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PART I.

ABSTRACT

A T -meson decays into p-meson and neutrino at least 1000 times faster than
into an electron and a neutrino., After summarizing the difficulties in as-
suming that electrons or p-mesons interact with nucleons through the inter-
mediary of the T -meson, the decay of the YT is discussed for the symmetric
coupling scheme in which electrons and p-mesons interact directly with
nucleons, Selection rules rigorously forbid this decay for most choices of
the TU -meson field and the form of nuclear fB-decay. For the very special
case of pseudoscalar meson and pseudovector B-decay (with arbitrary mixtures
of scalar, vector and tensor) the decay rate for T —. (p.,z/) proceeds 10h
times as fast as 7T—> (e, ) and 10+3 as fast as W —>» (photon, e, 2 ).
This result is independent of perturbation theory. Agreement with the
observed lifetime can be obtained if the divergent integral is cut off at

the nucleon Compton wavelength.



PART IT.

ABSTRACT

A unitary theory of particles is investigated, mostly on the
classical levele The Dirac and the Klein-Gordon equations are aug-
mented by simple non-linear terms., Interpreted as wave equations for
classical fields they contain a much richer variety of solutions than
the customary linear theories. Particles, instead of having independent
existences as singularities, appear only as intense localized regions of
strong field. Solutions of the field equations are subject to the
boundary condition that the fields be regular everywhere and that all
observable integrals be finite. For simple angular and temporal de-
pendence the wave equation reduces to a set of ordinary differential
equations. The boundary condition leads to a non-linear eigenvalue
problem whose solutions are systematically described in the phase plane.
Numerical solutions are found for some typical cases. The masses of the
particles are positive; the number carrying unit charge is small, The
scalar field variables can be interpreted in terms of operators according to
the usual commutation rules, but the particles are unstable when perturbed
by quantum fluctuations. The application of anti-commutation rules to the
spinor fields has no classical limit. The lack of a satisfactory recipe for
quantizing classical spinor fields makes the interpretation of the particle-

like solutions obscure. -
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I. INTRODUCTION
In proposing a description of nuclear forces through the interaction

(1)

of a mesic field, Yukawa suggested that a meson would decay into an
electron and a neutrino, and that this was responsible for the f-decay of

nuclei ZNA—-'Z+1NA+\IT--‘-’Z+1 +e—+v (l)

That sea level mesons were observed to decay into electrons with a lifetime

of 2 x 10.6 sec was considered a triumph of meson theory, but quantitative

agreement with the predicted lifetime has been lacking. The discoveries
(2)

of the very small interactions of sea level mesons with nuclei and of

(3)

the existence of at least two kinds of mesons in cosmic rays has neces-
sitated a reinterpretation of the decay schemes of mesons and nucleons.
It now appears certain that the sea level or p-mesons which were observed
to be B-active are only very weakly coupled to nucleons and are not
responsible for (1).

We shall present first some of the evidence which makes it appear
probable that the meson field which is strongly coupled to nucleons
( W-meson) transforms like a pseudoscalar (spin O, odd parity). The pos-
sible bearing of this on the decay of the T-meson and on nuclear B-decay
will then be discussed.

II. PARITY AND SPIN OF YT - AND p-MESONS

JU -mesons, which are copiously produced in nucleon-nucleon collisions

or through the interaction of nucleons with gamma reys, may be charged

positively, negatively, or may be neutral. The charged TC -mesons decay

into pu-mesons with a lifetime of 2,6 x 10"8 sec. Since the‘p-meson is
monoenergetic only one other particle (neutral) is emitted in the decay.

The energies are consistent with assigning a 2ero mass to the

neutral particle,. The neutral meson decays into two photons

in less than 10‘lh sec. Since a system of angular
# We follow here & lecture of H. Bethe given at the California
Institute of Technology, January 8, 1951.
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momeptum 1 is rigorously forbidden from decaying into two photons by
conservation of momentum, the spin of the neutral ‘Yw=meson cannot be 1.
If we assume that the elementary particles have spins 0, 1/2, or 1, it
follows that neutral Tl -mesons have spin O.
Investigation of the capture of negative Tl's by Hydrogen indicates
that the reactions
(a) H+ T 5 n+7Y
and
(k) H+'T" 5 n + ° ey B # 2Y
proceed with about equal probability(h). Since the neutral meson is
observed to be monoenergetic no other particle is emitted in addition to
the neutron. Since the proton and the neutron have half integer spin,
conservation of angular momentum implies the charged M =-meson has spin O
or spin 1. This agrees with the observed fact that when 77 =mesons are
captured by nuclei stars result, since the rest mass of the TTis converted
into excitation energy of the nucleons. Quite the opposite behavior is
observed when the p-meson is captured by a nucleus. Very little of the
rest energy of the u becomes excitation energy. A neutral particle, other
than a photon, carries off most of it. The apparent inability of a nucleon
to absorb a p-meson is usually attributed to the fact that the spin of the
Jemeson is 1/2. The p-meson decays into an electron and at least two
neutral particles of small, probably O, mass. A consistent designation of

the particles involved in the T = p.decay and in the}p.- e decay which agree

with the above is: + "
= — )1'-+7J

+ +
P = N e=+ 2%
The capture of T~ by deuterons can energetically result in any of
the following processes:

(c) ™ 4+ D+—-7 2n
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(d) ™ +pt S on+y
() - +D" —p2n+ w° — 20 + 27
From the capture by Hydrogen and the emission of a neutral wro, the mass
difference between the charged and the neutral mesons has been estimated as

(5)

10,6 + 2 electron massess Process (e) can then proceed with an energy of
L4e7 + 2 e.ms It is not impossible that more accurate data will show (e) to
be energetically impossible. A comparison of the yield (d) with that in
Hydrogen gives a probability of .275 for (d)(S). The probability of (e) is
less than .05, possibly O, One then infers that the probability of (e¢) is
70 It has been shown(é) that the meson will be captured into the K shell
of the deuteron in a time which is very short compared to the lifetime of
the Y . The ground state of the deuteron has J = 1 and even parity.* If
the Y -meson has O spin and is captured into the K shell of the deuteron,
the total system has J = 1 and the parity of the meson. Hence in (c¢), the
neutrons must come out in a J = 1 state. The Pauli Exclusion principle al-
lows only the 3P

1l
conclude that if the charged meson has O spin it is a pseudoscalar. A con-

which has odd parity. Since (c) is not forbidden, we

sideration of the possibility of spin 1 mesons in (c¢) yields no information
about their parity. If T = and "7 © have O spin and odd parity (b) is
allowed even for very small mass difference between the mesons. In view of
the very small Q for the reaction (e) it will be forbidden. The YT -meson
and the deuteron form a state with odd parity and J = 1. The low energy 1 °
will come off in an S state. To conserve angular momentum, the neutrons must

form a 3P1 state. Since the intrinsic parity of 77° is assumed odd, the

# An ambiguity in the inversion properties of spinors makes it possible that
protons and neutrons transform differently under reflections. The parity of
the deuteron can then be made negative, 3 ¥ 1~ will be a pseudoscalar, etce
The result is only a renaming of the usual EesoH theories for charged mesons,
but does not affect the physical content.
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finsl state has even parity and will be forbidden as indicated by experiment.
If ~w* and ‘WO have opposite parity (b) is partially forbidden and (e) is
allowed in contradiction to the data.

According to Brueckner the angular distribution of photomesons(e)
(charged), and the ratio of positive to negative photomesons from carbon(s)
favor the couplings of the pseudoscaslar theory. Only this theory seems
capable of explaining the approximate equality of photoproduction of charged
and neutral Tf(9).

The role of the T -meson in nuclear forces is obscure especially in
view of the existence of other mesons (V-mesons). The pseudoscalar theory

gives spin dependent forces, and the correct sign of the tensor force.

III. COUPLING SCHEMES FOR NUCLEONS, MESONS, AND LEPTONS.
We assume that the -TU-meson is coupled directly to nucleons, and that

the nucleons are Dirac particles. The interaction:

g8 Wp 0y + Coc (3)
between the Dirac and the meson fields (or any of the derivative ccuplings)
leads to the real capture process:

N+ wh—pt (L)
but it also permits the virtual decomposition of the ¥
S -
w —s P+ N (5)
where N~ signifies an anti-neutron. On the other hand, to account for nuclear

B-decay along the general lines of the Fermi or Gamow-Teller theories, one

postulates the interaction:
(TP v ) (wia ) 6
g\ A U)W v (6)

A is a Dirac operator chosen so that the coupling is invariant under the



B

Improper Lorentz Group. Thus interaction leads to the observed B-process:
+ L
N—P +¢e + Vv (1)
but it also leads one to expect the reaction:
p++N-..__,e++‘U (9)
The virtual decomposition (5) folleowed by (9) leads to the real decay:

Tt set+s v (10)

Any theory which couples ‘W -mesons to nucleons (this need not be a direct
coupling) also predicts the W — (e, ») decay. This argument depends not
on the existence of real anti-neutrons, but only on the role of such particles
in virtual processes. Rainwater has looked for the possible electrons from
stopped “r-mesons. In 760 cases no electrons were found,” Therefore the
decay of the “r -meson into a Jrmeson and a neutrino must proceed at a rate
at least 1000 times as fast as the decay into an electron and a neutrino. In
order to compare this ratio of rates with theory it is necessary to specify
in some detail the coupling scheme for the interaction of nucleons, mesons,
and electrons.

The Model I (Fige. 1) was proposed by Inoue and Ogawa(lo). Nuclear
p-decay takes place through an unstable -meson as originally suggested by
Yukawa. However, when the coupling constants are adjusted to fit the data
on the lifetime for “Ww = p decay, the coupling of “T-mesons to nucleons, and
the Fermi constant for nuclear B-decay, the lifetime of the free T -meson

for decay into an electron and neutrino is smaller than the lifetime for decay

into a P-meson and a neutrino,

# We wish to thank Professor R. P. Feynman for reporting the unpublished
results of Professor Rainwater.



(P,N)

(ps ¥)- (es )
Fig. 1

Lopes(ll) has shown how this can be modified if the ‘TT-meson is
pseudoscalar. But in this case Sargent's Law for allowed B-decay lifetimes
does not hold; the lifetimes would be proportional to the inverse seventh
power of the maximum electron energy instead of the observed inverse fifth
power,

Model II (Fig. 2) assumes a direct coupling between the Y and the
R - mesons(ll) ’(13); the Yukawa picture of B-decay is replaced by a direct

coupling between nuclei and leptons,

(N,P)
Fig. 2.
(es v) e
()1: )
(12)

Latter and Christy have calculated the T = ) decay rate on this model,

estimating the coupling of the T -mesons to nuclei from nuclear forces and

the rate of the second order reaction

- +
- i + ™ + N
)1+P+—-> - N+ 2

“4+ v+ P



-
from the competition with p - B-decay. Assuming spin 1/2 for the J-meson
8

the calculated lifetime for the T is: 2 x 10 ° sec. for a vector,

lO°8 sec. for a scalar, and 2 x 10"9 sec., for a pseudoscalar. These are to
be compared to the observed lifetime 2 x 10"8 sec, The value of the coupling
constant between T and nucleons and the nuclear matrix elements involved in
the computation of the p capture are not known with sufficient accuracy to
categorically exclude the pseudoscalar. (In the calculation of Latter and

2
Christy both of these factors were probably overestimated. The value °£,§-

used was 1/3 for the derivative coupling of meson to nucleons and 50 for ¢
the pseudoscalar coupling. The nuclear matrix element was taken as Z. It is
certainly less than this, probably about 2/3(12). The computed lifetimes of
the T7-meson would then be too large. This would make the correctly calcu-
lated lifetime for the pseudoscalar meson agree even less with experiment.* )
The T -meson can decay into an electron and a neutrino by virtue of

its coupling to nucleonsr:

+ + = +
T —3P +N —e + v (11)

A perturbation theory calculation of this rate-diverges.
A satisfactory direct coupling model will have to show that this rate is at
most 1/1000 that of the Y= p decay " .

Extensive calculations on Model III (Fig. 3) have been made by Wheeler
(1L) (15),(16)

and Tiomno and others

3# Discussion with Dr. Latter on this point was very helpful.

t The electron decay of the T -meson through its coupling to the p-meson
will of course be negligible next to the T - u decay.

1 If the divergent integrals of the perturbation theory are cut off at the
nucleon Qompton wavelength, the W - e decay has a lifetime of approximately
3 x 10~10 gec., except when the meson is pseudoscalar and the p-decay is
pseudovector. The lifetime is then about 10-L sec. in accord with experi-
ment cf. Equation (27).



(N,P)
Fig. 30 Rl
(psv) (es 2)
According to this symmetric coupling scheme the following three processes:
p = capture P+ PP SN+ v (12a)
B = decay Ne—>P +e + 2 (12b)
A - decay j e A (12¢)

result from the direct couplings:

+ +

g (¥ (AW, 4 lIf}l) (13a)
+ +

g, (V¥ BV (Y, B ¥,) (13b)

g (W, ¢ qrp)(qr; W) (132)

A1l of the above fields are spinor fields; A, B, and C are Dirac operators.

It has been found that*:

i

g g, = 8, = 2 x 10-)49 erg cm3 (1)

a

We shall adopt the attractive hypothesis:
g, =8, =g, (15)

A=B=¢C (16)

The three couplings among spinor particles are thus assumed to be of the same

# If the operator B is = pseudoscalar, this is no longer true.



nature and strength.
IV. THE DECAY OF THE YU =MESON.
With the symmetric coupling scheme the decay of the " -meson into a

p-meson and a neutrino is a second order process:

+
R (17)
PP+ N —pt 4 2 (18)

The matrix element for (18) is contributed by (13a). The matrix element
for (17) can be any of the couplings (Eq2 -Appendix II).The T -meson can decay
into an electron and a neutrino through a similar second order process:

T St N (19)

PP+ N —>et+ v (20)
Here the matrix element for (20) comes from (13b). A perturbation theory
calculation of the rates of the two competing decays T —, (p, ), ™ —
(es =) gives divergent integrals. However, the ratio of these two rates will
be independent of the ultimate value of the ambiguous integral. For the inter-
action of pseudoscalar mesons with nucleons, perturbation theory is probably
inappropriate because of the large coupling constant. The spinor interactions
are very weak so that for these first order perturbation theory is probably
sufficient. The ratio of the decay rates does not depend on the details of
the interaction; we need only make use of the transformation properties of the
meson field and the choice of Dirac operator for (16). Typical Feynman
diagrams for matrix elements which can lead to the decay of the T into a

lepton pair are given in Fig. k.
P

+ +
e or }1
o AT
N ; = o
%

Figo h
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e+: )
+
T st —— - , < (b)
v

(e)

The matrix element for the annihilation of the ‘7 =meson at the space-time
point 1 and the creation of the lepton pair at 2 depends upon the lepton pair

only through the multiplicative factor:

P: (x55%,) A \Irv(xz,tz) (21)
)53
where A is the Dirac operator in (16). If we use a proper coordinate system in
which the I -meson is at rest (21) is independent of the space coordinate 2.
The time dependence part is exp(iE“.tz), where E - is the rest energy of the

meson; therefore the term:

+

¥ (0,0) A, (0,0) (22)
€
}1

can be removed from the integration over all space-time points 2. The transition

probability for the transition YT —s (e, ) or (p, 7 ) is:

.

4

e(E) is the density of states per unit energy for the leptons. H is the matrix

|H|29 (E) (23)

element for the annihilation of the w and the creation of the pair.

The ratio of the lifetime for yr— (e, v ) to that for ™ — (p,7v) isd



YY) -

+ 2
o%;l‘yﬂ (0,0) 0 @, (0,0) | @y’v(E)

(2L)
2
ZI@: (0,0) 0 L, (0,0) | g, ,(E)

C el
The summation is over the spins of the lepton pair.
Suppose the nuclear P-decay takes place through a heavy intermediate
particle 7 « This includes the direct interaction in the limit of an in-
finite mass for the intermediate particle. Instead of the creation of the

lepton pair at 2 we have: &

Since the coupling of the T particle to leptons and to nucleons is Lorentz
invariant, in the proper system the spin and intrinsic parity of the 7 at
2 must be the same as those of the T at 1 since all of the couplings from
1 to 2 are invariant to rotation and inversion and both particles are at
rest. The operator A must have the same transformation properties as the
Ilparticle for the decay at 3 to proceed with conservation of spin and
parity. Therefore only if A and the Jr=-meson have the same behavior under

space rotations and inversions will the 77 =lepton decay be allowed.”

#Feynman has pointed out an alternative method for deriving this selection
rule, If (cf. Fig. L) the nucleon pair is created a 1 through the Dirac
matrix O and the final pair is annihilated at 2 by the matrix A, the
matrix element will be of the form:

H= spur //..fO[K+,(l,r1)OK+(r1,r2)...K+(rn,2;)-lA K+(2,rn+1)0...x+(rm,1)]

(-ipP r1)1+ ip?fgp dh r dhr
puY}l_m 100- n

K+(r1,r2) =dfahp

The propagation kernels for the meson lines have been omitted since they
contribute only a scalar numerical factor. The integration over all space



coordinatés insures invariance under X —» =X; ¥ —> <y3 2 —> =2, I1f the
matrix element changes sign under any of the space inversions, it is zero.
Since any spur of a product of Dirac matrices is unchanged by vy —> v
A= 1,2,3, H must be invariant to each of the three - »
transformations:

(a) x—=x T =1

(b) y~=r=y 72—4-72

(¢) 2=~z Y, ==,

The kernels K, are by themselves invariant to these transformations. Since
the factors O within the brackets occur in pairs (each meson that is created is
also annihilated) the bracket is invariant, and we must have:

A0 —> A0 under (a), (b), (c)e

This is equivalent to the selection rule.
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In addition to spin and parity conservation, Furry's theorem(17) will
forbid certain decay schemes to all orders. If a Feynman diagram contains
a closed loop with an odd number of even matrix elements it will cancel
with the matrix element from the Feynman diagram taken in the opposite
sense.* Vector and anti-symmetric tensor interactions are "even"; scalar,

pseudoscalar and pseudovector are "odd". For example, the matrix element

for diagram (a) Fig. L will be zero if O is I (unit matrix) and A is T,
(fourth component of vector). The more involved diagrams involving the

ephemeral existence of many mesons and nucleon pairs differ from (a) by an

even number of operators O since every meson created by an O interaction
is also annihilated. Therefore if Furry's theorem forbids a decay through
virtual pairs for any order it forbids it for all orders.

The ratio of T, (e ) to\ﬁf__*,Qp, 7)) decay for the direct
couplings of Appendix II, (2a), (2c), (2e), and (2g) for meson-nucleon

interaction any of the five (-decay interactionsT is given in Table 1.1

The masses of the proton and neutron have been taken equal ; the mass of

the T -meson is assumed to be 286 e.m. The mass of thelppmeson is taken as

215 €oMle

# When reversing the sense of all the Feynman diagrams it is also necessary
to relabel all the protons and neutrons. For the Furry theorem to be valid
the absolute value of the coupling constant between neutral mesons and
neutrons must be equal to that between neutral mesons and protons. For
example in Fig. {4b, Lc), for that neutral which is exchanged between a
proton and a neutron only the product of the two coupling constants enters
and these need not be equal. In Fig. (Lb) another neutral is emitted and
captured by a neutron, in Fig. (Lc) by a proton. For the diagrams to be
dual the square of the coupling constant must be the same. Therefore
Furry's theorem will hold for the symmetric theory where the neutrals are
coupled with 73 or if they have equal coupling constants but not for a
mixture of both.

+ These are: L scalar
Yg = Y1Y2Y3Y), pseudoscalar
tp vector
Y - antisymmetric tensor
1 See Appendix I uf> ”t”

Y,



Meson Field

. -

RATIO OF THE DECAY RATES FOR W— (e, ¥/ ) AND Tt —> (p, 2 )
(DIRECT COUPLING)

Type of B-Decay
Scalar P-scalar Vector P-vecter Tensor
Scalar 5.1 S F S S and F
P-scalar S 5. S 1.0 x 1o'h S and F
Vector S and F S and F L.O S and F 2.k
P-vector S S S and F 4.0 F

S indicates that the transition is forbidden to all orders by the selection
rule for conservation of parity and angular momentum. F signifies that
Furry's theorem forbids the decay.

The symmetric coupling scheme is in agreement with experimental facts
(no "= (e, 22) decays observed) only if the meson field is pseudoscalar
and pB-decay ccupling contains a pseudovector term. The B-decay may also
contain arbitrary mixtures of scalar, vector and tensor terms since these
do not contribute to the decay; a pseudoscalar term in R-decay is forbidden.*
That the T ~meson has to be pseudoscalar is in agreement with the conclusions
of Section 2. An analysis of nuclear B-decay by Feingold and Wigner(ls)
have led these authors to the conclusion that pseudovector coupling is most
probably responsible for allowed transitions and that vector and tensor

interactions are small. The probable magnitude of scalar and pseudoscalar

coulcd not be determined.
A consideration of meson theories with derivative coupling does not

give as clear cut a result as the direct coupling calculations.

# The S-A-P coupling(19) for nuclear B-decay of Wigner and Critchfield
would not be permitted.




TABLE II
RATIO OF THE DECAY RATES FOR M — (e; ©) AND “IT —p (jis ¥ )

(GRADIENT COUPLING)

Type of B-decay
Scalar P-gcalar Vector P=vector Tensor
Scalar F and S F and S 1.0 x 1.0'," F and S S
P-scalar S Sel F and S 1.0 x 10-)" F
Vector F and S F and S ko0 F and S 2.k
P-vector S S F and S F 2.4

On the basis of the T = P decay alone one cannot exclude the possibility that
the T is a scalar with derivative coupling* to nucleons. The data summarized
in Section 2 indicate that if the charged U has zerc spin it must be pseudo-
scalar. The derivative coupling of neutral scalar mesons to nucleons is exactly
equivalent to no coupling at all to all orders; the neutral is certainly not
scalar with derivative coupling. The transition probability for the decay of

the pseudoscalar ‘W -meson as calculated by first order perturbation theory is:

_ 1/2
1oom |H\29(E) =§:2Trgagzlfdp %—-—-
t oo, MY gy M

g
e (g 0w (agan) » (ghauy)
2Ep = P
(p auy) « (wran,) "r°<u§°u1=>> o ® )
2EP+u.n.

)ﬁ=c=1

P is the mass of the Ti~ -mesons, U UN: u}l, u ,, are the spinors

# The diagrams (2) and (b) of Fig. L give no contribution to the decay of6
derivative coupled scalar mescns. The decay rate is proportional to g, ga2 °



=16~
for free protons, anti-neutrons,)mﬂmesons, and anti-neutrinos respectively.
ﬁwr is the amplitude of the T -meson wave function, 2EP is the energy of the
virtual nucleon pair and the integration is over all momenta of the nucleons.

The density of states is: L

2
()JW-P;)()J\T-}:i)
Z)uh

1o

o (B) =T (26)

Performing the indicated operations we obtain the transition rate:
2 2
1 2) <82P,TPP ><}%)<ﬂw P;;) )
t Ae A 46c6
7 2 2
- cP

x iy 5:?§j> <:1 -._JE:> x

6l P E}l

x \:fn <9 + {02 + 1}1/2)

8 is the cut-off momentum in units of p ¢ o A covariant calculation using an

2

o
i (6% + 1)1/2} &0

invariant cut-off prescription of Feynman(zo) leads to (27) with the bracket

replaced by *:

2 2 1/2
i
{n <—(->‘—) 3] = Fe” u‘rr) gin~t <8—T—> (27a)
7P M 2Pp
(20)

# Using the notation of Feynman we obtain for the matrix element for

Fige L(a) an expression of the form:

R(M)=gg/SP[‘YYYY ( XYY
d 2
mentum energy vector of meson. This dlvergent integral is a

functicn of Mg

R(Mz) - R(M + A ) converges if the subtraction is made before the
integration. This gives (27a)
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where terms of order };:\—P and higher have been dropped. "™\ is a cut-off with
the dimensions of mass. For large cut-offs (27) and (27a) are essentially
equal, Gradient coupling again gives rise to (27) and (27a) with the replace-

ment:. 2

2
g 2g.p
— > ol ok (28)
he h Pe© 2
Choosing gA:é 2 x 10"’"9 Erg—cm3 from B-decay and ZB-- =1 from nuclear forces
c 3

we obtain the following lifetimes as a function of the cut-off 6:

TABLE IIIX
LIFETIME OF THE TYU-MESON AS A FUNCTION OF CUT-OFF

© in units }IP c Lifetime of the ™TU =Meson
1 5e7 X 10"8 sec
2 5.7 x 1077 sec
10 3.8 x 10~1C sec

A cut-off at about the Compton wave length of the nucleon agrees with the doserved
lifetime of 2 x 1070 sec.®

The ' -electron decay could also proceed by any of the diagrams of
Fig. (5). Since a photon is emitted in general such processes would go at
least e2/¥1c as slow as those of Fig. (4). For those cases where the electron
decay is partially forbidden (pseudoscalar meson, pseudovector B-decay) the
modes of Fig. (5) will compete since the electron and neutrino no longer have

exactly opposite momenta so that the matrix element need no longer be small

* Steinberger(ﬂ) has calculated the lifetime for this decay; after cutting
off with regulators, he finds 2 x 10~2 sec. for pseudoscaler coupling. His
result is slightly suspect since the lifetime for gradient coupling does not
agree with that obtained from the equivalence theorem (Eq. 28). It is certain-~
ly true that regulation gives a lifetime many orders of magnitude longer than
experiment,
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(cf. Appendix I). Since the meson is initially at rest and the nucleons are
very massive, it is reasonable that Fig. (5¢) will give the dominant matrix
element in the decay. Although the transition probability is given by a
divergent integral, it is precisely that which was encountered in Fig. (L) so
that one can estimate the ratio for the two modes of ‘T -e decay. Designating
the matrix element leading from 1 to 2 in Fig. (La) and Fig. (5¢) by S, the

transition probability for the decay of (La) is:

1 @O (u | vy v, )2 s il B 52 b
(29)
L (2B, (2E)(2E,,) E_(2T)3

The transition probability for the decay (5c¢) iss

1 2 2
Yive | @ (E) s
1 2 2 <ue | ‘ A - ﬁ?/ - m l‘ 5 | 7J> P
== h‘n"gA LTe” 2 (30)

(2En.)(2Ee)(2Ev)(2E1) (2r)6




L 2
EYE‘”pc dp, dfr_,dQ .

P(E) - 2 —_— , =
Ev(E‘ﬂ‘- Ee) +E, Py ° PY

Eq o Ee’ E, »E y are the energies of ' -meson, electron,neutrino, and photonj

Sf ’ Se s P_ » D are the corresponding momenta. e}1 is the photon polari-

k24

Y
zation vector. The integration is over all momenta of the electron, over the
sclid angles d<«2_ and df2,, , and over the spins of the leptons and polari-
zation of the photon. The normalization of the ue and u, are such that for

any operator O , [6 = Transpose conjugate_]
+ 2 » ~
> <ue()uv> = spur l-(ﬁe+me)0ﬁv O]

without the usual factor of (hEeE_u )-1° The ratio of (30) to (29) is
approximately (92/{1 e) ( ﬁr—) (-15'-) (l-i!-:l“-')2 ~ 15. Therefore we should expect
the ‘T = (electron, photon, neutrino) decay to be of the order of ten times as
frequent as the T = (electron, neutrino). About 0.1% of the N decays should

therefore involve electrons. This is not in contradiction with experiment.

CONCLUSION AND SUMMARY

If electrons and neutrinos are coupled to nucleons through U -mesons
it does not appear possible to explain both the absence of the W — (e, V)
decay and the observed facts of pB-decay. The assumption that the u-meson inter-
acts with nuclei by virtue of their coupling to T -mesons tends to rule out
the possibility that the ‘T has the pseudoscalar property indicated by experi-
ment, The use of perturbation theory for the T -nucleon interaction, however,
may not lead to reliable estimates even for the order of magnitude. In this
cese of direct T = p coupling the perturbation calculation of T — (e, ¥)
decay through virtual nucleons diverges, so that no comparison can be made with

the T — (ps v ) rate.
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An alternative coupling scheme is to have direct interactions between
fermions (symmetric coupling. The ‘(- J decay occurs through a nucleon
anti-nucleon pair. Although the rate diverges the ratio of the' il ——>
(es » ) to the ™ — (p, ¥ ) lifetimes is finite and independent of
perturbation theory. If the T -meson is pseudoscalar and f~decay is pseudo-
vector the "W-meson will decay into an electron-neutrino pair only 10‘-h as
often as into aAp-neutrino pair, and into an electron, neutrino, and photon
about 10'3 as often. A perturbation theory calculation of the lifetime of
T gives agreement with experiment if the divergent integrals are cut off at
the nucleon Compton wavelength. These conclusions depend very crucislly on
the consideration of nucleons as Dirac particles especially in the prediction

of the possible role of anti-particles in virtual processes.
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The Matrix Element for the Production of a P ¥ Pair

We wish / dfl z ¢ Ag, ’2 where B is the momentum of the u-meson

)il
)1 and - 3 the momentum of the neutrino; the
Lk
integration is over all angles.
> o 2 2 > - 2
Q@ Puy*+Bpt,/ph+a -a+*p+\Vp
Let ) s = 2 2 3 lv.—_ =

- :2\/1)}124-)12 + +2\/p?

Then (1) may be written

spur A\ Foan?

+ -
For the sixteen Dirac operators A we obtain: p = '5 ° 'I','
w VR R

A= I 1+ p/E a

v/ s ‘ (a)

le= b

% p/E)‘1 (b)

Qs Gyr O, L % p/BE)Ll : (c)

ay00 1- p/E)1 (d)

Ggizs GoGys Gy, 1+ p/BE}1 (e)

a.2a30.h, 000y 5 OOty 1l - p/BE}1 (£)

0000, 1+ P/E}1 (g)

Qa5 Q0 5 a0 = h

1y’ 2y 3k 1-o/3E, s

For (b) and (d) the matrix element is much smaller for an e - z pair since

Perul

Ee
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APPENDIX II.

THE INTERACTION BETWEEN T -MESONS AND NUCLEONS

Within the framework of special relativity, the only direct interaction

ich one knows how to construct is the contact interaction,

The work on the

artificial production of mescns implies that mesons can be produced singly.

Therefore the Hamiltonian which describes the interaction must contain at

le

ast one odd power of the meson field.

The simplest choice is to assume that

the interaction is linear in the meson field in analogy tc the coupling of

th

th

L

e electromagnetic field to charges.

e Lagrangian for the nucleon plus meson field is:
3, [ 3834 * 2l
= [dt L L=~fdx ——— e T ° - &1
J TVl T X2 c

+ he f ‘P+(x) [YP -a—i- - m :I P (x) d3x + coupling
u

Following the notation of Wentzel

(22)

If we consider those interactions which involve only the meson fields or their

first derivatives, the possible invariant couplings are:

g2

g

)1

A

Scalar Field go(/gf(x) P H(x) O (x) aT + c.C
23 40 ) v, P (1) AT + cuc
pd P P
Pseudoscalar Field ngg{(x) V) +(x) i YSLIJ (x) a7 + CoC
2 [3,40 P*0) vy, @ (o) av +cue
¢ Vector Field gh/ du(x) P *(x) YPEP (x) 4T + coC
g
= [a,, 802) = 36, (x)] [ ) vy, O (x)] aT + cuc
¢ Pseudovector Field g6 f ¢P(x) P *(x) o}]’1 P (x) + coC

g
ol 22 40 - 4y 0 | [0700 v, 0 [ar + e

(2a)

(2p)

(2¢)

(24)

(2e)

(2f)

(2g)

(2h)
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csC = complex conjugate

)1\'T. mass of meson
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I. INTRODUCTION

In the Quantum Theory of Fields the elementary particles are treated
in a dualistic formalism as possessing the properties of both particles and
fields. In the classical 1limit, however, the bosons form fields while the
fermions are point sources of field. The pcint sources give rise to infinities
which carry over into the quantum theory.

On the classical level this difficulty can be removed by dispensing
with the field concept. From this point of view sources and absorbers inter-
act directly analogously to advanced and retarded Lienard-Wiechert potentials
in electrodynamics. Whether the self interaction is included or not, the
recoil damping accompanying transfer of energy and momentum (which is neces-
sary if they are to be conserved) can be understood only by considering the
role of all the surrounding particles as complete absorberélgo that the
properties of both source and absorber must be analyzed at the same time. The
carrying over of this action at a distance program into the quantum theory has
met with great difficulties.

An alternative program is to retain the field construct but eliminate
the point singularities. Particles appear only as small regions of space
where energy and charge of the field are concentrated. In such a unitary
theory the field is everywhere continuous, finite, and quadratically integrable;
the equations of motion of the "lumps" follow from the field equations. For
such lumps to be stable and capable of interacting with each other it is
necessary that the field equations be non-linear.

The Maxwell, Dirac, Yukawa, and Gravitational fields, together with
their usually accepted couplings form a non-linear system so that one has

the possibility of a2 unitary theory. (Calculations with the Maxwell-Dirac*ﬂ)

% In this case the mass of the localized solution was negative. However
calculations based on a variational integral often give misleading results con-
cerning particle solutions of the non-linear field equations.
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and Maxwell—Yukawg”fields have lead to particle like solutions.) A more
ambitious progrem is to describe the elementary particles and their inter-
actions in terms of a single underlying non-linear field. The non-lineari-
ty which accounts for the particle like solutions will also describe their
interactions. (Since "lumps" of field will have-some overlap even at
large distances, it is not necessary to introduce an intermediary field as
in the case of point particles. Efforts have been made toward such a uni-
fied theory of nuclear, electromagnetic, and gravitational fields by

Einstein(4'), Schroedinger(b )

» and others. The non-linear equations are
derived from the variation of a Lagrangian invariant under the whole group
of general relativity. However, the very great difficulty of calculating
the interesting solutions has made their interpretation obscure.

A technically less formidable program which disregards the
gravitational interaction is to investigate Lagrangians which are simple
and invariant only under the Lorentz Group. The Lagrangian for the Dirac,
Maxwell, and Yukawa fields plus their Lorentz invariant interactions would
appear to be well suited to such an investigation. Here, however, we study
the simpler problem of a single non-linear field, first to avoid the
mathematical complexity of three simultaneously interacting fields, and
second to explore the possibility that a simpler Lagrangian in the richer
non-linear theory can accomplish as much as a more complicated Lagrangian
in the linear theory.

(6)

We shall assume the Lagrangian to be a function of the field
quantities U (m) (Xst) = 1, 25...n and their first derivatives only so
that the resulting non-linear differential equations are at most of second
order, The Lagrangian is then of the general form:

£ = (m) p (m
L{ Y v, qaq; ) dx1 5 B dxh (1)

d
'aa =m x1=x,x2=y,x3=z,xh=ict
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The invariance of the Lagrangian to the inhomogeneous Lorentz Group
and to gauge transformations will lead to conservation laws for a vector, a
tensor of rank two, and a tensor of rank three which will be interpreted as
current-charge, energy-momentum, and angular momentum respectively. The

Euler equen;ion)"L corresponding to (1) is

b 3 3
Z aCL - - t =0 m= 1, 2, ooy Il (2)
a=1 3, P (m)y 3P m

We define the tensor
9L < (mp
T, =- e | 3y, P )
From (2) it follows that

9. T _ =0 (L)
b
Under an infinitesimal Lorentz transformation

Sx =0w
a

dw g== 0@ (5)

ap xB B Ba.

the field quantities transform according to

o @ -3 ™5 @@ (6)
a<f ap ap

Sa(‘n;n) depends on the tensor nature of I (m).
Let the third rank tensor M- ap be defined by the equation
TN, S0 = L N S, )
i<p Nap ap TGS (m)) n ,

(m)
where 3 P (@) = §p (m) _ 3 © (m) §4 (8)
» )
% 8& =0 subject to the restriction
S (m) = 0, S(aQLP (m)) = 0 on the surface of the four dimensional volume

.The Lagrangian leading to (2) is of course not unique
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From (2)(3)(6)(7) and (8)

(mn) dL
M = e-x T +x, T + s q?(n)
TP TATABR TTR I e TRy OB 3, T M) -
and
amMM;O (10)

The first two terms of (9) will have the interpretation of orbital angular
S
momentum, the third describes the intrinsic spin of the field.
For the interaction of the field with an electromagnetic field 4P we

assume the usual prescripticn

G (3,-igA)P=p W 11
n ? —> (9 }1)@ L (11a)
3 4* L (@ +1qA)D*¥Ep*P (11b)
F R P P

In order for the Euler equation to be gauge invariant under the gauge

transformation

]

A —> A +3 (12)
L A

we must introduce the gauge transformations of the second kind:

T wetdn (13)

# The T defined by (L) is in general non-symmetric. For specified values
of the M%otal energy and momentum, only the production of a gravitational
field gives the T ., a direct physical meaning. In order to get such a cor-
respondence we 'p'must form a symmetric qu) such that QPQP'U = 0,

) =T +90 f

e ¥ p puv
where
f =3 + 5 - S
MBPY ppv A2 p Ypu

We shall however be interested only in /| dx ©, . =/ @ T
hv h-u

2
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If the Lagrengian is an expression of the type:

(m) (m) *
L DP([) 2 D; p VR p (m) g (m) *) -
we have a gauge invariant theory. It then follows that the vector
. L 3L
S, == i& Z e l:p (m) - LP * 1
’ (@ \3 (o, © @ 3 0F P (15)

satisfies the conservation law

Ba 8, = 0 (16)

From the continuity equations (L),(10), and (16) it follows that ¢, Gd’ and

M defined by

ap
iQ = fsh& (172)
16, = f T ax (17b)
. _ -
lMaa“/MhaB dx (17¢)

are a scalar, vector, and anti-symmetric tensor respectively under the entire
Lorentz group*. Each of the integrals (17) is independent of the time. A
field confined to a small region of space will carry a definite charge Q,
energy-momentum Gd’ and angular momentum Mmp » The transformation properties
sre the same as those for a peint particle. Therefore if localized, regular
solutions of the field equations exist which make the integrals (17) finite we
can obtain a consistent classical description of particles as "lumps" of field.

In the canonical theory of quantization the field quentities JJ and
9L

B(icawﬁ)

= U become non-commting operators according to the prescription:
Classical Poisson Brackets = i/ﬁ Commutator. For Bose Fields

this yields

# The transformation properties depend upon the ) satisfying the Euler
equation at all points. The presence of a singularity can spoil the
identification,
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\;é‘m)(x), \Y) (n)(x') ] =~ ik Smn 8(x - x') (18a)

*(m)

w0, B V)| =ik 8y, 8o

All other commutators vanish.

Fields quantized according to the exclusion principle have no classical

limit. The canonical commutation rule is

) A
E{m)(X)’ Q *(n)(x')] & 5 8(x - x') (18v)
+

The other anti-commutators vanish. With the rules (18a) or (18b) it has been

shown( 6) that

[Ga-?- G : ]- =0 (19)
[Ma p’ M“{S] = (SGSMBY+ SBYMQS - gaYMBS (20)
- gBSMaY> it
[MCLB"GY J- = (g, SBY - Gg 8oy) ih . (21)
If a position operator Xi is defined by*
— m—
X, fsh dx =fxish dx (22)
then s
[Gk,Xi] / s), & =-ih Skif 5, dx (23)
If the rest mass is defined by the operator
~M2=GaGa=Gh2 +3°38 (2k)
then LGi’M——l =0 (25)
and
[MGB,M2__J =0 (26)

# This definition is non-;_glativistic. A covariant definition is
X, = (Gh)-lf 6)x X3 dk - Then if G is the operator L G G. we obtain

> 9

M=l



# (Footnote cont.) .

[Ga’ g :I = = i'ﬁ@a gy = GaGBG-l>and [xa, Xy ] = ih G'lMa 5

The fundamental length appearing in these commutators is the Compton wavelength

of the particle. The charge also commutes with the other observables

[Q, G, ]_ =8 (27)
[@, K 6] o (28)

[Q, 2 ] =0 (29)

According to (19),(20),(21),(23),(25) = (29), the observables associated with
a "lump" of field obey the commutation rules ordinarily assumed for the cor-
responding properties of particles.

The canonical gquantization does not offer a very satisfactory treatment
for the classical unitary theory we shall consider. The singular ccmmutators
lead to divergences and ambiguities; the spinor field when quantized according
to anti-commutation rules has no classical limit; the motivation for the
usual quantization is to endow a field with particle properties but this is
already accomplished on tﬁe classical level in a unitary field theory. The
classical unitary theory can be crudely quantized by specifying the coupling

constant g [eqn. (11) and (15) ] to have its usual value

q (30)

= K
Ahe
where f is the charge on the electron. Then since @ is an integral multiple of

£ the solution of (2) corresponding to the lowest charge state is normalized

according to

-ifsh?x =k c (31)
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We shall first discuss on the classical level, the particle-like
solutions of some simple non-linear Lagrangians for scalar fields. Under
certain conditions an interpretation can be given from the viewpoint of the
canonical quantization, Eqe (18a). Lagrangians for spinor fields which
yield non-linear theories can be treated canonically,.Eq. (18b). However such

a theory is quite different from the classical spinor theory we shall treat.

II. NON-LINEAR SPINLESS BOSE FIELD
1. The Wave Q&
Let D (X,t) be a single field coupled to itself through a non-linear

coupling. If there is no intrinsic spin we shall assume the Lagrangisn:
iJa[-aP@*aP@+pzm*@],§/ap(Ly*,\ya}lxp*aplp) (32)

}f& is a fundamental length; P is some scalar function of the field strengths

and their derivatives. If the coupling term were missing, we would have the
usual Lagrangian for the scalar (or pseudoscalar) meson field.

When
P = a1 B (33)

the Euler equation is:

Dxp+}1202-2“?n"1=0 (3L)

where

0=v° -1/ % (35)

# Non-linear Boseqflelds have beeg considered in connection with the scattering
of light by 11ght and meson-meson interactions. The interaction of bosons
occurs through transient pairs of the coupled spinor field. The spinor field
can be eliminated in various approximations giving rise to a non-linear
Lagrangian involving only the Bose field variables.

9)
Schiff has considered a non-linear meson theory in connection with
saturation. His equation is the same as our Equation (37) except with the
sign of € reversed. The sign reversal prohibits particle like solutions.
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Since P is gauge invariant, if we have complex fields (charged), n must be
even.
We shall look for steady state solutions with the simple time and space

dependence
it
P = y(r)e (36)

y(r) is taken real so that we have no radial current. More general solutions
of équation (34) with other time and space dependence have not been investigat-
ed because of computational difficulties in solving the partial differential
equation. With the assumption (36), the Euler equation is the ordinary dif-

ferential equation:

2
d—z+-2-g-(1-(02)y+(-_,y3=0 (37)
dxz r dr

n has been specified to L. From (17a) the charge is:

LTe /P 2 2
—/K—c—fo r 2w y°(r) dr (38)

From (17b) the mass is:

uw/mr2dr[_€_yh+2w2y2] (39)
2
(o}

When
1
P=-(\P*a - aLD* ¥* - *
3 (2730 -3 UN(2*3 0-93 9% (10)
and the solution is of the form (36), the Euler equation is:
2
SI,2H . n-wy)yrew?pP=o (k1)
dr r dr
The charge is:
)
2 2 €
h‘ﬁ‘f r¢ dr 2@y [1+-_2—y2] (L2)
o

The mass is:

Q0
we/ r2dr[..62.. ®2y1‘+2w2y2] (43)
o 3
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If y(r) is a solution of (37) for given @ , then y(r)/w@ solves
(41). Particle like solutions of (37) and (L41) exist only for€ > O,

Therefore the masses are always positive.

2. The Existence of Particle=Like Solutions

There exists a two parameter family of solutions of the differential

equation:

¥+ E%: -y 4+ y3 = 0 (L)

where ! signifies fL o Ify, (r) is a solution of (Ll), then

=

is a solution of
" '
VB La.edyres=o0 (16)

Therefore if we find solutions of (LL) which are everywhere differentiable
and which are quadratically integrable (finite charge and mass) we also have
a proper solution of the charged field equation (46). Such solutions exist”
only for € > 0, 02 < 1, so that the derived solutions are real (no radial

current). Equation (L4) is the Euler equation of the Lagrangian:
N
eopor Lot i ]
fdx (y') +vy : (L7)
@
=[ La (18)
o
L is defined as L
L r? [- (y')2+y2-=‘g-] (49)

The conjugate momentum (with r playing the role of t) is:

* We are greatly indebted to Professor H. F. Bohnenblust for pointing out a
method of proof for the existence of quadratically integrable solutions of
Equation (Ll4). We wish to thank him for an extremely helpful discussion.
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3[-_-1-2 (y')2 + r2y2 - rzyh/2] b

p = ; = (50)
Ay")
- 8T ry’ (51)
The Hamiltonian is:
® 2
[ et (52)
o
where
H=y p-1L (53)
h
=-r2[- (y')2+y2..€_]m‘ (54)
2 L
= - P - 2 L.
[wTﬂ2+ry 7| b (55)

We form the pseudo-Hamiltonian
- N

H = =ww[w> %-] (56)
In this form H has no explicit dependence on r; it is a function of y and y?
only., Differentiating,

- SPTY: (57)
dr dr

Since H is the Hamiltonian function for the Euler Equation (LL4), for any

solution of (LkL)

dH(yspsr) - 9 H(ysp,r) (58)
dr dr

then from (57)

o 59

dr 2 9r 3 &7
Substituting from (55)

@ ___p _ _.Te) (60)

dr N T r



Therefore

B 1%

=0 (61)

along any trajectory. Equations (56) and (61) are sufficient for a
qualitative investigation of the solution. In Figure (1) we have plotted
the contours H = constant in the phase space (y,y')s If Equation (61) is
neglected these are trajectories for Equation (LL) with the E%g: term dropped.
In order that y remains finite at the origin r = 0, the g%l term in (LL) re-
stricts us to the one parameter set with y'(0) = O. Therefore in the phase
space we are interested only in those trajectories which originate on the
axis y' = 0,

There are three singular points in phase space (1,0), (-=1,0), and
(0,0). The first two are minima of H s the origin is a saddle point. All
trajectories are bounded since H must decrease along a trajectory (Equation
61), Once within any of the H = constant contours, the trajectory cannot
leave and must ultimately be captured on one of the three singular points.*
If the initial value of y is greater than O but less than the 43 s H(r= 0)
< 0, and the trajectory gets captured at A (curve a of Figure 1), If the
initial value of y is sufficiently large, the capture will take place at
the singular point B (curve b). For an appropriate initial value between
that of a and b, the trajectory will end at the origin in phase space, i.e.
a8 r —» 00 y and y' —- 0, T

Let S be the set «, of initial values y(0) such that y(r,Aé) cross
the axis y = O, That this set is non-empty is easily shown by calculation.
Let T be the set of initial values to such that y(r,to) do not cross the

axis and get caught at (1,0). This set is non-empty since y(r) s 1, y* =0

% It is easily shown that for this case there are no limit cycles or
closed trajectories

T The saddle point can only be reached in the limit r — o ,
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is such a solution. Now y(r, *Vo) is an analytic function of r in a
neighborhood of r = O, This follows because the Taylor expansion converges in
a neighborhood of r = O, From the Imbedding Theorems it can be shown that
tﬁé solutions are uniformly differentiable with respect to the initial wvalue
, or to‘ In particular there exists a neighborhood of </, such that all
trajectories in this neighborhood cross the axis g = 0 arbitrarily close to
4 o Since every <y of S possesses a neighborhood in S, S is an open set.
Likewise T is an open set. Since T and S can have no point in common, and
since both are open, there must exist a point ¢, which is neither in S nor T.
Hence a trajectory starting from S, must get captured at the origin. There-
fore a solution of (L) exists which is continuous everywhere and vanishes
a8 I ey 0

The phase space description has the following mirroring in (y,r)

space:
y(r) =+1 y(r) = =1 y(r) =0

y'(r) =0 y'(r) =0 yi(r) =0
are possible solutions (Figure 2.,) For an initial value in the neighborhood

of +1, say +1 + Mo where n, << 1, an approximate solution is:

y(r) =+ 1+ n_s8in _V2x « 1Lr_, o (62)
[+] x —

Trajectories originating near the singular solutions y(r) = + 1 oscillate
about it with decreasing amplitude [ (a) of Figure 2 ] o .For a larger initial
value y(0) [ (b) of Figure 2 | the trajectory will get trapped about the
lower singular solution y(r) = = 1, There exists a trajectory'E:(c) of
Figure 2 ] of intermediate initial value which will asymptotically approach
the solution y = O, As y(r) becomes very small, the non-linear term will be

negligible and we have:

=X

Y(r)-->Aer sy T =—> @ (63)
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The mass and charge integrals will exist. For solutions of (L6) as r —,00,

N
if @ 1, - 1 -wWép

y(r) —»B £ s T —> @ (6L)
r
2

However, if @ = =1,
sin \02-1r
r 9

y(r) — ¢ .

r—> (65)

For non-zero amplitude this does not give finite charge and mass integrals;
therefore for a proper solution:

-l=<w < +1 (66)
In a similar way the existence of solutions with a higher number of nodes can
be demonstrated,

If € = = 1 the phase space diagram is given in Figure (3). The
contours of constant H are open; H runs from + o to - @ . Since solutions
originate on the y' = 0 axis [ H< 0 ], the restriction .‘g < O along any
trajectory keeps it from approaching the origin. Therefore no proper
solutions exist for € < 0O,

We can make a qualitative investigation of more general non-linear

Lagrangians using the same technique. If

Z=[av [~ (2 +7 -2 ] (67)
the Euler equation is:
w4 2! 2 aP( )
Y+—;‘L-(l-w)y+_28; (68)

For the pseudo-Hamiltonian H we obtains
E=4r [ (5)2-y2+P ] (69)
Along any solution of the Euler equation:

dH 16T
==~ " . 3)2=<o0 (70)
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When P(%) = e,ﬁ‘ﬂ the phase diagram is topologically equivalent to Figure (1)
for n an even integer greater than two. Therefore if, and only if, € is
greater than zero will a particle-like solution exist for this case. When
n is an odd integer greater than two, the phase space is topologically
represented by Figure (4) for€ =+ 1. There is no particle-like solution
for y(0) = 0. The existence of a zero node proper solution for sufficiently
large y(0) can be demonstrated in the same manner as for yh coupling,
However, once a trajectory has crossed the y = 0 axis it can never recross
it or approach the origin. Therefore there are no proper solutions with
nodes. When € = = 1 we have the mirroring of the € = + 1 situation about
the 8 = 0 axis,

If the coupling term F involves derivatives of the field variables,

2,

H can ch ign, F
= ange sign or

=S g-43 fe\ged g-¢2
- B - - 1
4 [: P p :]Eﬁ$ B r d*':] (7)
we are lead to Equation (L41). Solutions of this can be derived immediately
from those of Equation (L46). Many node particle~like solutions will exist

for € >0, Only in the singular case ® = 0 do we fail to get a proper

solution. Therefore for the coupling (71) there are no neutral particle

solutions.
When P=€¢*3PM8P¢* (72)
we have

Bl - (1-02) 32+ 2+ en2yP+ €0k (13)
and 2

.?_j =--16‘W‘__.__L_(1"'r ) (y1)? (7L)

The phase diagram for € > 0 is topologically isomorphic to that in Figure(2J,
Therefore we are lead to expect a set of multinode proper solutions. How=

ever in the special case w = O we have the topology of Figure (5) and no
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proper solution exists. Therefore all proper solutions represent charged
fields. When € < O the topology is represented in Figure (6). 9_34 0
to the left of the dashed line and g.f. > 0 to the right. All solu:;.‘ons which

originate on the 3' = 0 axis will approach y + 1. They can never reach the

origin; no proper solution exists.

3., Numerical Solutions

Equation (LL) was numerically integrated for various initial values.
The O =3 1 =, 2 = node solutions were extracted. These are given in Figure
(7)> where ry (r) is plotted as a function of r. The O - node solution has

an extension of approximately jlx' e Higher node solutions are larger. TWhen

W # 0 (Equation L6) the radius of the particle is approximately > »

In general the particle radii are greater than the fundamental lengthj;

neutral solutions are smaller than charged ones.

The masses corresponding to the neutral particles are obtained from
(39) with @ = O, These are 21T .5.:6.6_3. , 211*3_2:2 , 2T lg.? » for 0,1, and 2
nodes. The mass ratios are independent of the coupling. In Figure (8) the
product of € [ coupling constant | and Q[ charge | is plotted against @ .
For a fixed coupling € , and with the charge normalized to 1, @ is determined.

After charge normalization the energy is
(o)
o] + b e [ ar Jhin) (75)

0

The second term multiplied by € is plotted as a function of W in
Figure (9). AS€ —» @ ;@ —» 1 and the second term approaches O.
Therefore for large € , the masses of all the charged particles —» ‘ u)l

—=> le¢ As the mass decreases the size of the particle increases like

1

+ The neutral masses — O for large € ; the size of these

‘/ 2
- W
4 particles remains constant. For very small € y, W —> 0, and

the mass originates almost entirely in the latter term of (75) which —
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as ¢ —> 0, Neutral and charged particles then have the same size and
energy. In Figure (10) the masses for 0,1, and 2 node solutions are given
as a function of € . The charged solutions have been normalized to carry
unit charge.

Two singly charged particles can interact to form a particle of
charge two. The mass of a single lump of charge two is less than twice the
mass of a singly charged particle. In Figure (11) the binding energy of
a charge two particle is given as a function of € for the case of the single
node solution. The mass is

€Q2

+
202 ¢ 2,2
\/755+ e 2q \/755 + e
971

€V 155
As € —, oo the mass __; Q, and consequently the binding energy — O.

971

For € very small the mass approaches which is independent of charge.

Figure (12) gives w as a function of € for the Equation (Ll). Unlike
Equation (46) for small values of the coupling € there can be no solutions
normalized to carry unit charge. For larger € the possible values of &
occur in pairs. The mass spectrum is given in Figure (13). For a fixed
value of € there are only a finite number of normalized solutions. As € s, OOy
the masses approach either one or zero.

The equations discussed in detail are quite typical of the rich variety
inherent in even a simple non-linear field theory. A point of some interest
is the role of charge in the solutions. For certain types of coupling only
charged particles or only neutral particles could exist; in those cases where
both charged and neutral could be formed, they will have similar properties

only for very strong coupling.
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ITII. CANONICAL QUANTIZATION OF THE SCALAR FIELDS

1. Approximate Diagonalization of the Hamiltonian

In order to give a satisfactory interpretation of the particle-=like
solutions, the quantum theory must be introduced in a more satisfactory
manner; only the property of charge discreteness has so far been described.
It would be in keeping with the spirit of a fundaméntally non=linear theory
to quantize in a way in which the lump-solutions play the basic role of
fundamental particles, but ihis program has met with great difficulties.

In the canonical quantization (where we use the prescription:
Classical Poisson Brackets = i/h Commutator) the field operators'T and { are
interpreted in terms of particle annihilation and creation operators and the
lumps will be assemblages of these particles in the way that nuclei are
clusters of nucleons except that the number of particles fluctuates. The
singularity of ﬁhe comnutators leads to the usual rash of infinities.

5 If the quantum fluctuations are small compared to the classical values,
the canonical commutation rules can be applied in an approximate way. The

discussion will be restricted to the coupling (33) with n = L.

We wish to solve the eigenvalue problem:
=4 |2 — ——— €
| F) -5fdx[vz+»2¢2+vw *TE B ]| P =ElF) (1)
lF‘) is the state function for the field and

TR @ (x1) = ¢ (x)T () =}f;-8<x-xv) (77)
Assuming that the classical field solution describes a mean position for the
field oscillators, it is convenient to displace the oscillators to the
classically determined positions. Under the assumption that the quantum
fluctuations are smgll compared to classical values, an expansion in powers
of h is feasible. To accomplish this transformation we introduce the unitary

s=ep [3 [T L@ 3 (8)

operators:




=53
where g( o(x) is the proper solution of the classical Equation (37). If

|F> =s|a) (79)
G satifies:

H' | 6 =s‘le|c> =E|G) =

L [& [(r')2+677"o€7'¢"+}12¢r2 + £ b (80a)
2 2
- 3€ o 12 4/02 (80b)
-BE c/xt3¢° (80c)
- € L
i ] ‘G) =0 (804d)

“TTt, ' satisfy the commutation rule (77). (£ ' is ¢~ sﬁo. The terms in
(c) and (d) are higher order in the fluctuation. A field operator is of the

order hl/ 2. Therefore in (a) we have the classical energy independent of h;

the other terms of (a) and (b) are linear in h; (c) ~ h3/2; (d) ~ h2.
If we had begun with the Hamiltonian for a charged field and sought
a contact transformation to a form explicitly exhibiting the classical energy

and containing no terms linear in the field variables, the required unitary

transformation is:

- if‘rr‘(x) ¥ o(x) exp 1fm<x:w;(xv)a'£'

/ = 3 - (61)
- 1fw (x")at‘#o(x") dxm - i ¢*(xttx)at¢°(xna)dxnt
K =P )

| Fc) is the state function and <//°('x, 1 ) is the solution of (36, 37). If

|Foy =U G) then
v, <1
\:U HU + U g’atu] ‘GQ=E

and we obtain a transformed equation exactly similar to (80). Since the

6. (82)




By
transformation involved is more complicated but involves no new feature
we shall consider only neutral fields.
Keeping terms in h only (neglecting (80c) and (80d4) ), the
Hamiltonian (80) can be diagonalized. Let R g(x) and 7\8 be the eigen-

functions and eigenvalues of the equation
Vi (m-3en MWy, D=2 n® . (83)
g 4 - g€ g

We define
E =+ [T+ (8L)

The set 'Lg are complete and orthonormal. We take n and E as the normal
g €

modes and frequencies for the unperturbed field oscillators. If dz and a

are the creation and annihilation operators for the gth mode obeying the

commutation rule

3¢ 3* )
s =9 8
ag ag' ag' ag ge' (85)

then we may expand

yr = Zg: -Z-E-:;[ arnr(x) + a;n': (x) ~| (86)

! = = » L
0 Zg: \/’2[ 8, ng(x) ~ a2 n (x) ] (87)

The commutation rule (77) is unaltered. Substituting into (80a,b)

n'=Y_a af /.E’.B+EE{_XE - (88)
g 8 88B¢c 2 ¢

Eg is dimensionless. The diagonalization can no longer be accomplished if
Ag < = 1, This case will be discussed later.
The Hamiltonian possesses a complete set of solutions, that with the

lowest energy being a vacuum. Considering fluctuations to order h only,



VAC (89)

is a solution of (76). The quantum fluctuation energy Z: .2_3., is infinite.
This infinity is composed of two parts: the half quantum of energy which
exists for each field oscillator even when no lump is presenﬁ(z: 1 (1+ k2) )
and an infinite contribution from each of the bosons in the lumg iﬁteract-

ing with the vacuum oscillations. Subtracting the vacuum energy,

_h , 2
Errer = 5 Z':é E, = kg T (90)

This diverges like -% € f Y 02 (x) = / ® k dk. It is independent of
the coupling constant since °(x) is proportional to € -1/ 2, The in-
finite term can be cut-off (the Dirac Indefinite Metric was used); the
residue is an estimate of the quantum correction caused by gathering the
bosons into a lump. It is ﬁ/ pc times a numerical factor which depends
on the low lying energy levels. The condition for the validity of the
classical approximation is

E quantum %ﬁg

E classical CE class

Thé lump must be large compared to its Compton wavelength because ).1-1 is a
measure of the size of the lumpe. Since ECL ~ € ‘1, the coupling must be
small, This condition is equivalent to the restriction that the number of
bosons in the lump be large next to the fluctuations in that number.

The state function (89) is not a satisfactory approximate solution of
(76) because of the degeneracy of the classical lump. Instead of displacing
the field oscillators to the classical solution é/o(x), we could with
equal justification have used ¢ (x + &). This difficulty manifests itself

in the fact that (89) is not an eigenfunction of the momentum operator



-
NTR. ¥ —
/(TI‘V‘// + % Y¥¥) ax (92)
which commutes with the Hamiltonian. The position of the center of mass of

the lump is well defined, which gives a large spread to the momentum and

kinetic energy. The state functionw
1 ——

| k) = _\/:: exp [1/ﬁ T (x) ¢ (x + a) dx_\exp iKa | VAC> (93)
V a -

is an eigenfunction of (92) with E-value hK. It is a sum of solutions of (76),
all of which have the same energy to order h. < Ll K> = SLK so that the

eigenfunctions are orthonormal. The energy degeneracy is split by the h3/2
term which does not couple states with different K, thus justifying this

choice of eigenfunction.

2. Representation of the State Function

A convenient representation of the state function for systems with

fluctuating numbers of particles has been given by Fock(lo). Instead of
the language of the quantum theory of fields we make use of configuration
space formalism. In configuration space the state function ¥ is a function
of the coordinates rl,rz, o0y rh where n is the number of particles. When
the number of particles does not commute with the Hamiltonian, ¥ is a super-
position of states with various occupation numbers: ¥ = superposition
ﬁo,dl(rl),dz(rl,rz),.... dm(rl,rz,..., rm) is the symmetrized (or anti-
symmetrized) Schroedinger wave function for the state in which there are m
particles. We write P as the column vector:

4o )
ﬁl(rl)
#5(rq575)

°

# This state function no longer has a classical limit.



ﬁm(rl,rz,, - rm)

2

= _)
It is now necessary to find a representation for the field operators

¢/ and T in this language. We first express these operators as functions
of a(r) and a (r) such that

a(r')ax(r) - a ax(r)a(r') = 8(r - r') (9)
a = = 1 for Fermi statistics; a = + 1 for Bose statistics. Such an expansion
has already been performed in Equations (86) and (87). Let n be an operator

defined by
n= f'é? a*(r)a(r) (95)
n has the interpretation of number of bosons or fermions. For both statistics
na-a(n-1) =0 : (96)

Therefore the matrix element between two states of n and n' particles is

<n|na-a(n-1)|n'> =0 (97a)
or

(pn=n'+1) (nla‘n')=0 (97v)
a(r) therefore has the form:

0 <ola|1) 0 0 5 % )

0 0 1lal2) 0 - (100)

0 0 0 {2| a|3>
We take as an Ansatz fora =+ 1 -

<n-1]a(r)|n> g{n(rl,rz, cesy Ty) = \/; ;Sn(rlrl, cees Ty _ 1) (101n)

Then "o ¢1(1’1)

a(r) ‘l(rl) = ‘/'2' ﬁ‘g(r:rl) (101)



BB
Alternatively we could write for either &
<n-1 | a(r) I n> g (rys eees v) =
—:-L\/_; [d(r,rl,rz,...,rn_l) +a gf(rl,r,rz,...,rn_l) +eoot an—lgf(rlrz,...,rn_l’r)

For a = + 1 this is obviously equivalent to (1Cl) since each ¢ is symmetric

in the coordinates. For the conjugate operator ax(r) we have

<a(r) & |a(r) > = <ax(r)alr) ¥ ‘ )

It follows that a*(r) has the form: ~
o 0 0 .
ax = |{1llax| 0> 0 0 o (102)
0 <2|a*|1> 0 o
0 0 < 3|ax|2) .
L . . oo J

In order for the commutation rule (77) to be satisfied

<n | ax(r) | n - 1>‘n_1(r1)1‘2, YY) I‘n_l) =

= _% [S(rl = 0)d (rpergseeesr)) + E8(r, = 1) 3 (rysrgseacsry) + oo
voe 46 T §(ry = )6 (ryaTpreees rn_l)] (203)
or for €=1
,"o N . -
g, (r)) g, 8(r-ry)

ax(r)| B,(ryory) = -‘J/‘:z. [8(r-ry) (dy(ry) + 8(r-rp)é, (v1)]
g3(r)sTps73) —\1/-§|:3(r—r1)152(r2,r3) + 8 (r-rp)d,(rorq) + S(r-r3)tq

(rl,rz) (10L)
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Let 6‘;(1:) be the Fourier transform of ¢,(x) and let 8(k,g) be the
Fourier transform of ng(x). Then the state function (93) in the Fock

notation becomes:

((5(x) /w112 =
r(r) (E D2 ol p) o (/s ) 5V
="
Wl o y
n/2 2
=3n/2 1/2
(he) i (£, ZgpteoE ) / %P/f% 195 (k1 /p)e(ky /ps )
x 6 (ky/p)o(ko/psg,) Xeoo0o(k, 1 /P)O(k /g 5)e
K"k"‘k"oo"_ K—kﬁk"ooc"-
. x5 1:»:)1 knl)o< 12)1 knl,gn> (105)
> >, > >
For large Eg n . = exp |:i g °x R :I o The state function takes the
simpler form
C S(K)/ VT B
1/2 1/k
(—-—) {2+ )™ 02 3 1
A
§ — e ®
Vv
n/2 n/2 n_ /L
i =3n/2
2 (Y oot ol e
- (106)
L
The probability of finding n particles in the lump is J
P(n) = ( ) -Bn/ Ezl / e ll @*kiz/)l) o (ki/}l)S(K"kr'"“‘%) ,
107

In order for the approximate quantization to have some validity the

number of particles should be large compared to the fluctuation in this



=60-
number, In this case the n-fold integral can be evaluated by the central
limit theorem. The integral is just that which occurs in the random walk

problem for a spherical distribution of displacements. For n 1

_ 2
P(n) = ___< -3n l;[dy 1 + y 2( )] e]’:q’z : 3::;“:1;3?/2 (108)

® ) 2
/ v \[1 + ¥ 6 (ney |
where 2 o
k) = (109)

(s ¢}
/ y2 o;2 (y) gy
(o]

For large n the distribution P(n) is approximately Poisson with a mean

o= 1+y20‘-2(y) =

<mass of lump >( 1+ y2 2(Y) dy ) —_—
fy 6“1‘ (v) dy

The second parenthesis .63 for the O-node solution, .55 for l-node, and

o50 for 2-ncde. The re.m.s. fluctuation is \I n . In order that this be
small next to n we have

mass ¢

=1
>> j

The lump must be much larger than its Compton wavelength, which is
the condition previously stated. The fluctuation energy proportional to
h3/ 2 is infinite. If the infinite integral (which is the same as that in

the h proportional term) is cut off, the energy correction for the X = 0

state is of the order 1 )_‘{t‘_ (pﬂ)3/2< 1 >1/2 e
\l_:n_ c c Mass

For ¢°(x) given by (Lk), the lowest E-value A o of Equation (83)

is less than -1, To show this we assume that ) o corresponds to a state

of zero angular momentum. Then
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I R NORERWORIA ORI NG (112)
i Ro(r)
Now ¢o(r) is very approximately s Putting no(r) = i
2
d Re (3)(18)R; 1 T(T=1) Ro
= = = - H = 10
o2 + A\ oRo ~ooh? 7 ——— - T =1 (113)

The eigenfunctions of this equation can be expressed in terms of hypergeo-
metric functions(ll):

o = cosh’r sinh r F(p + iq, p~iq, 3/2; = sinhzr) (11lL)

p= T +1 g 1 EEO

2 3 2

R 2

The E-values N s Ny 7\2 seees for the bound states ( A < 0) are

1
= ‘2' [1’ - 2n + 2 _-_[ where n 0,1,250000 s N< T /2 <1, Therefore for T

= 10,
7\°=-32
)\l=-18
>\2=- 2

The lowest E-value is so much less than -1 that there is no need to improve
the approximation to Sﬂo(r)

When E12 =1+ >\141 for 0=i=m
2

and Ei =1+>\i>1for i>m

the Hamiltonian can be put into the form:

®
*
: 2, a.gEg +Eg/2

g=m+1l

ml |(**+
g_g Eg | (3g 85 * 2.2

There is no eigenstate function for this Hamiltonian which represents a

(115)

finite number of particles.* The potential 3 L//Qz(x) can create real pairs
# The proof that the Hamiltonian cannot be entirely diagonalized and that the
state function represents an infinite m(u{gc)er of particles is almost identical

to that of Schiff, Snyder, and Weinber for scalar mesons in suffi
strong electric telay. & s in sufficiently
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since the bosons can have binding energies greater than their rest masses.
The existence of bosons in these states stimulates further emission, etc.

The breakdown of the quantum treatment mirrors a classical instability.
If we look for solutions of (34) of the form Qbo(r) + A(r) cosw t for a
very small perturbation amplitude A, A and @ are connected by the equation:

-v2a-3eay2=(w2-1n (116)

A is continuous and vanishes as r approaches infinity. (116) is identical
with the eigen-equation (112). Therefore some of the roots w are imaginary
so that the perturbation is unstab