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ABSTRACT 

This thesis is an algebraic study of systems of real-valued 

fu..11ctions which are clo3ed under the operations of point"V'rise meets 

and the addition of constants. 

In the first chapter, a nevi kind of lattice congruence is defined 

in terms of lattice ideals. The properties of this congruence are 

studied. This congruence is then applied to translation lattices, i.e., 

algebraic systems in -which ·t;he two operations of meet and the addition 

of constants is defined. ilesults which are analogous to the isomorphism 

theorems of group theory are proved. 

The second chapter contains the development of a representation 

theory for translation lattices. For this purpose, the concept of a 

normal lattice function is introduced. These functions are closely 

related to the normal functions on a topological space. It is shown 

that a translation lattice can always be mapped homomorphically onto 

a system of normal lattice functions. Uniqueness theorems are esta­

blished for this representation. 

Chapter three develops, briefly, a new method of constructing 

topological spaces from a complete Boolean algebra. In the final 

chapter, this construction is applied to show that a translation lattice 

can be represented as a translation lattice of continuous functions on 

a compact Hausdorff space. When suitable restrictions are imposed on 

the representation, this space - called the characteristic spa.ce 

is uniquely determined. Finally, the relations between different 

representations by continuous functions are discussed. It is proved 

that the characteristic space, in an appropriate sense, is the minimal 

representation space. 



PREFACE 

A convenient way of studying an abstract algebraic system is to 

represent t he elements of the system as continuous real-valued 

functions on a suitably defined topological space. This is usually 

accomplished by determining a complete set of homomorphisms of the 

abstract system onto the real numbers; from this set of homomorphisms, 

the original algebraic system is obtained as a sub-direct product of 

its homomorphic replicas, that is, as a collection of real-valued 

functions. Finally, t he set on which the functions are defined is 

topologized in such a way as to make these functions continuous. 

Recently (see [1] (1 )), Dilworth proved a representation theorem 

for a specific function lattice in a different way than this. He 

showed that the mapping a- , defined by 

a- f(X) = sup inf f(y), 
P t X y t P 

is an isomorphism of the set of normal lower senli-continuous functions 

f on a completely regular topological space S onto the continuous 

functions on the Boolean space of all minimal dual ideals X in the 

Boolean algebra of regular open sets P of the spaces. Even without 

a clear understanding of t he concepts involved, it is possible to 

see that this t heorem gives a more precise characterization of the 

representative space than the traditional representation theorems 

described in the first paragraph above. Moreover, the above represent-

( ) References to the literature are indicated by numbers in square 
brackets. 



ation theorem is not an immediate consequence of any of the known 

theorems on algebraic representations since the set of normal lower 

semi-continuous functions is not closed under the usual operations 

of addition, multiplication, scalar multiplication or lattice joins. 

However, this set of functions is closed with respect to the operations 

of pointwise meets and the addition of real constants. It is the 

purpose of this thesis to initiate a general investigation of systems 

of functions which are closed with respect to these two operations. 

1.:1e will see that the normal functions play a central role in this 

investigation. The result of Dilworth is, of course, included as a 

special case of the general theorems which will be obtained. 
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SUMMARY OF CHAPTER I 

The first section of chapter I is devoted to an enumeration of 

the better lmown lattice theoretic results which are used in the 

remainder of the thesis. In the second section, a new method is 

given for obtaining lattice homomorphisms from lattice ideals. This 

method is studied in some detail and it is shown that theorems 

similar to the isomorphism theorems of group theory can be established. 

In article one of section two, the concept of a disjunctive semi­

lattice is introduced. In the second article, it is shown that the 

above mentioned homomorphisms are precisely those homomorphisms for 

which the image lattice is disjunctive. Article three contains a 

collection of specific examples, while article four is devoted to a 

compilation of general results. In the fifth article, it is shown 

that any disjunctive lattice can be imbedded in a complete Boolean 

algebra. Moreover, the process is essential~ unique. Finally, in 

section six, it is shown that a theorem analogous to the third iso­

morphism theorem of group theory can be proved for the homomorphisms 

which we are considering. 
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CHAPTER I - LA'ITICE THEORETIC FOUNDATIONS 

1. 1 Fundamental definitions. 

The first section of this chapter is devoted to an enumeration 

of the lattice theoretical concepts which will be used in the chapters 

to follow. A complete exposition of the theory can be found in the 

standard reference, Garrett Birkhoff's Lattice Theorx, [2 ] • The 

terminology and notation of this book will be used wherever it is 

practical to do so. 

1.1.1. Lattices. 

A set P is said to be partially ordered by the relation a L b(1 ) 

if the postulates 

P1 : a ~ a for all a E P 

P2: a ~ b and b ~ c implies always that a ~ c. 

If a third postulate 

P3: a .::: b and b s a implies a = b 

is added, then P vd.11 be said to be properly partially ordered. This 

notation diverges from that of Birkhoff who calls any system which 

satisfies only P1 and P2 quasi-ordered and always assumes P3 for a 

partially ordered set. If a relation satisfies P1 and P2, then by 

identifying elements a and b which satisfy a 5 b and b ~ a, a 

proper partial ordering is obtained. Though most of the partial order­

ings which we consider will be proper, it will not usually be 

This notation is used interchangeably with b '?::. a. 
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necessary to emphasize this feature. 

An element a of a partially ordered set P is said to be an 

upper bound of a subset A of P if b ~ a is true for all b <= A. 

Similarly, it is a lower bound of A if a s b for all b t: A. A 

least upper bound of a subset A is an upper bound of A which satis­

fies a .::; b for all other upper bounds b of A. Greatest lower bounds 

are similarly defined. 

A lattice 1 is a properly partially ordered set in which every 

pair of elements has a least upper bound and a greatest lower bound. 

If a and b are elements of 1 then the greatest lower bound, or meet, 

of a and b is written a " b while the least upper bound, or join, is 

denoted a v b. If this is done, then A and v can be thought 

of as operations on L which satisfy the identities: 

11: a /\ a=a and a " a = a, 

12: a /\ b = b " a and a v b = b v a, 

13: a " (b " c) = (a" b) " c and a v (b v c) = (a " b) v c, 

14: a " (av b) =a and a v (a "' b) =a. 

Converse]Jr, any set 1 over which operations " and " are defined 

and which satisfy 11 to 14 is a properly partially ordered set 

(defining a s b if a = a /\ b) in which a " b and a " b are 

respectively the least upper and greatest lower bounds of a and b in L. 

An element z is called a zero of a partially ordered set P if z 

is a lower bound of P itself. Similar]Jr i is called a unit if it is 

an upper bound of P. In general, par~ially ordered sets and lattices 
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need not have units or zeros. It should be noted that for a proper 

partial ordering, the unit (or zero), if it exists, is unique. 

A lattice is called complete if all its (non-void) subsets have 

a greatest lower and a least upper bound. In a partially ordered 

set Yd. th a zero, the existence of a least upper bound for every sub­

set guarantees the existence of a greatest lower bound. For lattices 

without a zero or a unit, the concept of completeness can be replaced 

with that of conditional completeness. A lattice is said to be 

conditionally complete in case all of its bounded, non-void subsets 

have both a least upper and a greatest lryner bound. By the well­

known process of taking Dedekind cuts, any properly partially ordered 

set P can be imbedded in a complete lattice. The elements of this 

complete lattice are just the normal subsets of P, that is, those 

subsets which contain all lower bounds to the set of their upper 

bounds. By restricting this construction to subsets which have an 

upper bound, one can imbed any (properly) partially ordered set in a 

conditionally complete lattice. 

One of the most important properties of lattices is their dual 

nature. A glance at the postulates 11 - 14 shows that when the 

operations A and v are interchanged, the resulting identities 

are still the same. To every concept or theorem of lattice theory, 

there corresponds a dual concept or theorem (which may be identical 

with the original one) obtained simply by interchanging the role of 

the two operations. This is not to say that any proposition which 
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is true for a given lattice has its dual proposition also true in 

that lattice. For example, the lattice of positive integers (ordered 

by divisibility) has a zero element, but no unit. Much of the work 

presented in the following pages is definitely non-dual in nature. 

Nevertheless, the work falls within the confines of lattice theory, 

and therefore with every theorem and concept we can formulate a dual 

theorem and a dual proposition. 

One of the most important concepts of lattice theory is that of 

an ideal. An ideal I of a lattice L is a subset of 1 which enjoys 

the properties: 

I1: a i: I and b ~ a implies b f I, 

I2: a € I and b c I implies a v b t I. 

Those subsets which satisfy the relations which are dual to !1 and 

I2 are called quite naturally, dual ideals. 

It is not hard to find examples of ideals in a lattice. For 

instance, we define the principal ideal associated with an element a 

of the lattice 1 to be the set of all b ~ L which satisfy b -:: a. 

This ideal will be denoted (a). 

Closely connected ·with the concept of an ideal of a lattice is 

the notion of homomorphism. A homomorphism of a lattice L onto a 

t ' lattice 1 is a single-valued mapping of 1 onto L such that the 

image of the join (meet) of two elements is the join (meet) of their 

images. An isomorphism is a homomorphism which is also one-to-one. 

Evidently any homomorphism preserves the natural partial ordering of 
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a lattice. Conversely, any order preserving isomorphism of a lattice 

also preserves the join and meet operations. Another way of l ooking 

at homomorphisms is in terms of lattice congruences. An equivalence 

relation on a lattice 1 is a congruence if it satisfies 

a /\ c ,_. b /\ c and a " c ~ b " c whenever a ~ b and c is aey element 

of L. Given a homomorphism h of a lattice, a congruence is obtained 

by writing a~ b when h(a) = h(b). Conversely, any congruence on 1 

determines a natural homomorphism of L onto the lattice of congruence 

classes in the well known way. These connections determine a one-to-

one correspondence between the homomorphisms and congruences of a 

lattice. 

1. 1. 2 Distributive lattices. 

A lattice L is called distributive if it satisfies the relations 

15: a " (b " c) = (a /\ b) " (a " c), a v ( b " c) = (a v b) " (a v c). 

Many of the most important lattices satisfy this postulate. In 

particular, the so-called function lattices are distributive. These 

are sets of real valued functions which are closed under pointwise 

joins and meets: (f IV g) (x) =max t f(x), g(x)} , (f /\ g) (x) = 

min { f(x), g(x) 1 • 

For complete distributive lattices, there is a natural general­

ization of the distributive law 15, namely 
f 

15 : a" V lb I b £ B} = V {a " b\ b f B} 

and its dual. The notation V {bl b t_ B} is used to denote the 
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least upper bound (or join) of the subset B of L. Not every complete 
I 

completely distributive lattice satisfies 15 • Hovirever, many lattices 

of interest do, and in the sequal,we will be interested in several of 

these. Usually, however, it will be sufficient to assume that only 
I 15 (and not its dual) is valid. Thus when the term "completely dis-

' tributi ve" is used, only the single relation 15 will be implied. 

It is in the theory distributive lattices that the prime ideals 

of lattice theory attain a position of fundamental importance. An 

ideal is said to be prime in a lattice 1 if its set complement in 1 

is a dual ideal. Thus I is a prime ideal if it is an ideal satis-

fying the condition that if a " b € I, then at 1 east one of a l I 

or b c I is valid. 

Another type of ideal of importance is the maximal ideal. An 

ideal is cal led :marlmal if it is contained as a proper subset of no 

other ideal except the whole lattice (which, of course, is itself an 

ideal). It is not hard to show that in a distributive lattice, every 

maximal ideal is prime. In general the converse is not true. 

Concerning the question of existence of prime a~d maximal ideals, 

it is necessary to use the full power of transfinite methods to prove 

any general theorems. In arry lattice with a unit element, the 

maximal principle assures the existence of maximal ideals. In any 

distributive lattice, transfinite arguments can also be used to 

establish the existence of pri...~e ideals, although in specific 

exanples of lattices, it may be possible to explicitly exhibit maximal 
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and prime ideals. 

A distributive lattice 1 with a zero element z is called pseudo-

complemented in case, for every element a, there exists in 1 a 

maximal disjoint element a*. ~*" The pseudo-complement a is character-

* ized by the properties that a A a = z, and that b " a = z implies 

-~ 
b $ a • It is an easy matter to prove that a complete, distributive 

lattice (with a zero z) is pseudo-complemented if it satisfies the 
I 

infinite distributive law 15 • The most important property of pseudo-

complemented (distributive) lattices is expressed in the theorem of 

Glivenko: In any complete pseudo-complemented distributive lattice L, 

-l:"* the correspondence a_.,. a is a lattice homomorphism of L onto the 

complete Boolean algebra of closed elements (that is, the elements 

satisfying a = a~**). A proof of this theorem will be given later. 

1.1.3 Boolean Algebras. 

The ultimate product in the chain of specialization from the 

partially ordered set to the lattice to the distributive lattice is 

the Boolean algebra. A Boolean algebra is a distributive lattice 

with a zero and a unit element in which every element a has a comple-
I I I 

ment a satisfying a " a = z and a v a = i. Evidently a complement 

must be unique. 'l'here are many alternative definitions of a Boolean 

algebra. For exanple, Stone [3] has shown that Boolean algebras 

are idempotent rings with unit elements and that, conversely, every 

idempotent ring with a unit element is a Boolean algebra when ordered 
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by defining a ~ b if a•b =a. Boolean algebras enjoy many simple 

properties which are not shared by general lattices. We will 

enumerate some of them. 

The (lattice) homomorphic image of any Boolean algebra is again 

a Boolean algebra. Every homomorphism of a Boolean algebra is 

uniquely determined by the kernel of the mapping, that is, the ideal 

consisting of those elements which are mapped into the zero of the 

homomorphic image. Conversely, any ideal of a Boolean algebra 

detennines a unique congruence on the Boolean algebra as follows: 
I I 

a = b (I) if (a " b ) v (a /\ b) f I. This congruence defines a 

natural homomorphism of the Boolean algebra onto the Boolean algebra 

of congruence classes modulo I. The kernel of the homomorphism is I. 

Up to isomorphism of the homomorphic image, every homomorphism of a 

Boolean algebra is of precisely this form. The proofs of these 

assertions are quite easy and will not be reproduced here. 

The set of all ideals of a Boolean algebra is itself a complete 

(distributive) lattice. For later work, it is important to observe 

that every ideal is the meet of the maximal ideals which contain it. 

Dually, every dual ideal is the join of all minimal dual ideals con­

tained in it. To see this, observe that if a I I, where I is an 
I I 

ideal of the Boolean algebra P, then (a ) v I ~ P (here (a ) denotes 
T I I 

the principal ideal generated by a : (a ) = \ b f Pl b ~ a 1 • ) By 

the maximal principle, it is possible to find a maximal J such that 
I T 

(a ) v I $ J. Then a ( J, so a cf J . It follows immediately that 
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I = v {J maximal I I <;; J t • 

In the following pages complete Boolean algebras will often 

appear. These arise quite naturally from a non-complete Boolean 

algebra when one takes the normal completion (i.e., the completion 

by cuts). This fact, due to Stone and Glivenko (see respectively 

[3] and [ 4) ) , can be easily deduced from results which vd.11 be 

proved later (see proposition 1.3 . 9). A property of complete Boolean 

algebras which will be used repeatedly is their infinite distribu-

' tivity, i.e., every complete Boolean algebra satisfies 15 and its 

dual. For let A be a subset of the complete Boolean algebra P. 

Let a e L. Since a f\ V {b\ b e A} :=: a " b for all b e A, 

a "V lblb t A} ~ V la" bib € Ai • On the other hand, if c is any 

upper bound of the set of a " b where b c A, then b = (b " a)" (b " a') 

~ c v a' for all b 6- A. Hence, a "V{blb € A ~~ a" (c v a')= 

(a " c) v (a " a') =a " c ~ c. This shows that a " V { b I b .:: A } = 

V ta A b I b € A } • A dual argument can be used to obtain the dual 

identity. This proof, copies from Birkhoff [2] , is included 

because of the importance of the result in later work. 

1.1.4 Sani-lattices. 

If the postulates for a lattice are weakened by not requiring the 

existence of the join operation, the resulting system is called a 

semi-lattice. Thus a semi-lattice is a properly partially ordered 

set in which every pair of elements has a greatest lzyuer bound 
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(dually, a least upper bound). An alternative characterization of 

a semi-lattice is the following: a semi-lattice is an ide.'npotent, 

commutative semi-group. 

While semi-lattices are more general than lattices, they are 

rarely of interest in themselves. Most of the common examples of 

semi-lattices turn out to be lattices as well. However the techniques 

developed in the following pages seem to apply more naturally to semi­

lattices than to general lattices. Hence we will be roncerned chiefly 

with systems which are either semi-lattices or distributive lattices. 

Many of the remarks made above concerning general lattices also 

apply (with slight modifications) to semi-lattices. Ho-vrnver one 

important distinction should be made between the ideals of a semi­

lattice and those of a lattice. By a semi-lattice ideal we will 

mean a subset I with the single property I1: a f I and b ~ a implies 

b f I. In order to distinguish the ordinary ideals which satisfy 

both I1 and I2, the terminology "lattice ideal11 will be used. 

1. 2 Isomorphism Theorems. 

Three of the most important elementary results of group theory 

are the so-called isomorphism theorems. The first of these establishes 

a one-to-one correspondence between the homomorphisms of a group and 

its normal sub-groups . According to this theorem, every normal sub­

group N of a group G determines a natural homomorphism of G onto the 

factor group G/N. Conversely, any homomorphism of a group G onto a 
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group G determines the normal sub-group N of all elements which are 

mapped into the zero of U. The correspondence between homomorphism 

and normal sub-group is then completely described by the observation 

that G is isomorphic to G/N. The second isomorphism theorem (some­

times called the third) states that if G is a homomorphic image of G, 

if N is any normal sub-group of IT, and if N is the normal sub-group 

in G consisting of all elements which map into N, then G/N is iso­

morphic to G'/N. The third isomorphism theorem asserts that, for 

any nonnal sub-group N and any sub-group H of G, (N•H)/N is iso­

morphic to H/(N ,... H). 

Garrett Birkhoff has given analogues for the first tv.-o of these 

theorems which establish a correspondence between the congruence 

relations and the homomorphisms of a general algebraic system. These 

results of Birkhoff say nothing about the relation betwem the homo­

morphisms of the algebraic system and its sub-algebras (or ideals), 

although this relationship is the most in~ortant part of the group 

theoretic theorems. It is the object of this section of the present 

chapter to explore some of the possible relati@nships between the 

ideals and the homomorphisms of a lattice. 

It is well knovm that every ideal I of a lattice 1 deter.mines 

a congruence relation - on the lattice. This congruence is 

defined by a = b (I) if a " I = b " I (using the notation of the 

lattice of ideals). By the theorem of Birkhoff, every congruence 

corresponds to a homomorphism, so that every ideal of a lattice L 
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determines a homomorphism of 1 onto a lattice I. It is easy to see 

that I has a zero element and that I is precisely the set of elements 

of 1 vmich are mapped into this zero element by the homomorphism of 

1 onto L. At this point however, the analogy between the situations 

in groups and lattices ends. For, while in a group, a homomorphism 

is uniquely detennined by its kernel, there may be many homo­

morphisms of a lattice which have the same kernel. 

This section will be devoted to the description of a class of 

(semi-) lattice homomorphisms. In general, this class is different 

from the set of homomorphisms defined above. Corresponding to each 

ideal of a given semi-lattice a homomorphism of the class will be 

defined. This class of homomorphisms is characterized as the set of 

all meet homomorphisms onto a special type of semi-lattice (called a 

d.isjuncti ve semi-lattice). This property gives these homomorphisms 

many advantages over the ones defined above. In particular, it 

becomes possible to prove results analogous to the three isomorphism 

theorems of group theory. In the course of establishing these three 

theorems, enough of the properties of the homomorphisms are considered 

to ley the foundations for the work of the remainder of the thesis. 

Hence, the program for this section can be described rather simply: 

a new class of homomorphisms of semi-lattices will be defined and 

theorems analogous to the isomorphism theorems of group theory wi 11 

be proved. 
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1.2.1 Disjunctive lattices. 

It will be convenient to make the following definition. Its 

importance will soon become clear. 

if: 

Definition 1. 2.1. A semi-lattice 1 wi 11 be called disjunctive 

(1) 1 contains a zero element z, and 

(2) if a 1.- b in L, then c € 1 exists satisfying 

z I= c ~ a and b " c = z. 

These conditions are just the well-known disjunction properties 

defined by Wallman [51 • A disjunctive lattice is a special case of 

an algebraic system called a 11 gefuge11 (see Buchi (6] ). A gefuge 

stands in the same relation to a disjunctive semi-lattice as a 

partially ordered set to a semi-lattice. Several of the results 

proved below are special cases of Buchi's theorems for gefuges. 

The hypothesis (2) of the definition is evidently equivalent 

to the requirement that if a i b, then c exists such that a ~ c I= z, 

11vhile b I\ c = z. For if this c does not already satisfy c ~ a, then 

the element a I\ c wi 11, and moreover, b " (a " c) = z. 

1 • 2. 2 ~ first and second isomorphism theorems . 

In a Boolean algebra, every homomorphism is associated with an 

ideal I. Two elements a and b are congruent modulo this ideal if 

their symmetric difference a - b =(a" b')" (a' " b) is contained 

in the ideal. It is possible to re- phrase this definition in such a 
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way that it can be applied to an arbitrary distributive lattice 

(more generally, to a semi-lattice). One way is by means of the well­

lmown congruence a = b (I) whenever a v I = b v I. Still another 

formulation is the following: define a ,...., b (I) whenever the relation 

a " c € I is equivalent to b A c E I. It is easy to verify that in a 

Boolean algebra this is just the same as the usual definition. Notice 

first that I is a lattice ideal of a Boolean algebra if and only if it 

is a ring ideal of the algebra, considered as a Boolean ring. The 

distributive law (a" c) - (b" c) =(a -b) I\ c then shows that if 

a - b is in I, a " c f I is equivalent to b I\ c e: I. Conversely, if 

' a----.. b (I), a " a E I implies that b " a' l I. Similarly, from 

b " b' E I, it follows that a " b' t= I. Thus a - b = (a I\ b' )v (a'(\ b) l I. 

In this last form, the definition of congruence can be taken over 

to arbitrary semi-lattices. In general, this does not give the same 

congruence as the conventional definition a v I = b " I. In fact, 

it is possible to show that the only distributive lattices with a 

unit for which these two definitions are equivalent, are precise~ the 

Boolean algebras. 

In this article, we give the formal definitions of the congruence 

(~),and then proceed to prove the isomorphism theorems. 

Lemma 1.2.1 Let L be an arbitrary semi-lattice and suppose that 

I is an ideal of L. Define: 

( 1 ) a 2 b ( I) • = • a " c E I :llnp lies b " c E I for all c e. 1 

( 2) a '"" b ( I ) • = • a ~ b ( I) and b '2 a ( I ) • 
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Then ? is a partial ordering and is a meet congruence 

relation. Moreover a " b - b (I) if and only if a ?. b (I). 

Proof. It is easily verified that 2 is a partial ordering. 

A.ls o, the ordering ? preserves the original partial ordering of 

L. For if a ~ b, then a " c € I immediately implies b " c ~ a " c E I. 

Suppose that a 2 b (I) and d is any element of L. The second 

statement of the lemma will be proved if it can be shown that 

a " d 2 b " d (I) . If (a " d) " c €. I, then a " (d" c) £ I. Hence, 

because a 2 b (I), b " ( d " c) l I. Consequently (b " d) " c ~ I. 

Since c was an arbitrary element of L, a /\ d 2. b " d (I). 

Finally, suppose a " b ""b (I) . Since a ~ a " b, it follows 

that a 2 a" b ~ b (I). On the other hand, if a =2 b (I) , we have 

a " b ~ b " b = b (I), V'mile b ~ a " b (I) since b ~ a " b. This 

completes the proof. 

Lemma 1.2.2. Let L be a distributive lattice. Let I be a 

lattice ideal of L. Then the sani-lattice congruence relation defined 

by (1) and (2) in lemma 1.2.1 is a lattice congruence. 

Proof. Let a :i b (I) and suppose d is any element of L. We 

will show that a" d =:! b " d (I). This itl:i .. 11 then immediately imply 

the assertion of the lemma. Suppose c ~ 1 is such that (a" d)~ c £ I. 

Then (a " c)" (d " c) £ I. Since I is a lattice ideal, this implies 

a I\ c f: I and d " c f I. Hence, also, b I\ c l I. But then (b v d) " c = 

(b " c)" (d" c) £ I. Since c was picked at random from L, it follows 
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that a v d 2 b v d ( I) • 

It is well known (for details see Birkhoff [2)) that a con­

gruence relation on an algebraic system detennines a homomorphism of 

the system. The homomorphic image is the set of congruence classes 

with operations suitably defined. 

Denote by L/I the homomorphic image of 1 which is defined by the 

congruence relation of lemma 1.2.1. By the natural mapping of L onto 

L/I will be meant that mapping which sends each element of 1 into its 

congruence class in L/I. 

So far, we have only obtained a new· way of defining a homo­

morphism on a lattice. The important property of this homomorphism 

is that it can be characterized in terms of its image. 

Lemma 1. 2.3. The sani-lattice L/I is disjunctive. Moreover, the 

kernel of the natural mapping of 1 onto L/I (i.e., the set of elements 

mapped into the zero of L/I) is precisely I. 

Proof. Denote by h the natural mapping of 1 onto L/I. Suppose 

a l I. Then a "2 b (I) if, and only if, b £ I. For suppose a~ b (I) . 

Then, since a I\ b t I, b = b 11 b t. I . Conversely, if b t= I , b 11 c c I 

for all c «: 1 so trivially a " c E I implies b " c c I. Thus if a t. I, 

h(a) = h(b) if and only if b EI. In other words, h(I) is the zero 

element of L/I and I is the kernel of h. 

Suppose now that a and b are any elements of L which satisfy 
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h(a) i h(b). Then b'i? a (I), so by definition, there is a c £ L 

such that b " c € I while a " c f I. Hence h(b) " h( c) = h(b " c) = 

h(I) and h(a) A h(c) = h(a 11 c) F h(I). Thus, according to definition 

1.J.1, L/I is disjunctive. 

An important and rather surprising fact is that the converse of 

the above lemma is true. 

Lemma 1.2.4. Let h be a (meet) homomorphism of the semi-lattice 

1 onto the disjunctive semi-lattice L. Then if I is the kernel of h, 

I is an ideal of 1 and 1 is isomorphic to L/I. Under this isomorphism, 

h(a) corresponds to the congruence class of a modulo I. 

Proof. It is clear that I is an ideal in L. The proof will be 

completed by showing that a 2 b (I) if and only if h(a) ~ h(b). If 

a? b (I), then for all c £ L, a" c €I L"llplies that b 11 cf I. 

Thus for all h(c), h(a) " h(c) = z implies h(b) (\ h(c) = z. Because 

of the disjunctiveness of L this means h(a) ~ h(b). On the other hand, 

if a* b (I), there is a c ' L such that a " c 6 I while b ,.. c I I. 

This means h(a)" h(c) = z and h(b) /\ h(c) F z. '.i.'herefore h(a).:f h(b). 

The proof is oomplete. 

Hereafter, aey homomorphism of a lattice will be called dis­

junctive if it is onto a disjunctive semi-lattice. It should be noted 

that if 1 is a lattice and h is a lattice homomorphism, then I (the 

kernel of h) is a lattice ideal. For our theory, this is important 

in the case where L is a distributive lattice. 
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We now summarize all of these lemmas in the "first isomorphism 

theorem": 

Theorem 1.2.1. Let L be a semi-lattice (distributive lattice). 

Then there is a one-to-one correspondence between the ideals 

(lattice ideals) of L and. the homomorphisms (lattice homomorphisms) 

of L onto disjunctive semi-lattices (distributive lattices). Arry 

ideal (lattice ideal) I detennines a natural homomorphism (lattice 

homomorphism) of L onto the disjunctive semi-lattice (distributive 

lattice) L/I such that I is the kernel of the homomorphism. Con­

versely, any homomorphism (lattice homomorphism) of L onto a dis­

junctive semi-lattice (distributive lattice) is algebraically 

equivalent to the natural homomorphism of L onto L/I where I is the 

kernel of the given homomorphism. 

The second isomorphism theorem is an elementary consequence of 

the first. 

Theorem 1.2.2. Let g be a homomorphism (lattice homomorphism) 

of the semi-lattice (distributive lattice) 1 onto L. Let I be 

any ideal (lattice ideal) of L. Denote I= g-1(r). Then I is an 

ideal (lattice ideal) of L and L/I is isomorphic to L/I. 

Proof. If a { b and b € I, then g(a) ~ g(b) !. I so g(a) E I. 

Thus a E I. For the distributive case, a,b € I implies that g(a), 

g(b) t I. Then g(a vb) = g(a)v g(b) E I. Therefore a ~ b t I. 

We have shown that I is an ideal. 
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Consider L/Y. This semi-lattice is regular. Denote by n the 

natural homomorphism of L onto 1jj.. Map 1onto1/I by h(a) = h(g(a)). 
The kernel of this mapping is clearly I, so by theorem 1. 2.1, L/I is 

isomorphic to L/I. This completes the proof. 

1. 2.3 Some specific examples. 

In order to be able to better appreciate the meaning of the first 

two homomorphism theorems, we will con::>ider the rerults of applying 

them to a few special lattices. 

Example 1. One of the simplest possible examples of a distributive 

lattice is a chain, that is, a totally ordered set. It is easy to prove 

that a chain is a disjunctive semi-lattice only if it is the system 2 

consisting of the zero and the unit element. In fact, suppose that a 

and b are distinct elements of the chain 1 with z f. a ~ b. If L were 

disjunctive, c would exist satisfying z f. c ~ b and c " a = z. But 

this last relation is possible in a chain only if c = z or a = z. 

This contradiction shows that two elements distinct from zero cannot 

exist. On the other hand, the chain 2 is clearly a disjunctive semi.­

lattice. An immediate consequence is the following fact: if I is 

any ideal of a chain, then L/I is isomorphic to 2. This demonstrates 

how, even for the simplest lattices, the homomorphism defined by an 

ideal I, as in lan1na 1. 2. 1, differs radically from the usual definition 

of a homomorphism generated by I (that is, a=. b (I) if a v I = b " I). 

For example, consider the principal ideal ( c) = {d l LI d -::: c ! • We 
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have a v (c) = b v (c) if and only if either a and b are both less 

than or equal to c, or also a = b. Consequently, the homomorphism 

defined by this congruence is a mapping of L onto the interval 

{ d ~ Lid ~ cl • In general, this is different from 2. 

Exa~le 2. Let L be the distributive lattice of open sets of 

a topological space s. It is easy to see that in general 1 will not 

be disjunctive. In fact, if S is a T1 space, L will be disjunctive 

S -o only if is discrete. The mapping a-+ a is a lattice homo-

morphism ( 1 ) of 1 onto the complete Boolean algebra of regular open 

sets of s. (For details and definitions, see [ 2 ] • ) The kernel 

of this mapping is clearly the null set. Hence, the Boolean algebra 

of regular open sets of S is isomorphic to L/(z). (It is evident 

that any Boolean algebra is disjunctive in the sense of definition 

1.3.1.) 

Ex.ample 3. Let 1 be the lattice of continuous fuix tions on a 

metric topological space s. Since L has no zero, it cannot be dis­

junctive. The mapping f-+ {x l Slf(x) > o}-o is a lattice homo-

morphism of L onto the Boolean algebra of regular open sets of s, as 

may be easiJ.y verified. The kernel of the mapping is (0) = {ff L\f ~ O} . 

Hence, 1/(0) is isomorphic to the Boolean algebra of regular open sets 

of s. When the restriction that S be a metric space is dropped, we 

no longer necessarily get all of this Boolean algebra. Hm'lever, it 

(1) For any set a ~ s, a- denotes the closure of a, a 0 the interior 
of a. 
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is easily shown that this same mapping carries L onto a disjunctive 

lattice. 

Example 4. Let L be the Boolean algebra of regular open sets 

of a topological space T. Let S be an arbitrary sub-space of T with 

the relative topology. For any a € L, map a-+ (a " S)-o (where 

closure and interior operations are in the topology of S ). This is 

a meet homomorphism of L onto the Boolean algebra of regular open 

sets of s. Notice that in general the mapping is not a join homo­

morphism. The kernel of the homomorphism is the semi-lattice ideal 

I = {a t: 1 1 a " S = 0 } • By theorem 1 • 2. 1 , the Boolean algebra of 

regular open sets of S is isomorphic to L/I. This example shows 

that, even in the case where L is a distributive lattice, it may be 

useful to consider semi-lattice homomorphisms of L. 

Example 5. It is a consequence of the result in example 3 that 

the Boolean algebra of regular open sets of a metric topological 

space S is characterized by the lattice structure of C(S). Another 

result of this nature is the following. Let 1 be the lattice of all 

integrable functions on a set S for which an integration theory (in 

the sense of Bohnenblust [ 7 ] ) has been defined. A subset A of S is 

called a strongly (or ring) measurable if it is of the form 

A= {x lf(x) '> 0 } for some f f L. Now the mapping f-+ { x lf(x) > O} 

of 1 onto the collection of strongly measurable sets is clearly a 

lattice homomorphism. Moreover, it can be shown that the set of 
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strongly measurable sets forms a ring of sets: if A and B are 

c strongly measurable, then so are A "" B and A ,.... B • Thus if A </: B, 

then 0 -/:A n Bc !; A and (A " Bc) " B = 0. It follmvs that the 

collection of strongly measurable sets is a disjunctive (distributive) 

lattice. The kernel of the homomorphism f ~ { x t f ( x) > 0 } is just the 

ideal I = { f € Llf ~ 0 l • Hmce the ring of strongly measurable sets 

is just L/I. We have proved, incidentally, that two integration 

theories, which have isomorphic lattices of integrable functions, have 

isomorphic rings of strongly measurable sets. 

1. 2.3 Miscellaneous general results. 

In this section are collected together some of the important 

properties of the homomorphism defined in lemma 1 • 2. 1 • Only those 

which will be needed later are included. 

We first look at the homomorphism for two special kinds of 

ideals, namely, the zero ideal ( z) an:i the prime ideals. 

Proposition 1.2.1. A semi-lattice L with a zero z is disjunctive 

if an:i only if L is isomorphic to 1/( z). 

Proof. The sufficiency is clear since L/(z) is disjunctive. 

Conversely, if Lis disjunctive, the identity mapping is a homo-

morphism of 1 onto a disjunctive semi-lattice with the kernel z. By 

theorem 1.2.1, Lis isomorphic to L/(z). 

From this last proposition, the fallowing useful result is 

derived. 
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Proposition 1. 2. 2. Let L be a disjunctive semi-lattice. Then 

a seni-lattice homomorphism of L which has the kernel (z) is 

necessarily an isomorphism. 

Proof. Under the stated conditions, the image is a disjunctive 

semi-lattice. For h(a) 1- h(b) implies a 1: b, so c exists with 

z f: c := a and c 11 b = z. Then z ;f h(c) ~ h(a), h(c) /\ h(b) = z. 

Consequently, 1 = L/(z) is isomorphic to h(L) by theorem 1.2.1. 

Proposition 1.2.3. Let L be a distributive lattice and let I 

be an ideal of L. Then I is a prime ideal if and only if L/I is 

isomorphic to 2 (the Boolean algebra of two elements). 

Proof. Sufficiency: suppose L/I is isomorphic to 2. Let h 

be the natural homomorphism of L onto 2, which has the kernel I. 

If a" b €I, then h(a) I\ h(b) = h(a" b) = z. Hence, either h(a) = z 

or h(b) = z; that is, either a c I or b £ r. Since a and b could be 

any elements, it follows that I is a prime ideal. 

Necessity: Suppose I is a prime ideal. Let a E I. Then a I\ c E I 

implies c f I. Hence, for any b c L, a " c t: I implies b " c E I; 

that is, a 2 b (I). This means that under the natural homomorphism of 

1 onto L/I, a maps onto the unit of L/I. On the other hand, if a € I, 

then a maps onto the zero of L/I. Since this exhausts the possibilities, 

L/I must be 2. 

Remark. The above lemma is eqµally true for semi-lattices 

provided prime ideals are defined in a suitable manner. The appropriate 
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definition is: a semi-lattice ideal is prime if a ( I and b ¢ I 

implies a 11 b f. I. 

The next topic is the problem of finding a criterion for L/I 

to be a Boolean algebra. The first step is a lermna. 

Lemma 1. 2. 5. Let L be a semi-lattice. Let I be an ideal of 

L and denote by h the natural homomorphism of L onto L/I. Then h(a) 

is the unit of L/I if and only if a 11 c E I holds only when c c. I. 

Piuof. If h(a) is the unit of L/I, then a 2 b (I) is true for 

all b E L. Thus a " c c I implies b " c c I. In particular, a 11 c { I 

implies c = c 11 c t I. Converse~, if a ~ c t I implies c t I, then 

also a 11 c € I implies b 11 c ~ I for any b. Thus a ? b (I) for all 

b l L or, in other words, h(a) is the unit of L/I. 

Proposition 1.2.4. Let L be a distributive lattice. Let I be a 

lattice ideal of L. Then L/I is a Boolean algebra if and only if, for 

-~ any a E L, there exists a in 1 satisfying: 

(i) 

(ii) 

.. ~ 
a " a ( I, and 

* a 11 b € I and a 11 b ( I imply b t I. 

.>~ 

Proof. Condi ti on (ii) is clearly equivalent to: (a " a") " b € I 

implies b ( I. Thus, by the above lemma, h(a) v h(a7
f) = h(a v a*) = i 

(the unit of L/I). From condition (i), it follows that h(a) ~ h(a*) = 
h(a ~ a*) = z. Thus h(a) has the complement h(a*) in L/I. Therefore 

L/I is a Boolean algebra. 

Conversely, suppose L/I is a Boolean algebra. * If a E L, let a 
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be any element of L such that h(a~'") = h(a)'. 
ii­

Clearly h(a v a ) = i 
..>< 

and h(a" a") = z so the conditions (i) and (ii) are satisfied. 

~llary 1.2.1. If L is a pseudo-complemented distributive 

lattice, then L/(z) is a Boolean algebra. In particular, a disjunctive 

distributive lattice is pseudo-complemented if and only if it is a 

Boolean algebra. 

In later work, certain questions of completeness will arise. It 

is important to have a criterion for detennining when the homomorphic 

image of a complete lattice is complete. For many purposes, the 

following result is adequate. 

Proposition 1.2.5. If Lis a complete, completely distributive 

lattice(1 ) and I is a principal ideal, then L/I is complete and the 

natural mapping preserves unlimited joins. 

Proof. Denote by h the natural homomorphism of 1 on L/I. 

Suppose A is any non-empty subset of L. It will be shown that h( V A) 

is the least upper bound of the set h(A) = { h( a) j a E A} in L/I. 

First of all, it is clear that h( V A) is an upper bound of h(A). On 

the other hand, if h(b) ~ h(a), that is, b ::! a (I) prevails for all 

a f A, then b~ VA (I) . For b 11 c f I implies a 11 cf I for all 

a f A. But since I is principal, it is closed under unlimited joins. 

(1) 
In other ~urds, L satisfies the infinite distributive law 
b ,.. V {a/ a ! A I = V {b " a I a £ A } • In particular, this 
implies that L is pseudo-complemented. It is not necessary to 
assume that L is closed under unlimited meets. 
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Thus ( V A) 

b~ V A(I). 

" c = V (A " c) t I . Since c was chosen arbitrarily, 

It follows that h( V A) is the least upper bound of h(A), 

and the proof is complete. 

It will be noticed that the above proof uses only the fact that 

I is a closed ideal of 1. But in a complete lattice, this immediately 

implies that I is principal (and conversely). The restriction to 

principal ideals is a necessary one. For if the natural mapping pre­

serves unlimited joins, h( V I) = V h(I) = z, i.e. V I €I and there­

fore I is principal. 

1 • 2. 4. Imbedding thoo rems. 

In this article, the general theory of disjunctive semi-lattices 

will be studied more systematically. It will be shmm that a 

disjunctive seni-lattice can be imbedded uniquely in a complete Boolean 

algebra. Most of the theorems proved are not new. The imbedding and 

uniqueness t heorems can be found explicitly in the paper of Buchi and 

implicitly to the works of Glivenko and Stone. 

In order to ronstruct the complete Boolean algebra in ·wh ich the 

semi-lattice is to be i mbedded, it is necessary to employ a theorem 

of Glivenko. Because of the importance of the imbedding theorem, the 

proof of G li venko t s theoran will be given. 

Let 1 be an arbitrary semi- lattice with zero z . Denote by ":f 

t he set of all i deals of 1 (in the sense a -= b and b E I implies 

a l I) . 
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Lemma 1.2.6. The set "fJ is a complete, distributive, pseudo-

complemented lattice under set unions and intersections. The pseudo-
~~ 

complement of A E ':f is given by A" = {b E Lia "b = z all a t- A} • 

The principal ideals of L form a sub-sani-lattice of ":f , which is 

isomorphic to L. 

Proof. If { A"J is any collection of elements of ":!' , then 

clearly V .. A" and n .. A"' are ideals and hence in "f' • If 

A f -:f , let A* = { b E L I a " b = z all a € A } • Lvi.dently A* is 

an ideal. A " A* ={zJ since if a E A n A-'A-, then a = a " a = z. Also 
,~ 

if A A B = 1 z } , then B ~ A". For if b E B, a {\ b i:. A ,.,. B = l z } all 

a € A. Thus A* is the pseudo-complement of A. The la.st assertion of 

the lemma is clear. 

Lemma 1.2.7. (Glivenko; proof after Birkhoff [21 ). 

The mapping A ~ A-lH',· is a homomorphism of 'Y' onto the complete 

Boolean algebra rl3 of "closed" ideals (i.e., ideals A for which 

Proof. The proof rests on a series of fornmlas. 

(1) 
'Hv 

A''' ? A 

This follows from the definition of A-lH~ since A ,-. A* = { z ! • 

( 2) A ~ B :::;. A* ~ B-x-. 

For if A ':'.:: B, A ,-. B* '= B " Bi<- = { z } and hence B* ~ * A • 

* * M X X ~ A v B -:? A, B => (A u B)°' ~ A , B'' ~ (A v B)" ~ A" " B". (A -.... B) " 

·~ ,,_ * x * x * "A" ("\ B" ~ (A A A ) v (B ,, B") = { z } => A ,,... B" ~ (Av B) • 
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A s: A
7H< => A-r.- ? AiHHl- by (2 ) . The opposite inclusion follows 

from (1 ) . 

( 5) (A ,... B) * ? A-i< v B-:l-. 

This i s clear from (2). 

( 6) (A*l< A B-:H\l~ 2 (A I"\ B)*. 

~, * ·~ * ~-ir JWC. 

By (5 ) a.'ld (3 ) , (A r. B) '" ~(A v B ) =A "' B"". Hence the 

resu l t follows from (2 ) and (4). 

( 7) (AiHl- A B~'"* ) -ll- 2 (A A B r:r. 
Repeated applications of the definit i on of pseudo-complement 

give t he i mplications: (A " B)* ,... A*-:< r. B*7
' "' A " B = l z }::::} (A " B)"~ ,.., 

I'\ A_,,H'..- "' B.>,.'-l< " A c: B-i< ~ (A ,..... B ) .,~ " A7Hr /'"\ B'~->< "' A= \ z } =? (A r. B)_,-< "' 

Y-"- J(.J!. 

"' A"" "' B"" = { z ~ , which is equivalent t o ( 7) • 
..lW'- .K..)(.. .)l'V 

(8 ) (A l'"I B)"" =A"" A B"''. 

For, from (6 ) , ( 7) and (3), (A " Bf'*"= (A-lH< ~ B''H*' )* = (A-'.l- v B-l<f:Hr. 

Hence, (A /'\ B)iPk = (A* v B*)°*"'-8< =(A* v B*)* = A7
<* /'"\ B-H. 

(9 ) ( U {A7H' IA £ Ol )''H< = ( U { AIA ' 01. l )":-'-:<where CJf. c; 'f • 

A-lH< ~ A =:> V {A**I A for. J 2 U {AIA E tJtJ ~ ( U { A-~* I A E: (}( t )-l(-:t ~ 

2 ( U {A\A l(}(} )-i1-::-. On the other hand, Aux ~ A*~ <;: ( U { AIA tatl )~_,,. => 

~ U{ A-lH< IA e (}(} ~ ( V { AjA € or i yr'"* ~ ( U {A** \A £ OC f )*-:< ~ 

f ( V \ AIA f or. t )*7<-r-->A- = ( U {AIA ( (/(} )":r-i°_ 

Using the fon11ulas (1) - (9), i t is possi ble to prove the theorem: 
.>UC 

A -+ A"" is a homomorphic mapping of 'Y onto ~ ; CS is a complete 
..).(.~!_ 

Boolean algebra with A /\ B = A n B, v { A) A E or. s. <"63 } = ( u l A \A E ()( <: m D" "' 
.>C I 

A' =A" ( A, v, denoting Boolean operations ) . 
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First f8 is a complemented lattice with these operations. For 

by (8) A n B is the greatest lryHer bound of A and B in f'S • If 

()( <: 18 and B f r33 satisfies B ~ A for all A ( (]( , then B = B-:P.<- ? 

2( U {AIA f (Jt} )*"'ri-. Clearly ( U {AIA E ()(} )*";..~=?A for all 

A E {J( so ( U {A I A f or.. } ) ~:- is the least upper bound of (J( in 

00 • Finally A~~ is the complement of A since A v 

.)(... 'Ll'* ~ v -tt = (A" /'\ A-'"') = { z } " = L, A " A-" = A " A' = { z 1 

A7~ = (A v A*)"::"*= 

* and A f a3 by (4). 

Now the mapping A...,. A-¥-"""* is a homomorphism by (8) and (9). The 

-r.~-
mapping is onto since if A f ~ , A...,. A =A. Fina.lly, m , being 

the homomorphic image of a distributive lattice, must be distributive, 

and hence a Boolean algebra. By (9), <13 is complete. This 

finishes the proof of Glivenko's theorem. 

Now we are ready to state and prove the imbedding theorem. It 

is convenient, however, to first int.roduce some terminology. 

Definition 1.2.2. Let L be a semi-lattice with a zero z. Let 

M be a sub-semi-lattice of L. M will be called dense in L if M - { z \ 

is coinitial in L, that is, z I= a E L implies that b ~ M exists with 

z I= b ~ a. 

Theorem 1.2.J. Let L be a seni-lattice with zero z. Let (z) 

denote the principal ideal generated by z. Then L/(z) is isomorphic 

to a dense sub-semi-lattice of a complete Boolean algebra. If L/(z) 

has a unit, it is mapped into the unit of the Boolean algebra by the 

isomophism. If L is distributive, the mapping is a lattice isomorphism. 
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Proof. The mapping a-+ ( a)°:<-:i- is a join homomorphism of L into 

the complete Boolean algebra l'B (by lemmas 1.2.6and1.2.7). If 

-18' , then (a) ,.. c; A. Hence the ideals (a)*l< are dense 

in f"f.3 • The kernel of this mapping is z, so the first assertion 

follows from theorem 1. 2. 1 • 

Notice that if L has a unit i, then the principal ideal (i) 
.. 'U~ 

contains every element of L. Hence ( i) "" = ( i ) = L 2 A for all A E ~ • 

Hence the unit of 1 is mapped into the unit of 143 • 

To prove the last statement of ·the theorem, notice that a v b-+ 

-+ ( a v b)~H~. We will show that (a v b)~H< = [( a) u (b) 1 *-l< = 
~HI.. ~-3}] .. v_)t. ~rl~ .l,B' 

[ (a)'" v (b) ' "" =(a) v (b) '~. The first of these equalities is 

all that is needed, the others being consequences of the previous 

lemma. 

If c f [ (a) v (b)J * = (a)* A (b )*, then a (\ c = b /\ c = z. Thus 

(a ., b ) 11 c = z, so (a ., b) E [(a) v (b )1 **. By formulas (2 ) and (4) 

of the lemma 1.2.7, (a v b)~H< ~ [(a) v (b) ) ~<*. On the other hand 

( a) v ( b) S ( a v b) , so [ (a) v ( b) t * ~ ( a v b fH-• The imbedding 

theoran is proved. 

Corollary 1.2.2. If 1 is a disjunctive semi-lattice, then 1 is 

isomorphic to a dense sub-semi-lattice of a complete Boolean algebra. 

Proof. The corollary is an evident consequence of proposition 

1 • 2. 1 • Hovrnver, it is instructive to notice that for disjunctive 1, 

the principal ideals are closed: (af:<-:< = (a). For, if b i- a, then by 

the disjunction property, c f 1 exists with z I= c -5: b, c "' a = z. 
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Thus c £ (a)* and b A c = c I= z, and therefore b j (a/:""*. Consequently 

~'-* (a) ~ (a), while the opposite inclusion is a consequence of fonnula 

(1) of lemma 1.2. 7. 

For my disjunctive lattice 1 denote by [ 1 ] the complete 

Boolean algebra which is obtained from 1 by the construction of 

lemmas 1.2.6, 1.2. 7 and theorem 1.2.3. 1 is a dense sub-semi- lattice 

of ( 1] • It will be shown that this property characterizes [ L 1, 

that is, any complete Boolean algebra which contains 1 as a dense 

sub-semi-lattice is isomorphic to [ 1]. However, before proving this 

uniqueness theorem, let us look a little closer at the concept of 

denseness. The properties which will be needed for later work can be 

collected together here. 

Proposition 1.2.6. (i) Any semi-lattice is dense in itself; 

(ii) if M is dense in N and N is dense in L, then M is dense in L; 

(iii) if 1 is disjunctive and M is dense in L, then M is disjunctive. 

Proof. ( i) and (ii) are so obvious that they need no proof. To 

prove (iii) , suppose a$ bin M. Then c ( L exists satisfying 

z I= c ~ a and b " c = z. Finally d € M exists with z I= d ~ c ~ a 

and d " b s c " b = z. 

A consequence of this proposition and theorem 1 . 2. 3 is the 

followi ng characterization of a disjunctive semi-lattice: a semi-

lattice is disjunctive if and only i f it is isomorphic to a dense 

sub-semi- lattice of a complete Boolean algebra. 
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Now the fundamental uniqueness theorem will be formulated and 

proved. 

Theorem 1.2.4. Let L be a disjunctive sub-semi-lattice of the 

complete Boolean algebra P. Then [ L ] is isomorphic to a sub-semi-

lattice of P; if 1 is dense in P, [L] is isomorphic to all of P. 

Proof. ltecall that 1 consists of all the nclosed" ideals of L, 
.)UJ;. 

i.e., those ideals A satisfying A"" = A. 

Map A~ VA ( V in P). This is a semi-lattice homomorphism: 

A " B=A " B~ V(A,....B) = Vla" bjaf A, b( B} =( V {a\a i;: A}),. 

" ( V {bl b £ B \ ) = ( V A) " ( V B), by the infinite distributive law 

in a complete Boolean algebra. The kernel of this mapping is z. 

Thus, by proposition 1. 2. 2, the mapping is an isomorphism. This 

proves the first assertion. 

Now suppose 1 is dense in P. Then if a ( P, A = lb ' Lib ~ a J 

is an ideal of L. We will show that it is closed. If b <£ 1 with 

b ~ A, (i.e., b ta) then b A a' f z. Hence, c £ 1 exists with 

Then c £ A7~ and b " c f z. *-l~ This says b 4 A • 

*-~ Hence A = A, -vnich shows that A is closed and A !° [ L J . 

VA = a since otherwise, (VA) 1 " a f z and b £ L exists with 

z f b ~ a " ( V A)'. In other words, b E: A, while z = b " ( V A) ~ 

~ b " b = b - a contradiction. Since a was chosen arbitrarily from 

P, the mapping of [ L 1 is onto P. The proof is complete. 
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The construction of LL ) from L is a completion process: it 

imbeds a partially ordered set in a complete lattice. It is of 

interest to compare it with another well lmown process for accom­

plishing this, namely normal completion. In particular it is 

desirable to know when the pseudo-complement completion process can 

be repJa.ced by the process of taking the normal completion. The 

following result (which is a slight generalization of the theorem 

that the normal completion of a Boolean algebra is again a Boolean 

algebra) gives the desired information for a distributive lattice. 

Proposition 1.2. 7. Let L be a distributive lattice. A 

necessary and sufficient condition that the normal completion of L be 

a Boolean algebra is that L be disjunctive with respect to both its 

join and its meet operation. In other words, L must have a zero z 

and a unit i, and be such that if a $. b, then c and d ex:i. st satis­

fying z /= c s a, c " b = z, i /= d ~ b and d v a = i. 

Proof. Necessity: Let <l3 denote the lattice of (lower) 

normal subsets of L, that is, subsets which contain ever.1 lower bound 

of the set of their upper bounds. By hypothesis, rs is a Boolean 

algebra. We can exclude the case where ro = 2 since this lattice 

can only be the completion of itself. The ..Lattice !.t: of principle 

ideals constitutes a sub-lattice which is isomorphic to L: 

a~ { b E: L i b ~ a } • Moreover !{ has the property that if N € m , 

then N = V { A f ~ l A s N } , and N = /\ {A f :t' I A ~ N} • With these 
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preparations out of the way, we can proceed v.Tith the proof. 

If 1 had no zero element, the zero of fa3 would be the empty 

set. This leads to a contradiction. For if N and N' are non-

trivial c omplementary set s of m , and if a € N, b ( N', then 

a " b t: N " N• = 0. Hence 1 must have a zero. A dual argument shows 

that 1 must also have a unit element. 

Now suppose a $ b. Then if A = (a ) and B = (b), A $ B. Thus 

A " B• I= Z and A' v B I= I. Hence c, D £ Je exist so that 

Z -/= C £ A " B ' an:i At v B ~ D -/= I. If C = ( c) and D = ( d) , z I= c ~ a 

and b -::: d I= i. Since C " B = z, D v A = I, c " b = z and d v a = i. 
Th.is completes the proof of the necessity of the conditions. 

Sufficiency: It is sufficient t o show that an ideal N is a 
.)(.~~ 

normal subset if and onl y if it is closed: N"" = N. 

Suppose N is normal and a ~ N. Then b, an upper bound of N, 

exists satisfying a $ b . By the ( lovver) disjunction property, c c 1 

exists such that z I= c ~ a and c " b = z. Consequently c " d = z for 

all d € N and therefore c i: :tl. Since a " c I= z, a I. N{-Y•. Thus, 

*-"- .)(...)(. 
since a was arbitrarily chosen, N " <;:; N and N is closed (for N '= N"" 

always ) . 

On the other hand, let N be closed. 
-"" j ~.-,,. 

Let a .,. N = N • By def-

* inition, there exists b € N such that a " b ~ z. By the (upper) 

disjunctive property, c exists satisfying i I= c ;:: z, (a " b) v c = i. 

If d f N, d = d " i = d "' [ (a I\ b ) v c 1 ~ ( b '' d) " ( c " d) = z " ( c " d) = 
= c ,, d ~ c. Consequently c is an upper bound of N. But a $ c (for 
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otherwise i = c v (a "' b) = c f i) and because a was any element not 

in N, N must contain all lmver bounds of the set of its upper bounds. 

'l 'ha t is, N is normal. This completes the proof of the proposition. 

Example 6. The following application is typical of the way in 

which the preceding results will be used later. Consider the Jattice 

1/(0) where 1 is the lattice of continuous functions on a completely 

regular topological space S (vide example 2). This lattice is iso­

morphic to the sub-lattice of the Boolean algebra of regular open 

sets which consists of all sets of the form { x £ S l f(x) > 0 } -o for 

sone continuous f. If S is normal, it can be shown that these are 

precisely the reguJ.E.r open hulls of open F a- sets. In the case of 

general spaces, these do not fonn a complete Boolean algebra. However 

these sets are dense in the regular open sets (in the sense of 

definition 1.2.2) and therefore ( L/(O) ) is isomorphic to the Boolean 

algebra of regular open sets. (Density follows from the complete 

regularity of s.) 1/(0) is, of course, disjunctive. It is also dis-

junctive with respect to the join operation. For if R is any regular 

open set of S which does not coincide with the whole space, there 

exists a function h t. C( S) satisfying S # { x \ h(x) '> 0 ' -o ~ R. 

Then for continuous functions f and g which satisfy f $ g ( 0), pick-

~ ( ( -c t () -0 1-0 ing H. = { x \f x) > 0 l v x j g x > O} , gives the dual dis-

junctive property. Hence by proposition 1.2. 7, the Boolean algebra 

of regular open sets of S is isomorphic to the normal completion of 

L/( 0). 
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1.2.5 The~ isomorphism theorem. 

The first isomorphism theorem established the characteristic 

connection between disjunctive homomorphisms (i.e., homomorphisms 

onto disjunctive lattices) and ideals; the second isomorphism theorem 

was concerned with iterated homorphisms onto disjunctive lattices; 

the third isomorphism theorem studies the behavior of sub-serni­

lattices under disjunctive homomorphisms. '.i.'his theoran requires nmch 

more machinery and gives far less satisfactory information than 

either of the first two homomorphism theorems. Nevertheless, it is 

an important result for the development of the remainder of the 

thesis. 

Two preparatory lenL~as are needed. 

Lemma 1. 2.8. Let M be a complete lattice satisfying the 

infinite distributive law. Let L be a sub-semi-lattice. Let J be a 

principal ideal of M and put I = J A L. Then L/I is isomorphic to 

a sub-semi-lattice of IvI under the mapping a.+ V lb i:: L i a ? b (I)l • 

Ranark. It should be emphasized that the congruence is being 

defined entirely within the semi-lattice 1 and has nothing to do 

with lattice M in which 1 is imbedded. Again, the definition is: 

a :;?. b ( I) • -=: • a " c ( I implies b " c € I, ~ all ~· It may 

very well happen that d E- M exists with a 11 d ( I, but b " d / I. 

Proof of the lemraa.. First of all, the mapping is a join homo­

morphism. a " b-+ V {c E 1 I a " b 2 c (I)t = V {c1 " c 2 la :? c1 , b ? c 2 (I)} 
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= l V { c1 I a ~ c1 ( I) }] " [ V { c 21 b 2 c 2 ( I) }] • 

Next V { c E L\ a ? c (I)l ~ V I if and only if a l I. For 

when a € I, a ? c (I) implies c E I and hence V l c E L I a ~ c (I) } ~ 

:=: V I. On the other hand, if this last holds, a s V I ~ V J (since 

a 2 a (I) ) and hence a E I. 

In order to apply theorem 1. 2.1 to the mapping defined in the 

lemma, it must be sh01.'m that the image of the mapping is disjunctive. 

To this end, suppose V l e E Li a ? c (I)} $ V l_ c (. L \b =. c (I) f • 

'I'hen there is an element c of 1 satisfying a 2 c and b f c (I). 

That is, d c 1 exists with b " d € I and c " d ¢. I. l'hen ( c I\ d) " b 

so V {e l c " d :.? e (I)} t V I, [V{ e / d " c ? e (I )} J " 
L V l e jb ? e (I )}) = V{e jc " d /\ b 2 e (I) } ..::::: V I; and -

obviously V f e l c " d 2 e (I )} < Vl e l a ~ e (I) ) Hence the • 

image is disjunctive. 

Apply theorem 1.2.1. The zero of the image is V I and the 

kernel of the mapping is I. Consequently L/I is isomorphic to this 

image. 

Car ollary 1 • 2. 3. With the hypotheses of the lemma, and if in 

addition I = J = (z), z being the common zero of M and L, then the 

mapping of the lemma carries the zero of L/I into the zero of M. 

Suppose we pose the question: when will the image of L/I under 

the mapping defined in the previous lemma be dense in M? Since the 

zero element of this image is V I, this can certainly never happen 

c: I 
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if I I= (z). But the case where I = (z) is of sufficient importance 

for a later application to warrant special consideration. fo answer 

the question necessitates the introduction of a new concept. This 

condition is a weakening of t he disjunction property on a serni­

lattice. Hence we call it the 11 quasi-disjunctiverr property. 

Definition 1.2.3. A semi-lattice L will be called quasi-dis­

junctive if it satisfies the condition: 

for any a I= z in L, b ~ a exists with b I= z, and such that if 

c t a, then d I= z exists satisfying d "S. c, d " b = z. In other words, 

b 2 c (z) implies c ~ a. 

Lemma 1.2.9. Let M be a complete lattice satisfying the infinite 

distributive law. Let L be a sub-semi-lattice. Suppose M and L have 

a zero element z in common. Then, in the imbedding of L/(z), as 

defined in lemma 1.2.8, the image of L/(z) is dense in M if and only 

if 

(i) L is dense in M, and 

(ii) L is quasi-disjunctive. 

Proof. Sufficiency. Suppose e I= z in M. Then a f. z exists in 

L such that a ~ e (by (i) ). Next b ~ a exists with b I= z and such 

that b 2 c ( z) implies c ::=.: a. It follows that z f. V t c E LI b ~ c (z)} ~ 

~a s e. Thus the image of L/( z) is dense in M. 

Necessity. If a I= z in M, then by hypothesis b c L exists satis­

fying z I= V {c\b ~ c (z) \ ~ a. Hence z I= b ~a, so Lis dense 
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in M. With the added hypothesis that a is in L, we get c ~ a for 

all c satisfying b 2 c (z). This establishes (ii). 

If L is disjunctive, condition (ii) is automatically satisfied. 

In particular, if Mis disjunctive (i.e., is a Boolean algebra) then 

(i) implies the disjunctivity of L which in turn implies (ii). Hence, 

Corollary 1.2.4. Let M be a complete Boolean algebra and let L 

be a sub-semi-lattice of M. The necessary and sufficient condition 

that L/(z) be dense in M is that 1 be dense in M (and hence 1 is 

disjunctive: L/(z) = L). 

Specializing the lerrnna to the case where L = M gives a character­

ization of the quasi-disjunctive condition. 

Corollary 1.2.5. Let L be a complete, completely distributive 

lattice. Then L/(z) is dense in 1 if and only if L is quasi-disjunc-

tive. 

Now it is possible to prove the third isomorphism theorem. 

Theorem 1. 2.5. Let M be a semi-lattice and let L be a sub-semi­

lattice of M. Let J be an ideal of M and put I = J /"\ L. Then (L/I J 

is isomorphic to a sub-semi-lattice of [ M/J J • 

Remark. The analogy between this theorem and the corresponding 

third isomorphism theorem of group theory is not too clear. Even 

put ting aside the fact that, in theorem 1 • 2. 5, we are dealing with 

closures of quotient lattices, the correspondence is not obvious. 

This point will be clarified somewhat when we later consider 
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conditions which \v:i..ll insure that (L/I ] is isomorphic to fM:/J J • 

Proof. It will first be shown that L/I is isomorphic to a sub­

sani-lattice of [ M/J ] • The proof is then completed by an application 

of the uniqueness theorem, 1. 2.4. 

Let h be the natural mapping of M onto M/J. Restriction of h 

to L gives a (semi-lattice) homomorphism of L into M/J. Denote the 

image of this mapping by L. Notice that L contains the zero of M/J 

and in fact h(a) = z if and only if a f I. By the second isomorphism 

theorem, L/( z) is isomorphic to L/I. Now L is a sub-semi-lattice of 

[ M/J ] . Thus by lemma 1.2.8, L/(z) is isomorphic to a sub- semi-

1.a.ttice of [M/J ] • Hence L/I is isomorphic to a sub-semi-lattice of 

[M/J ] • Applying the uniqueness theorem, the proof is complete. 

Remark: The proof shows .that the zeros in [M/J ) and [L/I 1 
correspond in the mapping. 

A very simple example may help clarify this theorem. 

Example 7. Let M be the Borel field generated from the open sets 

of a metric space. Let 1 be the lattice of open sets of the space. 

Let J =I = (0) be the zero ideal. M is disjunctive and [ M] is 

isomorphic to the Boolean algebra of all subsets of the space. 

(This is an obvious application of thoorem 1. 2.4.) L/(0) is the 

Boolean algebra of regular open sets of the space. Theorem 1. 2.5 

merely expresses the fact that the class of regular open sets is 

closed under intersections. It should be noticed that although we 
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started in this example with distributive lattices L and M, and L 

was actually a sub-lattice of M, the resulting [L/(0) ] turned out 

to be only a sub-semi-lattice of [ M] • In other words, there is 

apparently no Lnprovement of the theorem for the distributive lattice 

case. 

It is desirable to have a criterion for determining when [L/I] 

will be isomorphic to ( M/J ] • This is furnished by the definition 

Definition 1. 2.4. Let L be a sub-semi-lattice of M. 1 is 

called dense in M relative to the ideal J (of M) if the image of 1 

under the natural mapping M 4' M/J is dense in M/J. In other words, 

if a€ M and a¢ J, then b E 1 exists satisfying b 4 J and a~ b ( J). 

Lemma 1 • 2. 1 o. Let M be a semi-lattice and let 1 be a sub-semi­

la ttic e of M. Let J be an ideal of M and let I = J '"" L. Then the 

mapping in theore:n. 1. 2. 6 of [ L/I J into [ M/ J] is an isomorphism 

onto if an::i only if 1 is dense in M relative to J. 

Proof. Use the notation of theorem 1. 2.5. By theorem 1. 2.4 

and corollary 1.2.4, [ M/J ] is isomorphic to [L/Il if and only if L 

is dense in [ M/J ] • But since L is actually a sub-semi-lattice of 

M/ J, this means dense in M/ J. This is precisely the definition that 

L is dense in M relative to J. 

Now it is possible to clarify the analogy between theorem 1. 2.5 

and the third isomorphism theorem of the theory of groups. The group 

theoretic theorem asserts that if N is a normal subgroup of a group 



-43-

G, and if H is any subgroup of G, then (N•H)/N is isomorphic to 

H/(N ~ H). For the purpose of the analogy, let G correspond to a 

semi-lattice M, N to an ideal I of M, H to a sub-semi-lattice L of 

M. Now N•H is the smallest sub-group of G which contains both N and 

H. Let L v I denote the smallest sub-semi-lattice of M which contains 

both L and I. It is easy to see that L v I is just the set union of 

L and I. (In the distributive case, 1 v I must be the smallest sub­

la.ttice of M which contains both 1 and I . For this case, 1...., I = 
{ a v b ja ~ L, b f I } • ) If the analogy were perfect, we should 

have (1 v I)/I isomorphic to L/(L A I) . Unfortunately, the situation 

is not quite that nice. Instead, [(L v I)/I] is isomorphic to 

[ 1/(1 n I)) • 

To prove this, it is only necessary to show that 1 is dense in 

L v I relative to I. But this is a very special case of the situation 

described in definition 1. 2.4. If a € 1 v I and a * I, then a ( L. 

Thus L is dense in L u I. (The distributive case is not much more 

difficult. If c E 1 \.J I, then c = a v b, where a i; L and b ~ I. If 

c q: I, a fl. I, while c = a " b ~ a + z (I). ) 
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SUMMARY OF CHAPI'ER II 

Chapter two is devoted to the study of translation lattices. A 

translation lattice can be thought of as a semi-lattice of functions 

·which is closed under the operations of adding any constant to the 

functions. 

In the first section, the elementary properties of a translation 

lattice are developed. Also a number of examples are introduced to 

show that the concept of a translation lattice is not devoid of 

intrinsic interest. 

Section two is concerned with the extension of the results of 

chapter one to translation lattices. An anologue for the definition 

of a disjunctive lattice is found. We also define a congruence 

relation, using the ideas and theorems of section two of chapter one, 

which resembles, in many of its properties, the congruence of chapter 

one. Finally, it is aho~m that theorems analogous to the first and 

second isomorphism theorems can be proved for this congruence 

relation. 

In section three, the problem of representing a translation 

lattice is studied. With the eventual objective of representing trans­

lation lattices by means of lattices of continuous functions, an object 

called a normal lattice function is defined. A normal lattice function 

is nothing other than a bounded, real-valued function on a complete 

Boolean algebra with the property that it is a (dual) join homomorphism 
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of the Boolean algebra onto the real numbers. It is shown that 

certain translation lattices can be represented in a natural vray as 

translation lattices of normal lattice functions. The section ends 

with a detailed discussion of the unicity of this representation. 
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CHAPTER II - TRANSLATION LA.TrICES 

2.1 Preliminaries. 

The aim of the first section of this chapter is to acquaint the 

reader with the concept of a translation lattice. Consequently, it 

will be devoted largely to examples and discussion of the postulates. 

In the study of function lattices, we are faced with the difficulty 

of not having enough algebraic structural features. It is natural to 

look around for some other algebraic feature possessed by large 

numbers of function classes. Thus one is led to the study of Ja ttice 

ordered rings, lattice ordered vector spaces, lattice groups and so 

forth. Kaplansky has introduced another structure of this nature 

(see [8] ) • He calls his algebraic system a translation lattice. 

Intuitively, we may think of a translation lattice as a function 

lattice which is closed under the operation of adding any real number. 

Thus, with any function f in the lattice and any real number o(. is 

associated the function f + "'- defined by (f + o< ) (x) = f(x) + o<. • 

To justify the oonsideration of this algebraic system, it will be 

necessary to exhibit a large nu'!lber of significant examples of trans­

lation lattices of functions. Moreover, it is desirable that some of 

these examples be function classes which a.re not amenable to tech­

niques developed in the study of lattice rings, lattice groups and 

the like. In other words, we want to find translation lattices which 

are not also groups. It is remarkable that such systems exist in 



-47-

in considerable abundance, and their existence forms a partial 

justification for the present study. 

2. 1. 1 Definition of a translation lattice. 

Definition 2.1.1. An algebraic system Lis called a trans-

lation lattice if it satisfies the following conditions: 

(1) L is a semi-lattice (with the operation written as meet), 

( 2) Corresponding to each real number o< , there is an au to-

morphism T "'- of L (called a translation) such that 

T f = f; 
0 

T..: (Tp f) = T "'+fS f; 

if "' > O, T"' f > f; 

(a) 

(b) 

(c) 

( d) if f ~ g, T., f ~ T~ g for all e>(.. • , 
(e) for any f and g in L, an oc. exists such that T...:: f :=: g; 

(f) f :::: T "'"g for all ex > O implies f s g. 

This definition differs from the one of Kaplansl0J only in the 

assumption (1) . Kaplansk-y assumes that Lis a distributive lattice. 

However, for the use which we will make of translation lattices, it 

is more natural to assume only that the system fonns a semi-lattice. 

When it is desirable to add the assumption that the system also forms 

a distributive lattice, the term distributive translation lattice will 

be used. 

The strict ineq~ality sign in postulate (c) is to be interpreted 

as follows: f > g means that f ~ g and f '/= g. This excludes the 
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possibility of trivial systems containing only a single element. 

These postulates need little discussion. The conditions (a) 

( c) express the fact that the set 1 T "'- \ fonns an ordered group of 

automorphisms which is isomorphic to the real numbers. Postulate (d) 

merely expresses the fact that the T are homomorphisms of L. (f) 

asserts that for any g, the mapping ol. ...,. T ce g is continuous on the 

reals into L. Finally, (e) just says that for any f, the set of T <>t: f 

is cofinal in L. 

All of these postulates seem quite natural except possibly (e). 

In terms of function lattices, this restriction means that only 

lattices of bounded functions are being considered. While it would 

be desirable to avoid this postulate, it is very doubtful whether 

one could expect to get as many interesting results as can be obtained 

for bounded function lattices. 

Another possible direction of generalization is the substitution 

of another simply ordered group in place of the real numbers as the 

index group of the automorphisms T ~ • However, in order to obtain 

interesting theorems, it is necessary to assume some kind of complete­

ness properties for this group. But 1vith the added assumption of 

(conditional) completeness, the only possible simply ordered group 

other than the real nunber system is the additive group of integers. 

It ·would be interesting to try to carry out a study of the system 

obtained when definition 2.1 is altered with the replacement of the 

real number system by the integers, but this will not be done. 
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Before proceeding with our study, it is convenient to introduce 

a change of notation. In the definition 2.1.1, the notation T °'" f 

was used to denote the result of the application of the automorphism 

T ex. to the element f. This notation is different from that of 

Kaplansky. In his paper [8] , Kaplansky writes f + "'- instead of 

T ... f. This notation is evidently justified and pref er able once it is 

realized that when we speak of a translation lattice, a function 

(semi-) lattice is always what we have in mind. Indeed, it will be 

s hovm later that every abstract algebraic system satisfying postulates 

(1) and (2) of definition 2.1.1 is isomorphic to a translation lattice 

of functions by an isomorphism which makes the operation To<. corre­

spond to the addition of the constant real number o<. • In the 

remainder of the thesis, the notation of Kaplansky vd.11 be used. 

Instead of T "'- f, we wi 11 always write f + ex:. • 

It is an important consequence of this notational convention that 

the following formula is valid for any translation lattice: 

(f/\ g) + tX.. = (f +<X)"(g + ~). 

The equality is seen immediately when it is recalled t hat the trans­

lation T ~ is an automorphism of the translation lattice. Because 

of the elementary nature of this formula, its use in the sequal will 

be unattended by any special reference. 

2.1. 2 Examples. 

Example 1. As a first example, consider the set C(S) of all 

bounded, real-valued, continuous functions on a completely regular 
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topological space s. This set is, of course, a translation lattice 

with the usual operations taken pointw:i.se. Of course at the same 

time, it is also a ring, a vector space, and so forth. 

Example 2. For the second example, take the set of all bounded, 

lower semi-continuous functions on the completely regular space s. 

With respect to the usual meet and addition of a constant, this is a 

translation lattice. In fact it is a distributive translation lattice. 

We denote it by L(S). 

Exanple 3. It is possible to treat the set L(S) defined above 

as a translation lattice with respect to its join operation. However, 

it is more convenient to study the equivalent system of all bounded 

(real valued) upper semi-continuous functions as a translation lattice 

with respect to its meet operation. This system will be denoted U(S). 

It is a remarkable fact that, as will be shown later, the theory of 

U(S) differs essentially from that of L(S). 

Example 4. All of the above examples are distributive function 

lattices. That is, they are closed under pointwise join of elements. 

For an example where this is not the case, we may take the lattice 

of (bounded) nomal lower semi-continuous functions on a oompletely 

regular topological space s. Denote this function lattice by N(S). 

N(S) is actually a (conditionally) complete, completely distributive 

lattice, but only the meet operation is taken pointwise. Dilworth [1] 

has proved that N(S) is isomorphic to C( ¥') where 'I is the Boolean 
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space associated with the Boolean algebra of regular open sets of s. 

Example 5. A very natural example of a translation lattice is 

furnished by the bounded Lebesgue measurable functions on a space of 

finite total measure. This system, of course, also forms a vector 

space, but for many purposes it is more convenient to study it from 

the viewpoint of its lattice properties. 

Example 6. It is not hard to find examples of translation 

lattices which are not groups. An interesting one is the set of all 

non-decreasing functions on the real line interval ( o, 1 ] • 

Example 7. An example of a non-distributive translation lattice 

is furnished by the set of all concave fum tions on the real interval. 

This set forms a complete (non-distributive) lattice with meets taken 

pointwise. It is of course also a translation lattice. As a 

generalization of this example, one can consider the set of super­

harmonic functions in Euclidean space. 

Example 8. For an example of a translation lattice w.hich is of 

a somewhat different nature, consider, in a Banach space, the set of 

all convex open sets which cont ain the origin. Translation for this 

system is defined as magnification by 2 °'- while the meet oper-ation 

is just the ordinary set intersection. 

2. 1.3 Metric properties. 

Every translation lattice has a natural metric topology defined 
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by 

p (f ,g) = inf {). J f - ). .:; g ~ f + )i 1 • 

Proposition 2.1.1. If Lis a translation lattice, then the 

function f defined above is a distance function on L. 

Proof. Clearly p (f, g) = f' (g,f) and f' (f ,f) = O. If 

p (f, g) = o, then f = g is a consequence of (f) in definition 2.1.1. 

To complete the proof, the triangular inequality must be established. 

Let f, g, h € L. Pick any J > o. Real numbers ) and ~ 

exist so that f - ), ~ g ~ f + ), , g - ;« -5 h ~ g + /<- and 

f ( f, g) > A - ~ , f ( g, h) > ;-< - J • Then f - ( )i + !'- ) ~ g - ;<-< ~ 

sh.:; g + /'.:;: f + (Ii +;<), so f(f,h) s ~ +f- < f(f,g) + f(g,h) + 

2 ~ • Because J was arbitrarily chosen, P (f ,h) ~ f (f ,g) + f (g,h). 

While the metric topology defined by f is not the only possible 

topology which can be imposed on a translation lattice (another is the 

interval topology defined in terms of the partial ordering of L) , 

examples shovv that the topology of f is one of the most important. 

For a translation 1-3.ttice of functions, convergence in the metric 

is just uniform convergence. Without explicit mention, it will always 

be assumed in the future that a translation lattice is topologi zed by 

its metric topology as defined in lemma 2.1.1. Thus a subset of a 

translation lattice will be called closed only if it is closed with 

respect to the topology of P • In particular, if an ideal I is 

closed, then whenever f 1: I, there is a 6 > 0 such that f - f, f I. 
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Proposition 2.1. 2. If L is a translation lattice, then with the 

topology defined by f , L is a topological algebra. That is, the 

operations of translation and join are continuous. 

Proof. Suppose f -+ f and g -+ g as n-+ co. Let J > O be n n 

arbitrarily small. Choose N 6 so large that f - J ~ f ~ f + 0 m 

and g - cS ~ gn ~ g + 8 whenever m > N ! and n .,.. N ~ • Then 

(f I\ g) - 6 ~ f /\ a < (f /\ 2) + & • Therefore f /1. g -+ f A g as m 0 n- ~ m n 

m, n-+ co. In case L is a distributive Ja ttice, the same argument 

shows that f v g -+ f v g. The fact that translation is a continuous m n 

operation is easily seen: if f -+ f and o<. -+ then f + o<. -+ n m n m 

f + o<.... as n and m go to °"• 

In a translation lattice L, since L is a metric space, it is 

meaningful to speak of completeness in the sense that every Cauchy 

sequence in L has a limit in L. A fundamental result is 

Proposition 2.1.J. Let L be a translation lattice. Then ~here 

exists a unique complete translation lattice L of which L is iso-

morphic and isometric to a dense sub-translation lattice. 

Proof. Let the points of L be just the points of the unique 

complete metric space of 'Which L is a dense sub-space, (see Hausdorff 

[ 9 ] p. 106). The operations in L can be defined in the usual way: 

if fn-+ f and gn-+ g where fn' ~ f L and f, g E 1, define 

f /\ g = lim f /\ g ; also define f + o<. = lim f + cX. • 
n n n 

Using the 

previous lenuna, it is easily verified that these limits exist and are 
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independent of t..11e choice of the defining sequence. At the same 

time (using the usual techniques) all of the identities which are 

the postulates for a translation lattice can be established. Finally, 

it must be shovm that L is a sub-translation lattice of L. All of 

the necessal'"IJ manipulations are so familiar that they can be safely 

omitted. 

2.2 Homomorphisms of Translation Lattices. 

Since ever-y- translation lattice is a seni-lattice, one can 

naturally expect the theory developed in 1. 2 to have an extension 

to the theory of translation lattices. The direct application of the 

results of 1 • 2 does not make full use of the potentialities of the 

techniques "Which have been developed. In the first place, a trans­

lation lattice never has a zero element and therefore can never be 

disjunctive. In the second place (and this is not unrelated to the 

first difficulty) the natural lattice homomorphism defined in 1. 2 

preserves the translation operations of a lattice only in special 

cases. 'fhus it will often happen that f ~ g (I) while, for some 

~ f. O, f - Ai-- g - A (I). Fortunately, there is a natural way to 

avoid these difficulties. The first part of this section will be 

devoted to the definition of a semi-lattice homomorphism which also 

preserves the translations . 

The idea behind this homomorphism can be explained rather 

simply. As before, homomorphisms are constructed out of equivalence 

relations. The equivalences are defined by ideals of the lattice. 
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Let 1 be a translation lattice and let I be an arbitrary ideal of L. 

With respect to this ideal, a congruence relation is defined in the 

following manner: f and g in 1 are called equivalent if f - :\ ~ g - t. (I) 

for all real A • The equivalence is just the one defined in 

lemma. 1.3.1. It is immediately clear that this device gives a trans­

lation congruence: if f is equivalent to g, then for any real 

f - ;>. is equivalent to g - )I • Unfortunately, there are complica­

tions which necessitate restrictions on the ideal I. These problems 

will be dealt with when they arise. Of course, not every homomorphism 

of a translation lattice will be of this form. However, the develop­

ment below shows that a remarkably large number of translation lattice 

homomorphisms are of this nature. 

2.2. 1 Divisible translation lattices. 

In this article, we will define the analogue of the disjunctive 

property for translation lattices. The above discussion makes the 

following plausible. 

Definition 2. 2.1. Let L be a translation :lattice. Let I be an 

ideal of L. Then 1 will be called divisible with respect to I if, 

whenever f ~ g in L, there exists a real A such that f - A 1 g - A (I). 

In other words, b. € l, exists satisfying (f - ;i ) " h f. I and 

(g - A ) I\ h ¢ I. 

The property of beine divisible with respect to some ideal is an 

important one -- one which merits rather close consideration. At the 
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same time, it is a rather general property for translation lattices. 

Lemma 2.2.1. Let L be a lattice ordered group of functions 

which contains all consta.~t functions (operations taken pointw:i.se, 

of course). Then L is di visible with respect to any principal ideal. 

Proof. First notice that it is sufficient to prove the lemma 

f or t he case of the principal ideal (0), since for any fixed function 

k, the mapping f ~ f - k is a translation lattice automorphism of 1 

which carries k into the zero function o. Then from the validity of 

the lemma for the ideal (0) follows its validity for the ideal (k). 

Nmv f ;t. g implies that there is an x such that f (x) ~ g(x). 

Choose a o > O so that f(x) + o < g(x). Take h = -f + f(x) + o , 

::\ = f(x) + 6 • Evidently (f - 1' ) /\. h = (f - f(x) - J ) " 

/\ (-f + f(x) + J ) ~ o. On the other hand, [(g - >. ) " h ] (x) = 

= [g(x) - f(x) - 6] I\ S > o, so (g - ), ) " h $ o. Thus the hypothesis 

of definition 2.2.1 is fulfilled. 

As a corollary of this lemma, it f ollov•s that the translation 

lattices described in examples 1, 4 and 5 of the previous section are 

all divisible w.tth respect to their principal ideals. The other 

examples recpire specific consideration. 

Example 9. The set U(S) of upper semi-continuous functions on 

a topological space S is divisible with respect to any principal 

ideal (k). 

In fact, suppose f 't: g. This rooans that x ~ S exists so that 
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f(x) < g(x). Choose 71. to satisfy f(x) - >. < k(x) < g(x) - "A • 

Let h c. U(S) be defined by h(y) = k(y) for y F x, h(x) = g(x) - >- • 

Then (f - >- ) " h ~ k is clear. Since H g - ).. ) " h 1 (x) = 

g(x) - A > k(x), it follows that (g - ). ) " h t k. 

Example 1 o. In contrast to the behavior of U(S), the trans­

lation lattice L(S) defined in example 2 is not divisible with respect 

to any of its closed ideals, provided certain restrictions are put on 

the space s. It is enough, for example, to assume that S is a compact 

metric space which is dense in itsell'. We will not prove this fact, 

but instead will be content to show that if S is not discrete, L(S) 

is not divisible with respect to the principal ideal (0). 

To make this proof, it is sufficient to exhibit functions f and 

g in L(S) which are such that f i g, while (f - ). ) " h s O and 

( g - ). ) 11 h $ 0 can never be simultaneously true when ~ is a real 

number and h G. L(S). For g, choose the function which has the constant 

value zero on s. Let f be the function which is zero except at a 

single non-isolated point x. Let f(x) = -1. Clearly f ;/= g. If h t L(S) 

and ). are such that (g - ~ ) " h i o, then necessarily "A > o. If 

also (f - >i ) "· h ~ o, >. > 0 would require that h(y) ~ 0 whenever 

y F x. Then, because h has to be lower semi-continuous, and because 

x is not isoJated, this would imply h(x) 5 o. In other words, h ~ o. 

Then· ( g - ). ) " h ~ 0, contrary to the hypothesis. 

While L(S) is not divisible with respect to any closed ideal, it 

still contains rather simple ideals with respect to which it is 
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divisible. For example if S is a metric space, then L(S) is divisible 

with respect to the ideal I = { f\f(x) <. 0 all x I • For suppose 

f(x) < g(x). Choose 'A = g(x) . Define h by the formula h(y) = 
max l -1, - f' (x,y) ~ , where f is the distance function on s. Then 

h(y) < 0 if y '/; x and h(x) = o. With these choices (f - ><) " h f I 

and ( g - " ) " h 4" r. 
The consideration of this example raises the following question: 

is it possible to find examples of distributive translation lattices 

which are not divisible with respect to any of their lattice ideals? 

This has been answered affirmatively. The example, however, is 

extremely special, and the proof that it is not divisible with respect 

to any ideal is rather tedious. For this reason, no attempt will be 

made to reproduce it here. 

Example 11. The translation lattice of ex.ample 6 has the 

interesting property that it is not divisible 1vi th respect to the 

principal ideal ( 0), while it is di visible with respect to the 

principal ideal (k), kb eing the function defined by k(x) = x. The 

proof of these facts are left for the reader to supply. 

Example 12. Consider the translation lattice 1 (defined in 

example 8) whose elements are the convex open sets containing the 

origin in a Banach space B. (For a reference on Ba.~ach spaces, see 

[101.) "VYe will show that this lattice is divisible with respect to 

the principal ideal generated by the unit sphere. Suppose f and g 
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are elements of L with f ? g. Since f and g are convex open sets, 

it follows that they are regular open sets and thus f- ~ g. In 

other ·Vlords x l B exists with x e g, x ti f-. Define h in L to be 

the set of all z of the form z = ). ·x + (1 - A. ):y where 0 <. >. " 1 

and II y II < & , c being a small positive constant which will be 

determined later. Clearly h ~ g (provided o is sufficiently 

small). It will be shown that there exists a sphere with center at 

the origin which contains h " f but not h. Fram this, the desired 

result follovrs (after appropriate magnification). 

f 

By the separation theorem for normed linear spaces, a continuous 

linear functional x'"'" exists satisfying x * ( z) S: (3 "- ""-
·'(-= x' (x) for 

all z ( f- (see Tuckey [11 1 ). Thus if z £ f ~ h, we can write 

z = ). · x + (1 - A. )y where 0 < i\ < 1 and ll y ll < 6 • Then 

.,)~ * .v.. i~ 
(3 ~ x"(z) = A· x (x) + (1 - .:\ )x"(y) ~A°' - (1- ). ) ll x II •!ly \\'> 

J~ 

, ~ + ll X ll • J • Consequently J\ < " 
o< + II A- 0 II • {) 

and 

thus ll z II~ Al\ X ll + (1 - ). ) < ((3 + II :0~ ll • ~ 1 
I\ y II - 0(. + 11 xi~ 11 • .\' llx II + ~ • If 

o is sufficiently snall, then 1\ z 11 '5 er < Hx 11 for all z E h " f 
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(where er is a fixed constant). Thus the (closed) sphere of 

radius er about the origin contains h " f but not h. The proof 

is then completed by a magnification of magnitude 1 / er • 

Exa111ple 13. The simplest possible translation lattice is the 

set of real numbers in their natural ordering. For this system, 

the ideals are of the form I (3 = l o< I <>L ~ f3 ~ and I 1
13 = { o<. I o( < (3 ~ • 

One easily verifies that the real numbers are divisible with respect 

to any of these ideals. Conversely, if a distributive translation 

lattice is divisible with respect to all of its ideals, then it is 

isomorphic to the real numbers. In fact, we will prove later that a 

distributive translation lattice is divisible with respect to a 

prime ideal only if it is isomorphic to the lattice of real numbers. 

2.2.2. The isomorphism theorems. 

The main result of the previous chapter was the first isomorphism 

theorem -- theorem 1. 2.1. We wi.11 now proceed to develop the analogue 

of this theorem for tra.11slation lattices. The central idea (which was 

presented in the introduction to this section) will be developed in 

detail, following article 1. 2. 2 as a pattern. 

Lenma 2.2.2. Let L be a translation lattice a~d let I be an 

ideal of L. Define: f ::-: g (I) if f - >. ~ g - :>. (I) for all real "A • 

Then ,......, is a congruence relation (preserving meets and translations) 

on L. If L is distributive and I is a lattice ideal, ~ also 

preserves joins. 
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Proof. The fact that ~ is an equivalence relation is an 

im.med.iate consequence of the fact that ~ is an equivalence. If 

f :::::: g (I) and h is any element of 1, then f /\ h - '- = (f - >- ) I\ (h - A ) 

,...., ( g - }. ) /\ ( h - ). ) = g " h - A (I) for any ;:\ • Consequently 

f " h ~ g " h (I) . Similarly if 1 is distributive and I is a latt ice 

ideal, f v h ~ g v h (I). To complete the proof, it must be shown 

that f ~ g implies f + o<. ~ g + oc. for any real o(. • But this 

fact is an immediate consequence of the definition, since (f + o<.. ) -

- A (g + o(_) - :>i (I) is equivalent to f - (A - ~) ~ g - P. - O()(I) 

for any >i • 

As usual, the elements of a translation lattice 1 which are con­

gruent by the equivalence "'"' can be identified to obtain a new 

semi-lattice which vli.ll be denoted 1//I. 

The semi-lattice L//I need not be a translation lattice. Indeed, 

if I = L, then L//I contains only a single element. Nevertheless , i t 

is a~~ays possible to define an operation in L//I ~Tiich has most of 

the properties of translation. The procedure is as follows: denote 

the congruence class of the element f by!; then define, for ff L//I 

and o( real, f + 0( = f + "'- • By the preceding lemma, this is a 

valid definition -- it is independent of the choice of the represent­

ative f in the congruence class 1. It is also easy to verify that 

the postulates (a) , (b) , (d) and (e) in definition 2.1.1 are satisfied. 

The other two postulates (c) and (f) may not always be satisfied. 
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Lemma 2.2 .3. Let L be a translation lattice. Let I be a non­

trivial ideal of L (neither empty nor all of L) which is a closed 

subset of L in the metric topology. Then L//I is a translation 

lattice and the natural mapping f ~ f of the elements of L onto their 

congruence classes is a translation lattice homomorphism. 

Proof. Define f + oe. = f + oc_ as above. Clearly the mapping 

f ~ f is a homomorphism. It is only necessary to show that the 

postulates (c) and (f) of definition 2.1.1 are satisfied. 

Postulate ( c) states that if oc.. > O, then f + c<.. > 1. It is 

clear at any rate that f + o( :::::. f. Suppose that for some "' > o, 

f + o£ = f. By i..11duction f + n oL = f for any integer n. Then also 

f = (f + n ()('. ) - n oL = f - n oL • Since I is non-trivial, postulate 

(e) of definition 2.1.1 shows that it is possible to pick n large 

enough so that f - n oe.. t:. I and f + n O(_ /.. I. Then f + no<.. + f -

- n oc (I) and consequently f + n "'- -::/:: f - n o<. (I) . But this 

contradicts f + n d = f - n o< • Thus f + .x. = f is impossible if 

oL > o. 

Postulate (f) states that if f :::: g + c< for all a(_ > o, then 

f s g. Let us prove this. Suppose f 5 g + oc. for all o<. > O. 

This means (referring back to the definition) that for « > 0 

[ (g +...c) - :>.]"ht I implies (f - A )11 h E I. ~ppose that 

( g - ) ) " h t I. Then for any "'- > 0, ( g - .A ) " ( h - ~ ) c I. Thus 

[(g +o<) - (;\+t:X. )] A (h- ct.) f I, so by the hypothesis 
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[f - ( ), + "'- )j " (h - c<. ) f I. Rearranging this gives 

[ (f - ). ) " h ] - o<. t I and since oc. was any positive nu.mber 

(f - :>.. ) " h t I- = I . Summarizing, we have shovm that for any .A 

and h { L: (g - >. ) ,.. h t. I implies (f - ). ) " h { I . In short 

f ~ g. This completes the proof. 

The question n~N arises what characterizes the natural mappings 

of a translation lattice L onto its quotient L//I? The following 

lemma gives some conditions which are certainly satisfied by these 

mappings. 

Lermna 2. 2.4. Let 1 be a translation lattice and let I be a 

closed non-trivial ideal of L. Denote by H the natural homomorphism 

of L onto L//I. Then 

(a) H-1(H(I)) =I. 

(b) H(I) is a closed ideal of L//I (in its natural metric 

topology). 

(c) L//I is divisible with respect to H(I) . 

Proof. (a): It is clear that I ~ H-1(H(I)). Suppose 

-1 ) g f H (H(I)). Then H(g) = H(f for some f £ I. Going back to the 

definition in lemma 2.2 . 2 this implies in particular that f......, g (I) . 

Since fc I, this means g EI (by lemma 1.2.J). Consequently, 

H-1 (H(I)) s I and (a) is proved. 

(b): It is very easy to check that H(I) is an ideal of L//I 

and the computation will be omitted. We must shrn~ that H(I) is a 
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closed subset of L//I. Suppose that f is a sequence of elements 
n 

of I such that H(f ) converges to H(f). In other words, if ~ > o, 
n 

H(f) - J ~ H(fn) ~ H(f) + 6 provided n is sufficiently large. 

Then using assertion (a) of this lemma (proved above) it follows from 

H(f - ~ ) = H(f) - J ~ H(f ) that f -
n 

r, € I. 

arbitrarily small, f t. I- =I. Thus H(f) l H(I). 

c< • .:;,ince can be 

(c): Suppose H(f) ~ H(g). This means that f" g * g (I). 

Hence A exists such that (f "' g ) - A -1-- g - >. (I) . By lemma 

1.2.1 this implies (f - :X) ~ (g - ;\ ) (I) . Thus h E: L exists satis­

fying (f - >i ) I\ h f I and (g - A. ) " h 4: I. Using (a) above, this 

tells us that H [(f - A)" h1 E H(I) and H [(g - >.),.. h] 4:: H(I). 

But H is a homomorphism so (H(f) - ~) " H(h) E H(I) while (H(g) - ). ) " 

~ H(h) ~ H(I). This is the condition in definition 2.2.1 for 

divisibility. 

Remark 1. It should be noticed that the properties (a) and (c) 

and the fact that H(I) is an ideal do not depend on the initial 

assumption that I is a closed ideal of L. In the case that it is 

known that L//I is a translation lattice, these properties will still 

obtain. 

Remark 2. Another property which is a characteristic of H is 

that it is a contirruous mapping when L and L//I are considered as 

topological spaces with their natural metric topologies. However, 

this fact is an immediate consequence of the fact that H is a homo-
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morphism, as the reader may verify. 

The properties proved in the previous lemma characterize the 

natural homomorphism H in the following sense: 

Lemma 2.2.5. Let L be a translation lattice. Let H be a 

(translation lattice) homomorphism of L onto the translation lattice 

L. Suppose moreover that L is divisible with respect to one of its 

ideals I. --1 -Let I = H (I). Then there is an isomorphism M of L//I 

onto L 9UCh that if H is the natural homomorphism of L onto L//I, 

then for any f { L, H(f) = M(H(f) ) . 

Proof. We will first show that for two elements f and g of L 

H(f ) =H(g) if andonlyifH(f) =H(g). NowH(f) =H(g) means 

f:::::: g (I), or f - >. """ g - i\ (I) for all >i • In other words, 

this says (f - A ) A h € I if and only if ( g - :A. ) " h t I. By the 

definition of I this is equivalent to: (H(f) - '/. ) " H(h) l I if and 

only if (H(g) - A ) /\ H(h) f 'I. But L = H(L) is divisible vii th 

respect to I so this is possible if and only if H(f) = H(g). 

Now M is defined as that mapping which carries H(f) of L//I into 

H(f) in L. Then M is a uniquely defined, one-to-one correspondence 

between L//I and L. Moreover M(H(f) - :>. ) = M(H(f - >. ) ) = H(f - >i )= 

= H(f) - A = M(H(f)) - A • Similarly M(H(f) /\ H(g)) = M(H(f )) " 

A M(H(g)) (and M(H(f) v H(g)) =M(H(f)) v M(H(g)) provided 1 is 

distributive and H is a distributive translation lattice homomorphism). 

Thus M is an isomorphism v.hich has the properties described in the 

lemma. The proof is complete. 
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Remark. For the proof of this lemma it was not necessary to 

assume that I was closed. Of course if I happened to be closed in 

L, th en so would I be cl?sed in L. 

An immediate and useful corollary of this lemma is the following: 

Corol1ary 2.2.1. A necessary and sufficient condition that a 

translation lattice L be divisible with respect to an ideal I is that 

L//I be isomorphic to L by the natural homomorphism. 

Proof. The necessity is a oonsequence of the lemma where His 

taken to be the identity mapping. The sufficiency follows from 

lemma 2. 2. 4 when account is taken of the remark 1 fallowing that 

lemma. 

Before proceeding, let us summarize the results of the past few 

lemmas in the first isomorphism theorem. 

Theorem 2. 2.1. Let L be a translation lattice. Then there is 

a many-to-one correspondence between the closed, non-trivial ideals 

of L and the homomorphisms of L onto translation lattices which are 

divisible with respect to some closed ideal. Any closed, non-trivial 

ideal I detennines a natural homomorphism H of L onto the translation 

lattice L//I which is divisible with respect to the closed ideal H(I). 

A second ideal J of 1 determines the same homomorphism as I if and 

only if L//I is also divisible with respect to H(J). Conversely, any 

homomorphism of 1 onto a translation lattice which is divisible with 

respect to one of its closed ideals is algebraically equivalent to 

the natural homomorphism of 1 onto L//I where I is a certain closed 
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ideal of L. 

Remark. It should be emphasized again the the terminology 

translation lattice above envisages only a semi-lattice. The ideals 

are only semi-lattice ideals. Moreover, the homomorphisms are 

assumed to preserve translations and meets, but not necessarily joins 

(where they exist). On the other hand, the above theorem is true if 

a translation lattice is interpreted as a distributive translation 

lattice, provided that ideals are meant lattice ideals; in this case 

the homomorphisms are true lattice homomorphisms. 

Example 14. Let S be a completely regular topological space. 

Define a mapping of L(S) -- the lower semi-continuous functions on S -­

onto N(S) -- the normal lower semi-continuous functions on S -- by letting 

f-+ (f*)~~ (where (f*)* (x) = lim inf (lim sup f( z)) - see Dilworth [ 11 ) • 
Y-+X Z-+Y 

It is easily shovm that this mapping preserves meets and translations. 

By lamna 2. 2.1, N(S) is divisible with respect to the closed ideal 

{ f £ N( S) \ f ~ 0 I , and if f is lower seni-continuous, it is easy to 
~~ 

see that (fn)~ ~ 0 if and only if f ~ O. Thus, denoting the ideal 
"" 

J f l: L(S) I f ~ 0 J by (0), theorem 2.2.1 shows that N(S) is isomorphic 

to L(S)//(O). 

It is convenient to formulate and prove the analogue of the second 

isomorphism theorem now. 

Theorem 2. 2. 2. Let H be a homomorphism of the translation lattice 

L onto 1 (also a translation lattice). Let I be a closed, non-trivial 
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ideal of L. D f . --1 ( ) e ine I = H I • Then I is a closed, non-trivial 

ideal of Land L//I is isomorphic to L//I. 

Proof. The proof that I is a closed non-trivia~ ideal is just 

a straightforward computation and will be omitted. 

We must prove L//I isomorphic to L//f.. Denote by H the natural 

homomorphism of 1 onto L//I. Map L onto L//I by the homomorphism 

H(H(f)). The inverse image of H(I) under this mapping is precisely 

I (by lemma 2.2.4). Since L//f. is divisible with respect to H(I) , 

it follows from lemma 2.2.5 that L//I is isomorphic to L//I. The 

proof is complete. 

2. 2.3 Prime ideals. 

In this section, the homomorphisms defined with respect to a 

special class of ideals will be studied in some detail. Out of this 

study will come representation theorems for abstract translation 

lattices. 

Definition 2.2.2. Let L be a sani-lattice. An ideal I of L 

will be called prime if its set complement in 1 is a lattice dual 

ideal. In other words, if f 4 I and g f I, then f A g ~ I. 

Notice that if 1 is a distributive lattice and I is a lattice 

ideal, this is just the usual definition of a prime ideal. 

Definition 2.2.2 makes it clear that prime ideals can always be 

found in a semi-lattice. For exa:aple, if f €. L, then {g t L\g } f l 

is a prime ideal. On the other hand, the existence of prime lattice 



-69-

ideals is not so easy to prove and in general the proof requires the 

use of transfinite methods. 

Now the work of the previous article will be specialized to the 

case where I is a prime ideal. The key lemma is the following: 

Lemma 2.2.6. Let L be a translation lattice. Let I be a closed 

ideal of L. A necessary and sufficient conditien that I be prime is 

that L//I be isomorphic to the translation lattice of real numbers. 

Proof. First suppose that I is prime. Define the mapping H: 

f ~ inf { >. ff - >. t I 1 • This clearly preserves translations. 

Also H(f " g) = inf \ A \ f " g - ;\ f I} = inf { }. I (f - >. ) " 

" ( g - A ) {. I ~ • Since I is prime, this equals inf { >. \(f - .:.\ ) € 

(I or (g- i\) l I\ =min{H(f), H(g)}. Similarly, if I is a 

lattice ideal, one easily proves that H(f v g) =max l H(f), H(g) \ • 

Nm'r the inverse image under H of the ideal (0) consisting of all non­

positive numbers is precisely I-= I. Thus by theorem 2.2.1, L//I 

is isomorphic to the real numbers. 

Conversely, if L//I is isomorphic to the real numbers, the 

natural homomorphism H carries I onto a closed, non-trivial ideal of 

the real numbers and H-1(H(I)) =I. But every ideal of the real 

nuniber system is prime (see example 13) and the inverse image of a 

prime ideal is clearly prime. Hence, I is prime. 

Remark. The homomorphism which was set up in the first part of 

the above proof depended in no way on the closed property of the ideal I . 
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Moreover, the construction used there to define H (i.e., H(f) = 
= inf { ~ {f - ). E I } ) is more convenient than the construction 

of the natural homomorphism of L onto L//I. Hence, for this article, 

we adopt this formula for the definition of the natural homomorphism 

with respect to a prime ideal . 

The homomorphisms of a translation lattice onto the real numbers 

are of sufficient importance to deserve a name. Following the termi­

nology of group theory, we will call them characters of the trans­

lation lattice. It follows from the above lemma that the characters 

of a translation lattice are intimately connected with the ideals of 

the lattice. 

It is instructive to look at translation lattices of functions 

in order to get a better idea of the meaning of the c oncepts of 

prime ideal and character. Let L be any translation lattice of 

functions (i.e. closed under pointwise meets and addition of constants) 

on a sets. Let x be any point of S. Then the mapping f _,. f(x) is, 

by the very meaning of the concept "translation lattice of functions 11 , 

a character of the lattice. Associated vnth this character is the 

closed prime ideal I = { f lf(x) ~ 0 ~ • It is an easy matter to show 

that the mapping f _,. f (x) is precisely the natural mapping of L onto 

L//I. Conversely, if S is a compact Hausdorff topological space and 

1 is all of C(S), then, as Kaplansky has shown (see ( 12 ) and [S J) , 

every closed ideal is a translation of an ideal of this form. Thus, 

for function lattices, the points of the base set are closely related 
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to the characters and the prime ideals of the lattice. This is the 

idea which is t~e basis of most representation theorems for algebraic 

systems. Such a representation theorem will not be proved for 

translation lattices. That is, it will be sh mm that every trans-

lation lattice is isomorphic to a translation lattice of functions on 

some set s. If the translation lattice is distributive, this 

representation can be made in such a way that joins as well as meets . 
are preserved. This latter result is due to Kaplansky [ 8 ] • 

Lemma 2.2.7. Let L be a translation lattice and let f * gin L. 

Then there is a character F of 1 such that F(f) < F(g) . If 1 is also 

distributive, the character can be so chosen that it preserves joins 

in L. 

Proof. Let I = { h ~ Llh ~ g } . Then I is a closed prime ideal, 

f ~ I and g 4 I. Also by postulate (f) of definition 2.1.1 there is 

a cf > 0 such that f + cf /?- g, that is, f + J !. I. Define the 

character F by F(h) = inf { ;\ I h - ;\ E I } • As is the proof of lemma 

2. 2.6, this is actually a character. F(f) = - o < 0 = F(g). Thus 

for a translation (semi-) lattice the proof is complete. 

In order to prove the distributive translation lattice case, the 

above argument can be a pplied except that it is necessary to establish 

the existence of a prime lattice ideal J with the properties f + 8 l I 

and g </::. I . Choose for J the ideal which is maximal with the properties 

I s J and g i J (I being the sa~e ideal as defined above). The 

existence of such a J follows from the maximal principle. It must be 
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shown that J is prime. Suppose 11-i and h2 are not in J. Then by the 

maximality (11-i) v J and (h
2

) ..., J must both contain g. So must the 

intersection of these two ideals. Since the lattice of ideals of a 

distributive lattice is itself dist,ributive (see [ 2 ] ) , this means 

Sine e ~ and h 2 were any elements not in J, it follows that J is 

prime. The lemma is proved. 

Using this lemma, we can easily deduce a representation theorem 

for abstract translation lattices. 

Theorem 2.2.3. Let L be an abstract translation lattice. Let 

f be any element of L. Then there is a set S and a translation 
0 

lattice 1 1 of bounded real valued functions on S such that 1and11 

are isomorphic by a mapping which sends f 
0 

into the zero function on 

s. 

Proof. Let S be the set { F l of all characters of 1 which satisfy 

F(f ) = O. 
0 

1 1 
For f t L, let f..,. f, where f is that function on S 

defined by f 1 (F) = F(f) for all F ~ s. Let 1 1 be the set of all F 1 

so obtained. The mapping f-+ f' is a homomorphism since (f /\ g) '(F) = 

= F ( f /\ g) = min { F ( f) , F ( g)} = min l f 1 
( F) , g I ( F) l and 

(f + ol ) t (F) = F(f + oL) = F(f) + <><- for all F E s. The mapping 

is one-to-one by lemma 2.2.7 since if f *- g, a character G exists 

satisfying G(f) < G(g). Put F = G - G(f ). Then F l S and 
0 

f' (F) = F(f) < J:t,( g) = g' (F). It is clear that f goes into the zero 
0 
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function. FinaJly, it follm~s from postulate (e) of definition 2.1.1 

that every f' is a bounded function on S. The proof is complete. 

Ranark. In case 1 is a distributive translation lattice, the 

argument used also shows that the representation is one which pre­

serves joinsof elements. The extra details are omitted. 

Theorem 2. 2.3 shows that no generality will be lost if, in 

studying translation lattices we restrict ourselves to the considera­

tion of translation lattices of functions. Hoi.vever, there is little 

to be gained by such a specialization, so we will continue to work 

·with general translation lattices. 

Example 15. Theorem 2. 2. 3 implies that the trans la ti on lattice 

of example 8 must be isomorphic to a translation lattice of l:ounded, 

real-valued functions on a set. It is very easy to obtain one such 

representation explicitly in this case. Let S be the set of al 1 

points on the unit sphere of the Banach space from which L is con­

structed. For any f t L and x l s, define f(x) = sup ( log .A\ i\ x { f ! • 
There is no difficulty in verifying that this convention makes a 

bounded, real-valued function on S correspond to each f E L. 

2.3 Representation Theory - Lattice Functions. 

One of the shortcomings of the theory developed in section 2.2 

is its failure to give a very concrete picture of the image trans­

lation lattices L//I formed with respect to a closed (non-trivial) 

ideal I. The present section is devoted to an attempt to fill this 
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gap. Full use -vvill be made of the t heory developed in section 1. 2. 

Instead of representing the translation lattice as a translation 

lattice of point functions, the representation will be in terms of 

collections (still translation lattices of course) of objects which 

are generalizations of set functions. These will be called lattice 

functions. This procedure has an advantage over the usual represent­

ation in terms of point functions. Namely, each lattice function 

carries with it part of the structure of the original translation 

lattice -- a virtue which is not shared by point functions. In fact, 

enough struct,ure is possessed by the individual lattice functions 

that it will be possible to prove significant theorems, even when 

the assumption that the whole system forms a translation lattice is 

weakened. 

2.3.1 Definitions -- ~representation theorem. 

Definition 2.3 . 1. Let P be a complete Boolean algebra. Then a 

bounded real valued function F defined on P - { z \ will be called a 

lattice function if it satisfies: 

F(a) S F(b) whenever z f: b ~a. 

This definition calls for several remarks. First, it should be 

emphasized that the characteristic property F( a) ~ F(b) when z f: b ~ a 

makes F a dual order homomorphism of P into the reals. The reason 

for this dualization vvill be made clear later. Second, it may look 

strange that F is not defined on z. This convention undeniably causes 
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notational inconvenience in many places in the following pages. But, 

at the same time, to define F(z) would lead to notational difficulties 

in many other parts of the thesis. We have only to choose between the 

lesser of evils and the present choice seems best. As a final remark, 

we note that the concept of a lattice function could be generalized 

by assuming only that P is a partially ordered set. However, for the 

uses which will be made of lattice functions, the present definition 

is more appropriate. 

Now we will show how a translation lattice 1 can be represented 

as a translation lattice of lattice functions on a certain Boolean 

algebra P, provided 1 is divisible with respect to one of its closed 

ideals (see definition 2.2.1). A collection of latt,ice functions F 

on a Boolean algebra P forms a translation lattice in a natural way 

if the collection is closed under the elementwise operations of 

meets ((F " G)(a) =min i_ F(a), G(a) ~ ) and translations ((F +~)(a)= 

= F(a) + ~ ). It is easily seen that F " G and F + oc defined in 

this way are again lattice functions. 

Before beginning the theory, let us recall some of thenotation 

from chapter 1. Corresponding to any semi-lattice 1 and ideal I of 

L, a disjunctive lattice L/I was defined. There was a natural 

homomorphic mapping h1 of 1 onto L/I. Recall also that L/I couJd be 

imbedded in a complete Boolean algebra which was denoted ( L/I 1 • 

The mapping hr can therefore be thought of as a homomorphism of 1 
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into [L/I]. It will be of importance to know when L/I has a unit . 

This question was answered in lemma 1.2.5: L/I has a unit if and 

only if there is an element f € L such that f " g '° I implies g e. I 

for all g t L. This condition is certainly satisfied if I is a non­

trivial prime ideal. Also if L is a translation lattice, the 

condition is satisfied for all principal ideals. In fact 

Lennna 2.3.1. Let L be a translation lattice. Let I be a 

closed ideal of L. Suppose that I is bounded, that is, there exists 

an element f E L such that f ~ g for all g € I . Then L/I has a unit. 

Proof. The criterion of lemma 1. 2.5 will be used. Suppose 

f ~ g for all g ~ I. we will show that for any J > o, if 

(f + J ) /\ g € I, then g (. I. By hypothesis, (f + J ) " g t I 

implies that f ~ (f + .s ) 11 g. Applying this inequality to its elf 

gives f ~ ( [ (f + .s ) " g ] + ~ ) /\ g = (f + 2 4 ) 11 (g + J) 11 g ::: 

= (f + 2 ~ ) 11 g. Repeating t his process, an induction shows that 

f ~ (f + n J ) 11 g for all integers n. By postulate (e) of definition 

2. 1.1, n can be chosen large enough so that (f + n J ) " g = g. Thus 

f 2'. g and therefore (f + 5 ) 11 g = g. But the original assumption was 

that (f + o ) " g € I. Therefore g €. I. The proof is complete, since 

this means that the image of f + 6 in L/I is a unit of L/I . 

Now the main part of the representation theorem can be formulated 

and proved. 
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Lemma 2.J.2. Let L be a translation lattice. Let I be a 

closed ideal of L which is such that L/I has a unit element. Suppose, 

moreover, that 1 is divisible with respect to I. Define for 

a t [L/I] - l z \ and f t: L: 

Ff( a) = sup t A I hI(f - ) ) "2: a ~ • 

Then Ff is a lattice function on ( L/I 1 and the mapping f _,. Ff is a 

translation lattice isomorphism. 

Proof. The first thing to show is that Ff is well defined on [L/I 1 

by the above formula; it must be proved that l :.\ \h1(f - ~ ) ~ a \ is 

not empty. This follows from the assumption that L/I has a unit. 

Indeed i f g i;: 1 is such that ~(g) = i, ( the common unit of L/I and 

tL/I ) ), then there exists a ). 
0 

so small (negatively) that 

f - \ 
0 

? g, hr (f - ).. 
0

) ~ h1( g) = i ? a. Thus the set of ). ' s 

for which hI(f- ;\ ) ~ a always contains :\ 
0

• Hence Ff( a) ? )\ 
0 

for 

all a. On the other hand, it is always possible ix> choose >. 1 so 

large that f - ;\ 1 E: I. Therefore h1(f - >. 1) = z, so that 

Ff(a) < A 1 (assuming of course that a-/= z). Thus Ff is bounded on 

~ L/I ] - { z l . 

Now suppose z -/= b ~ a. Then \. A \ h1(f - >i ) ? a } <; 

l ). \ h1(f - >. ) ~ b } , so that F f(a) ~ F f(b). This means that all the 

conditions of definition 2.J.1 are satisfied and Ff is a lattice 

function on [ L/I ] • 

Next, it mll be shovm that f _,. Ff is a translation lattice 
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homomorphism. Ff+ <><.. (a) =sup l). \ h1(f + °' - :X ) -;::: a \ = sup \ A - oe I 

\ h1(f - ( A - "' ) ) ?: a l + o<.. = F f(a) + o<. • Thus translations are 

preserved. Ff " g(a) =sup \.). \ h1(f " g - A ) ~ a } =sup 

{ ). I h1(f - ). ) " h1(g - "A ) ~ a } • Now suppose for definiteness 

that oL = Ff(a) ~ Fg(a) = (3 • Then if ~ > o, by definition 

h1 (f - o( + J ) ~ a, h1 (f - o<. - J ) ~ a and h1 ( g - cl('. + J ) ~ 

~ h1(g - (3 + o ) ~ a. Hence h1(f - <>< + 6 ) " h1 (g - « + o ) ~ a 

and h1(f - "'- + J ) 11 h1( g - °' + J ) 't a. Since J can be 

arbitrarily small, it follows that Ff " g(a) =sup ~ A l h1(f - A )" 

" h1(g - ;\ ) ~ a } =min l F f(a), F g(a) l . 
To complete the proof it must be shown that f-+ Ff is a one-to­

one mapping. Suppose r1 "t f 2• Then since L is di visible with respect 

to r, there exists a real · A and an element g t; L such that 

(f1- ~ ) " g ( I, (f2 - >. ) " g ~ I. Then since I is closed, o > O 

exists so that (f 2 - A - 6 ) 11 (g - & ) 2: ( (f 2 - A) " g J - J € r. 

Hence, (f2 - .::\ - d ) 11 g '-I . Consequently, r1 - ). :J! f 2 - A - d (I), 

that is , hr ( f 1 - .A ) t hr ( f 2 - A - ~ ) • Now cal 1 a = h1(f2 - .A - cf ) • 

Then Ff (a) '!: A and Ff (a) ? A + cS • This says finally that 
1 2 

Ff } Ff , proving that the mapping f-+ Ff is one-to-one. All of the 
1 2 

assertions of lemma 2.J.2 have now been established. 

Remark. The formula Ff(a) =sup l). \h1(f - A ) ~ a l is mean­

ingful only as long as a '/:. z; for eve:ry real number >. satisfies 

h
1
(f - ). ) ::::. z. This is one of the reasons that the convention of not 
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defining a lattice functi on on the zero element was adopted. 

The latti ce funct i ons defined in the preceeding lemraa satisfy 

a rather special condition. 

Lemma 2.3.3. The latti ce .functions Ff defined in the previous 

lemma by F f(a) ==sup { ;>.. I hI( f - >i ) ~ a \ invert unlimited joins. 

That i s, if A is any non-empty subset of [L/I ] - l z ~ , then Ff( V A) = 

== inf ~ Ff (a) I a f A } • 

Proof. It is an immediate consequence of the characteristic 

property of lattice functions that F f( V A) ~ inf l F f(a) I a f Al • To 

prove the reverse inequality, denote o<... = Ff( V A) and pick any 6 > O. 

Then h1( f - o<. - 6 ) :?= V A, so there exists a f A such t hat 

h1(f - o< - J ) ?j: a. This m8ans Ff(a) ~ ex: + ~ • Since ~ was 

arbitrarily small, inf { Ff( a) la E A } s o<. =Ff( V A). 

Definition 2.3. 2. A lattice function F which inverts unlL"Ilited 

joins (that is, F( V A) =inf l F(a) l a f A } , f or arr; non-empty subset 

A of P - l z ~ ) is called normal. 

The reason for this terminology will become clear when the 

relation between lattice functions and p oint functions on a topological 

space is studied. The lemma 2.3.3 can now be expressed by saying that 

the lattice functions Ff are normal. 

An alternative characterization of normality for a lattice 

function can be given. The criterion is due essentially to Dilworth 

(see [ 1 ] ) • 
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Proposition 2.J.1. Let F be a lattice function on P. Then F 

is normal if and only if the following condition is satisfied: 

N: if a I= z and F(a) < A , then b exists ~~th z I= b ~ a such that 

F(c) < A for all c 5: b, c I= z. 

Proof. Suppose F is a normal lattice .fUnction. If, for all b s a, 

there is a c ~ b such that F( c) ~ ~ , then clearly a = V { c lF(c) ~ /I , 

c 5 a J • Hence >. > F (a) = inf { F ( c) I F ( c) ? :\ , c ~ a l ~ >. • 

This contradiction proves that N must be satisfied. 

Conversely, suppose F satisfies the condition N. Let A be a 

non-empty subset of P - l z } • Call oc... = inf l F(a) I a c A } • Suppose 

F( V A) < 0( . By N, b exists in P with z I= b ~V A and F(c) < o<. for 

all c '.S b. Si nce b = b " V A = V { b " a I a f A } , b " a I= z for some 

a € A. For this a, c;(_ > F(b " a) ::== F(a) ~inf l F(a) I a € Al = o< • 

This contradiction proves F( V A) ~ o<. • Clearly F( V A) ~ o<:: • 

Since A was an arbitrarily chosen subset of P - {z l , the condition 

for F to be normal has been satisfied. 

Corresponding to a given complete Boolean algebra P, there are 

usually many translation lattices of normal lattice functions which 

can be defined on P. Suppose L is one such translation lattice. The 

question naturally arises: is there an ideal I in L such that P is 

isomorphic to f L/I ] and the construction of lemma 2.3. 2 (applied 

to L, where L is considered as an abstract translation lattice) yields 

just the Ja ttice functions of L? In short, what kind of uniqueness 
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theorems can be proved for the representation of a translation 

lattice as a collection of lattice functions? A later article will 

be devoted to answering this question. Here we lay the foundations 

by proving some necessa:ry conditions. 

Lem.ma 2.3.4. In the mapping f ~ Ff of lemma 2.3.2, the image 

of I is precisely {FflFf(a)::; O for all a f (L/I1 - \zl} . 

Proof. Suppose f € I . Then hI(f - A ) = z for all ..A ~ O. 

Therefore Ff(a) ::: 0 holds for all a f z. Conversely, if Ff(a) ~ 0 

for all a I= z, then ~(f - ~ ) = z is true for all :>. > o. In 

other words, f { I- = I. 

A consequence of this lemma is: 

Corollary 2.3.1. The image set in the mapping f ...+Ff contains 

the zero lattice function if and only if I is a principal ideal. If 

I is principal, then its generator maps into the zero function. 

Another condition which must be satisfied by the image set of 

lattice functions in the mapping f-+ Ff is the following: 

Lemma 2.3 • .5. Suppose that the conditions of lermn.a 2.3. 2 prevail; 

cons~ruct the lattice functions Ff as described. Then if a f z in 

[L/I 1, there is an Ff such that Ff(b) > 0 for some b with z f b s a 

and Ff(c) ~ 0 for all c satisfying c $a. 

Proof. Since L/I is dense in iL/I1 , if a f z in [L/I] , there 

is an f f L such that z f:. fl:r(f) s a. Now hI(f) f:. z implies that f f I. 
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Then since I is closed by assumption, f - h ~ I holds for some 

6 > o. Put b = ~(f - ~ ) /: z. Then F f(b) ~ ~ > O by definition. 

On the other hand, if c $ a, h
1
(f) ~ c so Ff(c) ~ O. 

complete. 

The proof is 

The condition expressed in the lemma is sufficiently important 

to be given a name. 

Definition 2.3.3. Let M be a collection of normal lattice 

functions on a complete Boolean algebra P. Then M will be said to 

generate P if for any a /: z in P, there is an F E M and an element 

b f P such that (1): F(b) > o, and (2): F(c) ~ 0 for all c satisfying 

c $. a. 

Lemma 2.J.5 implies that if the translation lattice L is 

divisible with respect to the closed bounded ideal I, then the 

natural representation of L as a set of lattice functions on LL/I ) 

generates the Boolean algebra [ L/I ] • It is possible to prove the 

following converse reS11lt. 

Proposition 2.3.2. Let L be a translation lattice of normal 

lattice functions on a complete Boolean algebra P. Suppose that L 

generates P. Then L is divisible with respect to the ideal 

I = { FIF(a) ~ 0 all a f P - i z} t • 

Proof. Suppose F "?: G. This means that F(a) < G(a) for some a. 

Choose >. so that F(a) <- ). < G(a). According to proposition 

2.3.1, this means that b ~ P exists satisfying z /: b ~ a and such 
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that F(c) < A for all c --=: b. In particula,r F(b) < >. < G(a) '5 G(b). 

Since L generates P, there is an e l ement H € L satisfying H(c) > 0 

where c ~ band H(d) ~ 0 for all d such that d i- b. It then follows 

that ( (F - ~ ) " H ) (d) -s H(d) ~ 0 if d $ b, ~ F(d) - A -:: O if 

d ~ b. Thus ( F - A. ) " H ~ 0 ( i. e. , ( F - I. ) " H f I ) • Also 

[ ( G - ~ ) " H] ( c) > o, so that ( G - :>. ) " H /- 0 (i.e., ( G - >- ) ,.. H if I). 

Since F and G were any two elements satisfying F ?t: G, the conditions of 

divisibility with respect to I are satisfied. 

For convenience, the results of the past few lenma.s will be collected 

together as the 11 representation theorem 11 • 

Theorem 2.3.1. Let 1 be a translation lattice. Let I be a closed, 

bounded ideal of 1 such that L is divisible with respect to I. Define 

for a ' ( L/I 1 - l z \ and f f L 

Ff (a) = sup { >- \ h1 ( f - >. ) ~ a } • 

Then Ff is a normal lattice function on ( L/I1 and the mapping f-+ Ff 

t 
is a translation lattice isomorphism of 1 onto a set L of normal 

lattice functions which generates lL/I ) . The image of I in this 

mappingistheset \ F E L 1 \ F ~ o l . 

Corollary 2.3.2. Let L be a translation lattice. Let I be a 

closed, bounded ideal of 1. Define, for a l [ L/I1 - l z } and f € L, 

' F f(a) = sup l >. I h1 (f - ~ ) -a a t • 

' Then the mapping f-+ Ff is a translation lattice homomorphism of 1 
1 

onto a set 1 of normal lattice functions on ( L/I ] • The collection 

' 1 generates ( L/I ] . Moreover, there is a natural isomorphism(/) of 
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[L/I] onto ((L//I)/H(I)) such that 

' Ff(a) = FH(f)(0(a)) 

where H is the natural homomorphism of L onto L//I and F denotes the 

representation of L//I constructed in theorem 2.3.1 (with respect, to 

the ideal H(I)). 

Pruof. Using theorem 2.3.1, the first part of the corollary 

will be an i nunediate consequence of the last assertion (since L//I 

is divisible with respect to H(I)). 

Notice that by theorem 1. 2.2, 11r(f) = h1 (g) if and only if 

11t(r)(H(f)) = ~(I)(H(g)). Thus 0 is defined as an isomorphism of 

L/I onto (L//I)/H(I) by putting 0(h
1
(f)) = ~(I)(H(f)). By theorem 

1.2.4, 0 extends immediately to an isomorphism between the complete 

Boolean algebras, [ L/I 1 and l (L//I)/H(I) ] • With this definition, 

h1(f - ~ )~a if and only if hH(I)(H(f) - >. ) = 0(h1(f - >. )) 2 0 (a). 

From this, the last assertion of the corollary follows readily. 

Definition 2.J.4. Let L be a translation lattice and let I be 

a bounded closed ideal of L. The mapping f ~ Ff of L into the set 

of normal lattice functions on L/I (where Ff is defined by Ff(a) = 

= sup { >. I h
1
(f - ~ ) ~ a } ) , will be called the natural represen­

tation of 1 (relative to the ideal I) as a translation lattice of 

normal lattice functions . 

An example may help to clarify some of t he concepts which have 

just been introduced. 
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Example 16. Let L be C(S), the translation lattice of bounded, 

real valued functions on a completely regular topological space s. 

Let (0 ) be the principal ideal generated by the zero function. Then 

(L/(O) ] is isomorphic to the Boolean algebra of regular open sets 

of S (see example 6 of chapter 1 ) . The mapping f-+ t x \f(x) > 0 1 -o 

is the natural mapping,h
1

, of L into thi s Boolean algebra. We will 

show that Ff (a ) = inf l f (x) \ x E a 1 holds for al 1 regular open 

sets a. 

By definition, Ff( a) =sup {XI h1( f - A ) :::: a \ = 

= sup { t. I {x i f (x) > ). l -o ~ a ~ • To save writing, denote 

o<. = inf { f(x) Ix (- a l . If <I > o, l x lf(x) > o< - J } ~ a by the 

defi nition of o<. • Hence, \ x lf(x) > « - J} -o ~ a. On the other . 

hand, x E a exists satisfying f(x) < o( + cl • By the continuity of 

f, this inequality holds in a neighborhood of x and thus 

{ x i f (x) > °" + J l -o ?: a. Since J' could be arbitrarily small, 

sup l >i H x lf(x) > A\ -o :: a ~ = o< , q.e.d. 

It is important to know that normal lattice functions can be 

constructed on any complete Boolean algebra. The following proposition 

gives a method for constructing a special kind of normal lattice 

function. 

Proposition 2.3.3. Let P be a complete Boolean algebra. Let b 

be any non-zero element of P. Then there is a norillal lattice function 

F on P such that F ( c) = 1 if z I= c ~ b and F( c) = 0 if c t b. 
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Proof. Let F be precisely as defined in the proposition. We 

must show- t hat it is a normal lattice function. If z ~ c ~ d and 

F( d) = 1, then d ~ b so also c ~ b. Hence F( c) = 1. It follows that 

c ~ d implies F(c) ~ F(d) . Suppose A is any non-empty subset of 

P - t z } • Clearly, V A i b if and only if some a t A satisfies a $ b. 

Hence F( V A) = inf l F(a) \ a t A \ • Thus F is normal. 

Using this, it is possible to deduce an importa.~t fact. 

Proposition 2.J.4. Let P be a complete Boolean algebra. Then 

the set of all normal lattice functions on P forms a translation 

lattice which generates P. 

Proof. First, the set of all normal lattice functi ons forms a 

translation lattice. The fact that the system is closed under trans-

lation can be readily checked. The details are omitted. Suppose F 

and G are two normal lattice functions. Then F " G is clear:cy a 

lattice fun::tion. To prove normality, suppose A is any non-empty 

subset of P - 1 z } • Then (F " G) ( VA) = F( V A) " G( V A) = 

( inf { F(a)l a E A l) " [ inf l G(a) )a E A)]::: inf t F(a) " G(a) \a ( A} = 

inf { (F A G)(a) )a E Al • The opposite inequality follows from the 

fact that (F " G) ( V A) ~ (F " G)(a) for all a f A. 

The assertion, that P is generated by the set of all normal 

lattice functions, is a direct consequence of the prece¢ding pro-

position. The proof is, therefore, complete. 

Hereafter t he translation lattice of all normal lattice functions 
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on the complete Boolean algebra P will be denoted N(P). This should 

not cause any confusion with the notation N( S) introduced in example 

4. P always denotes a complete Boolean algebra. 

2.3 .3. The uniqueness theorem -- special ~· 

In this article, a uniqueness theorem for the representation of 

translation lat tices as lattice functions will be deduced. Suppose 

a translation lattice 1 is given. Assume that 1 can be represented 

as a sub-translation Jattice of N(P) so that the representative of 

1 generates P. Then by proposition 2.3. 2, 1 is divisible w:i. th respect 

to the ideal { F E 1 \F ~ O } • We shall answer the f ollovring question: 

what is the relation between the given representation and the natural 

representation of definition 2.3. 4? 

Theorem 2.3.2. Let L be a translation lattice of normal lattice 

functions on a complete Boolean algebra P. Suppose 1 is dense in P. 

1et I = lF t L\F ~ 0 ~ • Then 

(1) [L/I ] is isomorphic to P by a mapping 0 on l L/I ] to P; 

(2) The natural representation, FG of G ~ L as a lattice 

function on ~ L/I ] , which is defined by FG(a) =sup \). \ h1(G - >. ) ?: a l 

(where h
1 

is the natural homomorphism of 1 onto L/I, satisfies 

FG(a) = G(0(a ) ). 

Proof. For the notation in the proof of this theorem, write 

a for the generic element of [L/I l , b for the generic element of P. 
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Map L into P by G ~ V { b <= P IG(b) > 0 } • One easily verifies 

that this is a meet homomorphism. The image of this mapping is dense 

in P (see definition 1. 2.3), since 1 generates P. The kernel of the 

homomorphisn is { G E LI G -::: O ! = I. Hence the mapping determines an 

isomorphism of L/I into P. Denote it by 0. To be precise, 0 is 

defined by: 

0(~(G)) = v ( b E p;IG(b) > 0 l • 

0 is extended to an isomorphism of [ L/I 1 onto P by writing 

0(a) = V ~ 0 (h1(G)) l h1(G) ~ a ~ . (This clearly makes 0 a meet homo­

morphism with kernel z of l L/I 1 onto a dense subset of P. By propo­

sition 1.2.2, the mapping is an isomorphism. By theorem 1.2.5, it 

is onto P.) 

To complete the proof, it is necessary to shrnv that FG(a) = G(0(a) ) 

holds for all a f (L/I l - l zl • (We notice that I is a bounded, 

closed ideal of L and 1 is divisible vd. th respect to I.) 

FG(a) =sup ~ J. \ h1 (G - >.)::::: a 1 =sup { A 1 0 (~( G - ). )) ~ 0 (a) J = 

sup {>. IV {bf. P\G(b) > .:\) ?'.: 0(a) \ . 

Now Vf b t P j G(b) >~ i ~ 0(a) implies (by the normality of G) 

that ,\ ~ inf { G(b) I G(b) > ;\ } = G( V {b ~ Pl G(b) > A } ) ~ G(0(a) ). 

Hence, FG(a) ~ G(0(a)). 

To reverse this inequality, notice that if A < G(0 (a)), 

V { b E PfG(b) >A} ~ 0 (a). Consequently FG(a ) c sup l A I A< G(0 (a)) l = 

G(0 ( a)). This completes the proof of the theorem. 
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2.3.4. The general uniqueness theorem -- preliminary results. 

The ultimate object of this and the remaining articles of section 

2.3 is to determine the modifications which must be made in theorem 

2.3.2 when t he assumption that L generates Pis dropped. The main 

result of this article, theorem 2.3.3 below, indicates the direction 

t o be followed in the remainder of the section. The proof given 

could be much shortened by the application of the third isomorphism 

theorem of chapter 1. However, we will give a more detailed proof 

since some of the intermediate notations and results vd 11 be useful 

for later work. 

Let L be a translation lattice of normal latti ce functions on 

a complete Boolean algebra P. As usual, let I= tF ~ L I F ~ 0}. 

Definition 2.3.5. Denote by 11. the subset of P consisting of 

all elements of the form ~ = V { b E PIF(b) > 0 } where F E L. 

Lermna 2.3.7. Risa sub-semi-lattice of P with ~he srune zero 

and unit as P. The mapping F-+ 8:F' is a semi-lattice homomorphism 

whose kernel is I. R is dense in P if and only if 1 generates P. 

Proof. We have ~ " aG = L V \ b E Pl F(b) > 0 J] /\ 

[ V { ct P jG(c) > o 1J = Vtb" c I= zl F(b)> o, G( c) > OJ ..:; 

'.5 V l b l (F /\ G)(b) > 0 t = ~ " a• On the other hand, 

~,= V{ bEP IF(b) > O } '.:'.'.V\_ b £ P \ (F r. G)(b)>O}=aF"Gand 

similarly aG ~ ~ " a• Hence ~ " aG ~ ~ " a• These two inequal­

ities prove that the mapping F -+ ~ is a homomorphism and the image 
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is a semi-lattice. Clearly z and i are elements of R. It is also 

evident that the kernel of the mapping is I. 

The last statement of the lemma is just an expression of the 

equivalence of the two definitions: R is dense in P if for any a # z 

in P, there is an F € L such that z # V l b\F(b) > 0 } ~ a; L generates 

P if for arry a # z in P, there is an F t L such that F(b) > O for 

some b ~ a and F( c) "'." 0 whenever c f- a. 

Definition 2.3.6. Denote for~ E. R, ~ = Vlb <::R I ~ ~ b (z ):in R}. 

The join is taken in P of course. (The notation~;? b (z) refers to 

the definition of lemma 1.2.1.) 

Lemma 2.3.8. ~-+ ~ is a semi-lattice homomorphism of R into 

a disjunctive sub-semi-lattice of P. The mapping satisfies ~ ~ ~' 

~ {\ G = ~ /\ aG, z = z and I = i. 

Proof. This is a special case of lemma 1.J.9. 

Theorem 2.3.3 . [L/I ) is isomorphic to a sub-semi-lattice of P. 

By the isomorphism, z-+ z, i-+ i and h1(F)-+ ~· 

is onto P if and only if L generates P. 

The isomorphism 

Proof. The first two statements are consequences of lemma 2.3.8 

and the first and second isomorphism theorems (theorems 1.2.1 and 

1 • 2. 2, respectively) , together with theorem 1 • 2. 5. 

'ro prove the last assertion, notice ~ -:: ~· Now [ L/I 1 will be 

isomorphic to all of P if and only if R/(z) is dense in P, and, because 

of the inequality, thi s means that R must be dense in P. Conversely, 
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if R is dense in P, it is disjunctive and hence R/(z) = R is dense 

in P. By lemma 2.3.7, the final statement follows. 

Let P1 denote the image of (L/I ] in P under the mapping of 

theorem 2.3.3. For every F c L, we may ask the question: what is 

the relation between the lattice function which is defined as the 

restriction of F to P1 and the natural representation of F as a 

normal lattice function on [ L/I ] • There will be no simple corre­

spondence such as the one in theoran 2.3.2, since in general, the 

restriction of F to P1 will not be normal. Hence it is necessary 

to devote some attention to the relation between normal lattice 

functions defined on two complete Boolean algebras -- one of them 

being a sub-semi-lattice of the other. The next article is devoted 

to this subject. 

2.3. 5. The extension and restriction of lattice functions. 

In this article, P1 and P 2 will denote complete Boolean algebras 

with P1 a sub-semi-lattice of P 2• It will also be assumed that P1 

and P2 have the sa~e unit elements. For convenience, the fact that 

P1 is related to P2 in this way will be abbreviated as P1 s P2• 

Among the elements of P 2, those which also belong to P1 will be 

distinguished by a bar. Thus for instance, a and o will designate 

elements of P1 while a and b denote elements of P2, (which may also 

be in P1, of course). 

Two questions "Wi 11 be treated. First, suppose that a normal 
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lattice function on P
1 

is given. Can this function be extended in 

a natural way to a normal lattice function of P 2? The second question 

is concerned with the reverse situation. Suppose that a normal 

lattice function in P
2 

is given. Is there a natural way of associating 

a normal lattice function on P1 with the given function over P
2

? It 

seems likely that there may be many "natural" ways of making these 

associations. However, for our purposes, the methods outlined below 

are quite adequate. 

In the vrork which follo;vs, repeated use will be made of two 

different join operations in t he Boolean algebra P1• While it is 

assumed that P1 is a sub-semi-lattice of P 
2

, P1 is also a complete 

Boolean algebra in its own right (although not a sub-algebra of P2) . 

Thus if A is any subset of P1, A has two (generally different) least 

upper bounds: the bound in P1 and the one in P2• These will be 

1vritten respectively~ A and {7 A. It is important to notice that 

for any subset A of P
1

, 0 A ~ '3t A. For certainly 0 A is an 

upper bound of A in P 
2 

as well as P1, and 0 A is the least upper 

bound. 

We can now formulate and prove the extension theorem. 

Proposition 2.3.5. Let P1 and P
2 

be complete Boolean algebras 

with P1 S P
2

• Let F be a normal lattice function defined on P1• 

Def ine F• on P2 by 

F '(a) =sup l F(a)la ~a, a E P1t for a E P 2, a f: z. 

Then F1 is a normal lattice function on P 
2 

and satisfies F• (a) = F(a) 
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Proof. The facts that F• is a lattice function and that F' 

takes the same value as F on all elements of P1 are easy consequences 

of the definition of F•. It is necessary to show that Ft is a normal 

lattice function. 

Let A be an arbitrarily chosen subset of P 2• Let 6 > O. By 

the definition of F•, for any a€ A, there is an a€ P1 such that 

a ? a and F(a) ? F•(a) - ~ • Corresponding to each a € A, choose 

an a in P1 satisfying these conditions and denote by A the set of 

these a•s. Then ~ A ~ ~ A ~ ~ A. Thus F•( '6- A)~ F( ~ A) = 
=inf lF(a)la t A H~inftF•(a) - JI a EA} =inf{F•(a)la E Al- c:S . 

Since J can be chosen as small as we please, F' ( ~ A) ~ 

'?inf { F•(a)la f A ~ . But the opposite inequality is valid for any 

lattice function, so it follows that F• is normal. 

Now we consider the restriction problem. In order to motivate 

the next result, it is necessary to ref er to the paper of Dilworth 

[ 1 J , and to understand the ideas which will be presented in the 

fourth chapter of this thesis. For this reason, the result is 

presented wi.thout attempting to show that it arises in a natural way. 

Proposition 2.3.6. Let P1 and P2 be complete Boolean algebras 

with P1 ~ P
2

• Let F be a lattice function on P
2 

(not assumed normal). 

Define F
0 

on P1 by: 

F
0
(a) =_inf_ sup_ F(a). 

c ".": a a "'.: c 

Then F 
0 

is a normal lattice Iunction on P1 • 
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Proof. Suppose a 'S b. Then F ( a) = inf sup F(a) ? 
0 - - -c "'5. a a -s c 

~ inf sup F(a) = F (b). Hence F is a lattice function. 
c~ba~c 0 0 

To prove that F is normal, the criterion of proposition 2.3.1 
0 

will be used. Suppose F (a) < A • Then c ~ a exists (by the 
0 

definition of F ) such that sup F(a) < A • Thus if z ~ b ~ ~ , 
0 a~c 

it follows that F (b) = inf sup F(a) ~ sup F(a) < ,.\ • By the 
0 d~ba~a a~c 

above mentioned proposition, F must be normal. This completes the 
0 

proof. 

2.J.6. The uniqueness theorem.:.- general case. 

As hypotheses for all the lemmas which follow, the standard 

assumptions are made: P is a complete Boolean algebra; L is a given 

translation lattice of normal lattice functions on P; I is the ideal 

l F €. L\ F ~ 0 ! • Again R is the sub-semi-lattice of P which consists 

of all elements of the form ~ = V { b) F(b) > 0 ~ , definoo for the 

F E L. Also, P1 will denote a sub-semi-lattice of P which is iso­

morphic to [L/IJ and such that there is a meet homomorphism ~-+ ~ 

of R onto a dense subset of P1• It will also be assumed that this 

homomorphism satisfies ~ ~ ~' and z = z. The existence of at 

least one such P1 is assured by lemma 2.J.8. Later we will have 

occasion to use a P1 which is different from the one constructed in 

the definition 2.3.6, but ~nich still satisfies these conditions. 

The normal lattice function F
0 

(on P1 = [L/I ] ) is defined by: 

F
0
(a) = inf sup_ F(a) 

c~aa ~ c 
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F (a) > ,\ if and only if there exists 
0 

- > -such that ~ _ ~ , - a. 

Proof. Suppose first that F (a) > A 
0 

and choose I. r so that 

- ' F (a) > >. > ).. • 
0 

Then by the definition of F , sup \ F( a) \ a ~ c } > r..' 
0 

holds for all c ~ a, c I= z. Hence, ~ _ .>. , /\ c f. z and consequently 

aF - A I f\ c f. z are valid for all c ".S a, c I= z. Since [ L/I 1 is 

disjunctive, this is possible only if ~ _ >. 1 2". a • 

To prove the converse, suppose that for some .x , > A , F (a) ~ A '. 
0 

By definition of F
0

, there exists c ~ a such that sup { F(a) l a ~ c }< :>. '. 

This means that ~- A, " c = z. From this relation, it follows that 

aF- >i , " c = z. Indeed, aF- .>. , " c = z implies that ~- I. , " aG = z 

for all % with aG "5 c. 
v l aF- A r f\ aGI aG ~ c } 

Then ~ - ,\ ' f\ c = ~ - A If\ v { aG\ aG ~ c l = 

= v { zfaG ~ c I = z. But ~ - A' f\ c = z 

for c satisfying z f. c ::::: a implies aF _ ,\ , i a. This completes the 

proof. 

Now one can conclude rather easily all of the necessary pre-

liminaries for the general uniqueness theorem. 

Lennna 2. 3. 1 o. The mapping F~ F is a translation lattice homo­
o 

morphism of L into N( [ L/I J )(the normal lattice functions on l L/I ] ). 

Proof. It is clear from the definition of F that (F + 0(. ) = 
0 0 

F + o<. , and that F --::: G implies F <5. G • A direct consequence of this 
0 0 0 

last rela. tion is the fact that if F and G are any two elements of L, 
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(F 11. G) -:: F " G • It remains only to show that (F 11. G) ~ F " G • 
0 0 0 0 0 0 

If A <. F (a) and A < G (a), then by the previous lemma, there 
0 0 

is a A 1 > >. such that a... > a and a ~ a. Consequently, 
1'. - ,>. I - G - >. I 

a(F " G) - A ' = ~ - A ' " aG - A 1 ~ a. Again by lemma 2.3. 9, this 

last relation is possible only if (F " G) (a) > ::\ • 
0 

Since :>. can 

be taken arbitrarily close to F (a)" G (a) , it follows that 
0 0 

(F 11. G)
0
(a) ~ F 

0
(a) " G

0
(a). a being a generic element, the proof is 

complete. 

Lemma 2.3.11. F ~ 0 if and only if F ~ o. 
0 

Proof. It is clear from the definition of F 
0 

that if F ~ o, 

then F ~ o. Conversely, F "¥ 0 implies that there is a number J > 0 
0 

such that F - S $ o. Then 81'- & f. z so that a:.r_ J f. z. Thus by 

Lemma 2.3. 1 2. 

[L/I ] • 

This shows that F ~ 0 implies F -s. O. 
0 

The image of L under the mapping F-+ F generates 
0 

Proof. Suppose a f. z. Then F 6 L exists so that z f. aF <.o a. 
Now if F

0
(c) > o, then by lermna 2.J.9, c ~ aF '$.a. At the same time 

~ f. z means that F -i o, so by lemma 2.J. 11, F 
0 

$ o. In other words, 

there is a b f. z such that F 
0
(b) > O. Necessarily o ~ a. We see 

that the conditions are satisfied for the image of L to generate l L/I 7 • 

Lemma 2.3.13. The relation 81' <f c holds if and only if a:.r ~ c 
is true. In particular, aF ~ aG implies G 2 F (I). 
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Proof. If ~ ~ c' then G ~ L exists satisfying z F aG -:: ~ 

and c " aG = z. From the first of these relations z F ~ /\ aG = 

~ I\ aG; therefore, ~ I\ aG F z. Also z = c /\ aG ~ c ,.. aG " ~ = 
(c /1. ~) /1. aG = ~ /\. aG f. z. This contradiction shows ~ ~ c. The 

converse implication follows from the assumption that ~ ~ ~· 

Finally, the last assertion is a consequence of the fact that the 

mapping F-+ ~, generates an isomorphism of L/I into P1 • 

This completes the preparations for the main theorem: 

Theorem 2.J. 4. Let P be a complete Boolean algebra. Let L be 

a translation lattice of normal lattice functions on P. Let 

I = f F ( L\ F -:: 0 ~ • Denote by R the sub-semi-lattice of P which 

consists of all elements of the form ~ = V { b lF(b) > 0 } , where 

F E L. Then, 

(1) there exists a sub-semi-lattice P1 of P which is isomorphic 

to [ L/I ] and such that there is a meet homomorphism aF-+ ~of R 

onto a dense subset of P1 satisfying aF ~ ~ and z = z; 

(2) if L generates P, the only P1 satisfying (1) above is P 

itself and ~ = ~; 

(3) conversely, if P1 = P satisfies the conditions of (1 ), then 

1 generates P; 

(4) if P1 satisfies (1), denote by 0 the isomorphism of P1 onto 

[ L/I ] satisfying 0(~) = ~(F) (where h
1 

denotes the natural homo­

morphism of 1 on L/I); let F 
0 

be the restriction of F to P1 defined by 
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F (a) = inf sup F(a) 
0 - - -c ~ a a ~ c 

(a, c f- P1 , a € P). 

Then, F
0
(a) = FF(0(a)) where FF is the image of Fin the natural 

representation F-+ FF of L relative to I (see definition 2.3.4). 

Proof. The conclusion (1) is an expression of lemma 2.3.8 and 

theorem 2.3.3. To prove (2) , notice that by lew311a 2.3.7, if L 

generates P, R is dense in P. If~ 1 ~' it follows that since R 

is dense in P, aG exists satisfying z -/= aG ~ ~ and aG " ~ = z. 

Then~ " aG = z and z -/= aG = aG" ~ -5. aG" ~ = z. This contra­

diction proves (2) . The result (3) is an immediate consequence of 

lemma 2.3. 7. 

The difficult parts of the proof of the conclusion (4) have 

already been carried out. It is now largely a matter of assembling 

the pieces of the proof. 

First notice that the mapping F-+ a;, is a meet homomorphism of 

L onto a dense subset of P1 w.L th the kernel I. By theore:n 1. 2. 1 , 

it follows that the mapping 0 defined by 0(h
1

(F)) = ~., is a uniquely 

defined isomorphism of L/I onto a dense subset of P1• Hence it can 

be extended to a unique isomorphism of [L/I] onto P1 (theorem 1. 2.4). 

The lemmas 2.3.10, 2.3.11, and 2.3.12, in conjunction with 

theorem 2. 2.1, show that F-+ F 
0 

is algebraically equivalent to the 

natural homomorphism of L onto L//I. We can, therefore, define 

unambiguously HI (F) = F 
0

• 

Denote I' = HI(I). By corollary 2.3. 2, if a f [L/I J , 
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(i) FF (a) =FF (0 1 (a)), 
0 

where 0 ' is determined by the condition 

(ii) 0 '(hI(F)) = hl'(Hr(F ) ) = hI,(Fo). 

Theorem 2.3.2 (with lemma 2.3.12) shows that 

( iii ) FF (0 1 (a ) ) = F
0
(0"(0 1 (a )) ), 

0 

where 011 is uniquely detennined by the requirement that 

( iv) 0"(h
11

(F
0
)) = ~ lb E P1I F

0
(b) > O } . 

Eere 0 again symbolizes that the join is taken in P1 • 

Relations ( i ) to (iv) show that for any a € [ L/ I ] , 

where 

0 11 ( 0 ' ( h1 ( F ) ) ) = '3t { 'b f: P 11 F 
0 

( b) > o J • 

I n order to complete the proof, we need only show that ~ = 
\} lb E: P1\ F

0
(b) > 0 ! . For then, defining 0 = (0"•0')-1 will give 

FF(0 (a)) = F 
0
(a) and 0(~) = h1 (F). 

By lemma 2.3.9, F
0
(b) > 0 if and only if~- 8 ~ b for some 

J > o. Hence ~ {b E P1IF
0
(b) > O} = -Jt ~ -;F- J \ b > 0 t. However, 

~ ~ '2t { ~ _ ~ l d > 0 } ~ 0 { aF-
6 

l J > 0 ~ ~ ~ \ aF- A I b > 0 l = ~, 
where ~ denotes the join operation in P. By lemma 2.3.13, it follows 

that~ ~~ l~- ~ I b > o} ~ ~· Consequently, ~ = 
\1; lo E P1 I F 

0 
('5') > 0 f • The proof is complete. 

2.3.7. Final remarks. 

Before closing this section on the representation of translation 

lattices, it seems advisable to briefly surmnarize the results which 
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have been obtained. Our interest has been centered on the problem 

of representing translation lattices as sets of normal lattice 

functions. It was shown that for large classes of function lattices 

such a representation can be obtained. Indeed, corresponding to each 

(closed and bounded) ideal of the translation lattice, there exists 

an intrinsic homomorphism of the translation lattice onto a trans­

lation lattice of normal lattice functions. In the case where the 

original translation lattice is divisible with respect to the given 

i deal, the representation is a true one, that is, an isomorphism. 

The u.."ri.queness of this representation was studied in some detail, 

vvith the relation between the intrinsically defined representation 

and arbitrary representations being given special attention. While 

all this work was of interest in itself, the main purpose of the 

study was to lay the foundation for the next chapters. 

In chapters three and four, the problem of representing trans­

la.tion lattices as sets of continuous functions on a compact 

Hausdorff topolog ical space will be our chief concern. Two main 

problems will be studied. The first question is one of existence. 

We might ask whether or not it is always possible to map an abstract 

translation lattice of f unctions into t he continuous functions on a 

compact Hausdorff space. The answer is ver'J easily found to be 

affirmative. Indeed, it is known f rom section 2.2.3 that any trans­

lation lattice 1 is isomorphic to a translation lattice L' of bounded, 

real-valued functions on a set s. If S is made into a topological 
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space by taking all the subsets {x lf(x) > 0\ and {xlf(x) < Ol 

where f E 1 1 , as a sub-basis for the open sets, the functions in 1 1 

become continuous. By well lmown methods, it is then possible to 

imbed S in a compact Hausdorff space in a way which preserves con­

tinuous functions. 

It is not enough, usually, to know merely that a representation 

exists. Ing eneral there will be many different representations. 

It is desirable then to find a representation vvhich is 11minimal11 in 

some appropriate sense. 'I'his is the subject of the second question 

to be treated in the next two chapters. 'What reqµirements can be 

imposed on a representation in order that it may be said to be 

minimal? It is possible to formulate some general requira~ents which 

should be satisfied by the topological space S over which the re­

presentation is being made. It is natural w require that S be a 

uniquely determined compact Hausdorff spa.ce. Also it is to be hoped 

that any other space over which the lattice can be represented will 

bear some distinguished relationship to the minimal space s. 

For the case where L is a distributive translation lattice 

and where only representations which preserve the join operation are 

considered, the problem of determining a minimal representative space 

can be solved successfully by methods entirely different from the 

one which will be presented in the following pages. It is possible 

to prove the following result: If L is a distributive translation 

lattice, then L can be imbedded in a uniquely determined (to isomorphism) 
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Archimedean ordered, vector lattice 1 1 with a strong unit. Moreover, 

ever",y' lattice isomorphism of 1 into an Archimedean vector lattice V 

can be extended to an isomorphism of Lt into V • Thus the study of 

lattice isomorphisms of a distributive translation lattice is equi-

valent to the study of the isomorphisms of an ArchL'Iledean ordered 

vector lattice vv.i.th a strong unit. For such systems, the represent­

ation theory is well known (see for instance Kakutani ( 13 1 or 

Kadison [141 ). The procedure, described above, for obtaining a 

representation by continuous functions will actually give a space S 

in which the points are separated by the functions of L'. Here the 

description "rninimalU can be made precise as follows: if L is 

(lattice) isomorphic to a sub-(distributive) translation lattice of 

C( S'), where S' is compact Hausdorff, then S is homoomorphic to a 

factor space of s1. 

It is unfortunate that the methods used to prove this general 

result cannot be applied to the problem of the representation of 

arbitrary translation lattices. Unless it is assumed that both 

the meet and t he join operation are preserved, and that these 

operations distribute between each other, then the techniques used 

to prove t he imbedding theorem will not work. For tbis reason, no 

attempt will be made to present here the proof that a distributive 

translation lattice can be uniquely imbedded in an Archimedean 

vector lattice. Instead, we will e.xploi t the results of chapter II 
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to obtain a reasonable definition of a minimal representation. It 

is shown that the space over which this representation is made is 

uniquely determined up to homeomorphisms, and that it fits the 

description "minimal 11 in a sense which will be explained later. 
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SUMMARY OF CHAPrER III 

Chapter three is devoted to the description of the topological 

prerequisites for the representation theory to be developed in the 

final chapter. The first section is a discussion of well known 

theorems on point set topology. No more is included than will be 

used later in the thesis. In the second section, a method of 

constructing topological spaces from complete Boolean algebras is 

presented. Again the policy of presenting only the absolute 

essentials is f olloNed. 
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CHAPI'ER III - TOPOLOGICAL FDUNDATIONS 

J.1 Funda,'Tlental definitions. 

In this section, the definitions and the notation which w.i.11 be 

used in chapter IV will be outlined. It "Will be assumed that the 

reader already possesses a working knowledge of the fundamental ideas 

of point set topology. References on topology from which the notation 

and definitions used in this thesis are taken include Alex.androff and 

Hopf (15 ] , Bohnenblust [ 7 J , Bourbaki [ 16 ] and Lefschetz [17}. 

3.1.1 Definitions of~ topological space. 

Definition 3.1.1. A set Sis called a topological space if a 

distinguished family :J- of subsets of S is defined satisfying: 

( 1 ) the union of any sub-collection of is in J. • 
' 

( 2) the intersection of any finite sub-collection of ?f is 

in :1- ; 

(3) the empty set and the whole set S are in '1 ; 

The subsets of the distinguished family are called the open sets of 

the space s. 

A topology on a set can also be defined in terms of a neighbor-

hood system. 

Definition 3.1.2. A family J of subsets of S is called a 

neighborhood system (or a basis for the open sets) whenever: 
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(1) x £ A /'\ B, where A and B are in J , implies that C in 1 

exists such that x € C ~ A "' B; 

(2) V{ A I A ~J~ =S. 

If '3- is a neighborhood system for a set s, then S is a topo-

logical space when the open sets are defined to be the unions of sets 

in ':J- • 

For any topological space s, it is possible to define a closure 

operation on all the subsets of 3 in the following way: For any sub-

set T of s, a point x is said to belong to the closure of T -- denoted 

T- -- in case every open set con ta.ining x also con ta.ins a point of T. 

With this definition, it is easily verified that the closure postulates 

are satisfied: (1) T- ? T; (2) T- = T-; (3) T:j v T; = (T1 v T
2
)-; 

( 4) r;r = 0. The symbol 0, here as in all that follows, denotes the 

empty set. 

its closure. 

A closed set is defined to be one which is identical with ,. 
It can then be proved that a set is closed if and only 

if its complement is open. The topology of a space may also be 

defined either in terms of its closure operation or in terms of its 

collection of closed sets. A basis for the closed sets can be defined 

in a way analogous to the neighborhood system in definition J.1.2. It 

is well known that all of these definitions of a topological space 

are equivalent. 

The dual of the concept of closure is important for our later 

work. If T is an arbitrary subset of S, the interior of T is defined 

to be the set Tc-c. (Here, as always, the superscript c denotes the 
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operation of taking the complement of the set relative to all of s. 

Thus Tc is the set consisting of all points of S which are not con­

tained in T.) For the purpose of abbreviation, T0 will be written 

for Tc-c. Closely connected with the interior operation is T-o = T-c-c. 

A set T is open if and only if T0 = T. T is called a regular open set 

if T-o= T. An important property of the operation T-+- T-o is the 

identity T1° A T2° = (T1 "" T 2)-o which is valid for every pair of open 

sets T1 and T2• Another fact of importance is that the collection of 

all regular open sets of a topological space forms a complete Boolean 

algebra in which the (finite) meet operation is just set intersection. 

Two of the most important concepts of topology are continuity 

and homeomorphism. 

Definition 3. 1.3. A mapping from one topological space into 

another is called continuous if the inverse image of every open set 

is an open set. Two topological spaces are said to be homeomorphic 

i f there is a one-to-one mapping of one of them onto the other which 

is continuous arrl such that its inverse is continuous. 

An important special case of this definition is the continuous 

mapping of a topological space into the real number system. Such a 

mapping is called a real-valued continuous function. A more convenient 

criterion for continuity of a real-valued function is the requirement 

that all sets of the form l x lf(x) > tl l and f x lf(x) < .1 ! be open. 

3.1. 2. Additional properties of topological spaces. 

It will be assumed that the reader is familiar with the standard 



-108-

separation axioms for a topological space, namely, T
0

, T1, T2 

(=Hausdorff), regular and normal. A form of separation which is not 

sowell lmovm is that of semi-regularity (see Stone [18 ] ): 

Definition J.1.4. A topological space is called semi-regular if 

its regulax open sets form a basis for the topology of the space. 

Most of the interest of chapter IV will be centered on that very 

important class of spaces ~ the compact Hausdorff topological spaces. 

Definition 3 .1 • .5. A topological space S will be called compact 

(bi-compact in the terminology of Alexandroff and Hopf), if it satis­

fies the condition that from every covering of the space by open sets 

(a covering by open sets is a collection of open sets such that every 

point of the space is contained in at least one open set of the 

collection), a finite covering can be selected. 

An alternative definition of a compact space is the following: 

if a collection of closed sets of the space has the property that no 

finite intersection of them is empty, then there is at least one 

point of the space vmich is oommon to all the sets of the collection. 

The properties of a compact space are in many ways quite simple. 

Thus for exanple, every compact Hausdorff space satisfies all of the 

separation a..."Ci..oms named above. At the same time, compact Hausdorff 

spaces are sufficiently general that much of the study of (bounded) 

real-valued functions on an arbitrary topological space can be 

reduced to the study of functions on a compact Hausdorff space (as 

Stone [ 18 ) and Cech [19] have shown). 
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Another important concept which may not be too familiar is the 

idea of a factor space of a topological space. 

Definition 3.1.6. Let S be a topological space. Let S T be a 

set of disjoint closed subsets of S whose union contains s. Topolo­

gize ST by calling a collection of sets in ST open if its union in S 

is an open set. Then ST is called a factor space of s. 

An alternative characterization of a factor sp ace of a compact 

space can be given as foll~Ns: A Hausdorff space ST is a factor space 

of t he compact space S if and only if there is a continuous mapping 

of S onto ST. 

Let S be a topological space. Let T be a subset of s. Then T 

can be topologized by taking all t h e sets of t he form A "' T with A 

open in S as the collection of open sets of T. The topology so 

obtained is called the relative topology of T. An important property 

of compact spaces is that every c l osed subset of a compact space is 

compact in its relative topology. 

3. 2 The construction of topological spaces. 

The reJationship between a topological space and its lattice of 

open (or dually, its closed) sets has been studied by several authors . 

The pioneer work in this field is that of Stone [ 18 ] • Stone con­

sidered the topological space obtained in a certain way from a Boolean 

algebra. The points of this space are the minimal dual ideals of the 

given Boolean algebra. The space is topologized by taking as a basis 
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for the open (and closed) sets, those collections of ideals which con-

tain a given element of the Boolean al gebra. The spaces obtained in 

this way are precisely the zero-dimensional compact Hausdorff spaces 

the so called Boolean spaces. Since Stone's original work, many 

generalizations of the method have been studied. Of particular 

importance is the work of WalLilan [ 5 J • WalL11an generalized Stone's 

ideas by constructing the space from a distributive lattice rather 

than a Boolean algebra. For Wallman 1 s space, the collection of sets 

{ XI a E X \ (where a is an element of the lattice and X is a minimal 

dual ideal) are taken as a basis for the closed sets. The class of 

spaces obtained in this way is just the set of all compact T1 spaces. 

However, t his is not the only possible way of generalizing t he idea 

of 3tone. In the few pages that follow, a different :rreans of con-

structing topological spaces from a given ( complete ) Boolean algebra 

will be described. The technique has some advantages over the Wallman 

constructi on and, of course, some disadvantages. 

3.2 .1 The construction of topological spaces. 

The process which is to be used can be motivated as follows . 

Consider a given T topological space. This system can be conceived 
0 

as a set of points together with a collection of distinguished subsets 

called the open sets of the space. This collection of subsets enjoys 

certain :lattice properties: it is closed under finite intersections 

and unlimited unions; it contains the whole space of points and the 
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empty set. From this point of view, the points of the space are 

assumed to be things which are given in advance. The open sets are 

certain collections. of the points. The observation that the points 

of a T space are distinguished by the open sets which contain them, 
0 

leads to another characterization of topological spaces. In this 

characterization, the lattice of open sets (considered as an abstract 

lattice) is the primitive notion. Points are then distinguished sub-

sets of this lattice -- in fact they are dual ideals of the lattice. 

This is the basic idea behind the remainder of the work of this 

chapter. The fundamental idea of Wallman's paper differs from this 

only by replacing the open sets containing a point by the closed sets 

containing it. The difference between the resulting theories, however, 

is remarkably great. 

Proposition 3.2.1. Let P be a semi-lattice with zero z. Let S 

be any non-empty collection of non-trivial (not empty and not all of 

P) dual ideals X. Call the distinct ideals of S its points and take 

the sets of the f onn 

S( a) == { X E S la E X \ 

as open sets in s. Then these sets constitute a basis for the open 

sets of a T
0 

topologization of s. Moreover, S(a) "' S(b) = S(a " b) 

and S( z) is the empty set. 

'l'he relation of this cooc eption of topological spaces to the more 

conventional one can be seen from the follovri.ng: 
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Proposition 3.2.2. Let S be a T topological space and let P 
0 

be a basis for the open sets of s. Choose P so that it is closed 

under set intersection and oo ntai ns the empty set. Let S' be the 

collection of all dual ideals of the form 

X = l a E- Pl x € a \ . x 

If S' is topologized by taking the sets of the form 

s•(a) = lx E S'la E X \ x x 

as a basis pr for the open sets, then S' is a T topological space 
0 

which is homeomorphic to s. Moreover, a-+ S(a) is a meet isomorphism 

of P onto pt. 

Proof of proposition 3. 2.1. First it will be shovm that 

S(a),.... S(b) = S(a " b) • If X E S( a) " S(b), then a E X and b E X. 

Since X is a dual ideal, this means that a " b E X and, therefore, 

S(a) " S(b) s S(a " b). If a " b ~ X, then a t X and b E X so 

X c. S(a) and X E S(b). Thus S(a ,... b) = S(a) ,.... S(b). Also, S(z) is 

empty, since no X E S is all of P. That is, no X contains z. 

It follows immediately that the first postulate for a neighbor-

hood systaJJ. (see definition 3.1.2) is satisfied. The second postulate 

is also satisfied since U {S(a) \ a t: P\ = s, every X €. S being non-

anpty. 

Finally Sis a T space. For if X-/: Y are ins, then either a 
0 

exists in X and not Y, or there is an element b in Y and not X. In 

the first case X f S(a), Y 4:- S(a), and in the second Y t: S(b) and X f S(b). 
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Proof of proposition 3.2.2. It is a consequence of proposition 

3.2.1 that S• is a T
0 

topolo f,tical space. Moreover, a~ S 1 (a) is a 

meet homomorphism of P onto P 1 • It is one-to-one since if a t. b, 

there is an x of S such that x € a and x <t b. Then X ~ S r (a) and 
x 

X tt S•(b). x Finally S• is homeomorphic to S since x~ X is a one­x 

to-one mapping of S onto S• which carries the basis Ponto the basis P•. 

3.2.2. Spaces constructed from Boolean algebras. 

In the development of the t heory of the spaces which are defined 

by proposition 3.2.1, it is convenient to impose a restriction on 

the set P. Instead of using an arbitrary semi-lattice P, it will 

always be assumed that P is a complete Boolean algebra. This has the 

advantage of simplifying the study romevv·hat. Thus the statements of 

the results are much simpler, and at the same time, there is little 

loss of generality. Moreover, the previous work led quite naturally 

to lattice functions constructed on complete Boolean algebras . This 

suggests that Boolean algebras are t he appropriate systems from which 

to construct our topological spaces. 

Lennna 3. 2.1. Let P be a complete Boolean algebra. Let S be a 

non-empty collection of non-trivial dual i deals of P. Topologize 

Sas in proposition 3.2.1. Then the mapping a~ S(a) of Ponto the 

basis for the open sets of S is an isomorphism if and only if the 

following condition i s satisfied: 

R: if a ,€ Panda-/:. z, there is an element X of S with a~ X. 
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Proof. By proposition 3.2.1, the mapping a.+ S(a) is a meet 

homomorphism of Ponto the set of S(a)•s. The condition R is just 

an expression of the requirement that the kernel of this homo­

morphism be z. Hence, condition R is necessary for the mapping to 

be one-to-one. Its sufficiency is a consequence of proposition 1.2.2. 

Definition 3.2.1. Let P be a complete Boolean algebra. Let S 

be a T
0 

topological space which is constructed vtlth non-trivial dual 

ideals X as its points; let the sets of the form S(a) = { Xia E X \ 

be a basis for the open sets of S (i.e., according to proposition 

J.2.1); assume that the condition R, i.e., that S(a) is non-empty 

whenever a '/; z is satisfied. Then Swill be called a representative 

space for P. The symbol S(P) will always denote such a space. 

The justification for this terminology 11'li.ll be furnished by 

theorem 3. 2. 1 below. 

Shortly, a topological criterion that a space be homeomorphic 

to an S(P) will be obtained. First, however, it is convenient to 

consider the closure topology of a space S(P). 

Lemma 3. 2. 2. Let P be a complete Boolean algebra and let S(P) 

be a representative space for P (according to definition 3.2.1). Let 

T be an arbitrary subset of S(P). Then the closure of T is given 

by T- = l x E: S(P )I X ~ UT} where UT = U tXI X f T 1 (set 

operations). 
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Proof. If X <; U T, and if a f x, then a E Y for some Y t. T. 

Thus every neighborhood of X contains a point of T so that X E T-. 

Conversely, if X E T-, every neighborhood of X contains a point of T. 

Hence if a E: X, then Y in T exists so that a E. Y, that is, X ~ U T. 

Corollary 3.2.1. X f S(a)- if and only if a A b f z holds for 

all b E X. 

Proof. If a " b f z whenever b t. X, then it follOl'rs from the 

condition R that Y exists in S(P) satisfying a " b € Y. Since a f Y, 

Y f S(a). Because b was chosen arbitrarily from x, it follows that 

X ~ U S(a). Conversely, if X ~ U S(a) and b f X, there is a Y f S(a) 

so that b f Y. Since a and b are both in Y, and si..nce Y is a non­

trivial dual ideal, it follows that a " b t. Y and consequent~y 

a " b f z. The proof is complete. 

Now it is possible to give a topological characterization of the 

S(P) spaces. One preliminary lemma is needed. 

Lemma 3.2.3. Let P be a complete Boolean algebra. Let S(P ) 

be any representative space for P. Then the regular open sets of S(P) 

are precisely those of the form S(a). 

Proof. By corollary 3. 2.1, S(a)- = l X f S(P) I a " b f z all b ( X } . 

Thus S(a)-c = { X E S(P) I a " b = z some b f X f = l X ( S(P) I a' E XI. 

It folloV'rs that S(a)-c-c = \ X ( S(P) la' t. X ~ -c = \X f S(P) \ (a')' f X \ = 
l X E S(P) l a f X } = S(a). Thus S(a) is a regular open set. 
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Conversely, suppose R is any regular open set of S(P). Then 

by the definition of the topology of S(P) , we can write 

R = U { S( a) I a E A ~ , 

A being a certain subset of P. Since P is a complete Boolean algebra, 

it is possible to define b = V { al a f A f • The proof vd 11 be completed 

by showing that R = S(b). 

By lemma 3. 2. 2, X t. R- if and only if X f V R. -c Thus Y { R if 

and only if a f Y exists so that a 4 X f or all X E- R. Now it will 
0 0 

be shown that a f X holds for all X f R if and only if a " b = z 
0 0 

(where, of course, b = V l a la E A \ ) . Clearly, since b € X holds for 

all X { R, if a 11 b = z, then a ti. X for all X € R. Suppose a
0

" b /. z . 
0 0 

Then a "V{ al a € A\ = V Sa " a la f A \ /. z, so a G A exists satis-o l 0 

fying a " a /. z. Because of the condition R, it is possible to find 
0 

X f S(P) containing a " a. Then a E X and a E X • From these, 
0 0 0 0 0 

X € S(a) ~ R and a f X f R. This proves the assertion that 
0 0 0 

a ~ X for all X € R if and only if a " b = z. 
0 0 

The consequence of this is R-c = t Y E S( P) I a " b = z some 
0 

a
0 

t Y } = { Y f S(P) jb• E Y f • Applying the result of the first para­

- c-c graph and using the fact that R is a regular open set gives R = R = 

l Y € S(P) lb• E Y }-c = { X E S(P) \b € X1 = S(b). This completes the 

proof. 

Theorem 3.2. 1. Let P be a complete Boolean algebra. Then the 

class of all representative spaces for P is just the class of semi-

regular T topological spaces whose Boolean algebra of regular open 
0 
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sets is isomorphic to P. 

Proof. By lemma J.2.J, if S( P) is a representative space for P, 

its Boolean algebra of regular open sets is just the collection of 

S(a). These open sets form a basis for the open sets of S(P) by 

definition. Therefore S(P) is semi-regular. Alro, by lemma 3. 2.1, 

this collection is isomorphic to P. 

Conversely, if S is a semi-regular topological space whose 

Boolean algebra of regular open sets is isomorphic to P, then by 

proposition 3.2.2, Sis homeomorphic to a space S(P). This completes 

the proof. 

3. 2. 3. Final remarks • 

It is not our intention to develop here the theory of represent-

ative spaces of a Boolean algebra. In this chapter, hardly more than 

the essential definitions have been presented. The following chapter 

will add slightly to the theory, but no more will be included than is 

needed for -~he development of the central subject of the thesis. 

Before beginning the next chapter, there is one more result which 

belongs to the general theory of representative spaces and which is 

necessary for the work to follow. This vvuuld seem to be the correct 

place to present it. 

Lemma J.2.4. Let P be a complete Boolean algebra and let S(P) 

be a representative space for P. Then S(P) is a Hausdorff topological 

space if and only if, any two distinct points X and Y in S(P), there 

exist a and b in P such that a !;- X, b t. Y and a h b = z. 
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Proof. If the conditions are satisfied, X € S(a), y E S(b) 

and S(a) "' S(b) = S(z) is empty. Thus S(P) is a Hausdorff space. 

Conversely, suppose S(P) is a Hausdorff space and X ~Y. Then, 

since the sets S(a) form a basis for S(P), a and b exist in P 

satisfying X E S(a), Y E S(b) and 0 = S(a) " S(b) = S(a "b) . Con­

sequently a f X, b E Y and a " b = z. This completes the proof. 

Example 1. Let P be any complete Boolean algebra. We may ask 

the question: is it always possible to find a representative space 

S(P ) for P? The answer is, of course, yes. We need merely take S(P) 

to be the set of all principal ideals. Hoi.vever, it may still be asked 

whether it is possible to obtain spaces with specific topological 

characteristics. Is it always possible, for exanple, to find a 

compact Hausdorff representative space for P? The answer is again 

yes. The space 't (P) constructed from all minimal dual ideals of 

Pis a compact Hausdorff representative space for P. This fact is 

a corollary of the next example. 

Example 2. Let P be a complete Boolean algebra. Let P be a 

sub-algebra of P which is dense in P. The algebra P will not be 

complete unless it coincides with P. Let S(P) be the set of all 

dual i deals X which are such tha.t X ,..... P is a minimal dual ideal in P. 

In other words , S(P) is the set of all o'ual ideals of P generated by 

a minimal dual ideal of P. Make S(P) into a topological space by 

the method of definition 3. 2.1. Then S(P) is a representative space 

for P. For if b '/= z in P, there is an element a of P with z /= a ':":. b. 
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By the ma.um.al principle, a minimal dual ideal X of P exists vri. th 

a { X. If X = l a t Pj a ?: b some '5 f X ~ , X f S( P) , and a E X. 

It is clear that the sets of the form S(a), where a ~ P, 

constitute a basis for the open sets of S( P) . We will show that these 

are precisely open and closed sets of S(P). Indeed, X € S(a)- implies 

a I\ b f. z for all b {; x. But since X A P is minimal, it follows that 

a t x. In other words, X E S(a). This proves that S(a) is closed. 

An immediate consequence is the fact that S(P) is a totally dis-

connected, Hausdorff space. 

We have yet to prove that the only open and closed sets are 

those of the form S(a), where a f P. Every open and closed set is 

reguJar open and hence of the fonn S(a ) f or some a f P. If a if. P, it 

is possible to construct a minimal dual ideal X of P with the property 

that a " b f. z for all b £: X, while b ~ a holds for no b €. X. To do 

this, let Y = t c " C! ja ~ c and at -s. a 1. Clearly Y is closed 

under meets. Since a E P, Y does not contain z. Hence it is possible 

to extend Y to a minimal dual ideal X. It is easy to see that X has 

the desired properties: a I\ b f. z and b $ a for all b E X. Now if 

X is the point of S(P) generated by X, X € S(a)-, while X <J S( a). 

Thus S(a) is not open and closed. This completes the proof that the 

sets S(a) are precisely the open and closed subsets of S(P). In 

conclusion, it vri..11 be shmm that S(P) is compact. 

As we proved above, the sets of the form S(a) constitute a basis 

for the closed sets of S(P) as well as a basis for the open sets. 
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Suppose tX == l S(a) la t A \ is a collection of sets of this form, 

and that the sets of Ot. have the finite intersection property. 

- -
Then a E: A and o E A implies that a " lj'. f. z. By the maximal principle, 

it is possible t o find a minimal dual ideal X of P with X '-" i. Letting 

X be the dual ideal of P which is generated by X, X has the property . 

that if a E A, then a E. X. Hence x E (\ t S(a) \a E A J . Because the 

sets of the form S(a) constitute a basis for the closed sets of S(P), 

it foll~ffS that S(P) is compact. 

Summarizing these results: we have proved that S(P) is precisely 

the Boolean space associated with the Boolean algebra P (see Stone [18 ] ). 
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SUMMARY OF CHAPTER IV 

This chapter deals with the problem of representing translation 

lattices by means of continuous functi ons. Both the existence and 

the uniqueness of such representations are discussed. 

In section one, representation by means of translation lattices 

of normal lower semi-continuous f unctions on a topological space is 

considered. We show that this problem is completely equivalent to 

the problem of representation by means of a translation lattice of 

nonnal lattice functions. Thus, all of the theory which was developed 

in the last section of the previous chapter can be transferred bodily 

to the problem under consideration. 

Section two of this chapter is devoted to the proof of the 

existence of a representation by continuous functions for translation 

lattices which are divisible with respect to a bounded closed ideal. 

It is shown that any translation latt ice 1 of normal lattice functions, 

which is di visible with respect to the bounded closed ideal { F ~ LI F -= 0 } , 

can be represented as a translation lattice of continuous functions on a 

compact Hausdorff topological space in such a way that: (1) the functions 

of the representation separate the points of the space; (2) these 

functions generate the topology of t he space in the sense that the 

sets of the form { x \f(x) > O~ f f L, are coinitial in the open sets of 

the space. A uniqueness theorem is estabHshed for representations of 
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this nature. 

The final section of this chapter is a study of the relation 

between the spaces S which are such that the lattices C( S) contain 

a sub-semi-lattice isomorphic to a given translation lattice L. 
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CHAPTER IV - REPRESENTATION BY CONTINUOUS FUNCTIONS 

4.1 Function lattices. 

In this section the relation between nonnal lattice functions 

and normal lm1er semi-continuous functions (see definition 4.1.1) on 

a topological space will be studied. In particular, the results of 

chapter II will be interpreted in terms of translation lattices of 

point functions. It 'vill be shown that the problem of representing a 

translation lattice as a translation lattice of normal lower seni­

continuous functions is completely equivalent to the problem of 

representation in terms of normal lattice functions. The following 

two sections will then be devoted to the problem of representation by 

means of continuous functions. 

4.1.1. Norma~ lower semi-continuous functions. 

Let P be a complete Boolean algebra. In the last chapter, it was 

shovm that it is possible to construct from P a topological space 

which is semi-regular and has its Boolean algebra of regular open sets 

isomorphic to P. Suppose S(P) is such a representative space for P. 

Let f be a bounded, real-valued, point function on S(P). Then if we 

define, for a ~ P, F(a) = inf{f(X) I X E S(a)1 =inf { f(X) l a E XI , F(a) 

is evidently a lattice function. (It is a bounded, real-valued 

function on P which satisfies F(a) ~ F(b) whenever a ~ b.) The 

question then comes naturally to mind: which lattice functions on P 
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are of this form? Without trying to answer this question, we will 

prove a related result. 

Proposition 4.1.1. Let F be a normal lattice function on the 

complete Boolean algebra P. If S(P) is a representative space for P, 

then there is a point functi on f on S(P) such that for all a € P, 

F(a) =inf { f(X) la f X I . Conversely, suppose that .f is a lattice 

function with the property that if S(P) is any representative space 

for P, there is a point function on S(P) such that F(a) = inf{f(X) la f Xi 

for all a E P. Then F is normal. 

Proof. First suppose F is a normal lattice function. Let S(P) 

be a representative space for P. Define the point function f on S(P) 

by f(X) =sup { F(a) I a E X ~ . We will show that F(a) = inf l f(X) I a E X 1 

is true for all a E P. 

If a f x, then f(X) ? F(a). Hence F(a) ~ inf ~ f(X) I a E X } • 

Suppose inf { f(X) l a ~ X } > F(a) + 4 where ~ > o. Then for 

every X with a c x, bx exists satisfying bx E X and F(bX) > F(a) + J 

(by the definition off). Letb= Vl bx la f Xi . Thenb ( Xfor 

all X { S(a) = { X f S(P) l a E X i . Thus S(a) <:: S(b) and, because 

a__,. S(a) is an isomorphism, a ~ b. Hence F (a) :=::: F(b) =inf l F(bX) la ~ X l 

~ F(a) + J (by the normality of F). This impossibility shows that 

F(a) > inf f f(X) I a ( X } • Thus the first assertion is proved. 

To prove the converse, let A be an arbitrarily chosen non-empty 

subset of P - { z l . Put a = V { b i b f Ai • It must be shown that 

F (a) = inf { F ( b) I b E A f • 
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Define a representative space S(P) for P in the following way: 

S(P) is the collection of all minimal dual ideals which contain either 

a' or an element b from A. Then S( P) is a representative space 

according to the defini ti.on J. 2.1. To prove this it is necessary to 

shrnv that the condition R ( every c € P is contained in at least one X 

of S(P)) is satisfied. If c l P, then either c " a' I= z or c " b I= z 

for some b l A. This means that there is a minL'Ilal dual ideal (by 

the maxi.mum principle) X which contains c " a' or c " b ( some b f A). 

Then c € X and X ~ S(P), so the condition R is fulfilled. 

By the assumption of the theorem, there is a function f on S(P) 

such that F(c) =inf l f(X) / c t= Xi holds for all c f P. But 

F(a) =inf { f(X) I a ce: Xl =inf l f(X) l b E X, some b " Al , ( since a E X 

if and only if there is a b € A with b E X) . This last tenn is equal 

to inf { inf { f(X) I b f XI \ b E A \ = inf \ F(b) \ b €- Al . Since this is 

what had to be shown, it follows that F is nonnal. The proof is 

complete. 

In the first part of this proof, more was demonstrated than was 

stated in the proposition. The excess can be fonnulated as a 

corollary. 

Corollary 4.1.1. Let F be a normal lattice function on the romplete 

Boolean algebra P. Let S(P) be an arbitrary representative space for P. 

Then the point function f, defined by 

f(X) =sup { F(a) l a f Xi , 
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has the property that, for all a E P, 

F(a) =inf { f(X) \a c X l • 

The functions obtained from normal functions in the manner of 

the corollary 4.1.1 by defining f(X) = sup { F(a) la E X \ are of a 

rather special kind. We will now show that they are precisely the 

normal lower semi-continuous functions of the representative space 

S(P). 

Definition 4.1.1. Let S be a topological space. Let f be a 

bounded real valued function on s. Define the functions f* and f~(-

by 

f*(x) = lim f(y) =inf sup f(y) (N open) 
y-+ x XENy E- N 

f" (x) = lim f(y) =sup inf f(y) (N open) •< x E Ny l N Y-+ x 

The function f is called lower (upper) semi-continuous if f* = f 

(if f"'
0 = f) . The function will be called (see Dilworth l11 ) normal 

1011\Ter (upper) seni-continuous if (f"'(-) = f (if (f")~~ = f) . * i<" 

The properties of upper and lower s enli- continuous functions are 

sufficiently well known that they need not be enumerated here. We 

note only that the following condition is equivalent to the definition 

above for lower SEI!li-continui ty: 

\ x f S jf(x) > A} is open for all A . 

A dual characterization can be given for lower semi-continuous functions. 

On the other hand, familiarity with normal lower semi-continuous functions 
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cannot be assumed. We will, therefore, reproduce from [ 1 ] a 

convenient characterization of normal functions in the set of lower 

semi-continuous functions. 

Before stating and proving this result, it will be helpful to 

collect some of the well lalown properties of the lim and lim 

operations. These are most easily stated in terms of the (*) operations. 

l< '.::" f ~ f; 
* 

(f*)* = r*, (r ) r -lr*= *; 

(a) 

(b) 

(c) f * "> ~. d f ~ g implies - g an f ~ g · 
~- *' 

( d) (((f*) )*) ( *) (((f )~<) )* = (f )~< 
* ~- = f *' ~A- ~- * ; 

Of these identities, only the last needs proof. Notice (f~i\~ -:= r*, 

so that (er*)_,)* ~ er*)* = r*. 

( C er~'(-) )*) = ( cr*L) = Cf*) • 

* * * But again ( ( f L ) ~ ( f L , so 
"2(" '1C" 

* * ')(" * * 
The dual relation is proved similarly. 

Lenma 4.1.1. (Dilworth) Let f be a lower semi-continuous function 

on a topological space s. Then f is normal if and only if the follow-

ing condition is satisfied: 

If x E S and f(x) < A , and if N is an arbitrary neighborhood of 

x, then a non-empty open set A ~ N exists such that f (y) .:: >. for 

all y E A. 

~· Suppose f is normal, x l s, f(x) < .:\ and H is a 

neighborhood of x. Then inf r*(z) :::.: sup inf f~'(z) = (f*)jx) = f(x). 
z f N x ~ N z E N ~ 

Thus z E N exists so that ~<( z) .:: A • Consequently, there is an open 

B containing z such that sup f(y) < >. 
y t B 

• Taking A = N "' B f. 0 gives 
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the asserted <X>ndition. 

Conversely, let the condition be satisf ied for f. Let x € S; 

suppose N is a neighborhood of x; choose A = f(x) + d (where 

J is an arbitrarily small positive number). Then by hypothesis a 

non-empty open A ~ N exists such that sup f(y) < f(x) + d • If 

z € A, r*(z) < f(x) + 
y E A 

J • Thus inf f~-( z) < f(x) + A 
' 

and since 
z ~ N 

N was arbitrarily chosen, (f-r'L(x) ~ f(x) + J • Finally since J .,, 

and x were arbitrary, cl'L ~ f. It is clear on the other hand that .,, 

Hence l '" ::: f. But the (-i:-) operations obviously 

preserve order, so it follows that cl') '~ ~ f ,, = f (since f is lower ,, " 

semi-continuous). This completes the proof that (/')* = f. 

The simplest examples of normal functions are the continuous 

functions on a topological space. The fact that every continuous 

function is normal, follows from the characterization of continuous 

~~ ~ functions as those which satisfy f = f = ..1..,,.. 

Using the above characterization of normal lower semi-continuous 

functions, it is possible to establish the relationship between normal 

lattice functions and normal lower semi- continuous functions. 

Theorem 4. 1.1. Let P be a complete Boolean algebra. Let S(P) 

be an arbitrar"'J representative space for P (i.e., a semi-regular 

topological space which has its Boolean algebra of regular open sets 

isomorphic to P ). Then t he rn.a.pping F.-,. f, where 

(a) f( X) =sup { F(a) l a f X } , 



-129-

is an isomorphism of the translation lattice of nonnal lattice functions 

on P onto the set of all normal lovrer semi-continuous functions on S(P). 

Moreover, if F ~ f by this mapping, then 

(b ) F(a) =inf { f(X) \ a f X \ . 

Proof. The proof will be carried out in three steps. First, it 

will be shown that the function f, defined by ( a ) , is normal lower 

semi-continuous. Next, it will be proved that if f is any nonnal lower 

semi-continuous function on S ( P) , and if F is defined from F by the 

equation (b), then Fis a normal lattice function and (a) is satisfied. 

These two results, together with corollary 4.1.1, shm'f that F ~ f 

defined by (a) is a one-to-one mapping of N(P) onto N( S(P) ). The proof 

is colllpleted by sh01ring that this mapping is also an isomorphism. 

First, suppose that F is a normal lattice function. Define f by 

(a). If f(X) > .>. , there is an a f P (z-/; a) such that F(a) > ....l . 

Then if Y E S(a), f(Y) ~ F( a) > ~ • Thus f is lower s ani-continuous. 

To prove that it is also normal, suppose now that f( X) < ;\ • Let A 1 

be such that f(X ) < ). 1 < >. • By the definition of f, F(a) < A 1 , 

for all a E X. Consider an a ~ X. By proposition 2.J.1, b ~ P 

exists with z f:. b ~ a and F( c) < A ' for ail c ~ b. Suppose Y is a 

point of S(b). If c E Y, F(c) ~ F( c " b) < ~ '· Therefore, f (Y) = 

sup { F(c) I c E Y } 5. ~ ' < A • By lemma 4.1.1, this means that f is 

normal. 

Next suppose that f is a given normal lower semi-continuous 



-130-

function on S(P). Let F be defined on P by the equation (b). Clearly 

F is a lattice function. To prove that it is normal, the criterion of 

proposition 2.3 .1 will be used. Suppose then that F(a) < ~ • By the 

definition of F, there is a point X of S( a) such that f(X) < >. • By 

the criterion of lemma 4.1.1, there exists a non-empty open set N with 

N '=- S( a ) such that f(Y) < A for all Y ~ N. Since S(P) is a semi-

regular space, there is not loss of generality in assumin~ that N is a 

regular open set. In other words, it may be supposed that N = S(b) 

where z f. b ~a. If z f. c ~ b, F(c) = inflf(Y) lc € Y ~ <).. . Thus 

the hypothesis of proposition 2.3.1 is fulfilled and Fis normal. 

Moreover, for this F, f(X) = f~./X) = sup inf f(Y) =sup F(a). 
a E Xa t:- Y a t X 

Finally, we will show that the mapping F-+ f defined in (a) is a 

homomorphism: sup \ (F - A )(a)I a f X \ = sup \ F(a) f a E X} - l = 

f(X) - A • Thus translation is preserved. It is also clear that 

sup { ( F " G) ( a) I a f X l ~ min[ sup \ F (a) I a E X ! , sup \ G( a) I a f X l ) . 

The computation which completes the proof is the following: 

sup { (F " G)(a) ja ~ X l = sup \ F(a) " G(a) )a E X ~ =sup \ F(a " b) " G(a " b) \ 

a f J.., b ~ X! ~ sup \ F(a) " G(b) I a ~ X, b (, X\ =min [ sup ' F(a) l a ~ X } , 

sup \ G( b) l b f X} ) • The proof of the theorem is complete. 

This theorem shows the equivalence between the problems of 

representing a translation lattice by means of normal lattice functions 

and by means of normal lower semi-continuous furc tions. Thus all of 

the theorems obtained in the previous section can be immediately trans-

ferred to theorems on representations by normal lower semi-continuous 
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functions. The results are collected in the next article. 

4.1.2. Translation lattices of normal functions. 

In this article, we will study the representations of a translation 

lattice by means of isomorphic translation lattices of normal lower 

semi-continuous functions. As usual, I will denote a closed, bounded 

ideal of L. In order to simplify the statements of the theorems, it 

will be assumed throughout that 1 is divisible with respect to I. 

Definition 4.1.2. A set M of normal lower semi-continuous functions 

on a topological space S will be said to generate the topology if the 

sets of the form { x jf(x) > >. l , for f € L and ). real, are dense 

(in the sense of definition 1.2.2) in the open sets of s. 

Notice that if M is a translation lattice, it is only necessary 

to consider sets of the form { xif(x) > 0 1 in the above definition. 

The concept introduced in definition 4.1.2 can be correlated with 

the idea expressed in definition 2.3.3 of a collection of normal 

lattice functions on the Boolean algebra P having the property that they 

generate P. 

Lemma 4.1.2. Let L be a translation lattice of normal lattice 

functions on a complete Boolean algebra ?. Let S(P) be an arbitrary 

representative space for P. Map the functions F of 1 into normal 

lower semi-continuous functions f on S(P) by the definition f(X) = 
sup { F(a) \a E X} • Denote the image of this mapping by L'. Then 1' 

generates the topology of S(P) if and only if L generates P. 
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Proof. Assume 1 generates the Boolean algebra P. Then if 

0 F S(a) E S(P), F E 1 exists together with b G P such that z F b ~ a, 

F(b) > O and F(c) -:: 0 if c f. a . Define f E L' by f ( X) = sup { F(b) lb iC X l • 

Then if X ~ S(b), f (X) ~ F(b) > o. If X 1- S(a), a 4- X. Hence c $ a holds 

for all c <= X. Therefore f( X) = sup { F(c) l c € X \ ::: sup \F(c) \c 1 a \ ~ o. 

Conversely, suppose L' generates the topology of S(P) . If a E P and 

a f. z, then there exists f E L' satisfying 0 F {Xlf( X) > 0 f ~ S(a) . 

Let F (b) = inf { f(X) I b € X \ , so that f(X) = sup t F( b)\ b E- X } • If X 

is chosen so that f(X) > o, then a f X and there exists b € X so that 

F(a " b) ~ F(b) > o. On the other hand, c '$ a implies that X E S(c) 

exists with X ~ S(a) . By the hypothesis on f, f(X) ~ o. Thus F(c) = 
inf -\ f(X) I c € X J ~ O. This completes the proof. 

The theorem 2.3 . 1 on the existence of a representation by means 

of normal lattice functions can be immediately translated into a 

theorem on the existence of a representation by means of normal lower 

semi-continuous functions . 

Theorem 4.1.2. Let L be a translation lattice. Choose I to be 

any closed bounded ideal of L such that L is divisible with respect 

to I (if such an ideal exists) . Let S( ( L/I ] ) be any representative 

spa ce for the complete Boolean algebra [ L/I 1 • Then L is isomorphic 

to a translation lattice L' of normal lower semi-continuous functions 

on S( [ L/I ] ) such that 1 1 generates the topology of S([L/IJ) . and, 

under the mapping, the image of I is the set { f If ~ 0 l . 
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In a similar wa:y, it is possible to translate theorem 2.3 . 2 on 

the uniqueness of representations of translation lattices into the 

language of normal functions. 

Theorem 4.1.3. Let 11 and 1 2 be translation lattices of normal 

lower semi-continuous functions on the respective semi- regular T 
0 

spaces s1(P1) and s2(P2), P1 and P2 being their Boolean algebras of 

regular open sets. Suppose that 11 generates the t apology of s1 (P
1

) 

and 1 2 generates the topology of s2(P2) . Finally, suppose there is 

an isomorphic mapping er of 1 2 onto 11• Then there is an iso­

morphism 0 of P1 onto P 
2 

such that 

( " f) (X) = sup inf f(x) 
X € a x E 0( a) 

where X E s1(P1 ), x €: s
2
(P

2
) and a€ P1• 

Proof . This theorem is a direct consequence of theorem 2.3 . 2, 

theorem 4. 1 • 1 and lemma 4. 1 • 2. 

The converse of this theorem can be stated as follows: 

Proposition 4. 1. 2. Let P be a complete Boolean algebra. Suppose 

that 0 is an automorphism of Ponto itself. If s1(P) and s
2
(P) are 

two representative spaces for P, then defined by 

( cr f)(X) = sup inf f(x) 
X t S

1
(a) x t s

2
(0(a)) 

is an isomorphism of N(S 2(P)) onto N(S1(P)) . 

Proof. This is a corollary of theorem 4.1.1. 

Now consider a translation lattice of normal lower semi- continuous 
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functions which does not necessarily generate the topology of the 

space. For this situation, the simple result of theorem 2.3.2 can 

no longer be applied. It is necessary to look to theorem 2.3 .4 for 

information. However, before this theorem can be used to the best 

advantage, it is necessary to obtain some more infonnation on the 

problem of extension and restriction of lattice functions, and on 

the relati on between representative spaces of different Boolean 

algebras. 

Proposition 4.1.3. Let P1 and P2 be complete Boolean algebras. 

Suppose that P1 is a sub-semi lattice of P2 with the same zero and 

unit. Let S(P2) be a representative space for P2 (see definition 3.2.1) . 

Then if S(P1 ) is the collection of all ideals of the fonn X A P1, where 

X € S( P 2), and with a topology defined on this set according to 

definition 3.2.1, S(P1 ) is a representative space for P1 and there is a 

continuous mapping of S(P2) on S(P1 ). 

Proof. It is clear that all the sets of the form X ""' P1 are non­

trivial dual ideals of P1 (non-trivial since they always contain i). 

Also, if a E P1 , there is an X t S(P2) such that a E X. Hence 

a E X ~ P1• Thus S(P1 ) is a representative space for P1• 

To prove that S(P1 ) is a continuous image of S(P2), observe that 

in the mapping x ~ x ...... P1' the inverse image of the set { x "' P1 I a E x " P1 } 

is {Xja E X ~ (whenever a E P1 ) . Since the former sets constitute an 

open basis for S(P1 ), while the latter are open in S(P2), the mapping is 
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continuous . The proof is complete. 

The problem of continuous mappings of topological spaces will 

be considered in more detail when we get to section three of the 

present chapter. 

Now consider the interpretation of propositions 2.3.5 and 2.3.6 

on extension and restriction for normal lower semi-continuous functions. 

Proposition 4.1.4. Let P1 and P2 be complete Boolean algebras. 

Let F be a normal lattice function on P1 and let F 1 denote its extension 

to P2 (defined by F' (a) =sup_ F(a)) . Suppose S(P) is any 
a ~ a 2 

representative space for P2 and S(P1) is the continuous image of S(P2) 

consisting of all the ideals X n P1, where X ~ S(P2). If f and fl are 

the nonnal lryffer semi-continuous functions associated with F and Fl 

respe ctively, then f'(X) = f(X ,.... P1 ) for all X f S(P2) . 

Proof. fi(x) =sup Ft(a) = sup sup_ F(a) =_sup F(a) = f(X ,... P1 ). 
a E X afXa~a aE: X 

This completes the proof. 

In order to treat the restriction problem, it is necessar-.r to 

introduce a new notion. Assume as before that P1 and P
2 

are complete 

Boolean algebras and that P1 is a sub-semi-lattice of P
2 

with the same 

zero and unit. Let S (P
2

) be a representative space for P
2

• Suppose 

that f is a bounded, real valued function on S (P 
2
). Define two new 

functions f+ and f +by 

f+(x) 

f (X) 
+ 

= inf sup f(Y), 
OEXDEY 

= sup inf f(Y) . 
o f Xb EY 
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It is an easy matter to verify that the operations (+) and ( ) 
+ 

satisfy relations similar to those satisfied by the operations (-i~) 

and (-i~ ). In particuJar; 

f+ ~ f ~ f 
+ 

f ~ g implies f+ ~ g+ and f+ ?' g+ 

f ++ = f + and f = f 
++ + 

( ( ( f +) ) +) = ( f +) and dually. 
+ + + 

What we are going to prove is that if S(P1 ) is the continuous 

image of S(P
2

) defined by proposition 4.1.J, and if f
0 

is the point 

representative on S(P1 ) of the restriction F
0 

of F to P1 , then 

f (X,... P
1

) = ((f+) )(X). For this proof, a simple lenuna is needed. 
0 + 

Lanma 4.1.3. Let P be a complete Boolean algebra; let S(P) be 

a representative space for P; suppose F is a lattice function on P. 

Then 

sup sup F(a ) 
X E S(b) a E X 

=sup F(a). 
a--:: b 

If Fis a dual lattice function (i .e., F(a) ~ F(b) whenever a ~ b), 

then 

Proof . 

inf 
X E S(b) 

inf F(a) 
a E X 

= inf F(a ) . 
a ~ b 

Suppose sup sup F(a) 
a ~ X 

= ). . 
X E S(b) 

Then if ~ > 0 , 
X exists such that b € X, a E X and F(a) > >. - d • Then F(a" b) ~ 

? F(a) > ). - ~ • Thus sup F(a) > ) - & • Since d was arbi-

trary, sup F(a) ~ ). • 
a -= b 

a <.: b 
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If sup F(a) > >. , c -.:: b exists satisfying F( c ) > ;\ . 
a ~ b 

X t S(P) exists with c € X. Then b E X, so sup sup F(a) ~ 

~ F(c) >.Ji . 
X ~ S(b) a e X 

This contradiction proves the first assertion. rhe 

dual result is obtained when F is replaced by -F. 

Proposition 4.1.5. Let P
1 

and P
2 

be complete Boolean algebras. 

Let P1 be a sub-semi-lattice of P 2 with the same zero and unit. 

Suppose that S(P2) is a representative space for P2• Let S(P1) be 

the continuous image of S(P 
2

) defined by X ~ X !'"\ P1• Take F to be 

any nonnal lattice function on P2; denote by F
0 

the restriction of 

F to P1 (defined in proposition 2.3.6). Finally, let f and f be the 
0 

point functions corresponding to F and F
0 

respectively. Then 

f 
0 

( X "' P 1 ) = ( ( f +)) ( X). 

Proof. We compute: f+(X) = inf sup f(Y) = 
b E x Y € S(b) 

inf sup sup F(a) = inf sup F(a). This last step is a 
"5 c X Y t S("5) a € Y '6' € X a ~ b 

consequence of lemma 4.1 .3. Hence inf f+(X) = inf inf sup_F(a)= 
X E S(a ) X E S(a) b E X a ~ b 

inf sup F( a) = F (a). 
'b -:: aa ~ 'b 0 Here again lemma 4.1.J has been used. In 

this case, it was applied to the dual lattice fumtion sup F(a), 
a ~ 'b 

sidered as a lattice function on P1• 

Finally, for any Y f S(P2) ((f+)+)(Y) = sup inf f+(X) = 
a E Ya E X 

sup F (a) = f (Y " P1 ) • a E y o o 
Thus the proof is complete. 

con-

Corollary 4. 1. 2. If X " P1 = Y " P1 , then ( ( f+)) (X) = ( (f+)) (Y). 

The extension (defined in proposition 4.1.4) off to S(P2) is (f+) • 
0 + 

Renee (f+)+ is a normal lower semi-continuous function on S(P2). 
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Corollary4.1.J. IfF'(a) =inf l ((f+))(X) \ a E X} , then 

Hence F' defined only for elements 

of P1 is a normal lattice function on P1• 

Collecting all of these results together with theorem 2.J.4, 

theorem 4.1.1 and proposition 4.1.2, we can state 

Theorem 4.1.4. Let P be a complete Boolean algebra. Let L be 

a translation lattice of nonnal lower semi-continuous functions on a 

representative S(P) of P. Suppose that L is divisible with respect 

to the ideal \ f £ Llf ~ 0 } • 

Denote by it the class of all regular open sets of the form af = 

{x I f(x) > 0 } -o where f f L. Suppose P1 is any sub-semi-lattice 

of P which is isomorphic to [ L/I ] , and that there is a mapping 

af-+ af of R onto a dense sub-sewii-lattice of P1 with the properties 

af ~ af and z = z. 

Define for any tounded real valued function f: 

(f+)(X) = inf sup f(Y), 
a: E x 1 ~ s(a) 

( f +)(X) = sup inf f (Y). a ( x Y ( s(a) 

Then the mapping f-+ (f+)+ is an isomorphism of L onto a sub-trans-

lation lattice of N(S(P) ). If S(P1) is the continuous image of S(P) 

consisting of the points X A P1 (X E S(P)), then every (f+)+ is 

uniquely defined on S(P1 ) by ((f+))(X '"' P1 ) = ((f+))(X). In this 

way L maps isomorpriically onto a subset of N(S(P ) ) which generates 
1 

the topology. 
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Remark: This theorem does not have the same content as theorem 

2.J.4. The two theorems do have one thing in common however. They 

show how it is possible to obtain from a translation lattice of point 

functions (respectively, lattice functions) isomorphic translation 

lattices of point functions (lattice functions) which generate the 

topology (generate the Boolean algebra) over which they are defined. 

The property of a translation lattice of normal upper semi-continuous 

functions g enerating the topology is very important. For when this 

condition is satisfied, there is a close relationship between the 

lattice structure of the functions and the topological structure of 

the space (as will be shown in the next section). When the functions 

no longer generate the topology, this strong bond between lattice 

structure and topological structure is broken, a fact which is amply 

demonstrated by the difficulties which will be met in section three 

below. 

h. 2 Representation by continuous functions. 

The final two sections of this thesis are devoted to the study 

of translation lattices of continuous functions. In particular, the 

relation between the topology of a space and the lattice structure of 

translation lattices of continuous functions defined on the space will 

be investigated. It has already been shown that every translation 

lattice can be represented as a translation lattice of functions on a 

set. It is an elementary matter to introduce a topology into the set 
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so that the functions become continuous. l"inally, the well known 

Stone-~ech compactification method shows that there is no loss in 

assuming the resulting space to be a compact Hausdorff space. Thus 

the problem of proving the existence of at least one continuous 

representation is a very simple one. The trouble is that there may 

be very many representations and the method of obtaining them, which 

vre have just outlined, does not give much insight into the relations 

between these representations. (As indicated before, this statement 

does not apply in the case of distributive translation lattices. 

Indeed, for these, such elementary considerations do give very good 

information. It might even be said that there is no real problem 

until the assumption of distributivity is dropped.) By applying the 

techniques developed above, we will be able to obtain a representa­

tion and a uniqueness theorem which wi 11 be more suitable for study­

ing the relation between the representing spaces of a given trans­

lation lattice. 

In order to simplify the statement of' theorems, it will be assumed 

in this section that the translation lattice L under consideration is 

divisible with respect to one of its closed, bounded icieals, I. By 

theorem 2. 3. 1 , we can then assume that L is a translation lattice of 

normal lattice functions on a complete Boolean algebra P (isomorphic 

to [ L/I ] ) , and that L generates P. It will be shown that there is 

a representative space S(P) for P which is compact Hausdorff, for 

which the point representatives of L on S(P) are continuous, and which 
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is such that these point representatives separate the points of S(P). 

4.2.1. Continuity spaces. 

Definition 4. 2. 1. Let P be a complete :doolean algebra and let 

1 be a set of normal lattice functions on P. A representative space 

for P, S(P), will be called a continuit,y space for L if the point 

representatives of the functions of L, that is, the functions f 

defined by 

f ( X) = sup { F( a) I a ~ X l 

are all continuous on S( P). 

It is desirable to get a more usable characterization of the 

continuity spaces of a given set of norm.al lattice functions. For 

this purpose, the following definition is introduced. 

Definition 4.2.2. Let P be a complete noolean algebra and let F 

be a normal lattice function on P. Define the oscillation of F on an 

element a of P by the formula: 

OF(a) = sup F(b) - F(a). 
b ~ a 

Proposition 4.2.1. Let P be a complete 0 oolean algebra. Suppose 

F is a normal lattice function on P. Let S(P) be a representative 

space for P. Denote by f the point fum tion on S(P) associated with 

the lattice function F. A necessary and sufficient condition that f 

be continuous at a point X of S(P) is that for every b > o, there 

is an element a ~ X such that OF(a) < ~ • 

Proof. The function f is continuous at X if and only if there 
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is a neighborhood of X in which the oscillation of f is less than any 

pre-assigned positive A • Since the a c P constitute a basis for 

the open sets, this means that there is an a of P with a € X satis-

f ying 

sup f (Y) -
a l y 

inf f(Y) < 6 
a & Y 

This means (using lemma 4.1.J) that 

• 

OF(a) = sup F(b) - F(a) ~ J • 
b -s: a 

The proof is complete. 

4.2. 2. The ~racteristic space. 

In this article, P will, as usual, denote a complete Boolean 

algebra. L will designate a set (not necessarily a translation lattice) 

of normal lattice functions. Later we i.'Vill assume that L generates P 

(see definition 2.3.3). The existence of a continuity space with the 

properties described at the end of the introduction to this section will 

now be proved. 

The first step is a proof of the existence of a certain kind of 

dual ideals in P. 

Definition 4.2.J: A dual ideal X will be said to satisfy the 

condition C if it has the property th.at, for any ~ > o, and for 

any 1', E L, there is an a t- X such that OF( a) ~ ~ • 

Proposition 4. 2. 2. Let X be a dual ideal of P which satisfies 

the oondition C. Then there is a dual ideal Z with X -.:. Z (in the 
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orderi ng of dual ideals; this means that Z is a subset of X) whi ch 

is maximal (in the dual ideal ordering ) with respect to the property 

of satisfying the condition c. 

Proof. Let >i F = sup l F ( a )I a E X 1 . Denot e by (J( the set 

of all minimal dual ideals U which are such that sup {F(a) I a E U } = AF 

for all F E L. It will be shown below t hat <X is non-empty. .Define 

Z = V m • I t must be shown that X s Z and that Z is maximal satis-

fying the condition C. The proof will be carried out in several lemmas. 

Lemma 4. 2.1. If Y1 and Y2 are any two dual ideals with Y1 'S Y2, 

and if Y2 satisfies the condition c, then 

sup { F( a )I a E Y11 =sup f F( a )I a E Y
2

} , 

for all F t L. 

Proof. Since Y
2 

is a subset of Y
1

, sup { F(a) I a E Y
2
\ ~ sup l F(a)I a € Y1 \ . 

To reverse this inequality, notice that if 6 > o, there is an a E Y
2 

such that OF(a) < 6 ; that is, ~ > F( b ) - F( a ) for all b ~ a, b I= z. 

Thus if c t Y1' F( c )::: F( c " a) < F( a ) + £ ~ sup { F( a )l a E Y
2 

t + J • 

Hence, sup { F(c )\ c E Y1 \ ~sup { F ( a )\ a E Y
2
! + ~ • .3ince o was 

arbitrary, sup { F(a) I a E Y1 ~ ~ sup { F(a)\ a E Yi• This completes the 

proof of the lemma. 

This result has two immediate consequences of importance. First, 

it shows that the set ()( is not empty. For by the ma.x::i.rnal 

principle, it is always possible to find a minimal dual ideal U satis-

fying U ~ x. By the lemma sup l F ( a )\ a r= U l =sup t F(a) \a E X ! :: 

).. F' for al 1 F f L. 
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A second important consequence of lemma 4.2.1 is the fact that 

X ~ z. For it i mplies that en. "2 { UI U -:=: X \ and in the lattice of 

dual ideals of any Boolean algebra, V-\. U\ U "S. X, U minimal j = X is 

valid for a:ny dual ideal X. (The proof of this fact is an elementary 

application of the maximal principle.) Hence Z = V l UjU € {/(_} ~ 

V { UI U ~ X l = X. 

Lemma 4.2.2. Let U f ()( • Then if 8 > 0 and F ~ L, there is 

an 8u f U such that F(8u )?: /\ F - J /2 and F( b) S A F+ c5 /2 for 

all b -:=- 8u• 

Proof. Suppose, first, that every a f U contains a non-zero b a 

such that F(ba) > >. F + o/2. Then V {ba \ a f U } has non-empty 

intersection with every a f U and hence (since U is minimal), is it-

self contained in u. Moreover F( V { b I a ~ U 1 ) = inf F(b ) ~ /\ F + o /2. a a 

This is contrary to the fact that (by definition of or. ) 

sup { F(a) Ja f: U } = A p• Consequently sone a
0 

<= U is such that 

F(b) s >. F + ~ /2 for all b ~ a0• 

Since sup \ F(a) I a E- U l = ). F' there exists ~ E U such that 

F(a
1

) ~ /.. F - ~ /2. Putting au = a
0 

,.. a1 gives an element of U 

vvi th all the properties claimed. 

Notice that the above proof depended in no way on the ideal X 

or the nature of the number AF beyond the fact that 

sup { F(a)I a f U J • Hence, 

>. = F 
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Corollary 4.2.1. Every minimal dual ideal satisfies the condition 

c. 

Lemma. 4.2.J. The ideal Z satisfies the condition c. 

Proof. Corresponding to ~ > 0 and F t L, choose ~ as in 

lemma 4. 2. 2. Put a = V \ ~ I U € IX l • Since a ~ ~' it follows that 

a E U for all U E- oc: • Hence a € V oc = z. To complete the proof, 

it will suffice to show that OF(a) "'.':. 6 • 

Since F is normal, F(a) =inf \ F(~) \ U €. ac l ~A F - J /2. If 

z f. b -s. a, then z f. b = b " a = b " \/ \ ~I U f ()( ~ = V l b " ~ \ U E oc J • 

Thus b " ~ f. z for some U E (}( . Consequently F(b) ~ F(b " ~) ~ 

~ A F+ d /2. Combining these inequalities, OF(a) ~ ( .>.. F + f. /2) -

( X F - ~ /2) = ~ • The proof is complete. 

The preceding lemmas show that Z is a dual ideal cont aining X and 

satisfying the condition C. The ideal Z is also maximal with these 

properties . i or i f Y ? Z satisfies the condition C, by lemma 4. 2. 1, 

sup l F(a) / a <= YI = sup { F(a) / a ~ Z f = A F• Then by another application 

of lanma 4. 2. 1, Y = V { UI U ~ Y ! ~ V { U \U €- ot} = Z. Consequently 

Y = z. Proposition 4.2.2 is finally proved. 

Prooosi ti on 4. 2. 2 leads immediately to the main existence theorem 

for Q:)ntinuity spaces. 

Theorem 4. 2. 1 . Let 1 be a set of normal lattice functions on 

the complete Boolean algebra P. Suppose t hat L generates P. 'l'hen the 
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space S(P ) of all dual ideals which are maximal satisfying condition 

C constitutes a compact Hausdorff topological space which is a 

representative space for P. The point functions on S(P), correspond­

ing to the lattice functions F E L, have the properties of (1) being 

continuous on S(P), (2) generatin.~ the topology of S(P), and (J) 

separating the points of S(P) . 

Proof. There are several things to prove. First it must be 

shO"Nn that S(P) is a representative space for P. In other words, it 

is necessary to verify that every element a t P is contained in at 

least one dual ideal X of S(P). Next it should be shown that every 

F €- 1 corresponds to a continuous point function. But this fact is 

an immediate consequence of proposition 4. 2.1 and the fact that every 

X € S(P) satisfies the condition C. The fact that the point functions 

corresponding to the lattice functions of L generate the topology of 

S(P) is an immediate consequence of lemma 4. 1. 2. The next step of the 

proof is to show that the point functions corresponding to 1 separate 

the points of S(P). An immediate consequence of this, and the fact 

that these functions are continuous, is that .s (P) is a Hausdorff 

space. The final and most difficult part of the theorem is the proof 

that S(P ) is a compact space. 

Following this outline, we proceed to prove the theorem by means 

of three lerrnnas. 

Lenma 4. 2. 4. For any a f. P, there is an X €. S(P) such that a € X. 
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Proof. Since L generates P, .F' in L exists, together with b E P 

with z f. b ~ a such that F(b ) ?" 0 and F(c) > 0 only if c ~ a. Let U 

be a minimal dual ideal containing b. By cor ollary 4.2.1, U satisfies 

condition c. Hence X ~ U exists with X maximal satisfying condition 

c, that is, X € S( P) . By lea'Tl.!ll 4.2.1 sup { 1"( c )l c c XI = sup { F( c) l c f U \ 

~ F(b) ;;> o. Hence c E X exists with F( c ) > o. This implies c <f. a, so 

therefore a t X. This is what was to be proved. 

Lemma 4.2.5. The point functions f, defined by 

f(X) =sup \ F(a) l a ('. X f , 

where F f L, separate the points of S(P). That i s, if X f. Yin S(P), 

there is an f of this fonn such t hat f ( X) f. f (Y). 

Proof. Suppose that X f. Yin S(P) . By the maximality of X 

and Y, it f ollmvs that X v Y fails to satisfy the condition C. Hence 

F E L and A"" 0 exist so that 01', ( c ) > J for all c € X v Y. 

Now since both X and Y satisfy the cxindition c, it i s possible 

to f i nd a E X and b f Y so that OF(a) < A /3 and OF (b) < J /3. From 

these, it follows that IF( a) - f ( X) I ~ J /3 and IF(b) - f(Y) l -s a /3. 

For, f(x) =sup { F(c) l c E X ~ ~ F(a) and f ( X) =sup l F( c )\ c (. X! ~ 

~ sup \ F(a " c) I c l X l ~ F(a) + 6 /3. A similar argument proves 

the other inequality. 

Now a v b l. X v Y, so by hypothesis OF ( a v b ) >- d' . In other 

words, a non-zero c exists with c -:: a v b and F(c) - F(a v b) > J • 

The relation c ~ a v b implies that c = (a " c) v (b " c ) . Thus, at 
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least one of a ... c, b " c is not z and (by norrnali ty) one of 

F(a " c) = F(c), F(b " c) = F(c) holds -- say F(c) = F(a " c). Hence 

F(a " c) - min { F(a), F(b)! = F( c) - F(a v b) > J • But since 

OF(a) < ~ /3, F(a " c) - F(a) < d /J, and this relation implies 

F(a " c) - F(b) > if • Also /, < F(a " c) - F(b) 5 F(a) + J /3 -

F(b). Transposing, F(a) - F(b) > 2( ~ /J). 

Combining the results of the last two paragraphs gives 

lf(X) - f(Y) I ~ IF(a) - F(b) l - I F(a) - f( X) l - \F(b) - f(Y) \ > 2( /, /J) -

J /J - 6 /3 = O. This inequality shows that the points X and Y are 

separated and the proof is complete. 

Corollary 4. 2. 2. S(P) is a Hausdorff topological space. 

The proof of theorem 4.2.1 is completed by 

Lemma 4.2.6. The space S(P) is compact. 

Proof. Let "J = { T \ be an arbitrarily chosen collection of 

closed subsets of S(P) with the finite intersection property: every 

finite collection of sets in ) has non-empty intersection. The 

compactness of S(P) will follow if it is shovm that ('\ ':J is not 

empty. 

The first thing to notice is that no loss in generality is 

incurred by assuming that '::J is a minimal dual ideal of closed 

subsets of S(P). For, by the maximal principle, it is always possible 

to find a collection 'J ' of closed subsets of S(P) which contains :J 

and is maximal wi th respect to the finite intersection property. 
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Then if n 'J ' is non-empty, the same i s surely true for n ) . 

Hence, hereafter it will be assumed that is a minimal dual 

ideal. 

( 1 ) • Let i' E 1 and denote by f the point function associated 

·with F . Put ). =sup inf f ( X). Choose cl > O. We will show 
'f f::J X ~ T 

that for all T <' J , an element aT of P can be f ound satisfying 

aT t: U {XIX f T f , >. - J /4 <: F(aT ) < >. + J / 4 and OF( ~ )< J /4. 

To prove this, notice that T
0 

exists satisfying ~ ~ inf l f ( X) I X f T l 
0 

> ::\ - J /4. Then, for any T f J , .A ? inf \ f( X) IX ( T " T 1 > Ii -
0 

d /4. Hence ). + J /4 > f ( X) > >. - J / 4 for oome X t- T. As a con-

sequence, aT in P exists with aT E X ~ UlYIY f T } and such that 

F( B.r ) > ). - J / 4. Since f is continuous, it i s possible to pick aT so 

that OF ( B.r ) < J /4. Finally >i + cii/4 > f(X ) implies that F(~) < 

< .A + & /4. This proves the assertion ( 1 ) . 

( 2). Corresponding to any .F' E 1 and o > 0, there is an element 

a of P such that a l (\ { ( U T) I T E :J } 

To see this, choose ~ (corresponding t o each T 6 ) ) so that the 

conditions of (1) are satisfi ed. Put a = V { aT I T t- 'J } • '.i.'hen, 

since F is normal, /t + J /4 ~ F(a ) ~ ). - 6, /4 > ). - o /2. If 

z f. b ~ a, then b 11. aT '/: z holds for some T t:: J • 1'his means that 

F(b ) ~ F(b I\ aT) -:_ F(8T) + b /4 < ~ + o /2. Thus OF( a) < .S • 

Finally a E U T = { XIX t T } for all T t- ':J • Consequently a c 

(\{( U T) I T t- ':J t • Thus (2) is proved. 
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(3). For each FE Land S > O, choose~' 6 (axiom of choice) 

so that ~ s € n { ( U T) I T € :1 f and OF ( ~ J ) < & • Let Y be the , , 
dual ideal generated by the set of all ~ c5 , that is, , 
Y = { b ( P \ b ~ a

1 
fl ••• fl a ~ , where the a. are of the form a,,, r • 

n J .i:.', o 

Then Y satisfies the condition C and Y <;; () \ ( U T) l T E 1 } • In 

particular, Y is non-trivial. 

The fact that Y satisfies the condition C is evident since all 

of the aF & are in Y. The relation Y ~ () { ( lJ T) l T €: 'J \ , is an 

immediate consequence of the following fact: If a., for j = 1, ••• ,n, 
J 

are elements of the form ~, J , then ~ fl • • • " an €: n { ( U T) l T t 1 } • 

Indeed, suppose ~ " • • • " an 4 U T for some T f J • Denoting 

S(aj) = t X f . S(P)I aj E X I , this implies that S(a1 ) "' ••• ,.... S(an) r\ T 

is empty. Hence TS S(a1 )c v ••• v S(an)c. Since "J is a dual 

ideal, this is possible only if S(a1 )
0 

v ••• v S(an)c €: :i • Then J , 

being minimal, must be prime, so, for some index j, S(a.)c ~ "J • This 
J 

leads to the following contradiction: a. E (\ {( U T) \ T €: J} s. V(S(a.)c), 
J J 

contrary to the obvious fact that if X E S(a.)c, then a. 4: X. These con-
J J 

siderations constitute the proof of (3). 

Let Y be the icieal constructed in (3). By proposition 4. 2. 2, it 

is possible to find Z E S(P) satisfying Z ~ Y. Then, in terms of set 

inclusions, Z <; Y c:=. (\ l ( lJ T) \ T E 'J} • By the criterion of lemma 

3. 2. 2, this means that Z E T- = T for all T €:- 'J • Thus, we have 

reached our ultim.a te goal: (\ 1 is not empty. This completes the 

proof that S(P) is compact, and also the proof of theorem 4.2.1. 
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Corollary 4.2.3. Let L be an abstract translation lattice. 

Suppose I is a bounded, closed ideal of L, and that L is divisible 

with respect to I. Then there is an isomorphism of L onto a set L' 

of continuous, real-valued functions on a compact Hausdorff topo­

logical space S such that: (1) the image of I under this isomorphism 

is just the set of those functions of L 1 which are less than or equal 

to the zero function on S; (2) 1 1 generates the topology of S; (3) 

the functions of 1 1 separate the points of s. 

Definition 4.2.4. Let 1 be a set of normal lattice functions 

on the complete Boolean algebra P. Suppose that 1 generates P. Then 

the space of all dual ideals which are maximal satisfying condition C 

will be called the characteristic space of 1 and will be denoted s1 (P). 

The same notation and terminology will be applied to describe the 

space constructed from an abstract translation lattice L by means of 

theorems 2.3.1 and 4.2.1. (Of course this construction depends on 

the choice of an ideal I.) 

4.2.2. Uniqueness of the characteristic space. 

In this article, a uniqueness theorem for the characteristic space 

will be proved. Also, we will consider the relationship between the 

characteristic space of a c:Jllection 1 of normal lattice functions and 

other continuity spaces of 1 which are o:Jnstructed from the same 

Boolean algebra. 

Theorem 4.2.2. Let P be a complete Boolean algebra. Suppose L 



-152-

is a set of normal lattice func t ions on P. Assume that L generates 

P. Then if S(P) is any compact Hausdorff continuity space for L, and 

if s1(P) is the characteristic space for L, s1 (P) is homeomorphic to 

a factor space of S(P). If t he points of S(P) are separated by the 

point functions corresponding to the lattice functions of L, then 

S(P) is homeomorphic to s
1

(P). 

Proof. Let X• t S(P). Then X' satisfies condition C (propo-

sition 4.2.1), so by proposition 4.2.2, there is an ideal X of s1(P) 

such that X ? X1 • This X is unique. For suppose Y is a point of 

s1(P) distinct from X. Since s1(P) is a Hausdorff space, a t X and 

b ~ Y exist such that a " b = z. Hence Y 'j X•, because otherwise 

z = a ~ b t: X'. Denote by 0(X') the unique X f 3
1 

(P) satisfying X ~ X•. 

Also, for what follows, denote s
1

(a) = f X E s
1

(P) \ a € X f and 

S(a) = { X' 6 S(P) I a £ X• l • 

(1). If s1(b)- c:: s1(a), then 0 (S(b)) ~ s1 (a). 

This preliminary result is proved by reasoning to a contradiction. 

Suppose X• <:; S(b) and a ~ 0(X 1 ). Then 0(X•) tf s1(b)-, so by corollary 

3. 2.1, c f 0 (X') exists satisfying b " c = z. But c t 0 (X•) ~ X' 

a.'1d b t X• together imply an impossibility: z = b 11 c € X1 • 

(2). Using (1), we can show that the mapping 0 is continuous. 

It suffices to prove that 0-1(s1(a)) is open for all a E P. Let 

X1 £ 0-1(s1 (a)). Then a~ 0(X 1 ). Since s1(P) is a regular topological 

space, it is possible to pick b ~ P so that 0(X 1 ) f s1(b) <:: s1(b)- -=.. 

C:: s1(a). Then 0 (S(b)) <:: s1(a), so X1 f S(b) ~ 0-\s
1

(a)). Thus the 
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set 0-1 (s
1

(a)) is open. 

(3). A second consequence of (1) is the fact that 0(S(P)) is 

dense in s1 (P). Indeed, if a c: P, pick b ~ z so that s
1

( b)- <; s
1

(a). 

Then 0(S(b)) S s1 (a) and 0(S(b)) is not empty. Hence s
1

(a) ,., 0(S(P)) 

is not anpty and the assertion follows. 

From this it is immediate that 0(S(P) ) = s1(P). For 0 ( S(P) ), 

being the continuous image of a compact space , is closed, and therefore, 

0(S(P)) = s
1

(P) . This proves the first assertion of the theorem. To 

complete the proof, we will show that when the point functions obtained 

from L generate the topology of S(P), 0(X 1 ) = X1 • 

(4). If 0(X1 ) ~ X1 , there is a minimal dual ideal U satisfying 

U { X• and U v X• ~ 0(X•) ( since in a Boolean algebra, ever<J dual ideal 

is the join of minimal dual ideals). By the compactness of S(P), 

there is a point Y' £ n { S(a)- la f Ul • If b ~ Y1 , b ~ a fo z for all 

a l U (by corollary 3. 2.1). Hence, since U is minimal, b € u. Because 

b was an arbitrary element of Y', it follows that Y• ~ U. By lemma 

4.2.1, sup { F(a) la l: Xt} =sup l F(a) la £ 0(X 1 ) l =sup \ F(a) l a <: U ~ = 

sup { F(a) I a E Y1 l for any F E L. Then the hypothesis that the 

points of S(P) are separated by the point functions generated from 1 

implies that X' = Y' ~ u. But this contradicts the original choice 

of U and proves that 0 (X') = X'. 'l'he proof of the theorem is complete. 

An immediate consequence of theorems 4.2.2 and 4.1.J is 

Corollary 4.2.4. Let L be an abstract translation lattice. 
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Suppose L is isomorphic to the set L1 of continuous functions on a 

compact Hausdorff space s. Suppose L' generates the topology and 

separates the points of s. Then S is homeomorphic to the character-

istic space of L. 

This corollary gives a method for deterrr~ning the characteristic 

spaces of many specific examples of translati on lat tices. 

Example 1. Let L be the translation lattice C(S), the continuous 

functions on a completely regular topological space. The character-

istic space is easily determined. It is precisely t,he Stone-Cech 

compactification of s. For (see ~ech [19 ] ) there is an isomorphic 

(translation and lattice preserving) mapping of C(S) onto the set of 

all continuous functions on the compactification. 

Example 2. We can now prove Dilworth's theorem on the representa-

tion of N(S) -- the normal lower sani-continuous functions on a semi-

regular T -space. :Sy theorem 4.1.1, N(S) is (translation lattice) 
0 

isomorphic to the set of all normal lattice fun:: tions on the complete 

Boolean algebra P of regular open sets of s. Let ~ (P) be the space 

defined by the set of all minimal dual ideals of P. By example 1 of 

chapter three, t (P) is a compact Hausdorff space. By corollary 4. 2.1, 

every nonnal lattice fumtion on P has a continuous point function 

representative on 't ( P). Conversely, every continuous function on 

t (P) is normal, lower semi-continuous and hence corresponds to some 

nonnal lattice function. We have therefore proved the theorem of 
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Dilworth [ 1 ] : the translation lattice N(S) is isomorphic to C( 't (P)), 

the set of all continuous functions on the Boolean space associated 

with the Boolean a.Lgebra of regular open sets of s. 

4.3 The characteristic space. 

In this section, the relationship between an arbitrarJ continuity 

space of a translation lattice L and the characteristic space of L 

will be studied. Corollary 4. 2.4 shows that if a translation lattice 

L of continuous functions on a compact Hausdorff space S generates 

the topology, then the characteristic space of L is homeomorphic to 

a factor space of s. Now the requirement t..hat L generate the topology 

will be weakened to the assumption that L be divisible with respect to 

the ideal I = \ f f L jf ~ O ! . Vvnat we will prove is that, under these 

conditions, the characteristic space is homeomorphic to a factor space 

of a closed sub-space of s. 

We know already from theorems 2.3.4 and 4.1.1 that [ L/I ) is iso­

morphic to a sub-semi-lattice of the Boolean algebra of regular open 

sets of s. This fact leads to a consideration of the relationship 

between representative spaces for Boolean algebras P1 and P 2 with P1 

a sub-semi-lattice of P 
2

• I'his is the situation V'lnich will be studied 

in the first article below. The final article wi 11 oe devoted to the 

proof of the result mentioned above. 

4.J.1. Projections.:::£ topological spaces. 

The following definition is patterned after one of Stone's (181 
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Definition 4.3.1. Let s1 and s2 be Hausdorff topological spaces. 

A mapping x ~ Tx which associates with every x € s1 a closed non­

empty subset TX of S
2 

is called a (closed) projection of s1 into S 2 

if it has the properties: 

(a) if T2 is a closed subset of s2, then { x ~ s1 \ T2 "' TX F 0 l 

is closed in s1; 

(b) if i'1 is a closed subset of s1, then U { Tx\ x l: T1} is closed 

in s2• 

A projection is called simple if T /"l T = 0 whenever x f y. x y 

An immediate consequence of this definition is the following: 

Proposition 4.3. 1. If x ~ Tx is a closed simple projection of s1 

into s2, then s1 is homeomor~hic to a factor space of a closed sub­

space of s2• Conversely, if s1 is a factor space of a closed sub-space 

of s2, and if 0 denotes the natural mapping of this sub-space onto s1 , 

then x~ 0-1(x) defines a simple projection of s1 into s2. 

This proposition explains our interest in projections. The reason 

for considering projections, rather than directly studying factor 

spaces of a closed sub-space, is the following: it will be shovm in 

this article that if P1 (a complete Boolean algebra) is a sub-semi­

lattice of t he complete Bool7a.n algebra P2, and if S(P1 ), S(P2) are 

respectively compact Hausdorff representative spaces for P1 and P2, 

then there is a projection of S(P1 ) into S(P 2). In this way, it is 

possible to reduce the proof of the main t heorem to the verification 
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that a certain projection is s:L11ple. This will be done in the final 

article. 

Let P1 and P2 be complete Boolean algebras with P1 ~ P
2 

(i.e., 

P
1 

is a sub-semi-lattice of P 
2

, both having the same zero and unit 

element). As before, joins in P1 and r 2 will be distinguished by 

the different symbols 0 and ~ respectively. Also, a bar will be 

placed over elements of r1 in order to distinguish them from those of 

p 2· 

Denote by Q the set of all elements of the form 0 A, where A 

is an arbitrary subset of P1• 

Lemma 4.J.1. The set Q is a complete, completely distributive 

sub-lattice of P
2

• 

Proof. This is obvious. 

Suppose now that s1 (P1 ) and s2(P2) are respectively representa­

tive spaces for P1 and P 
2

• Assu.rne also that they are both compact 

Hausdorff spaces. 

Now extend 

this ctefini tion to elements of Q by setting s1 (b) = U { s
1 
(a)I a -.=. b J , 

whenever bf Q. Then ~1 (b) is an open set of S1 (P
1

). It is clear that 

the following holds: 

for all b, c E Q. 

Lenn:n.a 4.J . 2. Let b E Q and Y'1 E s1 (P1 ). Then ~ E s1 (b)- if and 
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only if b A a I z for all a € x1. 

Proof. Suppose a I\ b I z for all a E x1. J.hen, for any a f x1' 

there exists b ~ b such that a A b I z. 

s1 (P1 ) with a " o f: Y1• 

Let Y1 be an element of 

S (b); also 
1 

a ( Y1 ' so a E u ( S1 ( b) ) • Sine e a was arbitrary, ~ ~ u (81 (b)). 

by lem,JJa 3.2.2, ~ f s1 (b)-. 

Thus 

Conversely, if b " a = z for some a E ~, then a ~ U (s1 (b) ). For 

if a ( Y1 E S1(b), b~ b exists with b f Y1, and this means z I a /\ b ~ 

~ a 11 b. Hence x
1 

f- s
1 

(b )-. 

Lemma 4.3.3. Let a and b be elements of Q. Then (in the topology 

Proof. The sets s1 (a ) and s1 (b) are open in s1 (P1 ). Consequently 

s
1

(a)-o ("\ s
1

(b)-o = (s
1

(a) /""\ s
1

(b))-o = s
1

(a " b)-0
• This is what was 

to be proved. 

Denote S2(a) = { x2 E S2(P 2) I a E x2 \ whenever a E p 2· For the 

applications below, a will always be an element of Q. 

Now suppose that W is a mapping from Q into the closed subsets of 

s
2

(P 
2

) with the properties: 

(a) if z f a, then 0 f N(a) <; s
2
(a)- ; 

(b) W(a) ~ W(b) whenever a 5: b. 

An example of a mapping satisfying these conditions is a~ s
2
(a)-. 

However, it will turn out that the choice of W is rather delicate, 
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and that this choice is not the one which gives us the desired 

results. F'or the present, the mapping W can be left unspecified. 

Lanma 4.J. 4. 'l'he mapping x1 -> n { W(a) I a E Q, x1 E s1 ( a)-o f 

associates with everJ ~ E s1 (P1 ) a non-Empty, closed subset of s
2
(P

2
). 

Proof. If ~, ••• ,an are elements of Q with~ c s1(aj)-o for 

j = 1, ••• ,n, then by lenuna 4.J.J, X1 E s1 ( a1 " ••• " an)-o. Hence, 

a1 " ••• " an-/: z. i·hus 0 -/: W(a1 "' ••• " an) ~ W( a1 ) r"\ ••• '"' W(an). 

Lemma 4.J. 4 then follovrn from the assumed compactness of s
2
(P

2
). 

Denote the set (\! W( a) l a E Q, x1 E s1(a)-o \ = TX-i. It will 

now be shown that~~ TX
1 

is a projection of s1(P1) into s2(P2). 

Lemma 4.J.5. Suppose T
2 

is a closed subset of s
2

(P
2
). Then the 

set l X1 f s1 (P1) I TX ..... T2-/: 0 1 is closed in s1 (P1 ). 
1 

Proof. Suppose T~ n T2 = 0. This means n\ W(a) " T2\ a t: Q, 

11 { s1(a)-
0 f =0, so, by compactness, a1, ••• ,an exist in Q such ·t.hat 

W(a1 ) -"' ••• l'\ W(an) " T2 =0 and X1f n ~ = 1 s1(aj)-o. But if Y1 ~ 

(\ ~ = 1 s1 (aj)-o, then Ty
1 

n T2 <; W~~) ,.., ••• ,.,. W(an) "' T2 = 0. 

Hence the set { ~ € s1 (P1 )I TX
1 

,..... T
2 

= 0 } c is open, and the lemma 

is proved. 

Lemma 4.J. 6. Suppose T1 is a closed subset of s1 (P1 ) . Then the 

set 

Proof. Suppose the point y2 of S2(P 2) is not in v l TX I x1 E T1 I • 

Then if Xi E T1' there exists a ( Q such that ~ f s1 (a)-b and 
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Y 2 ¢ W( a). By compactness, pick ~ , ••• , an such that ever·y x1 f T1 

satisfies~ t s1( aj) -o for some j, and such that Y
2 

4 W( aj ) for all 

j • Then U { T ~ I ~ E T 1 l S W( a1 ) "" • • • v W ( an) and Y 2 4 W( ~ ) ..__, 

'-' ••• v W(a2) . Thus (since Y
2 

was arbitrary) ( V { T~ I X1 f T1 f )c 

is open, and the lemma follows. 

STu'TIJilarizing the result of these lemmas, we can write: 

Proposition 4.3.2. The mapping x
1 
~TX is a projection of s

1
(P

1
) 

1 
into s

2
(P 

2
). The projection is simple if and only if, for any two 

distinct points ~ and Y1 of s1 (P1 ), b and c in Q exist satisfying 

~ E s
1

(b)-0
, Y

1 
{ s

1
(c)-0

, w'nile W(b) A W(c) = 0. 

Proof. The only assertion of the proposition which needs proving 

is the necessity of the simplicity criterion. The proof is a routine 

compactness argument. We omit it, since no use will be made of the 

result in t he following pages. 

h.3. 2. The main t heorem. 

In this article it will be shown that by suitably choosing the 

mapping W, the projection defined above wi 11 be simple. All the 

notation of the above article will be continued. 

In the work leading up to, and including theorem 4.J.1, a 

uniform set of hypotheses will be used. for convenience, these vdll 

be assembled before starting t he proofs. 

Hypotheses: assume that 

(a) there is given a translation lattice 1 of normal lattice 
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functions on a complete 0oolean algebra P2; denote by I the ideal 

{ F /0 LI F ~ 0 } ; 

(b) the collection of all elements in P 2 of the form ~ = 
V l a lF(a) > 0 f is denoted b'.r R; there is a complete Boolean algebra 

P1 which is a sub- semi-lattice of P2 (with the same zero and unit), 

which is isomorphic to [ L/I ) , and which is such that there is a homo­

morphism ~ ~ ~ of R onto a dense subset of P 
2 

with the properties 

z = z and~ ~ ~; 

( c) the set of all restrictions of the functions of L to P
1 

, 

defined by 

F (a) =inf sup F(a), 
0 - - -

c ~ aa ~ c 

is denoted by 1
0

; by theorem 2. J.4, 1
0 

is isomorphic to L//I; 

(d) assume s
2

(P
2

) is any compact Hausdorff continuity space for 

L, and that s1 (P1 ) is the characteristic space 3
1 

(P1 ) for 1
0

; in 
0 

particular, the point functions corresponding to L are continuous, 
0 

generate the topology and separate the points of s1(P1). 

Remark: It should be noticed that we have not assumed L to be 

di visible with respect to the icieal I. 

Before defining w, it is convenient to prove t wo preliminary 

results. 

to P1• 

For these lerrunas, let F E L and F be the restriction of F 
0 

Denote by f and f the (continuous) point f unctions corre­o 

sponding to F and F respectively. 
0 

Lanma 4.J. 7. If f
0

( _;; ) < ,\ , then there exists b E Q such that 
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Proof. By the definition of f
0

, f
0

( X-i ) < A implies that 

F (a) < ). 
0 

for some a E X1 • Then "f>.- -:::: a exists so that a 

sup \ F( a) l a -:: b- l <.A . Let b = a 0 \ b.a la (c x1 ~ • Then b f Q and 

b /\ a= z for all a f Li· Hence Li f s1 (b )-. 

If b t y2' then y2 E l U{ s2(ba)I a f x1 }] -. For otherwi se, 

c ~ y2 exists satisfying c If. u LU l S2(o.~) I a E ~}) • Thi s means 

c " b~ = z for all a <= ~. But then c " b = z, contrary to b t: Y
2
• 

By t he assumed continuity off, f(Y
2

)-<::. sup \ f(X
2
)\ b"a: t X

2
, some a E X

1
/ 

~ sup 1 F(a) I a ~ Sa' s ome a ~ ~ 1:::: >. • Thus s2(b) '= 

\ Y2 f: s2(P2) lf (Y2) :: ) J . This completes the proof. 

Lemma 4 .. 3. 8. If f 
0

( X1 ) < I. , a e- Q exists so that ~ ('. s
1 

( a)-o 

and W(a) '= { Y2 (; s2(P 
2

) I f (Y
2

) .::; ~ l • 

Proof. By the continuity of f 0, an element a E X1 exists so that 

for all Y1 containing a. By the previ ous lermna, for 

each Y1 , there exists by € 
1 

~ {Y
2 

{:; s
2

(P
2

)1 f(Y
2

) ~ ). f . 

Q such that Y
1 

E s
1 

(by )- and s
2

(by ) 'O: 

1 1 

Let a = ~ \by I a E Y1 l . Then a ( Q 
1 

and Y
1 

t s
1 

(by )- ~ s
1 
(a)- f or all Y

1 
containing a. Thus s

1 
(a) ~ 

1 
<.:: s

1 
(a)-, and so x

1 
E: s

1 
(a)-0

• 

If a f Y
2

, then c ~ a f:. z whenever c E Y2• This means that 

c "' by f:. z for some Y1 with a E y1. If x2 f c " by ' c t- x2 E S2(by ) '=. 
1 1 1 

'= \ z 2 f s 2( P2)\ f (Z2) ~ >.f . Since c was an arbitrary element of Y2, 

• 
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{z
2 

E s
2

(P
2

) \f(Z
2

) ~). ~ . This proves W(a) <:: s
2
(a )- «:; {Y

2 
~ s

2
(P

2
) \ 

I f(Y
2

) ~ Al - = lY2 f s2(P2)\ f(Y 2) ~ ~} • The proof is complete. 

Now, before aey more progress toward the ultimate goal can be 

made, it is necessary to define the mapping Vf. 

Definition 4.J.2. For b € Q, put 

W( b) = (\ { S 
2 

( ~) - \ ~ ~ b l ("\ S 
2 

( b )- , 

where t he closure is in the topology of s
2

( P
2
). 

Lemma 4.J.9. If b -/:. z is any element of Q, W(b) is a non-anpty, 

closed subset of s
2
(b

2
)- • 

Proof. It is only necessary to show that W(b) is non-empty. This 

means that we have to establish a finite intersection property. 

Suppose ~ , ••• ,~ ~ b. Because b t Q, a € P1 exists with 
1 n 

z pa ~ b. The sets of the form aG are assumed to be dense in P
1 

so 

that aG p z exists satisfying ~ ~ a--= b ~ aF " ••• " ~ • Thus 
1 n 

••• " ~ ~ b " ~ " ••• " ~ • If x2 <7 s2(P2) satisfies 
n 1 n 

••• " ~ , then x2 (: S2(b)- A 82( ~ )- A ••• n S2(aF )-. 
n 1 n 

By the compactness of s
2

(P
2
), it follows that W(b) = f'\{ S 2(~)-I ;, ~ b}" 

A s
2
(b)- is not empty. 

Lemma 4.J.10. If f
0

(JS) >). , then a f P1 exists with a(: X, 

and W(a) c:_: {Y2 (: S2(P2) I f(Y2) ~ ).j . 

Proof. If f
0

(JS) >A , then a ~ X, exists such t hat F 
0

(a) ~A • 

By lemma 2.3 . 9, this means that~ _ A' ? a for some 
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Consequently W(a) '= s
2

( ~ _ J... , )-• 

If~_ ?. ' ~ x2, then f(X 2) = sup { F(b) lb € X~? F(~- " ') = 

F( ~\clF(c) > It'] ) =inf l F(c)/F(c) > A1 } ~ .:\ 1 • Hence W(a) ~ 

~ S2(aF_ A, )- s {x 2 G S2(P2)1f(X2)?: ;\'} - ~{X2ES2(P2)lf(X2)~;\1. 

This completes the proof. 

Collecting these results together, it is now possible to prove 

the fundamental theorem. 

Theorem 4.3.1. Assume that all the hypotheses listed at the 

beginning of this article are satisfied. Then the space SL (P1) is 
0 

homeomorphic to a factor space of a closed sub-space of s2(P2). 

Proof. It is only necessary to show that the projection ~ ~ T
21 

defined with respect to the mapping W of definition 4. 3. 2 is simple. 

For this, the criterion of proposition 4.3.2 is used. 

By theorems 2.3.4 and 4.2.1, the continuous point functions 

corresponding to the lattice functions of the translation lattice L 
0 

separate the points of SL (P1 ) . Hence if~ F Y1 , and f
0 

exists 
0 

such that f0(~) Ff 
0

(Y1 ) . Suppose for definiteness that f0(~) < 

< A 1 < >i
2 

< f
0

(Y1 ). Then by lemnas 4.J.8 and 4.3.10 a E Q and 

b E P
1 

~ Q exist so that -X, €. s
1 

(a)-o, Y
1 

E s
1 

('b) <; s
1 

(o)-o and 

W(a) " W(b) S {Y2 I f(Y2) ~ A 1 1 " { Y2 \f(Y2) ~ Ii 2 \ = 0. Accord­

ing to proposition 4.3. 2, 21 ~ T~ is a simple projection. The proof 

is complete. 
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When combined with the results of the previous chapters, theorem 

4.J.1 gives very general results on the relationship between 

representations of translation lattices as sets of continuous functions. 

Corollary 4.J .1. Let L be an abstract translation lattice. Let 

I be a bounded closed ideal of L such that 1 is di visible with respect 

to I. Suppose there is an isomorphic mapping of L onto a subset L' 

of C(S) (the continuous functions on the space S) where S is a compact 

Hausdorff topological space. Assume, moreover, that this isomorphism 

carries I into { f t L' I f ~ 0 i . Then the characteristic space of L 

(formed vlith respect to I) is homeomorphic to a factor space of a 

closed sub-space of s. 

Proof. Tr.is is a direct consequence of theorems 4.J .1 and 2.3 .4. 

Relaxation of the restriction that L be di visible with respect to 

the ideal I gives the following: 

Corollary 4.J.2. Let 1 be an abstract translation lattice. Let 

I be a bounded closed ideal of L. Suppose there is a homomorphic 

mapping h of 1 orrto a subset L' of C(S), where Sis a compact Hausdorff 

topological space. Assume that I = h-1 { f t: 1' If -s. 0 f • Then the 

characteristic space of L//I (formed with respect to I) is homeo-

morphic to a factor space of a closed sub-space of s. 

Proof. This follows from theorems 2.2.1, 2.J.4 and 4.3.1. 

Remark: Corollary 4. 3. 1 was proved for the special case of the 
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translation lattice N(S), and in a slightly different form, by 

Professor H.. P. Dilworth in his seminar at Calt ech in 1951. The 

theorem presented here owes a large debt of gratitude for the 

inspiration of Professor Dilworth 1 s work. 
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