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Abstract

Several aspects of observations of neutron stars and compact extragalactic radio sources are

considered, with particular regard to their use in constraining certain astrophysical phenomena.

A theoretical treatment of the pulse arrival time analysis of millisecond pulsars is made; we
consider how a detailed timing analysis can be used to quantitatively probe noise processes affecting
the pulsar period and the propagation of the radiation. The intrinsic noise may be used to study
the neutron star interior, while propagation effects due to gravitational perturbations of the neutron
star and interstellar refraction of the emitted radio waves provide probes of the pulsar environment
and the intervening plasma. In addition, important constraints on the background of cosmological

gravitational radiation can be derived from timing such pulsars.

We consider the thermal X-rays emitted from a warm (10°K<T, ¢ $3x 106K) neutron star, either
cooling from its initial formation or heated by internal dissipation, accretion, etc. Constructing model
atmospheres abpropriate to such stars with various effective temperatures and elemental abundances,
we calculate their emergent spectra aﬁd the bolometric correction for observation bands of various
X-ray satellites. We conclude that the present limits on neutron star surface flux are even more
constraining than those derived assuming that the spectra are blackbody and examine how this
effects models of neutron star interiors, formation and cooling. We also examine the consequences

of similar X-ray observations for neutron star models of various gamma-ray stars.

The refraction of radio waves from pulsars and other compact sources by interstellar plasma
is also studied. We show how pulsar observations, in particular, can be used to characterise the
large scale inhomogeneities in the ionized ISM and compute a number of observable effects for
various electron density perturbation spectra. It is shown how similar refraction can account for
the low and intermediate frequency variation of compact extragalactic radio sources. We argue that
the observations indicate that more power is present in the large scale fluctuations than previously
believed. In addition, single ~ 1014cm scale clouds in a previously unrecognized dense, ionised phase

of the ISM can apparently dominate the refractive scintillation for some lines of sight.
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Introduction

To preface a discussion involving neutron stars, it is appropriate to open by recalling the pre-
scient suggestions of Landau (Rosenfeld 1974), Baade and Zwicky (1934); and, later, Wheeler (1966)
and Pacini (1967); the dramatic and unexpected discovery of pulsars by Bell working in the research
team of Hewish (Hewish et al. (1968)); and the rapid and clear interpretation of these observations
by Gold (1968). The subsequent elaboration of our description of pulsars (eg. Goldreich and Julian
1969, Ostriker and Gunn 1969) and the realization that neutron stars are the central powerhouses
of a number of astrophysical sources (particularly the X-ray binaries) has led to a rapid growth in
the depth and breadth of theoretical studies of these compact objects, so that today neutron stars
reign supreme as the deus ex machina of most galactic high energy astrophysical sources, whether

modeled or as yet unexplained.

Observational advance has been rapid on a number of fronts, as well. The early observations of
the Crab pulsar, PSR05314-21, in particular, were of critical importance in consolidating support for
the basic neutron star model. Firstly, since the Crab and, nearly simultaneously, the Vela pulsars
were found towards the centers of young supernova remnants, the compact objects were strongly
associated with the collapse of massive stars. Indeed the discovery that Crab’s short (33 ms) period
was growing, with a P ~ 4x 10~13s s=1, both substantiated the belief that the object was powered by
tapping the rotational energy, and, via the maximum characteristic age P/ 2P ~ 2000yr, established
the association with the historical supernova of 1054. The discovery of the Crab pulsar also solved
the long-standing puzzle of the energization of the surrounding synchrotron nebula; conversely, the
observed power in the nebula gives a measure of the pulsar moment of inertia, since the rotational
spindown supplies I in power. The resulting value, I ~ 10%5~Sgm c¢m?, is in agreement with
that estimated for a ~ 1My, 10km ;'adius neutron star. The rate of change of the period derivative
has also been measured for the Crab pulsar and the results are in rough accord with the hypothesis
of magnetic dipole braking. Finally the Crab, and especially the Vela pulsar are notable for showing
occasional large discontinuities in the period and pe1:iod derivative; these glitches yield important

clues to the internal structure.

More recently, study of the ~ 500 presently known rotation powered (radio) pulsars (cf. Manch-
ester and Taylor 1977) has allowed a substantial investigation of the number and origin of this ob-

served sample of neutron stars. Detailed consideration of the observational biases in pulsar searches



2

(Lyne, Manchester and Taylor 1985; Narayan 1987) have shown that the number of potentially ob-
servable radio pulsars in the galaxy is ~ 10°. The galactic distribution is strongly concentrated to
the plane, giving a disk population of scale height ~ 400pc, with some increase in the pulsar number
density towards the galactic center. An important tool for understanding the pulsar population is
the P — P diagram (see Fig. 1, from Dewey, et al. 1986). The quantity PP is related to the pulsar
magnetic field in the dipole braking model, and hence to the luminosity. The spin down evolution of
a pulsar can be thought of as driving a ”current” in the P — P plane (Phinney and Blandford 1981).
A pulsar is born in the upper left (cf. Crab and Vela) of the diagram, moves down and to.the right
and disappears when the luminosity (related to some combination of P and P) decreases below a
critical value (the ”Death Line”). The pulsar statistics give evidence for an additional luminosity
evolution due to decay of the magnetic field, with a timescale $107 years. The birthrate inferred is
about 1 pulsar per 30 to 120 years, which is in rough agreement with the deathrate for the extreme
population I OB stars, believed to be the principal progenitors of pulsars. Although the scale height
for this progenitor population is very much less than that of the pulsars, the observed pulsar velocity
dispersion normal to the plane is ~ 100km/s, so it is clear that they can travel substantial distances

from their birthsites; the observed scale height is consistent with the field decay lifetimes.

" The association of neutron star births with extreme population I stellar deaths and supernovae
is, however, somewhat problematic. Although theoretical arguments and the situation of certain
young pulsars in supernova remnants suggest that neutron stars are born in the demise of massive
stars, it is not certain if the estimated galactic supernova rate is adequate to explain the pulsar
birthrate. If the estimates are to agree, it seems necessary that the majority of supernovae give rise
to radio pulsars. However, observations with the Einstein satellite (Helfand and Becker 1984) have
failed to find evidence for neutron stars in a number of young supernova remnants. The inference
of an additional, more quiet, arena for neutron star birth has sparked a number of theoretical and
observational investigations. In this context observations of the recent supernova SN1987a in the
LMC Wﬂl be of particular interest. The apparent detection of a supernova neutrino burst in water
Cerenkov experiments indicates that core collapse to a compact remnant has probably occurred; if
a neutron star has formed future X-ray and radio observations should detect the thermal flux from

the cooling remnant and determine if a young pulsar is present.

Although certain anomalous objects (eg. the binary pulsar PSR1913416, Hulse and Taylor

1975) provided an indication of the presence of a second pulsar population, the discovery of the
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millisecond pulsar (Backer, et al. 1982) highlighted the importance of a subgroup of rapidly spinning
radio pulsars with low magnetic fields. These objects, lying in the lower-left hand region of the P— P
diagram, are believed to be ”reborn”, low field pulsars brought above the death line by accretion
induced spin-up, which should shift the ”dead” field-decayed pulsars to the left until they reach the
”spin-up” line (a limiting period for a given field and accretion rate). While it has been suggested
that these objects are associated with the low mass X-rays binaries (Alpar, et al 1982) and, in
particular, the recently discovered X-ray binaries showing Quasi-Periodic Oscillations (van der Klis

1985), the evolutionary connection is still far from clear.

The monitoring of departures from the very stable rotation rates of radio pulsars has led to a
description of the interior of a neutron star as composed of several superfluid and normal components,
interacting in complex ways. In particular, the observations of pulsar glitches (cf. review by Pines
and Alpar) and timing noise (eg. Cordes and Helfand 1980) have given important insights into the
structure of neutron star interiors. The current picture is summarized in Figure 2 (from Shapiro
and Teukolsky 1983). While there are variations in the internal structure as a function of the poorly
known high-density equation of state, most models have in common a number of distinct regions.
In the outermost few meters the matter is normal, although it can be significantly affected if strong
ma-gnetic fields are present. In the low density crust, neutron-rich high-Z nuclei exist along with
a degenerate electron gas. At higher densities, neutrons can exist freely (outside of nuclei) and
a superfluid neutron gas forms along with exotic, high-Z nuclei. At still higher densities, nuclei
lose their identities and the bulk of the matter is superfluid neutrons, with a small admixture of
superfluid protons. Finally, at the core, densities of several times nuclear density can be reached and
formation of a hyperon-, pion- or quark-condensate may be energetically favored. In a glitch, the
steady spin-down mediated by the outward diffusion of quantized superfluid vortices through the
various regions is perturbed. The dynamical response of these regions as the star relaxes to a steady
state gives information on the couplings, moments of inertia, etc. of the various zones. The Crab,
Vela and a number of older pulsars have shown glitches with dynamic relaxations broadly consistent

with the above description, although the detailed behaviour is not fully explained.

At higher energies there is much to be learned about basic neutron star physics as well. Pulse
timing and eclipse modeling has yielded mass estimates for a number of neutron stars in binary X-
ray pulsar systems; along with the mass estimate for PSR1913+416, derived from general relativistic

effects, these are all consistent with a value ~ 1.2 — 1.4Mg, ‘e. close to the Chandrasekhar limit
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(Joss and Rappaport 1984). Recent advances in modeling the time dependence of X-ray bursts,
believed to arise from thermonuclear explosions on neutron star surfaces, are also beginning to
provide significant constraints on neutron star masses and radii. Finally, as a more speculative
possibility, some evidence suggests that the enigmatic gamma-ray bursters may be associated with
an old population of slowly rotating neutron stars. If so, such behaviour may be the only means of
detecting these low period, low field neutron stars, aside from an occasional thermal pulse from rare

spindown glitches in very nearby examples.

While many observed aspects of neutron stars await adequate explanation (most notably the
question of how pulsars emit coherent radio waves, in the first instance) in this discussion we will
take the basic properties of radio pulsars and neutron stars as given and consider the interpretation
of the observations in somewhat different light; ‘e. we study how certain aspects of radio and
X-ray observations of neutron stars may be used to probe extreme and otherwise unobservable
regimes of astrophysics. More specifically, the investigations conducted during the course of this
thesis and reported herein relate to three different uses of neutron stars as tools for the study of
other physical phenomena; timing of fast, quiet pulsars and their use in searching for ultralow-
frequency gravitational radiation, X-ray flux limits for neutron stars in young supernova remnants
and the possible need for exotic cooling agents due to phase transitions at supranuclear densities,
and the use of pulsar arrival time and intensity modulations in the study of the ionized component
of the intervening interstellar medium (ISM). This division allows a rough grouping of the research
undertaken during this thesis into three sections. In the remainder of this introduction, we c-onsider
these three sections in turn, providing a brief description of previous studies using neutron stars
as probes of the specified phenomena, describing how the investigation undertaken relates to these

earlier findings, and summarizing the principal results of the papers contained.

I. Pulsar Timing and Limits on Ultralow-Frequency Gravitational Radiation and Other

Sources of Timing Noise.

Insofar as quiet puisars do not depart measurably from a simple, steady spindown, one may use
the limits on their irregularity to constrain a number of processes which would result in timing noise.
In particular, Sazhin (1978) realized that gravitational waves emitted by a line-of-sight binary could
produce a periodic perturbation in a pulsar’s arrival time (Ze. a residual to the timing model) and

Detweiler (1979) showed how a stochastic background of ultralow-frequency gravitational radiation,
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a relic of the early universe, could produce a measurable rms timing residual in an otherwise quiet
pulsar. Romal'li and Taylor (1983), Hellings and Downs (1983) and Bertotti, Carr and Rees (1983)
made use of this idea to show that one could limit the energy density in a background of gravitational
waves with periods ~1-10 years, to less than the density required to close the universe with such

radiation.

The discovery of the millisecond pulsar (Backer, et al. 1982), with its short period, slow spindown
and remarkably small timing noise has proved most valuable for this method; monitoring this object
over the past several years has yielded limits on the relic gravity wave background many orders of
magnitude stronger than those mentioned above (Taylor 1987). During the same period there has
been increasing interest in cosmic strings, singularities frozen out from phase transitions in the very
early universe, and scenarios in which these objects might produce the density perturbation spectrum
that seed the formation of the galaxies seen today (Zel’dovich 1980, Vilenkin 1981). However, these
massive, relativistic objects must produce copious gravitational radiation as they oscillate and collide,
indeed such radiation is the principal sink for their energy. Current limits from timing the millisecond

pulsar show that the relic background from these strings must be

Qew (f) < 107%(F/1073H2)*,  f2fmin

in units of the closure density, where the wave frequency, f, is greater than some minimum wavelength
of order 10~3Hz. Cosmic string scenarios for galaxy formation require Qgw210~7 (Hogan and Rees
1984, Vachaspati and Vilenkin 1985) and so pulsar timing is already providing important constraints
on these theories. Since this limit depends quite sensitively on fiin, only a detailed treatment of
the timing model allows one to be quantitative in placing these bounds. Moreover, for long periods,
the timing accuracy of PSR1937+214 currently exceeds that of terrestrial clocks, accordingly the
avenue for progress in pulsar timing gravity wave searches lies in finding other fast, quiet pulsars
and establishing an array of well-timed pulsars on the sky. Such a timing network would allow the
separation of several timing noise processes with different angular dependencies; in particular, a
gravitational wave perturbing the Earth will produce timing residuals (in effect a Doppler ranging
to the various pulsars) which will have a quadrupolar angular signature. The recently discovered

PSR1855+09 (Segelstein et al. 1986) shows some promise for such use.

In paper I (Blandford, Narayan and Romani 1984) the effect of various types of timing noise on

a pulsar arrival time analysis were considered. In particular, red noise processes dominated by low
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frequencies, such as those produced by a cosmic string gravity wave background or pulsar seismicity,
were shown to induce variances in the fitted pulsar parameters that reduce more slowly with time
than those caused by random, white-noise processes. Conversely, since intrinsic pulsar parameters
(such as the period, period derivative and position) are refined in the analysis, a certain fraction
of the residual due to the noise process is absorbed. An evaluation of this effect for various noise
spectra was performed; in the context of a limit on the gravity wave background, this means that
the effective fimin above is somewhat larger than the reciprocal of the observation period. A more
precise limit on the background energy density is obtained and it is shown that, if PSR19374-214
continues to show predictable timing behavior, string scenarios of galaxy formation will soon face

severe constraints.

In paper II (Blandford, Romani and Applegate 1987), we consider briefly a most promising
candidate for a new fast pulsar located in the direction of the globular cluster M28. Certain evo-
lutionary arguments suggest that pulsars may be spun-up in the cores of globular clusters, and the
present limit on the pulse period for this source suggests that if it is a pulsar, its period must be
on the order of a few msec. We point out that the gravitational perturbations of the other cluster
members should produce a measurable variation in the arrival times and that this will degrade such

pulsar’s utility in gravity wave search timing programs.

II. Model Atmospheres for Cooling Neutron Stars and Limits on the Surface Flux of

Isolated Neutron Stars.

The association of neutron stars with supernovae suggests that immediately after birth the
collapsed core will be very hot, ~ 1—10MeV, and should emit a large flux of X-rays. Early analyses
(Chiu and Salpeter 1964, Tsuruta 1964) showed that once the photon cooling dominates that of
neutrinos, the surface temperature of the young neutron star will decrease relatively slowly, leading
to a potentially detectable X-ray flux persisting for ~ 10% — 10%years. However, it was pointed
out by Bahcall and Wolf (1965) that if a substantial portion of the dense core underwent a phase
transition to a pion condensate, the initial neutrino cooling would be dramatically enhanced and
the thermal flux of photons would decrease by a factor ~ 103 — 10% at early times. With the advent
of the Finstein satellite, detection of the thermal flux of young neutron stars became a realistic
observational goal and a number of groups made detailed recalculations of neutron star cooling,

including substantially more realistic interior physics. Superfluidity, magnetic fields and departures
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from isothermality in the core were shown to have important, but relatively modest effect on the
cooling (eg. Hernquist 1984); exotic phases at supranuclear densities such as quark, kaon, and pion
condensates were found to produce dramatic departures from the standard cooling theory (Tsuruta
1985). In addition, it was suggested that older neutron stars might maintain modest 210°K surface
temperatures for extended times via accretion from the general ISM, heating of the polar caps
by magnetospheric particles, or dissipative heating from internal seismicity (Helfand, Chanan and

Novick 1980).

The Einstein survey of nearby pulsars and young supernova remnants (eg. Helfand, Chanan
and Novick 1980, Helfand 1983) did not, however, provide any convincing detections of thermal flux
from the initial cooling. Moreover, rather severe limits were placed on the flux from any X-ray point
source in several young supernova supernova remnants and important upper bounds were obtained
for the thermal component of the X-ray emission of the Crab and Vela pulsars. These observations
are particularly important since, although one may miss radio pulsars in young supernova remnants
because of beaming or the late turn-on of the pulsar phenomenon (eg. Blanford, Applegate and
Hernquist 1984), the thermal flux cannot be hidden in this manner. In the case of several well studied
remnants, one may infer that either no neutron star is present or that accelerated cooling from an
exotic interior phase was important. If the former supposition applies and pulsars are produced
only in a minority of supernovae, then the already strained agreement of the supernova and pulsar
birthrates would be violated and an additional, quiet arena for pulsar formation must be found. If the
alternative of accelerated cooling is applicable, then these observations give important information
on the equation of state at densities and not presently accessible in terrestrial experiments. In the
case of the Vela pulsar the limits on surface flux are at best only marginally compatible with standard
cooling theory and it may again be necessary to invoke an exotic internal phase. However, before such
significant conclusions may be reached, it is important to quantify the connection between the surface
heat fluxes predicted by the cooling calculations and the upper limits to counting rates in specific
energy bands provided by the observations. In particular, previous authors have assumed that the
flux emerging from the neutron star surface had a simple blackbody spectrum, an assumption which
might not, in general, be valid. Further, Einstein observations have provided important limits on
the flux from older radio pulsars, as well as some possible detections of various other astronomical
sources suspected to involve neutron stars, eg. gamma-ray burst sources and Geminga. To compare
these observations with the source models it is clearly important to characterise the thermal flux

from a neutron star surface.
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In paper III (Romani 1987), we have computed model atmospheres for cool neutron stars, con-
sidering the effect of the radiative transfer through the final few centimeters, where atomic processes
will have important effects on the emergent spectrum. Realistic opacity data for densities and tem-
peratures appropriate to non-magnetised cooling neutron stars were obtained from the Los Alamos
Astrophysical Opacity Library and LTE model atmospheres were constructed using a temperature
correction scheme employing detailed radiative equilibrium. We found that the largest effect of the
varying surface gravity was due to a simple red-shift to infinity and atmospheres were computed for
a range of effective temperatures and surface compositions. The effect of accretion and gravitational
settling on the surface layers is discussed. The results show that, for atmospheres dominated by
low-Z elements such as hydrogen and helium the emergent spectra would be substantially harder
than those of blackbodies at the corresponding effective temperatures. Conversely, atmospheres
dominated by heavy elements would have spectra closer to the blackbody form, but with strong
absorption edges. The application of these results to the limits obtained for young SN remnants and
radio pulsars with Einstein and EXOSAT were considered and we show that the upper bounds
on the effective temperatures are substantially lower, in many cases, than those found assuming
blackbody spéctra. This strengthens the conclusion that if neutron stars are present in a number
of well-studied SN remnants, then phase transitions to exotic matter should occur at supranuclear

densities.

In paper IV, we apply the results of Romani (1987) to Einstein observations of the fields of
several gamma-ray sources. In the case of the gamma ray burster GRB781119 and the enigmatic
source Geminga, candidates for soft X-ray counterparts have been found. This X-ray flux has been
interpreted as thermal radiation from the neutron star surface. We note that the presence of accreted
light elements can alter the spectrum of the emergent flux as described above, discuss how the limits
on the thermal flux will be affected and briefly consider the implications for astrophysical modeling

of such sources.

III. Low Frequency Variability of Pulsars and Compact Extragalactic Radio Sources,

Refractive Interstellar Scintillation and Ionised Plasma in the Interstellar Medium

Pulsars are remarkably good probes of conditions in the galactic interstellar medium (ISM).
Since pulsar signals are broad-band, impulsive and polarized, one can study the interstellar hydrogen

and free-free electron absorption, measure dispersion by the ISM plasma, and, using the observed
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Faraday rotation, estimate the galactic magnetic field along various lines of sight. Moreover, since
pulsars are effectively point sources, interstellar scintillation allows one to study inhomogeneities in
the ISM electron density distribution. Since the earliest days of pulsar observation, the narrow band,
~100s intensity fluctuations and the pulse broadening seen at low frequencies have been attributed to
scattering by these electron density fluctuations (Scheuer 1968). This diffractive scintillation causes
a mean delay in the pulse arrival time and a decorrelation bandwidth for the diffraction pattern
seen at the Earth, whose transverse scale, b, at an observing wavelength A gives an estimate of the
typical scattering angle, § ~ A/27b. A pulsar at a distance D subtends an angle very much smaller
than'd/D (which is ~ 10712 for typical parameters) and so rays arriving from this spread of angles
can interfere incoherently. However, this condition on the intrinsic source size, 8;,: < 10~ %mas, is
so restrictive that pulsars are the only known sources compact enough to show strong diffractive

scintillation.

From low frequency VLBI observations of the apparent size of pulsars (Mutel, et al. 1974) and
measurements of the pulse broadening (Slee, et al 1980) it is determined that the mean bending
angle experienced by a meter wavelength ray propagating from a ~1kpc distant pulsars is of order
1-10 mas. In the standard picture, this angular broadening is effected by the random superposition
of the ensemble of small-scale, weak scatterers along the line of sight. The density fluctuation
power spectrum of these scatterers has been most commonly characterised as a extended three-
dimensional power law in spatial frequency, @ oc k~?; in particular it has been argued that the
index of this spectrum has the Kolmogorov value, # = 11/3 (Rickett 1977, Armstrong, Cordes and
Rickett 1981) and that the sc‘attering is dominated by fluctuations on scales ~ 10°cm. However, this
value is close to the critical value, 4, above which large-scale fluctuations dominate, so the low spatial
frequency fluctuations can be important. Indeed, the observation that diffraction maxima in the
frequency-time plane (dynamic scintillation spectra) of pulsars often show shearing and large-scale

1013— 14

organization suggested that large scale prisms (ie. the edges of ~ cm perturbations) induce

chromatic aberration into the scintillation (Shishov 1974, Hewish 1980).

Moreover, it was shown by Sieber (1982) that the modulation indices describing the long period
(months-years) variation of pulsar fluxes correlated with the dispersion measure, suggesting a propa-
gation effect. Following this observation, Rickett, Coles and Bourgois (1984) (also cf. Shapirovskaya
1978) argued that the intensity fluctuations were re fractive in nature, caused by focussing and de-

focussing of the pulsar flux by electron density perturbations on the scale of the scatter-broadened
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image. It was also noted that a number of other astrophysical radio sources were sufficiently com-
pact, $ a few mas, to show such effects. In particular, it was suggested that this effect could explain
the problematic low-frequency variability of compact extragalactic radio sources. The fluctuations
.of these sources on month to year timescales at meter wavelengths, if intrinsic, contrast sharply with
the light travel time across the minimum source size inferred from brightness temperature arguments,
often suggesting apparent velocities of several hundred c. Although VLBI observations have directly
demonstrated the presence of bulk relativistic motions in several extragalactic radio sources (Cohen
1986), the prevalence of low frequency variability creates difficulties for the relativistic beaming mod-
els (invoked to explain the apparent superluminal motions in the VLBI observations), which would
be mitigated if most low frequency variability was a propagation effect. Rickett, Coles and Bourgois
(1984) also suggested that a related phenomenon, the few percent, ~10d timescale fluctuation of
compact sources at ~10cm observing wavelengths discovered by Heeschen (1984) could be similarly

explained as an effect of refractive scintillation.

It was pointed out by Blandford and Narayan (1984,1985) that when pulsars are subjected
to this refractive scintillation, parameters other than the flux would be modulated, as well. They
established a simple model for the effect of refraction caused by a thin, phase-changing, <4 screen '
and showed how various observables such as flux, apparent angular size, and pulse width would
show correlated fluctuations with amplitudes depending on the slope of the underlying perturbation
spectrum. These calculations indicated that the observed flux variations required an ISM electron
density fluctuation spectrum with 8 > 11/3. Goodman and Narayan (1985) performed a more exact
calculation of the flux variation spectrum from a thin power law phase screen, including the case
4 < 3 < 6, where large scale fluctuations dominate the scattering. Further, this work showed that
the wavelength dependence of the decorrelation band width, scatter broadening, efc. used previously
to infer a value of 11/3 for 8 were equally compatible with 8 ~ 4.3. For this spectrum the refractive
effects are greatly enhanced and large, frequency independent values are expected for the modulation
indices of pulsars and compact extragalactic radio sources, in better agreement with observation.
In addition, observations of dynamic scintillation spectra by Roberts and Ables (1982) and Hewish,

Wolszczan and Graham (1985) also suggested that the effective B for large scales is > 4.

In paper V (Romani, Narayan and Blandford 1986), the scattering model of Blandford and
Narayan (1985) was extended to include diffractive effects, such as the scintillation timescale, the

decorrelation bandwidth and the drifting bands seen in pulsar dynamic scintillation spectra. Auto-
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and cross-correlations for the fluctuations of these and several other observables were computed
and shown to be useful probes of refractive scintillation theory. In addition, it was shown how
the scattering model could be extended to spectra described by power laws with # > 4 and these
calculations were shown to agree with the more precise results derived for the flux variations by
Goodman and Narayan(1985). The validity of the thin screen approximation was also tested, by
developing a formalism to treat scattering in an extended medium. It was found that computing in
terms of an equivalent thin scattering screen sometimes underestimates the refractive effects by as
much as a factor of ~2, especially for shallow, 8 < 4 spectra. The comparison of these results with
observations of pulsars and other compact radio sources was discussed and it was suggested that a

more complicated spectrum than a simple power law might be indicated.

In paper VI (Blandford, Narayan and Romani 1986) it was shown how flicker of compact
extragalactic radio sources, ie. few percent fluctuations at ~10 cm observing wavelengths, could
be explained as an effect of refractive scintillation. In particular, it was shown how an extended
scattering medium and a variation of source size with observing frequency, consonant with that
expected for self absorbed synchrotron sources, could bring the theory into agreement with the
observations of Simonetti, Cordes and Heeschen (1985). We also exaﬁﬁned the interesting possibility
that these fluctuations, if sufficiently understood, could provide a means of resolving very compact

sources.

Paper VII (Goodman, Romani, Blandford and Narayan 1987) examines the refractive scintilla-
tion from a power law spectrum of ISM electron density fluctuations with a significant inner scale.
It is shown that suppressing the small scale fluctuations causes a relative enhancement of the slow,
”refractive” portion of the flux variation. An evaluation of the exact flux variation spectrum demon-
strates that there is additional power between the refractive and diffractive regimes due to caustic
focussing events and that, for inner scales somewhat larger than the Fresnel scale, this can be the
dominant component of the modulation. These caustics are examined in the context of catastrophe
theory, which allows them to be classified into certain generic forms. In the case of interstellar scin-
tillation, the plasma dispersion introduces important frequency dependencies into the scaling laws
for the various catastrophes; the most important cases, the fold and the cusp, are given explicitly.
It is shown that when a substantial inner scale obtains and caustics are important, there are specific
predictions for the time and frequency behavior of many pulsar observables, such as the dynamic

scintillation spectra. We demonstrate how features such those observed can be manifestations of
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particular catastrophes. It is not clear if such large inner scales are indicated for the ISM; however,
we note that observations of pulsars seem to require an enhancement of the refractive component
of interstellar scintillation over that expected from a simple # < 4 power law and caustics are likely
to be found, at least on occasion, for any scintillation spectrum with such enhanced large scale

focussing.

In paper VIII (Romani, Blandford and Cordes 1987) we show that the dramatic focussing events
found in the light curves of certain compact extragalactic sources at 2.7 and 8.1GHz by Fiedler, et al.
(1987) can be understood as the signature of the caustics from single large scale, high-density plasma
lenses in the ISM. It is argued that these observations provide evidence for a new component of the
ionized ISM (termed the DIM for dense, ionized medium) with single, ~ 10'%cm scale regions of very
high density (~ 100—1000cm™3) plasma. It is suggested that this plasma might plausibly be confined
in old supernova remnants or in magnetic ropes. Since scintillation by such single strong scatterers is
in marked contrast to the standard interpretation in terms of multiple weak scatterings, this picture
is shown to have wide ranging for observations of pulsars and high-resolution, intermediate frequency

VLBI of compact sources.
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Figure 1. P — P diagram for 353 pulsars (from Dewey, et al. 1986). Note that young pulsars
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between the death line and the spin-up line, extending to the lower left.
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Arrival-Time Analysis for a Millisecond Pulsar
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(Invited article)

Abstract. Arrival times from a fast, quiet pulsar can be used to obtain
accurate determinations of pulsar parameters. In the case of the millisecond
pulsar, PSR 1937 + 214, the remarkably small rms residual to the timing fit
indicates that precise measurements of position, proper motion and perhaps
even trigonometric parallax will be possibte (Backer 1984). The variances in
these parameters. however, will depend strongly on the nature of the underlying
noise spectrum. We demonstrate that tor very red spectra i.e. those dominated
by low-frequency noise, the uncertainties can be larger than the present esti-
mates (based on a white-noise model) and can even grow with the observation
period. The possibility of improved parameter estimation through ‘pre-
whitening’ the data and the application of these results to other pulsar
observations are briefly discussed. The post-fit rms residual of PSR 1937
+ 214 may be used to limit the energy density of a gravitational radiation
background at periods of a few months to years. However, fitting the pulsar
position and pulse-emission times filters out significant amounts of residual
power, especially for observation periods of less than three years.
Consequently the present upper bound on the energy density of gravitational
waves Q< 3 x 10"Rﬁs, though already more stringent than any other
available, is not as restrictive as had been previously estimated. The present
limit is insufficient to exclude scenarios which use primordial cosmic strings
for galaxy formation, but should improve rapidly with time.

Key words: millisecond pulsar—arrival times—gravitational background
radiation

1. Introduction

The discovery of the millisecond pulsar, PSR 1937 + 214 (Backer et al. 1982), has
opened up several new possibilities in the study of pulsar timing. The high-spin
frequency (642 Hz) and the apparently small intrinsic timing noise combine to make
this object an excellent clock. Arrival times have been monitored with an accuracy
exceeding 1 us over periods of two years (Backer, Kulkarni & Taylor 1983; Backer
1984; Davis et al. 1984) and it appears that we are already limited by the accuracy of
planetary ephemerides and the stability of atomic clocks. As has been pointed out by
several authors, PSR 1937 + 214 can be used as a sensitive detector of low-frequency
gravitational radiation (e.g. Hogan & Rees 1984), as a probe of electron-density

* On leave from: Raman Research Institute, Bangalore 560080, India.
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fluctuations in the interstellar medium (Armstrong 1984, Cordes & Stinebring 1984,
Blandford & Narayan 1984a,b) and perhaps for the study of neutron-star seismology
(e.g. Cordes & Greenstein 1981). Our purpose in the present paper is twofold. Firstly,
we wish to develop the analysis of pulsar arrival times so as to estimate the sensitivity of
fast pulsars as detectors of gravitational radiation and dispersion-measure fluctuations
under the assumption that they remain as good clocks as is indicated by present
observations. Secondly, we explore the limits to the use of accurate arrival times to
measure pulsar spin-down, position, proper motion and parallax distance, in the
presence of a particular noise spectrum.

In Section 2, we give a general analysis of the fitting of residuals in the measured pulse
arrival times with an assumed timing model that includes the pulsar phase, period and
period derivative, together with its position, proper motion and parallax. We specialize
to the case of a stationary noise source and consider in Section 3 the particular case of a
power-law power spectrum. We give estimates of the accuracy with which the pulsar
parameters and the noise strength can be determined with standard least squares
and suggest that ‘pre-whitening’ could lead to improvement if the noise spectrum is
very ‘red’ (i.e. noise-power increasing strongly towards low frequencies). In Section 4,
we apply our results to PSR 1937 + 214 and give quantitative estimates of its sensitivity
to three potential sources of noise—gravitational waves, interstellar electron-density
fluctuations and intrinsic pulsar noise. Applications to other pulsars are discussed in
Section S. -

2. Analysis of timing residuals

Measured sequences of pulsar arrival times are conventionally fitted to a linear
expression, whose parameters (essentially the corrections to various unknown
quantities) are determined by the method of least squares. Unfortunately, contri-
butions to the residuals that have quite different physical origins—for example the
response to a gravitational wave of period exceeding several years and the slowing
down of the pulsar’s spin—can have very large covariances and are therefore not easily
separated. In this section we describe a method for estimating the true sensitivity of a
rapid pulsar to gravitational radiation and interstellar effects. We do this by analysing a
simple timing model that includes all of the essential sources of covariance, omitting
some inessential terms that would otherwise lengthen the analysis. We emphasize that
the timing model has been chosen purely for analytical convenience and is not to be
used in fitting real data, which should be fitted to a model based on a complete
ephemeris, including general-relativistic corrections (e.g. Romani & Taylor 1983;
Backer 1984).

In our model we assume that a point earth describes a circular orbit of known radius
a about the solar system barycentre and so the transverse Doppler shift and
gravitational redshift terms represent constant offsets (e.g. Manchester & Taylor 1977).
This is equivalent to assuming that we possess a sufficiently accurate planetary
ephemeris determined by independent means so that errors in the telescope position
relative to the barycentre do not contribute to the timing noise. We discuss this
approximation further in Section 4. We also assume that the pulsar position on the sky
is known well enough that a linear fit to its true position, proper motion and distance is
adequate.

We restrict our attention to stationary sources of noise that can be completely
described by a power spectrum. In order to keep the algebra manageable, we further
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idealize the observations by assuming that they are uniformly spaced and extend over
an integral number of years starting at a particular epoch which we shall specify. This
restriction greatly simplifies the theory and will slightly overestimate the sensitivity of
the timing data if our results are applied to non-uniform observations taken over a non-
integral number of years.

For a pulsar with parallax p = a/d (with d the pulsar’s distance from the barycentre),
whose heliocentric latitude and longitude measured from the vernal equinox are
respectively B and A, the distance a pulse travels to earth is given by

D = [d*sin?B + {dcos B + acos (¢ — A) }? +a*sin? (¢ — 4)]'/?
= a[cos fcos (¢ — 1) — %pcoszﬂcoﬂ (@—-n1, @213

where ¢ is the earth’s mean anomaly, and we have dropped some constant terms. Let
the small errors in the pulsar latitude and longitude be

6B = 6B + Sugt (2.2)
84 = 81g + duyt (2.3)

where Jdug , are the two components of the proper motion and ¢ is the time of
observation, which we measure in years from the mid-point of the observation, fixed to
occur at an anomaly ¢ = A+ /4.

As usual, we fit the time of emission of tne pulses to a quadratic function
parametrized by the unknown phase, frequency and frequency derivative. Ignoring
constant additive and multiplicative factors, the pulse arrival time is given by the
emission time plus the variable part of the propagation time to earth, D/c. We define the
timing residual R(t) to be the difference between the observed arrival time of a puise and
the arrival time predicted on the basis of our best guesses to the unknown parameters.
These residuals are fitted to an expression that is linear in the corrections to the

unknown parameters, i.e., .

R = Y a4, (2.4)
where et
Cll = "K, d/l = l,
ov
a = - V=1,
v
_ o _ 2
o3 = % Y3 =1t
oy = a/_ (0B sin B + dAiqcos ), Y4 = sin2mt,
C\/Z
s = —— (—0fysin B +0dgcos f), s = cos 2L,
cy/2

g = —a/—_-(—éu, sin B + du, cos f), Y¢ = tcos2nt,
(‘\/2

a

% = —p (Ougsin B+, cos f), ¥, = tsin 2nt,
¢ v <

2 = :—Cpcosz B, Wg = sindnt. (2.5)
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Timing parallax has not so far been measured in any pulsar. Therefore, we have
repeated our calculations for a linear combination of 7 parameters, leaving out .

Now suppose that we measure n equally spaced and comparably accurate arrival
times each year for a total of N years, i.e., we have Nnresiduals R; = R(t;),i = 1, Nn. We
wish to obtain least squares estimates of the parameters a,. As there are 8 independent
parameters to fit, it turns out to be algebraically easier to diagonalize the normal
equations by introducing a set of orthonormal fitting functions, y; = y,(t;), which are
linear combinations of the original y;; i.e.,

8

RO = Y a¥o(0)  Yu= Ly (2.6)
1

a=

where

Nn
Y Vulhi = Ou. 2.7

i=1

In fact, the number of observations is usually so large that the sum in Equation (2.7) can
Nn N/2

be approximated by an integral over the cbserving period; ie, ) ~n [ d&. A
1=1 -N/2

convenient choice of orthonormal functions for the case in point is defined uniquely

through the Gram-Schmidt orthogonalization procedure:

Yy = Lyy,
¥y = Lagt,
Y3y = L3 + Lat%,
WYa = Lyt + Lygsin 2,
Y's = Lg; + Ls3t? + Lggcos 2nt,
Vs = Lgat + Lgysin2nt + Lggt cos 2nt,
Y5 = L,y + Lq3t? + Lyscos 2nt + L,,tsin 2,
Yg = Lgyt + Lggsin2nt + Lggcos 2nt + Lgg Sin 4nt, (2.8)

where the L,, are constants that depend upon N. The best-fitting primed parameters, a,,
are given by the solution of the normal equations

Nn
o = Z Ry (2.9)
i=1

Now suppose that the residuals are entirely due to timing noise generated by a
stationary power spectrum P(f) so that

(RR;> = r df P(f)cos 2nf(t;—t)) (2.10)
0

where ( ) signifies an ensemble average over many realizations of the fitting procedure.
We obtain an expression for the mean-square residual after subtracting the best-fitting
solution to Equation (2.6)

—_— 1
R*(1) = —Nr};, Z <{ziRj>[5ij ‘Z"’;i'ﬁ’u]

= f " dfPUT() @.11)

o
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where the transmission or filter function, T(f), is given by
| e
T(f) = l—ﬁzwé(f)tl/:(fl (2.12)

and
N/2

Ya(f) = j dey, (1) exp (2mif1) (2.13)
-N2
are the Fourier transforms of the orthonormal fitting functions.

Equation (2.11) is an expression of the fact that when we try to detect background
timing noise, much of this noise will be filtered out by the fit for the pulsar period,
position and other parameters. We can think of the factor T'( f) as being a transmission
coefficient for the ncise and the individual factors |, (f)|* as being absorption
coefficients associated with the individual fitting functions. The latter are presented for
N = 3inFigs 1 and 2 and the transmission functionT'( /) is presented for N = 1,3,10in
Fig. 3. The pulsar will thus be a less sensitive detector of the noise than if we had prior
knowledge of the exact phase, period, position, etc. (in which case the filter function is

T(f)=1).
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Figure 1. Absorption coefficients |{,|? tor a = 1, 2, 3 and 8 at N = 3 years. The first three
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Figure 2. Absorption coefficients |y/,|2 for a = 4-7 at N = 3 years. The functions 4 and 5 are
largely due to position errors while 6 and 7 are dominated by the proper motion terms. These
generate the minimum at f=1yr~! in Fig. 3.

We can also use Equation (2.6) to estimate the covariance matrix of the parameters «,
after performing a least-squares fit to the measured arrival times

(a; b, ) = J df PO W (W () (2.14a)
(o}
or N N
s lo dfP(f)tl/;(f)t//},"(f)}—2
=l & R% v
(O, daty [ =3/ PUIT) (2.14b)

Note that the quantity in square brackets is independent of the strength of the noise and
depends only on the shape of its spectrum. Finally, the covariance matrix of the original
fitting parameters is given by

(8,6, > = T Ly Lay {0082y (2.15)
a b

Equations (2.14) and (2.15) allow us to make an unbiased estimate of the expected error
in the various fitting parameters-in terms of either the noise strength or the residual.
However, as we discuss further in Section 3.4 below, we may be able to filter out much of
the noise so as to obtain a much smaller variance for the unknown parameters. The
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Figure 3. Transmission coefficient T( f) defined in Equation (2.12) for an 8-parameter fit for
N =1 year (dotted line), 3 years (dashed line), 10 years (solid line). The dip near the origin
corresponds to power removed by the polynomial fit, the dipat 1 yr ™! is from fitting position and
proper motion and that at 2 yr~! is due to parallax. As N increases, the three features become
narrower (width o« 1/N) showing that the corresponding sets of functions become more nearly

orthogonal to one another.

usual variance estimated by standard least squares corresponds to the case of white
noise, i.e., P(f) = constant.

3. Power-law noise spectra

3.1 General Considerations

We now assume that the noise spectrum has a power law form
P(f)y=Pof™, [20. (3.1

P, is the noise power in waves with a period of around one year. We confine our
attention to the exponents s = 0, 2, 3, 4, 5, 6 and data spansof N =1, 2, 3, §, 10yr.
The exponent s = 0 corresponds to white noise, which is the spectrum usually assumed
(at least implicitly) when analysing the arrival times by least-squares fitting. It is
appropriate when individual independent measurement errors dominate other sources
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of noise. ‘Red’ spectra with slopes s = 2,4, 6 correspond to random walks n phase,
frequency and torque respectively. Spectra with slopes s = 3,5 may be produced,
respectively, by interstellar density fluctuations and a hypothetical background of
primordial gravitational waves.

Our procedure is to compu'e the elements L,, of the transformation matrix detined
by (2.6) for each value of N and then to calculate the Fourier transforms of the
orthonormal functions, ¥, ( f), by taking suitable linear combinations of the analytical
Fourier transforms of the y,(t). Next, we evaluate the filter function T'( f) (Equation
2.12), and then compute the mean expected residual through Equation (2.11). In order
to make contact with earlier work we express our results in terms of an equivalent filter
which is O for f < /N and 1 for f > 8/N. In other words, we determine f so that the
calculated mean square residual R? satisfies the relation

o n 2
R? = f dfP(fIT(f) = f dfP(f) (32)

0 BiN
The upper cut-off in the frequency ar:>ss from the sampling theorem and is not
important for red noise. The lower cut-off takes account of the fact that lower
frequencies are fitted away by the polynomial fit and periods around ! yr and 6 months
are fitted by position/proper motion and parallax respectively. In the past 8 has been
assumed to be ~ 1 (Detweiler 1979; Bertotti, Carr & Rees 1983; Romani & Taylor

1983), but no quantitative estimates have been reported to date.

We also compute the uncertainties in the various parameters a,-ag and present each
as the ratio, (variance)''? per us of post-fit rms residual. These can be converted to

variance per unit power at 1 yr period, P,, through Equations (3.1) and (3.2).

3.2 White Noise

To bring out the salient features of our formalism we first consider white noise.
corresponding to s = 0. Calculations show that, for white noise withn > 1, § = 4 when
all 8 parameters are fitted and B = 3.5 when parallax is not refined.

Consider next the variance in the position estimate of the pulsar. We can make the
following approximate estimate. If N is sufficiently large, ¥, (¢) and ¢, (t) are almost
orthoganal to the other y,(¢). Then, the variance v, in the estimate of 2z, is
approximately given by simplifying Equation (2.14a) to

Is2 PN (NS
~ 2 5
[2 e M(f)i’df}

The denominator is necessary because ¥, (t) is not normalized and the factor of 2 is
because the integral has been restricted to positive f. There is a similar expression for t.
Taking P(f) = P, for white noise and substituting

vy = (O da, > = (3.3)

- _EI_\{ sinnN(f——l)_sinrrN(f+l) 2
Yalf) = 2[: “N(f=1) aN(f+1) } )
- _NlsinaN(f-1) sinzN(f+ 1)

‘#5(f)—?[ ANU=D) + ANU+D) :l, (3.9
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we obtain
' v v 2R (3.6)
4 g nN . &
We thus recover the well-known result that the variance decreases inversely with the
number of independent measurements. Substitutinga = 1.5 x 10*2 cm 1n (2.5) we thus
have

R2\1/2
0.6 (R?)
(nN)'2

More detailed calculations through the Gram-Schmidt orthogonalization procedure

described in Section 2 confirm the coefficient as well as the scaling with n and N. The
rms error in the proper motion is given by

Sin B (6Bo) rms ~ €OS B (3240) ms ~ mas. (3.7)

) (R'Z)l/z

HS

Wmas yr“‘. (38)

Sin ﬂ(é,uﬂ)rms ~ COSs ﬂ (oul)rms W

3.3 Red Noise

Red noisespectra have s > 0, i.e. the residuals are dominated by low-frequency noise. In
the cases of interest, all the integrals converge rapidly at high fand so none of the results
are sensitive to nso longas n 2 10. This is an important qualitative feature of red noise,
- showing that one cannot improve the precision of the refined parameters by increasing
the number of measurements. As we demonstrate below, one does not gain by
increasing the number of years of data either since the variances often increase as N
increases.

Red noise has a divergent spectrum at low f. However, since the filter function 7'( /)
x f© at low f (for the present problem), the post-fit mean-square residual R? converges
so long as s < 7. Equation (3.2) can now be written in the form

_ P N\6s—D
R? g (—> (3.9
(s=D\B )

where the upper limit in the integral should ideally be n/2 but has been set to =
(continuous sampling) because the integral converges rapidly. 8 has been evaluated for
various values of N and s; the results are presented in Table 1. We give f for a
7-parameter fit (without parallax) for N = 1, 2, 3, 5 and also for an 8-parameter fit for
N =5, 10. Note that B is large, 2 2 for N < 3.showing that the parameter fit tfemoves a
substantial part of the noise. Our values of § are somewhat larger than those assumed
by Bertotti, Carr & Rees (1983) and Hogan & Rees (1984).

Press (1975) and Lamb & Lamb (1976) have developed a least-squares analysis of
pulsar timing noise in terms of a complete set of orthogonal polynomials, but
considered only a white-noise spectrum. Our approach, which invelves an ortho-
gonalization of the {unctions relevant to physical parameters, can be extended to
accommodate red-noise processes. Groth (1975a) and Cordes (1980) have analysed red-
noise spectra as well, but employ a model in the time domain. This time series approach,
in principle, has more information than is contained in the power spectrum alone; we

i
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Table 1. Values of the effective spectral cutoff § (cf. Equation 3.2)
corresponding to a 7-parameter fit (no parallax)for N = 1,2,3,Sand an 8-
parameter fit (including parallax) for N = 5, 10.

N/s 2 3 4 5 6

7-parameter fit:

1 291 2.80 2.73 2.67 2.59
2 3.12 295 261 2.05 1,53
3 1.75 1.34 115 1.01 0.88
5 1.35 1.15 1.05 0.95 0.84
8-parameter fit:

5 1.36 1.16 1.05 0.96 0.84
10 1.22 1.11 1.03 0.94 0.83

make a comparison between the time domain and power-spectrum methods in the
Appendix.

Equation (3.9) shows that the post-fit residuals grow rapidly as data are collected
over longer spans of time. Physically, large-amplitude low-frequency noise becomes
increasingly important over longer data spans. The rate of growth of R? with N can be
used to estimate the spectral index s, as Groth (1975b) and Cordes (1980) have
emphasized. Deeter & Boynton (1982) and Deeter (1984) describe another interesting
technique (based on a formalism that has some similarity to our methods) for
estimating the shape of the noise spectrum. Their analysis treated finit¢ samples of
unevenly spaced data, but considered only even integral values of s, and did not include
the refinement of intrinsic pulsar parameters. Odd s can, however, be of physical
interest. In principle, since T'( f) is known, it should always be possible to recover P( f)
from the power spectrum of the residuals. With the complexities of a finite time series of
data, however, a discrete method such as that developed by Deeter (1984) may be more
accurate.

As can be seen from Equation (2.14), the variances of the parameters involve integrals
over the power spectrum P ( f) weighted by the appropriate absorption coefficient. All
the integrals converge in the limit as f — oo but their properties vary as f — 0. It can be
shown that the weighting functions vary as f°, f? and f* for a,, @, and a5 and as f® for
the rest of the parameters. Consequently, depending on the value of s, one or more of
the parameters could have a divergent variance. Physically, this means that the error in
the estimated parameter is dominated by noise of very long period and so the variance is
essentially determined by the lower cut-off in the spectrum. Uncertainties in a, and «,
are of no consequence. The variance in a,, however, is of interest. Results are given in
Table 2 for various values of N and 5. For s = 5, 6, the answer depends on N,,, the
longest-period wave present in the spectrum. If the source of noise is gravitational
radiation, N, is the light travel time to the pulsar (since beyond N, the effective
spectral slope reduces by 2 and so the integral converges), while if it is intrinsic puisar
noise (say a random walk in the rate of spin-down), N .. will probably be of the order
of the characteristic spin-down age of the pulsar, P/2P.

The uncertainty in P also affects the accuracy with which P can be measured. The
error in P is approximately the difference between the errors in P at the beginning and
end of the observations, divided by N years. Clearly, errors in P caused by very-long-
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Table 2. - Root-mean-square error 6P/P per us post-fit residual R_, in units of 1072%s™ !,
For s = 5 and 6 the results depend on the cut-off frequency f, . = 1/N_,. and hence two
numbers, A and N*, are given. For s = 5, P/P = A[In(N_,,/N*)]''* and for s = 6, 6P/P
= A(Ng, — N"'2.

N/ 2 3 4 5 6

7-parameter fit:

1 46.6 67.6 86.7 439, 0.010 744, —0.231
2 0.792 220 5.78 7.79, 2.83 4.14, 3.07
3 0.293 0492 0.793 0.841, 3.94 0.389, 4.28
5 0.088  0.148  0.247 0.269, 6.67 0.096, 7.25
8-parameter fit:

S 0.089  0.148  0.248 0.269, 6.67 0.096, 7.25
10 0.021 0035 0.059 0.065. 13.6 0.016, 14.7

period waves are not relevant since they coherently affect P over the whole range of
observations. Therefore, for this calculation, we have used the rms error in P
contributed by waves with periods less than 7/N. We then find that the rms error in the
braking index, n, = PP/P?, contributed by a red noise process is

T 2 /N\-Ni2 ers
mw=s(ww) G) () o

where 1 is the pulsar timing age P/2P and s is the index of the noise spectrum. This error
is to be compared with n, = 3 predicted by magnetic dipole braking.

Fig. 4 shows the rms uncertainties per us post-fit residual of pulsar position, proper
motion and parallax for s = 4 and various values of N. The results are relatively
insensitive to s, particularly at large N. This can be understood on the basis of
approximate analytical estimates of the variances similar to those made in Section 3.1.
Noting that for large N and sufficiently steep spectra the respective variances are
dominated by the integrals near f ~ 1/N (below which the integrands fall off asf® ~*), it
can be shown that the position and parallax variances o«c R?/N % and the proper motion
variances o R?/N*, with no dependence on s. These scalings are consistent with the
more accurate calculations of Fig. 2. Combining with Equation (3.9), the surprising
result is that for a given power spectrum, the position and parallax variances oc N*~?
and the proper motion variances oc N*~%, i.e., for a sufficiently steep spectrum the
variance increases with increasing N. This is quite contrary to the normal wisdom on
parameter uncertainties in least squares, which is based on white noise. A comparison
of the above scaling laws with those presented in Equations (3.7) and (3.8) shows that
the true variance in the presence of red noise can be significantly greater than that
estimated on the basis of standard least squares whenever n > N.

3.4 Variance Reduction

We now discuss how prior knowledge of the spectrum can, in principle, be used to
reduce the variances in the estimated parameters. For simplicity consider a model
consisting of only one parameter, i.e.

R(t) = ay (t). (3.12)
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Figure 4. Root-mean-square error in pulsar parameters per us post-fit residual R, as a
function of the number of years of observation. The resulis are for s = 4, but do not vary a great
deal for other values of s. The symbol + shows position errors, sinf(df),,, and cosf(é4s) ., in
mas (milli-arcsec). For large N the error scales as 1/N. The symbol © shows proper-motion
errors, sinf(dpts)m, and cosp(dp; )y, in masyr~': scaling as 1/N? The symbol x shows
(sin? B/dy,) x parallax error od/d; scaling as 1/N.

As before we take &( f) to be the Fourier transform of  (¢). Now let us suppose that we
convolve the measured residuals R(z;) with an arbitrary function K(z). which is
equivalent to multiplying P(f) by |K(f)|?. Correspondingly, the new model that is to
be fitted is ¥ (f)K (f). Proceeding as in Section 2, the variance of x is given by

LS PNNE KIS

- - - (3.13)
253°IW(f)|’|K(f)|’df]

We now optimize v with respect to the function lk( |2 This gives

|K(f)]* = Ko/P(f) (3.14)

where K, is an arbitrary constant. Thus the uncertainty in the parameter is minimum
when the noise is ‘pre-whitened’ before the least squares is performed, with the fitting
model being suitably modified.

When there are several parameters the analysis becomes a little more compiicated
because the variances in (2.14) depend on the orthogonal functions ¥, { f ) which change
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as K (f) is varied. However, a proof can be devised, based on a variational technique
where one constantly rotates into a local orthogonal set of functions, to show that (3.14)
continues to be optimal even for this case.

Simple estimates indicate that the ‘pre-whitened’ variances in pulsar position and
parallax will be oc R%/n*" ' N*~! while the variances in proper motion will be
oc R*/n*"' N**1. The coefficients in these relations, however, are quite large and
therefore significant gains are probably possible only for large s, n and N. A practical
matger is that at high frequencies measurement errors, which behave like white noise,
will dominaie. Hence the appropriate n to use in the above estimates is not the actual
sampling rate but some n’ < n where the spectrum changes from red to white noise. We
are currently exploring the practicality of implementing this pre-whitening procedure.

4. Application to PSR 1937 + 214
4.1 General Considerations

For the particular case of PSR 1937 +214,v = 642Hzand v = —43 x 10" **Hzs ™!
(Backer 1984). If we assume that the braking index is 3, then V = 8.6 x 107 3° Hz s~ 2. If
we were to include a cubic term in the fitting formula, then the contribution to the
residual-would be 7 x 10™° N3 us. This may possibly be detectable after ~ 10 yr but
will be significantly harder to measure than the parallax term. We have therefore
omitted it from the fitting formula.

The heliocentric latitude and longitude of the pulsar are respectively g = 42.3° and
A = 301.3°. The distance, determined from hydrogen absorption measurements (Heiles
et al. 1983) is d ~ Skpc which is consistent with the dispersion measure of DM
= 71 cm ~* pc. Scintillation studies suggest that the speed of the pulsar transverse to the
line of sight is ~ 80 km s ™' (J. M. Cordes, personal communication) which translates
into a proper motion of ~ 3.4 mas yr ~'. However, the pulsar is unusually close to the
galactic plane for its apparent age and so we expect that the velocity lies within the
plane. The parameters a,—ag are expected to have the following magnitudes

8B, 04
e B 1.7[%} =, @)
r’lﬂ) Ha
~ay~42] ———— 4.
gy g 2l:3.4 mas yr ! ] - it
ag ~ 0.066 us. 4.3)

It is clear that the signal given by Equation (4.3) will be very hard to measure; for this
reason we have not included parallax within the fitting formula for observing periods
N < 5.Infact, from the results of Fig. 2, we see that a ~ 30 per cent measurement of the
parallax will require that the rms residual over 5 years from red noise should be less
than 0.2 us. Unfortunately, however, dispersion measure fluctuations alone introduce a
residual of ~ 2(N/10)*/? us (c.f. Section 4.3).

We should also consider the accuracy of solar system ephemerides over ~ 10 yr
timescales. The internal agreement over periods of ~ 10 yr for the best ephemerides is
about 3000 metres, i.e. 10 us in arrival time. There is some prospect that improvements
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in our knowledge of the position of the telescope relative to the solar system barycentre,
which must be known to better than 10 m to exploit the timing fully, will occur over the
same period, especially if plans to land a ranger on Phobos in the early 1990’s are
realized (R. Hellings, personal communication). A related requirement is that local time
as measured by atomic clocks be able to avoid drifts in excess of a few us over ten year
periods. Trapped ion clocks may achieve the necessary stability. Of course, the
discovery of another quiet millisecond pulsar (or preferably several others) would allow
the separation of intrinsic pulsar noise and ephemeris errors to a large extent.

4.2 Gravitational Radiation

Several authors (e.g. Detweiler 1979; Mashhoon 1982; Bertotti, Carr & Rees 1983) have
suggested that an upper bound can be placed on the energy density of primordial
gravitational radiation with periods ~ 1 yr using the pulsar timing residuals. In
particular, a substantial energy density in gravitational radiation may be produced by
primordial cosmic strings and indeed pulsar timing is probably the best way to set limits
on the density of these-strings (e.g. Hogan & Rees 1984). If the energy density in the
gravitational radiation between frequency fand f + dfis p, (/) then the expected power
spectrum for the timing noise is

Gp, (f)
37t3f4 1
ie. Po=13x10*Q (f)us® where Q,(f) = [82Gp,(f)f]/(3 H}) is the ratio of the
wave energy density per natural-logarithm frequency interval at frequency f to the
critical cosmological density (setting the Hubble constant H, = 100kms ™! Mpc™1).

If a fixed fraction of the energy within a horizon during the radiation-dominated era
is channelled in some self-similar way into gravitational radiation of comoving
wavelength equal to a fraction of the horizon size, then we expect {2, to be constant, i.e.
P(f) o f 3. Under other circumstances, as discussed by Vilenkin (1981) and Hogan &
Rees (1984), structure may be imprinted on the spectrum at the epoch when the universe
becomes matter-dominated. Spectral slopes of 5.5 and 7 in the frequency range
0.1 2 f= 10™* have also been proposed. Existing observations of the millisecond
pulsar can only place a rather modest limit on the energy density of gravitational
radiation at frequencies on the order of a few cycles per year. Setting N = 2, we see that

Q, <34x107*R2,. (4.5)

P(f)= (4.4)

The difference between this estimate and that given by Hogan & Rees (1984) is due
mainly to their assumed value of §. After observations have been carried out for more
than 5 years, however, a limit

Q, <40x 1077 R, (4.6)

may be set, which would certainly be more interesting. For instance, cosmological
models in which primordial strings are created during the earliest epochs of the
expanding universe and re-enter the horizon during the radiation era require the string
parameter ¢ to be 2 1079 if the strings are to have a significant effect on galaxy
formation. Since (¢/107°) ~ (,/2 x 1077)* (Hogan & Rees 1984), 5 years of sub-us
residuals on PSR 1937 + 214 would be sufficient to exclude such scenarios.
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4.3 Interstellar Density Fluctuations

Arrival-time fluctuations can also be caused by a variable dispersion measure along the
line of sight to the pulsar (Armstrong 1984; Blandford & Narayan 1984a,b). Essentially
what happens is that as the observations proceed, larger and larger interstellar clouds
can cross the line of sight, causing progressively greater changes in the dispersion
measure. The importance of this effect depends upon the spectrum of interstellar
density fluctuations in the length-scale range 10*~10'¢ c¢m. It has been argued that the
spectrum of density fluctuations has a power law form,

@, = CLk™ 4.7)

where @, is the three-dimensional power spectrum of the density fluctuations at spatial
frequency k. The exponent n has been estimated to be close to the ‘Kolmogorov’ value of
11/3 (e.g. Armstrong, Cordes & Rickett 1981) although there are some indications that
it may be somewhat larger (Blandford & Narayan 1984b). Here we adopt a value 5 = 4,
i.e., s = 3. For PSR 1937 + 214 we take Cfv to be 10~ *, compatible with the measured
decorrelation bandwidth (Cordes & Stinebring 1984), together with a measured speed
of the scintillation pattern relative to earth of 80 kms~! (J. M. Cordes, personal
communication). At an observing wavelength of 1400 MHz, we then find that

P(f)=03f"3us? (4.8)

(¢f. Armstrong 1984). If most of the measurement error is removed, leaving (4.8) as the
dominant noise component in the spectrum, then after three years the timing position
can be determined with an uncertainty of ~ 0.23 mas, and the proper motion can be
measured to an accuracy of ~ 0.33 mas yr~'. The scaling laws of Section 3.3 indicate
that these uncertainties will remain constant for the first parameter and scale as 1/N for
the second. The uncertainty in the braking index, »,, induced by DM fluctuations will
be ~ 2 x 10*/N (for N 2 3). After three years, the fractional uncertainty in the parallax
distance, dd/d, will be ~ 2.6, and will not improve with time. Therefore, unless
dispersion measure fluctuations are monitored and corrected for, parallax distance
cannot be determined.

4.4 Intrinsic Noise

It has long been known that many pulsars exhibit intrinsic timing noise. The best-
analysed case is the Crab pulsar for which successive studies have found that the noise is
principally describable as a random walk in frequency (called frequency noise, FN) with
s = 4 (e.g. Groth, 1975b; Cordes 1980). This also appears to be true for a variety of other
pulsars, although there are indications that admixtures of random walks in phase and
torque must also be included (e.g. Cordes & Helfand 1980). We can relate the expected
mean squared residual to the diffusion coefficient expressed as the strength of the
random walk in frequency Po/P?, through

P _ i R? Is ] -
P—‘;= 1.5x 10 25[%] [lmsz][F] Hz?s™. (4.9)

If we assume that FN contributes the bulk of the residual (currently ~ 0.7 us) in PSR
1937 + 214, then the present data imply that Py/P? < 1.4 x 1072 Hz2s™'. For
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comparison the measured strength of FN in the Crab pulsar is 5.3 x 107 ?* Hz*s ™!
(Groth 1975b) and the upper limit on FN for a quiet pulsar, PSR 1237425, is
Po/P* < 7x 1073°Hz?s™ !, To measure P in the millisecond pulsar the rms residual
must be less than 1072 us over a period of 10 years. This limits the strength of any FN
random walk to Po/P? < 6 x 10732 Hz?s ™ '. We thus require the millisecond pulsar to
be less restless (by this measure) than any other pulsar we know if the timing is to be
exploited fully.

5. Application to other pulsars

Although other pulsars do not have the remarkably small timing residuals of PSR 1937
+ 214, the time baselines of the observations are considerably longer (2 10 yr) and so
the results of Section 3 for low-frequency noise can still be of interest. Following
Bertotti, Carr & Rees (1983), we consider the orbit decay of the binary pulsar, PSR 1913
+ 16. The secular decrease in the binary period has been measured to an accuracy of 4
per cent (Weisberg & Taylor 1984) and agrees to this accuracy with the result P/P =
3 x 108 yr predicted by general relativity. We can therefore take the error in P/P to be
<0.04/3x 108 yr =42 x 107 '8 s~ !, As we have demonstrated, gravitational waves
with periods longer than the duration of the observations (but shorter than the light
travel time to the pulsar) can cause unusually large variances in period derivatives. PSR
1913 + 16 can be used to set a limit on the energy density in such waves. A background
with equal energy density in logarithmic intervals has a spectrum x f3 with P, = 1.3
x 10* Qf ys®. The resulting rms timing residual is given by Equation (3.9) with s = 5.
Therefore, taking N = 10yr, f = 0.94,and N_,, = 10* yr and using Table 2 for s = 35,
we see that the variance in the measured orbit decay time is

_6FP =0.17x107%°R, = 1.1 x 10"79;25". (5.1)

Thus, the measured limit §P/P < 4.2 x 107! s~ ! yields the upper bound Q, < 0.15.
The limit on the integrated Q between N = 10 and N, = 10* is Q,, < 1.0.

A similar bound can be obtained from PSR 1952 + 29, which has the largest known
timing age. We can consider its observed P/P = 4.7 < 10~ '8 to be a statistical upper
bound on the rms error in the estimate of its age. Using N, = 10’ yrand N = 10 yr,
one obtains, as above, the limits Q, < 0.26 and Q,,, < 1.2. Other noise spectra are also
strongly limited. The expected variance for spindown noise (SN, s = 6) is

f—;—)=9x10"5[l§§“§]s" (5.2)

so that SN processes are unlikely to contribute more than ~ 10™* of the measured
timing residual.

Cordes & Helfand (1980) have determined the dominant noise process for a number
of pulsars; the timing noise of PSR 0823 + 26, for example, is apparently described by
SN. If the observed 12.6 ms residual is in fact SN dominated, then for ~ 10 years of
observation, our model predicts the rms error in 6P/P to be 4.4 x 10~ **s~!. The
measured timing age, T = 4.9 x 10° yr could then be in error by as much as a factor of
two or three. This suggests the interesting possibility that such pulsars with a
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sufficiently small spindown rate could actually have an observed spinup because of
strong noise with a steep red spectrum.

As has been previously noted, timing noise makes P measurements and braking
index determinations very uncertain. The nominal braking indices reported by
Gullahorn & Rankin (1982), ranging up to 10° and of both signs, are evidently spurious
and can be largely accounted for by the variance expressed by Equation (3.11). Both SN
and FN processes as well as a gravitational radiation background can produce dny's of
the appropriate magnitude.

There are three independent methods for estimating the proper motions of pulsars.
Direct interferometry appears to be the most accurate and gives reproducible results
(Lyne, Anderson & Salter 1982). Measuring the speeds of scintillation diffraction
patterns at the Earth is less accurate and does not provide a direction for the motion but
the resuits here appear to be in agreement with the interferometric determination. The
third method, however, which relies on fitting arrival times has only produced a credible
result in the case of PSR 1133 + 16 (Manchester, Taylor & Van 1974). Furthermore, the
timing positions do not agree with those determined interferometrically (Fomalont et
al. 1984). The discussion of Section 3.3 shows that, in the presence of red noise,
uncertainties in the pulsar parameters are often much larger than the reported
experimental errors which are calculated assuming white noise alone. The variances in
position and proper motion determinations can, in fact, grow with increased
observation time. It seems worthwhile to try to pre-whiten the timing noise in these
pulsars to see if their timing positions and proper motions can be brought into
agreement with the interferometrically determined values.
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Appendix

In this paper we have described the timing noise exclusively in terms of power spectra in
the arrival residuals. This approach differs from that followed by earlier authors and we
now relate the two methods.

Following Boynton et al. (1972), Groth (1975) and Cordes (1980}, consider three
distinct forms of noise, which they describe as random walks in phase (PN), in
frequency (FN) and in the time derivative of the frequency (SN). We have correspond-
ing noise spectra with associated exponents s = 2,4 and 6. However, we make an
essential simplification in that we assume the noise to be completely described by its
power spectrum. This restricts us to random walk steps that are sufficiently small and
frequent to be unresolved by the observations. The formalisms of Groth and Cordes are
developed to enable them to detect finite step sizes as well. In practice this has not yet
been possible as these effects appear to be masked by measurement errors. (In fact, it
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should also be possible to develop the power spectrum approach along these lines by
considering bispectra and three-point correlation functions. We shall not pursue this.)

A second important difference is in the treatment of transients associated with the
start of the observations. Cordes artificially assumes that the noise commences at the
same instant as the observations. The influence of all prior noise can then be absorbed
in the fitted values for the phase, the period and its derivative. A Monte Carlo method is
used to relate the ensemble-averaged rms phase residual after a least-squares
polynomial fit to the rms phase residuai that would have resulted from the same noise
adopting the phase, the period and its derivative at the start of the observations. The
ratio of these two rms residuals is the quantity Cq (m, T,,,,,) where m denotes the order of
the polynomial and T, the duration of the observations. Cy (m, T,,) is independent of
T, provided the rate of occurrence r of random walk steps satisfies r7,,, > 1. Groth
deals with the transients in a related manner but instead makes an orthogonal
polynomial fit to the observations and compares the coefficients of these polynomials
with their expectation values. Both approaches accommodate the non-stationary
nature of the phase residuals through a memory of the start of the observations,
although the underlying noise process is white in the relevant parameter (e.g.
frequency), is stationary and possesses a well-defined correlation function.

In our approach, we deal with the transients by assuming that the noise process has
been switched on adiabatically in the distant past and that the phase noise (or
equivalently arrival time noise) has a power spectrum which is simply related to the
frequency noise spectrum. If the Wiener-Khintchine theorem for the frequency is
written

M=J‘mdfg(f)eh‘f‘- (A1)

5)
v 0

then the true underlying arrival time power spectrum is simply

P(f)=Q(f)/4n*f? (A2)

and so on for other types of power spectra. These power spectra as defined here are all
stationary.

In fact, we can compute the correction factors, Cg (m, T, ), introduced by Cordes and
evaluated by him through a Monte Carlo procedure directly from these power spectra.
Consider phase noise first. The quantity that Cordes considers is

Ren (Tops) = <les J"o? [R()-RO] d>' (A3)
o (1]

Taking Fourier transforms and expréssing the result in terms of the power spectrum of
the residuals yields

Rin = J P(NTen(f)df (A4)
0
where the filter function, Tpy (f), is
_ _sin 2nf Ty
Ton(f) = 2[1 s ] (A5)
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and T, is in years. In comparison, the formalism of Section 2 gives the filter function
for a quadratic fit (3 parameters, a,, a,, 25 only) to be

9 9 45 3 36 45
T;(f)= [1 - ~F——2x6]+c0s2x[—2x2 —F+—2x6]
4
+sin2x|:—1-§-+—§:l (A6)
X X

where x = nf T,. Substituting P(f) = P,f ~? for phase noise one can calculate .R—é;

from (A4), and ﬁ?by substituting T; (f) instead of T,y (f). Their ratio is the correction
factor Cy(2, T,y,) of Cordes; we obtain the same numerical value. In the case of
frequency noise, s = 4, and Cordes considers

I obs 2
R2 (Tors) =G f [Rm ~ R(O) —r(dR/dr).w} d>. (A7)
obs JO

The appropriate filter function in this case is

2 - _ .
Tm(f)=2[l+%_svaxy+ycosyy smy] (A8)

where y = 2nf T,. Finally, for spindown noise we have

‘ = .
Tsn(f)=2|:l+y—+zw
" 4

We verify the numerical results of Cordes in each case.

L sin y
+§U’ “2)—})—']- (A9)
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Summary. Certain evolutionary scenarios predict that millisecond pulsars should form in the
coresvof globular clusters; such a source may be present in M28. Gravitational perturbations of the
cluster stars should subject the pulsar to a time-varying acceleration. This may be detectable in
the arrival time analysis as an anomalous P, much larger than that expected from magnetic dipole
braking. This effect can be used as a probe of the cluster dynamics and will degrade the usefulness

of such pulsars in searches for long wavelength cosmological gravitational radiation.
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1. Introduction

Certain evolutionary scenarios associate millisecond pulsars with the low mass X-ray binaries,
and consequentially predict that they may be found in the cores of globular clusters (Alpar, et al. |
1982). Condensed clusters have core radii r. ~1pc and velocity dispersions of ¢ ~ 10 km s™1!, giving

central densities of p, ~ 10* — 10°Mgpc~3.

A pulsar in this environment will move through the
stippled gravitational field of the cluster members and experience varying accelerations due to close
encounters with nearby stars. The resultant perturbations in position, velocity and acceleration will
not be measurable using a pulse arrival time analysis, as they will be absorbed into the fundamental
parameters of the timing model: @o (fiducial phase), P (spin period), and P (period derivative).
The rate of change of the pulsar’s acceleration, ¢ will, however, produce an anomalous P, which
is observable. In particular, although we have no a priori knowledge of P or P (which depends
on the pulsar dipole moment), in the context of magnetic dipole spindown we expect the ”braking
index”, n = 2+ PP / (P)2 to have the value 3. Measured n’s for young, fast pulsars are close to this
value (Crab, n=2.51540.005, Groth 1975; PSR1509-58, n=2.84:0.2, Manchester and Durdin 1984;
PSR0540-69, n=3.6+0.8, Middleditch, et al. , 1987); If the measured P differs substanfially from

theé spindown prediction, then we can ascribe this difference to the varying acceleration of the pulsar.

Recent studies (eg. Erickson, et al. , 1987) suggest that the faint, highly polarized source in the
globular cluster M28 (NGC 6626) has the steep spectrum o ~ —2.5 characteristic of a fast pulsar.
Present limits from period searches suggest that, if the source is a pulsar, P <5 ms. From Peterson
and King (1975) M28 has r, ~ 0.4pc and ¢ ~ 8 km s~1; the source position is ~ 0.6r, from the

optical cluster center.
2. Estimation of P

The typical interstellar distance in the core is b ~ (Mg /47p.)'/3, for cluster members of ~ 1M, .
Thus the pulsar acceleration contributed by the nearest cluster member, ~ GMg /b2, changes on the
timescale t ~ b/co

~ 2 x 103(10°Mgppc3/p.)'/3(10 km s~! /o) years. Accordingly, the rate of change of a is

GMgo 303
b3® ~ 3/4nGp.o ~ —~ (1)

4

a~
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since 02 =~ (47/9)Gp.r?. The varying Doppler shift gives P/P ~ a/c so that the P induced by
dynarmics is

;;— ~ 1072%(¢/10 km s~ )3 (pc/r.)%s72 (2)

Note that there will also be a contribution to ¢ from the mean cluster potential of the same order
as (1). In addition, since & grows as b=3, rare very close encounters become important in estimating
the average value of P. As the rms value diverges for b — 0 we use the median absolute value
of @ for estimates. A numerical simulation of 1.8 x 10* stars in a Plummer potential with a core
radius and isotropic velocity dispersion appropriate to M28 confirms the estimate above, giving a
median @ about twice (1), ie. P/P = 7 x 10~2° for a pulsar at 0.6r, and we adopt this value. In
comparison, for a normal field pulsar with a velocity ~ 100 km s~?! placed in the galactic disk of mean
density ~ 0.1Mgpc=3, the induced P/P from (1) will be a factor of ~ 10° smaller. The problem
of calculating the rate of change of acceleration for a star in a uniform background distribution of
stars has been solved by Chandrasekhar (1943,1960). He evaluates the rms value of @ given a stellar
density p and a fized star speed v. Substituting v = /30 gives the estimate d,ms ~ 13.5Gpc,

significantly larger than the median and attributable to the skewness of the distribution.

The anomalous braking index corresponding to a P other than that due to spindown is n* ~

4(P/P)r? where r = P/2P is the characteristic age. This is
n* ~4x 103(P/P)_28(T3)2 (3)

with 75 in units of 10® years, typical of other millisecond pulsars, and (P/P)_2s in units of 102852,
Clearly, the cluster dynamics can dramatically affect the observed braking index. To determine if
an n as large as (3) will be observable, we must estimate other possible error sources in the timing
analysis. If the dominant source of an rms timing residual of R,p, s is white measurement error then
the resultant uncertainty in P will be (P/P)_2s ~ 4N ‘3'5n1_01/ R,ms, where N is the observation
period in years and roughly 10n;p observations are made yearly (Blandford, Narayan and Romani
1984). Thus ~3 years of 10 measurements per year with lus rms residuals will give a ~10 percent
measurement of the braking index in (3). If pulsar seismicity in the form of low-frequency "red”
noise dominates the timing residual, then the estimate of n will improve more slowly; in fact, for
spin frequency (FN) noise the accuracy will remain constant. If we assume FN at the level of the
quietest pulsar for which timing noise has been measured,‘ PSR 1237425 (millisecond pulsars may

well be even quieter), then a few percent measurement of n* should be possible. Note that this red
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timing noise contribution causes the very large (10* — 10°) spurious n’s found for ordinary pulsars
(Gullahorn and Rankin 1982) which, unlike the n* from cluster dynamics estimated above, do not

converge to a fixed value as the timing proceeds.
3. Conclusions

If the timing accuracy achievable for a fast globular cluster pulsar is comparable to that attained
for other millisecond pulsars and if internal red noise processes are not too strong, then ~3 years
of timing should give a measurement of a braking index much larger than that expected for dipole
spindown. The various other effects of the gravitational perturbations will probably be too small
to be detectable. For example if, as appears likely on evolutionary grounds, millisecond pulsars are
reborn in tight binaries, then the low escape velocity of the cluster core suggests that the pulsar
should still have a close companion. If the binary separation is r;, then tidal effects on the orbit
from the nearest cluster star should scale as (ry/b)3, ie. a part in ~ 10° for orbits small enough
to be detectable. The binary center of mass would, of course, experience the a estimated above.
We note that if a family of planet sized companions could be acquired during the binary evolution,
the additionalv gravitational perturbations could introduce significant timing noise. Finally, since
for sources such as that in M28 the cluster-induced P is detectable, it must be fitted for in any
arrival time analysis. This extra fitting term in the timing model will absorb power from the
residual at periods comparable to the observation span and weaken bounds that can be placed on
unknown perturbations at those frequencies, such as arrival-time delays caused by low frequency
gravitational waves. Accordingly, the utility of globular cluster millisecond pulsars as probes of
relic background gravitational radiation will be degraded (Blandford, Narayan and Romani 1984).
The timing estimate of the cluster potential should, however, provide an interesting and potentially

useful comparison with the optically derived values.

We thank David Helfand and Shri Kulkarni for bringing this source to our attention and for
helpful discussions. This work was sponsored in part by NSF grant AST-84-75355 and by a Fannie
and John Hertz Foundation Fellowship (RWR).
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ABSTRACT

A number of investigators have computed the surface temperature of a cooling neu-
tron star as a function of time after its birth and the physics of the high density interior.
Einstein observations of supernova remnants and radio pulsars in the soft X-ray band
have confronted this cooling theory with rather low upper limits to the surface tempera-
ture and a few possible detections, based on the assumption that the surface emits as a
blackbody. We examine the effect of various surface compositions on the blackbody
assumption, calculating model atmospheres for the physical conditions typical of neutron
star surfaces with realistic opacities. We find that, for hydrogen or helium dominated sur-
faces or neutron stars with very low effective temperature, the soft X-ray flux can be much
greater than the blackbody value. If high Z elements dominate the surface the number of
counts expected is comparable to the blackbody value. In this case, however, we show that
absorption edges will be prominent in the spectrum and discuss the possibilities for
future spectroscopy. We also discuss potential surface compositions and the importance
of settling of heavy elements. Comparing our results with Finstein observations, we
examine the conséquences for searches for young neutron stars--in particular, our
results tend -to strengthen the conclusion that any neutron star present in several well-

studied young remnants must have cooled faster than permitted in standard scenarios.
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1 INTRODUCTION

Prompted by the discovery in rocket experiments of galactic X-ray sources, a
number of authors, starting with Tsuruta (1964) and Bahcall and Wolf (1965), have
estimated the X-ray flux of a neutron star cooling after its initial hot (~10!! K) birth in a
supernova explosion. Successive refinements to these calculations have considered the
effect of a wide range of physical processes on the cooling of the star and have resulted in
‘anumber of investigations of the properties of matter at high densities. While these calcu-
lations do not agree in detail, the general consensus is that although surface tempera-
tures will fall to a few times 10%K in ~10% years due to neutrino energy losses, neutron
stars should remain potentially detectable as soft X-ray sources (T3 105K) for on the
order of 10% years. The neutrino-dominated phase is sensitive to the poorly understood
physics of the dense interior where the presence of exotic phases such as quark matter or
pion condensates can dramatically affect the cooling curves. At later times the thermal
evolution of the star is dominated by the transport of energy through a thin envelope
where most of the temperature gradient occurs. Here there is less theoretical uncer-
tainty, and much progress has been made recently in the detailed treatment of the trans-
port, notabl)-r in the work of Yakovlev and Urpin (1981), Gudmundsson (1981) and Hern-
quist (1984). This body of work has been reviewed in detail by Tsuruta (1985).

While it is now apparent that the bright galactic X-ray sources are powered by accre-
tion and the fluxes predicted for typical cooling neutron stars have decreased greatly, the
hope of constraining the properties of matter at high densities and the problematic asso-
ciation of neutron stars with known supernova remnants ensures that detection of their
thermal flux has remained an important observational goal. The advent of Finstein and
similar imaging X-ray satellites made this goal a realistic possibility. Helfand, Chanan and
Novick (1980) and Helfand (1983) have described the results of the Einstein program,
which included studies of 72 galactic supernova remnants and nearly two dozen known
radio pulsars. In addition to the thermal flux arising from the initial explosion, they con-
sidered heating of older neutron stars caused by internal release of energy in vortex

creep and glitch events and surface heating by magnetospheric phenomena.

The observations, using either the Imaging Proportional Counter (IPC) or the High
Resolution Imager (HRI) (¢f. Giacconi, et al. 1979), have placed rather strong limits on
the flux in the soft (~0.3—3keV) band. The corresponding upper limits to the surface tem-

perature were roughly 2—-5x10%K for radio pulsars and ranged from 0.7 to 2.x10%K for
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young supernova remnants. For some remnants, notably SN1006 and Tycho, the limits
may be significantly lower than the temperatures given by standard cooling theory. One
remnant, RCW103, has yielded a possible point source detection, but here spectral infor-
mation is lacking-- assuming the spectrum to be thermal gives a temperature of ~2x10°%K.
Similarly, only the nearest old radio pulsar, PSR1929+10, was detected as a point source.
Its surface temperature was estimated to be ~2x10°%K, although the spectrum may be
inconsistent with a blackbody law. These temperatures are derived assuming that the sur-
face emits as a blackbody. If, however, there is a substantial atmosphere present, the

spectrum and hence the inferred effective temperatures may be quite different.

For the early cooling theory calculations, Morton (1964) calculated the spectra of
hot grey atmospheres and Orszag (1965) used approximate multilevel ions to estimate the
effect of K-edges on neutron star spectra. These results were however primarily for the
higher temperature (~107K) models considered as explanations of bright galactic X-ray
sources. Recently, the }'aroblem of the apparent super-Eddington flux of X-ray bursting
neutron stars has led to several calculations of helium-rich, high-temperature neutron
star atmospheres (Ebisuzaki and Nomoto, 1986; London, Taam and Howard 1984, 1986) at
temperature§ of ~1-3x10"K. These atmospheres are dominated by scattering and Comp-
tonization and display significant flux excesses above the thermal peak, explaining the
high (super-Eddington) color temperatures found in the 1-10keV energy band. London,
Tamm and Howard (1986, hereafter LTH) also considered somewhat lower temperatures

and include numerical spectra for models as cool as 2.9x10%K.

In this paper we calculate model atmospheres to evaluate the accuracy of the black-
body assumption for surface temperatures and compositions more typical of cooling neu-
tron stars and isolated pulsars. The temperatures considered are somewhat lower, rang-
ing from 10%K to 109K where the effects of the atomic (bound-bound, bound-free, and
free-free) processes dominate the opacity. Opacities are obtained from the Los Alamos
Astrophysical Opacity Library (Huebner, et al. 1977). In section II we describe our pro-
cedure for calculating the emergent spectra of LTE model atmospheres. In section III we
present some representative spectra and quantify the departures from a blackbody, com-
puting the ratio of the flux in a soft X-ray energy band to that expected from a blackbody
and fitting power laws to the emergent flux. In section IV we fold spectra through Einstein
detector response curves and estimate the consequences for the central temperature

bounds determined from the satellite data. With an eye toward future spectroscopy, we
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also "suggest certain absorption features which should be detectable in AXAF caliber

experiments and could provide useful estimates of the surface conditions.

II MODEL ATMOSPHERE CALCULATIONS

Our computation is based on the classic temperature correction approach to the
construction of radiative equilibrium, LTE model atmospheres (e.g. Mihalas 1978). The
surface of a neutron star, however, represents a rather different set of physical conditions
than is commonly considered. The surface gravity will be g;~10!%g cm/s? and the tem-
perature is ~108K so that an optical depth of unity in soft X-rays occurs at a depth of
~1 em and densities of p~1-10g/cm3. Since the stellar radius is ~10%cm, the photosphere
is plane parallel to a high accuracy. At these temperatures and densities the dominant
sources of absorption are free-free and bound-free processes so the opacity can be very

non-grey, being roughly Kramers’s law, k~E ~3, between absorption edges.

The calculation starts from an approximate grey atmosphere on a Rosseland mean

depth scale at an effective temperature Tz

T(g) = Teﬁ(3/4(7‘_R+CI))1/4 (1)

where q=.71044 ensures correspondence with the exact grey solution at large optical
depth. A typical model has a grid of ~100 depth levels, logarithmically spaced in 73 from
1073 to 10?5, and ~100—-300 energy levels, logarithmically spaced from ~0.1Kev to the
highest energies of interest, ~10Kev. We interpolate and smooth the T(7g;) with a fitted
spline function to provide a continuous temperature run. We impose hydrostatic equili-

brium

dP 9s
dtr  xg(Tr) @)

by iteratively solving for P(T)

2/3

r

(= |3 P1/2(7) -
P = | 29 [iomrion ® =

where «p is the Rosseland mean opacity and the equation of state is used to obtained the
pressure from the density. For most of the atmospheres studied P 1/2dP was nearly linear

in 7 in the outer layers, so that integration of the equation of hydrostatic equilibrium in
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the form of Eq. 3 was found to ensure rapid numerical convergence to the solution for

P (7). At the relatively low T, considered here, radiation pressure is negligible.

To determine the flux at each energy and depth 75 ; we use the Milne relation

Fg(tg) =2m [SE(TE')EZ(TE'—TE)dTE' - [SE(TE’)EZ(TE_TE’)dTE’ (4)

where E; is the second exponential integral function, Sz(7) is the source function at
energy E and level 7, and 75 is the optical depth at energy E corresponding to 75 ; on our

mean depth scale, determined from

_Txe g
Tg ~'[’CR dTg’. (5)

The source function, Sp, contains, in general, terms for both scattering and thermally
emitted flux. The electron scattering opacity is ¢ = gyn, p ~ 0.1-0.2cm?/g in term of the
electron density and the Thompson cross section. At the mean energy, however, the
absorptive opacity will be ~103-10%cm?/g, so scattering should be unimportant except
for the highest temperature models at the highest frequencies. In this regime, however,
we can approximate the effect of scattering quite well by using the Planck function for
Sz(T (7)) and by taking the opacity to be

1/2

Kabs o (6)

XE = Kaps +
Kabs +0

where the small additive term accounts for the fraction of the random walk scatterings
that result in absorption. Varying o by a factor of two had a negligible effect on the flux at

detectable energies.

Using the smoothed temperature run and (5), we now know both Sy and £; as (con-
tinuous) functions of 7z'. We may therefore evaluate the integrals in (4) as simple quadra-
tures, using a Romberg integration scheme with an adaptive stepsize and taking the 75
derived from (5) for the appropriate limits of integration. At éach depth we sum the flux
over the energies to find F (7 ;), the net flux, which in radiative equilibrium should be
constant at F = 05 T%;. The departures from constancy, AF, are used to estimate correc-

tions to the temperature run using the Lucy-Unséld procedure (eg. Mihalas 1978)



-50-

AT(7) > ﬂlgg[i—;[s [T ok (r)ar+ear o) - dakiz) )

where «r, Xr, Kp and «,; are the Rosseland, flux, Planck and absorption mean opacities,
respectively. The correction was found to be sufficiently accurate using «; = kp. The
corrections to the temperature are applied at the T5;, giving an improved approximation
to the desired temperature run. These new T'(Ty;) are then smoothed as above, hydro-
static equilibrium is reinstated using (3), the energy fluxes are recalculated and the pro-
cedure is iterated to convergence. We find that departures from flux constancy of less

than 1% throughout the atmosphere are generally achieved after three to four iterations.

The code was tested against the analytic solution for the grey atmosphere by using a
grey opacity and against the lowest temperature (T, = 2.9x108) helium atmospheres of
LTH using a Kramers’s law opacity and an ideal gas equation of state. In each case the
agreement was to better than 257 at all frequencies of interest. The LTH models are quite
hot for our purposes and the "scattering” term in the opacity (6) was found to have a

small, but significant, effect at high frequencies.

The absorptive opacities, electron density and equation of state for several pure ele-
ments and two astrophysically interesting mixtures were obtained from the Los Alamos
Astrophysical Opacity Library data (Huebner, et al. 1977) with the latest improvements to
the equation of state. These data covered the range of density 1073<p(g/cm3)<10?, tem-
peratures from ~10% to ~5x107, and energies from 1leV to 10keV. Occasionally points at
lower density were used, in which case the EOS was extrapolated with the ideal gas law and

the opacity with a Kramers’slaw run.

1II EMERGENT SPECTRA

Models were calculated for surface eﬁ'ective'ternperatures of 105, 10%5 108, and
108-5K and surface compositions of pure iron (as appropriate for BPS matter; Baym, Peth-
ick, and Sutherland 1971), pure helium, and a cosmic abundance (X=0.73; Y=0.25; Z=0.02,
in cosmiec proportions). To investigate the effect of various absorption edges upon the
emergent spectra, carbon, oxygen and helium rich (Y=0.98, Z=0.02) models were calcu-
lated as well. The effect of varying the surface gravity is largely given by the variation in

the redshift of the spectrum to infinity, as is shown in figure 1. This shows the surface



-51-

(unredshifted) flux for two iron surface composition, 108K models with surface gravities of
1015 cm/s? and 10!* cm/s®. These surface gravities bracket those appropriate for realis-
tic neutron star equations of state. The variations in the spectrum are small and are
largely due to an increased pressure ionization at one optical depth in the high gravity
model for energies below the absorption edges. The variation in redshift (z=0.13 for
gs = 10 em/s? vs. 2=0.84 for gg = 10!% cm/s?) is quite large and will be the dominant
effect upon the spectrum measured at infinity. We therefore restrict our calculations to
9s = 2.43x10* cm /s?, appropriate for a typical neutron star mass of 1.4M o and radius of
10 Km. We present fluxes that would be measured at the stellar surface. In order to con-

vert to luxes measured at a distance D, one must renormalize

° Fg ys(E(1+2))

R
D (i+z) )

D

Fpo(E) =

where Fg .. is the spectrum at infinity, Fgp ys is the surface spectrum and Rys is the
locally measured radius of the star. This allows us to restrict our attention to a two
parameter (T.z, composition) family of models. Note that the effective temperatures are
surface values, as well; the Tz of the equivalent blackbody spectrum at infinity will also
be lowered by (1+z). When comparing against Einstein observations we have used the

mass and radius given above to find the redshifted values at the observer.

Figures 2 and 3 show the effect of surface composition for two surface temperatures,
Tes = 105% and T,p = 1085, and two extremes of composition, pure iron and pure helium.
For comparison, blackbody spectra and Einstein IPC response curves are also shown, with
and without the effects of interstellar absorption. The on-axis IPC response taken from
Harnden, ét al. (1984) shows significant sensitivity in both a low energy (LE, ~.15-.5 keV)
range and a somewhat higher energy (HE, ~.5-4.5 keV) channel while parameters for a typ-
ical line of sight (D = 1kpc, ng = 1 cm~3) are used to illustrate the effect of interstellar
absorption, showing that the sensitivity to low energy photons is severely reduced. It is
clear that the counts measured in a soft X-ray experiment can be greatly affected by vary-
ing the composition of the surface. We quantify this by considering a typical detector
response window (eg. IPC or HRI) blueshifted to the surface of the star, 0.5-5.0 keV. In this
energy band we calculate the ratio of the expected number of counts to those expected
from a blackbody, Rpp. In Table 1 we give values of Rgp for various effective temperatures

and for iron, helium and cosmic abundance surface compositions. We also give the local .
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(unredshifted) effective temperature that would be assigned to the total flux, assuming
the spectrum to follow the Planck Law. Since absorption edge features can affect the
spectrum significantly, a blackbody fit will not, in general, be appropriate. A simple
description appropriate to a limited spectral resolution is obtained by fitting a power law,
F(E) <« E~%, to the first decade in flux in the 0.5-5.0 keV window. We give a for the various
models and blackbody spectra in the last columns of the table. Although our spectra for
105K atmospheres have significant flux in the specified window, the corresponding black-

body flux is negligible; we therefore omit the entries for Rzp at this temperature.

To demonstrate the effects of the composition on the 6pacity and the emergent
spectrum we display spectra for T,z = 10°K and surface compositions of C, 0, and Fe in
figure 4 and He, cosmic abundances and He with metals (in cosmic proportion) in figure 5
along with blackbody curves. The iron spectrum has a rather sharp set of L e‘dges at
~0.7—-1.0keV. The K edge at ~7 keV is prominent at somewhat higher effective tempera-
tures (ef. fig. 3). Carbon and oxygen also show significant K edges at ~0.3 keV and ~0.5
keV, respectively. The redistribution of the flux in the C model gives rise to a high energy
excess at ~2' keV; at somewhat higher T,z an excess in the oxygen spectrum becomes
prominent at ~5 keV. For pure helium the extensive Kramers’s law run in the opacity
causes a similar shift to a higher color temperature. Note, however, that the addition of
ev;en 2% metals, as in the helium-rich (He+Z) and cosmic abundance models, makes the
opacity sufficiently grey to bring the spectra close to the blackbody curve for energies
below a keV. Despite this agreement, some of the L edge structure of iron is still apparent
near the blackbody peak. As the Los Alamos data are not intended for spectroscopy and
our LTE approximations to the radiative transfer are clearly oversimplifications, the finer
details of the calculated spectra are likely to be suspect. Nonetheless, it is clear that
there are significant features in the bound-free opacity in the energy range considered if

heavy elements are present on the surface.

IV DISCUSSION

Although our choice of surface compositions is largely illustrative, we can provide
some motivation for the models considered. The neutron star surface is commonly
assumed to be iron, the zero pressure equilibrium state of BPS matter. Further, super-
nova explosion calculations leaving neutron stars (e.g. Weaver, Woosley and Fuller 1985)

indicate that the “mass cut” occurs within the iron core, leading to ejection of the
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envelope of lighter elements. It is possible, however, for other nuclei to be present in, and
even dominate the thin surface layer. If, for example, the explosion is asymmetric or the
ejecta are perturbed by the presence of a companion it may be possible to accrete some
fraction of the lighter nuclei. Alternatively, material could be transferred from a com-
panion or, in the case of an isolated older neutron star, accreted from the general inter-
stellar medium. A further possibility is the creation of light nuclei as spallation products
of the high energy collisions induced by magnetospheric particles and radiation thought
to impinge on the surface of an active radio pulsar. To cover the surface to an X-ray opti-
cal depth of unity it suffices to deposit only ~1014g ~10-19)/ ; of material. Moreover, this
material is likely to suffer significant fractionation on short timescales. The density and
temperature at the neutron star surface are similar to the conditions found at the base of
low-luminosity white dwarf convection envelopes. The very much higher surface gravity
means that the separation will be quite rapid. Using the results of Alcock and Illarionov
(1980), we estimate the separation timescale for a helium photosphere of ~10cm depth to
be ~1-100s for typical temperatures and densities. It is thus possible for the surface be
chemically very pure and dominated by the lightest element present. In this scenario a
- pure hydrogén photosphere is also quite likely. The emergent spectrum would then be
very similar to our results for helium. A full treatment of separation and surface abun-
dances is important but somewhat complicated as it involves the computation of diffusion

coefficients in high density, high Z plasmas; we defer this to a future communication.

As the present observations constrain only the total flux and not the spectrum we
bracket the hypothetical surface compositions by considering pure helium and pure iron
models. To compare with the measured flux limits we should also consider the low energy
cut-off due to interstellar absorption. From the IPC sensitivity curves in figures 2 and 3
and the steepness of the calculated and blackbody spectra in the 0.2-5. keV energy range,
it is clear that interstellar absorption will have a dramatic effect on the number of counts
expected from a given emergent spectrum. For temperatures lower than several times
108K, this difficulty will dominate the uncertainty in determining an effective tempera-
ture. Further as the absorption increases, moving the low energy cut-off of the sensitivity
higher, the departures from the counts expected for a blackbody spectrum will, in gen-
eral, be greater. This means that useful estimates of the surface temperature depend
rather critically on the absorption cut-off. In practice thisis often estimated from associ-

ated column densities, especially when X-ray spectral information is limited. The free
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electron column density or that of neutral hydrogen is commonly used.

While such estimates are generally good approximations, in some cases they may
not be appropriate. In a young supernova remnant the 1-3M ; of heavy elements released
into the circumstellar environment will produce an excess absorption (not reflected in
the hydrogen column density or the absorption cut-off as determined from the remnant

spectrum) equivalent to

ANH ws 1021 Me],A Te;z

20 PA ej -3
— e use—: § IGTY] 9
A ] [ 500 py cos ] ()

where Mg; 4 is the mass of the ejecta of atomic weight 4 in M thrown off to a typical dis-
tance of r,; parsecs and py o5 and py o; are the cosmic and ejecta abundances for species
A. Since a typical column density at a kpc is ~3x10%! cm ™2, this can be substantial. The
Vela pulsar, where the best fit equivalent Ny from X-ray absorption is ~1.5 times the
measured value (F. Harnden, private communication), may be an indication of this.
Indeed, in some cases, clumping of the ejecta combined with rather steep spectra in the
soft X-ray window may be sufficient to obscure an otherwise detectable neutron star. Thus

IPC determinations of the equivalent Ny should be used, whenever available.

Keeping in mind that the absorption dominates the uncertainty, we give estimates of
acﬁustments to temperature limits reported for certain soft X-ray observations of super-
novae and radio pulsars. We assume a 10km, 1.4My star and compare the blackbody
results with spectra for helium and pure iron surface compositions. The spectra are red-

shifted to infinity and convolved with a low-energy cut-off T(E') of the form
T(E,)~e~", T=(Ng/103em2) (E ./ 5keV)8/3 (10)

where Ny is the hydrogen column density, E . is the energy measured at infinity and the

functional form of the optical depth approximates the results of Zombeck (1980).

For a point source in the remnant of SN1006, the temperature limits quoted by
Tsuruta (1985) correspond to a value T. £7.0x10%K (i.e. a local surface temperature
Ty £9.2x105K) for our assumed stellar mass and radius, a distance of 1.2kpc and the
estimated column density Ny = 1x10?%! (Pye, et al. 1981). For a helium surface, with all
other assumptions held fixed, the effective surface temperature giving the same flux is
5.7x10%K, corresponding to T. < 4.4x10%K. For a surface composed of iron the revised

temperature is closer to the blackbody value, T., < 6.2x10%K. Similarly, for a neutron star
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in Tycho’s supernova remnant (D = 3.0kpe, Ny = 3x10%lem™?, Seward, et a.l 1982) we find
that the blackbody limit 7., < 1.1x108K is lowered to T'.. <9.2x10%K for a helium surface.
For a surface composed of iron, the effect of an L edge just below the observing window
decreases the flux slightly and the revised temperature limit is 7.. <1.2x10%K. Using the
computations of Hernquist (1985) we can find the corresponding limits to the neutron star
core temperature, the value most useful in constraining the high density physics of the
interior. Using the zero field results, we find that for SN1006 the blackbody value
T, < 1.2x108K is lowered to T, < 5.2x107K by a helium surface. For Tycho the limit in the
presence of helium is reduced from T, < 2.8x108K to T, < 1.9x108K. For a surface com-
posed of iron the differences are small. Our result, then, strengthens the conclusion that
any neutron star present in these two remnants must have cooled faster than conven-
tional interior physics allows. As these supernovae are believed to be type I, however, the
conventional view asserts the absence of a neutron star rather than the presence of

exotic stellar interiors.

In the supernova remnant RCW103 Tuohy and Garmire (1980) report the detection of
a HRI point source at (3.8+0.7) x1073 counts per second. At an estimated distance of 3.3
kpe and hydrogen column density of 1.5x10%2 cm™2 this corresponds to a blackbody sur-
face temperature of 2.7x 10%K (T'.. = 2.1x10%K). For helium and iron surfaces the tempera-
ture as measured at infinity is revised to 1.7x10%K and 2.2x108K, respectively. Both of

these values are in reasonable accord with standard cooling theory.

The strongest candidate for detection of surface flux from an old neutron star, PSR
1929+10, is also the closest known radio pulsar at 0.08 kpc. With an estimated Ny of
5x101!9, its IPC detection, at 8x1073 counts s~! (Helfand 1983), corresponds to a blackbody
surface temperature of T.. =2.0x10%K. The corresponding temperature for a helium sur-
face is T.. = 1.2x105K; the iron surface value is 1.9x105K. Subsequent HRI observations
detected a point source coincident with the radio position at ~7x107% counts s™!. For a
blackbody spectrum at the IPC determined temperature the expected counting ratio is
IPC/HRI ~ 3. Folding through the two detector response curves, we estimate IPC/HRI
count ratios of 4.1 for iron and 5.0 for helium. These are in somewhat better agreement
with the observed value, IPC/HRI=8+3, as well as the limited IPC spectral data. Thusif PSR
1929+10 has been detected, this crude spectral information suggests that the surface
supports a substantial atmosphere. Moreover, recent observations of PSR 1929+10 with

the EXOSAT low-energy (LE) telescope and CMA detector (Alpar, et al. 1986) found no



-56 -

significant flux, placing limit of Tz £ 1.9x10%K on a blackbody surface temperature. Since
the LE response (~ 0.04-2.4 keV) is even softer than that of the HRI, this limit is consistent
both with the non-blackbody interpretation of the Einstein counts and the substantially

harder spectrum expected for an absorbing atmosphere.

In the case of PSR1929+10 and other known radio pulsars the surface is believed to
be subject to magnetic fields of order 1012G. While it has been speculated that such a field
would cause the surface to solidify or form molecular chains, recent computations
(Neuhauser, Langanke, and Koonin 1986) indicate that for all Z greater than 2 indepen-
dent atoms are energetically favored over solid chain configurations. Even for helium the
binding energy is only of order 25 eV so the chains will be substantially disrupted at typi-
cal surface temperatures. The effect of the magnetic field on the opacity should then
largely be a rescaling due to suppression of absorption normal to the field lines. If the
overall form of the opacity is preserved our qualitative results will still be relevant. It is
still important to calculate the detailed modification of the absorption at high flelds and
to account for the anisotropic opacity in the radiative transfer. The effect of strong mag-
netic flelds on the emission from a solid neutron star surface has been considered by
several authors (Brinkmann 1980, Cheng and Helfand 1983, Greenstein and Hartke 1983)
" who conclude that while the spectrum amplitude is modulated at the stellar rotation fre-
qﬁ;ency it remains largely blackbody in nature. We note that Cheng and Helfand’s conclu-
sion that atmospheric effects are not important was based on a very high binding energy
for a high-field iron surface lattice. The presence of an atmosphere will clearly modify
these discussions; for example, while Greenstein and Hartke emphasized that the flux
modulation could be visible and could explain the X-ray pulse profile of PSR 1509-58, their
model requires a rather large temperature difference between the polar cap and the rest
of the star which might be difficult to sustain if there is a substantial absorbing atmo-
sphere. Consideration of high magnetic fields is probably less relevant for the limits
placed on cooling neutron stars in young supernova remnants as one would expect a high
field neutron star to manifest itself in more visible ways than via its thermal surface

flux-- i.e. as a radio pulsar or a synchrotron nebula (Helfand 1983).

In this'investigation we have concentrated on a broadband description of the effect
of surface composition on neutron star X-ray spectra and have shown that some absorp-
tion edges can be prominent at soft X-ray energies. For detailed comparison of such cal-

culated features with future observations, more refined treatments of the opacity and
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radiative transfer will clearly be desirable. In particular, the LTE approximation is of lim-
ited value when the spectra contain excess high energy fluxes and strong absorption
edges, since our species are generally very highly ionized. LTH for example, find that in
X-ray bursting neutron stars iron K edges are significantly suppressed due to non-LTE
effects. A detailed treatment of scattering may also be important at higher effective tem-
peratures. Since the Los Alamos opacity data are based on the assumption that LTE is

valid, such studies necessitate extensions to that code.

Our approximate model atmospheres suffice, however, to show that the surface com-
position of a cooling neutron star can have a significant effect on the emergent X-ray
spectrum. The calculations demonstrate that for a surface composed of iron, assuming
the spectrum to be blackbody gives a fairly accurate estimate of the flux in the soft X-ray
band for moderate effective temperatures. For a low Z surface composition or a surface
temperature less than ~5x105K, the flux expected is much greater than that appropriate
for a blackbody curve. Indeed, for relatively low eflective temperatures, this difference
can have a significant effect on the surface temperature bounds derived from recent
satellite observations. Conversely, when heavy elements are dominant, absorption edges
can be prominent, although the total flux measured will be close to the black body value.
It is thus important to delineate the likely surface compositions, considering the effects
of accretion, internal processes and settling in the photosphere. Future studies of the
thermal emission from neutron star surfaces should take account of these compositional
and spectral uncertainties, uncertainties which the next generation of X-ray imaging

satellites should be able to resolve.
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TABLE CAPTION

Spectral characteristics in the .5—5.keV energy range at the neutron star surface.
Columns are 1) the effective temperature, 2)the surface composition, 3) the ratio of
counts to those from a blackbody at T,r, 4) the blackbody temperature giving the
expected number of counts, 5) the energy index «, from a fit to to the first decade in flux,

8) the equivalent o for a blackbody.

Te]'f Comp RBB TEB (84 O(bb
He —— 2.87x10° 7.2

1050 Fe — 2.04x10° -14. -56.3
Cosmic e 2.11x105 -24.
He 6852 5.65x10% -3.8

1055 Fe 225 4.35x105 5.5 -16.5
Cosmic 338 4.46x10° -8.1
He 2.83 1.17x108 -1.59

106-0 Fe 1.84 1.09x108 -4.02 -4.5
Cosmic 1.15 1.01x108 -5.22
He 714 2.89x108 -.69

1085 Fe 1.02 3.16x108 -.86 -1.2
Cosmic .953 3.12x108 -1.1




-59-

REFERENCES
Alcock, C. and Illarionov, A. 1980.4p.J., 235, 534.

Alpar, M.A,, Brinkmann, W,, Kiziloglu, U., Ogelman, H. and Pines, D. 1986.

preprint.
Baheall, J.N. and Wolf, R.A. 1965. Phys. Rev., 140B, 1452.
Baym, G., Pethick, C.J., and Sutherland, P. 1971,4p J., 170, 299.
Brinkmann, W. 1980. Astron. Astrophys.,82, 352.
Cheng, A. and Helfand D.J. 1983.4p.J., 271, 271.
Ebisuzaki, T. and Nomoto, K. 1986.4p. J. (Letters)305, L67.
Giaconni, R. et al. 1979.4p.J., 230, 540.
Greenstein, G. and Hartke, G. 1983.4p.J., 271, 283.
Gudmundsson, E.H. 1981. licentiate thesis, University of Copenhagen.

Harnden, F.R., Fabricant D. G., Harris, D. E. and Schwarz, J. 1984.
Smithsonian Astrophysical Observatory Special Report 393.

Helfand, D.J. 1983. Supernova Remnants and Their X-Ray Emission, eds.
J. Danziger and P. Gorenstein, D. Reidel: Dordrecht, 471.

Helfand, D.J., Chanan, G.A. and Novick, R.A. 1980. Nature, 283, 337.
Hernquist, L. 1984. Ph.D. Thesis, Caltech.
Hernquist, L. 1985. Mon. Not. R. Ast. Soc., 213, 313.

Huebner, W.F., Mertz, AL., Magee, N.H,, Jr.,, and Argo, M.F. 1977.
Astrophysical Opacity Library, Los Alamos Report LA-6760-M.

London, R.A, Taam, R.E., and Howard, WM. 1984.4p. J. (Letters),287, L27.
————————————————— 1986. 4p. J.306, 170 (LTH).

Mihalas, D. 1978. Stellar Atmospheres, San Francisco: Freeman.

Morton, D.C. 1964,4p.J., 140, 460.

Neuhauser, D., Langanke, K. and Koonin, S.E. 1986. Phys. Rev. A4.,33, 2084.
Orszag, S.A. 1965,4Ap .J., 142, 473.

Pye, J., Pounds, K., Rolf, D., Seward, F., Smith, A., and Willingale, R. 1981.
Mon. Not. R. Ast. Soc., 194, 569.



—B0 ~

Seward, F., Gorenstein, P., and Tucker, W. 1982,Ap.J., 266, 287.
Tuohy, I., and Garmire, G. 1980, 4p.J.(Letters), 239, L107.

Tsuruta, S. 1964. Ph.D. thesis, Columbia University.

—————————————————— 1985. Max-Planck Institut Fur Astrophysik preprint.

Weaver, T., Woosley, S.; and Fuller G. 1985. in Numerical Astrophysics, ed.
J. Centrella, J. LeBlanc, and R. Bowers, Jones and Bartlett:Boston, 374.

Yakovlev, D., and Urpin, V. 1981, Soviet Ast'r'.(Letters), 7, 88.

Zombeck, M.V. 1980. High Energy Astrophysics Handbook,
Smithsonian Astrophysical Observatory Special Report 386.



-61-

FIGURE CAPTIONS

Figure 1. Effect of surface gravity on unredshifted spectra. Pure iron models at
T.r = 108K and g, = 104, 10'%g cm s72.

Figure 2. Flux at the stellar surface against energy for T,z = 105-5K models with iron
(Fe) and helium (He) surfaces, compared with the corresponding blackbody spectrum
(BB). The IPC response function (arbitrary normalization) shows sensitivity in both LE
(~.15 -.5 keV) and HE (~.5 -4.5 keV) channels; with typical interstellar absorption (IPC w/

abs), Ny~3x10%lem™2, the LE response is suppressed.

Figure 3. Flux at the stellar surface against energy for T = 10%-5K models with iron
(Fe) and helium (He) surfaces, compared with the corresponding blackbody spectrum
(BB). The IPC response functions are as in Figure 2.

Figure 4. Flux at the stellar surface against energy for Tz = 10%K models for carbon

(C), oxygen (0) and iron (Fe) surfaces compared with a blackbody spectrum (BB).

Figure 5. Flux at the stellar surface against energy for T,z = 10°K models for helium

(He), helium with 2% metals (He+Z) and cosmic abundance (Cosmic) surfaces compared

with a blackbody spectrum (BB).
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ABSTRACT

Neutron star models of gamma ray sources are subject to limits on thermal emission
obtained from Finstein observations in the soft X-ray band. Examining the effect of light
elements accreted onto the stellar surface, we find departures from a blackbody spec-
trum leading to substantially stronger bounds on the thermal flux. We discuss the effect
of such modified temperature limits on thermonuclear burst models. The application of
these limits to other emission models and the interpretation of some possible detections

are treated briefly.
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THERMAL EMISSION FROM NEUTRON STAR GAMMA SOURCES

One of the greatest difficulties in the study of gamma burst sources and other
gamma ray stars lies in finding their counterparts in other energy bands. Correspond-
ingly, observational limits on counterpart flux at lower energies can be used to place
important constraints on source models. For example, archival searches for optical tran-
sients in burster fields can be used to estimate the burst recurrence rate (Schaefer 1981),
while Pizzichini, et al. (19868) have shown how observations in the soft X-ray band made
with the Einstein Observatory (Giacconi, et al. 1979) can be used to constrain the sur-
face temperatures of quiescent gamma burst sources. In a few cases possible X-ray coun-
terparts have been found, indicating that future observations should allow the study of

these sources in detail.

On quite general grounds, we expect gamma ray bursters to be soft X-ray sources.
Theoretical consensus is that bursters are associated with neutron stars with surface
areas of ~ 10134 ;sem?. The presence of associated optical transients implies recurrence
times, in years, of order T,, ~0.1-10. Isotropy of the source distribution suggests a local
galactic plane population ( although halo and cosmic populations have also been pro-
posed) at distances ~100d,;popc and corresponding energies of order
Egg~ 10984 §)perg sec™!. If the y-ray emission is isotropic, one can expect the neutron
star to absorb an energy of order that observed in the burst and re-radiate it on a

recurrence timescale, giving a minimum effective surface temperature
Tem 2 2.8x10%(d 100)'/?(4 137y /E 38)"1/*K

For specific models the T,z should in general be higher. For example, in thermonuclear

explosion models, the energy released due to accretionis £y, 4, 2 100 E,.

Such effective temperatures are comparable to the limits achieved in Einstein
observations of isolated radio pulsars (Helfand, Chanan and Novick 1980, Helfand 1983). In
Romani (1987) it was shown that neutron stars experiencing modest accretion rates
should have surface atmospheres dominated by low Z elements and the surface tempera-
ture bounds derived from FEinstein flux limits would be lower than those based on the
assumption of blackbody surface emission. The model atmosphere calculations are based
on realistic opacities and equations of state from the Los Alamos Opacity Library

(Huebner, et al. 1977). Since convergence to the radiative zero solution is rapid in the
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atmosphere and magnetic field will not affect the shape of the opacity law law strongly,

these results can be applied to observations of gamma burst fields, as well.

In analogy with white dwarf convection envelopes (Alcock and llarionov 1980),
material accreted onto a neutron star should experience substantial settling, leading to a
photosphere of pure light elements (H, He) for accretion rates £ 10~12M jy»~!1. The Kra-
mers’ law opacity of these elements at soft X-ray energies leads to a hardened emergent
spectrum with a color temperature higher than the effective temperature. The resultant

upper limits on Tz and the associated accretion rate
M ~0oTésA 3(R./GM )

are correspondingly strengthened.

COMPARISON WITH OBSERVATIONS

Following Pizzichini, et al. (1986), we assume R, = 16 Km, M, = 1.3M ; and determine
the most stringent limit on the effective temperature from the Einstein IPC low energy
(.15-5 keV), high energy (.5-4.5 keV) and total (.15-4.5 keV) counting rates using the
values in their Table 1. We find that for T < 3x 105K our limits on the thermal flux and &
are about a factor of 10 more stringent than values based on blackbody emission, while
for higher T.p the limits are comparable. Figure 1 shows the surface temperature limits
as a function of distance for the April 6, 1979 burster assuming the entire surface is
heated. Dotted lines represent limits based on blackbody spectra, solid lines are based on
our calculated spectra. To bound the possible effect of absorption, the upper and lower
line of each type represent limits based on hydrogen column densities of

Ny = 1.5x10%9 cm~2 (the total along the line of sight) and zero, respectively.

The minimum accretion rate compatible with current thermonuclear burst models,
M 2 10715M gyr~, corresponds to Toz 2 3x105K. Accordingly, for GRB790406 distances of
less than .7 kpc are excluded for such models. In general, the harder spectra expected
from a low Z atmosphere strengthens Pizzichini et al.’s conclusion that the observed X-
ray flux limits are compatible with thermonuclear flash models only if the accretion is
episodic or the 7 emission is beamed. Distances of less than 0.5 kpc are generally excluded
for flash models. For comparison, Epstein (1985) finds that observations of high energy

tails in a number of bursts allow maximum distances of ~ 0.2-0.5 kpc. Limits on other
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models are similar; models relying on internal energy supplies (eg. starquakes) require
the release of 1040—10%*lerg into pulsational modes. The X-ray flux limits require very high
efficiencies for conversion to gamma rays since substantial energy will be dissipated in

the surface layers during transmission of flux to the optically thin emission region.

When X-ray counterparts to gamma sources are detected, estimations of their spec-
tra are clearly crucial for interpretation as flux from a neutron star surface. In the case
of the November 19, 1978 burster, a marginal (3.50) source was detected in the IPC high
energy channel at the gamma ray position (Grindlay, et al. 1982). In the lower energy
channel only an upper limit to the flux is reported. In Figure 2 we follow Pizzichini, et. al.
in displaying effective temperatures determined from the three sigma limits to the high
energy data (shaded regions) as well as the upper bound from the low energy channel. As
in figure 1, dotted lines represent results for blackbody spectra, solid lines correspond to
calculated spectra and accretion over the entire surface is assumed. The hydrogen
column density along the line of sight 2.5x10?%m™2 has been assumed in estimating
absorption. Note that, for blackbody spectra only distances 3 2 kpc are compatible with
the 0.15-5. keV flux limits, while for our harder calculated spectra distances as small as 50
pc are accepfable. If the source is fueled by steady accretion, however, the distance to

the source is probably 3 1 kpc.

The Einstein counterpart to the elusive gamma ray source Geminga (2CG 195+04),
identified by Bignami, Caraveo and Lamb (1983), also has spectral properties useful in
constraining the source model. This source, 1E 0630+178, is very soft and shows little
absorption (Ny < 2x10%%cm™2), leading to a probable distance ~100 pe. At this distance
the effective surface temperature would be 2-3x105K (0.017 < kT < 0.026). Bignami,
et al., however, report that the spectrum is harder, being adequately fit by powerlaw spec-
tra with 3 < & < 3.5 or thermal spectra with 0.08 < kT < 0.1 with column densities of a few
times 10!%m™?. A possible interpretation is that ~1073 of the surface in the form of a hot
polar cap is emitting at this temperature and supplying the observed thermal flux,
although in this case one might expect modulation of the X-ray flux at the neutron star’s
rotation period. If however the source has accreted the ~1071%)M ; of matter sufficient to
form a low Z atmosphere, then we find that the reported number of counts can be pro-
duced from emission over the full surface of a neutron star of R, = 16km, M, = 1.3M 5 with
Tog ~3.1X 105K. The color temperature in the IPC energy range is substantially higher, giv-

ing a power law exponent a~ 3.1 and a thermal fit at Tyq,, ~9%105 (kT~0.08), in good
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agreement with the observations.
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FIGURE CAPTIONS

Figure 1. Effective surface temperature limits versus source distance from Einstein
observations of GRB790406. Dotted lines represent limits derived from blackbody spectra,
solid lines from computed spectra. The upper and lower curves represent limits for
absorption from the full column density along the line of sight and no absorption, respec-

tively.

Figure 2. Limits on effective surface temperature using blackbody and computed
spectra for GRB781119, as in figure 1. The full absorption along the line of sight has been
assumed; shaded regions represent the three sigma range allowed by the IPC high energy

detection, while the single lines give the upper limits from the low energy channel.
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ABSTRACT

Recent studies have focused attention on the refractive effects of long wavelength
(<1014 cm) electron density fluctuations in the interstellar medium upon radio observa-
tions of pulsars and compact extragalactic radio sources. In earlier work, a simple
scattering model was introduced which allowed us to compute fluctuations in mean inten-
sity, image size, pulse width and pulse arrival time, along with their cross-correlations
and fluctuation timescales when there is a power-law spectrum of density perturbations
in a thin "equivalent screen” of scattering material. In this work, we extend the analysis
to include refraction-induced fluctuations in intrinsically diffractive quantities such as
the scintillation timescale, t;, and the decorrelation bandwidth, v,;,. We then use the
theory to study the drifting bands in dynamic scintillation spectra caused by the disper-
sive steering of the diffraction pattern. We also estimate the fluctuations in the position
of the image on the sky, rates of variation of intensity and position, and the root mean
square elongation of the scatter-broadened image. We make two further extensions of the
theory. First we show that, despite certain formal divergences, the theory can be
extended to accommodate steeper density fluctuation spectra (power law indices §>4)
than the coﬁvéntionally assumed Kolmogorov spectrum (B=11/3). Second, we test the
validity of the thin screen approximation, developing a formalism to treat scattering in
an extended medium. We find that the thin screen theory sometimes underestimates the
refractive fluctuations by a factor ~2. The auto- and cross-correlations of the various
observables are calculated and comparison is made with the known scintillation proper-
ties of pulsars to select those effects most suited to observational verification. The
predicted cross-correlation between decorrelation bandwidth and flux fluctuations seems
particularly well-suited to measurement. These measurements should, in turn, provide
insights into the density fluctuation spectrum and the distribution of the scattering along

the line of sight.
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1 INTRODUCTION

The effect of the small scale electron density perturbations in the interstellar
medium upon the propagation of pulsar radio signals has been recognized since the earli-
est observations (Scheuer 1968, Rickett 1977, Manchester & Taylor 1977). These inhomo-
geneities scatter the rays by a root mean square scattering angle 6 in propagating a dis-
tance D to Earth. The extra pathlength traversed by a given ray leads to a mean
geometric time delay t ~D8%/2c and the dispersion in this value among a large number
of received rays causes a pulse broadening of the same magnitude. Since the phases of
the rays are uncorrelated, their interference produces deep scintillation and creates a
diffraction pattern at Earth with a lateral coherence length b ~ \/2n8 and a decorrelation
bandwidth, vy, ~ ¢ /nD 82 The motion of an observer relative to this pattern at a speed v
(dominated by the pulsar’s peculiar velocity) leads to a diffractive scintillation times-

cale,tg ~b/v.

It has been argued on observational grounds (e.g. Lee & Jokipii 1975, Rickett 1977)
that the electron density perturbations have a three-dimensional power spectrum,
&, < k~F, 2 < B <4,ie. the density fluctuations on a scale a vary as 6n « a(6-3)/2 For such
a spectrum, the scattering angle induced by a fluctuation on scale a satisfies
8n ~én(a) r,A\%/2m with r, = e?/mc?. If there are D /a such regions along the pulsar-
Earth path then the scatterings will add incoherently to give an rms scattering angle
8(a) ~(D/a)l/?6n ~alB-4)/2)23D1/2 Hence, for <4, the scattering will be dominated by
the smallest scale, a ,;,, permitted by the strong scattering condition: viz., phase fluctua-
tions on a scale a p,;, satisfy ¢(amin) ~ @ min8/A>m. Thus, the angular size of the image has
the following scaling, 8 «< A\8/(6-2)p1/(8-2) (bservations reveal that 8(log8)/d(logh) 22
(e.g. Mutel et al. 1974), implying that g ~ 4. More specifically, it has been argued that the
exponent g8 has the Kolmogorov value of 11/3 (e.g. Armstrong, Cordes & Rickett 1981).

Recently, there has been increasing evidence that perturbations much larger than
the diffractive scale ap,;, are also important in the propagation of radio frequency radia-
tion in the interstellar medium. In particular, it seems that electron density perturba-
tions on a scale comparable to the size of the scatter-broadened spot on the sky, c~8D,
can cause refractive focusing and defocusing of the pulsar image (see fig. 1). Rickett,
Coles & Bourgois (1984), following Sieber (1982) (c¢f. also Shapirovskaya 1978), proposed

that these effects may account for long period (~ days-years) variations in pulsar
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intensity as well as the low frequency variability of compact extragalactic radio sources.
In addition, the sloping drift patterns of pulsar dynamic scintillation spectra could also
arise from the influence of these large scales (Shishov 1974, Hewish 1980, Roberts & Ables
1982, Hewish et al. 1985).

Blandford & Narayan (1984), pointed out that, in addition to the received flux, many
other observed parameters can also vary due to refractive perturbations. In a later
paper, (Blandford & Narayan 1985, hereafter BN), they developed a simple model, reviewed
in section 2, to calculate the magnitudes of the various fluctuations and the correlations
among them. A simple extension of their analysis allows us to estimate the fluctuations in
the observed source position, which should be correlated with #, the rate of variation of
flux F', as shown in Figure 1. We also consider the random elongation of the scatter-

broadened image.

The technique employed in BN and in this paper involves intensity -weighted aver-
ages of quantities of interest. At first sight this approach would appear to be unsuitable
for a description of diffraction-related phenomena such as the decorrelation bandwidth
Vge O the scintillation timescale ¢;. In fact, the theory is also capable of treating such
phenomena as we show in section 3. Since vy, and {5 are related to the angular spread in
the rays received, their fluctuations are correlated with variations in the flux, angular size
Q, pulse broadening 7, etc. Another interesting diffractive phenomenon that we study is
the drifting bands seen in dynamic scintillation spectra. The sloping patterns are
believed to be produced by gradients or "prisms"” in the scattering medium (Shishov 1974,
Hewish 1980); they should thus be correlated with position shifts and F'. In section 4 we

evaluate the various correlations for power-law spectra, & ~#, of density perturbations.

The analysis presented in BN required that the scattering due to refractive scales be
smaller than the small scale scattering, 8. This is valid in the strong scintillation regime
provided the spectral exponent 4. Recently, however, there has been some suggestion
that 8 may exceed 4 (BN, Goodman & Narayan 1985, hereafter GN, Hewish ef al. 1985). We
show in section 5 that, although the refractive scattering angle can in principle diverge
for B>4, a simple "renormalization” of the theory can be developed to handle this regime.
Another important question concerns the validity of the thin screen approximation when
the scattering really occurs in an extended medium. We consider this issue in section 6
using an extension of our formalism and find that a single screen underestimates the

magnitude of refractive flux fluctuations by a factor of ~ 2.
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‘In section 7 we give numerical estimates of the various fluctuations for power-law
spectra with g= 11/3, 4 and 4.3. The magnitudes of the observable quantities as well as
their scalings as a function of A, D, velocity v, and the strength of the density perturba-
tions C§ are collected together in Table 1. The magnitudes of the cross-correlations are
presented in Table 2 and the relevant formulae are given in Appendix A. Using these, we
discuss in section 8 the feasibility of detecting the various refractive effects. Refractive
fluctuations in diffractive quantities such as ¢; and v4, seem to be quite suitable for
experimental verification, particularly since the measurements can be made at high fre-
quencies where the refractive timescale (Tref~D 8/v) is short. Further, the slopes of
drifting bands in dynamic scintillation spectra have the unique property of being sensi-
tive to density fluctuations on scales much larger than the refractive scale ~D8. Hence
they are particularly well-suited to placing limits on the outer scale (ie. large length scale
cut-off) of the fluctuation spectrum. The data on drift slopes presently available already
seem to suggest that an outer scale must be present and that a simple power-law estimate
of the fluctuation spectrum isinsufficient to explain all results. An outer scale is also sug-
gested in several cases by the physical requirement that the electron density fluctuation
én(a) on a scale a must not exceed the mean density n. This places stringent limits on
regions of high Cj§, such as the line of sight to the Vela pulsar and the galactic center.
Apért from an outer scale, there are distinctive phenomena, related to caustics, that can

occur in the presence of an inner scale. We hope to treat these in a later communication.

2 THE SCATTERING MODEL AND REFRACTIVE FLUCTUATIONS

BN treated the effects of long wavelength ("refractive’”) fluctuations in the ISM as
weak perturbations of an underlying bundle of rays scatter-broadened by the diffractive
scale inhomogeneities. When averaged over a time much greater than the scintillation
timescale tg, the image of a point source, such as a pulsar, will be essentially gaussian
with a characteristic angular radius 8. This gaussian bundle will be focused, defocused,
steered, etc. (figure 1) by density fluctuations on the scale of the ""spot” or image size, o.
For simplicity, the refractive effect of the scattering medium is estimated in terms of an
‘equivalent thin screen with large-scale phase variations, ¢(r); the scattering strength of
the screen and its distance from the observer, L, are adjusted so that the observed angu-
lar size 8 of a point source as well as the mean geometrical time delay (¢ = LB%/2¢c) are

the same as in the model of the medium (see Appendix A in BN). The spot size on the
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screen will then be o ~ 8L . The extra refractive bending angle 7(r) of a ray at transverse

location r on the screen is given by
7(r) = - X(3¢(r) /ar) (2.1)

where A= \/2m.

Since the diffraction pattern isimoving relative to the observer (due to the motions
of the pulsar, Earth and the medium), the time dependence of the various observable
quantities will be given by their spatial dependence in the observer plane (see Fig. 1).
Thus, if F is the mean flux from the source, then the intensity received at a general point

x from unit area around the point x+r on the screen is

I(rx) = 752 exp— {Ln; 4 i (2.2)
where 7 is evaluated at the point (X + r) and we have assumed a gaussian spot shape. A
more formal justification of this approximation is given in Appendix B. As the deflectionn
is, by assumption, small compared with /L, we can expand the argument of the exponen-
tial to first order in 7 and integrate over r to calculate the fluctuations in the observed
. flux. Substituting for n from (2.1), integrating by parts and normalizing to the mean flux,

F,we obtain the fractional intensity fluctuation
2
6F (x) = AF(x) _ 4N fd,z'r ¢ (r2—o®) exp(-15) (2.3)
F g8 a?

with ¢ = ¢(x + r). Throughout the paper, we use the symbol A to denote the fluctuation in

some quantity and d to describe its fractional fluctuation, as above.

BN calculate similar expressions for fractional fluctuations in the angular size of the
image, Q, the mean time delay of the pulse, ¢, and the pulse width, 7 (the last two are nor-
malised with respect to the mean pulse broadening L 82/2c ). Each of these quantities is of

the form (cf. Appendix A)

84;(x %) = [d?r(x+rf;(r.» (2.4)

As the observer moves through the diffraction pattern at a speed v, these fluctuations will
vary. The random internal velocities of the phase screen will generally be much smaller

than v, and so a time lag T is equivalent to a spatial lag s = vT'. The cross-correlations at
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lag s-between the fluctuations in two quantities4; and A ; is given by
84 1(x,X1)04 z(x+$,7\z)=fd 2ry dPry ¢(x+r R1)p(X+8+12,R2) f 1 (7 1. A)S 2(72.R2)

where f ., f2 denote any of the f,. Taking two-dimensional Fourier transforms and

averaging over all x keeping s constant gives the mean correlation (BN)

(64, (xR,)84 (= +s R = Kixg [ 2L 7 (q,) F5(ahs) @(Q) expliqs)  (25)

(2m)?
where
Filax) = fa?r £,(r %) exp(~iqr) | (2.6)
(@) = < 3-dlary) 3P (axe) >/4 (2.7)
d(qr) = [d?r g(x+r) exp(-iqT) (2.8)

and the random phase approximation has been used for ¢(q). Note that since ¢p=X, Q(q) is
wavelength-independent and is given by the power spectrum of density fluctuations. The

f; for the various parameters are listed in Appendix A. Each of these is of the form
Fi < Pi(q) cos*(¥)eap (— 9%0%) (2.9)

where P;(q) is a polynomial in ¢ and qs =gq s cos(¢). We compute the time averaged

correlations (2.5) with X;=X,. For an isotropic power law spectrum

Q(g) =Qoq~*# (2.10)

the angular integrals in equation (2.5) generate Bessel functions and the wave number

integrals give functions of the form

hi(s) = [(@o) 59 exp(Z92%0) 1 (sq)d (g) @11)

a/2
32

20°

o(n+1-6/2)
T(a+1)

_ 2
r n+2r(°‘23) o+1,—=

20°

n+2+~§9‘-§-§l]M

where M(a,b,x) is the confluent hypergeometric function (Abramowitz and Stegun 1970).

The different angular factors of the Fourier transforms (2.9) will cause various
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combinations of the hi(s) to appear, so we define the following linear combinations, g :
9 = 5 hi—5 b
gA=Shd-Fhi+Lht (2.12)

and g0 = hJ. At zerolag (s=0) the g} are proportional to hJ2.

The mean auto- and cross-correlations of the fractional fluctuations are given by a
dimensionless constant, K, characterising the strength of the scattering medium, multi-
plied by some linear combination of the ¢,%(s). The autocorrelation of the flux fluctua-

tions, for instance, is

(6F (x)SF (x+s)) = Kg °(s) (2.13)
where
3 Q07\4L2
= oG B4 | (2.14)

Similar expressions for other auto- and cross-correlations of interest are tabulated in

Appendix A.

Correlations in wavelength can be derived by substituting the f; in equation (2.5)
and evaluating with X; # X; and s = 0. Several of the wavelength autocorrelations are also

listed in Appendix A, where it is noted that the correlations are generally quite broad

band.

The spot size on the screen,o, can be calculated in terms of the assumed power spec-
trum, Q¢ g ~%. A simple order of magnitude estimate was given by BN who argued that the
smallest scale phase fluctuation that scatters a ray is one that contributes a total phase
change A¢xm (see also Gapper & Hewish 1981). The spectrum is thus truncated at an

appropriate ¢ =q p,x and the mean square angular size of the image is estimated to be

q

[ 4% 429(q) (2.15)

a® _ x4
L? Fua (27)2

The integral is cut off below q p;, = 0~ ! because the corresponding spatial wavelengths are

larger than o and do not contribute to the image size. (For B<4 g min can be taken to be 0).
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In this paper, we use the following more exact evaluation of the angular size derived in

Appendix B.

r((6—p)/2)R @, |7*?

=LA | TR B-2T(B/2)

(2.16)

Thus, given a power spectrum, one can solve (2.18) for ¢ and substitute into (2.14) to

obtain the normalization of the fluctuation magnitudes.

We now consider the wander in the position of the image on the sky. If we take the
vector defined by the velocity v to denote the x direction, then, in a given realization of
the screen, the angular displacement in the x direction of the image from its “true’” time-
averaged position is

_ A8 1L
sa, =;7?L- =?—0—de7' r. 1(rx) (2.17)

where 7, is the distance from the point x on the phase screen in the x direction and A9, is
normalized by the image half width, o/L. Substituting from equation (2.1) and integrat-
ing by parts gives

Kl

56, = “ZGL} Jdzr ¢(r+x) r, (302 —2r2)e 7%/ (2.18)

There will also be fluctuations in the direction transverse to v. This displacement §6, is

obtained by substituting 7, for r; in equation (2.18).

An examination of figure 1 reveals that one can expect some correlation between the
angular displacement of the spot, 8,, and the rate of change of the received flux. In par-
ticular, when the spot is shifted farthest from its mean position, the flux will be varying

most rapidly. Further, there will be a similar correlation between F' and the rate of change
of 8,. To compute F and 8 we take the derivatives of (2.3) and (2.18) with respect to x and

normalize by the refractive time scale T, o/v. Thus

p =G OF _ 4LX fi2,. A9 (.2 2),-r2/0?
F_faa: ﬂgSfdrd'rz(r a?)e

ie. fr= i—ﬁ,}l . (r2—2g%)e ~%/7* (2.19)

Similarly, we write the normalized rate of wander of 8, as
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)= o 09 _ —RLX 2, d 2_9,2)p —T%/0?
=gl e Ja g (8 72(30%—2rZ)e 7Y/

ie. f = %I%‘ [302—2r2—1r2(10-472/g2)]e ~7%/d" (2.20)

Next we consider the expected elongation of the gaussian image. If one averages
over a time long compared to g/v the mean shape of a point source scatter-broadened by
an isotropic ISM will be circular. Since the fluctuations of the spot’s diameter in two
orthogonal directions are independent, the rms elongation of the scattering disk can be
non-zero for an instantaneous "snapshot” (i.e. single realization of ¢(r)). The spot will
have some major axis with gaussian width 20, and a minor axis of width 2¢;. The orienta-
tion of these axes will be random, but we can relate o, 03 to the measured widths along

fixed axes x and y via the relations
ot +ag=2(frg+ [rd)=2[r? (2.21)
cfof = 4[frz2~f1'y2 - (frxry)z] (2.22)
where we have introduced the following shorthand for intensity weighted averages

ff (i) = fd B (T T%)
Then defining the elongation of the spot, eg, as follows

so _ 9170z (0~ F) _—

and substituting from (2.21) and (2.22) we have

?_ (Je2-r®) P+ @frmy)?
(fTZ)z

of—of
of+a8

B

s

2x%2 2
- 1"‘“—62L 173 [[f d?r¢(x,r)r3(2e%—r2)e —r2/a=]
n~o

-4 [fdzr¢(x,r)rf(2crz—rz)e %/ [q2r ¢(x,r)rZ(20%—1rR)e T/

+4 [[azrg@riryr, (2o2—rd)e )] (2.24)
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3 FLUCTUATIONS IN DIFFRACTIVE PHENOMENA

The flux received from a typical pulsar is found to be correlated at any instant over
both a frequency interval, the decorrelation bandwidth v4,, and a range of time lags, the
scintillation timescale ;. Moreover, when plotted as dynamic scintillation spectra in the
frequency-time plane, the patterns of enhanced flux do not display uncorrelated modula-
tion in the two coordinates but instead often show an organized drifting behaviour with a
typical drift slope of order a few kHz /sec (fig. 2). These frequency drifts are believed to be
caused by refractive density perturbations on large scales, >0, pictured either as large
prisms (Shishov 1974, Hewish 1980) or as gradients causing the interference of a few dis-

tinct bundles of rays (Roberts & Ables 1982).

To include diffractive effects in our scattering model we must explicitly deal with the
phases of the individual rays received by the observer. We conceptually decompose the
image into a large number of point scatterers, each located at a position of “stationary
phase”. The mean separation of these scatterers on the screen is a.,;,, giving
N~(0/@pnin)? scatterers. Since N>>1 in the strong scattering limit, we may use statistical
methods in the analysis of the interference of rays from these scattering centers. Con-
sider a scatterer on the screen at a transverse distance 7; from the observer located at z.
The phase advance of a wave propagating a distance L to the earth after being scattered
at r; consists of two parts: a free rotation over the distance propagated,
8; = =(L+rf/2L)/X and an advance intrinsic to the phase screen, 8; = ¢(x+r;) = ¢;. The
difference in the total phase of a wave scattered from r; on the phase screen when the

observer moves a distance Az and changes his observation frequency to X + AXis given by

2
rs.

) (L.q..__"E]_ .

26; = ZEpx + el X% 4 ¢(x7\r])

i =T% = AX (3.1)

where we have taken the observer velocity to be in the x direction and have used the fact
that A¢ = (¢/R) AX. The electric vector received by the observer from the point j is

described by E; «e*% and the total flux is IEE]'|2~ In the strong scintillation regime, we
J

can assume that the §; are uniformly distributed and independent of one another. Thisis

reasonable as the scales that dominate diffractive scintillation are much smaller than o.

We then have <ei6’> =0 and <ei(9f°6")> = §;;, where 8, 8, denote the phases of two electric

vectors received at x, X from two point r; ,r;. Let 8;+A8;, 8; +A8; denote the phases from
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the same points as seen at z +Azx, A+AX, where A8; is given by (3.1). The auto correlation of

the flux isthen

(F(z X)F (z +Az X+AR)) = F¥( N-lz‘" X ei(ﬂf—6k+at+Aez—9m—Aem)> (3.2)
Jklm

where for convenience we have assumed that the magnitudes of the electric vectors from
the various scatters are the same. The A8; of (3.1) have both a random part «¢ and a
deterministic part. As we are only interested in the 1/e width and not the details of the
distribution it is reasonable to assume that the A8; are distributed in a gaussian manner.
Then, summing (3.2) in pairs and using (exp[i(46;-46;) ) = exp[—((46;-46, 2/2)], we

can write the flux autocorrelation as
(F(z X)F (x+Az A+AR)) —F3=FRe~ ((A0;-06,)3/2 (3.3)

When the relative phases from the various scatters within the image fluctuate by ~1

radian the net intensity becomes decorrelated.

Thus, we need to estimate ((A8,—A8)?) as a function of Az and AX in a given realisa-
tion of the phase screen. Let r;, r; denote the points of origin at the screen of two rays
received at x and let (r,—r)-Ax = (z,—z 3)Az. We now define via equation (3.1)

zi+x 827 7,

f (TI'TZ) = (Ael_Aez)z = szz

(az)? (3.4)

rivri-2rfrf  $.(rf-r8)+o(rf—rf)
4L3x4 Lx3

(ax?

z(r§-rf)+zy(rf-r§) 2 2¢1(z1—23)+2¢s(x 2~ )

+
L?x3 LX?

Az AR

where, as before, we have kept terms to linear order in ¢. The number density of scatter-
ers within the image is clearly proportional to I (r,x) defined in (2.2). Thus, to find the flux
autocorrelation, (3.3), we must compute the intensity weighted average of f (r;,r3) over

all »,,7; on the spot

fdzﬁfdz""zf(ﬁ-x)f(rzrx) f(ryre)
fdzrlfdz'rz I(ry, %) (rs,x)

{f (ryre)y= (3.5)
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We evaluate the integrals to lowest order in ¢ and use the fact that f is symmetric with

respect to 7y, 7 to write (3.5) in the form

{f ) ={(88,-462)% = 4 (Az)? + B(AX? + CAzAX (3.6)
2 2
) Laz-xz - 1\'L4a47\fd2r ¢[222(2_Z—2)—0‘2+r2]e ~72/0%|(Az )2
ot

2 r8  5rt _r2/g2
+ d?r p[IT— —2L— +5r2—gRle ~T%/7°|(AX)R
2L*%  nLoRx3 f ol ot o? ] 2

Ax AX

4 77r? | 2r4 2/
+ |—— [d?r ¢z [4-L + 5L TeT/0
m)'zLXaf pok g? ot ]

From (3.3) we see that the autocorrelation of the intensity will fall to 1/e of its max-
imum value when <f } = 2. Let us define the scintillation timescale {5 to correspond to the

1/e width along Az of the flux auto-correlation. Thus, since t; is the spatial coherence

length of the diffraction pattern at Earth divided by v we have
t, = too(1+0t,) = V2R (1 4 BLR [42, 4[202(2 12 /02) g2 r2]e /%) (3.7)
o o ;

where %y, is the mean scintillation timescale and Jtg is its fractional fluctuation. Simi-
larly, the 1/e half width of the diffraction pattern in X can be converted to units of fre-

quency to find the instantaneous decorrelation bandwidth v4,

L 2L X
Vio = Vaoo(1+6vys) = ﬁ—c(l T ol0

- fdz'r ¢[r8—5rto+5rlat—g8le 7%/ 7% (3.8)

Since the mean pulse broadening is described by the time constant 7y = ?/2LC (cf. BN),

we see that
2n Vde To = 1 (39)

This "uncertainty relation” has been verified observationally in the case of the Vela pulsar
(Slee et al. 1980). Furthermore, the fluctuation dvg, is the exact negative of the frac-
tional fluctuation in the pulse broadening d1 ( ¢f. (A.4) and (A.9)). So we find that the
uncertainty relation holds even for the fluctuations about the mean. This encourages us
in believing that our simple scattering model can indeed be applied to diffractive

phenomena.
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- The rotated ellipse described by (3.8) represents an "average’ frequency drift pat-
tern for the given realization of the phase screen ¢ or, equivalently, the shape of the 2-d
autocorrelation function in the (v,t) plane. It is of interest to calculate the expected tilt
or drift slope that an observer would measure. The angle of tilt will clearly depend on our
scaling of the Az and AX axes; accordingly, we normalise by ¢ and X, respectively. Then,
taking w to be the rotation from the orientation in the absence of refractive effects we

write the drift slope, my, as

In terms of the coefficients 4, B, C in (3.6)

_|cra=RB | |_ X yam1/2
™Ma = |ToRC ] L+l + g —ep)]
a 4fod27' ¢.’I [4—77‘2/0'2+27‘4/0'4]2 —';-2/02 (310>
mad

The appearance of a dynamic scintillation spectrum is also characterized by the
average elongation of its drift bands, e4. This is a measure of the prominence of the fre-
quency drift phenomenon, since a circular pattern in the (v,t) plane has no well defined
slope. As ey again depends on the normalization chosen, we make an unambiguous
definition by calculating the elongation at a fixed drift slope of /4. Since observers tend
to record the drift patterns with the most conspicuous drift, this will facilitate com-
parison with the data. We use the same definition as for eg in section 2; if the gaussian

drifting band has a semi-minor axis @ and a semi-major axis b, then

bR—q?
ey~ 311
¢ b2+a? (3.11)

We can eliminate ¢ and b infavour of 4, B and C to obtain

_ [(4 —B)2+CR]4
A +B

€q

Fixing the drift slope at 7/4 with our normalization corresponds to setting ¢4 =8 and

letting C go to C-(0A /XB)1/2. Thus to first order in ¢, we find that

72

2 4 -
eq =282 LR fy2n g0 (4-T7 LBT )@ (3.12)
no ag g
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4 CORRELATIONS

To compute the auto- and cross-correlations of the above quantities, we take the
Fourier transforms f of the expressions for the fluctuations ((2.18), (2.19), etc.) and sub-
stitute into (2.5). These transforms, tabulated in Appendix A, can be grouped into two

classes:

I) Curvature-induced fluctuations (those f that are real and proportional to even powers

of q)

ie. 6F, 80 6t 6T, vy, 0, 6t

II) Gradient-induced fluctuations (those f that are imaginary and proportional to odd

powers of q)
ie. F,680,, my eq

In addition there are 60, and e? which do not belong to either class. Class I quantities
correspond to those effects which are caused by focusing or defocusing lenses. Class II
effects, on the other hand, are caused by prisms which steer the wavefronts. In general,
one can expect Class I and Class II quantities to co-vary among themselves, but not with
each other. The strength of these cross-correlations is discussed in section 7 and Table 2.
The autocorrelations of the refractive fluctuations of the various observables that we have
studied are shown in figures 3 and 4 for a power-law spectrum with 8=11/3 (expressions
are given in Appendix A). We note that the variations with lag can be quite different from
one another. However, most of the curves have half-widths that are characteristically of
order o, as would be expected for a refractive effect. For a combined Earth-pulsar velocity

of v this corresponds to the refractive timescale
Tref = % (4.1)

However, 66, 68, and my decorrelate over a time 3100/v, a consequence of the incipient

divergence in these quantities as 4.

The Fourier transform of f .z, (A.8) has, as expected, no angular dependence. ltis, in

fact, identical to the square of f;, which means that the rms elongation of the spot is
equal to the normalised rms fluctuation in the angular size. This is because the diameter

fluctuations in orthogonal directions in the image are independent. Formally, e? will
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correlate with the parameters of group I, but as thisis a higher order eflect, we do not cal-

culate it. 8, will be uncorrelated with any of the other quantities.

We also note that fzfg, = — f-‘ fr so that the cross-correlations of these two pairs will

be equal but opposite. This implies that in the (6F,58,) plane a set of pulsar observations
will statistically follow elliptical trajectories with a fixed sense of rotation (clockwise).

Thus, an observer can gain V2 in signal-to-noise by measuring the curl of this field:

AG-F — 8-AF .

Certain other paii‘s of Fourier transforms are related, as well. We have already noted
that f,=~f,, and so the correlation functions of the latter follow immediately from
those of the former. For frequency drifts, the rms elongation at fixed slope is seen to be
half the rms value of the slope, my, so the average stretching of the drift slope bands is

directly related to their inclinations. Thisis, however, a simple geometrical effect.

5 DENSITY FLUCTUATION SPECTRAWITH B > 4

So far, we have considered spectra with <4 for which the arguments of section 1
show that the scattering is dominated by the small scale density perturbations. Recent
work (e.g. BN, GN, Hewish, et al. 1985) has indicated that spectral indices of greater than
the critical value =4 may also be relevant to electron density perturbations in the ISM.
In this regime, the scattering is dominated by the large spatial scales and, in the absence
of an outer scale, the rms value of the bending angle 7(r) of (2.1) diverges. Accordingly,
the linearization of the exponential in (2.2), which is central to the earlier development, is
no longer valid. However, fnost of the correlations computed in the previous section are
finite even for B>4. This suggests that the divergence of 7(r) may be removable by a suit-

able modification of the theory.

For concreteness, we consider the variations in the flux, F. The autocorrelation
function Cpp(s) has a zero-lag rﬁagnitude ~ K and has a half-width s /;~0c. This means
that we are rarely interested in correlating observers separated by more than ~o. The
mean bending angle seen by two such observers will be large but will be dominated by
large scale perturbations (g ~!>>0) that contribute the same bending angle for both
observers. This common steering will be indistinguishable from a shift in the image posi-
tion. The physically interesting quantity, the difference in the bending between the two

observers ( equivalently the phase curvature or focusing of the screen) is, however, finite
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and reasonably small as shown below. Therefore we should obviously measure the bending
angle with respect to some mean bending, 73, common to the two observers. (We can take
7o to be the refractive bending by the screen at a point half-way between the observers.)

Equation (2.2) can now be written

F L(n—m,)+r
1) = Ly exp(- (L1 ey (5.1)
o F 1 2Lr(n-1m,) te|e-rve®
mo? o

where & < (n-ng)3(L /a)?. If we assume that £ is small compared to 1, we then have as

before

oF = =2L fdzr (n(r+x)—n,)re T/
ngt

Since 7y is a constant, terms proportional to it vanish by symmetry. Substituting (2.1)

and integrating by parts, we recover (2.3) as before.
We must now show that £ in (5.1) can, in fact, be neglected. To do this we compute

{(n(s)—n,)?) for s ~ ¢/2 (half the observer separation). From (2.1), (2.9) we have

n(s) = ‘;‘)2 [d?q(iq)d(g)ees (5.2)

(2

In computing ((n(s)—7,)?), we should include only the effect of the refractive scales since

the small scales < ¢ have been counted in determining the spot size (Appendix B). (One
can equivalently note that all the f; have a weighting factor exp(—1/4 q?c¢?) which

effectively damps out the small scales). We thus have

LL,—:«"(S)“??(O))Z} = 2K ( j—)‘ﬂ“"z 238(1—J o())e T/ dz

=K 2<4-ﬁ)/21"[4;5 ]M[4—B 1,- 2 (5.3)

2 20°

For >4 we evaluate (2.15) between g =0~! and « to obtain X = §—4. We then find that (5.3)
is small compared to 1 for sgo/2 so long as Bg5. Since the range of 8 of interest to us is
3.5¢8<4.5 (c.f. GN) we are justified in neglecting ¢ in the expansion of (5.1). Similar argu-

ments show that for each of the correlations computed above that remains finite for >4
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(i.e. Cqq. Cqy,, etc.) we may continue to use the expressions derived previously for <4 as

long as s go.

Certain correlations, however, are formally divergent for §<4. For example the posi-
tion shift, 66, depends directly on the bending angle and thus diverges at f=4. A steep
spectrum (in the absence of some outer scale) will cause the image to wander arbitrarily
far from its true position. An observer, however, must estimate the true position by the
mean over his observation period, T,ps=s/v. The relevant measure of the amplitude of
refractive position fluctuations is then the fluctuation across the duration of the observa-

tion ,i.e.

([86(s)—68(0)]%) = 2[C 45(0) —C gg(s)] (5.4)

where Cg4g is the autocorrelation function of 86 (A.18). Although Cg4y diverges, the
difference (5.4), equivalent to a first order structure function in 7, is finite for 8<6. When

$>>0, we can use (2.5) and (A.6) to obtain the following approximate estimate
®L?
([80,(5)-00, ()~ 220 j dg q%f

=K In(s /2na), g=4 (5.5)

g—4
Sno| s

__K
(B-4)

It is seen explicitly that, when >4, the image wander diverges in the limit of large base-
lines s. In practice, of course, the power-law spectrum (2.11) that we have considered will

have a physical cut-off at some g ,;, and so the image wander will saturate for s 227/q min-

The arrival time of pulses from a pulsar has a random delay whose dominant com-
ponent is proportional to the mean phasé fluctuation of ¢ averaged over the spot size ¢ on
the scattering screen. This formally diverges for §22. We note, however, that observers
measure pulse arrival time residuals only after fitting a low-order polynomial model of
intrinsic pulsar behaviour, At = a;+apT +agT?, as well as sinusoidal components of period
1 year to refine the position and proper motion of the pulsar. Consequentially, the
post —fit arrival time residual Af,, is finite for all f<8. Blandford, Narayan & Romani

(1984) have considered the effect of parameter-fitting on post-fit residuals. For the
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timing noise contributed by phase fluctuations in the ISM, we can apply their results in
combination with (A.3) to obtain
(617 = 4xt L

Qo T 1 1 1
Mol 5.5 1-8(1 - L gRgRi Lt q454)° -2 g2gR
T _[dq 97 F(1-59%0*+5q*0*)%exp(-59°%0*)T (q) (5.8)

where the transmission or filter function 7(q) is defined in the above-mentioned paper. If
the observations extend over a time T 3s>>1 year and if vT s >>0, then we can use Table 1
of Blandford et al. (1984) to simplify (5.6)

g-2
1 (5.7)

AN L2Qq 7 AK
5t3) = __._ia'[d 1-p_ 4K |_s
C9= met 209 g-2 [690

where the lower limit q;, =6.9/s in the integral is appropriate for f~4 (i.e. spectral
index ~3 in Blandford et al.). The divergences associated with arbitrarily large electron
density perturbations are thus absorbed into the timing model. A similar treatment will

excise the divergences in the cross-correlations of §f and other parameters.

The frequency drift slope dv/dt has, however, a divergence which cannot be
removed by the above techniques. The drift slope is directly proportional to the phase
gradient on the screen just as the position shift §§. However, unlike §8, the trﬁe mean
value of dv/dt is known a priori to be 0. Thus, in the absence of an outer scale, a g>4
spectrum will cause frequency drifts with arbitrarily large slope and this would be
observed even in a single epoch of observations. The finite observed drift slopes therefore

place limits on the perturbation spectrum as discussed in section 8.

6 SCATTERING BY A THICK SCREEN

In the development so far we have assumed that the source is distant and that all the
scattering is localised within a single thin screen at a distance L from the observer. In
many circumstances (e.g. interplanetary scintillation) this will be a good approximation.
It is, however, important to understand the changes that are introduced if the scattering
is shared between several screens or indeed distributed uniformly along the line of sight

to the source. Fortunately, the present formalism allows us to treat these cases as well.

Suppose that there are n phase screens between the source and the observer. Let
the strength of the fluctuations on these screens be Q% and the associated scattering

angles be p; ( equal to o/L in the 1 screen case). The separation between screen i and
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screen j is denoted L;; with 1=0 signifying the source and i=n+1 the observer. The dis-

tant source case isrecovered by taking the limit L o; —.

Now consider a ray propagating from the source to the -observer and undergoing
angular deflections §; at each of the n screens (Fig. 5). We can relate the transverse posi-
tion vectors r; of the ray’s intersection with the screens to the §; through the recursion
relation

By Tit1™ Ty T~
5 =
L4y Liyi

We set ry=0 and denote the observer position by r, ,;=x to obtain

ry = M; 6.1
i L0n+1 12 i &) (6.1)
LojLin+1 ——
Lon+1 ) Sl
where My={; 1. (6.2)
Z0iFjn+l g4 <jsn
Lon+1
One can change from the variables r; to the variables §; via the Jacobian
2
a(ry,re, -, Tpn) _ [ Loy e (6.3)
a(él. fz, T én) lL0n+1 i=1 vitl

Let I;(r; 8;) be the intensity leaving the i’th screen at an angle 8; to the reference

direction. The intensity leaving the (i+1)’th secreen can then be written

I (’“+1 (6.4)

d? T4 r1.+1 T
1.+1(r7.+1 91.+1) f G'£+1 041 — ( - )r1.+1 Ti»
Li;

where G;[;,r;] is the scattering kernel. Using the linear approximation outlined in sec-

tion 2, we write

o ~¢8/nf

2
TPy

a¢; @

1+X
ri afz

Gil&.ri] = (6.5)

If the mean flux at the position of the first screen from a point source is denoted F , the

intensity at the observer plane can be written formally

]n=fdrn1 nf fd"'lc GlFl (6-6)
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where the integration must be carried out along a ray connecting the observer to the

source.

Let us initially ignore refractive effects. The mean flux received by the observer is

— d?r,
FeFou=fiz 20

n

n d2~ . =Nkz/42 _ I
Y i P B --1/"’=F1[_0_1_

6.7
1| mLE; 41 P Lon+1 ot

where we have incorporated the Jacobian from equation (6.3). This is just the inverse

square law. Similarly, the mean angular size of the observed image is

(= 3 1 f a> T’j 021, (6.8)

where 8,,, the angle of the ray incident on the observer plane at x, is given by

r; x & Lo,
db B Mmoo ol = = ; 6.9
Lo, & én Lon+1 7'.§=:1L0n+1 b (82}

8, =

So, using equations (6.3) and (8.7) we write the mean angular size of the image as

d2€ e —¢2/p8 L 2 n ) g 2
(62 . 0k =3 | =22 | pf 6.10
9= fH kz=:lL0n+1 & iz=:1 Eonil |7 185

This is, as expected, the weighted sum of the individual scattering angular widths. Equa-

tion (6.10) agrees in the continuum limit with equation (A2) of BN.

Now we introduce refractive effects by including the phase fluctuations on the
screens. The perturbation to the intensity can be written by combining equations (6.5)

and (6.8) as

n
" . ~ putE/oR
oI, = xF, _/' i [2; o |e

(6.11
i=1 1TL 1,+1p1, J'=1[ or; 8¢; Wi )

In the spirit of the earlier development, we express the phases ¢, as Fourier transforms
and integrate by parts using equation (6.2) to obtain an expression for the normalised flux

fluctuation
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d? AE n | g2y o —¢E/PE | n 2
6F (z) = lf Tn 5] . F‘lfH Tie Z_ 9%,

i=1| il PR || 7 or?
XFI dz,,.e —¢8/pf | n L 42 @ 4
e' VT M,qRP; 6.12
f =1 ‘H,+1P1. f(2 )2 e ( )

Equation (6.12) is the multi-screen generalization of equation (2.4). We obtain the

generalization of the flux correlation function ( eq. (2.5) with X = X ) by averaging over x

3 d?q; ix 1 1q'8(Lot/Lon+1)
(oF @oF (xre)) =2 3 [ 17 (a7 (a:)Q* (e (6.13)

where

d?r; ;
On+1 —¢2/0P — iMiiQi-£s

=—-|—="=| XM. J 51/91 WMiqi-€;5 8.14
f.ﬁ'(ch) l o ] ) IE ﬂLj2j+1Pj2 ( )

We can change from the variables r; to the variables £, using the Jacobian (6.3) and carry

out the integrations to obtain
(3 L 0 L 1
Fra) = —K'Lz—m}“ gfexp(- Zqizo'i) (6.15)
on+1
where o;, the eflective size of the scattering disk at screen 1, is defined by
of = Y M&p? (6.18)

If we have n evenly spaced similar screens and denote the distance from the source

to the observer by D, then we can use equation (6.10) to obtain

_i(n+1-1)[2i(n+1-1)+1]1D%8?)
n2n+1)(n+1)>?

(6.17)

Of greater interest is the continuum limit. We denote the distance along the line of sight
from the source by z and the mean scattering rate by ¥(z) = (4p?/Az). Then letting n -

we obtain

¥z} = ZZdz '229(2") + Z—'Z }d.z (D —2")29(z") (6.18)

D—-2z
D
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and

D =Loaeg
(6F (X)6F (x+s)) = D% [dz (D~2z)322% (_g_zlg)]? q4%% eias(z/D)g 2 7" (6.19)
1\'

We have therefore expressed the autocorrelation function for the flux fluctuations as
a sumn (or an integral) over the scattering screens. To proceed further, we must substitute

an expression for the spectrum of density fluctuations. For the spectrum in (2.10)

d _gdl
o (6.:20)

Substituting in (6.13) the n-screen case gives

- * ME Qb - —s?
(6F (0)6F (s)) = ’f,gff/ﬂ?) gl o-?—ﬂo M{6gﬂ'1’2(1—i)205 ] (8.21)

while for a uniform medium we obtain

(5F (0)5F (s ))= Mldx [x(1—x)]ﬁ-4Ml6—ﬁ 1,——=S” (6.22)

22-6/2 2 '"2(1-z)%0?

where K is given by the single screen value (2.14) and o = 8,,,.D./2 as for a single screen.

In Figure 6 we show the flux auto correlation function for a uniform scattering
medium with =4 and compare this with the results for 1, 3, and 5 equally spaced screens.
The 1 screen case corresponds to the equivalent screen approximation introduced in BN
and used in the earlier part of the present paper. We see that the rms refractive flux
fluctuation at zero lag from a uniform medium is larger by a factor V3 than was predicted
by the equivalent screen. In the case of a Kolmogorov spectrum, §=11/3, the correspond-
ing factor is 2.3, while for 8=4.3 the fluctuations are 1.4 times the result for the equivalent
thin screen. For these three spectra the flux autocorrelation functions for an extended

medium and single thin screen are shown in Figure 7.

We have also calculated the angular size fluctuation autocorrelation and the cross-
correlation with flux fluctuations. For a uniform medium with g=4 their expectation

values at zero lag are 7/8 and 3/4, respectively, of the single screen correlations.
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7 NUMERICAL RESULTS

We now calculate the normalization, K, and numerical estimates of the fluctuations
in various observables for three power law models of the interstellar medium; 8=11/3,
B=4 and §=4.3. In the following we specialize to the single screen equivalent of a uniform
distribution of inhomogeneities between the source and the observer. (The theory of sec-
tion 6 for an extended medium could in principle be used to obtain more accurate esti-
mates, but the present status of the observations does not warrant such calculations).
For an extragalactic point source well out of the galactic plane one should replace C_4,D
by 3C _4H csc(b) and D by 2H csc(b) in the expressions below and in Table 1, where b is
the galactic latitude of the source and H is the scale height of the inhomogeneities in kpe

(see Appendix A of BN for details).

We first assume that the power spectrum of phase fluctuations on the scattering

screen has a Kolmogorov power law form
Q(g)=Qoq 13, Qo =3.7x10"18C_,D cm~11/3 (7.1)

which corresponds to C§=10"%C _,m~2%/3 in the notation of Armstrong et al. (1981)(cf.

BN). D is the distance to the pulsar measured in kpc. The amplitude @ differs from that
used by BN because they used an approximate estimate of the image angular size and
needed to adjust @ suitably to fit the observations. We avoid this by using the improved
angular size estimate given in (2.18). The scaling of Cjf has been selected such that the
parameter C_4 has a value ~1 for nearby pulsars. However, C _, can be as large as ~10% for
distant pulsars in the plane of the galaxy and for the particular case of the Vela pulsar
(Manchester & Taylor 1977, Cordes, Weisberg & Boriakoff 1984) and in fact is >105 for the
radio source at the galactic center (Lo et al. 1985). We substitute (7.1) and (2.18) into

equation (2.14) to obtain
K = 1.27x10720 /1918 ~13/15 (7.2)

where we measure the wavelength A in meters.

We next consider the “critical” or "gaussian” spectrum with §=4. Here we fix the nor-
malization constant @y by requiring that the calculated angular size be the same as that

for a Kolmogorov spectrum whenC_,=A=D = 1:

Q (q) = Qoq -4 . Qo = 1.6)(10_210_4.0 Cm_4 (73)
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Substituting in equations (2.14) and (2.15), where we retain the lower limit, we obtain

1 1

K =
In(430C_,A3DR%/K% Ty

(7.4)

where the correction factor v is unity for C_,=A=D =1 and has only a weak logarithmic

dependenceonC_y,Aand D.

Finally, we consider a spectrum with =4.3. For this value the scalings of various
observables with A and D are quite close to those of the Kolmogorov spectrum so that a
f=4.3 spectrum is equally compatible with scintillation observations as §=11/3 (GN). The
refractive effects, however, will be much larger for §=4.3. For 8>4, the lower cut-off at

q min~0 ! will dominate the integral (2.15). Taking q p.x=%, We can solve for ¢

1/(6-8)

o= x4/(6—6) 1,2/(6-8) (7.5)

Qo
_2m(B—-4)
If we again require that the calculated o equal that for the Kolmogorov spectrum when
C_y=X=D =1, wefind that

Q(g) =Qoq %3, Q¢=23.6x10"35C_,D cn~*3 (7.6)

Substituting in (2.14) we find

K =(8—4) =3 (.7)

We use these three normalizations and the autocorrelation functions listed in
Appendix A to calculate the magnitudes of the zero-order quantities and their rms
fluctuations for the three spectra. These values, along with their scalings as a function of
C_4, A\, and D are listed in Table I. As discussed in section 5, certain quantities are for-
mally divergent for large values of 8. For these, we therefore list approximate magnitudes
of the fluctuations about the observed mean as a function of the observation period in

vears, Ty.

The normalized cross-correlation of two parameters4 and B is defined to be

Cap = (Z%?(%% (7.8)

Class 1 (curvature-induced) fluctuations will correlate with one another to varying

degrees, but will not be correlated with Class II (gradient-induced) fluctuations and vice-



-102 -

versa. We list the non-divergent Class I and Il cross-correlations in Table 2.

8 DISCUSSION

In the preceding sections, we have extended the computations of BN to include
several more potentially observable effects arising from long wavelength density fluctua-
tions in the interstellar medium. We now have the theoretical machinery to estimate the
magnitudes and timescales of refractive effects for virtually any observable parameter in
terms of any power-law spectrum of density fluctuations, including those with g>4. We
have also outlined the extension from a single screen to an extended medium and have

shown how this can introduce significant changes.

Since the theory depends on a simple linearised model of the scattering (equation
2.2), we should address the question of the reliability of the theoretical predictions. For-
tunately, Goodman and Narayan (1985) have presented exact results for the flux fluctua-
tions produced by a single screen for both <4 and $>4. A comparison between their
results and those of our approximate theory is made in Appendix C. We find that the
agreement is extremely good for 3.558<4.5; this encourages us to believe that the other

computed correlation functions are also quite accurate.

The detection of any of the fluctuations predicted by our theory, particularly the
cross-correlations, would confirm the importance of propagation effects for the long
timescale variability of pulsars and compact extragalactic radio sources. The predicted
magnitudes of the fluctuations are relatively small in the case of the Kolmogorov spec-
trum (B=11/3), increasing with the observation frequency. On the other hand, if 824, the
fluctuations are relatively large but independent of A. The shapes of the auto- and cross-
correlations also depend on the value of 8 and upon whether the density fluctuations are
restricted to a thin screen or are distributed throughout an extended scattering medium
(see figure 7). Thus, observations of refractive effects promise to be a sensitive probe of
the spectrum of ISM density perturbations as well as the distribution of the scattering

irregularities along the line of sight.

Perhaps the easiest observations to make will be those that include fluctuations in
the scintillation timescale, dtg, the decorrelation bandwidth, dv,., and the flux ,6F. Since
the fluctuation timescale T, decreases as one moves to shorter wavelengths (Table 1),

observations for a relatively short period at the highest frequency allowed by the
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multipath propagation condition, viz. ¢>a ;,, should be sufficient to detect the predicted
correlations. We note that the thin screen theory predicts normalised cross-correlation

coefficients of between 50% and 75% (cf. Table 2), so the effects are large.

It is difficult to resolve pulsars with conventional VLBI. At meter wavelengths there
are some candidates for observation of angular size fluctuations, but the timescales will
be rather long. Another possible VLBI experiment involves measuring the relative separa-
tion of pairs of pulsars close enough in the sky to be contained within the same primary
beam of a radio telescope (~1°), e.g. PSR 2016+28 and PSR 2020+28. This observation
should be carried out at two or more low frequencies and it seems possible to achieve
positional accuracies ~0.1A/b~1mas. The detection of a refraction-induced shift may be

possible in a steep spectrum, though the variation timescale will again be quite long. In
fact, it may be easier to monitor the rate of position fluctuation 9 which increases with

observing frequency. Correlations with dv,, and Jt; are quite strong. To detect C-.t , for

example, one desires a moderately dispersed, nearby pulsar with a high space velocity.
PSR1818-04 seems to be a good candidate with sufficient flux for an intermediate fre-

quency VLBI experiment. Other possible pulsars are tabulated in BN. The correlation

between 8 and F is however too small to be observationally interesting for g close to 4.

Frequency drifts in dynamic scintillation spectra provide one of the best probes of
large scale density fluctuations (Hewish 1980, Roberts & Ables 1982, Smith & Wright 1985,
Hewish et al. 1985). The correlations of the drift slope with # and 68 are probably too
small to be measured. However, the magnitudes of the drifts and their scaling with g,
A, D, and C_, can be compared with our theory. Smith & Wright (1985) have measured the

drift slopes of 32 pulsars. They preseht their data in the form

dv _ v
4t = 8,D sec ¢ (8.1)

where 0, is the rms refractive bending angle and ¢ is the angle between the plane of max-
imum dispersion (i.e. the orientation of the ISM prism) and the pulsar velocity v. For 24
pulsars in which an independent measurement of v is available, they define 8, =m 8
where 8, is the rms scattering angle (i.e. ¢/L), and estimate the value of |mcos(¢)}, a
measure of the relative importance of long and short wavelength perturbations in the ISM.

Noting that 8,D =20, we can compute |mcos(¢)| directly in our model, using the
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measured distances and scattering strengths for these 24 pulsars. For § = 11/3 we obtain
|mcos (¢)|=.40, somewhat larger than the observed value of .24. Thus, the observed mag-
nitude of refractive fluctuations in frequency drifts is smaller than that predicted by the
Kolmogorov spectrum. On the contrary, the observed elongations of the drift patterns
seem to be significantly larger than the value e3<.1 expected for a Kolmolgorov spectrum,
although observational bias towards the most prominent examples may be reflected in
the published spectra. Further, the observed flux variations are also larger than
predicted for a Kolmogorov spectrum (BN,GN). These conflicting indications could mean
that the continuous Kolmogorov power-law spectrum commonly assumed is too simplis-

tic. They may also reflect deficiencies in the thin screen model.

As further evidence that a single extended power-law spectrum with g4 is
insufficient for the explanation of all scintillation phenomena, we consider the observa-
tion of periodicities in the spacing of the drift bands. Striking examples of quasi-periodic
frequency drifts in dynamic scintillation spectra have been presented by Hewish,
Wolszczan & Graham (1985). In these instances the patterns are interpreted as arising
from thé interference of a few, well-separated bundles of rays which have passed through
an image—scaie dispersive wedge on their way from the pulsar to the observer plane (cf.
also Ewing et al. 1970, Roberts & Ables 1982). Hewish et al. go on to argue that the
effective value of B can exceed 4. This attractive physical picture may, however, be
difficult to realize in an extended power-law spectrum as the inhomogeneities intermedi-
ate between the diffractive scale and the spot size will generally break the image into too
many beams to give the observed patterns. An alternative possibility is that the small
scale irregularities are absent and the spectrum has an inner scale somewhat smaller
than the size of the image. This would create a few caus:tics which could give the observed
periodic modulation. A possible prediction of thisidea is that the periodicities of dynamic
scintillation spectra should only be found at frequencies where the spot size is compar-
able to this inner scale and that this frequency should be larger for the more distant and

more highly scattered pulsars.

Another implication of the observed quasi-periodicities is that a snapshot image of
the pulsar would reveal a few bright blobs within the time-averaged spot (figure 2). GN
have argued that such a "fractal” geometry for the image is expected in theories with
g > 4. This may be testable with VLBI on selected pulsars. The extended periodicities seen

would probably still be rather rare unless the effective g were close to 6. However, a
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spectrum with >4 predicts extremely large values for the average drift slope (in fact, my
will technically diverge) unless the spectrum cuts off at lengths not much longer than the
refractive scale o¢. To maintain the large amplitude refractive fluctuations indicated by
other observations(e.g. flux), it might be necessary to impose an inner scale as well and
invoke the focusing effects of caustics. (We note that there may already be evidence for
caustics in the cusplike peaks in pulsar intensity fluctuation records e.g. Cole et al. 1970,
Helfand et al. 1977). The resulting spectrum of the ISM density perturbations would thus
be severely truncated at both ends, containing only a limited power-law regime. GN
showed that the A and D scalings of observed quantities are relatively unaffected by the
absence of short scales for g§>4. If, however, <4, then the absence of short wavelength

fluctuations drives the scaling laws towards the “gaussian spectrum” case, i.e. f=4.

It is possible, for a given value of the spectral index § and a given distribution of the
scattering inhomogeneities, to estimate an upper bound on the outer scale for the
power-law spectrum from the observed angular broadening and the physical constraint
that the amplitude of the electron density fluctuations on this scale still be linear (i.e.
én <n). For spectra with f<4 the scattering is dominated by the smallest scale con-
sistent with the strong scintillation condition, api,~A/8(e). To allow for the possibility
that the spectrum cuts off at an inner scale somewhat larger than this we define
@ min~0A/8(a nin) With azl. If one has an independent estimate of the total number of
scattering electrons, for example from the dispersion measure DM in the case of pulsars,
one can use the scaling én (a)xa(#=3)/2 (section 1) to estimate the scale at which the per-
turbation spectrum must become nonlinear, i.e. on ~n. If we consider a source at dis-
tance z, a scattering screen of thickness L at zy and use the typical pulsar observables
Vs0=Vg4, (in units of 50 kHz) and DM 5o (in units of 30 pc em™3), we find for a Kolmogorov

spectrum
Qpy ~4.2x10%0em (DM L ‘1-5(—2—59— YWeT3[yge(z —2 ) ]128a=-5A5-5 (8.2)

where A is in meters and all other lengths are in kpe. This is an upper bound for-the outer
scale of the power-law spectrum. For spectra with 8>4 the scattering is dominated by
fluctuation scales on the order of the spot size ¢ = 8,,.(z~23). We can again scale the
fluctuation strength with the scale size to find an upper bound on the outer scale for a

B=4.3 spectrum
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ay ~ 1.5x1018cm (DM 454 --77(50(—22_2—0))-581/5605>\3-1 (8.3)

If a,; is less than the spot size ¢, then refractive fluctuations cannot be important for that
pulsar. For Vela and a few other pulsars, (8.3) is actually a significant constraint, as the
bulk of the scattering is believed to be provided by the local effect of the Gum nebula. For
Vela, a,; ~ o when f=4.3, so refractive eflfects such as frequency drifts are likely to be

quite restricted in such a steep spectrum.

Propagation-induced fluctuations can also be significant for sources other than pul-
sars. Rickett, et al. (1984) suggested that the phenomenon of low frequency variability of
extragalactic radio sources can, in many cases, be explained as a propagation effect. The
timescales inferred from a spectrum of refractive fluctuations are compatible with those
observed. Our theory predicts that the flux variations will be correlated with position
shifts and angular size variations. Although the predicted magnitudes will be small,
detection of this covariance using VLBI would allow a critical test of the ISM modulation
hypothesis. There is the further possibility that the flicker of extragalactic radio sources
(Heeschen 1984) could again be an effect of the ISM (Rickett et al. 1984 ). These variations
may, however, also be intrinsic to the sources. In this context, it is worth noting that
interstellar refraction by density irregularities should not affect the direction of linear
polarization observed from pulsars and the compact components of extragalactic radio

sources.

Observations by Lo et al. (1985) sho-w that the VLBI resolved core of the galactic
center has a diameter~ 2.1mas at A=1.35cm and scales with the observation wavelength
as ~\?, suggesting scatter-broadening. The source appears to be elongated at 3.6 cm with
an axial ratio of 1.8:1 which corresponds to an elongation parameter eg; ~.54. From the
source broadening we can estimate the scattering strength to be C_, ~ 5x10%(for g=4).
Then, using this value, we estimate the expectation value of eg at A=3.6cm for an isotropic
scattering medium and find it to be < .1 unless g is somewhat greater than 4. We note,
however, that observations of other sources near the galactic center indicate significantly
lower scatter-broadening. Hence, the bulk of the scattering medium is probably within
~100pc of the galactic center (Backer, private communication). Estimating the total
number of electrons along the line of sight via the observed total extinction, one can use
(8.2) to show that refractive eflects in the galactic center must be very small. As further

confirmation for the unimportance of refractive effects for this source, we note that the
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data of Backer & Sramek (1982) place a limit of < 10 mas on the wander of the source over
a 5 year baseline. Moreover, they ﬁnd. the centroids of the images at 3.6 cm and 11 em to
agree within 10mas, indicating that there are no large scale “prisms" in the line of sight. A
possibility one should consider is that the scattering medium in the vicinity of the galac-
tic center could be strongly anisotropic, as in the model of Higdon (1984), in which case
the image spot would be elongated in the ratio of the scattering strengths along the two
principal axes. For magnetic fields stretched in the plane of the Galaxy by differential
rotation, the long axis of the image should be perpendicular to the galactic plane, as
observed. A distinction between this picture and the random elongation we have con-
sidered (in section 2) is that the position angle of the elongation will not change as a func-
tion of time for the anisotropic medium, whereas in our theory it is expected to do soon a
timescale ~T,.;~c/v. Asecond epoch of observations separated by 2T,.; would be helpful

in clarifying this question.

In conclusion, we urge that future single dish observations of radio pulsars include
accurate measurements of the mean flux and the parameters 7, dvy,, 6t5, my, and ey
which characterise the scintillation properties. In addition we advocate a modest simul-
taneous VLBI .program of observation of pulsars such as PSR 1818-04 designed to resolve
the scatter-broadened image and detect position wander. Successful detections 6f the
predicted correlations would, in addition to determining which variations in pulsars and
extragalactic radio sources are intrinsic, also yield valuable data on the interstellar tur-
bulence spectrum of particular relevance to theories of cosmic ray propagation. They

would also motivate further calculations using the techniques outlined in this paper.
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APPENDIX A

The f; described by (2.7) are listed below for the various observables that we have
considered ,viz. flux F', angular size Q, pulse arrival time £, pulse width 7, time derivative
of flux F, position shift 68,, time derivative of position shift 6 spot elongation eZ,

decorrelation bandwidth v4,, scintillation timescale ¢, drift slope m, and elongation of

drift pattern ey.
1,242
xL - 49
fF=—Fq20'22 4 (A1>
1,242
AL 1 S
fa=- -UT(q Rg2— Zq404) e ¢ (a2)
~ Lgzg2
Fo=22L(1-Lgrors Lt e 4" (4.3)
g
1,252
% 1 e
fr=-3/2 U—Ig(q 202 L gtot+ = g% e * (a.4)
1,252
Wt =42
Fr =2 (g.0)q%0%e (a5)
) ~Lgz2
Fo0,=— Z;_g_(qua)(l_ % q2c?) e * (A.6)
AL 1 g
_f'.' =— ?(q:zaz)(l— 5 q?c®)e * (A7)
. 272 - 4o%?
7,212 = X {; (q“o“—% q808+ _116_ q%°®) e il (A.8)
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S
Fou=1/V2 frny = —2V2 —ﬁ—é’(’iqxo)(l— 2 g2+ Lo qtat)e #7 (A.12)
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We substitute these expressions into (2.5) and evaluate according to (2.11) and (2.12) to

obtain the various correlations. The autocorrelation functions are

(6F (x)6F (x+s)y=K g {° (A.13)
(6a()60(x+s) =K (9.0 —+ 98 +-=99) (A.14)
(0t ()0t (x+s)) =K (9.8 ~g8+5 99 -5 98+57 99) (a.15)
(r(x)or(x+s)y= TK (99-2 g9 +1l g8-L g+ g® (4.16)
(FR)F (x+s)y=K g (A.17)
(68, ()60, (x+s) = K (9 ~g P+ 98) (a.18)
(60, ()88, (x+s)) = é— K (hQ+h&—hQ—h? +% R +% r2) (A.19)
(0(x)8(x+s)) =K (g9*—g 4 +% g%) (A.20)
(6(var) (@) x+9) = TK(g9-2 g8 +31g9 g4z 98)  (A21)
(8t (X)ots (x+8)) = K (g * =% g4+ 94) (4.22)

(6tanw(x)dtanw(x+s)) = 2(eq(x)eqy (x+8))

5 33 5
=16K(g§—zgi°‘+—§;1—g§—ag§ 256 9%) (A.23)

Equation (A.15) diverges for §22 and (A.18), (A.19) and (A.23) for f24. These are discussed

in section 5. The others are convergent for <6, but are reliable only for §<5.

Autocorrelations with respect to changes in the observation frequency may also be
of interest and we give these for certain parameters in (A.24) to (A.27). The frequency
behaviour of position shifts are of interest since VLBl measurements can be performed at

several frequencies. Fluctuations in v4, and s should also be accessible over a moderate

frequency range.

AfAE 0107

G s

(8F (\)F (X)) e
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(Vs ()ovao )y« NE (260

(c3+03)(6-6)/2 [ 3
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6(0‘ +0'§)2 { 5 + 3 c202

A ot

+ 55 Tobiod (10-g)(12-p) (A.26)
ROV ofal
(6ts(A1)6ts (Np)) (0+0g)CB7Z 2B — 4 + (8-p)(6— ﬁ)(2—+2)§ (a.27)

where @7 3=0(\; ) and oxA8/(6-2) for <4 and ox\4/(6-f) for B24. The constants of propor-
tionality are given bif the corresponding spatial autocorrelations evaluated at zero lag,
(s =0). Numerically, we find that for f=11/3 the correlations reach their half power
points at the following values of A /Az: F, (.6,1.4); 88, (.6,1.8); v4, (.6,1.4); t;, (.6,1.4). For
B=4.3 the half power points are: F', (.7,1.8); v4,, (.6,2.5); ¢, (.8, 2.3). The fluctuation 68
grows arbitrarily large for §>4. In general, the correlations are seen to be quite broad

band.

Normalised cross-correlations are given in Table 2.

APPENDIX B

We wish to formalise the separation of the perturbation spectrum into diffractive
and refractive regimes, leading respectively to angular broadening and refractive steer-
ing of the image of a point source. Let us imagine that we image the source with a gaus-
sian aperture of full-width #. We assume that ¥ is intermediate between the diffractive
scale, @i, and the Fresnel scale, 7=VA L . (Note that, in the strong scintillation regime,

@ in << 77 << 0.) The angular amplitude of the signal received at the aperture is

d(a) = ffdzxexp 2z ]E() (B.1)

where E(x) is the instantaneous electric vector measured at the point z on the observer
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plane. If we represent the source by a plane wave incident on the phase screen at a dis-
tance L and account for the phase rotations of the electric vectors received from

different positions r» on the phase screen, we can write this as
2,72 _.ar 2z . . _(r—=z)?
o(a) ocffd xd 2r exp[—i = 2 + 1 (p(r) SIA )] (B.2)
Since W <<ry, we neglect the term in z?/LX. Integrating over x we then obtain

(o) fdz'r exp[i¢(r) — ;Zi - (7'_8‘227);”’2 ] (B.3)

We see that &(«) is dominated by a region on the screen around the point » = aL of width
4, ~VBLX/W. We now handle separately the phase fluctuations ¢.(r) due to scales
smaller than 7, and those ¢,(r) due to scales larger than 7. By Taylor expanding ¢

about r = al, we can write the argument of the exponent in (B.3) as
x(r) =i[p(r) + ¢s(al) + ¢'s(al )(r—al)

+ 298l )(r—aL)? - r2/(@LY) - L (r—ar 2 (B.4)

The angular intensity is then given by
I(a) = |&(a) |2 ffdz'rdzfr’ e X(r) +x'(r1))

We now introduce new coordinates w = r+r'—2al,v = r—r' and perform the integral over
. Since there are many diffractive scales a,;, within the range of integration, we can

ensemble average over ¢.. Thus

~3Duw) —Handsl Lo+ ge(i-ALes) e

I(a) fdz'u e (B:5)

where D 4.(v) = <[¢<(0) — ¢.(v)]?> is the phase structure function at lag v due to scales

smaller than 7y,.

Noting that the first exponential in (B.5) cuts off at v ~ @ ;,, we now show that, over
this range of v, the third exponential can be set to 1 with negligible error. For ¥ < ry, the
first term in the argument of the third exponential is ~ W2v2/r# < a2, /7% << 1. Next, we
have v2/W?~al;, /W? << 1, provided W >> ay;, as already assumed. Finally, noting that

@ min ~ (Q )~/ #2) and ¢4 (ry,) ~ BQorf 8, we have
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RL2%¢5%a 2 [emnl |*7P
we | ¢

<1

for the assumed range of W. Thus, (B.5) simplifies to

O G tRr

I{a) « fdz'u e (B.6)

Let us first neglect the contribution from ¢’s in the second exponential. /(«) is then
given by the Fourier transform of exp [—%D #(v)]. Now, Dy4(v) varies as v#~® which, for

B ~ 4, is not very different from v2. We can therefore conveniently approximate I («) by a

gaussian

F

I =
(@) = 2oz

exp(—g—;,) (B.7)

where the beam-width 8y can be determined in terms of the 1/e width of exp[—%D s<(v)]
to be

r((6-8)/2)%Q, |7*

m(4-B)(B-2)T(8/2)

This leads to equation (2.18) for ¢ = 8L . When the contribution from ¢’ is included in

(B.8), the angular intensity received is modified to

o — X¢'s(al))?
0§

1(a) = - exp[ -4 ] (B.9)

F
no§
which is equivalent to equation (2.2).

APPENDIX C

To test the accuracy of the approximations in our formalism, we compare our
results with the exact results obtained by Goodman & Narayan (1985) for the flux fluctua-

tions produced by a thin scattering screen for power-law spectra with 2<g<6. From (2.6)
we see that the spectrum of the correlation (64,(x)0Az(x+s)) is given by

R 71(q)72(2)@(g). For flux fluctuations, we substitute from (A.1) to obtain for a power-

law spectrum of index 8

Crr(q) = Qo L2q*Pexp(—% q%0?) (c1)
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In comparison, GN give for <4,

Crr(q) =W(q) = Qox* LRq* Pexp

e [
- Qref l ] G2)

We note that the normalization as well as the power-law index below the cut-off is identi-
cal. Moreover, the cut-off scales in the two formulae, viz. V2/c and 9ref » are also exactly
equal showing that our approximate theory is extremely accurate for f<4. The form of
the cut-off is gaussian in our theory because we have made the simplifying assumption of
a gaussian image whereas the exact result has the true spot shape. For <4, however, the

difference is small.

When $>4, our theory again predicts the form (C.1) and GN still give

Crr(q) = QoX* LEq*F, q < Qref (€.3)

so that the form and normalization of the spectrum below the cut-off continue to be in
perfect agreement. However, whereas in (C.1) we have a gaussian cut-off at Qrer» the true
spectrum has a second power-law regime Cpp x g ~4/(8=4), Qref <9 <qnt Out to an inter-
mediate scale q;,;. Thisregion of the spectrum arises from the patchy “fractal” nature 6f
the image and is filtered out in our gaussian approximation of the spot shape. Its contri-
bution to the flux variance is, however, quite small. Thus the rms fluctuation of flux

predicted by the present theory is
8Fyms = [KR1(0)]!/2 = (8—4)1/2 23~6/3)1(3-/2) (C4)
whereas the exact result given by Goodman and Narayan is
8Fyms = [2VB=3/(6-6) — 1]*/2 (c5)

A numerical comparison of the two formulae confirms that the agreement is quite good up

to B~4.5.

We thus find that the approximate theory that we have developed is in very good
agreement with more exact calculations in the regimes of interest. The advantage in our
approach is that it can be extended to calculate a variety of effects that would be very

difficult to compute using the more rigorous theory.
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TABLE CAPTIONS
Table 1

Numerical estimates and scalings of scintillation parameters for power-law spectra
of interstellar electron density fluctuations with g=1 1/3,4 and 4.3. D is in kpe, A in m,
C_4=10%CF (CF as in Armstrong et al. 1984) and 7y is defined in equation (7.4). The
increase in amplitude of the refractive fluctuations with increasing g is explicitly seen.
An asterisk (*) denotes an estimate for the fluctuations about the measured mean (eg.
5.5) over an observation period Ty in years. v, is the combined Earth-pulsar velocity in
107cm/sec; the equivalent spatial lag of the observation period is written s=v,T,.

'U7Ty

———-——-—-———7'50;54”0 5 ] is a logarithmic correction factor for 8, and f=4. For 824, e; and

p=In[
mgy depend strongly on the outer scale and are therefore omitted.

Table 2

Normalised cross-correlations as defined in equation (7.8) for power-law spectra of
interstellar electron density fluctuations. Each entry consists of three values corresponds

ing from top.to bottom to f= 11/3, 4 and 4.3, respectively. The flux F, angular size Q,
decorrelation bandwidth v4,, scintillation timescale {; and the position shift derivative )
correlate with one another. Cross-correlations with the pulse broadening T are identical
to those with v4,, but with the opposite sign. The rate of flux variation F correlates with
position shift 8, and drift slope my. For 24, my diverges in the absence of an outer scale

and therefore the corresponding correlations have been omitted.
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. ; g i
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