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ABSTRACT

The present work concerns a studyon the radiation and propa-
gation of seismic body waves. Based on a reformulated seismic ray
theory and supplemented by the results of several associated

boundary value problems, a method of body wave equalization is

described which enables the extrapolation of body-wave fields from
one point to another,

Applications of the above method to studies of earthquake
source mechanism and earth's structure, specifically.r its anelasticitf,
are presented. The findings for two deep-focus earthquakes can be
summarized by_: (1) a displacement dislocation source, or an
equivalent double couple, can generally explain the observed radi-
ation fields, (2) the source time functions can be explained by a
build-up step (1 - e-t/T)H(t), and T appears to be longer for larger

earthquakes, (3) the total energy calculated from equalized spectrums
22

is: for the Banda Sea earthquake (M = 6-1/4 - 6-3/4), E = 1,01X10
23

ergs'; and for the Brazil earthquake (M = 6-3/4 - 7), E = 2.56X10
ergs. | |

From the spectral ratios of pP/P and P/P, it is found (1) that
the upper 430 km of the mantle has an average Qa. = 105, (2) that Qu
increases very slowly until a depth of about 1000 km, and (3) that |
Qo. rises rapidly beyond a depth of 1000 km, remains a high value
in the lower mantle and drops sharply toward the core-mantle

boundary.
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Chapter 1

INTRODUCTION

1.1, Historical Background

Seismologists bega.n‘to notice more than forty years ago that
for a given earthquake, there existed a systematic distribution of
P-wave polarities over the earth's surface. This led to the develop-
ment of a technique now known as the method of fault-plane solution.
Based on Nakano's (1923) theoretical work, the method was gradually
evolved in a series of papers (Byerly, 1926, 1928, 1934, 1938), in
which the first motion data were interpreted in terms of the orienta-
tion of an equivalent force system acting at the source. Further
refinements of the method were made chiefly by Hodgson and his
co-workers (for references, see Honda, 1962), making it applicable
to practically all the observable body-wave phases. Subsequently,

a large number of earthquakes have been analyzed by various investi-
gators, and statistical studies on the resulting fault-plane solutions
of earthquakes from a given tectonic region have furnished valuable
insight into the broad pattern of the regional stress field. The
simplicity and elegance of the fault-plane solution method, which

has produced much important knowledge, is evident. Nevertheless,

" it must be emphasized that only the sense of the very first motion

of a wave signal is utilized in the above method. From the theory of
wav‘e; propagation, there is little doubt that all propagating wave
signals carry information about the emitting source. A good example

is the case of the radio-wave communication. The marvels of today's
¢
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radio technology strongly suggest the potentials in the seismic body
waves which could deliver much more information about the exciting
source in addition to the orientation of its equivalenf force system.
This idea is not new. In fact from time to time in the past, many
seismologists have attempted to make body-wave amplitude
measurements, only to find themselves hampered from obtaining
meaningful measurements, let alone the source information. The
failures have chiefly been attributed to the obscure responses from
the various instruments, Later, in an experiment using identical
instruments , Gutenberg (1957) further confirmed that the geology

at different recording sites also causes an amplitude variation as
large as an order of magnitude. In order to account for this ground-
effect, the station constant was determined, so as to permit correla-
tion of wave amplitudes among stations. This, again, was not very
successful, mainly because the station constant, not known as the
crustal transfer function, is a rapidly oscillatory function of

frequency particularly for short-period waves.

1.2. Objectives

The main theme of the present thesis is to develop and
elucidate a new approach to the problem of body-wave amplitude and
earthquake source studies.

In addition to the response obscurity due to the instruments
and 1_the ground effect, there were still other factors that have
hindered the progress in body-wave amplitude and source studies.

Lack of information concerning the anelasticity of the earth was an
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important one, particularly in the early years when long-period
instruments were not available. The lack of theory to calculate
the reflected and transmitted wave fields in a layered crust was
another., Moreover, the interpretation of body waves beyond first
motions and travel times involves lengthy computations which were
rather formidable before the common use of computers,

Recent progress in several fronts has opened up new possi-
bilites for our problem. The establishment of the World-Wide
Standardized Seismograph Network marks a new era in seismological
research. With the well-calibrated long-period instruments having
peak response at around 25 seconds, we can now record highly
reliable long-period waves around the world, a task that was not
possible before. In the papers by Thomson (1950) and Haskell (1953,
1960, 1962), the mathematical problem of plane waves in plane
parallel layers has largely been solved in terms of the products of
the so-called Thomson-Haskell matrices. The numerical evaluation
of these matrices is quite straightforward on the high-speed com-
puter. The generalization of the Thomson-Haskell steady-state
solution to one for an arbitrary waveform is a direct application
of the Fourier integral theorem. Increasing knovs}ledge of the
crustal structures has recently resulted from long-range seismic
refraction experiments, regional gravity surveys, and surface-wave
dispersion data. With known crustal structures and the Thomson-
Haskell method, a complex function can be found at least numerically

which would account for what Gutenberg has attributed to as the
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ground-effect. Anderson and Archambeau (1964) have obtained a

" measure of the anelasticity Q of the earth from data of free oscil-
lations and propagating surface waves. A further study (Anderson
et al., 1964) has made the resulting Q applicable to body waves.
All these recent developments are made use of in the present
approach to the problem of body-wave amplitude and earthquake

source studies, as will be detailed in the following.

1,3 A Sketch of the Contents

The theoretical part of the present approach to body-wave
and earthquake source studies will be presented in Part I (Chapters
2, 3, and 4), and three examples of its application will be presented
in Part II (Chapters 5, 6, and 7).

It is intended to formulate the theory in a relatively self-
contained manner, with the basic assumption of a linear elastic
wave equation, The first three sections of Chapter 2 are devoted
to a quite general derivation of a three-dimensional representation
theorem suitable for the calculation of the P-wave and the S-wave
fields for a given exciting source. These results are different
from the representation theorems by de Hoop (1958) and by Knopoff
(1956) in that the vector nota.,tiOns are used in our case and the
Green s function use here is a dyadic which, for the far field in an
infinite medium, is compact in form and clear in physical interpre-
tations. In comparison, de Hoop and Knopoff employ the cartesian
tensor notations and their Green's function is defined by an integral

operator. Also they have separated the displacement and stress into
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two explicit terms which makes their results most appropriate to
‘mixed boundary value problems such as the problem of diffraction.
On the other hand, the present results are distinct from the results
by Archambeau (1964), Banaugh (1964)~, and Love (1944) in that
these authors introduce into the vector problem a set of potential
functions which reduce the vector wave equation under consideration
to a scalar one. Therefore only a scalar Green's function is involved
and their resulting representation theorems are written for the dis-
placement potentials. | The present formulation follows the approach
outlined in Morse and Feshback (1953) but gives a more thorough .
derivation which ends up with two formulas particularly convenient
for the calculation of seismic P- and S-wave radiations. Section 2.4
then gives a detailed calculation of various radiation fields for a
dislocation source in an infinite medium. By the notion of body-
force equivalents, a simple formula is derived at the end of this
section which easily leads to the calculation of the total seismic
energy.

| Chapter 3 deals witia the propagation of body waves in which
ray theory is employed instead of the normal mode theory. The
current seismic ray theory (‘e;g. , Bullen, 1963; Savarensky and
Kirnos, 1955; Macelwane and Sohon, 1936) relies largely on the
results of the classical geomefrical optics, which, in turn, is based
mainly on the original pap‘er by Sommerfeld and Runge (1911). In addi- '
tion to the objéctions to Sommerfeld and Runge's formulation dis-

cussed in Section 3.1.1, their results for a scalar wave problem is
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in general inapplicable to seismological problems involving vector
waves in an inhomogeneous elastic medium. Their derivations of
the travel-timé and distance integrals start from an intuitively proven
S;'Lell's law, and offers little insight as to the relationship among the
rays, the eikonals, and the associated boundary value problem.
Moreover, the standard derivation of the geometrical spreading
factor (e.g., Jeffreys, 1962, p. 49; Bullen, 1963, p. 126) is not

. sound in several respects, and the result is generally ‘incorrect
except for some special cases. It appears'therefore desirable to re-
formulate the seismic ray theory on a more rigorous basis., In
section 3.1 and 3.2, a self-consistent ray theory is presented based
on tihe vector wave equation in an inhomogeneous medium. The
results are essentially an extension of the works by Luneberg (1944)
and Karal and Keller (1959).

Within the ray approximation, attenuation of body waves is
discussed in section 3.3. Wherever the ray theory is insufficient
to describe the wave process, it is supplemented with a more
rigqrous wave theory. Accordingly, the reflection and transmission
of body waves across layered boundaries are discussed in section
3.4 and the diffraction in section 3. 5.

All the efforts in Chapter 2 and Chapter 3 are aimed at the
preparation for the formulation of a method by which the body-wave
fields can be extrapolateci from one point to another. This method
of body-wave ;aqualizati‘on is presented in Chapter 4.

‘In Part II, three examples are given-as direct applications
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of the above method. Each example is by itself an independent study.
In Ci’lapter 5 and Chapter 6, two deep-focus earthquakes are studied
thoroughly with regard to their source mechanism. The last

cﬁapter is devoted to the extraction of information about the Q-depth

structure.



PART I

THEORY
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Chapter 2
ELASTODYNAMIC SOURCE THEORY AND BODY-WAVE RADIATION

2.1 Governing Differential Equations

The equation of motion of an isotropic, homogeneous, elastic

medium has the general form

— —_— 2—’ —
PV T) - BEYXVXT --?-—zf—=-4'rrq (2.1)
ot

where
a=[(n+200/p142, p=@/m¥?

are the longitudinal and transverse wave velocities respectively.

—

q = _q’(?,t) is the force density, or the source, which produces
a vector field f = ?(?,t) that may be the displacement.
Let us assume that the source function can be analyzed by

the Fourier integral

q(r,t)= Q(r,we dw (2.2)
-Q0

which has the Fourier inversion

00}

—r — 1

Q(r,w) = > —q’(_:r',t)e“i“’t dt (2.3)
-

Similarly, we may analyze the general vector field T (r,t) into

Fourier components,

—_— — o — — .(&)t
f(r,t) =§ F(r ,w)el dw (2.4)
=-C0



= { Q=
with a corresponding inverse relation

F(T.o= L (C7 7 geiot
r ,w = e f(r,t)e = dt (2.5)
' -Q00

By substitution of (2.2) and (2.4) into (2.1), we see that the

Fourier component ocbeys the differential relation
2 = 2 s 25 =
aV(V: F)-BVXVXF + «w'F = -471Q (2.6)

which is recognized to be the vector Helmholtz equation in elasto-
dynamics.
Any vector field may be decomposed into a longitudinal and

a transverse part

F=F1 +Ft (2.7)
with
I"’! = Vo, ”I?*’t = UX A (2.8)

and consequ éntly'

v><i**1=o, V.F =0 (2.9)

where ¢ is the scalar potential and A the vector potential. In
order that the right-hand side of (2.7) be a solution of (2.6) it is

sufficient that f‘.ﬂ_ and ft satisfy the equations

== g 2

Z—-b 2-—-—

VEF, + k F, = - 4TrQ£/CL (2.10)
2= e e e

VEF, t kat = 4Ter/p (2.11)
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Here, by the same token we have written Q= ‘61 + at as
the longitudinal and transverse parts of the source density, ka. = w/a

and kp‘ = w/B are wave numbers.

2.2 Green's Dyadic for the Vector Helmholtz Equation

In general, Green's function is the kernel of an integral
operator which serves to transform the boundary conditions and the
source densities into the solution. When the solution is to be a
scalar, this kernel is a scalar operator. DBut in the case of a
vector bouodary value problein as the o.ne we shall be dealing with,
the Green's function must be a dyadic, or a vector operator, in
order to transform the vector boundary values and source densities
into tho vector solution. Anz;.logous to the scalar case, the Green's
dyadic obeys its own reciprocal theorem. In other words, Green's
dyadic is symmetric with respect to the source and field coordi-
nates, and satisfies the inhomogeneous dyadic equations (Morse .
and Feshbach, 1953).

V2, (7, 7 k) + kG, (F, T k) = - 4ms, (x x) (2.12)

Vg (7.7 kg +k§qt(?,? o) = - 48 (r7 1) (2.13)

B B

Here Gy and qt are the longitudinal and the transverse part of
the Green's dyadic, respectively associated with the differential
equations (2.10) and (2.11). Unlike the case in electromagnetic

waves, G, and Qt must be obtained separately.and then put

together to form the complete Green's dyadic @ (—1:,_1'" )
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G T a =y g (T Tk * 36,7 Tk (2.14)

)
a | | P

which is associated with the diffei'_ential equation (2.6).

In (2.12) we lnfroduced the dyadic operator sl(rTr') which
is defined (Morse and Feshbach, 1953) as the operator which, when
applied to any vector field F(?’), implies an integration over T
- and yields only the longitudinal part of f(?). Likewise in (2. 13)
the operator ﬂt(r—: r'), when applied to f‘-(_r.‘), yields the transverse
part of f(_x"). éﬁi(r_: r') and a&t(r_:r') are connected by the re-

lation
I8(r - r') = ;gﬂ_(r'—’r')+ ;Dt(r_:r') (2.15)

where S(r-:. r') is the Dirac delta function, and J is the unity
dya&ic known as the idemfactor with the property that, for any

—

vector A,
J-K:K

Notice that in the case of electromagnetic waves equétions (2.12)

.

and (2.13) reduce to a single equation

V(7. Tk +1k2G (T, T = - 4nas(r T x) (2.16)

and in this case, the Green's' dyadic for electromagnetic wave can
be obtained directly from (2.16) without being first decomposed into
longitudinal and transverse parts.

It is not always possible to obtain Green's dyadics C}I and
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Qt' in a given coordinate system. There are only six coordinate
syst'ems, the rectangular, the three cylindrical, the spherical and
the conical coordinates 5 ifa which‘ separation of the vector Helmholtz
ev;;uation is possible. And only in these coordinates can one con-
struct the Green's dyadics., The most convenient way to obtain
Green's dyadics, at least formally, is by way of eigenfunction
expansion,

So long as the coordinates are separable, the solution of
the vector Helmholtz equa.tioz:. can always be expanded in terms of

—

the three sets of mutually perpendicular eigenvectors _I:n, Mn and
ﬁn as defined by Morse and Feshbach (1953). These three sets of
eigenvectors are constructed on the basis of three scalar potential
functions, éll being solutions of the scalar Helmholtz equation.

Therefore each are naturally labeled by a trio of quantum numbers,

symbolized here by the subscript n, and have the property of

orthogonal functions

SS‘S‘ T*. T, dv=5 (2.17)
n m mn.,

for all valugs of m and n, where the integration is over the volume
enclosed by the boundary with respect to which the eigenfunctibns
are expanded and the superscript asterisk denotes the complex con-
jugate. Same relations of the type expressed in (2.17) also hold for
Mn and ﬁn'

If we expand G, and G by
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8,=) o T T
2 n n n
n
_ |—>;:<—> ||——D>:=—D
8 = Z [annMn 2 ann Nn]
n

where the juxtaposition of two vectors denotes a dyadic, and c's

and d's are arbitrary constants, then through equations (2:13)

and (2.14), it is not difficult to show that

Qﬂ(r,r,ka)=-4:'ﬂz dnm (2.18)
n n
et e N
G.(r, 7"k, = - 41TZ MMy T 4Ny Nn] (2.19)
t ? ’ B (kz = kZ) *
n n B

Here klz1 is the set of eigenvalues. In a finite domain, kz
forms a discrete set. If (3 is regarded as a function of k, it has
poles at k = kn’ which physically corresponds to an infinite
response to a driving force at a resonant frequency. Howeve_r, in
an infinite domain, the eigenvalues form a continuous set, ‘and one

can transform the sums in (2.18) and (2.19) into integrals Lo that
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close-form Green's dyadics are sometimes obtainable. This will

be discussed in a later section.

2.3. Three Dimensional Representation Theorem

In this section we shall obtain a three dimensional repre-
sentation theorem for the vector Helmholtz equation (2.6). Before
doing so, we first need a generalized Green's theorem which can

easily be obtained from a generalized Gauss' theorern.
S'_S\S‘ (Veg)dv= g‘gg-g ds (2.20)
v s '

where n is the outward unit vector normal to the boundary surface
S enclosing a volume V. ¢ is a dyadic. The validity of (2. 20)

is obvious in light of the linearity of the integral oper;ator which
allows superposition. .

Now, putting into (2.20)

g = F(V+g)

where ( is a dyadic and, as will be seen later, will become our

Green's function, we then have

1

ng V. [F iv; G)] dv=§§(3.?)(v. ) d's (2.21)

Next, putting into (2. 20)

A =’—F'><K7><q
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we have

XS.S‘V- [FXVXQ] dv:S'SK. (FXVXQ)ds

=§S"£" (VX gXn) ds
By virtue of the identities (Appendix 1)
VAIF(V-@l=F-[VV.qQl +(V:FNV- Q)
V- (FXVXG) =(VXF): (VXG-F- (VXVXG)

(2.21) and (2.22) become

”ﬁf VIV @ -G [V(T - F)]} e

=S§ [(V+G)UF - ) - (V- F)G- n)] ds

ggg[q-(VXVXF) -F - (VXVXQ)] av
=S‘§ [(nXF)* (VXG + (AXVXF) - gl ds

Adding (2. 24) to (2.23) and noting that (Appendix 1)
vzc;:wv- Q) -VXVXg

2

VeF = WV +*F)-VXVXF

We finally obtain the generalized Green's theorem .

(2.22)

{2.23)

(2.24)



-{7=-

SXS(:F' - V% - - Vi) av=
=5§{[(?-"n')(v - G) - (G- )V - F)

+(VXG)* (n XF) + G- (_n’xvxf")]} ds  (2.25)

With (2.25), we now proceed to obtain the dyadic represen-
tation theorem for the vector boundary value problem. In view of

(2.7) and (2.8), we can write (2.6) in the form
o2VPF, + pPVPF, + WA(F, +F,) = - 410 (2.26)

Adding (2.12) to (2.13), we obtain, by the definition of (2. 14) and
(2.15)

quﬂ +v2qt + wzq

- 4nd6(r - ') (2.27)

Dotting (2.27) from the left by F i"ﬂ_ + Ft and dotting (2.26) from

the left by G = (;;jl/cu.2 + qt/ﬁz , we form the difference of the two
expressions and integrate the resulting vector field over the total

volume, which gives
ggg[ (Fy V%G,m G- VF) + (F V56,0 0 VIF] av
o2 - L ) - (B v s B g OO
' +S‘S.S.[(Ft'v Gy~ —3 G VIF) = (Fy VOG5 ¢y VIFY] av
: . 6 )

= - 4n§gg F.d6(r-r1") dv+4n§§ G. Q dv  (2.28)



wife

On the left-hand side of (2.28) the second volume integral has to be
transformed so that Gauss' theorem can be applied. Through the
dyadic identities

— — —

Ve (EF)=(V+E)F+E.VF

V. (EXE)=(VXE)+€ -E « (VX&)

it is easy to show that
F.v%, =V [FV- g,
2-—. —_—
G, V°F, =V[¢ (V. F,)]
t £ t L (2.29)
—_— 2 . —
Fy - Vgg=V (FEXVth)

Gy » VEF, =V -[(VXF) X g,]

Substituting (2.29) into (2.28), we then apply Green's theorem
to the first volume integral, and Gauss' theorem to the second
volume integral, With some straightforward algebra and by inter-
changing T and r' we finally can represent the vector field f‘.(?)
inside and on the boundary surface in terms of the body force and

the boundary values
— — 1 —
F,(r)= = « Q av'
ey Sﬁ Gy ¥
* -4%§§ [(G, * 2N+ F) - ®F - 2)V'+ @)

2
P_Z G, + (aXV'xF)] ds' (2.30)

a

‘
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- 4—2,53\[% (@ XV XE) +pAT X Q) - (5 X )

2
- ? (G, * n)V'+ F)] ds' (2.31)

and, of course

F(r) = 'f*}‘ (_f) +F(7)

where integrations are to be taken with respect to the T coordi-
nates. Notice that the last term of the surface integral in both
(2.30) and (2.31) is not present in the case of electromagnetic

waves.,

~ 2.4. Radiation of Elastic Waves in an Infinite Medium

In this section wVe shall use the representation theorems
obtained in the previous section to calculate the radiation field.
It is sufficient for our purpose to assume that the excitation source
is embe dded in an infinite, homogeneous, elastic medium and has
a source dimension which is small as compared with its distance
to the nearest observation point, We also assume for the moment
- that the source displacement vector is either tangential or normal
to a plane surface. The former corresponds to a shear fault, the
latter, a tensile fault, A radiation field corresponding to a more
general type of source motion can, of course, be obtained by way

of superposition. Moreover, by the notion of equivalent source
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theory we shall further obtain a virtue moment of a volume source
which leads in a simple way to an expression enabling the estima-

tion of total seismic energy.

2.4.1. Greens Dyadics in an Infinite Medium

As indicated before, Green's dyadics, Qa and QB can, for
an infinite domain, be obtained from (2.18) and (2.19) by transform-
ing the sums into integrals, and by choosing appropriate integration
path so as to obtain correct forms for outgoing waves., A more |
elegant way would probably* be to construct them from Qreen's
function g for scalar Helfnholtz equation.

To find the Green's function g, we start from the differ-

ential equation
2 1} 2 l. =t 1
Vo%(r,r',w) +k“g(r ,r",w) = - 476(r - r')

and note that, in view of‘the absence of any preferred direction in

space, g(r,r',w) must not be a function of © and ¢. Equation

(2.32) therefore reduces to .

dZ

= l(gR) + kz(gR) = - 411'6(_1;) | (2.33)
dR '

in a spherical coordinate system centered at T =1'. The general
solution of (2.33), taken into account Sommerfeld's radiation
condition, is
ik LR
i Q,B
T N SN
fap 77 TR
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?utting this back into (2.32), the unknown coefficient is found to be 1,

and we therefore obtain

ga’B = i J— ’ (2'34)

Since qa must have a zero curl, and Qﬁ a zero divergence, one

would expect G, to be the gradient of some scalar functions of

—_—

r and ' and Gg to be connected to the curl of some vector
functions of r and r'. The symmetry of Green's dyadics qu,ﬂ
between r and ' furt}'xer requires that'if it is a gradient or

curl in the r coordinates , it must also be the gradient or curl in
the r' coordinates. Indeed, an operation of the double gradient
VV' transforms a scalar into a dyadic. The simplest way to con-
struct a dyadic through an operation of curl is to take the curl of a
dyadic. With these remarks, and after dimensionality and singu-
larity at the source are ;aken care of, one finds the longitudinal and

the transverse Green's dyadics to be of the forms which indeed

satisfy (2.12) and (2.13)

G (7 T hhkeg) = 5 [V (770 - s, ¢ e0] (2.39)

a

"GJWNI =

qﬁ(?,?' Jk [ -V x sgp(?,}",k )X V! - 4m§t(r_:r’)]

(2.36)

8! 6

In view of (2.34), close forms of Gq and %’ valid everywhere

except at the source point, are
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‘ B -ika[r"-'r'l' )
- ("""’ +_"—') i _ l“ e _
0% "% (k |z = ='| kzlr-r'|2‘):| |z = x'|
‘ a a
(2.37)
G =|-(eeee+?¢e¢) (1-!— 2 - =3 1_’ 5
P k,|r - r'| kS|xr = 2!
“p B
ikﬁ[r_-’r'|
-?r:r 2 %"' :LZ) - g ]
kﬁ|r-r| Ir-rl .

For the far field where the distance to the observation point
is large as compared to the wavelength in concern, the Green's

dyadic takes up a particularly simple form

— — 1
Glr,x',w)=—5¢_ +=G
. QZ a [32 B
—ikalr_-.r'| —1kﬁlr_-’r'l
=_l_2_e (‘[;;’)Jr_lze _ (:e:9+ze¢)
a |r.:-r'[ Yoo |z - '] ¢
(2.39)
k [r =z >> 1
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2.4.2. Radiation of Body Waves

With the foregoing preparations, we shall in this section
calculate the radiation field of body waves for various source
models., It is sufficient for our purpose to obtain for a point source
model the far ﬁeid contributions, as we shall be concerned with
the body wave spectral data which have periods of between a few
secoﬁds to 100 seconds, and are recorded farther than 20° of
distance away from the source region.

We sta‘rt by considering an infinite, homogeneous elastic
medium V in which there is no body force acting. Across a surface
S inside V there occurs\a displacement dislocation 'f.I’o which
excites a wave field in this otherwise quiet medium. We can simu-
late both a shear fault by requiring ﬁo to be tangential to S and
a normal fault by requiring ﬁo to be perpendicular to S, At the
source region, we set up two coordinate systems: a spherical
system (r,0,9) with a right-hand base vector (?r’:e'?¢)’ and a
Cartesian system (xl,xz,x3) with a right-hand base vector
(:1,:2, ?3) as are shown in Figure 2,1. Note that the surface S
in Figure 2.1, being the plane of motion, encloses a region exterior
to V. In our case this enclosed region is sandwiched between the
two sides of the plane of motion and is of little importance except
in the definition of the outward normal vector n. In the following
discussion we shall choosec to define that the positive direction of

n always points to this exterior region or toward the plane of

motion,
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2.4.2,a, Shear Fault. A shear fault is characterized by
the displacement dislocation which is tangential to the fault plane.
Assume that ﬁo is the displacement dislocation vector on S and
is a build-up step time function of strength Lo and a spatial delta

function directing along a unit vector 2 (cf. Figure 2.1}

1wt
— _‘—’ _ — _ e —" —_—
Uo- U+ U_ —Lo{m} 5(]1‘ l)a ) (2.40)

where T is a parameter governing the rapidity of the build-up step.

Putting (2.40) into (2.30) and (2.31), and noting that

Q=0

T +7n=0

(o]

, 1 ‘

V'Q—7V' Qa
a

1
VXG==SVXgG
p? P

we have
i 2 - -
Uplz)= El?gg[(qa:n)(v' o) - %2 Gg* (n XV'XU) ds

(2.41)

Tg(F) = - & Sg[qﬁ * (A XV XT )+ (V' XGg) * (n xT)

2‘ — —
--g-z (Gg * mNV' - Tl ds' (2.42)
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where ITP' stands for P-wave motion, propagating at the velocity a,
and -,{‘T.S stands for S-wave motion, propagating at the velocity .
Following the law of vector and dyadic analysis, we calculate

the intagrandé of (2.41) and (2.42) and retain only the far field

contributions.
Gy 1 =g le, ?)?r (2.43)
Gg* T = gs! (g * ”n')'e'e + (?4)‘- B’)"é¢] (2.44)
V'X(,}F3 = ikﬁgp(eee‘b— e¢ee) (2.45)
, i ) eiwt b o= i —
Ve o Lo {m} 5(11‘ J)(a . er) (2.46)

iwt
— ' — - e ! —'»' — . — —
n XV XUO— Lo{m}ﬁ('rl)(n er)a (2.47)
In obtaining (2.46), the differential property of the delta function,

sy = (c1)™ m -‘ir? (2.48)
x

is used. By substitution of (2.43) to (2.47) into (2.41) and (2.42)
and by virtue of the integral property of the delta function

c© -
‘g‘_mf(x) 6 (x - x ) ax = (-1 £™)x ) (2.49)

we finally obtain the displacement field for a shear fault with a

build-up step-function time dependence.

L]
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UP=— = = —2-+1) : (a e )e -n)er (2.50)
v araE: mz"z'?‘)E
(.
. Lods B ) - _
lrl(1+w2T2)z
+/£‘E-1)(T{-?)(‘£-?)]? (2.51)
\ﬁz r o’| ©o
iw(t- I_;i
—_ Lods 1 e ﬁ — — —_— —_—
US‘H-- = [Z(a °e¢)(n e )

Here the transverse displacement has been written into a vertically
pola.ri%.ed motion ﬁSV and a horizontally polarized motion ﬁSH'
They take up positive signs if the motions are in the same direction
as —e.e and "é-‘b, respectively, and negative signs when otherWisel.

-

2.,4.2.,b., Tensile Fault., On replacing the vector 2 in

(2.40) by n , thus

iwt -

EO=LO{M}5(I?'I)K (2.53)

we construct a pure compressional source giving rise to a tensile

fault. Assuming again that the medium is free from body force and

»
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noting now that

nXU_=0
o
we then have from (2.30), (2.31), and (2.53)
Up(r) = {;,ﬁ[(qa-‘n’)(v' B AR GREES (ARN
a

2
g
a

ff(”)—-lgg[ @RV XT) - & BNV - T))] ds'
s(F)=- o Gg + (3 o)-?(qﬁ-n)(v-uo)]ds

+ (a xV'xT )] as' (2.54)

{2:55)

Next we evaluate the followi;lg quantities
—_— { ei'wt —_— — —_— - »
! e = S ————————————— ! ! L]
v Uo Lo{ iw(l + iwT) }'6 (1 & |)(n er) (2.56)
1 = 1 ] - .
nXV ><Uo_ o{im(1+iw'r)}5(lr ')[ €r (n er)n] (2.57)
2 = 79
Ve g, =ik g, e, (2.58)

Putting (2.56), (2.57), and (2.58) into (2.54) and (2.55), and again
using the relation (2.49), we obtain the far displacement fields for

a tensil fault with the same time function



L ds )r/ 2 2
Up(r) == 4?“. -& ‘.\l—ﬁz) +(1 +E-2~)(n'er)2] e.
Ir'(1+w272)a a a
(2.59)
. L ds 1 elw(t_l_%—l—) QZ\_. o B
(2.60)
— —_ LOds 1 eiw(t_ Igl) 2 —_— —_— — — —
USH(r)==F e 5 — r (1+-9‘—2-)(e¢-n)(n'er)e¢
lr | (1 '+-<.oz'r2‘)2 p
(2.61)

where the upper signs are for-.\Uo having the same direction of n

which corresponds to a volume collapse; the lower signs are for U

having the opposite direction of 7 which therefore corresponds to a

volume expansion,

2.4.2.c. Explicit Expressions for the Radiation Patterns.

For practical purposes, it is necessary to establish the spatial

. r
relationship between the source and the receiving stations. Within
the limit of a point source model, the two previously defined coordi-
nate systems occupy a common origin, We have oriented the
Cartesian system such that the xl-axis coincides with the strike

direction, and the x3-axis poinis vertically upward. The transfor-

mation relations of the base vectors
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er=s;,necos¢ e1+sm0s1n¢ e2+cose €3

p—— - —_— i . —— _ . —

eq = cOs 0 cos d)el cos 0 sin ¢ e, = sin 0 e, (2.62)
Z‘i’: - sine_e;l + cos ¢-g2

define the connection to the spherical system in which a receiving
station is represented by a pair of its coordinates (0,¢). As is
easily seen from Figure 2.1, 0 will be the take-off angle of a
specific ray and ¢ the azimuthal angle counting from the strike
direction. We then expresé the two constant unit vectors n and a

in terms of the Cartesian base

_a’=cos7x_c-;1+sin)\cos6€2+sinksin5z3 \
- (2.63)
n =sind ez- cos 6e3

As defined in Figure 2.1, 6 is the dip angle and \, the slip angle.
Note that n conforms with the definition of an outward nor.mal. The
explicit expressions for the radiation patterns from a fault of arbitrary
dip and slip are obtained in a straightforward fashicn by the com-
bined use of equations (2.50) to (2.52), (2.59) to (2.61), (2.62) and
(2.63)s The radiation pattern itself will be a normalized surfac_e in

a three-dimensional space and can be regarded as a function of 0

and ¢, i.e., AS(6,¢). When © is constant, AS(60,¢) defines a

. horizontal radiation pattern which predicts amplitudes of the body
waves from observation points of equal epicentral distances, or of

equal take-off angles 60. On the other hand, when ¢ is constant,
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As(6,¢o) defines a vertical radiation pattern which predicts the
amplitudes along a fixed azimuthal direction. Both patterns are
found to be useful and they are summarized in Tables 2,1 and 2.2,

in which we have defined the following parameters

!
/ 2\ / 2\
s i g i L |
So—\l-;—z)/(l-i- E-z/ R

o being the Poisson's ratio. Notice that for a Poisson's solid,
where b =1 and So = -12- , our results become identical to those
obtained in an earlier paper (Ben-Menahem, Smith, and Teng, 1965),

which also conform with the results obtained by Knopoff and Gilbert

(1960) for a slip dislocation with a continuous normal stress field.

2.4.3. Body Force Equivalents

It has been pointed out by Vvedenskaya (1956) that the dis-
placement field due to a displacement dislocation can be identicglly
reproduced in the absence of dislocation surface by a certain properly
chosen combination of body forces. Mathematically it means that
in (2.30) and (2.31) the vector fields i‘; and i‘; inside a domain V

—

generated by a distribution of F over S in the absence of Q can
be reproduced by a proper choice of distribution of Q in V in the
absence of S, Studies along this line have been advanced by Knopoff

and Gilbert (1960} and by Maruyama (1963, 1964). Using the property
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of the delta function, Burridge and Knopoff (1964) were able to obtain
an explicit expression to calculate the equivalent body forces with a
given dislocation. On the assumption of continuity of normal stress
across the dislocation sheet, Burridge and Knopoff have shown that
a displacement dislocation tangential to the dislocation sheet is
equivalent to a double couple body force with zero net moment, and
the one normal to the dislocation sheet is; equivalent to a double force
with zero moment plus a pure dilatation. Similar results had been
obtained in an earlier paper (Knopoff and Gilbert, 1960).

In this section we shall approach the problem in a different
way. We begin with assuming that in an infinite domain V free
from dislocation surface, there exists a force density E of an unde-
termined strength fo in the following form

o ot e
0 = fo{m-)-} 5(|r|)a (2-64)

We then compute the far displacement field due to a couple force
const.ructed from (_5 and then ask the question: what value can 6ne
assign to fo so that an identical radiation field as described by (2.50)
to (2.52) can be reproduced? It will be shown that the answer to this
question enables us to define the moment of a sgismic source which
will lead easily to the calculatioﬁ of the total seismic energy.

Using (2.30) and (2.31), we can write the displacement fields
due to Q in (2.64) in an infinite domain free from dislocation

surface as
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B ka|r-‘r’| iwt
US(x) = -LS‘S‘ST—LE e |- f{ £ Ys(| T V2! av'
eV =) ) |2 Ty ot w8 x Ve v
F it "ikal x|

= °{°. }e (a+e)e (2. 65)

paz dw(l +1c.o'r) I";[ ol

Similarly, we have

Ugylr) = Z{i_wll 7 iw'rT} T (a = eg)eg 2. 65)
Ugylr) = pﬂz { fo(l T iwT) |_17[ i * e¢) o k2. 41}

where the superscript s denotes single force, and Fo = fo dv is the
total force inside V. The displacement field due to a couple force
—_ s

UC is obtained by the application of a differential operator to U

such that

G¢=-d(n . WT® . (2. 68)
where d is the spacing of the two opposite single forces. In the
curvilinear coordinate system (51,62,5.3-),‘ an operation of the above
type can be expressed by writing out the {5.1 component of the result
d, aU

3
hy

o~ s 40U
[d(n » V)U ]1— —

.

7

(I R ot}
Q@

&

eu

Ll }
= w
Lol 1]

+ *

H
A

us ¢ -8k hy US - 0Oh,  8hp
ot [d1 agl - dy ag2]+ £ f[dl agl‘ - d3 ‘a‘E‘§
bl 1 4 Bhs 3 o

- (2.69)
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where di = d(; . _gi); and hi's are the metrical coefficients,
Clearly, the other components of the tlype of (2.69) can be obtained
by cyclic permu‘ations of the subscripts. By performing the
indicated operations, we.find the far field displacements due to a
couple force
| N e
gl e Fod elw(t i b | T
Up(r)= w ‘ ; (a-er)(e en)e_ (2.70)
PO T +wird)? .

- _I=]
c F.d lw(t— ﬁ ) —_ = - ——
Ugy (r) = — (a »eglle *n)ey (2.71)
PPY Tl + wPrd)? |
€ 4= FOd elw(t— ﬁ ) L g g
Ugylr) = = o B (a «egdle, *n)ey (2.72)
P e+ e®r)?

These fields cannot be made equal to those given in (2.50) to (2.52),
whatever choice of fo is to be made. Study of (2.70) to (2.72)
reveals that the only possibility is to add the contributioﬁs from
another couple force obtained from the field due to the single force
ol _ eiwt " __ ' e
Q =Cfo{m},5(|r|)n ' o (2.73)
by applying again the operator - d(-; . V), where C 1is a constant
to be determined. Because of the symmetry éxisting in 2 and n
between the two couple forces, the radiation patterns of the second
‘couple can be obtained simply by interchanging the two vectors 2

and n in (2. 70) to (2.72). When this is done, we add up both
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contributions which give

Uo(r) = =2 1+c)(z e )e -mn)e (2.74)
E,? pa3 [:'.'|(1+c.\.>2'r2')z » ¥ :
RRES
T (T =l em(t- P ) 2(a +eg)(n-e ) +2C(a-e )n _.)]_.
r a = e new=e¢e a°* e TLe € e
SV 208 | ~ “1+w272)2 0 r r 2] 0
(2.75)
ki
ot — Fod elm(t- 5 )- — — —_— — —_— — — — -—
Uyl T) = : z(a-e¢)(n-er)+zC(a.er)(n-e¢)] %

(2.76)

In order to equalize the fields in (2.74) to (2.76) to those in

(2.50) to (2.52), it is sufficient to require that

2
2C = 2-2 -1 (2.77)
g
and
L, ds .
Fod = > M (2.78)

Comparing (2.64) and (2.73) iﬁ view of (2. 77) and {278},
we conclude that, to reproduce the field gleneratea by the dislocation
defined in (2.40), it will be sufficient to superpose the fields p'ro-
duced by two perpendicular force couples with‘oppos ite but not
necessarily equal moments. One couple has the moment (LodS/ZTr)}.&,
the other -(Lods/4'rr)(7\ + n); the two moments cancel out eaéh other

only if the Poisson's relation holds. In general, the net moment is
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Lo ds Lo ds 4¢ - 1
4 (k - P‘) = 2T M 2(1 = 20‘) (2. 79)

the quantity inside the brackets approaches zero in the earth's crust
where o is around 0.25, and becomes 1/4 in a depth of about

600 km where o is about 0.3. Therefore our model predicts a net
moment which can be as large as a quarter of the dipole moment.
Many authors, e.g., Steketee (1958) and Keilis-Borok (1957), have
pointed out that the direct P- and S-waves give information which
concerns with a non-equilibrium state, for the occurrence of an
earthquake is essentially a break-‘down of static equilibrium. So
far as the radiation of P- and S-waves is concerned. there is no

a priori reason that it has to satisfy the condition of equilibrium at
every instant during the rupture process, - However, as soon as

the rupture process has ceased, and the P- and the S-wavefronts have
rleft the source region, equili‘prium in the source neighﬁorhood must
be restdréd. Fﬁrther, from the cons id_ergtion of conservation of
angular momentum, there should be no net moment after the rupture
process if there is no external force acting on the source region.
Therefore it is only plausible that a source model appropriate to the
initial motions does not have to be in eq\;.ilibx’-ium, but a complete
source model expiaining the entire seismic signals ought to be a
étatically balanced one. Recalling that we started in section (2.4.2)"
with the source displacement (2.40) and ended up with the S-wave

radiation patterns (2.51) and (2.52) which, as checked by the results
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(2.75) and (2. 76) calculated from a double-couple source model, are
found to represent an‘unbalanced source. Therefore, it is concluded
that in order to cor;struct a balanced source model, the displacement
(2.40) has to be modified to a dislocation of Volterra type or one of
Somigliana type (Steketee, 1958) so as fo insure vanishing moment,
These results have been obtained by various authors (e.g., Knopoff
and Gilbert, 1960), which we shall not repeat here, However, we
have obtained the equivalent results from the body-force approach

(if setting C =1 in (2.74), (2.75) and (2.76), or b = 1 in Tables 2.1
and 2,2) which, of coursel. is appropriate for a double-couple force of

vanishing moment, These results will be used in chapters 5 and 6.

2.4.4 Energy Calculation

In the ﬁ‘revious section we have arrived at an expression of the
moment for an equivalent force .couple in ter?ns of} sc')ti::-ce diéplace;
ment L and area ds of a dislocation shéet. ‘By thé th;ory 'of‘. .
body-wave amplitude equalization which we shall formiulate in the
following section, the quantity Lo ds can be‘estimatgad from- body-
wave amplitude spectrums observed on the surface of the earth.v
This points to a way in which seismic energy can be calculated in
terms of deformation work done ﬁpon)the occurrence of the dis-
location,

Considgring a fictitious forcé of magnitude Fo acting g.t the

source and causing a net displacement I.;0 we define the energy

emitted by a seismic source to be equal to the work done by F:
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L

' o ,
Energy = S. Fo_ dt (2.80)
o

Assuming that Fo remains constant over the process of dis-

placement, we then have for a double-couple force
E = Mt3p [L_ds] i’ | (2.81)
MBTES = 4T “o 981 g *

Notice that this is not the partial energy carried by the P- or S-
wave alone. It is the total energy of the seismic source, provided
that the presence of a free surface does not significantly change the
.pértition of energy among P, S, and other wave types. The quantity
inside the brackets of (2.81) is directly measurable from the body-
wave an"xplitude; observed 0;1 the surface of the earth. The quantity

Lo/d is equivalent to a shear strain,
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Chapter 3

PROPAGATION OF BODY WAVES

The formal solution to the wave equation in an isotropic,
elastic, and spherical eai‘th comes from the formulation of the
natural boundary value problem. The result is generally expressed
by a triply infinite sum of zonal harmonics that reduce to a doubly
infinite sum when azimuthal independence of the source term is
assumed (Sato, et al., 1963; Gilbert and MacDonald, 1960). Each
term of the series has an unambiguous physical intell'pretatiOn in
te rrﬁs of normal modes of the earth's free oscillation; while the
triplg,sum is over surface wavelength, radial mode number, and
azimuthal mode degree, Since the earth is a finite body, its eigen-
values constitute a discrete set which becomes quite compact toward
the higher terms. Each discrete. mode corresponds to a standing
wave pattern, and the interference of the standing waves gives rise
to the travelling waves which show on a conventional seismogram.
Further, it can be shown that the higher modes contribute mainly
to the body waves, while the lower modes are primarily responsible
to the surface waves (Sato et al., 1963), It has been pointed out by
Brune (1964) that the energy in the lower modes, especially the
fundamental mode, is usually sufficiently separated from the
neighboring modes that each individual mode can be analyzed
separately. However, the energy in the higher modes is always so
closely associated in frequency and time that no part of the time

record at any observation point can be analyzed in terms of one mode.
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Mathematically, this is equivalent to the statement that the surface
waveform can uslually be realized by one or a few terms of t/he series
solution, Whereas the realization of a body-wave signal requires the
summation of a large number of higher-order\' terms of the harmonic
series which makes the normal mode approach to the body wave prob-
lem very impractical, if not impossible, This difficulty does not
necessarily suggest that the physical mechanism of body-wave propa-
gation per se is more complex. Rather, it indicates that normal
mode expansion in terms of zonal harmonics is efficient only for a
lt;ng sinusoidal wave trlai.n such as the surface waves, but Becomes
quite inefficient for pulse-like body waves. There are ways to over-
come this difficulty (Bremmer, 1949; Ben-Menahem, 1964). By
applying the Watson's transformation to the series solution followed
by taking the saddle-point approximation of the resulting complex
integral, it is possible to reach an approximate solution for the body
waves. The phase term of this approximate solution gives expres-
sions of the ray path and the travel time, while the amplitude term
gives the factor of geometric spreading. A study of the ray theory.
reveals that the above saddle-point solution, despite its laborious
mathematical derivations, provides hardly any more information than
that furnished by the simple ray method.

In the two following sections the ray theory will be expanded
and its lirﬁita.tions discussed, In the third section, we shall discuss

within the framework of the ray theory the attenuation of seismic

waves due to the anelasticity of the earth. Wherever the situation
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fails to satisfy the conditions of the ray theory, it will be supple-
mented with the more rigorous wave theory. Thus in regions like
the earth's crust or the core-mantle boundary wl:;ere the variation

of seismic velocities is large within one wavelength, Thomson-
Haskell's formulation will be used to accbu‘nt for the effects ‘of
reflection énd transmission across the layered boundaries, and
these will be presented in the fourth section, Inside the shadow

zone the observed body waves have gone through a diffracted path
along the core-mantle boundary. Wave phenomenon along this path
cannot be accounted for by the simple ray theory, we therefore have
to make use of the solution fo the appropriate boundary value prob-
lem, We shall discuss this in the fifth section., In Appendix 3, we
shall derive some pr