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ABSTRACT

In Chapter I a brief introduction to the basic notions of
locally convex linear topological spaces is given, In Chapter II,
a theory of analytic functions is developed for functions of a
complex variable with values in a sequentially complete locally
convex complex linear topological space (l.t.s). The theory is
sketched for the case when the function values lie in the linear
space of continuous linear functions on one sequentially complete
locally convex complex l.t.S. to a second such space., In the same
spirit some theorems relating to functions of several complex
variables taking their values in a sequentially complete locally
covex complex l.t.s. are developed, In Chapter III, functions on
one sequentially complete locally convex complex l.t.s. to a second
such space are studied and in particular notions of differentiability
and analyticity. An analogue of the Cauchy-Riemann theory of functions

of a complex variable is discussed.



TABLE OF CONTENTS

Page
Chapter I, Locally Convex Linear Topological Spaces
1e1 Introduction 1
1.2 Postulates for a Locally Convex L, T, S. 1
1.3 Pseudo-norms and F-metrics 5
1ol Examples of Locally Comvex L. T. S. 11
1.5 Couple and Composite Locally Convex L, T. Se 14
1.6 Continuous Linear Functionals and Weak Topologies 18
1.7  Multilinear Functions 25
1.8 Extended Locally Convex Topological Linear Rings 28
1.9 Examples of Extended Locally Convex Topological
Linear Rings 31
Chapter II, Analytic Functions of a Complex Variable
a1 Introduction 35
2,2  Continuity and Differentiability 35
2.3 Complex Integration 38
&l Regular Functions and Cauchy's Integral Theorem L5
2.5 Power Series and Taylor Expahsion sk
2.6 Laurentts Expansion and Singularities 6l
2.7 Regular Operator Functions 70
2.8 Vector Functions of Several Complex Variables 73
Chapter III, Functions on Vectors to Vectors
3.1 Introduction 17

3,2  G-Differentiability 77



3.3
3.
345
3.6
3.7
3.8

Series Expansions of G=differentiable Functions
F-differentiability and Partial Differentials
Polynomials

The Series Expansion for Analytic Functions
Further Properties of Analytic Functions

The Generalized Cauchy-Riemann Equations

References

82
87
92
97
104
108
118



Chapter I

Locally Convex Linear Topological Spaces

1.7, Introduction, The main purpose of this chapter is to give

a brief introduction to the basic notions in locally convex linear
topological spaces. As much of the material is taken from the current
literature, proofs will, in general, be omitted or merely sketched.
There proofs “are included they are intended either to make up a
deficit in this respect in the literature or to correspond to results
which are more or less new.

8 1, Definitions and Fundamental Properties

1.2, Postulates for a Locally Convex Linear Topological Space,

Definition 1.,2,7. Let L be a non-empty set of elements X, ¥, Zyees,

and let A denote either the real or complex numbers, L will be called
a linear system over A, if its elements admit of two operations,
addition and scalar multiplication, subject to the following conditions.
Addition of elements satisfies:
A1. Every ordered pair of elements x, y of L has a unique sum
x + y belonging to L.
A2. Addition is commutative, i.e., X +y =y + X,
A,. Addition is associative, i.e., (x +y) +2 =x + (y + 2).

3

Ah' There is a

3

element © in L, called the zero element, such

that x + 98 =0 +x

x for all x in L,
AS' To every x there corresponds an element -x, its negative,

such that x + (-x) = 8,
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Scalar multiplication satisfies:
S1. To every number a in A, and every x in L, there corresponds
a uniquely defined scalar product ax in L,

S e (a +b)x =ax +bx, a and b in A, x in L,

53. a(x +y) =ax +ay, ain A, xand y in L,

Sh' a(bx) = (ab)x, a and b in A, x in L,

85. Tx =2,

For the elementary properties of linear systems see (1) and (2),

If ¥ and N are subsets of L, the symbols =M, M + N, M - N, denote
the sets {-x}, {(x+y} , {x-¥} respectively where x is in
M and y is in N, If B is a subset of A, the symbol Bl stands for the
set {bx} where b is in B and x in M,

According as A is the real or complex numbers, a linear system L
will be called a real or a complex linear system. R will always denote

the real numbers and K the complex numbers,

Definition 1.2,2, Let L be any complex linear system and let M

be a subset of L, M is said to be
(1) convex, if x,y in M implies ax + (1-a)y is in ¥, O < a <1,
(11) eireular, if for x in M, eﬂax is in M, for 0S¢ € 2T ,
and
(iii) Dbalanced, if for each x # O, there exists a real number

a #0, such that ax is in M.

In the case of a real linear system, (ii) is replaced by



(iv) M is said to be symmetric, if whenever x is in lf, then
S0 is =X,

Definition 1,2,3., A complex linear system L is called a locally

convex complex linear topological space (3) if the following hold.,

(1) L is a Hausdorff topological space (2).

(ii) There exists a fundamental system of neighbourhoods of 8,
denoted by A = {C} = { C(@)j formed of sets which are convex,
circular and balanced, The neighbourhoods N = {N(x)} of an
arbitrary point x of L are obtained by translating the neighbourhoods
of the origin, N(x) =x + C(98).

(iii) In L the operations of addition and scalar multiplication
are continuous under the given topology, i.e., X +y and _gx
(x, yin L, é in K) are each continuous jointly in both arguments.
The phrase linear topological space(s) will always be abbreviated to
LstsiSs

To define a locally convex real 1l,t.s. circular is replaced by
symmetric and K by R in Definition 1.2.3. Various authors (L,5)
have given different sets of postulates for such spaces and a
discussion of the relationship among them is to be found in (6 )., 1In
Definition 1.2.,3 it would have been sufficient to require only that
the neighbourhoods defining the topology be convex sets but then such
a topology can always be replaced by an equivalent topology in which

the defining neighbourhoods are convex, circular and balanced,



Theorem 1,2,17. The Hausdorff separation axiom is equivalent to

the statement that the intersection of all the neighbourhoods of the
element © consists only of 8,

Proof, Suppose the separation axiom holds but L; C contains,
in addition to ©, some element x # 8., Then there exist neighbourhoods
C of © and N(x) of x such that Cpn N(x) =@, the empty set, giving a
contradiction,

If 2; C =9, take x # 8, Then there exists some C in &
such that x is not in C. On the other hand since gg N(x) =
27 x +C(8) =x + Q? C(8) = x there is some neighbourhood N(x) of
x not containing 8., These last two statements together say that L is
a T1-space, 1o, 3f x # 7 there is a neighbourhood N(x) of x to which
y does not belong. This last implies ( 7) that L not only satisfies
the Hausdorff separation axiom but is indeed regular,

Definition 1.2.L4., A sequence Xys Xpy eeey X ye0e Of elements

of a locally convex l.t.s. is a convergent seguence if subsequently
to the choice of an arbitrary neighbourhood C of 9, a number n, = no(C)
may always be assigned so that m > n 2 nO(C) implies X, =X, is in C,

Definition 1.2,5. A sequence Xyy Xpy eeey X5 eeo in a locally

convex l.t.3. L is convergent to an element x of L, called its limit,
if subsequently to the choice of an arbitrary neighbourhood C of ©

a numoer n = nO(C) may always be assigned such that n 2> no(C)
implies x - X, is in C. As usual, this is expressed by writing

lim X, =X
n-s» o



Definition 1,2,6, A locally convex l.t.s. is said to be

sequentially complete if every convergent sequence in L is convergent
to an element in L,

1.3 Pseudo-norms and F-metrics, An alternative method of

defining a locally convex l.t.s., will be given here,

Definition 1.3.1. A real valued function p defined on a

complex linear system L is called a complex (triangular) pseudo-norm
on L if

(1)  »p(x) > o,

(i1) p( & x) = ]S p(x), where ¢ is in K, and

(iii) p(x +y) ¢ p(x) + p(y).

If 1L is a real linear system (ii) is replaced by

(iv) p(ax) = 1 a | p(x), where a is in R,
and p is called a real (triangular) pseudo-norm on L,

The notion of a triangular pseudo-norm was introduced by J. von
Neumann ( }; ) and generalized by Hyers (8)., It differs from a norm
only in that the vanishing of the pseudo-norm of an element x does not
imply x = 9,

Definition 1.3.2. An arbitrary set D with elements d,e,f,...

together with a binary relation, > , is called a directed system if:
(1) Either ¢ > e or d } e, for every pair, d,e in D.
(i1) Ifd > e, and e > f, thend > f,

(iii) Given d,e in D, there exists f in D, such that £ > 4, £ > e,



Definition 1.3.3. A4 complex (real) linear gystem L will be said

to be pseudo-normed with respect to a directed system D if there exists

a real valued function Il x “d’ defined for all x in L and d in D such
that

(1) llxlld is a complex (real) triangular pseudo-norm,

(ii) !lxlld =0 for all d in D implies x = 9, and

(iii) llX}ld 2 lx Il | whenever d > e, for all x in L.

Given a complex (real) linear system L pseudo-normed with respect

to a directed system D, the sets
ey d, & ) = {xinL l =l 4 < € } s

defined for every d in D and € -~ 0, form a fundamental system of
convex, circular (symmetric) and balanced neighbourhoods of ©. The
neighbourhoods of an arbitrary point x of L are the sets N(Xogd, € )=
{xinL ] flx - xol(d < € } as d ranges over D and € > O takes on
all possible values, That these neighbourhoods satisfy the Hausdorff
separation axiom is clear, For, if X, # Vs by Definition 1.3.3 there
is some d in D for which | x, - yolld # 0. Suppose || X, = yolld = 1,
Then N(xo;d, l) and N(yo;d, %) are disjoint neighbourhoods of x  and
Fe respectively, Since otherwise, x being common to both, it would
follow that 1 = |l X, - yo“ g F Il X, =X +X- yollds =, -x I
+ 1l x - ¥, I a <§ , leading to a contradiction. The contimuity of
addition is a consequence of (iii) of Definition 1.3.1 and that of

scalar multiplication of (ii) and (iii) of the same definition. Hence,



using the pseudo-norms, a locally convex topology can be defined
in L called the locally convex topology generated by the pseudo-
norms,

Theorem 1.3.,1, Zvery pseudo-normed linear system is a locally

convex l.t.s., Conversely, given any locally convex l.t.s. L there
exists a directed system D, called the associated directed system,
with respect to which L may be pseudo-normed in such a way that the
pseudo=-norms generate a topology equivalent to the given topology in
L (8).

Proof, The proof of the first statement has already been
indicated., As for the second, the directed system mentioned there
may be identified with the given system of neighbourhoods
£ =1 ce)} = { e} . Cy > C, then means G; € C,, Cy and G,
in £ ., If Cis in 4 the corresponding pseudo-norm is defined
as follows:

Ixll . = inf { a > o0 | x is in Q@ } ‘

C

It is clear that I xll, € 1 for x in C. That |l xl!c is actually a

C

triangular pseudo-norm follows from the fact that C is convex, circular
(symmetric) and balanced; that Il x HC = Q for 211 C implies x =@
follows from the Hausdorff separation axiom or 2; C =90, Finally

since G, > C, means ¢, < 02 it is true that ot xi, > ) xI o A

2 C1 -
C,l > 02.

It is now evident that locally convex l.t.s. and pseudo-normed.



linear systems are identical objects. Hence, in speaking of locally
convex l,t.s., instead of discussing questions of topology and analysis
in terms of the given neighbourhoods, they will be discussed in terms
of the pseudo-norms, The question as to when two systems of pseudo-
norms define equivalent topologies (in which case the systems are said
to be equivalent) then arises and is answered by

Theorem 1.3.2. Let L be a locally comvex l.t.s. and D, D' two

associated directed systems, In order that the systems of pseudo-
norms Il x I g ¢in D, and Il x lldg, d' in D', be equivalent it is
necessary and sufficient that for each d in D there exist nuubers
i (a) 2 0, Mz(d) > 0 and d' in D' such that for all x in L

T\ < < V] -

.‘41(d) )l :’clld S| xlldn £ Mz(d) Il xlld

t

Proof, et My ={x|lxlly < H(d) e J ,n=[x|nxn <¢]

1
and I, = t * l [l x de < Mz(d)€} . It follows from the above

inequalities that N1' C NC Nz' and the topologies are equivalent.

Suppose D and D' are equivalent. Consider N = { * , Hxlld < 7 } .
Then there exists a neighbourhood of 8, N' = { x I HEs i< €,€ =¢€ (d)]

such that N ¢ N', i.e., |l X”d < 1 implies llxll v < € , With

d
0 < Itol < 1 and t, real, there is one and only one integer k = k(d)

for which |t | % ”tokx“d < 1 as long as x #9, or Hde;éo.
€

k €
Thus ” tO X “dl < 6 and “ X“ d|< —I-t—“—-lz < T;— “ X “d.
b ; _ € _e(d) ia o 0 . .
Putting Mz(d) = T = . this gves” Ixil 41 ¢ M2(d)ll X Md. This

relation is true for x = 9, and for those x for which Il x “d = 0 since



this last implies Il x|l ar = 0. Otherwise there would exist a real

number a such that || axll .y =1 al [l x “d' > € wnile |l ax

d d

=lalllxll ; =0, a contradiction,
In terms of pseudo-norms Definitions 1.2.4 and 1.2,5 read as
follows.

Definition 1.3.L. Let L be a locally convex l.t.s. with

associated directed system D, A sequence [xn} of elements of L is
a convergent sequence if given € > 0, d in D, there is a number
B = no(d, €) such that m > n 2 no(d, € ) implies Il x -x I < € .

2 d
Definition 1.3.5. With L and D as in Definition 1.3.4, a sequence

{xn} in L is convergent to an element x in L, called its limit if
given € > 0, d in D, a number B = no(d, € ) may always be assigned
such that n > n (d, ¢ ) implies Il x - and <€,

Definition 1.3.6. A real valued function defined on a complex

linear systen is called a complex F-metric (1, 9) and denoted by |xlI,
x in Ly if
(1) x|l & Qand {x|=0 if and only if x = 8,
. o \

Pel=1x1,0¢9 & 27, and

(111) &
(iv) kn" T (;n, i‘ in X) and lxn—xl—>Oimplies
lEnxn—§x|+o.

For a real linear system L (iii) is replaced by

(14i") t=x | = 1 x|
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and the complex sequence {§11} in (iv) is replaced by a real
sequence -[an} with 2_ - a.

If |x] is an F-metric on a linear system L a topology can be
introduced in L using neighbourhoods (8, € ) of the origin where
me, €)= {xinl | Ix) < E§ .

Definition 1.3.7 (10). A complex (real) F -space is a

sequentially complete locally convex complex (real) l.t.s. in which
a complex (real) F-metric can be introduced defining an equivalent
topology,

A result due to G, Birkhoff on F-metrics (11) implies that the
% -spaces satisfy the first axiom of countability. Hence the
topology of # =—spacescan be defined by a sequence i xllm of pseudo-

norms such that lUxi < Uxil
n n+

The question of how locally convex l,t.s. differ from normed
spaces can be answered by introducing bounded sets.

Definition 1.3.8 (L4 ). A set S contained in a locally convex

l.t.s. with directed system D is said to be bounded if sup Mxﬂh { =,
xin S
for every d in D,
Equivalent definitions have been given by Kolmogoroff (7) and

Michal and Paxson (12, 13).

Theoren 1.3.3 ( 7). In order that a norm defining an equivalent

topology may be introduced into a locally convex l.t.s. it is
necessary and sufficient that L contain a bounded open set having the

origin as an interior point,
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1.h. Examples of Locally Convex Linear Topological Spaces.

Example 1.4.1, Let D be a directed set and By in D, a family

of Banach spaces, the norm of an element B, being denoted by Il |l a
Suppose

(1) Be C Bd whenever e > d, e and d in D, and

(ii) if x is in Be and e > d then |l xlld <l xlle.
Set B = [ Bd' B is clearly a sequentially complete locally convex
leteSe pszudo-normed vwith respect to the directed system D with
pseudo-norms lelld defined for all x in B and d in D. As particular
instances of this construction D may be taken as the set of real
numbers 1 £ p € » and the corresponding family of Banach spaces as
the Lp(0,1) spaces or the 1¥ spaces, Properties (i) and (ii) follow
from the known properties of P and lp.

Examples of & -spaces may be constructed by taking for D the
set of positive integers with Bk’ k=1, 2, ... the corresponding

[e2]

family of Banach spaces ( 9). B N B, is an & -space and the

= k= k
F-metric | x| 1is given by
- =\
|xt = z: ;% -—————3&—- x in Bs
kel 2 1T +lxl I

It is easily verified that this F-metric defines a topology eguivalent
to that generated by the pseudo-norms || xllk. A non-normable

w
sequentially complete locally convex l.t.s. L (1L4)is obtained by

2 1
saling L =11 0 1)
k=1



] s

Let D o K= 15,2400+ be the Banach spaces of functions defined
on 0 £ t € 1 having continuous derivatives of order k and with

norm given by

Hxllk sur | X(l)(t) | P x = x{t) in @k‘
0<¢1i gk
0%t £1
Set O n "8 A is the non-normable sequentially complete
k=]

% -space of infinitely differentiable functions defined on the

interval 0 £ t £ 1 of the real line (1,10).

Example 1.4.2. Let D be a directed set and B @ d in D, a
family of Banach spaces, If xs is in B a its norm will be denoted
by | x4 Il . Suppose conditions (i) and (ii) of example 1.L.1 are

fulfilled. If X, is in Be with e > d, then x, also belongs to 3, and

as a member of Bd may be denoted by Xqe Condition (ii) then reads
Nxgh < Mx I . Set B = [ B,, that is, B is the Cartesian
e D d
product of the spaces B a° B is a linear system if addition of
elements in B , say x = {xd} 5 ¥ = {yd} is defined by
X +y = {xd) + | ydj = { Xy + yd} , and scalar multiplication
by é{xds = { § Xd} o« The scalar multiplier é is taken

to be real or complex according as the Banach spaces Bd are real or
complex. The pseudo-norm Il x| d of an element x in B is the norm
I xdll of X4 in the space Bd' B is then a sequentially complete
locally convex l.t.s. pseudo-normed with respect to the directed
system D, As in Example 1.L.1, specific instances of this con-

struction are obtained by taking for D the set of real numbers
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1 <p € « and for the corresponding family of Banach spaces the

Lp(o,1) or the 17 spaces.
Further examples of * —spaces are obtained by taking for D

the set of positive integers with Bk’ k =1,2,... the corresponding

family of Banach spaces ( 9). B = 7T—B

k
k
sequences {Xk} , where x,_ is in.Bk, and is an P -space, the F-

is now the space of all

metric being given by
M S L
vt 2 T % llxk
IE Bk’ k =1,2,.... is the normed linear space of real numbers then
the space B is the space (s) of all numerical sequences (1).

Exanple 1.4.3 (10 Let G be a locally compact Hausdorff space

which is the union of a countable number of compact sets Gn where

the closure of Gn is contained in the interior of Gn+1' Fach compact
subset of G is then contained in some Gn' Let L be the complex linear
system of continuous complex valued functions defined on G. A non-
normable sequentially complete locally convex l,t.s., on L is defined

by the countable family of pseudo-norms

llxlln =sup | x(t) !, x=x(t)inl, n=1,2,.0. .
t in Gp

Hence L is an -space, Particular instances of this construction
are obtained by taking G to be the complex plane and Gn to be
( $ ink l [¥] ¢ n } 3 or by taking G to be the real line and

6 tobe { tinR | (¢l € n}.
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1.5. Couple and Composite Locally Convex Linear Topological Spaces.

Given a locally convex real l.t.s., say L(R), it is possible to
construct from it other locally convex l.t.s. Of particular interest
are two spaces which will be called the associated couple and composite
spaces and will be denoted by L(K) and L(C) respectively. L(K) is a
locally convex complex l.t.s, while L(C) is a locally convex real l.t.s.

Theorem 1.5.1. Let L(R) be a locally convex real l.t.s. with

directed system D, L(K) will denote the class of all pairs z = (x,Yy)
of elements of L(R) with equality, addition, multiplication by complex
numbers and pseudo-norms defined as follows for 2 = (x,l s ¥4 ¥
7y = (xz, y2), 5 = (a,b) complex, and the directed set D:

(i) (Xﬁ,y1) i (X2’y2) if and only if xy =X, ¥y =¥y,

(11)  (xpmq) + (x5,7,) = () + %5, 7y +7,),

(iii) (a,b)(x1,y1) = (axa - by, , ayy +-bzﬁ) where a,b are real,

and

(iv) ||(x,y)lld =sup |l xcos @ +y sin@ “d’ each d in D,
ogpgamr

Then L(X), the associated couple space, is a locally convex complex
l.t.s. pseudo-normed with respect to the directed system D. If L(R)
is sequentially complete then so is L(K).

Proof,  Addition clearly satisfies Ay, A,, A3 of Definition 1.2.1.
The zero element of L(K) is (8,8) while the negative of (x,y) is

(=x, =y)e Sy, 33, Sh are easily checked. For example let (a;,b;) and

(aZ’bZ) be two complex numbers, [hen
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((a50y) # (ay0)) (%) = (a7 + 2y, by + B)(x,7)

((a,‘ + a2)x - (b,I e b2)y, (a1 + a2)y + (b1 + bz)x)

1l

(a1X - by, ay +-b1x) - (a2x - byy, ayy + b2x)
= (21,01)(%,7) + (2,550,)(%,¥).
As for SS’ 1(x,y) = (,0(x,7) = (=5}

Similarly it is easily verified by a straightforward computation
that for each d in D |l (x,y)l|d is actually a triangular pseudo-
norm, However, instead of doing this it will be shown by using the
Minkowski functional that (iv) gives the natural definition of pseudo-
norms for L(K).

Consider the fanily_xg = {(33 of neighbourhoods of the origin
in L(R)e A topology for L(X) is most naturally constructed by taking
as neighbourhoods of (8,3) the set of all pairs (C,CY) of elements of & .
These are in a manner of speaking "rectangular" neighbourhoods, They
can be replaced by neighbourhoods of the form S = (C,C), C in A p
the "square" neighbourhoods, defining an equivalent topology on L{K).
Each 3 is a convex, symmetric and balanced neighbourhood of (98,8).
But L(K) is to be a locally comvex complex l.t.s. and so the defining
neighbourhoods for it must be circular, Let W = r~7 eic Se

0<@ <2
Then as 3 ranges over the square neighbourhoods the sets W form a

fundamental system of convex, circular and balanced neighbourhoods

of (9,0) defining an equivalent Hausdorff topology on L(X).

The neighbourhoods { W’S form a directed set when Wd b Wz is
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taken to mean “:T,I (G ] Let z be in L(K). The pseudo-norm of z with

2.
respect to W is defined by

izl =inf { n>0 [ z1is inn¥, z = (x,7)] .
Then,

lzll, =int { > 0 | z e ne’’s, o<p¢om)

inf {h>0 ]z ens, 0<¢ ¢}

]

1]

]

inf{h>0'xcos@+ysin@£h0, 0< ¢ < 2m
vy cos - xsin @ € hC

sup {llx cos 0 + y sin @ Il | x cos(T +7) + vy sin(TM+ @)l C}

C’

OH

s¢ggem
=sup l xcos @ +y s:m@ll
o<pg2m
The elements C of €  form a directed set if C > 02 means C’l C 02
Since W = m l”S and S = (C,C) it is clear that the directed set
os @< 2T
{W } may be replaced by the directed set /g to obtain
llzllczll(x,y)”C sup Il x cos @ +ysm()”
0<£ Q< 2T

that is, the expression (iv) has been derived naturally from the
neighbourhood definition of the topology in L(X).

The mapping x—» (x,9) is an isomorphism between the space L(R)
and the linear sub-space of L(K) of elements of the form (x,8). These
may then be identified and z = (x,y) = (x,8) + (0,1)(y,0) written as

z =X 4+ iy. The following inequalities are useful in this connection,

inf { h>0 [(xcos@ +ysin@, y cos § =x sin @ € (hC,hC),0¢ @< 2TT}
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|\x|ld < Ix —‘r»iylld
I\yl\cl < Hx+iylld

3 <
Hx+1y"d < "X”d-F "y“d

Let L(R) be sequentially complete and suppose { Xh’yn} is a
convergent sequence in L(K) so that given d in D, € > 0, there exists
n, = no(d, € ) such that form > n Z—no(d,é ) it is true that

- = o= - <

(x5 ) = oy M= N (x =%, 5, -y )l (<€

The first two inequalities above then imply

llxh - xn” d <€ and | ¥ = yn” d L€

that is, { X } and {_yns are convergent sequence in L(R). Let
x = lim X and y = lim Tyt Then using the third inequality,
c = = - - < -3 =
I ov)) = o)l g = W o= % 7= I g € ==l g + Ty vl
and this last can be made arbitrarily small for given d in D by the

choice of n, L(X) is thus sequentialily complete,

Theorem 1.5.2, Let L(R) be a locally convex real l.t.s. and L(K)

the associated couple space, Let z =x + iy, Then the function

2z = x - iy, called the conjugate of z is a continuous function of z

_.—‘_Z,

)
=
o
=l

Proof, ForanydinD, 1 Z2-Z Il =lz-3 Il and the result
—_— o4 o g
follows,

Theorem 1.5.3. Let L(R) be a locally convex real l.t.s. with

directed systen D, Let L(C) denote the class of all pairs (x,y) of

elements of L(C) with equality, addition, multiplication by real



numbers, and pseudo-norms defined as follows for the pairs (Xﬁ,yﬁ),
(XZ’YZ)’ the real number a, and the directed set D:

(1) (%) = (x,,7,) if and only if x; =x,, ¥; =¥,

(11)  (x07q) + (x5,75) = (% + x5, 71 +75),

(iii) a(x,y) = (ax,2y),

(iv) W (x,y) Ml q4= Il x “d + 1l ylld, each d in D.
Then L(C), the associated composite space, is a locally convex real
l.t.s., pseudo-normed with respect to the directed system D, If L(R)
is sequentially complete then so is L(C),

1.6 Continuous Linear Functionals and Weak Topologies.

Definition 1.6.17. Let L and L' be two locally convex complex

l.t.s., and D and D' their associated directed systems respectively,
Let T(x) be a transformation on L into L',
in L

(i) T is said to be linear if for all X, and X,

T(x +x,) =T(x) +Ix,),
and for all & inK, x in L
(% x) = & x).

(i1) T is said to be bounded with respect to the pseudo-norms
if given d' in D' there exists d in D and M(d,d"') > O such that for
all x in L

Il g0 € w(d,a) il x Il 4.
(iii) If L' is the space of complex mumbers K, and T satisfies

the conditions of (i), then T is said to be a complex linear functional,
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If L and L' are locally convex real l.t.s. Definition 1.6,1 (ii)
remains as it is while the second statement of Definition 1.6.1 (i) must
be changed to read - for all a in R and x in L, T(ax) = aT(x). If in
particular L' is the space of real numvbers and T satisfies the amended
form of Definition 1.6.,1 (i) T is said to be a real linear functional,

Theorem 1,6,1 (6. Let L and L' be two locally convex l.t.s.

and let D and D' be the associated directed systems for L and L'
respectively, A linear transformation T(x) on L into L' is continuous
everywhere if and only if it is bounded with respect to the pseudo-
norms.,

Corollary., Let f(x) be a linear functional defined on a locally
convex l.t.s. L with associated directed system D. f(x) is continuous
if and only if there exists d in D and a real number M(d) > O such
that |f(x)] ¢ u(d) Nl x|l @

It is of fundemental importance for later applications to know
if there are any continuous linear functionals on a locally convex
l.t.s. and if so, if there are sufficiently many to distinguish between
elements of L., The first question is solved in

Theorem 1.,6,2 (15), Non-zero continuous linear functionals exist

on a l.t.s., if and only if the space contains an open convex set con-
taining the origin but not the whole space.

Hence non-zero continuous lirear functionals certainly exist on
locally convex l.t.s. As in 3anach spaces the second question may be

answered with the aid of
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Theorem 1.6.3 (1). Let L be a real linear system and let p(x)

be a positive real valued function defined on L such that

p(x +y) € p(x) +0o(y), p(ax) =ap(x) for a 2 0,
Let f(x) be a real linear functional f(x) defined on a linear sub-
space ¥ of L such that f(x) £ p(x) on M. Then there exists a real
linear functional F(x) on L such that F(x) < p(x) for 211 x in L and
F(x) = f(x) in M.

The inequality F(x) £ p(x) implies F(-x)< p(-x) or -F(x) ¢ p(-x).

Hence -p(—x) € F(x) € p(x).

Theorem 1,6.4, Let L be a locally convex real l.t.s., D its

directed system and M a linear sub-space of L. Let f be a real linear
functional defined on M and bounded with respect to the pseudo-norms
there, Then there exists a real linear functional x*(x) on L such
that x*(x) = f(x) on M and furthermore x*(x) is bounded with respect
to the pseudo-norms (with the same bound).

Proof, By the corollary to Theorem 1.6.71 there exists d in D
and M(d) > O such that |f(x)| ¢ 1u(d) Il xll y for all x in M. Taking

p(x) =1u(d) lx 1l ,, Theorem 1,6.3 shows the existence of x(x) and

a3’
further that

-i(a) | =l € x¥(x) € u(a) I x M,
Since ll—xlld pos llxlld, Ix*(x)l <& (a) Nl xl\d for all x in L.

Theorem 1.6,5 (6 )., If L is a locally convex real l.t.s, and D

the associated directed system, then for any Xy in L, and any d in D,
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there exists a real linear continuous functional defined on L with

the property X*(xo) = |l xol‘d £0 and | x*(x)l € llx “d all x in L,
Proof. Let d be in D, It can clearly be assumed that Il X, l . # 0.

Then the elements of the form ax , areal, form a real linear subspace

I of L on which f(x) is defined by f(ax ) = all xo"d and | f(ax )l

it

lal ll XO” 4" Hence by lheorem 1,6.l, there exists an extension
3 \ : % _ 3 _

X (x) of £f(x) to L such that x (axo) =a I XO“ 5 and so x (XO) —leO"d
Furthermore |x (x)| & ’lxl‘d for all x in L, This shows that there

exists on L infinitely many linear functionals bounded with respect to
the pseudo-norms,

Corollary, Let L be the set of continuous linear functionals on
L. Then ¥%(x) =0 all x* in L implies x = 9,

Tt is clear that Theorems 1.6,3 and 1.6.L may still be used to
prove the existence of real continuous linear functionals on L even
when L is a locally convex complex l.t.s. but they no longer apply to
complex continuous linear functionals on L, The extension of Theorem
1.6.11 to the case of locally convex complex l.t.s. and complex linear
functionals is obtained as in the Banach space case (16), This theorenm

vwhich will be called Theorem 1.6,6 is obtained from Theorem 1.6.L by

replacing resl by complex in the wording of that theorem.

Proof of Theorem 1.6.5., Let f(x) = f1(x) + ifg(x) be a complex
linear functional given on 1, f1(x) and f2(x) are real linear

functionals and a simple calculation shows that )f1(x)' < o) Xlld



and 2\a)l u(a) Il x “d on M. [urther, fz(x) = -f1(ix). Theorem
1.6.11 may be used to obtain a real continuous linear functional F1(x)
on L such that 7 (x) = £1(x) on 1 and | P () € wa) Il = "d on L.

Set (%) = F1(x) - 17, (ix). Since x*(ix) = ix*(x) this is a complex

&

continuous linear functional coinciding with f(x) on M. If x"(x)
O

i
=re , then

2
Y

()l =r= e_iax*(x) = k*(e-i@x) = F1(e_iex) < u(a) Il xlld.
Theorem 1.6,5 still holds for locally convex complex l.te.s.

In constructing the auxiliary functional f(x) the real number ais

replaced by a complex variable Z ranging over X and Theorem 1,6.6

is used instead of Theorem 1.6.L. This analogue of Theorem 1,06.5

will be referred to as Theorem 1.6,7. TFurther, with these changes

the corollary carries over to Theorem 1.6.7.

.

Let 1L be the set of continuous linear functionals defined on a

<
iy

locally convex l.t.s. L" is a linear system. A bilinear functional

3(x,x°) is defined on L x I* by B(x,x*) = x'(x) having the properties
3)

(1)  B(x,X°) =0 for all x in L implies x* = 0%, and

1

(i1) 3B(x,x) = 0 for all ¥ in I implies x = &,

N

The former is merely the definition of the zero element in L” while

the latter is a consequence of the corollary to Theorem 1.6.7 in the

complex case and of the corollary to Theorem 1.6,5 in the real case.

-4 ‘.

in I, 1¥(x)| 4is a triangular pseudo-

-5
Ay

In either event for each x

norm on L and by property (ii) defines a locally convex topology on L.
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Similarly, for each x in L, | x'(x)| is a triangular pseudo-norm
on L” defining a locally convex topology on L.

Definition 1.6.2, The locally convex topology defined on L by

the triangular pseudo-norms | x*(x)l , x* in L*, is called the weak
topology on L, The given topology on L is called the strong topology.

Definition 1.6.3. The locally convex topology defined on L* by

the triangular pseudo-norms | x*(x) | s Xin L, is called the weak-

topology on L

Theorem 1.6.8 (17), A set S C L, a locally convex l.t.s., is

bounded in the strong topology if and only if it is bounded in the
weak topology.

Proof, The necessity is clear. As for the sufficiency of the

condition, S weakly bounded means sup J x(x) | < w, for each x* in L%.
Let d be any element of D, Consii;eina.'lb_l ¢ satisfying | x¥(x)| < M = g
for all x in L. These certainly satisfy sup | ¥ (x)| < w Let
; x in S

N E{x, Il x ”d = O} o N is a linear sub-space of L. Then L can be
written as L = N + M where I is a linear sub-space of L, and for y
in M, Il Yy "d = 0 implies y = 98, Hence Il e ”d is a norm on M and by
the theorem of uniform boundedness for Banach spaces (2), Hxﬂd { o
for all x in S,

Let L and L' be two locally convex l.t.s. with associated directed
systems D and D' respectively. 7(L,L'), the set of all continuous

3 . & ¥ 5 Ll ]
linear functions on L into L is clearly a linear system., . (L,L ) may

be topologized in various ways, three of which will be dealt with here,
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If E and ' are any two directed systems then the set G of all
pairs g = (e,f), e in E, f in F is a directed system if g > g', where
g = (e', £') is defined to mean that e > e' and f > £'y The
following choices for E and Z' lead to directed systems G by means of
which the desired topologies may be constructed.

(i) Let Ebe D' and F the family {B } of all bounded sets B
of L, F is a directed system if B1J> 32 is defined to mean 31 C 52.

(ii) Let T be D' and F the family {% | of rinite sets of
elements of L, I is again a directed system if @1 > @ o Tmeans

¢,c 9,

(1ii) Let E be the family of all finite sets {c} *} of
elements of (L')*,'Where (L')* is the linear system of continuous
linear functionals defined on the locally convex 1l,t.s. L', Eis a
directed set if @1* > @ 2* means @ 1*C @2%. F is taken as in
(i1).

Theoren 1,6,9 (10, 15). If the following pseudo-norms correspond-

ing respectively to the choices (i), (ii), (iii) as directed systems

are defined on i7'(L,L')

(1) the . pseudo-norm: Il T I = suwp TGN, TinT(L,1)
B (at,5) x in B ar o
(ii)  the 7; pseudo~norms "T'l(d' $)= Sw I T(x)'ld,,TjjleL,L')
4 x in¢
and

(iii) the 'f_‘_,._, pseudo-norm: Il Tl = sup i y*[T(x)“ ST dm J(T ),
N (87, ¢)" x in

VES 1n§n
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then in each case a locally convex topology is defined on J (L,L')
g

referred to respectively as the '/b’ ?; and Sav topologies on

7(L,L'). If é and évf are each taken to contain one point

only, equivalent pseudo-norms are obtained,

Theorem 1,6.10 (10). “With the same notation as above if L is an

3E-space and L! 1s sequentially complete then the linear system
J(L,L') is sequentially coumplete for the J p, topology.

Theorem 1.6,11 (10). With the same notation as above if L is an

S;’—space, L' any locally convex l.t.s. and H a swpset of J (L,L!),
then the following statements are equivalent:

(i) H is bounded in the 7-b topology,

2

(ii) H is bounded in the . topology, and

=1

(iii) H is bounded in the W topology.

e

3 2. Locally Convex Topological Linear Rings

Te7o Iultilinear Munctions. A function of n variables

f(x1,x2,...,xn) on Ly,Lysee.,L to L, where L,,...,L are locally
convex complex (real) l.t.s. will be said to be complex (real) multi-

linear if:

(1) f(xﬂ,xz,...,xn) is additive in each x,,
e

(ii) f(x1,x2,...,xn) is complex (real) homogeneous of degree

one in each variable,

Definition 1.7.1. If D, D, Dyyeee,D are associated directed
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systems for the locally convex Ll.t.s. L, L1, L2,...,Ln respectively,
then the multilinear function f(xﬁ’XZ”"’xn) is said to be

(i) continuous at (yﬁ,yz,...,yn) if given d inDand € > 0
there exists d1’d2""’dn belonging to D1’DQ"”’Dn respectively and
$,>0, §,> 0,000, §_ > Osuch that lx-y, I, <5,
i=1,2,...,n implies :

I £ 5Xpsenesx) = £(7) 5T ps0ees¥y) “d< € ,
(ii) bounded with respect to the pseudo-norms if to any d in

D there corresponds d1,d2,...,dn in D1’D2""’Dn respectively and a

real number M(d,dy,dysees,d ) > 0 such that

||f(x1,x2,...,xn)l|dﬁ£ M(dydy 5dn5000,d ) I x Il & Il XZI'dz"',an" g

all %, 31 L;s
¢ i
The notation of Definition 1.7.1 will be used in the following.

Theorem 1,7.7. A multilinear function is continuous everywhere

if and only if it is bounded with respect to the pseudo-norms,

Proof: The condition is necessary., Indeed the continuity of

f(xq,...,xn) at (8,4..,9) implies, for given d in D, the existence of
d, in D, and numbers b, » 0, 1 £ i € n, such that for Il x. I} ;| € b,
3 3 b
i 1, u i7dg i
£ : ea] Y 3 i
I f(xq,...,xn)u g € 1. Let t_ Dbe a real number satisfying O < ltoi<.1.

For every point (X1’X2”"’Xn) with ||x&f|d_ #0,1=1,...,n, there

i k.
. . i <
exist n integers k?’kZ""’kn such that bi ltol i, "‘bo Xi” di NS bi'

Hence it is true that

k1+ k2 + evs &

ER| n|‘f(zﬁ,...,xn)" £ 1, and using
d

0



y -

N 2Ce ez )l € 1 TEA TN B PR
&y BpeDy.ed % 2 n
t| 129207+ °n

= U(dydy e es,d) llx1||d1 "X2"d2'“ "xnuﬁl,

1 1
where M(d,d; ,d,yee.,d ) = . .
R [i]® BBy sash,

o
This result is still correct for those points (x1,x2,...,xn) having

the property that |l xi" g, =0 for some x; since this implies
i
I f(x1,x2,...,xn)‘|d = 0, Otherwise there exists some real number a

such that
I f(x1,...,axi,...,xn),ld =]lal |l f(xa,...,xn)lld > 1,
while |l axilld. = |al I Xi" di =0 and " xklldy, & bk, k # i,

1

The condition is sufficient, For

n
f()(,l,...,xn) - f(y;,,bco,yn) = Z f(y:l,'.o,yi.-/l’xi-' yi’ Xi+ll,oto,xn),
i=]

and given d in D, € > 0, it is true that Il X = 75 Il q < gi’
i
i =1,2,004,yn, implies

£y seeesds s = Tys %5500 es%y) I d

€ U(d,dy,5000,d) Il yﬂld1 -
.

Ci(dydyennd) § 5 7;( ot + Sy,
k #1

1 - s di“ %3 al dig""" ac d,



Setting b, = § = 600 = g = § and C = sup I . I y 1%
1 2 n K k dk
follows that
: o n-1

Il £0x) 5 %00 005X ) = £(37 3T pseeesTp) lld S nel(dydy,en.,d ) & (C+8)
when & is sufficiently small. Hence f(x1 ’XZ""’Xn) is continuous
at (y1 ,yg,...,yn) and so everywhere,

If f(x,l,x2,...,xn) is a multilinear function on the locally convex
l.t.3, L to itself Definition 1.7.71 (ii) implies the following state-
ment more suitable in that situation. Since D = D,I = D2 = see = Dn

> d, and ”xlld' > lxl &’

1
there exists d in D such that d'

i w132 aeuytty for all x in L,

Definition 1.7.2. If f(x,‘ ,xg,...,xn) is a multilinear function
on the locally convex l.t.s. L to itself and D is the associated
directed systen then f is bounded with respect to the pseudo-norms
if to each d in D corresponds d' in D and a real number I'.'I(d,d') > 0
such that

"f(x1 ’XZ”"’xn)" a < M(d,d") I X "d' I X, ... ”Xn” o’

dl

1.8, Lxtended Locally Convex Tonological Linear fings.
s O (=]

Definition 1.8.7. N is a complex linear ring if a is

a complex linear system and if, in addition, there is defined a multi-
plication of elements of 01. such that:
LE,!. Every pair of elements x,y in 0 nas a unique product
X,y in al, o

M Multiplication is associative, i.e., x(yz) = (xy)z, X,¥,2 in
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There exists a unit element e such that ex = xe = e for
each x in M
Se ( Ex)( Ny) = ( §7 )xy with § s in X, %7 in ot .
D, HMultiplication and addition are related by
x(y +2) = xy + %z
(v +2)Xx = yx + 2%
OL is a real linear ring if U  is a real linear system and the
postulate S is replaced by
s'. (ax)(by) = (ab)xy, a,bin R, x,y in a .

Definition 1.8.2,. QU 1is called a locally convex complex (real)

topological linear ring if N isa locally convex complex (real)
l.tes. and if multiplication is a continuous function of both wvariables
under the assigned topology.
By Theorem 1.7.1 applied to the continuous multilinear function

Xy on M o ot , where 0C isa locally convex complex (real)
topological linear ring and D is the directed system for 1l 3
corresponding to each d in D there is a d' in D and a real number
M(d,d') > 0 such that

I :Q’Hd < u(d,a"y |l X“dt Il y”d| .
In the case of the locally convex complex (real) topological linear
ring 0{, it is desirable to have the stronger property that for d
in D and all x,y in 4

Il nyd < owa) X”d Il y”d i

Replacing Il x “d by the equivalent pseudo-norm 1(d) = a2 pseudo-
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norm satisfying the inequality

<
g, S Wxll Nyl
for each d in D, is obtained (Theorem 1.3.2).

Theorem 1.8.2, The inequality || xyll q & 1 x"d hy Il g» for

each d in D, is equivalent to the existence in the locally convex
complex (real) topological linear ring ﬂl of an equivalent set of
covex, circular (symmetric) and balanced neighbourhoods {C} of
the origin, such that for each C

CC € C, when CC = {xy l X,y belong to C} o

Proof. Let D be the directed systen for M and suppose

l xy"ds ([ x ”d ”y “d‘ Then suitable neighbourhoods C are given by
g = {x | Hxlld < § < j as d ranges over D and §  takes
onallvalues 0 < § < 1,
Conversely, if such a neighbourhood system exists, then defining
”X”C=inf{h>ol xisinhC}

for each xin 0l and C in { C } s it follows that

I xyl o % Hx”c Iyl ge For given $ > 0, there exist positive
numbers a and b so that || X“C < a < X“C + & ,
Iy g £ b X ”y”c + § while x and y are in aC and bC

respectively. Then xy is in aCbC = abCC € abCC C ( le“c +§)
i yllC + § )C and consequently
2
< N ci
ny“C < ”x”C ”y”c+ S(“x“c-f-”yﬂc, b S %

But  § is arbitrary and so W”C < |l x”c ll y”c .
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The question whether or not every local ly convex topological
linear ring contains an equivalent system { C } of neighbourhoods
satisfying CC C C is answered in the negative by the space L

of Example 1.l.1.

Definition 1.8.3., A locally convex complex (real) topological

linear ring fl  will be called extended if there exists an equiv-
alent system { C i of convex, circular (symmetric) and balanced
neighbourhoods of the origin such that CC C C.

I'his additional condition insures, for example, that x"1 (the
inverse of x in (U ) exists for some x in 8 and is a continuous
function of x on the set of elements having inverses., It also supplies
examples to illustrate the theory developed in Chapter III,

1.9. Examples of Lxtended Locally Convex Topological Linear fings.

Example 1.9.1. Let D be a directed system and let Old’ d in D,

be a fanily of complete normed linear rings which as Banach spaces
satisfy the conditions (i) and (ii) of Exanple 1.L.1. Then
o = n Ocd is an extended sequentially complete locally convex
topologf?cal linear ring. 'ith the same notation as in Example 1.L.1,
if x,y are in ot P [l xy“ds “X“d ”y”dfor every d in D,

As a particular instance of this onstruction D may be taken as
the set of real numbers 1 £ p £ », Let a = {aii satisfy
lla”p = ( Z[ailp)§ < w, that is {ai} is in 1°, 4 product

of elements la,b in 1P is defined by ab = {aif gbi} = {aibii « Then
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1 1 1
lanll | = (Zi 2,0 PP € ( Z 1a0P)P( 1, IP)P =lalllol .

The normed rings OZ p are now the normed rings lp, and I = 1/1 1P
1 N pf oo
is an extended sequentially complete locally convex topological linear

ring.

Another exanple of the same construction is the following, Let
G be a compact topological group and f,g real-valued functions in G.
The convolution of f with g is defined by (fxg)x = j f(g)g(y’1x)dy,
where x and y are in G and dy denotes the element of Haar measure,
The 17 spaces on G for 1 € p € » constitute complete normed linear
rings under the usual definitions of addition and scalar multiplication
and with convolution as multiplication of elements and hence qualify
as a family 0( D as described above,

Exanple 1.9.2., Let D be a directed system and let ﬂ’d’ d in D,

be a family of complete normed linear rings which as linear spaces
satisfy the conditions (i) and (ii) of Example 1.4.71 as modified by
the notation of Example 1.L.2, Let M ve the cartesian product
Wﬂd, d in D, that is the set of all elements x = {Xd} y & in Dy
Addition and scalar multiplication of elements in 01/ are defined

as in Example 1.L.2., Iultiplication of x = {Xd} v 5= {yd} is
given by xy = {Xd}{yd} = {Xdyd} . Hence, since ”X“d = | Xd” s
Il 5o I d =|lxdyd|| < Xd” l yd” = % Hy Wyllye Thus U is an
extended sequentially complete locally convex topological linear ring.

Txample 1.9.3 (1y). Let ,J be any locally compact Hausdorff
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topological space and {C} the family of compact sets of ,f .

The family {C} forms a directed set if C, D means Cy & 02.

c
2
Let 7 denote the family of continuous numerically valued functions
defined on / o 7 is a linear ring under the usual definitions

of addition, scalar multiplication and multiplication of elements of F .

For each C in {'C} , a pseudo-norm on < is defined by

“f”C: swp [ £(x)l, f£in F ,

x in C

giving rise to a sequentially complete locally convex topological

linear ring.

l fgllc = sw | fe(x) | = sw | £x)ex)] € sup | 2(x)|sup | glx)]
x in C xin C xin C x in ©
= |l fllC ”g'lc.

In particular, let ,J be the space G of Example 1.L.3.

Ixample 1.9.h. In this example the space 0 of Example 1.3.1

is used, a@ is the non-normable sequentially complete F -space

of infinitely dif ferentiable functions defined on the intervel 0 < t <1
cf the real line, Let addition, scalar multiplication and multiplication
be defined as usual., This means that for x,y in 0(9 » Xy is the
function defined by xy(t) = x(t) - y(t). Recalling that for x in a& :

k an integer

"X”k = su (X(i) (t) I 3

al
t

k

1

IN AN
NN kel

C
0

it is true that ”xy“k < “X”k “ v ” 1 For,



= su
k- peick
0<t ¢ .
. ¥ X .
and M (e) = L x(0) y0) = 37 (1) Pyl
dt
n=0
Now  sup lx(n)(t)l < sup Ix(m)(t)[ :le”kif 0 ¢£n<k,
0<t<1 0¢<m<k
' O< t¢1
Hence sup lxy(l>(t)l LES Il y”k(1 +T4 ( ). +1)
0¢t¢1
and so ”xy”k sup lw( )(t)l < ( “ ”
0<¢isk
O0<t <1

=B L=l K l v I » Putting Il = Il ;{ =~ P I =l | €quivalent pseudo-norms

are obtained such that [l xyll K & | x”k Nyl "
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Chapter IT

Analytic ‘functions of a Complex Variable

2.1. Introduction, The purpose of this chapter is to develop

complex function theory in three (related) situations, In S 1, the
theory is developed in detail for the case when the function values
lie in a sequentially complete locally convex complex l.t.s. Lthe
case when the function values lie in the linear space of continuous
linear functions on one sequentially complete locally convex complex
l.t.s. to a second such space is sketched in g 2, Finally, in 3 3
some theorems relating to functions of several complex variables
taking thelr values in a sequentially complete locally convex complex
l.t.s. are given. L‘he proofs in Chapter II rest heavily on Theorem
1.6.7 and its corollary and on Theorems 1.6.8 and 1.6.11,

8 1. Vector-Valued functions of a Complex Variable

2.2, Continuity and Differentiability, In this section the

linear system structure of the sequentially complete locally convex
complex l.,t.s. under consideration will be denoted by L. dhen
referring to this space in its strong (given) topology, with respect
to which the space is sequentially complete, the symbol Ls will be
used and the corresponding associated directed systen will be denoted
by D. hen referring to this space in its weak topology, with respect
to which the space is not necessarily complete, the symbol LW

will be used, The symbol 19 will always denote a domain, that is,

an open, connected set in the complex plane,



~36—

Definition 2,2,1., If x( f ) is defined on 9 with values

in L then x( j‘ ) is called a vector function of é P

Definition 2,2.2. A vector function x( ,é.‘ Yon O is

(1) strongly or L_ contimuous at J . o in ey 5 if
given d in D, and € > 0, there exists § = $ é o:ds € ) such
that | & = §0'<S implies Nx(k)—x(io)”d<€ :

(ii) weakly or Iw continuous at f = § 5 in o9 , if given
x* in L*, € > 0,there is a § = § ( _éo,x*, € ) such that
|§-§O|<S implies lx‘x’[x(f)-x(to)”< € , and

(iii) LS(LW) continuous in &  if it is LS(LW) continuous
at each point of s, o

Definition 2,2.3, A vector function x( .é ) on & is

strongly or L weakly or L) diiferentiable at } = f if there
o J x
S W o}

is an elenent x'( .io) in L such that the difference quotient
ey {x( ko + § ) - x( ’to)} tends strongly (weakly) to x'( z o)

<

when & 0. x'( £ ) is called the strong or L, (weak or L.)
derivative of x( é ) at ,& o° x( -é ) is Lsu‘ﬂ') differentiable in
L if it is LS(LW) differentisble at each point of o8 .

Definition 2.2,. A vector function x( k ) defined on &

is topologically bounded if its values lie in a bounded set.
The notions of weakly and strongly topologically bounded need
not be distinguished for vector functions since the notions of weakly

bounded and strongly bounded sets in L coincide,
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Theorem 2.2.1., If the vector function x( 3 ) is L continuous

in a bounded closed set B of the complex plane, then it is uniformly
L, continuous there, i.e., having chosen € > 0, din D it is
always possible to assign a number S = (d,€ ) in such a manner,
1 n R 1 1
that for any two points f and 3' of B for which /3 - g‘ [<§
1 t

it is true that |l x( g ) = x( .& )”d < €,

Proof, A circle ( Iy ) of radius r( ,Sk ,d, € ) can be drawn
about every point k of B as centre such that the

1 &

sup I x{ Sk ) = x( i‘ ) I a % 3 @ because of the continuity
i 1
§, & inc(d)
of x( f ] ek f . Now to every .§ of B let correspond the
1
2

finite number of these circles is sufficient to cover B. If the

circle about } with radius = r( _f" ,d, €). By compactness a
radius of the smallest of these circles is S =4 (d, € ), this
number satisfies the conditions of the theorem. For, if

" 1 1
I § - k | < § , and if k lies, say, in the circle about S\
as centre with radius :lé- o £ ,d, €), then since & < 22- r( € ,d, € )

j—v N

it follows that and j lie within the circle about 3' as

" 1
centre and with radius r( }- ,d, € ). Hence Il =( f ) - x( ks )Hd <€ ,

Theorem 2,2,2, If the vector function x( ,é") is Ls continuous
on a bounded, closed, comnnected region B of the complex plane, then
it is topologically bounded there.

Proof, Given € » 0, d in D, deternine & = § (d,€) by

Theorem 2.2.17. B can be covered by a finite number, say n, of circles
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C13Cpse00,C each of radius % « Let § o oe a fixed point in B and
,f any point in B, Join these points to the centres of the
respective circles in which they lie. These centres can then be
joined by means of a polygonal line defined by r(r < n) points

T 1 £ 03eees i-r’ which are themselves centres of circles Ci’ the
distance between consecutive points being at most % § , and e 1
and i-r being the centres of the circles in which § 5 and 3~

lie respectively. Hence,

INEIG SOV Iy 1B ko)lldl ey -2 Tl

= Mo 8 =28 ) re( 8 ) =208 )+ w2t ) 2SI,

NJLE{Q PP SON I (I k?_) -£( £ O gt e +llz(2)-2(E )

IN

fz +11€ S (a+1)%¢ .,

Thus, |l £( ¢ )lld S ¢ g‘o)” g% (n +1) € , where n is a fixed

|

I

number and k’ is arbitrary in B. This implies that for given d € D

Ksup I b ¢ ) g < =or x( £ ) is topologicaily bounded,
€ B

The proofs of Theorems 2.2.1 and 2.2.2 use only the fact that the

LS topology is locally convex. Hence the correspondéing theorems for

the LH topology (which is also locally convex) must be valid,

2.3, Complex Integration. In order to obtain a suitable

definition of a contour integral the notion of a Stieltjes integral
must be extended to vector functions of a real variable, Only that
case in which the integrand is a vector-valued and the integrator a

complex~-valued function of a real variable is considered,
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Let x(a) be a topologically bounded vector function of the real

variable a, and let f(a) be a bounded complex-valued function of the
real variable a, both defined for [ao,bo] = { a|a0 € a s bo} B
The points 8,38 58050 00,2 5 where a < 2y < a5 < +e0. 2 = bo’
define a partition of [ao,bo] o Choosing intermediate points cy

so that a, 4 < c; € 2, i=1,2,...,n, the so-called approximating

n
sums x_ = = x(e,) [ f(a,) -f(a. )] may be formed. ¥y the norm
noog i i i-1
77 of a partition is meant the largest of the numbers a; = a8 1

i = 1,2,0.0,1'1.

Definition 2.3.,1., If the limit

n
n%imm X, = n%imw 2{: x(ci) [f(ai) - f(ai_1)] "
“7—>O 7—»0 1=1

exists (call it X) in the Ls(LW) sense independently of the mamner of

partitioning and of the choice of the numbers Ciy 359 S'ci £ 845

then the limit is called the LS(LW) Stieltjes integral of x(a) with

respect to f(a) from a, to bO and is denoted by
X = x(a) df(a).
%0

In order to show that this definition is satisfactory the
following theorem is necessary:

Theorem 2,3.1, Let x(a) be an LS continuous vector function on

[ ao,bo] s and let f{a) be a complex~valued function of bounded

variation on the same interval, then the approximating sums X, converge

in the LS topology and hence x exists,
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Since L is not necessarily sequentially complete in the Lw
topology the existence of the LW Stieltjes integral is not ensured
when x(a) is merely LW continuous., However, it so happens that in
the case at hand the two notions of Stieltjes integral coincice.

The proof of Theorem 2.,3.7 is based on the following lemmas in
which it is assumed that the hypotheses of that theorem are valid,

Definition 2.3.2, If I is any sub-interval of [:ao,bo] and

d is any member of D then by the d-oscillation of x(a) on I is meant
o (d) =sup Il x(a") - x(a')l‘d, a', a' in I.

Lemma 2,3.7, Let V = V(a',b') denote the total variation of
the function f(a) on the closed sub-interval [a',b‘J of [ao,b;]
and o (d) the d-oscillation of x(a) on that sub-interval for given
d in D, Then for two approximating sums S1 and Sp, which are
formed on the sub-interval {a',b'} forn=Tandn=p(21) it

is true that || Sp - 5, < Vao(d).

.y
Proof, Let 3, = x(co) [f(b') - f(a')]and

5, = x(ep) [26a)) - £(a")] + x(e,) [£(ay)- £(ag)) + oen + x(e,)
[e6") - £(a, )]

be the two approximating sums. Here a9 a2,...,ap_1 denote the

partition points and 00’01"“’cp the intermediate points. 3By

hypothesis llx(ci) - x(co)1|d €0 (d), 1 =1,.i00,p. Since Sy can

be written in the form

5,= x(o,) [ 2(a)-ah)] + xe) [ 2ap-tiar)] +ues x(e )20 -2(a, )]

it follows that for d in D



il

-~ B L 9 (4 -£(a' -f 2y
s -5l S T £a)-2aN] +12(ap-t(apl +oon + 120") =22y ).
L o(d)v.
" ¥ [on b P a0 e V" . B

Lemma 2,3.,2, Let 5, bea fixed approximating sum on [ao,oo]
and for d in D let the d-oscillations of x(a) on the n segments of the
partition all be less than O‘O(d). Let S be a new approximating
sum derived from Sn by adding new partition points to the old ones.
Then if V = V(ao,bo) denotes the total variation of the function f(a)

on [ a_,b ] it follows that for d in D Il S - Sl (& V 0~ (d), no
0’"o n 0

a
matter how the intermediate points defining S are chosen.

Proof, Lemma 2.3.1 holds for each of the n segments of the
partition defining S, so that for d in D

s =sly < Vo (a)+7, o (d+..0+V o (d) =V 0 (d

35 v1’V2""’Vn denote the variations of the function f(a) on these
segmnents,

Lemma 2,3.3. Given € > 0, d in D, there exists a & = §(d,¢)

such that il 51 and S, are any two approximating sums defined by means

2
of partitions of [ ao,bo] of norm less than § , then

¢
Il 51-52lld< > .

_ n 1 €
Proof, Choose § = § (e ,d) so that Il x(a") —x(a >”d<:EVT5;:5;7
" 1 L . " ! §
for any two points a and a of [ao,bo ] for which |a - a ,< °
This can be done due to Theorem 2,2,1 on uniform continuity. With
approximating sums 81 and 52 as in the hypothesis, a third approxi-

mating sum S, is obtained from them by taking as the partition points

3
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defining it those of the [irst two partitions combined. This third
can evidently be considered as derived from them by means of adding

partition points, Hence, it follows from Lemma 2,3.2 that for d in D

[ S, = S l < ° -é- = -i " Y imi s Il ° -(:— = _C:_
I 3 03, & v . ) and similarly Il S, 53 a<v - ;
Consequently,
a o — a a =l a S
I S1= 35 “d = || (01—D3)-(S2—83)“ 4 I 01—83 I q | 52-—83 ( a < 5 .

Lemma 2,3.4. Let an approximating sum Sn be formed for each
integral value of n, If the norms of the respective partitions
decrease to zero with increasing n, then lim Sn exists,

n—> o

Proof, Given € > 0, d in D, determine § = § (d, ¢)
according to Lemma 2,3.3. Take N = N(d, €¢) so large that the norms of
the partitions corresponding to the Sn with n 2 N are all less than
§ . Lemma 2,3.3 is then applicable to all these Sn’ and
sl = & <% form > n » N, 3Since L is strongly

m n a
sequentially complete lim Sn exists,

Il = o

Proof of Theorem 2.3.7%. It remains to show that if € > 0,

din D are givenand § = § (d,¢ ) is determined according to
Lemna 2,3.3 then the relation I X = 1lim Sm Il <¢ holds for every
m-> o d

approximating sum X for which the norm of the defining partition is

less than § . TFor in the proof of Lemma 2.3.k4, letting m—> « it
3 (=}

follows that Il 1im S -3 I & = for n > N, Hence
m B 4 2
m-> o
- 177 S = l = 13 3 - (S ==
I X lim S ”d | (Sn lim om) (5, xn) Il a
m-—> oo m-> o
< S o 158 = < €
< S, linm Sm“ a o+ I Sn Xn“ a .

m-—= o
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Thus 1im S_ is actually x and the existence of the Stieltjes
n—s o
integral has been proved completely.

Theorem 2,3.2, If (a.) and x.(a) are strongly continuous vector
“ 2 Bl

functions and if f(a) is a numerical-valued function of bounded

variation in a_ € a € b_, then
b b {s]

u[~ ’ [Rﬁ(a) +~x2(a)) af(a) = \}ﬁ ’ Xﬂ(a)df(a) +\/f Oxz(a)df(a),
a

a a
0 0 o]

Theorem 2.363. If x(a) is a strongly continuous vector function

and if f(a) is a numerical-valued function of bounded variation in

3

< 1 .
a, € a < b, then for any d in D,

b b
(o]
f x(a)di‘(a)“dsjon wa)ll g avia) ¢ swp I s(a)ll Wa,,b0),

a a a €ashb
o} o) o) o

where V(a) is the totel variation of f(a) on the interval ['ao,a ]
and V(a_,b ) is the total variation of f(a) on [ao’bo ] .
Proof, It is clear that V(a) is again a numerical -valued

function of bounded variation in a, £ a s bo and that for any d in

Uy Il x(a)“ a is a continuous numerical-valued function in ao:s a £ bo'
b

Hence u/ ollx(a),,d dV(a) makes sense and is an ordinary Stieltjes
a
o)

integral,

Let ;< 8 < a5 < eee ¢ = b, be a partition of [ao,bS]and

2

let Ci» a; 5 §c¢ £ as, i=1,2,...,n be intermediate points. Lach

i
interval of the partition is further subdivided say [ a; 198y ] by
% -
; i i i - .
the points by ), bg ),...,béi). :E: x(ci) [L(ai)—f(ai_1)] is an

A

i=]



approximating sum to the first integral and the following inequalities

are then valid for any d in D.
n

; n
| 3 xtep) [stepstas 0l 2% 3 watopit fecay sty )l
1] B ‘

1 ]

n
< 2 llxtep) Il [ lf(a,i)-f(b}({i))’ toee + 12026 4 e(b))s(a, ]
n n

5;{:” x(ci)” dV[ai,ai_1] 2 }::H x(ci)lld [V(ai) - V(ai_1)]

i=l i=l

: I x(a)”dV(ao,bo).

~ 0

up
as

b b

) ) o
Hence the inequalities follow. J[ | x(a) |l 4 dV(a) is sometimes written

b ao

as L/Ollx(a)” d’df(a)) .

a
0

Theorem 2.3.l. Let T be an LS continuous linear transformation

1
on L to L , a sequentially complete locally convex complex l.t.s.

Then under the hypothesis of theorem 2,3.7

x

l:)O bO
T [/ x(a)df(a)} - / T[x(a>] df(a).
a a

0 e}

Proof: From the continuity and linearity of T it follows that

b o
T {/O X(a)df(a)} - T[ lim Z_ x(c,) [f(ai) - f(ai_1)}]
4 n- o i=]

o} . fz—> 0 bo
w2 1 [x(ey)] [f(ai) —f(ai_,l)} :/ T [ x(a)] ar(a).

1= 0 a'O



Corollary. Let [' be a rectifiable curve of length £ in the
complex plane civenby & = % (a), 0% a ¢ a,, where % (a) is
continuous and of bounded variation in [O,ao] « IF Z X ) is any LS
continuous function on [ to L then the (contour) integral

a
‘/r x( ¢ )ad = f x [ 4 (a)] d % (a) exists, Further
’ 0
I, J( x( ¢ )d.}l ¢ supllx@ ML for any ¢ inD. If T is any L
g d r d s

- . 5 " ' . 5
continuous linear transformation on L to L {as in Theorem 2.32,l;) then

T{fp x(§)d§] =4T[x(§)}d§ .

2.1 Regular Functions and Cauchy's Intezral Theorem. In

classical function theory a function is regular in a domain x9 1f

it is single-valued, continuous and differentiable in d . The

first of these notions carries over without ambigiity but the second

ing on which topology is used for L. The only topologies considered
here are the LS and the LW topologies, However, while the notions of
continuity and differentiability do have different meanings in the
different topologies a unigue definition of regularity is obtained.

Definition 2.4.1. A vector function x( £ ) is regular in the

domain O if ¥¥ x( § )J is regular in the classical sense for
every choice of x* in 1" .
Ihis is the weakest of several possible definitions. For example,

¥( ¥ ) might have been defined to be analytic in L if it is

strongly differentiable there, However this can be proved from the



weaker condition using Theorem 1.6,8, The following Lemma is needed,

Lema 2.4.1 (7). If £( £ ) is a complex-valued function regular

in the domain A& and O 5 is any domain which is bounded and
strictly interior to 05 , then there is a finite positive number
M(f; .190) such that for every choice of § § 4 , &+ p
in & "

1 {;"(_[f(rw)_f(s“)] -/;_[f(m/e)_f(; )”

<7 £ uEs ).

Theorem 2.,4.17. Let the vector function x( & ) be regular in the

domain «) , then x( & ) is L, continuous and L differentiable in b,
uniformly with respect to < in any domain L & which is
bounded and strictly interior to & .

Proof,  Apply Lemma 2.L.1 to the function x*[ x( ¢ )] where

x¥ is an arbitrary element of I¥, The lemma then asserts

| = { Lo [xs vl =[5 ] - 1o [ 2 4p)] -x*[xm})”

Gl md 02 x(d s ) 4 ))]
_(3 « /S
for every choice of $ 3 g s j + in DQO and x* in L%,

: f+[>’

< M(x%,x; "go)

By Theorem 1.6.8, for every d in D and every § , S5+«

in ’&o there exists a finite number M(x,d; 0490) such that

(NECETIE " DI EEY ¢ >)“ ¢ Wxyds D)
X ~f ﬁ d

or,
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“ x($ +o<°)(-—x(§)_x(§+/o’;-x(f )”dé [d_[;[ i(x,d5 o).

In particular, let {o(n} be a sequence of complex numbers such

that 1lim 0< =0, TFor given € > 0O, d in D, there exists
n-—-> o
N = N(d, ¢ ) such that form > n 2 N, 34 , S+ o _are
m n

1 [d E Wi\ 2 . ®
in ”@o and Ia<m o<n) < € /M(x,d; o@o) Hence,

x(b 4 ) =x(F) xS+ ) =-x(S) ‘o 019

= & ol M ;
< o<y \’ m n] M(x,d; o)< §

d

form a strongly convergent

x($ + )-xﬂj

n
sequence in L, Since L is complete in the L topology they converge

and the elements {

strongly to an element x ( Ry ) in L for any $ in 0&0.
Moreover, S being fixed, x'( & ) is independent of the
sequence {o( n% . For let [/5 n} be any other sequence of complex

numbers such that lim ﬁn = 0, As before the elements
n- o«

{X(f +A ) =x(} )j
fn

converge to an element X ( f ) in L for any § in D@o' For the

form a convergent sequence in L and hence

same  § then and any 4 in D,
x($ + £ ) =-x(8)
/1’1 d
x(E+p)=x(38) =+« )-x(S$ );
o < )

x(§+&m)-x(f)

<
m

=ty -l ¢ | =2 -
d

-}

—x'(})}} i

d
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Now given € > 0, d in D, there exists N (d, « );;uch that
g+ ) -x(s ) .
| ®(E) - £ //d < 5

7 37

n 2 N’l(d’ ¢ ) implies

Similarly, there exists Nz(d, ¢ ) such that n,m > N,(d, ¢ ) implies

.

(¢ +48)=-x($+) x(&+x)-x()
L ~ mo( ] $ Wn -KHJM(X,C’L; o(f’o)
/{n m g

s(Ig | + T(x ds ) ) < + < JM(x,d; & )=-é- .
ﬁn J 6}{(X’d; b@o) 6}[‘1'(}(’(1; 0&0) ] 3

Finally, there exists N3(d, € ) > 0 such thatm 2> N3(d’ € ) implies
-x'( 3 ))/ <

Jx(imm)-x(f)
m d

%

If N(d, € ) = max(l,(d, € ), Ny(d, € ), N3(d, € )), then for myn 2 N(d,¢)
| =8y -x"(5)Hll <€,

that is, (8 ) =x'($ ).

WM

§oqe)x( §
Tt remains now to show that for fixed J , lim 7 ) )
ol > O <

exists in the LS topology and is just x'( £)., Given € > 0, dinD

x($ 4= ($) 00t >H x(5+x)=x( ¥ ) _ x(f+ x)-x($)
%4

x
0(1'1

|

+

d

]

n d

x(§ 4+« ) =x(f)
<

£
;!

S ([l + [« Dx,d; 0 ) +.§_

< | — | H(x,a5 oF )+

c ¢ ’
G o +§= é,

& E
3

wim



for %] < . s, n> N, Thus x( § ) has a strong derivative

3u(x,d5 Q)

in 8 and so is Ls continuous in & .

In the expression,

x(F ) =x( 3 ) x(S+f) =x( S5 ) ,
L X _X /g X d\< I"("ﬂ! M(x,d, 0(90)

let ﬁ - 0, By the continuity of the pseudo-norm it follows that

x(f+0<)-X(§)_x'(§))/ < o] M(x,d; E ),
y 0

i.e., the difference quotient approaches the derivative uniformly with
respect to } in &9 o This in turn implies strong uniform con-
tinuity ancd weak differentiability and continuity.

[heoren 2.L.2, If x(§ ) isa regular vector function on the

domain & to L then
/P x($)as =
for every simple closed rectifiable contour [ in & such that
the interior of A belongs to %, o
Proof. Take L' of Theorem 2.3.5 as the space of complex numbers
and T = x* in L%, Hence,
0= f’_‘ % [x( < )]d§ = x* [/F x( § )dk] for every x* in L¥, The
corollary to Theorem 1.6.7 then implies
jpx( ) af =8,
If A is simply connected it follows from this theorem that

/ - x($)al is independent of the path and depends only on the



initial and final points.

The procedure taken in arriving at Theorem 2.l,2 may be summarized
quickly as follows, A definition of regular vector function was given
which threw this concept back on the concept of regular function in
classical complex function theory., The definition of contour integral
on the other hand concerned itself only with L and 1]1, x( ¢ )d ¢
was an element of L. By means of Theorem 2,3.li which states that con-
tinuous linear operators (in particular, continuous linear functionals)
commute with integration these concepts were related in Theorem 2.k, 2,
At this stage then the following situation presents itself, Methods
exist in L for proving theorems about the regular vector functions while
on the other hand methods exist whereby the proofs of theorems on
regular vector functions are thrown back on classical complex function
theory, This is illustrated in Theorem 2.L.3 where two proofs are
given,

Theorem 2.l1.3. Lot x( Iy ) be a regular vector function defined

on & . Ir [ is a simple closed rectifiable curve in & , the

interior of which is contained in xﬁ , bhen
W $ ) = 1 ‘jr 5&%}1_ ar
o1 Jr TS
r and 29;1_2
is

if § is interior to means ( T = % )—1X( 7).

Proof: 1, Here the proof will be thrown back on classical complex

24
7y

< ey ; R
function theory. Since X [x( S )} is regular for each ¥* in L" then



sl 1 x*[(”c)]
X[}x(k)]— 'f[;——%—?——-—df

2T 1

and by the corollary to Theorem 2.L4.3

s ] =L [ A0 de
2T i poo Tl

or, X*[X( $) - E / X1) df} = 0, for every X' in i
2m i r (-f
The corollary to Theorem 1,6.7 then implies x( & ) - L / x(T) dt =9
1 x( ) 2T i P [ ¢
or x( 5 ) = / —t a1t ,
2T i Jp t=f
x( v ) . . .
2 is a regular vector function in 049 except at
I -
T =5, 1r | is any simple closed rectifiable curve inside |
containing $ in its interior then (as in the classical case)
J RSy f L) g7 .
P 07f v Tok
In particular let [ ‘ be the circle with centre Ry and radius
/° 5 then
fx(?“)dt ___/ x($§ ) +x(T) =x($5 ) qt
Sl r t -t
:x(s“>f§1-_£-+/;x(”"x“>df.
I—, v (—f r T o j—

The first expression on the right hand side is 2 T 1 [x( £ )J o

for any d in D

at

!/};(f”;)d”c -2 T i[x($ )]HdJMﬂ' X(T%:;C(?)
.

< max X ) = x4 )y 2P < €
! [T -3

Hence,
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This last result holds since given € > 0, d in D, there exists

S= § (d,¢) suchthat for # = lT-3 < § |
max [l x(T ) -x(3 ){fd L —éf "
F' 21

Thus for any d in D it is true that
;/X(T>dt -2Wi[x(§)]H =0
& -f

d
or, ) = ! V/a Eg;z—l dF
2T i Jp [

Theorem 2.l4.he Let x( £ ) be a regular vector function on the

—

-
o\

domain & to the space L, Let I be a simple closed recti-
fiable curve in & , the interior of which is contained in 2 ,

then

!
(S5 ) = 2 / x( ?nzq d7 , n=0,1,2,...
2M iy (T=%)

Proof: It is clear that for every X in L%,
d .I\,{- -)(- d . -
* [x( §$ ) =x|— x($ )|, where the derivative on
d.g- df—

the right hand side refers to the strong derivative of X(Lf ) and that
on the left to the ordinary derivative of the complex-valued function

a5 )] . Thts forlons rom that foct that

L [t o) = [ 8] = [ L[a o)
<L

ol

by letting « - O and recalling that x( § ) has a strong derivative.
Further, the strong derivative itself has a second strong derivative

for x( ¢ ) being a regular vector function x* [x( £ ﬂ has, for every



AR ; o R : - d .
x in L", derivatives of all orders, and so — x( & ) is a regular
as
vector function, Similarly the existence of higher stronger derivatives

may be shown and

2 . | [ .2
d 0 [ d 3% d 3% d
— X" X(S)]:—-f-— x[-———-— x(f)J = ¥ x(§ )
4t 2 at as X ’
n S v 1
2 x"[x(i )J ':x“{ d x( § )} .
as ™ as J
o)  {
Also, —~  X¥ [x( D / x [x( Tan at
as’ : emi Jp (v =1)
_ x‘[ n.' / x(7) d?]
2T i Jp (T-f Sl
for all n and x% in L%,
n 1
) d N, x( 7))
leCo SR X( ; ) = dz °
at @ o 1 Jp (z-f)"
If x(t ) is regular in |} - Eol < r, and if for any d in
p, =3 )] g € MN(d) in this region, then taking [ to be
the cirele [§ - 3 [=r-¢ , € >0 it follows that
i H X( K >” . ' i d)
H Y fo) “ < B oy -———-—-——-—-—~dn+1 2T {pwg] & Zndll “I(dr)l 5 SLL
d 2™ pr  [§-2t ] (r-€)
€ > 0. Hence, | ¢ o) I q s n. E.(.i_). , for any & in D,
r

The identity theorem for regular vector functions is easily
obtained,

Theorem 2.4,5, If x( £ ) and y( & ) are regular vector functions

in Y  and if x( £ n) =y( £ o) B =1,2..., the points £r n}



having a limit point in B , then x( £ ) is identically equal to

y( £ ).

Proof: OSince x* [x( ¢ )] and % J( § )J are regular in
n

it follows from

for all ¥* in I and X [X( 1 n)] = X*[ v ( ¢ n)

the identity theoren for regular functions in the classical theory
that x*[x( £ )J = x*[y( z )] all 3 in b and ¥ in L',
Hence x( £ ) =y( § ) for a1l It in .4 .

The converse of Theorem 2.5,.2 holds in the following form.

Theorem 2.0.6, If x(f ) is a strongly continuous vector function

on the simply connected domain 8 to L and if
S xtrab =
r
for every simple closed rectifiable contour " in O s then x( $)
is regular in ,,8 .
Proof: For every x in L,

O:x%(e)zx*[jr' x( £ )dr] = fr X—X'[x(i‘ )] al .

By Morera's Theorem % [x( < )7 is a regular function of f for

each ¥ in L" and hence x( £ ) is a regular vector function on o

2.5. Power Series and Taylor Zxpansion. In what follows a

situation similar to the one commented on below will prevail, It will
be possible to treat regular vector functions defined by power series
by working only in L but it will also be possible to throw most

results back on the corresponding results for complex—valued functions.



Definition 2.5.1. Let {xn?] be a sequence of elements of L.

[oa]
n
(i) If S, = E x, converges strongly (weakly), then Z X,
r=0 r=0

is said to converge strongly (weako%y).

[==]

(ii) If for every d in D, 2 | = Il , converges then E X
n d n
n=0 n=0
is strongly absolutely convergent.

o0

(iii) If for every x in L-X_, g x_"_(xn)] converges then
n=0

(~2]
Z x _1is weakly absolutely convergent,

n
n=0 .,

(iv) If Sn( I = L—"—o xr( T ), where the xr(} Yo F o=l Benwy

r=

are vector functions on oJ , is strongly (weakly) convergent then
o0
E Xr( j’ ) is strongly (weakly) convergent.

=0
Since L is sequentially complete in the strong topology then the

n

strong convergence of the partial sums 5_ = E X, implies these
r=0

converge strongly to a limit x which will be called the strong sum of

<o [e2]
=N =
the series L % ,» Tgwrite x = Z_, X_ 1is another way of saying
n=0 o n=0
this., 3imilarly, >, xn( ¥ ) strongly convergent will also be
n=0 =
expressed by writing x(§ ) = Z % § ) where x( $ ) is the vector
n=0 - =N
function defined by taking the strong sum of L x ( _? ) for each
n=0
3 in A@ °
=2
(v) L % ¢ ) converges strongly (weakly) uniformly for R
n=0 n
in any closed subset of o toa function x( § ) if its partial

sums Sn( t ) converge strongly (weakly) uniformly to x( f ) for ¢

in o , ritten in full this means:



3

2 , Xn( Ly ) is strongly uniformly convergent if given € > 0,
n=0

there is determined for any d in D, a number n, = no(d, & ) such
that for all n > no(d,e )
2 n
s 12 ey 2 wqrall, < e,
. Yind =0 =0

} xn( Iy ) is weakly uniformly convergent if given ¢ > O,
n=0

: 3 o L 5%
there is determined for amy x* in L , a number o, = no(x , € ) such

that for a1l n 2 no(x*, € )

b n

sup ’ x_)é{Zxr(k)—Z xr(})]

$ind =0 =0

0

< €,

Theorem 2,5.1., If Z x is strongly (weakly) absolutely con=-
n=0
vergent then it is strongly (weakly) convergent.

Theorem 2,5,2, Let {xnj be a sequence of elements in L,

o]

£ E X, is strongly (weakly) convergent then the sequence of partial

n=0 n
sums Sn =) . x is strongly (weakly) bounded as well as the sequence
n=0 *

{x} .

Proof: Given € > 0, for any d in D there exists an integer

N =N(d, € ) such that for m > N

Q I - S _ a < ¢
LENE Sy lldl s - s, Hd ¢,
Hence || Sm Hd< ¢ + | SN ”d form > N, Setting
#(a) = max( | 511 gyeeey IS0 45 €+ I 5y 1 d) it follows that
Is g < #(d), n=0,1,2,,.., and since x =3, - 3 the sequence

{xns is also strongly bounded., The proof for weak boundedness is

similar,



Definition 2,5, 2, By a power series on K to L is meant an

expression of the form

L(t-fo)nxn 2,1
n=0

where x_ is a fixed element of L, where ¢ is a fixed complex number
n o
and where j' is complex, If all but a finite number of the x, are

the zero element then 2.1 is called a polynomial, that is,

n
r : : P :
Z ($ = T ) x_ is a polynomial (of degree n if x_ # 9).
o 1 - n
r=0
The first important question concerning power series is for what values
of §  does 2.1 converge strongly (weakly) and for what values of
¢ does it diverge strongly (weakly)? §° will be taken equal
zero in the following, but the results hold in the usual manner if
3 #o.
o] )
I
Theorem 2.5, 3. e k x is any power series which does

n=0
not merely converge strongly anywhere or nowhere (i.e. only for £ = 0)

0
o B : o S~ n
then a definite positive number ry exists such that 2_ 5 X,
n=0
converges strongly (indeed strongly absolutely) for |%[< T but not
for 3] > re The number Ty is called the radius of strong
convergence,
The proof is based on two leumas.
(2]
3 . n
Lemma 2.5.71. If a given power series E } X converges

o ¢ =0
strongly for J§ = o ( $ " #£0), or even if the sequence




=58

{_‘gn Jni of its terms is only strongly bounded there, then
o

Z kr‘ X, is strongly absolutely convergent for every !\ = f 1
n=0
such that lk,,l < l §

e

Proofsy If Z } x_ is strongly convergent then, by Theorem
T n=0 °p B
2.5.2, the sequence {-E an is strongly bounded, For d in D

ar

there exists some positive number M(d) such that l }on X, Il a < N(4),

all n, Hence § 5
M? Xn”d:_gl ” fon xn“d < 1(a) 191‘1,
0
where ?9 = -il < 1. Thus for each d in D, and $ such that

‘ X I < I§ J, & Zmi ” 3n X, ”d is.a convergent series of positive

n=0
real numbers and the result follows,

(=]
. : n s
Lemma 2,5.2, If the given power series z x, is not
2 n=0
strongly convergent for = ¢ % then it does not converge (strongly)
for any }=J1with }f1l>{fol.

Proof. If the series were strongly convergent for Ij,, l 2 )30'
then by Leuma 2.5.71 it would have to converge for the point f %
contradicting the hypothesis.

The proof of Theorem 2,5,3 then follows in the usual manner. A
nest of intervals is constructed defining the number r_ mentioned in

3
that theorem, <This proof however does not supply any information as
to the magnitude of this number. This is ootained in

I'heorem 2.5,li, Let d belong to D and set




— n
/Ms(d) =1in Xn” g0 P, = duf (—TT)_) N N

d in D/u sgp/«s(d)
@ n
Then the power series Z x  converges strongly absolutely for
n=0
every $ such that [3]< ry, but does not converge strongly
for any f such that [$1 > r e
Proof, If S 4 is any complex number for which lf,‘! < r
choose r, such that 'g‘ll < ry 2 r_. Now M S(d) RS -rl- , all
__ n S
d in D, Hence given d in D, 1lim llxlldz/“(d)fj—< -1-,
n S s o
and so 1 X, < —f‘L forn 2 n (a) Finally,
i § }
1
“1Xn g <1forn,n(c)andZ

T
strongly absolutely convergent.

On the other hand, if Ifql > r_, then [$,1> ing (_%37)

1 1 " ;
= - ’ that is sSup (d). Hence there exists
S Ul 2 >3] Jinp” s
some e in D such that l-; i < M (e) = 1lim /II ” , and
1

n
consequently / ” an & > 1}1 for an infinity of n, or

w

A2 N : 1 |
x 1 for an infinity of n., The series %
1 n T " ¢
€ n=0
certainly cannot converge then.,
The situation with regard to weak convergence is similar,
n
Theorem 2,5.5. If E 2‘ X, is any power series which does
n=0 :
not merely comverge weakly anywhere or novhere (i.e. nly for .% = )

then a definite positive number T exists such that Z ﬁ X,
n=0
converges weakly (indeed weakly aouolutelj) for every l?l < T and
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does not converge weakly for I3l > T The number o is called the
weak radius orf convergence,

The prooi follows as before., Lemmas 2.5.1 and 2.5,2
strong replaced by weak, In the proofs of these theorems the pseudo-

norms |l *ll 45 ¢ in D, are replaced by the pseudo-norms L 5731

3
pid

¢

obtained in

@
e
w

x* in L", The radius of weak convergenc

RS 3
; <

Theorem 2.5,6, Let x belong to L

n
P 3
AA(x*) =Tim x(xn)l s 2w int

w

1
T 3 .v_( (X—X-\) = ¢
x99 L° /LW ! Sup -"-/”w(X' )
= 4n L i

fee]
P . n Il el
Then the nower series E:: f X converges weakly absolutely for every
n
§  such that %< T but does not comverge (weakly) for any £

such that ’kl > T .
w

Theorem 2.5.7. The numbers r and r are equal, that is, the
racii of strong and weak convergence are the same and equal r say
which will be referred to as the radius of convergence. The notions
of strong and weak convergence for power series are equivalent and need
not be distinguished,
Proof, It is clear that strong convergence implies weak but the
) n
converse is also true, If zz- ; X is weakly convergent for £ = j
gn n=0 B
then the sequence { 5 xni is weakly bounded and hence, by Theorem
= n
1.6.8, strongly bounded, Thus for (51 < [ Ko[’ ZZ: $ x 1is
n=0

stronsly convergent (Lemma 2.5.7).

<o
2. 1

Theoren 2.5.8. The power series k X, represents, for
n=0 .




-

5

131 < r, ita radius of convergence, a regular vector function x( ) s
whose derivatives are obtained by differentiating the power series
term by term and these derived power series have the same radius of
convergence as the given series.

Proof: For |81 « r and each x in L, Z [y ] is
a convergent power series with complex coefi‘icients and hence defines

a regular functlon of a complex varlable there, Further

v A A 3t N
x x( $)) = '[ka]:"[llmz }x]:lim Y{ij}

N> o n=0 N> o n=]
= 1lim Z 3

N-> » n=l
Hence x( » ) is a regular vector function of § in [IS| < =,

-,s
e
=K
oS
=

no s
:Z} x[xn] for I5] <« r and each ¥ in L',
n=]

Lxamples of regular vector functions are easily obtained, For

instance let L = o  the space of integral functions (19). <or each
n n
z° . . . \ Z sz
n, = 1san integral function and i is a power series on
ot

the complex numbers to J o« 1Its radius of convergence can be computed

in two ways.

n
(1) /S(m) nllm / E?i i nl:mmjj “zn”m,

> ©

But, || z0 || =sup | 2% | =n" and hence /“ (m) = lin
m
wlzli—‘l—‘m il n-> o

r = e, and } “'—n- represents a regular vector function (with values
n=1

in J ) for all _} .

m
—:C‘. TLU.S

(i1) Let x(z) = Z a, 2™ be any integral function, that is, an
n=0 1
element of o . This is an integral function if and only if Ianl N5 0
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S
7

as n—> o, “very continuous linear functional x" in J ~ is of the

form
fee] © 1
3* n n
x [x(z)] = 2_ c_ 2., where x(z) = Z a2 . Here lcnl
n=0 n=0
must be a bounded semence, Ireating again the power series
[=2]

n i
Z ; . o
Z k = on K to J the following results are valid,
n=0

3 i %, 70 , —— 1 B ' %, n |
/f"W(X) = lim ’x (—r—l-) = 1 - x {2 )
n-—> <« 1
. Icnll . n " 1 -
=1im '— T =0 since lcnl is bounded., Thus
n- «©

r = » a8 before,

According to Theorem 2,5,8, within its radius of comvergence, the
= n
power series Z X represents a regular vector function of the
n=0
complex variable [ . The converse statement is contained in the

following theorem,

Theorem 2.5.9. Let x( £ ) be a regular vector function in the

domain %, and let } % be an interior point of o . Then there

00
’ : ’ E n._..
is one and only one power series of the form xn( o o) which
n=0
converges for a certain neighbourhood of f o and represents the

X §o)

function x( f ) in that neighbourhood, loreover, X, = - » The

n,
series converges at least in the largest circle & =about _f a

which contains only points of of .

A Y
7

Proof: For each x in L', x | x( § )J is a regular function in

) and so cen be expanded in a Taylor series about the point f

o
converging (sbsolutely) at least in & .
A Y n v (k‘— I- )n = A X(ﬂ)( K )
" [X( ¢ )] = ..d_..n x [X( 30)} .__.__._.._.rc_)._ = Z < _______'__9_
n=0 d} 5 4 n=0 n.

(f- 2
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The absolute convergence of this series in . implies the con-

co

(n)
vergence of Z 5___(_;_@ ( 5\... fo)n in _/@ with sum x( £ |
n=0 Do
The uniqueness follows from [heorem 2.L.5.

The proof of the following theorem on uniformly corwergent
sequences of regular vector functions again illustrates the technique
of throwing proofs back on the classical case,

Theorem 2.5,10, Let xn( $) be a seguence of regular

functions on o<9 to L which corverge strongly uniformly with respect
. = ) T N . .
to J( on a simple closed rectifiable curve | , the interior of
vhich, & o S8y, is also in d . Then xn(f ) converges to an
P . . k f k
analytic function x( f ) in & s and moreover, x_ (S JaxCL )

in " for every k. The convergence is uniform with respect to

in any fixed closed domain interior to &

o
Proof : xn( £ )> x( 4 ) in the strong topology implies
xn( $ ) > x{(f ) in the weak topology and so lim x*[xn( 9 )}z < x( § )].
v N=> o kY2
The sequence {x7‘ [xn( § )] } being uniformly convergent x"[x( s ):}

L
<

is regular for every x in L and so x( £ ) is a regular vector function,

Similarly the rest of the theorem follows.
The principle of the maximum can also be extended to vector value
functions,

Theoren 2.5.11. Let x( £ ) be a vector function defined on a

bounded domain o8 and on its boundary ] , regular in L and

strongly continuous in ”9u £ . If for any d in D, supl x( ¢ Yl q= M(d)



Ll

for } on & then either Mx( )”d = ¥(d) for all f’ in
J, B or ”x(f )”d< M(d) in £ .
Proof, The proof of this theorem needs the result that if f(a)

is a continuous real-valved function of a real variable, f(a) < k,

b
and 5 ~1a / ° fla)da > k, then f(a) = k(20).
° a
0
Suppose now that at an interior point 3'0 of 3

Il x( fo)” d? =+l 4 { being any other point in H, 8,
Let [' be a circle which lies entirely in 98 and which has its

centre at § o and radius r, Inen

N 2l x( B reie) .
j— _ ] x(¢) ar = 1 / o i8 a.
LY oT i 4( t-f i 2miJo retd "
1 =K 19
Hence, ”X(IO)”dé -2—T—r-/ Hx(j'o+re )”d dé
0 .
2Myx( b ol
or, 1 < 1 s gt e Ty ae, it llx( & )1l #o.
2T 0 " x( '}.O)H d d
But by hypothesis £(6) = 1Mot 7 a ¢ 1 ana azplying
I :.c( Sl
the above result |l x( 3‘0 +re’) ”d = | x( O)U g that is,

[l x( } ) 4= [ x( 3'0)” q on [ and hence everywhere. If [lx( SLO)” &0
then by hypothesis H x( ¥ ) [ q=0 for J in Js @B and hence
it is trivially true that I x( 5 ) 4 = Il x( fo)” g everywnere.

2,6 Laurent's Expansion and Sincularities, So far functions have

been examined exclusively from the point of view of their regularity.
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Now the influence of points at which the functions are not regular
1Y g

will be exanined.

Theorem 2.6.1. If x( ¥ ) is a regular vector function in

0 % Ry< [ B e }OI < RZS w, then, for such S,

(d)= 2 a(t-dPer a (8- ST 2
n=0 n=]

or more briefly,

x(f):Z an(S\—fo)n

where, a = 1 J X(Tz)1+1 at ,
2T 4 irokr= F )

and ' is, for instance, the circle | § - § O| =r, Ry <r< R,

Proof: For any % in L, % [ x( ):] is regular in

< $ -8 o! < 1{2. Consequently in this annulus

A“ x(f )} ’On(.?'- fo)n +Z b-—n(‘( - j o>-n

3
n=]

n
With bn = \/ ——-[- ( )] dt = X-%(a‘n), n = O,1,2,.ot
I ( :{
'l f x| [x( T )] 3
sd b= dt =xla ), 0 =27.2.6s
=11 2 -n- i " ( J )—Yl+1 -1 J 272

5 )] is then the sum of a numerical power series of ascending
powers of 3’ - :T and a numerical power series of descending powers
of r o 3‘ 0° The comvergence of both these numerical power series
in the given anmulus implies the convergence, in the annulus, of both

vector power series in 2,2, to regular vector functions x,,( ¢ ) and
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xz( $ ) respectively, Hence, x-x-[x( Y )] = x*[x.]( $ )] + X [xz( § )]
=x [xl( $ ) + xz( $ )] for all x in L' and all &  such that
R1<l§-3’ol<R2. Th*asx(§)=>c1(§)+x2(f).

Definition 2.6,1, If R’I = 0 and there is actually at least one

a, # O with a negative subscript in (2), then § = § o is a singular
point of x( k ), namely, a pole of order m if a_n # 9 but B, = o for
n < -m, otherwise an (iéolated) essential singularity.

The behaviour of a vector function near a pole is contained in

Theorem 2,6.2. If the vector function x( £ ) is regular in

O<‘§-3OI< r but has a pole of order m at f=§othen
x( $ ) is not topological 1y bounded as $s X o
a
-1 -1
Proof: x(k):——-———n—-——-— + eoo +————— +a +a(f—§ ) & SR
it 1 > e
(b=t 0" (buk 3 © °

o] } S
Sy T i R
U-Igm{ S ° (8 -F "

where y( ) is a regular vector function in a neighbourhood of f=$ &

and y( ¢ o) = a_. #0, y( ! ) is continuous at ( = § o S0 that
LyCEl g = st ) +508) -t I
YUaE ol =Ny ) =y DI,

e | - [l3-mllg _ Neem || g
—hd 2 2
for any d in D and for Iy sufficiently close to k o Since

a_. # © there is some e in D such that Ila m” # O, Then
= . e

lxd ol =2 iyt oy Bl o1
T A I T

0]



67~

so that as § - ¥ l=( $ ) o becomes infinite and x( $ ) is
not topologically bounded,

Theorem 2,6.,3. If x( & ) is a regular vector function in

O<f3'—§ol < randif(f-fo)mx(f ) is topologically
bounded as H - S'O’—r 0 then K = § & is a pole of order m.
Proof: x( { ) can be expanded as a Laurent Series in

O<l§-§ol< rs

<o

DY SV R
2o

N= e=co 2”i

=
\

For any d in D, setting T = ¥ 0 = re™” on " , it follows that

1 Hx(T)HI M(a) n-n
S X = T
Il a_ |l ST S[:lp —————-1—r_n+ d 2Tr £ e o u(d)r

£

for r sufficiently small using the hypothesis of the theorem., If
n-m>0, lla_nlld»Oasr—»O, any d in D and so for n > m,
a_ ==&,

Definition 2.6.2, A function which is regular in the entire

5 = plane is said to be an integral function,

Theorem 2.6,). An entire function x( § ) which is topologically

bounded is a constant function (i.e. only takes on one fixed value in L).

Proof,  Since X(f ) is topologically bounded then for any d in D
there exists M(d) > O such that Il x( 3 ) 4 ¢ M(a) for all finite <,
x( 4 ) can be expanded in a Taylor series about £ = O with infinite

radius of convergence ( Theorem 2.5.9),

)-S5 2N ym
n=0 He
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The estimates of Theorem 2.L.L give for any d in D

| x(™) 0y Iy < n. M(i) .

2 o

Letting r » « makes the right-hand side tend to zero if n » 0. Hence

(n) (n)zeforn> 0 and so

for any d in D, Il x =0, .0, X

d
x( ) = %(0) = X, Say.

The following is a more general result of the same kind,

Theorem 2.6,5, If x( § ) is an entire function such that -}{—%—j—};——)—
is topologically bounded for | [ 2 0, k being fixed and non-negative,

then x( I ) is a polynomial of desree at most k. It is a constant
function if k < 1.

The "point at infinity" in the complex plane may be introcuced in
the usual way., For the behaviour of x( § ) at § = = the behaviour
of x(-}-) at § =0 will be consulted, To be orecise let x( & ) be

single-valued and regular for lfl > R, Setting § = s then

S‘t 3
the function y( ¢ ') defined for lg'l < 1; by x( ¢ ) = X(-}/I—-,-) =y( % ')

is sincle~valued and regular there with the possible exception (as to
!
its regularity) of the point T =0 itself.

Definition 2,6.3., That behaviour is assigned to the function x( ¢ )

at infinity which y( ') exhibits at 1§ = 0.

It follows directly from the definition that an integral wvector
function having a pole of order m at infinity is a polynomial of degree
m, Conversely a polynomial of degree m > O has as its only singularity

a pole at infinity of order m.
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As an example of this theory take L = J the space of integral
functions (19) and, let x( §)y=e 3 ®, This is a vector function on
the f -plane to < which is regular for all finite { eand

x'( ¢ ) =ze 5 %, The Taylor expansion of x( £ ) is

2
1 + ;—-‘?- + J'ZLZT + eee o Thus x( - ) has an isolated essential

1. 24’
singularity et | =, Now llx( $ ) o = Sup | e} 3
; lzl=m
T Y T
sup ex‘{( )=y f ) where m is a positive integer, z = x + iy
x2+y ::m2

and R({ ), I( § ) are the real and imaginary parts of ¢ respectively.
) T
Ir § #0, setting x :mi('_i_'_f_ JE—— -(lil)

|
I T ) o Z emlS Z 1, an inequality which remains true when

it follows that

K = 10, x( k’ ) fails to assume values whose pseucdo-norms are all
definitely less than one anda so Welerstrass'! theorem on essential

sinzularities is not true in this theory.

(5 )=e ¥ on X to J  is remlar for all § # 0 with
derivative x'( $ ) = :)—?'-2 ez/j o Its Laurent expansion is x( ¢ ) =
1 +;— z -+ ;—2 -Z—?— + eee and so x( { ) has an isolated essential
singularity a‘g. =0 while lx( £ )1 o 2 e Rl > 1 showing once

more that Welerstrass theorem on essential singularities is not true
in this theory,

The reason for this is that in general a locally convex l.t.s.
is a much larger space than the complex numbers, ior instance, «J

may be thought of as a sequence space ( 3'1, Y fn,...) with

2’ o0



T

1

3 5 complex and ’ }nIH—’ 0 as n— « while the complex numoers form
a one-dimensional linear sub-space of o , namely all elements of

the form (a_,0,000,05000),

8 2, Operator Functions of a Complex Variable

2.7. Regular Operator Functions, Let L be a sequentially

complete complex F —-space, L', a sequentiaily complete locally
convex complex l.t.s., and T (L,L') the linear system of continuous
linear functions on L into L'. Using the notation of paragraph 1.6,
only the 7b’ 75 and . topologies will be considered, By
Theorem 1.6.10 7(L,L') is sequentially complete in the j_b
topology,

Uefinition 2.7.1. Let A be a domain in the complex plane,

1
. LY - S 3 =

U(Y) defined on &8 with values in 7 (L,L ) is called an operator
function of } .

There are three notions of continuity of operator functions avail-

2. o & . a-' a7 r

able each corresponding to one of the topologies '/b’ J s °T J w
Similarly there are three notions of differentiability for operator
functions. These definitions will not be stated explicitly since it
is clear what they must be,

In the case of an operator function U(a) on [ao,bo] to
o ! 5 5] 2 . P . . -
/ (L,L ) the integral is obtained by considering sums of the form

n

Lo

U, = > U(ci) [f(ai) ~-f(a, 1)} where f(a) is a numerically valued
. i=d

function of bounded variation in [ ao’bo] . If these sums converge
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o~ — ! -
in the 7 ( 78, J,) sense to an element U in J (L,L ), then U is
called the ‘Tb( Ts’ ‘TW) interral of U(a) and written

6]

o
U = f Wa)df(a)s
a

o cr
Theorem 2,7.1. If U(a) is J p, continuous then the sums U

o
converge in the ‘/b sense and so U exists,

o

7 (1,L') is not necessarily complete in the and J/

-
J
S w
« . - o - . .
topologies and so the existence of the J s and JW integrals is
. 7— p- . o o 3 ).
not ensured when U(a) is J s oF J w continuous., However, in the
case when U(a) is regular, the three notions of integration coincide,

Uefinition 2,7.2. U( ¢ ) is said to be regular in the domain

2
~

of the complex plane if vy | U( § )(x)] is regular in the classical

S5
Y

. .- #® '
sense for every choice of x in L, y in (L )".

Theorem 2.7.2. If U( ¥ ) is regular in & , then U( | ) is

o—

J . continuous and 7 . differentiable (i.e. with respect to the 7

b b
o— 1 ) .
topology on J (L,L )) in o uniformly with respect to < in

b

any domain & o which i1s bounded and strictly interior to N/
Proof. The proof proceeds along lines similar to that of
Theorem 2,L4.7. It requires Lemma 2.l;,1 applied to the function

S
G

y‘L us )(x)] where x and y%(~ are arbitrary elements of L and (L‘)

respectively, and also Theorem 1.6.11.
Let [ be a rectifiable curve in the complex plane given by
the equation _{ = I (a), O ¢ a ¢ a, where $ (a) is continuous

and of bounded variation in [O, ao] ¢ i TH $)Yisa & b continuous



"

a
operator function on [*  then f ’ U[3]d ¥(a)s /FU( 5 )ag
exists. Since \/} U( ¥ )as degines a linear transformation then

[ Jﬁ Ut )at } (x) has meaning and
[ Socrar] o= [ure]at .
In particular if U($ ) takes its values in J (L,L), where L is a
sequentially complete F -space, then, if T is in 7-(L,L') and
u(f )is T, continuous in 7 (L,L),

b
T[frrxr)(x)dk] = Loofu s yw] av .

r

Theorem 2.7.3. If U( § ) is a resular operator function on 9

o

to J (L,L) then
fr u £ yal =oe
for every simple closed rectifiable curve r in & and such
that the interior of [7  belongs to £ .
Proof, Take L’ as the space of complex numbers and T = x*, an

arbitrary element of L’. ‘hen

0 = fp FLo( )] a8 =) us )(x)er
for every x*. Hence by the corollary to Theorem 1.6.7

o= [ utiway = [ Loutitr]
for every x, that is, fp U( s )d.? must be the zero element of
7 (L,L).

From here the development of the theory for function on the

complex plane to < (I,L) proceeds as in paragraphs 2.4, 2.5 and 2.6,



§ 3. Vector Functions of Several Complex Variables

2.8 Vector Functions of Several Complex Variables. Iluch of the

theory developed in 8 1 of this chepter may be extended to the case of
functions of several complex variables taking their values in a
sequentially complete locally convex complex l,t.s. Let z™ be the
linear space of elements Z = ( jq,..., jn) where ?1,..., kY "
are complex numbers and addition and scalar multiplication are defined
by the usual methods.

2y +8g = S psenes §n1)+( Jpiesay §n2) = ( f11+f12"“’ fm* $n2)e

XZZK(IJI, 52,000, Sn)Z(kx/l, slerz,.nn’ rrn).

n 3 ;
Z" can be made into a sequentially complete locally convex complex l.t.S.

] 2
(indeed a Banach space) by defining Il zIl = Z:; ”il "
A=
Let x(2) = x( ! g3e0es J ) be a function defined on some domain,
n
that is an open connected set,zD 5 OF z™ with values in a sequentially
complete locally convex l.tes. L. The (strong) partial derivative of

x( 3-1,..., 1§ n) with respect to | , is defined by

k

@ x(2) _ .. 1
d Tk _"ﬂflimo Vk{xu’l"“’ Fi t Xpeees T ) = Ty jn)} ’

the limit, which is taken in the sense of sirong comvergence in L,
being independent of the manner in which the complex numbers 3 K

approach zero,

Theorem 2.8.1. Let x( § Ty 3 L) on z% to L have first order




partial derivatives in each § K where Z = ( I Jr0ees kg n) lies in
some domain o8 containing the origin., Then ¥
(i) =x( f,',..., 5 n) has partial derivatives of all orders and
the mixed partials are independent of the order of differentiation,
(1) =( ¥ 1ree0s T n) is continuous and topologically bounded

on every closed bounded subset of ) B

(ii3) if for Izl € », Wx(Z)l g § (@) for each d in D,

and if s < r, then for I Z Il ¢ s
n
x(Z) - x(8) - Z (—S}E)@ b W () 122
k=1 k 3 r(r-s) 2

(iv) x( k, ¥ g g Y ) is differentiable with respect to § .

Proof. The theorem is assumed known for the special case in
which L is the complex plane and the proof of the theorem consists
in reducing the general case to this particular case with the aid of
the continuous linear functionals x in L.,

(i)  The numerical function % [ x(¥ 12000y 5 n)] is partially
differentiable in each t Kk since strong differentiability implies

% [x( Tq,..., In)] =3&:—)3[—§—Tg—x(k1,...,§n)} .
J

5 . . 3
the weak kind, Hence

) ] is partially differentiable

3
This implies 3 x*[x( k',],..., Ly

a:rj

(for each fixed j) with respect to ¢

n

w K= 1:2500e 50y fOr every

¥ L% L. * _ 0 #[ 9x ¢ T ]
x dn Lo and ——-—ax_k-——-——'ar . X {X( Z. Tasess ‘S— n)} a}. kx[g§ .( 130 n)
J J

for every ¥ in L'. The right hand side of this last equality says that




T 51 gEEE g ‘Yn) is weakly differentiable (for each fixed j) with

respoct to each variable and hence strongly differentiable i.e,.

2 3 x( §1,..., Sn) exists for k =1,2,...,n. The existence

2 3y

of the 1‘115}1\,1‘ order derivatives can now be handled by an induction

argument. ‘he relation

3 92X 32 3 2 —92
X = % I X }_ ]-— X
[asjajj af 5 ol 1 - af 21 L erafj J

which is valid for every ¥* in L' shows that the order of differentiation

is immaterial,

(ii) It will now be shown that x(Z) is topologically bounded in
0(90, an arbitrary closed bound subset of 19 , using the known result
when the values of the function are in the complex plane, For every
fixed X' in L*, X [X(Z)] is bounded, Z in 49 o leeo, x(Z) is weakly
bounded and hence strongly bounded in D(Q o°

It is now sufficient to show (iii) and this will imply the second
part of (ii), namely x( ¢ ) is continuous, and also (iv).

(iii) Consider r > O such that [{Z]l ¢ r implies Z is in & .
This set may therefore serve as a Y 0° Now by (ii) for each d in D
there exists 1(d) > O such that || x(Z)Hd < M(d) for Z in 9
Corresponding to each % in L' there is a d in D and pm(d) > 0 eo
that lx* [X(Z) ] { $ e (d) Il x(z) ”d‘ Hence lx*[x(z)]lé A (d)u(a)

in O " and by the numerical case



oy

lx%[x(Z)] —X*[X(8>] o {53_ X[‘{]Jskl

k=l k
n
| B 3xy Y M(d) 2
_Ix [x(Z) x(8) k):ﬂ (—--9}k ) P” $pu(a) - iz

for |Z)] ¢ s ¢ r. Applying Theorem 1,6.7 this gives
J f

n . 2
7) - x(8) - ) (L ¢ Dy gy
“ x(2) - x(8) ~ (”k)° k”d - vl
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Chapter III

Functions on Vectors to Vectors

3¢1e Introduction, In this chapter, functions on one sequentially

complete locally convex complex l.t.S. toc a second such space will be
studied and in particular functions which are analytic in a sense to be
specified later. The necessary concepts of differentisbility are intro-
duced in 8 1 and the properties of differentiable functions are studied
there, The properties of analytic functions are treated in 8 2 while
in 8 3 the analogue of the Cauchy-Riemann theory of functions of a

complex variable is discussed,

8 1 Differentiable Functions

3.2, Gateaux Differentiability. In this section, unless other-

wise stated explicitly, L and L' will always denote sequentially complete
locally convex complex l.t.s. and D and D' the corresponding associated
directed systems.

Definition 3.2.1. Let f(x) be a function defined on some open

set i@ in L and taking its values in L: Suppose that for X, in

AL and each y in L,

f(xo + Yy) - f(xo)
Sf(xo;y) = lim
t> 0 5
exists, where Ly is complex. Then

(i) f(x) is said to be G-differentiable at x = x, and

%
S f(xo;y) = Sf(xo;y) is called the G-differential of f(x) at x = X
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with increment y,
(ii) £(x) is said to be G-differemtiable in {)  if it is
G-differentiable at each point of (L )

3 n-+l

(iii) the G-differential £(%379 37 9500035 9) OF

§ nf(x;y1;...;yn) is defined by

1
§ % 223750300057, q) = § [878(x57137 0500057 ]
§°  £(x37y57p30-037,) = £(x), and
(1v)  §%Gsy) = §PE(X3T3T500057 Do

In much of this theory the domain of the functions considered is
immaterial while their range can be extended to linear topological
spaces, Thus almost all the theorems of the Banach space case are
valid (2,21), The notion of G-differential is closely related to the
notion of derivative of a vector function given in Definition 2.2,3.

Theorem 3.2.1. f£(x) defined on the open set (L in L to

L' is G-differentiable in { L  if and only if for every x in (L
and y in L' f(x + 3§ y) is a regular function of ¥ whenever
x+ Yyisin () .

Proof, -% f(x+ }y) =lin & [£(x+ (5 + T )y -2(x+1y)]
- a! 07T
= lim 1 [fl&k +35y) + ’Cy)-f(x+3Y)]
1+ 0T

= § f(x+ 3y5y)

In particular,



{—-d—- f(x + ky)] = §f£(x3y).
asd t =0

Theorem 3,2.,2, f£(x) is G-differentiable in the open set ()L if

and only if for every x in N and yy sV oseeesy, in L the functions
f(x + §1y1 + eee + §nyn) is partially differentiable with respect
to the § K K= 15250000, whenever x + f’ly’l + eoe + jnyn is in

[

PI‘OOf. 'g—"'l"{' f(x + §1y'1 +oo. + gkyk + o060 + .? y)
= lim & [£(x 4 $aypteee + (5 + T )y 4 eee + 3y ) =
_’ck-» 0T, LT mxe k kT T oo n’n

f(X+ SL1y1+ eoo + -?kyk + eoe t 3nyn)]

. 1
=1lim = [f(x + 31y1+ soe ?kyk + oo + s‘nyn) + Tkyk) -
’tk»o k

flx + $1y1+ ces + ’tkyk + a0 + gnyn) ]

= §f(x+ by veee v ST b+ LA WE
In particular,

)

ST S ¢ S+ $,yp) = §$f(xyy), i =1,2
: 0,0

Theorem 3.2.3. Let f(x) be defined and G-differentiable on the

open set ()  in L with values in L', Then, for every y in L,
§ £(x3y) is a G-differentiable function of x in () .

Proof, Sf(x;y1) ={-—d4- fx + ?13’1)] o
— d31 T 4,=0
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Let @(x) = & f(x;y1). Then,

S Blxsy,) =|- O(x+ $ )] ,
" [d3'2 =T 5 =0

and hence,

2
Szf(x;y1;y2) = [————5—)——-—-— f(x + §1y1 + §2y2] .
ag 283'1 §1= k 5 = 0

By Theorem 3.2,2 f£(x + §1y1 + szz) is a partially differentiable
function with respect to ?1 and ¢ 5 and Theorem 2,8.,1 ensures
the existence of higher derivatives,

Theorem 3,2,4o Let f(x) be defined and G-differentiable on the

open set e in L to L'. Then

. ok Zn -
& [ ) eeee ¢ f(x +.k= 3’kyk) = Sf(xsy1;....;yn),

" ¥, =0
(31) [ 2" £(x + ?rf Yy )} =[-§3— £(x +3y;]
33'1.... a3, k=1 k Vs =0 ar™ bt
= §"f(xsy).

Proof, The result (i) will be proved by induction, For n =1

it is true by Theorem 3.2.1 and for n = 2 by Theorem 3.2.,3. Suppose now

S n=1

that (i) is true for all values of nup ton -1, Set f(x;y1;...;yn_1)

=@(x)e Then,

D(xsy,) = | == ¢ 5
§ O(x37,) [dkn (x + nyn)] s =0
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that is,

n
§ L(%37) 37 p500057,) =

B o 11
- £{{x + k.nyn) + 31y1+ Sl ?n-1yn—1)
(35, L 9%,... 9%
n Oyass 507 O
2"
—-l. af gx f(X"l" §1y1 + eee + rnyn)J °
L n 0,0,000,0

(ii) is an immediate consequence of (i) and Theorem 3.2.7.

Theorem 3.2,5, Let £(x) be defined on the open set [fL in L to

L. Then & £(x3;y) is a linear function on L into L.
Proof, It is clear that §S£(x; Yy) = § §£(x;5)s Consider
now the function f(x + §1y1 + fzyg) of ( 3‘1, [y 2). By Theorem 2.8.1,

for any d' in D'

e + Sy $3p) - £(x) - ;1(_3_}1_‘1) 0,0 = Iz(‘g}{;o,o" a'¢ x(a")
1S, S 07

where K(d') is a real muber, By Theorem 3,2,2 this gives

et +3 0+ Fa)-tx- b, §tGuy)- &, Sty Il 4, € ka)
1Y, 5 1%

Letting k1 = { 5 = { this last inequality now reads

i 2
lz(x+ 3 (7w )=£(x)= T[S £(x3y)+ § £(xs7,)] g ¢ 213
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or;,
- -f
(x + §(Y1+3"2)) (X) _ [Sf(x;y,,)-l— Sf(x;yz)]” < 2K(d') lk-l .
¥ d
Hence,
8 £(x374+ ¥,) =§Emofl [f(x + 5 (yy+ yz))—f(X)} = § £(x5yy)+ 8E(x57,)0

Theoren 3.2.6, Let f(x) be defined on the open set (). inL

to L'. Then § nf(x;y1 ;yz;...;yn) is a completely symmetric multilinear
form in T13Tpseeesyy which is G=differentiable with respect to x when x
isin {1 .  §%(x; A y) = A" § Pr(xsy).

Proof, By Theorem 3.2.L4 (i) Snf(x;y,, ;yzs...;yn) is symmetric in
15T pseees¥ye This combined with the fact that  § "£(X3773Tpse0e57,)
is linear in the last argument (Theorem 3,2,5) implies that it is linear
in each Ve The G-differentiability follows from Theorem 3.2.3.

3.3 Series Expansions of G-differentiable functions, Using the

relations between G-differentials and derivatives the expansion theorem
for analytic vector functions of a complex variable can be applied to
obtain a series expansion for G-differentiable functions.

Theorem 3.3.1. Let £f(x) be defined and G-differentiable on an

open set L) in1to L'. Let x  be in ﬂ o Then f(x) may be
expanded about the point x in the form

n
Sf(xo,x—xo) S f(xo,x—xo)

] +... + [] +.O. 3
® n ®

f(x) =f(xo) +
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the series being convergent (at least) for all x in any neighbourhood
contained in 1 about X

LetN(xo;d,ro) = {xin_ﬂ. | il x--::olld < ro,dinD} .

Let 0 < € < r, and let x be chosen so that || X=X I £ € < r.
d

r
If r is now taken satisfying the inequality 1 < r < _62 s then by
Theorem 3,2.1 the function £(x  + 3 y), ¥y =x = x_,is analytic for

|31 < r and by Theorem 2,5.9 can be expanded (for |$| < r) as

£(x + IY)T-Z [—df-ﬁ f(x+o(y)} 3 =Z .S___(:B_fl e
n=0 Ld« n'! n=0 s

L

=0
using Theorem 3.2.l (ii). In particular for § = 1,

$ Pr(x 3y) 2 §(x sxx_)
£f(x) = f(x°+ X = xo) = Z ?, = Z °' 2
n=0

n., n.

From Theorem 2.L.k,

" f(x + fy)
£(x sy j at
(o) 2Tri r IIH'

where r is any circle lk | = P < r, and in particular

may be taken to be of unit radius.

If for all x in N(xo;d,ro), f(x) is topologically bounded, that
is, its values for such x form a bounded set in L', then for every a'
in D there is a number M(d') > O such that

leell , ¢ wa') snda B8 2l , € u@)n |
d ¢ d
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for x in N(xogd,ro). In general while it is impossible to make any
statement about the topological boundedness of f(x), the following is
a step in that direction,

Theorem 3.3.2. Suppose f£(x) with values in L' is defined and

G-differentiable on an open set L) of L where 0 is in () « If
N(G;d,ro) is determined as in Theorem 3.3.1 and if S is a subset of
N(G;d,ro) which is contained in a finite, say n-dimensional linear
subspace 1™ of L and compact there, then £(x) is bounded in S and the

= ¢n
series E 87 £(83x) converges uniformly in 51=5n N(®©3d, mT )
s 0
n=0 g o

] f
where 0 < v1 < 1, Further, for each d in D, the series

Z ______z___lls nfSe&x)ll d converges unifomly in S,.
vt} Bis |

Proof, ? is homeomorphic to Z% (see paragraph 2,8). Let
ﬂn =1 N(e;d,ro). (1™ is an open comnected set in L™ and con-
tains 9, Every x in 1™ is of the form x = 3’1x1 + oo0s + knxn
where XpgeoeesX, is a fixed basis of L” and the £ ; are complex
numbers, The set & of all these ( S 13000 }'n) forms a homeomorphic
image of ()L™ in Z™ containing the origin in 2%, that is, D is a
domain in Z" containing the origin. £( 3 1% +oeee + $ nxn) is a
partially differentiable function with respect to J,, J vy § o
for k'lx‘l + oes + Knxn in _(L s teee, for ( 31,..., % 0 ind

(Theorem 3,2,2)s Now S C 0 n is a compact set in L® and so its
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homeomorphic image, which is contained in &®, is compact in 7% and
hence closed and bounded there., By Theorem 2,8,1 (ii), the values of
- ] ]
f(x) then lie in a bounded set for x in S, that is, given d in D there

isu(d') > O such that [l £(x)l , < M(d') for all x in S,

da
Choose r such that 1 < r < : s where 0 <7< 1, Then

§ Mr(o5x) = === _____Tf(fx) as
el °oT 1 fp Jax

where [ is a circle of radius r about § =0 and |l x”d £ nr.

Consequently for x in 8, =5 n N(83d, i ro) and d' in D'

[§2e(0,) Il . ' = '
J (,’ )| d < M(dn) o Sincer > 1, Z M(g ) is convergent
He o n=0 T
and hence

n

Z lw d' converges uniformly for all x in S1.
Ne

n=0

The expansion of Theorem 3.3.1 is valid in a larger region than
the neighbourhoods considered there., This larger region exploits fully
the character of the G-differential as a directional derivative,

Definition 3.3.1(2). The set c*(xo) C L is called a c-star

about X, if C*(xo) =x_ + X, where x in X and %1 £ 1 implies 3 x
is in X,

Definition 3.3.2(2), If {)  is an open set in L, then for x

in ﬂ s r(x,y) will denote the supremum of all numbers r such that

(31 < rimpliesx + ! yisin (2 .
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1t {1 C Lis open and x_ is in () then the set of all points
x, +y for which | $1 < 1 impliesx + $ yisin () is a c-star
about x _, the c-star in () about x_. That this set of points is
actually a c-star is easily verified. Let y in L be such that | 5[ <1
implies x + Syisin () , If | 51< 1 then I381£1, Hence
X, + (3% )yisin ) . 1In particular a neighbourhood about x, is
certainly a c=star about x o°

Let £f(x) on L to L' be defined and G-differentiable on an open
set {) , If x is in (), then for 1351 < r(xo,x-xo) the Taylor

expansion (Theorem 2,5,9)

@ = g_n
flx + § (x=x)) = Z [—ii- flx + X (x=x)) e
o o) = du D o) o ]o( o o
o n
= Z Snf(xo;x-xo) -‘L— =
n=0 n.'

o s (xy3 L (x=x))
= g ,
n=0 n.

holds,
The point x, is arbitrary, If S (x—xo) is replaced by (x—xo) then
this may be stated as

Theorem 3.3.3 For X, in _Q and x in the c-star about X in

0,

2 §PE(x_sx-x_)
f(X) = Z g x? - °
n=0 Dy
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Theorem 3.3.4. If { fn( %) } is a sequence of G-differentiable

functions on L to L' defined and G-differentiable on an open set JL
and if {fn(x)} converges uniformly on the "discs® x + Sy, y in L
and |5| ¢ r < r(xy),of () , then the limit will also be G-
differentiable in (1 , Further, under these conditions for x in 043 "
yin L,

§ £ (x3y) = lin <kan(xsy).

n-> o
Proof,  The proof of both these statements is a consequence of

Theorem 2.5.10, If f(x) = lim fn(x) it must be shown that for x in
()l amdyinl, £(x + 3} 3)—’1: differentiable with respect to ¢
for |81 < =r(x,y). Then by Theorem 3.2.1 it will follow that f(x)
is G-differentiable in (2 , But {fn(x + Sy } being a sequence
of analytic functions for |5| < r(x,y) converging wniformly for
| 51 < »' then by Theorem 2.5.10, the limit function f(x + ¢ y) is

an analytic vector function of a complex variable for |§l < r(x,y).

3elie F-differentiability and Partial Differentials. The first

non-metrical definition of a differential (the M-differential) for
functions whose arguments are in a l.t.s. and whose values are in a
second (possibly distinct) l.t.S. was given by A. D, Michal in (22),
When the l.t.s. are normable spaces every Frechet differentiable
function is also an M=differentiable function but not conversely, In

(23) however, Hichal defined a "first order differential" for functions
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f(x) with arguments and values in topological abelian groups with the
property that if the topological abelian groups are Banach spaces
then f(x) is Frechet differentiable and the two differentials are
equal, Even earlier in (12) and (13) Michal and Paxson had defined a
differential for functions on a l.t.s. to the same 1,t.s. but this
differential did not have the composition property. A comprehensive
account (with extensive bibliography) of these matters, that is, of
topological differential calculus, appears in (24)., The differential
used here is due to Hyers (25) and is a differential of the type
defined in (22), Further, in Banach spaces,this differential reduces
to the Frechet differential,

Definition 3.4.1. The function f£(x) defined on an open set

0 cLtoL' will be said to be F-differentiable at the point x, of
'
) with increment y in L and df(xogy) =4 f(xo;y) will denote its
F=differential if
H

(i) df(xo;y) is linear and continuous iny on L to L ,

(ii) for every a' in D’, there corresponds d in D with the
property that given '7' > O there exists § > O such that
Il f(xb+-y)-f(xo)-df(xo;y)ll - 7' Il v Il whenever llyll < § ,

d : d d

Here d =d(d') and § = §(d,d, 7 ). £(x) will be said to be
Fedifferentiable in () if it is F-differentiable at each point of

1
2 @TE(Ty 503y, q) = WA E(X57p5000057,)) and
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dof(x;yﬁ;....;yn) = f{x)s dpf(x;y;...;y) will be written as dnf(x§Y).

Theorem 3.L.1. If f1(x) and fg(x) are F-differentiable at x =x ,

then £,(x) = k1f1(x) & £ o£o(%) is F-differentiable at x = x and
df5(x57) = $,df(x57) + 3 af,(x 57).

Theorem 3.4.2, If f(x) is defined and F-differentiable on an

open set ) in L to L' then f(x) is contimuous in (2 .

Theorem 3,4.3, If f£(x) is defined and F-differentiable on an

open set () in L with values in L', then f(x) is G-differentiable
in {) and the two differentials are equal, Thus the F-differential
when it exists is unique,

Theorem 3.h.lie Let f£(x) be defined on an open set {2 of L

with values in L'. Let D,E be two associated directed systems for L
defining equivalent systems of pseudo-norms for L and D', E' be two
associated directed systems for L' defining equivalent systems of
pseudo-norms for L'. If £f(x) is F-differentiable at X, with respect
to D and D' then it is F-differentiable there with respect to E and
Ef and the F-differentials are the same,

The proofs of these theorems are straightforward and will not be

given'here but the methods used are illustrated in the following

theorem,
Theorem 3,4.5., Let L, L,, Ly be locally convex l.t.s. with
associated directed systems D1, D2, D3 respectively, Let f(x) be

defined on the open set ~(21 c L1 to the open set _(2 2 = L2



and let g(y) be defined on {1 p t0 L3. If £(x) has an F-differential

at x =x_in G, and g(y) has an F-differential at y = Ty = f(xo) in G,,
then h(x) = g(£(x)) has an F-differential at x = X, given by
dh(x 5x) = dg(£f(x); df(x 3x)).
Proof, The proof of the theorem consists in showing that given

d3 in D3 there exists dy = d1(d3) in Dy such that for any 7 3 > 0,

%
"h(xo+ x)-h(xo)-dg(f(xo);di‘(xo;x))” < Y{ Nx Il .

d3 3 d1

Corresponding to d3 there exists d2 - d2(d3) in D, such that for

there is 4 = 31(d3,d1, 73) > 0sothat Nxll ;, < &, implies

’73' >0, §,=8a5,4, 73') can be found so that Iyl < S,

2
implies
lely. +y)-ely)-de(ysym) Il < "y ll .
o ) o d3 73 q,

Since f(x) is differentiable at X, it is continuous there (Theorem 3.4e2)e
Y - < S
Hence |l £(x_+ x) f(xo)” , for Il = Il .

d 1
2
is inDy and X = o (52) > 0. Taking y = f(xo+ x)-f(xo) it

< X =
s where e, e’l(dZ)

follows that
Il g2 40) )-g(£(x,) )~dg(£ (x )52 (x g W)=(x )N < P £+ x)-£(x) "
2

for ||x||e1< X ., Then, using this last inequality, the properties
of the pseudo-norm and the linearity and continuity (as a function of y)

of dg(yo;y) there is an e, = e2(d3) and M(d3,ez) > 0O for which
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[l g2 (x + x))-g(£(x,))-dg(£(x,)saf(x 3x))

%
€ 7 N+ x)-2(x ) a, + el )32 Cxgt m)=t)-a (xps0)

%

< V3 "f(xo+ X)‘f(xo)" dy + M(d3’e2) Il f(xo+ x)-f(xo)-df(xo;x)” e2’

for |l x"e < X , Since £(x) is differentiable at x = X, corre-
1
sponding to d2 and e, there exists b1 = b,,(dz) in D1 and cq= c,,(e

2)

in D1 such that given M, > 0 there are ﬁ = /J‘ (dz,b,‘, 772) R

rT=17 (62,01, yi 2) respectively so that

Il f(xo+ x)-f(xo)“ d, % "{2 Il x ”b1+ il df.'(xo;x)”d2 < 72 lellb1 + M(dz’k‘l Mx Il X
where lel|b1<[3 s k= k1(d2) is in Dy and M(dz,h') > 0, and

I £(x + x)=£(x ) -af (x 3x)l e, <7, llxllc1

for Il xIl o < 'X‘ o These last inequalities then give
1

Il h(x + x)=h(x )-dg(£(x );af(x_sx) I 4

£ )73'(72"1:"]01 +M(d2,k1)"xllk1) +M(d3,e2)72 llxllc1,

for lelle1 <o, le||b1 < [3 and "X"c1< 9 o Taking d; > e1',b1,
e ,k1,d1 in D1, then since these last depend on d3 so does dl‘ '73 s 72

can be deternined so that

73 (7]2 +M(d2,k1)) +M(d3,e2) 7 5 < 73.

Finally if 51 =mn( <, f , ¥ ), then for qud1

< 73 Il =l

<S1

Il h(x + x)=h(x )-dg(£(x );af (x_5x)) I 4 &
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It is clear that dgf(xo;di‘(xo;x)) is a continuous linear function x
and hence it is the F-differential of h(x) at x = X, with x as
increment,
t 1]
Let L(R) and L (R) be locally convex real l.t.s. and L(C), L (C)
1

and L(K) and L (K) the associated couple and composite spaces
respectively. If f(x,y) is defined on an open set in L(K) to L'(R)

partial G- and partial F-differentials with respect to the variables

x and y can be defined.  Thus the partial G-differential of f(x,y)
with respect to x is the ordinary G-differential with respect to x of
f(x,y) when y is held fixed in L(R), By the total F-differential of
f(x,y) is meant the F-differential of f(x,y) with respect to the
composite variable (x,y). It is written df(x,y;( A x, Ay)) where
(Ax, A y)is the (composite) increment. This is to be contrasted
with the F-differential dg(z; A 2z) of a function g(z) defined on an
open set of L(C) to L'(C). In this last z is the couple element

rd

z = (x,y) and A z is the couple increment.

§ 2, Analytic Functions
3.5, Polynomials. 4As before L and L' will denote sequentially
complete locally convex complex l.t.s., and D and D' the corresponding
associated directed systems, Polynomials on the complex numbers to
a sequentially complete locally convex l,t.s. have already been defined

in Definition 2.5, 2.



Definition 3.5.1. A function p(x) :7:" Oonl tol' is called a

polynomial if

(i) p(x) is continuous at every x,

(ii) there exists an integer n such that for any pair (x,y),
X,y in L, p(x + ¥y) is a polynomial on the complex numbers to L'.
The least number satisfying (ii) is the degree of p(x).

A polynomial p(x), homogeneous of degree n, that is one for which
p( 3 x) = P%(x) is a polynomial of degree n. Hence the phrase
homogeneous polynomial of degree n is used to describe such polynomials,

5
Definition 3.5.2, Let f(x) be a functiononL to L and let y

be an element of L, Then Ayf(x) = f(x + y)=f(x) is called the first
difference of f(x) with respect to y, If Xy 9Xpyeee X, are elements of
L, then the nth difference of f(x) with respect to Xy 3XpgeessX, 15
defined to be

A% £(x) = A" (A™ £(x))
x1x2...xn Xn X1X2-.-Xn_1
A n=1 A n=1
= f(x Ll < ) == f(X)o
x1 X2. L ] .Xn—ll n X1 XZ. ] .xn-1

Definition 3.5.3. Let h(x) be a homogeneous polynomial of degree

!
nonltolL', Then the function h(x,,xz,...,xn) on LxIX...xL to L

defined by n

A X1X200.X h(e)

n
h(J{;‘ ’Xz,'-o,Xn) = [
Ne
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is the polar of h(x) with respect to Xy 3Xpseee X o

The algebraic properties of polynomials, homogeneous polynomials
and polars are treated at length in (2,26), With regard to properties
involving the topology of the space L and L' certain changes from the

Banach space case are in order,

Theorenm 3.5.1. Let h(x) be a homogeneous polynomial of degree n

onL toL, Then given d' in D‘, there exists d in D and a least
u(d,d') > O such that
I )l g ¢ w(d,d') NxlG, a1l x in L,
Proof. By definition h(x) is contimuous at x = 6, It follows

]
that given d' in D , there exists d in D and § > O such that

Wty < § implies Il n(x) Il g < 1., Let x be any element of L
fo T o S, X
such that x #© or llxlld;éo. Letting X = 3 —--—-”x”d , then
- s X 5§
= - 9 =—<
llde "2 llxlld” 2 2
d
and consequently
13 Ia@ll, = [|n( & = = (5 1 )®in@l ,,
2 2
d llx”d, g =1y d

that 1is,

Iall , € & ixn .
d § d

The inequality is trivially true when x = 8 or Ilx ”d = O

This theorem makes possible the following definition,



Definition 3.5.4. If d' and d satisfy the statement of Theorem

3.5.1 then sup J%ELEQ%Ldf exists and is denoted by Mh(d,d').
xinL (I xIl

£0 4

d
Mh(d,d') is called the modulus of h(x) with respect to d and a',

I xu

If h(x1,...,xn) is the polar of the homogeneous polynomial h{x)
then it is a linear homogeneous polynomial in each of the arguments
and is symmetric in the arguments. Further h(x) = h(X;ecees%).

Theorem 3.5.2. Let h(x) be a homogeneous polynomial of degree n

on L to L' and let h(x,Xy,.es,% ) be its polar, Then h(x,e.s,x)
is continuous at (©,...,9) and hence bounded with respect to the

pseudo-norms,

Proof, n:h(x1,x2,...,xn) = A h(0) is of degree zero

% 5

1§1X2...Xn

in x so that A ...x_h(8) =A _ h(x). Let Xy,...,%_be
BEy R i o ™ n

and arbitrary set of increments and take x = - % Z:- Xy Forming
i

n

the successive differences of h(x) gives rise to

# n
A Wl = P, B 2 el Gosi T
2C1x2-¢oxn n 2 i_lx 1 L i -

2" terms -

By Theorem 3.5.2 given d in D' there exists d in D and ¥(d,d') > O

such that
n

In n
? t n
I iy ; )l ¢ a3 21 eixilldf‘s W——:zg—l(;/:ﬁuxin )

< u(d,d ) n (max |\xi|| )
i d

2n i
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Consequently

N
'.—b

n
I ST I N 2 lnd :{1 eixi)lld,

! No 2" terms

n
< Md,d) B (max Nx 0l )
Ne i d

which can be made arbitrarily small for max Il x, |l 4 sufficiently small,
i

Thus h(x1 gosasX n) is bounded with respect to the pseudo-norms (Theorem
1e7ed e
This theorem makes possible the following definition,

Definition 3,5.5. By theorem 3.5.2 d' and d exist such that

[ (%) 5Xp5e 009X, ) I,

sup a' = Mn(d,d') is finite, M (d,d') is
x.in L le.‘ ... xll
3 4 n d

] xill d;é 0

called the modulus of the polar h(x1 ,xz,...,xn) of the homogeneous
]
polynomial h(x) of degree n with respect to d and d .

Theorem 3.5.,3, Let M (d,d') be the modulus of the homogeneous

polynomial h(x) of degree n on L to L', The modulus Mn(d,d') of its

polar exists and conversely., further

1
Mn(d,d) . n

i i n
T ~ R e
1, (dyd) Do
Proof, Taking lix;ll =1, 1 =1,2,...,n it follows from the
d

last inequality in Theorem 3.5.2 that

n
]
[EE P DL i (d,d) &
d N



e

n
1 _ f n

Then, ¥ (d,d ) = xjflpﬂ I h(xy sxp5000,%) l\d, $ M (d,d’) -

“ h( X eece )" ] ]
Finally’ Mn(d’d') = sup x1 » 2, ,}:n d >/ sup ” h(X,X,.-.,X)”d -

lix,'lldllx2 “d"’“xn”d "x"g

]
= Mh(d:d )

3.6, The Series Expansion for Analytic functions. In the

remainder of this chapter the word domain will be used, as usual, to
designate an open connected set., In a locally convex space the
notions of connected and arc-wise connected are equivalent.

Definition 3.6.1. A function £(x) on L to L' defined in the

domain & is said to be analytic in o  if it is single-valued,
continuous and G=differentiable in 09 o

Theorem 3.6,1. If f(x) on L to L' is analytic in 9 s then

(1) f£(x) is F-differentiable in and has F-differentials
dn:t‘(x;x,l ;xz;...;xn) of all orders which are analytic functions of x
in o for fixed (%) 5%pyee05x ) and jointly continuous in the
increments (x sXpyesesx ) for fixed x,

(ii) the series expansion

eo n
af(x 3y)
f(x +y) = Z _.__..‘_0_
n=0 Ne

is valid for every X, in 4 and X+ in any neighbourhood of X,

lying entirely in &
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Proof, By Theorem 3.2.6, since f(x) is G-differentiable
Snf(x;x,, ;xz;...;xn) exists for all n and is a completely symmetric
multilinear form in the increments Xp3XpseeesX 0 f(x) may be expanded
as a Tgylor Series of G-differentials about any point x in )
1 ] t
(Theorem 3.3.1). Let X, be an element of « . Given d in D and
?
€ > 0, there exists d inD and %7 > 0 such that [l x-x Il < 7
d

implies || f(x)-—i‘(xo) Il . % €', Pick any point x such that

[ X=X I < !2-\ o Then for llyll 4 < Zzl and such an x it is true that
d
2 cn Do .
fx +y) = Z_____Y_S f(?’ ) s where -———r—-s Hwy) - / sz zi-g) at

" being the circle with unit radius, Since llx + I y-x Il < 7,

then |l f(x+ 3 y)-f(x )Il < ¢' and so |l fx+ Syl , < e'+uf(x Y,
" ar d ° g

4 !
=M(x ,d, € ). Thus,

|

Let ¥ be any element of L such that y #6 and ll yll 4 # 0. Then,

n n
IsPesmll g, ¢ o luGeua’, €YD T, Heml < i

§ " (x37) 't < <
_._._:.1.'_’._. ' < M(xo,d , € ) for |l XX Il 5 -g—l, ”y”d < %(,
g d

S‘nf(x;g. Y )” < n:M(x ,d', e'), or
2 llylly “Dar ¥

This same inequality is trivially true wheny =6 or lyll =0, If
d
this were not the case then a > O could be determined so that



. ] ?
WP (xzay) Il = a® Il § Pe(agy) Il . > n. M(xO,d , € ) while
d d
n
Il ay "d =0, Il X=X Il < 7-72- , giving a contradiction. Thus § f(x;y)
d

as a (linear) function of y is bounded with respect to the pseudo-
norms and hence (Theorem 1,6,1) is continuous iny, locally uniformly
in x,

This same inequality combined with the Taylor expansion implies

that for given % > 0,

Wiz ,dy € )y Il 2

| £(x4y)=£(x)= § £(x53) , £
d n (7 =2l y i)

< nlyily,

1 %7
when lxx I < & and lyll, ¢ min(Z o T
en Il x=x g 5 an b d mlnvz ’ 27t+ hM(Xo,d', <)

With this last relation the proof that f(x) is F-differentiable with
df (x;y) = § £(x3y) is complete.

It will now be shown that under the hypothesis of the theorem
that § f(x;y) is an analytic function of x for fixed y. Since by
Theorem 3.,2.6, § B¢ (x;y) is G-differentiable it remains only to prove
the continuity of § P (x3y) with respect to x. This requires

Lemma 3.6.1. Let f(x,y) be a function on Iy x L, to a space L3

where L1 s L,y L, are sequentially complete locally convex complex

2*r =3

l.t.s. Suppose £(x,y) is defined and contimuous in the pair (x,y)
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for x in a domain O of L1 and y in a compact set G of L2, then
if X, is in H f(xo,y) is comtinuous at x , uniformly with respect
to y in G,
Proof, OSuppose the theorem is false, Then, given d3 in D3,

§ 3 > 0, there corresponds to any neighbourhood N(xo) of X, at least
one x in N(xo) and at least one y in G such that |l f(x,y)-f(xo,y) I d3> 53.
f(xo,y) being jointly continuous for x = x_ and any y in G, then for
each pair (xo,y), ¥y in G, there are neighbourhoods N(xo) in Iy, N(y)
in L, such that x' in N(xo), y' in N(y) implies

53

2

Il f(x',y') - f(xo,y) Il <
%4

These neighbourhoods N(y) of y, for all y in G, constitute an open

covering of G, By compactness there is a finite number of them

N(y,]), N(yz),...,N('yn), say, constituting a covering of G, Let

N, (xo), Nz(xo)"”’Nn(xo) be thencorrespondlng neighbourhoods (in L’l)

of x . There exists N(xo) c N Ni(xo)' The continuity condition
i=l

then says that for x in N(xo), v in N(yi),

§
” f(x’y)-f(xo’yi) “ d3 < _'2‘3" o

Corresponding to this same neighbourhood N(xo) of X, there is some x
in N('xo) and y in G such that

”f(x,y)-f(xo,y)“ 2 53. 3l



<101=

On the other hand y must lie in some neighbourhood N(yj), T =1,240 003D
Calling it N(yo) then for x in N(xo), ¥y in N('yo) it is true that

3
wal

Il f(x,y)-f(xo,yo) I d3 < —8-2-3- and |l f(xo,yo)-f(xo,y)“ 4 <
2
and these contradict the inequality 3.1.

With this it can be shown that Snf(x;y) is a continuous function
of x, for fixed y, Suppose that x - is in o and let y be an
arbitrary fixed element of L., Using Theorem 3.3.1 an element d in D
and positive numbers T sT can be found so that x + { y is in & when
Il X=X Il < r, and [ 1 < r and with these restrictions

d ?
Snf(x;y) =___2_:_ f .f_(_];c_.;_g*_.p as s
1 i r

210 i

1 ?
" being the circle |31 /? < To Then given d' in D s 5§ >0,

f(x+ Yy)-f ty)
I 87 (xs7)- Snf(xo;y) o, < g f ” S ::;’ﬂr d ” latl

From this it follows that § nf(x;y) is continuous at x = x_ provided
that for a given € > 0, e in D and ‘7 > O can be picked so that

I XX N < ? implies | £(x+ § y)-f(xo+ $y) Il < € for
e d
all k’ of [ o This can be done as a consequence of Lemma 3,6.1

since [ is compact. Thus for l xx Il < r, [l xx_ I < 7 5
o4 ) CH

1

s e (x59)- § "z ll § == 5,

_€.
d/’n
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and § nf(x;y) considered as a function of x for fixed y is analytic
in & .

Applying the argument which was used to show that the analytic
function f(x) is F-differentiable it follows that the analytic
function § nf(x;y) is F-differentiable with respect to x in o,
But the same conclusion then extends to gnf(x;x‘l ;xz;...;xn) which
is the polar form of the homogeneous polynomial § nf(x;y) and hence
linearly expressible in terms of the functions § nf(x; €qXtooot ann),

€ § = 0,1, 2ll of which have just been shown to be continuous F-
differentiable functions of x, Further, as in Theorem 3.5.2,

§ nf(x;x.l;...;xn) is jointly continuous in (x ,xz,...,xn). The
notation dnf(x;y) may be used in place of S nf(x;y) to obtain the
expansion

(-]

a'£(x35)
f(xo-l- y) = e T
n,
n=0

Theorem 3.6.2, A homogeneous polynomial p(x) on L to L' is an

analytic function in L and hence it is F-differentiable,
et A Dbea sequentially complete extended locally convex
complex topological linear ring with associated directed system D

(Definition 1.8.3). Let & be comnutative and have a unit element

Ue
X Xz Xn
Definition 306.20 exp X =1 +T +"‘i" + oo +-""' + ooo £}
20 140

n o
where X = XX ... X, & product of n factorsz and x~ = u,



A 0%

As stated in paragraph 1.8 part of the motivation for introducing
extended locally convex complex topological linear rings is to
ensure the existence of entire functions (in particular the
exponential function) on these rings. If the ring is not extended
it may not be possible to define an exponential function (1L).

Theorem 3,603, For each x in K , the sequence of partial

sums of exp x converges and defines an analytic function on &
into itself,

Proof: Given € > 0, d in D, let x be any element in & .,

Then
m m+1 n (| m m+1 n
me (m+l). n. My m, (m+1). N,

forn ) m > mo(d, ¢ ). Hence the sequence of partial sums converges

and since & is sequentially complete, converges to an element of
R .
Further exp x is a continuous function of x, For, given d in D,
€ % 0
" o
exp(X+y)-exp(X)=Z -(—’5—1,—55)—&-2 5—?
n=0 T n=0 O
_ i (x + :>')I'1 - x
n=0 i
Picking 9 = s “i"d < 1 it follows that for ”y"d < §

3
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d n
|l exp(x +73) - exp(x)ll g = ” Z l, Z (9) raald Yv “ e
= e Yy =l d

- n )

<X @ sy

n=1 Ile y =1

™
Ion

" n
[ (1 +nxli)” ==l 4

n=l1 n.'
< ) 20 it )™
n=1 e
T+ nxl
= § (e don= €,
exp X is also G=-differentiable. Z-o (x + .\fy) Z xn
eXP(X"'v?Y)’e’@X:lim =0 n. n=0 n.
3 > 0 3' F» 0 _;-

g Zm 1 (x+ typt - - Z 1 11m (x + £y)° -

Y>0 nd n Y o I 5
ot
1 -1 5
= Z —' mn = y Z -J-(—-—' = y e}cp Xe
n=l 1. n=1 (n=1).

Thus § exp(x37) =y exp x and the F-differential d exp(x;y) =y exp %.

3.7 Further Properties of Analytic Functions,

Theorem 3.7.1. Let £(x) be an analytic function on L to L' which

vanishes in some neighbourhood in its domain of analyticity <& . Then
f(x) vanishes identically in o&

Proof., f(x) =96 for all x in N(xo,d, é ) 8 {x I Il x-xoil < E} »
d
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where N(xo,d, € ) C & ., The expression for Snf(xogx-xo) as an
integral shows that Snf(xo;x-xo) = 6 for le--xo Il <€ , Let x

d
be any element of L such that x - x #9 and || x - x|l # 0,
d

Setting
X =X X =X
o) o)
y=é2- + X, then lly-xo” =))§-———-————— =-6-<C’ 5
=2z d 2 llx-xo I 2
d d d
and consequently
X =X n
n € o € 1 n
o= M § —2—)=(5) —— §Tt(xyxx),
Il x=x_|| I x-x |l
o) )
d
that is § %f(x sx-x ) =06, forx-x =0 or llx-x I =0 this is
0 ) o 0" 4

trivially true. The Taylor expansion for f(x) shows that f(x) =© in
any neighbourhood of X, contained in B s say N(xo). Let y be any
point of O not in N(xo). Since D is a connected open set
it is here also arc-wise comnected and the points Xy and y may be
joined by a finite chain of neighbourhoods N(xo), N(xJ| ),...,N(xn),
such that y is in N(xn) and N(xi) contains X e Since x, les in
N(xo), a neighbourhood N'(x,l) C N(xo) can be found in which f(x)
vanishes. The precegding shows that f(x) vanishes in N(x,‘) and hence
by induction f(y) = ©, that is, f(x) =6 for all xin ,8 .

Theorem 3.7.2, If f(x) on L to L' is analytic at all points of

L and if its values lie in a bounded set in L' then f(x) is constant

in L that is £(x) = Y., where y_is a fixed element of L'.
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Proof, Let X, and Xy be an arbitrary pair of points in L‘I ’
and consider the function f(x  + S (%= x,)) of the complex variable
¥ . This is an entire function of Y whose values lie in a bounded
set, and hence by Theorem 2,6,k4 takes on a fixed value, say ¥, in L',
for al1 [ . In particular for J = Oy f(xo) =y, and for I = I
f(x,l) =Y Thus f(xo) = f(x1).

Theoren 3.7.3. Let f£(x) be a function on L to L' analytic in

the domain « and continuous in a(9u B s where £ is the boundary

of & . Then if for any d' in D', sup I£(x)l =M(d'), either

1
x in B

I £(x) Ml 5 < M(d') in & orelse Il f£(x)I o = M(d') in 9 .,

Proof, Suppose x is in H  anda |l f(xo) I 5 > M(a")., Let
¥y in L be fixed but arbitrary and consider the linear manifold
S = {xinL|x=x0+ gy" Sn«@ is open in the relative
topology induced in S by L and since X, and y are fixed it corresponds
to an open set A in the complex plane., Sn & corresponds
to the boundary of & , i,e,, to & = o0 , A denoting the closure
of & . Nowx isinS n < and hence A mst comain [ =0,
Let Ao be the (connected) component of A containing _}’ = Q.
Then (5'0 - A)C (a = A4A), The following assertions are then
valid:

(1) f(xo+ $y) is an analytic function of ¢ in A
(11) f£(x, + Yy) is continuous in A o

(1i3) sup NGz, + ¥, < m(a).
Sin 4, =4, 4
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By Theorem 2,5.11, |l £(x + Il S < M(d') for 5 in A .
Hence |l f(xo) I K = M( d'). However, the same theorem asserts that

| f(xo-t- Yol = M(d') everywhere in A oc DBut y was arbitrary so
we may take fog ¥y any point x in d  which may be joined with X by
a straight line segment lying in &L . The above argument then

> M(d') leads to

amounts to saying that the assumption |l £(x,) I,
d

a contradiction while |l £(x,) “d' = M(d') implies Il £(x)lI S = M(d')
for every x having the property just stated. This in turn implies

I £(x) I ;) = M(d') for every x in &  which may be joined with x
by a polggonal line lying entirely in « . Hence I £(x) N . 2 M(d')
if equality holds at a single point of & . ¢

Theorem 3.7.3. Let f(x) on L to 1’ be analytic in the domain & :

0 *r < llxlld <r,, din D, Then f£(x) may be expanded in the form

-]

1 £( §
f(x) =Z pn(x)’ where pn(x) = /r' —(——q)rc—)- dk s N =O,i—1,;§- 2,...,

== 2T i pet
where T, <l xlld < r, and I" 1is a circle of radius p ,
B & P 2. about the origin, The functions pn(x) are analytic
Nx i =l
d d
. owm
when r, < ('] qa < To and pn( Yx) = 3 pn(x) when J x and x both

satisfy this inequality.

Proof, For a fixed x in «} , £( Y x) is analytic in §  when

o0

5 o8k D2 : ) 0
"x"d<l | ”x”d. Hence by Theorem 2.6.1, £( ¥ x) Z pn(x)}

=00

with pn(x) as given above. Since the region of convergence of this
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series includes the point J =1, setting Fo=1 gives the desired
result,

8 3. The Generalized Cauchy-Riemann Equations

3.8 The Generalized Cauchy-Riemann Equations (21). Let L(C)

and L'(C) be the associated couple spaces corresponding to the
sequentially complete locally convex real l.t.s. L(R) and Lt(R)
respectively. D will denote the associated directed system for L(R)
and L(C) while D' will denote the associated directed system for L'(R)
and L'(C). A function f£(z) on L(C) to L'(C) can be written as

f{z) = f1(x,y) + ifz(x,y) where f1(x,y) and f2(x,y) are functions of
two variables on L(R) to L'(R). Let £f(z) be defined in a domain

of L(C) to L'(C). The analyticity of f£(z) can be discussed in terms
of the properties of f;(x,y) and £,(x,¥).

Theorem 3.8.1. In order that £(z) be analytic in O it is

necessary and sufficient that the functions fj (%,5) 5 fz(x,y) be
continuous jointly in (x,y) and admit at all points of LH  first
partial G-differentials which are jointly continuous in (x,y) and that

the equations

]

Sxf1 (x,y73 A x) ) . fz(x,y; A x) 3.2

Syf,‘ (x,y; AX) =~ SX fz(xsyi A x) 363
are satisfied in 4 for an arbitrary increment Ax in L(R)s The

partial G-=differentials are in fact partial F-differentials,
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Proof, If f(z) is analytic in o« it is contimmous there,
and the differential df(z; A z) is linear in A z and continuous
(separately) in z and A z, The contimuity of f1(x,y) and fz(x,y)
is then an immediate consequence of that of f(z); Now,

df(z; pAz) = lim £(z + Ja3z) - £(2) ,
=0 k3

Hence in particular taking Az = Ax + 10, § =1, where t is
real,

f1(x +t Ax,y)-—f,](x,y) + ifz(x +t Ax,y)-ifz(x,y)
df(z; Ax) = lim

t—-> 0 t
This limit will exist only if the separate parts have limits. Hence,

af(z; Aax) = §_£1(xys ax) +1 §_£.(xy; A% 3.L

Similarly,
df(z3 Ax) = Syfz(X,y; Ax) - i Syf1 (X,75 A x)e 3.5

Since the left number of each of these equationé is continuous in z
the G-differentials in the right members are continuous jointly in
(x,y), for fixed Ax, when x + iy is in ® . For fixed (x,y) in oH
the G=differentials in the right members are continmuous in A x.
Equations 3.2 and 3.3 follow by equating real and imaginary parts of
the two expressions 3.l and 3.5,

The partial G=differentials in 3.2 and 3.3 are in fact partial F-

differentials. Thus,
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d?(z;a A4x + b Azx)= 5xf1 (x,y32 A 4% + D Azx)+i Sxfz(x,y;aA1x4b Azx),
while, df(z;a Agx +bA2x) = adf(z; A,‘x) + bdf(z; A 2x)

=al Sxf’l (x,5; A 1x) +1i § xfz('x,y; A1x)]

+b [ $ F1(x,73 A %) +14 o Lolxs73 8 2x)} .

From these relations, by equating real and imaginary parts of the

expressions on the right hand side, it follows that

i}

Sxf’l (x,y;aA,,x + bAZx) a Sxf1 (%73 A1x) +b Sxf’l (x,ys A 2x),

Sxfz(x,y;aa,'x + bAzx) =a Sxfg(x,y; A 1x) +b Sxfz(x,y; Azx).
If z = x + iy, then x|l 4 Nzl go Hence
I £ (x + Ax,y)-f1 (x,5)= 5xf1 (x,53 0x) Il .
S If(z+ Ax)-f(z)-df(z;Ax)“ d”
Il £,(x + A x,y)-f,(x,5)- SXfZ(X,.Y;AX) I\ 4
for d' in D'. d in D exists so that given 7' > 0, there is a € > 0

such that for ||ax "d £ E 4

Il £(z + A x) =£(z)=df(z; A x) Il :y & V'IIA x”d.
d

Consequently, for liax Il <¢€
[l £ (x+ A x,y)-i‘1 (x,7)~ Yxf‘l (%75 a x)l g < 7 ' I Ax Ild .
I i‘2(x+ A x,y)-fz(x,y)- Sxfz(x,y; A x)|| 4t 2 7 ' A xlld
and the partial G-differentials are indeed partial F—differentials,

To prove the sufficiency of the conditions suppose that



7=

Az = OAx+1i Ay is an arbitrary element of L(C) and consider the

expression:

f(z + TAz)-f(z) _ f(x+sAxtAy,y+tax+s A y)=£y (%,5)

X s +1it
fz(x-f—s AxX-t Ay, ¥+t Ax + s Ay)—fz(x,y)

+ i

s+1it
where z is in « and [ =s + it is a sufficiently small complex
nurb ers
The function F,(s,t,u,v) =£,(x +s A%t oy,y +usx +vay)
of four real variables with values in L’(R) is continuous and admits
continuous first partial derivatives near (0,0,0,0) (Theorem 3.2,2 and
the hypotheses of the theorem.) For a function with these properties, the

following mean-value theorem holds, namely,

2 F
Fy(s,t,u,v) = F;(0,0,0,0) = s -;-?-; F,(0,0,0,0) = ¢ -3-;-1- (0,0,0,0)
3.6
o F > F
-u '5'—1' (0,0,0,0) = v e ) (0,0,0,0) = §(S:t:u:v)
b 2 ¥ Il & (s,6,u,v) ar ‘ ;
where lim =0 for 2l1 d inD ,
(syt,u,v)»(0,0,0,0) Isl + (tl + (ul + (v
F
Writing E (sytyu,v) = (Fy(s,t,u,v) - F1(s,’o,u,0) -v L (s,t,u,0))
v

F

2
+ (P (8,55,0)-F (0,,1,0)-s = 81

(05%51,0)) + (Fy(0,t,u,0) -

- F;(0,0,u,0)-t -;;J-(O,O,u,o))%ﬁ (0,0,1,0)=F, (0,0,0,0)-u ;f(o,o,o,om
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F F F
2 3 > |
Fr(—(s,t,u,0)= ——L (0,0,0,0)) + s(=—1(0,%,u,0)~ 2L (0,0,0,0))+
ov 2V 28 o s
3 Iy 3 Iy
+ t( (0,0,u,o)- S, (0,0,0,0)).
28 ot

The result now follows on making use of the triangular property of the
pséudo—norms, the joint continuity of the partial derivatives near
(0,0,0,0) and the properties of integration for functions of a real
variable with values in a locally convex l.t.s.(12, 18)., This last is

used to write
o F

v
1 2 Fy o
Fy(s,tyu,v)-Fy (5,t,u,0)=v (e, tn,0)= | ¢ (s4tyu,v)= (s4t,u,0))dv.
0

v v dv

Consequently, when 3.6 is expressed in terms of partial G-differentials,
it reads
Fi(x+s Ax-t 8y, y+t Ax +s Ay)—F1(x,y) = 8 5xf1(x:>’5 A x)

-t Sxf,l(x,y; Ay) +t Syf,' (x,73 AX) + 8 Syf,l(x,y; ay) +§ (s,b,t,8).

There is a similar relation involving f2(x,y) and a quantity ?(s,t,t,s)
such that for any d' in D'

M(s,t,t,s) “d'_
Isl + ltl +ltl+1st O °

lim
(s,t) -> (0,0)

Using equations (1) and (2)

£(z + YOz)-£(z) _
3

+i( § xf‘] (x,7; ay)+ Sxfz(x,y; A x))

[( S £y ax) = S £,(x,53 A7)

](s + it) & §+i7
3 |y

Now IS1 3 " (Isl + |tl) and for any d' in D',
V2



L

I§+amll € HEN + 17N . Hence,
+1Y(d' <:1'+ 7{d ence

g I |
1im g +170 + 1750 g J2¢( lim IS G 1im -———“ 8 d').-:O
0 131 . (s,t)5(0,0) lsl +1tl (s,t)(0,0) sl + [&l
Thus £(z) has the differential 3.7

§(£382)= 5 _£5(xy3 Ax)= §_L,(%,75 7))+ 1( 5 _£1(x,75 8 7)+ 5 £,(x,75 ax)).

Since £ (x,y) and fZ(X,.Y) are contimuous so is f£(z) and f(z) is analytic
in &

Theorem 3.8.2, If f1(x,y) and f2(X,y) are two functions on L(R)

to L'(R) where L‘(R) is complete, and f(z) = f1(x,y) + ifz(x,y) is
analytic in the domain o0 of the couple space L(C), then £y and f2
admit total F-differentials in & (considered as a domain in the
composite space L(K)) and

df(z; A z) = dfy(x,y3(A x, A y) + idi‘z(x,y;(A X, AY)) 3.8
where A2 = Ax+i Ay, Ax and Ay being in L(R)., The partial

Fedifferentials of f1 and £, of all orders exist and are continuous

2
in & ., They have certain symmetry properties (see below) in
particular, the generalized or abstract Laplace equation satisfied by
the real and imaginary parts of f£(z),

A xys( %5 7)) +dT £ (xy3( L% A7) =0 3.9

d}zvfk(x,y;( A x; Ay)) - dixfk(x,y;( Ax; Ay)) =0 3.10
k=1,2

Proof. Using 3.2 and 3.3, 3.7 may be written as 3.1

df(z; az)= Sxf'l (x,57; ax)+ Syf1(x,y;Ay)+ i( Sxfz(x,y; A X)+ Syfz(x,y; AY).
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For 3.8 to hold it must be shown that
$ E(ys a%) + S50y ay) = afy(xy;( A%, A7) 3.12

and,  § . £.(x,y35 AY) + S £(x,y5 BY) = dfy(xy3( A%, Ay)). 3.13

The partial G-differentials occuring in 3,12 and 3.13 are, by Theorem
3.8.1, partial F-differentials. To prove the contention 3.12
df, (%,73( 4 x, A y)) mst be shown to be linear in the increment
df (x,575( A%, A7) 8%, 8,y)) = df (x,55(8 g% +4,%, 8,y +4,y))
= Sxf,.(x,y; Aux + Ax) + Syf,, (x,75 447 + 8 ¥)
i Sxf’l (%55 O 4%) + Syf1(x,y; Agy) + Sxf1(x,y; Azx) + Syi‘1 (x,y;Azy)

]

dafy (2,750 A 4%, 845)) + df(x,55( A %, A 57)).
To verify that df,(x,y;( 4 x, A y)) is a continuous function of the
increment it is sufficient to verify continuity at ( Ax, 4 y) = (9,8).

Thus given d' in D', ¢ > 0, there exists d in D, ”) > 0 such that

lhaxl,< %, s gl ;< % implies 0S £, (x5 ax) Ny, < %
and 11§ £ (x5 ap)l < x

. Consequently “dﬁl (x,73(a x, 6 7)1 <€
das 2 ds
for  |I( Ax,Ay)”d= l\x“d+ I yild <M .« PFurther given
d' in D' there corresponds d in D with the property that given ?' > 0
there exists § > 0 such that Ilazll q < $§ implies
| £(z + A z)=£(z)=df(z; 4 z)l d'f ’I' laz Il g Hence if It ax, A y)"d <{,
and recalling that if %' + iy' is an element of L'(C) then || x'lld'

1]
<z’ +iy'll ,, it follows that
d



< B

“f1 (x+Aaxy+4y) - f'[(X:Y)"df'l(x:.VS( Ax, A )l

$f(z + a z)=f(z)=df(z3 A z) e
s N'laz I
N (HAxU g+ nayliy) =y I(ax, aply.

N

Thus df1(x,y;( A x, Ay)) is in fact the total F-differential of £, (5,5 )«
Similarly d.fz(x,y;( A x, A y)) is the total F-differential of fz(x,y).
When £(z) is analytic it has F-differentials of all orders which

are jointly continuous in the increments and symmetric multilinear
forms in these increments. From this the further properties of f1 and
f, stated in the theorem follow, Thus when A z =(4x,47y),
df(z; A x) and df(z; A y) are differentiable functions of z and the
expression 3.4 applied to them leads to

d2f(z; Axs Ay) = dfmf,l(x,y; Ax; Ay)+ idfcxfz(x,m Ax; Ay) 3.14
and

dzf(z; Ay; Ax) = dicf,‘(x,y; Ax; Ay)+ idi{fz(x,y; Ax; Ay). 3.15

But dzf(z; Ax; Ay) = dzf(z; A y; A x) and on comparing 3.1} and 3,15

2
dicfll (x5 4 x3 Ay) = dm-ﬁ, (x,55 Ays D x) 3.16
and dicfz(x,y; Ax; Ay) = dfcxfg(x,ys Ay; Ax). 3.17

Similarly using the equation 3.5, the expressions

dyzyf1(x,y; Axs Ay) = dgyﬁ(x,y; Ays Ax) 3.18
and dsyfz(x,ys Ax; By) = dsyfz(x,y; Ay; 8x). 3.19

are valid,

By considering 3.l as the given analytic function and writing
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down for it the form of the differential given by 3.5 it is seen that
2 2 .

a°f(z3 A x5 8y) =d (x5 Ax; Ay)- i d fi(x,y; Ax547) 3.20

On the other hand the expression 3.5 may be considered as the given

analytic function whose differential is given according to the

expression 3.4 by
a6z A x5 8 )= A2 £.(x,73 B x5 A ¥)- 1 A28, (x,75 8 %3 4 7) 3.21
Z3 X3 yI= yxzx,}': 3 J dyx‘l Y 3 3 s o

Then comparing 3.20 and 3,21, the expressions of 3,10 are obtained in

diyfﬁx,ys A x; Dy) = d§xf1(x,y; Ax; Ay) 3.22
2
and dwfz(x,y; Ax; Ay) = d_;xfz(x,y; Ax; AY) 3.23
Other relations, of the form
a2 £, (x,73 . - g2 . ; 2l
o f1 (%73 A x5 Ay) = d £ (%55 835 B %), 3.
dirfzf(x,ys Ax;0y) = dfcyfz(x,y; Dys 4 %)y 3.25
2 2
and dxyf1(x,y3 A x;8y)= dyxf1(x,y; Ay; A x), 3.26
2
dxyfz(x,y; bx;Ay) = dsxfz(x,w Ays Ax), 3.27

can be obtained similarly,
Taking the partial F-differential with respect to x, with increment

A y, of both sides of 3.2 gives
e (xy; A x3 Ay) = d2 £ (%7 A X3 A Y) 28
- \Xs V3 B X3 Y‘-yxgx’Y:AX:.AY, 3.
and from 3.3 on using 3.23

2 2
Aoy (xys 8 x5 8 y) = =4 fo(x,y5 A x5 4)

]

—d;cfz(x,y; A x5 A7) 329
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Comparing 3.28 and 3.29 gives
@ f(x,ys Dxy By) +d2 £,(x,73 DX3 AY) =0, 3.30
XX 1Y 20 4 yy 1'\

Similarly
a2 £o(xyys b x5 Ay) + dyzyfz(x,y; Axs Ay) =0, 3,31

In concluding this thesis some comments of a historical nature are
appropriate, The earliest work on a theory of analytic functions in
normed linear spaces was done during the year 1931-=1932 by Professor
A, D, Michal in collaboration with R, S. Martin, In a statement in
(27) Professor Michal himself supplies details on this work which was
done in his seminar at the California Institute of Technology, These
same men continued with this study and in 193L introduced the concept
of a normed linear ring (28).

With regard to couple spaces the pseudo-norms defined in Theorem
1.5.1 are analogous to certain norms used in couple Banach spaces.
Michal and Wyman, in 1941 (29), gave another definition of a norm for
couple Banach spaces.

The Cauchy-Riemann theory considered in Chapter III is a general-
ization of work done by Taylor (21)., Further work along this line
was done by Michal, Davis and Wyman (30), who gave an introduction to

a theory of polygenic functions in normed complex couple spaces.,
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