerate
and hence allow combinations a.(%,,nt Xy, Yielding real forms
of X, , written as XY . In this mixture of il states, the
distinction between +r and -¢ momenta is lost, and (/0) must
be replaced by
B;?C;” = gz XY (101)
The real form of X, , although inconstant in ¢ , has the ad-
vantage of simplifying the equations of motion, for onV,L?tndtaso.
In terms of real states, the elements ]‘XZ’V,ZXZ”CIT& and [V fdn
vanish unless the I¢| -values of X and XY are the same or
differ by a unit. Consequently, each equation (94) connects
only the real states Xy for which 4c?=0,/ . Although the
operators (98) and (99) cannot connect the degenerate states
Zuon and Xuew, since ac>! , the coefficient of 7y in the

operator V, can connect the degenerate states of the real form.
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(¢} the operators of the equation of motion
In terms of real stationasry states, the left member of
(#) may, with the introduction of (%) and (%9), be written

in the form

SR+ [E0-ER - J [ frh Hutn ] R (@

Z 2 2 2 5
+ g T (P4 P Hnd | + S, [ 8328 0% ] R,

which represents the interrelation of K and X, , since the
right member of (%) depends on the connection of %, with

other states of the atom. The first term of (/2) is the
energy of relative motion, &, is the energy of the stationary
state 4, , and £ is the total energy of the sygtem; the
fourth term represents an inertia effect of the changing 4.
state, and the remaining two terms are gyroscopic coupling
energies which represent the coupling of the electronic
angular momentum and the motion of the atom particle axis
since these terms derive from the angular parts of tne opera-
tor V¥ . Of the two terms, the first represents the coupling
of the precession of the state X, about the atom-particle

axls with the motion of the axis, to which it imparts a resis-
tence wlth an effectiveness depending on the moment of inertia
of the system (%M«ﬂ and hence diminishing with increasing

massg and separation x . The term E%%f%ﬂ%ﬁ#?}&da is a spheri-
cally symmetric function of «# and has the form of a repulsive
potential. The last term, a function oi the particle-oriented
angular momentum component o , 1s the gyroscopic coupling

energy involved in the conservation of angular momentum.

4!



Although the relative angular momentum in the collision 1s
not certain, it has no component in the ineident direction
for an initial state of vanishing o-value, and thils property
must be conserved in any transition to exciteéd states of
non-vanishing o-value. The last term of (i02j vanishes at
o=T in which direction has no d&-component, and has the
effect, in the factor <=z , of excluding the =e-axis to the
probability distribution of the relative state f, . The effect
of the c¢-coupling on the relative depends on the moment of
inertia of the system, but where Iincreasing separation dimini-
shes the effect of the precession coupling, as it correspond-
ingly weakens the stationary coupling of X, to the particle,

it cannot entirely overcome the singularity of the o¢-coupling

in the incident direction.*

(d) approximate equations of motion for low relative velocity
If the relative motion of an atom and particle is so

slow that the atomic system remains in a ground stationary

5 state, coupled to the moving particle, then the vanishing

of (i02) defines the state of relative motion or

LEGE + [em-E - S0, %X dw)f=0 2

The vanishing expression (/22} is the equation of motion of a
stable molecule with the electronic state strongly coupled
to the atom-particle axis, if a stable molecule is possible.,
For such a system the gpatial extent of the stationary states
is effectively limited by the staticnary orbits of the bound
particle. The angle-dependent terms of (102} describe a state
of quantized total angular momentum in some fixed directlon
6=0 , with the dilrection e=0 excluded to the precessing
atomeparticle axis which carries the angular momentum o« .
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i K,
g

with F, ~ e”?“’z+—7(—£(e,<p) (104)
which is an elastic collision and scattering for a coupled
atomic state. ZExcitation at low velocities is then a per-
turbation of the state R[RX, , such that é;EfE<K B ,

and neglecting all terms on the right of (94 ) except those

involving f , F 1is defined by

R+ [ Ea0- £~ S LB, du]F = [ (20E W + BT (
ZM LT 1 2M) nYR n T 2/ | A\ ato” st oV Ao) Yl 105)
z'k,er

and En = _e/z___ ][n (9)@

Accordingly, the excitations F[,X, exist independently,
and are also coupled states of the system.

Degenerate states are not coumnnected in the neglected
terms of (%) since the connection appears only with the

operator <2 in (9) and, since from (04} there are no

op
initial ¢ -motions, none appear. Consequently, the states
that are connected-in neglected terms differ in the coef-
ficient of F. in the equation (105) and hence are not co-
herent. According to the operator forms (98) and (99},
only states with 0¢%0! are excited in the first order of
approximation since the o¢=value of X, vanishes.

The approximation (/05) corresponds to the impact para=-
meter form (8! }; but, without path distinctions, the validity
of (105) depends on & relative velocity sufficiently low
to ensure the coupling of the atomic states to the particle

within the range of interaction. Equations (103} and (105)

are the perturbation equations of Mott and Masseyq)

*For asymptotically-degenerate ground states, (i3} must be
replaced by the set of equations connecting the states £ .
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The solution of (05} may be evaluated by expressing Fn
and the right member in terms or a complete set of functions
appropriate to the operator of F . If [1,VX,.dz. is a
spherically symmetric function of « , which according to (9 )
occurs for ¢=0 , the solution may be expressed in terms of

Legendre functions.

(e) an asymptotic solution for a spherically symmetric behave
ior of [ZnVi*Xndta

For functions [%,V X.d% that are spherically symmetric
in ~ , and for functions &m-E, and fkﬁVandQ, that diminish
more steeply than-% ags n-»o , the asymptotic value of the

solution of (105) then has the familiar form®

R, - p
Fa(t6n) ~ a,f" L / F (11 0) X (2Va By Vo Kot Fo VP X.) da d’ (126

where X is converted to &' in the integral, and

€05 O = €056, oSO’ + 5in b, 510 cos (Y~ ¢")
and where 9.(6) 1s the solution of
B4+ [Ew-F - W X dn] < O (o
m et + n Zm ) inVre An e | in

with the asymptotic behavior

] Cf/"nl

e + T ﬁz (G,Zf) ((OB)

As asymptotic forms, the solutions (106} are not measures
of the sufficient smallness of F . If [X,V*%,du is not a
sprerically symmetric function of « , such a reduction as (lo6}

is not available.



(f) the approximate equations ot motion for low velocities
and weak interactions

If the stationary states are represented as perturba-
tions o1 asymptotic states, the solution may be reduced as
in the impact parameter formulation, but where the impact
varameter reduction may be limited to paths sufficiently
distant to admit the approximation, the wave interaction
cannot be confined; and, here, the perturbation representa-
tion is admissible only if the stationary interaction is
sufficiently weak over the range of separations, and this
depends on a sufficiently weak incident charge. Thus, with
perturbation revresentations of X, , the equations (105) are
approximate descriptions of the collision if the interaction
is sufficiently weak and if the relative moticon is sufficiently
slow.

In terms of the particle-oriented states @.) , and to

the first order in Vim ,

A(BR,) = Yolte) + ) gE‘"’ (b, +
m#+0 (109)
AR = ) v ) Vm“’ ),

and with the energy balance

- Rks _ Rkn
E"&+ZW“E“'M
(o)
8('J(/Z) E=- ﬁzkg +/V(L)

where the superscript (1 dJdenotes non-¢, states.

Thus, in terms of the angular momentum operators of (98), the
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approximate equations of motion (05} become

Vi Fo + [k~ ZA VoulW]F, =0 (1)

VR ¥ [k - RVl ~ g [y, (PR BRIy dr - B2 o9 ]RE =

o
éi £ [zvn Vi + BV ~ f g das o [ () (Pf+ P Nyt } = (112)
»?;(f‘() a) f‘ ®
—2Unky (E E) (¥) ze (~iPg) + iy (~2P7f)}(z}1 ) dz,
where J&-0 unless AY=X“ | a non-¢ state with =0.

(g) an approximate form of F, for large relative momentum

If the reduced mass of the system 1s sufficiently large
that the magnitude of the relative momentum is much greater
than the change of momentum in the collision, the term é%%

dominates the expression

ﬁzi/%: ——(&o(/z)~ Eo) =3 —Zf';‘—[;(o V2 X dta

of (103}, and the approximate solution of (103} is the plane
wave £6R satlisfying the initial boundary condition.

Ag a refinement of this approximate solution, consider
the variation of F to be predominantly in the variable z ,

so that (103} may be written in the approximate form

€l 1+ [ K- 2herE) +[AVEXIw]F =0

dzz

with the approximate WKB solution

Z "
" i Y= e E) AT
Ko

F, =
S YA A




or with sufficliently large mass M ,

Z
£ = eile,,z—i%'—ﬁf(fo‘ﬁo)df e (113)
o

The ground state of the system for these approximations
takes the form

I _' 7 _a t
which agrees with (2 ), with (4 ) and (40).
For weak interactions (/13) becomes

| z
C[/fﬂg-—lmjvoo(/l)df: + -

£ =~ (115)

which, together with (09}, reduces (/4) to a form proportion-

al to (38),

(h) the approximate solution for S state excitation with low
veleclity and weak interaction
For the excitation of an S state, (%;=0 and [¥s(F4R)psdu-0

so that the equation of motion (112} becomes

v/zZFS + [kﬁz” Zé/z[_ ssm)]FS = E:_Eo [Zvng'\erso'*'E:V;sto} (116)

and, since Vs 1is spherically symmetric, the asymptotic

solution, according to (16},
zks

where, to the same order of approximation, ¥ 1s the solution

of
W%fiﬂtég%ﬁﬂ£=0 (118)
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Writing the integrand of (117) in the form VA(R%)-Y%Y'FR s
transferring the operator Vi to ¥ , and substituting from

(ly, (ue)y, and (10}, the solution (117) becomes

zkll
S M % Mn
-5 e | 1+ S e )

If, in addition to the conditlions necessary for this
approximate solution, the reduced mass is large enough that
the relative motions F and 45 remain predominantly plane
-ikg% ik

waves, then and e replace ¥ and K in (19},

and the total excitation probability becomes
s Voo | 1(RKks) 7
I“ kszmﬁ ﬂ[\/j,ofc) I+V§_ \é‘;J ¥ dr

For a momentum fk, that is sufficiently large (/20) reduces

2
si nededtp {120)

t0 the impact parameter approximation of (85) with (s56).

£%f the reduction is complex, it begins from

Although proo
the develovment of the exponent of (120} in the form i(k-ks)z +
ik, x function of the scattering angles, and the rirst term
retains its form in the reduction. Using (/10), it may be

written as ﬁngEJz with v-z(%+¥ , and the elaboration of

w2
(15} for (1) and (18) extendsthis to yf(E~E,+Vs~ Vel waich
\/ss"voo ~ |
EcE,

S (4]

is the impact parameter exponent. If [+ , the

solution (/20) becomes identical with the Born approximation.

(1) the approximate solution for P state excitation with
low velocity and weak interaction
For the excitation of & P state of a single electron

atom, the total electronic angular momentum becomes I&)=/Z



with components

@F =0 ad [0 (BRI U du -2
«ﬂﬁ)z’ e f‘ ()R + B dw = 1 62D

(121)

With the operations
( { PX )(.4',(!)) - (1)) and (—l Rd (l) (l}l’(f))

the approximate equations of motion (12} become

VRO (45 - S0 — 2B = 2L [20R W+ BV -2 26 ]

Eo
e [ ko — — o~ 75 /ziosirlzge}@y = EPI—EO [Z}z/zm 20 F;} (122)
ED s [~ 2V - - 2% F° - 2 [A 6]

These equations are distinguished by the dependence of ex-

citation and scattering on coupling of atomic state and

particle, which is expressed in the spherical symmetry of
the potential interaction \ﬁ%) and in the angular-momentum

coupling terms that appear in the coefficient of Ef Z
Since the initial wave F, , according to (111} and (104},

1s independent of ¢ , the right member of the last equation

vanishes and hence F’=0 . Because of the difference in
coefficients of F,’ and £’ in (122), the remaining two
excited states of the system are not coherent. Excitation
of X$ depends on radial gradients of relative motion and

upon the precession coupling of ﬁ%? . Excitation of A

depends, as in the impact parameter description, on the

angular gradients of the relative motion, which connects

angular momentum states of the particle-coupled A, and X? o

The first equation of (/12) is spherically symmetric in
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the coefficient of R” , and hence, the asymptotic solution
according to (100} and (107} 1is

874 (
B s %’E L { ?P(H,W—O)Eé_a[z%fg AN AT Pg)_g_;gl{gg]dr (123)

where ?f is the solution of
Ve L= V-]t =0 ()

with asymptotic behavior (/). Writing the integrand in

the form [V(EVY) -VIWF-25%] , transferring the operator

U to %f , and introducing (), (14}, and (10}, (123) becomes

ikyn () |
Py~ e |1+ R (29)

If the reduced mass is sufficiently large that the
relative motion states b, and % of (1) and (24) remain
predominantly plane waves in the form (15}, the total excita-
tion probability (93) for the X7 state approaches the impact
varameter value of (85) with (7).

In terms of unmodified plane waves, (125) becomes

ikon (0] '(‘-—}‘(: )R
0] et M 0 DV 1 TR
Fp e T Zﬁﬁz‘[vpo ") {:, + —EEE‘_E;QQ_:‘ e at (’26)

which has the same form as the S state solution (19), for,
with the condition of large momentum, the precession couple
ing oi (14} has a negligible etfect. Although the P state
solution (i126) has the same appearance as the Born approxima-
tion, the element VﬁM)is a spherically symmetric function
of = , whereas the interaction element of the Born approxi-
mation depends on the angle between & and tne fixed orienta-

tion of the P states (¥), . Since this orientation is
%



arbitrary it may be taken to be the direction of K =RK-k
for which the Born approkximation has the form
ik iKrase,
) K
flzl_ %.WJ V;'ooz) ws6, e dz (1z7)
and this 1s the complete solution since the Iintegral for
the remeining elements Vwsing cosg and Vo sing singe (see (31)
with @->e6 and ¢—->¢ ) vanish in the integration over ¢« .
. o o .
Since Vpw , VYow,and Vpw are spherically symmetric
functions of n , the stationary state approximation (i)

may be reduced to the form

00
ikn : 0] .
. %J'Véo'(/u [( +—ﬂ’——~VE _\E/"" ] 5——-—’@5" r2dn ()
p o0

0

where K=|k-k|.
The second equation of (/22) is complicated by the
presence of the angle-dependent term in the coefficlent of
F,”, which precludes the form (l06) and requires a detailed
development of the solution. The e =depvendent varts of the
left member of (/22) have the eigenfuntions 72 dn®  with
eigenvalues @1M2§221~ , where A5, is the Jacobi polynomial,

defined by
7

’ e2):(zre3) ] n oyt ‘
,J;(e) =\"Znl eaiiZ 5w 7 d_chE" (_smle) and A}ﬂ(e)}m (6) sing de = &,,, (29

0
The functions M@ are proportional to sine . Bince f, is

independent of ¢ , the right member of (122) and F’ may be

N



expanded 1n terms of the orthonormal set J o ,

'Vm(f() OF @)
(E~Ejme 36 2_ Anln

Ro=) Blwde
and these expansions, substituted in (122}, yield the equation
[Ilﬁﬂza%_ bR 2y, (71+1Xn+2.]5 = A% (131)

()
for Blw .

If the asymptotic decline of /\/,i,l,)(n) is steeper than — ,

an asymptotic solution may be obtained in the form "

ikt

_i T +i 82 7
FT‘)Z’ ~ =L Z e r [f;(rc)An(/z)/zzd/z?),h(e) (132)

where |5 1s the solutlon of

| d, Uz) [k; _ V ) — (n+l/)z(Zn+Z)J L(:=O

s d/z

or of Lol 4 [k; — %Vﬁ(a)— il“—i’—,l%@}(/z!f;}% (133)

dnr?

with the asymptotic behavior

) @
L(j.) _ sin(kpn-Fmtl) + &0 ) (1%4)

n (W3

s ¢
The corresponding development for the F, solution

m

lk N ~ 6(:} &
!:P(,,N_ & ,lp B is Ty + (J 0} (’()A(”(/Z "d/‘l) R(cos@) (l55)
= 0

takes the form

where Ps6) 1s the Legendre function, A% is the coeffi-
cient of P, in the expansion of the right member of (1},

and Y, is the solution of
?Ez(”w)n) + [k§ - %W’,’,w - Mt ]( [Y) = (126)
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with the asymptotic behavior

L. sin(kor -Zv9 + §Y) (137)
m kort
W}_’lel"e V£)=—é—(4712+4n+ 9) _l)

In the forms (34} and (7)), & and & are the phases depend-
ing on Y, and 17 .

The incoherence of the states of motion (135} and (132)
for X, and X¥ , respectively, is expressed in the dif-
ference of the coefficients of LY and #% in (%) and (™).
For the condition of a large relative momentum, gained at
low velocity by a sufficiently large reduced mass, and for
gseparations ~ not oo near zero, the WKB approximations

of (%) and (133} take the forms

i/kz V" ﬁnt&d,z “‘W M \/‘” mmz
Lm ; ! 3 i i
4 2 (g } :
‘[ P[ ;_ ﬁzvm n+/7{t+2.]/4 { -
A o n - .

@ lh/l;: Va) K +,5(7¢HL dn = Nk; - %v\fva) _n i;f;_mg‘ i

j | lop
e «} [ vm 72’-43n+L]A{ & — }Z‘l

which, for the large momentum Hhk, =My, , may be written in

the avproximate form

o | ikpfz-——— V”(n)cl/H ~ikpt *ﬁ” Jodut )
y, =2 il o
n[_2M (0 nfn;l 7 2
L (4™ i (4@
L(.l) _ | i P/z~+—,l‘?fvw(rz)d/z+-- _zkpa+m{'\/w(n)da+.. y
R Rk ,_;M_V(ﬂ nl+3 A < ? ~ B 7i
o[- 2

so the incoherence of the states ' and F” appears, for
n
this system, in the differemce 4y [(WW-V%)de  at sufficiently
L
low velocity, wnich is of the same form as the impact para-

meter development.(80),
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The neglected terms of (94} that connect the states X§
X2 , and X are, to the first order in this approxima-

tion with  X§ = @) , and using (%) or (®) with #>o6 ,

2 (3
2516 3§ F
LR

2€056 —(z) 2l

RZSine F t % F

r: + 2cos6
7251726 O

2
Q’]@ 0’]@

d
¢
d
0 (128)
3

Z‘ e
NZsing o¢

2cose 9
AN XA

A2SIN?6 §

for the right members of (2}, respectively. OFf these terms
F® vanishes in the first order, and F" and E” are not func~-
tions of ¢ , which leaves the terms in Y for the F” equation
and the term in F for the F,” equation. At low velocities
F' and F,” are not coherent and both are small compared to

Fo



(3) the effect of atom=particle coupling at low relative

velocities

In the excitation of atoms by collision, the probabile
ity distribution of the excitation varies over the members
of an asymptotically-degenerate set of atomic states, with
the consequence that associated with the intensity distri-
bution oi scattered waves 1s a distribution or atomic orienta-
tions. With the appearance of the atom=particle coupling
at low relative velocities, according to the stationary
state approximation, the relative probability distribution
of atomic orientation 1s directly proportional to the inten-
sity distribution or the scattered wave.

This behavior contrasts markedly with that of the Born
approximation, appropriate at high velocities, where the
probability distribution of orientation of the vanishing-
momentum=component state (¢=0) 1is proportional to the inten-
sity distribution of the momentum change, that 1s, to the
relative probablility distribution of momentum change associlate
ed with the iﬁtensity distribution of the scattered wave,

Consequently, for large relative momenta with little
scattering, the predominant orientation ol exclted atomic
states is in the incident direction, according to the sta-
tionary state approximation, and normal to the incident direce
tion, according to the Born approximation. For a vanishing
final momentum (incident relative energy of motion near the

threshold ensrgy of excitation), the stationary state
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orientation distribution is uniform, whereas the Born
distribution is confined to the incident direction, which is
the direction of the momentum change. This difference in
orientation distributions should be revealed in the measur-

ed polarization of the subsequent radiation.



7. Summary of the development

The principal conclusions of the foregoing development
are: (1) that in the excitation of S states from an S state
by collision the asymptotic state or Born sclution 1s a
valid spproximation at low velocities for weak interactions
of atomic state and charged pvarticle, but in the excitation
of’ states that form a degenerate group, the Born approxima-
tion requires a coherence of the group throughout the col-
lision, and, because of differences in the linteractions of
the states with the incident charge, the coherence is lost
in the extended collision period at low relative velocity;
(2) that at sufficiently low velocity of relative motion,
according to the equation or motion in terms of stationary
states, the atomic states of the system are coupled to the
moving particle, and differences in coupling energy produce
an incoherence of states of the system; (3) that excitation
at low velocities is an interaction of particle-=coupled
atomic states, and this coupling orients excited states to
the direction of scattering.

On the basis of the equation of motion for the cole
lision expressed in terms of asymptotic or isolated atom
states and in terms o1 the étationary states, the thesis
introduces: the velocity-dependent conditions (27}, (R},
and (83) on the coherence of asymptotically-degenerate states
in the collision; the approximate equgtions of motion (60)
and (122) with (138) which include the interaction of asymp-
totically-degenerate states; and the approximate solutions

(79), (84), (125}, and (/32) for sufficiently low velocities
57



of relative motion; and establishes regions of agreement of
the various approximate representations of the solution.
Improvement in the description of the low velocity theory
would be gained by an exact solution of equations (60} and
of (122} with (138} in order to show the nature of transition
between the approximate solutions of high and low relative
velocity; and also by a detalled stationary state solution at
low velocity for a simple collision system, together with an
experimental measurement of cross sections and radiation

polarizations for the same system.



8. A review of theories of low velocity collisions

(a) the impact parameter form

In Mott's developmentmhf the low velocity theory of
excitation in the impact parameter form, the stationary
states as functions of time are taken to be of the first
form of (4 ) or Xné%iﬁ (in the notation used here) for
which the equations of motion become (48) with ¢, replaced
by qp—%%?tal « This second term 1s discarded by Mott
as relatively negligible, although this 1s not Justified,
and the eguations of motion then galin the form of (46) but

if (e Enar

L~ .
eﬁ(” ) in place of e %

with
The approximation for the perturbation of a ground

state is written as

- i.{’:ﬂ:ét
g(t):—[([)(;%%dr,,)e 4t ()

- 00

For the weak interaction of distant paths, Mott then makes

the approximation

X7 = ) + Z%i’(g) Y (a4 )
nfo 0 T

XulBRd = Yuld ) ___EVfgﬂg’ IINCANSS ()
mEn n m

for which the solution (« ) reduces to

t V i En"Eo.t
i OVmoln) | #
Cp () [ o EE © dt (§)

- 00

and the final value, integrating by parts, becomes

En-Foy

00
%mhﬁ/Wﬁmlﬁ dt
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or the Born approximation, which Mott conciudes to be a gen-

eral result. However, for other than 5 states, the approxi-

matioﬂyneglects infinite terms that connect degenerate

states. Or, if Y@ of (¢ ) and (¢} are assumed to rep-

resent particle-oriented states, then the reduction (§ )

1s incomplete and does not agree w1th the Born approximation.

In Frame's application of Mott's approximate solution

(«) to the cdllision of a Lithium ion Li" and an c-particle,

the ground state % 1is developed in the form Awe—%m—%mﬂmﬁ‘

with the value of fw adjusted to obtain a minimum value of
Eor) « The excited P states are taken, without comment,

to be the particle-oriented states @) . The solution (« )

is evaluated in the equivalent form (using (4())

o

&b,

C¥%e) _'[ - (44" 2458 VR y Avdn) e ™ de

which, except for the exponent, is the correct low velocity
approximation. The calculation, however, is carried out

for velocities between 4.7 and 8.8 x10°wm/sc. , or, since this
collision corresponds to the calculations of figures?2 and 3,

Z

ﬁf£§4 between 2 and 8 which, with £-%, borders

for values of (gr
on the region of the Born approximation where the connection
of the states (), and @), cannot be neglected. The
impression is gained that the difference of Frame's solution
and the Born approximation 1s considered to be a result of
the development of X, and & , although a major contribution

is the form taken for the excited states.



(b} the wave motions of collision and scattering

Mott and Massey's perturbation solutioﬁmfor stationary
states 1s the form (105). In approximation, however, the
excited states are taken to be of the form (1), which is
not admissible as a stationary state discipline, and hence
the reduction, by use of (1%}, to the Born approximation as
a general result for weak interactions and low velocities
is erroneocus. In using (7 ), the important first order
terms of | X% Rdta do not appear in the equation of
motion.

In the application by Massey and Smitn™to the P-state
excitation of a helium atom by a proton, the excited states
are taken to be the asymptotic states @), of fixed orienta-
tion which 1s a repetition of the error contained in the

approximate forms of the general theory.

(c) the correction embodied in the thesis

The foregoimg theories and applications overlook the
effect of the phase relations of asymptotically-degenerate
states in the collision and the importance of atome=particle
coupling at low relative veloclty. According to the thesis
development, the Born approximation requires a coherence,
and the stationary state approximation a sufficient inco-
herence, of the states of the system that are asymptotilcally-
degenerate, and, since the phase relations in the collision
depend on the velocity as well as the interaction, in the

manner indicated in figures 2 and 3 , the Born approximation,
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except for S state excitatlons, cannot be extended to
arbitrarily small velocities nor the stationary state ap-
proximation to arbitrarily large velocitles of relative

motion.

(d) electrons as incident particles

The measured total cross sections of the inelastic
collision of an electron and helium atom agree with the cal-
culated Born approximation over the range of velocities for
an 5 state excitation, but is considerably less than the
calculated value for a P state excltation in the region
ad jacent the threshold energy of relative motion. Mott and
Massefwattribute thils difference in the effectiveness of the
Born approximation to the difference in the behavior of the
interaction element VoM which, at large separations, di-

minishes like &

for the S state and lilke L for the P state,
and the greater scattering effect of the P state requires
the consideration of relative motions more accurate than

the Born plane waves. In contrast to this explanation is
that suggested by the principles developed in the thesis,
according to which, the fallure of the Born approximation
for the P state excitation is due to the incoherence of the
degenerate asymptotic P states at the vanishing and low
velocities that asppear for excitation near the threshold
energy. Although the impact parameter development does not

strictly apply near the threshold, the condition (27} is

the form of the limitation on the Born approximation for



the P state excitation.

The polarization of radiation from atoms excited by
electrons vanishes at or near the threshold energy of rela-
tive motion which cannot be explained by the Born approxime-
tionhnd is called "anomalous". This behavior may be due to
the coupling of the excited atomic state to the slowly moving
electron and the consequent uniform distribution of orienta-

tion that follows from the uniform distribution of scattered

electrons near the threshold energy.
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