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ABSTRAC

This thesis is an algebraic study of systems of real-valued
functions which are closed under the operations of pointwise meets
and the addition of constants.,

In the first chapter, a new kind of lattice congruence is defined
in terms of lattice ideals., The properties of this congruence are
studied, This congruence is then applied to translation lattices, i, e.,
algebraic systems in which the two operations of meet and the addition
of constants is defined, fHesults which are analogous to the isomorphism
theorems of group theory are proved.

The second chapter contains the development of a representation
theory for translation lattices. For this purpose, the concept of a
norma.l 1atticeyfunction is introduced, These functions are closely
related to the normal functions on a topological space. It is shom
that a translation latitice can always be mapped homomorphically onto
a system of normal lattice functions, Uniqueness theorems are esta-
blished for this representation,

Chapter three develops, briefly, a new method of constructing
topological spaces from a complete Boolean algebra. In the final
chapter, this construction is applied to show that a translation lattice
can be represented as a translation lattice of continﬁous functions on
a compact Hausdorff space., When suitable restrictions are imposed on
the representation, this space — called the characteristic space —
is uniquely determined. Finally, the relations between different
representations by continuous functions are discussed. It is proved
that the characteristic space, in an appropriate sense, is the minimal

representation space.



PREFACE

A convenient way of studying an abstract algebraic system is to
represent the elements of the system as continuous real-valued
functions on a suitably defined topological space. This is usually
accomplished by determining a complete set of homomorphisms of the
abstract system onto the real numbers; from this set of homomorphisms,
the original algebraic system is obtained as a sub-direct product of
its homomorphic replicas, that is, as a collection of real-valued
functions, Finally, the set on which the functions are defined is
topologized in such a way as to make these functions continuous,

Recently (see [1] (1)), Dilworth proved a representation theorem
for a specific function lattice in a different way than this, He
showed that the mapping o , defined by

o f(X) =sup inf £(y),
Pe XyeP

is an isomorphism of the set of normal lower semi-continuous functions
f on a completely regular topological space 5 onto the continuous
functions on the Boolean space of all minimal dual ideals X in the
Boolean algebra of regular open sets P of the space S, Lven without
a clear understanding of the concepts involved, it is possible to

see that this theorem gives a more precise characterization of the
representative space than the traditional representation theorems

described in the first paragresph above, Moreover, the above represent-

1) References to the literature are indicated by numbers in square

brackets.
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ation theorem is not an immediate consequence of any of the known
theorems on algebraic representations since the set of normal lower
semi-continuous functions is not closed under the usual operations

of addition, multiplication, scalar multiplication or lattice joins.
However, this set of functions is closed with respect to the operations
of pointwise meets and the addition of real constants, It is the
purpose of this thesis to initiate a general investigation of systems
of functions which are closed with respect to these two operations.

We will see that the normal functions play a central role in this
investigation, The result of Dilworth is, of course, included as a

special case of the general theorems which will be obtained.
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SUMMARY OF CHAPTER I

The first section of chapter I is devoted to an enumeration of
the better known lattice theoretic results which are used in the
remainder of the thesis, In the second section, a new method is
given for obtaining lattice homomorphisms from lattice ideals, This
method 1s studied in some detail and it is shown that theorems
similar to the isomorphism theorems of group theory can be established,

In article one of section two, the concept of a disjunctive semi-
lattice is introduced, In the second article, it is shown that the
above mentioned homomorphisms are precisely those homomorphisms for
which the image lattice is disjunctive., Article three contains a
collection of specific examples, while article four is devoted to a
compilation of general results, In the fifth article, it is shown
that any disjunctive lattice can be imbedded in a complete Boolean
algebra, Moreover, the process is essentially unique, Finally, in
section six, it is shown that a theorem analogous to the third iso-
morphism theorem of group theory can be proved for the homomorphisms

which we are considering,
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CHAPTER I = LATTICE THEORETIC FOUNDATIONS

1.1 Fundamental definitions,

The first section of this chapter is devoted to an enumeration
of the lattice theoretical concepts which will be used in the chapters
to follow, A complete exposition of the theory can be found in the

standard reference, Garrett Birkhoff's Lattice Theory, [21 ., The

terminology and notation of this book will be used wherever it is

practical to do so,
1.1.1, Lattices,

A set P is said to be partially ordered by the relation a < b(”
if the postulates

Pl: a < agforallace P

IN

P2z a b and b ¢ ¢ implies always that a = c.

If a third postulate

B3 a < band b < a implies a =b

is added, then P will be said to be properly partially ordered. This
notation diverges from that of Birkhoff who calls any system which
satisfies only P1 and P2 quasi-ordered and always assumes P3 for a
partially ordered set, If a relation satisfies Pl and P2, then by
identifying elements a and b which satisfy a < band b = a,; a
proper partial ordering is obtained. Though most of the partial order-

ings which we consider will be proper, it will not usually be

{12

This notation is used interchangeasbly with b = a,




necessary to emphasize this feature.

An element a of a partially ordered set P is said to be an
upper bound of a subset A of Pif b £ a is true for all b € A,
Similarly, it is a lower bound of A if a = b for all b ¢ A, A
least upper bound of a subset A is an upper bound of A which satis—
fies a < b for all other upper bounds b of A, Greatest lower bounds
are similarly defined,

A lattice L is a properly partially ordered set in which every
pair of elements has a least upper bound and a greatest lower bound.
If a and b are elements of L then the greatest lower bound, or meet,
of a and b is written a ~ b while the least upper bound, or join, is
denoted a v b, If this is done, then ~ and v can be thought
of as operations on L which satisfy the identities:

It a ~ a=aanda v a=a,

122 a~» b=b s~ aanda v b=Db v a,

I3: a~r(bac)=(arb)racandav (bve)=(avD)ve,

It a~r(avb)=aanda v (anrb)=a,
Conversely, any set L over which operations +~ and ~ are defined
and which satisfy 11 to Ll is a properly partially ordered set
(defining a = bifa=a A b) inwhicha v banda ~ b are
respectively the least upper and greatest lower bounds of a and b in L.

An element 2z is called a zero of a partially ordered set P if z
is a lower bound of P itself., OSimilarly i is called a unit if it is

an upper bound of P, In general, parvially ordered sets and lattices
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need not have units or zeros, It should be noted that for a proper
partial ordering, the unit (or zero), if it exists, is unique.

A lattice is called complete if all its (non-void) subsets have
a greatest lower and a least upper bound. In a partially ordered
set with a zero, the existence of a least upper bound for every sub-
set guarantees the existence of a greatest lower bound, For lattices
without a zero or a unit, the concept of completeness can be replaced
with that of conditional completeness, A lattice is said to be
conditionally complete in case all of its bounded, non-void subsets
have both a least upper and a greatest lower bound, By the well-
known process of taking Dedekind cubs, any properly partially ordered
set P can be imbedded in a complete lattice. The elements of this
complete lattice are just the normal subsets of P, that is, those
subsets which contain all lower bounds to the set of their upper
bounds, By restricting this construction to subsets which have an
upper bound, one can imbed any (properly) partially ordered set in a
conditionally complete lattice,

One of the most important properties of lattices is their dual
nature., A glance at the postulates L1 - Ll shows that when the
operations ~ and v are interchanged, the resulting identities
are still the same, To every concept or theorem of lattice theory,
there corresponds a dual concept or theorem (which may be identical
with the original one) obtained simply by interchanging the role of

the two operations. This is not to say that any proposition which



is true for a given lattice has its dual proposition also true in
that lattice, For example, the lattice of positive integers (ordered
by divisibility) has a zero element, but no unit. Much of the work
presented in the following pages is definitely non-dual in nature.
Nevertheless, the work falls within the confines of lattice theory,
and therefore with every theorem and concept we can formulate a dual
theorem and a dual proposition,

One of the most important concepts of lattice theory is that of
an ideal, An ideal I of a lattice L is a subset of L which enjoys
the properties:

IT: a ¢ Tandb < a implies b ¢ I,

I22 a ¢ ITandb ¢ I impliesav b ¢ I,
Those subsets which satisfy the relations which are dual to Il and
I2 are called quite naturally, dual ideals,

It is not hard to find examples of ideals in a lattice. For
instance, we define the principal ideal associated with an element a
of the lattice L to be the set of all b ¢ L which satisfy b < a,
This ideal will be denoted (a).

Closely comnected with the concept of an ideal of a lattice is
the notion of homomorphism, A homomorphism of a lattice L onto a
lattice L' is a single-valued mapping of L onto L' such that the
image of the join (meet) of two elements is the join (meet) of their
images, An isomorphism is a homomorphism which is also one=to-one,

Evidently any homomorphism preserves the natural- partial ordering of



a latbtice, Conversely, any order preserving isomorphism of a lattice
also preserves the join and meet operations. Another way of looking
at homomorphisms is in terms of lattice congruences. An equivalence
relation ~ on a lattice L is a congruence if it satisfies
a~nc~b~ candavec~bv c whenever a ~ b and ¢ is any element
of L, Given a homomorphism h of a lattice, a congruence is obtained
by writing a ~ b when h(a) = h(b), Conversely, any congruence on L
determines a natural homomorphism of L onto the lattice of congruence
classes in the well known way., These connections determine a one-to-
one correspondence between the homomorphisms and congruences of a

lattice.

11,2 Distributive lattices.

A lattice L is called distributive if it satisfies the relations
L5: a~(bve) =(aab)v(arc), av(bac) =(av b)r(av c)
Many of the most important lattices satisfy this postulate. In
particular, the so=-called function lattices are distributive. These
are sets of real valued functions which are closed under pointwise
joins and meets: (£~ g) (x) =max { £(x), g(x)} , (£~ g) (x) =
min { £(x), g(x)}!
For complete distributive lattices, there is a natural general-
ization of the distributive law L5, namely
L5': aaV{blbe Bb= V{anblbe¢ B}

and its dual, The notation \/ {blb ¢ B} is used to denote the



least upper bound (or join) of the subset B of L. Not every complete
completely distributive lattice satisfies LS'. However, many lattices
of interest do, and in the sequal,we will be interested in several of
these, Usually, however, it will be sufficient to assume that only
LS' (and not its dual) is valid, Thus when the term "completely dis-
tributive" is used, only the single relation LS' will be implied,

It is in the theory distributive lattices that the prime ideals
of lattice theory attain a position of fundamental importance. An
ideal is said to be prime in a lattice L if its set complement in L
is a dual ideal, Thus I is a prime ideal if it is an idezl satis-
fying the condition that if a A b ¢ I, then at least one of a ¢ I
or b ¢ T is valid.

Another type of ideal of importance is the maximal ideal, An
ideal is called maximal if it is contained as a proper subset of no
other ideal except the whole lattice (which, of course, is itself an
ideal). It is not hard to show that in a distributive lattice, every
maximal ideal is prime. In general the converse is not true.

Concerning the question of existence of prime and maximal ideals,
it is necessary to use the full power of transfinite methods to prove
any general theorems, In any lattice with a unit element, the
maximal principle assures the existence of maximal ideals. In any
distributive lattice, transfinite arguments can also be used to
establish the existence of prime ideals, although in specific

exanples of lattices, it may be possible to explicitly exhibit maximal



and prime ideals.

A distributive lattice L with a zero element z is called pseudo-
complemented in case, for every element a, there exists in L a
maximal disjoint element a*. The pseudo=complement a' is character-
ized by the properties that a 4 é* =2z, and that b ~ a = z implies
b =< é%. It is an easy matter to prove that a complete, distributive
lattice (with a zero z) is pseudo-complemented if it satisfies the
infinite distributive law LS'. The most important property of pseudo-
complemented (distributive) lattices is expressed in the theorem of
Glivenko: In any complete pseudo-complemented distributive lattice L,
the correspondence a -» a%* is a lattice homomorphism of L onto the
complete Boolean algebra of closed elements (that is, the elements

satisfying a = a**). A proof of this theorem will be given later,

1.1.3 Boolean Algebras.

The ultimate product in the chain of specialization from the
partially ordered set to the lattice to the distributive lattice is

the Boolean algebra. A Boolean algebra is a distributive lattice

with a zero and a unit element in which every element a has a comple-
ment a' satisfying a A a' =2 and a v a‘ = i, Evidently a complement
must be unique, ‘here are many alternative definitions of a Boolean
algebra, For example, Stone (3] has shown that Boolean algebras
are idempotent rings with unit elements and that, conversely, every

idempotent ring with a unit element is a Boolean algebra when ordered



by defining a < b if asb = a, DBoolean algebras enjoy many simple
properties which are not shared by general lattices., We will
enumerate some of them,

The (lattice) homomorphic image of any Boolean algebra is again
a Boolean algebra, Every homomorphism of a Boolean algebra is
uniquely determined by the kernel of the mapping, that is, the ideal
consisting of those elements which are mapped into the zero of the
homomorphic image, Conversely, any ideal of a Boolean algebra
determines a unique congruence on the Boolean algebra as follows:
a= Db (I)if (a~a bf)v (a'/\ b) ¢ I, This congruence defines a
natural homomorphism of the Boolean algebra onto the Boolean algebra
of congruence classes modulo I, The kernel of the homomorphism is I,
Up to isomorphism of the homomorphic image, every homomorphism of a
Boolean algebra is of precisely this form, The proofs of these
assertions are quite easy and will not be reproduced here.

The set of all ideals of a Boolean algebra is itself a complete
(distributive) lattice., For later work, it is important to observe
that every ideal is the meet of the maximal ideals which contain it.
Dually, every dual ideal is the join of all minimal dual ideals con-
tained in it. To see this, observe that if a ¢ I, where I is an
ideal of the Boolean algebra P, then (af) v I #£P (here (a‘) denotes
the principal ideal generated by a's (a') = {beéePb= a'} .) By
the maximal principle, it is possible to find a maximal J such that

(a') vI<J, Then a' € J, s0a ¢ J, It follows immediately that
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I= V{Jmaximal |I < J}.

In the following pages complete Boolean algebras will often
appear., These arise quite naturally from a non-complete Boolean
algebra when one takes the normal completion (i.e.,, the completion
by cuts), This fact, due to Stone and Clivenko (see respectively
(3] and [L4] ), can be easily deduced from results which will be
proved later (see proposition 1.3.9)s A property of complete Boolean
algebras which will be used repeatedly is their infinite distribu-
tivity, i.e., every complete Boolean algebra satisfies LS' and its
dual, For let A be a subset of the complete Boolean algebra P,

Let 2 ¢ L, Since a ~Vi{blb ¢ A} = aa b forall b€ A,

anV{blb ¢ A} 2 V{ax bib € A}l , On the other hand, if ¢ is any
upper bound of the set of a ~» b whereb ¢ A, then b =(b A a)v (b » a')
=cva' forallb € A, Hence, a aV{blb ¢ Al < a ~ (c v at') =
(aanc)v(anat) =ananc<c, This shows that a ~V{blb ¢ A}l =
Vi{anrblb ¢ A}, A dual argument can be used to obtain the dual
identity. This proof, copies from Birkhoff (21, is included

because of the importance of the result in later work.

1.1.4 Semi=lattices,

If the postulates for a lattice are weakened by not requiring the
existence of the join operation, the resulting system is called a

sani-lattice, Thus a semi-lattice is a properly partially ordered

set in which every pair of elements has a greatest lower bound
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(dually, a least upper bound), An alternative characterization of
a semi-~lattice is the following: a semi-lattice is an idempotent,
commutative semi-group,

While semi~lattices are more general than lattices, they are
rarely of interest in themselves., Most of the common examples of
semi-lattices turn out to be lattices as well, However the techniques
developed in the following pages seem to apply more naturally to semi-
lattices than to general lattices, Hence we will be concerned chiefly
with systems which are either semi-lattices or distributive lattices.

Many of the remarks made above concerning general lattices also
apply (with slight modifications) to semi-lattices. However one
important distinction should be made between the ideals of a semi-
lattice and those of a lattice. By a semi-lattice ideal we will
mean a subset I with the single property I1: a € I and b € a implies
b € I, In order to distinguish the ordinary ideals which satisfy

both I1 and I2, the terminology "lattice ideal" will be used,

1.2 Isomorphism Theorems,

Three of the most important elementary results of group theory
are the so=-called isomorphism theorems. The first of these establishes
a one-to-one correspondence between the homomorphisms of a group and
its normal sub=groups. According to this theorem, every normal sub-
group N of a group G determines a natural homomorphism of G onto the

factor group G/N, Conversely, any homomorphism of a group G onto a
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group G determines the normal sub-group N of all elements which are
mapped into the zero of T, The correspondence between homomorphism
and normal subegroup is then completely described by the observation
that G is isomorphic to G/N. The second isomorphism theorem (some—
times called the third) states that if G is a homomorphic image of G,
if N is any normal sub=group of 5, and if N is the normal sub-group
in G consisting of all elements which map into ﬁ, then G/N is iso-
morphic to G/N. The third isomorphism theorem asserts that, for
any normal sub-group N and any sub-group H of G, (NeH)/N is iso-
morphic to H/(N ~ H),

Garrett Birkhoff has given analogues for the first two of these
theorems which establish a correspondence between the congruence
relations and the homomorphisms of a general algebraic system. These
results of Birkhoff say nothing about the relation between the homo-
morphisms of the algebraic system and its sub-algebras (or ideals),
although this relationship is the most important part of the group
theoretic theorems. It is the object of this section of the present
chapter to explore some of the possible relatienships between the
ideals and the homomorphisms of a lattice.

It is well known that every ideal I of a lattice L determines
a congruence relation = on the lattice. This congruence is
defined by a = b (I) if a v I =b v I (using the notation of the
lattice of ideals). By the theorem of Birkhoff, every congruence

corresponds to a homomorphism, so that every ideal of a lattice L
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determines a homomorphism of L onto a lattice L. It is easy to see
that T has a zero element and that I is precisely the set of elements
of L which are mapped into this zero element by the homomorphism of
L onto L. At this point however, the analogy between the situations
in groups and lattices ends, For, while in a group, a homomorphism
is uniquely detemmined by its kernel, there may be many homo-
morphisms of a lattice which have the same kernel,

This section will be devoted to the description of a class of
(semi-) lattice homomorphisms. In general, this class is different
from the set of homomorphisms defined above., Corresponding to each
ideal of a given semi-lattice a homomorphism of the class will be
defined. This class of homomorphisms is characterized as the set of
all meet homomorphisms onto a special type of semi-lattice (called a
disjunctive semi-lattice), This property gives these homomorphisms
many advantages over the ones defined above, In particular, it
becomes possible to prove results analogous to the three isomorphism
theorems of group theory. In the course of establishing these three
theorems, enough of the properties of the homomorphisms are considered
to lay the foundations for the work of the remainder of the thesis,
Hence, the program for this section can be described rather simply:
a new class of homomorphisms of semi-lattices will be defined and
theorems analogous to the isomorphism theorems of group theory will

be proved,
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1.2.1 Disjunctive lattices.

It will be convenient to make the following definition, Its

importance will soon become clear.

Definition 1.2.1, A semi-lattice L will be called disjunctive

(1) L contains a zero element z, and

(2) if a4 b in L, then ¢ € L exists satisfying

z#c<aandbac =3z,

These conditions are just the well-known disjunction properties
defined by Wallman (5], A disjunctive lattice is a special case of
an algebraic system called a "gefuge" (see Buchi [6] ), A gefuge
stands in the same relation to a disjunctive semi-lattice as a
partially ordered set to a semi-lattice., Several of the results
proved below are special cases of Buchi's theorems for gefuges.

The hypothesis (2) of the definition is evidently equivalent
to the requirement that if a £ b, then c exists such that a ~ ¢ # 3z,
while b A ¢ = 3, For if this c does not already satisfy ¢ < a, then

the element a ~ ¢ will, and moreover, b s (a ~ ¢) = 3z,

12,2 The first and second isomorphism theorems,

In a Boolean algebra, every homomorphism is associated with an
ideal I, Two elements a and b are congruent modulo thigs ideal if
their symmetric difference a = b = (a A bt')v (a' A b) is contained

in the ideal., It is possible to re=phrase this definition in such a
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way that it can be applied to an arbitrary distributive lattice
(more generally, to a semi-lattice), One way is by means of the well-
known congruence a = b (I) whenever a v I =b v I. Still another
formulation is the following: define a ~ b (I) whenever the relation
aac €1 is equivalent toba ¢ ¢ I, It is easy to verify that in a
Boolean algebra this is just the same *as the usual definition, Notice
first that I is a lattice ideal of a Boolean algebra if and only if it
is a ring ideal of the algebra, considered as a Boolean ring. The
distributive law (a a ¢) = (b s ¢) = (a = b) A ¢ then shows that if
a=-DbisinI, aa c ¢ I is equivalent to ba ¢ € I. Conversely, if
a~b (I), ara ¢ I implies that bn a! ¢ I, Similarly, from
ba bt € I, it follows that a ~ b' € I, Thus a = b = (aab')v(a'lab)e I,
In this last form, the definition of congruence can be taken over
to arbitrary semi-lattices., In general, this does not give the same
congruence as the conventional definitiona v I =b v I, In fact,
it is possible to show that the only distributive lattices with a
unit for which these two definitions are equivalent, are precisely the
Boolean algebras,
In this article, we give the formal definitions of the congruence
(~), and then proceed to prove the isomorphism theoreus.

Lemma 1,2,1 Let L be an arbitrary semi-lattice and suppose that

I is an ideal of L. Define:

il

(1) a2 b (I)s=eanrncelimpliesbarc €¢I for allce L

(2) a~b(I)e Zea=2b (I)anddb 2 a (I),
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Then = is a partial ordering and ~ is a meet congruence

relation, Moreover a n b ~Db (I) if and only if a2 b (I).

Proof, It is easily verified that 2 1is a partial ordering.
Also, the ordering =2 preserves the original partial ordering of
Lo For if a = b, then a » ¢ ¢ I immediately implies ba c 2 ar ¢ € I,

Suppose that a 2 b (I) and d is any element of L, The second
statement of the lemma will be proved if it can be shown that
arnd2bad (I)e Ifr(and)an ceI, thena a(dac) € I, Hence,
because a 2 b (I), b A (d~ c) € I, Consequently (b d)s c ¢ I,
Since ¢ was an arbitrary element of L, aan d2 ba d (I).

Finally, suppose a A b ~b (I), Since a > a ~ b, it follows
that a2 a~ b2Db (I). On the other hand, if a2 b (I), we have
aab2bab=>b (I), vhileb=2an~ b (I) sinceb 2 a ~ b, This

completes the proof,

Lemma 1.2.2. Let L be a distributive lattice. Let I be a
lattice ideal of L. Then the semi-lattice congruence relation defined

by (1) and (2) in lemma 1.2,71 is a lattice congruence.

Proof, Let a2 b (I) and suppose d is any element of L, We
will show that av d2 bv d (I)s This will then immediately imply
the assertion of the lemma, Suppose ¢ ¢ L is such that (a v d)nec € I,
Then (a a ¢)v (d rc) ¢ I, Since I is a lattice ideal, this implies
ancelanddacel, Hence, also, ba c € I, But then (bv d)ac =

(bac)v(dac)e I, Since ¢ was picked at random from L, it follows
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that av d2bvd (I)

It is well known (for details see Birkhoff [2) ) that a con-
gruence relation on an algebraic system determines a homomorphism of
the system. The homomorphic image is the set of congruence classes
with operations suitably defined.

Denote by L/I the homomorphic image of L which is defined by the
congruence relation of lemma 1,2,1, By the natural mapping of L onto
L/T will be meant that mapping which sends each element of L into its
congruence class in L/T.

So far, we have only obtained a new way of defining a homo-
morphism on a lattice. The important property of this homomorphism

is that it can be characterized in terms of its image.

Lemma 1,2,3, The semi-lattice L/I is disjunctive, lioreover, the
kernel of the natural mapping of L onto L/I (i.e., the set of elements

mapped into the zero of L/I) is precisely I.

Proof, Denote by h the natural mapping of L onto L/I. Suppose
ae¢I, Thena=2Db (I)if, and only if, b € I, For suppose a=2 b (I).
Then, sincean b € I, b =ba b ¢ I, Conversely, if b ¢ I, bace I
for all ¢ € L so trivially a ~ ¢ € I implies ba ¢ € I, Thus if a ¢ I,
h(a) =h(b) if and only if b € I, In other words, h(I) is the zero
element of L/I and I is the kernel of h,

Suppose now that a and b are any elements of L which satisfy
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h(a) ¥ h(b), Then b# a (I), so by definition, there is a c ¢ L
such that ba ¢ € I while a s ¢ ¢ I, Hence h(b) # h(c) =h(b 4 ¢) =
h(I) and h(a) a h(c) =h(a 4 ¢) #h(I)s Thus, according to definition
1.3.1, L/I is disjunctive,

An important and rather surprising fact is that the converse of

the above lemma is true,

Lemna 1.2.lie Let h be a (meet) homomorphism of the semi-lattice
L onto the disjunctive semi-lattice L. Then if I is the kernel of h,
I is an ideal of L and L is isomorphic to L/I. Under this isomorphism,

h(a) corresponds to the congruence class of a modulo I,

Proof, It is clear that I is an ideal in L, The proof will be
completed by showing that a2 b (I) if and only if h(a) 2 h(b). If
a2b (I), thenforallc €L, aa ¢ € I implies that b ¢ ¢ I,

Thus for all h(c), h(a) A h(c) = z implies h(b) » h(c) = z, Because
of the disjunctiveness of T this means h(a) 2 h(b). On the other hand,
if a? b (I), there is a ¢ € L such that a a ¢ € I while b & c ¢ I,
This means h(a) » h(e) =z and h(b) Ao h(c) # z. ‘herefore h(a)# h(b).

The proof is complete,

Hereafter, any homomorphism of a lattice will be called dis~
junctive if it is onto a disjunctive semi-lattice, It should be noted
that if L is a lattice and h is a lattice homomorphism, then I (the
kernel of h) is a lattice ideal, For our theory, this is important

in the case where L is a distributive lattice,
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We now summarize all of these lemmas in the "first isomorphism

theorem":

Theorem 1.,2,1. Let L be a semi-lattice (distributive lattice).

Then there is a one-to-one correspondence between the ideals
(lattice ideals) of L and the homomorphisms (lattice homomorphisms)
of L onto disjunctive semi-lattices (distributive lattices). Any
ideal (lattice ideal) I determines a natural homomorphism (lattice
homomorphism) of L onto the disjunctive semi-lattice (distributive
lattice) L/I such that I is the kernel of the homomorphism., Con-
versely, any homomorphism (lattice homomorphism) of L onto a dis-
junctive semi-lattice (distributive lattice) is algebraically
equivalent to the natural homomorphism of L onto L/I where I is the
kernel of the given homomorphism,

The second isomorphism theorem is an elementary consequence of

the first,

Theorem 1,2,2, Let g be a homomorphism (lattice homomorphism)

of the semi-lattice (distributive lattice) L onto T. Let T be
any ideal (lattice ideal) of L, Denote I = g-1(f). Then I is an

ideal (lattice ideal) of L and L/I is isomorphic to i&il

Proof, If a4 b and b ¢ I, then g(a) < g(b) ¢ I so g(a) ¢ I.
Thus a ¢ I, For the distributive case, a,b ¢ I implies that g(a),
g(b) ¢ I, Then g(a vb) =g(a)veg(d) ¢ I, Thereforea v b ¢ I,

We have showﬁ that I is an ideal,
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Consider L/T. This semi-lattice is regular, Denote by K the
natural homomorphism of L onto -I:/.f. Map L onto L/T by h(a) = h(g(a)).
The kernel of this mapping is clearly I, so by theorem 1.2.1, L/I is

isomorphic to L/I. This completes the proof,

1.2,3 Some specific examples,

In order to be able to better appreciate the meaning of the first
two homomorphism theorems, we will consider the results of applying

them to a few special lattices,

Example 1. One of the simplest possible examples of a distributive
lattice is a chain, that is, a totally ordered set. It is easy to prove
that a chain is a disjunctive semi-lattice only if it is the system 2
consisting of the zero and the unit element. In fact, suppose that a
and b are distinct elements of the chain L with z £#a £ b, If L were
disjunctive, ¢ would exist satisfying z #c < band ¢ ~ a =2, But
this last relation is possible in a chain only if ¢ =2z or a = 3z,

This contradiction shows that two elements distinet from zero cannot
exist, On the other hand, the chain 2 is clearly a disjunctive semi-
lattice. An immediate consequence is the following fact: if I is

any ideal of a chain, then L/I is isomorphic to 2, This demonstrates
how, even for the simplest lattices, the homomorphism defined by an
ideal I, as in lemma 1,2,7, differs radically from the usual definition
of a homomorphism generated by I (that is, a=b (I)if av I =D v I),

For example, consider the principal ideal (¢) = {d ¢ Lld < ¢}, TWe
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have a v (¢) =b v (c) if and only if either a and b are both less
than or equal to ¢, or also a =b, Consequently, the homomorphism
defined by this congruence is a mapping of L onto the interval

{deLldzect o« In general, this is different from E.

Example 2, Let L be the distributive lattice of open sets of
a topological space S. It is easy to see that in general L will not
be disjunctive, In fact, if 5 is a T‘l space, L will be disjunctive
only if S is diserete. The mapping a-» a _ is a lattice homo-

morphism (1)

of L onto the complete Boolean algebra of regular open
sets of S, (For details and definitions, see [2].) The kernel
of this mapping is clearly the null set, Hence, the Boolean algebra
of regular open sets of S is isomorphic to L/(z)., (It is evident

that any Boolean algebra is disjunctive in the sense of definition

1.307,)

Example 3. Let L be the lattice of continuous functions on a
metric topological space S, Since L has no zero, it cannot be dis-
junctive, The mepping £ - {x ¢ SIf(x) > 0} ™ is a lattice homo-
morphism of L onto the Boolean algebra of regular open sets of S, as
may be easily verified, The kernel of the mapping is (0) = {f ¢ L\f < 0},
Hence, L/(0) is isomorphic to the Boolean algebra of regular open sets
of S, When the restriction that S be a metric space is dropped, we

no longer necessarily get all of this Boolean algebra. However, it

(1) For any set a € S, a~ denotes the closure of a, a® the interior
of a,
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is easily shown that this same mapping carries L onto a disjunctive

lattice,

Example L, Let L be the Boolean algebra of regular open sets
of a topological space T. Let S be an arbitrary sub-space of T with
the relative topology, For any a € L, map a— (an~ S)™° (where
closure and interior operations are in the topology of S), This is
a meet homomorphism of L onto the Boolean algebra of regular open
sets of S, Notice that in general the mepping is not a join homo-
morphism, The kernel of the homomorphism is the semi-lattice ideal
I= {aellansS=0 }; By theorem 1.2.1, the Boolean algebra of
regular open sets of 3 is isomorphic to I/I, This example shows
that, even in the case where L is a distributive lattice, it may be

useful to consider semi-lattice homomorphisms of L.

Example 5, It is a consequence of the result in example 3 that
the Boolean algebra of regular open sets of a metric topological
space S is characterized by the lattice structure of C(S). Another
result of this nature is the following, Let L be the lattice of all
integrable functions on a set S for which an integration theory (in
the sense of Bohnenblust [ 7] ) has been defined., A subset A of S is
called a strongly (or ring) measurable if it is of the form
A={x|f(x)> 0} for some £ ¢ L, Now the mapping £ {x|f(x)> 0}
of L onto the collection of strongly measurable sets is clearly a

lattice homomorphism, Moreover, it can be shown that the set of
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strongly measurable sets forms a ring of sets: if A and B are
strongly measurable, then so are A v B and A ~ B®, Thus if A ¢ B,
then ® #A ~B® € A and (4 ~ B®) n B =¢. It follows that the
collection of strongly measurable sets is a disjunctive (distributive)
lattice. The kernel of the homomorphism f—» {x[f(x) > O} is just the
ideal I ={f € LIf < 0}, Hence the ring of strongly measurable sets
is just L/I, We have proved, incidentally, that two integration
theories, which have isomorphic lattices of integrable functions, have

isomorphic rings of strongly measurable sets,

1+2,3 MMiscellaneous general results,

In this section are collected together some of the important
properties of the homomorphism defined in lemma 1.2,1. Only those
which will be needed later are included,

We first look at the homomorphism for two special kinds of

ideals, namely, the zero ideal (z) and the prime ideals.

Proposition 1.2,1, A semi-lattice L with a zero z is disjunctive

if ard only if L is isomorphic to L/(z).

Proof, The sufficiency is clear since L/(z) is disjunctive.
Conversely, if L is disjunctive, the identity mapping is a homo-
morphism of L onto a disjunctive semi=lattice with the kernel z By
theorem 1.2.1, L is isomorphic to L/(z).

From this last proposition, the following useful result is

derived,
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Proposition 1.2,2, Let L be a disjunctive semi-lattice, Then

a seni-lattice homomorphism of L which has the kernel (z) is

necessarily an isomorphism,

Proof. Under the stated conditions, the image is a disjunctive
semi-lattice, For h(a) ¢ h(b) implies a4 b, so ¢ exists with
z#c<aand ¢+ b =2, Then z # h(c) = h(a), h(c) ~ h(b) =z,

Consequently, L = L/(z) is isomorphic to h(L) by theorem 1.2.1.

Proposition 1,2,3, Let L be a distributive lattice and let I

be an ideal of L, Then I is a prime ideal if and only if L/I is

isomorphic to 2 (the Boolean algebra of two elements).

Proof, Sufficiency: suppose L/I is isomorphic to E. Let h
be the natural homomorphism of L onto 2, which has the kernel I,
If a2« b €I, then h(a) »~ h(b) =h(a~» b) =z, Hence, either h(a) =z
or h(b) = z; that is, either 2 € T or b € I, Since a and b could be
any elements, it follows that I is a prime ideal,

Necessity: Suppose I is a prime ideal, Let a ¢ I, Then a a ¢ ¢ I
implies ¢ € I, Hence, for any b ¢ L, aa ¢ ¢ I implies b n ¢c ¢ Ij
that is, 22 b (I), This means that under the natural homomorphism of
L onto L/I, a maps onto the unit of L/I, On the other hand, if a € I,
then a maps onto the zero of L/I, Since this exhausts the possibilities,

1/I must be 2,

Remark, The above lemma is equally true for semi-lattices

provided prime ideals are defined in a suitable manner., The appropriate
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definition is: a semi-lattice ideal is prime if a ¢ T and b ¢ I
implies aa b ¢ I,
The next topic is the problem of finding a criterion for L/I

to be a Boolean algebra, The first step is a lemma,

Lema 1.2.5, Let L be a semi-lattice. Let I be an ideal of
L and denote by h the natural homomorphism of L onto L/I, Then h(a)

is the unit of L/I if and only if a » ¢ € I holds only when ¢ € I,

Proof, If h(a) is the unit of L/I, thena 2 b (I) is true for
allbé L, Thus aa ¢ ¢ I implies b A ¢ € I, In particular, as c¢ I
implies ¢ =c 2 ¢ € I, Conversely, if a ~ ¢ ¢ I implies ¢ ¢ I, then
also a ~ ¢ € T implies ba ¢ ¢ I for any b, Thus a2 b (I) for all

b € L or, in other words, h(a) is the unit of L/I.

Proposition 1.2,hs Let L be a distributive lattice. Let I be a

lattice ideal of L. Then L/T is a Boolean algebra if and only if, for
any a € L, there exists a' in L satisfying:
(i) ana €¢I, and

(ii) anbeTanda A belimplyb el

Proof. Condition (ii) is clearly equivalent to: (a v 2 )ab el
implies b ¢ I, Thus, by the above lemma, h(a) v h(a') =h(a va ) =i
(the unit of L/I). From condition (i), it follows that h(a) a h(a') =
h(a a a*) = 7. Thus h(a) has the complement h(a’ ) in L/I, Therefore
L/I is a Boolean algebra,

Conversely, suppose 1/I is a Boolean algebra, If a € L, let a*
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be any element of L such that h(a*) = h(a)'. Clearly h(a v a2y =1

and h(a a a*) = 2 80 the conditions (i) and (ii) are satisfied.

Corollary 1,2.1. If L is a pseudo-complemented distributive

lattice, then L/(z) is a Boolean algebra., In particular, a disjunctive
distributive lattice is pseudo-complemented if and only if it is a
Boolean algebra,

In later work, certain questions of completeness will arise. It
is important to have a criterion for determining when the homomorphic
image of a complete lattice is complete. For many purposes, the

following result is adequate.

Proposition 1.2,5, If L is a complete, completely distributive

lattice“) and I is a principal ideal, then L/I is complete and the

natural mapping preserves unlimited joins,

Proof, Denote by h the natural homomorphism of L on L/I,
Suppose A is any non-empty subset of L. It will be shown that h( V A)
is the least upper bound of the set h(A) = {h(a) | a € A} in L/I,
First of all, it is clear that h(V A) is an upper bound of h(4). On
the other hand, if h(b) = h(a), that is, b2 a (I) prevails for all
a ¢ A, then b2VA (I). For bac €I implies a o ¢ ¢ I for all
a € A, But since I is principal, it is closed under unlimited joins.,

(1)
In other words, L satisfies the infinite distributive law
b aV{alae A} = Vi{ba alae A} ., In particular, this
implies that L is pseudo=complemented, It is not necessary to
assume that I is closed under unlimited meets.




Thus (VA) ~ ¢ =V (A a ¢c) ¢ I, Since ¢ was chosen arbitrarily,
b2V A(I). It follows that h(V A) is the least upper bound of h(4),
and the proof is complete,

It will be noticed that the above proof uses only the fact that
I is a closed ideal of L, But in a complete lattice, this immediately
implies that I is principal (and comversely), The restriction to
principal ideals is a necessary one., For if the natural mapping pre-
serves unlimited joins, h( V I) = V h(I) =3, i.e. VI ¢ I and there-

fore I is principal.

102,54 Imbedding theorems,

In this article, the general theory of disjunctive semi-lattices
will be studied more systematically, It will be shown that a
disjunctive semi-lattice can be imbedded uniquely in a complete Boolean
algebra, Most of the theorems proved are not new. The imbedding and
uniqueness theorems can be found explicitly in the paper of Buchi and
implicitly to the works of Glivenko and Stone.

In order to construct the complete Boolean algebra in which the
semi-lattice is to be imbedded, it is necessary to employ a theorem
of Glivenko, Because of the importance of the imbedding theorem, the

proof of Glivenko's theorem will be given,

Let L be an arbitrary semi-lattice with zero z, Denote by ¥
the set of all ideals of L (in the sense a < b and b ¢ I implies

a €I,
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Lemma 1,2,6. The set ¥ is a complete, distributive, pseudo=-
complemented lattice under set unions and intersections., The pseudo-
complement of A ¢ ¥ is given by A= {bellaab=3z all a € A},
The principal ideals of L form a sub-semi-lattice of ¥ , which is

isomorphic to L,

Proof, If {A«} is any collection of elements of ¥ , then
clearly UL A. and N, A. are ideals and hence in ¥ , If
Acy ,letA = {bellanb=zallace¢ A} , DIvidently A” is
an ideal, A ~ A" ={z}since if a ¢ An A", thena=aa a =z, Also
if A~ B={z}, then B € A*. For if b ¢ B, an~nbe AnB=1{z3} all
a €A, Thus A* is the pseudo-complement of A, The last assertion of

the lemma is clear,

Lemma 1,2.7. (Glivenko; proof after Birkhoff [21 ).
The mapping A - A%* is a homomorphism of % onto the complete
Boolean algebra @ of "closed" ideals (i,e.,, ideals A for which

A ks
= A ).

Proof, The proof rests on a series of formulas.
(1) A"7 24
This follows from the defimition of A™" since A~ NS T

5=
"

(2) A€B = A" =23",
For if A€ B, A~B € BB ={z} and hence B' € 4%,

(3) (avB) =2~ B,
AvB2A,B=>UvB) cA, B >AvB)ca 8. (AvB)a

A AB CcAA ) B AB) = {21205~ B ¢ (av B,
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s 3
(h) A =A",
o 3 ¥ o —— T
ASA "= A 24 by (2), The opposite inclusion follows

from (1).

(5) (&~ B)¥2 4% o %,

This is clear from (2),

(6) (A~ BT 2 (4~ B,

i ¥ s
A

By (5) and (3), (A~ B) " ¢ (A* v B%)-yr = ~n B"", Hence the

result follows from (2) and (L).
(7 (Ax-;e . B—)H(-)% > (& ~ B).

Repeated applications of the definition of pseudo-complement

3%

give the implications: (A A~ B)* AT ABTALAB =12} 2> (A ~ B)*"

A A B A ae B 3UAB) A AT AT A= tzl > (AAB) A
AN A B = {2z} , which is equivalent to (7).

(8) (A ~ B)™ =™ ~ B,

* 3¢ 3

Y = (v B

For, from (6), (7) and (3), (A~ B1* = (5 ~ B
Hence, (A ~ B)'" = (4% « B)"™ = (4" v B)" = 4™ ~ 5",
(9) (U{A"A’-X'IAéoz F* o (Utals ¢ 0t} ) wnere o€ ¥,
A2 u{a®™reat 2 Ulalrea) = (U Tla e} )™ 2

2( U{A\Aﬁ‘ﬂ})%x-. On the other hand, Ae¢a = A (U {alheat ) >

=>U{a Mot ¢ (Ufalacat ) e (UM cat)T <

0k jie

c(U{Alac ot} YU = (U {AlA ¢ a}

Using the formulas (1) - (9), it is possible to prove the theorem:
A A" ig a homomorphic mapping of 7 onto M ;3 @ is a complete
Boolean algebra with A A B=An B, V{AlAe xc®} = (Uihlhe oemp

EY ]
A" =A" (A, v, denoting Boolean operations).
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fMirst M 1is a complemented labtice with these operations. For
by (8) A ~ B is the greatest lower bound of A and B in ® , If
<@ and B ¢ @B  satisfies B2 A for all A ¢ & , then B=8" 2

3¢
)

2( U {Alaeot Y, Clearly ( U {AlA ¢ ot } 2 A for all

A e ot so( U {Alhe o} ).\'He is the least upper bound of &« in
M , Finally A" is the complement of A since A v & = (4 v A7) =
= (A ALY =2} =1, A a0 =4~ 8" = {31 and AT €@ by (4).
Now the mapping A - 2" is a homomorphism by (8) and (9). The
mapping is onto since if A e M , A~ AH- = A, Finally, M , being
the homomorphic image of a distributive lattice, must be distributive,
and hence a Boolean algebra., By (9), ™ is complete, This
finishes the proof of Glivenko's theorem,

Now we are ready to state and prove the imbedding theorem, It

is convenient, however, to first introduce some terminology.

Definition 1.2,2. Let L be a semi-lattice with a zero z, Let

I be a sub-semi-lattice of L M will be called dense in L if M = {2}
is coinitial in L, that is, z # a € L implies that b ¢ Il exists with

Z#béao

Theorem 1.2,3, Let L be a seni-lattice with zero z, Let (z)

denote the principal ideal generated by z, Then L/(z) is isomorphic
to a dense sub-semi-lattice of a complete Boolean algebra. If L/(z)
has a unit, it is mapped into the unit of the Boolean algebra by the

isomophism, If L is distributive, the mapping is a lattice isomorphism.
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Proof, The mapping a - (a)%% is a join homomorphism of L into
the complete Boolean algebra m (by lemmas 1,2.6 and 1.2.7). If
z#ac he® , then (a)** € A, Hence the ideals (a)*% are dense
in B , The kernel of this mapping is 2z, so the first assertion
follows from theorem 1,2.1,

Notice that if L has a unit i, then the principal ideal (i)
contains every element of L., Hence (i)** = (i) =L 2 A for all A €@ ,
Hence the unit of L is mapped into the unit of ®

To prove the last statement of the theorem, notice that a v b~
> (av b)", We will show that (a v b)* = [(a) v (b)]™ =
[(a)*%\:(b)** e (a)** v (0)*F, The first of these equalities is
all that is needed, the othérs being consequences of the previous
lemma,

If ¢ ¢ [(a)\,(b)]* = (a)*rw(b)*, then a an¢c =b a ¢ =32, Thus
(avb) nc=32,s0(avb)e]|(av (0)17*, By formulas (2) and (L)
of the lemma 1.2,7, (a v b)** = [(a)\;(b)]**. On the other hand
(a)u (b) € (av b), so [(a)v (0))™™ < (a v b)™, The imbedding

theorem is proved.

Corollary 1.,2,2, If L is a disjunctive semi-lattice, then L is

isomorphic to a dense sub-semi=lattice of a complete Boolean algebra,

Proof, The corollary is an evident consequence of proposition
1.2.1, However, it is instructive to notice that for disjunctive L,
the principal ideals are closed: (a)’ " = (a). For, if b # a, then by

the disjunction property, ¢ € L exists with z #Fc < by, c ~a =2,
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Thus ¢ ¢ (a)* and b 4 ¢ =c # z, and therefore b é’(a)**. Consequently
(a)** < (a), while the opposite inclusion is a consequence of formula
(1) of lerma 1.2,7.

For any disjunctive lattice L denote by [L ] the complete
Boolean algebra which is obtained from L by the construction of
lemmas 1.2.6, 1.2.7 and theorem 1.2.3. L is a dense sub-semi-lattice
of [L], It will be shown that this property characterizes [LI,
that is, any complete Boolean algebra which contains L as a dense
sub-semi-lattice is isomorphic to [L ], However, before proving this
uniqueness theorem, let us look a little closer at the concept of
denseness, The properties which will be needed for later work can be

collected together here,

Proposition 1,2,6., (i) Any semi-lattice is dense in itself;

(ii) if ¥ is dense in N and N is dense in L, then M is dense in Lj

(iii) if L is disjunctive and M is dense in L, then M is disjunctive,

Proof, (i) and (ii) are so obvious that they need no proof. To
prove (iii), suppose a ¢ b in M, Then ¢ € L exists satisfying
z#c<aand barc=2, Finally d € M existswith z #d < ¢ < a
and d nb< cab =z,

A consequence of this proposition and theorem 1.2.,3 is the
following characterization of a disjunctive semi-latticet a semi-
lattice is disjunctive if and only if it is isomorphic to a dense

sub-semi-lattice of a complete Boolean algebra.
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Now the fundamental uniqueness theorem will be formulated and

proved,

Theorem 1.2.,L, Let L be a disjunctive sub-semi-lattice of the

complete Boolean algebra P, Then [LJ] is isomorphic to a sub-semi-

lattice of P; if L is dense in P, [L ] is isomorphic to all of P,

Proof, Recall that L consists of all the "closed" ideals of L,
i.e., those ideals A satisfying A"« = A,

Map A-> VA ( V in P), This is a semi~lattice homomorphism:
AAB=A~nB> V(A ~B)= V{aablaeci, be Bl =(V {ala € A} )a
An(Viblb e B} ) =(V A)a(V B), by the infinite distributive law
in'a complete Boolean algebra. The kernel of this mapping is 2.
Thus, by proposition 1.2.,2, the mapping is an isomorphism, This
proves the first assertion.

Now suppose L is dense in P, Then if a € P, A = {b ¢ L|b < a}
is an ideal of L., We will show that it is closed. If b € L with
b¢ A, (i.e., b§ a) thenb A at #2, Hence, c € L exists with
zZc<baa's Thence A  andb a ¢ £ 2, This says b ¢ &A™,
Hence A" € A, vhich shows that A is closed and A € [L ],

VA = a since otherwise, (VA)' a a #2 and b € L exists with
z#b<aa (VA)', In other words, b € A, while z =b a (V A) >
2b A b =Db = a contradiction, Since a was chosen arbitrarily from

P, the mapping of [L ] is onto P. The proof is complete.
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The construction of (L] from L is a completion process: it
imbeds a partially ordered set in a complete lattice. It is of
interest to compare it with another well known process for accom-
plishing this, namely normal completion. In particular it is
desirable to know when the pseudo-complement completion process can
be replaced by the process of taking the normal completion. The
following result (which is a slight generalization of the theorem
that the normal completion of a Boolean algebra is again a Boolean

algebra) gives the desired information for a distributive lattice.

Proposition 1.2,7. Let L be a distributive lattice. A

necessary and sufficient condition that the normal completion of I be
a Boolean algebra is that L be disjunctive with respect to both its
join and its meet operation. In other words, L must have a zero z
and a unit i, and be such that if a € b, then ¢ and d exist satis-

fyingz£csa,cab=2,i#d>banddv a =1,

Proof, Necessity: Let ® denote the lattice of (lower)
normal subsets of L, that is, subsets which contain every lower bound
of the set of their upper bounds. By hypothesis, ™ is a Boolean
algebra, We can exclude the case where M = 2 since this lattice
can only be the completion of itself, The lattice ¥ of principle
ideals constitutes a sub-lattice which is isomorphic to L:
a->{b €Llb <a} , Moreover &£ has the property that if N ¢ M ,

then N= V{Ae£ | A cN},and N=A{AeX|A2N}, With these
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preparations out of the way, we can proceed with the proof.

If L had no zero element, the zero of @B would be the empty
set. This leads to a contradiction., For if N and N' are non-
trivial complementary sets of ™ , and if a € N, b € N*, then
anb € NAN =@, Hence L must have a zero, A dual argument shows
that L must also have a unit element.

Now suppose a £ b, Then if A = (a) and B = (b), A ¢ B, Thus
AAB'#£7 and A' v B# I, Hence C, D ¢ & exist so that
Z#C<cAnAnBtand A vBED#I, IfC=(c) and D =(d), z#c< a
andb <d #i, Since CaB=2,Dv A=I,cab=zanddva-=i,
This completes the proof of the necessity of the conditions.,

Sufficiency: It is sufficient to show that an ideal N is a
normal subset if and only if it is closed: N** =N,

Suppose N is normal and a ¢ N, Then b, an upper bound of N,
exists satisfying a ¢ b. By the (lower) disjunction property, ¢ € L
exists such that z #c <aand ¢ A b =z, Consequently ¢~ d =z for
all d € N and therefore ¢ € N'o Sincea ~c #z, a¢ N o Thus,
since a was arbitrarily chosen, = N and N is closed (for N € N
always).

On the other hand, let N be closed., Let a ¢ N =N

inition, there exists b € N* such that a A b # z, By the (upper)
disjunctive property, ¢ exists satisfying i £c = z, (24 D) ve =i,

Ifde€N, d=dai=daf(arab)ve] <(bnadv(card) =zv(c d)=

=¢ »d <c. Consequently ¢ is an upper bound of N. But a ¢ ¢ (for
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otherwise 1 =¢ v (a 4 b) = ¢ #1i) and because a was any element not
in N, N must contain all lower bounds of the set of its upper bounds,

that is, N is normal, This completes the proof of the proposition.,

Example 6. The following application is typical of the way in
which the preceding results will be used later. Consider the lattice
L/(0) where L is the lattice of continuous functions on a completely
regular topological space S (2192 example 2), This lattice is iso-
morphic to the sub-lattice of the Boolean algebra of regular open
sets which consists of all sets of the form {x € S|f(x) > 0}~° for
some continuous £, If 5 is normal, it can be shown that these are
precisely the regular open hulls of open o sets. In the case of
general spaces, these do not form a complete Boolean algebra., However
these sets are dense in the regular open sets (in the sense of
definition 1.2.2) and therefore ({L/(0)] is isomorphic to the Boolean
algebra of regular open sets., (Density follows from the complete
regularity of S.) L/(0) is, of course, disjunctive. It is also dis—
junctive with respect to the join operation, For if R is any regular
open set of 5 which does not coincide with the whole space, there
exists a function h € C(S) satisfying 5 # {x |h(x) > 0 17° =2 g,
Then for continuous functions f and g which satisfy £ ¢ g (0), pick=-
ing R = [{x|£(x) >0 17¢ o {x)g(x) > O}’o] -o, gives the dual dis-
junctive property. Hence by proposition 1,2.7, the Boolean algebra
of regular open sets of S is isomorphic to the normal completion of

L/(0).
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1.2.5 The third isomorphism theorem,

The first isomorphism theorem established the characteristic
connection between disjunctive homomorphisms (i.e., homomorphisms
onto disjunctive lattices) and ideals; the second isomorphism theorem
was concerned with iterated homorphisms onto disjunctive lattices;
the third isomorphism theorem studies the behavior of sub-semi-
lattices under disjunctive homomorphisms., +‘his theorem requires much
more machinery and gives far less satisfactéry information than
either of the first two homomorphism theorems, Nevertheless, it is
an important result for the development of the remainder of the
thesis,

Two preparatory lemmas are needed.

Lema 1,2,8, Let M be a complete lattice satisfying the
infinite distributive law. Let L be a sub-semi-lattice. Let J be a
principal ideal of M and put I =J ~ L. Then L/I is isomorphic to

a sub-semi-lattice of 1 under the mapping a-» Vi{b ¢ Lla=2 b (I)} .

Remark, It should be emphasized that the congruence is being
defined entirely within the semi-lattice L and has nothing to do
with lattice M in which L is imbedded. Again, the definition is:

a2b (I)s e ance¢limpliesba c €I, for all ¢ ¢ L. It may

very well happen that d ¢ M exists with a nd €I, but b ~n d ¢ I,

Proof of the lemma, First of all, the mapping is a join homo=

morphism. a ab- V{ce L|laanb2c (I)} = V{c1 ncyla2ey, b 2oc, (it
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= W{egla2ep (DH & [V{eydb2e¢, (D} .

Next V{c € Lla 2¢ (I)} € VI if and only if a € I, For
when a € I, a 2 ¢ (I) implies ¢ ¢ I and hence V{c € Lla2c (I)}=
£ VI. Onthe other hand, if this last holds, a < VI < V J (since
a=2a (I)) and hence a ¢ I,

In order to apply theorem 1.2.1 to the mapping defined in the
lemma, it must be shown that the image of the mapping is disjunctive,
To this end, suppose V {c e Lla2c¢ (I)} £ V{ceLlb2c (I)}.
Then there is an element ¢ of L satisfying a2 c and b2 c (I).

That is, d ¢ L exists withba d € T andca d ¢TI, ‘hen(cand)abel
so Vieleadz2e (I)} ¥ VI, [V{eldac2e (1)}])

[ Vielb2e (I)}] = V{elcadab2 e (I)} = VI;and
obviously V{ele ~nd2e (I)} < Viela2e (I)} . Hence the
image is disjunctive.

Apply theorem 1.,2.1, The zero of the image is V I and the
kernel of the mapping is I. Consequently L/I is isomorphic to this

image,

Corollary 1.2.,3. With the hypotheses of the lemma, and if in

addition I =J = (2), 2 being the common zero of i and L, then the

mapping of the lemma carries the zero of L/I into the zero of M.

Suppose we pose the question: when will the image of L/I under
the mapping defined in the previous lemma be dense in M? Since the

zero element of this image is VI, this can certainly never happen
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for a later application to warrant special consideration, Lo answer
the question necessitates the introduction of a new concept. This
condition is a weakening of the disjunction property on a semi-

lattice, Hence we call it the '"quasi-disjunctive" property.

Definition 1.2.3., A semi-lattice L will be called quasi-dis-

junctive if it satisfies the condition:
for any a #2 in L, b < a exists with b # z, and such that if
c ¥ a, then d # z exists satisfying d < ¢, d ~ b =z, In other words,

b2c¢ (2) implies ¢ £ a.

Lemma 1.,2,9, Let I be a complete lattice satisfying the infinite
distributive law, Let L be a sub-semi-lattice. Suppose M and L have
a zero element z in common, Then, in the imbedding of L/(z), as
defined in lemma'1.2.8, the image of 1/(z) is dense in M if and only
1f

(1) L is dense in U, and

(ii) L is quasi-disjunctive,

Proof, Sufficiency, Suppose e #z in M, Then a # z exists in
L such that a < e (by (i)). Next b < a exists with b # z and such
that b 2 ¢ (z) implies ¢ < a, It follows that z # Vic ¢ LIb2 ¢ (2)}<
<a <e, Thus the image of L/(z) is dense in M.

Necessity, If a # z in M, then by hypothesis b € L exists satis-

fying z # V{elb2¢c (2z)} < a, Hence z #b <a, so L is dense
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in M, %With the added hypothesis that a is in L, we get ¢ < a for
all ¢ satisfying b= ¢ (z), This establishes (ii).

If L is disjunctive, condition (ii) is automatically satisfied,
In particular, if M is disjunctive (i.e., is a Boolean algebra) then

(i) implies the disjunctivity of L which in turn implies (ii). Hence,

Corollary 1.,2.Le Let M be a complete Boolean algebra and let L

be a sub-semi-lattice of M, The necessary and sufficient condition
that L/(z) be dense in I is that L be dense in I (and hence L is
disjunctive: L/(z) =1).

Specializing the lemma to the case where L =M gives a character-

ization of the quasi-disjunctive condition,

Corollary 1.2,5, Let L be a complete, completely distributive

lattice. Then L/(z) is dense in L if and only if L is quasi-disjunc-
tive,

Now it is possible to prove the third isomorphism theorem.

Theorem 1,2.5, Let M be a semi-lattice and let L be a sub-semi-

lattice of Mo Let J be an iceal of M and put I =J ~ L. Then [L/I]

is isomorphic to a sub-semi-lattice of [M/J] .

Remark, The analogy between this theorem and the corresponding

third isomorphism theorem of group theory is not too clear. £Lven
putting aside the fact that, in theorem 1.2,5, we are dealing with
closures of quotient lattices, the correspondence is not obvious,

This point will be clarified somewhat when we later consider
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conditions which will insure that (L/I] is isomorphic to [M/J] .

Proof, It will first be shown that L/I is isomorphic to a sub-
semi~lattice of [M/J ], The proof is then completed by an application
of the uniqueness theorem, 1.2,k

Let h be the natural mapping of M onto M/J, Restriction of h
to L gives a (semi-lattice) homomorphism of L into M/J, Denote the
image of this mapping by E. Notice that L contains the zero of M/J
and in fact h(a) = z if and only if a ¢ I, By the second isomorphism
theorem, Z/(z) is isomorphic to L/I., Now Lisa sub=semi-lattice of
(1/J] . Thus by lemma 1.2.8, 1/(z) is isomorphic to a sub-semi=-
lattice of [M/J] . Hence L/I is isomorphic to a sub-semi-lattice of

[14/3] . Appolying the uniqueness theorem, the proof is complete,

Remark: The proof shows that the zeros in [M/J] and [L/I]

correspond in the mapping.
A very simple example may help clarify this theorem.

Example 7. Let M be the Borel field generated from the open sets
of a metric space. Let L be the lattice of open sets of the space.
Let J =1 = (()) be the zero ideal, M is disjunctive and [M] is
isomorphic to the Boolean algebra of all subsets of the space,

(This is an obvious application of theorem 1,2.l:.) L/(@) is the
Boolean algebra of regular open sets of the space, Theorem 1,2,5
merely expresses the fact that the class of regular open sets is

closed under intersections, It should be noticed that although we
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started in this example with distributive lattices L and M, and L
was actually a sub-lattice of ¥, the resulting [L/(@#)] turned out
to be only a sub-semi-lattice of (M] . In other words, there is
apparently no improvement of the theorem for the distributive lattice
case.

It is desirable to have a criterion for determining when [L/I]

will be isomorphic to (M/J] . This is furnished by the definition

Definition 1.2.4. Let L be a sub-semi-lattice of M, L is

called dense in I relative to the ideal J (of M) if the image of L
under the natural mapping M - 1/J is dense in M/J, In other words,

ifa € Mand a ¢ J, then b ¢ L exists satisfyingb ¢ J and a2b (J).

Lemma 1,2,10, Let M be a semi~lattice and let L be a sub-semi-

lattice of Mo Let J e an ideal of M and let I =J ~ L. Then the
mapping in theorem 1.2,6 of [L/I] into [M/J] is an isomorphism

onto if and only if L is dense in M relative to J.

Proof, Use the notation of theorem 1.2,5. By theorem 1.2.4
and corollary 1.2.L, [M/J] is isomorphic to [L/I] if and only if T
is dense in [M/J] . But since L is actually a sub-semi-lattice of
¥/J, this means dense in M/J. This is precisely the definition that
L is dense in i relative to J.

Now it is possible to clarify the analogy between theorem 1.,2,5
and the third isomorphism theorem of the theory of groups. The group

theoretic theorem asserts that if N is a normal subgroup of a group
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G, and if H is any subgroup of G, then (NeH)/N is isomorphic to
H/(N A H)s For the purpose of the analogy, let G correspond to a
semi~-lattice M, N to an ideal I of M, H to a sub-semi-lattice L of
M, Now NeH is the smallest sub-group of G which contains both N and
He Let L v I denote the smallest sub-semi-lattice of M which contains
both L and I, It is easy to see that L v I is just the set union of
L and I, (In the distributive case, L v I must be the smallest sub-
lattice of M which contains both L and I, For this case, Lv I =
{ avblael,beI},) If the analogy were perfect, we should
have (L v I)/T isomorphic to L/(L ~ I). Unfortunately, the situation
is not quite that nice., Instead, [(L v I)/I] is isomorphic to
[L/(L~T)]).

To prove this, it is only necessary to show that L is dense in
L oI relative to I. But this is a very special case of the situation
described in definition 1.,2,4e If a2 ¢ L oI and a ¢ I, then a € L,
Thus L is dense in L v I, (The distributive case is not much more
difficulte If ce¢ L v I, thenc =a v b, where a ¢ L and b €I, If

c¢I,adl, vnilec=avbaatz (I),)
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SUMMARY OF CHAPTER II

Chapter two is devoted to the study of translation lattices., A
translation lattice can be thought of as a semi-lattice of functions
which is closed under the operations of adding any constant to the
functions,

In the first section, the elementary properties of a translation
lattice are developed, Also a number of examples are introduced to
show that the concept of a translation lattice is not devoid of
intrinsic interest.,

Section two is concerned with the extension of the results of
chapter one to translation lattices. An anologue for the definition
of a disjunctive lattice is found., We also define a congruence
relation, using the ideas and theorems of section two of chapter one,
which resembles, in many of its properties, the cohgruence of chapter
one, Finally, it is shown that theorems analogous to the first and
second isomorphism theorems can be proved for this congruence
relation,

In section three, the problem of representing a translation
lattice is studied, With the eventual objective of representing trans-
lation lattices by means of lattices of continuous functions, an object
called a normal lattice function is defined, A normal lattice function
is nothing other than a bounded, real-valued function on a complete

Boolean algebra with the property that it is a (dual) join homomorphism
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of the Boolean algebra onto the real numbers. It is shown that
certain translation lattices can be represented in a natural way as
translation lattices of normal lattice functions, The section ends

with a detailed discussion of the unicity of this representation,
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CHAPTER II -—- TRANSLATION IATTICES

2.1 Preliminaries.

The aim of the first section of this chapter is to acquaint the
reader with the concept of a translation lattice, Consequently, it
will be devoted largely to examples and discussion of the postulates.
In the study of function lattices, we are faced with the difficulty
of not having enough algebraic structural features, It is natural to
look around for some other algebraic feature possessed by large
numbers of function classes, Thus one is led to the study of lattice
ordered rings, lattice ordered vector spaces, lattice groups and so
forth, Kaplansky has inbtroduced another structure of this nature
(see (8] ). He calls his algebraic system a translation lattice.
Intuitively, we may think of a trans}ation lattice as a function
lattice which is closed under the operation of adding any real number,
Thus, with any function f in the lattice and any real number < is
associated the function £ + « defined by (£ +o« )(x) = fi(x) + <,
To justify the consideration of this algebraic system, it will be
necessary to exhibit a large number of significant examples of trans-
lation lattices of functions. Moreover, it is desirable that some of
these examples be function classes which are not amenable to tech-
niques developed in the study of lattice rings, lattice groups and
the like, In other words, we want to find translation lattices which

are not also groups, It is remarkable that such systems exist in
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in considerable abundance, and their existence forms a partial

justification for the present study.

2,11 Definition of a translation lattice.

Definition 2,1,1., An algebraic system L is called a trans-

lation lattice if it satisfies the following conditions:
(1) L is a semi-lattice (with the operation written as meet),
(2) Corresponding to each real number « , there is an auto-
morphism T « of L (called a translation) such that
(a) Tof = f3

(b) Tu(Tpf) =T £3

o« + (8

(¢) if x>0, T, £ > £

(d) if£f>g, Tuf 2 Tyeg for all «< 3
3

(e) for any £ and g in L, an < exists such that T.f = g;

(f) £ =<Tugfor all => O implies f < g,

This definition differs from the one of Kaplansky only in the
assumption (1), Kaplansky assumes that L is a distributive lattice,
However, for the use which we will make of translation lattices, it
is more natural to assume only that the system forms a semi-lattice.
When it is desirable to add the assﬁmption that the system also forms
a distributive lattice, the term distributive translation lattice will
be used,

The strict inequality sign in postulate (c) is to be interpreted

as follows: f > g means that £ > g and £ # g. This excludes the
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possibility of trivial systems containing only a single element,

These postulates need little discussion. The conditions (a) -
(c) express the fact that the set 1T<t} forms an ordered group of
automorphisms which is isomorphic to the real numbers, Postulate (d)
merely expresses the fact that the T are homomorphisms of L. (f)
asserts that for any g, the mapping « —» T « g is continuous on the
reals into L, Finally, (e) just says that for any f, the set of To f
is cofinal in L.

A1l of these postulates seem quite natural except possibly (e).
In terms of function lattices, this restriction means that only
lattices of bounded functions are being considered., While it would
be desirable to avoid this postulate, it is very doubtful whether
one could expect to get as many interesting results as can be obtained
for bounded function lattices.

Another possible direction of generalization is the substitution
of another simply ordered group in place of the real numbers as the
index group of the automorphisms T . . However, in order to obtain
interesting theorems, it is neceséary to assume some kind of complete-
ness properties for this group, But with the added assumption of
(conditional) completeness, the only possible simply ordered group
other than the real number system is the additive group of integers.
It would be interesting to try to carry out a study of the system
obtained when definition 2.1 is altered with the replacement of the

real number system by the integers, but this will not be done.
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Before proceeding with our study, it is convenient to introduce
a change of notation. In the definition 2.1.71, the notation T « f
was used to denote the result of the application of the automorphism
T « to the element f, This notation is different from that of
Kaplansky, In his paper [8] , Kaplansky writes f + « instead of
Tu fo This notation is evidently justified and preferable once it is
realized that when we speak of a translation lattice, a function
(semi~) lattice is always what we have in mind, Indeed, it will be
shown later that every abstract algebralc system satisfying postulates
(1) and (2) of definition 2,1.1 is isomorphic to a translation lattice
of functions by an isomorphism which makes the operation T « corre-
spond to the addition of the constant real number « , In the
remainder of the thesis, the notation of Kaplansky will be used,
Instead of T « f, we will always write £ + x ,

It is an important consequence of this notational convention that
the following formula is valid for any translation lattice:

(fag)+ < =(f +2)a(g+ =)

The equality is seen immediately when it is recalled that the trans-
lation T . 1is an automorphism of the translation lattice, Because
of the elementary nature of this formula, its use in the sequal will

be unattended by any special reference,
2,1,2 Examples,

Example 1., As a first example, consider the set C(S) of all

bounded, real-valued, continuous functions on a completely regular
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topological space S, This set is, of course, a translation lattice
with the usual operations taken pointwise, Of course at the same

time, it is also a ring, a vector space, and so forth.

Example 2, For the second example, take the set of all bounded,
lower semi-continuous functions on the completely regular space S,
With respect to the usual meet and addition of a constant, this is a
translation lattice, In fact it is a distributive translation lattice,

We denote it by L(S).

Exanple 3. It is possible to treat the set L(S) defined above
as a translation lattice with respect to its join operation. However,
it is more convenient to study the equivalent system of all bounded
(real valued) upper semi-continuous functions as a translation lattice
with respect to its meet operation. This system will be denoted U(S).
It is a remarkable fact that, as will be shown later, the theory of

U(S) differs essentially from that of L(S),

Example L, All of the above examples are distributive function
lattices, That is, they are closed under pointwise join of elements,
For an example where this is not the case, we may take the lattice
of (bounded) normal lower semi-continuous functions on a completely
regular topological space S, Denote this function lattice by N(S).
N(S) is actually a (conditionally) complete, completely distributive
lattice, but only the meet operation is taken pointwise., Dilworth [1]

has proved that N(S) is isomorphic to C( ¥*) where ¥ is the Boolean
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space associated with the Boolean algebra of regular open sets of S5,

Example 5 A very natural example of a translation lattice is
furnished by the bounded Lebesgue measurable functions on a space of
finite total measure, This system, of course, also forms a vector
space, but for many purposes it is more convenient to study it from

the viewpoint of its lattice properties,

Example 6, It is not hard to find examples of translation
lattices which are not groups. An interesting one is the set of all

non-decreasing functions on the real line interval [0,1] ”

Example 7. An example of a non-distributive translation lattice
is furnished by the set of all concave functions on the real interval.
This set forms a complete (non-distributive) lattice with meets taken
pointwise, It is of course also a translation lattice. As a
generalization of this example, one can consider the set of super-

harmonic functions in Fuclidean space.

Example 8, For an example of a translation lattice which is of
a somewhat different nature, consider, in a Banach space, the set of
all convex open sets which contain the origin, Translation for this
system is defined as magnification by 2 while the meet operation

is just the ordinary set intersection.

2,1.,3 letric properties.

Every translation lattice has a natural metric topology defined
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by
P(fyg) =inf (A} £ -2 < g<f+2l.,

Proposition 2,1.1. If L is a translation lattice, then the

function f defined above is a distance function on L.

Proof, Clearly ¢(f,g) = £ (g,f) and f(£f,f) =0, If
P(fyg) =0, then £ = g is a consequence of (f) in definition 2,1.1.
To complete the proof, the triangular inequality must be established,
Let f, g, h ¢ L, Pick any d >0, Real numbers X and
exist so that f =} < g<f+ ) ,g= m<ch< g+ and
P(f,8)> 2 =6, p(gh) >4 ~4d , Thenf - (A+ M) s g-pms=s
sh<g+mx< £+ (X +4),s0 P(£,h) £ A+x < p(f,g) + P(g,h) +
2 § o Because § was arbitrarily chosen, FP(f,h) <€ f(f,g) +¢(g,h).
lhile the metric topology defined by f is not the only possible
topology which can be imposed on a translation lattice (another is the
interval topology defined in terms of the partial ordering of L),
examples show that the topology of f is one of the most important.
For a translation lattice of functions, convergence in the metric
is just uniform convergence, Without explicit mention, it will always
be assumed in the future that a translation lattice is topologized by
its metric topology as defined in lemma 2,1.1. Thus a subset of a
translation lattice will be called closed only if it is closed with
respect to the topology of §f . In particular, if an ideal I is

closed, then whenever f ¢ I, there is a 4 > 0 such that £ - § ¢ I,
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Proposition 2,1.2, If L is a translation lattice, then with the

topology defined by f , L is a topological algebra, That is, the

operations of translation and join are continuous,

Proof, Suppose fn—> f and g, > g as n-> e« Let § > O be
arbitrarily small, Choose Ngy so large that f - 4 < fmé f+96

and g = § < g

" g+ § whenever m > Ny and n >Ny, Then
(fag)e=56c< £~ 8 < (fag)+ 8§, Therefore f ~ g - f A g as
m, n—» = In case L is a distributive lattice, the same argument
shows that fm v B, f v go The fact that translation is a continuous

operation is easily seen: if fn» f and « n” %o then i‘n b R ¥

f+ X asnandmgo to w,

In a translation lattice L, since L is a metric space, it is
meaningful to speak of completeness in the sense that every Cauchy

sequence in L has a limit in L. 4 fundamental result is

Proposition 2,1.3. Let L be a translation lattice., Then there

exists a unique complete translation lattice L of which L is iso-

morphic and isometric to a dense sub-translation lattice,

Proof, Let the points of L be Jjust the points of the unique
complete metric space of which L is a dense sub-space, (see Hausdorff
[9] pe. 106). The operations in T can be defined in the usual way's
if £f > fandg - g vhere f , g ¢ L and f, g ¢, define
fAag=1ln fn =48 also define f + « = lim i‘n + « , Using the

previous lemma, it is easily verified that these limits exist and are
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independent of the choice of the defining sequence, At the same

time (using the usual techniques) all of the identities which are

the postulates for a translation lattice can be established, Finally,
it must be shown that L is a sub-translation lattice of L. All of
the necessary manipulations are so familiar that they can be safely

omitted,

2,2 Homomorphisms of Translation Lattices,

Since every translation lattice is a seni-lattice, one can
naturally expect the theory developed in 1.2 to have an extension
to the theory of translation lattices. The direct application of the
results of 1,2 does not make full use of the potentialities of the
techniques which have been developed, In the first place, a trans-
lation lattice never has a zero element and therefore can never be
disjunctive, In the second place (and this is not unrelated to the
first difficulty) the natural lattice homomorphism defined in 1.2
preserves the translation operations of a lattice only in special
cases, Thus it will often happen that £ ~ g (I) while, for some

X#0,f =2+ g=) (I). Fortunately, there is a natural way to
avoid these difficulties., The first part of this section will be
devoted to the definition of a semi-lattice homomorphism which also
reserves the translations,.

The idea behind this homomorphism can be explained rather
simply, As before, homomorphisms are constructed out of equivalence

relations, The equivalences are defined by ideals of the lattice,
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Let L be a translation lattice and let I be an arbitrary ideal of L.
With respect to this ideal, a congruence relation is defined in the
following manner: f and g in L are called equivalent if f = A ~ g =2 (I)
for all real A , The equivalence ~ is just the one defined in
lemna 1.3.1, It is immediately clear that this device gives a trans—
lation congruence: if f is equivalent to g, then for any real

f - 2 1is equivalent to g = 2, Unfortunately, there are complica-
tions which necessitate restrictions on the ideal I, <These problems
will be dealt with when they arise. Of course, not every homomorphism
of a translation lattice will be of this form., However, the develop-
ment below shows that a remarkably large number of translation lattice

homomorphisms are of this nature,

2.2,1 Divisible translation lattices,

In this article, we will define the analogue of the disjunctive
property for translation lattices, The above discussion makes the

following plausible,

Definition 2.,2.1. Let L be a translation lattice. Let Ibe an

ideal of Ly Then L will be called divisible with respect to I if,
whenever £ £ g in L, there exists a real A such that £ = 2 g =2 (I).
In other words, h € L exists satisfying (f =2 ) A h € I and
(g-2)ah¢L

The property of being divisible with respect to some ideal is an

important one — one which merits rather close consideration., At the
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same time, it is a rather general property for translation lattices.

Lemma 2,2.1, Let L be a lattice ordered group of functions
which contains &ll constant functions (operations taken pointwise,

of course)s Then L is divisible with respect to any principal ideal.

Proof, First notice that it is sufficient to prove the lemma
for the case of the principal ideal (0), since for any fixed function
k, the mapping f » f - k is a translation lattice automorphism of L
which carries k into the zero function O, Then from the validity of
the lemma for the ideal (0) follows its validity for the ideal (k).

Now f % g implies that there is an x such that f(x) < g(x).
Choose 2 ¢ > 0 so that f(x) + 4 < g(x)e Take h = =f + £f(x) + 6 ,
A =f(x) + § , Evidently (fF =2 )a h=(f = £(x) = § ) a
A(=f +£(x) +8) € 0. Onthe other hand, [(g=2)~ h] (%) =
= [g(x) = £(x) - 8128 >0, 0 (g=A)a h 4 0, Thus the hypothesis
of definition 2,2,1 is fulfilled,

As a corollary of this lemma, it follows that the translation
lattices described in examples 1, 4 and 5 of the previous section are
all divisible with respect to their principal ideals, The other

examples require specific consideration,

Example 9. The set U(S) of upper semi-continuous functions on
a topological space S is divisible with respect to any principal
ideal (k).

In fact, suppose £ ¥ go This means that x € 5 exists so that
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f(x) < g(x). Choose A to satisfy £(x) - A < k(x) < g(x) = 2 ,
Let h € U(S) be defined by h(y) = k(y) for y #x, h(x) =g(x) - » ,
Then (f = » ) A h= k is clear., Since (g = 2>)~» h]l (x) =

g(x) = 2 > %(x), it follows that (g = 2 )~ h ¥ k,

Example 10, In contrast to the behavior of U(S), the trans-
lation lattice L(S) defined in example 2 is not divisible with respect
to any of its closed ideals, provided certain restrictions are put on
the space S, It is enough, for example, to assume that S is a compact
metric space which is dense in itself, We will not prove this fact,
but instead will be content to show that if 5 is not discrete, L(S)
is not divisible with respect to the principal ideal (0).

To make this proof, it is sufficient to exhibit functions f and
g in L(S) which are such that £ # g, while (f =2 ) » h <0 and
(2 = 2) A h$0 can never be simultaneously true when A is a real
number and h € L(S), For g, choose the function which has the constant
value zero on S, Let f be the function which is zero except at a
single non-isolated point x. Let f(x) = =1, Clearly f # g. If he L(S)
and A are such that (g =2 )A h# O, then necessarily A > 0, If
also (f = A)A h<0, A > 0 would require that h(y) € O whenever
¥ E 2. Then, because h has to be lower semi-continuous, and because
x is not isolated, this would imply h(x) < O, In other words, h< O,
Then (g = A ) ~ h < 0, contrary to the hypothesis,

While L(S) is not divisible with respect to any closed ideal, it

still contains rather simple ideals with respect to which it is
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divisible, For example if S is a metric space, then L(S) is divisible
with respect to the ideal I = {£{f(x) < 0 all x{ ., For suppose

f(x) < g(x). Choose A = g(x), Define h by the formula h(y) =

max { =1, = f (x,y)} , where £ 1is the distance function on S, Then
h(y) < 0if y #x and h(x) = 0, With these choices (f =2) ~ h € I

and (g =2 )~ h ¢TI,

The consideration of this example raises the following question:
is it possible to find examples of distributive translation lattices
which are not divisible with respect to any of their lattice ideals?
This has been answered affirmatively, The example, however, is
extremely special, and the proof that it is not divisible with respect
to any ideal is rather tedious, For this reason, no attempt will be

made to reproduce it here.

Example 11, The translation lattice of example 6 has the
interesting property that it is not divisible with respect to the
principal ideal (0), while it is divisible‘with‘respect to the
principat ideal (k), k being the function defined by k(x) = x. The

proof of these facts are left for the reader to supply.

Example 12, Consider the translation lattice L (defined in
example 8) whose elements are the convex open sets containing the
origin in a Banach space B, (For a reference on Banach spaces, see
[10l.) We will show that this lattice is divisible with respect to

the principal ideal generated by the unit sphere., Suppose f and g
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are elements of L with £ # g. Since f and g are convex open sets,
it follows that they are regular open sets and thus f Pg. In
other words x € B exists with x € g, x ¢ £ . Define h in L to be
the set of all z of the form z = A-x + (1 = X )y where 0 < A <1
and iyl < § 4 4 being a small positive constant which will be
determined later. Clearly h < g (provided § is sufficiently
small), It will be shown that there exists a sphere with center at
the origin which contains h A f but not h, From this, the desired

result follows (after appropriate magnification).

By the separation theorem for normed linear spaces, a continuous
linear functional x exists satisfying x (z) < B< * = x*(x) for
all z € £~ (see Tuckey [11] ). Thus if z € £ A h, we can write
z= A x+ (1 =XN)ywhere 0< A < 1 and Uyl < § , Then
g 2 x*(z) = A‘X*(X) + (1= 2 )x*(y) 2 Ax < (1= A ) il e AL

(1 ) Wx'w § . Consequently = T

B+ NX N of
« + ux-X-u.al"X" +4 . If

and

thus Nzl < xnxh + (1 =2 )nyn < [

é is sufficiently small, then Nzw< 0o <)uxIl for all z ¢ ha £



(where o  is a fixed constant), Thus the (closed) sphere of
radius ¢ about the origin contains h ~ f but not h, The proof

is then completed by a magnification of magnitude 1/¢

Example 13, The simplest possible translation lattice is the
set of real mubers in their natural ordering. For this systen,
the ideals are of theformIP = {x|lx €8¢ andI',; = {x) x<@} ,
One easily verifies that the real numbers are divisible with respect
to any of these ideals. Conversely, if a distributive translation
lattice is divisible with respect to all of its ideals, then it is
isomorphic to the real numbers. In fact, we will prove later that a
distributive translation lattice is divisible with respect to a

prime ideal only if it is isomorphic to the lattice of real numbers.

2:2,2o The isomorphism theoreuns.

The main result of the previous chapter was the first isomorphism
theorem =- theorem 1.2.1, We will now proceed to develop the analogue
of this theorem for translation lattices. The central idea (which was
presented in the introduction to this section) will be developed in

detail, following article 1.2,2 as a pattern,

Lenma 2,2,2, Let L be a translation lattice and let I be an
ideal of L. Define: xg(I)if £f =X ~ g=2 (I) for allreal A ,
Then = 1is a congruence relation (preserving meets and translations)
on L, If L is distributive and I is a lattice ideal, = also

preserves joins,
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Proof, The fact that = is an equivalence relation is an
immediate consequence of the fact that ~ 1is an equivalence, If
f~g (I)andh is any element of L, then f A h= 2 =(f =2 )a(h = A)
~(g=2)a(h=2) =garhe XI)forany A , Consequently
fahx~gah (I), Similarly if L is distributive and I is a lattice
ideal, f v h~gv h (I), To complete the proof, it must be shown
that £ = g implies f + « =~ g + « for any real « ., DBut this
fact is an immediate consequence of the definition, since (f +) =
-X ~ (g+=x)= 2 (I)is equivalent to f = (X =&)~ g = (A = «)(I)
forany A

As usual, the elements of a translation lattice L which are con-
gruent by the eguivalence == can be identified to obtain a new
semi-lattice which will be denoted L//I.

The semi-lattice L//I need not be a translation lattice. Indeed,
if I =1, then L//I contains only a single element., Nevertheless, it
is always possible to define an operation in L//I which has most of
the properties of translation., The procedure is as follows: denote

the congruence class of the element £ by T; +then define, for f € L//I

and < real, f+« =f +x, By the preceding lemma, this is a
valid definition == it is independent of the choice of the represent-
ative f in the congruence class T, It is also easy to verify that
the postulates (a), (b), (d) and (e) in definition 2,1.1 are satisfied,

The other two posfulates (c) and (f) may not always be satisfied,
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Lemma 2.,2,3, Let L be a translation lattice, Let I be a non-
trivial ideal of L (neither empty nor all of L) which is a closed
subset of L in the metric topology. Then L//I is a translation
lattice and the natural mapping f - f of the elements of L onto their

congruence classes is a translation lattice homomorphism,

Proof, Define -f.-' +« =f 4+« as above, Clearly the mapping
£t is a homomorphism, It is only necessary to show that the
postulates (c¢) and (f) of definition 2.1.1 are satisfied.

Postulate (c) states that if « >0, then f + « > F, Tt is
clear at any rate that 3 + < = }-. Suppose that for some o= O
E + o = -i.‘-. By induction E‘. +n ol = E for any integer n. Then also
f=F+nw«)=n« =F-n« , Sincelis non-trivial, postulate
(e) of definition 2,1.,1 shows that it is possible to pick n large
enough sothat f =n« € T and f +n« ¢ I, Thenf +n«x+4 f -
-na«x (I) and consequently f +n« % f-n«x (I). But this
contradicts -f- +n & = -iT -n o , Thus £ +« = f is impossible if
« > 0,

Postulate (f) states that if f < g + «  for all « > 0, then
T < g. Let us prove this, Suppose f< g + for all <« > 0,
This means (referring back to the definition) that for =« > 0
[(g +%) = 2]aheIimplies (f= 2)ah € I, Suppose that
(g=2)a helI, Then for any = >0, (g =A)a(h =«) € I, Thus

[(g +x) = (A+« )] a (h=o) ¢ I, so by the hypothesis
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[f =« (M+x)] aA(h=«) ¢ I, Rearranging this gives
[(f=2A)ah] = ¢« ¢ I and since o was any positive number
(f = X)ah €¢I =1, Summarizing, we have shovn that for any A
andh €L: (g = A)arh ¢ I implies (f=2)ah € I, In short
T < E. This completes the proof,

The question now arises what characterizes the natural mappings
of a translation lattice L onto its quotient L//I? The following
lemma gives some conditions which are certainly satisfied by these
mappings,

Lemma 2,2,Y4., Let L be a translation lattice and let I be a
closed non=trivial ideal of L. Denote by H the natural homomorphism
of L onto L//I, Then

(a) H(H(D) = L.

(b) H(I) is a closed ideal of L//I (in its natural metric

topology).

(¢) L1//I is divisible with respect to H(I).

Proof. (a): It is clear that I < H_1(H(I)). Suppose
g ¢ H-1 (H(I))s Then H(g) = H(f) for some f ¢ I, Going back to the
definition in lemma 2,2,2 this implies in particular that £~ g (I).
Since £ € I, this means g € I (by lemma 1.2,3). Consequently,
H-'1 (H(I)) € I and (a) is proved.

(v): It is very easy to check that H(I) is an ideal of L//I

and the computation will be omitted. We must show that H(I) is a
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closed subset of L//I. Suppose that fn is a sequence of elements

of I such that H(fn) converges to H(f), In other words, if § > O,
H(f) - § < H(fn) < H(f) + § provided n is sufficiently large.
Then using assertion (a) of this lemma (proved above) it follows from
H(f = § ) =H(L) - § < H(fn) that £ = 4§ ¢ I, Since €& can be
arbitrarily small, f ¢ I~ =1, Thus H(f) ¢ H(I).

(c): Suppose H(f) ¥ H(g). This means that fa g % g (I),
Hence A exists such that (fa g) = A+ g= % (I). By lemma
1.2.1 this implies (f = A)2 (g -A) (I). Thus h € L exists satis-
fying (f = 2 )a h €I and (g~ 2)~h ¢ I, Using (a) above, this
tells us that H[(f = 2 )~ h) € H(I) andH[(g - X ) ~ h] ¢ H(I).
But H is a homomorphism so (H(f) = A) a~ H(h) ¢ H(I) while (H(g) =2 )a
n H(h) ¢ H(I). This is the condition in definition 2,2.,1 for
divisibility,

Remark 1, It should be noticed that the properties (a) and (¢)
and the fact that H(I) is an ideal do not depend on the initial
assumption.that I is a closed ideal of L, In the case that it is
known that L//I is a translation lattice, these properties will still

obtain.

Remark 2, Another property which is a characteristic of H is
that it is a contimuous mapping when L and L//I are considered as
topological spaces with their natural metric topologies. However,

this fact is an immediate consequence of the fact that H is a homo=



65~

morphism, as the reader may verify.
The properties proved in the previous lemma characterize the

natural homomorphism H in the following senses

Lemma 2.2.,5., Let L be a translation lattice. Let H be a
(translation lattice) homomorphism of L onto the translation lattice
-I_,. Suppose moreover that -I-, is divisible with respect to one of its
ideals I. TLet I = 7! (T). Then there is an isomorphism M of L//I
onto L such that if H is the natural homomorphism of L onto L//I,

then for any £ ¢ L, H(f) = M(H(£)).

Proof, Ve will first show that for two elements f and g of L
H(f) = H(g) if and only if H(f) = H(g)s Now H(f) = H(g) means
f~g (I)yorf=2~g-=2A (I) for all A , In other words,
this says (f = A ) A h € Tif and only if (g - A )~ h ¢ I, By the
definition of I this is equivalent to: (H(f) = A ) A H(h) ¢ T if and
only if (H(g) = A ) A~ H(h) € T. But L = H(L) is divisible vwith
respect to -I- so this is possible if and only if E(f) = -ﬁ(g).

Now M is defined as that mapping which carries H(f) of L//I into
I:I-(f) in L. Then M is a uniquely defined, one-to-one correspondence
between L//I and I. Moreover M(H(f) = A) =M(H(f = 2 )) = Hf =)=
=H(f) = A =M(H(E)) - A . Similarly M(H(f) ~ H(g)) = M(H(f)) A
A M(H(g)) (and M(H(f) v H(g)) = M(H(L))v M(H(g)) provided L is
distributive and E is a distributive translation lattice homomorphism).
Thus M is an isomorphism vhich has the properties described in the

lemma, The proof is complete,
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Remark, For the proof of this lemma it was not necessary to
assume that I was closed. Of course if I happened to be closed in
L, then so would I be closed in L,

An immediate and useful corollary of this lemma is the following:

Corollary 2.2.1. A necessary and sufficient condition that a

translation lattice L be divisible with respect to an ideal I is that

L//I be isomorphic to L by the natural homomorphism.

Proof. The necessity is a consequence of the lemma where E is
taken to be the identity mapping, The sufficiency follows from
lemma 2,2.); when account is taken of the remark 1 following that
lemma,

Before proceeding, let us summarize the results of the past few

lemmas in the first isomorphism theorem.

Theorem 2.2,1. Let L be a translation lattice, Then there is

a many-to-one correspondence between the closed, non-trivial ideals
of L and the homomorphisms of L onto translation lattices which are
divisible with respect to some closed ideal. Any closed, non-trivial
ideal I determines a natural homomorphism H of L onto the translation
lattice L//I which is divisible with respect to the closed ideal H(I).
A second ideal J of L determines the same homomorphism as I if and
only if L//I is also divisible with respect to H(J). Conversely, any
homomorphism of L onto a translation lattice which is divisible with
respect to one of its closed ideals is algebraically equivalent to

the natural homomorphism of L onto L//I where I is a certain closed
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ideal of L,

Remark, It should be emphasized again the the terminology
translation lattice above envisages only a semi-lattice. The ideals
are only semi-lattice ideals, Ioreover, the homomorphisms are
assumed to preserve translations and meets, but not necessarily joins
(where they exist), On the other hand, the above theorem is true if
a translation lattice is interpreted as a distributive translation
lattice, provided that ideals are meant lattice ideals; in this case

the homomorphisms are true lattice homomorphisms,

Example 1y Let S be a completely regular topological space.
Define a mapping of L(S) =~ the lower semi-continuous functions on S ==
onto N(S) =~ the normal lower semi-continuous functions on S -- by letting
£ (£9), (where (£¥),(x) = lim inf (lim sup £(z)) — see Dilworth [11 ),
y—> X 27
It is easily shown that this mapping preserves meets and translations,
By lema 2,2.,1, N(S) is divisible with respect to the closed ideal
{f e N(S)|f <0}, and if f is lower semi-continuous, it is easy to
see that (f)"'_)* < 0 if and only if £ < O, Thus, denoting the ideal
If € L(S)|£< 0} by (0), theorem 2,2,1 shows that N(S) is isomorphic

to L(S)//(0).

It is convenient to formulate and prove the analogue of the second

isomorphism theorem now,

Theorem 2.2.2, Let H be a homomorphism of the translation lattice

L onto L (also a translation lattice), Let T be a closed, non-trivial



68

1

ideal of L, Define I =H ' (I). Then I is a closed, non-trivial

ideal of L and L//I is isomorphic to L//T.

Proof, The proof that I is a closed non-trivial ideal is just
a straightforward computation and will be omitted.

We must prove L//I isomorphic to L//T. Denote by H the natural
homomorphism of L onto E&VE& Map L onto E//E by the homomorphism
H(H(£)). The inverse image of H(I) under this mapping is precisely
I (by lemma 2,2,li). Since L//T is divisible with respect to H(I),
it follows from lemma 2,2,5 that L//I is isomorphic to L//I. The

proof is complete,

2.2,3 Prime ideals,

In this section, the homomorphisms defined with respect to a
special class of ideals will be studied in some detail, Out of this
study will come representation theorems for abstract translation

lattices,

Definition 2.2.,2. Let L be a semi-lattice, An ideal I of L

will be called prime if its set complement in L is a lattice dual
ideal, In other words, if £ § I and g ¢ I, thenf » g4 I.
Notice that if L is a distributive lattice and I is a lattice
ideal, this is Jjust the usual definition of a prime ideal,
Definition 2,2.2 makes it clear that prime ideals can always be
found in a semi-lattice., For example, if f ¢ L, then {g € Lig + £}

is a prime ideal., On the other hand, the existence of prime lattice
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ideals is not so easy to prove and in general the proof requires the
use of transfinite methods,
Now the work of the previous article will be specialized to the

case where I is a prime ideal, The key lemma is the following:

Lemma 2.2.6. Let L be a translation lattice, Let I be a closed

ideal of L, A necessary and sufficient conditien that I be prime is

that 1L//I be isomorphic to the translation lattice of real numbers,

Proof, First suppose that I is prime, Define the mapping Hs
foinf { A[f -2 ¢ I}, This clearly preserves translations,
MsoH(f ng) =dnf { X |fag- 2 ¢I}=dnf{ 2 | (£ =12 )n
A(g=2) ¢ I}, Bince I is prime, this equals inf {k\(f-—)) €
¢ Tor(g=2)ec I} =minfH(f), H(g)}. Similarly, if Iisa
lattice ideal, one easily proves that H(f v g) =max { H(f), H(g)} »
Now the inverse image under H of the ideal (0) consisting of all non-
positive numbers is precisely I = I, Thus by theorem 2,2,1, L//I
is isomorphic to the real numbers.

Conversely, if L//I is isomorphic to the real numbers, the
natural homomorphism H carries I onto a closed, non-trivial ideal of
the real numbers and H71(H(I)) = I. But every ideal of the real
number system is prime (see example 13) and the inverse image of a

prime ideal is clearly prime. Hence, I is prime,

Remark., The homomorphism which was set up in the first part of

the above proof depended in no way on the closed property of the ideal I.
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Moreover, the construction used there to define H (i.e., H(f) =
=inf{ A |[f = 2 € I}) is more convenient than the construction

of the natural homomorphism of L onto L//I, Hence, for this article,
we adopt this formula for the definition of the natural homomorphism

with respect to a prime ideal,

The homomorphisms of a translation lattice onto the real numbers
are of sufficient importance to deserve a name, Following the termi-
nology of group theory, we will call them characters of the trans-
lation lattice., It follows from the above lemma that the characters
of a translation lattice are intimately connected with the ideals of
the lattice,

It is instructive to look at translation lattices of functions
in order to get a better idea of the meaning of the concepts of
prime ideal and character., Let L be any translation lattice of
functions (i.e. closed under pointwise meets and addition of constants)
on a set S, Let x be any point of S, Then the mapping f » f(x) is,
by the very meaning of the concept "translation lattice of functions",
a character of the lattice. Associated with this character is the
closed prime ideal I = {f|f(x) €< 0} . It is an easy matter to show
that the mapping £ » f(x) is precisely the natural mapping of L onto
L//I. Conversely, if S is a compact Hausdorff topological space and
L is all of C(S), then, as Kaplansky has shown (see [12] and [8]),
every closed ideal is a translation of an ideal of this form., Thus,

for function lattices, the points of the base set are closely related
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to the characters and the prime ideals of the lattice, This is the
idea which is the basis of most representation theorems for algebraic
systems. Such a representation theorem will not be proved for
translation lattices. That is, it will be shown that every trans—
lation lattice is isomorphic to a translation lattice of functions on
some set S, If the translation lattice is distrioutive, this
representation can be made in such a way that joins as well as meets

are preserved, This latter result is due to Kaplansky [gl.

Lemma 2.2,7, Let L be a translation lattice and let £ ¥ g in L.
Then there is a character F of I such that F(f) < F(g). If L is also
distributive, the character can be so chosen that it preserves joins

in Lie

Proof, Let I = {he¢ Llh#g}, Then I is a closed prime ideal,
f e¢Iand gd¢ I. Also by postulate (f) of definition 2.1.,1 there is
a ¢ >0 such that £ + § # g, that is, £ + § ¢ I, Define the
character F by F(h) = inf {A|h - 2 € I}, As is the proof of lemma
2.2.6, this is actually a character, F(f) =- 8 < O =F(g)., Thus
for a translation (semi-) lattice the proof is complete.

In order to prove the distributive translation lattice case, the
above argument can be applied except that it is necessary to establish
the existence of a prime lattice ideal J with the properties £ + & € I
and g ¢ I, Choose for J the ideal which is maximal with the properties
I<Jand g ¢J (I being the same ideal as defined above). The

existence of such a J follows from the maximal principle. It must be
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shown that J is prime, Suppose h‘l and h2 are not in J. Then by the
maximality (hfl) v J and (hz) o J must both contain g, So must the

intersection of these two ideals. Since the lattice of ideals of a
distributive lattice is itself distributive (see [2] ), this means
that g ¢ [(h'l) f\(hz)] v J=(ya h,) « J. Therefore hy h, £€J.

Since h,‘ and h, were any elements not in J, it follows that J is

2

prime, The lemma is proved,

Using this lemma, we can easily deduce a representation theorem

for abstract translation lattices.

Theorem 2.2.3, Let L be an abstract translation lattice. Let

fo be any element of L, Then there is a set 5 and a translation
lattice L' of bounded real valued functions on S such that L and L'
are isomorphic by a mepping which sends T & into the zero function on

Se

Proof, Let S be the set {F1 of all characters of L which satisfy
F(f)) =0, For f¢L, let £ f', where £' is that function on S
defined by £'(F) = F(f) for all F € S, Let L' be the set of all F'
so obtained. The mapping f - ' is a homomorphism since (f A g)'(F) =
=F(f » g) =min { F(£), F(g)} =min {£'(F), g'"(F)} and
(£ +«)(F) =" + «) =F(f) + « for al1 F ¢ S, The mapping
is one-to-one by lemma 2,2.7 since if f % g, a character G exists
satisfying G(f) < G(g). Put F =G - G(f_ ). ThenF € S and

£'(F) = F(£) < F(g) =g'(F). It is clear that f_ goes into the zero
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function, Finally, it follows from postulate (e) of definition 2.1.1

that every f£' is a bounded function on S. The proof is complete.

Remark, TIn case L is a distributive translation lattice, the
argument used also shows that the representation is one which pre=
serves joinsof elements, The extra details are omitted.

Theorem 2.2,3 shows that no generality will be lost if, in
studying translation lattices we restrict ourselves to the considera-
tion of translation lattices of functions. However, there is little
to be gained by such a specialization, so we will continue to work

with general translation lattices,

Example 15, Theoren 2,2,3 implies that the translation lattice
of example 8 must be isomorphic to a translation lattice of bounded,
real-valued functions on a set. It is very easy to obtain one such
representation explicitly in this case., Let S be the set of all
points on the unit sphere of the Banach space from which L is con=
structed, For any f ¢ L and x € S, define f(x) =sup { log Alax ¢ £},
There is no difficulty in verifying that this convention makes a

bounded, real-valued function on S correspond to each f ¢ L,

2,3 Representation Theory -~ Lattice Functions,

One of the shortcomings of the theory developed in section 2,2
is its failure to give a very concrete picture of the image trans—
lation lattices L//I formed with respect to a closed (non-trivial)

ideal I. The present section is devoted to an attempt to fill this
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gap, Full use will be made of the theory developed in section 1.2,
Instead of representing the translation lattice as a translation
lattice of point functions, the representation will be in terms of
collections (still translation lattices of course) of objects which
are generalizations of set functions, These will be called lattice
functions., This procedure has an advantage over the usual represent-
ation in terms of point functions. Namely, each lattice function
carries with it part of the structure of the original translation
lattice =~ a virtue which is not shared by point functions. In fact,
enough structure is possessed by the individual lattice functions
that it will be possible to prove significant theorems, even when
the assumption that the whole system forms a translation lattice is

weakened,

2,301 Definitions =-- The representation theorem,

Definition 2.3.1. Let P be a complete Boolean algebra., Then a

bounded real valued function F defined on P = { z} will be called a
lattice function if it satisfies:
F(a) € F(b) whenever z £#b < a,

This definition calls for several remarks. First, it should be
emphasized that the characteristic property F(a) < F(b) when z #b < a
makes F a dual order homomorphism of P into the reals, The reason
for this dualization will be made clear later. Second, it may look

strange that F is not defined on z, This convention undeniably causes
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notational inconvenience in many places in the following pages. But,
at the same time, to define F(z) would lead to notational difficulties
in many other parts of the thesis., We have only to choose between the
lesser of evils and the present choice seems best. As a final remark,
we note that the concept of a lattice function could be generalized
by assuming only that P is a partially ordered set. However, for the
uses which will be made of lattice functions, the present definition
is more appropriate,

Now we will show how a translation lattice L can be represented
as a translation lattice of lattice functions on a certain Boolean
algebra P, provided L is divisible with respect to one of its closed
ideals (see definition 2,2,1), A collection of lattice functions F
on a Boolean algebra P forms a translation lattice in a natural way
if the collection is closed under the elementwise operations of
meets ((F ~ G)(a) =min{F(a), G(a) } ) and translations ((F +«)(a) =
=F(a) +x ), It is easily seen that F ~ G and F + x defined in
this way are again lattice functions.

Before beginning the theory, let us recall some of thenotation
from chapter 1, Corresponding to any semi-lattice L and ideal I of
L, a disjunctive lattice L/I was defined. There was a natural
homomorphic mapping hy of L onto 1/I. Recall alsothat L/I could be
imbedded in a complete Boolean algebra which was denoted (/1.

The mapping hI can therefore be thought of as a homomorphism of L
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into [L/I]. It will be of importance to know when L/I has a unit.
This question was answered in lemma 1.2,5: L/I has a unit if and
only if there is an element f € 1 such that £ ~ g ¢ I implies g e I
for all g ¢ L. This condition is certainly satisfied if I is a non=-
trivial prime ideal., Also if L is a translation lattice, the

condition is satisfied for all principal ideals. In fact

Lemma 2.3.%, Let L be a translation lattice., Let I be a

closed ideal of L., Suppose that I is bounded, that is, there exists

an element £ € L such that £ 2 g for all g ¢ I, Then L/I has a unite

Proof, The criterion of lemma 1.2,5 will be used. Suppose
f 2zg for all g ¢ I, we will show that for any § = 0, if
(f+48)ag €1, then g ¢ I. By hypothesis, (f+6)rgel
implies that £ = (f +é ) » g. Applying this inequality to itself
gives £ 2([(f +6 )a gl + 8 Y)ag=(£+28)r(g+d)ar g=
=(f +2 4 ) A g Repeating this process, an induction shows that
£f>(f +ns)a g for all integers n, By postulate (e) of definition
21,1, n can be chosen large enough so that (f +nd ) 1 g = g, Thus
f > g and therefore (f + § ) » g = g. But the original assumption was
that (f + 8 ) » g € I, Therefore g € I, The proof is complete, since
this means that the image of £ + 6 in L/I is a unit of L/I.

Now the main part of the representation theorem can be formulated

and proved,
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Lemma 2,3.2, Let L be a translation lattice., Lebt I be a
closed ideal of L which is such that L/I has a unit element. Suppose,
moreover, that L is divisible with respect to I, Define for
a € [L/I]- {2z} andf €L:
Ff(a) = sup { A lhI(f-) )z at.
is a

Then F, is a lattice function on [L/I1 and the mapping f -» F,

translation lattice isomorphism,

Proof., The first thing to show is that F, is well defined on [1/I]
by the above formula; it must be proved that { a \hI(f - 1) >al is
not empty. This follows from the assumption that L/I has a unit,
Indeed if g ¢ L is such that hI(g) =1, (the common unit of L/T and
[L/T 1), then there exists a ) o S0 small (negatively) that
e 2,2 g hI(f - )\0)2 hI(g) =i = a, Thus the set of X !s
for which hI(f-— A) = a always contains A or [Hence Ff(a) > >‘o for
all a, On the other hand, it is always possible to choose X 4 So
large that £ - A, € I, Therefore hI(f - A,') = z, so that
Ff(a) < >\1 (assuming of course that a #2), Thus F. is bounded on
(/11 - {=zt.

Now suppose z #b <a, Then §{ A \hI(f -A)>a} ¢
{ A \hI(f - A)2Db}, sothat Ff(a) < Ff(b). This means that all the
conditions of definition 23,1 are satisfied and F, is a lattice
function on [L/I].

Next, it will be shovm that f » Fo is a translation lattice
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homomorphism, Ff+%(a) = sup { ) \hI(f +x = ) )>afj =sup{ ) -«
\hI(f - (A=« ))> al + x = Ff(a) + *® , Thus translations are
preserved, F. g(a) =sup { A khI(f Ag=A)2 al =sup

{)) hI(f - 2)a hI(g -2) = a}l. Now suppose for definiteness

@ + Thenif & > 0, by definition

11

that o =Ff(a)£Fg(a)
hI(f-o(+J)2a,hI(f-o< -J)jgaandhl(g-oc+<§)e
Ehl(g—@ +4d)> a. HencehI(f-x-;- J)Ahl(g-oz+<g)ga
ahth(f-oc+é)nhI(g-oc +4 ) %a Since 4§ can be
arbitrarily small, it follows that F, g(a) =sup { A IhI(f -2 )a
Ah(g=2)2al =min{Ff(a), Fg(a)}.

To complete the proof it must be shown that f - F, is a one=-to=

by
one mapping. Suppose f1 o i‘2. Then since L is divisible with respect
to I, there exists a real ' A and an element g € L such that
(f1=2) ag ¢TI, (f,=A)n g ¢ I. Then since I is closed, & >0
exists so that (f, =24 - §)a(g=-46)2 [(E,-2)ag]-46 € L
Hence, (f2 -)1=-4§)ag ¢ I. Consequently, £, -4 2 oA =4 (1),
that is, hI(f1 -)) # hI(f2 -2 = §)s Now call a = hI(f2 - A=4d ).
Then Fe (a) < A and ng(a) > X + 8, This says finally that

1

Ff’l 3 Fp , proving that the mapping f—» F, is one-to-one. All of the
2

£
assertions of lemma 2,3,2 have now been established.

Remark, The formula Ff(a) = sup { A lhI(f -2A2)= a} is mean-
ingful only as long as a # z; for every real number A satisfies

hI(f -=)) > 2z, This is one of the reasons that the convention of not
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defining a lattice function on the zero element was adopted.

The lattice functions defined in the preceeding lemma satisfy

a rather special condition.

Lemma 2,3.3, The lattice functions Ff defined in the previous
lemma by Ff(a) =sup{ A ‘hI(f - X )= a} invert unlimited joins,
That is, if A is any non-empty subset of [L/I] - {z} , then Fo(V 4) =

=inf{Fa(a)|a €A},

_I_’_I;ggf_. It is an immediate consequence of the characteristic
property of lattice functions that Fo(V A) < inf{Ff(a)la ¢ A} . To
prove the reverse inequality, denote x = Ff(VA) and pick any & > Q.
Then hI(f -« = 6)% VA, so there exists a € A such that
hI(f -« =4 )% a. This means Ff(a) < e« 4+4, Since §  was

arbitrarily small, inf { Fola)la e Ay < < =T (V A),

Definition 2,3.2, A lattice function F which inverts unlimited

joins (that is, F( V A) =inf {F(a)|a ¢ A}, for any non-empty subset
Aof P={z}) is called normal.

The reason for this terminology will become clear when the
relation between lattice functions and point functions on a topological
space is studied, The lemma 2,3.3 can now be expressed by saying that
the lattice functions Ff are normal,

An alternative characterization of normality for a lattice

function can be given, The criterion is due essentially to Dilworth

(see [1] ).
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Proposition 2.3.1. Let F be a lattice function on P, Then F

is normal if and only if the following condition is satisfied:
N: if a #2 and F(a) < X, then b exists with z #b = a such that

F(c) < XA forallc <b, c # z.

Proof, Suppose F is a normal lattice function, If, for all b < a,
there is a ¢ <b such that F(e¢) = A , then clearly a = V{c|F(c) =2 A,
c<a}, Hence 2 > F(a) =inf {F(c)|F(c) 2X , c<alt z A ,
This contradiction proves that N must be satisfied,

Conversely, suppose F satisfies the condition N, Let A be a
non-empty subset of P - {2z} , Call * =inf{F(a)la ¢ A} . Suppose
F(VA) <x, By N, b exists in P with 2 #b € VA and F(c) < « for
allc<b, Sinceb =ba VA=Vi{baalaée A}, baa#z for some
a ¢ A, For this a, « > F(b » a) = F(a) 2inf{F(a)lae A}l = «,
This contradiction proves F( V A) > o« , Clearly F(V A) < «x ,
Since A was an arbitrarily chosen subset of P - {z} , the condition

for I to be normal has been satisfied,

Corresponding to a given complete Boolean algebra P, there are
usually many translation lattices of normal lattice functions which
can be defined on P, Suppose L is one such translation lattice. The
question naturally arises: 1is there an ideal I in L such that P is
isomorphic to [L/I] and the construction of lemma 2.3.2 (applied
to L, where L is considered as an abstract translation lattice) yields

just the lattice functions of L? In short, what kind of uniqueness
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theorems can be proved for the representation of a translation
lattice as a collection of lattice functions? A later article will
be devoted to answering this question, Here we lay the foundations

by proving some necessary conditions,

Lemna 2,3.L4. In the mapping f-» Ff of lemma 2,3.,2, the image

of I is precisely {Flef(a) < 0 for all a ¢ [L/I] - {zt},

Proof, Suppose £ ¢ I, Then hI(f -2 )=z forall X > O,
Therefore F f(a) < 0 holds for all a # z, Conversely, if Ff(a) =0
for all a # 2z, then hI(f -~ ) ) =z is true for all A >0, In

other words, £ € I =1,

A consequence of this lemma ist

Corollary 2.,3.,1, The image set in the mapping £ » F 7 contains
the zero lattice function if and only if I is a principal ideal, If

I is principal, then its generator maps into the zero function,
Another condition which must be satisfied by the image set of

lattice functions in the mapping f - Ff is the following:

Lemma 2.3.5. OSuppose that the conditions of lemma 2,.3.2 prevailj;
construct the lattice functions Ff as described, Then if a # z in

[L/T]1, there is an F, such that Fo(b) > O for some b with z £Ab< a

f
and Ff(c) < 0 for all ¢ satisfying ¢ ¥ a.

Proof, Since L/I is demse in [L/I1, if a #2z in [L/I], there

is an £ € L such that z #h (f) < a, Now h.(f) # z implies that £ ¢ I,
1
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Then since I is closed by assumption, f = § ¢ I holds for some
6§ >0, Putb=h(f-4¢)#z ThenFy(b)> § >0 by definition,
On the other hand, if ¢ £ a, hI(f) * ¢ so Ff(c) < 0. The proof is
complete,

The condition expressed in the lemma is sufficiently important

to be given a name,

Definition 2.3.3. Let M be a collection of normal lattice

functions on a complete Boolean algebra P, Then M will be said to
generate P if for any a # z in P, there is an F € i and an element
b € P such that (1): F(b) >0, and (2): F(c) < 0 for all c satisfying

c £ a.

Lemna 2,3,5 implies that if the translation lattice L is
divisible with respect to the closed bounded ideal I, then the
natural representation of L as a set of lattice functions on [L/I)
generates the Boolean algebra [L/I], It is possible to prove the

following converse result.,

Proposition 2.3.2, Let L be a translation lattice of normal

lattice functions on a complete Boolean algebra P, Suppose that L
generates P, Then L is divisible with respect to the ideal

I={F|F(a) <0allacP- {z}}.

Proof, Suppose F # G, This means that F(a) < G(a) for some a,
Choose A  so that F(a) <« A < G(a). According to proposition

2.3.1, this means that b € P exists satisfying z # b< a and such
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that F(c) < A for all ¢ €< b, In particular F(b)< A < G(a) < G(b),
Since L generates P, there is an element H € L satisfying H(c) > O

where ¢ <b and H(d) £ O for all d such that d $ b, It then follows

W\

that [(F=2)aH](d)<HA)<0ifd$b, <Fd) =X < 04if

d<b, Thus (F=2x)aH

T

0 (i.esy (F= 2 )~ H € I), Also
((G=Xx)aH](c) >0, 50 that (G = A) n HEO (i.e., (G =2)nH ¢ I).
Since F and G were any two elements satisfying F ¥ G, the conditions of

divisibility with respect to I are satisfied,

For convenience, the results of the past few lemmas will be collected

together as the '"representation theorem",

Theorem 2,3.1. Let L be a translation lattice. Let I be a closed,

bounded ideal of L such that L is divisible with respect to I. Define
fora ¢ [(L/I1=~ {2z} and f ¢ L

Ff(a) =sup{ A \hI(f -X)=at.

Then F_, is a normal lattice function on {L/I] and the mapping £ - F

£ £

is a translation lattice isomorphism of L onto a set L' of normal
lattice functions which generates \L/I) ., The image of I in this

mapping is the set |F ¢ t'lreotl.,

Corollary 2.3.2, Let L be a translation lattice. Let I be a

closed, bounded ideal of L, Define, for a € [L/I] - {2} andf € 1L,
F;E,(a) = sup{ A \hI(f -2) =z at.

Then the mapping £ - Fll

onto a set L‘ of normal lattice functions on [L/I] + The collection

is a translation lattice homomorphism of L

L' generates [L/I]. Moreover, there is a natural isomorphism () of
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[L/I] onto WL//I)/H(I)] such that
]
Fela) = Fy gy (0(2))
where H is the natural homomorphism of L onto L//I and F denotes the
representation of L//I constructed in theorem 2,3.1 (with respect to

the ideal H(I)).

Proof, Using theorem 2,3.1, the first part of the corcllary
will be an immediate consequence of the last assertion (since L//I
is divisible with respect to H(I)),

Notice that by theorem 1.2,2, hI(f) = hI(g) if and only if
hH(I)(H(f)) = hH(I)(H(g)). Thus ¢ is defined as an isomorphism of
L/I onto (L//I)/H(I) by putting @(hI(f)) = hH(I)(H(f)). By theorem
1.2.4, @ extends immediately to an isomorphism between the complete
Boolean algebras, [L/I]and [(L//I)/H(I)] . With this definition,

o= i i - = 1 - ﬂ
hI(f A ) > aif and only if hH(I)(H(f) X)) @(hI(f 2 ) > 0(a).

From this, the last assertion of the corollary follows readily,

Definition 2,3.,L4, Let L be a translation lattice and let I be

a bounded closed ideal of L, The mapping f —» Ff of L into the set

of normal lattice functions on L/I (where F_. is defined by Ff(a) =

f
=sup { A lhI(f ~2) = a} ), will be called the natural represen-
tation of L (relative to the ideal I) as a translation lattice of

normal lattice functions,

An example may help to clarify some of the concepts which have

Just been introduced.
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Example 16. Let L be C(S), the translation lattice of bounded,
real valued functions on a completely regular topological space S,
Let (0) be the principal ideal generated by the zero function. Then
[L/(0)] is isomorphic to the Boolean algebra of regular open sets
of S (see example 6 of chapter 1). The mapping f - { x\f(x) > o3 B

is the natural mapping,h_, of L into this Boolean algebra, We will

1
show that Ff(a) =inf {f(x) | x ¢ a} holds for all regular open
sets a,

By definition, Ff(a) = sup { ) lhI(f -A )= a} =
=sup{a|[{xIf(x)> A} ~° = a}. To save writing, denote
« =inf{f(x)|x ¢ at. If §>0, {x|f(x)>«x=d} = a by the
definition of o« . Hence, {xIf(x) > « - §}7° = a, On the other.
hand, x € a exists satisfying f(x) < « + ¢ , By the continuity of
f, this inequality holds in a neighborhood of x and thus

{ xIf(x) > « + 4§} %% a, Since d  could be arbitrarily small,
sup i A [{xif(x)> A17° = a} = 5 Gseeds

It is important to know that normal lattice functions can be
constructed on any complete Boolean algebra, The following proposition

gives a method for constructing a special kind of normal lattice

function.

Proposition 2.3.3, Let P be a complete Boolean algebra, Let b

be any non-zero element of P, Then there is a normal lattice function

F on P such that F(¢) =1 if z #¢c < b and F(c) =0 if ¢ ¥ b,
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Proof, Let F be precisely as defined in the proposition. We
must show that it is a normal lattice function. If z #c < d and
F(d) =1, then d < b so also ¢ < b, Hence F(c) =1, It follows that
¢ =d implies F(e) = F(d), Suppose A is any non-empty subset of
P~ {z}., Clearly, VA + b if and only if some a € A satisfies a ¥ b.
Hence F( VA) = inf{ F(a)) a ¢ A}, Thus F is normal.

Using this, it is possible to deduce an important fact.

Proposition 2,3.4., Let P be a complete Boolean algebra. Then

the set of all normal lattice functions on P forms a translation

lattice which generates P,

Proof, First, the set of all normal lattice functions forms a
translation lattice. The fact that the system is closed under trans-
lation can be readily checked. The details are omitted, Suppose F
and G are two normal lattice functions, Then F ~ G is clearly a

lattice function. To prove normality, suppose A is any non-emply

subset of P =42} ., Then (F ~ G) (VA) =F(V A) AG(V A) =

[ inf{F(a)lae A}) n [infiG(a)la € AY = inf{F(a) ~ G(a)la ¢ A}
inf {(F a G)(a))a € A}, The opposite inequality follows from the
fact that (F » G) (V A) € (F A G)(a) for all a ¢ A,

The assertion, that P is generated by the set of all normal
lattice functions, is a direct consequence of the precegding pro=-
position., The proof is, therefore, complete,

Hereaf ter the translation lattice of all normal lattice functions
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on the complete Boolean algebra P will be denoted N(P), This should
not cause any confusion with the notation N(3S) introduced in example

L., P always denotes a complete Boolean algebra,

2.3.3. The uniqueness theorem -- special case,

In this article, a uniqueness theorem for the representation of
translation lattices as lattice functions will be deduced. Suppose
a translation lattice L is given, Assume that L can be represented
as a sub=translation lattice of N(P) so that the represéntative of
L generates P, Then by proposition 2,3.2, L is divisible with respect
to the ideal {F ¢ L\F< 0}, We shall answer the following question:
what is the relation between the given representation and the natural

representation of definition 2.3.4?

Theorem 2.3.,2, Let L be a translation lattice of normal lattice

functions on a complete Boolean algebra P, Suppose L is dense in P,
et I ={Fe¢L|F<0}. Then

(1) [1/I] is isomorphic to P by a mapping ® on [L/I] to P;

(2) The natural representation, FG of G¢ L as a lattice
function on \L/I), which is defined by FG(a) 5 sup{ik‘hI(G -A )2 al

(where h. is the natural homomorphism of L onto L/I, satisfies

48
Fa(a) = a(0(a)).
Proof, For the notation in the proof of this theorem, write

a for the generic element of (L/I1, b for the generic element of P,
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Map L into P by G» V {b ¢ P{G(b) > 0}, One easily verifies
that this is a meet homomorphism, The image of this mapping is dense
in P (see definition 1.2,3), since L generates P, The kernel of the
homomorphisn is {G € LIG < 0} = I, Hence the mapping determines an
isomorphism of L/I into P, Denote it by @, To be precise, @ is
defined by:

B(ny(@) = V(b€ Plo(®)> 01 .
(® is extended to an isomorphism of [L/I) onto P by writing
P(a) = V’i@(hI(G))l h(G) < a}. (This clearly makes (} a meet homo~
morphism with kernel z of [ L/I| onto a dense subset of P, By propo-
sition 1,2.2, thé mapping is an isomorphism., By theorem 1,2,5, it
is onto P,)

To complete the proof, it is necessary to show that FG(a) = G(0(a))
holds for all a € [L/I) - {2} . (We notice that I is a bounded,
closed ideal of L and L is divisible with respect to I.)

Fo(a) =sup{ A |h (G =2 )= al =supi{ A 10(h(G=2))= ¢(a)} =
sup{ A1V {be€ PlG(b) >A} > @(a)l .,

Now Vi{b € P[G(b)>A} = @(a) implies (by the normality of G)
that A < inf{G)G(®)> 3} =a(Vibe Pla(b) > A} )< a(®(a)).
Hence, F,(a) < G(B(a)).

To reverse this inequality, notice that if A < G(%(a)),

V {b e?PlG(b)>2} = ¢(a), Consequently FG(a) > sup {2 | A<a(@(a))l =

G(?(a))s This completes the proof of the theorenm,
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2,3.4. The general uniqueness theorem —- preliminary results.

The ultimate object of this and the remaining articles of section
2,3 is to determine the modifications which must be made in theorem
20302 when the assumption that L generates P is dropped. The main
result of this article, theorem 2.3.3 below, indicates the direction
to be followed in the remainder of the section. The proof given
could be much shortened by the application of the third isomorphism
theorem of chapter 1, However, we will give a more detailed proof
since some of the intermediate notations and results will be useful
for later worlk,

Let L be a translation lattice of normal lattice functions on

a complete Boolean algebra P, As usual, let I ={F € L|F = 0},

Definition 2.3.5. Denote by i the subset of P consisting of

all elements of the form ap = V {b € PIF(b)> O} where F e L,

Lemma 2,3.,7. R is a sub-semi-lattice of P with the same zero
and unit as P, The mapping F —» ap is a semi-lattice homomorphism

whose kernel is I, R is dense in P if and only if L generates P,

Proof, We have agp A a; = [Vib € PIF(b)> 0} ]a
[ V {ceplae)> 03] =Vibnac#zlF(b)> 0, Glc)> 0} <
SV ib] (FArG)b)>o0t =ap , go On the other hand,
ap = V{b ¢ P|F(b) > 0} > Vi{b ¢P\(FnG)b) >0} =a,, ;and
similarly a, 2 ap A g° Hence ap A aGE ap A g These two inequal-

ities prove that the mapping F » ap is a homomorphism and the image
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is a semi-lattice. Clearly z and i are elements of £, It is also
evident that the kernel of the mapping is I,

The last statement of the lemma is just an expression of the
equivalence of the two definitions: R is dense in P if for any a # 2
in P, there is an F ¢ L such that z # V {b|F(b) > 0} < a3 L generates
P if for any a # 2z in P, there is an ' ¢ L such that F(b) > 0 for

some b < a and F(c¢) < O whenever ¢ # a.

Definition 2.3.6. Denote for ap € B, T, = Vi{b ¢ RlaF 2 b (z)in R},

The join is taken in P of course., (The notation ap? b (z) refers to

the definition of lemma 1,2,1.)

Lemma 2,3.8. ap > ;% is a semi=lattice homomorphism of R into

a disjunctive sub-semi-lattice of P, The mapping satisfies ap = 5#,

‘—_ b —_ *—
4 A g = aF/\ 835 2 =2 and 1 = 1,
Proof, This is a special case of lemma 1.3.9.

Theorem 2.3,3. LL/I] is isomorphic to a sub-semi-lattice of P,

By the isomorphism, z-> z, i- i and hI(F)-» EF' The isomorphism

is onto P if and only if L generates P,

22923' The first two statements are consequences of lemma 2,3.8
and the first and second isomorphism theorems (theorems 1.,2,1 and
1.2.2, respectively), together with theorem 1.2.5,.

To prove the last assertion, notice a; < a,. Now [L/T] will be
isomorphic to all of P if and only if R/(z) is dense in P, and, because

of the inequality, this means that R must be dense in P, Conversely,
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if R is dense in P, it is disjunctive and hence R/(z) = R is dense

in P, By lemma 2.3.7, the final statement follows.

Let P, denote the image of [L/I] in P under the mapping of
theorem 2,3.3. For every F € L, we may ask the question: what is
the relation between the lattice function which is defined as the
restriction of F to FH and the natural representation of I as a
normal lattice function on [L/I] . There will be no simple corre-
spondence such as the one in theorem 2,3.2, since in general, the
restriction of F to P1 will not be normal, Hence it is necessary
to devote some attention to the relation between normal lattice
functions defined on two complete Boolean algebras -~ one of them
being a sub-semi-~lattice of the other., The next article is devoted

to this subject.

2345, The extension and restriction of lattice functions.

In this article, P1 and P2 will denote complete Boolean algebras

with P1 a sube~semi-lattice of P It will also be assumed that P1

2.
and P2 have the same unit elements. For convenience, the fact that

PH is related to P, in this way will be abbreviated as P1‘5 P2.

2

Among the elements of P,, those which also belong to P1 will be

22
distinguished by a bar, Thus for instance, a and b will designate
elements of Py waile a and b denote elements of P2, (which may also

be in P;, of course).

Two questions will be treated, First, suppose that a normal
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lattice function on P1 is given. Can this function be extended in

a natural way to a normal lattice function of P2? The second question

is concerned with the reverse situation, Suppose that a normal

lattice function in P2 is given, Is there a natural way of associating

a normal lattice function on P,' with the given function over P It

?
2
seems likely that there may be many "natural” ways of making these
associations, However, for our purposes, the methods outlined below
are quite adequate,

In the work which follows, repeated use will be made of two
different join operations in the Boolean algebra Pre While it is

assumed that P‘I is a sub-semi=lattice of P P1 is also a complete

2’

Boolean algebra in its own right (although not a sub-algebra of P2).
Thus if A is any subset of P’I’ A has two (generally different) least

upper bounds: the bound in P‘l and the one in P2. These will be

written respectively <l/ A and \2/ A, It is important to notice that

for any subset A of P1, \1/ A 2 \2/ A, For certainly \1/ A is an

upper bound of A in P, as well as P1, and \2/ A is the least upper

2
bound,

We can now formulate and prove the extension theorem.

Proposition 2.3.5. Let P1 and P2 be complete Boolean algebras

with P1 < P2. Let F be a normal lattice function defined on P’I'
Define F' on P2 by
Fi1(a) = sup | F(a)la 22, 2 ¢ P1} for a € P2, a # 2.

Then F' is a normal lattice function on P2 and satisfies Ft(a) = F(2)

for all a € Py



Proof, The facts that ' is a lattice function and that F!
takes the same value as F on all elements of P‘l are easy consequences
of the definition of F', It is necessary to show that Ft is a normal
lattice function,

Let A be an arbitrarily chosen subset of PZ‘ Let 6§ >0, By
the definition of Ft, for any a € A, there is an a ¢ P, such that
2 2a and F(a) 2 F'(a) = § ., Corresponding to each a € A, choose
an a in P1 satisfying these conditions and denote by'z the set of
these a's. Then v Z > ¥ Z = ¥ A, Thus F1( \ 4) = P( J K) =
=inf {F(2))2 ¢ A tzinf{F1(a) = 6| a ¢ A} =inf{ Fr(a)la ¢ A} = &,
Since & can be chosen as small as we please, F'( \2/ A) =
> inf { F'(a)]a ¢ A}, But the opposite inequality is valid for any
lattice function, so it follows that F' is normal,

Now we consider the restriction problem, In order to motivate
the next result, it is necessary to refer to the paper of Yilworth
[1], and to understand the ideas which will be presemted in the

fourth chapter of this thesis. For this reason, the result is

presented without attempting to show that it arises in a natural way.

Proposition 2.3.6. Let P’l and P2 be complete Boolean algebras

with P‘l < P2. Let F be a lattice function on P2 (not assumed normal),

Define Fo on P1 by:

F (a) =inf_sup_F(a).
c < aasc

Then F0 is a normal lattice function on P’I’
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Proof. OSuppose a < b, Then Fo(a) = _inf sup F(a) 2
c<aas ¢

> _inf sup_F(a) = FO(E). Hence I is a lattice runction,

T:<DBac<so

To prove that Fo is normal, the criterion of proposition 2,3.1
will be used, Suppose F (3) <A . Then ¢ < a exists (by the
definition of F,) such that sup  F(a) <A, Tusifzf£b<c,

- a<e
it follows that Fo(b) = inf sup_ F(a)< sup_ F(a) <A, By the
d<baz=d a<c

above mentioned proposition, Fo must be normal, This completes the

proof,

2.3.6, The unigueness theorem —- general case.

As hypotheses for all the lemmas which follow, the standard
assumptions are made: P is a complete SBoolean algebra; L is a given
translation lattice of normal lattice functions on P; I is the ideal
{Fe LIF <01}, Again R is the sub-semi-lattice of P which consists
of all elements of the form ap = V {blF(b) > 0}, defined for the
F e L. Also, Py will denote a sub-semi-lattice of P which is iso-
morphic to [L/I] and such that there is a meet homomorphism ap = 3%
of R onto a dense subset of Pﬁ. It will also be assumed that this
homomorphism satisfies aﬁ.é E%, and z = z, The existence of at
least one such FH is assured by lemma 2,3,8, Later we will have
occasion to use a P1 which is different from the one constructed in
the definition 2.3.6, but which still satisfies these conditions,

The nomal lattice function F_ (on P, = [L/I] ) is defined by:

FO(E) = inf sup_ F(a)
csaas=s ¢



for a € P,‘.

- t
Lemma 2.3.9. Fo(a) > ) if and only if there exists A > A

such that a, _  ,2 a.

Proof, Suppose first that FO(E) > A and choose A' so that
Fo(a) > X > A, Then by the definition of F s Sup {Fla)la<c c}>A

holds for all ¢ <a, ¢ # z. Hence, 8 _ ™ C # 2z and consequently

ap _ a1 P C # 2z are valid for all ¢ < 3, ¢ # z. Since [L/I) is

disjunctive, this is possible only if EF . At 2.

To prove the comverse, suppose that for some 2! > A, FO(E) < At
By definition of Fo, there exists ¢ < a such that sup {F(a)la < ¢ 1< at,
This means that ap ,, A ¢ =z. From this relation, it follows that

a

Fu At N C = Z Indeed, a nc =z dimplies that ap ., r2a; =2

Fe Al
for all a, with a, < c. Then ap _ 1y A c=a’F-A'AV{aG‘aG$ c | =
V{aF_“ A aGIaGS cl = V{zlaGs ¢} =z, ButaF_l, AT =2z
for ¢ satisfying z # ¢ < a implies _a'F _ A'* a., This completes the

proof,
Now one can conclude rather easily all of the necessary pre-

liminaries for the general uniqueness theorem.

Lemma 2.3,10., The mapping F - Fo is a translation lattice homo-

morphism of L into N( [ L/I ] )(the normal lattice functions on [L/I] ).

Proof, It is clear from the definition of P that (F + « )o =
FO + o« 4 and that F < G implies Fo ¢ Go. A direct consequence of this

last relation is the fact that if F and G are any two elements of L,
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(F A G)oﬁ Fo A Go. It remains only to show that (F a G)oz FO N Go.

If A <FO(E) and A < GO('E), then by the previous lemma, there
isa a'> A such that EF a2 a and a; _ ,1* a. Conseqently,

a, Again by lemma 2,3.9, this

a(FAG)'—A'zF—A'Aa“A'a

last relation is possible only if (F & G)O(E) >), Since A can
be taken arbitrarily close to FO(Z) A GO(E), it follows that
(F a G)o('é') > FO(E{) A GO(E). a being a generic element, the proof is

complete,

Lema 2.3.11, Fo < 0 if and only if F < 0,

Proof, It is clear from the definition of Fo that if FF = 0,
then F_ < O, Conversely, F ¥ O implies that there is a number 4§ > O
such that F - § % 0, Then ap_ g # 2z so that EF- ; #2. Thus by

lemma 2,3.9, FO(EF_ ;) > 0. This shows that F_ <0 implies F< O.

Lemma 2.,3.,72, The image of L under the mapping F - Fo generates

(/1.

Proof., Suppose a # 2z, Then F€ L exists so that z # 'é.'F < a.
Now if Fo('c-:) > 0, then by lemma 2,3.9, ¢ < EF < a, At the same time
EF # z means that F £ 0, so by lemma 2,3.11, F, ¥ O. In other words,
there is a b # z such that FO(F) > 0. Necessarily b < a. We see

that the conditions are satisfied for the image of L to generate [L/I 1],

Lemna 2,3.13. The relation aj < ¢ holds if and only if EF ¢

2

is true. In particular, a; < EG implies G 2 F (I),



Proof, If ZF < ¢, then G € L exists satisfying z # a < ap
and ¢ a; = 2Z. From the first of these relations z # EF A EG =
ap ~ ay3 therefore, ap A a, #2, Also z =¢ —a'GZ T A a; * ap =
— _ ) o — -

(T A aF) nay =ap e # z. This contradiction shows ap< c. The
converse implication follows from the assumption that ap = ZF.

Pinally, the last assertion is a consequence of the fact that the

mapping F » 'a',F generates an isomorphism of L/I into Py
This completes the preparations for the main theorem:

Theorem 2,3.4. Let P be a complete Boolean algebra., Let L be

a translation lattice of normal lattice functions on P, Let
I = {Fe¢L|F<0}, Denote by R the sub-semi-lattice of P which
consists of all elements of the form ap = V{b|F(b) > 0}, where
F ¢ L, Then,

(1) there exists a sub-semi-lattice P‘I of P which is isomorphic
to [L/I] and such that there is a meet homomorphism ap > EF of R
onto a dense subset of P; satisfying aj < Z’F and z = z;

(2) if L generates P, the only P, satisfying (1) above is P
itself and EF = ap;

(3) conversely, if Py =P satisfies the conditions of (1), then
L generates Pj

(L) if P, satisfies (1), denote by @ the isomorphism of P,, onto
[ L/I] satisfying @(EF) = h'_[(F) (where h. denotes the natural homo-

I
morphism of L on L/I); let Fo be the restriction of F to P,, defined by
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FO(E) = _inf  sup_F(a) (a, ¢ ¢ Py, a € P),
c caacse¢

Then, FO(E) £ FF(@(E)) where Fj, is the image of F in the natural

representation F » F_ of L relative to I (see definition 2.3.L).

F

Proof. The conclusion (1) is an expression of lemma 2,3.8 and
theorem 2,3.3. To prove (2), notice that by lemma 2,3,7, if L
generates P, R is dense in P, If E'F ¥ ap, it follows that since R
is dense in P, a, exists satisfying 2z # a, < ;F and a, » ap = z,
Then'a-.FA EG =z and 2z ;éaG = ag ZFs EGAEF = 7, ‘This contra-
diction proves (2), The result (3) is an immediate consequence of
lemma 2.3.7.

The difficult parts of the proof of the conclusion (L) have
already been carried out. It is now largely a matter of assembling
the pieces of the proof,

First notice that the mapping F -» EF is a meet homomorphism of
L onto a dense subset of P, with the kernel I. By theorem 1.2.1,
it follows that the mapping @ defined by Q)(hI(F)) = EF is a uniquely
defined isomorphism of L/I onto a dense subset of P,. Hence it can
be extended to a unique isomorphism of [L/I] onto P, (theorem 1.2.L),

The lemmas 2.3.10, 2.3.11, and 2,3.712, in conjunction with
theorem 2.2,1, show that F - Fo is algebraically equivalent to the
natural homomorphism of L onto L//I. We can, therefore, define
unambiguously HI(F) = FO.

Denote I' = H(I). By corollary 2.3.2, if a ¢ /1],



(1) Fe(a) = Fp (97(2)),
o
where ' is determmined by the condition
(11) P11 (F)) = by, (B(F)) = by (F,).

Theorem 2.3,2 (with lemma 2,3,12) shows that
(1ii) Fp (8'(a)) =F (9"(0'(2))),
0
where (" is uniquely detemined by the requirement that
. = -

(iv) 0(hp,(F)) = V {be BIF (b) > 0},
Eere G/ again symbolizes that the join is taken in P1.

Relations (i) to (iv) show that for any a e [L/I],

Pp(a) = F (@"(0(a)))
where
1@t (n (F))) = V{F € BIF (B)> 0].
In order to complete the proof, we need only show that EF =
\}' {D e P1lFo(b) >0¢{e For then, defining ¢ = (@"-@').1 will give
m b -— - i Py in

Fp(B(8)) =Fo(3) and B(3p) = hy(F).

By lemma 2,3.9, FO(E) > 0 if and only if E%_ s 2 b for some
5 > 0, Hence \V {b ¢ P1|FO(E) =0} = v {EF_‘; | § >0}, However,
anV{aF_alwo} > \/ {aF_6H> 0 2 V{aF_&l §> 01 = ag,
where‘@’denotes the join operation in P, By lemma 2,3.13, it follows
that EF < Q/ {EF-é | § > 0o} < ;F' Consequently, ;’F —

\J/ {b ¢ P1IFO(E) > 0}, The proof is complete.

2.3.7. Final remarks.

Before closing this section on the representation of translation

lattices, it seems advisable to briefly summarize the results which
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have been obtained, Our interest has been centered on the problem
of representing translation lattices as sets of normal lattice
functions. It was shown that for large classes of function lattices
such a representation can be obtained. Indeed, corresponding to each
(closed and bounded) ideal of the translation lattice, there exists
an intrinsic homomorphism of the translation lattice onto a trans-
lation lattice of normal lattice functions., In the case where the
original translation lattice is divisible with respect to the given
ideal, the representation is a true one, that is, an isomorphism,
The uniqueness of this representation was studied in some detail,
with the relation between the intrinsically defined representation
and arbitrary representations being given special attention., While
all this work was of interest in itself, the main purpose of the
study was to lay the foundation for the next chapters,

In chapters three and four, the problem of representing trans-
lation lattices as sets of continuous functions on a compact
Hausdorff topological space will be our chief concern., Two main
problems will be studied. The first question is one of existence.
We might ask whether or not it is always possible to map an abstract
translation lattice of functions into the continuous functions on a
compact Hausdorff space. The answer is very easily found to be
affirmative, Indeed, it is known from section 2.2,3 that any trans-
lation lattice L is isomorphic to a translation lattice L' of bounded,

real-valued functions on a set S, If 5 is made into a topological
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space by teking all the subsets {x|f(x) > 0} and {x)f(x) < 0}
where £ € L', as a sub~basis for the open sets, the functions in L!
become continuous., By well known methods, it is then possible to
imbed S in a compact Hausdorff space in a way which preserves con-
tinuous functions.

It is not enough, usually, to know merely that a representation
exists. In general there will be many different representations,
It is desirable then to find a representation which is "minimal" in
some appropriate sense, Lhis is the subject of the second question
to be treated in the next two chapters. What requirements can be
imposed on a representation in order that it may be said to be
minimal? It is possible to formulate some general requirements which
should be satisfied by the topological space 5 over which the re-
presentation is being made, It is natural to require that S be a
uniquely determined compact Hausdorff space. Also it is to be hoped
that any other space over which the lattice can be represented will
bear some distinguished relationship to the minimal space S,

For the case where L is a distributive translation lattice
and where only representations which preserve the join operation are
considered, the problem of determining a minimal representative space
can be solved successfully by methods entirely different from the
one which will be presented in the following pages. It is possible
to prove the following result: If L is a distributive translation

lattice, then L can be imbedded in a uniquely determined (to isomorphism)
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Archimedean ordered, vector lattice L! with a strong unit. Moreover,
every lattice isomorphism of L into an Archimedean vector lattice V
can be extended to an isomorphism of Lt into V , Thus the study of
lattice isomorphisms of a distributive translation lattice is equi-
valent to the study of the isomorphisms of an Archimedean ordered
vector lattice with a strong unit., For such systems, the represent-
ation theory is well known (see for instance Kakutani [13] or
Kadison [14] ). The procedure, described above, for obtaining a
representation by continuous functions will actually give a space S
in which the points are separated by the functions of L', Here the
description "minimal®" can be made precise as follows: if L is
(lattice) isomorphic to a sub-(distributive) translation lattice of
C(S'), where 3' is compact Hausdorff, then S is homeomorphic to a
factor space of ST,

It is unfortunate that the methods used to prove this general
result cannot be applied to the problem of the representation of
arbitrary translation lattices. Unless it is assumed that both
the meet and the join operation are preserved, and that these
operations distribute between each other, then the techniques used
to prove the imbedding theorem will not work, For this reason, no
attempt will be made to present here the proof that a distributive
translation lattice can be uniquely imbedded in an Archimedean

vector lattice., Instead, we will exploit the results of chapter II
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to obtain a reasonable definition of a minimal representation, It
is shown that the space over which this representation is made is

uniquely determined up to homeomorphisms, and that it fits the

description "minimal" in a sense which will be explained later,
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SUMMARY OF CHAPTER III

Chapter three is devoted to the description of the topological
prerequisites for the representation theory to be developed in the
final chapter. The first section is a discussion of well known
theorems on point set topology. No more is included than will be
used later in the thesis, In the second section, a method of
constructing topological spaces from complete Boolean algebras is
presented., Again the policy of presenting only the absolute

essentials is followed,
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CHAPTER III -- TOPOLOGICAL FOUNDATIONS

3.1 Fundamental definitions,

In this section, the definitions and the notation which will be
used in chapter IV will be outlined. It will be assumed that the
reader already possesses g working knowledge of the fundamental ideas
of point set topology. References on topology from which the notation
and definitions used in this thesis are taken include Alexandroff and

Hopf (151 , Bohnenblust [ 7] , Bourbaki [16] and Lefschetz [17,

3.7.1 Definitions of a topological space,

Definition 3.71.1. A set S is called a topological space if a

distinguished family F  of subsets of S is defined satisfying:
(1) +the union of any sub-collection of & is in 3 3
(2) +the intersection of any finite sub-collection of ¥+ is
in & 3
(3) the empty set and the whole set S are in ¥ ;
The subsets of the distinguished family are called the open sets of
the space S,
A topology on a set can also be defined in terms of a neighbor-

hood system.

Definition 3.1.2, A family 3 of subsets of 5 is called a

neighborhood system (or a basis for the open sets) whenever:
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(1) x e A A~ B, where A and B are in ¥ s implies that C in 3
exists such that x € C € A ~ B;

(2) U{ala e 3t =5,

If 3 is a neighborhood system for a set 5; then S is a topo-
logical space when the open sebs are defined to be the unions of sets
in &+ .

For any topological space S, it is possible to define a closure
operation on all the subsets of S5 in the following way: For any sub-
set T of S, a point x is said to belong to the closure of T —- denoted

T -- in case every open set containing x also contains a point of T,
With this definition, it is easily verified that the closure postulates
are satisfied: (1) T 2 T; (2) T =T ; (3) T1- v TE =(Ty v Tz)-;
(L) @~ =@. The symbol @, here as in all that follows, denotes the
empty set. A closed se£ is defined bo be one which is identical with
its closure, It can then be proved that a set is closed if and only
if its complement is open, The topology of a space may also be
defined either in terms of its closure operation or in terms of its
collection of closed sets. A basis for the closed sets can be defined
in a way analogous to the neighborhood system in definition 3.7.2. It
is well known that all of these definitions of a topological space
are equivalent,

The dual of the concept of closure is important for our later
worke If T is an arbitrary subset of 5, the interior of T is defined

to be the set T° °, (Here, as always, the superscript c denotes the
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operation of taking the complement of the set relative to all of S,
Thus T° is the set consisting of all points of 5 which are not con-

tained in T.) For the purpose of abbreviation, T° will be written

for T°7®, Closely connected with the interior operation is T ° =T ° C,

A set T is open if and only if 7° = T, T is called a regular open set

if T %= Te An important property of the operation T - T7° is the

-0
2 &

sets T1 and T2. Another fact of importance is that the collection of

all regular open sets of a topological space forms a complete Boolean

identity T;o ~n Tl = (T1/\ 7,.)"° which is valid for every pair of open

algebra in which the (finite) meet operation is just set intersection.
Two of the most important concepts of topology are continuity

and homeomorphism,

Definition 3.1.3. A mapping from one topological space into

another is called continuous if the inverse image of every open set
is an open set. Two topological spaces are said to be homeomorphic
if there is a one-to-=one mapping of one of them onto the other which

is continuous ard such that its inverse is continuous,

An important special case of this definition is the continuous
mapping of a topological space into the real number system., Such a
mapping is called a real-valued continuous function, & more convenient
criterion for continuity of a real-valued function is the requirement
that all sets of the form {xif(x) >4} and {x|f(x)< A}l be open.

3.1.2, Additional properties of topological spaces.

It will be assumed that the reader is familiar with the standard
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separation axioms for a topological space, namely, To’ T1, T2
fe= Hausdorff), regular and normal. A form of separation which is not

so well knovn is that of semi-regularity (see Stone [18] ):

Definition 3,7.L. A topological space is called semi-regular if

1ts regular open sets form a basis for the topology of the space.
Most of the interest of chapter IV will be centered on that very

important class of spaces ~-~ the compact Hausdorff topological spaces.

Definition 3.1.5. A topological space S will be called compact

(bi-compact in the terminology of Alexandroff and Hopf), if it satis-
fies the condition that from every covering of the space by open sets
(a covering by open sets is a collection of open sets such that every
point of the space is contained in at least one open set of the
collection), a finite covering can be selected,

An alternative definition of a compact space is the following:
if a collection of closed sets of the space has the property that no
finite intersection of them is empty, then there is at least one
point of the space which is common to all the sets of the collection.

The properties of a compact space are in many ways quite simple.
Thus for example, every compact Hausdorff space satisfies all of the
separation axioms named above, At the same time, compact Hausdorff
spaces are sufficiently general that much of the study of (bognded)
real-valued functions on an arbitrary topological space can be
reduced to the study of functions on a compact Hausdorif space (as

Stone [18) and Ceeh [19] have shown),
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Another important concept which may not be too familiar is the

idea of a factor space of a topological space.

Definition 3.1.6, Let 3 be a topological space. Let S!' be a

set of disjoint closed subsets of S5 whose union contains S. Topolo-
gize S' by calling a collection of sets in S' open if its union in S
is an open set, Then S' is called a factor space of S,

An alternative characterization of a factor space of a compact
space can be given as follows: A Hausdorff space S' is a factor space
of the compact space S if and only if there is a continuous mapping
of S onto S',

Let S be a topological space. Let T be a subset of S, Then T
can be topologized by taking all the sets of the form A ~ T with A
open in S as the collection of open sets of T. The topology so
obtained is called the relative topology of T. An important property
of compact spaces is that every closed subset of a compact space is

compact in its relative topology.

3.2 The construction of topological spaces.

The relationship between a topological space and its lattice of
open (or dually, its closed) sets has been studied by several authors,
The pioneer work in this field is that of Stone [18] . Stone con-
sidered the topological space obtained in a certain way from a Boolean
algebra, <The points of this space are the minimal dual ideals of the

given Boolean algebra, The space is topologized by taking as a basis
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for the open (and closed) sets, those collections of ideals which con-
tain a given element of the Boolean algebra. The spaces obtained in
this way are precisely the zero-dimensional compact Hausdorff spaces ==
the so called Boolean spaces, Since Stone's original work, many
generalizations of the method have been studied, Of particular
importance is the work of Wallman [5]. Wallman generalized Stone's
ideas by constructing the space from a distributive lattice rather
than a Boolean algebra., For Wallman's space, the collection of sets

{ Xla € X} (where a is an element of the lattice and X is a minimal
dual ideal) are taken as a basis for the closed sets., The class of
spaces obtained in this way is just the set of all compact T1 spaces.
However, this is not the only possible way of generalizing the idea

of Stone, In the few pages that follow, a different means of con-
structing topological spaces from a given (complete) Boolean algebra
will be described, The technique has some advantages over the Wallman

construction and, of course, some disadvantages.

3.2.1 The construction of topological spaces.

The process which is to be used can be motivated as follows.
Consider a given To topological space, This system can be conceived
as a set of points together with a collection of distinguished subsets
called the open sets of the space. This collection of subsets enjoys
certain lattice properties: 1t is closed under finite intersections

and wnlimited unions; it contains the whole space of points and the
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empty set. From this point of view, the points of the space are
assumed to be things which are given in advance., The open sets are
certain collections of the points., The observation that the points
of a T0 space are distinguished by the open sets which contain them,
leads to another characterization of topological spaces. In this
characterization, the lattice of open sets (considered as an abstract
lattice) is the primitive notion. Points are then distinguished sub-
sets of this lattice —- in fact they are dual ideals of the lattice,
This is the basic idea behind the remainder of the work of this
chapter, The fundamental idea of Wallman's paper differs from this
only by replacing the open sebs containing a point by the closed sets
containing it, The difference between the resulting theories, however,

is remarkably great.

Proposition 3.2.,1, Let P be a semi-lattice with zero z, Let S

be any non-empty collection of non~trivial (not empty and not all of
P) dual ideals X. Call the distinct ideals of S its points and take
the sets of the form
S(a) = {X€ Slae X}

as open sets in 3. Then these sets constitute a basis for the open
sets of a T  topologization of S. Moreover, S(a) ~ S(b) =5(a » b)
and S(z) is the empty set.

The relation of this comception of topological spaces to the more

conventional one can be seen from the following:
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Proposition 3.2.2, Let S be a TO topological space and let P
be a basis for the open sets of S, Choose P so that it is closed
under set intersection and contains the empty set. Let 5% be the
collection of all dual ideals of the form

X = {a €Plxecai,
If St is topologized by taking the sets of the form
t = € €
St(a) {Xx St)a Xx\
as a basis P! for the open sets, then S! is a TO topological space
which is homeomorphic to S. Moreover, a - S(a) is a meet isomorphism

of P onto P!,

Proof of proposition 3,2.1, First it will be shown that

S(a) A 3(b) =S(aab) . If X¢€ S(a)n 3(b), thena ¢ Xandb € X,
Since X is a dual ideal, this means that a A b ¢ X and, therefore,
S(a) A 5(b) € 5(a ab), Ifa ab € X, thena € X and b € X so

X € 5(a) and X € 3(b). Thus S(a n b) = 5(a) » S(b). Also, S(z) is
empty, since no X € S is all of P. That is, no X contains z,

It follows immediabely that the first postulate for a neighbor-
hood system (see definition 3.1.2) is satisfied. The second postulate
is also satisfied since U {S(a)la € P}{ =83, every X € S being non-
enptye.

Finally S is a T space. For if X £7Y are in S, then either a

exists in X and not Y, or there is an element b in Y and not X, In

the first case X € S(a), Y ¢ S(a), and in the second Y € S(b) and X ¢ S(b).
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Proof of proposition 3.2.,2., It is a consequence of proposition

3.2.1 that 5t is a To topological space, lioreover, a- S'(a) is a
meet homomorphism of P onto P!, It is one-to-one since if a;f,b,
there is an x of S such that x € a and x ¢ b, Then Xx € S1(a) and
Xx:é St(b), Finally St is homeomorphic to S since x - X, is a one-

to—-one mapping of S onto 3' which carries the basis P onto the basis P!,

3.2.2, Spaces constructed from Boolean algebras.

In the development of the theory of the spaces which are defined
by proposition 3.2.1, it is convenient to impose a restriction on
the set P, Instead of using an arbitrary semi-~-lattice P, it will
always be assumed that P is a complete Boolean algebra. This has the
advantage of simplifying the study somewhat., Thus the statements of
the results are much simpler, and at the same time, there is little
loss of generality. Moreover, the previous work led quite naturally
to lattice functions constructed on complete Boolean algebras, This
suggests that Doolean algebras are the appropriate systems from which

to construct our topological spaces.

Leimma 3.2.7. Let P be a complete Boolean algebra. Let S be a
non-empty collection of non-trivial dual ideals of P, Topologize
S as in proposition 3.2,7. Then the mapping a -» S(a) of P onto the
basis for the open sets of 5 is an isomorphism if and only if the
following condition is satisfied:

R: if a ¢ P and a # z, there is an element X of S with a € X,
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Proof, By proposition 3.2.7, the mapping a - S(a) is a meet
homomorphism of P onto the set of S(a)'s, The condition R is just
an expression of the requirement that the kernel of this homo-
morphism be z, Hence, condition R is necessary for the mapping to

be one-to-one, Its sufficiency is a consequence of proposition 1,2.2,

Definition 3.2.1. Let P be a complete Boolean algebra. Let S

be a TO topological space which is constructed with non-trivial cdual
ideals X as its points; let the sets of the form S(a) ={X|a € X}
be a basis for the open sets of S (i.e., according to proposition
3.2.1); assume that the condition R, i.e., that S(a) is non-empty
whenever a # z is satisfied. Then S will be called a representative

space for P, The symbol S(P) will always denote such a space.

The justification for this terminology will be furnished by
theorem 3.2,1 below.

Shortly, a topological criterion that a space be homeomorphic
to an S(P) will be obtained, First, however, it is convenient to

consider the closure topology of a space S(P).

Lemma 3,2.2. Let P be a complete Boolean algebra and let S(P)
be a representative space for P (according to definition 3.2.1). Let
T be an arbitrary subset of S(P). Then the closure of T is given
by T” = {X € S(P)]Xx € UT} where UT = U{X|X ¢ T} (set

operations),
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Proof, If X ¢ UT, and if a € X, then a ¢ Y for some Y € T,
Thus every neighborhood of X contains a point of T so that X € T ,
Conversely, if X € T", every neighborhood of X contains a point of T.

Hence if a ¢ X, then Y in T exists so that a € ¥, that is, X € UT,

Corollary 3.2.1. X ¢ S(a)” if and only if a A b # z holds for

all b € X.

Proof. If a a b #z whenever b & X, then it follows from the
condition R that Y exists in S(P) satisfying a ~ b € Y, Since a € Y,
Y € S(a). Because b was chosen arbitrarily from X, it follows that
X € US(a), Conversely, if X € US(a) and b € X, there is a Y ¢ S(a)
so that b € Y, Since a and b are both in Y, and since ¥ is a non-
trivial dual ideal, it follows that a A b € Y and consequently
a ab #z, The proof is complete.

Now it is possible to give a topological characterization of the

S(P) spaces. One preliminary lemma is needed,

Lerma 3.2.3, Let P be a complete Boolean algebra. Let S(P)
be any representative space for P, Then the regular open sets of S(P)

are precisely those of the form S(a).

Proof, By corollary 3.2.1, S(a)”" ={ X € S(P)laa b#2z allb € X},
Thus 5(a) ¢ = { X ¢ S(P)|aanb=zsome b ¢ X{= { X ¢ S(P)lar ¢ X}.
Tt follows that S(a)™C = {X € S(P)|at ¢ X} ¢ ={X ¢ s(P)}(a?)! ¢ X} =

1 X e3(P)la ¢ X} =95(a)., Thus S(a) is a regular open set.



-116-

Conversely, suppose R is any regular open set of S(P). Then

by the definition of the topology of S(P), we can write
R=U{s(a)| ae &1,

A being a certain subset of P, Since P is a complete Boolean algebra,
it is possible to define b = V {aja € A}, The proof will be completed
by showing that R = S(b).

By lemma 3.2.2, X € R~ if and only if X € UR, Thus Y ¢ R™C if
and only if a_ ¢ Y exists so that a_ ¢ X for all X € R, Now it will
be shown that a, ¢ X holds for all X € R if and only if a, " b ==z
(where, of course, b = Viala ¢ A} ), Clearly, since b € X holds for
all X € Ry if a_a b =z, then 3.04 X for all X € R, Suppose a_~ b # Ze
Then a_a V{ala ¢ A} = V{ao,\ ala € A} #£2, so a € A exists satis-
fying a s a # z. Because of the condition R, it is possible to find
Xo € S(P) containing a  ~ a Then a € X and a_ ¢ Xb' From these,
X, € S(a) € R and a ¢ XO € R, This proves the assertion that
a ¢ X for al1l X € R if and only if a A b = 2,

The consequence of this is R°C = {Y € S(P)lao ~nb = 2z some
a ¢ Y} = {Y e S(P)|br ¢ Y}. Applying the result of the first para-
graph and using the fact that i is a regular open set gives R = ¢ =
{yesP)br ¢ Y} ={x ¢ S(P)lb¢ X} =5(b). This completes the

proof.

Theorem 3.,2,1, Let P be a complete Boolean algebra., Then the

class of all representative spaces for P is just the class of semi-

regular To topological spaces whose Boolean algebra of regular open
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sets is isomorphic to P,

Proof, By lemma 3.,2,3, if S(P) is a representative space for P,
its Boolean algebra of regular open sets is just the collection of
S(a)s These open sets form a basis for the open sets of S(P) by
definition, Therefore 3(P) is semi-regular. Also, by lemma 3.2.1,
this collection is isomorphic to P.

Conversely, if S is a semi-regulsr topological space whose
Boolean algebra of regular open sets is isomorphic to P, then by
proposition 3.2,2, S is homeomorphic to a space S(P), This completes

the proof,

30203, Final remarks,

It is not our intention to develop here the theory of represent-—
ative spaces of a Boolean algebra. In this chapter, hardly more than
the essential definitions have been presented. The following chapter
will add slightly to the theory, but no more will be included than is
needed for the development of the central subject of the thesis.
Before beginning the next chapter, there is one more result which
belongs to the generzl theory of representative spaces and which is
necessary for the work to follow, This would seem to be the correct

place to present it,

Lemma 3.2.4. Let P be a complete Boolean algebra and let S(P)
be a representative space for P, Then S(P) is a Hausdorff topological
space if and only if, any two distinct points X and Y in S(P), there

exist a and b in P such that a € X, b¢ Y and a » b =3z,
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Proof. If the conditions are satisfied, X € S(a), Y € S(b)

and S(a) ~ S(b) =5(z) is empty. Thus S(P) is a Hausdorff space.
Conversely, suppose 5(P) is a Hausdorff space and X #Y, Then,

since the sets S(a) form a basis for S(P), a and b exist in P

satisfying X € S(a), Y € S(b) and ¢ = 3(a) ~ S(b) = 3(a ~b), Con~

sequently a¢ X, b ¢ Y and a ~ b =z, This completes the proof,

Example 1, Let P be any complete Boolean algebra. We may ask
the question: 1is it always possible to find a representative space
S(P) for P? The answer is, of course, yes., e need merely take S(P)
to be the set of all principal ideals. However, it may still be asked
whether it is possible to obtain spaces with specific topological
characteristics., Is it always possible, for example, to find a
compact Hausdorff representative space for P? The answer is again
ves., The space ¥ (P) constructed from all minimal dual ideals of
P is a compact Hausdorff representative space for P, This fact is

a corollary of the next example,

Example 2, Let P be a complete Boolean algebra. Let P be a
sub=-algebra of P which is dense in P, The algebra P will not be
complete unless it coincides with P, Let S(P) be the set of all
dual ideals X which are such thet X ~ P is a minimel dual ideal in P,
In other words, S(P) is the set of all dual ideals of P generated by
a minimal dual ideal of P, lake S(P) into a topological space by
the method of definition 3.2.1. Then S(P) is a representative space

for P, For if b # 2z in P, there is an element 3 of Pwithz £a < Db



110

By the maximal principle, a minimal dual ideal X of P exists with
TE€X IfX= {a ¢ Pla>D some b ¢ X b, X €5(P), and a € X,

It is clear that the sets of the form S(a), where a € E,
constitute a basis for the open sets of S(P), We will show that these
are precisely open and closed sets of S(P), Indeed, X € S(a)” implies
a~b £z for all 5 ¢ X, But since X ~ P is minimal, it follows that
a € X, In other words, X € 5(a). This proves that S(a) is closed,
in immediate consequence is the fact that S(P) is a totally dis-
connected, Hausdorff space.

We have yet to prove that the only open and closed sets are
those of the form S(a), where a ¢ P. Every open and closed set is
regular open and hence of the form 3(a) for some a ¢ P, If a ¢ ;, it
is possible to construct a minimal dual ideal E of E with the property
that a » B #2 for all 5 € X, while b € a holds for no b € X To do
this, let Y= {cadlascandar=<dl, Clearly Y is closed
under meets., Since a € 5, Y does not contain z, ~ Hence it is possible
to extend ; to a minimal dual ideal i. It is easy to see that i has
the desired properties: aa b #2z andb £a for all b € X, Now if
X is the point of S(P) generated by'i, X € 5(a)”, while X ¢ S(a).
Thus S(a) is not open and closed, This completes the proof that the
sets S(a) are precisely the open and closed subsets of S(P), In
conclusion, it will be shown that S(P) is compact.

As we proved above, the sets of the form 5(a) constitute a basis

for the closed sets of S(P) as well as a basis for the open sets.
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Suppose Ot ={3(a)[a ¢ L} is a collection of sets of this form,
and that the sets of X have the finite intersection property.
Then 3 €A and 5 € & implies that a ~ 5 # z. By the maximal principle,
it is possible to find a minimal dual ideal X of P with X < &, Letting
£ be the dual ideal of P which is generated by‘z, X has the property
that if a3 € X, then & € X, Hence Xe N{35(2)|a ¢ K’}. Because the
sets of the form S(a) constitute a basis for the closed sets of S(P),
it follows that S(P) is compacte.

Sumnarizing these results: we have proved that S(P) is precisely

the Boolean space associated with the Boolean algebra P (see Stone [18] ).
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SUMMARY OF CHAPTER IV

This chapter deals with the problem of representing translation
lattices by means of continuous functions. Both the existence and
the uniqueness of such representations are discussed,

In section one, representation by means of translation lattices
of normal lower semi-continuous functions on a topological space is
considered, We show that this problem is completely equivalent to
the problem of representation by means of a translation lattice of
normal lattice functions, Thus, all of the theory which was developed
in the last section of the previous chapter can be transferred bodily
to the problem under consideration,

Section two of this chapter is devoted to the proof of the
existence of a representation by continuous functions for translation
lattices which are divisible with respect to a bounded closed ideal,
It is shown that any translation lattice L of normal lattice functions,
which is divisible with respect to the bounded closed ideal {F € L|F < 0},
can be represented as a translation lattice of continuous functions on a
compact Hausdorff topological space in such a way that: (1) the functions
of the representation separate the points of the space; (2) these
functions generate the topology of the space in the sense that the
sets of the form {x\f(x) > Ok f € L, are coinitial in the opensets of

the space. A uniqueness theorem is established for representations of
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this nature,
The final section of this chapter is a study of the relation
between the spaces S which are such that the lattices C(S) contain

a sub-semi-lattice isomorphic to a given translation lattice L.
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CHAPTER IV —— REPRESENTATION BY CONTINUOUS FUNCTIONS

4.1 Function lattices,

In this section the relation between normal lattice functions
and normal lower semi-continuous functions (see definition L4.1.1) on
a topological space will be studied, In particular, the results of
chapter II will be interpreted in terms of translation lattices of
point functions. It will be shown that the problem of representing a
translation lattice as a translation lattice of normal lower semi-
continuous functions is completely equivalent to the problem of
representation in terms of normal lattice functions. The following
two sections will then be devoted to the problem of representation by

means of continuous functions,.

Lo1.17s NormalL lower semi-continuous functions.

Let P be a complete Boolean algebra. In the last chapter, it was
shown that it is possible to construct from P a topological space
which is semi=-regular and has its Boolean algebra of regular open sets
isomorphic to P, Suppose S(P) is such a representative space for P,
Let £ be a bounded, real-valued, point function on 3(P), Then if we
define, for a ¢ B F(a) = inf{f(X)|X ¢ S(a)} = inf { £(X)la € X{ , F(a)
is evidently a lattice function. (It is a bounded, real-valued
function on P which satisfies F(a) < F(b) whenever a = b,) The

question then comes naturally to mind: which lattice functions on P
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are of this form? Without trying to answer this question, we will

prove a related result,

Proposition L.1.1. Let F be a normal lattice function on the

complete Boolean algebra P, If 3(P) is a representative space for P,
then there is a point function f on S(P) such that for all a ¢ P,

F(a) = inf { £f(X)la € X }, Conversely, suppose that F is a lattice
function with the property that if S(P) is any representative space

for P, there is a point function on S(P) such that F(a) = inf{f(X)|a ¢ X}

for all a € P, Then F is normal,

Proof, First suppose F is a normal lattice function. Let S(P)
be a representative space for P, Define the point function £ on S(P)
by £(X) =sup{F(a)|a € X}, We will show that F(a) = inf {£(X)la € X}
is true for all a € P,

If a € X, then £(X) > F(a), Hence F(a) < inf {f(X)lae X1},
Suppose inf { £(X)|a ¢ X} > F(a) + where § > 0, Then for

every X with a € X, b, exists satisfying by € X and F(bx) > F(a) + 4

X
(by the definition of f). Let b = V’{bXIa € X{. Thenb ¢ X for
all X € S(a) = { X € S(P)|]a € X§{. Thus S(2) € S(b) and, because
a -+ S(a) is an isomorphism, a < b, Hence F(a) = F(b) = infi~F(bX)]a ¢ xt
2 Fla) + 4 (by the normality of F), This impossibility shows that
F(a) 2 inf {f(X)la € X} . Thus the first assertion is proved,

To prove the converse, let A be an arbitrarily chosen non-empty

subset of P = {2z}, Put a =V{blb ¢ A}, It must be shown that

F(a) =inf { F(b)lb e A{.
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Define a representative space 3(P) for P in the following way:
S(P) is the collection of all minimal dual ideals which contain either
a' or an element b from A, Then S(P) is a representative space
according to the definition 3.2.7, To prove this it is necessary to
show that the condition R (every ¢ € P is contained in at least one X
of S(P)) is satisfied, If ¢ € P, then either c n a' Fz orca b £z
for some b € A, This means that there is a minimal dual ideal (by
the maximum principle) X which contains ca a' or c A b (some b € A),
Then ¢ € X and X € S(P), so the condition R is fulfilled,

By the assumption of the theorem, there is a function f on S(P)
such that F(c) =inf { £(X)]c ¢ X} holds for all ¢ ¢ P, But
F(a) =inf {f(X) ]| a ¢ X} = inf { £(X)|b ¢ X, some b ¢ A}, (since a € X
if and only if there is a b € A with b € X), This last term is equal
to inf {inf {£(X)/ b € X} |b€ A} =inf{ F(b)lb € A} . Since this is
what had to be shown, it follows that F is normal, The proof is
complete,

In the first part of this proof, more was demonstrated than was
stated in the proposition, The excess can be formulated as a

corollary,

Corollary L.1.17. Let F be a normal lattice function on the complete

Boolean algebra P, Let S(P) be an arbitrary representative space for P,
Then the point function f, defined by

£(X) = sup{F(a)la ¢ X},
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has the property that, for all a € P,

Fla) =inf {f(X)|la € X1,

The functions obtained from normal functions in the manner of
the corollary l4.1.1 by defining f£(X) = sup {F(a)|la ¢ X} are of a
rather special kind., We will now show that they are precisely the
normal lower semi-continuous functions of the representative space

S(P).

Definition L.1.1, Let S be a topological space. Let f be a

bounded real valued function on S. Define the functions £ and £,

by

f*(x) = lim f(y) =inf sup f(y) (N open)
Yy X x¢ NyeN

f,(x) = lim £(y) =swp inf £(y) (N open)
’ y-> x x€NyeN

The function f is called lower (upper) semi-continuous if i‘* =f
(if £ = ). The function will be called (see Dilworth [1] ) normal

lower (upper) semi=-continuous if (f*)_V. =f (4f (f_‘,c)* = £}

The properties of upper and lower semi-continuous functions are
sufficiently well known that they need not be enumerated here. We
note only that the following condition is equivalent to the definition
above for lower semi-continuity:
{xe€S|f(x) > A} is open for all A,
A dual characterization can be given for lower semi-continuous functions.

On the other hand, familiarity with normal lower semi-continuous functions
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cannot be assumed. We will, therefore, reproduce from [1] a
convenient characterization of normal functions in the set of lower
semi-continuous functions,

Before stating and proving this result, it will be helpful to

collect some of the well known properties of the lim and lim

operations, These are most easily stated in terms of the (3¢) operations,

(a) FErE £

(b) (Y =8, (L), =%, 3

(e¢) f 2 g implies £ > g% and f, 2 g3

() ()0, = (F5),, (£ = (£,) 3

¥

Of these identities, only the last needs proof, Notice (f-x-)“ =5,
so that ((£°),)" € (£ = £*, But again ((£%),)* = (£%),, so

(((£),)), = ((£9),), = (£),. The dual relation is proved similarly.

Lema l.1.,1, (Dilworth) Let f be a lower semi-continuous function
on a topological space S, Then f is normal if and only if the follow=
ing condition is satisfied:

If x € 5 and £f(x) < A , and if N is an arbitrary neighborhood of

X, then a non-empty open set A € N exists such that f(y) < A for

all y € A,
Proof, Suppose f is normal, x € 5, f(x) < A and N is a

neighborhood of x., Then inf £5(2) < sup inf i‘-x-(z) = (f*)*(x) = £(x)s
z €N x €N g eN
Thus z € N exists so that £f¥(z) <A, Consequently, there is an open

B containing z such that sup f(y) < A , Taking A =N ~B #0 gives
yeB



8-

the asserted condition,

Conversely, let the condition be satisfied for f, Let x € S5;
suppose N is a neighborhood of x; choose A =f(x) + & (where
¢ is an arbitrarily small positive number), Then by hypothesis a
non-empty open A € N exists such that sup f(y) < £f(x) + & , If
z € A, f*(z) <f(x) + 8 o Thus infy ;*%z) < f(x) + &§ , and since
N was arbitrarily chosen, (f*)*(xg ; ?(x) + & o Finally since 4
and x were arbitrary, (f*)*_é fo It is clear on the other hand that
f%(x) 2 f(x). Hence £ = £, But the () operations obviously
preserve order, so it follows that (f*)* z f, =1 (since £ is lower
semi-continuous). This completes the proof that (f*)* =i

The simplest examples of normal functions are the continuous
functions on a topological space., The fact that every continuous
function is normal, follows from the characterization of continuous

£

functions as those which satisfy =f = T e

Using the above characterization of normal lower semi-continuous
functions, it is possible to establish the relationship between normal

lattice functions and normal lower semi-continuous functions.

Theorem l.1.1. Let P be a complete Boolean algebra. Let S(P)

be an arbitrary representative space for P (i.e., a semi-regular
topological space which has its Boolean algebra of regular open sets
isomorphic %o P), Then the mapping F -» f, where

(a) £f(X) =sup { F(a)la€e X},
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is an isomorphism of the translation lattice of nomal lattice functions
on P onto the set of all normal lower semi-continuous functions on 3(P),
Moreover, if F » f by this mapping, then

(o) F(a) =inf { £()\a ¢ X} .

Proof, The proof will be carried out in three steps, First, it
will be shown that the function f, defined by (a), is normal lower
semi~continuous. Next, it will be proved that if f is any normal lower
semi-continuous function on S(P), and if F is defined from F by the
equation (b), then F is a normal lattice function and (a) is satisfied,
These two results, together with corollary L.1.1, show that F o f
defined by (a) is a one-to-one mapping of N(P) onto W(S(P))s The proof
is completed by showing that this mapping is also an isomorphism,

First, suppose that F is a normal lattice function. Define f by
(a)s If £(X) > A , there isan a € P (z # a) such that F(a) >4,
Then if Y € S(a), £(¥) > F(a) > X , Thus f is lower semi-continuous,
To prove that it is also normal, suppose now that £f(X) < A . Let 2a!
be such that £(X)< A ' < A , By the definition of f, F(a) < A,
for all a € X, Consider an a ¢ X, By proposition 2,3.17, b € P
exists with z #b <aand F(e¢) < At forallc <b., Suppose Y is a
point of S(b). If c € Y, F(c) < F(c Ab) < A, Therefore, £(Y) =
sup{F(c)lc€ Y} < X' <« X . By lemma 4. 1.1, this means that f is
normal,

Next suppose that f is a given normal lower semi-continuous
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function on 3(P). Let F be defined on P by the equation (b). Clearly
F is a lattice function, To prove that it is normal, the criterion of
proposition 2,3.1 will be used. Suppose then that F(a) < A , By the
definition of F, there is a point X of S(a) such that f(X) < A , By
the criterion of lemma L.1.1, there exists a non-empty open set N with
N <€ S(a) such that £(Y¥) < A for all Y ¢ N, Since 3(P) is a semi-
regular space, there is not loss of generality in assuming that N is a
regular open set., In other words, it may be supposed that N = S(b)
where z £b <a. Ifz £c<b, Flc) =infif(¥)lc e Y} < X, Thus
the hypothesis of proposition 2,3.71 is fulfilled and F is normal,

Moreover, for this F, f(X) = i‘*(X) = sup inf £(Y) =sup F(a).
a€ Xaedy a €X

Finally, we will show that the mapping F » f defined in (a) is a
homomorphism: sup { (F = X )(a)la¢ X} =sup {F(a)]a € X} =) =
f(X) « A « Thus translation is preserved. It is also clear that
sup { (F A G)(a)la € X} < min[sup{F(a)la ¢ X}, sup {G(a)la ¢ X}] .

The computation which completes the proof is the following:

sup {(Fa G)(a)]a ¢ XY =sup{F(a) » G(a)]a € X} =supiF(a~ b)arGlan b)
a€ 4 b €Xx} 2 sup{F(a) ~ G(b)|a €X, be X} =min[sup iF(a)la € X},
sup { G(b)1b € X}] o +he proof of the theorem is complete,

This theorem shows the equivalence between the problems of
representing a translation lattice by means of normal lattice functions
and by means of normal lower semi-continuous functions., Thus all of
the theorems obtained in the previous section can be immediately trans—

ferred to theorems on representations by normal lower semi-continuous
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functions, The results are collected in the next article.

Lel.2, Translation lattices of normal functions.,

In this article, we will study the representations of a translation
lattice by means of isomorphic translation lattices of normal lower
semi-continuous functions, As usual, I will denote a closed, bounded
ideal of L, In order to simplify the statements of the theorems, it

will be assumed throughout that L is divisible with respect to I.

Definition L.1.2, A set M of normal lower semi-continuous functions

on a topological space S will be said to generate the topology if the
sets of the form { x|f(x)>A} , for f ¢ Land ) real, are dense
(in the sense of definition 1.2.2) in the open sets of S.
Notice that if M is a translation lattice, it is only necessary
to consider sets of the form { x|f(x) > 0} in the above definition,
The concept introduced in definition L.1.2 can be correlated with
the idea expressed in definition 2.3.3 of a collection of normal
lattice functions on the Boolean algebra P having the property that they

generate P,

Lemma l.1.2. Let L be a translation lattice of normal lattice

functions on a complete Boolean algebra P, Let S(P) be an arbitrary
representative space for P, Map the functions f of L into normal
lower semi-continuous functions f on S(P) by the definition f(X) =
sup {F(a)la ¢ X}, Denote the image of this mapping by L'. Then L!

generates the topology of S(P) if and only if L generates P,
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Proof. Assume L generates the Boolean algebra P, Then if
® #S(a) € S(P), F € L exists together with b ¢ P such that z #b < a,
F(b)> 0 and F(c) < 0 if ¢ # a, Define £ € L' by £(X) = sup { F(b)lb € X{ .
Then if X € S(b), £(X) = F(b) > 0, If X ¢ 5(a), a ¢ X. Hence ¢4 a holds
for a1l ¢ ¢ X, Therefore f(X) = sup{F(e)lc ¢ X} £ supiF(c)lct 2t < O.
Conversely, suppose L' generates the topology of S(P), If a € P and
a # z, then there exists £ € L' satisfying ¢ # {X|£(X) > 0} € S(a).
Let F(b) =inf {£f(X)lb € X1 , so that £(X) =sup {F(b)lb ¢ X}, If X
is chosen so that f£(X) > O, then a € X and there exists b € X so that
F(a n b) 2 F(b) > 0, On the other hand, ¢ + a implies that X € S(c)
exists with X € 5(a). By the hypothesis on £, £f(X) € 0. Thus F(c) =
inf { £(X)lc ¢ X} < 0, This completes the proof,
The theorem 2.3.71 on the existence of a representation by means
of normal lattice functions can be immediately translated into a
theorem on the existence of a representation by means of normal lower

semi=continuous functions.

Theorem L.1.2, Let L be a translation lattice, Choose I to be

any closed bounded ideal of L such that L is divisible with respect
to I (if such an ideal exists), Let S([L/I]) be any representative
space for the complete Boolean algebra [L/I]., Then L is isomorphic
to a translation lattice L' of normal lower semi-continuous functions
on 3( [L/I]) such that L' generates the topology of S([L/I]) and,

under the mapping, the image of I is the set {fIf < 0},
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In a similar way, it is possible to translate theorem 2,3.2 on
the uniqueness of representations of translation lattices into the

language of normal functions,

Theorem l,1.3. Let L1 and L2 be translation lattices of normal
lower semi-continuous functions on the respective semi-regular To
spaces 81(P1) and SZ(PQ)’ P, and P2 being their Boolean algebras of
regular open sets., Suppose that L1 generates the topology of 31(PH)
and L2 generates the topology of SZ(PZ)' Finally, suppose there is
an isomorphic mapping ¢ of L, onto L1. Then there is an iso=-

2

morphism @ of P1 onto P2 such that

(v £)(X) = sup  inf  £(x)
Xeaxe @la)

where X € 81(P1), X € 32(P2) and a € Py,

Proof, This theorem is a direct consequence of theorem 2,3.2,
theorem Lo1.1 and lemma L.1.2.

The converse of this theorem can be stated as follows:

Proposition li.1.2. Let P be a complete Boolean algebra. Suppose

that ¢ is an automorphism of P onto itself, If 51(P) and 82(P) are
two representative spaces for P, then <& defined by

(o £)(X) = sup inf f£(x)
Xe 5(a) x¢ 82(®(a))

is an isomorphism of N(SZ(P)) onto N(S1(P)).

Proof, This is a corollary of theorem L.1.1,

Now consider a translation lattice of normal lower semi-continuous



“134=

functions which does not necessarily generate the topology of the
space, For this situation, the simple result of theorem 2,3.2 can
no longer be applied, It is necessary to look to theorem 2.3.L4 for
information, However, before this theorem can be used to the best
advantage, it is necessary to obtain some more information on the
problem of extension and restriction of lattice functions, and on
the relation between representative spaces of different Boolean

algebras,

Proposition L.1.3. Let P1 and P, be complete Boolean algebras,

2
Suppose that P1 is a sub=-semi lattice of P2 with thke same zero and

unit, Let S(Pz) be a representative space for P, (see definition 3.2.1),
Then if S(P1) is the collection of all ideals of the form X ~ P1, where
Xz S(Pz), and with a topology defined on this set according to
definition 3.2.1, S(P1) is a representative space for PH and there is a

continuous mapping of S(PZ) on S(P1).

Proof, It is clear that all the sets of the form X ~ P1 are non-
trivial dual ideals of Pﬁ (non-trivial since they always contain i).
Also, if @ ¢ Py, there is an X ¢ S(P,) such that a ¢ X, Hence
a€XAnP, Thus S(P1) is a representative space for P,

To prove that S(P1) is a continuous image of S(P2), observe that
in the mapping X X ~ Py, the inverse image of the set {X ~ p1|z €X ~P}
is {XJa ¢ X{ (whenever a € P,). Since the former sets constitute an

open basis for S(P1), while the latter are open in S(PZ)’ the mapping is
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continuous., The proof is complete.

The problem of continuous mappings of topological spaces will
be considered in more detail when we get to section three of the
present chapter,

Now consider the interpretation of propositions 2.3.5 and 2.3.6

on extension and restriction for normal lower semi-continuous functions.

Proposition l.1.L4, Let P, and P2 be complete Boolean algebras,

Let ¥ be a normal lattice function on P’l and let I'' denote its extension

to P2 (cefined by F'(a) = sup_ F(a)), Suppose S(Pz) is any
a<a
representative space for P2 and S(P1) is the continuous image of S(PZ)

consisting of all the ideals X ~ P,, where X € S(PZ)' If £ and f' are
the nomal lower semi-continuous functions associated with F and !

respectively, then £'(X) = £(X ~ P1) for all X ¢ S(Pz).

Proof, f'(X) =sup F'(a) = sup sup_F(a) =sup F(a) = (X~ Py)e

ae X a€Xfac<a a<X
This completes the proof,

In order to treat the restriction problem, it is necessary to
introduce a new notion, Assume as before that P’I and P2 are complete
Boolean algebras and that P,' is a sub-semi-lattice of P2 with the same
zero and unit., Let S(Pz) be a representative space for P2. Suppose
that £ is a bounded, real valued function on S(Pz). Define two new

functions £¥ and f+ by

£7(X) = inf  swp £(Y),
beXbevy

£ (X) = sup inf £(Y).
= PEXDEY
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Tt is an easy matter to verify that the operations () and ( +)
satisfy relations similar to those satisfied by the operations (*)

and (%). In particular;

+ x >
£ f f+
: : + +
f 2g implies f 2 g and f+ z g,
++ ot _
f =f and f++ = f+

(((f+)+)+)+ = (f+)+ and dually,
Wihat we are going to prove is that if S(P’l) is the continuous
image of S(Pz) defined by proposition 4,1.3, and if i‘o is the point
representative on S(P1) of the restriction F_ of F to Py, then

fo(X ~ P,') = ((f+)+)(X). For this proof, a simple lemma is needed,

Lemma l.1.3. Let P be a complete Boolean algebra; let S(P) be
a representative space for P; suppose F is a lattice function on P.
Then

sup sup F(a) =sup F(a).
X €35(b) ae X asbh

If F is a dual lattice function (i.e., F(a) = F(b) whenever a Z b),

then
inf inf F(a) = inf F(a).
X e¢S(b) aeX a<b
Proof, Suppose sup sup F(a) = X, Thenif 4> 0O,

Xe€35(b) a€¢X
X exists such that b € X, a € X and F(a) > 2 = 8 , Then F(a A b)

v

2Fa)> »= § , Thus supF(a) >2 = & , Since ¢ was arbi-
a<hb
trary, sup F(a) 2 2 .,
a<sh



~137=

If sup F(a) >x, c € b exists satisfying F(c¢) > A , 4lso
a<h
X € 5(P) exists with c ¢ X, Thenb € X, so sup sup F(a) 2
_ X €¢5(b) a€X 7
ZF(c) > A, This contradiction proves the first assertion, <ihe

dual result is obtained when F is replaced by -F.

Proposition L.1.5. Let P, and P, be complete Boolean algebras.
1

2

Let P1 be a sub-semi=lattice of P2 with the same zero and unit.

Suppose that S(P2) is a representative space for P2. Let S(P1) be
the continuous image of S(PZ) defined by X-»> X~ P,, Take F to be
any normal lattice function on P2; denote by Fo the restriction of

F to P1 (defined in proposition 2,3,6). Finally, let f and fo be the
point functions corresponding to F and Fo respectively, Then

£.(X ~By) = ((£7) )(X).

Proof, We compute: f+(X) = inf sup _ f£(Y) =
b ex Y €5(b)

inf sup sup F(a) = inf sup F(a), This last step is a
PexXxYes(b)acey Pe€Xa<h
consequence of lemma L.1.3. Hence inf _ f+(X) = inf _inf sup F(a)=
X € 5(2) XeS(a) be Xa<sh

inf sup F(a) =F (a). Here again lemma L.1,3 has been used. In
b<aac<h %
this case, it was applied to the dual lattice function sup F(a), con--
a <
sidered as a lattice function on P1.

Finally, for any Y € S(Pz) ((f+)+)(Y) = _sup _inf f+(X) =
_ a€YacX
_squ Fo(a) = fO(Y ~ P1). Thus the proof is complete,
a €

Corollary 1.2, If X ~P; =Y~ P, then ((f+)+)(X) = ((f+)+)(Y).

The extension (defined in proposition L.1.lL) of fo to S(Pz) is (f+)+.

Hence (f+)+ is a normal lower semi-continuous function on S(Pz).
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Corollary L.1.3. If Ft(a) = inf{ ((f+)+)(X)la ¢ X}, then

F1(3) = FO(E) for all a € Pys Hence F' defined only for elements
of P,! is a normal lattice function on P,.
Collecting all of these results together with theorem 2,3.L,

theorem L.1.1 and proposition L.1.,2, we can state

Theorem L.1.4. Let P be a complete Boolean algebra. Let L be

a translation lattice of nommal lower semi-continuous functions on a
representative S(P) of P, Suppose that L is divisible with respect
to the ideal {f ¢ LIf < 01},

Denote by & the class of all regular open sets of the form ap =
{x | £(x) > 0} ™ where £ ¢ L, Suppose P, is any sub-semi-lattice
of P which is isomorphic to [L/IJ s and that there is a mapping
ap+ 5,

afSafandzzz.

of R onto a dense sub-semi-lattice of P,, with the properties

Define for any unded real valued function f:

(£%)(X) = _inf  swp _ £(¥),
a € XY ¢ 5(a)

(f+}(X) = _sup inf _ £(Y).
a € XY ¢€ S(a)

Then the mapping f - (f+) " is an isomdrphism of L onto a sub-trans-
lation lattice of N(S(P)). If S(P,’) is the continuous image of S(P)
consisting of the points X ~ PJl (X ¢ 3(P)), then every (f+)+ is

uniquely defined on S(B,) by ((£7) (X~ P,) = ((£9) )(X). In this
way L maps isomorphically onto a subset of N(S(P1 )) which generates

the topology,
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Remark: This theorem does not have the same content as theorem
23+, The two theorems do have one thing in common however. They
show how it is possible to obtain from a translation lattice of point
functions (respectively, lattice functions) isomorphic translation
lattices of point functions (lattice functions) which generate the
topology (generate the Boolean algebra) over which they are defined,
The property of a translation lattice of normal upper semi-continuous
functions generating the topology is very important, For when this
condition is satisfied, there is a close relationship between the
lattice structure of the functions and the topological structure of
the space (as will be shown in the next section). When the functions
no longer generate the topology, this strong bond between lattice
structure and topological structure is broken, a fact which is amply
demonstrated by the difficulties which will be met in section three

below,

.2 Representation by continuous functions,

The final two sections of this thesis are devoted to the study
of translation lattices of continuous functions., In particular, the
~ relation between the topology of a space and the lattice structure of
translation lattices of continuous functions defined on the space will
be investigated, It has already been shown that every translation
lattice can be represented as a translation lattice of functions on a

set, It is an elementary matter to introduce a topology into the set
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so that the functions become continuous. finally, the well known
Stone~Yech compactification method shows that there is no loss in
assuming the resulting space to be a compact Hausdorff space. Thus
the problem of proving the existence of at least one continuous
representation is a very simple one. The trouble is that there may
be very many representations and the method of obtaining them, which
we have just outlined, does not give much insight into the relations
between these representations. (As indicated before, this statement
does not apply in the case of distributive translation lattices.
Indeed, for these, such elementary considerations do give very good
information, It might even be said that there is no real problem
until the assumption of distributivity is dropped.) By applying the
techniques developed above, we will be able to obtain a representa-
tion and a uniqueness theorem which will be more suitablé for study-
ing the relation between the representing spaces of a given trans—
lation lattice.

In order to simplify the statement of theorems, it will be assumed
in this section that the translation lattice L under consideration is
divisible with respect to one of its closed, bounded ideals, I, By
theorem 2,3.,71, we can then assume that L is a translation lattice of
normal lattice functions on a complete Boolean algebra P (isomorphic
to [L/I] ), and that L generates P, It will be shown that there is
a representative space S(P) for P which is compact Hausdorff, for

which the point representatives of L on S(P) are continuous, and which
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is such that these point representatives separate the points of S(P).

L.2.1, Continuity spaces,

Definition h.2,1. Let P be a complete Soolean algebra and let

L be a set of normal lattice functions on P. A representative space
for P, 5(P), will be called a continuity space for L if the point
representatives of the functions of L, that is, the functions f
defined by
£(X) =sup{F(a)la € X1}

are all continuous on S(P),

It is desirable to get a more usable characterization of the
contimiity spaces of a given set of normal lattice functions. For

this purpose, the following definition is introduced,

Definition L.2.,2, Let P be a complete Boolean algebra and let F

be a normal lattice function on P. Define the oscillation of F on an
element a of P by the formula:

0.(a) = sup F(b) - F(a).
B bsa

Proposition L4.2.,1. Let P be a complete Soolean algebra. wSuppose

F is a normal lattice function on P, Let 3(P) be a representative
space for P, Denote by £ the point function on S(P) associated with
the lattice function F, A necessary and sufficient condition that f
be continuous at a point X of S(P) is that for every 8 >0, there

is an element a € X such that OF(a) z 4§,

Proof, The function f is continuous at X if and only if there
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is a neighborhood of 4 in which the oscillation of f is less than any
pre-assigned positive & , Since the a € P constitute a basis for
the open sets, this means that there is an a of P with a ¢ X satis-
fying

sup f(Y) = inf f£(Y) < §
a€y aeX

This means (using lemma L.1.3) that

OF(a) = sup F(b) - F(a) <48,
b< a

The proof is complete,

Lh.2.2, The characteristic space.

In this article, P will, as usual, denote a complete Boolean
algebra. L will designate a set (not necessarily a translation lattice)
of normal lattice functions. Later we will assume that L generates P
(see definition 2.3.3). The existence of a continuity space with the
properties described at the end of the introduction to this section will
now be proved,

The first step is a proof of the existence of a certain kind of

dual ideals in P,

Definition lj.2.3: A dual ideal X will be said to satisfy the

condition C if it has the property that, for any § > 0, and for

any F € 1, there is an a ¢ X such that OF(a) <4d,

Proposition lj.2.2. Let Xbe a dual ideal of P which satisfies

the condition C, Then there is a dual ideal Z with X = Z (in the
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ordering of dual ideals; this means that Z is a subset of X) which
is maximal (in the dual ideal ordering) with respect to the property

of satisfying the condition C,

Proof. Let A, = sup {F(a)la € X}, Denote by @ the set

of a1l minimal dual ideals U which are such that sup {F(a)la ¢ U} = Ap
for a1l F ¢ L, It will be shown below that ¥  1is non-empty, +efine
Z = V&, It must be shown that X € Z and that Z is maximal satis-

fying the condition C, The proof will be carried out in several lemmas,

Lemma L.2,1., If ¥, and ¥, are any two dual ideals with ¥, < Y

2 29

and if Y2 satisfies the condition C, then

sup {F(a)la ¢ Tt =sup {F(a)la ¢ Y2} ’

forall F ¢ 1,
Proof, Since Y, is a subset of Y, sup {F(a)la € YZE < supi Fa)la ¢ Y,'}.

To reverse this inequality, notice that if &> 0, there is an a € Y2

such that OF(a) < & 3 that is, ¢ > F(b) - F(a) for all b < a, b # z,

IA

Thus if ¢ €Yy, F(e) €F(cnra)<F(a) + ¢ £ sup{F(a)lac Y2§+<S .
Hence, sup {F(c)lc ¢ Y17(€sup{F(a)\a 6Y2§+ § ., Since ¢ was

§, This completes the

arbitrary, sup {F(a)[a ¢ Y,li < sup {F(a)la ¢ Y2

proof of the lemma,

This result has two immediate consequences of importance, First,
it shows that the set O is not empty. For by the maximal
principle, it is always possible to find a minimal dual ideal U satis-
fying U € X, By the lemma sup {F(a)la ¢ U}l = sup {F(a)la € X} =

A gy for allF ¢ L,
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A second important consequence of lemma 4,2.71 is the fact that
X <2, For it implies that (2 {UlU < X} and in the lattice of
dual ideals of any Boolean algebra, V AU|U< X, U minimalf =X is
valid for any dual ideal X, (The proof of this fact is an elementary
application of the maximal principle.) Hence Z = V{Ujue ¢} =

V{itltgx}t =1,

Lemma L.2,2, Let U € ot , Then if 6> 0 and F € L, there is

ana.UéUsuchthatF(aU)z A, = &/2 and F(b) < Ap + § /2 for

F
all b= are

Proof, Suppose, first, that every a ¢ U contains a non-zero ba
such that F(ba) > A, + &8/2. Then V {byla€ U} has non-empty
intersection with every a € U and hence (since U is minimal), is ite

self contained in U, Moreover F( V {bala ¢ U}) = inf F(ba) z A, + 4/2.,

F
This is contrary to the fact that (by definition of 0t )

sup {F(a)la ¢ U} = A e Consequently some a, ¢ U is such that
F(b) < Ap + 8/2 for all b <a. |

Since sup {F(a)la ¢ U} = X there exists a; ¢ U such that

2

F
with all the properties claimed,

F(a,‘) > A, - §&/2, Putting ag = ag s ay gives an element of U

Notice that the above proof depended in no way on the ideal X

or the nature of the number AF beyond the fact that AF 2%

supl F(a)la ¢ U}, Hence,
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Corollary L.2,1. Every minimal dual ideal satisfies the condition

Lemmz 4.2.3, The ideal Z satisfies the condition C,

Proof, Corresponding to ¢ >0 and F e L, choose ay as in
lemma 4.2,2, Put a = V {aylU € ot} . Since a = ays it follows that
a €U for all U € ¢ , Hence a ¢ VO =7, To complete the proof,
it will suffice to show that OF(a) < §
Since F is normal, F(a) = infiF(aU)\U € o}z AF w § 8, If
z#£b <a, thenz #b=bra=Db a \IiaU\Uéfﬂiz Vb » ay\vea}
F(b A a.U) <

(AF+ §/2) -

1A

Thus b » ay # z for some U € o, Consequently F(Db)

= Ap+ 8 /2. Combining these inequalities, 0(a)

1A

(N, = §/2) = § . The proof is complete,

F
The preceding lemmas show that Z is a dual ideal containing X and
satisfying the condition C. The ideal Z is also maximal with these
properties. for if Y 2 Z satisfies the condition C, by lemma L.2.1,

sup {F(a)la € Y§ =sup{Ff(a)la €¢2f = A e Then by another application
of lemma L.2.,1, Y= V{Ulu=y§<V{vlue aa} =2, Consequently

Y = Z, Proposition L,2,2 is finally proved.

Proposition L.2.2 leads immediately to the main existence theoren

for continuity spaces,

Theorem L. 2.7, Let L be a set of normal lattice functions on

the complete Boolean algebra P. Suppose that L generates P, Then the
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space 3(P) of all dual ideals which are maximal satisfying condition
C constitutes a compact Hausdorff topological space which is a
representative space for P, The point functions on 3(P), correspond-
ing to the lattice functions F € L, have the properties of (1) being
continuous on S(P), (2) generating the topology of S(P), and (3)

separating the points of S(P),

Proof, There are several things to prove, [irst it must be
shown that S(P) is a representative space for P, In other words, it
is necessary to verify that every element a € P is contained in at
least one dual ideal X of S(P). Next it should be shown that every
F € L corresponds to a contimuous point function., But this fact is
an immediate consequence of proposition l.2.1 and the fact that every
X € 5(P) satisfies the condition C. The fact that the point functions
corresponding to the lattice functions of L generate the topology of
3(P) is an immediate consequence of lemma l.1.2., The next step of the
proof is to show that the point functions correspohding to L separate
the points of S(P), An immediate consequence of this, and the fact
that these functions are continuous, is that 3(P) is a Hausdorff
space. +he final and most difficult part of the theorem is the proof
that S(P) is a compact space,

Following this outline, we proceed to prove the theorem by means

of three lemmas,

Lenma L4,2,l4, For any a € P, there is an X € S(P) such that a € X,
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Proof, Since “ generates P, I in L exists, together with b ¢ P
with z #b < a such that F(b) = 0 and F(¢)> O only if ¢ < a, Let U
be a minimal dual ideal containing b. By corollary L4.2.1, U satisfies
condition C, Hence X = U exists with X maximal satisfying condition
C, that is, X € 3(P), By leamm 4,2.1 sup {F(c)lc ¢ X{=sup{F(c)lc ¢ U}
ZF(b) > 0, Hence c ¢ X exists with F(¢) > O, This implies ¢ < a, so

therefore a € X, This is what was to be proved,

Lemna l,2.5, The point functions f, defined by
£f(X) = sup {F(a)la € X{,
where F € L, separate the points of S(P), That is, if X #Y in 3(P),

there is an f of this form such that £(X) # £(¥).

Proof, Suppose that X #Y in S(P). By the maximality of X
and ¥, it follows that X v Y fails to satisfy the condition C, Hence
F €Land &>0 exist so thatOF(c) > 4 for allc ¢ X v Y,

Now since both X and Y satisfy the condition C, it is possible

to find a € X and b ¢ Y so that OF(a) < §/3 and OF(b) < §/3. From

1A

these, it follows that (F(a) - £(X)I §/3 and |F(b) - £(T)) < & /3,
For, f(x) = sup{F(c)lec € X} = F(a) and £(X) = sup {F(c)lc ¢ X} <
<swpiFlanc)lce X} ¢ F(a) + §/3, A similar argument proves
the other inequality.

Now a v b € X v ¥, so by hypothesis OF(a v b) > &, In other

words, a non-zero ¢ exists with ¢< a v b and F(c) = F(a v b) >¢ ,

The relation c < a v b implies that ¢ = (aa ¢)v (b ~ ¢c). Thus, at
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least one of a a ¢, b a ¢ is not z and (by normality) one of
F(a ac) =F(c), F(b ~ ¢c) =7(c) holds == say F(c) =F(a a ¢). Hence
F(a a ¢) = min{F(a), F(b)} =F(c) - F(av b) > § . But since
OF(a) < §/3, F(aac) - F(a)< & /3, and this relation implies
Flaac)-F(b)> & , Also § <F(aanc)-Fb) < Fla) + /3 =
F(b), Transposing, F(a) - F(b) > 2(¢ /3).
Combining the results of the last two paragraphs gives
1£(X) = £(X)1 2 |F(a) = F(b)l = IF(a) - £(X)} - |F(b) - £(X)| > 2(§/3) -
d /3~ 6/3 =0. This inequality shows that the points X and Y are

separated and the proof is complete.

Corollary L.2.2. S(P) is a Hausdorff topological space.

The proof of theorem L.2,1 is completed by
Lemma l. 2.6, The space S(P) is compact.

Proof, Let J = {T} De an arbitrarily chosen collection of
closed subsets of 5(P) with the finite intersection property: every
finite coliection of sets in 3 has non-empty intersection, The
compactness of S(P) will follow if it is shown that ™ J is not
empty.

The first thing to notice is that no loss in generality is
incurred by assuming that J is a minimal dual ideal of closed
subsets of S(P). For, by the maximal principle, it is always possible
to find a collection J' of closed subsets of S(P) which contains

and is maximal with respect to the finite intersection property.
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Then if N J ' is non-empty, the same is surely true for N 7,
Hence, hereafter it will be assumed that 7 is a minimal dual
ideal,

(1), Let ¥ € L and denote by f the point function associated
with £, Put A =sup inf f(X). Choose ¢ > 0, We will show

Ted XeT

that for all T ¢ 3 , an element a,

ape ULXIX€TH, X - §/b<Plag) < A+ & /hand Oyag)< 4 /b,

of P can be found satisfying

To prove this, notice that To exists satisfying A = inf { £(X)[X ¢ To’s
>X -4/h. Then, for any T € J , X 2 infsf(x)!xeTnTo}> & »
§ /. Hence X + &/4 >f(X)> A =48/l for some X € T, As a con-
sequence, ay in P exists with a; ¢ X € U{YlY ¢ T} and such that

T
F(aT) > X - &/, Since f is continuous, it is possible to pick a. so

T
that Op(ap) < §/L. finally X + &/4 > £(X) implies that Fag) <
< M + §/us This proves the assertion (1).

(2). Corresponding to any ¥ ¢ L and § > O, there is an element
a of P such that a ¢ N{(VUT)| T ¢ J} and Op(a) < & .

To see this, choose an (corresponding to each T € J ) so that the
conditions of (1) are satisfied. Put a = V {aTIT € J} , ‘hen,
since F is normal, A + 46 /L 2 F(a)z A~ & /4 > A - & /2, If

z #b< a, then b aa, # 2z holds for some T € J , <‘his means that

F(b) < F(b a agp) < Flag) + /L <A + §/2. Thus OF(a) < 8,

Findlly 2 € UT = {X|X € T} forallT ¢ ¥ ., Consequently a €

N{tuT)it € 3t , Thus (2) is proved,
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(3)e For eachF € L and § >0, choose N (axiom of choice)
2
S0 that 3 UT)IT ¢ 3} and O < § o Let Y be the
aF’s N{(ur) ! F(a‘F,J )
dual ideal generated by the set of all ap g » that is,
3

Y:{beP\b?a,lA ...Aang,wheretheaj are of the form a;

9
Then Y satisfies the condition Cand Y € N{(UTIT)]T ¢ I} , 1In
particular, Y is non-trivial,

The fact that Y satisfies the condition C is evident since all
of the ap g are in Y, The relation Y € N {( U T)IT ¢ 3} is an
immediate consequence of the following fact: If aj, for J = 1 geseytly
are elements of the form a’F,é s then a; a o0 n a ¢ N{(u T)IT€ 1},

Indeed, suppose a1 aese A B ¢ UT for some T ¢ J , Denoting
S(aj) ={X € s(p) age X t, this implies that 5(a;) m ese ~S(a ) A T
is empty. Hence T < S(a1)cu Riw S(an)c. Since J  is adual
ideal, this is possible only if S(a,l)cu —_— S(an)c e 3, Then 7,
being minimal, must be prime, so, for some index j, S(aj)c ¢ J . This
leads to the following contradiction: axj e N {(VU T)T ¢ Je U(S(aj)c),
contrary to the obvious fact that if X € S(aj)c, then 3, ¢ X. These con-
siderations constitute the proof of (3),

Let Y be the ideal constructed in (3)., By p;f'oposi'tion be2.2, 3%
is possible to find Z ¢ S(P) satisfying Z 2 Y. Then, in terms of set
inclusions, Z €Y € N{(UT)IT € I} ., By the criterion of lemma
3.2,2, this means that Z € T~ =T for all T ¢ J, Thus, we have
reached our ultimate goal: N 1 is not empty. This completes the

proof that 3(P) is compact, and also the proof of theorem L4.2.1,
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Corollary L.2.3, Let L be an abstract translation lattice.

Suppose I is a bounded, closed ideal of L, and that L is divisible
with respect to I, Then there is an isomorphism of L onto a set L!

of continuous, real-valued functions on a compact Hausdorff topo-
logical space S such that : (1) the image of I under this isomorphism
is just the set of those functions of L' which are less than or equal
to the zero function on S; (2) L' generates the topology of S; (3)

the functions of L' separate the points of S5,

Definition L.2.l4. Let L be a set of normal lattice functions

on the complete Boolean algebra P, Suppose that L generates P. Then
the space of all dual ideals which are maximal satisfying condition C
will be called the characteristic space of L and will be denoted SL(P).
The same notation and terminology will be applied to describe the
space constructed from an abstract translation lattice L by means of
theorems 2.,3.1 and l.2,1. (Of course this construction depends on

the choice of an ideal I.)

L.2,2, Uniqueness of the characteristic space.

In this article, a uniqueness theorem for the characteristic space
will be proved., Also, we will consider the relationship between the
characteristic space of a collection L of normal lattice functions and
other continuity spaces of L which are constructed from the same

Boolean algebra.

Theorem L.2.2, Let P be a complete Boolean algebra, Suppose L
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is a set of normal lattice functions on P, Assume that L generates
P. Then if S(P) is any compact Hausdorff continuity space for L, and
if SL(P) is the characteristic space for L, SL(P) is homeomorphic to
a factor space of S(P)., If the points of S(P) are separated by the
point functions corresponding to the lattice functions of L, then

S(P) is homeomorphic to SL(P).

Proof, Let X' ¢ S(P), Then X' satisfies condition C (propo-
sition 4.2,1), so by proposition L.2,2, there is an ideal X of SL(P)
such that X 2 X', This X is unique. For suppose Y is a point of
SL(P) distinct from X, Since SL(P) is a Hausdorff space, a € X and
b ¢ Y exist such that a A b =2z, Hence Y # X', because otherwise
z =a+ b €X', Denote by P(X') the unique X € SL(P) satisfying X = X1,
Also, for what follows, denote SL(a) = {X € SL(P)\ae X} and
8(a) = {X1 € 5(P)|a € X1},

(1). If sL(b)" ESL(a), then 0(5(b)) < 5; (a).

This preliminary result is proved by reasoning to a contradiction.
Suppose X' € S(b) and a ¢ #(X'). Then @(X') ¢ SL(b)-, so by corollary
3.2,1, c € P(X') exists satisfying b » ¢ =2z, But c € P(X') € X!
and b € X' together imply an impossibility: 2z =Db a ¢ € X',

(2). Using (1), we can show that the mapping ¢ is continuous,

It suffices to prove that Q-n(SL(a)) is open for all a € P, Let
X! ¢ @'J(SL(a)). Then a ¢ P(X'), Since SL(P) is a regular topological
space, it is possible to pick b ¢ P so that @(X') ¢ SL(b) e,SL(b)_ <

€5 (a). Then 0(S(b)) S (a), so Xt € 5(b) € 07 (s (a)). Tms the
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set @-1(SL(a)) is open,

(3)e A second consequence of (1) is the fact that B(S(P)) is
dense in 5. (P). Indeed, if a ¢ P, pick b # 2 so that 5, ()" < s (a).
Then ¢(3(b)) < SL(a) and B(S(b)) is not empty. Hence SL(a),« p(8(P))
is not empty and the assertion follows.

From this it is immediate that @(S(P)) = SL(P). For ¢(5(P)),
being the continuous image of a compact space, is closed, and therefore,
B(3(P)) = SL(P). This proves the first assertion of the theorem. To
complete the proof, we will show that when the point functions obtained
from L generate the topology of S(P), #(X!) = X',

(4)e If G(X') # X', there is a minimal dual ideal U satisfying
U$X and U v X! < @(X') (since in a Boolean algebra, every dual ideal
is the join of minimal dual ideals), By the compactness of S(P),
there is a point Y€ N{35(a)"la ¢ Ut , If b €Y', b ~a # 2 for all
a € U (by corollary 3.2.1). Hence, since U is minimal, b ¢ U, Because
b was an arbitrary element of Y', it follows that Y' =2 U, By lemma
b.2.1, sup {F(a)la ¢ X'} = sup {F(a))a e B(X1)} = éup §F(a)la ¢ U} =
sup { F(a)la € Y1} for any F € L, Then the hypothesis that the
points of S(P) are separated by the point functions generated from L
implies that X' =Yt' =z U, But this contradicts the original choice

of U and proves that O(X') = X', The proof of the theorem is complete.
An immediate consequence of theorems .2.2 and L.1.3 is

Corollary L.2,li, Let L be an abstract translation lattice.
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Suppose L is isomorphic to the set L' of continuous functions on a
compact Hausdorff space S. Suppose L' generates the topology and
separates the points of 5., Then S is homeomorphic to the character-
istic space of L,

This corollary gives a method for determining the characteristic

spaces of many specific examples of translation lattices.

Example 1, Let'L be the translation lattice C(S), the continuous
functions on a completely regular topological space. The character-
istic space is easily determined. It is precisely the Stone-Cech
compactification of S, For (see Cech [19] ) there is an isomorphic
(translation and lattice preserving) mapping of C(S) onto the set of

all continuous functions on the compactification,

Ixample 2, We can now prove Dilworth's theorem on the representa-
tion of N(S) =- the normal lower semi-continuous functions on a semi=-
regular T -space. By theorem Lhe1.1, N(S) is (translation lattice)
isomorphic to the set of all normal lattice functions on the complete
Boolean algebra P of regular open sets of S. Let ¥ (P) be the space
defined by the set of all minimal dual ideals of P, By example 1 of
chapter three, ¥ (P) is a compact Hausdorff space., By corollary L.2.1,
every normal lattice function on P has a continuous point function
representative on " (P). Conversely, every continuous function on

¥ (P) is normal, lower semi-continuous and hence corresponds to some

normal lattice function. We have therefore proved the theorem of
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Dilworth L11] : the translation lattice N(S) is isomorphic to C( ¥ (P)),
the set of all continuous functions on the Boolean space associated

with the Boolean aigebra of regular open sets of 53,

L.3 The characteristic space.

In this section, the relationship between an arbitrary continuity
space of a translation lattice L and the characteristic space of L
will be studied, Corollary L.2.L shows that if a translation lattice
L of continuous functions on a compact Hausdorff space S generates
the topology, then the characteristic space of L is homeomorphic to
a factor space of 3. Now the requirement that L generate the topology
will be weakened to the assumption that L be divisible with respect to
the ideal I = {f € L|f € 0} . What we will prove is that, under these
conditions, the characteristic space is homeomorphic to a factor space
of a closed sub=space of S,

e know already from theorems 2.3.. and L.1.1 that [L/I] is iso-
morphic to a sub-semi-lattice of the 3oolean aigebra of regular open
sets of 5, This fact leads to a consideration of the relationship
between representative spaces for Boolean algebras P1 and P2 with P1
a sub-semi-lattice of PZ’ This is the situation which will be studied
in the first article below, The final article will oe devoted to the

proof of the result mentioned above,

le3e7, Projections g£ topological spaces.

The following definition is patterned after one of Stone's (181 :
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Definition L.3.1. Let 51 and 8, be Hausdorff topological spaces.

A mapping x —» Tx which associates with every x € S,l a closed non-

empty subset Tx of S, is called a (cloSed) projection of S1 into 32

2
if it has the properties:

(a) if T, is a closed subset of S,, then {x ¢ 81\T2 = £0}
is closed in 31;

(b) if T1 is a closed subset of S,, then \J{Tx\x ¢ Ty} is closed
in 520

4 projection is called simple if T_~ Ty = () whenever x # v,
An immediate consequence of this definition is the followings:

Proposition L.3.1. If x-» Tx is a closed simple projection of 81

into 82, then 81 is homeomorphic to a factor space of a closed sub-
space of 52. Conversely, if 81 is a factor space of a closed sub-space
of 82, and if ) denotes the natural mapping of this sub-space onto 31,

then x —» ®-1(x) defines a simple projection of 51 into SZ'

This proposition explains our interest in projections. <The reason
for considering projections, rather than directly studying factor
spaces of a closed sub-space, is the following: it will be shown in
this article that if P,I (a complete Boolean algebra) is a sub-semi-

lattice of the complete Boolean algebra P,, and if S(P1), S(Pz) are

2
respectively compact Hausdorff representative spaces for P1 and P2,
then there is a projection of S(P1) into S(P2). In this way, it is

possible to reduce the proof of the main theorem to the verification
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that a certain projection is simple, This will be done in the final

article,

Let P1 and P2 be complete Boolean algebras with P, < P2 (i.e.,

P1 is a sub-semi-lattice of F,, both having the same zero and unit

2
element), As before, joins in P1 and P2 will be distinguished by
the different symbols 6’ and 6; respectively, Also, a bar will be
placed over elements of P1 in order to distinguish them from those of
P2.

Denote by Q the set of all elements of the form & A, where A

is an arbitrary subset of P1.

Lemma L.3.1. The set Q is a complete, completely distributive

sub=~lattice of P2.

Proof, This is obvious,

Suppose now that 51(P1) and 82(P2) are respectively representa-
tive spaces for P1 and P2. Assume also that they are both compact
Hausdorff spaces.

Define, for a € Py, S,(a) = {)% ¢ o1(P1)la ¢ 4} . Now extend
this definition to elements of Q by setting S1(b) — L}{'S1(§)|§ £bi,
whenever b ¢ Q. Then 51(b) is an open set of 51(P1). It is clear that
the ollowing holds:

81(b) m 51((:) = 51(b o C),

for all b, ¢ € Q,

Lemna L.3.2, Let b € Q and X, € 31(131). Then X; ¢ 81(b)" if and
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only if b » a # z for all a € Xy

Proof, Suppose a A b #z for all a ¢ 1{1. *hen, for any a € X,,,
there exists D < b such that a ~ b # z. Let ¥, be an element of
31(1:1) with 2 o D €Y. lhen © ¢ Ty, s0 Y, € 81(’6) < S1(b); also
U (8,(b)). Thus

N

a ¢ T, S0 a eU (54(b)). Since a was arbitrary, X
by lemma 3.2.2, X, € S, (B)
Conversely, if b a a = z for some a ¢ X, then a4¢ U (S’l (b))s For

if a ¢ T, € 5,(b), b < b exists with b € Y,, and this means z£a b <

<3 ab, Hence X,I ¢ S,' (b)~,

Lemma l.3.3. Let a and b be elements of Q, Then (in the topology
of 54 (P‘I )):

5,(2)™° s1(‘b)'° =5,(a~ 1),

Proof, The sets S,l(a) and S, (b) are open in S’I(P’l ). Consequently
5,(2)° ~ 5,(0)™° = (5;(a) ~» 5;(8))™° =5,(a n ). This is what was
to be proved,

Denote Sz(a) = {X2 ¢ 82(P2)l a ¢ Xz’g whenever a ¢ P, For the
applications below, a will always be an element of Q.

Now suppose that W is a mapping from Q into the closed subsets of
82(P2) with the properties:

(a) if z #a, then ® #W(a) < Sz(a)-

“we

(b) W(a) € W(b) whenever a £ b,
An example of a mapping satisfying these conditions is a - Sz(a)-.

However, it will turn out that the choice of W is rather delicate,
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and that this choice is not the one which gives us the desired

results, for the present , the mapping W can be left unspecified.

Lanma l.3.4. The mapping X >N {w(a)la ¢ Q, X e S,l(a)-o t

associates with every X1 ¢ S‘I (P‘l) a non-empty, closed subset of SZ(PQ)'

g -0
Proof, If 2 yee0,2, are elements of Q with X, € 81(aj) for
j=1,.00,n, then by lemma L,3.3, X‘l € S1(a1 A see A an)"o. Hence,
Ay A essna, # 2. Lhus ¢ ;éW(a,, A ose N an) < W(a1)n vee N W(an).

Lemma l.3.4 then follows from the assumed compactness of 52(P2).

Denote the set M {W(a)la € Q, X, € 31(a)'° o= It will

now be shown that X’I - TX1 is a projection of b’I(P'I) into 52(P2)'
Lemma l.3.5, Suppose T, is a closed subset of 82(P2). Then the

set {x1 ¢ 31(131)[ TX1~ T, £0 1 is closed in 8,(Py).

Proof, Suppose ’I‘,{‘l ~ T, =@, This means N{W(a) ~ T2\a € Q,

%, ¢ 81(a)-0} =0, so, by compactness, 8y 500053, oxist in Q such that

T 1 - n =0 .

\J(a,l)/\ _— /\.J(an)r\ T2 ¢ and X,,G ﬂj 1 S,,(aj) . But if Y, e
n =0 1 -~ = (

N3 =1 81(aj) , then TY1n T, € &fgaq)a ves A W(an) T, =0.

Hence the set |{ X €8 (P, )T, ~T,=0}1is open, and the lemma

7™ X,' 2 o

is proved,

Lemma lj,3.6, Suppose T1 is a closed subset of 51 (P,] )o Then the

5

Proof, Suppose the point Y2 of S2(P

set \U{T, | X1 ¢ T,,} is closed in SZ(PZ)'

2) is not in U‘LTX|X1 € T,‘}.

Then if X,, £ T1, there exists a € Q such that X, € S,l(a)- and
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Y2 ¢ W(a). By compactness, pick agseeesd such that every K1 € T1
satisfies Xﬂ € 51(aj)—o for some j, and such that Y2 ¢ W(aj) for all
jo Then U {Tx1l}c1 € T, ¢ W(ay)v eoo vW(a) and T, ¢ W) w
quX% € T1§ 3¢

v ...\J'W(az). Thus (since Y, was arbitrary) (U {T

2

is open, and the lemma follows,

Sumnmarizing the result of these lemmas, we can writes:

Proposition 4,3.2, The mapping X1-+ TX is a projection of 81(P1)
1
into 52(P2). The projection is simple if and only if, for any two
distinct points X1 and Y1 of S1(P1), b and ¢ in Q exist satisfying

X, €5,(5)7°, ¥, €5,(c)™°, while W(b) A W(e) = 0.

Proof, The only assertion of the proposition which needs proving

is the necessity of the simplicity criterion, The proof is a routine
compactness argument, Ve omit it, since no use will be made of the

result in the following pages.

Lie3.2., The main theoren,

In this article it will be shown that by suitably choosing the
mapping W, the projection defined above will be simple. All the
notation of the above article will be continued,

In the work leading up to, and including theorem L.3.1, a
uniform set of hypotheses will be used. Ifor convenience, these will

be assembled before starting the proofs.

Hypotheses: assume that

(a) there is given a translation lattice L of normal lattice
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functions on a complete Poolean algebra P2; denote by I the ideal
{reilr < 0};

(b) the collection of all elements in P, of the form aj =
v{alF(a) > 0} is denoted by R; there is a complete Boolean algebra
P, which is a sub-semi-lattice of P, (with the same zero and unit),
which is isomorphic to [ L/I) s and which is such that there is a homo-

morphism ap > E% of R onto a dense subset of P, with the properties

2
z =2z and ap < ap;

(¢) the set of all restrictions of the functions of L to P1,
defined by

FJE)ﬁ}Mi sup_ F(a),
cTaact<ec

is denoted by L_; by theorem 2 3.4, L is isomorphic to L//1;

(d) assume Sz(Pz) is any compact Hausdorff continuity space for
L, and that S1(P1) is the characteristic space SL (P1) for L_; in
o

particular, the point functions corresponding to LO are continuous,

generate the topology and separate the points of S1(FH).

Remark: Tt should be noticed that we have not assumed L to be
divisible with respect to the idceal 1.

Before defining W, it is convenient to prove two preliminary
results. For these lemmas, let F € L and FO be the restriction of F
to P1. Denote by f and fo the (continuous) point functions corre-

sponding to I and Fo respectively.

Lewna L3, 7. If fO(X1) < A , then there exists b € Q such that
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X € 5 (b)” and Sz(b) iy, ¢ SZ(P2)]f(Y2) < A,

2
Proof, By the definition of f , fo(X1) < 2 implies that

FO(E) < ) for some a ¢ Ly Then B‘g € a exists so that

sup {F(a)lat b=} <A, Letb= ¥ {Bl2¢X}. ThenbeQand

baza =2z for all a ¢ )(1. Hence X1 € 81(b)—.

If b ¢ T,, then Y, € LU{sz('ﬁa_)\a" ¢ %) ] 7. For otherwise,

2’
¢ € Y, exists satisfying c¢U[U{82(E§)j§ ¢ Xll}] ’ This means
c A '15.5 =z for all 3 ¢ X. But then ¢ ~ b =3z, contrary tob ¢ ¥,.
By the assumed continuity of f, f(YZ) < sup f<X2)\-5'a € X,, some a € X’l}
< sup {F(a)laz Bg: some a € Xt . Thus Sz(b) c

4 T, ¢ 82(P2) (i‘(Yz) < 2}. This completes the proof.

Lema b,3.8, If £ (X)) < A, a € Q exists so that X, ¢ S1(a)_°

and W(a) < {Y?_ ¢ 5,(P,) ] £(Y,) < 2t.

Proof, By the continuity of fo’ an element a € )(1 exists so that
fo(Y’l) < A for all ¥, containing a. By the previous lemma, for

each Y’l’ there exists by € Q such that T, € S,‘(bY1) and Sz(bY1) %

1
Y, e S,(PIE(Y,) < A}, Leta= % &bY1)ia‘ ¢¥,} . Thenae Q
and Y, € 5,(by )7 € 81(a)" for all Y, containing a, Thus 5 (a) <
1
.C_S,l(a)‘, and so X € &,(a)’o.
If a ¢ Y2, then ¢ » a # z whenever c ¢ Y,. This means that

cAbY1;£zforsomeY1 with a € Y,,  If X, € CAbY1,06X

& ‘(22 & S2(P2)\f(22) < A}, Since ¢ was an arbitrary element of T,

5 € SZ(bY1 )e

Iy & U{22 € S,(PE(Z,) <A} o Thus ¥, € {zz € 5,(PIE(Z,) <} 7=
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{2y ¢ Sy(PIE(Z5) ¢ At This proves W(a) € S,(a)” € {¥, ¢ S,(P,)|
\f(Yz) < AT = {Yz € SZ(PQ)\f(Yz) ¢ 1} . The proof is complete.
Now, before any more progress toward the ultimate goal can be

made, it is necessary to define the mapping W,

Definition L.3.2, For b ¢ Q, put

Wo) = N{s,(a)” a2 bt ~ 5,(0)7,

where the closure is in the topology of SZ(PZ)'

Lemma 4.3.9. If b # 2z is any element of Q, W(b) is a non-empty,

closed subset of Sz(bz)— &

Proof, It is only necessary to show that W(b) is non-empty. This
means that we have to establish a finite intersection property.
Suppose EF,I""’;'F > b, Because b€ Q, a ¢ P, exists with
z #a <b, The sets of the form EG are assumed to be dense in P1 so
a

«2b < a
¥y

A oess nap . If X2 € 82(P2) satisfies
n

that ;G # z exists satisfying EG <

Z#aGA aF1A oocl\aanébl\an

A oooe AEF ° Thus
n

By the compactness of SZ(PZ)’ it follows that W(b) =N{ Sz(aF)-l'é.'F * Bl

N Sz(b)- is not empty.

Lemna 4,3,10, If £ (%) > X , thena € P, exists witha € X

and W(a) < {Yz € 32(P2){ £(T,) 2 Af.

Proof, If fO(X,‘) >) , thena ¢ }L. exists such that FO(E) >A,

By lemma 2.3.9, this means that a, _,, ¥ a for some A' >1X.
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Consequently W(a) <€ 82(:-:1F . % ) e
If ap _ 1 € X,y then f(Xz) = sup { F(b)lb ¢ X}z Flap_,,) =
F( \2/\ch(0) > At} ) =inf { F(c)[F(c) > 2t} 2 X', Hence W(a) <
S Sy(ap _ P {K2 ¢ S, (POIf(X,) 2 ! | - {X2 ¢ Sg(Pz)lf(Xz,)2 1%

This completes the proof,

Collecting these results together, it is now possible to prove

the fundamental theorem,

Theorem 4.3.71. Assume that all the hypotheses listed at the

beginning of this article are satisfied., Then the space 3; (PT) is
)

homeomorphic to a factor space of a closed sub-space of 82(P2).

Proof, It is only necessary to show that the projection X.‘ - TX.'
defined with respect to the mapping W of definition l.3.2 is simple,
For this, the criterion of proposition 4.3.2 is used,

By theorems 2,3.lL and 4.2,1, the continuous point functions
corresponding to the lattice functions of the translation lattice Lo
separate the points of SLO(P1). Hence if X1 # Y,', and fo exists
such that fo(X’l) # fo(Y1 )e Suppose for definiteness that fo(X]) <
= >\1 < A2 < fo(Y'l)' Then by lemmas L.3,8 and 4.3.10 a € Q and
b e P,I € Q exist so that X, € S,](a)-o, T, € 5, (b) < S,, (5)™° and
Wa) ~Wh) < {Yz\ f(YZ) < /\1} ~ {Yz\f(Yz) > A, =, Accord-

ing to proposition L.3.2, X.‘ - TX1 is a sgimple projection., The proof

is complete,
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When combined with the results of the previous chapters, theorem
L.3.1 gives very general results on the relationship between

representations of translation lattices as sets of continuous functions,

Corollary L.3.1. Let L be an abstract translation lattice, Let

I be a bounded closed ideal of L such that L is divisible with respect
to I, Suppose there is an isomorphic mapping of L onto a subset L!

of C(S) (the continuous functions on the space 5) where S is a compact
Hausdorff topological space, Assume, moreover, that this isomorphism
carries I into {f ¢ L' f <0t, Then the characteristic space of L
(formed with respect to I) is homeomorphic to a factor space of a

closed sub=space of 3,

Proof, This is a direct consequence of theorems l.3.7 and 2.3.L.
Relaxation of the restriction that L be divisible with respect to

the ideal I gives the following:

Corollary li,3.2. Let L be an abstract translation lattice, Let

I be 2 bounded closed ideal of L. OSuppose there is a homomorphic
mapping h of L onto a subset L' of C(S), where S is a compact Hausdorff
topological space. Assume that I = h-1{ feLlf<0}. Then the
characteristic space of L//I (formed with respect to I) is homeo=-

morphic to a factor space of a closed sub-space of S,
Proof, This follows from theorems 2,2,1, 2.3.L4 and L.3.1,

Remark: Corollary l.3.1 was proved for the special case of the
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translation lattice N(S), and in a slightly different form, by
Professor R. P, Dilworth in his seminar at Caltech in 1951, The
theorem presented here owes a large debt of gratitude for the

inspiration of Professor Dilworth's work,
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