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ABSTRACT

This dissertation deals chiefly with various issues pertaining to the
existence and uniqueness of a finite deformation that gives rise to a

prescribed right or left Cauchy-Green strain-tensor field.

Following a review and discussion of available existence and unique-
ness theorems appropriate to a pre—assign-ed Tight strain field, the extent
of uniqueness of a generating deformation is established under minimal
smoothness and invertibility assumptions. Further, the compatibility
equations of finite continuum kinematics are used to arrive at an analyt-
ical proof of Liouville's theorem on conformal deformations, which sup-
plies an exhaustive classification of three-dimensional deformations that

preserve all angles.

The remainder of the dissertation is devoted to the more involved
corresponding existence and uniqueness questions for a given left
strain-tensor field. These questions are first discussed in a three-
dimensional setting and are then resolved for the special class of plane
deformations. The results thus obtained stand in marked contrast to

their counterparts for a given right strain field.
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INTRODUCTION

The main aim of this thesis is to deal with various questions concerning
the existence and uniqueness of a finite deformation that generates a
given right or left Cauchy-Green strain-tensor field. These issues are
nonlinear analogues of the corresponding questions regarding the
existence and uniqueness of a displacement field that gives rise to a pre-
assigned infinitesimal strain-tensor field. The familiar results pertaining
to infinitesimal strains are of greal importance within the linearized
theory of elasticity. In particular, the compatibility conditions of the
linear theory enable one to formulate the second boundary-value prob-
lem of elastostatics in terms of stresses alone. In the special case of
plane strain or generalized plane stress for a homogeneous and isotropic
elastic solid, this problem is further reducible to a boundary-value prob-

lem for the biharmonic equation through the introduction of the Airy

stress function.

A partial motivation for the present study stems from the possible
usefulness of compatibility conditions for finite strain fields in connec-

tion with problems involving large deformations of continuous media.

In Section 1 following some relevant preliminaries on finite deforma-
tions, we prove the equivalence of length- and distance-preserving defor-
mations on the assumption that the mappings involved are but once
continuously differentiable and merely locally invertible. These results

are then used to show that a smooth, locally invertible deformation is



homogeneous if its right or left strain field is constant.

In Section 2, we recall some known results pertaining to the existence
issue for a prescribed mght strain-tensor field. In this connection, the
necessity and sufficiency of the compatibility conditions are discussed in
some detail. Further, the extent of uniqueness of a deformation gen-
erating a given right strain field is reestablished under minimal smooth-

ness and invertibility assumptions.

Section 3 is devoted to angle-preserving deformations. Here the com-
patibility conditions cited in Section 2 are used to arrive at an
apparently new - purely analylical -- proof of Liouville's theorem on
three-dimensional conformal deformations, which supplies an exhaustive

classification of such deformations.

In Section 4 the existence and uniqueness questions appropriate to a

given left stirain-tensor field are raised in a three-dimensional setting

and certain difficulties attending their resolution are discussed.

The unigqueness question posed in Section 4 is dealt with in Section 5
for the special class of plane deformations. This section contains two
theorems that establish a relation between plane deformations generat-
ing the same left strain field on a simply connected domain. According
to these theorems, every deformation producing a given left strain field
may be represented in terms of a single such deformation by means of

quadratures.



Finally, in Section 6, necessary and sufficient conditions for the
existence of a plane deformation giving rise to a prescribed left strain
field are deduced. If these compatibility conditions hold on a simply con-
nected domain, and barring certain troublesome degeneracies, a gen-
erating deformation is shown to admit an explicit integral representa-
tion in terms of the pre-assigned strain field. Furthermore, in the pres-
ence of such degeneracies, the problem of constructing a deformation
producing a given compatible left strain field is reduced to that of
finding an analytic solution of an ordinary linear second-order
differential equation in the complex plane. The existence of such a solu-

tion is demonstrated.



1. NOTATION, PRELIMINARIES ON FINITE DEFORMATIONS

The symbols £ aﬁd E5 are used throughout {for Euclidean point spaces
of two and three dimensions or -- depending on the contexit -- for the
associated linear vector spaces. The letter K always denotes a closed
region (in either E, or F£3) and B is the interior of R; in contrast, D
stands for an open region (domain). Lower-case and capital letters in
boldiace — unless otherwise qualified — designate vectors and (second-
order) tensors, respectively. We call L, the collection of all tensors with
& positive determinant, O, the set of all proper-orthogonal tensors, and

S* the set of all symmetric, positive-definite tensors. Thus,

Qe0, if QQT

1,detQ =1, (1)
LeSTif L =L_T and v-Ly >0 forevery v #0. (1.2)

The notation {0;e;.6z.e3} is used to refer to a rectangular Cartesian
coordinate frame for E5 with the origin O and orthonormal base vectors
{16283}, I visavector and L is a tensor in three dimensions, we write
v; and L for the components of v and L in the underlying coordinate
frame, Latin subscripts always having the range (1,2,3). Further, sum-
mation over répeated indices is taken for granted and subscripts pre-
ceded by & comma indicate pariial difierentiation with respect io the
corresponding Cartesian coordinate. Siriclly analogous notation is
employed in two dimensions; in this case Greek subscripts with the range

(1,2) are used.

1. The superscript T indicates transposition; i is the identity tensor.



If 4 and B are sets, we write f: 4»5, if I is a function defined on 4
with values in B, while {(4) stands for the range of {. In particular, if 4
is a region (open, closed, or neither) in E; or E5, we write f€C(4) if { is
continuous on 4, and feC¥(4) (N=1,2, - - - ) in the event that { is N times
continuously differentiable on 4. We say that f is smooth, provided
feCY(4), and write f€C™(4) to convey that { has continuous derivatives of

all orders on A.

We now recall certain prerequisites from the theory of finite deforma-
tions that will be needed in what follows. For this purpose, let £ be a
closed region® in Es. By a deformation, we mean a mapping ¥: R - Fj

described by

y=9(x)=x +ulx)onkF, (1.3)

where x is the position vector of a generic point in R, §(x) is its defor-

mation image in R= $(R), and u is the associated displacement field.

Such a mapping will be called a regular deformation, if
§eCYR), J=detF >0, F =V§ on R. (1.4)

Here J is the Jacobian determinant of Z while F is its deformation-
gradient tensdr. Note that a regular deformation need not be globally
one-to-one. Although global invertibility of deformations is ah essential
requirement in continuum mechanics, this restriction will be avoided in

dealing with the purely kinematical issues considered in this investiga-

2. Actually, in all of the definitions and results cited in the present secticn, K can
equally well be replaced by an open region D.



tion.

The letters C and G stand for the right and left Cauchy-Green strain-
tensor fields® of a regular deformation, whereas E denotes its Lagrangian

strain-tensor (Green-St.Venant strain tensor):
C=F". g=FF% E=4C-LonR (1.5)

Both C and G are symmetric, positive-definite tensor fields with common
(positive) principal values. According to the polar decomposition

theorem, F €L, admits the unique right and left polar resolutions:
F=QU =VQ, Qe€0,, UeS™, VeS* on R; (1.6)
furthermore,

Q:V_C_

~

, V=vG, Q=FU™ on R (1.7
The tensors U and V, which are usually called the right and left stretch

tensors of the deformation at hand, are thus the unique square roots of

gandg.

Necessary and sufficient in order that a deformation cbeying (1.4) be

locally volume-preserving is that J=1on &.

A regular deformation ¥: R - E5 is homogeneous if its defcrmation-
gradient field is constant. Such a deformation therefore admits the

representation:

3. These tensor fields are also commonly referred to as the right and left Cauchy-Green
deformation tensor fields.

4. 1f L is a nonsingular tensor, 'I:_l stands for its inverse.



s’

(x)=Fx+d on R, Fel,; F.d constant. (1.8)

A mapping of this form is a pure homogeneous deformafion in the event

that E65+ and d=0.

A rigid deformation is a distance-preserving regular deformation. We

cite the following familiar result concerning rigid deformations.®

THEOREM 1.1. A regular deformation $: R = Es is rigid if and only if it

admits the representation.

<

(x)=Qx +d on R, Qe0,; Q.d constant. (1.8)

~

Actually, every distance-preserving deformation -- in the absence of any
regularity assumptions -- can be shown to admit the representation (1.9)
with Q merely orthogonal, rather than proper-orthogonal. In vieﬁ of the
polar decompositions (1.8), every homogeneous deformation can be
uniqguely resolved into a pure homogeneous deformation iollowed or pre-

ceeded by a rigid deformation.

A regular deformation ¥: R -» Fy is said to be isometric if the length of
every smooth arc in X equals the length of its deformation image. Fol-

lowing Gurtin [1] (p. 498), we now recall ceriain alternative classifications

of rigid deformations.®

THEOREM 1.2. Let ¥: R - E5 be a regular deformation. Then the follow-

g are equivalent:

5. See, for example, Gurtin [1], Art. 6.
€. The theorem stated in [1] combines Theorem 1.1 witk the result cited below.



(a)C = E F=1onR where F = Vy

(b) ¥ 1is isometric;

(c)§ 1s rigid.

PROOF: What follows is a minor variant of the proof given in [1].7 We show

first that (a) recessitates (b). For this purpose, let ACR be a smooth

curve and let s denote the arc length along A. Thus A admits the param-

eterization

A:x =

gl

(s) (0=s=1), xeC¥([0.L]), (1.10)

*

in which ! is the length of A. Let A = ¥ (A), so that

>
]
<
v
il
1<

(X(s)) (0=s=l), Z‘ECI([O,Z]). (1.11)

From (1.11), the chain rule, and hypothesis (a) follows

1

7)1 = [EEDEE)| = Z()CEENL ()
(1.12)8
=1x(s)| =1 (0=s<=1).

-~

Hence, ¥ is isometric.

Next, we verify that (b) implies (¢). Let X be an interior point of F. In

view of the regularity of §, the inverse-function theorem assures the

7. Note that although the restriction to globally invertible deformations is introduced
in [1], it is not essential to the argument presented there.

8. Here and in the sequel a supericr dot indicates differentiation.



existence of an open sphere N C K, centered at g on which ¥ is smoothly

=
invertible. Let N = §(N) and call ¥, defined on 1\‘/ the inverse of §.

To see thatg is rigid on N, let A be a straight-line segment lying in N.
It evidently suffices to show that A= z(A) is also a straight-line segment.
Suppose this were not the case and let K’ c [\7’ be a polygonal approxima-
tion to ;\: such that K’ and ;{have common end points and the vertices of
R’ lie on /*& The length of ;\l’ is thus smaller than that of K and hence
A= 2"1([‘\’) is shorter than the straight-line segment A. This, however, is
impossible since A and A' have the same end points. Consequently,z is
indeed rigid on N. The rigidity ofz on K follows from the rigidity ofz in
a neighborhood of every interior point of &, Theofem 1.1, and the con-

tinuity of ¥ on R.

To complete the proof of the equivalence of (a), (b), and (¢), one
invokes Theorem 1.1 to see that (c) implies (a). As is at once clear and is

observed in [1], C in (a) may be replaced by G, U, or V.

Our next objective is to show that a regular deformation z: R - Eqis
homogeneous if its right or left strain-tensor field is constant. If z is
lunce continuously differentiable, rather than merely regular, this con-
clusion -- as far as the constancy of the mght strain-tensor is concerned
— follows at once from a well-known relation® between the second gra-
dient of '\Z and the first gradients of 2 and C. The theorem below avoids

the foregoing additional smoothness hypothesis.

8. See equation (2.10), which seems to have its origin in a classical paper by Christoflel
[R].
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THEOREM 1.5.

(a) Let §: R » F4 be a homogeneous deformation. Then C= ETQ
and G = EET are constant on K.
(b) Suppose §: R » E51is a regular deformation and either CorGis

constant on K. Then § is a homogeneous deformation.
~

PROOF: The truth of (a) is immediate from (1.8). With a view towards
proving (b), assume first that C is constant on K and consider the pure

homogeneous deformation given by

(x)=Ux on R, U =VC. (1.14)

~

<)

* *
Let R =§(R), R = §'(R) and define a deformation z: é' - F5 through
. *
2y =%(Uy") forally'ek. (1.15)
%«
Clearly, Z is regular and Z(K') = 1% Moreover,
L 3
(v2)'(vzZ)=U"'CU' =1 on K. (1.16)

*®
By (1.16) and Theorem 1.2, Z is rigid on F'. Hence, Theorem 1.1, in con-
junction with (1.14), (1.15), assures the existence of a tensor Q and a

vector d, such that

(x)=QUx +don kR, Qe€0,, U=+C, (1.17)

ey

whence 7 is a homogeneous deformation.

Finally, suppose G is constant on R and let 2: R » E3 be given by
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Z(x)=V79(x) on R,V =VG. (1.18)

VZ =V7F on R. (1.19)

(vz2)3v2) =FV-'WF =F'G™'F =1 on R. (1.20)

Theorem 1.2 now enables us to infer that Z is rigid on % and is therefore

of the form (1.9). Hence (1.18) furnishes

(x) =¥Qx +¥d on R, Qe0,, ¥ =VG, (1.21)

~

<

and thus ¥ is a homogeneous deformation.

Note that Theorem 1.2, which was used in proving part (b) of Theorem

1.3, in turn follows from the latter theocrem.

We turn next to the special class of plane deformations. To this end,
let K be a cylindrical region of height h, with the closed cross section [,

and let {0;e;,e2,83} be a coordinate frame relative to which & admits the

representation
R = {x|(x1.xz)€ll, ~h/ 2 < x3 = h/ 24, (1.22)

We call ¥: B » E4 a plane deformation (parallel to the plane x3=0), pro-
vided

Ya = ?G(XI’XZ)’ Y3 = X3 for all (Xl,Xz)EH, ~h/2< Xq =h/2. (128)

Such a mapping is a regular plane deformation if §¥ additionally obeys

(1.4), which in this instance vields
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[Fu Fiz 0
[Fyl = | For Faz O, Fag=Fapg, J =det[Fag) >0 on I (1.24)*°
0 0 1
In view of the above, a plane deformation z: R - F5 is completely
characterized by the subsidiary two-dimensional mapping V4 I1 = Es.
Writing R in place of II, we shall conveniently speak of the '"plane defor-
mation 2: K - E5," with the understanding that # now refers to a closed
region in F,. In this context (1.3), (1.4), (1.5) are to be interpreted as
appropriate two-dimensional statements: x at present is the position
vector of a point in & with coordinates x, , while i u,and F,C, G, E are
the .vector and tensor filelds with the components ¥,,u, and
Fag. Cap . Gag , Eqg- Further,
Fag = Yag, Cap = Fralyg . Gag = FarFpy .,
(1.25)1

1
Eqg = 5 (Cag — Sap)-

Clearly, all of the definitions and results cited earlier in this section have

strict counterparts for plane deformations.

10. Here [Fij] and [Fap:\ denote the appropriate component matrices of E in the frame
t0:e1.82.83)-
11. We use 5aﬁ and 5ij to designate the Kronecker delta in two and three dimensions.
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2. THE MAIN COMPATIBILITY ISSUE

In the present section we discuss the questions of the existence and
uniqueness of a regular deformation generating a given right strain-
tensor field. The first theorem we cite deals with the uniqueness issue
and asseris that two regular deformations give rise to the same right
strain field if and only if one is obtainable from the other through a rigid
deformation. This proposition was stated without proof by E. Cosserat
and F. Cosserat [3]; proofs can be found in treatises on differential
geometry,! where the mathematically identical issue arises in connection
with the uniqueness of a curvilinear coordinate system that corresponds
to a given metric tensor. The usual proofs demand that the deforma-
tions involved be twice continuously differentiable and globally inverti-
ble. The proof outlined below employs essentially the argument used by

Shield [5], but requires merely that the desired deformation be regular.

THEOREM 2.1. Let z:R - E3 and ')Z": E - E5 be regular deformations.
Then
(EVTF =§Tg on R, where £ =V§,F'=V§' on R, (2.1)
if and only if there is a tensor Q and a vector 4, such that
2'(;5) = QE(;\()) +d on R, Qe0,. (2.2)

PROOF. Differentiation of (2.2) leads immediately to (2.1). Conversely,

suppose (2.1) holds. Then,

1. See, for example, Cartan [4], § 30. Shield [5] recently presented a proof in the
setting of continuum kinematics.
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F'=QF, Q =(F)'F], Qe0, on R. (2.3)

It is sufficient to show that Q is constant on R since an integration of the
first of (2.3) at once confirms (2.2). For this purpose let £ be a point in
the interior of K. In view of the regularity of z there is an open sphere
N CR, centered at 2 such thatz is smoothly invertible on N. We show
first that Q is constant on N. Let $~!, defined on J\‘Z'—:'}:’(N), be the

4

inverse ofz and consider the deformation Z: 1\; - F5 given by
Z(Z) =2’(2"1(z)) for all ZEJ\.; (2.4)
Clearly, Z is regular and (2.4), (2.3) give
VE(y) =E'REM(x) = Q) forall yeN.x =§7'(y).  (2:5)
Accordingly,

(v2)" (vZ) = 1 on ¥, (2.6)

~4

so that Theorem 1.3 implies that VZ, and hence also Q, is constant on N.
The constancy of Q on R follows from its constancy in a neighborhood of

every interior point of K and the smoothness of ¥ and ¥' on .

Note that two deformations producing the same right strain-tensor
field also correspond to the same Lagrangian strain field. The analogue
of the preceeding theorem in the kinematics of infinitesimal deforma-
tions is the proposition that two suitably smooth displacement fields give
rise to the same infinitesimal strain tensor if and only if they differ from

one another by an infinitesimally rigid displacement field.
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We recall next conditions necessary and sufficient for the existence of
a regular deformation that generates a pre-assignedrright strain-tensor
field. These ''compatibility conditions” were encountered first in the
differential gecmetry literature as necessary and sufficient conditions in

order that a Riemannian space be Euclidean ?

THEOREM 2.2. Let D C F4 be o domain.

(@) Suppose §:D ~» E5 is a regular deformation, let §€C3(D), and

assume
(V9)1(V§) = C or 95,35, = Cyy on D. (2.7)
Then, CeS* on D, CeC*(D) and
Rijkl = Fj]i,k - iji.l + C;cz (I“jka’ﬂq - I“jlpI“ikq) =Q0on D,
(2.8)°
1
Fjjk = _Z_(Cjk'i + Cik,j - Cij,k) on D.
(b) Conversely, if D is simply connected, C: D -» S*, and CeC?D)

satisfies (2.8), then there ezists o regular deformation §:D - Ej,

with yeC3(D), such that (2.7) holds.

As far as part (a) is concerned, the necessity of (2.8) is readily esta-
blished by computation. It may be useful to outline an economical pro-

cedure for doing so. One verifies easily that every §€C3(D) obeying (2.7)

satisfies

2. Cgristoﬁel {[2] and Cartan [4], § 43-49 are early references; see alsc Eisenhart (6],
§23.

3. Here Cp_q1 is the appropriate compcnent of g—l .
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Fpifpjkx =T on D, Fyy =735, (2.9)

as well as the linear system
Fijx = FipCpq kg on D, (2.10)
[ijx being defined by the second of (2.8). If one differentiates (2.9) with

respect to x; and uses (2.10) to eliminate the first gradients of F from

the resulting equation, one is led to
Fpinj.kl = ijm - C;&ijpfﬂq on D. (2.11)
Since Fpj = Fpj on D, (2.11) implies (.8).

An existence proof for a solution FeL, to (2.10) can be found in § 46-
49 of Cartan’s [4] treatise. More recently, Thomas [7] adapted the proof
given in [4] to a broader class of systems of partial differential equations
that includes (2.10). The argument employed in [4] and [7] relies ulti-
mately on the existence theorem for systems of ordinary differential

equations and depends crucially on the simple connectivity of the

domain D.

From a tensor field Fel, that is twice continuously differentiable on
D and that satisfies the linear system (2.10), one can construct a regular
deformation obeying (2.7) as follows. In view of the symmetry of C, the

second of (2.8) furnishes
Fijk = T}lk on D, (212)

whence
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Fyjx = Fxj on D, (2.13)

for every solution F of (2.10). Accordingly, since D is simply connected,
Stokes’ theorem implies the existence of a regular deformation

2:D - E5 W‘lchECS(D), such that

vVZ =F on D. (2.14)
On setting
B=FTCF™ on D, (2.15)

one finds with the aid of (2.10) and the second of (2.8) that B is constant
on D, while Fel, and QE.S”' justify that EES*. Finally, one defines a

deformation ¥ through

(x)= \/132(5) on D (—2.16)

1<)

and invokes (2.15), (2.14) to confirm that ¥ is a regular deformation

complying with (2.7).

While (2.8) guarantees the existence of a regular deformation satisfy-
ing (2.7), the compatibility conditions are not sufficient to guarantee the

global invertibility of such a deformation.
Note that (2.8) is equivalent to

1
Riga = 5{Cixa * Cac = Cpnane = Cae)

(R.17)
+ C};g (I‘]kpl"ﬂq - I“jlpl“ikq) =0on D,

so that (2.12) and the symmetry of C yield
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Rijkl == Rijn( = Rk]ij on D. (218)

In view of these relations, (2.17) constitutes a system of six independent

scalar equations.

On account of the last of (1.5), the compatiblitiy equations (2.17) may
alternatively be cast in terms of the Lagrangian strain components Ej;.
Although the latter linearize to the infinitesimal strains under the
assumption of infinitesimal deformations, (2.17) do not reduce to the
familiar compatibility conditions of the linear theory unless products of

the second displacement gradients are neglected as well.

In the special case of plane deformations all but one of the scalar

compatibility equations are trivially satisfied and thus (2.8) degenerates

into the single equation

nglg =0 on D, (2.19)

provided D C Es is now the open cross section of the relevant cylindrical
region. Alternative constructive proofs of the sufficiency of (2.19) in the
presence of plane deformations were given by Fosdick and Schuler [8]
and by Shield [5]. The proof in [8] is confined to locally volume-

preserving plane deformations.
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3. CONFORMAL DEFORMATIONS

The present section is devoted to some results concerning angle-
preserving deformations, its main objective being an analytical proof -
with the aid of the compatibility conditions (2.8) - of Liouville's

theorem! on such deformations.

A deformation z: R - F5 will be referred to as a conformal deforma-
tion if it is regular and preserves the magnitude of angles. A conformal
deformation is easily found to preserve angles not only in magnitude,
but also in sense. To see this, let geﬁ and suppose {A]d (i = 1,2,3) is a tri-
plet of smooth arcs lying in K and issuing from g Call t; the unit

tangent vector of A at g and define

(%) = VI (X). (3.1)

A~

o

tir I%ZF

~r ~ ~

%
Li=

*
Accordingly, t; is a tangent vector at ¥ 2?(2) of the corresponding

x
deformation image A = ¥ (A;). One readily confirms that

* % * o ’ o o
leth) '1:3 = J[QIXth) 'PESJ, where J = detE >0, (32)
whence
* * *
sen{(Lixtz) ts) = senl(tixtz) ts). (3.3)

L L d *
Thus, (L;,iz,ts) and (tytsts) have the same relative orientation.

Further, the conformality of §¥ implies

1. See, for example, Blaschke [9], § 49.
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* L 3 L 3 *
Liti= 4yt L (no sums). (3.4)

We now establish necessary and sufficient conditions for the confor-

mality of a regular deformation.

THEOREM 3.1. A regular deformation ¥: R » Ej 1s conformal 1f and only

if there 1is a scalar-valued function y€C(R), such that

C=FF =9, F=Vy, ¥>0 on R. (3.5

~

PROOF: Suppose first that (3.5) holds. Choose X€R and let {A,] (a=1,2)

be a pair of smooth arcs in & issuing from g Let t, denote the unit
[<] * ~ . -

tangent vector of A, at X, and call Ay = 9 (A,) the deformation image of

As. Thus, i, defined by

* .

ta=Fta, E=EQR), (3.6)
®
is a tangent vector of A, at ¥ = §(X). From (3.5), (3.6) follows

* * [*] c om0
Latp = Bl Etp = La ElLs = Plate. ¥=0(R)>0. (3.7)

~r

Since 1, is a unit vector, this identity yields further

fal =% cos(fy. 1) = cos(Ly. L) (3.8)
so thatt,,tz and 51 ,gg subtend angles of the same magnitude. Bearing
in mind that the point _)fg and the arcs {A,} were chosen arbitrarily in X,
one infers that z preserves the magnitude of angles. This, together with
the assumed regularity of 3 confirms the conformality of z

2. Since g is positive-definite, ¥ cannot vanish on & and hence may be taken to be
positive without loss of generality.
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Conversely, suppose ¥ is conformal. Let g be an interior point of K
and choose a coordinate frame {O;e;.€2.e5). Let {A (i=1,2,3) be a triplet
of mutually perpendicular smooth arcs in &, issuing from ;E such that g;

is the unit tangent vector of A at ;'é Further, let

i=Fe; =R, (3.9)

A
*
whence I; is a tangent vector of A =J(A) at ¥ = §(X). Invoking the

assumed conformality of ¥ and (3.9), one has

L= FFe=8=0 (=3, C=C@&) (3.10)
Since the underlying coordinate frame was chosen arbitrarily, (3.10)
implies that every such frame is a principal frame for the symmetric
positive-definite tensor field C at every inierior point of %#. Conse-

quently, (3.10) together with the smoothness of § on R assures the

existence of Y€ C(R) satisfying (3.5). This completes the prooi.

Note that C =4% 1 on R if and only if G=y?1 on R, so that C in the

present theorem can be replaced by & = EET
We now turn to two familiar examples of conformal deformations. The
first of these is supplied by the homogeneous deformation:

§(x)=AQx +d on R, Qe0,, A>0,

(3.11)
g, g, A constant.

In this event,
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E:

2‘<1)
D

J=detF =A>0, C=FF =A%t on k. (3.12)

Clearly, (3.11) is a similarity mapping: it corresponds to a rigid deforma-
tion followed or preceded by a uniform expansion or contraction; ¥ is
evidently the restriction to K of a deformation in C*®(£3) that is one-to-

one on Ej.

If g 1s a point not in K, a second example of a conformal deformation

is given by
Y(x)=—aQ(x -%)/|x —%/*+d, Q€0,, a>0on R,
(3.13)
Q, g a constant.
In this instance one finds that
- a 2 [s] [ - \3
FR)=—=7Ql- L+ —=5E-x8®(x -X)jonk, (3.14)

~

detF(x)=a/]x —%]%>0, C(x)=a®1/|x —%|* on R. (3.15)

The mapping (3.13) represents an inversion* about g followed by a
rigid deformation. It is immediate from (3.13) that J is the restriction
to & of an invertible deformation that is in €~ on E5 except at g Note

*
that if £ is a spherical shell® centered at ;2 then K = §(R) is a spherical

~

shell centered at d. Moreover, the inner boundary of K is mapped onto
the outer boundary of }? and vice versa, so that the shell is turned inside

out® Thus, although § is invertible and has a positive Jacobian

3. I m and R are vectors, m®n stands for the appropriate tensor product.

4. The term’ ‘inversion" is custornanly applied tc & mapping of the form (3.13) with
Q= 1 d X and o<0. The choice of >0 assures a positive Jacobian determinant
ot ¥ y as is clear from the first of (3.158).

5. A I‘eglOI’l bounded by two concentric spheres.
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determinant on K, it cannot be embedded in a regular motion that

starts from the identity map.

We now proceed to a precise statement and proof of Liouville's
theorem on conformal mappings, according to which the foregoing two

mappings are the only three-dimensional conformal deformations.

THEOREM 3.2 Let K- Eg, yEC (R) be a conformal deformation.
Then, either ¥ admits the representation (3.11) or there is a point X not

in R, such that (3.13) holds.

PROOF: By hypothesis and Theorem 3.1, there is a scalar field veC*(R),
such that
C=FF=v%, v>0, F=Y§ on R. (3.18)

Also, the tensor field C necessarily satisfies the compatibility conditions

(2.8). Combining (3.18) and (2.8), one deduces
Rija = VP H(@s0x — w06 + (201 — @) 0
— (i) — 20k — (@¢x — ¢ k)01 (3.17)
+ ¢ 5 5(6365 ~ 656;)3 = 0 on R,
where
¢ =Logv¥ on R. (3.18)7

Therefore,

6. Deformations of this type were employed by Green and Adkins [10], Section 2.19.

7. Note,that while the compatiblity theorem (Thecrem 2.2) has been applied here with
D=R, equations (3.17) must hold on 7 since ¢ and ¥ are in C*(R).
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Riga = ¥*len— @01 + (9upx + ¢ = 0on R. (3.19)

Actually, (3.19) can be shown to be equivalent to (3.17). From (3.19) and

the nonvanishing of ¥ on K follows
Rewx t oy =0 on R, (3.20)
and this identity, together with (3.18), yields
(V¥) 1 =0 onl}?, (3.21)

whence ¥ has derivatives of all orders on the interior B. Let

a= é—e"’(rp.kgo.k + @) on K. (3.22)

Clearly, the function a has the same smoothness as ¥ on R and is con-

tinuous on K. Further, (3.22), (3.19) lead to
e P(psp1 —vq) =Rady on R, (3.23)
which - on account of (3.18) -- can be written as
(1/¥)y =226y on R. (3.24)
Accordingly,
(L/ ¥ = A2a_k5ﬂ = 2a;0y on k. (3.25)

Upon contacting (3.25) with respect to the indices i and 1, one concludes
that a is constant on ¥ and hence, by continuity, also on K. Two succes-

sive integrations of (3.24), together with the positivity of ¥ on R, now

furnish:
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w(’%):(a§2+g~g§+c)“1, a;52+}3~')5+c>0 on K

(3.26)
a,b,c constant.

In view of (3.26) and (3.18), the identity (3.22) requires that

4ac = b*. (3.27)
Suppose first a=0. In this case, b=0, (3.26) reduces to
v=1/c on R,c>0, (3.28)
and the first of (3.18) gives

C=F"F=1/c?onk. (3.29)

Since g is constant, it follows from Theorem 1.3 that the same is true of
F. The right polar decomposition of F in (3.29) thus guarantees the

existence of a tensor Q such that
F=Q/c, Qe0,, (3.30)
whence
§(x)=Qx/c+donk, d =constant, (3.31)
which coincides with the deformvation (3.11),if A=1/c.

Next, suppose a # 0. Upon setting X = —b/ 2a, one infers from (3.26),

(3.27) that
Y(x)=eax —%|™ on R, a>0. (3.32)

Since ¥€C?*(R) by hypothesis, the point with the position vector % cannot

belong to K. From (3.32), (3.16) one draws that
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Cx)=F'(®XEX)=a?lx ~%/™L on R (3.33)

As is apparent from the second of (3.15), the mapping (3.13) gives rise to
the strain-tensor field C in (3.33) with a=1/a. In view of Theorem 2.1
concerning the uniqueness of deformations generating a given field C,
every deformation answering (3.33) admits the representation (3.13),
provided a=1/a. Although this observation completes the proof, it would

still seem desirable to sketch a derivation of (3.13) from (3.33).

To this end, guided by the structure of C in (3.33), we assume that §

is a deformation of polar symmetry about g followed by a rigid deforma-

tion, and thus take

J(x)=1(r)Q(x —%£)+d, r=|x—-%| on R, Qe0,,

(3.34)
g g constant.

Here, {€C3([r;,rz]) or 1eC3([r;,»)) according as R is bounded or
unbounded, where ry=min|x — x| over all X€R, whereas rp=max|x — x|

over all X€R in case R is bounded. From (3.34) one obtains

F(x) =QU(nL + %-f(r)(zs —3®(x -xHonk r=Ix-%l (3.35
and the required regularity of ¥ demands that
detF(x) = f3(r)[i(r) + ri(r)] > 0. (3.36)

Furthermore, (3.35) and (3.33) furnish
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Cx) = L + 1)) + HR(x ~ 2 @ (x - )

~

‘=ar™! on R. (3.37)

This identity holds if and only if
() =2, HO(HE) + 1)) =0 on B, r=|x -l (3.38)

The first of (3.38) implies the second, and -- in conjunction with (3.36) -

yields
f(ry=~a™r?on R, r=|x—-%| (3.39)

But, (3.39) and (3.34) give (3.13) with a=1/a. Note that the second

alternative in Theorem 3.2 cannot arise if & = Es.

Next, we consider briefly the corresponding conformality issue in two
dimensions. Theorem 3.1 has a strict analogue for plane deformations.
Thus (3.5) remains necessary and sufficient in order that a regular plane
deformation z: K - E5 be conformal, where R is now a closed region in
Ey while F and C denote the two-dimensional deformation gradient and
the right strain-tensor field of z respectively.

8

As is well-known,® a regular plane deformation ¥: R - E, is conformal

if and only if ¥; and ¥, satisfy the Cauchy-Riemann equations:
V115922, Y12=~-92; on R. (3.40)

Let g be the complex-valued function defined by

8. See, for example, Buck [11], Section 8.
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g(z) =9,(X,X2) +1V2(x1,Xz), z =X; +iXg on R. (3.41)

By hypothesis, ¥,eC!(R). Thus, (3.40) is equivalent to the analyticity of g
on the interior of K and implies that ¥,,¥, are conjugate harmonic
functions. Note that the derivative g'(z) # 0 for all zeR because detF >0
on K. The familiar result recalled above reflects the fact that confor-
mality is a far less restrictive constraint for plane, than for three-

dimensional deformations.
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4. REMARKS ON DEFORMATIONS GENERATING A GIVEN LEFT STRAIN-TENSOR

FIELD IN THREE DIMENSIONS

We now turn to the existence and uniqueness issues for a regular defor-
mation that gives rise to a prescribed left strain-tensor field in three
dimensions. Proceeding first to the unigqueness issue, let D be an open
region in E£5 and suppose z:D -» E5 and z':D - F5 are regular deforma-

tions in C*(D) with the same left strain field. Thus,
G = EET = E'(E‘)T on D, whereF =V§, F'=Vy"'. (4.1)

™~

If one sets
Q =F"F)T on D, (4.2)
it follows from (4.1) and the smoothness of z 2' that
F'=FQ, QeCYD), Qe0, . (4.3)
Further, because F' = Vz', Q obeys
curl (FQ) =0 or (FipQp)x = (FipQpx); on D. (4.4)

Conversely, suppose F = V§ satisfies the first of (4.1) and QeC*(D) is
any proper-orthogonal tensor field that conforms to (4.4). Then one can
define a regular deformation $:D » E5, §'€C?(D) that generates the

same left strain-tensor field as ¥ through the path-independent line

integral
9'(x) = ] EOR(E)AE or 71&x) = | Fil€)@(£)dg; on D, (4.5)

provided D is simply connected and X€D is fixed.
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Next, consider the homogeneous deformation

(x)=Fx +donD, (4.8)

[

where F and d are constant, FeZ,. In this case, G = FF” is constant and,
according to Theorem 1.3, every regular deformation that generates this
G is necessarily homogeneous. Thus, i (4.1) and (4.8) hold, (4.3)

requires that

(x)=FQx +d'on D, (4.7)

"~

=<
age!

in which Q and d' are constant, Q€0,. If ¥ is now understood to be the

unique extension to F5 of the mapping (4.8) originally defined on D, one

has,on account of (4.7),

§'(x)=3(@(x)) on D, - (48)

where z:D - E5 is the rigid deformation given by

)

(x)=Qx +F7d' —d) on D. (4.9)

The mapping §' thus corresponds to the rigid deformation Z followed by

the extended homogeneous deformation 7.

As is evident irom the preceding remarks, if ¥ and 9’ satisiy (4.1) and
hence (4.3), ¥' may be interpreted locally as a rigid mapping iollowed by

the deformation ¥.

It appears difficult to delermine the totality of regular deformations
that generate the left strain-tensor field associated with an arbitrarily

assigned regular deformation ¥ €C%(D). In order to accomplish this pur-
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pose, it would suffice to find the set of all proper orthogonal tensor fields
QECI(D) obeying (4.4) for the given I = Vz. As is clear already, when 2
is a homogeneous deformation, Q satisfies (4.4) if and only if Q is con-
stant. The following example concerning nonhomogeneous deformations

may be instructive.
Let ¥ be the conformal deformation given by
7(x)=-alx —%/ |x —&|* on D, (4.10)

with x¢D and « a positive constant. Here,

2

G(x) = ! ax 1 on D. (4.11)
~ ‘e X —X ~

By Theorem 3.1, every regular deformation with the left strain-tensor
field (4.11) is conformal.! Thus, if ¥’ is such a deformation, Theorem 3.2,

along with (4.10), mandates that

<)

(%) =R3(x) +4 on D, (4.12)
where R and d are constant, Re0,. From (4.12), (4.2) one finds

Q(x) = EM%)RE(x) on D, (4.13)

~t

and it follows that every QeC!(D) obeying (4.4) for the § given by (4.10)
has the form (4.13) with Re0,.

In contrast to the uniqueness issue for the left strain field discussed

here, the corresponding issue for the mght strain field presents no par-

1. Pli%g?ll fr%rn the remarks following Theorem 3.1 that FFT =%?1 if and only if
F'F - 'w 'L. ™~ N "o
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ticular difficulties, as is evident from the proof of Theorem 2.1.

The eristence issue for G -- like the corresponding uniqueness issue -
seems to be difficult to resolve in three dimensions. The object here is to
establish necessary and sufficient conditions for the existence of a regu-

lar deformation generating a pre-assigned left strain-tensor field.

With a view toward mecessary conditions, suppose ¥:D - Ejis regular,
§eC?%D), and

EET=§ on D, where F =V§. (4.14)

Clearly, GeC'(D) and GeS™. Further, (4.14), in’conjunction with the left

polar decomposition for F, guarantees the existence of a tensor field®
QeC(D), such that

F =VQ or Fyj=Vy,Qy, V=VG, Q€0, on D. (4.15)
Because F = Vg on D, Q satisfies

curl (VQ) =0 or (VipQu)x = (VipQpid,; on D. (4.16)

Equations (4.16) are found to be equivalent to the following quasi-linear

system of partial differential equations

Qijx = Qipl Qgpllgik — Qqflgpk — Qqxflgp;) on D, (4.17)°

provided

2. The smoothness of Q follows from the fact that gz\l'lz on D and frem the
differentiability of E and V = VG. See, for example, Gurtin [1], Art. 3, for a proof
that the components of L/'Hepemf\érnoothly on the components of G.

3. A system of equations analogous to (4.17), satisfied by Q@ = FU:I, U =VC fora
given Tight strain-tensor field C, was deduced by Shie [5]‘,‘? 3. In confrast to
{4.17), the system obtained by Shield is a linear system for g
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1 =
quk = -quil(Vip.jka - Vip,kaj) = - qu]- on D. (418)

Conversely, if D is simply connected and there is a tensor field
QECI(D), Qe0, satisfing (4.17), there exists a regular deformation
§eC?D) that obeys (4.14). Indeed, such a deformation is given by the

path-independent line integral

<y

~ ~N ~

(©) = [ YR or 3:(6) = | Vip(£)Qpi(g)dg on D, (4.18)

Thus, conditions necessary and sufficient for the existence of a smooth,
proper-orthogonal tensor field Q conforming to (4.17) are at the same
time necessary and sufficient for the existence of a regular deformation
EECZ(D) satisfying (4.14). As will emerge in Section 6, it is possible to
obtain explicit necessary and sufficient conditions for the existence of a
solution to (4.17) in the special case of plane deformations. Further, in
these circumstances, the integration of (4.17) is either reducible to a
quadrature or to the integration of an ordinary, linear differential equa-

tion of the second order.
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5. UNIQUENESS OF PLANE DEFORMATIONS GENERATING A GIVEN LEFT STRAIN-

TENSOR FIELD

The uniqueness question discussed in the previous section in the context
of general three-dimensional deformations is dealt with at present for
plane deformations. We thus establish two theorems concerning the
extent of uniqueness of plane deformations producing a prescribed left
strain-tensor field. From here on D stands for a domain in Ej, all vec-

tors and tensors being two-dimensional.

THEOREM 5.1. Let §:D -» E5, ¥ D » E; be regular deformations in

C3(D), such that

FE'=F'(E)" on D, E =V§, E'=Vy" (5.1)
Let |

Q=F1E")T on D, (5.2)

so that
F'=FQonD, QE0,, QeC¥D). (5.3)

Assurne
Q#=xl on D (5.4)

and sel

1. 1 Q=x]1 on D one has ¥'(x) = £¥(x)+d on D, with d constant. Thus, in this
trivial case, ¥ and §' dtffer eithe® by amfranslatwn or by an in-plane rotation
through 7T abTut the Stigin and a translation.
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Yo = —F;‘}Fﬁ)\x. 8= %0t YaYar D = Eqg¥ag N D. (5.5

If a®+b%#0 on D and b has at most isolated zereos on D, then

either Qap = (6apd + £44b)/ Va+b* on D
5 5.6
or Qug = — (Sapa + £4pb)/ Val+b® on D. (5.6)

If a=b=0 on D and D is simply connected, (5.6) holds again unth a

and b replaced by u + ¢ and 7, respectwely, where

X
n(x) = expij Ya(§)dEal, w(x) = ] EagN p(§)déq 0T D, (5.7)
z 4
XeD is an arbitrory fized point, while ¢ = Qua(X)/ emQam(R)-

PROOF: Since F'=Vy' and F'e C3(D), (5.3) demands that
curl (FQ) = Q or &,(FapQp),. =0 on D. (5.8)
Further, because Q€0, on D, Q admits the representation

[ cosw —sinw

While the functions cosw and sinw are in C%(D), w itself need not be con-
tinuous on D. It is clear, however, that o is twice continuously

differentiable on any subdomein of D on which it is continuous.

Let

2. Here and in the sequel fqg is the two-dimensional alternating symbol: £1=€5,=0,
£z = —€2; = 1.
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Xa = cosRu(sinRw), — sin2w(cos2w), on D. (5.10)

On any domain of continuity of w, (5.10) reduces to Xa = R@ 4. Substitu-
tion from (5.9) into (5.8), after some manipulation and an appeal to

(5.10), (5.5), yields
Xa = [OagSinRw + £45(1 — cosRw)lyg on D. (5.11)

On differentiating (5.11) with respect to x, and using (5.10), (5.5), one

eventually arrives at
EaXax = a(l — cosRw) + bsin2w =0 on D, (5.12)
from which follows
(a® + b?)cos®2w — 2a%cos2w + a° = b2 =0 on D. (5.13)

Assume first a®4+b%#0 on D. Then, by (5.12), (5.13), at each point of D:

either cosRw =1, sinkw =0 (5.14)
2_1.2
a“—b . —2ab
2w = ———, 2w = . 5.15
or coslw EiL? sinRw SR ( )

Note that (5.14), (5.15) coalesce only at zeros of b and that b=0
throughout D is excluded by (5.4), in view of (5.9). Now assume further
that b has at most isolated zeros® on D and let D, be the subdomain of D
on which b#0. Suppose there is a point in D, at which (5.14) holds.
Then, the continuity of cos2w demands that (5.14) hold at all points of

D, which is precluded by (5.4). Hence (5.15) holds on D. Consequently,

3. Actually, it is sufficient to assume that the subset ¢f [ on which b fails to vanish is
connected.
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either cosw = ———3——-, sinw = —=b__ on D
Va2 +b? Vaf+b? (5.16)
- 5.1
or cosw = _____@___, sinw = - on D,
Val+b? Val+bR

and (5.16), (5.9) now confirm (5.6).

Next, suppose a=b=0 on D and D is simply connected. In this case,

the last two of (5.5) become

Yaa t YaVa =0, EafYaf = 0 on D. (5.17)

On account of the second of (5.17), one may define a function n€C*(D)
through the first of (5.7), the line integral here involved being path-

independent. Accordingly, one has

Na=N% on D, {5.18)
which - together with the first of (5.17) -- leads to
Naa = M(Yaa + 7a¥a) =0 on D, (5.19)

so that m is harmonic and hence in C*(D). One may thus define another
function, u€ C*(D), through the path-independent line integral appearing

in the second of (5.7). The latter 4imp]ies the Cauchy-Riemann equations
Mo = Eqgng on D. (5.20)
By virtue of (5.20), the complex-valued function determined by
g(z) =u(x) +in(x) on D, z=%; +ixz, (5.21)

is analytic on D; further, because of (5.18), one has
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d .
E‘;— =n(y, + 1y;) on D. (5.22)

A direct computation based on (5.11), and involving (5.10), (5.17),
justifies
Xaa =0 on D. (5.23)

Let p be the scalar field defined by

X

1
p(x) = exp é—]eaﬁxa ¢)dégl on D, (5.24)

X

noting that the foregoing line integral is path-independent owing to
(5.23). With the aid of (5.24), (5.10) one readily verifies that the
complex-valued function f given by

i(z) =p(;£)e‘i“(’&) on D, z=%x+ixs, (5.25)

is analytic and nonzero on D, as well as that

o ar ..
- -f—a?—X2+1X1 on D. (526)

From (5.26), (5.11) one draws

2 af _ .. s . -
el = i(e 1) (o +iyy) on D, (5.27)
or, invoking (5.22) and n#0 on D,

g_f_. Riw _ QE__ S
2 gl (e 1) f 3 on D. (5.28)

Substitution from (5.25) into (5.28), in turn, leads to



-39.

at __ o de
N g, = ~psine == on D. (5.29)
Thus, if one sets
v = —psinw = Inif} on D, (5.30)*
(5.29) becomes
daf _,de
nq; SV g on D (5.31)

or, by (5.30) and (5.21),
n(ve +ivy) =v(ny +in,) on D. (5.32)
Equating real and imaginary parts of this identity, one infers that
v(x) =cn(x) on D, (5.33)

provided c, is a real constant. From (5.30), (5.21), (5.33), as well as the

analyticity of the functions { and g, {ollows
f(z) = cg(z) + c2 on D, (5.34)

in which ¢z is another real constant. Since {#0 on D, ¢? + ¢£ # 0. More-

over, because 7 = hnfgl # 0 on D, (5.34), (5.25) give
w(x) = —argicg(z) +cg} on D, we[02m). (5.35)°

If ¢;=0, then c,#0, w=—argicy! on D, and hence

4. Recall (5.25).
5. From here on we take for granted that argfc,g(z) + ¢z} € (—2m,0].
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w=01if >0, w=m il ¢c; <0. (5.36)
As is clear from (5.9) and (5.38), ¢; = 0 leads to Qag = £ Oqp, sO that c;#0
by (5.4).

Thus, set

c=cy/ ¢y, (5.37)

whence (5.35) may be written as

w(x) = —argic,[g(z) + c]§ on D. (5.38)
Since fmig! > 0, one has

w(x) = —argig(z) +c{ on D if ¢; >0,

(5.39)
w(x) = —aergig(z) +ci +m on D if ¢ <O0.

This, together with (5.21), (5.9), furnishes
Qap = = [Saplie + ) + eqgm )/ Viu + c)®*+7° on D. (5.40)

Finally, observe that n(g) = 1, #(x) = 0 by (5.7); consequently, the evalua-
tion of the constant c in (5.40) leads to ¢ = Q,4(R)/ £ Qa(X). This com-

pletes the proof.

Before turning to the next theorem, we add a remark concerning the
case in which a® 4+ b® # 0. Thus, let § .3’ setisty the hypotheses of
Theorem 5.1 and suppose in particular that a® + b? # 0 on D, while b has
at most isolated zeros on D. If one assumes that Z‘EC““(D), rather than

merely in C(D), substitution from (5.15)® into (5.10) and (5.11), upon

6. Recall that (5.15) was shown tc hold at every peint of D.
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equating the ensuing right-hand members, yields
abg —ba, —aby, + bPe.e75 =0 on D. (5.41)

Therefore, in the present circumstances (5.41) is a necessary condition
for the existence of a deformation z'('g) = '}:f(gg) +d on D with the same
left strain field as §. One can show by example that there are plane
deformations in C*(D) for which (5.41) fails to hold, although a and b
have no common zeros and b has at most isolated zeros on D. U
2: D - E, is such a deformation, it {ollows that 2’: D -» E, is regular, in

C3(D), and satisfies (5.1) onlyif §'(x) =+ 9(x) +d on D.

The following theorem is a converse of Theorem 5.1 and supplies an
algorithm for the construction of a deformation §' that generates the

same left strain field as a given deformation ¥ .

THEOREM 5.2. Let D be simply connected and §: D » E5 be a regular
deformation in C*(D), F = V§. Suppose the fields a, b, and 7,, defined
through (5.5), satisfy a® + b% # 0 on D and obey (5.41). Then, the defor-

mation §:D » E, determined by

') = [ B0)Q)AE or T'a(x) = [ Fap(§)Qey(£)dt, on D, (542)
in which Q is given by either of (5.6), is regular, §'eC*(D), and §' con-
Jorms to (5.1).

If a=b=0 on D, define functions u and n on D through (5.7). Let Q be

given by either of (5.6) but with a and b replaced by u and 7, Tespec-
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tively. Then §' determined by (5.42) is regular, §'€C*(D), and §' obeys
(5.1).

PROOF: Suppose first (5.41) holds with a®+b%#0 on D, and let Q be given
by either of (5.6). In order to reach the desired conclusion, it is
sufficient to show that Qe0,, g€C3(D), and that Q satisfies (5.8). The
latter assures the path independence of the line integral in (5.42), while

(5.42) implies F' = FQ, and thus (5.1), since Q is orthogonal.

The proper orthogonality of Q follows directly from (5.8). Further,
because FeC3(D), (5.5), (5.8) imply that Q is at least in C'(D), and (5.6)

results in
Qaﬁ,)\ = CMQaﬂ(ab,)‘ - ba)‘)/ (az + bz) on D. (543)
With the aid of (5.41) and (5.8), Equation (5.43) may now be written as
1
Quﬁ,)\ = é‘syﬂerwQapr)O’p on D. (544)

One infers from (5.44) and 7,£C%(D) that Q is actually in C3(D), rather

than merely once continuously differentiable.

It remains to show that (5.8) holds. To this end, note from (5.44) and

the orthogonality of Q that

1
CﬂAQaﬂ,A == E—sta’ﬁ'a on D. (5.45)

Substitution for 7, from (5.5) now gives
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1
Cﬂ)\F,anuﬁ,AZ _—SWQWF P on D. (546)
2 HA

In view of (5.6) and because e,F 0 =0 on D, (5.46) is found to be

equivalent to

eﬂAFp.aQaﬁ,A + Eﬂ)\qu,)\Qaﬁ =0 on D, (547)

which confirms (5.8).

Next, assume a=b=0 on D, so that the last two of (5.5) reduce to
(5.17). Let m and u be defined through (5.7). One now argues as in the
proof of the last theorem that the required line integrals are path-

independent and that u, 77 are both in C*(D). On defining Q by

Qap = = (Bopi + e0gn)/ V2 +1? on D, (5.48)

one infers Q€0,, Q€C™(D). Moreover, (5.48) together with (5.18), (5.20)

yield
Qagn = NEupQau(boast + £xn) 75/ (12 + %) on D. (5.49)

But (5.49), (5.48) entitle us to assert (5.44) also in the present instance,
which once again enables us to justify (5.8). The line integral in (5.42) is
thus path-independent and §' so determined is in C*(D) with detF'>0 on

D; further, §' satisfies (5.1). The proof is now complete.

We add here a comment on the eventuality, not covered in either of
the Ioregoing theorems, that a and b have common zeros on D, but fail
to vanish identically. The case of isolated zeros may be dealt with by an

appropriate limit process. If one assumes ¥ to be a real analytic func-
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tion of position on D, zeros of a®+b? cannot accumulate unless a=b=0

on D.

As is evident from (5.5), any deformation z that is harmonic on D
gives rise to the case in which a=b=0 on D. This class of deformations
includes two-dimensional conformal mappings and homogeneous defor-
mations. The subsequent example shows that there are nmonharmonic

mappings for which a=b=0on D.

Let D ={x|x;>0, x>0} and consider the deformation y:D - Ej

given by
¥1(x) = Logx;, ¥a(x) =Logxs on D. (5.50)

Then, clearly, §eC™(D),

r1/x$ 0
, [Gagl = [FaFpa] = | ¢ 1/x2 | (5.51)

[1/x, o0
(Fagl=| 0 1/x,

whence ¥ is a regular deformation. Here, (5.51), (5.5) give
71(x) =1/x1, 7(x)=1/%2, a=b=0on D. (5.52)

Choosing (X;,%3) = (1,1), one finds from (5.52), (5.7) that

n(x) = x1%z, wu(x) = ={x¥-x§) on D, (5.53)

20|~

and (5.48) with the upper sign yields

s { [ x2 - x5 2x;% 5 (5.5
= ——— . .0
Qap xE+xZ | ~Rx1% xf-xg| "
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Finally, from (5.54), the first of (5.51), and (5.42) follows

¥'1(x) = — Log[Rxy/ (x{ + x8)], ¥'2(x) = Log[Rxa/ (xf + x§)] on D. (5.55)
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8. EXISTENCE OF PLANE DEFORMATIONS GENERATING A GIVEN LEFT STRAIN-

TENSOR FIELD

In this section we prove two theorems concerning the existence of a
plane deformation that gives rise to a pre-assigned left strain-tensor
field. | The first of these two theorems establishes necessary existence
conditions; the second theorem asserts that the latter are also

sufficrent.

THEOREM 6.1. let§:D - E, be a regular deformation in C*(D) and

(Vz) (Vz)T =G or Va,9p,=Geg on D, (6.1)
so that GeC*(D)nS*. Let
\NT:\/Q' on D, - (6.2)
Ma = exuVag Vaur = CagVin Vs,
(6.3)
Do = ExuVap Veur + SagVer Vauu On D,
P = Nggq + Eapllially, = Eqgllqg + Mallg, T = EqpMpg g — Nolla 07 D. (6.4)
Then
p2+q2fr220 on D (6.5)
and the scalar field 4, given by
A= m on D, (6.6)
is in. CY(D). Moreover, if either A=0 on D or A has at most isolated zeros

on D, the following equation holds throughout D with at least one of the

two sign alternatives:
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(P + @®)my, + 1(6,5q + £4gP)Ng + QP — P.ad
(6.7)
+ [A (6agP — €4pq)ng + Apr ~1 ,A] =0 on D.

PROOF: The smoothness, symmetry, and positive definiteness of G are
immediate from (6.1) together with the regularity and assumed addi-
tional smoothness of §. Further, by (6.1) and the left polar decomposi-

tion of Vz, there is a tensor fleld QeC3(D), such that
V§ =VQ or Jaa=VagQer on D, V= VG, Qe0, on D. (6.8)
Accordingly, Q obeys
curl(VQ) =0 or &,(VesQa),,=0 on D. (6.9)

The above system constitutes a pair of scalar equations, which is found

to be equivalent to the quasilinear system of partial differential equa-

tions

Qapy = Qan [Uaogy = Qpllory = Qflngl on D, (6.10)

where
Qup, = =0, 5= V3 (Van pQuy ~ Van-Qus) o0 D (6.11)
0By = T Ve T o VA YRy T Vawyug) © : :
Since Q€0, on D, Q admits the representation

Qug = 0apC0SW = gqpsinw on D, w € [0,2m). (6.12)

As is observed in the proof of Theorem 5.1, the scalar field @ may not be
continuous on D. However, it is apparent from (6.12) and the smooth-

ness of Q that the functions cosw and sinw are in C3(D) and thus w is
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three times continuously differentiable on any subdomain of D on which

it is continuous.

Let
Xa = cos2uw(sinlw) 4 — sinRw(cosw) , on D. (6.13)

On any domain of continuity of w, (6.13) reduces to xa=Rw ,. Multiplica-
tion of (6.10) by £4,Q4, and a subsequent appeal to (6.11), (6.12), in view
of (6.13), yields

Xa = Mg + (8450080 + gggsinlw)ng on D, (6.14)
with m, and ng defined through (6.3). Differentiating (6.14), using (6.13),
and invoking (6.14) once again, one eventually arrives at

EaaXax = Psinlw + qeosw —r =0 on D, (6.15)
where p, q, r are given by (6.4) and are in C'(D). From (8.15) {ollows the
quadratic equation for coslw:

(p® + q®)cos®Rw — 2qrecos2w + r¥* —p? =0 on D. (6.18)

The latter has real roots only if (6.5) holds. Moreover, (6.15), (6.16), (6.6)

demand that

either (p® + q®cos2w = qr + p4, (p? + ¢®)sinlw = pr — qA
(6.17)
2 - o 2 L 2Yes _
or  (p®+ q®cos2w = qr —ph, (p? + g®)sinlw = pr + g

at each point of D. Note that the two alternatives in (6.17) coalesce only

at zeros of A. From (6.17) one draws
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(p? + @®) [ pcos2w ~ gsinlw] = (p? + ¢?)A on D (6.18)
and, since (6.5), (6.6) imply that A=0 at a common zero of p and q.
pcosw — gsin2w = A on D. (6.19)
The smoothness of p, q, cos2w, sin2w now assures that AcCH(D).

Suppose first that A has at most isolated zeros! on D. In this event a
continuity argument confirms that either the first two or the last two of

(6.17) hold at all points of D.

Next, if A vanishes identically on D, the two alternatives in (8.17)
coalesce and hold on . Thus in this case, as well as if A has at most iseo-

lated zeros on D, one infers from (6.17), (6.13),

(0% + 3®)Xa = QPa — PQa = (Ar, —TA,) on D. (6.20)

The upper or lower sign in (6.20) holds throughout D according as the
first or second possibility in (6.17) is valid on D. Combining (6.17),
(6.20), (6.14), one arrives at (6.7). This completes the derivation of the

necessary conditions (6.5} and (8.7).

We now proceed to a theorem that establishes the sufficiency of (6.5)
and (8.7).

THEOREM 6.2. Let D be bounded and simply connected. Let G: D » 5* be
in C3(D) and continuously differentiable on the closure D of D, V= \/CE

Suppose the fields m,n,p, q, and 7, defined through (6.3), (6.4), obey

1. It is actually sufficient to assume that the subset of [ on which A fails to vanish is
connected.
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(6.5). Purther, let A, given by (6.6), be in CYD) and satisfy (6.7)
throughout D wilth at least one of the fwo sign alternatives. Then if

either p2+q2;é0 on D or p=q=0 on D, there erists a regular deformation

§:D - E,, §eCHD), such that (6.1) holds.

PROOF: In order to show that (6.5), (6.7) guarantee the existence of a
generating deformation z it is sufficient to show that these "compatibil-
ity conditions” for G imply the existence of a proper-orthogonal tensor
field Q€C3(D) that satisfies (6.9). To see this, note that if Q is such a

tensor field, one may define § through
X X
7x) = [ V(E)IQUEE or T4(x) = [ Vagl£)Qp(£)ds, on D, (621)
z z

provided X€D is fixed. The above line integral is path-independent by
virtue of (6.9); the deformation ¥ so determined is regular, in C*(D), and

-- on account of (6.2) and the orthogonality of Q — obeys (6.1).
Assume first that p and q have no common zeros on D. Set

c=g%—3—l§—, s=£25;9%-on D, (6.22)
p*+q P +q

where A is given by (6.6) and the upper or lower sign is used according as
(6.7) holds with the upper or lower sign. The functions ¢ and s are at

least once continuously differentiable on D and one verifies with the aid

of (6.6) that
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c2+s2=1 on D. (8.23)
Differentiation of (6.22) leads to

—S
Ca= 2 5 [qp,a = Pgax (Ar,a - rA,a)]v

pT+q
{6.24)
c
Sa = W[qp,u —PQq £ (Ar, —1l,5)] on D.
In view of (6.7), (6.22), one may write (8.24) as
Cq=— S[ma + ((5aﬁc + CaﬁS)nﬁj R
(6.25)

5o = clmg + (3,8 + éaﬁs)nﬁ] on D.

Because of the smoothness of m and n, (6.25) is easily seen to imply that
c and s are actually in C3(D). Let g be a fixed point in D and define

weC3(D) through

o) = ;—]‘ (£)5.alf) = s(E)ca(£)ldta +& on D, (6:26)

in which & is a constant determined by
cos2e = c(x), sin2o =s(x), @ €[0m). (8.27)

The line integral in (6.26) is path-independent in view of (6.23). Further,

one finds that (6.28), (6.27) require
cosRw =¢, sin2w=s on D, (6.28)

which, in conjunction with (6.26), (6.25), (6.23), justifies
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Wa = %— [mg + (8,4c08Rw + gqgsinlw)ng] on D. (6.29)
Next, define Q€C3(D) through
Qup = 0agCOSW — £qgsinw on D. (6.30)
Evidently, Q€04 on D and, because of (6.28), one has
Qagr = é—eﬁanp(m}\ + QQorny) on D, (6.31)

whence

1
£aQag ) = —Z—(qum;\ + Q) on D. (6.32)

Substituting into (6.32) for Q.. m,, and n, from (6.30) and (6.3), one

arrives at
EmVpaQagr = — £aaVppaACOSW — Vg esine on D, (6.33)
or, on appealing to (6.30) once again,
eaVpaQapr = — €aaVparlag o0 D. (6.34)
Thus, (6.9) holds.

Next, suppose p=q=0 on D. In this case (6.5) requires r=0 on D and

(6.7) holds trivially. Moreover, (6.4) reduces to
Nga + €apMallg = 0, Eagliqp + Mol =0, EqpMgg —Ngllg =0 on D. (6.35)

I, in addition, n=0 on D, (6.35) becomes



EaqgMap =0 on D, (6.38)

so that one may define a scalar field 0eC3(D) through the path-

independent line integral

w(x) = %—Zmu(é)déa on D, (6.37)

where X€D is an arbitrary fixed point. Let QeC>(D) be given by (6.30),
whence Q€04 on D. In the present instance one finds from (6.37), (6.30)

that (6.31) holds once again. This, as before, entitles one Lo assert that

Q satisfies (8.9).

We now turn to the case in which p=q=0 on D, but n {fails to vanish
indentically on D. We shall show that in these circumstances, the prob-
lem of finding & tensor field Q€0,.NC3(D) obeying (8.9) is reducible to the

integration of an ordinary linear differential equation of the second

order.

Suppose for the time being that there exists a Q€0.nC3(D) satisiying
(6.9), and hence also (6.10). Such a tensor field admits the representa-

tion (6.12) and, because of (6.10), w obeys (8.14) with x, given by (6.13).

The assumed smoothness of G, along with (6.2), implies that the vec-
tor field m defined in (6.3) can be continuously extended onto D. I m

now stands for this extension, rgeC‘z(D)nC(D) and admits a Helmholiz

resolution
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My =64~ Eqgpg O D, (6.38)

where the scalar potentials 8 and ¢ are both in C?(D). Next, define func-

tions f, € C¥(D) through
fa = €7P(0qpc0s0 + £qpsind)ng on D. (6.39)

Equations (8.39), (6.38), and the first two of (6.35), by direct calculation,

are found to yield
fa,a =0, eaﬁfa,ﬁ =0 or fg’)\ = erl,p on D. (640)

Accordingly, {5, I; are conjugate harmonic functions and are thus in

C™(D). Further, from (6.38),
fofoa = e?fngn, on D. (6.41)

The zeros of g therefore coincide with those of { and are necessarily iso-
lated since f is harmonic and n is assumed not to vanish identically on

D. Combining (6.38), (6.41), and the third of (8.35), one obtains
¢ aa = [ala€®® on D. (68.42)
The harmonicity of f on D now implies® that g€ C=(D).
Substitution from (8.38) into (6.14) yields
Xa = 8a =~ Eqgp g + (6,5c0520 + £qgsinluw)ng on D. (6.43)

If one sets

2. See, for example, Courant and Hilbert [12], p. 502.
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oc=2w—06 on D, (6.44)

the smoothness of cosw, sinw, w, and 6 implies that ¢ is twice continu-
ously differentiable on any domain of continuity of «, while cose and sino

are both in C3(D). Next, let $,€C!(D) be given by
b, = coso(sino)  — sino(coso) o = Xq — 8, on D. (6.45)3

On any subdomain of D on which w is continuous (6.45) reduces to
b, =04. On account of (6.45), (6.44) and (6.39), Equation (6.43) can be

written as
G, = = eap9,p + €¥(0agcoS0 + £4g5in0)ig on D. (6.48)

A direct calculation based on (6.46), (6.45), and (6.40) gives

$qqa =0 on D. (6.47)

One may thus define a scalar field pe C?(D) through
X

p(x) = exp{ [ £qpba(£)dtgt on D, (6.48)

°
p3

where ;ZED is fixed, the line integral here involved being path-

independent by virtue of (6.47).

Next, let z = x; + ixz. One verifies with the aid of (6.48), (6.45) that

the complex-valued function h defined by

3. Recall {(6.13).
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h(z) = p(g\(l)e‘i"(%)/z on D, z=x;+ixy, (6.49)

is analytic and nonzero on D and that

h(z) = dh(2)/ dz = = 5-h(z) [ (g) +i®:(x) ] on D.  (650)

Further, if {, is the pair of functions defined in (6.39), let

f(z) = fp(x) +if1(x) on D, z=x; +ixp (6.51)

In view of (6.40), the function f is analytic on D. Finally, let %(z,Z) be

determined by

2(z2) =e(x) on D, z=x; +ixz, Z =X ~ixp. (68.52)%

Clearly, 9 is real-valued, g€ C™(D), and

¢,(2.2) = %‘[90,1(?5) —ipa(x)],

)
b;‘\
N

—— - — - — 1
2) = 2,(22), 2,22 = T PaalX), (6.53)°

1 . n N
02(22) = Tlen(®) — #22(x) = Ri0,12(2)], Pp(22) = 855(27) on D

Combining (6.50), (6.46) and using (6.51), (6.52), (6.53), one arrives at

—2h'(z) = 2h(2)3, + h(2)i(2)e?*°@) on D, % =3(zz), (6.54)

so that, because of (6.49),

5.

Here and in the sequel, a superior bar indicates complex conjugation. Moreover, we
say that 90(2,2') is defined on D if it is defined for every pair of complex conjugate
numbers (2,Z), such that zis in D.

We write @5, @, in place of 6%/ 8z, 8°% / 8287, respectively. The subscripts z and
Z are thus exempt from the usual range and summation convention in what follows.
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—2e~?[h'(z) + h(2)3,] = {(z)h(z) on D. (6.55)
Partial differentiation of (6.55) with respect to z yields® |
~2e7 [ 1'(z) + h(2)[35 — 28] § = 1'(2)R(@) on D, (6.56)
and on eliminating h(z) between (6.55), (6.56), one is led to
f(z)h"(z) — t'(2)h'(z) + 8(z,Z2)h(z) =0 on D, (6.57)

provided
B(22) =H2) [ 0 — 85 1 —1'(2)%, on D, §=9(z2).  (6.58)

Since { and % are determined by G, the same is true of g, which is in
C>=(D). Moreover, it is clear from (6.57) that g(z,z) is independent of z

and hence analytic” on D.

The preceding considerations, which presupposed the existence of the
requisite proper orthogonal tensor field Q, serve to motivate the follow-
ing construction of such a tensor field. For this purpose, guided by

(8.57), we start by considering the ordinary differential equation.
f(z)w'(z) =1 (2)w'(z) +8(z2,Z)w(z) =0 omn D, (8.59)

where { is the analytic® function defined by (6.51), (6.39), (6.38), and g is

given by (6.58), (6.52), (6.38). The analyticity of 2 on D may be deduced

6. Observe that if h(z) =h,(x)+iha(x) is analytic on D and ﬁ(z,2)= (z) on D, then
H,(2,Z) = thy,1(x)—ha2(x)—ilh; 2(x)+he,1(x)}/ 2 =00n D
by the Cauchy-Riemann equations.
7. 1E(2,2) = g;(x)+igy(x) on D,
82(2.2) = t€1.1(%)—g2,2(x) +ilg1 2(x) +e21(x)3/ =0 on D
implies the Cauchy-Riemann equations.
8. See equation (6.40).
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from its definition and known properties of 2 and {f as follows. Observe

first from (6.51), (6.52), (6.53) that (6.42) may be written as

49, =1(2)1(Z)e*® on D, 3 =3(z22), (6.60)
so that
49 ,pp = [(2) % [ £'(2) + 21(2)3,] on D. (6.61)

Multiplication of (6.61) by f(z), in view of (6.60), yields
1(2)P 0y — [£'(z) + RE(2)%,] $,, =0 on D, (6.862)
which, on account of {6.58), implies
B,(2,2) =0, B(z,Z) =g(z), g analytic on D. (6.63)
Accordingly, the differential equation (6.59) becomes
f(z‘)w"(z) ~f'(z)w'(z) + g(z)w(z) =0 on D (6.84)
and thus has analytic coefficients.

We now show that (6.64) admits a nontrivial solution, analytic on D,

which may be used to construct a proper-orthogonal tensor field

QeC®(D) obeying (6.9).

The existence of two linearly independent analytic solutions of (6.64)
in a neighborhood of any point z. of D at which f(z.) # 0 (ordinary point)
is guaranteed by the theory of linear ordinary differential equations.? We
confirm next that the general solution of (6.64) is also analytic in a

neighborhood of a zero of {. Let z.€D be a (necessarily isolated) zero of

9. See, for Example, Copseon [13], Sect. 10.11.
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f. Thus there is a neighborhood N of z. on which
f(z) = (z —zo)¥A(z), A#0 on N, (6.65)

where M is a positive integer and A is analytic on N. From (6.65), (6.58),
{6.63), one infers that z. is a regular singular point of (6.64) and that the
roots of the corresponding indicial equation are zero and M+1. There-

fore,!? the differential equation (6.64) has a solution on N of the form
wi(z) = (z —z ¥ ¥(2), ¥ analytic on N, ¥(z.)# 0. (6.66)

The existence of a second analytic solution of (6.64) on N that is linearly

independent of w, is established next. Let

Wo(z,Z) = e ¥ [W,(2) + Wy(2) $,)/ I{z) on N, z#z.. (6.87)

Clearly, @5 is in C™ on its domain of definition. Differentiating’! (6.67)

and bearing in mind (6.53), (6.58), (8.63), and that w; satisfies (6.684), one

arrives at
0%o(2z,Z)/ 8Z2=0, Wo(z,Z) =wy(z) on N, 2z # 2., (6.68)

with wp analytic on the deleted neighborhood of z. at hand. To see that

wo has a removable singularity at z., substitute from (6.85), (6.66) into

(6.67) to obtain
lim wa(z) = (M + 1) exp[—9(z0.2+)] ¥(z4)/ A(zV) . (6.89)
22«

A direct calculation based on (6.87) and involving (6.58), (6.83), (6.62)

10. See, Copson [ 13}, Sect. 10.15.

11. Since_ W,_is analytic on N, one has dW;(Z)/dZ = dw,(2)/ dz on N, provided
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enables one to conclude that w, satisfies (6.64) on N. Further, since

¥(z.) # 0, (6.69) implies wp(z+) # 0. But w,(z.) =0 by (6.66), so that w,

and wy are linearly independent on N.

Thus, there are two linearly independent, analytic solutions of (6.64)
in a neighborhood of each point of D. Accordingly, either of these two
solutions can be continued analytically along any path in the simply con-
nected domain D by the usual circle-chain argument. Moreover, it fol-
lows from the Monodromy Theorem?!? that these analytic continuations
give rise to a function that is analytic on the entire domain D. Finally,
since the function so generated satisfies (6.84) in a neighborhood of a
point of D, it follows from the Identity Theorem that this function

satisfies the differential equation throughout D.

In view of what preceded, one is assured of the existence of a non-
trivial solution w of (6.64) that is analytic on D. Let D, be the subdomain

of D on which {#0. Define a complex-valued function EEC"’(DO) through

h(z7) = kw(z) — 2re?[W(z) + w(z)®,)/ I(z) on D,, & = %(2,2), (6.70)

where « is a complex constant, chosen so that h fails to vanish identi-
cally on D,. One now infers with the aid of (6.58), (6.63), (6.64), and
(6.53) that

h,(zZ) =0, h(zZ) =h(z), hanalytic on D,. (6.71)
We show next that h has a removable singularity at each zero of {. To

12. See, for example, Knopp [14], § 25.
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this end, let z. be a zero of { and N be the neighborhood of z. introduced

earlier. Then
w(z) = aw;(z) + bwy(z) on N, (6.72)

where a, b are complex constants and w,;, wy, are the two linearly
independent solutions of (6.64) established previously. One confirms

readily by recourse to (6.72), (6.67), (6.70), and (6.60) that
h(z) = é—(zfca — ®B)w,(2) — (2K& ~ kb)wa(z) on N. (6.73)

Thus, h admits an analytic continuation onto D.

Next, we show that h#0 on D. A direct calculation starting from (6.70)
and making use of (6.60) confirms that h satisfies (6.55). Suppose now
that there were a z,€D, such that h(z,)=0. Then h'(z,)=0 by (6.55), and
successive differentiations of this equation would require the derivatives
of h of all orders to vanish at z,. This, in turn, would necessitate h to

vanish indentically on D, which is a contradiction.!® Hence, h#0 on D.

Let
hi(x) = Refh(z){, ha(x) = m{h(z){ on D, (6.74)
and define 0€C™(D) through the path-independent line integral

o(x) = 2 [ Tha(6)h1.a(6) — hy(E)haa(£))/ [hF(£) + BE(E)]déa + & on D,(6.75)

where €D and

13. See the remark following (6.70).
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e"®2=1(3)/ |h)| on D, %=% +i%, 9€[0.47). (6.76)
From (6.74), (6.75), (6.78) follows
e 9@ 2 =h(z)/ |h(z)| on D, z=x,+ixs, (6.77)

which implies
—2h'(2)/ h(z) = 05(x) +i0,(x) on D. (6.78)

Substitution from (8.77), (6.78) and (8.52), (6.53) into (6.55), in view

of (6.51), eventually leads to
0o = — Eapp,p + €¥(0agc080 + £4g5ino)ig on D. (6.79)

If & is the scalar potential introduced in (6.38), define weC?*(D) through

w= %—(e +0) on D. (6.80)

Eliminating ¢ between (6.79), (6.80) and using (6.38), (6.39), one verifies
that o satisfies (6.29) also in the present circumstances. Moreover,
weC3(D) because m and n are in C*(D). Finally, let Q be defined by
(6.30), so that QeC3(D)n0O,. As seen before, (6.29), (6.30) imply that
(6.31) holds, and the latter, along with (6.3), enables one io conclude
that Q obeys (6.9). The line integral (6.21) is thus path-independent and

§ so determined is regular, in C*(D), and satisfles (6.1). This completes

the proof.

In order to illustrate the construction of a regular deformation gen-
erating a given left strain-tensor field for which p=q=0 on D, let

Dcix|x, > 0§ and suppose
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= Lo D 6.81
Cotl = [ 1/52| O P (6.81)
Evidently, GeC™(D), GeS™, and (6.2) gives
IR
[Vagl = lo 1/ %, | °% D. (6.82)

Further, (6.3), (6.4) now yield
m;=n;=0, mpg=np=-1/%, p=q=r=0 on D. (6.83)
Thus, (8.5), (6.7) hold. One confirms that the scalar potentials given by
6=0, ¢=-Logxy on D (6.84)

satisfy (6.38) in the present circumstances and (6.39), (6.51), (6.52),
(6.58) lead to

f(z) = - 1,‘ 2(z,Z) = —Logl(z+2)/2], g(z)=0 on D. (6.85)

A nontrivial analytic solution of (6.64) in this case is supplied by w(z) = 1

on D. Choosing k=i in (6.70), one finds that
h(z)=2i on D, (6.86)
and (6.75), (6.80), (6.84), (8.30) give
Qap = €ag on D. (6.87)
Finally, taking (%;,%z) = (1,0) in (8.21), one arrives at
91(x) =%z, Falx) =—Logx,; on D. (6.88)

Theorems 5.1 and 5.2 may be used to infer that every regular deforma-

tion §'(x) # = 9(x) +d on D (d constant) giving rise to the left strain-
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tensor field (6.81) admits the representation

F'1(x) = £ VEi+(xe—k)* + d;
(6.89)
V'2(x) = + Log{[xz —k + VxZ+(xz—k)?)/ X1 +ds; on D,

with k and g constant.

For the purpose of relating the foregoing existence theorems to the
uniqueness theorems of the previous section, let G be a tensor field that
satisfies the hypotheses of Theorem 6.2, so that there is a regular defor-
mation zeC‘*(D) obeying (6.1). If Q is the tensor field introduced in (6.8),
and 74, &, b are the functions defined through (5.5), one confirms by

means of (6.3), (6.12), (6.31) that
Yo = EaggQun, on D, ‘(6.90)
which, in conjunction with (6.31), (6.12), (6.15), is found to yield
a2 +b¥=p?+q® a=-r, b*=4A% on D, (6.91)

with p, q,r. A given by (6.4) and (6.5). It is clear from (8.90) that the
zeros of 7 and 1 coincide. Thus, one draws with the aid of (5.5) that

n =0 on D is equivalent to

Fuﬁ,ﬁ Z’S’a,ﬁﬁ =0 on D, (692)

whence ¥ is harmonic on D. Also, because of (6.91), the fields a and b
vanish jointly if and only if the same is true of p and q. Further, one can
show that 74, a b obey (5.41) if and only if G satisfies (6.7) for both

choices of sign. Accordingly, if p? + q® # 0 and A has at most isolated
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zeros on D, there is a second deformation ¥'(x) # +§(x)+d on D
(g constant) that gives rise to the left strain-tensor field at hand if and

only if (8.7) holds for both sign alternatives.!4

Note that Theorem 6.2 does not cover the possibility that p, q satisfy
(8.5), (6.7) and have common zeros, but fail to vanish identically on D.
One can show that if p*+q® have joint isolated zeros, the functions ¢ and
s defined in (6.22) have removable singularities at these zeros. Moreover,
c and s may be used to construct the desired deformation by following
the procedure adopted for the case in which p?+q® # 0 on D. If one
assumes p?+q® to be a real analytic function of position on D, any zeros

of p*+q® are necessarily isolated, unless p=q=0 on D.

Finally, we remark that the results obtained in this section stand in
marked contrast to their counterparts for plane deformations generat-
ing a given mght strain-tensor field: in the latter case, the compatibility

conditions require merely the vanishing of a single scalar field.

14. Recall Thecrem 5.2 and the remarks immediately preceding it.
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