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PART I. 

ABSTRACT 

A \I -meson decays into y-meson and neutrino at least 1000 times faster than 

into an electron and a neutrino. After summarizing the difficulties in as-

swning that electrons or }1-mesons interact with nucleons through the inter­

mediary of the Ir -meson, the decay of the 'rr is discussed for the symmetric 

coupling scheme in which electrons and ~-mesons interact directly with 

nucleons. Selection rules rigorously forbid this decay for most choices of 

the Jr -meson field and the form of nuclear {3-decay. For the very special 

case of pseudoscalar meson and pseudovector p-decay (with arbitrary mixtures 

of scalar, vector and tensor) the decay rate for )I _..,. ( p. , -u ) proceeds lo4 
+3 times as fast as 11--:i- (e, v) and 10 as fast as 'l\' -... (photon, e, -v ). 

This result is independent of perturbation theory. Agreement with the 

observed lifetime can be obtained if the divergent integral is cut off at 

the nucleon Compton wavelength. 



PART II. 

ABSTRACT 

A unitary theory of particles is investigated, mostly on the 

classical level. The Dirac and the Klein-Gordon equations are aug-

mented by simple non-linear terms. Interpreted as wave equations for 

classical fields they contain a much richer variety of solutions than 

the customary linear theories. Particles, instead of having independent 

existences as singularities, appear only as intense localized regions of 

strong field. Solutions of the field equations are subject to the 

boundary condition that the fields be regular everywhere and that all 

observable integrals be finite. For simple angular and temporal de­

pendence the wave equation reduces to a set of ordinary differential 

equations. The boundary condition leads to a non-linear eigenvalue 

problem whose solutions are systematically described in the phase planeo 

Numerical solutions are found for some typical cases. The masses of the 

particles are positive; the number carrying unit charge is small. The 

scalar field variables can be interpreted in terms of operators according to 

the usual commutation rules, but the particles are unstable when perturbed 

by quantum fluctuations. The application of anti-commutation rules to the 

spinor fields has no classical limit. The lack of a satisfactory recipe for 

quantizing classical spinor fields makes the interpretation of the particle­

like solutions obscure. · 
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I. INTRODUCTION 

In proposing a description of nuclear forces through the interaction 

of a mesic field, Yukawa(l) suggested that a meson would decay into an 

electron and a neutrino, and that this was responsible for the ~-decay of 

nuclei (1) 

That sea level mesons were observed to decay into electrons with a lifetime 

-6 of 2 x 10 sec was considered a triumph of meson theory, but quantitative 

agreement with the predicted lifetime has been lacking. The discoveries 

of the very small interactions of sea level mesons with nuclei( 2) and of 

the existence of at least two kinds of mesons in cosmic reys(J) has neces-

sitated a reinterpretation of the decay schemes of mesons and nucleons. 

It now appears certain that the sea level or )l-mesons which were observed 

to be ~-active are only very weakly coupled to nucleons and are not 

responsible for (1). 

We shall present first some of the evidence which makes it appear 

probable that the meson field which is strongly coupled to nucleons 

( 'Tl-meson) transforms like a pseudoscalar (spin o, odd parity). The pos-

sible bearing of this on the decay of the Ir-meson and on nuclear ~-decay 

will then be discussed. 

II. PARITY AND SPIN OF Ir - AND p-MESONS* 

~ -mesons, which are copiously produced in nucleon-nucleon collisions 

or through the interaction of nucleons with gamma rays, may be charged 

positively, negatively, or may be neutral. The charged II -mesons decay 

into p-mesons with a lifetime of 2.6 x 10-8 sec. Since the 1-meson is 

monoenergetic only one other particle (neutral) is emitted in the decay. 

The energies are consistent with assigning a zero mass to the 

neutral particle. The neutral meson decays into two photons 

in less than 10-14 sec. Since a system of angular 
* We follow here a lecture of H. Bethe given at the California 
Institute of Technology, January 8, 1951. 
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momeptum 1 is rigorously forbidden from decaying into two photons by 

conservation of momentum, the spin of the neutral 1'--meson cannot be 1. 

If we assume that the elementary particles have spins O, 1/2, or 1, it 

follows that neutral /I-mesons have spin o. 

Investigation of the capture of negative lft s by Hydrogen indicates 

that the reactions 

(a) H + 11-- ~ n + Y 

and 

(b) H + 1r- ~ n + 'rr0 
----, n + 2Y 

proceed with about equal probability(4). Since the neutral meson is 

observed to be monoenergetic no other particle is emitted in addition to 

the neutron. Since the proton and the neutron have half integer spin, 

conservation of angular momentmn implies the charged 'rr'-meson has spin 0 

or spin lo This agrees with the observed fact that when '/['-mesons are 

captured by nuclei stars result, since the rest mass of the 'Tf'is converted 

into excitation energy of the nucleons. Quite the opposite behavior is 

observed when the p.-meson is captured by a nucleus. Very little of the 

rest energy of the p. becomes excitation energy. A neutral particle, other 

than a photon, carries off most of it. The apparent inability of a nucleon 

to absorb ap.-meson is usually attributed to the fact that the spin of the 

,,n-meson is 1/2. The )l-meson decays into an electron and at least two 

neutral particles of small, probably O, mass. A consistent designation of 

the particles involved in the If - p. decay and in the p - e decay which agree 

with the above is: + If' - + ___.,,, )'-- + ?.) 

+ 
~ e-+ 2 V 

The capture of Ir- by deuterons can energetically result in any of 

the following processes: 

- + ( c) It- + D ~ 2n 
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(d) -rr - + n+ --+ 2n + r 
( e) '1r - + D + ~ 2n + .,,.o ~ 2n + 2 Y 

0 
From the capture by Hydrogen and the emission of a neutral 'Tr , the mass 

difference between the charged and the neutral mesons has been estimated as 

10.6 ~ 2 electron masses.(5) Process (e) can then proceed with an energy of 

4.7 ± 2 e.m. It is not impossible that more accurate data will show (e) to 

be energetically impossible. A comparison of the yield (d) with that in 

Hydrogen gives a probability of .275 for (d)(5). The probability of (e) is 

less than .05, possibly o. One then infers that the probability of (c) is 

.70. It has been shown(6) that the meson will be captured into the K shell 

of the deuteron in a time which is very short compared t o the lifetime of 

the 'tr • The ground state of the deuteron has J = 1 and even parity.* If 

the 'Tl -neson has 0 spin and is captured into the K shell of the deuteron, 

the total system has J = l and the parity of the meson. Hence in ( c), the 

neutrons must come out in a J = l state. The Pauli Exclusion principle al­

lows only the 3P1 which has odd parity. Since (c) is not forbidden, we 

conclude that if the charged meson has O spin it is a pseudoscalar. A con­

sideration of the possibility of spin l mesons in (c) yields no information 

about their parity. If Ir - and IT 0 have 0 spin and odd parity (b) is 

allowed even for very small mass difference between the mesons. In view of 

the very small Q for the reaction (e) it will be forbidden. The .,,. - -meson 

and the deuteron fonn a state with odd parity and J = 1. The low energy 11 ° 

will come off in an S state. To conserve angular momentum, the neutrons must 

form a 3P1 state. Since the intrinsic parity of 11° is assumed odd, the 

* An ambiguity in the inversion properties of spinors makes it possible that 
protons and neutrons transfonn differently under reflections. The parity of 
the deuteron can then be made negative. \}'- + \Ir, will be a pseudoscalar, etc. 
The result is only a renaming of the usual ~esoN theories for charged mesons, 
but does not affect the physical content. 
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final state has even parity and will be forbidden as indicated by experiment. 

If '1\ + and 1r0 have opposite parity (b) is partially forbidden and (e) is 

allowed in contradiction to the data. 

According to Brueckner the angular distribution of photomesons(B) 

(charged), and the ratio of positive to negative photomesons from carbon(B) 

favor the couplings of the pseudoscalar theory. Only this theory seems 

capable of explaining the approximate equality of photoproduction of charged 

and neutral If ( 9). 

'!he role of the I\ -meson in nuclear forces is obscure especially in 

view of the existence of other mesons (V-mesons). The pseudoscalar theory 

gives spin dependent forces, and the correct sign of the tensor force. 

III. COUPLING SCHEMES FOR NUCLEONS, MESONS, AND LEPTONS. 

We assume that the . !\-meson is coupled directly to nucleons, and that 

the nucleons are Dirac particles. The interaction: 

g iJ qr p 0 "'¥N + c.c (3) 

between the Dirac and the meson fields (or any of the derivative couplings) 

leads to the real capture process: 

(4) 

but it also pennits the virtual decomposition of the -rr : 

+ + --rr ~p +N (5) 

where N- signifies an anti-neutron. On the other hand, to account for nuclear 

~-decay along the general lines of the Fermi or Gamow-Teller theories, one 

postulates the interaction: 

(6) 

A is a Dirac operator chosen so that the coupling is invariant under the 



-5-

Improper Lorentz Group. Thus interaction leads to the observed ~-process: 

+ -N---tP +e + v (7) 

but it also leads one to expect the reaction: 

+ - + P +N --+e + -v (9) 

The virtual decomposition (5) followed by (9) leads to the real decay: 

(10) 

Any theory which couples If -mesons to nucleons (this need not be a direct 

coupling) also predicts the 11 ---. (e, -v ) decay. This argument depends not 

on the existence of real anti-neutrons, but only on the role of such particles 

in virtual processes. Rainwater has looked for the possible electrons from 

stopped 'ff -mesons. In 760 cases no electrons were foundo* Therefore the 

decay of the 'tf -meson into a p-meson and a neutrino must proceed at a rate 

at least 1000 times as fast as the decay into an electron and a neutrino. In 

order to compare this ratio of rates with theory it is necessary to specify 

in some detail the coupling scheme for the interaction of nucleons, mesons, 

and electrons. 

The Model I (Fig. 1) was proposed by Inoue and Ogawa(lO)• Nuclear 

~-decay takes place through an unstable 'fl-meson as originally suggested by 

Yukawa. However, when the coupling constants are adjusted to fit the data 

on the lifetime for 'Ti - y. decay, the coupling of II-mesons to nucleons, and 

the Fermi constant for nuclear ~-decay, the lifetime of the free Ir -meson 

for decay into an electron and neutrino is smaller than the lifetime for decay 

into a p-meson and a neutrino. 

* We wish to thank Professor R. P. Feynman for reporting the unpublished 
results of Professor Rainwater. 
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(P,N) 

'1\ 

/\ 
(p, v ) (e, v ) 

Fig. 1 

Lopes(ll) has shown how this can be modified if the 11-meson is 

pseudoscalar. But in this case Sargent's Law for allowed ~-decay lifetimes 

does not hold; the lifetimes would be proportional to the inverse seventh 

power of the maximum electron energy instead of the observed inverse fifth 

power. 

Model II (Fig. 2) assumes a direct coupling between the Ir- and the 

y. - mesons(ll),(13); the Yukawa picture of ~-decay is replaced by a direct 

coupling between nuclei and leptons. 

(N,P) 

Fig. 2. 

(e, v ) 

(12) 
Latter and Christy have calculated the "It-- )l decay rate on this model, 

estimating the coupling of the "il:.mesons to nuclei from nuclear forces and 

the rate of the second order reaction 

Jl _ + p+ --7' r\C + 'r\'+ + NJ ~ N + -v 

~- + -v + p 
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from the competition with p - ~-decay. 

the calculated lifetime for the 'fr is: 

Assuming spin 1/2 for the p-meson 

-8 2 x 10 sec. for a vector, 

10-8 sec. for a scalar, and 2 x 10-9 sec. for a pseudoscalar. These are to 

be compared to the observed lifetime 2 x 10-8 sec. The value of the coupling 

constant between If and nucleons and the nuclear matrix elements involved in 

the computation of the p. capture are not known with sufficient accuracy to 

categorically exclude the pseudoscalar. (In the calculation of Latter and 
2 

Christy both of these factors were probably overestimated. The value of ~ 
1ic 

used was 1/3 for the derivative coupling of meson to nucleons and 50 for 

the pseudoscalar coupling. The nuclear matrix element was taken as z. It is 

certainly less than this, probably about Z/3(l2). The computed lifetimes of 

the II-meson would then be too large. This would make the correctly calcu­

lated lifetime for the pseudoscalar meson agree even less with experiment. * ) 
The Ir-meson can decay into an electron and a neutrino by virtue of 

its coupling to nucleon/: 

+ + - + 
'rr ~p +N ~e + -v 

A perturbation theory calculation of this rate diverges. 

A satisfactory direct coupling model will have to show that this rate is at 

most 1/1000 that of the '11 - p decay tt • 

(11) 

Extensive calculations on Model III (Fig. 3) have been made by Wheeler 

and Tiomno (14) and others (l.5) '(16). 

* Discussion with Dr. Latter on this point was very helpful. 
t The electron decay of the Ir -meson through its coupling to the p-meson 

will of course be negligible next to the ); - p. decay. 
1t If the divergent integrals of the perturbation theory are cut off at the 

nucleon Compton wavelength, the 'rr - e decay has a lifetime of approximately 
3 x 10-lO sec., except when the meson is pseudoscalar and the ~-decay is 
pseudovector. The lifetime is then about 10-4 sec. in accord with experi­
ment cf. Equation (27). 
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(N,P) 

Figo Jo 

According to this symmetric coupling scheme the following three processes: 

Jl - capture 

f3 - decay 

)1 - decay 

,,.- + p+ ___,. N + -v 

result from the direct couplings: 

(12a) 

(12b) 

(12c) 

(lJa) 

(13b) 

(1.3c) 

All of the above fields are spinor fields; A, B, and C are Dirac operators. 

* It has been found that : 

ga -;t ~ =:: gc -;;t 2 x 10-49 

We shall adopt the attractive hypothesis: 

g =g_ =g 
a -o c 

A=B=C 

erg cm3 (14) 

(15) 

(16) 

The three couplings among spinor particles are thus asstlllled to be of the same 

* If the operator B is pseudoscalar, this is no longer true. 
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nature and strength. 

IV. THE DECAY OF THE I\ -1.AESON. 

With the symmetric coupling scheme the decay of the "IT -meson into a 

y.-meson and a neutrino is a second order process: 

+ 
'1T ~ p+ + N- (17) 

p+ + N---+ p+ + v (18) 

The matrix element for (18) is contributed by (13a). The matrix element 

for (17) can be any of the couplings (Eq2 -Appendix :tI).The 'rr -meson can decay 

into an electron and a neutrino through a similar second order process: 

+ - + P+N~e+ v 

Here the matrix element for (20) comes from (13b). A perturbation theory 

(19) 

(20) 

calculation of the rates of the two competing decays 'rr ~ ( Jli -v ) , 'Tr ~ 

(e, -v ) gives divergent integrals. However, the ratio of these two rates will 

be independent of the ultimate value of the ambiguous integral. For the inter-

action of pseudoscalar mesons with nucleons, perturbation theory is probably 

inappropriate because of the large coupling constant. The spinor interactions 

are very weak so that for these first order perturbation theory is probably 

sufficient. The ratio of the decay rates does not depend on the details of 

the interaction; we need only make use of the transformation properties of the 

meson field and the choice of Dirac operator for (16). Typical Feynman 

diagrams for matrix elements which can lead to the decay of the If into a 

lepton pair are given in Fig. 4. 
p 

+ 11' ----- -----
1. 

(a) 

Fig. 4 
N 



+ ' )f -------

+ 
If ---- -- -- - - -1 

-10-

p p 

+ u+ e 1 r 

+ 
µ 

(b) 

{c) 

The matrix element for the annihilation of the If -meson at the space-time 

point 1 and the creation of the lepton pair at 2 depends upon the lepton pair 

only through the multiplicative factor: 

+ 2 
'tt"e (x21t2) A -\Yv(x21t) (21) 

J1 

where A is the Dirac operator in (16). If we use a proper coordinate system in 

which the l'f -meson is at rest (21) is independent of the space coordinate 2. 

The time dependence part is exp( ~t2 ) 1 where E n- is the rest energy of the 

meson; therefore the term: 

+ 
\}'" (010) A W"-v (010) 

e 
Jl 

(22) 

can be removed from the integration over all space-time points 2. The transition 

probability for the transition Y ~ (e , -v ) or (p.1 v ) is: 

~ I HI 2 e (E) (23) 
11 

@(E) is the density of states per unit energy for the leptons. H is the matrix 

element for the annihilation of the )r and the creation of the pair. 

The ratio of the lifetime for 'Ir ---t (e 1 "V ) to that for lf __., ()11 v ) is: 
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o::I?l\li'; (O,O) 0 P y (O,O) 1
2 ~)l' v (E) 

v 
(24) 

L l\Ji + (O,O) 0 \f' v (0,0) 12 e (E) er c;-: e e, -v 
e -v 

The summation is over the spins of the lepton pair. 

Suppose the nuclear ~-decay takes place through a heavy intermediate 

particle 7:' • This includes the direct interaction in the limit of an in­

finite mass for the intermediate particle. Instead of the creation of the 

lepton pair at 2 we have: 
p 

,.. 
F====:: 3 

+ + 
e , J1 

Fig. 5. 

Since the coupling of the T particle to leptons and to nucleons is Lorentz 

invariant, in the proper system the spin and intrinsic parity of the ~at 

2 must be the same as those of the /lat 1 since all of the couplings from 

1 to 2 are invariant to rotation and inversion and both particles are at 

rest. The operator A must have the same transformation properties as the 

T particle for the decay at 3 to proceed with conservation of spin and 

parity. Therefore only if A and the )I-meson have the same behaYior under 

space rotations and inversions will the IT'-lepton decay be allowed.* 

*Feynman has pointed out an alternative method for deriving this selection 
rule. If (cf. Fig. 4) the nucleon pair is created a 1 through the Dirac 
matrix 0 and the final pair is annihilated at 2 by the matrix A, the 
matrix element will be of the form: 

H= spur JI .. I o[K+(l,r1)0K+(rl'r2) ••• K+<rn,2] ~1!+<2,rn+l)O ••• K+<rm11>] 

J 4 (-1pJ1 rl)l + ipl1r2J1 4 4 
K+(r1,r2) = d p - - d r 1 ••• d r pU y _ m m 

)l 

The propagation kernels for the meson lines have been omitted since they 
contribute only a scalar numerical factor. The integration over all space 
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coordinat~s insures invariance under x ___,. -x; y ~ -y; z __,,_z. If the 
matrix element changes sign under any of the space inversions, it is zero. 
Since any spur of a product of Dirac matrices is unchanged by y ~y 
p. = 1,2,3, H must be invariant to each of the three fl )l 
transformations: 

(a) x~ - x, yl --.y-- yl 

(b) y-+ - y, y2 -4- - y2 

(c) z ~ - z, YJ ~- y3 

The kernels K+ are by themselves invariant to these transformations. Since 
the factors 0 within the brackets occur in pairs (each meson that is created is 
also annihilated) the bracket is invariant, and we must have: 

AO ---? AO under (a), (b), (c). 

This is equivalent to the selection rule. 
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In addition to spin and parity conservation, Furry•s theorem(l7) will 

forbid certain decay schemes to all orders. If a Feynman diagram contains 

a closed loop with an odd number of even matrix elements it will cancel 

with the matrix element from the Feynman diagram taken in the opposite 

sense.* Vector and anti-symmetric tensor interactions are "even"; scalar, 

pseudoscalar and pseudovector are "odd11 • For example, the matrix element 

for diagram (a) Fig. 4 will be zero if 0 is I (unit matrix) and A is y4 
(fourth component of vector). The more involved diagrams involving the 

ephemeral existence of many mesons and nucleon pairs differ from (a) by an 

even number of operators 0 since every meson created by an 0 interaction 

is also annihilated. Therefore if Furry's theorem forbids a decay through 

virtual pairs for any order it forbids it for all orders. 

The ratio of 'Ir___,.. ( e, -z.J ) to~ (p., v ) decay for the direct 

couplings of Appendix II, (2a), (2c), (2e), and (2g) for meson-nucleon 

interaction any of the five ~-decay interactions1 is given in Table r. 1t 

The masses of the proton and neutron have been taken equal ; the mass of 

the lr'-meson is assumed to be 286 e.m. The mass of the p-meson is taken as 

215 e.!ll. 

* When reversing the sense of all the Feynman diagrams it is also necessary 
to relabel all the protons and neutrons. For the Furry theorem to be valid 
the absolute value of the coupling constant between neutral mesons and 
neutrons must be equal to that between neutral mesons and protons. For 
example in Fig. (4b, 4c), for that neutral which is exchanged between a 
proton and a neutron only the product of the two coupling constants enters 
and these need not be equal. In Fig. (4b) another neutral is emitted and 
captured by a neutron, in Fig. (4c) by a proton. For the diagrams to be 
dual the square of the coupling constant must be the same. Therefore 
Furry's theorem will hold for the symmetric theory where the neutrals are 
coupled with 1""3 or if they have equal coupling constants but not for a 
mixture of both. 
t These are: 

1t See Appendix I 

I 

Y5 = Y1Y2Y3Y4 

Yp 

YuYv - Y-uY_p 
r5 r)L 

scalar 

pseudo scalar 

vector 

antisymmetric tensor 
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RATIO OF THE DECAY RATES FOR~ (e, -V ) ANDIT'--:;r yi, -v ) 

(DIRECT COUPLING) 

Type of 13-Decay 

Scalar P-scalar Vector P-vector Tensor 

Scalar 5.1 s F s s and F 

P-scalar s 5.1 s i.o x lo-4 s and F 

Vector s and F S and F 4.0 S and F 2.4 

P-vector s s S and F 4.0 F 

S indicates that the transition is forbidden to all orders by the selection 

rule for conservation of parity and angular momentum. F signifies that 

Furry's theorem forbids the decay. 

The symmetric coupling scheme is in agreement with experimental facts 

(no /i' -,. (e, -v ) decays observed) only if the meson field is pseudoscalar 

and 13-decay coupling contains a pseudovector term. The 13-decay may also 

contain arbitrary mixtures of scalar, vector and tensor terms since these 

* do not contribute to the decay; a pseudoscalar term in ~-decay is forbidden. 

That the 11:.meson has to be pseudoscalar is in agreement with the conclusions 
(18) 

of Section 2. An analysis of nuclear 13-decay by Feingold and Wigner 

have led these authors to the conclusion that pseudovector coupling is most 

probably responsible for allol'led transitions and that vector and tensor 

interactions are small. The probable magnitude of scalar and pseudoscalar 

could not be determined. 

A consideration of meson theories with derivative coupling does not 

give as clear cut a result as the direct coupling calculations. 

* The S-A-P coupling(l9) for nuclear ~-decay of Wigner and Critchfield 
would not be permitted. 
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TABLE II 

RATIO OF THE DECAY RATES FOR Ii ~ (e, -v) AND 'Tr __,. ()11 -iJ ) 

(GRADIENT COUPLING) 

Type of (3-decay 

Scalar P-scalar Vector P-vector Tensor 

F and S F and S l.O x l.o-li F and S s 

s 5.1 F and S l.O x io-4 F 

F and S F and S 4.0 F and S 2.4 

s s F and S F 2.4 

On the basis of the It"" - J1 decay alone one cannot exclude the possibility that 

the '11 is a scalar with derivative coupling* to nucleons. The data summarized 

in Section 2 indicate that if the charged II has zero spin it must be pseudo-

scalar. The derivative coupling of neutral scalar mesons to nucleons is exactly 

equivalent to no coupling at all to all orders; the neutral is certainly not 

scalar with derivative coupling. The transition probability for the decay of 

the pseudoscalar 'Jr -meson as calculated by first order perturbation theory is: 

(25) 

h=c=l 
p. 'Tf' is the mass of the Ir -mesons. ~' ~' p, u 21 are the spinors 

* The diagrams (a) and (b) of Fig. 4 give no contribution to the decay of6 2 derivative coupled scalar mesons. The decay rate is proportional to g1 ga o 
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for free protons, anti-neutrons, p-mesons, and anti-neutrinos respectively. 

p'Tr is the amplitude of the ll -meson wave function. 2E is the energy of the 
p 

virtual nucleon pair and the integration is over all momenta of the nucleons. 

The density of states is: 
4 4 2 2 

(Jl rr - Jlp )(~ - P.µ ) 

2p~ 
(26) 

Performing the indicated operations we obtain the transition rate: 

: = (~) ~2 }l~)l~c8 '\ (p)rc~ ) (p~ - Jl~ "'\ x 
t Xie ~A 11606 -;J -it / \ p~ / 

x c .. )l!- }1!) (1 _ ~) x 
64'1r5p2 E 

'tr )l 

(27) 

Q is the cut-off momentum in units of p. c o A covariant calculation using an 
p 

invariant cut-off prescription of Feynman(20} leads to (27) with the bracket 

* replaced by : 
2 2 1/2 

+ 1 - 4)1p - Un-) •in-1 (~;) 
Arr- p 

* Using the notation of Feynman(20) we obtain for the matrix element for 
Fig. 4(a) an expression of the form: 

R(M) = gAg/ SP [y;r2Y3Y4 ( 1 ) y
1
y

2
y

3 
(. 1 ) J d4P '+n-M \j-M -

~ = m~mentum energy vector of meson. 
!unction of M • 

This divergent integral is a 

(27a} 

2 2 2 
R(Jr) - R(M + '>t ) converges if the subtraction is made before the 

integration. This gives (27a} 
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where terms of order ~ and higher have been dropped. '\ is a cut-off with 
'). 

the dimensions of mass. For large cut-offs (27) and (27a) are essentially 

equal. Gradient coupling again gives rise to (27) and (27a) with the replace-

ment: 

(28) c :: )
2 -Gg:::Y 2 

Choosing g ~ 2 x io-49 Erg-cm3 from ~-decay and g3 ~ ! from nuclear forces 
A !c 3 

we obtain the following lifetimes as a function of the cut-off Q: 

TABLE III 

LIFETIME OF THE "!\-MESON AS A FUNCTION OF CUT-OFF 

Q in units Jlp c Lifetime of the If -Meson 

1 5.7 x io-8 sec 

2 5.7 x lo-9 sec 

10 J.8 x io-10 sec 

A cut-off at about the Compton wave length of the nucleon agrees Witt1 the cbserved 

lifetime of 2 x 10-8 sec.* 

. The 'Tr-electron decay could also proceed by any of the diagrams of 

Fig. (5). Since a photon is emitted in general such processes would go at 

least e2/ric as slow as those of Fig. (4). For those cases where the electron 

decay is partially forbidden (pseudoscalar meson, pseudovector ~-decay) the 

modes of Fig. (5) will compete since the electron and neutrino no longer have 

exactly opposite momenta so that the matrix element need no longer be small 

* Steinberger(21) has calculated the lifetime for this decay; after cutting 
off with regulators, he finds 2 x lo-2 sec. for pseudoscalar coupling. His 
result is slightly suspect since the lifetime for gradient coupling does not 
agree with that obtained from the equivalence theorem (Eq. 28). It is certain­
ly true that regulation gives a lifetime many orders of magnitude longer than 
experiment. 
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Fig. 5. 
p 

(a) 

~photon 

N 

+ 
+ Ir ----- - ~· 

"2) 

(b) 

N 
y 

(cf. Appendix I). Since the meson is initially at rest and the nucleons are 

very massive, it is reasonable that Fig. (5c) will give the dominant matrix 

element in the decay. Although the transition probability is given by a 

divergent integral, it is precisely that which was encountered in Fig. (4) so 

that one can estimate the ratio for the two modes of Ir -e decay. Designating 

the matrix element leading from 1 to 2 in Fig. (4a) and Fig. (5c) by s, the 

transition probability for the decay of (4a) is: 

l (21r ) ( ue I r4r5 I uv ) 
2 s2 4\f g~ E9 E: 41l 

i' (2E )(2E )(2E ) E (2tt)3 
IP' e -v If' 

The transition probability for the decay (5c) is: 

l 2 2 I - = 411 g 4 'rre 2'11 
'l' A 

(29) 

(.30) 
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E.,,- , Ee' E v , Er are the energies of '"Tr -meson, electron, neutrino,, and photon; 

P'"I(" , Pe , P v , P are the corresponding momenta. e is the photon polari-
r P 

zation vector. The integration is over all momenta of the electron,, over the 

solid angles d .n e and d n. v , and over the spins of the leptons and polari-

zation of the photon. The normalization of the u and u~ 
e 

any operator 0 , Lo = Transpose conjugate J 
are such that for 

-1 
without the usual factor of (4EeE v ) o The ratio of (30) to (29) is 

approximately (e2 /ft c) { -
4

1 ) {..!-) ( M'fT'l ?& 15. Therefore we should expect 
It' 3 .He 

the If' - {electron, photon, neutrino) decay to be of the order of ten times as 

frequent as the Jr - {electron,, neutrino). About 0.1% of the Jr decays should 

therefore involve electrons. This is not in contradiction with experiment. 

CONCLUSION AND SUMMARY 

If electrons and neutrinos are coupled to nucleons through If -mesons 

it does not appear possible to explain both the absence of the I\ ~ {e,, -v ) 

decay and the observed facts of ~-decay. The assumption that the u-meson inter­

acts with nuclei by virtue of their coupling to Ir -mesons tends to rule out 

the possibility that the Ir has the pseudoscalar property indicated by experi-

mento The use of perturbation theory for the Ir -nucleon interaction, however, 

may not lead to reliable estimates even for the order of magnitude. In this 

case of direct II - p. coupling the perturbation calculation of II ~ (e, v ) 

decay through virtual nucleons diverges, so that no comparison can be made with 

the IT __,. (}l, -v ) rate. 
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An alternative coupling scheme is to have direct interactions between 

fennions (symmetric coupling. The 'Tr- p. decay occurs through a nucleon 

anti-nucleon pair. Although the rate diverges the ratio of the Ir~ 

(e, v ) to the If ---? (p.1 -v ) lifetimes is finite and independent of 

perturbation theory. If the Jr-meson is pseudoscalar and f3-decay is pseudo-

-4 vector the tr-meson will decay into an electron-neutrino pair only 10 as 

often as into a p-neutrino pair, and into an electron, neutrino, and photon 

about 10-3 as often. A perturbation theory calculation of the lifetime of 

II gives agreement with experiment if the divergent integrals are cut off at 

the nucleon Compton wavelength. These conclusions depend very crucially on 

the consideration of nucleons as Dirac particles especially in the prediction 

of the possible role of anti-particles in virtual processes. 
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APPENDIX I 

The Matrix Element for the Production of a p- v Pair 

We wish/ d .0. L 
~~ 

where p is the momentum of the p-meson 
}l 

and - p the momentum of the neutrino; the 
4 

integration is over all angles. 

)1 er • 'P }1 + ~ P :: Ip~ + P 2 v - a • p :: R 
Let /.. = V r ; ).. =------

:!: .: 2 VP~ + p
2 

:!: + 2 ~ 

Then (l) may be written 

spur A). P. A ). -v 

+ -

For the sixteen Dirac operators A we obtain: p u = J pp • p)l 

A= I 1 + p/E 
)l 

a.4 l - p/E}l 

a.11 a.2, a.3 1 + p/3E 
}l 

a.1a.2a.3 1 - p/Ep 

a.2a.3, a.Jal, a.la.2 1 + p/3E ,.,. 

a.2a.3a.4, a.Ja.la.4, a.la.2a.4 1 - p/3E 
Jl 

a. a. a. a.4 
1 2 3 

1 + p/E 
)l 

a.la.4, a.2a.4, a.3a.4 1 - p/3E p 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

For (b) and (d) the matrix element is much smaller for an e - v pair since 
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APPENDIX n. 

THE INTERACTION BETWEEN Ir- -MESONS AND NUCLEONS 

Within the framework of special relativity, the only direct interaction 

which one knows how to construct is the contact interaction. The work on the 

artificial production of mesons implies that mesons can be produced singly. 

Therefore the Hamiltonian which describes the interaction must contain at 

least one odd power of the meson field. The simplest choice is to assume that 

the interaction is linear in the meson field in analogy to the coupling of 

the electromagnetic field to charges. Following the notation of Wentze1< 22) 

the Lagrangian for the nucleon plus meson field is: 

ti. = f dt L 

+he J '1? +(x) [r}1 a: - m J qJ (x) d3x + 
u 

coupling 

If we consider those interactions which involve only the meson fields or their 

first derivatives, the possible invariant couplings are: 

p: Scalar Field g
0 
j ,&(x) \}! +(x) lP (x) d'I + c.c (2a) 

~o p(x) \lJ +(x) r qi (x} d T 
p. Jl p. 

+ c.c (2b) 

p: Pseudoscalar Field g2 f ~(x) q:> +(x) i r5 w (x) d'I + c.c (2c) 

;~-al~(x) q> +(x) r,r,,. \:{:' (x) di + c.c (2d) 

p)l: Vector Field g4 J pu(x) \I> +(x) Yp q.> (x) dT' + c.c (2e) 

~f [o,, Py.<x>. - y ,, (x)J [ 'P+(x) 'rj.Yv tp (x)J dT + c.c (2.f) 

Pp.= Pseudovector Field g6J P}l (x) \IJ +(x) ap 1fJ (x) + c.c (2g) 

;;_ J [a.., <il_µCxl - Y v (x)] [w •(x) YsVv (x)J err + c. c (2h) 
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c.c = complex conjugate 

Jltr = mass of meson 



-24-

REFERENCES 

1. H. Yukawa, Proc. Phys. Math. Soc. Japan !11 467 (1935). 

2. Conversi, Pancini, and Piccioni, Phys. Rev. 71, 209 (1947). 

3. Lattes, Muirhead, Occhialini, and Powell, Nature 159, 694 (1947). 

4. Panofsky, Aamodt, Hadley, and Phillips, Phys. Rev. 80, 94 (1950). 

5. Aamodt, Hadley, and Panofsky, Phys. Rev. 80, 282 (19.50). 

6. A. Wightman, Phys. Rev. '11.1 521 (1950). 

7. K. A. Brueckner, Phys. Rev. lJ..1 641 (1950). 

8. K. Brueckner and K. Watson, Phys. Rev. 79, 187 (1950). 

9o Inoue and Ogawa, Prog. Theor. Phys. 1_, 319 (1948). 

lOo Lopes, Phys. Rev. J!!, 1722 (1948). 

11. Latter and Christy, Phys. Rev. ]Z, 1459 (1949). 

12. R. Latter, PhD Thesis, California Institute of Technology (1949). 

13. Nakamura, Ono, and Sasaki, Phys. Rev. J2., 60 (1949). 

14. ~iomno and Wheeler, Rev. Mod. Phys. 21, 153 (1949). 

15. o. Klein, Nature 161, 897 (1948). 

16. Lee, Yang, and Rosenbluth, Phys. Rev. 12., 905 (1948). 

17. w. Furry, Phys. Rev. _2!, 125 (1937). 

18. Feingold and Wigner, Hectographed Notes· (1949). 

190 Critchfield and Wigner, Phys. Rev. ~, 412 (1941) and.§]., 417 (1943). 

20. R. P. Feynman, Phys. Rev. 74, 1430 (1948). 

21. J. Steinberger, Phys. Rev. J.2., 1180 (1949). 

22. G. Wentzel, Quantum Theory of Fields, Interscience Press (1949). 



PART II. 



-25-

I. INTRODUCTION 

In the Quantum Theory of Fields the elementary particles are treated 

in a dualistic formalism as possessing the properties of both particles and 

fields. In the classical limit, however, the bosons form fields while the 

fermions are point sources of field. The point sources give rise to infinities 

which cari-J over into the quantum theory. 

On the classical level this difficulty can be removed by dispensing 

with the field concept. From this point of view s ources and absorbers inter-

act directly analogously to advanced and retarded Lienard-Wiechert potentials 

in electrodynamics. Whether the self interaction is included or not, the 

recoil damping accompanying transfer of energy and momentum (which is neces-

sary if they are to be conserved) can be understood only by considering the 
(l) 

role of all the surrounding particles as complete absorbers so that the 

properties of both source and absorber must be analyzed at the same time. The 

carrying over of this action at a distance program into the quantum theory has 

met with great difficulties. 

An alternative program is to retain the field construct but eliminate 

the point singularities. Particles appear only as small regions of space 

where energy and charge of the field are concentrated. In such a unitary 

theory the field is everywhere continuous, finite, and quadratically integrable; 

the equations of motion of the "lumps" follow from the field equations. For 

such lumps to be stable and capable of interacting with each other it is 

necessary that the field equations be non-linear. 

The Maxwell, Dirac, Yukawa, and Gravitational fields, together with 

their usually accepted couplings form a non-linear system so that one has 

the possibility of a unitary theory. (Calculations with the Maxwell-Dirac*<2) 

* In this case the mass of the localized solution was negative. However 
calculations based on a variational integral often give misleading results con­
cerning particle solutions of the non-linear field equations. 
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(3 ) 

and Maxwell-Yukawa fields have lead to particle like solutions.) A more 

ambitious program is to describe the elementary particles and their inter-

actions in terms of a single underlying non-linear field. The non-lineari-

ty which accounts for the particle like solutions will also describe their 

interactions. (Since "lumps" of field will have some overlap even at 

large distances, it is not necessary to introduce an intermediary field as 

in the case of point particles. Efforts have been made toward such a uni-

fied theory of nuclear, electromagnetic, and gravitational fields by 
( 4 ) . (5 ) 

Einstein , Schroedinger , and others. The non-linear equations are 

derived from the variation of a Lagrangian invariant under the whole group 

of general relativity. However, the very great difficulty of calculating 

the interesting solutions has made their interpretation obscure. 

A technically less formidable program which disregards the 

gravitational interaction is to investigate Lagrangians which are simple 

and invariant only under the Lorentz Group. The Lagrangian for the Dirac, 

Maxwell, and Yukawa fields plus their Lorentz invariant interactions would 

appear to be well suited to such an investigation. Here, however, we study 

the simpler problem of a single non-linear field, first to avoid the 

mathematical complexity of three simultaneously interacting fields, and 

second to explore the possibility that a simpler Lagrangian in the richer 

non-linear theory can accomplish as much as a more complicated Lagrangian 

in the linear theory. 
({,) 

We shall assume the Lagrangian to be a function of the field 

quantities iP (m) ( ~ ) x,t = 1, 2, ••• n and their first derivatives only so 

that the resulting non-linear differential equations are at most of second 

order. The Lagrangian is then of the general form: 

£ { L( 'P (m), aa. w (m)) ~ ••• dx4 (1) 

- a Oa - a X. a. Xi. = x, ~ = y, X3 = z, x4 = ict 
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The invariance of the Lagrangian to the inhomogeneous Lorentz Group 

and to gauge transformations will lead to conservation laws for a vector, a 

tensor of rank two, and a tensor of rank three which will be interpreted as 

current-charge, energy-momentum, and angular momentum respectively. The 

* Euler equation corresponding to (1) is 

4 o dL 
L: a----
a =l a ( da q:> (m) ) 

aL 
= 0 a \f> (m) 

We define the tensor 

= - L oL (av q.i (m) ) 
( m) o( a)l tP (m» J 

From (2) it follows that 

d T = 0 
)l Jl v 

Under an infinitesimal Lorentz transformation 

~ x = Sw x 
a a.13 13 

the field quantities transform according to 

o \Ii (m) = L S (mn) Sw lP (n) 

a. < 13 a.13 a.j3 

(mn) ( ) 
Sa. l3 . depends on the tensor nature of W m • 

m =I, 2, ••• , n 

+L S' µv 

Let the third rank tensor M). a. j3 be defined by the equation 

dL L M /\ af.l ~U) af.l = \- · (m» 8*'1! (m) + L Sx..._ 
a. -< 13 t-' t-' ~ca \l'..l " 

(m) 

where ~* \!) (m) = ~\II (m) - d lP (m) 8x 
)1 }l 

* s.e = 0 subject to the restriction 

(2) 

(3) 

(4) 

(5) 

(6) 

( 7) 

(8) 

S \I:! (m) = O, ~(da. lI:> (m)) = 0 on the surface of the four dimensional volume 
The Lagrangian leading to (2) is of course not unique 
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From (2)(3)(6)(7) and (8) 

(mn) oL ( ) 
M /\ a. '3 = - xa T )\ '3 + x'3 T -,.. + L s q; n 

a. (m, n) a '3 d ( a )\ \P ( m) ) 
(9) 

and 
d M = 0 
~ 'A a.(3 

(10) 

The first two terms of (9) will have the interpretation of orbital angular 

* momentum, the third describes the intrinsic spin of the field. 

For the interaction of the field with an electromagnetic field A we 
)l 

assume the usual prescription 

a f, ~ (au - i q A ) Q! = n tP 
)1 r Jl )1 

(lla) 

'G ~*--? ('d + i q A ) \l> * := D * lQ 
)l )l )l Jl 

(ll b) 

In order for the Euler equation to be gauge invariant under the gauge 

transformation 

(12) 

we must introduce the gauge transformations of the second kind: 

(13) 

* The T v. defined by (4) is in general non-symmetric. For specified values 
of the P. total energy and momentum, only the production of a gravitational 
field gives the T)l v a direct physical meaning. In order to get such a cor-
respondence we must form a symmetric Q)l v such that a Q v = o. 

~ )l)l 
Q = T + o f pv pv p pµ v 

where 
2f =S +S -s 

pPV ppv p.vp V pp 

We shall however be interested only in j dx .. Q 
4 

v = j Qt T
4

-v 



If the Lagrangian is an expression of the type: 

L 0)1 \f! (m) n; 4' (m) *, ip (m) ip (m) *) 
we have a gauge invariant theory. It then follows that the vector 

( 

dL 
s = - i tJ L 

a. (m) d (Da. \LI (m) 

satisfies the conservation law 

() s = 0 a. a. 

lJ) ( m) - _ _ d_L___,,....,._ 
d (D * lIJ (m)~­

a. 

(14) 

(15) 

(16) 

From the continuity equations (4),(10), and (16) it follows that Q, Ga.' and 

Ma '3 defined by 

(l?a) 

(17b) 

(l 7c) 

are a scalar, vector, and anti-symmetric tensor respectively under the entire 

Lorentz group*. Each of the integrals (17) is independent of the time. A 

field confined to a small region of space will carry a definite charge Q, 

energy-momentum. Ga., and angular momentum Ma. !3 o The transformation properties 

are the same as those for a point particle. Therefore if localized, regular 

solutions of the field equations exist which make the integrals (17) finite we 

can obtain a consistent classical description of particles as "lumps" of field. 

In the canonical theory of quantization the field quantities tP and 

aL = If' become non-commuting operators according to the prescription: 

d (ic c\ ~ ) Classical Poisson Brackets = iAi Commutator. For Bose Fields 

this yields 

* The transf onnation properties depend upon the \D satisfying the Euler 
equation at all points. The presence of a singularity can spoil the 
identification. 



-30-

fj.m) (x)' '1! (n) (x') ] =-ifi o b(x-x') 
mn 

-
All other commutators vanish. 

(18a) 

Fields quantized according to the exclusion principle have no classical 

limit. The canonical commutation rule is 

~m) (x), '1! *(n) (x•) ) = ~ ~mn O(x - x•) 

+ 

(18b) 

The other anti-commutators vanish. With the rules (18a) or (18b) it has been 

shown ( (, ) that 

[ G 'iG 1 =O (19) 
a . f3 -

[ Ma.(3' Mys] = (sa.SM(3Y+ S{3YMaS- ga.YM{36 (20) 

- g138 Mar} ih 

[Ma~'Gy]_ =(Ga. Sf3Y - Gf3 Oa.y) ih . (21) 

If a position operator Xi is defined by* 

~ --7 
xi J s4 dx = j xis4 dx 

then 

[ ak'x1J j s4 ~ = - 11. 8kij s4 a; 

If the rest mass is defined by the operator 

-M
2 

=G G =a4
2 +O•d a. a. 

then 

and 

[oi,M]_ =O 

[Ma f3, 1f J = 0 

(22) 

(23) 

(24) 

(25) 

(26) 

* This definition is non-relativistic. A covariant definition is 
Xi = (G4)-l j' ~4x xt _(li • Then if G is the operator t G)l).i we obtain 

p=l 



* (Footnote cont.) -31-

The fundamental length appearing in these commutators is the Compton wavelength 

of the particle. The charge also commutes with the other observables 

[Q, G ]_ = 0 a (27) 

[Q, Ma ~J - ,.... - v (28) 

[Q, M2 J = 0 {29) 

According to (19),(20),(21),(23),(25) - (29), the observables associated with 

a 11 lump" of field obey the commutation rules ordinarily assumed for the cor-

responding properties of particles. 

The canonical quantization does not off er a very satisfactory treatment 

for the classical unitary theory we shall consider. The singular commutators 

lead to divergences and ambiguities; the spinor field when quantized according 

to anti-commutation rules has no classical limit; t he motivation for the 

usual quantization is to endow u field with particle properties but this is 

already accomplished on the classical level in a unitary field theory. The 

classical unitary theory can be crudely quantized by specifying the coupling 

constant q [eqn. (11) and (15) J to have its usual value 

q = _R_ (30) 
~c 

where J is the charge on the electron. Then since Q is an integral multiple of 

J. the solution of (2) corresponding to the lowest charge state is normalized 

according to 

(31) 
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We shall first discuss on the classical level, the particle-like 

solutions of some simple non-linear Lagrangians for scalar fields. Under 

certain conditions an interpretation can be given from the viewpoint of the 

canonical quantization, Eq. (18a)o Lagrangians for spinor fields which 

yield non-linear theories can be treated canonically, Eq. (18b). However such 

a theory is quite different from the classical spinor theory we shall treat. 

II. NON-LINEAR SPINLESS BOSE FIELD 
1. The Wave E qu~:t.i.Qn 

Let ~ (x,t) be a single field coupled to itself through a non-linear 

coupling. If there is no intrinsic spin we shall assume the Lagrangian: 

~ J<li [ -aJ' \]J * OJ'tl? + / lJl * ~ J-1 <li P C'l' *, \Ji a!' w * aµ w l (32) 

? -l is a fundamental length; P is some scalar function of the field strengths 

and their derivatives. If the coupling term were missing, we would have the 

usual Lagrangian for the scalar (or pseudoscalar) meson field. 

When 
P = __!::_ '1> n 

n 
(33) 

the Euler equation is: 

2 n-1 D\P +)1 '13 -2 E.l{J =O (34) 

where 

(35) 

* Non-linear Bose fields have been considered in connection with the scattering 
of light by light~and meson-mesorl&lnteractions. The interaction of bosons 
occurs through transient pairs of the coupled spinor field. The spinor field 
can be eliminated in various approximations giving rise to a non-linear 
Lagrangian involving only the Bose field variables. 

(9) 
Schiff has considered a non-linear meson theory in connection with 

saturation. His equation is the same as our Equation (37) except with the 
sign of c reversed. The sign reversal prohibits particle like solutions. 
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Since P is gauge invariant, if we have complex fields (charged), n must be 

even. 

We shall look for steady state solutions with the simple time and space 

dependence 
i W t 

\p = y(r)e (36) 

y(r) is taken real so that we have no radial current. More general solutions 

of equation (34) with other time and space dependence have not been investigat-

ed because of computational difficulties in solving the partial differential 

equation. With the assumption (36), the Euler equation is the ordinary dif-

ferential equation: 

d2 2 nv 2 3 ~ + - ~ - (1 - U) ) y + E:, y = 0 
d-!- r dr 

n has been specified to 4. From (17a) the charge is: 

41tej 00 
2 2 r 2 w y (r) dr 

11 c 
0 

From (17b) the mass is: 

4 'Jr J "' r
2 

dr [ ~ -I' + 2 w 2 y2 J 
0 

When 

1 
P = - < w * 'd 'P - tl! a lI! *) c ~ * a 'P - w a \P *) 4 }l )l Jl )l 

and the solution is of the form (36), the Euler equation is: 

The charge is: 

The mass is: 

2 
~ + ~ ~ - (l - w 2) y + E:. w 2 y3 = 0 
ar2 r dr 

411 J 00 

r
2 

dr 2 w y2 
[ 1 + ~ y2 J 

0 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
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If y(r) is a solution of (37) for given <.c) , then y(r)/w solves 

(41). Particle like solutions of (37) and (41) exist only for e ;::.- O. 

Therefore the masses are always positive. 

2. The Existence of Particle-Like Solutions 

There exists a two parameter family of solutions of the differential 

equation: 
y"+~-y+~=O 

r 

where 1 signifies~ • If y (r) is a solution of (44), then 
dr 0 . 

is a solution of 

" 2 t 2 3 
Y + L - (1 - w ) y + E:. y = o 

r 

Therefore if we find solutions of (44) which are everywhere differentiable 

(44) 

(45) 

(46) 

and which are quadratically integrable (finite charge and mass) we also have 

a proper solution of the charged field equation (46). Such solutions exist* 

2 only for E:. > O, c.u ~ 1, so that the derived solutions are real (no radial 

current). Equation (44) is the Euler equation of the Lagrangian: 

Q) 

= f L dr 
0 

L is defined as .
4 2 II r [ 

2 2 4] -<1'> +y -T 
The conjugate momentum (with r playing the role of t) is: 

(47) 

(48) 

(49) 

*We are greatly indebted to Professor H. F. Bohnenblust for pointing out a 
method of proof for the existence of qua<il.ratically•integrable ,solutions .of 
Equation (44). We wish to thank him for an extremely helpful discussiono 
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() L -r2 
(y 1 >2 + r 2y

2 
- r2~/2 J 411 

p= = 
'a(y') 

The Hamiltonian is: 

where 

CX> f H r
2 

dr 
0 

We form the pseudo-Hamiltonian 

- H [ I 2 2 y4 
H = - = 411 (y ) - y + - J 

r2 2 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

In this form H has no explicit dependence on r; it is a function of y and y• 

only. Differentiating, 

2 -~ = r ~ + 2rH 
dr dr 

Since H is the Hamiltonian function for the Euler Equation (44), for any 

solution of (44) 

dH(y,p,r) = d H(y,p,r) 

dr d r 

then from (57) 

dH _ 1 aH 2.H -----
dr r 2 or r3 

Substituting from (55) 

= - 16 If' (yt ) 2 

r 

(57) 

(58) 

(59) 

(60) 
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Therefore 
dH 
- =:- 0 (61) 
dr 

along any trajectory. Equations ($6) and (61) are sufficient for a 

qualitative investigation of the solution. In Figure (1) we have plotted 

the contours ii= constant in the phase space (y,y•). If Equation (61) is ,, 
negle~ted these are trajectories for Equation (44) with the 27 term dropped. 

r 
In order that y remaim finite at the origin r = O, the ~term in (44) re­

r 
stricts us t o the one parameter set with y•(O) = o. Therefore in the phase 

space we are interested only in those trajectories which originate on the 

axis y 1 = O. 

There are three singular points in phase space (1 10), (-1,0), and 

(O,O). The first two are minima of H ; the origin is a saddle point. All 

trajectories are bounded since H must decrease along a trajectory (Equation 

61). Once within any of the H = constant contours, the traj~ctory cannot 

leave and must ultimately be captured on one of the three singular points.* 

If the initial value of y is greater than O but less than the ~ , H (r = 0) 

4 o, and the trajectory gets captured at A (curve a of Figure 1). If the 

initial value of y is sufficiently large, the capture will take place at 

the singular point B (curve b). For an appropriate initial value between 

that of a and b, the trajectory will end at the origin in phase space, i.e. 

as r ~ oo y and y• ~ o. t 

Let S be the set ...v0 of initial values y(O) such that y(r,4i0) cross 

the axis y = o. That this set is non-empty is easily shown by calculation. 

Let T be the set of initial values t
0 

such that y(r,t
0

) do not cross the 

axis and get caught at (l,O). This set is non-empty since y(r) ; 1, y• = 0 

* It is easily shown that for this case there are no limit cycles or 
closed trajectories 
t The saddle point can only be reached in the limit r ~ ex> • 
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is such a solution. Now y(r, ..v 0 ) is an analytic function of r in a 

neighborhood of r = o. This follows because the Taylor expansion converges.tn 

a neighborhood of r = o. From the Imbedding Theorems it can be shown that 

the solutions are uniformly differentiable with respect to the initial value 

....v0 or t
0

• In particular there exists a neighborhood of ...V
0 

such that all 

trajectories in this neighborhood cross the axis ~ = 0 arbitrarily close to 

..V • Since every ...£1
0 

of S possesses a neighborhood in s, S is an open set. 

Likewise T is an open set. Since T and S can have no point in common, and 

since both are open, there must exist a point c0 which is neither in S nor T. 

Hence a trajectory starting from c
0 

must get captured at the origin. There­

fore a solution of (44) exists which is continuous everywhere and vanishes 

as r--+ oo • 

The phase space description has the following mirroring in (y,r) 

space: 
y(r) = + l 

y 1 (r) = 0 

y(r) - - l 

y 1 (r) = 0 

y(r) = 0 

y•(r) = O 

are possible solutions (Figure 2.) For an initial value in the neighborhood 

of !: l, say !: 1 + ri. 
0 

where tto ~ ""- 1, an approximate solution is: 

y(r) = + 1 + ti sin ~x 
- 0 x 

~ 1, r __,. cn 
~ 

Trajectories originating near the singular solutions y(r) = + 1 oscillate 

(62) 

about it with decreasing amplitude [ (a) of Figure 2 J . ,For a larger initial 

value y(O) [ (b) of Figure 2 J the trajectory will get trapped about the 

lower singular solution y(r) = ~ 1. There exists a trajectory[ (c) of 

Figure 2 J of intermediate initial value which will ,asymptotically approach 

the solution y = o. As y(r) becomes very small, the non-linear term will be 

negligible and we have: 

-r 
y(r) -+ A!__ , 

r 
r~ cn (63) 
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The mass and charge integrals will exist. For solutions of (46) as r ~oo, 

if Ci) 
2 

4'. 1, - J1 -OJ 
2
r y(r) ---,. B _e ____ _ , r~ oo 

r 

However, if (.A) 
2 ~ 1, 

sin J<.il2 - 1 r 
y(r) __,. C ------- , r __., oo 

r 

(64) 

(65) 

For non-zero amplitude this does not give finite charge and mass integrals; 

therefore for a proper solution: 

-1 -.w <- +l (66) 

In a similar vray the existence of solutions with a higher number of nodes can 

be demonstrated. 

If c = - 1 the phase space diagram is given in Figure (J). The 

contours of constant H are open; H runs from + oo to - oo • Since solutions 

originate on the Y' = 0 axis [ H-=:.. 0 J , the restriction !!!! ~ 0 along any 
dr 

trajectory keeps it from approaching the origin. Therefore no proper 

solutions exist for E. ~ o. 

We can make a qualitative investigation of more general non-linear 

Lagrangians using the same technique. If 

.;t = J d'I [ - (y' )2 + y2 - P(y) J 

the Euler equation is: 

Y" + ~ _ (l _ <.V 2) y + dP (y) 
r 2 a y 

For the pseudo-Hamiltonian H we obtain: 

ii= 41r' [ (y') 2 - y2 + P(y) J 

Al.ong any solution of the Euler equation: 

-= -dr 

16 tr 
-- (y•)2 ~ 0 

r 

(67) 

(68) 

(69) 

(70) 
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n 

When P(~) = e, ~ , the phase diagram is topologically equivalent to Figure (1) 

for n an even integer greater than two. Therefore if, and only if, E: is 

greater than zero will a particle-like solution exist for this case. When 

n is an odd integer greater than two, the phase space is topologically 

represented by Figure ( 4) for E = + 1. There is no particle-like solution 

for y(O) ~ o. The existence of a zero node proper solution for sufficiently 

large y(O) can be demonstrated in the same manner as for 1
4 coupling. 

However, once a trajectory has crossed the y = 0 axis it can never recross 

it or approach the origin. Therefore there are no proper solutions with 

nodes. When E = - l we have the mirroring of the E = + 1 situation about 

the ~· = O axis. 

If the coupling term F involves derivatives of the field variables, 

.!!.. H can change sign. For 
dr 

(71) 

we are lead to Equation (41). Solutions of this can be derived immediately 

from those of Equation (46). Many node particle-like solutions will exist 

for E 7 o. Only in the singular case ti) = 0 do we fail to get a proper 

solution. Therefore for the coupling (71) there are no neutral particle 

solutions. 

When P = E /TA- a}l /> 1> a)l ~ (72) 

we have 
H = 411' [ - (1 - CJJ 2) y2 + (y' )2 + E (y' )2 ./- + E. w 2 i'- ] (73) 

and 

~ = -16ar -<1_+_1_2_> <1•)2 
dr r 

(74) 

The phase diagram for E 7 0 is topologically isomorphic to that in Figure ( 2J~ 

Therefore we are lead to expect a set of multinode proper solutions. How-

ever in the special case U> = 0 we have the topology of Figure (5) and no 



-42-

I 

J11r-oo . 
FIG. S"·PH/ISE Pt.ANE FOR E(}t//9TION·7.5'. 

I 
I 
I 
I 
I 
I 
I 
1-
1 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

. I 

FIG. o···PHrlSE PLANE FOR cOUATION·?.5'. 
£"<0 



-43-

proper solution exists. Therefore all proper solutions represent charged 

fields. When E <- 0 the topology is represented in Figure (6). ~ ...::... O 
cir 

to the left of the dashed line and !!'!! > O to the right. 
cir 

All solutions which 

originate on the M1 = O axis will approach y ! l. They can never reach the 

origin; no proper solution exists. 

J. Numerical Solutions 

Equation (44) was numerically integrated for various initial values. 

The 0 -, 1 -, 2 - node solutions were extracted. These are given in Figure 

(7), where ry (r) is plotted as a function of r. The 0 - node solution has 

an extension of approximately ! . Higher node solutions are larger. When 
p l 

<V ~ 0 (Equation 46) the radius of the particle is approximately--~=~· 
)l \/ 1 - CA) 2-

In general the particle radii are greater than the fundamental length; 

neutral solutions are smaller than charged ones. 

The masses corresponding to the neutral particles are obtained from 

(39) with cu = O. These are 2'rr 5.63 1 211 38•2 , 21r l09 , for 0,1, and 2 
€. E.. E., . 

nodes. The mass ratios are independent of the coupling. In Figure (8) the 

product of E. [ coupling constant J and Q [ charge J is plotted against cJ • 

For a fixed coupling €.. 1 and with the charge normalized to 11 w is determined. 

After charge normalization the energy is 

jwl + 4tr e..J'; r2 cir yU(r) 

The second tenn multiplied by E: is plotted as a function of UJ in 

Figure (9). As E. ~ oo , w ~ 1 and the second term approaches o. 

Therefore for large E , the masses of all the charged particles ~ \ w \ 

~ 1. As the mass decreases the size of the particle increases like 

1 
~~~~-- • The neutral masses ~ 0 for large € ; the size of these 

v1 - w 2 particles remains constant. For very small c , w ~ o, and 

(75) 

the mass originates almost entirely in the latter term of (75) which ~ oo 
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as e ~ 0. Neutral and charged particles then have the same size and 

energy. In Figure (10) the masses for 0,1, and 2 node solutions are given 

as a function of E • The charged solutions have been normalized to carry 

unit charge. 

Two singly.'. charged particles can interact to form a particle of 

charge two. The mass of a single lump of charge two is less than twice the 

mass of a singl y charged particle. In Figure (11) the binding energy of 

a charge two particle is given as a function of E for the case of the single 

node solution. The mass is 

E. Q2 971 
--~~-----~-- + --~~~~~~~-

J1ss + E. 
2Q2 c. J1ss + 

For E very small the mass approaches 97l which is independent of charge. 
E: v 755 

As € ~ co the mass ---,. Q, and consequently the binding energy---+ o. 

Figure (12) gives co as a function of E for the Equation (41). Unlike 

Equation (46) for small values of the coupling E there can be no solutions 

normalized to carry unit charge. For larger € the possible values of w 

occur in pairs. The mass spectrum is given in Figure (13). For a fixed 

value of €. there are only a finite number of normalized solutions. As €. -?oo, 

the masses approach either one or zero. 

The equations discussed in detail are quite typical of the rich variety 

inherent in even a simple non-linear field theory. A point of some interest 

is the role of charge in the solutions. For certain types of coupling only 

charged particles or only neutral particles could exist; in those cases where 

both charged a.pd neutral could be formed, they will have similar properties 

only for very strong coupling. 
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III. CANONICAL QUANTIZATION OF THE SCALAR FIELDS 

1. Approximate Diagonalization of the Hamiltonian 

In order to give a satisfactory interpretation of the particle-like 

solutions, the quantum theory must be introduced in a more satisfactory 

manner; only the property of charge discreteness has so far been described. 

It would be in keeping with the spirit of a fundamentally non-linear theory 

to quantize in a way in which the lumP"'."solutions play the basic role of 

fundamental particles, but this program has met with great difficulties. 

In the canonical quantization (where we use the prescription: 

Classical Poisson Brackets = i/11 Commutator) the field operators II and '/; are 

interpreted in tenns of particle annihilation and creation operators and the 

lumps will be assemblages of these particles in the way that nuclei are 

clusters of nucleons except that the number of particles fluctuates. The 

singularity of the commutators leads to the usual rash of infinities. 

If the quantum fluctuations are small compared to the classical values, 

the canonical commutation rules can be applied in an approximate way. The 

discussion will be restricted to the coupling (33) with n = 4. 

We wish to solve the eigenvalue problem: 

I F ) is the state function for the field and 

If (x) <fl (x') - st-' (x') II (x) = ~ S (x - x') 
i 

(77) 

Assuming that the classical field solution describes a mean position for the 

field oscillators, it is convenient to displace the oscillators to the 

classically determined positions. Under the assumption that the quantum 

fluctuations are small compared to classical values, an expansion in powers 

of h is feasible. To accomplish this transformation we introduce the unitary 

operator: 

S =exp [ i/ lt(x) ~o(x) ~ J (78) 
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where <,f

0
(x) is the proper solution of the classical Equation (37). If 

G satifies: 

H' \ a) = s-1 
HS I a > = E I a> = 

~J dj_ [ (ll ')2 + V'//o\. 'iJ </-' ) + )12 ~ ,2 + ~ ~ 04 
- 3 t: t? ,2 lf 2 

0 

- 2 E; ~ ,3 <.P 
0 

-+ <f ,4 J I G) = a 

II•, ~· satisfy the commutation rule ( 77). l.f 1 is 'I - 'I . The tenns in 
0 

(79) 

(Boa) 

(80b) 

(80c) 

(80d) 

(c) and (d) are higher order in the fluctuation. A field operator is of the 

order h112• Therefore in (a) we have the classical energy independent of h; 

the other terms of (a) and (b) are linear in h; (c) rJ h3/2; (d) ,.._, h2• 

If we had begun with the Hamiltonian for a charged field and sought 

a contact transformation to a form explicitly exhibiting the classical energy 

and containing no tenns linear in the field variables, the required unitary 

transfonnation is: 

Sc= i i /ir(x) he/-' 0(x)~~[ i/11*(X2'/' ~(x•)dt• J 
·1- i /\t' (xtt <f'8 (x•) 'dt•}xp [- i <f *(x••)CV~Cx••)~' J (81) 

\ F c) is the state function and <I 
0 

(:X, t ) is the solution of (36, 37). If 

I F c> = U Ge) then 

[ u-1 Heu+ u-lf <lt u] \ Gd= E \Ge) (82) 

and we obtain a transformed equation exactly similar to (80). Since the 
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transformation involved is more complicated but involves no new feature 

we shall consider only neutral fields. 

Keeping terms in h only (neglecting (80c) and (80d) ), the 

Hamiltonian (80) can be diagonalized. Let '1. g(x) and "A g be the eigen­

functions and eigenvalues of the equation 

2 2 - V 't (x) - J E:. 11 (x) (.// 
0 

(x) = 
g g 

/\ '1. (x) 
g g • 

We define 
E =+ ~ 

g v- g 

(83) 

(84) 

The set tt_ are complete and orthonormal. We take n. and E as the normal 
g g g 

* modes and frequencies for the unperturbed field oscillators. If a and a 
g g 

are the creation and annih.ilation operators for the gth mode obeying the 

commutation rule 

* * a a -a a =S 
g g' g' g gg' 

then we may expand 

The commutation rule (77) is unaltered. Substituting into (80a,b) 

E is dimensionless. The diagonalization can no longer be accomplished if 
g 

A < - 1. This case will be discussed later. g 

(8$) 

(86) 

(87) 

(88) 

The Hamiltonian possesses a complete set of solutions, that with the 

lowest energy being a vacuum. Considering fluctuations to order h only, 
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(89) 

is a solution of (76). 
E 

The quantum fluctuation energy 2:::: ~' is infiniteo 
2 

This infinity is composed of two parts: the half quantum of energy which 

exists for each field oscillator even when no lmnp is present(~~ (l+ k
2)l/1) 

and an infinite contribution from each of the bosons in the lump interact-

ing with the vacuum oscillations. Subtracting the vacuum energy, 

E = k ..- (g - f + 1 ) (90) 
FLUGT . - 2c ~ \ g . g 

{i J 2 · J oo This diverges like - ~ E. lf o (x) 'Cli k dk. It is independent of 
2c 

the coupling constant since 
0

(x) is proportional to E:. -l/2o The in-

finite term can be cut-off (the Dirac Indefinite Metric was used); the 

residue is an estimate of the quantum correction caused by gathering the 

bosons into a lump. It is 'h/ )lC times a numerical factor which depends 

on the low lying energy levels. The condition for the validity of the 

classical approximation is 

E quantum ,...,fu: ,.., 
E classical CE class 

(91) 

-1 The lump must be large compared to its Compton wavelength because y. is a 

measure of the size of the lump. Since EcL ~ E -1, the coupling must be 

small. This condition is equivalent to the restriction that the number of 

bosons in the lump be large next to the fluctuations in that number. 

The state function ( 89) is not a satisfactory approximate solution of 

(76) because of the degeneracy of the classical lump. Instead of displacing 

the field oscillators to the classical solution lt0 (x), we could with 

equal justification have used <..t-0 (x +a). This difficulty manifests itself 

in the fact that (89) is not an eigenfunction of the momentum operator 
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which commutes with the Hamiltonian. The position of the center of mass of 

the lump is well defined, which gives a large spread to the momentum and 

kinetic energy. The state function* 

I K) = .....!.. L exp [i/n/ Tr (x) <P 0 (x + a) ~ J exp iKa I VAC ) 

Vv a -

(93) 

is an eigenfunction of (92) with E-value hK. It is a sum of solutions of (76), 

all of which have the same energy to order h. < L I K) = 8 so that the 
LK 

eigenfunctions are orthonormal. The energy degeneracy is split by the h3/2 

term which does not couple states with different K, thus justifying this 

choice of eigenfunction. 

2. Representation of the State Function 

A convenient representation of the state function for systems with 

fluctuating nl.Dllbers of particles has been given by Fock(lO)• Instead of 

the language of the quantum theory of fields we make use of configuration 

space formalism. In configuration space the state function cf> is a function 

of the coordinates r1,r2, ••o•, rn where n is the number of particles. When 

the number of particles does not commute with the Hamiltonian, ~ is a super-

position of states with various occupation numbers: !:> = superposition 

p0 ,p1(r1),p2(r1,r2), •••• Pm(r
1
,r

2
, ••• , rm) is the symmetrized (or anti­

symmetrized) Schroedinger wave function for the state in which there are m 

particles. We write 1=> as the column vector: 

9? = 

Po 
P1(r1) 

p2(rpr2) 

• 

* This state function no longer has a classical limit. 
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It is now necessary to find a representation for the field operators 

l/ and 'Tlin this language. We first express these operators as functions 

of a(r) and a*(r) such that 

a(r')a*(r) - a. a*(r)a(r') = 8(r - r') (94) 

a = - 1 for Fermi statistics; a = + 1 for Bose statistics. Such an expansion 

has already been performed in Equations (86) and (87). Let n be an operator 

defined by 

n = J dt. a*(r)a(r) (95) 

n has the interpretation of number of bosons or fermions. For both statistics 

na - a(n - 1) = O 

Therefore the matrix element between two states of n and n' particles is 

< n I na - a(n - 1) I n' ) = 0 

or 
(n - n 1 + l) ( n I a I n' ) = 0 

a(r) therefore has the form: 

0 ( o I a I 1 ) 

0 0 

0 0 

0 • 

• • 

We take as an Ansatz for a. = + l 

< n - 1 I a (r) I n) 
Then I> 

a (r.) I ~(rl) = 

0 

<1Ia12 > 
0 

• 

• 

0 • • 

0 0 • 

• 

• 

(96) 

(97a) 

(97b) 

(100) 

(101) 

(101) 
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Alternatively we could write for either E 

( n - i I a(r) I n) Pn(rp •• • , rn) = 

~ ~(r,r1,r2 , ••• ,rn-l) +a PCri,r,r2, ••• ,rn-l) + ••• + an-lPCr1r2, ••• ,rn-l,r~ 

For ~ = + 1 this is obviously equivalent to (101) since each p is symmetric 

in the coordinates. For the conjugate operator a*(r) we have 

<a(r) p I a(r) cp) = ·< a*(r)a(r) .p \ <±:') 

It follows that a*(r) has the f onn: 

0 0 0 

&* = <11 a* I o> 0 0 

0 ( 21a* \1) 0 

0 0 < J\a*\ 2 ) 

• • • 

• • • 

In order for the commutation rule (77) to be satisfied 

< n I a*(r) I n - l) pn-l (rl'r2, ••• , rn_1) ~ 

•• 

•• 

•• 

•• 

•• 

• • 

(102) 

= ~ [scrl - r)szfn<r2,rJ, ... ,rn) + e 8(r2 - r),Sn-1<r1,r3' ... 'rn) + •• 

••• + 6 n-l o(rn - r)¢n-1<r1,r21•••j rn-1>] (103) 

or for E:. = 1 

Po 
pl(rl) 

a*(r) /,2(rl'r2) 

• 
0 

• 

0 

Po S(r-r1) 

:- = ~ [~Cr-r1) (P1 (r2) + 8(r-r2)¢1 (r1)] 

• 
• 
• 
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Let ~(k) be the Fourier transform of <,.?0 (x) and let Q(k,g) be the 
0 

Fourier transform of ~ (x). Then the state function (93) in the Fock 
g 

notation becomes: 

8(K)/v1/ 2 

3 1/2 -12(-r!T) (Egl)l/2 0-:,(K/ fl) Q (K/p1 gl) ,.-3/2 

A q. = -
Vv 

0 

0 

• 

For large E g 11 g = exp [i g • i J1 J 
simpler form 

b(K)/ \IV 

• The state function takes the 

( 
3 )1/2 1/4 

\12 h: ( 1 + i111i2) "c,(kl/p.)p.-3/2 d(K - lei) 

A 
~= -vv 

0 

• 

(105) 

J 

l 
2n/2 ( CJ ) n/2 ~ ~· . 2 vl/4 ( ki ~ -3n/2 
- - 11 1 + k1 lf ~ --; p 8(K - ~ - •• - kn) Vni h t. i= 1 F 
0 

• (106) 

The probability of finding n particles in the lump is j 

In order for the approximate quantization to have some validity the 

number of particles should be large compared to the fluctuation in this 
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number. In this case the n-fold integral can be evaluated by the central 

limit theorem. The integral is just that which occurs in the random walk 

problem for a spherical distribution of displacements. For n 1 

where 

A2 (2c3) -Jn ~-r.....,, r2 2( )] exp [-3K
2
/2n < k

2/J 
P(n) ~ - - J1 J dy V1 + Y ~ y =f • ? /2 

n1 h . , [ 211 n< r-7 /3J 

l oo Y4 J 1 + /- ~2(y)dy 
< k 2 > = __ o ________ _ 

f 00
1

2 6"'2 (y) dy 
Jo o 

(108) 

(109) 

For large n the distribu~ion P(n) is approximately Poisson with a mean 

number - 2c
3 r ~ 2 

n = h J dy -yl + r ~ (y) = 

__1:_ ( mass of lump c\(f y2 Vi + y2 ao2
<1> dy 

or 1i )' /\ I l a-;,4 (y i dy 
) (110) 

The second parenthesis .63 for the 0-node solution, .55 for 1-node, and 

.SO for 2-node. The r.m.s. fluctuation is J ii • In order that this be 

small next to ii we have 

mass c 
7

..,.. -1 
/Ii J1 

The lump must be much larger than its Compton wavelength, which is 

the condition previously stated~ The fluctuation energy proportional. to 

h3/2 is infinite. If the infinite integral (which is the same as that in 

the h proportional term) is cut off, the energy correction for the K = 0 

state is of the order ~,3/2 ( l ~ l/2 
~ c J Mass 

(111) 

For l/-
0

(x) given by (44), the lowest E-value )\ 
0 

of Equation (83) 

is less than -1. To show this we assume that A 0 corresponds to a state 

of zero angular momentum. Then 
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2 
11. o(r) <f o (r) = 

Now <f 0{r) is very approximately 4 
cosh r 

Rc,(r) 
o Putting n_ (r) = -- , 

o r 

~ R = - _0_)_(1....,6_)Ro_ = :_ i' ( '( - 1) Ro ; 
o o cosh2 r ~ cosh2 r 

The eigenfunctions of this equation can be expressed in terms of hypergeo­

metric functions(ll): 

2 R0 = cosh r sinh r F(p + iq, 

P 
__ '"( + 1 y "'Xo 

2 ; q= -2 

(112) 

(113) 

{114) 

The E-values )\ 
0

, A.
1

, A. 2 , •••• for the bound states ( )\ ..::.. 0) are 

1 - 2 ['1' - 2n + 2 ] where n 0,1,2,.... 1 n < T /2 -1. Therefore for '1" 

= 10, 

)\ = - 32 
0 

')\ 1 = - 18 

" 2=- 2 
The lowest E-value is so much less than -1 that there is no need to improve 

the approximation to <f'0(r) 

When Ei 2 = 1 + >t 
1 

<=- 1 for 0 ~ i ~ m 

and E1 
2 = 1 + '>\ i > 1 for i "7 m 

the Hamiltonian can be put into the form: 

OJ 

C a* a E + E /2 
g= m+l g g g g 

m ) I Ed I (a* a* + a a ) 
~.., gg gg 

(115) 

There is no eigenstate function for this Hamiltonian which represents a 

finite nwnber of particles.* The potential 3 t.j/
0
2(x) can create real pairs 

* The proof that the Hamiltonian cannot be entirely diagonalized and that the 
state function represents an infinite 01}!!lber of particles is almost identical 
to that of Schiff, Snyder, and Weinbergll2) for scalar mesons in sufficiently 
strong electric fields. 
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since the bosons can have binding energies greater than their rest masses. 

The existence of bosons in these states stimulates further emission, etc. 

The breakdown of the quantum treatment mirrors a classical instability. 

If we look for solutions of (34) of the form <f'
0
(r) + A(r) cosw t for a 

very small perturbation amplitude A, A andw are connected by the equation: 

- \J 2 A - 3 E A lf 2 = ( 0 2 - l)A (116) 
0 

A is continuous and vanishes as r approaches infinity. (116) is identical 

with the eigen-equation (112). Therefore some of the roots ware imaginary .. 
so that the perturbation is unstable. Solutions of (34), when perturbed, 

can degenerate into the usual S-wave solution of the linear Bose equation 

since the amplitude becomes so small that the non-linear term is negligible. 

Therefore the quantum fluctuations excite modes which are classically unstable. 

IV. CANONICALLY QUANTIZED NON-LINEAR SPINOR FIELD 

1. Canonical Formalism 

A non-linear spinor field is more pregnant with possibilities for a 

theory of elementary particles than a bose field. Scalars and vectors can 

be built out of spinors, while a scalar or vector field seems incapable of 

describing the properties of spin 1/2 particles. Spinor theories of the 1( 

(13)(14) (15) 
-meson and the photon have been proposed which do not discourage 

further investigation. 

The Dirac Lagrangian may be written in terms of the two invariants ! 0 

(117) 

* The energy is: H ~/,.y;,_ 4 d 'I + cu 2 <./' A2 d'I for real <..) so that H is a 
local minimum when ~ equb.s zero. If c.i) is imaginary the w2 term is missing; 
the energy of the w equals zero solution is no longer a loc~ .. 
relative minimum. 
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(118) 

(119) 

(120) 

pis the inverse of the fundamental length.* A generalization of (118) is: 

(121) 

E is a coupling constant. J is any other invariant composed from the spinor 

field. We shall assume that J contains no derivatives of the field. W is 

some function of the invariants which makes the Euler equation non-linear. 

For a spinor field 

s(mn) - !. ) 
a.(3 - 2 (ya. r'3 mn 

Then (17a), (l7b), and (l7c) give: 

Q = f Li <f' * vdi 

11c
2 = -J T44 dx'= !~ [ Ii-*'t if - (dh </' )* cf J °di + ;;/, 

s = !J11 <I * ( !. 2.. + !. 0 ) lf 
z c \ i o~ 2 z 

p is the azimuth angle in polar coordinates and 

~ 

These integrals are to be computed in the proper coordinate system G = 0 o 

(122) 

(123) 

(124) 

(125) 

(126) 

The z-axis is parallel to the spin. The simplest choice of W which results 

in a non-linear theory is 

W =I 2 
0 

(127) 

Then L
1 

= 1 and Q, Mc2, and Sz reduce to the usual expressions of the Dirac 

* For the classical field p is not necessarily related to the Compton 
wavelength appearing in the usual formulation. 
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theory. In particular the conjugate momentum is given by 

(128) 

as in the linear Dirac theory so that the usual commutator of Equation (18b) 

can be . applied: 

With the canonical anticommutation rules for the spinor field operators: 

no classical limit exists. For the non-linear coupling (127) the 

Hamiltonian is 

H = ~ L~i ~ </ *(x) ct 0 V <-f.o.,, (x) + M lf * (x) (3 Lf (x) . 1 ~ r ~ r r~ -
r ...v 

- g L </-t : (x) (3r .'-!>v(x) s£' *t(x) (3t ff/ (x) J 
r~tv - v v 

The complete solution of the non-linear field problem consists in the 

determination of a state function :j x / such that 

Htx> =E :j x ) 

(129) 

(130) 

(131) 

Since the anticommutation rules (129) have the form (94), the Fock fonnalism 

can be carried over with <.f and st* playing the role of annihilation and 

creation operator. The operator n here commutes with the Hamiltonian so that 

unlike the Bose case, the number of particles is a good quantum number. (The 

filling of the vacuum makes the number of particles infinite; we assume for 

the moment that the vacuum is empty). 

For the two particle problem the state function is of the form: 

Substituting into (130) we obtain for the coupling term: 

- g [:(f3 )°2'/f3) 01m' p(,_,~; j,m•) b(Xi - ~) 
jm• 

(132) 
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+ g L ((3) or~ ((3) °2m' P(:l)_1X2; jm') o(~ - x2) 
jm' 

Since P(Xi,1x2;6i162) is antisymmetric in 1 and 2 we write the coupling: 

(133) 

6"' . ~ 
- g L (1 - P 12)( (3) ~J ((3) O!m' o(~ - x2)P(:l)_,x2; 61,62) (134a) 

jm' .. 

+ 2g l::i. ,S(~,~; ~,°2) (134b) 

rr 
P12 exchanges the four components of the spinors 1 and 2. L1 is a divergent 

00 

integral of the form ~ k2 dk. The mass of a single particle at rest is 

+ M + 2g A. or - M + 2g 6. *o 

For n particles there is a contact term of the form (134a) between each pair 

and the self energy term 2ng A • No solutions exist for the many particle 

problem with delta function interactions. 

Heisenberg(l6) has suggested that if the infinities associated with 

point particles are modified by introducing regulated commutators in (129), 

it might be possible to build a series of particles with structure from a 

single underlying field. In particular he proposes that a non-linearity of 

the type (121) 
J cf- +(x) O 'I (x) <) +(x) 0 <f (x) di 

* It might be possible in a divergent theory for 2g ~ to be greater than 
M. In this case all solutions of the single particle Hamiltonian would 
represent states of positive energy, and the vacuum could be empty. The 
heavy and light particles could transform into each other, but there is no 
pair creation or annihilation since the number of particles is conserved. 

A similar situation exists in meson theory. The self energy of a 
nucleon at rest in a positive or negative energy state has as the dominant 
divergent term: 2 J 00 

+ .i:M... k dk 
llhc 

Only for hole theory is there symmetry between positive and negative energy 
states. 



-66-

could describe all elementary particles (Bose and Fermi) including even 

photons. Computational difficulties have so far prevented any calculations. 

We shall be concerned mostly with a very different point of view: 

the elimination of point singularities by the descriptton of particles as 

localized regions of strong field. Such a classical spinor theory does not 

have even an approximate interpretation in terms of field variables obeying 

anti-commutation rules. Before turning to the classical theory we shall 

look at some attempts of Fermi and Yang(lJ) to get an approximate solution 

for a Hamiltonian of the type (130). Their model enables one to make a 

finite calculation for the lifetime of the 'rt -meson which agrees remarkably 

well with experiment if the conditions specified in Part I are compiled with. 

2o Composite Particles 

Fermi and Yang have suggested a pair coupling between nucleons of the 

form (133); the Jr-meson appears as a composite particle formed by a nucleon 

and an anti-nucleon under the assumption that one is dealing essentially with 

a two body problem. The effect of the virtual pairs is interpreted as smear­

ing the contact interaction to a range b/Mc, where M is the mass of the 

nucleon. In order that only particle and anti-particle can be tightly bound, 

but not particle and particle, the coupling operator should be chosen vector 

or tensor. 

We seek a sixteen component state function of the form ~(r; 611 62) 
which will represent a scalar, p-scalar, vector, or p-vector composite 

particle. ~ transforms like the direct product of two spinors under rotations 

and inversions. If Ut.j is the transformation matrix for a single spinor 

under the rotation group 

(135) 
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,../ 

where U is the transpose of U. We seek an operator R such that 

(p'R) = U(~R)U-l (136) 

R must satisfy 
(137) 

Now 

,_, 
U = A a.2a.

3 
- B a

3
a.1 + C a.1a.2 + DI (138b) 

-1 
U = - A a.t13 - B a.:fll - C a.1a.2 + DI (138c) 

where /\ , B, and C are functions of the rotation angles only. Therefore R can 

be a1a3 or i a 2a4.* The most general scalar under the rotation and inversion 

transformation s = usu-1 is: 

I A(r)a.
4 

+ B(r) 'ct • t + C(r) + D(r) a.4 ~ o t = S (139) 

The most general P-scalar is: 

a a. a [ e, (r) a + F(r) -; 0 
-;. + G(r) + H(r) a.

4 
~ 0 1] =PS 

1 2 3 4 
(140) 

vector 
The most general (P-vector) with spin one in the z direction is: 

(x + iy) + (a a. + i a a. -
(

scalar ~ ) ( P-scala) ( vector ) 
P-scalar 2 3 3 1 scalar - P-vector 

(141) 

Under the transformation (135) 

(S a.2a.4)~ = U(S a.2a.4)U = usu-1 a.2a.4 = s a.2a.4 (142) 

and similarly for the other operators. 

~ We have investigated solutions of the form PS a.2a.4 for vector coupling 

with the contact interaction replaced by a square well of range 1'i/Mc and 

depth 26.4 Bev. In addition to the 11'-particle solution of Fermi and Yang 

an excited state of about 1600 electron masses was found. The effective 

~1r~2we ~fv~2a direct.product o: two spinors representing two particles; 
Pi Pj , Pi Pk (a.2a.4)kJ has the interpretation of the direct product of the 
wave functions of a particle and anti-particle. a.

3
a.1 flips the spin of one 

of the particles. 
** A rather complete discussion of the composite particle problem has since 
been given by Moseley and Rosen(l7). 
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2 

g ,Ale for the coupling of this particle to nucleons is approximately 80 

times that of a Ir -meson. * 
The composite 'Jr -meson has the usual difficulty of the competition 

between 11 ~ (e, -v ) and 'Ir ~ (p, -v ) decay, since P+ + N- --Y6 e+ + -iJ or 

p + + v • Again if the Ir is pseudoscalar and the (3-decay interaction con­

tains no pseudoscalar but does involve a pseudovector term, the difficulty 

** is resolved. The transition probability on this model is finite. 

Fermi and Yang solved the problem of two particles interacting in a 

1s state. Their solution may be expressed in the fonn (139) as: 

~>N: ~ (r): ~~1:f~a4- (r2:r~a'.:: + 1 (f1:f~ +~3:f9 a4~·ga1a3 
For r "' h/Mc ~ r 0 

f = .0136 sin v 
1 3/2 v 

ro 

f - -.0147 
4 - r 3/2 

0 

sin v 

v 

f = f = 0.370 
2 3 r 3/2 

0 

(143) 

(144) 

(145) 

(146) 

(147) 

To convert the description to that of a particle interacting with an anti-

particle (the matrix then has the transformation properties of a spinor 

* The calculation proceeds exactly as that of Fermi and Yang. However, 
in checking the coupling of the composite II to nucleons we obtain 

( j
l/2 

21f !13c3 
R = i 2 (.62) y1y2y3 r u c 

f~[ the first term of their Equation (18). This gives a meson coupling 
g71lc ~ 1/200 instead of the 0.27 which was the attractive point of their 
calculation. 

** cf. page. 14, 
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[annihilation operator ]and a complex conjugate [creation operator J ). We 

multiply by the charge conjugate operator ai14so that 

. 'ij = sPP: ~ Nj = pilc(a2a.4)kj 

p is now a pseudoscalar under-reflections and rotations. 

The transition probability for '1T' - y. de cay is: 

Only if A is a pseudoscalar or the fourth component of a pseudovector will 

this transition be allowed. For P-vector ~-decay, A = a.1a.2a.3 

- ~ I Trace p (O)A \ 2 = 4 \· r1-£4 \ 2 = 5 x 10 
r 3 

0 

The transition rate is 

g2 'rr(Mass~ - Mass;) (Mass! - Mass!) 

A (2 '1r )3 2 Mass~ 

where h = M = c = 1 

Using gA = 2 x io-49 ERG-C; 

Y = 3 x io-8 sec. 

in good agreement with experiment.* 

* For P-scalar ~-decay 'r' = 2 x io-ll seco 

(148) 

(149) 

(150) 

(151) 

(152) 
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v. CLASSICAL SPINOR FIELDS 

1. The Wave Equation 

The equations of motion of the classical field which result from the 

Lagrangian (121) are: 

- = o ; r a <1 + p cf - i e: + i E.. Ci - r i.p B£ aw [aw J 
i <f'+ a a a <.,b + )1 '3rl )l 

= 0 (153a) 

=O (153b) 

We also have the useful invariant equation: 

=O 

(154) 

I + J-Io + ..E_ ( . d W <f + r.f + dw +) = 0 
1 2 \'dcj/ cis? 

The partial differential equations (153) are too difficult to enable a 

general solution to be obtained as in the case of the linear equation. 

However, for certain forms of w, solutions exist which make (153) separable 

and therefore reduce the problem to that of solving a set of ordinary dif-

ferential equations. 

The time separation is accomplished by the substitution 

i j (t) 
<f = e f- (x,y,~) 

The linear part of (153) separates for the Ansatz: 

Cf _:: = ~ ei f { (F + iG) .fl-+ + (F - iG)~ Q _:: } 

F and G are functions of r only. 

..n.. -+-

a YJ-l/2,m-1/2(Q,p) 

b YJ-1/2,m+l/2(Q,p) 

c YJ+l/2,m+l/2(Q,p) 

d YJ+l/2,m+l/2(Q,p) 

a=~~ ) 1/2 

c : fJ-m+l) l/2 
l2J+2 

a2. + 'b2 = 1 

c2 + d2 = 1 

(155) 

(156) 

(157) 
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and .fl =r n... 
- 5 + 

when J = 1/21 m = 1/2 we have 

Cf' = e i f ( t) F ( r) 
+ 

0 

iG(r) cos 9 

i~ 
iG(r) sin 9 e 

(158) 

(159) 

Simple forms for W for 'Which (153) separates have been found only for this 

case. The Lagrangian for the linear part becomes 

1 0 = J1lo + 11 

I = a2 - F2 (160) 0 

d .f 2 
I1 = GF' - FG' - 2FG/r - ---- (F + a2) (161) dt 

Since F and Gare time independent d f /dt = W =constant. L
0 

is therefore 

a function of r only; W also depends only on r. Equation (153) reduces to 

a pair of ordinary differential equations. Restricting consideration to W's 

which are quadratiC* and symmetric in the fields <P and <f *, some of the 

simple invariants are: 

( ti + r r/ )( l) + r </-; ) = 4G2F2 sin2Q + a4 + F4 + 2G2F2 
Jl Jl 

(162a) 

( cf + r 5 ~ )( <P + r, <f ) = 4F2a2cos2Q (162b) 

( l/ + ~i.J )( !./ + Ci' cf) = a4 + r4 + 2G2F2(cos2Q - sin2Q) .u }l 
(162c) 

( cf + </- )( cf + y{) = a4 + F4 - 2G2F2 (162d) 

ca I )(d I ) = (GG' + FF')
2 

J1 0 µ 0 
(162e) 

* The coupling quadratic in the spinor fields seems capable of describing 
all the known interactions of the spin 1/2 particles among themselves 
("symmetric coupling"). 
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( </ + °}i ~ ) Iu = 0 

( U/ + y t./ )I = 4GF3 sin2Q 
7 )l u r 

1v +(d </)(() tj+) c/ = (GG' + FF 1 )
2 - sin2

Q F4/r2 
T )l )l 

( £/ + y
5

l{)I1 = I1FG cosQ ~ 

( lf + y')I
1 

= (G2 - F2)r1 

r12 =See (161) 

I I = 4F~r2 sin2
Q 

JU )l 

<'f +a)l c.f >2
+ c[aJl c; +Jct >2

+2 <[ &µ </ + ]f>< l/ +a}l </ > 
2 = 2(GG' +FF') 

In the above 

(162f) 

(162g) 

(162h) 

(162j) 

(162k) 

(162m) 

(162n) 

(163) 

All of the quadratic forms are not independent. For example from (162d), 

(162b), and (162c) 

I
0

2 = < lf +<>p s-t' >< cf+~ cf ) - (tf+r5<.f Ht.f +r5<f> (164) 

The quadratic form 

(165) 

may be written in terms of invariants* as: 

[
6 - ~ J I 2 +f 2 + i)J ~ cf + ,r 2 

8 - o 8 ~( Y)l 't' ) 
- - p=l 

(166) 

When W involves derivatives of the field variables there exists the 

possibility of constructing neutral particles since 1i F 1 in (123). How­

ever for the wave function (159) 

cf *(! 1. -t- ! tr"\ if = ! <f * <-f ( 167) 
i of$ 2 z) 2 

* For ~ = 6 this is very analogous to the Mpller-Rosenfeld coupling in meson 
theory. 

t There seems to be no a priori reason for the coupling constant E= also not 
being pseudoscalar so that invariance is retained. 
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Therefore from (125) 

s = i Q (168) 
z 2c 

The spin of a neutral particle is zero. When the normalization is 

performed by putting Q = l, we have 

s 
z 

_ t - -2 

For this non-quantized theory 

s = s = 0 
1 x 

Since the derivative coupling introduces great complications in 

(153) we shall choose only the simpler derivative forms I
0

I1 and I
1

2.* 

The boundary conditions to be imposed on F and G are that these 

(169) 

(170) 

functions be everywhere continuous, with all observable integrals finite. 

The linear part of (153) is: 

G' + !Q + Y1 + c..) )F + ... =O (171) 
r 

F' + (p. - w )G + ••• = 0 

In order for F and G to be · finite at the origin the 2G/r term forces the 

initial condition G(O) O; this will also imply F1 (0) = 0 in all cases 

to be studied. Since (l53a) reduces to two simultaneous first order 

equations in F and G we have two initial values to specify. One is G(O) = O; 

the other is the initial value of F t . A solution for arbitrary F(O) usually 

* Perhaps the simplest generalization of (118) is L = f(uI
0 

+ I1). The 
Euler equation is ft (p.I0 + I1 ) C y (} if -ir- p cp J = O; ft is the derivative of 
the arbitrary function f. This Jl}l equation in addition to all solutions 
of the linear equation is solved by any F and G for which f' = Oo For the 
linear solution Ii + Jl!o = 0 so that Q and Mc2 have their usual form except 
for a multiplicative constant. 

t When W involves I12 the Euler equation has dJlil which contains second order 
derivatives. However, the r1 can be expressed in terms of F and G only by 
means of the invariant equation (154) so that we again have two first order 
differential equations. 
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does not vanish at infinity so that charge and mass integrals do not exist. 

Only those solutions corresponding to a discrete set of initial values for 

F will give proper particle-like solutio~s. We now turn to a discussion 

of the existence of solutions similar to that for the bose field. 

2. The Existence of Particle-Like Solutions 

Although F and G are, in general not conjugate in the sense of y and 

y 1 of Equation (46), a consideration of trajectories in the F-G plane 

yields a qualitative description of many properties of the solutions of the 

simpler Lagrangians. 

The simplest Lagrangian foe which the charge density is not positive 

definite is (puttingp = 1): 

L = Io + Il + E- Io!l 

The Euler equation is: 

0 = (l + €: I
0

)(G1 + 2G/r + CV F) + F + E: G(FF 1 - GG 1 ) + e Fil 

0 = (1 + c !o)(F1 - <.JG)+ G + E: F(FF' - 00 1 ) + E:: GI1 

The invariant equation is given by the simple expression: 

I1 + I
0 

+ 2 E: I
0

I1 = 0 

From (123) and (126) the charge becomes: 

or 

Q = 4rr / (1 + E: I 0 ) cf * if'. ~ 
(X) 

Q =/ r 2dr (1 + c F2 - c a2)(a2 + F2) 
0 

A Lagrangian analogous to Equation (49) which gives (173) is: 

/ t•dr = / dr r 2 
[F2 - G2 - F'G + G'F + t.J G2 + WF2 J 

+ E: (F2 - G2)(F 1G - G'F + 2FG/r + lJ F2 + <.J G2) 

(172) 

(173) 

(174) 

(175) 

(175b) 

(176) 

The pseudo-Hamiltonian resulting from (176) according to the prescription 

(56) does not yield a useful form since H still depends explicitly on r. 

In order to remedy this we make the contact transformation: 
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L" = L' d (r2FG) - C: .2_ (F3G - FG3) 
cir , cir (177) 

Variation of L" still gives (173). The canonical Hamiltonian got from L" 

becomes: 

and 

H = - ~ + E: I 0 J cJ [ F2 + a2 - I 0 J 
..:!!! = - Io t - 2 UJ (FF' + GG') - 4 €::: w (F3f 1 - a3a•) 
cir 

(178) 

(179) 

(180) 

Using the differential equation (173) to eliminate the derivatives in (180) 

gives 

E l + w -t 2 C; 2 w I 2 - c I + 3 c uJ I J 
dr r(l + 2 c I

0
) o o o 

(181) 

l 1 1- 0 * 
dii/cir changes sign when I - - - - -e. , 2e: , 2wc • The contour lines 

for H = constant are plotted in Figures 14 and 15 for the four combinations 

of c and (,) • It is convenient to discuss the solution in the accompanying 

F2 - a2 space because of the complicated behavior of (180). 

Trajectories begin on the G = 0 and must terminate at the origin. 

The trajectory I = 1 is also a charge node. According to (180) either all 
0 

trajectories are pulled toward it on both sides or can't reach it from 

either side. In either event trajectories can't cross, so that there can be 

no change in sign for the charge density along a solution which reaches the 

origin. For Figure 15a the arguments of Figure 1 can be applied to a 

trajectory for which F(O) ~ cJ -l/2o For the cases represented by Figures 

15a and 15b ;~ trajectory originating on G = 0 could. not reach the origin. 

The argument preventing a node in the charge density can easily be 

extended to the more general Lagrangian: 

L = Io + I1 + IoI1 + a(F4 + a4 + a2~) (182) 

* If the 2FG/r term were not in the Lagrangian, H = constant would 
describe the trajectory. dH/dr gives the effect of the damping term 2G/r 
in the differential equation. 
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We look first at the invariant equation (174) for the Lagrangian (172) in 

I
0 

- I1 space, plotted in Figure 16. In (a) the region to the left of I 0 = 
- l/e;, is one of negative charge; to the right, of positive charge. In {b) 

negative is to the right, positive to the left of I
0 

= 1/IE::. \ • As r ~ oo, 

both I
0 

and I
1 

must approach zero for a solution going to the origin in F-G 

space. Therefore the solution must correspond to branch 1 of the invariant 

equation in I - I space. However, only branch 2 can have both signs of 
0 1 

charge. Since F and G are continuous a solution cannot jump from 1 to 2 

and a charge node is forbidden. With the more general L~grangian (182), the 

invariant equation may be written: 

I 1 + I
0 

+ 2 E. I
0

I 1 + 2 a (F4 + a4 + )l a2F2) = o (183) 

Solving for I1: 
Io + 2 a (F4 + a4 + ~ G2F2) 

I1 = - ~~------~~~~---
I + 2 f::: I 0 

(184) 

The charge equation (175) is unaltered. I 1 still has two branches; the one 

through the origin runs to infinity because of the singular denominator at 

10 = - 1/2 c before it can have a charge node at I
0 

= - 1/ c . A possible 

escape is to choose the special Lagrangian a = c , A = - 2 so that the 

numerator and denominator node together. 

L=I +I
1

+ E- II
1

+ E- I 2 
0 0 0 

Then (184) becomes 
I

0
(1 + 2 E; I

0
) 

I1 = - ------- = - I 
1+2 E:- I 

0 

0 

The curve I
0 

= - I1 passes continuously through regions of positive and 

negative charge as well as the origin. The differential equations cor-

responding to (184) are: 

(185) 

(186) 

(G' + 2G/r + F)(l + 2 E:- I) + w F + 2 c G3/r + 2 f-w F3 = O 
0 (187) 

(F')(l + 2 t- Io) + G (1 - W ) + 2e w a3+ 2 E: a2F/r + 2 C- GIO = 0 
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Proceeding a~ for Equation (173) we obtain: 

H = - ~ + t:: I
0

] [ ( W - 1) a2 
+ ( w + l)F

2J (188) 

and 

dr 

2 4a (1 - lJ )(1 + c I ) 
r o 

(189) -=-
The contours H = constant are given in Figures (17) and (18). Small arrows 

indicate the direction of dli/dr as given by (189). In none of the four 

cases can a trajectory which starts on the G = 0 axis reach the origin so 

that no particle solution can exist for the Lagrangian (185). Therefore 

no zero charge particle solutions exist for Lagrangians linear in I1• 

The coupling E: I1
2 leads to very complex differential equations. The 

invariant equation remains simple and is plotted in Figures (16c, d). In­

stead of the hyperbola of Equation (174) we now obtain the parabola: 

(190) 

It might be possible in this more complicated case to find solutions which 

have a node in the charge density. A more detailed consideration of the 

differential equation has excluded case (a). Since ' I >- 0 ar r = O, any 
0 

solution of the r1
2 case with e< O will have both signs for the charge 

density. If the net charge were zero the spin would also vanish. 

We turn now to a consideration of the Lagrangian based on the 

coupling (166). 
L =Io+ I1 +a (a4 + ~ + "' G2F2) 

The Euler equations are: 

G' + 2G/r + (1 + GJ )F + a. (2F3 + A FG2) = O 

F' + (1 - w )G - a (2G3 + )\ GF2) = 0 

The invariant equation is: 

(191) 

(192) 

(193) 
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Proceeding as for Equation (172) 

_ ( 2 2) ( 2 2) ( 4 4 \ G2F2) H=- W F +G - F -G -a.F +G + /\ (194) 

and 

~ = -Mf [ l - Q - a ~G2 + i\~] (195) 

In F2 - a2 space, the family H = constant consists of conic sections 

confined to the first quadrant. The curves in F-G space are topologically 

identical but must be completed by reflection through the F and G axes. 

If A 2 ,... 4 the conics are hyperbola~; if ). 2 
<- 4 they are ellipses; i\ 2 = 4 

gives parabolas. Another possible coupling is nG2F2 which gives hyperbolae 
2 2 . 

in F - G space. 

When a <- 0 and 'A ~ 0 dH/dr ~ 0 • The phase space plot is given in 

Figure (19a); it is identical to the contour diagram of Equation (44) so 

that the same existence proof will hold. Therefore solutions should exist 

* for - 1 < w < + 1 unless no solution crosses the F = 0 axis. For a > 0 

and ?\ ~ 0 . .• dli/ dr ~ 0 outside the ellipse 202 + I\ F2 = 1 - w and 

dH/dr //' 0 inside. The contours are illustrated in Figure (19b). If the 

dH/dr term were neglected the H = constant trajectories would be traversed 

in a clockwise direction. For a proper solution the origin can be reached 

only from the first or third quadrant; this follows from the linear part 

of (192). Although one cannot disprove the existence of a ? 0 solutions, 

the arguments which lead one to expect a solution are not valid for this 

case. Since all solutions remain bounded either there must exist a limit 

cycle or all solutions end at the origin and so are particle solutions.** 

*The mass for a unit charged particle is lt) + l a. I J 004'lr r2dr [G4 + F4 + fl a2F2J 
Since w can be negative we have the possibility of o negative mass. In this 
case by appropriately choosing the coupling constant, the mass can be made 
positive but arbitrarily close to zero. The ratio of masses for the 0-node 
and 1-node solution could then be quite large. 
** Since a trajectory gain "energy" outside of the dotted ellipse but loses 
energy inside, periodic solutions seem possible. We have symmetry about G = 
O and F = O; either the cycle encloses both maxima or there exists a cycle 
enclosing each maximum. 
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If there exist two limit cycles symmetric with respect to G = o, the 

canonical existence proof might again be applicable. 

The situation for the coupling nG2F2 is given in Figure (20. No 

particle solutionsexist for either sign of n. 

When -2 4 'i\ <- 0 the topology in phase space depends on both a. 

and w • For a. = -1 and 
2 + 71 ~ ( 2 - ?\ ) &.) ( 196) 

the phase plot is represented in Figure (21). In the absence of the dii/dr 

term the contours are traversed counter clockwise. Proper solutions do 

exist for this case. Even solutions originating to the right of the dH/dr = 
0 curve are ultimately captured at either of the two stable points; the 

argument concerning Figure (19) is again applicable. When 2 + /\ "'- (2 - /\ ) {,,) 

we have a more ambiguous situation. It seems likely that particle-solutions 

can be found but no calculations were made with equations giving this 

topology. 

If a. = + l, - 2 < 'A <- 0 and 

- ( /\ + 2) >- c0 ( 2 - 'A ) 

we have Figure (23a); for the reverse inequality Figure (23b) gives the phase 

· plane description. The contours are traversed in a clockwise sense. We do 

not know if it is possible for a particle-solution to exist in these cases; 

this would again seem to depend on a numerical investigation. When /\ <- - 2 

the phase plots are similar to those discussed. 

For <.J ~ - l the condition (196) is always satisfied; if in addition 

a. < O the phase space topology is that of Figure (1). The solution (4.5) 

of Equation (46) will then (in . the limit of almost -1) satisfy Equation (192) 

with F = y. If G <<.. F, 6.J ~ -1, Equation (192) becomes: 

F 1 + (1 - ~ ) G = 0 

G' + 2G/r + (1 -!!- £J )F + 2a F3 = 0 
(198) 

Combining these equations 
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F" + 2F - (1 - U) 
2) F - 4 a. F3 = 0 

r 
Since a. 4. O the solutions of this are those of (46) 

From (198) 
,.v_ F' 

G ~ --
2 

(199) 

(200) 

(201) 

Therefore G is of the order J1 - w2 F so that for t..) sufficiently close to 

- 1, G4 <- F, thus making (198) a valid approximation. We conclude, therefore, 

that since solutions of (46) exist and have been calculated, there always 

exist particle-solutions of (192) for a. c::.. 0 and any ?.. for an appropriate 

range of cJ • However, as we shall see, this is not a very interesting 

region. 

Extensive numerical calculations were performed for the special case 

2 
'A = - 2, i.e. for I 0 coupling and a <- o. For (.J ~ 0 no particle-solutions 

exist as is obvious from a consideration of the phase plot: Figure (24a). 

For - 1 "'- w <- O, the phase plot of Figure (21) is applicable so that 

solutions do exist for this range of c.J . 

3. Numerical Calculations 

When the Lagrangian is 
c 

L = Il + Jllo - 2 

the Euler equations are 

I 2 
0 

G' + _gQ + (1 + (,.) ) F - E: F (F2 - a2) = 0 r 

F 1 + (1 - W ) G - c G (F2 - G2) = 0 

(202) 

(203) 

As in Equation (46) the a. is just a scale factor. However, the solutions 

for various values of w cannot be transformed among each other by algebraic 

manipulation. An investigation of the solutions of (203) involves the 

numerical integration for different initial conditions F(O) for different c.J 
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between 0 and - 1. 

There are three special solutions of (203): 

(a) G =: 0 1 F - 0 

(b) G ~ O, F = ( l : w ) 1/2 

(c) G s O, F = -~: c,)) 1/2 

(204) 

These are the origin and the two minima of Figure (21). For an initial 

condition sufficiently near (b) or (c), the solution will be captured at 

the corresponding special solution. For a fixed w , as the initial v81ue 

F(O) is varied, the solutions were captured alternately at (b) or (c). In 

this manner it was possible to obtain a very close approximation to the 

discrete set of solutions which get captured at (a). 

The equations (203) were integrated by the UCLA Differential Analyzer 

for t\> = - .1, - .3, - .5, - .7, - .9. The solutions having one, two, or 

three nodes in F were obtained. A typical solution in r-space is given in 

Figure (25). 

The solutions of Equation (203) form a two parameter family depending 

on (:.- and cJ . According to (31), in order that the solutions represent 

particles of unit charge, we normalize so that 

(205) 

Figure (26) gives ~ Q as a function of cJ . For a fixed value of the 

coupling and Q = 11 W can be read from this graph. The equation of this 

curve in the region very close to <.J = - 1 was inferred from the discussion 

preceding (198). The dotted portion indicates some uncertainty in con­

necting the numerical work (up to (.) = - 0.9) with the J ?Symptotic part. 

The mass associated with each solution is: 

I E: I 
2 

j tf1J 411 r 2 dr (F2 - a2) 
2 

0 

(206) 
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The second term multiplied by E is plotted as a function of w in 

Figure (27). A comparison of Figures (27) and (26) indicates that over 

85% of the mass arises from the first tenn. Finally, Figure (28) shows 

the spectrum of masses each carrying unit charge which are associated 

with each value of the coupling constant. 

4. Discussion 

With the crude quantization of Equation (Jl) there exist only a 

finite number of masses for each value of the coupling constant 6 • Each 

particle carries a spin.-b/2 and a magnetic moment which in general is 

anomolous. The number of masses can be made quite small by properly 

adjusting c but the mass ratios are relatively fixed and of order two or 

three so that they seem to bear no relationship to the spin 1/2 particles 

so far observed (electron, ,?- - meson, proton). The great varie.ty available 

in the forms of the coupling seem capable of producing much greater mass 

ratios·than found here.* 

Particle-like solutions of (203) yield positive masses since C"'- 0 

and CV ..::.. O. Instead of the Ansatz (157) Equation (153) may also be 

separated by (158). If 

G cos Q 

G sin Q ei/> 

-iF 

0 

the Euler equations corresponding to (203) are: 

G' + 2G ;r + ( 1 - (..) ) F + f; F ( a2 - F2) = 0 

F 1 + (1 + W ) G + E:: G(G2 - F2 ) = 0 

* See for example the footnote, Page 83 • 

(207) 

(208) 
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Since Eis a fixed constant ~ O, a comparison with Equation (203) and 

Figure (24) shows that w '- 0 for a solution to exist. Then the mass for 

this solution is also greater than zero so that even if the topology of 

Figure (23) does give particle-solutions, all masses associated with the 

coupling - E: I 0
2 are positive. Since the usual negative energy difficul­

ties associated with spinor fields are not present, we are not forced to 

quantize according to the exclusion principle (anti-commutators). 

The introduction of neutral or negatively charged particles does 

not follow from any of the very simple couplings although slightly more 

complicated forms, such as c r1
2, may be capable of giving neutral or 

even negatively charged localized solutions. We would then not expect to 

have identical properties for the positive &nd negative particles as 

guaranteed by hole theory. 

For. a particular E:- , those solutions having a mass greater than 

p {/c are unstable against expanding to infinity, while the amplitude 

approaches zero; the non-linear term then becomes negligible and the F 

and G functions form the usual s-wave solution of the Dirac equation. When 

the mass is less than )l {/c the rigorous conservation of energy and charge 

will stabilize the solution since for very small amplitude the energy is 

approximately that of a free particle of charge one and therefore greater 

than )1 {/c. 

A reasonable interpretation of this unitary theory of particles 

depends upon a successful introduction of the quantum theory; to interpret 

in terms of the canonical rules is unsatisfactory for the reasons discussed. 

On the classical level the results obtained from the very simplest non-linear 

Lagrangians are not entirely discouraging. A small number of localized 

solutions exist which can interact with each other to form more complex 
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* structures. Until some sort of quantization is available the fields that 

can be constructed from (121) would seem to be limited to the spinors. The 

lack of an attractive recipe for quantizing is the main stumbling block to 

further progress in this direction. 

* For example, we can normalize a lump to carry charge two. It is then 
energetically stable against decay into two charge one particles. 
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