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In the first part of this thesis the nature of random noise, which
arise and theoretically cannot be eliminated from radio receivers, is
described.,

Nyquist equation, pertaining to the amount of noise generated in
a resistor, is rederived by a simple method. The original equation as
derived by Nyquist, is found to be valid, only, for physically realiza-
ble impedances of the minimum reactance.type,

The general problem of a passive electric network excited by random

sources is treatedy; a useful principle is developed for its solution.

Part II treats of the definition of the noise figure of a four
terminal netbtwork and the most important methods available for its mea~
surement. An improved noise generator for the measurement of noise

figure is described.
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HANDOL! NOISE AND ITS

CHARACTERISTICS




1.1, Thermal Noise

0
In 1928 J., B. Johnson showed that: "Statistical fluctuation

of electric charge exists in all conductors, producing random variation

of potential between the ends of the conductor." Working in conjunction
with him, I\qu_uis%z) was able to show on the basis of the statistical thecory
of thermodynamics that the thermal noise voltage generated in an impe-

dance Z is given by the equation:

E® = 4yRKTaF

where;
E is the r.me.s. value of the thermal noise voltage
(R the real part of Z in ohms
T the absolute temperature in degrees absolute
K Boltzmann's constent 1,37x 1523Watt-sec/deg.£‘xb.
AF bandwidth in cycles per second

Combining electric circuit theory with the equipartition theo-

rem from thermodynamics, a simple derivation of Nyquist equation is

possible, Consider the simple r-c
circuit shovm in Fige.l ; if r is the /z T
Vv ==
site of an e.mf. Whose r.m.s. value —
— v l Fg |
is ), there must be energy stored

—2
in the electric field across the condenser of magnitude —ZLCV , Whers
V is the r.Mm.8, value of the potential drop across C. By the equi-
partition theorem, the average free energy fluctuation is equal to

KT/2, Since the system has only one degree of freedom, and there can

be no free energy in the resistor, we may write:

KT -_Ltcvw? ar KT = (CcV? (1)
2 2



From simple circuit theory it is well known that for a simple r-c circuit
the following identity is true:
o0
Rodw = I (2)
0 2C
where G{js the real part of the parallel combination of r and c. Substi-

tuting for C in the eguation (2) we get:

2770']?6(0/} = v’

2RKT
o
v, = #KT[ﬂdf (3)
This is Nyquist equation i; its integral form.,
In equation (3) if we let C—=20 ,R>/L , a pure resistance

independent of frequency, then we mig write:

vi= 7% = I/KT/Lfd,E (4)
This is another way of saying thatllhe square of the mean noise voltage
across a pure resistor is a quantity independent of frequency per unit

frequency, i.e., proportional to the bandwidth of interest.

Generalized proof of Nyquist eguation: The fact that the mean square

fluctuations per unit freduency are independent of frequency may be
proved, in general, by the following reasoning:
The mean square fluctuation 52 0of random phencmena is defined as:
=< 2
S =bm LS AE
2l 5| S A (5)

Also the Fourier integral energy theorem enables us to write the identity,

? o0
,f”_':,o 2—,;: sy ALt = ]sw/"' dw (6)

therefore:
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oo
'S'zsgi,;-//sm)[zdw (7)
~oo
To explain the nature of the electric disturbance, that may arise in a
Closed conductor in eqguilibrium, we follow Lorentz(”in claiming thats
"The random motion of electrons, similer to the thermal agitation of gas
molecules, will give rise to spontaneous electric currents, whose direc-
tion and intensity vary continuously." Therefore, we shall assume the
disturbance to be of a random impulsive nature. We already know that the
Fourier tramnsform of a single pulse of length T is a constant independent
of frequency, for frequencies F«;—;,— ; also the mean square of the sum of
random disturbances, is equal to the sum of the squares of each individual
disturbance, since all cross products vanish. Hence we have the general
proof , that the mean square of a random disturbance of an impulsive nature
and of length T , per unit frequency, is independent of frequency as long
as we are interested in frequencies'[<<ﬁ{—.
It is of interest to note in this place, that the above proof,
at least, is not in conflict with quantum theory. It speculates that at
frequencies of the order of =& the result will not hold. According to

T

guantum thecry the limiting frequency is given by:
,C: KT/A = 6.4 x /0" Cycfes/sec
where h is Planck's constant and T, for room temperature, equals 293°Ab.
In what follows we shall concern ourselves only with freguencies
much smaller than the limiting frequency of é./X 10/Z cycles/second. Ve
are ready now to develop Nyquist equation for a generalised, physically
realizable, mininun reactance impsdance function @ = /4(“’) ‘f‘jB(w)

as shown in Fig. 2, where C represents all the shunt capacity that may
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be pulled out between the terminals a-b; a \4

ﬂ,+jg, any physically realizable impe-

9‘“/’*@ =C , Feg. 2

dance of the minimum reactance type, Ar

the r.m.s, noise voltage generated with- B v

in H,+j‘s, , and V the r.m.s. value of the potential drop across a-b.
If @ is assumed analytic at zero and infinite frequency, then it may

be expanded in power series around zero and infinite frequency as follows:

6o = Ao + fBoW +/9;'w2+}'8: Wi =--=- (8)
end

/] "
O = Ao + B :;:L_,/_g_;_,,,,-_- (9)
Te immediately recognize that in Fig. 2, Aea =0 B&:"é"

From an energy point of view the terminals a-b in Fig. 2, represent one
degree of freedom in the system and the mean free energy that may be
associated with it, is to be equated to KT/J. But the average noise
energy &, between a-b, is by the Fouriler energy theorem proportional to:
od
/ — 2
£ X —— / v W)/ w
~od

Hence the equality:

ad
= X Vi) /° (10)
E 277_,//V()/ dw
a0

where

X is the proportionality constant depending on the geometry of



the system, and

is
y(w)/the Fourier transform of the r.m.s. voltage drop across a-b.
By simple circuit theory, equation (10) reduces to:

o9

_ & [ A Aw (11
5“2 'VA‘

But (\72 is independent of w andﬂ/ﬁ, is an even function of frequency,

Therefore:
o0

-2
’__ E - “'V A__/w (12)
£ = 2 " am | A

This is the total average noise energy in the degree of freedom defined
by a=b; hence by the equipartition theorem it represents double the free

noise energy in the same degree of freedom. ITow theg_alw may be
&- Ao
Al

the complex frequency plane, along a contour bounded by a large semi-

evaluated by taking the line integral of in the right half of
circular arc near infinity and the real frequency axis between so and
- o0 . If both @ and '4! are. impedances of the minimum reactance
type, neither of them will contain any singularities within the path

of integration and we may write:

od
fa__—;’”"‘dwzoz IA Aoe 10 +f __B__/w+ 8-Ao fu> (131
I ) ! Ay

The second integral in equation (13) venishes because B/A, is an odd

function of frequency; the third integral can be easily evaluated as
B
Ao

. Hence we have the identity:

~ ( 14
A—A'Qalw:.— WB'O 4

A Zﬂl""
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For our circuit Aoz 0O ,B,,o:--—-é’— » Ao = /L » the value of the pure
resistance thalt may be pulled out from H|+jB, . Therefore equation

(12) reduces to 3

— 2 —2
f_ TXNVE . AR e

4TI N C 4N C

To calculate X we let /’,-—9/1, and our circuit reduces to the simple r-=c¢

circuit shown in Fig. 1 for which we have already proved the identitys

;-\—).Z = YUK T—/L per unit frequency.

Hence we deduce that O(/c:/ and obtain the general relation

T Z_ L/KT'/L per unit frequency  (16)

Equation (16) definitely associates the noise voltage fluctuations, per
unit frequency, with a physical resistance that may be pulled out of any
two terminal, physically realizable impedance of the minimum reactance
type.

It may be easily verified& that, as long as @ is a minimum reactance
impedance, the theorem holds immaterial of whether ,4,+j8, is a minimum
reactance impedance or not.

If both @ and /4,+j8, ere non minimm reactances, then we may

prove that:
/i —/: .__-—--‘
[_—_/;/ o £ 2 Ao (17)

but we already know that
o0

Ef/%/w
o
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is proportional to the noise energy; thus we deduce the interesting

results

;’7__?. > 4KT N per unit frequency  (18)
Therefore, we may generalize Nyguist equation and write

”Tf z =z ///{T'/L per unit freguency (19)

where the equality sign holds for all physically realizable impedances
of the minimum reactance type. In terms of the mean square voltage
between terminals a-b, the generalized Iyquist equation may now be

written as:
o0
Viz ‘//fT//}a/f (20)
0

where the eguality sign holds for all impedances of the minimum reactance

type.



1.2, Shot Noise
In an ordinary vacuum tube, the electric current emitted

from a hot cathode consists of the combined effect of a large number

of indepemdently emitted electrons. In 1918, W. éiottk§4)described
the nature of noise which should theoretically be associated with the

random emission of the electrom convection current. The magnitude

of this noise at low frequency has been calculated by various methods

for both the temperature and space charge limited diode and is found,

when initial velocities and secondary electron emission are neglected,

to be given by:

,(:23 2roAf (21 )
for the temperature limited diode, and by
(F= 0644 x4 KTGAf (22)
for the space charge limited diode,
where:
e is the charge of an electron
Is is the D.C. plate current
K is Boltzmann's constant
7" is the cathode absolute temperature
g is the anode conducsiance of the diode

A comprehensive derivation of the above two formulas is due to

(
J. R. Pierce.

1.3, Transit Time Effect On Shot Noise: As shot noise is assumed

to be formed of identical independent pulses, the power spectrum result-

ing from adding these pulses will be proportional to the absolute
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square of the Fourier transform of a single one of the pulses. For the

temperature limited diode the current pulse may be shown to be of the

form:
i :%f o<t <T
(23)
(P = 0 for att other A
where,

€ is the charge of the electron
T is the cathode to anode transit time.

Therefore the Fourier transform of A(F) is:

T
-jwé
Gy = A (470 E o)
o
and
2 :
Ig(w)lz = .2-'-4;?9;;{- [6z+2 (I- Cst e -950’19)] ( 25 )

which is proportional to the power spectrum of the noise. The constant
of proportionality is computed by letting @ go to zero and the power

spectrum approach its low frequency value

2¢1,
2

Hence we get:

(°= 2eL AL % ez+z(:—wa—9w5] £ 2 3

:ZeIoAf/""‘ (27 )

Similarly for the space charge limited diode it may be shown that:
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' 3
L(*)z———-";f a% P 27T

(28)
= o0 for ate other £

By following the same steps as in the temperature limited case we get

for the space charge limited diode:

2 = : » 72
L zolux 4kToOf X é‘; 1—53;+’2:;“9+3‘6?9'72;?9"”57(" cwe)] (29 )
(= ocmyx 4KT g of [* ( 30 )

The factor rz' for both zero and complete space charge is plotted in
Fig.3., as a function of the transient anglef -

The above results represent a sumery of many articles which
have been published on the subject. They have been included here for

the sake of completeness.

1.4, #ffect Of Lead Inductance ind Shunt Capacity On The Availeable

Noise Power From A Single Diode: When the frequency is high

enough so that the plate resistance is effectively shunted by the
cathode-plate capacity, the eqguivalent high frequency circuit of the

matched diode used for noise

measurement is as shown, I'rom .

simple circuit theory it is C G Y@
easily found that the available —I_

noise power at the load admit- FLZ 4

tance Yp is:

2
P=_L_\[< /
4 V: =175 w?Le +wil2c?
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when,

We see that the available noise power is a function of fregquency.

For example at 100 m.c, if,

C:z 5/‘/‘/ ) L = 0.02/&/). 5 w2lc =00y

and the power has increased by about 7% of its low freguency value; then
to compare this result with the transit time reduction factor rﬂz, let
us consider a plane diode with 2 mm separation between cathode and anode;
let the anode voltage be 100 volts; for temperature limited operation
the transit angle is about 0.42 radians at 100 m.c.; From fig.3. the
available noise power is found to be reduced by less than 17. Thus the
shunt capacity and lead inductance have a much more serious effect at
100 m.c, in reducing the available noise power from the single diode,
than the transit time. It is to be pointed out also that the use of
networks to tune out the shunt capacity or lead inductance is not to be
recommended in noise measurements because of the selective characteristics
of these networks with respect to the frequency, and it is indeed no
exageration to claim that in many cases, tuning networks, if not care-
fully designed, affect the accuracy of noise measurements in a most

arbitrary manner,



1.5. Sources Of Random Moise In Conventional Passive Circuits

Let us comsider a generalized passive network excited by random
noise sources., Let the available noise power at a certain point of
interest in the network, called the origin, due to discrete noise
sources Of r.m.s. magnitudes

Il ) Ié ’ & ST S = .ltn
and placed at points,

X)) X@) , - oo Xlim)
v PH) s Pl)r - ~em o Pim)

when the sources are introduced individuzlly in the network.
? may be considered as a space variable relating input and output.
In case the sources
It ) Il) = e el g e = Im
are introduced simultaneously in the system, the noise power output at

the origin will be

ZP(?) = P() +P()+ -~ - -~ 4P(?n) (31)

because the sources are assumed to be of a random nature. In general
P(?) may be written as a fraction, the numerator and denominator of

which are both functions of ? . Hence the identity:

-M mz=Nn
< _ V(D) (32)
zZre = Z%0

However if the system is linear, the different noise sources should not
interact with each other, so thafb(?hmmﬂ;be independent of(?) "

Therefore we may write for a linear system,
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MZWP(?) = 5 MZMN‘?) L 3B
M=z g m=|

where D 1is a constant which depends on the geometry of the system.,
In case the discrete noise sources become continuous in space, the

output noise power may be written in the form of the definite integral

%
/ (34
P = ,ﬁ_?f/\/(?)d?

Usually D 1is determined by placing a noise source at a convenient
point in the network and then solving for the output power. The above
result is quite general and is only restricted by the speculation that
the system must be linear and the input of a random nature. It applies
to mechanical as well as to electrical systems, since the two are
analogous.

It should be noticed at this point, that N(f)must be a scaler
guantity; the network may affect, only, the magnitude of the noise
power output, because this is the only quantity by which fandom sources

are characterizeds
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2.1 Noise Figure

During recent years much has been said about the definition
of noise figure of four-terminal networks in general, and many methods
have been described and used for its measurement. The most suitable
definition of the noise fisure, F, for our purpose, is that given by
He T Friis}7’

Available input signal power/Ideal available input noise power

=
Available output signal power/Available output noise power
SJ/K T B N
Pz 5
S/N GKTB

N=zFGKTHB
where G = S/Sg gain of the network
For linear networks we may refer all quantities to the output and
writes N=FKT8B

A general procedure to measure F is to conmnect a square law
meter to the output terminal and note the output power noise, I,
when the input is matched and no signal present. Then a signal is
added to the input whose average r.m.s. power is S, and the output
signal plus noise power Iy is noted. Hence we may write:

N==FKTB

N,= FXKTB+ S

N, - N, = 8
N - N S,
N, FKTB
Sy
F-
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For absolute determination of ¥, the bandwidth may be eliminated
by choosing S; such that it is proportional to the bandwidth of the
network whose noise figure is to be measured. Such signals are available
from random noise generating sources such as hot wires or temperature
limited diodes. In case a hot wire is used whose temperature is T

KT B i W

(/T -1 )KTB (/N -1
In practice, T‘/T is of the order of 10j;and if the measurement of noise
figure is to be accurate, E}/Z}shoula be of the order of 2., Thus hot
wire sources, though excellent noise generators, may only be used for
the measurement of noise figutes of the order of 10 or less.
+he use of conventional temperature limited diodes permits the
measuremsnt of noise figures substantially larger than 10 at low
frequency. since S = g e Io BR
e I, BR e Ipo R

}jw—- -

2( Ny /0, = 1)KTB 2(H,/5 -1)KT

If T = 290°4b., then e/ 2K T =20 and

20 Ip R

]
i

( Ez/ﬂl - 1)
where % is the load resistance assumed to match the diode noise gener-
ator output resistance.
Again, for N,/Il;= 2 and R = 50 ohms, noise figures of the order
of 30 may be casily measured at low freguencies when both transit angle
effects and lead inductance and shunt capacity are negligible, However,
at high frequencies the limitations on conventional diodes are such that

they virtuvally become useless as standard noise generstors at frequenciss
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higher than 100 mec.,

To remedy the effects of shunt capacity and lead inductance,
Re. Kompfneég,and others have described the transmission line diode to be
used as a noise source at centimeter wavelengths, They faced the problem
of comstructing a specially designed diode to perform their experiments.
In the following pages, a noise generator consisting of a finite number
of conventional high frequency diodes cascaded together, is described,
It has all the adventages of the transmission line diode to which it is
practically equivalent and the added advantage of being built of compo-
nents easily available on the market. Also, the available noise power
from the transmission line diode, operating under certain prescribed
conditions is computed by simple means, A comparison is made between
the loss-less transmission line diode, the one in which the losses are

small and the one in which the losses are predominant,
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2.2 The Distributed Diode as a Standard lloise Source

We shall solve the problem of N+ similar noise generator diodes
cascaded together; their plate resistance will be neglected compared to
their shunt capacity; their equivalent high frequency circuit, when all
losses are neglected, will be assumed as shown in Fig. 5 »

The available noise power at the load end may be computed by straight
forward methods using the principle of superposition for random sources,
i.e. applying one current at a time and solving for the output power at the
load. This method involves the solution of N+ 1 simultaneous equations
41 times, In case the number of tubes is larger than the modest number
of four, the computational labor involved becomes unjustified. However a
solution in a closed form is possible. It involves the solution of a
simple second order difference equation and the application of the princi-
ple developed in section 1.5, concerning the superposition of random
noise sources in a passive network. The complete solution, for one end
terminated by its characteristic admittance |{C/L when the far end is
short circuited, is developed in appendix I. All other results are deve=-
loped by following similar steps.

The available noise power Ps.c,at the load admittance Y( when the far

end is short circuited is found to be:
S=N 2
Sinh” (N~S) @
Re = I*\I 579 (35)
/é |+ Sénh & w(zm-z!-)e
2
where, CO0Sh© = I+é—«-¥-§'— = ]_.szZlC

Y- ¢/

N+| is the total number of tubes
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/5
o1 vaus™

\
Ye EJTYz =

Fig. §

Bquivalent High Frequency Circuit of the Distributed

Noise Generator Diode.

Yf and Y(I are terminal admittances

Y, is the series admittance of a wire connecting two tubes

Yl is the shunt admittance to ground of each tube

is the R, M, 3, value of the noise current generated in each diode
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S is an integer over which the summation is to be takén
Iz the square of the r.m.s. of the noise current of each tube.
In the region where 0 % wC<H | to make the solubtion real, we put

6=j 4’ and obtain:
Cos ¢ = I-FwcC
S=N
, J_Sn?(N-5) ¢
Be=T"\ije __S=5 (% )
= Sw—z‘t Son(2N+£) ¢

and in the region where 4 < WL e put &= 4’+j1r and get:
Cosh ¢ = é—-w‘l(~/
ScN
, Sinh® (N-5) ¢
Re=z I\ =2 (37 )
| + s&nh{; Sinh (2N+4) ¢

It can easily be seen that the availéble noise power tends to zero at
both zero and infinite frequencies as it actually should.

The available noise power divided by IZW is plotted as
ordinates against the dimensionless quantity w¥%C as abscissa on semi-
log paper in Fig.b., when two, six and ten identical tubes are used.
This plot is interesting in that it shows that the available noise
power in the region 0% W%C$4 nas T maxima in each case, and that
the envelopes of these curves seem to be parallel straight lines; so
that actually they must be exponentials of the same index,

The case when the noise generator is matched at both of its
ends by its characteristic admittance YJC/L has also been solved and

the available noise power Bm at each end is found to be:
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s=N
(N—H) + ,Suh_ZQ ZSMA (2~v-25 +-2’—)(9
S=o
| = Sinh*Z Sih® (N+7)e

B = 4= \tle (3)

where

2

cosh® = [- w4
and all other symbols have the same meaning as in the shopt circuit
case. Again in the region where 0% w%(£4 0 make the solution

real, we put &= jf and obtain:
cos¢= |-+ wc

s=N
(v+) - s 2 Sin (AN-25+%) ¢
2
fn’»:-lf—— L 322 (39 )

| - Sdnz—g; 5‘;”2("/*2/‘) ¢

and in the region where # < w?LC<4* we put &= $+/7 and obtain:

Cosh ¢ = - wC-1
S$S=N

) (N+1) + Sih %—ZSJ»»A (an-25+7) ¢

P 5 VHe (40

J = ,SM"‘-;-— SMZ(N+-§-)¢

We easily find that at zero frequency,
2 N+ |
ﬁn < I vL/C N (41 )

which is indeed the expected result. At infinite frequencies the

output again falls to zero as in the short circuit case. The avai-
lable noise power divided byI"VT/Z is plotted against wW4C in Fig.7
on semi-log paper. The response is found to be flatter than in the
short circuit case in the region 04w¥%C£4 , ‘the nurber of maxima

is again W if the zero frequency value is excluded.
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Effect Of Losses: <The general problem when both series and shunt admit-

tances become complex has not been attempted; the effect of equal losses
in each tube is expected to decrease the value of the peaks thus giving

a much flatter response, in general, than in the lossless case.

Case Of A Load Limited By Its Shunt Capscity And Lead Inductance:

e may easily calculate the available noise power at a load limited by
a shunt capacity and lead inductance egual to that of the noise gene-

rator network, by considering the first section as dead.
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2.3 _The Lossless Transmission Line Diode

Having solved the problem of the lossless distributéd diode with
lumped elements and discrete noise sources, we now proceed to the solution
of the lossless trensmission line diode with distributed elements ané
uniformly distributed noise current along its length. We shall consider
the problem when the line terminal admittances Ye and Y" are unequal but
one of them egual to the line characteristic admittance, i.e.}fzvz'f, YH': Y('

The complete solution for the transmission line diode with losses
is developed in Appendix I1I. The lossless case may be deduced by

letting 4—»0 . The available noise power P at the load admittance

%_v L is found to be given by:

_ réefHe c Sanzﬁj Y[ Sia2ld
Z[Yg"'m 224? 4 2£¢ (42)

/
In case the far end is short circuited, i.e.)é..;oo , the available

noise power reduces to:

P I ZV-—- [ 5%»2?4’ (43)

In case it is open circuited, i.e. )ZI__, 0 , the available noise power

reduces to:
2 Sl ,
BC.:'ZL'I {vLIC (’+ 2{¢ (4i)

and in case it is matched, i.e. Yl’: )?': ‘/C//_ , the available noise power

becomes:

4
P = 5 T |fLfc (45)
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where:

d is the length of the line

Iz the square of the average r.m.s. noise current emitted per unit

length and has the units of amperes square per unit length.

4) = wlc

w - AMx frequency

L the inductance of the line per unit length

C the capacity of the line per unit length.
The above results are indeed simple and interesting. They show that, as
the frequency becomes high or the length of the line large, the open
circuit case reduces to the short circuit and the available noise power
reduces to+ sz V.L-[-c. , which is double that obtained from the line matched

2
at both ends,

The Transmission Line Diode With Losses.- The problem of the transmi-

ssion line diode with losses is no more difficult to solve analytically
than the problem of the lossless transmission line diode. The only
difficulty which arises is the complex problem of estimating the high
frequency losses of the line., Ve have solved the problem for the fo-
llowing three cases of interest, namely: when the load end is terminated
by its characteristic impedance and the far end, terminated by its cha-
racteristic impedance, short circuited and open circuited respectively.

The available noise power when both ends are matched is found to be:

P, I swhal (16
4 Y, ¢




- 23 -

where:
* 3
‘Q is the conjugate of the characteristic admittance of the line
% the attenuation constant of the line
and. all other symbols'have the same meaning as in the lossless line.

We note with interest that for a line whosex{<<l eguation (46) reduces to:

B —f-;:f;[l—l“f] (47)

Thus the transmission line diode with small losses is equivalent to a
lossless line of shorter length. Then the losses are large, i.e. €271

equation (46) reduces to:

P Eo ut (18)

am==n Rm—— x-—
4¥, 2X
Thus the output power becomes independent of the length and inversely
proportional to the attenuvation constant of the line.

“hen the far end of the line is short circuited the available noise

power at the load end is found to be:

2
. - 1t E’M Smh2xl _ S 2Bl (49)
2Y, 2« 287

where:
F is the phase shift constant of the line.
Then the far end is open circuited we obtain for the available noise

power at the load end of the line:

k)

B - 1t sze[WZ“? 5‘*"’”_/,] (50)
2 Yo

A Zx0 ' 2P

Wie again note the interesting fact that a line witheaf <<Iig equivalent
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to a lossless line of shorter length as shown by the following two equa-

tions deduced from equations (49) and (50):

R.c. A zf [-z«{] /-5""2/3[] (51,

B'C~1’%[”Z"‘[J[I+ 2_;_51] (52,

For a’'lossy line we have O(e bodl and we can easily deduce from egua-
tions (49, and (50) the following relation.

* /

Ps.c_—.[?.c.::'-l——-ng" ( 53,
4# Yo
This is the same result obtained for the line matched at both ends.

e thus are justified to conclude that for a line with «{>>}
and terminated at one of its ends by its characteristic impedance, the
available noise power at the matched end is independent of the ftermina-
tion at the other end and of the length of the line, and is only a
function of the emission cheracteristics of the line and its attenuation
constant, This fact enables us to build a high frequency noise gene-
rator whose power output is independent of frequency and of the terminal
impedance at one of its ends, It is indeed a standard noise source
if we know how to estimate accurately its attenuation constant and how

to match it properly to its load.
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APPENDIX I

Distributed Moise Generator Diode With One Ind Shorted To Ground:

e shall develop here a general solution for the amount of
available noise power at the load admittance YQ of the network shown
in Figz.8. Ve shall solve the problem when a single noise source whose
r.n.8., noise current is I, is placed at node zero; then using the prine-
ciple developed in section 1.52 we chall write by inspection the
solution when W+ 1 sources are placed simultaneously at the W+1
nodes.,

Applying Kirchhoff's current theorem, we may write at node n,

Vaci 4 Vort = Vi (24 Bff) = Va (2-w70) (1)
Leb cosh & = I+£ Nl = L (2- w () (2)

The solution of equation (1) is of the form:

Viw = Acoshme + B Sinhme (3)

where A and B are arbitrary constants to be determined from boundery

conditions.

At node zero, we have by Kirchhoff's law:

Vb(}ﬁ+)$+¥?) - W)ﬂ = I ( It )

(51
g

A(Yt+|’;+)’()-Y,(ACash€+8Wg) =TI (

A[(YI*YL"‘YC)-Y‘COSMJ - BKSMG =1 (6 )

If there are (4 1) nodes and the Mth node is short circuited, then,



Ye
Yi
Yo
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vo /L L

Y‘ l Y, LTI/ LA R N-1 Y
Yy U Y2 L. T X

Fig. @
Bquivalent High Frequency Circuit of the Distributed

Wolise Generator Diode.

and y(' are terminal admittances

is the series admittance of a wire connecting two tubes

is the shunt admittance to ground of each tube

is the R, M, S, value of the noise current generated in each diode
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m=0 = A CoshNé@ +BSénhN9 (7)
= - B Aand N8 (8)
1= “5{[(}"+Yz+n)-mosb9](amh N® + Y, sabe} B9
B = =l (10)
[(”*Yz"w—Y;Cosha Aanh N6 +Yi Sinh 6
A = ¥ 4 12»:5 N6 g
[(Tll+)’z+)’z)~ Y Cosho | danh N& + Y, Sonh ©
Vs T Sinh N8 Coshm6 — CoShNE Sinb me C1a)
[W*Yz*}’z)- Y Cosho | Snh N6 + Y| Simh & Cosh N6
Von = I Senh (N-m)6 (13)
(Yot o +Y,) Sink N& = Y, Sink (N-1) 6
If we make Yf real and ), = -j—%z- y )/,_ :jWC , then,
Vn = I Stnh (N—m)a (1h4 )
Y.[('-W‘LC)SM N6 - SM(N-:)oJ + Yy Sinh NO
but (1= wzzc) = 2(0she -| (15 )

therefore,



Va =

I Soh (N-m)@

(16 )

Y[(ZCOSM 1) Stn N6 = Stmh(N- :)eJ-rY,WNe

Vi =

I Sod (N-m)6

Yn[SéJ(Nw)e_SAANe + Yy SrhNO

vrn -

L Sonh (N-m)6

(17 )

(18

~

Y [2 Sk 2 cOsA(m%)aJﬂu Y, Senh N6

In particular, the voltage at node zero is:

Vo =

I Sanh N6

(19)

)1[2 SénAzﬁ Cosh (~+-ZL)9J + y, Send NG

The available noise power at the load is:

X
F=Y vV

R -

T Y Seh’Ne

or [zwzﬁ. cosh(m-zu)e]";r )/f SinhENG

If we make )?:: VC/L , then:

IZW Seh N6

(22)

.B=

but 4 Sinh L

therefore,

T [H5E coski(rr)e ] + Skt NE

o o WL EC

(23)
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“Vee Séh*Ne
A - L )ie S C ok )
Senh*NE — Cosh® (N+#£)6

T4Lfc Sih*we
| + Mz’i Senh (IN+£)6

The available noise power R.c. , in general, when (+1) sources are

B

i1

(25 )

placed at the (W4 1) nodes simultaneously, may be easily written by

inspection of equation (33) section 1.5 as:
S=N

szzz: Z Sindt(N-5)6
S=z9

I+ Soh £ Si (z~+f)9

( 26 )

fgw.‘=

This result has been compared with the solution obtained by placing the
noise source at a generalized node of Fig.§ and found to be correct.
It also agrees with the result obtained by the straight forward
solution of the simulteneous eguations, in the special case when the

distributed noise generator is made out of four diodes.



w DY

APPENDIX IT

Transmission Line Diode liatched At One End And Terminated By 4An

Arbitrary Impedance At The Other Ind:

Let us consider a transmission line whose inner conductor
emits a noise current of r.m.s. intensity I. Considering an elementary
length of the line at the origin, we may write by applying Kirchhoff's

law at the origin: Vo I

o

—~

VoY{-'-L.o:I (1> Ye
T {

It is well known that the general steady state solution for the current

and voltage along the length of a transmission line is of the form:

V:Acos/)/vx -/'BSZ»«/)/?x (2)

Lo
L

-{(H+ij) = %%? (

é:-Yo[ﬁsé«A/»x +/350$h/7x] (&)

where /7: V(ﬁ+ij)(m = X"f'//g (5)

%:M—C———" (6)
R+ jwt

Therefore at the origin we may write:

I;a—'-YoB (7



Vo= A (8)

Substituting in equation (1), we have:

B8
Al -k T] = I (9
If the far end is terminated by the arbitrary admittance )é’ then,
P ;
iy = 4 ‘ (10 )

)fl[/icas/,/vh BSM/)(]+ Yo [AS»M/)h BCaSA/»[J:O (11 )

A coskpt+ Yo sabpl] +B [ st pl +1K coshpt]-0 22

Yo' cosh pt_+ Yo St pl (13)
Vo' sehpl + K Coshpl

-

B -
~ 2

Substituting from equation (13) into (9), we have:

- Vicoshpl + Yo St pl 3
2 A[}HYO YLISM/»/ +) cosh pl } s

I: A [ Vo' Senhpl+Yelo Coshpl 4 Volf Coshpl + 1 sbmh pl

]
YI_ISW/#’ + fo C’osﬁ/-)/ J( 15 )

if Yl; )/o , then equation (15) reduces to:



] -

I=4 Yo V) [sM/.Z+Casﬁ/-£’]+ A [c‘osﬁ/’f+$a~h/1£’] 1 5
Y, Senh pl + Y Cosh pt

gt [1'schpt + Yo coshpt]
Vo[ Y+ Y]

(17 )

-pil

A= Yj[;g+Y_] {COS/M[Y( SM"([’*%COS/W,]ijMﬁ([)Z cgsl.,q/_,_)/w“{]J( 18 )

For an arbitrarily placed noise generating element whose coordinate

along the line is defined by the variable ? we have:

/76’
Le
P i 1)

{Cosp(t’—i) [V séhalt-3) s coshaft-7)
(19)
+ /So;»ls([if)[);'c‘osb A(l-7)+ Vo %V(/—?)JJ

This voltage will reach the load end multiplied by the factor i/)?so that

-p¢
Ao = YI elf' { Cos B(f- ?)[ Vi Sénh a({-7) + b Cosh o((M)]

0[);1% (20 )
+ [ Sep(E-7) [ ) Coshy (L ?)+Yo%q((—f)])]
If )2’: Y" s then eguation (20) reduces to:
Az = L C-Pi (21)
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Therefore the element of power at the load is

* 2 -2X7 \
AP:A;O-A;,{,:.-;?-e L2

Total available power at the load is

ﬁ»:i_fe‘zxfa/? (23)

4 Yo

o

p, . L X_L_(,_ e—z”“’) _ I z“"{,w«f (2 )
T 4T 24 4% Xl

If the far end is short circuited,Y) —»o0 , and equation (20) becomes
I '/’[ . ..
A, = _YE___ [(os/s (¢- 7) Semha(l-7) 5~ p(t-1) Cost.«(liz”)] (25 )

Element of power available at the load:

124’2“[ 2 -2
AP = 7 [Smlq X ({-7)+ S B(F- ?)] (26 )

0

. -2l {
B : If/e [[%2«(/- ?)+Sz;f/9(/' 7)]4? (27 )




-33-

P sze-zo([ %24’/ _ %Zﬁ/] ( 28 )
ety Le! 2FC

7hen the far end is open circuited Yll"” 0 , and by a similer method

we obtain for the noise power available at the load end:

R 1’/@’”/ sznz«f’+§f‘:£&” (29,
0.c. = ZY/O S 2«/ 2/’/
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