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ABSTRACT

In this thesis, two-dimensional waves of finite amplitude in
elastic materials of harmonic type are considered. After special-
izing the basic equations of finite elasticity to these materials,
attention is restricted to plane motions and a new representation
theorem (analogous to the theorem of Lamé in classical linear
elasticity) for the displacements in terms of two potentials is derived.

The two-dimensional problem of the reflection of an obliquely
incident periodic wave from the free surface of a half-space composed
of an elastic material of harmonic type is formulated. The incident
wave is a member of a special class of exact one-dimensional solu-
tions of the nonlinear equations for elastic materials of harmonic
type, and reduces upon linearization to the classical periodic ''shear
wave'' of the linear theory.

A perturbation procedure for the construction of an approxi-
mate solution of the reflection problem, for the case where the
incident wave is of small but finite amplitude, is constructed. The
procedure involves series expansions in powers of the ratio of the
amplitude to the wavelength of the incident wave and is of the so-
called two-variable type. The perturbation scheme is carried far
enough to determine the second-order corrections to the linearized
theory.

A summary of results for the reflection problem is provided,

in which nonlinear effects on the reflection pattern, on the particle
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displacements at the freec surface and on the behavior at large depth

in the half-space are detailed.
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INTRODUCTION

§l. Purpose and Scope of the Present Work

In recent years there have been several studies concerned
with the propagation of one-dimensional waves of finite amplitude in
elastic solids. However, little or no attention has yet been given to
two- or three-dimensional problems in this subject, presumably be-
cause of the complexity involved.

In the present work we consider two-dimensional (plane strain)
waves for a class of elastic materials introduced by John in [1] and
referred to as materials of harmonic type. These materials are
characterized by a special class of stored energy functions, and,
although they do not exhaust the class of elastic solids, it is hoped that
some of the qualitative features of their behavior will be typical of
elastic materials in general. The theory of finite deformations of
elastic materials of harmonic type, developed in [1] and [2], appears
to be simpler in many respects than that of more general elastic mater-
ials. The present investigation was undertaken with the expectation
that some of these simpler features would make it possible to examine
finite elastic waves for such materials more explicitly that is possible
for more general elastic solids, and yet without sacrifice of any major
qualitative characteristics.

We begin in Chapter II by stating the basic equations of finite
elasticity in general. After specializing these to materials of harmonic
type, we restrict attention to plane motions and derive a new represen-
tation theorem for the displacements in terms of two potentials. This

. . 7 . . .
representation is analogous to the theorem of Lame in classical linear
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elasticity (scc [3]) in the case of plane strain, and indced when lincar -
ized, reduces to this result.

In Chapter III we consider a special class of exact onc-dimen-
sional solutions of the nonlinear equations for elastic materials of
harmonic type. This special class of solutions, given originally by
John w 17, [2], includes a periodic wave which reduces upon linear-
ization to the classical periodic ''shear wave'' of the linear theory. We
then formulate the two-dimensional problem of the reflection of an
obliquely incident periodic wave of this kind from the free surface of a
half- space composed of an elastic material of harmonic type.

For an incident wave of small but finite amplitude we describe
in Chapter IV a perturbation procedure for the construction of an ap-
proximate solution of the reflection problem formulated in Chapter III.
This procedure involves series expansions in powers of the ratio of
the amplitude to the wave length of the incident wave and is of the so-
called two-variable type (see [4], Chapter III). The perturbation
scheme is carried far enough to determine the second-order correc-
tions to the linearized theory.

In Chapter V we summarize the results for the reflection prob-
lem, with emphasis on the effect of nonlinearity on the reflection pattern
and on the particle displacements on the free surface of the half-space.

§2. Previous Work on Nonlinear Elastic Waves

Recent work in the field of nonlinear elastic waves falls into
three main categories. The first of these is concerned with the
propagation of singular surfaces of the second and higher orders.

First studied by Hadamard [5]), this subject has been investigated
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by Truesdell [6], Green [7] and Varley and Dunwoody [8],
among others. Secondly, plane infinitesimal disturbances superim-
posed on a finite uniform deformation of an elastic body have been
studied by Toupin and Bernstein [9], Hayes and Rivlin [10] and others.
Thirdly, there have been such investigations as those of Bland [11],
[12],[137, Chu [14], Collins [15], Davison [16], [17], Varley [18],
Varley, Mortell and Trowbridge [19], into the propagation of shocks
and simple waves in elastic solids.

In another direction, Fine and Shield [20] have used a straight-
forward perturbation analysis for general three-dimensional problems.
Their results hold, however, only for a finite time-interval because
of the presence of secular terms in their solutions.

The present work differs from previous investigations involving
nonlinear waves in elasticity in two respects. First we are concerned
with two-dimensional rather than one-dimensional waves. Secondly,
our emphasis is on periodic solutions of the underlying differential
equations rather than on boundary-initial value problems. As indicated
in the preceding section we deal with a class of elastic materials,
called "harmonic,” and defined by John in [1]. That reference con-
tains, among other results, a description of the propagation of two
kinds of elastic waves in harmonic materials, in which time dependent
infinitesimal perturbations from a finitely strained state are involved.
The formulation of the equations of motion given there enables us to
derive the potential representation theorem referred to earlier.

The present work is also influenced by a second paper [2] of

John, which is concerned with the study of polarized plane waves and
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irrotational motions of an clastic material. In that papcer two special
classes of materials prove to be of particular interest with respect to
such motions. One such class of materials, called "Hadamard mater-
ials! by John, is shown to be the only one for which there exist three
polarized plane waves for arbitrary orientation of the wave front.
Hadamard [5] had shown that, for these materials, there exist in-
finitesimal plane waves polarized perpendicular to the wave front for
every wave front orientation.

The other class of materials considered by John in [2] is the
class of harmonic materials. Defining a deformation to be ''pseudo-
irrotational’ if its curl with respect to the material coordinates is
zero ( in which case the deformation can be expressed as the gradient
of a scalar function) he proceeds to show that harmonic materials
are exactly those materials which remain pseudo-irrotational in the
absence of body forces when their initial conditions are pseudo-
irrotational. A discussion of these materials is given in §4 of the

present work.
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II. FUNDAMENTAL EQUATIONS

§3. Field Equations of Finite Elasticity

In this section we assemble the basic cquations of the non-
linear theory of elasticity. ¢ These equations include statements of the
mechanical principles of conservation of mass, linear and angular mo-
mentum, and the mechanical constitution of the material.

We consider a body of homogeneous elastic material which oc-
cupies a region R of three-dimensional space in its natural (or unde-
formed) state. Let X be a rectangular Cartesian coordinate frame,
fixed in space, and let Xi (i=1,2,3) be the coordinates in this frame
of a typical point in the body in the natural state. We shall be con-
cerned with motions in which a particle located at the point Xi in the
natural state is located at time t at the point whose coordinates are

Xi(X XZ’ X3, t) in the frame X. We employ the standard notation for

1’

Cartesian tensors in which subscripts have range 1, 2,3, and the sum-
mation convention holds for repeated subscripts.

We denote the displacement gradients by
0x.

il
Cij = BXj ; | (3.1)

and we let ¢ stand for the matrix (cij). Conservation of mass requires
that

Jp = Po » (3.2)

where Po is the constant mass density in the natural configuration,

p(Xl’ XZ’ X3, t) is the mass density (per unit volume of the deformed

body) at time t, and J is the Jacobian of the transformation

*See [217 for a complete discussion of the theory.
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(X X5, X5) > (x

20 Xy ). Thus,

’XZ’X

1 3

d det (ci_j) : {3 %)
J is assumecd to be positive for all times and all particles in the
body.
Let t _ be the components of the stress tensor in the coordinate
1)
system X. Conservation of angular momentum requires that the

stress tensor be symmetric, and conservation of linear momentum re-

quires that, in the absence of body forces, the equations of motion

8ti. Bzxi
==L = p (3.4)
axj ot

be satisfied at all times t and at all points in the region occupied by
the body at time t.

Let the unit normal n at a point P on a surface in the deformed
body at time t have components n. in the frame X. If T is the trac-
tion, i.e., the force per unit area of deformed surface, exerted on
the surface at P by the material into which n is directed, then its
components Ti , in X, are given by

T. = t.0; . (3.5)

We shall confine our attention here to perfectly elastic materi-
als which are characterized by the existence of a strain - energy
density W per unit volume of the undeformed body, from which the
stresses may be derived. W depends only on the displacement gradi-
ents cij . The constitutive equations for such materials are

1 oW

b = TSk Be. - (3.6)
jlk
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When the material is isotropic, W can be written as a function

of the threc principal invariants ll, 12’ [,,) of the matrix g (.(.'l‘. The
clements gij of g are given by
gij = Cikcjk . (30

The invariants 11,12,13 are given by

I =8 = Tre

L = ig.g.-g.g.) = 2Trgl-LTr(g") (3.8)

2 Rl I . Ll # ’

I, = det(g..) = det = JZ

3 T Getgy) = g = ;
In this case the stresses are given by

ow oW }
_ 2
tyy = 2Ly {( o, " h *oT)glj a1, 8Bkt s B %)

where 6ij is the Kronecker delta.

§4. Materials of Harmonic Type

We now define a special class of materials known as those of
harmonic type, and we summarize the basic equations governing their
finite motions. These special materials were first considered by John,
and the description of their properties which we provide in this section
and in §5 is adapted, with occasional changes of notation, from his
work [17],[2].

In what follows it will be more convenient to use Lagrangian
rather than Eulerian coordinates. The ''l.agrange stresses'' q.. are

1]
defined by

q:J___J_

ij 0% tkl : ot 1)

By (3.6), (3.1) we then have
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Al )
%G5 = o o &)
1]
Unlike the stress tensor, the matrix of Lagrange stresses is nol sym-
metric. Dilferentiating (4. 1), we obtain
oq.. 0X. 0X. ot, . 0Ox
iy LY e U i i -
5%, - hawx, Uox 9x. ox_ OX.
j j k k m j
Since
0X
) i\
o (J—-—laxi) = 0 , (4.3)

it follows from (3.2), (3.4) that the equations of motion can be writ-

ten as
qu. Szxi
sk = py——p (4. 4)
j ot

Let SO be any surface in the undeformed configuration and let
PO be any point on SO. Let the unit normal Eo to SO at Po have
components niO with respect to the fixed Cartesian coordinate system
X . In the deformed body at time t, the particles which lay on SO in
the undeformed state lie on a surface S, and the particle which was
at Po now occupies the position P (say)on S. Let n, be the com-
ponents of the normal n to S at P. Let Ti be the components of the
traction T exerted on S at P by the material on the side into which n
is directed. We now outline the computation involved in determining
the counterpart of (3.5). Consider a surface element containing PO
which has unit normal Eo and area dSO in the undeformed state and
has unit normal n, area dS and contains P in the deformed state.
Let the force acting on the surface element dS have components dFi

in X. Then, by (3.5), on taking the limit as dS - 0, we have



o
dF.

i
L..n

i Tas MY

rl-\
On using the vector transformation law one finds that
DXr "
A5 =
n, S J-a—}-{:- nrdSO ’ {4 &)

from which, by (4. 1), one obtains

X
i o B o
dFi = tijnde = axj tijnrdso = qirnrdso . (4. 6)
j
If we now multiply each side of (4. 5) by T 5% and note that
J

|-

o Bxkn axr 8Xs >—
25 OX, "k \BX, X, g

we find that

0x. 0x &
| 4 k ¢
B = (a—xJ 2 nm ) aS

From this and (3.5) it follows that, on taking the limit as dS - 0 ,

I

ox ox

_ ol r s
Hg-= Ludls 7 X, X, nrns> . e 5

N

As noted in section 3, for an isotropic material, the strain -
energy W is a function of Il’ 12, 13 , which are the elementary sym-
metric functions of the eigenvalues )\i of the matrix g = CCT . In
discussing harmonic materials, however, it turns out to be more con-
venient to work with the elementary symmetric functions r, s, J of
the eigenvalues My of the positive - definite symmetric matrix e that
satisfies the relation

e = ¢ ¢ . (4. 8)

Since the eigenvalues of CTC coincide with those of ccT , we have
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W, = &K, ,
1 I
— ) *9)
r = }J-1+U-2+H3 y 8 ¢ UZU3+H3H1+HIMZ s J o= Hl“z“:& - AJdetce ¢

J 1is, of course, the Jacobian of the transformation (Xl’ XZ’ XS) -

x3) , defined in (3. 3).

(95 %5,
It can be shown [ 2 , p.3287 that the invariants r, s, J of (4.9)

are related to the invariants L, 12, 13 of (3. 8) by the equations

2 a (4. 10)

2
Il—r-Zs, IZ:S-ZrJ, 13—J

A harmonic elastic material is one for which the strain-energy

per unit volume in the undeformed state is of the form

W = Flxr)+as+ bl, (4.11)

where a,b are arbitrary constants and F is an arbitrary function.

The matrix h = hij defined through

hos o (4.12)

satisfies
T
(4.13)

o (e_l) cTc g o= 0,

where I is the unit matrix of order 3, and so h is orthogonal. We

have, in
¢ = he ,
a ''"polar decomposition'' of the deformation into a pure strain, de-
scribed by e, followed by a pure rotation, described by h .
We now substitute for W from (4.11) into (4. 2), (4.4) and de-

termine the constitutive equations and the equations of motion for

harmonic materials. After some computation, the Lagrange stresses

"Restrictions on a,b and F which are required for later purposes

are discussed in §5.
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qij are seen to be given by
G & (F'(r)+ar)h - ac H)Jc‘j‘.l (4. 14)
ij ij ij g T
where c¢' is the element in the ith row, jth column of the matrix
c_l . From (3.1) it follows that
ij 8Xi
c = ij . (4. 15)

By (4.14), (4.15), (4.3) we then have the following as equations of

motion for materials of harmonic type:

Bzx.

1 _ 1 1
Py -a—t—f = (F (r)+ar)’ jhij+(F (r)+ar)hij’j-axi’ 55 (4.16)

where a subscript j preceded by a comma indicates partial differenti-
ation with respect to XJ .
Consistency with the stress-strain law of linear elasticity re-
quires that
F'(342a+b =0, atb=-2u , F'(3)=A+2p , (4.17)
where A\, are the Lamé constants.
In [ 27, a vector field with components fi(Xl’ XZ’ X3), defined

on R, is said to be pseudo-irrotational if

£, . -£. . = 0 on R
i, ] 1.4
Harmonic materials are precisely those elastic materials with the
property that, in the absence of body-forces, pseudo-irrotationality of
the displacement field at a particular instant of time implies pseudo-
irrotationality of the acceleration field at that instant.
As will be seen in the next section, choice of the name ""har-

monic'' is prompted by the fact that, when these materials are in equi-

librium in a state of plane strain with no body-forces present, the



.
local rotation angle 8 is a harmonic function of the Lagrangian co-

ordinates.

§5. Plane Motions of Harmonic Materials

We now confine our attention to the case of plane motions of a
harmonic material in which the third coordinate remains unchanged,

i. e., to motions of the form

x| = xl(Xl,XZ,t) . XZ(Xl,Xz,t) » Xy = X3 . (5.1)

In this case, the matrix c of displacement gradients is given by

axl 8x1 .
8X1 BXZ
0x ox
2 2
c = i T 0 (5.2)
8X1 BXZ
0 0 1

The matrices h and e defined in (4. 12) and (4. 8), respectively, now

have the form

cos B -sin 6 0
h o= sin 6 cos B 0 (5. 3)
0 0 1 .
cllcose+c2151n6 ; clzcose+c2251n8 s 0
e = -cllsm6+021cose : —clzsm6+c22c056 , 0 (5.4)
0 , 0 o1
where
C.se Cr 5 =€
cosd =1L 22 sing - —217%12 (5 5y
7 r
and

1
— o 5 A
r = [(c“+czz) + (c,.,l—clz) ] . (5. 6)
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From (5. 4), the eigenvalues of ¢ are the constant 1 and thce

two values €15 ¢y satisfying

e.te. = ¢ e.e s

172 v ByEg =

c

= ©11227S21%2 ° J . (5.7)
The quantities r, s and the principal invariants r,s,J of e are re-
lated by

il — el+e2+l =kl s e2+el+ele2 = s, d = €18, =8

) (5. &)
and so, for the plane motions (5.1) of harmonic materials, W is a
function of r, s only. Using (5.8) in (4. 11) we have

W = F(r+l) + a(r+s) + bs . (5.9)
Thus, on setting

2uF(r) = F(r+l)+ ar, (5. 10)

and using (4.17), we have

W = 2u(F(r)-s) , (5.11)
where
Fe)y-1 FH(Z):XJZ’LZL“ , (5.12)

and F(r) is otherwise arbitrary.
We impose the further condition
F(2) = 1 {5 15]
which corresponds to W = 0 for rigid-body motions. Use of (5. 8),
(5.10), (5.11) in (4. 14) leads to the following expressions for the La-
grange stresses q;: ¢

gy = e 5
qﬁ._2uF‘hﬁhﬁ—2usc +a(r-l-sﬁﬁ36j3 (5. 14)

The elements of the Lagrange stress matrix, written individually, are



C +c
B oy e R
911 ~ 2“<F'(r)"—“:"_"czz) , 2
T
C -C
) , %1 %12
a;, = 2u(-F (f)——-——_f L
C -C
B - 21~%12
qu - ZU'(F,(;) o 7 C].Z) ]
i >
2 e BT Ras
Uy = 2p(F () ——== - 2394 (5.15)
A3 = 931 7 93 7 93 = 0
Blegg, = ZH(F‘(r)—s)wL a(r-s-1) . <
. 9X,
Since §=J and <’ = 5}-;1 it follows from (4.3) that
5
L
__-an (sc?t) = 0 . (5. 16)

Equations (5. 14), (5.16), (5.3) together imply that, for the plane mo-

tions (5. 1) of harmonic materials, the equations of motion (4. 4) take

the form
52
=1 A 9B
- 0X, ' 89X,
2 (5.17)
2 _ _ 8B _ 09A
5i2 X a“x_2 ’
where
A:%EF'(?)cose , B= _Z‘—EF'(?)sine . (5.18)
O O

with 8, r given by (5.5), (5.6).
When the material is in equilibrium in plane strain with no

body-forces present, we have, instead of (5.17),
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9A | 9B 0
8X1 8X2 g
OA 0B
()Xz ()X1
These imply
%9 0%p _
z T2 79

8X1 8X2

where 6 is the local rotation angle, given by
§ = - arctan :]?:

Hence the name '""harmonic. "

§6. Potential Representations for Motions of Harmonic Materials

We present here an analog, for the case of plane motions of
harmonic materials, of the Lamé potential representation of the solu-
tions of the displacement equations of motion in the linear theory of
elasticity (see e. g. [3]).

Before beginning our discussion, we make some notation
changes. There is no further advantage in using indicial notation, so
we replace the coordinates Xl’ X2 by x,y, respectively; and
x (X, X5, 1), %, (X, X5, t) by xtulx, y,t), ytv(x,y, t), respectively.
The functions u(x,y,t), v(x,vy,t) are the displacements, at time t,
of the particle which occupied the point x,y in the undeformed state.

We shall assume here that u and v, together with their partial
derivatives of the first and second order, are continuous for all x,y
in some (two-dimensional) region D and for all times t. The quanti-

ties r, s are now given by
2
)
Yy

\-/N_,

o 2 s
r = ((Z+ux+vy) +(vx-u , 8 = (l+ux)(lJrvy)—VXuy . (6.1)
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Here, subscripts x,y denote partial differentiation with respect to
x,y. We shall also use the subscript t to denote partial diffecrentia-
tion with respect to t. Equations (5.5) become

2+u +v v -u
cosh = — % ¥ s sinB = —}:{_——X (6.2)

r r

-

and the equations (5. 17) for plane motions of materials of harmonic
type now read

Uy = AX+BY s Vi T -BX-I-AY (6.3)

with A, B given by (5.18), (6.1), (6.2).
We shall now show that every solution u, v of (6. 3) admits

the representation

u:@—\f 3 V:@‘l'Y ) (6.4)
vy X

where ?,Y satisfy

tt — tt
¥ o r

o, = M EE) gy, v, = 2B EE) Ay (6. 5)
Po P

in D, for all t, A being the Laplacian operator with respect to x,vy.

Conversely, if ¢,Y satisfy (6.5), then u,v , defined through (6. 4),

constitute a solution of (6. 3).

Suppose u,v is a solution of (6. 3) with the following values at

the time t = 0 :

o <

ulx,v,0) = ulx,y) , vixvy,0) = vix,y) ,
(6.6)
ulxy, 0) = &(xy), v (xvy,0) = ¥(xy).
Then, on integrating (6.3) twice with respect to t,
. 5 & 5 t
u-8-t8, = Txéf(t-T)A(x, y,'r)d'r+—é—yéf(t—'r)B(x, y, T)dT
o o 5 & 5 t (6. 7)
V-9t = - = g(tur)B(x, y, )T+ 5o g(t—T)A(x, y, T)dT
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By the Helmholz vector decomposition theorem, therce exist functions
U(x,y), Vixy), Ulx,y), Vix, y)such that

o _ _ & =
u(x,y) - Ux VY ,  vix,vy) Uy+Vx .

5 - z . (6. 8)
ut(x,y) = Ux- 3 * vt(x,y) = Uy+vx
Using (6.8) in (6. 6), (6.7) we have
5 t
w = U -V U 0 +—j"(t T)AQT + == [(t-T)Bdr = & ¥ (6. 9)
oy Vg X v
o g & t
v = U_+V_+tU_+tV_- — [(t- T)BAT + 5 J“ T)AdT = & +Y (6. 10)
y X vy x 0x 5 Y y x
where
ot
¢ = U+0+ [ (t-T)AdT (6. 11)
0
ot
Y = VHVo [(t-7)Bdr . (6.12)
0

Further, by (6.9) - (6.12), (6.2) and the definition (5. 18) of A, B,

we have

F'(I‘) (2+A§) , \ytt:_B:%_L_L_ F‘_(_r) AY.

r o T

@tt:A:

O |
£

e}

We have thus shown that, if u, v are a solution of (6.3), then there
exist ¢, Y satisfying (6.5), for which (6. 4) is true.
Conversely, if &, ¥ satisfy (6.5) and if we define u,v through

(6.4), then

tt =
o T =
_ 24 F'(r) AY = _2.._}—3:‘_'(_f)51n9 = -B,
% Py T Po
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i.e., u,v satisfy (6.3). Wec have thus proved our asscrtions con-

cerning the potential represcntation of the displacements u(x, y, t),

vix, vy, t).
. ; - F') _ 1 ., .
Since, in the undeformed state, r = 2 and > =3, it fol-
lows from (6. 5) that
3 = 2 v oo
Po

correspond to the undeformed state. In subsequent chapters we shall
have occasion to use a procédure based on a perturbation from the un-
deformed state. It is therefore convenient to set

5= M Phe, v o=y, (6. 13)
(0]

We also set

G(r) = 2F'(r) , c;‘ E—p*i- ) (6. 14)

T o
G(r) is assumed positive for all values of T.

In terms of the notation introduced at the beginning of this

section, the matrix ¢ is now given by

l1+u , u 4 0
x P4
c = v . 1+v 0 . (6.15)
X b
0o , 0 1

The Lagrange stresses of (5. 15) then have the following representa-

tion in terms of u, v :



w1

-q-L-l-l- C LGOI )N u v HG(T)-1-v

2u Xy y ' N
q

12 -

a0 —é(;(r)(vx—uyﬂvx .

qu 1

— = 5G(r -u )M y

2“‘ 2 (—)(VX Y) uy_ >
dz22 LG T (6. 16)
s Tl r)(uX+vy)+G r)—l—uX )

413 = 923 T 933 T 932 = 0

933 s v MBI e . B e

- = $TGE) - Z“usi-m(r—l) |

where r,s are given by (6.1).

We now collect the basic equations in terms of the potentials
¢, I for purposes of subsequent reference. From (6.4), (6.13) the
displacements are given by

w= gl V= o (6.17)

The differential equations (6. 5) take the form

3 ¢, = GEIAI2(GE)-1), —5 v, = GE)ay (6. 18)
“2 €2
where, by (6.1), (6.17),
g
T = 2{aHae’ v 2w} . (6.19)

By (6.14), (6.17), the Lagrange stresses dy10 9920 970 92 have

the following representation in terms of ¢, | :



22
2

1l

=20 =

LGE)AP 1 G(E) - 1 = - ¥
vy

L GEAL o Y

; ]
2G(r)ay + ¢XY = wyy

3GT)Ad + G(T) - 1 - ¢

XX

XY. )

2

Ny

> (6. 20)

Using (6.18) we also have the following representation for dy1s 952

9p1» Y92 ¢
911
2

92
v

921

i

922
2y

1

1
= — . + .

. Py - ¢yy - ‘bxy
2
St o
2¢ tt XX Xy
2
T
ZCZ tt vy xy

> (6.21)

The expressions in (6.21) are linear in ¢, §{ and so must be identical

with the corresponding expressions in the linear theory.

We conclude this section by showing that, when linearized, the

equations (6. 18) for plane motions of harmonic materials reduce to

those of the classical linear theory of elasticity. Let

2
el - A2
Po

Equations (6. 14), (5.12) imply

G(2) r,

G'(2) Ve

(6.22)
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and so 2
c
— 1 — —_ 2 — 3 4
G(r) = 1+;-<~—Z = 1>(r—2)+k2(r-2) +k3(r-2) +O((r-2)7) (6. 24)
g as r — 2,
where k., k

50 ky are material constants. By (6.19) we have

_ITQ:Z'I-A(P

(6.25)
on linearizing, and so, by (6.24),
Y
GiT) ~ 1 +§(7 - 1)a¢ (6.26)
c
2
Thus, when linearized, equations (6.18) become
2
c
1 ~ 1 1
Z P T A¢‘+<—’Z'1)A¢ » Tz ¥y = A,
c c o
2 P 2
i.e.,
2 ¢, = Ab . N (6.27)
z %t s Tz by T ’
<) ¢y

as in the classical linear theory.
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III. WAVES OF CONS'I'ANT r

§7. Plane Pcriodic Waves with Constant T

In this section we show that equations (6. 18) possess periodic
plane wave solutions for which the corresponding r, given by (6.19),
is constant. Such solutions will be seen to reduce upon linearization
to the periodic one-dimensional shear waves of the classical linear
theory.

If # = r* is constant, equations (6. 18), (6.19) become

L5 ¢, = G )apr2(G(rT)-1), (7. 1)
C
2
_12' Ve = G(r™)ay (7.2)
s
where :
{(2+A¢)Z + (Aq;)‘z}2 - " (7.3)
Let
z = X cosQ+ysinag , (7. 4)

where o is a given angle. We seek solutions ¢,y of (7.1) - (7.3)
which have the form

o=0lz,t) , V=1U(zt , -0<z<m, -o0<t<wm, (7. 5)
and for which the corresponding displacements u and v, given by
(6.17), are bounded for all times t and periodic in z with a given
period L. By (6.17) and (7. 4),

u = ¢ cosa - d;zsinoL, v = cpzsino, + wzcosa : (76

Since, from this,

¢Z = ucosa+vsina , q;z = -usina+vcosa,
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it follows that b, and \by arc periodic of period Lioin v if and only if

u and v arc periodic of period Lioin =z,

Let
g,k
Cq = CZEG(r J1% . (7.7)
By (7.5), (7.4), (7.7), the equations (7.1) - (7.3) can be written
1 1
¢, = & _+2(1 - ' (7.8)
CgZ tt 77 < G(r ))
1
g Vg = Huu o (7-9)
€3
L
240, Yy, PT =1 0
L( +4>Zz +(q;zz 1 = r , a constant. (7.10)

We now assume that ¢(z,t), V(z,t) and ra< satisfy (7.8)- (7.10)
and that d)z, \LJZ are periodic in z. Our procedure involves the deter-
mination of necessary conditions on ¢, § and r which follow from

these assumptions.

Since lbz is to be periodic with period L in z, so also must

V., be periodic with the same period in z. Since, by (7.10),
1

P T 7.11
¢ZZ T r - “IZZ ’ ( ° )
it follows that ¢zz must also be periodic with that period in =z.

From this, it further follows that, to guarantee periodicity of ¢Z )

we must have

I S 2_2
r" -(y__)"7dz = 2L , -0 <t<oo. (7.12)
0 . ZZ
Let
€ = max |4 (z,t)] (7.13)
0<z<I1, e
-oo<t<oo

and define p(z,t) by
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Ep = \b = (7. 14)
= ZZ
Then ¢,p and r satisfy
p(z+L, t) = p(z,t) , (7.15)
L
[plz,t)dz = 0, ~w<t< o, (7.16)
0
L «2 22 1
Jir" -e“p“(z,t)1%dz=2L, -w<t<ow, (7.17)
0
max lp(z,t)\ ez L 4 (7.18)
Osz<L,
-o<t<oo

We observe that (7. 17), (7.18) imply that

sl sle
>R b

esr r 22 . (7. 19)
If we add the assumption that ¢, | represent waves traveling

in the positive z-direction, it follows from (7. 14) and (7. 9) that

p(z, t) = p(z-c,t) . (7.20)
Then (7.17) can be written
2 i
) e 5 >
(S A
0 €

It follows from (7.21) and the first of (7. 19) that ¢ must satisfy

2 L, 3
_e_I: > [[1-p(s)] ds . (7.22)
0

Thus, solutions | of the assumed form can only exist for sufficiently
small amplitudes €.

From (7.11), (7.14), and (7.20) we find that ¢ must be given

by
z-c3t 2 1

oz, t) = [ (z-c3t-s){_z+[r* _ezpz(s)]a}ds+A(t)+B(t)z (7.23)
0

for suitable functions A(t), B(t). Substitution of (7.23) in (7. 8) leads
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immediately to the conclusion that

At) = [1- .3 ]thZJra fa.t , B(t)=b +b.t , (7.24)
3 o 1 o 1
G(r )

where a ,a.,b ,b. are arbitrary constants. The constants a_and b
o 1" o’ 71 o 6}

have the dimension of length, while ay and b, have dimension length

per unittime. The condition that ¢Z be bounded for all t requires that

b1 = 0. Since a, and ay do not contribute to the displacements, we
may take B =y 0 without loss of generality. Thus, ¢ is given by
z-c,t 1
3 2 5
e 2 2 2 2
o(z,t) = [ (z=c t—S){—2+[r -e p (s)] }ds+\:l— L ]czt +b z ,
3 3 o
0 G(r )
{7,25)

while | is given according to (7. 14) by

z-c, .t

3
bz, t) = ¢ g (z-c,t-s)p(s)ds + ¢ _z , (7. 26)
where S is an arbitrary constant with the dimension of length. The
constants bo, <, correspond to rigid body displacements.

Conversely, let p(s) be a given continuous function with the

properties
p(s+L) = p(s) , all s ,
L
tgp(S)ds =0, 5 (7 27)
max |p(s)] = 1
OsssL. J

and let ¢ be a given number satisfying (7.22). Then there exists a
unique value r o= r*(e) satisfying (7.21). Define ¢, ¥ by (7.25),
(7.26), with b and <, arbitrary. It is easily verified that ¢, © and

r , constructed in this way, satisfy (7.8), (7.9), and (7.10), and
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hence provide solutions for which r* is constant.
The particular case
2m

p(Z—c3t) = sin 4 (z-c,t) (7.28)

will be of interest later; p as given by (7.28) satisfies (7.27). The
amplitude e is now required by (7.22) to satisfy
e 2 . (7.29)

Equation (7.21) for r* becomes
2
e(-%) = 5 (7. 30)
r r
where
m/2 1
E(k) = f(l_kzsinzg) dt (7.31)
0
is the complete elliptic integral of the second kind.

We include here the displacements and Lagrange stresses cor-

responding to the ¢, | of (7.25),(7.26). From (7.6), (7.25), (7.26)

we have
z-c3t *2 o M
B = ,f {(—2 +[r -ep (s)]z)cosa—ep(s)sina}ds ,
0
z-c_t (7.32)
- % 22 1
v = f {(—2+[r -€ p (s)]z)sinor,-l-ep(s)cosot} ds ,
0

to within an arbitrary rigid body displacement. By (6.21) and (7.7)
we have the following expressions for the Lagrange stresses dy7: 972

q45 10 952 corresponding to the ¢, of (7.25), (7.26):

TIt is also possible to prescribe p and r>2 , rather than p and ¢
and to use (7.21) to determine € = (™).

b
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" . B
%%%‘ = (%CHrZ)—sinaa)(-2+{r" _e&pz(z_c3t)}£)

\
_esinacosap(z—c3‘c)+G(r*)~1 s
;5 2 2 L
- s 2
y vl s1nacosa(-2f{r - p (Z—C3t)} ) )
_e(%G(rm)—cos (’Ljp(z—c3t) ;
(7.33)
q :}:2 1 P
__i_l = sinacosa(—2+{r —€2p2(Z—C3t)}2)
+e(%G(r>'<)-sin2a)p(z—c3t) .
qzz 1 sk 2 *2 2 2 ';_,
0 = (EG(r )-cos a)(-2+{r -€ P (Z—C3t)} )

+esinoccosotp(z—c3t)+G(1‘>'<)-1 .

The Lagrange stresses are thus seen to be the sum

~

s = qaﬁ-i-Zu(G(r*)-l)ﬁ

B o0 = 1,2
of a periodic Lagrange stress system c'iap and a uniform hydro-
static stress.

We show now that our solutions ¢, ¥ , given by (7.25), (7.26),
reduce, when linearized, to the periodic one-dimensional waves of the
linear theory. Linearization will be with respect to the small ampli-

tude ¢. Equation (7.17) determines r as a function of ¢. The

constant r thus possesses an expansion of the form

ro= 2+€r>;+62r;+0(e3) (7. 34)
for sufficiently small €. Here, r;, rg, ... are constants independent
of ¢e. Then

2 1
3 2 2 3 * 2¢ % 1 2 3
[r" -e“p“(s)]2 = 2+er +e (rZ—Zp (s)) + O(e”) . (7. 35)

Using this in (7.21), it follows that

rl =0 . (7.36)
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Thus, r*—Z is of order ¢ 2, and so, by (6.24),

Gir') =1+ 0(e?) . (7.37)
Using (7.35), (7.37) in (7.25) wc sce that

¢ = O(e”) . (7.38)

By (1+7); {7.37),

eyt = cyt+ O(’) . (7. 39)
From (7.31), (7.38), (7.39), and the properties (7.27) of the function
p, it now follows that, correct to order ¢, ¢ =0 and | is an arbi-
trary periodic function of z-c,t. This is identical with the result of
the classical linear theory with reference to a one-dimensional peri-
odic shear wave progressing in the positive z-direction.

The analysis of this section, besides proving the original as-
sertion concerning existence of plane wave solutions of equations
(6.18), also shows that every periodic plane wave with r = r* , a
constant, traveling in a direction (cosaq, sina) with respect to a fixed
Cartesian frame X, has displacements given by (7.32) for some func-
tion p satisfying (7.27). Once p is known, r* is uniquely deter-
mined as a function of ¢ (and vice versa) by (7.21).

John [2, p. 3367 presents a solution of the equations of mo-

tion of harmonic materials, for which r = ro, @ known constant.

W1+ﬂ2

Replacement of the -1 in the first of his equation (109) by -

iy

gives a solution for which r = ?o , an arbitrary constant. The °

displacements of (7.32), for the case a = 0, are identical with those
given by this modified solution if we set ™=, = 1 ro= ?o and
ep((s) = ?Osin g(s) .
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§8. Reflection of Waves of Constant r from a I'rce Surface

We now wish to consider the problem of reflection by a frec
surface of waves of the type discussed in the previous scction.  The
region occupied by the elastic body in its undeformed state is now as-
sumed to be a half-space. Since the problem is one of plane strain,
we consider the half-space y =0, -oco <x<oo.

Let the dimensionless variables &, 1, C, T, ?5,117 be defined by

gz_Z_TﬂX, n:ﬂy, g:—zﬂzzgcosa+nsina,
L L L
5 42 (8.1)
2 ~ 4 o
T:Tﬂc3t, ¢:__TL2_¢, \IJZ—%W
L L

We suppose the half-space to be disturbed by an incident wave of con-

stant r of the form (7.25), (7.26); in terms of the new variables, we

take
sk Q-T :{:2 L
$=0¢ (C,mie)= [ (C-T-s){-2+[x _e2pP(s)]2 }ds W
0
1 2
11 = e T 3
\: G(r ) ] > (8. 24
o % C-1
V=4 (C-Ts¢) = ¢ [ (C-T-s)p(s)ds
0 /
where
p(s) = sins , (8.3)
¢ is a given number less than w, and r* = r*(e) is determined by
2T \,,2 1
[r" —ezpz(s)]zds = 41 . (8.4)
0

The direction of propagation of the incident wave is that of the vector
(cosa, sina). (See Fig. 1.) The surface y = 0 is required to remain

free of traction during the subscquent deformation, so that
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dyp = 9y - 0 at Ve O 5 (8.5)
The reflection process in general will give rise to waves for which
is not necessarily constant.

Let the operator A denote the Laplacian with respect to £ and

n from now on. We consider the differential equations

G" ¥ = GE)AF+2[GE-1] ,
W A (8. 6)
Gz J¥_ = GEIAY ,
where .
_ s 2 ~2.2
r = [(2+a¢) + (a¥)"]1 , (8.7)
and we seek solutions of the form
3 = ¢ (C,me) + blE, M, TiE)
-~ s _ (8. 8)
v = § (C-Tie) + ¥(E, m, Ts€)
From (8.5), (6.21) we Have the boundary conditions
n:O:% I‘)¢ ¢€gv :O:
(8.9)
_B. e T OF =
), = 0: aG(r )U/"I'T ng ¢gn g ,
and we require that ¢ and | represent outgoing waves at 1= -o0o.

In the following section we formulate a perturbation procedure

for the reflection problem based on the assumption that ¢ is small.



=B =
IV. PERTURBATION PROCEDURE FOR THE REFLECTION PROBLEM

§9. Form of the Expansions

In this chapter we introduce a perturbation procedure for the
purpose of obtaining a solution, in the form of an expansion in powers
of the small amplitude of the incident wave, to the problem formulated
in §8. The procedure is motivated by the fact that, upon linearization,
the first term in this expansion is identical with the solution of the
corresponding problem in the classical linear theory. We assume that
the reflected wave is periodic in time with the same period as the in-
cident wave.

On expanding ¢, db*, T, \];* in powers of the amplitude ¢, the
problem (8.6)-(8.9) réduces to a sequence of linear boundary value
problems, the first of which is homogeneous and is essentially the
usual reflection problem of the classical linear theory, the rest non-
homogeneous. Secular terms arise in the solutions of all of the non-
homogeneous problems. Elimination of these terms is achieved by
allowing amplitudes to depend on a slowly varying function of depth in
the half-space. A full discussion of this matter is included in sections
11 through 14.

For given ¢ and with ¢»*, qj* given by (8.2), (8.3) we assume
existence of non-trivial ¢, | satisfying (8.6)-(8.9). We consider the

case 0 < g << 1 and try expansions of the form

<l

=ed (EmT)+ e d»_@l(E,ﬂ,THe3 ¢, (8, + ...

(9. 1)

F=eT (Bnn+ @800+ T, Enn+. ..
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for the reflected wave 2[5,-117 For simplicity we shall agree to omit the

bar over ¢, | in the remainder of this chapter. It is thus understood
that ¢, § now denote the reflected waves arising from the incident
EONE
disturbance ¢ , | .
o ° ° 3 . * * *
We begin by calculating the e-expansions of the quantities ¢ ,§ , r
*
and G(r ) associated with the given incident wave. Equations (8. 3)

3R
and (8. 4) determine r as a function of ¢ which possesses an expan-

sion of the form

2 3
- X X 5
r*_2+er’i+e r2+e r3+... (9. 2)
where
% X 1 ¥ 1
r, = 0, T, = g s r; = -Tg - (9. 3)
Thus, by (6.24) ,
% 5 * %
G(r)=1+eG1+ezG2+e3G3+.... (9. 4)
where
CZ CZ
3¢ _ £ _ 1 ( 1 ) *_ 1 ( 1 _ )
Gy=0, G =gl —=-1) QG=-xmiz~1)- (9. 5)
c c
2 2
* %
By (8.2) and (8.3), ¢ and 11:% can be shown to have the ¢-expansions
3 x 2 X 3 %
CI) :€¢0(C3T)+€ ¢1(€:T)+€ ¢2(§:T)+"'
N . (9. 6)
5 % 2 3
bo=ey (Cm)te (G m)te” yo(CT)t ..
where
3 3 %“T .
b = 0, \po =g (C-T-s)sin s ds , (9.7)
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2
c

C~-7
¢ = L[ (c-t-scos 2sds + & (- D)ed ¢= 0, (9.8)
<2
e L *x
¢2 = = 34’1 2 "1{2 = 0 (9. 9)

We now determine the ¢-expansions of r and G(T). Using

(9.1), (9.6) and (8.8) in (8. 7) we obtain

?=z+e?l+e2¥z+e3¥3+.... (9.10)
where

- Ad +¢* N

T, = 5

1 o OQQ X

o 3 1 3

T,= A, +d, +t(A_t Y 3 (9.11)
2 1 1CC 4< o OCQ> 2?

% " % ] 1 % x

= Ao, +d + Ay +Y Ay +§ o Y Ay +
2 ZCC ( o OCC>< 1 ICC) 8@ o ogg>< o %CC>

4

The e¢-expansion of G(r) is now found by substituting from (9. 10), (9.11)

for ¥ in (6.24). On doing so we find that

G(F)=1+eG +e°G,y+e G +.... (9. 12)
where ' Cz
G, %(—17- )<A¢ +o ) ; (9. 13)
o °c¢
G, = i(if_ ~1)(a¢,+0] )k (Cl‘Z D)oy, )?lk (bo+e” . or1
27\ 2 P " BT g BY A
2 2
G3=%(§%2“1>(A¢2+¢§CC>+211'<% I)EA ngwlwl*gg)
2
2
ool Joostl )

2 3

)+7}<A ¥t q;:gg) }1<3<A¢0+¢:Cc)~_ (9. 15)

reig(at gy Yool
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On using (9.4)-(9.9) and (9.1),(9.12)-(9.15) in (8.6)-(8.9) we
obtain the first, second and third order boundary valuc problems for
the pairs (tl)o, \110), ( (f)l, 11:1) and ((I)Z, 1{12) respectively. Those problems

are as follows:

First Order Problem

o
n<0: ¢°TT -cz ACPO: 0 , (9.16)
2
n<o0: \bo - Allfo = 0 , (9.17)
T
n:O:%;c() - cpo +1];O = - sin a cosa sin(€ cosa - T) , (9.18)
T EE En
n=0: %wo - dfo - cpo = (cosza - %)sin(@ cosa- T) . (9.19)
T Eg &n
q:o = q;o and ¢0 + q;o periodic of period Zwin T . (9.20)
g | n g

Second Order Problem

2 2 2
c c C 2
n<0ig -—s B4 =[:§(_17 -1 z1<2](z;¢0)2+%(__§r < I)EM;O) +2A¢osin(<;-¢)],
T Sy “2 €2
2 (9.21)
n < 0: ¢l - Ad;l = %(—12 - 1) A¢0[A¢O+ sin(E-T)] , (9.22)
T <,
2
n=0:%¢ -d +§ = gl-(cosza-é-)cosz(g e ‘116<‘l2 - 1) . (9.23)
TT "B "En <,
n=0: 3 \]Jl - 11!1 - ¢l = -81- sina cosa cos2 (€ cosa - T) , (9.24)
TT EE "En
¢l - 1111 and¢1 + q;lg periodic of period 27 in T, {9.25)
n
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Third Order Problem

2 2 2 2
£y 1 /€1 1 £% “1
M0, --5 8¢, - 15 % - 1) - 15( =% - Yeesatc-m)- (= - ’)“’
T €, Cy c, €y
CZ
+ (4 k2+;-lz - 1>A¢0[A ¢1+él— cos2(C-T) T+ (k,+2k,)(8 <1>o)3
> 2
#3(L 1) oy [ 80 Foin(c-m) 14k, 6 (84 +sin(c-1) T2
2 :2‘ 1 o 270" "o ?
2
(9.26)
CZ
n<0:y, -Ay,=- ’1!6 (_%_ - 1)[4,0 + sin(g-T)] +k2(A¢o)2[A11ro+sin(C-'r)]
¥} c, (i
2
+ 1 :1.2 ‘:(Aq; +sin(C - T){A¢l+ = cos2(C- 'r)+-(A\IJ +sin(C - T))Z}
2
+ Aci)oA\lJl] 3 (9.27)
CZ
n=0: %q;z - ¢2 +¢2 = - §12 (—1TZ -1)¢o + Tlé(cosza-%)COSZ(g cosa-T)
Tr EE En c, TT y °12
t (51, .28
€2
2
ﬂ=0=%'1'2 _11,2 . ¢2 = - .?;1._<__12 1>[¢ro +sin(€ cosa-T)]
T g gn Ga TT
-1—6- sinacos a cos2(Ecosa-T),
(9.29)
5 -L];Z and b + wzg periodic of period 2w in T , (9. 30)

and ¢, § must represent outgoing waves at n= -o0 .
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§10. The First Order Problem -- Linear Theory

We discuss here the structure of the solution of the problem
described by equations (9.16)-(9. 20).
Taking account of the boundary conditions (9. 18) and (9. 19), we

seek a solution c]JO, l]JO of the form

¢o = f(n)sin(§ cosa-T), 1110 = g(n)sin(€ cosa-T1) , (10.1)

for some suitable functions f and g. On substituting for cpo, wo in

(9.16), (9.17) we find that f(n) and g(n) must satisfy

Céz 2
£} + (-—-2 - cos a)f(n) =0, m=g , (10.2)
C
1
and
g''tm) + sin“a gin=0 , n<o0 . (10.3)

Clearly f(n) is sinusoidal or exponential depending on whether

sz 2 Céz 2
—— -Cos o is positive or negative. If >— - COs @ is negative then
(] C

1 1,

(10.2) has solutions
i
2 2, 2V
f(n) = exp{:i:n(cos a - cz/cl) } . (10.4)

The negative exponential is excluded by the requirement that the dis-
placements corresponding to (10.1) be bounded for n < 0. Thus, by
(10.4), (10. 1), ¢ decays exponentially with 1, when czz/ciZ -cosza is
negative.

If céz/clZ - cosza is positive, then (10.2) has solutions
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o 2 L o8 L
oy ‘ 2 R _{(z__‘z)a} :
f(n) = alcos{ﬂ<—2— cos a)z}+ a,sinin|— - cosa (10.5)
c e
1 1
where a, and a, are arbitrary constants. Then, by (10.5),(10.1),

¢0 is a linear combination of the four terms

2 1 2 1
3 2\ €3 2\
sin<§ cosa :!:'}‘](———2 - cos a) —T), cos(‘é cosa :b'rl(—-T -cos a) —*r)
€1 2 C1

c 2
The terms with argument g cosa+ﬂ<—22— - coszo,> - T are excluded on

the grounds that they represent incoming waves at n = -o0.

In the case where céz/cl2 - cosza is zero, all solutions of
(10.2) are constant or linear in n. The solution f(n) must be chosen
to be constant since otherwise, by (.10. 1), the resulting displacements
are unbounded in 1 .

We confine our attention here to unattenuated plane wave
solutions of the problem (9.16)-(9.20) and thus assume that

C

0€n =a¢ L ., a_ = arc cos =% . (10.6)
o 2 o <

We deal here with materials for which Poisson's ratio is positive. In
' 2, Z
this case, CZ/Cl <%, and hence, oco>1'r/4 =

Equation (10.3) has solutions
g(n) = b1 cos(n sin a) + bz(fq sina) , (10.7)

where bl and bZ are arbitrary constants. By (10. 7),(10.1) it then
follows that q;o is a linear combination of sin(g cosa - msina - T) and
cos(g cosa - n sina - T), the solutions with argument § cos ¢ +
nsing - T being excluded by reason of the fact thatthey represent in-

coming waves at 1= -c0. Thus, when a satisfies (10.6)and solutions
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of the form (10.1) are assumed, q)o and q;o are given by

N 2 % CZ %
. i _ .
q)o = B sin(@ cosa-n(—%—— - coszu> —fr> + B cos( cosa—n(—% —cosza> -'r> .
C C
1 I
(10.8)
i
q;o = C sin(g cosa-n sina-'r)+ C cos(cosa-nsina-T) , (10.9)

' 1
where B, B, C, C are constants to be determined by the boundary
conditions (9. 18), (9.19). On applying the boundary conditions we

! 1
obtain the following systems of equations for B, C and B, C respec-

tively:
B(cosza-%) + C sina cosa = - sina cosa ,
CZ 1 ' (10.10)
-Bcosa (-—gz—- - coszo.) + C(cosza-%) = cosza-zlg .
C
1
¢ 2 1 _—
B (cos a-3) + C sina cosa = 0
2 1 (10.11)
: =2 5 S 2 4
-B cosa< -~ cos o.) + C (cos a-3) = 0
: e
1

The determinant of the matrix of coefficients in (10. 10) and (10.11) is
c EY
2
(cosza-%)z + sina cosza (—22 - cosza> > 0 ; (10.12)
c
1

the fact that the determinant is positive follows from (10.6). Thus
B=C =0 (10.13)

and

2 sina cosa(% - cosza)
B= i (10.14)

2 2
(cosza - ‘—‘lf) + sina cos a(czz/cf' - coszo.




«F 0
; 1
B g* . 2 2, 2 2. \*
(cos " a-3) - sina cos a (:&/c1 -cos a

C = > . (10. 15)

L
F)

(cosza—’;—) + sina cosza (sz/clZ - cosza>
Hence, by (10.13),(10.8) and (10.9) ,

C

2
¢o = B sin(@ cosa - n(—-éz - cosza> = 1-> s (10. 16)
€1
‘L'o = C sin(€ cosa - nsina - T) s (10.17)

where B and C are given by (10.14),(10.15) .
| On recalling the definitions of §, n and T (see (8.1) and (7.7) ),
the function ¢0 of (10.16) is seen to represent a plane wave travelling
with the wave speed cl[G(r*)]é— in the direction (cosf,- sinf), where
!
cosf = —C-Z-cosa, 0<Bp<a , (10.18)
while the 1[;0 of (10.17) represents a plane wave travelling with the

ey
wave speed CZ[G(r*)]3 in the direction (cosa, -sina). The situation

is illustrated in Figure 1. Since, by (9. 4), (9.5),

Gir®) = 1+0() ,
1 1 :
the wave speeds cl[G(r*)]3 , cz[G(r’“)]3 reduce, in the limit of small
e, to < and c, the respective propagation speeds of dilatation and

shear waves in the classical linear theory.

Similarly a plane wave of dilatation, when reflected from the
free surface of a half-space, gives rise, in general, to both a reflected
shear wave and a reflected dilatation wave. This 'subject is discussed

in Chapter 2 of Ewing, Jardetzky and Press [22],
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§11, Modification of the First Order Solution

We now consider the problem described by equations (9.21)-
(9.25) with ¢0 and 11;0 given by (10.16),(10.17), (10.14), (10. 15).

First we introduce some simplifying notation. Let

Ql = E cosa - 7 sina . (11.1)
%2

C(, = o (Ecosp-nsinp) {11.2)
1

where B 1is given by (10.18). Then, by (10.16),(10.17),
CPO = Bsin(gz-'r), 1!;0 = C sin(Cl-'r) (11. 3)

where B and C are given by (10.14), (10.15)

On substituting from (11. 3) for ¢0 and q;o on the right-hand
sides of (9.21) and (9. 22) we find that the terms involving (Aci>o)2 and
(A\j;o)z in (9. 21) contribute, among other terms, a constant term and
a term proportional to cos Z(QZ-T). The constant term produces con-
tributions to 4)1 which are quadratic in g,mn and 7. The term propor-
tional to cos Z(CZ-T) on the right-hand side of the differential equation
for ¢; contributes to ¢, aterm proportional to £sin2((, -T)or nsinZ(gz_T);
a termproportional to TsinZ(CZ—'r)in 2 is ruled out by the periodicity
requirement (9.25). The second order displacements are given by
first partial derivatives of ¢, and ¥;. Thus it follows that the presence
of a constant term and a term proportional to cos Z(gz-'r) on the right-
hand side of (9.21) gives rise to terms linear in the space variables
and to a divergent oscillatory term in the expressions for the displace-

ments. The right-hand side of (9. 22) contains neither constant terms
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nor sinusoidal terms with argument proportional to (:l-'r, €-T, so no
such difficulties arise there.

The question of the presence of constant terms on the right-
hand side of (9.21) and (9.23) will be discussed further in §13 and in
§17. We confine our attention here to elimination of the term propor-
tional to cos Z(QZ—T) on the right-hand side of (9.21). The method used
is a certain two-variable expansion procedure to be described below.
A full description of two-variable expansion procedures is to be found
in Chapter 3 of Cole [4].

We assume that ¢ and | depend on depth in the half-plane

through the '"'slow'' variable
ﬂﬁ =en (11.4)

as well as through n. The variables n and ?]J are treated formally
as independent in differentiation and, on expanding ¢and { in powers
of ¢ ,a sequence of boundary value problems is obtained. The second
and higher order problems in this sequence will differ from those
previously obtained in §9 in a manner to be determined below. By
appropriate choice of the ?]"-dependence of ¢o, q;o, that term in the
second order problem which leads to a divergent oscillatory contribu-
tion to ¢1 is eliminated. Similarly, divergent oscillatory behavior in
the solution c{>2, ¢2 of the third order problem is avoided by choosing
the ?q*-dependence of ¢1, t[;l appropriately. The method is expected to
be equally effective in eliminating divergent oscillatory behavior in
all of the solutions of the higher order problems, although we do not

here pursue problems of order greater than two.
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With

¢ =¢ (E,m,m,Tie), b= VE, N, ) (11.5)

and treating mn and 'ﬁ as independent in differentiation, we obtain, as
before, a sequence of boundary-value problems on substituting the

c-expansions

¢ = e¢lEmA,T)+ echl(%,n,"ﬁ, 'r)+e3¢2(§,n,’ﬁ,7)+- .

o= e lemmT)t e ¥(Emm, T) +e T, (Enm, TH. ..

in the problem formulated in §8. The changes due to the introduction

of | are as follows:

~N
te] 0 9
éﬁ becomes 5-1—1- + e —
on >
2 2 5 2 (11.7)
—?—— becomes —-—-—2+ 2¢ +€2__22_ .
an° an ano% a7 /

The e-expansions of A¢ and A} are now

B9 = eb oy +e (MG 20 e (80,42 &) =t doti..,  (11.8)

By = eay_ + el(ap +2 wonﬁ)+e3m bRt U gt (11.9)

Thus in the second and third order problems we account for the

"H-dependence of ¢ and | by making the changes
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- ) ~ b ‘ o }
> (11.10)
Y2gn " %2gn * freq Yemn T Yozn T VigR )

On comparing with (10. 14)~(10. 17) we note that the first order

problem is satisfied by any ¢o, ¥, of the form

0 )
¢o=}:1)Bn(ﬁ) sinn(QZ-T) . ¢r0=zl)cn(ﬂ)sinn(g1-'r) (11.11)
where
2 cosa sina (3 cosza)

- - e .

B0} = ~ N 2 72,2 ggl 5 {3l 12)
(z - cos a) +sina cos a Cl/CZ -cos a

p Y

1 2 2 ; 2 2, 2 2N

(3 - cos"a)”- sina cos a CZ/Cl -cos a
B0y = : gt TR 7. (11.13)

(z - cos a) + sina cos a CZ/CI - cos a
B (0)= C_(0) = 0, n=23,..... . (11, 14)

The sequences {Bn(ﬁ)} ] {Cn(?‘]’)} will be chosen so that, on substituting
from (11.11) for 4)0 and L];o in (9.21), (9. 22), all terms proportional to
cos n(gz—'r) on the right-hand side of (9.21) and all terms proportional
to cos n(gl-'r) on the right-hand side of (9.22) vanish forn=1,2,3,... .
This procedure will result in differential equations for the Bn(ﬁ), Cnﬁ) .
On using the d‘)o’ 1110 of (11.11) in (9.21)~-(9. 25) the second order

Problem takes the form
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31 Cf‘
n<o0: ‘1’177' s Aq>1 —-—-2 fZ n C (n)blnn(( —fr):l
“z %3
o 5 -
-2 sin(g—'r)z;n Cn(n)sinn(gl-'r)}
céz Z ; cf © 5 " 2
+< > ) {3(—-2— 1> +2k2}[2 n Bn('q)sinn(gz-"r)]
<y c, 1
4 00 ;
=2 5 sinpzl n B (M) cosn((,-T) , (11.15)
1 sz °12 =l S
n<0: wl'rfr— A \]Jl = 3 —2—<—Z~ - 1) 2n Bn('n)sinn(gz-’r)
c1 c:Z 1
v o |
X [2 k Cn(ﬁ)sink(gl-’r)—sin(g-’l' )]
=1
0 '
-~ 2 sino.Z\lnCn(ﬁ)cosn(gl-T) s (11.16)
CZ
n=0: 3 ¢1TT- ¢1§§+¢1§n = % (cosza-%')cos 2(E cosa-T) - Tl'z,' (——12— -1)
(e
- 2
0 9
-cosa n Cn(O) cosn(g cosa-T) , (11.17)
1
n=0: % wl'r'r- q;lgg- ¢lgﬂ = -é— sina cosa cos 2(E cosa-T)
0 '
+ cosaln Bn(O)Cos n(€ cosa-T) . (11.18)
1
= iodi f iod 21 i .
cplg q;ln and ¢l'n + le_', periodic of perio T oin T, (11.19)

where primes on the Bn(Tr]J), Cn(?‘]‘) denote differentiation with respect
to m.

Clearly we must have

'~
C =0, n=123, ..., (11.20)
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in order that the right-hand side of (11.16) contain no terms propor -

tional to cos n(gl-'r). From this and (11. 14) it follows that
c,(M=cC(0), C(M=0, n=23,.... . (11.21)

The sequence {Bn(Pﬁ)} is to be determined from the requirement

that

szz 1C12 - ¢ 5y e
( 2) {2k2+-3'< e 1)}‘:En Bn('n) sinn(gz—'rﬂ-z-é—- sinﬁZan(ﬁ)
<y c, 1 2 1

X cos n(QZ—T)

contain no terms proportional to cos n(gz—'r), n=E 1,258

Since
[Zm B_(f) sinm((,-1) | =D {2 k@)’ B, B, @)
1 n=1 k=1
e L2 z . o
- j;kZ:‘,lk (n-Kk) Bk(n)Bn_k(n)}cosn(gz-'r)
o0
r 3o B®, B M=o, (11.22)
1 n o
we have, on using (10.18) and setting
C c. 2 \
(_._2) <4k & sl 0 1
cl 2 S.'Lz )
K, = ’ - , (11.23)
(2 - cos®)’
4 - cos a
€1

the following set of first order ordinary differential equations and

initial conditions for the determination of the sequence {Bn(hﬁ)} 2
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nB (%)= 1[2 1 (ntk) 2B, F)B_, () - "E kBT B ]

il

Bo(?{) 0, n<0, n=1,2,3,
(11, 24)

4 2
2 cosa s1na(% - cos a)

B,(0) =

2

(% - cosza)2—+ sina cogza(céz/clz - coszo.)
B (0)=0,n=2,3, .... . (11.25)

The next section is concerned with the construction of a solu-

tion of the system (11.24), (11.25).

§12. Determination of Depth-Dependent Amplitudes Bn(’ﬁ)

In this section we construct a solution to the problem described
by equations (11.24), (11.25). Solution of the problem is facilitated
by converting the system of ordinary differential equations into a single
first order partial differential equation by means of a generating
function.

Equation (11.24) can be written ina simpler form. Let

2 :
n B (ﬁ)

'bn(?f) = — (12.1)
B, (0)

Then (11.24) reads

n
[x, Blm{] b - E ENGINNOIE 3R NC NG O ELR

’ﬁ<0, n= 3205, 55

(12.2)
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The initial condition (11.25) becomes

b, (0)= 1, b (0), n=2,3, (12.3)

The generating function referred to above is defined by

00
B(6,M)= 2 b (M)sinn® , 0<B<m, <0 . (12.4)
n=

1

Since, by (12. 1),
n D = Le g g (M
sinn § = K;B,(0) n sinn G{EIbk(ﬂ)an{(ﬂ) - zk}zilbk(ﬂ)bn_ " } ,

&

db

n=1,2, ..., we have, by (12.4),

-1 00 0 n
[KlBl(O)] _g_;_ = _55.’6[El{lzlbk(%‘)bmk(ﬁ)-ék:@lbn(n)bn_}é?ﬁ}cose].

Since (11.22), (12, 1) and (12. 4) imply that

B X b . B g oo ot 502 Do
2 {Z by @b () - 3T b @b feosn 8= b8, ) - 3T b2
n=1 k=1 k=1 1
(12.5)
it follows that
-1 9b a2, ™~ 1R 2
(KB, (0)]7"=—= = -==|b"(B,mM-22Zb_ M| ,
171 ~) 86 n
on 1
that is,
[KB(O)]‘IQ’E’-+2b313=o,’?1'<o, 0<o<mw . (12.6)
171 5% 96
From (12. 3) the initial condition is
(12.7)

b(B8,0) = sin B
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For the purpose of dealing with (12.6) in a more convenicnt
domain in which both variables are positive we make the variable

~ change m = m, where

e

o= % . (12.8)

The problem for b(8, 1) then reads

28 ewnl o, 0<m, 0<pg<mT , (12.9)
an 96
b(8, 0) = sinf , 0<g< ™ | (12.10)

where, by (11.23), (12.6), (12.8), (10.18) and the definition (11.12) of

B, (0), o2
1 ; i 2
o 6 {2 kz = %(-C—.z- 1)}.2(:050, sina(z-cos a)
_ __[ 2 2
E = - &R L= (E“f) y % ” 3 ¥
2 2 1 2 . 2 2 2
> - Cos a 2- cos a tsinacos al—-cosa
c &
1 1
(12.11)
The characteristics of (12.9) are given by
49 - kb(e,7) : (12.12)
dn
Since b(8,n ) is constant along characteristics, (12.12) gives
8 -Kb(s,0)m = s (12.13)

as the equation of the characteristic through 8§ = s, 1= 0. Thus, by

(12.10), for each s the straight line

- (Ksins)n = s, 0<7 , O<s<mw, (12.14)



is the characteristic through 6 = s, n= 0. We note that the lines
B =0 and 6=m are charactcristics..

We now show that (12.14) has a unique solution s(8,n) by
proving that no two characteristics, issuing from distinct points on
the line segment n =0, 0 <8 <7, intersect in the region 0 <7 ,
0<B<w. We assume for the moment that K is positive (by (12.11),

, where

the sign of K is the opposite of that of 2 k, + %(clz/czz - 1)
kz is a higher-order material constant. With K positive, all charac-
teristics issuing fromn =0, 8 = s (0 <s <7 ) are seen by (12.14) to
have positive slope. Our proof consists of showing that the value

ﬁ_" of M at which the characteristic issuing from m = 0, § = s intersects
the line 8 = m is a monotonically decreasing functionof s for 0 < s <w.

We have, from (12. 14),

(5 & Lt . (12.15)

K sin s

The truth of our assertion then follows from the fact that el

sin s
decreases monotonically from infinity to 1 as s increases from 0 to w.

When K is negative, it can similarly be shown that no intersections
occur by noting that all characteristics have negative slope and that the
value of | at which the characteristic issuing from the point = 0,
= s intersects the line 6 = 0 is a monotonically increasing function
of s for 0<s<mw.
Thus, given (f,71), 0 <f <™, m >0, equation (12.14) has a

unique solution s(8,mn). The value of b at (8, 71) is given by

b(8,mM) = sins(8,m) = sin[6 - K7 sins(h,7)] , (12.16)
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i.e. b(p,m) satisfies

b = sin(@~Knb) . (12.17)

From (12.15) we have, for positive K,

lim nn(s) = = s (12.18)
s - K
from which it follows that
b(r,7}=0 for 0<h< (12.19)
K
— 1
For n > — we have
K
— . - — 1
b(w,n) = sin[s (n)].,mm>= , (12. 20)
™
K
where s {n) is the unique root of
sin s 1
T ==, 0<s < . (12.21)
= 8 K N i
™
As 7 increases — 3 sﬁ{ﬁ) decreases from w to 0 , b{(m,n)
K
increases from zero, reaches a maximum of 1 when s my= w/2
(this occurs when 7 = i X ) , then decreases to 0 as sﬂ_"ﬁ) decreases
K 2

from w/2 to O (i.e. as M - o). Thus the graph of b{w,n) is as indi-
cated in Figure 2.

The case K <0 is similar. We have

Ng(s) = - —= , 0<s<T™

K sins

, (12.22)

where ﬁo(s) is the ﬁ—intercept of the characteristic starting from

e:s’ ﬁ: 0. Since
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lim ﬁo(s) — (12.23)
s —»0 K
it follows that b(0, ) = 0 for 0 <7 < - 1 and that
K
b(0,7) = sin[s (M1, 1 > - = , (12.24)
O
K
where so(ﬁ) is the unique root of
sin s, 1
S owosde | &g €W . (12.25)
S = (o]
o Kn

The graph of b(0,n ) (K < 0) is identical with that of b(w , 1) (K > 0)
The asymptotic behavior of b(8,n) for large ﬁ is of prime
importance since it determines the behavior of cj)o for large n. Let K
be positive. From (12.14) it is clear that, for every fixed 9, 0<8< m,
s(B,n ) tends to 0 as | — . From (12.16) it then follows that, for
every fixed §, 0< 0 <g, b(6,n) tends to zero as 7 - w. That the
convergence of s(f,n) to zero is uniform for 0 < § < ¢ is seen from

the following: by (12.14)

1 :Slns>sms,ﬁ>0,0<s<8>¢r,

— B-s 8

K

Thus

sins<—§—_- < "_ . from which we have

Kn Kn
0<s(A,M)<dforallg>—— , 0<p<T , (12.26)
Ksiné

where § is an arbitrary positive number.

From (12.16) and (12.17) it then follows that b(ﬂ,ﬁ) ~ -—9—_

Kn
uniformly in 8, 0 <8 <7 , asn - o . From this we conclude that

2
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2 21 " -
b (M) =2/ b(6,N)sinn 8d8~-“— = [ 6sinnbd6 as 7N — w (12.27)
n (e} = (o]
K TK n
l. €,
n+1
b(7}) ~ -ZK (‘”~ as T G, n=1,2,.00 . (12.28)
nn
In terms of 7, (12.28) reads
n
bn(?f)w% (‘ll as M = -0, n=1,2,... . (12.29)
n

When K is negative we find that

b(6,n) ~ e-——“-, uniformly in 6, 0 €8 <x, asn— o , (12.30)
Kn

from which it follows that

b (M) ~ - as m~w, n=1,2,... (12.31)
n —
Knn
or, in terms of M,
-~ 2 o~
b n] =~ - as n—*-00, n=1,2, ... . (12.32)
Knn

From (12.29), (12.32) and (12.1) it follows that

"
2 (-1)"
B,j(0) ¢ 55— . K>0
~ n- mn
Bn(’r]) ~ < (12.33)
B.(0) & 1 K <0
1 iZ¢ 3 e :
g n"mn

as | = -0, n=1 , «ee. . From (11.24), (11.25), (11.23) and

(12.11) we have

Bn(?f) =0, n=2,3,...., Bl('ﬁ)sBl(O) when K = 0, (12.34)
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We have thus found a solution {B“(ﬁ)} to the problem (11.24) -

{11.25) viz.,

~ B0y 5 ~y ~ :
B (n)= — ; [, b(8, 1) sinn 8d6, n <0, n=1,2,... (12.35)

where, on making the variable change n = ”ﬁz -m in (12.14), (12.16),
b(0,7W) is given in the form |

b(6, M) = sins(8,7) , (12.36)
s(8, ;) being the unique solution, in 0 <s < w , of

8 +NMKsins = s . (12.37)
The asymptotic behavior of Bn(fﬁ), n=1,2,..., for large ﬁ is given
by (12.33).

We have, in figure 3, sketched b(8, TT) as a function of 8 for

various values of N, with K >0 .

§13. Modification of the Second Order Solution

We now write down the second order problem (11.15)-(11.19)
again, having made the choices (12.35) and (11.21) for {Bn(ﬁ)} and
{Cn(?f)} respectively. We have thus ensured that no divergent oscil-
lations will appear in the solution ¢1, ¢1.

For brevity we set
C = Cl(O) . (13.1)

Equations (11.15)-(11. 19) now read

2 2
€1 17%1 L 2
n<0: ¢1T’r— N Aq>1= Z<—-—2 -l){—EC cos2(C 1—T)+C cos2Ecosa-1) -
C ¢
2 2
o2 2 a3 2 - 2
Ceos(2nsina)} +%<_(.:.Z.i2,> [2k2+%<:}2—-9]§13 n4Bi(ﬁ)+écz(§.-1>, (13.2)
2 2
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2 2
1 €2 (€1 . : = N
n<0:¢lTT-A¢1=§ -C—z-(g-z-— -l)[C sin(C l—T)-51n(C—T:)] }l./n Bn('n)sin n(CZ-T) 3
1. ~2

(13.3)

2
2 1 1 771
n=0: 2‘1’1 ¢1!—;§+¢IE —(cos a-3)cos 2(Ecosa-T)- -1—6(—2-1> . (13.4)
c
2
n:O:%QJlTT— q;lgg- cplgﬂ: (—81- sina+2 B'Z(O))cosa cos 2(€ cosa-T) , (13.5)
q)lg - qun and ¢ln + ‘l’lg periodic of period 2Xin T . (13.6)

The right-hand side of (13.5) is obtained by noting that (11.24), (11.25)

imply that
i
Bn(0)=0,n=1andn=3,4,5,.... . (13.7)

Further, by (11.23)-(11.25),(11.12),(10.18), (12.11),

() ot} | |
g _1- _Z.Z 2cosa sina(3-cos“a)
BZ(O) = K B (0)=- L
2 1 2 i
2 2 e Y1 2 2 2 C]. 2 2
= = EO8 @ [3-cos a>+sinucos a<—2-cos o.)
c
1 B c, i
(13.8)
We choose the following particular integrals ¢(p) w(p) of
(13.2), (13.3) respectively:

c 6 a2 5=
-] (et
¢1_-ZE—ZKZ+—7 ‘nz\/nB(q)+—6 3+ 1)C" 7

1 c

o3 2
c2 cos 2(C,-T) cos 2(Ecosa-T) cos(2n sina)
+1<1 1>"21'C2 +—+Cyo——-C
Te\"_ 2 " Z, 2 2 ;
<5 cl/cZ -1 cl/czcos a-1 CI/CZ sin a

(13.9)



2
c
2
W - ()i e
€2
2 2
c c o0 -~ cos(C,-nC,-(l-n)T]
L2 )|$ a2 mfe oot ,
n=-c . 2 . .2 2 .2
S %2 (sn'wz—n—c—— sinB)-( -n) sine«
1
cos[Q—an-(l-n)T]
= = s (13.10)
(sincHnC—2 sinﬁ)z-(l —n)zsinzaf
where .
B_n('ﬁ) = -Bn(’ﬁ) m=1,2,....), BO(%‘)E 0 (13.11)

We now add to the particular solutiens q>1(p ), \lll(p), solutions of
the homogeneous equations associated with (13.2) and (13. 3), respec-
tively, which are sufficiently general to allow satisfaction of the
boundary conditions (13.4), (13.5) and which permit the removal from
the third order problem of all terms contributing divergent oscillations

to ¢2, 11!2. It turns out that we must seek (bl, \bl in the form

2 2
g C 2 oC —
¢y = ¢l(p)+—é—( 12 - 1)(—17T +n2>A+ZlfDn(n)cos n(QZ—T) , (13.12)
€2 €2
c2 C2 oC oC
R (;Lz_ - 1)-C—12 81 A+ZE (f)cos n(C -+ F f)cos n(C -7)
2 2

(13, 13)
The constant A is, so far, arbitrary. The boundary conditions (13. 4),
(13.5) will place restrictions on the values Dn(O), En(O), Fn(O)
(n=1,2,....) but the sequences {Dn(’ﬁ)}, {En(ﬁ)}’ {Fn(’ﬁ)} are, at this
stage, otherwise arbitrary.
On applying the boundary conditions (13.4), (13.5) to ¢y \L‘l

of (13.12), (13.13) we obtain the following systems of equations for
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Dn(O), E (0), Fn(O) (n=1, 2, )
(cos a-3)D (0) + sine cosa(E (0) - l<n(0) ) =0
n=l, n=3,4,.... {13, 141
c2 g
-cosa<—?é— - cosza> Dn(0)+(cos2a-%)(En(O)+Fn(O)) =6
cq .
(cosza-%)DZ(O) + sina cos« (EZ(O)—FZ(O)) = Vl(a) ,
Cz 1 (13.15)
2
2 2a> D2(0)+(cosza—é)( (0)+F (O Vz(a)

-cosoz(—-—z— - cos
1

where
b1 2 :
v (e) = % g-cos 2 L-§(1+c2)<c12/c22 oo 1)+c(cf/c22 _ >]
(‘2 cos a -1
: ‘2 . . 2 .
2 2 sina + — sinf sina- — sinf
12 <C1 ) ‘1 =
+—= —=\|—5 -1)cosa | C + .
8 c2 c2 =g 3 2 “a 2
1 2 (sinoz+——sin[3) -4sin « <sina—-——sin -4sina
¢y <
(13.16)
Vz(a) :% cosa(é smoz+4 KB O - iZ C2 sina cosco
c2 c2
1 72 1
+B1(O)Z—2<_—Z_ cosoz > N
€1 2 31na' - — mnﬁ) -4sin «
C
h <y Z >
<sina+—c— sinB> -4 sin « (13.17)
1

In the next section we consider the third order problem and

determine A, {Dn(’ﬁ)} , (E.mM3, {Fn(ﬁ)}' The fact that, for each n,
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we have one degree of freedom in satisfying (13.14), (13.15) will
later be utilized to eliminate undesirable terms from the expressions

for En(?q'), Fn(ﬁ) mn=1,2,...)

§14. Determination of Depth-Dependent Amplitudes Dn(;’]v)

In this section we show that the quantities A, Dn(ﬁ), En(’ﬁ),
Fn(ﬁ) (n=1,2,3,....) which appear in the expressions (13.12), (13.13)
for ¢ \J/l are determined by the requirement tha.t(Pz, \I/Z be free of
divergent oscillations.

We begin by writing down the third order problem (9.26)-(9.30),
making the changes indicated by (11.11) to account for the Pﬁ~dependence

of ¢, V:

2 2 2 2
€ I {4 1 (€1 1 /%1
TeRigg - o5 M = 16 (=% -1)- 15(S5 -1)eos2c-n)- 15 -1)e,
5T 2 c, cy c, TT
2
<9 1 3
+(4k .+ -DAd |A¢+2¢  +=cos2(C-)H(k+2k,) (b4 )
<2C2>o[lonn8 ]k2k30
1 ef
= 1Ay, LA -
+2<C—ZZ- > \1/1[ Y +sin(C 'r)]+k2 Ad [A\l/ +sin(C-T)]
2
(@4
1
+:2<Zq)l~+¢o-> ’ Hat)
2 m m
2
n <0: vy -Ay, = -1 ( -iz [\v #ein(c 1 ey (64,2 (8 ¥ +sin(Gr]
T 2
2
+%- —C—]‘;2 [(A\y +sin(C-T) {A +2¢ :]'—I-COSZ(C -T)

+—}4—(A\]/o+sin(c-’r))2} ¥ A%A\yl}zwl{ﬁ, (14.2)
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2
I #°1 1 2
n =0:%¢2 -d)Z 4.\1,2 < =g <—Z-l>¢o 1 TE(COS a-%)cos2(F cosa-T)
TT EE Fn 5 TT
2
+ L<C1 ) 14,3
sz \zY bt 53
c
2
2

n =0: %\J/Z _-4/2 -9, n‘—‘ - % (fiz —l) [\I/OTT-I— sin(§ cosa-'r)]
2

-3
_']
Al
(At}
U
(¢}

- —]‘l—ésina cosa cos2(E cosa-T)+¢
ey

. (14. 4)

¢, - ¥, and¢,.+ Yy, -periodic of period 2w in T . (14.5)
g n n g€

We have, in (14.1)-(14.5), omitted the terms \Vo __and \VO _, since,

nn En
by (11.12), (11.21), these terms are zero.

We now identify those terms on the right-hand sides of (14.1),

(14. 2) wh_ich make divergent oscillatory contributions to ?2, \sz

Clearly, by (11.12), (11.21), (13.9)-(13.13), each of the quantities

3 . 2
to_ Ad?o A?l’ Aq>o’ Po ~ > (A(Po) : A(Po[A\po-I-Sln(C-'T)j’q)l ~ §
L m mn m
appearing on the right-hand side of (14. 1) makes such a contribution

2

to ¢, Those terms on the right-hand side of (14.2) which give rise
to divergent oscillatory terms in \|f2 are of two kinds, viz., those
with arguments which are integer multiples of Ql_—’r and of (-T.

Terms with argument proportional to Ql-'r arise from the presence

of the quantities \l/O 5 A\l/o A?l, (A\l/o)3

TT
AWO b \I/l » Wwhile those with argument proportional to (-T are

m m 5
due to the presence of (Acpo) sin(C-T), Atf)l sin(C-7), and of sin((-T)

ay, sin®(C-m) A\VO(ACP‘O)Z,

alone.
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On substituting for ¢1, \l/l from (13.12), (13.13) in (14.2) it is
seen that the condition that the right-hand side of (14.2) contain no

terms proportional to sin({-T), sin((,l—'r) is

oc % =2 1 ~
2 sina ) n{En(n)sinn(Ql—'r)—Fn(n)sinn((;-'r)} = M(n){c sin(C, -T)-sin(C-7)}
1

(14. 6)
where
1 Clz C12 2
M(T) = —1—6—(0—5 y 1){2(2 Ja+c?}
ey b ¢l 2w
A TG n . o

We satisfy (14. 6) and the initial conditions (13.14) term by

term as follows. Forn=3,4,.... we choose
E M = Fn(n)= 0, n=345.... g (14.8)

For n =1, the constant terms in M(?f) contribute a term
linear in ?1 to each of E ( ), F (ﬂ) We eliminate these undesirable
terms by choosing A so that the constant terms in M(fﬁ) vanish. We

thus choose

2
B i _—..% ) (14.9)
€1
2<-—2 - 1)
i
so that M(’ﬁ) is now given by
CZ ot
M(m) = \:4k —12 l) > n Bi(?f). (14.10)
. 1
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By (14.6) ,
~ C o
B = B0 - [ mEyae
2sina M
- y o (14.11)
F,n = F(0) - M(o)do

2 sina ?’f

the integral appearing in (14.11) is bounded for all T since, according

to (12.33), (14.10),

M(0) =0 (5 ) as 0= -x . (14.12)
3]

~

The term Fl(ﬂ) cos(C-T) propagates in the same direction as the
incident wave \1/*. We avoid violation of the condition that there be no
"incoming' reflected waves at 7 = - by requiring that Fl(ﬁ‘) tend to
zero as 1 = -cc.

By (14.11), Fl(?{)~0 as M = - if and only if

1 o}

Fl(O) = M(o)do . (14,13)

2 sina -ec
Having made a particular choice for Fl(O), the initial values DI(O)’
El(O) are now fully determined by (13.14). By (13.14), on recalling

the definition (10.15) of C,
EI(O) * CFI(O) =0 . (14.14)

It then follows, from (14.13), that

C (o]

E,(0) = - M(o)do . (14.15)

2 sina -oc

Thus, by (14.11), (14.13), (14.15), we have
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(o] (¢]
E® = -] Moa+ [ Moo} ,
2 sina -oC n ’
1 %4 (14.16)
Fl(ﬁ) = M(o)do

2 sina -«

where M(0) is given by (14.10) . We n ow consider the terms in (14.6)
' b s Ty

corresponding to n = 2. Since, by (14.6), Ez(n) = Fz(n) = 0, it follows

that both Ez(n) and FZ( ) are constant. The condition that reflected

waves be outgoing at f'r\]‘ = -¢ requires that
F,(®) = 0 ‘ (14.17)

From this and (13.15) it follows that

2 1
c 2
(cosza-%)vz(a) + cosoz< 22 - cosza> Vl(af)
¢
~ 1
Ez(n) = EZ(O) = 5 - : (14.18)
c 2
(coszoz-%)2 + sina cos « <——2 - cosza>
c

1
where Vl'(a/), Vz(a) are given by (13.16), (13.17).

There remains the problem of determining the sequence
{Dn(ﬁ) }. As indicated earlier, determination of {Dn(?f)} is a conse-
quence of the requirement that the right-hand side of (14. 1) be free
of terms contributing divergent oscillations to ¢2. The undesirable
contributions to d)z arise from the presence of the quantities ¢OTT,
A¢OA (Pl, A‘PO (Po N (A¢0)3, A¢O[\Vo+sin(§—'r)] , 4’1 _» and q>om on the

s nn ™m

right-hand side of (14.1). On substituting for q>1 it turns out that the
condition that there be no terms producing divergent oscillations in

.4)2 is that the function of C,-T and n which appears on the right-

hand side of (14.1) be identically zero, i.e. that
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1
1 B L1 ol S

nD (V)snln(( -T) <c ><4k2f——2 1>A¢OZ,n Dn(’ﬂ)u)s n(CZ—'F)
<, Cl 1 ¢y 1

2 6 Z

2
S [ S MESIEHE [

: 2
& € 2 1

TN
e
NN
i
0
o
P
e
~ M8

C
+2 (4kyt—5 180 4+ ()4 +,+2k,)(80)° =0 . (14.19)

B=g, -T . (14.20)

We determine the sequence {Dn(ﬁ)} by regarding (14.19) as an equa -

tion for the generating function

8

d(6,7) =2 nD () sinnb ; (14.21)
1

the appropriate initial condition on d(8,m) will later be supplied. We

begin by showing that A ¢o’ 0 and ¢or~~ can be written compactly

~~

N nn
in terms of the function b(8, n) (introduced in (12.4)) and members of

e}

the sequence {Bn (ﬁ) }

Recall that

$,(6, 1) =

— M8

Bn(ﬁ) sinn 6 . [14.22)

Thus, by (14.20, (12.1), (12.4)
e, 2

2 = - (—Z—?f%?nan(ﬁ) st B = -<E—?>Bl(0)b(e,’ﬁ> . (14.23)

Also, as can be shown by the definitions of q)O, b(8,n) and repeated
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use of (12.6), (12.11),

2 1
2 2 \# - £
(:2 - cos a) (A K Bl(O)bz(e,n)—Zf nB;l(n)} ifK>0,
_ 1 .
o, " 022 2 : c  woa (14.24)
I (—Z—cos o {%KBI(O)b (8, M)-2(-)nB_(n)}if K<O0,
< 1 n
L x%B (0)b38,9)- E b3, T)T
3 1 (,'ﬂ)-; (wm,m)] ifK>0 s
Yo 1.2 3 5 .3 S
M 1 - 3K B (0)[b7(8,7) - = b7(0, HFif K< 0

In what follows it is assumed that K is positive. The case

in which K is negative is similar. Using (14.21) and

(14.23)-(14.25) in (14. 19) we can now write down the following partial
differential equation for d(@,ﬂﬁ), for the case K> 0:
d~ - Kb(8, M) d,= (@ +a [))b(8,m+a,[ b3(8, T)- 2 bo(m, F)J+a.b>(6, T
n LR e le) 1 5T 2[ ( F) n)— ;r" (Tr’ ﬂ)]+a3 (9: n) F)
m<0, 0<8<m. (14.26)

The initial condition on d(e,ﬁ“) is found to be
d(e, 0) = DI(O) sin® + ZDZ(O) sin2 6, 0 < B <7 , (14.27)

on using (14.8), (14.15), (14.13), (14.17), (14.18) in (13.14), (13.15)

to show that N

o
_(llL_C_)EP_sij M(o)do

2 (cosza-%;) -00

o
—
—_
o
!

3 (14.28)

(cosza—%)Vl(a%sina cosa Vz(a)

2

s C
(cosza~%)2+sina coszak——z?: —cosza>
C
1 J
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where Vl(a), Vz(oz), M(o) are given by (13, 16), (13.17), (14.10) re-
spectively.
The constants a, 2, a, and the function a) (ﬁ) appearing in

(14.26) are given by

- -3 2 2 2
T . & e &
v = () (3 - cor) faegt - () 1) Hoey 3 g0
1 c 27\ ¢ C
1 > 5
2 1
~ c 5.C i xD 0 N ©
1= <_?1 'C°52°‘> <_l> K[’%Kzn4B2<n)+ 22 nB @)
1 2 & N 3
1 2 1 1
c2 i 5 >
. 2[R
a, = -g‘<——2— cos oz) K Bl(o)
&g
Gl O 2 ¢ .. 2 . i
= (=) (—i- 2 <_2>/ 3 _2>< 1 2\2
ajy 2<Cl/ 5 -cos a | |- \k2+2k3)B1(0)+<C 4k2+—2—cos o)
< 1 5 -
2
0]
X KB(0) | /
(14.29)

In contrast with the corresponding equation (12.6) for b(8, ),
equation (14.26) is linear and nonhomogeneous. Both equations have

characteristics given by
= -K b(8,7) (14.30)

from which, by (12.7) and since b is constant along characteristics,

it follows that
6 = s -Knsins (14.31)

is the characteristic through the point 6= s, ’ﬁ = 0,



B
We now obtain d(e,"t\’]d) by integrating cquation (14.26) along the
straight line characteristic through (6,?{) from (s, 0) to (8,7). Since

b is constant along characteristics we then find that

~

d(8,n) = d(s, 0) + {ao n + J al-(c)do}b(e,n) + a3nb (6,m)
o
~ ~ 1 .
+ az{n b3(6,n) - FE(S-G K sin s)b3('n',0‘)do'} , (14.32)

where we have, in the last integral, used (14.31). On using the

initial conditions (12.7) and (14.27), (14.31) and the fact that

sin s = b(s, 0) = b(e,’ﬁ) 5

equation (14.32) reads

~ o~ aZ o ~ 2 ~ A~
d(8, n)=‘—Dl(O)+aon +K— j:v (n-o)b (w, o)do + Al('n)] b(8, )
- n
1
il 2 ~d 5 ~ & 3
+4D,(0)b(8,M){1-b7(6, )]} + (a2+a3$ﬁb3(e,n)fe_[v b™(w, o)do
(14.33)
where, by the second of (14.29),
WO

Al(?ﬁ) = - j'ﬁ a,(o)do = (——- - cos a)(—-) K[ K 7“11 B (O)dO

w ~
+2 {208, - BI(O)}.:\ (14. 34)

It should be noted that the last integral in (14.33) is zero

when - 'flK"_' T <O since, as was seen in §12,
b(w,m) = 0, - = <h<0, whenK>0 . (14. 35)
We now examine the behavior of d(e,'ﬁ) as ’ﬁ - -0 with B fixed,

0<B<mw.
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On using (12.33) and the fact that b(g,7) ~ -—= as

=
M — -0, 6 fixed, we find from (14, 33) that
d(e,n)~ A8 as no-w, ' (14. 36)
uniformly in 9, 0 < § <m, where
a a o
2 3
A=2 . +—1;—)Lo b>(r, 0)do (14.37)

and a_, a,are given in (14. 29).

Since the D_(T)are derived from d(e,n) through

~ 2 7 _— -
Dn(n)—ﬁjod(e,ﬁ)smne ds, n<o0 , (14. 38)
% Pollows frote (14, B6) tat

(_1)n+l . '
Dn(ﬁ),\,A > aF M—o=~, A=1L2,... . (14. 39)
n .

0
In view of this, the series 2 nz Dn(ﬁ) sin n(gz-_‘r—,'ﬁ) which will
1
appear in our expressions for the Lagrange stresses must be inter-

preted as de(gz—r,'ﬁ').

We comment further on the functions b(g, 7)), d(6,7) in §20.

§15. Final Form of the First and Second Order Solutions

We present here a summary of the results of this chapter. To
emphasize the fact that the solutions we present here are those of the
first and second order problems for the potentials associated with
the reflected wave, we agree here to restore the bars which were
dropped, for reasons of convenience, from &)_, .\17 in §9.

Our solution $o’ v, to the first order problem for the

reflected wave is



B

2 i
4902 21_/ Bn(ﬁ) sin n((_',z—'r) ,
\po = C gin ((jl—'r)
where
c2 2
C = Ecosa -mnsina, {, = E cosa- ( : . cosza>2
2 : n » 2 : n _7 >
1
and 5 CZ z
( 1) : 2 < 2 2 >2
cos a-3 ) - sina cos a(— - cos «a
!
C = 2 1
2 1 ’ €2 2 N
cos a-3) + sina cos « (——z - cos «

oy

The amplitudes Bn(?f) (n=1,2,...) are obtained from

2B.(0) T
B_(M) = “FI?IZ"“ _ sinn 8 b(6,7)de, F<0, n= 1,2

n

where b(e,?{) satisfies
b~v-Kbb,=0, 7<0, 0<A8<mw ,

b(6,0)=sinb , 0<6<m

and the constants B1 (0) and K are given by

. 2
2 sina cosa@ (% - cos «)

B,(0) = Z g4
1 C 2
( 2 1>Z . 2 < 2 2 >
cos a-3 ] + sin@ cos « —%5 - cos «a
c
1
ez 0 C12
(&) (e + 5 -1)3,0
1 c,
K = - CZ i
2
2 < 2 cos ar>

3900

(15.1)

(15. 2)

(15. 3)

(15. 4)

(15. 5)

(15.6)

(15.7)

(15. 8)
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Our solution ¢ , ¥, to the second order problem for the re-
YL P

flected wave is

6 2
= 1 7% 1 23 4 e 1 E. 2 2
¢1 = _§<E—1—> (4-k2+——2 - 1>T] Zl;n Bn('r]) -W)-C (T +M )
2 -
1 cl2 ) 2cosZ(gl-T) cos2(Ecosa-~T) cos(2n sina)
15 (7Y} ¢ s 2
G ¢ & c
2 -1 icos a-1 — sin «
2 2 2
€2 €2 “2 -
w ~
+ 2 D (M) cos n(QZ-’I’) 5 (15.9)
l g ol
CZ
- 1 £%1 2
= -6 (Z-1-c%)m
c
2
2 2
c, ,C 0 _} cosl¢,-nC,-(1-n)7]
+l_2_<—1—-1)2n213(n)c L2
B o N r n=-0 o i - 2 2. %
1 2 (sina—n?sinﬁ) -(l-n) sin «
1
cos[C-n QZ-(I-n)T]
B ¢
(sina+nz:—2— sinﬁ)z—(l—n)2 sinza
1
+ B, (%) cos(,-T)+F | () cos (C-T)+E; (0) cosZ(C;-T) . (15.10)
Here
B (M) = -Bn(ﬁ‘) m=1,2,...), Bo(ﬁ)zo (15.11)
. Q @ =
B ) = - e {joo M(o)do + J‘?{ M(o)do} ,
' (15.12)

NS
Fl(ﬁ) Z2sina J—‘oo Kaiiee
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where 5
C. \Oi~ 2 . 00
1 z) _(Cl ) ) ‘] 4 _
M(o) = 'g'('C—I L4 kZ -C—Z 1 Eln Bn(O') . (15.13)
kz being a material constant. The amplitudes Dn(ﬁ)(n = 1,2,...) are

obtained as follows:
) ™

o 55 = ‘&%L ale, =y sinn § 48, H <0 , (15. 14)
where, when K> 0, d(6,7) satisfies
de - Kb(8, )0 = (a +a (F)) b(8,7) + a, [b>(8, %)~ b3 (r, n)1+a,b (6, 7).,
n o 1 Z ™ 3
n<0, 0<B<mw |, (15. 15)

d(8, 0) = DZ(O) sin 6 + 2 DZ(O) sin2 6, 0<B<m (15.16)

(ao, al(?f), a,, az ére given in (14.29)). When K <0, a similar partial
differential equation for d(e,"ﬁ) is found while the initial condition
(15.16) remains unchanged. A full discussion of the problems (15. 5),
(15.6) for b(e,‘ﬁ) and (15.15), (15.16) for d(e,’ﬁ) is provided in §12

and § 14 respectively.

The constants B, Dl(O), EZ(O) are given by

0
-

cosp = — cosa |, 0<[3<0~’<1r- s (15. 17}
c, _ 2
o
D,(0) = Lot goma J' M(o)ds (15. 18)
2(cos™a - 3 ) -0
(cosza - é) Vl(a) - sina cosa Vz(a) w
Dz(o) = CZ L 3
2
(cosza—%)2 + sina cos a(——z - cosza>
¢
t ) \  (15.19)
2 - 1 CZZ 2 \2
(cos™a-3) Vz(a) + cosa (-—-2 - cos a) V,(a)
c{ 1
p C 2
(cosza-%)2 + sina cos a(-%— - cosza>

oy J



where

L cos « (:2 (-2
vV, (@) = -llz 2 —'é(14C2)<——12c052a/~1>-¥C<——!z-1>
cosa-1 c2 S
“2
c. 2 CZ sina+c—2— sinf
+B(0)5(=5) (L -1)cose|cC 1
18 C1 CZ c 2
2 (sinoz+z—-sin[3)—4sin @
1
C
sina - —Ci sinf
+ : 1
(sina - —E-sinﬁ)z-élsin @
S
Vo lal = v f1-85) o @ & o wosw B, 10K
2 = 32 - Sing Ccos _1‘6 CcO l
2 .2
1 €2 /€1 2 1
+B(0) 7 —= (——2 _ 1) L - 5
| €2 (sina-—c— sinP) -4 sin «
1

C
- c 2
(sine +— sinP) -4 sin«
1

\

(15, 20)
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CHAPTER V. RESULTS

¢ 16. Summary of Results

In this chapter we derive the displacements and stresses
corresponding to the solutions -(Eo’ _\Fo and Tbl’ _\171 of the first and
second order problems for the reflected wave and discuss their
properties. The nonlinear effects on the surface displacements are
examined in detail. The pé,rticular case of normal incidence (@ = w/2)
is also discussed.

The reader is referred to §15 for definition of the quantities
G, {Bn(ﬁ}’ {Dn(ﬁ)}’ E,(0), El(ﬁ)’ Fl(ﬁ)’ B, Gs C,» €, which appear
in this chapter.

We begin by calculating the physical displacements u, v
associated with the reflected wave. By (6.17), (8.1), (8.8)and (9.1),

they are given, correct to order 62, by

27 — T g o= = e 3

—u=¢€(¢ -V ) +e (¢, -V, -Vy ) +0(7), (16.1)
L % On 1% lﬂ n

2w — = = 2 - 7 3

—-— v = € +y )te (ot tV. )+O(eT) . (16.2)
T ‘T’on o ox 1,1,

Substituting for 50, _\170 from (15.1) and for El’ —\171 from (15.9),
(15.10)respectively we obtain to order €2, the following expressions

for u, v:
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oc
£n u = e[cosa 2on B (T])cos n(C,-T)+tsine C cos(( —T)]
L 1 n 2 1
sk -
+ 62[:—6 _LZ 1—C2>§ —%(——12-—1> CZC ey sin2(fcosa-T)
<, & = 2 -1
5 cos «
“2
. €z . .
, sz ‘CIZ © N C(51ncx-nC—l—s1nﬁ)s1n[gl-ngz-(l~n)ﬂ
) (_2"1>>_3n B ) < .2 Z 2
¢y cy n=-oc (sina-n —= sinP) -(l-n) sin «
1
. F . i
(s1na+n-c—-— sinP)sin[( —an-(l -njt ]
+ lC
(sina + n i sinﬁ)z-(l-n)zsinza
1
2 < ~
<IT C” cosa- 2EZ(O)sinoz>sin2(Ql—T)-cosa zljnDn(T])sinn((;2
+ sina{F| Msin(C-7) - B, Msin(c, -1} ] +06) (16.3)
2w — ‘ CZZ 2 22 ~
—_— v = €[cosoz C cos(C -T)—(——- - cos a\ 2,nB (M) cosn(C,-T)
L L 1 CZ /7 n 2
1
. 6 c? o
ar i %1 2 1<C2>, 1 > 4 _ 2~
+€ [-1—6<—2—-—1+C )n— 7\ <4k2+-—2- -1)Jn Zn Bn(n)
<y 1 <, 1
2 2 oc C sin[C,-nC,-(1-n)T]
I “2 #%1 ) 200 o ( 1 =2
- 3 <._2 1 cosanzz (1 n)Bn('n)- c i
Sy Sp (sina-n—c—-sinﬁ)-(l-n)sin a
1 o
sin[g-ngz - (1-n)T ] |
B cy 2 2 2
(sina+n€-— sinf) -(1l -n) sin «@
1
® o5 CZZ > 3 -
+ 2 {Bn(n) +< 5 - COS a) n Dn(n)} sinn(gz-'r)
1 c
1
Cl2 CZ
2 . - l( 2 Csin(2nsina)
- (2 EZ(O)cosa+16C 51na)s1n2(gl—“r)+ 3 C—é_l>:2 S
2 1

-~-cosa {El (?j')sin(gl —T)+F1 (?]')sin(g-'r)}:l + 0(63) . (16. 4)
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The expressions (6.21) for the Lagrange stresses qaﬁ(w’ B=1, 2)
are linear in ¢and V. We are thus able to write each of 4y1» 9120 921>
d,, as the sum of two terms, one contributed by the incident wave,
the other by the reflected wave. From (6.21), (8.1), (8.8), (9.1)
it then follows that the Lagrange stresses 21.11: 51 2 aZl’ aZZ asso-

ciated with the reflected wave are given by

oo (1%, -3, T, )rf0R -8 2%, T, )

ke °tt  °mm CEn m “E&n  %mm  °Eq
+0(e%)
EIZ 1= — — 2/(1 3
== = -e(3V. -V - -e7 (v, -V ¢ ¢ )tO(e7),
vl (2 Orr Ofg 0§ﬂ> (2 : N 1§§ lgﬂ 05ﬂ>
(16. 5)
-CIZI g, 55 = 21 g g =
2L e(sy - +3, PV, -V, -, -2V, _+3
B <2 Ot Omn °§n> < Ler bon len O °€ﬂ>
+ 0’y

EYY) = = Y i A 3
TzeGq)o -(bo +\l’0 )+€ (%4)1 _4)1 Jr\Lll ok ~>+O(€ )
T TEE TEm TT "B "&n  T&n
where | is the Lamé shear modulus of the classical linear theory.
We now substitute for _?Po’ Vo’ El’ -\|71 from §15 and obtain,

from (16.5), the following expressions forall, a_lZ’ 21—,1, 522:
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—_ 2
q c oc
_.._l_d_: [<__22 ----cosza>§,n2]3 (‘r])s1n n((' -T)-8ine cosa C sin({ _r)]
c 1
: 2 c, b CZ oc
21 /€1 l_ 2> ( 1 ) 4 2~
+ e 7}- 3 - 4(2:“ 4k,t—5-1) Zn" BSM)
<, Ji <, I
C2 C2 oC
+¢l{ ——22—<—% -1>cosoz 2 nz(l-n)B M)
¢, c, n=-oc =
v
C(sina-n — sinP)cos [ ,-n{,~(1-n)T]
<y 1 2
X
€2 2 2 . 2
(sina - n— sinf) ~-(l-n) sin «
c, 1
(sina4+n — sinB)cos[Q—nQZ-(l—n)'r]
i
+
- 2 2 . 2
(sina + nE-—sinB) - (l-n) sin «
1 2,1 o g
+ {§ C%(z - sin"a) - 4 E,(0) sina cosal cos2(C, -T)
1 clz CZZ cos 2(E cosa-T) CZZ
+1—6-<———2—1>C 2 5 5 -4—2 cos(2mM sina)
: c, ¢y <, ¢
>— - cos a
¢

2
1 2) ’p & <_C_2_ 2. wm I
1, CZ -3 -cos an Dn('r])+2 > - COS a/nBrSn) cosn(QZ—T
1

/Nlr-

p—
0

- sina cosa {Elﬁ)cos(gl-T)-Fl('ﬁ')cos(g—'r)} : (16.6)
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q c 2% 5
—-LII—Z—: -e[(cosza-—%)c sin(C,l—T)—cosa (—2—2 —cosza> 1n B n)snn n((‘Z '|)-l
(:1 i
. ” C cos[C, -nt,~(1-n)r]
vy G c - Cy=-nC,-(1-n
—62 i ——2—(—i —1>(coszaf—%)zl nz(l —n)z"BrgT]) : &
4 2 2 - G > 2 2
1 =2 = (sina-n—é—sinﬂ) -(l-n) sinw

1
' os[{-nC,-(1-n)
+ {1 CPoinacos -4k ~cos K, (0)]cos2 (€ -1)- —or o2 ]

(sinatn CZ/Cl sinf )2- (1-n)zsinzc}
1

oC .,C 1
-cosa E{<_22 -cosza>zn2 Dn(?f) +n Bn(ﬁ')} cos n(gz-’r)
L e

1

-(3 - cosza/ {E )cos(l;l—’l') + B ("’])COS(C T) }:l )

(16.7)
q. g 3 o
=2l . e“(sinza-é) C sin(C,-T) + cosa(——z— -cosza'j Zn B (n)s1nn(§ -T)
vl L 1 2 1 2

€1

; cz c2 oc E(l n)2 (sina-nz+ 51n[3 Ccos[g—ng 1-n)T
201 "2 /71 c1 2
+e ———\-—— -1 Zn B (m
2 c2 ; n=- e = 2 2 2
1 %2 - (sina-n—= sinf)"-(1-n)” sin“e
1
1 2 . -
5(l-n)" - (s1na+nc——-—s1nf3) cos[Q—ngz—(l-n)"r]
1
B c
(sina + nc—2 sin[S)Z- (l-n)2 sinza
1
1 .2 2
+ {§C sino cosa - 4(2 sin o) E (O)}cosZ((’ -T)
2 1
€2 2\ 2 o~ P
- cosa E (——2 - cos oz> n Dn('n)+ n Bn('r])} cos n(QZ-’r)
%y

-4 - sin’a) (£, @) cos (€, 1) + F| () cos(c-m)} | ,

(16. 8)
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oC

_q__2_2_ = e[ sine cosa Csin(C, -T) -(l-coszaf)z n“B (M) si {C =TY |
21 b1 2 " - N)sinn o™ |
4 C = C2 oc
4 €2[ "17 1 é—é(—% —l)cosaf > n‘)‘(l-n)nn(ﬁ)]
CZ Cl C2 n=-og
€2
C(sina-n o sinf)cos [Cl-n(,z—(l -n)T]
X Cl
(sinoz—n?:—z—sin[?))2 - (1-n)2 sin «
1 cy
(sine + n i sinB)cos[Q-an—(l -n)1
" 1
{6
(sinae + n C—Zsinfi)2 - (l—n)2 sinza
1
1 2.1 2 .
+ {—8- C (3-cos a) + 4 EZ(O)Slna cosa} cosZ(Ql-T)
1 cl2 3 CZZ 0s2 (€ cosa-T)
+ 7 (——2- - 1><3—cos oz) ) >
) )
'—2- - COs «
€1
1 2 & 2
- (5 - cos @)l n Dn(n) cos n(CZ—T)
1
+ sine cose {E | ( M) cos(Cy-T) - Fl(ﬁ) cos(C-T)} . (16. 9)

For comparison we include here the €-expansions of the

% * *
Lagrange siresses q1 1> 912 9210 922 associated with the incident

wave. On using (8.1), (8.3), (8.4), (7.7) in (7. 33) and expanding in

powers of € we find that

* 2
q c
s -€ sina cosa sin(C-T) + 62{-1— < o -1> l(3 s1n2a/)cosZ(( T)}
I 16 CZ 8
2

roE’) (16.10)
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&
q
_ —€(é~ - c:oszar) gin(C-T) + GZ sina cosw 2 cos2(C-T)
24 8
3
+oE™) , (16.11)
%
q
—2——5—1 = e(%-sinza)sin(g—'r) + 62 sina cosa % cos2(C-T) + 0(63) s (16.12)
ok 2
922 . . 211 (€1 1 2
0 = € sina cosa sin(C-T) + € {R <—c-—2 -1>+§(%-.-cos o) cos2(§-'r)}
2

+O(e3) (16.13)

: . Y e
One can verify, by using (13.14), (13.15), that d;,%4;, = 0, q22+q22—0
when n=0, that is, that the condition that there be zero surface trac-

tions is satisfied to order ez. Clearly, we also have

o

A3 7 923 = 931 T 932 T 9537937937793, 0 - (16.14)

For the normal Lagrange stress q33 We have no expression
linear in ¢ and Y. We use (6.1), (8.1), (8.7), (8.8) in (6.16) to obtain
the € -expansion of the normal Lagrange stress d33 generated by the

interaction of the incident and reflected waves. On expanding we find

that
2
7 =e[%<§iz -2) (8%, 4 )]
() ags, o4, Wh(Gat)eist )
3 c22 ! m o teg’ B sz R <
2
el ) (e, +¢*o€§+2%{[( G T ) J0are) ) ]
: .

= * - * — %
-t o °)En+( \”o”’o;g][‘ ot o 0)E

- 1] o,
n nn

(16, 15)
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where b is one of the two constants a and b which appear in the
definition (4. 11) of the strain e¢ncrgy density W and which arc re-
lated by the sccond of (4.17).
On substituting for the starred quantities from (8. 2), (8. 3)

and for the barred quantities from §15 we find that

2 2
q c c, o ~
233 = -¢ ';*(_]; = 2>—'2— an Bn(n) sn’ln(gz-T)
2L 2 2 1
€2 g ®
c2 c,\b6 C2 oC
21 1 1 nd _l_( 2>< 1 ) 4 2 ~
re[3(5 - 2)4-5% 5 () layr 5 -1) Tats @)
c 1 (& i
2 2
i 1 Clz \czz cosza cos 2(Ecosa-T)
+§C COSZ(QI—T)+Z<——Z—1)—§C >
G €1 €2 2
—-2 - COSs «
2 ‘1
1 %2
+ 3 C cos(2n sina) + = cos 2(C-T)
c
1
oC c2 C2 5
-~ 2 1 .
- i (—% 1'12 Dn(’ﬂ) + 2 (—% - cosza> an(T]>COS n(CZ—T)
1 \¢ G
1 1
1 C2 b 2
i (__2 w B "ZTI> {C sin(C -T) - sin(C-T)}
c
. 2
4 o 2
1 &1 Cz) { 2 o~y }
+Z(4k2+—7_ ” 1>(C— 7.1 B _(n)sinn(C,-T)
<, 1 1
b (4 ain?

1--4 sin o cosza C sin(C,-T)

1

+
c c a4 o
1 { cos«a sina<—22 -2 coszoz> —(sinza/-cosza)<—%—cosza\fcosa]Csin(gl-T)

2 1
. 2 .2 2 (Cz 2 ] : i
2
+[cosoz sma\:lz -2 cos a/>+(s1n a-cos ) ;—12 -cos a/\jcosoz sm(g-'r)).
= 2, g . 3
X 21 B_(N)sinn((,-T)f +Of”). (16.16)

1
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The Lagrange stress q3 corresponding to the incident wave

alone has the ¢-expansion

* 2

933 _ 21 /<1 b), b 3 |

—2—“-— =€ [1_6(:2 -2 -a)’f‘l—é—u COSZ(Q—‘T)] + O(e”) . (16.17)
2

§17. Nonlinear Effects on the Reflection Pattern

In (16.3) and (16. 4) the features most immediately visible are
the infinity of propagation-directions and, respectively, the presence
of terms proporational to £ and m in the expressions for u and v.

A discussion of the propagation-directions is provided below., We
begin by commenting on the presence of the terms linear in € and n,

corresponding to uniform extensions in the X. and X2 directions,

1
respectively.
In §7 we made the observation concerning (7. 33) that the

*
Lagrange stresses qaﬁ(a, =1, 2), generated by the incident wave,

are the sum

*

g = Ggp + ZH(GEH)-1)8,0 , (@, B = 1,2) (17.1)

of a pericdic Lagrange stress system aaﬁ and a uniform hydrostatic

: *
stress of amount iH(G(r )-142' The € -expansions (16.10)-(16.13)

911 422
show that both Ty and ) contain the constant term
a /i
% llé (_}2 - ) The boundary condition (8. 9) is a statement of the
g
2

requirement that the reflected wave cancel the traction generated on
the surface of the half-space by the incident wave. The condition of

zero surface traction is that
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= * b = s
Qpz = Gip Ty = 9
£ o wasm f o= By (17.2)

Uy T Mgy tagy = 0

— C B

922 . 21 /%
It follows that —q—u— must contain the constant term - ¢ 16 -1,

' c
as indeed, by (16.9), it does. There is no requirement that . the
% —

nstant term €2 1 (—C-—l— - l> in —C~1—l—l— be ca lled. O il—l
co 16 CZ 50 cancelled. ur ) con-
2

&

2
1 - ¥ = .
5 - l> and so d;; =4;; T 9;; contains

tains the term €2 -1% <—
S

c
the term € % <—12— - 1). The resultant LLagrange stress component
a1 thus has a term corresponding to a second order uniaxial tension
2 &
of magnitude €2 l— Ll<c—1 - 1\ in the X. direction, while has no
g g\ 2" 1 ’ 922
2

such term. From (16.17) it can be shown that the resultant Lagrange

stress q;4 contains the constant term of second order
CZ
5 (-9 - fo )
€ g 5 2 - n (1 + C7)
2

where b is a material constant (see (4.11), (4.17)). Whether the
uniform stress in d33 is a tension or a compression depends on the
value of the second order material constant b.

The presence of uniform stresses in the (infinite) body gives
rise to displacements which are unbounded for large values of the
space variables. This, as well as the fact that no displacement
occurs in the X3—direction, explains the presence of terms propor-

tional to €, n in (16.3, (16.4) respectively.
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We examine now the propagation-directions of the terms

occurring in the expressions (16.3), (16.4) for the displacements

u, v associated with the reflected wave. We recall here that

C = & cosa + M sina ,
C = & cosa - n sina (17. 3)
c2 1
2
CZ = § cosa - 1 (—22 = coszoz>
1

and that the incident wave propagates in the positive (-direction while
the positive Ql- and (;2- directions are the directions of propagation
of the shear and dilatation wavesrespectively of the classical linear
theory.

Equations (16.3) and(16.4) show that both u and v contain terms
propagating in the positive (, Ql and Cz directions. The term propor-

tional to sin2 (€ cosa-T) in (16. 3) propagates in the positive X, -

1
o0
direction while the terms proportional to mn 2 Bf(ﬁ) and to sin(2m sino)
1 oC
in (16.4) do not propagate. From (12.33) it follows that n 2 n4 Bf("ﬁ)

1
is bounded for large N. We showed earlier that

/1 ~
Fl(’F]) = O\Tﬁ'> as 1N —° -« 5

so the terms proportional to Fl(ﬁ) sin(C-T) do not represent incoming
waves at Fﬁz - .

We now examine the terms in (16. 3), (16.4) with arguments
C’l -ng, - (I-n)Tand ¢ - nC, - (1-n)T, n ==, £2, 3, ... . By

(17.3) we have
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el = .
[(2 2)2 . _‘
—5 = COS «a ) - sina n, n=1,

| 2

- 1
¢ -nl, - (1-n)T = (< 2.}
sina - n| — - cos @
C
(1-n)|&cosa - 1 n-T|, n¥l,
1 -n
(17.4)
€2 2 52, .
—>5 - cos a)+sina |n, n= ,
o _
£ =nly-fl-ulr = . c,2 1
2 . 2 2
sinatn{ —> - cos @ , n¥1
e
(1-n) |Ecosa - l - T
n-1
(17.5)

We note that the following statements concerning the quantities

1

c2 4 c2 5
2 2
———1 {sina - n( - - cos2a> }, ——1 {sina+n(—2 —cosza> } hold:
2 2
l1-n ; ¢y n-1 c1

2 1 2 L 2 1
1 [, ¢ 2 1 . “E 2Nz of . - 2
— {sina-n(— -cos @) increases from —5 -Cos Q) to 3(sinat -cos «
l-n ¢y < <y
monotonically as n goes from - to -1 ,
(17 @)
2 1 2 ]
L[4 “2 2 V1 . . BV
sine - n{ — - cos «a increases from 2 — -cos @) -sina to
I € ¢
1
2
2 2
(—2- - cos oz) monotonically as n goes from 2 to o i
‘1
(7% 7)
2 1 2 1
“2 2 \2 2 22
sine + n{— -cos « decreases from( —y -cos a; to
n-1 C1 Cl '
(17.8)

2 1
Z
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2 1 2 1
L[, i 2, 2 0s2Y
{srnoz + n (—2 - cos af> | decreases from sina-l~2<——2 -~ CcOo8 «
n-1 (.‘.1 C.1

- 2 (17.9)

Nl

C
to <——2 - cosza) monotonically as n goes from 2 to .
|
Thus, for functions with arguments Cl - ngz - (1-n)T and
C - ngz - (1-n)T, n an integer not equal to 1 or 0, the respective

propagation directions are those of the vectors.
o2 1 o2 L
cosa b {n<__2_ _ Coszaf—sina}) . 23 { ( 2 2)2 . }
’ n-1 cz s »T o111 —2--cosc1 +sinaf ).
1 <y

The collection of all these vectors, where n takes on all integer
values except 1 or 0, forms a fan, the two outermost rays of which

have the directions of the vectors

2 1 2
€2 2 \2 €2 '
<cosa, maxl‘sinoz—.?. (———2 - CcOSs a) : 2{51na - <———2 - cos a }:l (17.10)
= c
1 bl
and
c2 i
2
(cosa, - {sinoz + 2 (—-é - cosza\ )
2 /
1

Equations (17.6) - (17.9) also show that, for sufficiently large |n]| ,

the directions of these vectors are clustered arbitrarily close to that
2
“2 2
of the vector <cosoz, - (—-—z - cos a/>
e
1

[ 12

), that is, to the direction of

propagation of the reflected dilatation wave in the linear theory.

In reference to (17.10), we have
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CZ 1 c2 L CZ 1
2 2 . 2
sina—Z(—%-cos%z) -%{sina-(—-—% -cosza> } =3 {sinaf—3<——% - (:osza> } .
¢y ¢y ¢y

(17.11)
which can be shown to be a decreasing function of @, 0 < a < % :
Since in this problem we consider only those values of @ such that
- c
— <o <a=g x|, @ = arccos — "
- 2 o ¢y
it follows that the right hand side of (17.11) lies between % sinozo and

C
2
%(1-3(:—). If

1

c

2 < .é_

c

1 > 5
°2 2
then, in (17.10), the maximum is sina - 2 <_Z - cos a/> ; if
i
. 1 ; L ™
—— > = then there is a value of @, of o, - <a <a,< 5, such
¢y 3 1 4 o 1 2
2 1
(& 2 2
that, if ¢ <a <a,, then sina - 2( - cos a) is the maximum
o 1 :Z
1 2 i
™ 1 © 2\
while, if a, < «a S-Z— , then g{sina - <—-—z— cos a> ] is the maxi-
C
1

mum, with equality when «a = @y,
From (17.10), (16.3), (16.4) and the last paragraph it is
clear that both u and v contain a finite number of terms which

propagate in an 'upward'' direction, no matter what the values of

c
a or of S However, such terms do not represent incoming
1
waves at N = -¢ since each one of them is multiplied by some member
~ % ~ 1 .
of the sequence {Bn(n)} and, as we saw in {12, Bn(n) = 0<"_‘3~> , uni-
nn

formly inn, as n — -oc.
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The situation is illustrated by Figures 4(a), (b), (c) which show
(to second order in €) the directions of the various waves passing ob-
servers stationed near the surface, in the interior, and at depth of
order l/eZ in the half-space, respectively. Rays with two arrows in-
dicate that both first and second order quantities are propagated in
their directions. Rays with one arrow indicate that only second order

quantities are propagated. The angles B, vy, 6, 6 are given by
2 1 2 1

. 253 . . 2 \2
— - cos @ sina+ —3 - cos a
€1 =
tan B = , tany = s
cos & 2 cosa
2 1 2 1
s Ca 2 & . Ca 2 \2
sine - 2 —5 - Ccos @ sin o - —z-cosa
°1 |
tan 6 = max ’
cos « 2 cosa
c2 1
2
sina + 2 <-—-§2- - cosza>
=
tan 6 = - <3 tan «
cos «

The direction corresponding to the angle  is, of course, the direction
of propagation of the reflected dilatation wave of the classical linear

theory.

§18. Nonlinear Effects on the Surface Displacements

In this section we write down the total surface displacements
and use them to obtain the qualitative features of the orbits described
by the surface particles.

We first note that, by (17.3),

C = Ql = QZ = € cose¢ when mnN=0 |, (18. 1



B
and recall, from (11.14) and (15.11), that

B_(0)=-B_(0)=0, n=23... . (18.2)

The total surface displacements are found by adding the dis-
placements corresponding to the incident and reflected waves and by
setting n = 0 in the resulting expressions. Let u*, v:!< be the
displacements associated with the incident wave. From (8.1)-(8.3)

we have

u* = ZI:J-E' (cosa 4)2 - sina \y’z ),
(18. 3)
‘ v* = 2]._;? (sina ¢>Z + cosa \3/2 ),

sk 3
and u, v can be shown to have the €-expansions

* L. 2 L 1 : 3
u =€ - sina {cos(C-T)-1}+¢ 5= Tg cos« sin2(C-7) +O(e7) ,
* L 2L 1 . ; 3
v = -€ fz-—_';cosoz{cos(g-'r)-l}-re 5— 1g Sine sin2(C-T) +O(e7)

Since we have, up to now, consistently ignored the arbitrary rigid-
body translations which have appeared at various stages in this work

there is no loss of generality in taking

3% O T ﬁ cose BnZC-T) + Be°) | (18. 4)
£
-2%- v = -€ cosa cos(Q-T)+eZTl-gsinasinZ(QJr)-i— 0(63) . (18.5)

We now obtain the total surface displacements by adding (18.4)
and (16.3), adding (18.5) and (16.4), and then setting 11 =0 in

u(g, M7, T;e), v(E,m M, T;e). We find that
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2 = ;
0,0, T;¢e) = € Pcos(fcosa-7)+te [R8in(F cosa-T)1T 8in2(F cosw~T)

2
C "
. T%(‘é” 1-cz>fi]+O(e3), (18. 6)
(&
5

0,0, T;€)=¢e¢Q cos(gcosa-’r)+e2[S sin(Ecosa-T)+U sin2 (Ecosa-T)]

+ Ol ), (187

1 S”g”‘ (C+1) , \
CcOS a-z
1
2 cosa (-C)
e T, (1)
2 cosa 1 2
e? !
<'7 - COS a)
€1
DI(O) >

c
sy (-C—-z = 1>cosoz C + —1}-6 (C2+1)cosoz—2 E2(0)sinoz—2 cosa DZ(O) ?

‘1“2
¢, c,
2 2 C(sina + — sinB) sina - — sinf
c e c c
1 72 1 1 1
= = (— -1)B.(0) . F )
4 c:2 2 1 <, 2 <, 2
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(18. 8)
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One can show, from (15.8), (15.13), (15.19), that

2 1 2

cosa <C2 - coszcz>2 {4 k.- -~1— = >21

i > f
D,(0) = -+ 1 B (0)(C+1) CZ

1 ! 2 1 1 Y- ’
cos @ - 3 4k LS
c

by deducing from (12.12), (12,13), (12.4), (12.1) that

_ 4 2
L%kB (o)do = T'T Bl(o)

According to the linear theory, each of the surface particles

performs a harmonic oscillation in a straight line about the position

it occupied in the undisturbed state. This straight line makes with

the horizontal axis an a}qgle whose tangent is
(cz 2 )E
cosa( =5 - cos @
‘1

1
cos a - 3

Tlo

, which is negative for all « lying in the

™ .
range @ <« <5 that we consider.

This angle tends to zero as
the angle of incidence approaches either % or the critical value « |,

o
For each particle the amplitude of its oscillation is

< 1
ino L (1-02\ Za}a
M sin i Z—Z/Cos
2 B E 1
e(P +Q7) = ¢ CZ T
2
(coszoz-%)2 +sina cosza(—-% -cos a)
c
1

We now consider the question of determining the orbits of

. z
surface particles to order € In the undeformed state let an

arbitrary particle of the surface have coordinates (X ,0) = (lﬁ g ,0)

with respect to the frame X. Then, according to (18.6), (18.7), this
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particle has coordinates (xo, yo) with respect to X in the deformed

state, wherc

_ L 2 L : . .
X = Xo + € TTr_P cos(io cosa-T)+e 5 [R sm({iocosa-T)JrT suxZ(EOcosoz-T)

2
1 (€1 2 3
+ 1z (3 -1-C >§0]+O(e ), (18. 9)
€2
= €~I'-1-Q cos(§ cosa-T)+€2—l—'-[S sin(€ cosa-T)+ Usin2(§ a-T)]
V