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ABSTRACT 

Approximate solutions for the excitation of an atom 

by a colliding charged particle, developed as perturbations 

of the state of the system at infinite or asymptotic sepa ­

ration of atom and particle and also as perturbations of 

the state of the system at vanishing velocity of re l ative 

motion, a.re extended, in the impact parameter form (suit ­

able to collision of heavy particles), to include the inter­

action of states that a.re degenerate at asymptotic separa ­

tion, and to obtain thereby a condition for the Born approxi­

mation that depends on the phase relations of degenerate 

states in the collision and excludes the low velocity region 

to the Born approximation, except for the excitation of S 

states. This is a correction of previous theories, which 

conclude that the Bo r n solution is a generai approximation 

at low veloci ties for weak interactions. 

A low velocity perturbation solution is established in 

terms of the stationary states of the system and developed 

to show that, at sufficiently low velocity of relative mo­

tion, the atomic states are coupled to the moving particle 

in the range of interaction . Differences in coupling energy 

affect the coherence of asymptotically ~degenerate states in 

the collision and influence the orientations of f inal excited 

s t ates. 



1. Introduction. 

At low velocities of collision, the electronic state 

of an atom is considerably altered by the presence of t he 

colliding charged system or pa.rtic le and becomes the very 

slowly changing state associated with a. nearly stationary 

incident charge as the velocity approaches zero. These 

stationary states are appropriate bases for a perturbation 

theory of the collision and excitation of atoms for low 

relative velocit y. 

Two supplementary theories of collision have been de­

veloped in terms of stationary states: one by Mott (l) in the 

approximate impact parameter form where the relative state 

of motion is assumed to be constant; and the other by Mott 
(Z) • 

and Massey in the form of scattered wave motions . Both 

developments conclude that, for weak interaction, the ap-

proximate or perturbation solutions at low velocities become 

the fa.mi liar Born approximation of the high velocity region. 

Applications of the theories to specific collisions have 

been ma.de by Frame<
3
lin the Mott impact para.met er form, which 

is appropriate to the collision of heavy particles, and by 

Massey and Smith!4Jin the complete scattering form. 

Neither the theories nor applications develop the 

properties of the stationary states on which they are based, 

and in consequence, are not complete and contain errors. 

The cone lusion that the Bor n approximation appears f or weak 

interaction is, in general, incorrect. 

The purpose of the thesis is to make a more exhaust ive 



analysis of the low velocity collision, to establish the 

important coupling property of stationary states at low 

velocities, and to show that, except for S state excitations, 

t he Born approximation is limited by a velocity effect and 

does not appear for weak interactions at low velocities. 

For this study, the collision is taken to occur between 

an atom and a charged particle with a spherically symmetric 

field. 

The Hamiltonian of the equation of motion may be separ-

ated into three parts representing the energy of relative 

motion, the energy of the atomic state, and the energy of 

interaction. Eigenfuntions of the first Hamiltonian oper-

a tor are plane waves, and of the second opera.tor are asympto-

tic states of the atom at asymptotic or infinite separation 

of atom and particle. Eigenfunctiora of the second and third 

opera.tors are stationary atomic states which appear at vanish-

ing velocity of the relative motion of' ~tom and particle. 

Both asymptotic state and stationary state functions form 

complete sets for the electronic variables of the atom, and 

the collision may be described in terms of each set. 

In the development of the the ory , the collision is 

first described in the impact para.meter form in which the 

state of relative motion is assumed constant and the equation 

of motion reduces to an equation for the electronic state 

of the atom under the influence of a moving charge. In this 

form, a perturbation solution is developed in terms o :t' asymp-

totic states in order to establish a velocity-dependent 

condition of validity and to obtain approximate forms of 
2, 



solution (elaborations of the Born expression} comparable t o 

the stationary state forms . The equation of motion is then 

developed in terms of stationary states to obtain approxi­

mate solutions fo r low velocities and , in addition, for weak 

interactions for comparison vri th the as ymptotic state forms . 

A perturbation solution is next developed for the 

complete equation of motion in terms o:t· stationary states 

with associated wave functions o:f relative action. 

In the following arrangement of the theory , the general 

forms of the equation of motion to gether with the approxi­

mate solutions for the excitation of' S sta tes are well- known 

expressions . The special place or the S state excitation 

and t h e deve lopments which concern the excitation of non- S 

states at low velocities may be considered the contribut ion 

of the thesis . 
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2 . The equation of motion 

The solution of the collision and excitation problem 

is the solution of the quantum mechanical equation 

( : ) 

where the ter ms of the Hamiltonian are grouped to form parts 

representing the atomic state Ha<~) , the state of relative 

motion of atom and incident particle H,/lf) in a center of 

mass system, and their interaction VOf,Jfa ), and where the wave 

function ij {i(.lfa/-Y for the system of particles satisfies the 

boundary condition of associating a plane-wave relative 

motion with the initial ground state of the atom at asympto­

tic separation of atom and particle, where V{il,ifa.)- O .. 
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3. The approximate equations of motion in the impact para-

meter form 

Writing the solution of ( I } in the form 

'k i .b. t 
1/t - f (- - ) I o~ - fi I - fl/la e e. ( 2) 

where the plane wave efk,z is the initial state of relative 

motion and E is the total energy, the equation ( I ) t akes 

the form 
(3) 

where is the energy of the initial ground state. 

If the reduced mass M is taken to be arbitrarily large such 

./-:z. 1.. 
that the term n I/ f 2M /1. 

is relatively negligible, an assumption 

that does not violate the boundary conditions, the equation 

( 3 ) may be written in the approximate form 

( Hci + V) ( f e -i J;, ~ ) · E ) itl VO ooi: (f e -111v = 

or, writing ( 4) 

in the form 
(5) 

This is an equation for the electronic state of the system 

in which it is assumed that energy changes from the initial 

value C.o are balanced by negligibly small changes in the 

state of relative motion. Since VOi)fa.) contains no deriva-

tives in the relative coordinate Ji , the solution of ( 5 ) 

may be c onstructed a.s a sequence of states for a cons tant 

value of x and lJ , beginning with an initial state at z.==-ao 
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Since V = o at z==- 00 , the initial atomic state is isolated , 

and, with no distinction between x and ~ values, the constant 

parameter becomes ff0 = yxz-1-y 2 =if{ 2 -Z= 2
-' Hence, the state of the 

system is independently established on each straight line 

defined by an impact parameter n0 • 

Writing :e = 11,,t and transforming the equation ( 5 ) to the 

form 
(Ha+ V) f = i ·fi jt ip(nJfa) w1rn l( =YJT.fH'-

0 

( 6) 

the equation of motion can be interpreted as a de scription 

of the electronic state under the influence of a classical 

charged particle moving with constant velocity on a straight 

line separated from the a.tom center by the impact parameter 

dista.nc e "0 • The impact parameter equation ( 6 ) is a.n ap-

propriate equation of motion for the electronic interaction 

with very heavy particles, a 1 though it is also a. suitable 

approximation wherever the effect of the term 1'ti 'iltZf is 

relatively negligible. The derivation of ( 6 ) is equivalent 

to the derivation by Mott~ 

The solution of equation ( 6 ) is the probability ampli­

tude of the electronic state and must, therefore, satisfy the 

relation 
( 7) 

for each value of Jf. . , where the integration is over the space 

o:r a 11 e lee trons, represented here by the single no ta ti on 7la. • 

For the values t= ± oo on a given path /ro , ( 6 ) becomes 

6 



with a. solution that may be written as a linear combination 

of the individual solutions 
-1~t 

1/1'>1.(ifa.) e -n where the functions 

1/1-n!fla! , defined by 
Ha Ufa.) 1/l>t = E.n1/Jn(na) and (8) 

and the polar orientation of the set, are the asymptotic 

states of the isolated atom, which have a spatial degeneracy 

associated wi th the arbitrary directi on of the angular mo-

mentum components. 
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4. The asymptotic state representation of the solution and 

the asymptotic state or Born approximation in the impact 

parameter form. 

(a) the equation of motion in terms of asymptotic states 

If the solution of the equation of motion ( 6 ) for a 

given impact parameter is expressed in terms of the complete 

set of asymptotic states t/Jn in the form 

(9) 

then the sum is a solution with constant coefficients at 

asymptotic separation and a solution otherwise for coeffi-

cients satisfying the set of equations 

a
11

(!7oJ) =-tr[ Vnm(7'i) Om(t) eiwnm.t (/0) 
m 

obtained by substituting ( 9 ) in ( 6 ) and using ( 8 ) , where 

\In m <1~> = f 1f~ VOi,Jta.J ~711 <ffa.J d1:a. 

lat ion 

and wnm = Ent E__p_ , and the addi tiona 1 re-

L la1, Clio1t)/2.= r (11) 
r1 

obtained from ( 7 ). The s olution of the problem is the solu-

tion of this infinite set of linear equations for the bound-

ary condition that the initial atomic state is the ground 

state 1foCiiiiJ or I ao(.'701 ooJI = I • 

Because of the spatial degeneracy of the functions % , 

the forms of the terms in ( 9 ) depend on the orientation of 

the asymptotic atomic states, but since this is arbitr..ary, 

the form of ~ should be independent of the orientation. 

That is, distinguishing the members of a degenerate group by 

superscripts such that H , 1, '0 = E i1, ti! a r n n i>J. 

8 



the form of af,_i1<tJ and of tjl~iJ(JiaJ will depend on the relative 

directions of the polar orientation and the particle path, 

but the expression 

( 0 111, 1, ai + 0 1.1.1,1,ui+ . 
·n '1' ri r1 't'11 

) e -i ~t (12..) 

should be invariant, for the degenerate states (1/i~')a of one 

orientation are unitary transformations of the degenerate 

states (t/'n(jJh of a second orientation, such that 

and ( 12 ) may be writ ten 
. Ent 

) 
-l-

e 1'i 

(13) 

so that any chosen set of states may be reduc ed to another. 

Consequently, an exact solution of ( 10 ) is independent of 

the orientation of states, but an approximate solution may 

not be, a nd for this rea son the condition of invariance is 

a measure of its validity. 

(b) an approximate solution for the perturbation of an initial 

state 

If the interaction VCnJ'i.(J.) has the effect of a perturba ... 

tion of an initial, spherically symmetric, ground state 

such that /ao <t1 I~ I and according to ( JI ) , [ 1011.<tllz.<< I or 
111'0 

l ari<t>I « I (nto) , then the solution may be obtained by means 

of successive approximations. In the first approximation 

to ( 10 ) ' the equation for the coefficient ao(t) becomes 

ao + t Voo (n.! ao = o 

"t 

with the solution -{ J l!ao (!i) ctt a0 = e " 0 

where t=O ma rks a convenient phase. 

9 
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For an excited S state, the approximate equation is 

(16) 

which, substituting from ( 15 ), becomes 
t 

I I I i«l;ot + tr (Vss-Vco)dt 
= 7fi Vso(lrl e o 

t ~ . l 

-~ f \fs5(1i Jdt 1 j 1 lf'1.c + 1j,1f f (Vs,-V00 )d;c 
e ' i ~lf Vso(Jt) e ' 

(17 ) with the s olution a5 (t.) = 

-()? 

Tliis is suf f iciently sma. 11 if t h e velocity is suffic iently 

large or the interaction sufficiently weak .. 

For excited states f orming degenerate groups, the first 

approxima tion may be written 

·ii) i v (I)(-) (I) + .i_ v. (ltl (7f) Q (l ) + .. an -+ if nn It Qlt ft 1m 11 

+ _i V It) Cil) a,,'.,1 + · · 
fj nn 

1 (I! _ iwnot 
= nJ ~o (1~) a0 e 

f l) i o>not -'- V (lf! a e 
i fi no 0 (18) 

wher e the terms of the sa me energy state are grouped on the 

left. If the effect of the non-diagonal terms is rela tively 

negligible, then t he solution of ( 18 ) becomes 

. 1; . 11t . f~ . - J.. I<) -- • ~ - -1-. (t )_ 
(() ti r v ,.ltl (Jl) cit I I Ci) - I 11 t. + -hlf' (V11n Voo ) di 

on. (t) = e o -::;;:-- \0in (rt) e o 
t nV 

If these first order a pproximations are designated as 

an~ , then the second order additions 
ltt 

I f v Ii) -i f/lf' ~m (!t) e 

will be assuredly negligi ble if 

j 1:11 Jz-v-n'~ (rt) e i 1o/' ;=dz/ "-< I 

10 
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which is of the form I a111m1<tJ I « I .. For the neglected degen-

erate transitions of ( 18 ) the condition becomes 

.(.< I (21) 

(i) 
If t he elements V,.,j (l(J , defined in terms of some arbitrarily 

() 
oriented set ('lf!~i')a, , are transformed to the set (1J'11

1 
), , oriented 

to the atom-particle axis, then, since the symmetric interac­

ti on VO?/fo.) of a central field particle cannot connect dif ... 

ferent particle-oriented azimuthal states, 

( 
tij)) ( (1) ) 

Vn11 a = o, I aj I Vnn (ll) I + 

where the coefficients ok.£ are functions of the angle be-

tween the polar orientation (!a and !(" • Since 

= 0 and a i + -,, =I 

the magnitude of ( 22.) over the possible range of angles is 

bounded by the differences 

( <k! ) ( ti) ) Vnn (11.) I - v>111 (fl} I 

so ( 21) is ensured if ~ 

/ tilv j [ (V1'.~! )1 
- (V,~)1 ) di I << I 

-00 

•v(iJ I ;Co The forms of the elements no and Vnn in the solution 

( 19 ) will depend on the orientation of N~')a and hence the 

invariance of ( 12. ) is as sured only where 

fi~ /[ (V~~\- (Vn~))a] di. 
o ""' I e 

(22.) 

(23) 

(24) 

(25) 

since, then, the linear group ( 1z ) may be formed within the 

integral of ( 19 ) where, according to { t3 ) and ( 23 }, 

(v (J)) liJ = (' ln(lo) )b (11 /'nl )h+ --+ -rzo a !o/n Ja+- ·- v. T 
__ (' 1<11) (,1,ct!) t _ 

-t V-40 b 'f1'l b 
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1 \J.~(i~)n -(Vn'n.11 )a The differenc e \ "" ~ may also be transformed t o show 

that, according to ( 23 ) , it is bounded by the ang le-indepen ... 

dent difference (Va(~) 1 -(V:~\ 
be put in the form 

, so the phas e condition {25 ) may 

;;: 

It\~ f/(Vn('~)1-(Vn(~)1 / d<: I<< I (26} 
0 

which is practically equivalent to (24 ) and hence is a condi-

tion on the effect of the degeneracy of excited states. If 

this condition is satisfied, then the choice of the lower 

bound to the phase integral of ( 19 ) is arbi trary since it has 

an appreciable effect only on the magnitude of a constant 

phase for the degenerate set. 
(i) 

Writing -V1111 for the angle ... 
(iJ 

independent elements Na n)1 , the condi tion of approximation 

may be written 
(21) 

as part or' and in addi tion to' the Condition I an(ni)(t) I<< I .. 
These are conditions for the sufficiency of the first order 

approximation and are related to the perturbation condition 

LI a11(t) ['-<..< I 
n*o • 

The condition (27 ) is ensured for pa ths that are suf-

ficiently distant and velocities that are sufficiently large. 

The elements -v;~ are the electrostatic potentials between 
'\I (t') ycf! atom and particle, and SO the difference Vrzn - nn iS the 

difference in potentia l for the atom in the states (1Jt~\ 

in which large contributions such as from the 

nucleus are cane el led. These same nuc lear cane el lat ions 

occur in the difference V(il \ / 
11n Voo 

12.. 



The condition la..riC-tJ\«1 for the first order coefficient 

has the same velocity de pendence as {Z7 ) for sufficiently 

high velocities, but differs in the low velocity region be• 

cause of the effect of the phase va.riation. Integrating ( 19 ) 

by parts, the coefficients may be written in the form 
. ;. . " vt i' j'° ,11 

\/,
!ii · ~ :c _ --2....j 11 (n)dz.. _ _LJV, W dzj ., ·; I "i,;!0 

:l:. + 1i u (Vnn-~o )a;, 
(i! _ no (111 L 1r 111! Voo hv nn _u V,(' e o 

Gnft!--E-~+V.m-v; e o + e o 0 ., no <O de 
n n~ oo En- fo+Vnn-Voo 

(28) 

In the region of t=O and at sufficiently low velocity, the 

second term becomes negligible compared to the first, because 

of t h e large variation in the phase factor in the range of 
ri! 

interaction and since 0
0:

0 is not singular, and the ma.gni tude 

of the first term is independent of the velocity. Because 
i Wno z. - -1....[Voo(l()d;: ro 

of the large variation of ~ v nlf', in the range of V110Cn! 

, at sufficiently low velocity and the corresponding negligi­

bility of the second term, the conditions ( z1 ) and ( 2s ) lea.d­

ing to ( 27 ) are stronger than necessary for the existence of 

the intermediate first order term of ( 28 ) • However, the 

final value of (za ) depends on the second term and this, in 

turn, depends on ( z5 ) and ( Z7 ) $ 

(c) an illustration of the approximate solution 

As an illustration of the approximate solution, consider 

the P state excitation of an effectively sing l e electron, 

central field atom for which 

er~'\ fp(rir) cos ea 

( 111 p(2l)Q f,? (11,) sin ea cos if a. (29) 

( ~,~3))a fl' UZ1) sin ea sin 'fa.. 
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where t he subscript marks some polar reference. Only two 

established directions exist, that of ;!. and that of 1L e 

Denoting the former reference by the subscript o and the 

latter by I , so that (lf~ 1 ) 0 "'flr,)co5e" , etc., and (1/!~'>J,=f;/1?11cose 1 , 

etc., ( 29 ) may be written 

(1/"~i)a = cos/.(i)'g>J0 + s1n>icosf(o/~Z))0 + stn'Asinf- (1/1/
1
>)0 

('tjt~.1.l)Cl = -5in. l.(lji~\ + cosAco5tJ-(tjr~ll)0 + cost. sinp.. ('lf'~3\ 

(111~\ = 5 lll }-" ( o/~ll)0 + COS f-t ( lf'~\ 

(l 

where t h e angles /. and f.l relate 0-a. and r:. • In turn, 

(1!1~1)0 

(ffol)!o 

(1/'~''Jo 

sin itJ cos 'f (o//')1 + cosi:e cos cp (1)1~v)1 - sin tp (iJ!n, 

sir!l&sinf (1/'~0) 1 + cos/17 s1ntp (1)!;l.l)1 + cosf (tp~>) 1 

where the angles ar and <p relate 7f and c 

e 

il, e, ~1Hf, 
--~11o,__,,,_ur __ ;!; 

o LIP,,-<p 

fi9.lb 

Since, for a 

(30) 

(31) 

central field particle' v(l(,J'ia) is an axially symmetric function 

of ll1 , and l'o/r)1 , is defined by ( Z9 ) , 

(v. 11)) '\ I (I} 

po 1 = V po (fl) and (v ill) =(\/,Ill\ = Q 
·po I 1"' /I 

so from ( 30 ), ( 3/ ), and (32 ), 

(V;'!,1nl)a = (cos:\ cos@ + sin ~ sin ti}' cos (µ-If J) Vj~<Jr.J 

(V~:)(rr))a =(-sin:\ cos@- co5A stn ttt cos(µ..-<p)) tj,~!(rr) 

(V~~(lfl)a = ( :>in@- sin (Wif)) V/~ (l?l 

( 
-i;(IJ In these expressions 33 ) only ar and v1o<fll are functions of 

time. Hence, if 

14 
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whc ih is independent of .A and fl. if the form Vff taken for 

(V;)a. is independent of ). and p. • This condition is sa tis-

fied, according to (.29 ), ( 30 ), and ( 31), by the average 

With this possible invariance established and taking ;:. 

as the most convenient polar coordinate for the atomic func ... 

tions, the P state differences (1/0) - (v_<i!J 
pp o -PP o , according to ( Z9 ) 

and ( 3! ), take the forms 

and 

(V;;»0-(Vi:)0 ""(cos2
@ - st11'·@cosirJ (-V;--V~~') 

(~~~0-(v;;>)0 = stn2 @ (cos 2r- sin2 1p) (V~-v;) 

(V~)0-(V_;;:)0 = (sin 2@5in 4 qi-cos"at) (-V~-Vt,]) 

· where the last three expressions are the neglected terms of 

(18 ). Hence, the condition of validity for this development 

is equivalent to the condition 

\ 11\r f(,~~(J() -v;uu) d~ J « I 
0 

(3f) 
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on the upper bound. The coeffici ents, with the arbitrary f 

taken to be 

af'<-tJ 

af,'ttJ = 

For the hydro genlike 2.'P state with nuclear charge lie 

and coulomb particle of charge le , the diff erence 

'\I (•) 1 1 (t) - '/ l et. 18 [ -r ( I 1- I 3 I 4 I , ) J 
vfr'- vr>r - :r. 1 a;, ~ I - e 1 + f + z ~ + 0 f + 24 f + 144 f which may 

(35) 

as a maximum va. lue of (34 ) , • Curves of 

cons tant value x ~1 are shown 

in figure 2. I ncluded are 

curves of constant ap>(;z,,"°J 

for the approxima te fo r m 

The 

expression is of the 

order of the ratio of the in-

zo 

15 

p.,z.~ 
/0 

5 

0 

ternal e lectron to the external 

particle velocity. 

- ~l~(fv~r~r)d~/ 
---~/a~1 1•>l) 

- - - - - - i0-2 - - - - - -

0 z 

{d) intermediate behavior of the approximate solut i on at low 

velocity 

With the approximate coefficients in the form (28 ) , 

the atomic state ( 9 ) becomes, absorbing the index (iJ in n , 

11i = 

For a sufficiently low velocity , the second sum becomes 

16 



relatively negligible in the neighborhood of t=O , and on 

a path sufficiently distant to admit the approximati on ·( w ) 

at low velocities, Hence, in t his region, 

subject to the perturbation condition 

(37) 

the intermediate state of ( 36 ) is dominat ed by the behavior 

of 
(.39) 

which has the form of the fir s t order perturba.tion approxi-

mation for the ground state of the atom in the presence of 

the stationary charged particle at tbe separation /"{. , except 

-t Jk0tJd:t - ..L V,.{Jz)t. that e o appears in place of e 1L • The expres-

sion (38 ) represents an atomic sta te coupled to the slowly 

moving particle, and because of the integral form of the 

exponent, both members of the equation of motion ( 6 ) yield 

the average 

to the first order in V • At vanishing velocity where R... 

- ~ J vooc~Jclt. 
is no longer a function of time, e o may be written 

-i Voo(1tJt 
e and (38 ) becomes identical with the usual station-

ary approximation. 

17 



5. The stationary state representation of the solution and 

the stationary state approximation in the impact parameter 

form .. 

In order to obtain an approximate s o lut i on in t he region 

of low velocities, where the asymptotic state approximation 

fa ils , the description i[i<ff,n.,,t) of the electronic state of the 

system will be expressed in terms of the complete set of 

functions representing the atomic s tates t ha t come into exis­

tence when t he motion of t he incident cha r ge becomes vanish= 

ingly small. 

(a) a descript ion of stationary states 

In the extreme circumstance of vanishing velocity, the 

equation of motion ( I ) , with H/(_=0 bec omes 

(39) 

with solutions 
(40) 

where the stationary stat~s Xn eigenfunct i ons of the equation 

(4/) 

are the wave f unct ions of the atomic electron in t he presence 

or the charged part icle at /[ 8 In contrast to the asymptotic 

states, the stationary states a re not s pa tia.lly degenerate, 

being polarized by the central field of the charged particle . 

18 



Because of the symmetry of Vm;tirJ about the atom particle axis, 

the possible dependence of X.,z.<li;lfa) on the azimuthal angle lfi 

about the axis takes the complex form e:r i cnp, or the real form 

( sinutp,) d . th . f V< cos<rf, , an since is is independent o !f,7fa.) , the 1f1 -state 

persists over the range of separations. The particle-oriented 

states Xn form a complete set for each value of !"{ , such that 

(42) 

Since the operators of ( 41 ) are real, the functions Xn can be 

established in real form. 

At asymptotic or infinite separation, {39 ) becomes 

and the individual solutions 

-i bt - i E..rtt 
X n (ifJ{a ) e 11 ------'>" t/1n ( ,ifa) e +i 

fl-00 

so that each stationary state is identified by its asymptotic 

statee In order for Xn to be unique, capture of the electron 

must be precluded, either by restricting the nearness of ap-

proa.ch or by restricting the descriptions to systems in which 

the possible binding of electron to particle is weaker than 

the atomic bond. 

At sufficiently distant separations /(_ , X 11 llf,~J and enr1rJ 

may be expressed as perturbations of their asymptotic state 

in the forms 

(43) 
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where Yn is the state asymptotically approached by Xn , hav-

ing the same polar orientation, if it is not spherically sym­

metric. According to ( 42 ) and ( 8 ) , the representation ( 43 ) 

is valid where 

(b) the equations of motion in terms of stationary states 

The impact parameter equation of motion C6 ) has the 

(44-) -

same form as ( 39 ) but with the auxiliary relation ,/(_= '~./{o"-+(11't.)"'- , 

for which H~+ V X~ , and l/'t become functions of time, such 

that, at each value of -t , Xn is the eigenfunction of the 

operator Ha.+ V with the eigenvalue Cn(n) and represents a -

state coupled to the moving particle. Of the two forms ( 40 ) , 

which a.re equivalent for the system at rest, the second is 

the more appropriate for the system in motion. In this form, 
'f-t _ _J_ l (f'l)d.t 

a ground state Xo<if,"liaJ e 11 0 

of asymptotic spherical symmetry 

becomes, at sufficiently large separations for the approxima ... 

tion (43 ), 

(45) 

which is to be compared with the same approximation ( 38 ) ob-

tained at low velocities in the asymptotic state development. 

In terms of stationary states, the general representation 

of the atomic state on a given path becomes 
-/:: 

_j__fc. (11.)d-t 

X (- - ) 1'j n c>t (t) n flJ(a. e o (46) 
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where Jt~ill/- +- (lf't) " and where t=O marks a convenient phase. 

With constant coefficients, this representation becomes a 

solution as the velocity approaches zero. Substituting (46) 

in ( 6 ), the equation of motion becomes 

(47) 
n 

(48) 

(c) an approximate form of the equations for the perturbation 

of a ground state 

If the operator i-l1Ct has the effect of perturbing an 

initial state X0 of asymptotic spherical symmetry such that 

I c,,(t)/ '°"I and accordingly I.. Jcn<t:>/ z« I , then a first approximation 
n '"O 

may take the form 

(49) 
or 

With the integral written in terms of ~ , the velocity ap• 

I pears explicit·ly only as a factor v- in the exponent~ Accord-

ingly, the values of the approximate coefficients become arbi­

trarily small for velocities that are sufficiently small, if 

the integrands Jx:?J~ L d?'a are not singular on the path. In 

general, negligibility of succeeding orders of approximation, 

2/ 



a ·lthough dependent on the effect of the operator g~ , is 

assured by a sufficiently large variation of the phase factors 

:riv-! ( r.,,-c,,.) d~ s 
e o in the range of interaction. ince this varia~ 

tion is least for the terms of ( 48 ) that connect asymptotical• 

ly-degenerate states, a more reliable first order approximation 

at sufficiently low velocity may be obtained in the form of 

the limited set 

for the states· Xo and the asymptotically-degenerate states 

X(i) x [ z 
11 • Since o is real in this formulation, f.odza.= I and hence 

the approximate equation for co becomes 

and (51) 

(d) an approximate form for stationary states of weak inter-

action 

Further study of the solution requires more explicit 

expressions for An , which are complex and difficult to obtain. 

However, the perturbation representation is accurate on suf• 

ficiently distant paths, for which the ground state takes the 

form (sz) 
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and the excited states, the forms 

(5.3) 

where possibly degenerate asymptotic states are grouped in 

the first order, a nd where the subscript 0 denotes the incident 

direction as the polar orientation of ~m • 

Since the symmetric V(rt,"ff.) cannot connect different 1f1 ... 

states, ( 53 ) may also be written 

in terms of the particle-oriented states ('o/'n), • 

(54) 

The representations (sz) and ( 53 ) a.re valid for the condi-

ti on l J Ev~~ Ii<< 1 
"147t. " "' 

(55) 

(e) the approximate solution for S state excitation with weak 

interaction 

For an excited S state, the pertinent term of ( sz } or 

is spherically symmetric in /r • The excited state to the 

first order is 

marking an energy difference of 
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(56) 

yielding a final value c,<oo) similar to a5(ct>) of the asympto-

tic state a.pproxima ti on ( 17 ) but an intermediate form con ... 

siderably different, for it diminishes with the velocity. 

The condition /c5(tJl«! is ensured for velocities and inter-

action gradients that are sufficiently small, although, ac ... 

cording to ( 55 ), the condition is also satisfied at suffi ... 

c ient ly high velocities if the representations ( 52 ) and · ( 53 ) 

are admissible~ 

(f) the approximate solution f or P state excitations with 

weak interaction 

Turning to the simple construction of an effectively 

single elect~on atom for the more complex P state excitation, 

the pertinent terms of the ground state take the forms 

The unperturbed excited states a.re degenera te and hence must 

be grouped linearly to form the perturbed states 
(iJ 

x;l(,f,h,) =cos-re (o/~<J)0 +Sin@ C05'f (1/'~;J)0 + Sin.@-Sin.f (?jJ?l)0 + l~~:r~ (iji,;;·1).-+ · · 

x~)(ifJi,)= -$iflll7(o/t1)0 + C05@ C05lf (?ft~Z))O + (QS@ Sin_lf(°!jJ;)Jo + · · 

'Y())(--)­
j\ ll11,-1' I 
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where liT is the angle between "Ji. and the fixed coordinate £ , 

and 'f is the azimuthal angle of Jt about .z; • Since, for ar=O , 

(59) 

the orientation of the asymptotic states to the atom-particle 

axis is established by the perturbation development of x.1' e 

With the introduction of the relation 17.= ftf+f!.rt)i: , the states 

are attributed a timelike behavior marked by an a lignment to 

the moving particle. 

Thus, the approximate equations of motion for the group 

of P states, upon substitution of ( 57 ) and ( 55 ) in ( .5V ), be.-

come 
(:(ll(t) p 

In these equations the operator gt connect s the particle­

oriented states (1/1~ 1)1 and (2Jf1~)1 independently of the inter­

action VOUia) • Because of the difference in phase factors, 

an exact solution of the equations is not easily obtained. 

{g) the P state excitation--states in phase 

For sufficiently distant paths at a given velocity 

(CO) 

(61) 

With this approximation, which is equivalent to assuming the 
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exc i ted states x~ and x~ to be in phas e, the equations of 

motion reduce to 

With the substitution 

the equations ( 62 ) become 

c;,(•)(f) = 

with solutions 

and, from (6.3 ), the final values 

c;<z)cas@ 
p 

which, like the S state solution ( 56 ), are similar to t he 

final values of the asymptot ic state approximation. 

Intermediate l y, 
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(63) 

(64) 

(65) 

(65) 



(h) the approximate solution in general form for weak 

interac tion and asymptotically-degenerate states in phase 

The reduction accomplished in ( 56 ) and ( 65 ) on the basis 

of coherent, first order excited states may be put in general 

form, for the equation of motion ( 47 ) 

with X~' !:O:'. (if;J0
)1 = L b~'f>('o/~P)o 

f 
and 

t ~ 

may be written lt (c.Xo) e -* [ C'i,cL\ L ()~ ( cPl b~jJ) ( 111:n ; -Jr [(En+ Vnn) ~ 0 
"ft'i'O 1 

or, with Co<O::/ and the representation ( 52 ), 
11i . 12! - ) 

-(i)( ) = _I -J .2_ (-1 1 ciJ(~) \ ~lf 0 (E;,,-E,, +\lnrz-\1,,o d1:: 
Cn t E-E i'J:t V-no "- /o e di!. 

n a 
-w 

-ro 

For this approximation, the state of the system ( 46 ) 

takes the form T t 

-~Jc,dtl en (ii) -:}[(En+ifnn)clt ip ~ Xo e 0 + c,,. (t) ( ifrn I e 0 

tt.fo 
i 

or, introducing 

2.7 

(65) 

(69) 

(70) 



Then, from ( sz ) and ( 70 ) , 

or 

which, except for the integrand factor is identical 

with the asymptotic state approximation ( 9 ) and ( 19 ) , and 

since the form ( 52 ) is admissible only for the sufficiently 

distant paths of condition (55 ), the factor should 

be near one. 

Thus, on sufficiently distant paths, the asymptotic 

state approximation has been reproduced and for the s ame 

condition, namely, in order to write (69 ), 

I 
, fc( (i) (i, J I 

1i1f' V,,nr11J-V11"'UU d-l.. << I 
0 

(72) 

The two approximations differ in that the stationary state 

development ( 71 ) , in addition to ( 72 ) is restricted by the 

velocity-independent condition ( 55 ), which appears for the 

asymptotic state form ( 28 ) only at sufficiently low velocity. 

The two conditions ( 55 ) and ( 7Z ) have the effect of nearly 

eliminating, in the first order , the difference between a 

stationary excited state and an asymptotic excited state., 

With the inclusion in the first order approximation , as 

in ( 60) , of the terms that connect degenerate states, the 

higher order a pproximations depend on higher orders of the 
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interaction elements Vmn , so that where the interaction is 

sufficiently weak for a given velocity, the first order ap­

proximation is adequate , and hence the solution ( 71 ) is not 

restricted to low velocities. 

(i} the P state excitation-•states not in phase 

Writing 

1'T v t 

M t )= ~ir 1 ( fp-fo t-V;~-Voo)d~ 
0 

and. d(-t) = -'-f('V'.«'-V.(J.)) d t111' 1'1' 1>1' ;c 
0 

(73) 

the equations of mot ion ( 60 ) may be put in the abbreviated 

form 
(74) 

If UtJ is negligible, then the equations ( 74 ) may be 

written • (I) Vei/J + c/'-J ti; Cr 
(75) 

• (Z) i!J - Cp(I) ffeJ 
Cp Vti>e 

and the solution {67 ) can be obtained by successive approxi-

mations, beginning with the forms 
t; . 

cf,"'.'=' J Ve'/Jd:t 
_,,, t 

c~'J""' JV tire 1A:t:t 
(76) 

-oo 

and successively reduced in a series of integrations by 

parts , to yield the form 

cJ•J ( co5 0) J \ ( ) il:i ( sin.t<r) Jt:o ( ) i/J c(fi = _ szn tiJ cit Vcos.0 e cl t + cos~ at V sinai- e dt (77) 
- oo - oo 

Because the reduction to ( 11 ) is independent of the nature 

of V a.nd Ll , the modification of ( 76) is not a second order 

effect. If the interaction is considered negligible, the 

equations ( 75 ) reduce to c~'=cf4)t& and c,~)=-cf'1dr with solutions 

Z9 



cr=Acostir-r5sintir and c;•)=-AsintiT+Bcostir , so that, here, the 

variation in the coefficients is the variation of the pro-

jection of some constant vector on the rotating atom-particle 

a.xis and its normal in the plane of t0- ., 

If the phase relation S is not negligible, a coherent 

reduction is not possible, and if the velocity is sufficient­

ly low that, according to ( 73 ) , the variation of e iS is large 

in the range of interaction V , the first order approximation 
t 

c~' = J Vei/Jdt 

C~L)=]v £/ye 1/J-iccLt 
(18) 

-oo 

is sufficient.. For, the higher order modifications of ( 78 ), 

obtained by successive substitution in ( 74 ), are composed of 

integrals of successively higher orders of multiplicity, and 

these, expressed in terms of ~=rt , contain the velocity 
./J ifi 

only as a factor ~ in the exponents of e: and e so 

that, at sufficiently low velocity, the higher order rnodifi-

cations are proportional to higher orders of velocity v e 

Thus, to the second order, 

t !<; I i/J !~ 1 ib(j~ 1 i.1- i.S ,J cf,''c-e.J = Ve dr: -t- tifT e ~;,, vwe d'tjd-i: 
-QO -()/J 

where primes denote 0/a;e and where !J and 8 are proportional 

to ~ • The negligibility of the second and higher order 

terms can be attributed to the incoherence introduced by 
i~ 

e since if 6"' a , the approximations can be reduced in-

dependently or the velocity to the form( 77 ), which is a 

consequence of the coherence of c;) and c~i.> • With a large 

variation in eiS , the terms of ( 74 ) :tn c~iJ are small compared 
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to the term in Co and incoherent Compared to the term in C~jl ., 

At sufficiently low velocities the intermediate values 

of the coefficients are dominated by the similar forms 

for ( 77 ) , and 

However, the final values become 

for ( 77 ) , and 

(II • ii:; 
cp = V ieiJ +- .. 

l (Ll-~) 
(z) v· e 

Cp = l\ri(Li-~) +- . 

cf,'tro) = [Vci~)eiJl d.t 
-uo 

"" 

for ( 78 ) • 

for ( 78 ) e 

(i.1 -f 1f V i(LI-~) 
Cf' (uo) = -;;_-sin'lUe dt: 

-oo 

The solution ( 74 ) may also be reduced by absorbing the 

phase factor of ( 74 ) in the coefficient c~zJ and transforming 

the equations according to (63), but the successive approxi= 

ma.tions for this form do not produce higher orders of the 

velocity at low velocity, and the expansion is more appropri-

ate in the high velocity range$ 

According to ( 78 ), the approximate solutions at suffi-

ciently low velocity take the forms 

The s e approximations represent independent excitations of 

particle-oriented states with one depending on the radial 
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and the other on the angular components of the particle 

motion. 

The measure or validity of ( 79 ) is not as clear as "" the 
_i__ ((1/}'l__11,1''}dr: 

condition ( 61 ) for ( 67 ), but, since the variation or e;;v-L
1 

1'P w 

occurs within the range of interaction, it is c ertain that 

where 
/ ~v fl v; -v~1) d~ I > / I (80) 

0 

the solution (67 ) ,leading to asymptotic state or Born ap-

proximation is no longer valid. The more extreme the in­

equa.li ty (80 ) , the more admissible becomes the approximate 

solution ( 79 ) • 

For the ~p excitation of a hydrogenlike atom by a 

coulomb particle, the phase difference I 11~ J(v;-v~i)~ I is 
0 

shown in figures z and 3 $ For the same system, the magni­

tude of c~l(t! in the neighborhood of t = o , for example, 

~a ir may be taken to be very roughly of the order E,,-Ea fl: 0t,a,, 

1·rith V. (11)~~.CZ,_t_ [1- e-·i-f·(1+2-~ +.2..f 2- +Z7 f')l 
<Y -'pO 0 - "/ a_,, ~/- 2.. 0 8 o 64 6 J e 

According to the distribution 

of values the coefficient 

diminishes with diminishing 

range as the phas e difference 

increases with increasing 

range. On mod era:cely distant 

paths in this system, the 

20 

15 

?o=Z,~ 
10 

- 8 \J_f"(v1''-'V.('1Jd1 z 1W pp 1'I' 
0 . 

fi9.3 

--- ~c"'(t-o) 'l. p 

phase dif't"erence cannot be neglected for values of wpoa... 
'l11i 

greater than 3 , for ~ -:::: I 
I 

, or where the velocity of the 

particle is of the order of the average electron velocity. 
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( j) the effect of a low velocity on phase relations in a 

weak interaction 

The importance or the foregoing solution for a weak 

interaction lies in the effect of the velocity on the co-

herence of asymptotically-degenerate states. These states 

are coupled to the particle and differences in coupling 

energy appear even for weak interactions, so that, at low 

velocities, the states no longer form a coherent group during 

the collision. Thus, an interaction energy that is small 

compared to the energies of the relative motion and of the 

atomic state i s not a sufficient condition for the asymptotic 

state or Born approxima.tion which requires a. coherence of the 

group of atomic states that has the property of an arbitrary 

orientation. For a weak intera.ction and sufficiently low 

, • ( ) 'V Ii) (o/1(il) velocity, the coefficients 79 and states Ap == -rp , re pre-

sent the correct addition to the ground state ( .38 ) or ( 45 ). 

(k) the approximate solution at low velocity in general form 

The phase effect that appeared at low velocity in the 

P state excitation with weak interaction is a part of a 

general property of the stationary state description. For, 

if the variation of the phase factors of ea.ch of the terms 

of the equation of motion (48 ) is sufficiently large within 

the range of interaction , the approximate solution becomes 
t 

c~' (t) ~ - j(f x~· ~ X,dt,) e ,;,j<e!;'-l,Jd:, (81) 

-QO 
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The possibility of solution is ensured by a sufficiently low 

velocity, for terms connecting degenerate states do not 

appear in the equation of motion, since the operator has the 

f orm 0 . d . () 
at_ = /( otc + tiJ otiT (Bl) 

and the degenerate states differ only in the functions 5incnp, , 

• Since the energy differences of the non-degen-

erate states that are asymptotically degenerate depend solely 
i (U=;Y!__ r:;, rjJ)&c 

on tne energy of coupling, the variation of e ti.ir o n "-

for these states is the critical measure of a ·sufficiently 

low velocity; and since the variation is confined to the 

range of interaction, 

\ .n111j(t~0- t J>) d~1 >> I 
r 

(83) 

for some value of E and for non-degenerate states, is a 

necessary condition of the approximation. 

According to (82), the approximation (81 ) may be sepa-

(84) 

-oo 

with one depending on the radial and the other on the angu-

lar component of the particle motion. With tne state ~ 

independent of ~ , the radial motion excites non- ~ states 

and the angular motion , cosip, states. 

The states Xn and Xo are coupled to the moving particle, 

but where 1~1v J<~~)-e;j1) d,o l ~ I 

" 
X~1 and XJ! are not independent, 
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and their connection must be included in the approximate 

equations of motion. 

(1) the distribution of solutions 

The two approximations ( 19 ) and (8/ ) are the extreme 

solutions of' the impact parameter-and-velocity range, which 

may be roughly divided into three regions according to the 

limits of the approximations, based, for the Born approxima.-

tion on the in-phase qug,lity of degenerate asymptotic states, 

and for the stationary state approximation on the incoherence 

of non-degenerate stationary states. These regions may be 

indicated schematica lly as in figure 4 • 
I 

\ 

\ 
I \ 

I ' AS I ' ' I ' ' I ' !r.o \ ' ' 

For the region between the two approxi~ 
\ ' ' \ ' ' I ' ' 

mations, a simple solution does not 

exist , although for impact parameter 
SS I \ 

I I 
I J 

1/' 

greater than some lower bound, an f19 4 

approximate equation of motion can be developed for the entire 

velocity range, such as {60 ) for the P state excitationw 

Where, in the asymptotic state region, the atomic 

states have an arbitrary orientation, in the stationary state 

region, they a.re pol5'3.riz ed and strongly coupled to the moving 

charge .. 

The total probability of excitation or total cross 

section is the sum of final probabilities for a uniform 

distribution of possible paths , or 

"" In = I\ (roE.FFICIENT)?'I.. at t=oo1 2
.Z7ffl0 dfl0 

(85) 

0 
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which i s also the number of particles associated with the 

excited state n for a unit incident flux. In both approxi ­

mations , the final coefficient is the coefficient of (1/'nlo 

the asymptotic state of polar orientation in the incident 

direction, since the orientation is arbitrary for the high 

velocity approximation and since the stationary state Xn~(fnl0 

as t- 00 At low velocities, the major contr i bution to the 

total excitation comes from near paths, and hence the sta ­

tionary state approximation is valid for the effective range 

of impact parameters. 



6. The sta.tionary state representation of the low v elocity 

collision. 

Without approximation, the stationary states Xn are as-

sociated with states of relative motion which describe the 

collision and scattering of particles as an energy-conserved 

phenomenon. 

(a ) the equation of motion in terms of stationa.ry states 

Writing 
(86) 

the equation of motion ( I ) becomes the time-independent 

equation 
(87) 

for the constant, total energy E • 

Representing the solution in terms of the complete set 

of stationary states, 

(8'.l) 

where Xn is defined by 

and (89) 

and has the particle-oriented asymptotic state C1jrn) 1 • The 

expressions FnC!f.l are wave functions of the relative motion 

of the system for the a.tom in the state Xn , and are defined 

by the boundary conditions 

(90) 

for the ground state, and 
ikrt'T. 

Girrt1 - T f-i/8,lf) (91) 
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for excited states, where e andlf are polar and azimuthal 

angles of the atom-particle axis relative to the incident 

direction +~ , and become scattering angles for asymptotic 

separations !{ • 

Integrating over the electronic spaces, the expression 

(92) 

becomes the probability distribution of the relative state. 

Probability of excitation and scattering in the direction 

is the relative flux of particles 

and probability of excitation becomes 

~: f j fn(e,f))
2
sinededf (93) 

Substituting ( 88 ) in ( 87 ) and using {89 ), the equation 

(87 ) becomes the set 

or grouping all states n on the left 

(94-) 

= [_ 2~ f x: (z v~Fm Vi/t'm + ~ v,,2 Xm)dta 
,,, 

(b) angular momentum operators 

Consider the transformation<6lof the operators \/11. and V,/-

from the fixed system x '-i ;!o_ , with r: the direction of initial 



relative momentum, to the system l1f 'Y , with }- the atom-

particle axis and ~ for convenience in the xy plane. Then 

'J, = y cos <f - x 5 in r 
1t = -(xcoscp+ysinqi)cose+e:sine 

} = (xcosr + y sincp )sine + .i!:Cose 

Transformed to the fixed system 

and 

and further 

( ¥e k + ~Jy + **tr) ~n("~1f t) 
( }4 -V f_J X1'Jll,i~r) 

- i Pt Xn.. 

(95) 

e 

(96) 

where Px is the angular momentum operator for the axis of x 

Similarly 
0
°'f Xn = -i[coseP7 +sine Py] Xn. (97) 

0
2 

X = - [cose P-... + sineP.'1]2-Xn 
O'fL 11. ' 

where Px , P1f , and Pr are the angular momentum opera tors for 

axes i , y , and ? , respectively. Then 

nz.v _ 1 d Jt'-o X I (pz nz)X cosze nz ;y Zcose Rn 1' 
VI[ !Ln. - f[L(}ft (Vi' n - l(L -,_ +r";f Jt - lz.l-Sin2e rv'-n. - /(2Sin8 y.r;r fln (99) 

Since the c-.entral field of the charged particle does 

not alter the r, -state of Xn. , which in complex form is 
(O-if, 

e ' 

the particle-oriented momentum c omponent of the c omplex Xn 
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has the constant, integral value CT , so 

Fj. An(.r) = cr An(cr) (100) 

The eigenvalues of the operator (Pf+ P1 )Xn are, in general, 

functions of the separation fl • Since the CT -value of 'X -n( cr> 

is not altered by the operators Pr and P/ +P.,/ , but is changed 

by a unit by the opera tors Px and Py- , the elements J X~ ~ Xm.dT,,_ 

and Jx:vflzXmdTa. vanish, according to ( 98 ) and ( 99 }, unless the 

a- -values of Xn and Xm are the same or differ by ± I ; so 

each equation ( 94 ) c onnects only states Xncn for which Llcr=O,±/ ~ 

Because of the persis t ence of the ~ -state over the range 

of separations, the two s ta.tes Xn<+crJ and Xn(-a-> are degenerate 

and hence allow combinations a:r. (Xnr+v>± lnr_,,.1) yielding real forms 

1)1 (i ) of An , written as X.,., • In this mixture of Jer i states, the 

distinction bet ween +er and -er momenta is lost, and ( 100 ) must 

be replaced by 
r;z 'Y(i) = 2 11 ri> 
r 'J- /Ln. <:F ;L11 

(101 ) 

The real form of Xn , although inc onstant in a- , has the ad­

vantage of simpli fying the equations of motion, for f )!.11 'Vrr..'XndYa""O . 

In terms of real states, the e l ements [X~1 VizX:fd-ra- and f'::t:~>'V,{-X~ 1d'1:'a­

vanish unless the l<r l -values of x~> and x:;,,1 are the same or 

differ by a unit. Consequently, each equation ( 94 ) connects 

n only the real states x~ for which IJCT2 = 0, I Although the 

operators ( 98 } and ( 99 } cannot connect the degenerate states 

An c+IT> and Xn<-cr> , since Mr> I , the coeffi cient of ilf in the 

operator ~ can connect the degenerate states of the real form. 
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(c} the operators of the equation of motion 

In terms of real stationary states, the left member of 

( 94 } may, wi.th the introduction of ( 98 ) and ( 99 ), be written 

in the f orm 

(102) 

which represents the interrelation of' Fn.. and Xn.. , since the 

right member of ( 94 ) depends on the connection of Xn with 

other states of the atom. The firs t term of ( 102) is the 

energy of relative moti on, [Vl(rc) is the energy of the stationary 

state X-n. , and E. is the t otal energy of the system; the 

fourth term represents an inertia effect of the changing X~ 

sta te, and the remaining two terms are gyro scopic coupling 

energies which represent the coupling of t he electronic 

angular momentum and the motion of' the atom particle axis 

since these terms derive from the angular parts of tne opera­

tor v: . Of the two terms, the first represents the coupling 

of the precession of the state x)'L about the atom-particle 

axis with the motion of' the axis, to which it imparts a resis-

tence with an effectiveness depending on the moment of inertia 

of the system (fM~~ and hence diminishing with increasing 

ti'" I ( i z d • mass and separa.tion /(_ . The term ZM~ Xn Px+~)Xll (a, 1s a spheri-

cally symmetric function of' /l and has the form of' a repulsive 

potential. The last term, a function of' the particle-oriented 

angular momentum component ~ , is the gyroscopic coupling 

energy involved in the conservation of angular momentum. 
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Although the relative angular momentum in the collision is 

not certain, it has no component in the incident direction 

for an initial state of vanishing <T -va lue, and this property 

must be conserved in any transition to excited: states of 

non-vanishing <T-value . The last term of ( 10.z. ) vanishes at 

e=! in which direction has no if -component, and has the 

effect, in the factor s;n.2e , of excluding the -c -axis to the 

probability distribution of the relative state Fn . The effect 

of" the er-coupling on the relative depends on the moment of 

inertia of the sys tem , but where increasing separation dimini-

shes the effect of the precession coupling , as it corres pond­

ingly weakens the stationary coupling of X11. to the particle, 

it cannot entirely overcome the singularity of the er -coupling 
llf 

in the incident direction. 

(d) approximate equations 01" motion for low relative velocity 

If the relative motion of an atom and partic l e is so 

slow t hat the atomic system remains in a ground stationary 

S state, coupled to the moving particle, then the vanishing 

of ( 1oz. ) defines the state of re la ti ve motion or 

(/03) 

* The vani shing express ion ( 1oz ) is the equation of motion of a 
stable molecule with the electronic state strongly coupled 
to the a tom-particle a xis, if a stable molecule is possible. 
For such a system the spatial extent of the stationary states 
is effectively limited by the stationary orbits of the bound 
particle. The angle-dependent terms of ( 1oz. ) describe a state 
of quantized total angula r momentum in some fixed direction 

e=O , with t he direction e=O excluded to the precessing 
atom-particle axis which carri es the angular momentum er • 
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with (104) 

which is an elastic collision and scattering for a coupled 

atomic state: Excitation at low velocities is then a per-

turbation of the state Fo X0 , such that I.Fn*-Fn « fo+fo 
' ">t#) 

and neglecting all terms on the right of (94) except those 

involving Fa , F; is defined by 

and 

Accordingly, the excitations F-n X,,_ exist independently, 

and are also coupled states of the system. 

Degenerate states are not connected in the neglected 

terms of ( 94 ) since the connection appears only with the 

operator in ( 98 ) and, since from ( 104 ) there are no 

(105) 

initial f -rnotions, none appear. Consequently, the states 

that are connected - in neglected terms differ in the coef­

ficient of Fn. in the equation (105) and hence are not co-

herent. According to the operator forms (98) and (99), 

only states with cr~ 0, 1 are excited in the first order of 

approximation since the er-value of ;c vanishes. 

The approximation (10s) corresponds to the impact para­

meter form (81 ); but, without path distinctions , the validity 

of ( 10s ) depends on a relative velocity sufficiently low 

to ensure the coupling of the atomic states to the particle 

within the range of interaction. Equations ( 103) and ( 105 ) 

(7) 
are the perturbation equations of Mott and Massey. 

*For asymptotically-degenerate ground states , {103) must be 
replaced by the set of equations connecting the states Fo<0 

• 
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The solution of (1 0s ) may be evaluated by expressing Gt_ 

and the right member in terms o:c a complete set of functions 

a.ppropria.te to the operator of Fn.. • If f X?t.'111.i..;:r_ndra... is a 

spherically symmetric function of~ , which according to { 99 ) 

occurs fo r ~=0 , the solution may be expressed in terms of 

Legendre functions. 

(e) an asymptotic solution for a spherically symmetric behav-

ior of f Xn 11,.( Xn d?:0-

For functions fXn.V1Xn.dr:a.. that are spherically symmetric 

in rr.. , a.nd for functi ons Gn(11.!- En, and f X-,,_V{Xnd ta.. that diminish 

more steeply than ~ as tr.~w , the asymptotic value of the 

solution of ( 105 ) then ha s the familiar fo r m <a! 

where 7'l is converted to 7!' in the integral, and 

cosO = cose,,_cose' + 5i:nen.5ine'cos(if"--tp 1
) 

and where ';{n(Ji,e) is the solution of 

with the asymptotic behavior 

(ICXJ) 

(107) 

(108) 

As asymptot ic forms, the solutions ( 1C6 ) are not measures 

of the sufficient smallness of 1=-n • If { ~ 'Vrz."-l.. 11 dtt1- is not a 

s:r:t.erically symmetric function of /( , such a reduction as (106) 

is not available. 
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(f) the approximate equations or motion for low velocities 

and weak interactions 

If the stationary states are represented a.s perturba-

tions of asymptotic states, the solution may be reduced as 

in the impact para.meter formulation, but where the impac t 

parameter reduction may be limited to paths sufficiently 

distant to admit the approximation, the wave interaction 

cannot be confined; and, here, the perturbation representa-

tion is admissible only if the stationary interaction is 

sufficient l y weak over the range of separations , and this 

depends on a sufficiently weak incident charge . Thus, with 

perturbation representations of Xn. , the equations ( 10s ) a.re 

approximate descriptions of' the collision if the interac t ion 

is sufficiently weak and if the relative motion is suffic iently 

slow . 

In terms of the particle- oriented states (1/J.,,)1 , and t o 

the f i rS t Order in v.l'Vm t 

(109) 

and with the energy ba lane e 

E = Ee + tlk; = E + n
2

k~ 
ZM l'L ZM 

(110) 

where the superscript Ol denotes non- <p1 states. 

Thus, in terms of the angular momentum opera tors of ( 98 ) , the 
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appr oximate equations of motion ( 10s ) become 

(11 t) 

(112) 

where s(i}(IJ ~ 0 unless , a non-tp, state with cr= O . 

{g) an approximate form of F0 for large relative momentum 

If the reduced mass of the system is sufficiently large 

that the magnitude of the relative momentum is much greater 

n2k~ than the change of momentum in the collision, the term ZN\ 

dominates the expression 

of { 103 ) , and the approximate solution of ( 103) is the plane 

wave e 1 ~0~ satisfying the initial boundary conditiono 

As a refinement of this approximate solution, consider 

the variation of Po to be predominantly in the variable z, , 

so that ( 103 ) may be written in the approximate form 

with the approximate WKB solution 
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or with sufficiently large mass M , 

The ground state of the system for these approximat ions 

t akes the form 

which a.grees with ( z ) , with ( 4 ) and ( 40 ) • 

For weak interact ions ( 113 ) becomes 
~ 

Fa = e i k.r. - i n~f Voo(Ji}d~ +. 

(113) 

(114) 

(115) 

which , together with ( 109 ) , reduces ( 114 ) to a form proportion-

al to ( 38 ) • 

{h) the a pproximate solution for S state excitation wi t h low 

velocity and weak interaction 

For the excitation of an S state, (0-.2.) 5 =0 and f1/1s(Pi+f1t)1fsd<a.~O 

so t ha.t the equation of motion (11 z ) becomes 

and, since Vss is spherically symmetric , the asymptotic 

solution, according to ( 106 ) , is 

(116) 

(117) 

where, to the same order of approximation, i-5 is the solution 

of 
(118) 
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Writing the integrand of ( 117 ) in the form \/l[z.(FoVso)-Vso v,;'·fo 

transferring the operator v: to ts , and substituting from 

( 111 ), ( 11a ), and ( 110 ), the solution ( 111 ) becomes 

(119) 

If, in addition to the conditions necessar y for this 

approx i mate solution, the reduced mass is large enough that 

the relative mot i ons Fa and 'f5 remain predominantly plane 

waves, then 
-de .J[ 

e 5 and eiko·n replace 'ts and Fo in ( 119 ), 

and the total excitation probability bec omes 

(120) 

For a momentum 11k0 that is sufficiently large ( 12.0 ) reduc es 

to the impact parameter approximation of ( 85 ) with ( 56 ). 

Although proof(9br the reduction is complex, it begins from 

the deve lo:pment of the exponent of ( 120 ) in the fo r m i (ko-ks)c + 

if?.,, x function of the scattering angles, and the rirst term 

retains its form in the reduction. Using ( 110 ), it may be 

writ ten as ~1,(Es-Eol;e with v;f(Va+15) , and the e l aboration of 
. z: 

( 11s ) for ( 111 ) and ( 118 ) extends this to ~,A(E5 -E.0 +\ls5-\loo)c~ which 

is the i mpact parameter exponent. If , the 

solution ( 12.0 ) becomes identical with the Bo1·n approximation. 

(i) the approxi mate solution fo r P stat e excitation wi th 

low v elocity and weak interaction 

For the excitation of a P state of a single electron 

atom, the tota l elec t ronic angular momentum becomes yl(f+l)=fZ 



with components 

(er)~,, = 0 

((J'2fl = I p 

and j (1/li '), ( 8/· + R/) (1/'~'1)1 d -r;, = 2 
(12./) 

and f (1Jf;J,(J{+P;)(ip~i!) 1 d 1:'a =I (i~2, 3) 

With the operations 

(-i Px )(1f'gi;, = (if!~"), a.nd (-i P~)(~~,) 1 = (ljJ~~ 1) 1 

the approximate equations of motion ( 11z. ) b ecome 

\J,,z. F/, + [ k~ - 2.M-1/'l 2-J i:-tri - I [ 171:'.17'\/ C \72'\/ -zc~J ~ vw(Jt) - !fl- I p - E,;-Eo z Vl(IO Y1t Vpo +l o VI( Vp0 l o J(J. 

11Z.. c (1.! + [i.z 
V11. I p lrp -

ZM (2} I cos'-e <Z) I ~ J:!.._ 
] [ 

~ / (I) " J 
jj2: vr>P(ll.) - If?. - f(ZSm'-e fp = Ep- Ea J(J. oe Fo (122) 

These equations are distinguished by the dependence of ex-

citation and scattering on coupling of atomic state and 

pa.rtic le, which is expressed in the spherical symmetry of 

V;:},(") the potential interaction .,. ,, and in the angular-momentum 

coupling terms that appear in the coefficient o f • 

Since the initial wave Fo , according to ( 111 ) and ( 104 ), 

is independent of if , the right member of the la.st equation 

vanishes and hence F;3
i = o Because of the difference in 

coefficients or and in ( 122 ) , the remaining two 

excited stat e s of the system are not coherent. Excitation 

of depends on radial gradients of rela t ive motion and 

upon the precession coupling of Exe i ta tion of X~l 

depends, as in the impact parameter description, on the 

angular gradients of the r e lative motion, which connects 

angular momentum states of' the particle-coupled X0 and X~! • 

The first equation of (1 22 ) is spherically symmetric in 
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the coefficient of Fp<
1
J , and hence, the asymptotic solution 

according to (106) and (101 ) is 

(123) 

where ?-~' is the solution of 

o z::z ''' ['-2 - Z.M 11<0(11) - .!::_ J 'J c1J = 0 
Vll T-p + f\p n' Vpp f( ,_ Ip (114) 

with asymptotic behavior ( 108) • Writing the integrand in 

the form [ l!i z(F:t'.'.'n) --V.'1Jr;,Z f; - Zf,. Y:...J , transferring the operator 11 o .po po It o o !(2 

v: to t-;> , and introducing (i 11 ), ( iz.4), and ( 110), (1u) becomes 

(125) 

If the reduced mass is sufficiently large that the 

relative motion states Fo and 'f~i of ( 111 ) and ( 12..4) remain 

predominantly plane waves in the form {115) , the total excita­

tion probability (93) for the x;> state approaches the impact 

parameter value of (as) with ( 79 ). 

In terms of unmodified plane waves, ( 125) becomes 

(12.6) 

which has the same form as the S state solution (119 ), for, 

with the condition of large momentum, the precession coupl­

ing oi' ( 12.4 ) has a negligible erfect. Although the P state 

solution ( 1z.6 ) has the same appearance as the Born approxima­

tion, the element -v;(ll) is a spherically symmetric function 

of /1. , whereas the interaction element of the Bor·n approxi-

mat ion depends on the angle between }( and trie fixed orienta-

tion of the P states ('lJt$J)a, Since this orientation is 
SJ 



arbitrary it ma.y be taken to be the direction of R = ko-kp 

for which the Born approximation ha.s the form 

(1217) 

a.nd this is the complete solution since the integral for 

th . . 1 t -I / (I) . e rema. ining e emen s vJX><tr.! 5zne1<. cosifK (see ( 31 ) 

) vanish in the integration over ~K • 

V(ll -'\/(/) V, Since 10 (11) , v.ppltr.) , and 00 1111 are spherically symmetric 

functions of fl. , the stationary state approximation ( 1z0 ) 

may be reduced to the form 

ikpn. Joo [ "''''' " ] . K f,;'IJ ___ e_ ZM V,''I (11.) I+ v?P V00 5m IT. z.cltc. 
P 11. tiz. -po E -E Kil n. 

1' 0 
0 

where K=lk>"k1>l• 

The second equation of ( 122 ) is complicated by the 

presence of the angle-dependent term in the coefficient of 

~ii , which precludes the form ( 106 ) and requires a detailed 

development of the s o luti on . The e -dependent parts of the 

left member of ( 1z.z. ) have the eigenfuntions 

eigenvalues (n+iJ(n~~J - I , where J-n is the Jacobi polynomial, 

defined by 

(n+2).(zn+3) 
~(tl}= Z·n.! (n+IJIZ. 

I I d n I . 2 )nrl 
- - -- -sme sme zn+I dcose" I 

and 

7f f J...<eJ)m <eJ sine de = d,...,,., 
0 

(129) 

The functions ),,,(eJ are proportional to sin. e Since Fa is 

independent of qi , the right member of ( 12.2. ) and F;i may be 
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expanded in terms of the orthonormal set 

F. (z.J [ (2-) J 
P = B11. ('l) n(e) 

l1. 

and these expansions, substituted in (122 ), yield the equation 

(131) 

B(:z) 

for .,,_(1tJ • 

~/W l If the asymptotic decline of Vpp(n) is steeper than ,
1 

an asymptotic solution may be obtained in the form (IOJ 

where 
I (Z) 
L, {Tl) 

n 

F(ZI eikpflr -i~(n-rl)+i6~)(j""112) A J ·)~ 
~ - -- e L (1tl (ll)!7. 2 a!C' (e) p Jr. 11. n n 

~ 0 

is the solution of 

or of 

with the asymptotic behavior 

m C-~I) The corresponding development for the 1~ solution 

takes the form ci> ikp'1 [ _;!!."'~' + ; 0~ (J00 

111 ci! ) fp "'-T e z L71 {'<JAn (fl) rl''-dn R,(co5e) 
TI 0 

where R,<cose) is the Legendre function, A1~ is the coeffi-

cient of P.,,, in the expansion of the right member of (1u ), 

and l'.~ is the solution of 

sz 

(1'32) 

(133) 

(134) 

(135) 



with the asymptotic behavior 

where 

sin(kpn --¥v~I) t ~~,J) 
kpll 

'\)~11 == y (V4ni. +4n + 9) - I) 

(131) 

( ) ( ) 
((I) (Ci.) In the forms /34 and 137 , on and on a.re the phases depend-

ing on and • 

The incoherence of the states of motion (135} and ( 132. ) 

for xc·i 
1' and , respectively, is expressed in the dif-

ference of the c oefficients of 11L'.:~ and nL~ in ( 130 ) and (m). 

For the condition of a large relative momentum, gained at 

low velocity by a sufficiently large reduced mass, and for 

sepa.ra tions /t not too near zero, the W.KB approximations 

of ( 1-'>b ) and ( 133 ) take the forms 

which, for the large momentum 

the approximate form 

j(i) ~ 
L..11-

so the incoherence of the states 

this system, in the difference 

, may be written in 

. f" ! fl) 
-ikprr. + 1j'ft;. v'PP ur.id11 + .. } 

- e P J_ 
2.i 

- i kpll. t ~u;, (v~2)(q)d//. + '· } I 
e P -

Zi 

C~I ) C::-p{Z) 
1-1- and 1, appears, for 

It 

_i_ f(W'1-W21 J cLIL t,vp 1'1' 1'1' at sufficiently 

low velocity, wnich is of the same form as the impact para-

meter development, ( BO ) • 
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The neglected terms of ( 94 ) tha.t con..-riec t the sta. tes X~ , 

, a.nd 11 (3) 
A1 are, to the first order in this a.pproxima-

tion with , and using ( 98 ) or ( 58 ) with 117_,,.. e , 

(135) 

for the right members of ( 122) , respectively. Of these terms 

F;i> vanishes in the first order, and r=;,(0 and ~ll are not func-

tions of f which lea.ves the terms in f,::<1 for the ~c'1 equation 

and the term in F;'1 for the F.,,ci.l equa.tion. At low velocities 

F. <11 c<21 
.p and 11' a.re not coherent and both are small compared to 

Fa 
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(j) the effect of atom-particle coupling at low relative 

velocities 

In the excitation of atoms by collision, the probabil­

ity distribution of the excitation varies over the members 

of an asymptotically-degenerate set of atomic stat es, with 

the c onsequence that associated with the intensity distri­

bution or scattered waves is a distribution or atomic orienta­

tions & With the appearance of the atom-particle coupling 

at low relative velocities, according to the stationary 

state approximation, the relative probability distribution 

of atomic orientation is directly proportional to the inten­

sity distribution o:.i.· the scattered wave~ 

This behavior contrasts markedly with that of the Born 

approximation, appropriate at high velocities, where the 

probability distribution of orientation of the vanishing­

momentum-c omponent state (~~o) is proportional to the inten­

sity distribution of' the momentum change, that is, to the 

relative probability distribution of momentum change associat­

ed with the intensity distribution of the scattered wave. 

Consequently, for large relative momenta with little 

scattering, the predominant orientation of excited atomic 

states is in the incident direction, according to the sta·­

tionary state approximation, and normal to the incident direc­

tion, according to the Born approximation. For a vanishing 

final momentum (incident relative energy of motion near the 

threshold energy of excitation), the stationary state 
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orientation distribution is uniform, whereas the Born 

distribution is confined to the incident direction, which is 

the direction of the momentum change. This difference in 

orientation distributions should be revealed in the measur­

ed polarization of the subsequent radiation. 
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7. Summary of the development 

The principal conclusions of the foregoing development 

are: (U that in the excitation of S states from an S state 

by collision the asymptotic state or Born solution is a 

valid approximation at low velocities for weak interactions 

of atomic state and charged particle, but in the excitation 

of states that form a degenerate group, the Born approxima-

tion requires a coherence of the group throughout the col-

lision, and, because of differences in the interactions of 

the states with the incident charge, the coherence is lost 

in the extended collision period at low relative velocity; 

(2) that at sufficiently low velocity ot: relative motion, 

according to the equation ot motion in terms 01· stationary 

states, the atomic states of the system are coupled to the 

movi ng particle, and differences in coupling energy produce 

an incoherence of states of the system; (3) that excitation 

at low velocities is an interaction of particle-coupled 

atomic states, and this coupling orients excited states to 

the direction of scattering. 

On the basis of the equation of motion for the col-

lision expressed in terms of asymptotic or isolated atom 

states and in terms o.t' the stationary states, the thesis 

introduces: the velocity-dependent conditions ( Z7 ) , ( 72..) , 

and (83) on the coherence of asymptotically-degenerate states 

in the collision; the approximate equi;i,tions of motion {60 ) 

and (12.z) with ( 138) which include the interaction of asymp-

totica.lly-degenerate states; and the approximate solutions 

(79), (M), ( izs), and (152) for sufficiently low velocities 
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of relative motion; and establishes regions of agreement of 

the various approximate representations of the solution . 

Improvement in the description of the low velocity theory 

would be gained by an exact solution of equations ( 60 ) and 

of ( 1zz ) with ( 138 ) in order to show the nature of transition 

between the approximate solutions of high and low relative 

velocity; and also by a detailed stationary state solution at 

low velocity for a simple collision system, together with an 

experimental mea surement of cross sections and radiation 

polarizations for the same system. 
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8. A review of theories of low velocity collisions 

(a) the impact para.meter form 
(11) 

In Mott's development of the low velocity theory of 

excitation in the impact parameter form, the st<?-tionary 

states as functi ons of time a.re t a ken to be of the first 

(in the notation used here) for 

which the equations of motion become (48 ) with en replaced 

by This second term is discarded by Mott 

as relatively negligible, although this is not justified, 

and the equations of motion then gain the form of (48 ) but 

with _Iii (l n- l m.)+ • l f -k[!En-E,,,)d:t e inpaceo e" • 

The approximation for the perturbation of a ground 

state is writt en as 
t 

f 
. £11- co t 

Cn(t) =- (IX~ dft"d ra )e
1 

tt d-t: 
-"" 

For the weak interaction of distant paths, Mott then makes 

the approximation 

1/'0 i/fa) + [ t~~~ o/11 (ffa) + · · 
nio 0 

( (3) 

(-r) 

for which the solution ( "' ) reduces to 

. It . En-Eot 
c (tJ = _ 0V110<1t) _I_ e 

1 
-ti- d.t 

11 ot E0-E,,_ 
( s ) 

- 00 

and the fina. l value, integrating by part s , becomes 

00 

f 
· En-Eot 

C.,/=J = tn Vno(li.) e i 11 dt 

-CD 
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or the Born approximation, which Mott concludes to be a gen-

eral result. However, for other than S states, the approxi­

ma tiorfYJneglects infinite terms that connect d e generate 

states. Or, if 1jl11Mq) of ( ~ ) a.nd ( T ) are assumed to rep­

resent particle-oriented states, then the reduction ( 6 ) 

is incomplete and does not agree with the Born approximation. 

In Fra me's applica tiorl12Jof Mott 1 s approximate solution 

( °') to the collision of a Lithium ion Lt++ and an oc -particle, 
n A -E111, - E.. fM In-rt, I 

the ground state Xo i s developed in the I orm (n)e a. ao 

with the value of fc11J adjusted to obtain a minimum value of 

• The excited P states are taken, without comment, 

to be the particle-oriented states C'lfp)1 • The solution ( c< ) 

is evaluated in the equivalent form (using ( 41 )) 

. Joo V ~~) i [p-Eo r 
c(''(oo) = _I_ [(1 f, <il) 0 (tr,ll, ):'. (ii Ji) d't J e 1i1f cl;;; 
1' Cp -lo 't'P I ~ o , ' o. 

which, except for the exponent, is the correct low velocity 

approximation. The calculation, however, is carried out 

for velocities between 4 .7 and 18.8 x 1ol'Jc"'/ sec. , or, since this 

collision corresponds to the calculations of figures 2 and .3 , 

for values of (wf'?a._ri between z and B which, with £ =.?:... borders 
~~) ~ 3 ' 

on the region of the Born approximation where the connection 

f th t t ('''r'''J, o '"' e s a es -r cannot be neglected. The 

impression is gained that the difference of Frame's solution 

and the Born approximation is considered to be a result of 

the development of Xo and lo , although a major contribution 

is the form taken for the excited states. 

60 



(b) the wave motions of collision and scattering 

I • 0~ Mott and Massey s perturbation solution for stationary 

states is the form ( 10s). In approximation, however, the 

excited states are taken to be of the form ( r ) , which is 

not admissible as a. stationary state discipline, and hence 

the reduction, by use of ( 1ct>), to the Born approximation as 

a general result for weak intera ctions and low velocities 

is erroneous. In using ( r ), the important first order 

terms of do not appear in the equation of 

motion. 

In the application by Massey and Smi tri
14
lto the 1'-s ta te 

excitation of a helium atom by a proton, the excited states 

are taken to be the asymptotic states (1g»0 of fixed orienta-

tion which i s a repetition of the error contained in the 

approximate forms of the general theory. 

(c) the correction embodied in the thesis 

The fore goi:rg theories and applications overlook the 

effect of the phase relations of asymptotically-degenerate 

states in the collision and the importance of a.tom-particle 

coupling at low relative velocity. According to the thesis 

development, the Born approximation requires a coherence , 

and the stationary state approximation a sufficient inco-

herence, of the states of the system that are asymptotically-

degenerate, and, since the phase relations in the collision 

depend on the velocity as well as the interaction , in the 

manner ind_icated in figures z... and 3 , the Born approximation, 
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except for S state excitations, cannot be extended to 

arbitrarily small velocities nor the stationary state ap­

proximation to arbitrarily large velocities of relative 

motion. 

(d) electrons as incident particles 

The measured total cross sections of the inelastic 

collision of an electron and helium atom agree with the cal­

culated Born a pproximation over the range of velocities for 

an S state excitation, but is considerably less than the 

calculated value for a P state excitation in the region 

adjacent the threshold energy of relative motion. Mott and 

Massey(is)attribute this difference in the effectiveness of the 

Born approximation to the difference in the behavior of the 

interaction element VnaClfJ which, at large separations, di­

minishes like e- ~11 for the S state and like -Jr"' for the P state, 

and the greater scattering effect of the P state requires 

the consideration of relative motions more accurate than 

the Born plane waves. In contrast to this explanation is 

that suggested by the principles developed in the thesis, 

according to which, the failure of the Born approximation 

for the P state excitation is due to the incoherence of the 

degenerate asymptotic P s tates at the vanishing and low 

velocities that appear for excitation near the threshold 

energy. Although the impact parameter development does not 

strictly apply near the threshold, the condition (27) is 

the form of the limitation on the Born approximation for 



the P state excitation. 

The polarization of radiation from atoms excited by 

electrons vanishes at or near the threshold energy of rela­

tive motion which cannot be explained by the Born approxima­

tionc16k.nd is called "anomalous". This behavior may be due to 

the coupling of the excited atomic state to the slowly moving 

electron and the consequent uniform distribution or orienta­

tion that follows from the uniform distribution of scattered 

electrons near the threshold energy~ 
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