
Graph Clustering:
Algorithms, Analysis and Query Design

Thesis by
Ramya Korlakai Vinayak

In Partial Fulfillment of the Requirements for the
degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2018
Defended August 21, 2017

ii

© 2018

Ramya Korlakai Vinayak
ORCID: 0000-0003-0248-9551

All rights reserved

To Amma and Appaji,
Jalaja and Vinayak.

iv

ACKNOWLEDGEMENTS

First and foremost, I want to thank my advisor, Prof. Babak Hassibi, for his guid-
ance and kindness. He has been a great teacher and a mentor. I thank him for giving
me the opportunity to explore my research interests and help me grow as an inde-
pendent researcher. I have not only learned mathematical tools from him, but also
how to think about various problems and how approach them, and how to keep an
eye open for useful and interesting problems. I am deeply thankful to all my the-
sis committee members, Prof. Adam Wierman, Prof. Pietro Perona, Prof. Venkat
Chandrasekaran, and Prof. Yisong Yue. It has been a pleasure to have them on my
committee. Their guidance and feedback have immensely helped me in shaping my
research ideas.

My lab mates have been great company in this journey at Caltech. I would like to
thank Samet, who guided me in my first year in the lab introduced me to the problem
of graph clustering. I want to thank all my lab mates – Samet, Matt, Wei, Christos,
Weal, Ahn, Bose, Ehsan, Navid, Kishore, Fariborz, Ahmed, Anatoly, Philipp, and
Hikmet for all the wonderful conversations whether it was research or politics or
entertainment. I will dearly miss the Friday lunch group meetings. I want to thank
my undergraduate mentees, Berk, Tijana, and Anna; working with them has helped
me grow as a researcher. I also want to thank everyone from the Caltech Vision
Group for always welcoming me to their group meetings and for all the wonderful
discussions and feedback.

I am immensely thankful for my friends at Caltech. Thank you Vikas, Pinaky,
Sujeet, Nisha, Radio (Subrahmanyam), Armeen, Brian, Corina, Surabhi, Priya,
Amuthan, Eyrún, Cristina, Prachi, Anupama, Priya, and Amuthan for all the philo-
sophical discussions, fun road trips, cooking, and for being there for me in all the
ups and downs, and thanks also to Corina, Surabhi, and Catherine for being such
wonderful room mates and bringing color into otherwise gray graduate student life.
Being a woman in engineering can sometimes be a very lonely journey and I have
been fortunate to have met some wonderful women during my journey throughout
undergraduate and graduate studies. I want to thank Eyrún, Azadeh, Rose, Lavanya,
Chinmayee, Gauri, and Madeleine, who I met in graduate school, conferences, and
internships, and all my wing mates from undergraduate times for being good friends
and mentors. I want to thank all my undergraduate friends who kept in touch re-
gardless of thousands of miles of distance. Thank you Naveen, NG, Smruthi, Slinky

v

(Arun), Prasanna, Vinay, Akila, Adithi, Siva, Subhash, Prakash, and Samaadhi (Ar-
jun) for being there not only to share the good times but also for being supportive
through the tough times.

I am deeply grateful to Caltech’s International Students Program, the Caltech Y,
and the Caltech Center for Diversity for all the events that made me feel welcome
at Caltech and gave me the opportunity to experience and explore LA. I am thankful
to Shirley, Tanya, and Katie in the EE department and Tess from registrar’s office
for making my life as a student very smooth.

Last but not the least, I want to thank my family who have been supportive through-
out my life. I want to thank my mother, Jalajakshi Hegde, for being a source of
strength and always encouraging me to work towards my goals. I also want to thank
my late father, Vinayakmurthy Hegde, who was very encouraging of my goals. I
am grateful to have a wonderful sister, Rashmi Vinayak, who has always been my
source of inspiration. I am also immensely thankful to my brother-in-law Nihar
Shah for all the insightful discussions.

vi

ABSTRACT

A wide range of applications in engineering as well as the natural and social sci-
ences have datasets that are unlabeled. Clustering plays a major role in exploring
structure in such unlabeled datasets. Owing to the heterogeneity in the applica-
tions and the types of datasets available, there are plenty of clustering objectives
and algorithms. In this thesis we focus on two such clustering problems: Graph

Clustering and Crowdsourced Clustering.

In the first part, we consider the problem of graph clustering and study convex-
optimization-based clustering algorithms. Datasets are often messy – ridden with
noise, outliers (items that do not belong to any clusters), and missing data. There-
fore, we are interested in algorithms that are robust to such discrepancies. We
present and analyze convex-optimization-based clustering algorithms which aim
to recover the low-rank matrix that encodes the underlying cluster structure for two
clustering objectives: clustering partially observed graphs and clustering similarity

matrices with outliers. Using block models as generative models, we characterize
the performance of these convex clustering algorithms. In particular, we provide
explicit bounds, without any large unknown constants, on the problem parameters
that determine the success and failure of these convex approaches.

In the second part, we consider the problem of crowdsourced clustering – the task
of clustering items using answers from non-expert crowd workers who can answer
similarity comparison queries. Since the workers are not experts, they provide noisy
answers. Further, due to budget constraints, we cannot make all possible compar-
isons between items in the dataset. Thus, it is important to design queries that can

reduce the noise in the responses and design algorithms that can work with noisy

and partial data. We demonstrate that random triangle queries (where three items
are compared per query) provide less noisy data as well as greater quantity of data,
for a fixed query budget, as compared to random edge queries (where two items
are compared per query). We extend the analysis of convex clustering algorithms
to show that the exact recovery guarantees hold for triangle queries despite involv-
ing dependent edges. In addition to random querying strategies, we also present a
novel active querying algorithm that is guaranteed to find all the clusters regardless
of their sizes and without the knowledge of any parameters as long as the workers
are better than random guessers. We also provide a tight upper bound on the number
of queries made by the proposed active querying algorithm. Apart from providing

vii

theoretical guarantees for the clustering algorithms we also apply our algorithms to
real datasets.

viii

PUBLISHED CONTENT AND CONTRIBUTIONS

[VH16a] Ramya Korlakai Vinayak and Babak Hassibi. “Crowdsourced Clus-
tering: Querying Edges vs Triangles”. In: Advances in Neural Infor-
mation Processing Systems. 2016, pp. 1316–1324. url: http : / /
papers.nips.cc/paper/6499-crowdsourced-clustering-
querying-edges-vs-triangles.pdf.
Ramya Korlakai Vinayak is the lead author and main contributor to
the above paper.

[VH16b] Ramya Korlakai Vinayak and Babak Hassibi. “Similarity clustering
in the presence of outliers: Exact recovery via convex program”. In:
IEEE International Symposium on Information Theory (ISIT). 2016,
pp. 91–95. url: http : / / ieeexplore . ieee . org / abstract /
document/7541267/.
Ramya Korlakai Vinayak is the lead author and main contributor to
the above paper.

[VOH14a] Ramya Korlakai Vinayak, Samet Oymak, and Babak Hassibi. “Graph
clustering with missing data: Convex algorithms and analysis”. In: Ad-
vances in Neural Information Processing Systems. 2014, pp. 2996–
3004. url: http : / / papers . nips . cc / paper / 5309 - graph -
clustering-with-missing-data-convex-algorithms-and-
analysis.pdf.
Ramya Korlakai Vinayak is the lead author and main contributor to
the above paper.

[VOH14b] Ramya Korlakai Vinayak, Samet Oymak, and Babak Hassibi. “Sharp
performance bounds for graph clustering via convex optimization”. In:
IEEE International Conference on Acoustics Speech and Signal Pro-
cessing (ICASSP). 2014, pp. 8297–8301. url: http://ieeexplore.
ieee.org/abstract/document/6855219/.
Ramya Korlakai Vinayak is the lead author and main contributor to
the above paper.

[VZH17] Ramya Korlakai Vinayak, Tijana Zrnic, and Babak Hassibi. “Tensor-
based Crowdsourced Clustering via Triangle Queries”. In: IEEE In-
ternational Conference on Acoustics Speech and Signal Processing
(ICASSP). 2017. url: http://ieeexplore.ieee.org/abstract/
document/7952571/.
Ramya Korlakai Vinayak is the lead author and main contributor to
the above paper.

http://papers.nips.cc/paper/6499-crowdsourced-clustering-querying-edges-vs-triangles.pdf
http://papers.nips.cc/paper/6499-crowdsourced-clustering-querying-edges-vs-triangles.pdf
http://papers.nips.cc/paper/6499-crowdsourced-clustering-querying-edges-vs-triangles.pdf
http://ieeexplore.ieee.org/abstract/document/7541267/
http://ieeexplore.ieee.org/abstract/document/7541267/
http://papers.nips.cc/paper/5309-graph-clustering-with-missing-data-convex-algorithms-and-analysis.pdf
http://papers.nips.cc/paper/5309-graph-clustering-with-missing-data-convex-algorithms-and-analysis.pdf
http://papers.nips.cc/paper/5309-graph-clustering-with-missing-data-convex-algorithms-and-analysis.pdf
http://ieeexplore.ieee.org/abstract/document/6855219/
http://ieeexplore.ieee.org/abstract/document/6855219/
http://ieeexplore.ieee.org/abstract/document/7952571/
http://ieeexplore.ieee.org/abstract/document/7952571/

ix

TABLE OF CONTENTS

Acknowledgements . iv
Abstract . vi
Published Content and Contributions . viii
Table of Contents . ix
List of Illustrations . xi
List of Tables . xiv
Chapter I: Introduction . 1

1.1 Graph Clustering . 2
1.2 Crowdsourced Clustering . 9

Chapter II: Graph Clustering With Missing Data 13
2.1 Introduction . 13
2.2 Generative Model for Partially Observed Graphs 18
2.3 Exact Recovery Guarantees . 19
2.4 Experimental Results . 27
2.5 Outline of the Proofs . 32
2.6 Summary . 37

Chapter III: Similarity Clustering In the Presence of Outliers 38
3.1 Introduction . 38
3.2 Generative Model for Similarity Matrices 42
3.3 Exact Recovery Guarantees In the Presence of Outliers 43
3.4 Simulations . 48
3.5 Experiments on Real Datasets . 50
3.6 Summary . 51

Chapter IV: Crowdsourced Clustering: Triangle vs Edge Query 53
4.1 Introduction . 53
4.2 Generative Models . 57
4.3 Value of a Query . 61
4.4 Guaranteed Recovery of the True Adjacency Matrix 62
4.5 Performance of Spectral Clustering: Simulated Experiments 63
4.6 Experiments on Real Data . 64
4.7 Summary . 66

Chapter V: Crowdsourced Clustering: Tensor Embedding for Triangle Queries 68
5.1 Introduction . 68
5.2 Tensors: A Quick Recap . 70
5.3 Tensor Embedding for Triangle Queries 70
5.4 Numerical Experiments . 75
5.5 Summary . 77

Chapter VI: Crowdsourced Clustering: Active Querying 79
6.1 Introduction . 79

x

6.2 Problem Setup . 81
6.3 Active Query Algorithms and Performance Guarantees 83
6.4 Simulations . 90
6.5 Experiments Using Real Data . 93
6.6 Summary . 96

Chapter VII: Conclusions and Future Work 97
7.1 Future Directions . 97

Bibliography . 101
Appendix A: Proofs for results in Chapter 2 111

A.1 Proof of Results for Simple Convex Program (Theorem 1) 111
A.2 Proof of Results for Improved Convex Program (Theorem 2) 128

Appendix B: Proofs for results in Chapter 3 136
B.1 Proof Sketches . 136
B.2 No Outliers . 138
B.3 Large Number of Outliers . 142
B.4 Small Number of Outliers . 143

Appendix C: Proofs for results in Chapter 6 146
C.1 Proof for Propositions 1 and 2 . 146
C.2 Proof of Corollary 1 and Theorem 9 148
C.3 Pseudocode . 151

xi

LIST OF ILLUSTRATIONS

Number Page

1.1 Visualization of an example social network. 3
1.2 Visualization of an example protein-protein interaction network . . . 3
1.3 [A toy example for graph clustering. 5
1.4 Example of an edge query: “Do these two birds belong to the same

species?” . 10
1.5 Example of a triangle query: “Which of these birds belong to the

same species?” . 10
1.6 Configurations for a triangle query. 11
2.1 [A toy example for graph clustering. 14
2.2 Depiction of exact recovery guarantee for Simple Program 21
2.3 Region of success (white region) and failure (black region) of Pro-

gram 2.1.4 with λ = 1.01D−1
min. The solid red curve is the threshold

for success (λ < Λsucc) and the dashed green line which is the thresh-
old for failure (λ > Λfail) as predicted by Theorem 1. 26

2.4 Region of success (white region) and failure (black region) of Pro-
gram 2.1.4 with λ = 1.01D−1

min. The solid red curve is the threshold
for success (λ < Λsucc) and the dashed green line which is the thresh-
old for failure (λ > Λfail) as predicted by Theorem 1. 27

2.5 Region of success (white region) and failure (black region) of Pro-
gram 2.1.7 with λ = 0.49Λ̃succ. The solid red curve is the threshold
for success (D̃min > lambda−1) as predicted by Theorem 2. 28

2.6 Comparison range of edge probability p for Simple Program 2.1.4
and Improved Program 2.1.7. 28

2.7 Result of using (a) Program 2.1.4 (Simple) and (b) Program 2.1.7
(Improved) on the real data set. 30

2.8 Comparing the clustering output after running Program 2.1.4 and
Program 2.1.7 with the output of applying k-means clustering di-
rectly on A (with unknown entries set to 0). 30

2.9 Plot of sorted eigen values for (1) Adjacency matrix with unknown
entries filled by 0, (2) Recovered adjacency matrix from Program 2.1.4,
(3) Recovered adjacency matrix from Program 2.1.7 32

xii

2.10 Sample images of three breeds of dogs that were used in the MTurk
experiment. 33

2.11 Illustration of {Ri,j} dividing [n] × [n] into disjoint regions similar
to a grid . 35

3.1 Fraction of correct entries in the solution obtained by running Pro-
gram 3.1.1 with n = 100, similarity between the clusters: µout = 0.2,
standard deviation of noise: σ = 0.1 and varying similarity inside the
clusters µin, for the three cases: (1) no outliers, (2) small number of
outliers and (3) large number of outliers. Solid blue line is the curve
from the simulations and the dashed green line is the threshold for
µin predicted by theory. 48

3.2 Region of success (white) and failure (black) for Program 3.1.1 on
synthetic data of n = 600, µout = 0.20, for varying µin and σ with
(1) 3 clusters size 200 each (no outliers), λ = 1.001Λ, (2) 2 clusters
of size 200 and rest nout = 200 outliers, λ = 1.001(Λ + µoutnout)

(recover only the clusters), (3) 2 clusters of size 200 and rest nout =

200 outliers, λ = 1.001Λ (recover outliers as a cluster). The dotted
red lines are the thresholds for µin predicted by the theory for the
corresponding σ. 50

3.3 Rounded output after running Program 3.1.1 on real datasets. (1) Iris
and (2) digit1000. 52

3.4 Sorted eigenvalues for the rounded output X and the normalized
Laplacian of the similarity matrix A for Iris and digit1000 datasets. 52

4.1 Example of an edge query: “Do these two birds belong to the same
species?” . 54

4.2 Example of a triangle query: “Which of these birds belong to the
same species?” . 54

4.3 Configurations for a triangle query that are (a) observed and (b) not
allowed. 55

4.4 Fraction of entries in error in the matrix recovered via Program 4.4.1. 61
4.5 VI for Spectral Clustering output for varying edge density inside the clusters. 64
4.6 VI for Spectral Clustering output for varying number of clusters (K). 64
5.1 Example of a triangle query. 69
5.2 Configurations for a triangle query that are (a) observed and (b) not

allowed. 69

xiii

5.3 Comparison of VI (averaged over 10 experiments) for clustering us-
ing the tensor (filled using different encoding schemes) compared to
that obtained using adjacency matrix, for varying different parame-
ters for the Conditional Block Model (Section 5.4.3). 75

5.4 Comparison of VI (averaged over 10 experiments) for clustering us-
ing the tensor (filled using different encoding schemes) compared to
that obtained using adjacency matrix, for varying different parame-
ters for the Triangle Block Model (Section 5.4.3) 76

6.1 Comparison of the upper bounds on the total number of queries re-
quired for exact clustering by active and random querying for large
clusters (size Θ(n)) . 89

6.2 Comparison of the upper bounds on the total number of queries re-
quired for exact clustering by active and random querying for small
clusters (size Θ(

√
n)) . 89

6.3 Empirical pdf of Tij . 90
6.4 Minimum, maximum, median, mean (along with standard deviation)

of the number of repeated queries as a function of varying error prob-
ability (p). Averaged over 10 trials). 91

6.5 Minimum, maximum, median, mean (along with standard deviation)
of the number of repeated queries as a function of varying number of
clusters (K). Averaged over 10 trials. 91

6.6 Minimum, maximum, median, mean (along with standard deviation)
of the number of repeated queries as a function of varying number of
items (n). Averaged over 10 trials. 92

6.7 Cumulative averages of the answers given by crowdworkers for re-
peated queries for 6 sample items. The first row corresponds to the
experiment where Query(i, j) is repeated with same j and the second
row corresponds to the experiment where j is chosen randomly from
cluster(j) each time. Note that the true answer is at the top of each
plot. 94

A.1 Illustration of {Ri,j} dividing [n] × [n] into disjoint regions similar
to a grid . 112

xiv

LIST OF TABLES

Number Page

2.1 Empirical Parameters from the real data. 32
2.2 Number of miss-classified images 32
3.1 Percentage of mis-classified data points 51
4.1 Query confusion matrix for the triangle block model for the homo-

geneous case. 58
4.2 Query confusion matrix for the conditional block model for the ho-

mogeneous case. 59
4.3 Summary of the data colleced in the real experiments. 65
4.4 VI for clustering output by k-means and spectral clustering for the

Dogs3 dataset. 65
4.5 VI for clustering output by k-means and spectral clustering for the

Birds5 dataset. 65
6.1 Various statistics for the number of repeated queries, the total num-

ber of queries made and the percentage of node pairs in error after
running Algorithm 2 on the real datasets. 95

1

C h a p t e r 1

INTRODUCTION

Unsupervised learning plays a crucial role in finding patterns and extracting useful
information from unlabeled data. Clustering is the most widely used unsupervised
learning tool. Many applications have data that is unlabeled, for example, biolog-
ical images, data from observational astronomy, images, videos and texts on the
internet, and so on. Clustering broadly refers to grouping together data items that
are similar.

Clustering is in general an ill-posed problem and is meaningful when defined more
concretely for a given objective. There are two main aspects to clustering. The first
aspect concerns with the representation of data, the definitions of similarity and
clusters, and the evaluation metrics. As the applications and the types of data avail-
able differ widely, so do the representations of data and definitions of similarity and
clusters. The second aspect deals with algorithms for clustering a dataset, given an
objective. This thesis looks at the second aspect in the context of graph clustering

and crowdsourced clustering.

Clustering or cluster analysis originated in the 1930’s with the work of Driver and
Kroeber [DK32] in anthropology to understand the similarities between different
cultural tribes in the Americas and was further used in psychology [Zub38; Try39]
for personality analysis. Today clustering is an essential tool for quantitative anal-
ysis in many applications in engineering, the natural and social sciences. Given its
applications in various areas, different point of views and many algorithms have
been proposed. Hierarchical clustering, center based clustering, density based clus-
tering, data partitioning, mixture models, etc., are some of the examples of different
view points for clustering. There are many clustering algorithms, like k-means, k-
median, linkage based agglomorative algorithms, partition based algorithms, spec-
tral clustering, expectation-maximization, and variational inference based maxi-
mum likelihood algorithms, message passing algorithms, Monte Carlo methods,
and many more. Given the breadth of research in clustering, an in-depth survey of
the subject is out of the scope of this thesis. We refer the readers to the surveys and
books dedicated to clustering [JMF99; VB05; AR13; XT15].

Crowdsourcing – as the name suggests – refers to using a crowd of potentially

2

non-expert humans to solve problems that are difficult to solve by machines. Us-
ing crowdsourcing to collect labeled data became popular around mid-2000’s with
games with a purpose [Von06] and recaptcha [Von+08]. Today crowdsourcing is
used for a wide variety of tasks including collecting data [Ray+10], surveys [Beh+11],
and tasks like translation, summarization, transliteration [Sno+08; SBS12; Kha+14],
and many more. There are several platforms such as Amazon Mechanical Turk and
Crowdflower available that bring the requesters (those who want the tasks done)
and workers (those who are willing to do the tasks for monetary compensation or
voluntarily) together. Many times enthusiastic general public voluntarily contribute
to scientific discoveries via platforms like Zooinverse, Planet Hunters, etc. Applica-
tions of crowdsourcing for academic endeavors range from creating labeled datasets
for training and testing supervised machine learning algorithms [Ray+10; Sno+08;
Von+08; SF08; Wel+10; Yi+12] to making scientific discoveries [SPD14; Lin+13].
In this thesis, we focus on using crowdsourcing for clustering.

In the rest of this chapter we discuss the motivation and relevant literature, and
summarize the contributions made in this thesis for problems in graph clustering
and crowdsourced clustering.

1.1 Graph Clustering
In many applications the data has an inherent graph structure associated with it. For
example, in a social network (Figure 1.1), individuals are the nodes in the graph and
the edges represent the relationship between the individuals. In a protein-protein
interaction network (Figure 1.2), proteins are the nodes in the graph and the edges
represent the biochemical or electrostatic interaction between the proteins. It is
often of interest to find a group of nodes in a graph that share high edge density
inside the group compared to the density of the edges shared with the other groups
in the graph. Such a group of nodes is called a cluster. In the example of a so-
cial network, one might be interested in finding a group of people who share the
same taste in movies or sports. In a protein-protein network, understanding the
grouping of different proteins can provide insights into various processes and re-
actions inside the cells. Thus, given an unweighted graph, finding nodes that are
well-connected with each other is a very useful problem with wide applications in
social networks [Mis+07; For10], data mining [DR01], biology and bioinformat-
ics [LJG01; XOX02; KPJ04; AS06], sensor networks [YF04], astronomy [BBS85],
and many more.

3

Figure 1.1: Visualization of a social network around an individual [urla].

Figure 1.2: Visualization of a protein interaction network in Huntington’s dis-
ease [urlb].

4

Different versions of this problem have been studied as graph clustering [Sch07;
FTT04; CGW05], correlation clustering [EF03; BBC04; GG06], graph partition-
ing on planted partition model [CK01; McS01], community detection [FH16], etc.
Many graph clustering objectives are NP-hard in the worst case. However, real
world datasets are more structured and it is frequently observed that simple cluster-
ing algorithms perform quite well in practice. A natural question that arises is:

what are the structural properties of datasets that enable

computationally efficient clustering?

The pertinent questions are: (1) How much should the difference between the edge
density (or similarity) between the nodes inside a cluster and the edge density (or
similarity) between the nodes from different clusters be? (2) When can we be con-
fident that this difference is due to underlying structure in the data and not out of
randomness or due to noise?

In order to understand these fundamental bottlenecks, we study simple generative
block models which assume different distribution of edges (or similarity) inside the
clusters and between the clusters. For example, consider the case of an unweighted
graph with disjoint clusters. A popular block model in this setting is the Stochastic

Block Model (SBM) or the planted partition model [HLL83; CK01] which assumes
that given the assignment of nodes in a graph to (disjoint) clusters, each pair of
nodes i and j is connected independently with probability p if they are in the same
cluster and with probability q otherwise. Using the Stochastic Block Model, our
analysis of simple convex programs for graph clustering (based on low-rank plus
sparse decomposition of the adjacency matrix) shows that clusters that are small
and sparse are the bottlenecks.

A common and well justified criticism of such block models is that they are not
realistic. While the block models are simplistic, they capture the essence of the
problem without getting lost in too many details. Studying these simple models
can provide valuable insights into the fundamental bottlenecks for clustering. As
statistician George Box famously said [B+87]:

“Essentially, all models are wrong, but some are useful.”

5

(a) Toy example. (b) Ideal clusters.

Figure 1.3: A toy example for a graph clustering with clusters (a) and the corre-
sponding ideal cluster structure (b).

Convex Programs for Clustering

Real world datasets are messy. They are noisy, have missing data and contain out-
liers – nodes that do not belong to any clusters. We need clustering algorithms to be
robust to such discrepancies. We also want the algorithms to be tractable and com-
putationally efficient. Further, we want these algorithms to be amenable to analysis
that help us understand their strengths and weaknesses and provide guarantees as to
when they can successfully recover the clusters.

Suppose a given graph has clusters. For example, consider the graph in Figure 1.3a,
which has the following adjacency matrix:

1 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1



.

The above adjacency matrix can be looked at as the adjacency matrix of an ideal

6

cluster structure that is a union of disjoint cliques (see Figure 1.3b):

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1



,

(note that the rank of this matrix is 3 which is equal to the number of clusters in this
example) plus noise that captures the missing edges inside the cliques and the extra
edges that go between the cliques. Note that the adjacency matrix corresponding to
a union of disjoint cliques (Figure 1.3b) has rank equal to the number of clusters (we
assume that the diagonal of the adjacency matrix is all 1’s). In many applications
the number of clusters is much smaller than the number of nodes in the graph, and
hence the ideal clustered graph has a low-rank adjacency matrix. Our aim is to
recover the low-rank matrix corresponding to the union of disjoint cliques since it
is equivalent to finding the clusters.

Several graph clustering objectives can be posed as low-rank matrix recovery and
completion problems. Developments in convex optimization techniques to recover
low-rank matrices [CR09; Can+11; CPW10; Cha+11] via nuclear norm 1 minimiza-
tion has recently led to the development of several convex algorithms to recover
clusters in a graph [XCS10; AV14; AV11; Che+14; OH11; CSX12; Ame13]. This
convex approach is robust to noise, outliers, missing data and unbalanced clusters.
Moreover, these convex approaches are often semi-definite programs (SDPs) that
have polynomial computational complexity.

We consider convex algorithms for two clustering objectives. The first objective we
consider is the problem of finding clusters in an unweighted graph when only partial
observations are available. The second is the problem of clustering a similarity
matrix or, equivalently, a weighted graph in the presence of outliers. Chapter 2 and
Chapter 3 of this thesis are devoted to these two objectives.

1Nuclear norm of a matrix is the sum of the singular values of the matrix.

7

Graph Clustering with Missing Data

Clearly, a graph on n nodes has
(
n
2

)
possible edges. In many practical scenarios, it

is too expensive to measure or infer the existence or non-existence of each of these
edges. Thus the problem of finding clusters in a graph that is partially observed or
has missing data is of interest.

Our goal is to understand the fundamental trade-offs of this problem. In particular,
we are interested in exploring the following questions:

1. How much noise can be tolerated? In particular, how much should the sepa-
ration between the density of edges inside and between the clusters be?

2. How many observations are required to guarantee the exact recovery of clus-
ters?

3. How large should the clusters be relative to the size of the graph for them to
recovered exactly? How much does the balanced or unbalancedness of the
relative cluster sizes matter?

4. How does the presence of outliers affect the ability to recover the clusters?

We consider two convex programs based on low-rank plus sparse decomposition of
the observed adjacency matrix. We analyze their performances using the popular
Stochastic Block Model where the edges in the graph are independent and (in the
simplest case) exist with probability p inside the clusters and q between the clusters.
To incorporate missing data, we further assume that each edge is independently
observed with probability r. We show that the clusters that are both small and sparse
are the bottlenecks. In simple terms, we show the following sufficient condition for
exact recovery of clusters:

nmin ≥ 2σ

√
n√

r (p− q)
,

where nmin is the size of the smallest cluster and σ captures the noise due to the
missing edges inside the cliques and the extra edges that go between the cliques.
When

√
r(p− q) = Θ(1), our result shows that the sufficient condition for exact re-

covery requires the minimum cluster size to be at least Ω(
√
n) which improves the

previously known bound of Ω(
√
n(log n)4). Unlike previous results on convex al-

gorithms for graph clustering [AV11; OH11; CSX12; Ame13; Che+14; AV14], our

8

results do not involve unknown large constants. Furthermore, our analysis also pro-
vides precise conditions under which the convex approach fails in exact recovery,
thus advancing the understanding of the phase transition from failure to success for
the convex approach. Apart from providing theoretical guarantees for the problem
considered and corroborating them with simulations, we also apply the convex pro-
gram to a real data set obtained by crowdsourcing an image labeling task. Chapter 2
presents details of the problem of graph clustering with missing data and is based
on the following papers [VOH14b; VOH14a].

Similarity Clustering in the Presence of Outliers

Several datasets have heterogeneous attributes, e.g. in census data, each individual
person has attributes such as age and income which are numerical and race, reli-
gion, address etc., that are categorical. Depending on the application domain, it is
often possible to construct a similarity map that assigns a numerical value to how
similar two data items are, using which we can construct a similarity matrix. Such
similarity matrices are generaly noisy because of the inherent noise in the data itself
and the imperfections in the similarity maps. The data might also contain outliers,
that is, data points that do not belong to any cluster.

We consider a convex program that aims to recover a (low-rank) matrix that reflects
the true cluster structure from the noisy similarity matrix with outliers and no other
side information. We analyze the convex program for a generative block model and
provide precise thresholds (not orderwise) as a function of the problem parameters
for successfully recovering the clusters. In simple terms we show the following
sufficient condition for exact recovery of clusters:

nmin ≥
2
√
n σ + 1

µin − µout
,

where µin and µout are the average similarities inside and between the clusters re-
spectively and σ is the standard deviation of the noise in the similarity matrix. Al-
though our analysis uses the problem parameters, the program itself does not need
to know them.

In the case of unweighted graphs, l1 penalty on the noise is a natural loss function
and as an added bonus the l1 penalty is also robust to outliers. However, for similar-
ity matrices (or weighted graphs) the l1 penalty does not fit the noise characteristics.
Instead a squared error loss function is more appropriate. Since squared error loss

9

is not inherently robust to outliers, we need to understand how the presence of out-
liers affect the recovery of clusters. We show that, in the presence of a large number
of outliers (≥ Ω(

√
n)), the convex program forces the outliers to form their own

cluster without disturbing the structure of the rest of the clusters.

Our analysis provides a complete picture of the fundamental bottlenecks of the sim-
ple convex program for similarity clustering. In contrast to the previously known
results in this area [Ame14], our results do not involve large unknown constants and
provides insights into the behavior of the solution in the presence of large number of
outliers as well as the effect of noise variance. We corroborate our theoretical guar-
antees with extensive numerical simulations as well as evaluate the performance
of the convex program on real datasets. Details on this problem are presented in
Chapter 3 and are based on the following paper [VH16b].

1.2 Crowdsourced Clustering
There is an abundant amount of data, for example billions of images, texts, that can
be readily scraped from the internet. However, most of these datasets are unlabeled
and it is unclear what structures might exist in them. Crowdsourcing can be a
very useful resource to explore structure in data [Wel+10]. Consider the task of
collecting labels for unlabeled images of dogs of different breeds. To label each
image of a dog, a worker should either be trained on dog breeds or one needs to
hire workers who are experts in identifying dog breeds. Since hiring experts or
training non-experts is expensive, we propose an alternate approach of clustering
the images using comparison tasks. While the crowd workers may not be able to
label an unlabeled image of a dog directly, they can compare pairs of images of
dogs and judge whether they are from the same breed or not. Though different
workers might use different criteria, e.g., color of the fur, size of the dog, shape
of the ears, etc., we can reasonably resolve the clusters (and label each) from the
adjacency matrix filled using responses from the crowd workers [VH15]. Since
the crowd workers are often non-experts, the answers obtained will invariably be
noisy. Furthermore, due to budget constraints, we cannot make all

(
n
2

)
pairwise

comparisons. Therefore, both the problem of designing queries to obtain quality

data from non-expert workers and the problem of designing robust algorithms to

reliably cluster noisy and partially observed data are of importance. Chapters 4, 5,
and 6 of this thesis are dedicated to exploring these problems.

10

Figure 1.4: Example of an edge query: “Do these two birds belong to the same
species?”

Triangle vs. Edge Querying

In any crowdsourcing system, we expect noisy answers from the crowd workers.
Noise in the responses from crowd workers is not solely due to their lack of ex-
pertize or ability. Design of queries has a significant impact on the noise levels
in the responses by the crowd workers. In Chapter 4 we consider the problem of
crowdsourced clustering using similarity queries and compare two types of queries:
(1) random edge queries, where a pair of images is revealed for comparison (Fig-
ure 1.4), and (2) random triangle queries, where a triplet is revealed (Figure 1.5).
Using intuitive generative models, we show that the average number of errors in
the entries of the adjacency matrix decreases when it is filled via triangle queries

Figure 1.5: Example of a triangle query: “Which of these birds belong to the same
species?”

11

1"

2" 3"
lll!

1"

2" 3"llm!

1"

2" 3"lml!

1"

2" 3"mll!

1"

2" 3"lmj!

1"

2" 3"

1"

2" 3"

1"

2" 3"

(a)"Allowed" (b)"Not"allowed"Figure 1.6: Configurations for a triangle query.

compared to when it is filled using using edge queries. Empirical evidence, based
on extensive simulations, as well as experiments on Amazon Mechanical Turk us-
ing two real data sets, strongly suggests that, for a fixed query budget (the cost of
a query is set proportional to the average response time of the workers), triangle
queries significantly outperform edge queries. In particular, under a fixed budget,

triangle queries double the number of observed entries of the adjacency matrix

while decreasing the average number of errors by 5%.

For reliably clustering the noisy and partially observed data, we leverage the con-
vex algorithms and analysis from our study of graph clustering. Our analysis of
the graph clustering problem (recall the discussion in Section 1.1 and for details
see Chapter 2) provides us the insight that convex clustering algorithms perform
well when there is a good separation between the edge density inside and between
clusters and when we make enough observations. Since triangle queries reduce the
noise and provide more data, we expect graph clustering algorithms to work better
on the adjacency matrices filled using triangle queries. However, the analysis in
Chapter 2 assumes that the entries of the adjacency matrix are independent, which
does not hold when it is filled via triangle queries. We extend the analysis to provide
theoretical guarantee for the exact recovery of clusters via random triangle queries.
Chapter 4 has more details and is based on the following paper [VH16a]).

Tensor Embedding for Triangle Queries

In Chapter 4, we demonstrate that using triangle queries to fill the adjacency matrix
gives better clustering results than using edge queries. However, it does not exploit
the fact that the response to a triangle query is associated with a triplet and a natural
question that arises at this point is whether exploiting this fact adds any benefit. We
explore this question in Chapter 5.

An edge query has two possible answers, and any choice of two symbols to repre-
sent them will give a true adjacency matrix whose rank is equal to the number of

12

clusters. In contrast, there are 5 possible answers to a triangle query (Figure 1.6) and
in general we need 5 symbols to represent them. We can then embed the responses
to the triangle queries into a 3-rd order tensor. Surprisingly, any arbitrary choice
of symbols will generally not lead to a true tensor with rank equal to the number
of clusters. We propose a general encoding scheme and provide sufficient condi-
tions on it to give a true tensor with unique low-rank CP-decomposition with rank
equal to the number of clusters. We also provide extensive numerical simulations
that show that using tensor decomposition methods can improve over clustering ob-
tained via the adjacency matrix. Details are available in Chapter 5 (which is based
the following paper [VZH17]).

Active Querying for Crowdsourced Clustering

Querying for similarity between random pairs or triples of items followed by per-
forming clustering on the adjacency matrix filled using these queries provides rea-
sonable clusters. However, the bottlenecks in terms of how many observations are
needed and what is the size of the smallest cluster that can be recovered are dic-
tated by the graph clustering step. A natural question that arises is whether we can
escape these bottlenecks as we are using crowdsourcing. We explore this question
in Chapter 6 and consider an active querying setting for crowdsourced clustering.
We propose a novel algorithm which uses confidence intervals that shrink as more
queries are made and is based on the law of the iterated logarithm [Jam+14]. The
algorithm we propose can reliably find the clusters without the knowledge of any
parameters and without the small cluster barrier posed by graph clustering. In par-
ticular, under mild assumptions, we show that the number of queries made by the
proposed algorithm is upper bounded by,

O
(
nK

∆2
log

(
n log

1

∆

))
,

where ∆ := min{p− 1
2
, 1

2
− q}. In contrast with the state-of-the-art algorithms for

this setting [MS16], our algorithm is parameter free, computationally efficient and

can recover clusters regardless of their cluster sizes. In addition to the theoretical
guarantees, we also provide extensive numerical simulations as well as experiments
on real datasets, using both synthetic and real crowd workers. Chapter 6 provides
the details of active querying for crowdsourced clustering.

13

C h a p t e r 2

GRAPH CLUSTERING WITH MISSING DATA

In this chapter, we consider the problem of finding clusters in an unweighted graph
when the graph is partially observed. We analyze two programs that are based on
the convex optimization approach for low-rank matrix recovery using nuclear norm
minimization with l1-norm penalty on the noise. For the commonly used Stochastic
Block Model, we obtain explicit bounds (not orderwise) on the parameters of the
problem (size and sparsity of clusters, the amount of observed data) and the regular-
ization parameter that characterize the success and failure of the convex programs.
We corroborate our theoretical findings through extensive simulations. We also
run our algorithm on a real data set obtained from crowd sourcing an image clus-
tering task on the Amazon Mechanical Turk, and observe significant performance
improvement over traditional clustering methods such as k-means and spectral clus-
tering. This chapter is based on our papers [VOH14b; VOH14a].

2.1 Introduction
Clustering [JMF99] broadly refers to the problem of identifying data points that are
similar to each other. It has applications in various problems in machine learning,
data mining [EKX95; XJK99], social networks [Mis+07; DR01; For10], bioinfor-
matics [XOX02; YL05], etc. In many applications, data has a graphical structure.
For example, in social network, individuals are the nodes in the graph and the edges
represent friendship between the nodes. Another example is a protein-protein inter-
action network, where the nodes in the graph are proteins and an edge between two
proteins represents biochemical or electrostatic interaction between them. Given an
unweighted graph, we define a cluster as a set of nodes that are densely connected
to each other when compared to the rest of the nodes. Finding clusters in a graph
can be useful in exploring and understanding the underlying structure in the data.
For example, identifying clusters in a protein-protein interaction network can help
us understand the functions of these proteins and gain insights into the processes
they influence. Thus, the problem of finding clusters in a graph, that is, graph clus-

tering [Sch07], is of importance. Clearly, observing an entire graph on n nodes
requires

(
n
2

)
measurements. In many practical scenarios this is too expensive and

we can only expect to have partial observations. That is, for some node pairs we

14

know whether there exists an edge between them or not, whereas for the rest of the
node pairs we do not have this knowledge. Given a graph with partial observations,
we still want to identify the underlying clusters. This leads us to the problem of
clustering graphs with missing data.

In this chapter, we consider the problem of identifying clusters when the input
is a partially observed adjacency matrix of an unweighted graph and look at two
convex algorithms in this regard. We use the popular Stochastic Block Model

(SBM) [HLL83], also called as Planted Partition Model [CK01], to analyze the
performance of these convex algorithms. SBM is a random graph model where the
edge probability depends on whether the pair of nodes being considered belong to
the same cluster or not. More specifically, the edge probability is higher when both
nodes belong to the same cluster. Further, we assume that each entry of the adja-
cency matrix of the graph is observed independently with probability r. We will
define the model in detail in Section 2.2.

2.1.1 Clustering by Low-Rank Matrix Recovery and Completion
The idea of using convex optimization for clustering has been proposed in [XCS10;
Che+14; AV14; AV11; OH11; CSX12; Che+14]. While each of these works dif-
fer in certain ways, and we will comment on their relation to the current paper in
Section 2.1.3, the common approach they use for clustering is inspired by recent
works on low-rank matrix recovery and completion via regularized nuclear norm
(trace norm) minimization [CR06; CR09; Can+11; CPW10; Cha+11].

In the case of unweighted graphs, an ideal clustered graph is a union of disjoint

(a) Toy example. (b) Ideal clusters.

Figure 2.1: A toy example for a graph clustering with clusters (a) and the corre-
sponding ideal cluster structure (b).

15

cliques (Figure 2.1b). Given the adjacency matrix of an unweighted graph with
clusters – denser connectivity inside the clusters compared to outside (Figure 2.1a),
we can interpret it as an ideal clustered graph with some missing edges inside the
clusters and some erroneous edges in between the clusters. Recovering the low-rank
matrix corresponding to the disjoint cliques is equivalent to finding the clusters.

Ideally we want to solve the following optimization problem:

minimize
L,S

rank (L) + λ‖S‖0 (2.1.1)

subject to

Li,j ∈ {0, 1}, (2.1.2)

Lobs + Sobs = Aobs, (2.1.3)

where rank(Y) is the rank of the matrix Y, ‖Y‖0 is the l0-norm of Y (number of
non-zero entries in the matrix Y), Lobs and Sobs are the low-rank and sparse parse
matrices respectively over the observed entries of A, and λ ≥ 0 is the regular-
ization parameter that balances the weight between rank(L) and ‖S‖0. The above
optimization problem (Program 2.1.1) is NP-hard. Both the terms in the loss func-
tion, rank(.) and l0-norm, are non-convex functions. Furthermore, the constraint
on the entries of L (Equation 2.1.2) is a very difficult set to optimize over. We
note that the objective is a low-rank matrix recovery and completion problem with
sparse corruption. This problem can be relaxed to a tractable convex program. We
consider the following convex program which aims to recover and complete the
low-rank matrix (L) from the partially observed adjacency matrix (Aobs):

Simple Convex Program:

minimize
L,S

‖L‖? + λ‖S‖1 (2.1.4)

subject to

1 ≥ Li,j ≥ 0 for all i, j ∈ {1, 2, . . . n} (2.1.5)

Lobs + Sobs = Aobs, (2.1.6)

where λ ≥ 0 is the regularization parameter, ‖.‖? is the nuclear norm (sum of
the singular values of the matrix), and ‖.‖1 is the l1-norm (sum of absolute values
of the entries of the matrix). S is the sparse error matrix that accounts for the
missing edges inside the clusters and the erroneous edges outside the clusters on
the observed entries. Lobs and Sobs denote entries of L and S that correspond to the
observed part of the adjacency matrix.

16

Program 2.1.4 is very simple and intuitive. Further, it does not require any informa-
tion other than the observed part of the adjacency matrix. In [Che+14], the authors
analyze Program 2.1.4 without the constraint (2.1.5). While dropping (2.1.5) makes
the convex program less effective, it does allow [Che+14] to make use of low-rank
matrix completion results for its analysis. In [OH11] and [VOH14b], the authors
analyze Program 2.1.4 when the entire adjacency matrix is observed. In [CSX12],
the authors study a slightly more general program, where the regularization param-
eter is different for the extra edges and the missing edges. However, the adjacency
matrix is completely observed.

It is not difficult to see that, when the edge probability inside the clusters is p < 1
2
,

(as n → ∞) Program 2.1.4 will return L0 = 0 as the optimal solution (since if
the cluster is not dense enough it is more costly to complete the missing edges).
As a result our analysis of Program 2.1.4, and the main result of Theorem 1 (Sec-
tion 2.3.1), assumes p > 1/2. Clearly, there are many instances of graphs we would
like to cluster where p < 1/2. If the total size of the cluster region (i.e, the total
number of edges in the cluster, denoted by |R|) is known, then the following con-
vex program can be used, and can be shown to work for p < 12 (see Theorem 2 in
Section 2.3.2).

Improved Convex Program:

minimize
L,S

‖L‖? + λ‖S‖1 (2.1.7)

subject to

1 ≥ Li,j ≥ Si,j ≥ 0 for all i, j ∈ {1, 2, . . . n} (2.1.8)

Li,j = Si,j whenever Aobs
i,j = 0 (2.1.9)

sum(L) ≥ |R|. (2.1.10)

As before, L is the low-rank matrix corresponding to the ideal cluster structure and
λ ≥ 0 is the regularization parameter. However, S is now the sparse error matrix
that accounts only for the missing edges inside the clusters on the observed part of
adjacency matrix. [OH11] and [Ame13] study programs similar to Program 2.1.7
for the case of a completely observed adjacency matrix. In [Ame13], the con-
straint 2.1.10 is a strict equality. In [AV11] the authors analyze a program close to
Program 2.1.7 but without the l1 penalty.

IfR is not known, it is possible to solve Problem 2.1.7 for several values ofR until
the desired performance is obtained. Our empirical results reported in Section 2.4,

17

suggest that the solution is not very sensitive to the choice ofR.

2.1.2 Our Contributions
Our contributions are multifold:

1. We analyze the Simple Convex Program 2.1.4 for the SBM with partial ob-
servations. We provide explicit bounds on the regularization parameter as
a function of the parameters of the SBM, that characterizes the success and
failure conditions of Program 2.1.4 (see results in Section 2.3.1). We show
that clusters that are either too small or too sparse constitute the bottleneck.
Our analysis is helpful in understanding the phase transition from failure to
success for the simple approach.

2. We also analyze the Improved Convex Program 2.1.7. We explicitly char-
acterize the conditions on the parameters of the SBM and the regularization
parameter for successfully recovering clusters using this approach (see results
in Section 2.3.2).

3. Apart from providing theoretical guarantees and corroborating them with
simulation results (Section 2.4), we also apply Programs 2.1.4 and 2.1.7 on
a real data set (Section 2.4.3) obtained by crowdsourcing an image labeling
task on Amazon Mechanical Turk.

2.1.3 Related Work
In [Che+14], the authors consider the problem of identifying clusters from partially
observed unweighted graphs. For the SBM with partial observations, they analyze
Program 2.1.4 without constraint (2.1.5), and show that under certain conditions,
the minimum cluster size must be at least O(

√
n(log(n))4/r) for successful recov-

ery of the clusters. Unlike our analysis, the exact requirement on the cluster size is
not known (since the constant of proportionality is not known). Also they do not
provide conditions under which the approach fails to identify the clusters. Finding
the explicit bounds on the constant of proportionality is critical to understanding
the phase transition from failure to successfully identifying clusters.

In [AV14; AV11; OH11; CSX12; Ame13], analyze convex programs similar to
the Programs 2.1.4 and 2.1.7 for the SBM and show that the minimum cluster size
should be at leastO(

√
n) for successfully recovering the clusters. However, the ex-

act requirement on the cluster size is not known. Also, they do not provide explicit

18

conditions for failure, and except for [OH11] they do not address the case when the
data is missing.

In contrast, we consider the problem of clustering with missing data. We explic-
itly characterize the constants by providing bounds on the model parameters that
decide if Programs 2.1.4 and 2.1.7 can successfully identify clusters. Furthermore,
for Program 2.1.4, we also explicitly characterize the conditions under which the
program fails.

In [OH11], the authors extend their results to partial observations by scaling the
edge probabilities by r (observation probability), which will not work for r < 1/2

or 1/2 < p < 1/2r in Program 2.1.4. We first analyzed Program 2.1.4 for the SBM
and provided conditions for success and failure of the program when the entire
adjacency matrix is observed [VOH14b]. In this chapter, we start with the partially
observed case [VOH14a] and recover the results for the fully observed case as a
special case. The dependence on the number of observed entries emerges non-
trivially in our analysis.

2.2 Generative Model for Partially Observed Graphs
In this section we describe the model we consider for the partially observed un-
weighted graphs with clusters which builds on the popular Stochastic Block Model
(SBM) [HLL83] or the planted partition model [CK01]. Definition of SBM is given
below:

Definition 2.2.1 (Stochastic Block Model). Let A = AT be the adjacency matrix

of a graph on n nodes with K disjoint clusters of size ni each, i = 1, 2, · · · , K. Let

1 ≥ pi ≥ 0, i = 1, · · · , K and 1 ≥ q ≥ 0. For 1 ≤ l < m ≤ n, edge between the

nodes l and m exists independently and,

1. if l and m are in the same cluster i, then

Al,m =

1 with probability pi,

0 with probability 1− pi.

2. if l and m are not in the same cluster, then

Al,m =

1 with probability q,

0 with probability 1− q.

19

If pi > q for each i, then the average density of edges is higher inside the clusters
compared to outside.

To capture partial observations, on top of the SBM, we assume that each edge is
independently observed with probability r. We say the random variable Y has a
Φ(r, δ) distribution, for 0 ≤ δ, r ≤ 1, written as Y ∼ Φ(r, δ), if

Y =


1, w.p. rδ

0, w.p. r(1− δ)

∗, w.p. (1− r),

where ∗ denotes unknown. A formal definitio of the partial observation model
considered in this chapter is as follows:

Definition 2.2.2 (Partial Observation Model). Let A be the adjacency matrix of

a random graph generated according to the Stochastic Block Model of Defini-

tion 2.2.1. Let 0 < r ≤ 1. Each entry of the adjacency matrix A is observed

independently with probability r. Let Aobs denote the observed adjacency matrix.

Then for l > m: (Aobs)l,m ∼ Φ(r, pi) if both the nodes l and m belong to the same

cluster i. Otherwise, (Aobs)l,m ∼ Φ(r, q).

Note that the model described can handle outliers (nodes that do not belong any
clusters). So,

∑K
i=1 ni ≤ n.

2.3 Exact Recovery Guarantees
In this section we present the exact recovery guarantees for the convex programs
(Program 2.1.4 and Program 2.1.7). Before we state the results formally, we need
some notations. We deonte the set {1, 2, · · · , n} by [n]. Let the union of regions
induced by the clusters be denoted by R and its complement Rc = [n] × [n] −R.
Note that |R| =

∑K
i=1 n

2
i and |Rc| = n2 −

∑K
i=1 n

2
i . Let the minimum edge

density inside the clusters be pmin := min
1≤i≤K

pi, the minimum cluster size be nmin :=

min
1≤i≤K

ni, and the maximum cluster size be nmax := max
1≤i≤K

ni.

We note that, in this chapter, when we say a convex program succeeds, we mean
that it exactly recovers the adjacency matrix corresponding to the underlying cluster
structure, that is, the matrix L0, such that,

L0
lm =

1, if l and m are in the same cluster, and

0, otherwise.

20

2.3.1 Simple Convex Program
Recall the Simple Convex Program (Program 2.1.4):

minimize
L,S

‖L‖? + λ‖S‖1

subject to

1 ≥ Li,j ≥ 0 for all i, j ∈ [n]

Lobs + Sobs = Aobs.

In a nutshell, our analysis shows that

the clusters that are both small and sparse are the bottlenecks.

The quantity that determines whether Program 2.1.4 can recover a cluster exactly is
its effective density which captures both its the size and sparsity, defined as

Di := ni r (2pi − 1).

Let the smallest effective density be, Dmin = min
1≤i≤K

Di. There are two thresholds

on the minimum effective density that determine the conditions for succeess and
failure of Program 2.1.4. The threshold for success is defined as follows,

Λ−1
succ := 2r

√
n

√
1

r
− 1 + 4q(1− q)

+ max
1≤i≤K

2r
√
ni

√
2(

1

r
− 1) + 4 (q(1− q) + pi(1− pi)).

Threshold for failure is defined as follows:

Λ−1
fail :=

√√√√rq

(
1−

K∑
i=1

(ni
n

)2
)
n.

We note that the thresholds, Λsucc and Λfail depend only the parameters of the model
and simple algebra shows that Λ−1

fail < Λ−1
succ.

For random graphs generated according to the Partial Observation Model of Def-
inition (2.2.2) with K disjoint clusters of sizes {ni}Ki=1, and probabilities {pi}Ki=1

and q, such that pmin > 1
2
> q > 0, the following theorem provides exact recovery

guarantees for Program 2.1.4.

Theorem 1 (Simple Program). Whenever Dmin > Λ−1
succ, for any λ ∈

(
D−1

min, Λsucc
)
,

Program 2.1.4 succeeds with high probability. For any λ ≥ 0, if Dmin < Λ−1
fail, then

Program 2.1.4 fails with high probability.

21

𝑬𝑫𝒎𝒊𝒏 1
Ʌ𝒔𝒖𝒄𝒄

1

Ʌ𝒇𝒂𝒊𝒍

Gap Success Failure

(a) Feasibility of Program 2.1.4 in terms of the minimum effective density (Dmin).

Ʌ𝒇𝒂𝒊𝒍 Ʌ𝒔𝒖𝒄𝒄 1
𝑬𝑫௠௜௡

Failure Success Gap

λ

Failure

(b) Feasibility of Program 2.1.4 in terms of the regularization parameter (λ).

Figure 2.2: Characterization of the feasibility of Program (2.1.4) in terms of the
minimum effective density and the value of the regularization parameter. The fea-
sibility is determined by the values of these parameters in comparison with two
constants Λsucc and Λfail, derived in Theorem 1 and Theorem 2. The thresholds
guaranteeing the success or failure of Program 2.1.4 derived in this paper are fairly
close to each other.

The high probability in the above theorem holds with at least 1−c1n
2 exp (−c2nmin),

where c1, c2 are positive constants. In terms of the regularization paramter λ ≥ 0,
the success and failure of Program 2.1.4 can be stated as follows:

1. If λ > Λfail, then Program 2.1.4 fails to correctly recover the clusters with
probability at least 1− c′1 exp(−c′2|Rc|).

2. If Dmin > Λ−1
succ, then,

• for λ ∈
(
D−1

min,Λsucc
)
, then Program 2.1.4 succeeds in correctly recov-

ering the clusters with probability at least 1− c′1n2 exp(−c′2nmin).

• If λ < D−1
min, then Program 2.1.4 fails to correctly recover the clusters

with probability at least 1− c′1 exp(−c′2nmin).

Figure 2.2 depicts these conditions. A detailed proof of the results presented above
is in the appendix A.

Theorem 1 characterizes the success and failure of Program 2.1.4 as a function of
the regularization parameter λ. In particular, if λ > Λfail, Program 2.1.4 fails with

22

high probability. If λ < Λsucc, Program 2.1.4 succeeds with high probability if and

only if Dmin >
1
λ

. However, Theorem 1 has nothing to say about Λsucc < λ < Λfail

(Figure 2.2b).

The sufficient condition on Dmin from Theorem 1 is:

min
1≤i≤K

ni r (2pi − 1) > 2r
√
n

√
1

r
− 1 + 4q(1− q)

+ max
1≤i≤K

2r
√
ni

√
2

(
1

r
− 1

)
+ 4 (q(1− q) + pi(1− pi)),

(2.3.1)

which can be re-written by eliminating the observation probability r from the LHS
as follows,

min
1≤i≤K

ni (2pi − 1) > 2
√
n

√
1

r
− 1 + 4q(1− q)

+ max
1≤i≤K

2
√
ni

√
2

(
1

r
− 1

)
+ 4 (q(1− q) + pi(1− pi)).

Now using the above equation as a reference, we discuss the effect of various pa-
rameters of the SBM on the sufficient condition for success of Program 2.1.4:

1. Effect of observation probability (r): Clearly, the smaller the r, the larger
is the RHS. This in turn means that the cluster size and density inside the
clusters (LHS) need to be larger as well. In other words, if the clusters are
small and sparse, then we require more observations to recover them.

2. Effect of edge density between the clusters (q): As q tends closer to 1
2
, the

variance terms, q(1− q), on the RHS increases.

3. Effect of edge density inside the clusters (pi): As pi tends closer to 1
2
, the

effective density (LHS) tends to 0 and the variance term, pi(1 − pi), in the
RHS increases.

4. Effect of cluster size: When p, q, r are constants, then the condition in Equa-
tion 2.3.1 will be

nmin ≥ Ω(
√
n).

This matches the small cluster size bottleneck that has been observed in the
analysis of several other computationally efficient clustering algorithms. It
is conjectured that this might be a necessary condition (referred to as hidden

clique conjecture).

23

5. Effect of relative cluster sizes: Note that the relative size of clusters is not
a part of the assumptions or the conditions for exact recovery. We do not
need any assumptions on the relative cluster sizes for our analysis. Hence,
the results hold good regardless of whether the cluster sizes are balanced or
not. For example, a graph could have clusters of size Θ(n) and of size Θ(

√
n)

and as long as the sufficient condtion for success is satisfied, they can all be
recovered.

6. Effect of outliers: l1 penalty on the noise in Program 2.1.4 not only serves
as a loss funciton but also is robust to outliers. Regardless of the number of
outliers present, whether there are very few of them or Θ(n) of them, as long
as the sufficient condition on the effective density of the clusters (which does
not depend on the size of the outliers) is satisfied, the clusters can be exactly
recovered.

The condition in Equation 2.3.1 can also be re-written as,

min
1≤i≤K

ni
√
r (2pi − 1) > 2

√
n
√

1− r + 4rq(1− q)

+ max
1≤i≤K

2
√
ni
√

2(1− r) + 4r (q(1− q) + pi(1− pi)).

Fully Observed Case: When we set r = 1, we obtain the results for the case when
the entire adjacency matrix is observed [VOH14b]. Equation 2.3.1 can be written
as:

min
1≤i≤K

ni (2pi − 1) > 4
√
n
√
q(1− q) + max

1≤i≤K
4
√
ni
√
q(1− q) + pi(1− pi).

We note that for Program 2.1.4, one cannot simply work with the fully observed
case [VOH14b] and then replace p with rp and q with rq (which is equivalent to
setting all the unobserved entries to 0). This is because it will not work for r < 1

2

or 1
2
< p < 1

2r
. It is important to have the constraint in Equation 2.1.6 to be over

only the observed entries and construct a dual certificate for it which when r = 1

reduces to the dual certificate for the case of the fully observed case.

Sharpness of the Performance Bounds: From the definitions, we see that there is
a gap between Λfail and Λsucc. When r = 1, the gap is

Λfail

Λsucc
=

4
√
q(1− q)n+ max

1≤i≤K
2
√
ni
√

4 (q(1− q) + pi(1− pi))√
q
(
n−

∑K
i=1

(
ni
n

)2
n
)

24

times. In the small cluster regime where max
1≤i≤K

ni = o(n) and
∑K

i=1 n
2
i = o(n2), the

ratio Λfail
Λsucc

= 4
√

1− q + o(1), which is at most 4 times in the worst case.

2.3.2 Improved Convex Program
Recall the Improved Convex Program (Program 2.1.7):

minimize
L,S

‖L‖? + λ‖S‖1

subject to

1 ≥ Li,j ≥ Si,j ≥ 0 for all i, j ∈ {1, 2, . . . n}

Li,j = Si,j whenever Aobs
i,j = 0

sum(L) ≥ |R|.

Our analysis shows that the clusters that are both small and sparse are the bottle-

necks. The quantity that determines whether Program 2.1.7 can recover a cluster
exactly is its effective density which captures both its the size and sparsity, defined
as

D̃i := ni r (pi − q).

Notice that in contrast with Program 2.1.4 where we required pi >
1
2
> q, for

Program 2.1.7, we only need pi > q. Let the smallest effective density be, D̃min =

min
1≤i≤K

D̃i. The threshold for success is defined as follows:

Λ̃−1
succ := 2r

√
n

√(
1

r
− 1 + q

)
(1− q)

+2r max
1≤i≤K

√
ni

√
(1− pi)

(
1

r
− 1 + pi

)
+ (1− q)(1

r
− 1 + q).

We note that the threshold, Λ̃succ depends only on the parameters of the model.

For random graphs generated according to the Partial Observation Model of Defini-
tion (2.2.2) with K disjoint clusters of sizes {ni}Ki=1, and probabilities {pi}Ki=1 and q,
such that pmin > q > 0, the following theorem provides exact recovery guarantees
for Program 2.1.7.

Theorem 2 (Improved Program). When 0 ≤ D̃−1
min < λ < Λ̃succ, Program 2.1.7

succeeds in recovering the clusters with high probability.

We note that unlike in the case of Program 2.1.4, we do not have a condition for
failure for Program 2.1.7. Theorem 2 gives a sufficient condition for the success

25

of Program 2.1.7 as a function of λ. In particular, for any λ > 0, we succeed
if D̃−1

min < λ < Λ̃succ. However, it does not comment on what happens when this
condition does not hold . When we say high probability in Theorem 2, we mean
it holds with probability at least 1 − c′1n

2 exp(−c′2nmin), where c′1, c
′
2 are positive

constants. Detailed proof for Theorem 2 is provided in the appendix A.

The sufficient condition on the minimum effective density D̃min from Theorem 2 is

min
1≤i≤K

ni r (pi − q) > 2r
√
n

√(
1

r
− 1 + q

)
(1− q)

+2r max
1≤i≤K

√
ni

√
(1− pi)

(
1

r
− 1 + pi

)
+ (1− q)

(
1

r
− 1 + q

)
.

(2.3.2)

Note that in comparison to the sufficient condition for success of Program 2.1.4
(Equation 2.3.1) where the term 2pi − 1 appears in the LHS (so pi > 1

2
> q was

needed), the sufficient condition for success of Program 2.1.7 (Equation 2.3.2 has
the term pi − q in the LHS (so we only need pi > q). Apart from this major
difference, the effect of observation probability r, edge density inside the clusters
pi and between the clusters q, cluster sizes and outliers are qualitatively similar to
that in the case of Program 2.1.4.

Fully Observed Case: When we set r = 1, we obtain the results for the case when
the entire adjacency matrix is observed. Equation 2.3.2 can be written as:

min
1≤i≤K

ni (pi − q) > 2
√
n
√
q(1− q) + 2 max

1≤i≤K

√
ni
√
pi(1− pi) + q(1− q).

(p, q) as a function of n: We now briefly discuss the regime in which cluster sizes
are large (i.e. O(n)) and we are interested in the parameters (p, q) as a function of
n that allows proposed approaches to be successful. Critical to Program 2.1.7 is the
constraint (2.1.9): Li,j = Si,j when Aobs

i,j = 0 (which is the only constraint involv-
ing the adjacency Aobs). With missing data, Aobs

i,j = 0 with probability r(1 − p)

inside the clusters and r(1 − q) outside the clusters. Defining p̂ = rp + 1 − r and
q̂ = rq + 1 − r, the number of constraints in (2.1.9) becomes statistically equiv-
alent to those of a fully observed graph where p and q are replaced by p̂ and q̂.
Consequently, for a fixed r > 0, we require p ≥ p − q & O(1√

n
) for success.

However, setting the unobserved entries to 0 yields Ai,j = 0 with probability 1−rp
inside the clusters and 1 − rq outside the clusters. This is equivalent to a fully ob-
served graph where p and q are replaced by rp and rq. In this case, we can allow

26

Edge Probability inside the cluster (p)

O
b

s
e

rv
a

ti
o

n
 P

ro
b

a
b

ili
ty

 (
r)

0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1
Success

Failure

Figure 2.3: Region of success (white region) and failure (black region) of Program
2.1.4 with λ = 1.01D−1

min. The solid red curve is the threshold for success (λ <
Λsucc) and the dashed green line which is the threshold for failure (λ > Λfail) as
predicted by Theorem 1.

p ≈ O(polylog(n)
n

) for success which is order-wise better, and matches closely to the
results in McSherry [McS01]. Intuitively, clustering a fully observed graph with pa-
rameters p̂ = rp+ 1− r and q̂ = rq+ 1− r is much more difficult than one with rp
and rq, since the links are more noisy in the former case. Therefore, while it is bene-

ficial to leave the unobserved entries blank in Program 2.1.4, for Program 2.1.7 it is

in fact beneficial to set the unobserved entries to 0. So, the modified program would
have the following sufficient condition for success of Program 2.1.7 by setting the
unobserved entries to 0 as follows:

min
1≤i≤K

rni (pi − q) > 2r
√
n
√
rq(1− rq) + 2r max

1≤i≤K

√
ni
√
rpi(1− rpi) + rq(1− rq).

2.3.3 Planted Clique Problem
A fundamental problem related to the hardness of clustering is the planted clique

problem. Consider an Erdös-Réyni random graph 1 with edge probability 1
2
. A sub-

set of nodes in this graph is picked and all of them are connected to each other to
obtain a clique. Given such a graph (the identity of the nodes that form the clique
are unknown), the question of interest is whether we can find the clique efficiently
(in polynomial time). The planted clique problem is well-studied in the theoretical
computer science community and to the best of our knowledge the tightest result

1An Erdös-Rényi random graph on n nodes with parameter p is a random graph where each
edge exists independently with probability p.

27

Minimum Cluster Size

O
b

s
e

rv
a

ti
o

n
 P

ro
b

a
b

ili
ty

 (
r)

50 100 150 200

0.2

0.4

0.6

0.8

1
Success

Failure

Figure 2.4: Region of success (white region) and failure (black region) of Program
2.1.4 with λ = 1.01D−1

min. The solid red curve is the threshold for success (λ <
Λsucc) and the dashed green line which is the threshold for failure (λ > Λfail) as
predicted by Theorem 1.

(without any unknown constants) is provided in [DM15] where the sufficient con-
dition on the size of the clique (number of nodes in the clique) for recovering it
successfully is

nmin >

√
n

e
≈ 0.61

√
n,

using asymototic message passing analysis tailored for the planted clique problem.
In contrast, the planted clique problem is a special case for the SBM, where the
number of clusters K = 1, the edge density inside the clusters is p = 1 and the
edge density between he clusters q = 1

2
. Thus, by plugging in these parameters

in our exact recovery conditions we obtain the following sufficient condtion on the
size of the planted clique for its exact recovery,

nmin > 2
√
n.

2.4 Experimental Results
We implement Program 2.1.4 and 2.1.7 using the inexact augmented Lagrange
method of multipliers [LCM10; LLS11]. Note that this method solves the Pro-
gram 2.1.4 and 2.1.7 approximately. Further, the numerical imprecisions will pre-
vent the entries of the output of the algorithms from being strictly equal to 0 or
1. We use the mean of all the entries of the output as a hard threshold to round

28

O
b

s
e

rv
a

ti
o

n
 P

ro
b

a
b

ili
ty

 (
r)

Edge Probability inside the cluster (p)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Success

Figure 2.5: Region of success (white region) and failure (black region) of Program
2.1.7 with λ = 0.49Λ̃succ. The solid red curve is the threshold for success (D̃min >
lambda−1) as predicted by Theorem 2.

0.2 0.4 0.6 0.8 1
0

0.5

1

Edge Probability inside the clusters (p)

P
ro

b
a

b
ili

ty
 o

f
S

u
c
c
e

s
s

Simple

Improved

Figure 2.6: Comparison range of edge probability p for Simple Program 2.1.4 and
Improved Program 2.1.7.

each entry. That is, if an entry is less than the threshold, it is rounded to 0 and to
1 otherwise. We compare the output of the algorithm after rounding to the optimal
solution (L0), and declare success if the number of wrong entries is less than 0.1%.

Set Up: We consider at an unweighted graph on n = 600 nodes with 3 disjoint
clusters. For simplicity the clusters are of equal size n1 = n2 = n3, and the edge
probability inside the clusters are same p1 = p2 = p3 = p. The edge probability
outside the clusters is fixed, q = 0.1. We generate the adjacency matrix randomly
according to the Stochastic Block Model 2.2.1 and Partial Observation Model 2.2.2.

29

All the results are an average over 20 experiments.

2.4.1 Simulations for Simple Convex Program
Dependence between r and p: In the first set of experiments we keep n1 = n2 =

n3 = 200, and vary p from 0.55 to 1 and r from 0.05 to 1 in steps of 0.05.

Dependence between nmin and r: In the second set of experiments we keep the
edge probability inside the clusters fixed, p = 0.85. The cluster size is varied from
nmin = 20 to nmin = 200 in steps of 20 and r is varied from 0.05 to 1 in steps of
0.05.

In both the experiments, we set the regularization parameter λ = 1.01D−1
min, en-

suring that Dmin > 1/λ, enabling us to focus on observing the transition around
Λsucc and Λfail. The outcome of the experiments are shown in the Figures 2.3 and
2.4. The experimental region of success is shown in white and the region of failure
is shown in black. The theoretical region of success is above the solid red curve
(λ < Λsucc) and the region of failure is below the dashed green curve (λ > Λfail).
As we can see, the transition indeed occurs between the two thresholds Λsucc and
Λfail.

2.4.2 Simulations for Improved Convex Program
We keep the cluster size, n1 = n2 = n3 = 200 and vary p from 0.15 to 1 and r
from 0.05 to 1 in steps of 0.05. We set the regularization parameter, λ = 0.49Λ̃succ,
ensuring that λ < Λ̃succ, enabling us to focus on observing the condition of success
around D̃min. The outcome of this experiment is shown in the Figure 2.5. The
experimental region of success is shown in white and the region of failure is shown
in black. The theoretical region of success is above solid red curve.

Comparison with the Simple Convex Program: In this experiment, we are in-
terested in observing the range of p for which the Programs 2.1.4 and 2.1.7 work.
Keeping the cluster size n1 = n2 = n3 = 200 and r = 1, we vary the edge
probability inside the clusters from p = 0.15 to p = 1 in steps of 0.05. For each
instance of the adjacency matrix, we run both Program 2.1.4 and 2.1.7. We plot
the probability of success of both the algorithms in Figure 2.6. As we can observe,
Program 2.1.4 starts succeeding only after p > 1/2, whereas for Program 2.1.7 it
starts at p ≈ 0.35.

30

Matrix Recovered by Simple Program

100 200 300 400

50

100

150

200

250

300

350

400

450

(a)

Matrix Recovered by Improved Program

100 200 300 400

50

100

150

200

250

300

350

400

450

(b)

Figure 2.7: Result of using (a) Program 2.1.4 (Simple) and (b) Program 2.1.7 (Im-
proved) on the real data set.

Ideal Clusters

50 100 150 200 250 300 350 400 450

0.5

1

1.5

Clusters identifyed by k−means on A

50 100 150 200 250 300 350 400 450

0.5

1

1.5

Clusters Identified from Simple Program

50 100 150 200 250 300 350 400 450

0.5

1

1.5

Clusters Identified from Improved Program

50 100 150 200 250 300 350 400 450

0.5

1

1.5

Figure 2.8: Comparing the clustering output after running Program 2.1.4 and Pro-
gram 2.1.7 with the output of applying k-means clustering directly on A (with un-
known entries set to 0).

2.4.3 Labeling Images: Amazon MTurk Experiment
Creating a training dataset by labeling images is a tedious task. It would be useful
to crowdsource this task instead. Consider a specific example of a set of images
of dogs of different breeds. We want to cluster them such that the images of dogs
of the same breed are in the same cluster. One could show a set of images to each
worker, and ask him/her to identify the breed of dog in each of those images. But
such a task would require the workers to be experts in identifying the dog breeds.

31

A relatively reasonable task is to ask the workers to compare pairs of images, and
for each pair, answer whether they think the dogs in the images are of the same
breed or not. If we have n images, then there are

(
n
2

)
distinct pairs of images, and

it will pretty quickly become unreasonable to compare all possible pairs. This is an
example where we could obtain a subset of the data and try to cluster the images
based on the partial observations.

Image Data Set: We used images of 3 different breeds of dogs : Norfolk Terrier
(172 images), Toy Poodle (151 images), and Bouvier des Flandres (150 images)
from the Standford Dogs Dataset [Kho+11]. We uploaded all the 473 images of
dogs on an image hosting server (we used imgur.com).

MTurk Task: We used Amazon Mechanical Turk [BKG11] as the platform for
crowdsourcing. For each worker, we showed 30 pairs of images chosen randomly
from the

(
n
2

)
possible pairs. The task assigned to the worker was to compare each

pair of images, and answer whether they think the dogs belong to the same breed or
not. If the worker’s response is a “yes”, then there we fill the entry of the adjacency
matrix corresponding to the pair as 1, and 0 if the answer is a “no”.

Collected Data: We recorded around 608 responses. We were able to fill 16, 750

out of 111, 628 entries in A. That is, we observed 15% of the total number of en-
tries. Compared with true answers (which we know a priori), the answers given by
the workers had around 23.53% errors (3941 out of 16750). The empirical parame-
ters for the partially observed graph thus obtained are shown Table 2.1.

We ran Program 2.1.4 and Program 2.1.7 with regularization parameter, λ = 1/
√
n.

Further, for Program 2.1.7, we set the size of the cluster region, R to 0.125 times(
n
2

)
. Figure 2.7 shows the recovered matrices. Entries with value 1 are depicted by

white and 0 is depicted by black. In Figure 2.8 we compare the clusters output by
running the k-means algorithm directly on the adjacency matrix A (with unknown
entries set to 0) to that obtained by running k-means algorithm on the matrices
recovered after running Program 2.1.4 (Simple Program) and Program 2.1.7 (Im-
proved Program) respectively. The overall error with k-means was 40.8% whereas
the error significantly reduced to 15.86% and 7.19% respectively when we used
the matrices recoverd from Programs 2.1.4 and 2.1.7 respectively (see Table 2.2).
Further, note that for running the k-means algorithm we need to know the exact
number of clusters. A common heuristic is to identify the top K eigenvalues that
are much larger than the rest. In Figure 2.9 we plot the sorted eigenvalues for the
adjacency matrix A and the recovered matrices. We can see that the top 3 eigen val-

32

0 200 400 600
−10

0

10

20

30

A

0 200 400 600
−100

0

100

200

300

Simple

0 200 400 600
−100

0

100

200

300

Improved

Figure 2.9: Plot of sorted eigen values for (1) Adjacency matrix with unknown en-
tries filled by 0, (2) Recovered adjacency matrix from Program 2.1.4, (3) Recovered
adjacency matrix from Program 2.1.7

Table 2.1: Empirical Parameters from the real data.

Params Value Params Value
n 473 r 0.1500
K 3 q 0.1929
n1 172 p1 0.7587
n2 151 p2 0.6444
n3 150 p3 0.7687

Table 2.2: Number of miss-classified images

Clusters→ 1 2 3 Total
K-means 39 150 4 193
Simple 9 57 8 74
Improved 1 29 4 34

ues are very easily distinguished from the rest for the matrix recovered after running
Program 2.1.7.

A sample of the data is shown in Figure 2.10. We observe that factors such as
color, grooming, posture, face visibility, etc. can result in confusion while compar-
ing image pairs. Also, note that the ability of the workers to distinguish the dog
breeds is neither guaranteed nor uniform. Thus, the edge probabilities inside and
outside clusters are not uniform. Nonetheless, Programs 2.1.4 and Program 2.1.7,
especially Program 2.1.7, are quite successful in clustering the data with only 15%

observations.

2.5 Outline of the Proofs
In this section we present an outline of the proofs for the theorems stated in Sec-
tion 5.3. Detailed proofs are available in Appendix A.

33

Norfolk Terrier Toy Poodle Bouvier des Flandres

Figure 2.10: Sample images of three breeds of dogs that were used in the MTurk
experiment.

2.5.1 Proof Outline for Theorem 1
We prove Theorem 1 by proving the following two lemmas:

Lemma 2.5.1. If λ > Λfail or Dmin <
1
λ

, then (L0,S0) is not an optimal solution to

the Program 2.1.4 with high probability.

Lemma 2.5.2. If λ < Λsucc and Dmin > 1
λ

, then (L0,S0) is the unique optimal

solution to Program 2.1.4 with high probability.

Outline of Proof of Lemma 2.5.1: To prove the Lemma 2.5.1, we look at the
Lagrange of the Program 2.1.4,

L (L,S; M,N) = ‖L‖? + λ‖S‖1 + trace(M(L− 11
T))− trace(NL).

where M and N, entry-wise non-negative, are dual variables corresponding to the
inequality constraints (2.1.5).

For L0 to be an optimal solution to (2.1.4), it has to satisfy the KKT conditions.
Therefore, the subgradient of the Lagrangian at L0 has to be 0, i.e.,

∂‖L0‖? + λ ∂‖Aobs − Lobs
0‖1 + M0 −N0 = 0,

where M0 and N0 are optimal dual variables, and ∂‖L0‖? and ∂‖S0‖1 are subgra-
dients of nuclear norm and `1-norm respectively at the points (L0,S0). Note that in
the standard notation, ∂h(x) denotes the set of all subgradients, i.e., the subdiffer-
ential of the function h(.) at x. We have slightly abused the notation by denoting a
subgradient of the function h(.) at the point x by ∂h(x). In other words, ∂h(x) has
been used to denote any element in the subgradient set of h(.) at x.

We can write L0 as L0 = UΛUT , where Λ = diag{n1, n2, . . . , nK}, and U =

[u1 . . . uK] ∈ Rn×K , where

ul,i =

 1√
nl

if i is in cluster l

0 otherwise.

34

The subgradient of the nuclear norm at L0 can be written as:

∂‖L0‖? = UUT + W, (2.5.1)

where W ∈ MU := {X : XU = UTX = 0, ‖X‖ ≤ 1}. The subgradient of the
l1−norm at S0 can be written as,

∂‖S0‖1 = sign(S0) + Q, (2.5.2)

where Qi,j = 0 if S0
i,j 6= 0 and ‖Q‖∞ ≤ 1.

Further, by complementary slackness, we have the following equalities,

trace(M0(L0 − 11
T)) = 0, and trace(N0L0) = 0.

Using Bernstein’s inequality, the above complementary slackness conditions, the
form of the solution L0 and S0 as well as their subgradient sets (Equation 2.5.1
and Equation 2.5.2), we can show that when λ > Λfail or Dmin < 1

λ
, the KKT

conditions cannot be satisfied for L0 and S0. This implies that L0 and S0 cannot be
an optimal solution to Program 2.1.4 when λ > Λfail or Dmin <

1
λ

. The details of
the proof can be found in the appendix (Appendix A.1.1).

Outline of Proof of Lemma 2.5.2: To prove Lemma 2.5.2, we need to show that
when λ < Λsucc and Dmin > 1

λ
, (L0,S0) is the unique optimal solution to the

Program 2.1.4. So, under the assumptions in Lemma 2.5.2, we need to prove the
following,

(‖L0 + EL‖? + λ ‖S0 + ES‖1)− (‖L0‖? + λ ‖S0‖1) > 0,

for all feasible perturbations (EL,ES). The LHS of the above equation can be
lower bound using the subgradients for the nuclear norm and l1−norm at L0 and S0

respectively. So, we get the following inequality:

(‖L0+EL‖?+λ ‖S0+ES‖1)−
(
‖L0‖? + λ ‖S0‖1

)
≥ 〈∂‖L0‖?,EL〉+λ〈∂‖S0‖1,E

S〉.

Thus, we can show that (L0,S0) is the unique optimal solution to the Program 2.1.4,
if we show the following:

〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,E
S〉 > 0,

for all feasible perturbations (EL,ES).

35

Using the forms of the subgradients (Equation 2.5.1 and Equation 2.5.2) and noting
that since L + S = A, EL = −ES , we obtain the following:

〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,E
S〉 = 〈UUT + W,EL〉+ λ〈sign(S0) + Q,ES〉

= 〈UUT + W,EL〉+ λ〈sign(S0) + Q,−EL〉

= 〈W,EL〉+ 〈UUT − λ
(
sign(S0) + Q

)
,EL〉︸ ︷︷ ︸

:=g(EL)

= 〈W,EL〉+ g
(
EL
)
.

Define f(EL,W) := 〈W,EL〉 + g
(
EL
)
. Now our goal is to show that, for all

feasible perturbations EL,

f(EL,W) = 〈W,EL〉+ g
(
EL
)
> 0, (2.5.3)

where g
(
EL
)

= 〈UUT − λ (sign(S0) + Q) ,EL〉. In order to show the above in-
equality we need to choose good subgradients, which in turn boils down to carefully
constructing W and Q.

To construct Q and W, we need some notation. Let Ci, for i ∈ [K] denote the set of
nodes that belong to cluster i and CK+1 denote the set of outliers. LetRi,j = Ci×Cj
for 1 ≤ i, j ≤ K + 1. One can see that {Ri,j} divides [n] × [n] into (K + 1)2

disjoint regions similar to a grid which is illustrated in the Figure 2.11. Thus, Ri,i

is the region induced by i’th cluster for any 1 ≤ i ≤ K. Recall that R deontes the

Figure 2.11: Illustration of {Ri,j} dividing [n]× [n] into disjoint regions similar to
a grid

union of regions induced by the clusters and its complement is deonoted byRc. So,
R = ∪i∈[K]Ri,i and Rc = [n] × [n] −R. Define sum(X) :=

∑
ij Xij . Let A1 and

36

A0 are subsets of [n]× [n] and denotes the set of coordinates of Aobs that are 1 and
0 respectively. For a matrix X ∈ Rc×d, let Xβ for any β ⊂ [c] × [d] be the matrix
whose entries match that of X in the positions (i, j) ∈ β and 0 everywhere else.

Since S = A− L, we have sign(S0) = 1
n×n
A∩Rc − 1

n×n
Ac∩R. We choose

Q = 1
n×n
A∩R − 1

n×n
Ac∩Rc .

With the choice of Q as made above, g
(
EL
)

has the following form:

g
(
EL
)

=
K∑
i=1

1

ni
sum

(
EL
Ri,i

)
+ λ

(
sum

(
EL
A0

)
− sum

(
EL
A1

))
.

We construct W ∈MU by projecting the following matrix on toMU ,

W0 =
K∑
i=1

ci1
n×n
Ri,i + c1n×nRc + λ

(
1
n×n
A1
− 1

n×n
A0

)
,

where 1n×n is an all 1’s matrix, ci = −λ(2pi−1), i = 1, 2, . . . K and c = −λ(2q − 1).

To show that under the assumptions in Lemma 2.5.2, the inequality in Equation 2.5.3
holds, we make use of the following lemma to break the next step into two cases,

Lemma 2.5.3. Given any EL, assume there exists W ∈ MU with ‖W‖ < 1 such

that f(EL,W) ≥ 0. Then at least one of the followings holds:

1. There exists W∗ ∈MU with ‖W∗‖ ≤ 1 and f(EL,W∗) > 0.

2. For all W ∈MU,
〈
EL,W

〉
= 0.

See appendix (Appendix A.1.2) for the proof of the above lemma.

For all W ∈ MU, 〈E,W〉 = 0 is equivalent to E ∈ M⊥
U which is the orthogonal

complement ofMU in Rn×n.M⊥
U has the following characterization:

M⊥
U = {X ∈ Rn×n : X = UMT + NUT for some M,N ∈ Rn×K}.

Using results from [Vu05] we can show that an upper bound on the spectral norm
of W0, ‖W0‖ is λΛ−1

succ. Setting λ < Λsucc, we get ‖W0‖ < 1. Since W is
obtained by the projection of W0 onto MU , we have ‖W‖ < 1. We then show
that when λ < Λsucc and Dmin >

1
λ

, the following statements hold, which proves
Lemma 2.5.2.:

37

1. Construct W ∈MU with ‖W‖ < 1, such that f(EL,W) ≥ 0 for all feasible
perturbations EL.

2. For all non-zero feasible EL ∈M⊥
U, show that g(EL) > 0.

For the details of the proof see Appendix A.1.2.

2.5.2 Proof Outline for Theorem 2
For Program 2.1.7, the optimal solution is as follows:

L0 = 1
n×n
R , S0 = S0

obs = 1
n×n
R∩A0

.

We prove Theorem 2 by proving the following lemma:

Lemma 2.5.4. If λ < Λ̃succ and D̃min > 1
λ

, then (L0,S0) is the unique optimal

solution to Program 2.1.7 with high probability.

The proof of the above lemma follows similar steps as that of Lemma 2.5.2. The
main difference is in the construction of the subgradients. For details see Ap-
pendix A.2.

2.6 Summary
In this chapter we considered the problem of graph clustering with missing data
or partial observations. We analyzed the performance of two convex-optimization-
based-algorithms and for a generative model for partially observed graphs (based
on the Stochastic Block Model), we provided explicit bounds (not orderwise) on
the problem parameters that guarantees the exact recovery of the underlying clus-
ter structure. We also corroborated our theoretical results using synthetic datasets.
Further, we also ran the convex algorithms on a real dataset for the problem of
clustering using crowdsourcing (which will be explored in more detail later in this
thesis in Chapters 4, 5, 6) and demonstrated that the convex algorithms can improve
over the state-of-the-art clustering algorithms. The graphs considered in this chap-
ter are unweighted. It is natural to wonder about convex algorithms for clustering
weighted graphs or equivalently, similarity matrices, and the next chapter (Chap-
ter 3) is devoted to it.

38

C h a p t e r 3

SIMILARITY CLUSTERING IN THE PRESENCE OF OUTLIERS

In this chapter, we study the problem of clustering a set of data points based on
their similarity matrix, each entry of which represents the similarity between the
corresponding pair of points. We propose a convex-optimization-based algorithm
for clustering using the similarity matrix, which has provable recovery guarantees.
It needs no prior knowledge of the number of clusters and it behaves in a robust
way in the presence of outliers and noise. Using a generative stochastic model for
the similarity matrix (which can be thought of as a generalization of the Stochastic
Block Model) we obtain precise bounds (not orderwise) on the sizes of the clusters,
the number of outliers, the noise variance, separation between the mean similarities
inside and outside the clusters and the values of the regularization parameter that
guarantee the exact recovery of the clusters with high probability. The theoretical
findings are corroborated with extensive evidence from simulations. We also eval-
uate the performance of our algorithm on real datasets and show improvement over
k-means and spectral clustering. This chapter is based on our paper [VH16b].

3.1 Introduction
Big data sets are collected by companies, governments, and research institutions
with the aim of extracting useful and relevant information. Clustering [JMF99] is
a widely used pattern recognition tool that broadly refers to the problem of group-
ing together data points that are similar to each other. In certain instances, the
data points can be embedded in Euclidean space; in others, they can be categorical
data, which do not readily lend themselves to such an embedding, or a combina-
tion of both. For example, in the case of census data, each individual person has
different attributes such as age and income which are numerical and race, religion,
address etc., that are categorical [TSK05]. Simple encoding schemes, such as us-
ing a D−dimensional vector for a categorical field of size D, not only artificially
inflate the dimension of the data, but might also give poor results when used with a
numerical algorithm when compared to learning an embedding based on similarity
or kernel methods [Zha+15; Cou05]. Depending on the data and application do-
main, it is often possible to construct a similarity map between pairs of data points
that assigns a numerical value to how similar (or dissimilar) two data points are.

39

This in turn leads to a similarity matrix (also referred to as an affinity matrix in the
literature).

If we have noiseless data and an ideal similarity map, then all pairs of points in the
same cluster would be mapped to the same similarity value, say 1, and 0 otherwise.
However, in reality, the data will be noisy and it is difficult to design a perfectly ideal
similarity map. We assume a simple but reasonable probabilistic generative model
for the similarity matrix where the average similarity between two data points is
higher if they are in the same cluster and lower otherwise. This model can be seen
as a natural extension of the popular Stochastic Block Model [HLL83], which is a
random unweighted graph model where the probability of the existence of an edge
between nodes in the graph that are in the same cluster is higher than those that are
not.

The data, apart from being noisy, might also contain outliers, that is, data points that
do not belong to any clusters. Thus, given a noisy similarity matrix, denoted by A,
with outliers, and no other side information, we want to reliably find the clusters.
In this regard, we seek to identify a matrix X whose rank is equal to the number
of clusters and in the regions corresponding to the same cluster has entries that are
non-zero and equal, and zero elsewhere – thus reflecting the cluster regions (defined
formally in Section 3.3). In most practical scenarios, the number of clusters is much
lower than the total number of data points, which makes the matrix X low-rank.

Convex programs for clustering have drawn attention recently as they are robust to
noise and lend themselves to analysis. A general convex approach of using low-rank
plus sparse matrix decomposition via trace-norm minimization with a regularized
l1-norm penalty (robust PCA) for finding clusters in unweighted graphs has been
well-studied [XCS10; Che+14; AV14; AV11; OH11; CSX12; Ame13; VOH14b;
VOH14a]. While the sparse noise model and hence the l1 penalty works very well
for unweighted graphs, it does not fit the similarity model.

Inspired by the robust PCA-based clustering algorithms for unweighted graphs, we
propose the following convex program to find the low-rank matrix X for similarity

40

clustering:

minimize
X

1

2
‖A−X‖2

F + λ trace(X) (3.1.1)

subject to

X < 0, Xi,j ≥ 0 for all i, j ∈ [n]∑
j

Xi,j ≤ 1, for all i ∈ [n],

where ‖.‖F is the Frobenius norm (square root of the sum of the squares of the
entries of the matrix), [n] denotes the set {1, 2, . . . , n} and λ > 0 is a regularization
parameter (we will later comment on how to set this). Also, by X < 0, we mean
that X is symmetric and has non-negative eigenvalues. The constraints

∑
j Xi,j ≤ 1

along with X ≥ 0 helps in forcing the entries outside the cluster to zero and those
corresponding to the same cluster to be equal.

Program 3.1.1 is very simple and intuitive. Furthermore, it does not require any
information other than the similarity matrix itself. The goal of this work is to un-
derstand the fundamental limits of the simple Program 3.1.1, that is, the conditions
under which it successfully recovers clusters. In particular, we aim to address the
following questions (Section 3.3.4):

1. How noisy can the similarity matrix be? At a given noise level, how separated
should the average similarity inside and outside the clusters be?

2. How small can the clusters be? How much can their relative sizes vary?

3. How many outliers can be tolerated? How is the performance affected as the
number of outliers becomes large, say larger than the size of the clusters?

Related Works

In this section we will discuss some related works.

Convex Penalties: [LOL11; Hoc+11; Che+15; CAB14] have introduced regular-
ized convex relaxations for hierarchical clustering and show that as the regularizer
is varied in a certain range there is a coalescing of clusters that gives rise to a hier-
archical tree. However, they do not give guarantees on the problem parameters that
give rise to a particular clustering at any point in the tree. Also, they do not provide
theoretical guarantees on clustering in the presence of outliers.

41

Spectral Clustering: [McS01] analyzes the spectral partitioning of graphs under
the Stochastic Block Model and [R+11] studies the asymptotic correctness of spec-
tral clustering for these models. [NJW02; Bal+11] study the stability of the eigen-
vectors of the graph Laplacian under noisy perturbations. [Bal+11] provides guar-
antees on the exact recovery of clusters for spectral clustering under noisy perturba-
tions to the similarity matrix. However, they require the clusters be balanced (i.e.,
the size of the clusters are constant fractions of each other). Moreover, these results
do not hold when there are outliers.

Convex Programs for Graph Clustering: [XCS10; Che+14; AV14; AV11; OH11;
CSX12; Ame13; VOH14b; VOH14a] consider clustering unweighted graphs via
convex optimization based on a low-rank + sparse decomposition of the unweighted

adjacency matrix of the graph via nuclear norm minimization with l1 regularization.
In the case of unweighted graphs, if the edge density inside the clusters is bigger
than that outside, under mild conditions, convex programs can recover clusters of
size Ω(

√
n), regardless of the size of the outliers. Whereas in the case of similar-

ity clustering (Section 3.3.3), if the number of outliers is larger than the smallest
cluster, Program 3.1.1 gives an extra cluster that contains all the outliers.

Submatrix Localization: [HWX15] considers the special case of submatrix local-
ization (bi-clustering) when the number of clusters, K = 1 and provides guarantees
for exact recovery via message passing algorithm when the size of the cluster is
known. Section 3 in [CX16] considers the problem of submatrix localization when
the clusters are homogeneous (same mean inside all the clusters) and have same
size. They provide orderwise bounds on signal strength required for exact recovery
of clusters from a convex program which requires the knowledge of cluster sizes
and number of clusters. We can recover the results for the case of symmetric sub-
matrix localization by setting µi = µ, ni = m, ∀i ∈ [K]. Note that the quantities
signal and SNR defined in [HWX15] and [CX16] are related to the separation be-
tween means (discussed in 5 in Section 3.3.4) that arises via cross-cluster density.

Convex Program for Similarity Clustering: The work that is closest to ours in
terms of the approach and analysis is [Ame14], which considers the problem of
clustering a similarity matrix when the number of clusters are known. [Ame14]
analyzes a convex program and provides guarantees for recovering the clusters as
long as the number of number of outliers is not too large (less than the size of the
smallest cluster). While the results in [Ame14] are interesting, it does not com-
ment on the quality of the solution when the number of outliers is large. Further,

42

the convex program in [Ame14] requires the knowledge of the number of clusters,
which can be problematic in the presence of outliers. In contrast, Program 3.1.1 is
oblivious to the exact number of clusters and naturally figures it out as a function
of the regularization parameter. This is helpful in understanding the behavior of
the program when there are large number of outliers. Our analysis shows that Pro-
gram 3.1.1 can recover the clusters as long as the regularization parameter is within
a range rather than a specific number, which is robust to error when it is heuris-
tically set. The model and analysis in [Ame14] does not capture the effect of the
noise variance in the similarity matrix on the performance of the program. Though
our analysis technique is inspired by the work [Ame14], we extend the analysis to
understand the behavior of the solution in the presence of large number of outliers
as well as to capture the effect of the noise variance. Also, our analysis gives precise

thresholds for the successful recovery conditions, whereas the results in [Ame14]
are orderwise.

Our Contributions: Our contributions are multifold:

1. We analyze Program 3.1.1 on a generative model (defined further below in
Section 3.2), that is a natural extension of the Stochastic Block Model, and
obtain precise thresholds (not orderwise) as a function of the problem pa-
rameters sufficient for the exact recovery of the underlying cluster structure
(Section 3.3). Though our analysis uses the problem parameters, the program
itself is agnostic to them.

2. We provide insights into the behavior of the solution in the presence of out-
liers (Sections 3.3.2 and 3.3.3), which is important from a practical stand-
point. In the presence of a large number of outliers, Program 3.1.1 exhibits
an interesting difference from what occurs in robust PCA-based convex algo-
rithms for unweighted graphs.

3. Our analysis also gives insights into the effect of the noise variance in the
similarity matrix on the successful recovery of clusters.

3.2 Generative Model for Similarity Matrices
In this section we define the random generative model for similarity matrices used
for analysis in this chapter. Let n be the number of data points composed of K
disjoint clusters and a set of outliers (points that do not belong to any clusters).

43

Definition 3.2.1 (Similarity Block Model). Let A = AT be the similarity matrix

with entries Al,m ∈ [0, 1]. The entries Al,m with l ≥ m are random, independent of

each other given the cluster assignment, with variance σ2 and the means given by:

E(Al,m) =

µi, if l,m are in the same cluster i.

µout, if l,m are not in the same cluster.

3.3 Exact Recovery Guarantees In the Presence of Outliers
Let ni, where i ∈ [K], denote the number of nodes in cluster i, which we will refer
to as the size of cluster i. If there are outliers, that is nodes that do not belong to
any cluster, we denote the number of outliers by nK+1 (or nout). Assume that the
similarity matrix is generated from the model in Definition 3.2.1. In this section
we present the conditions to guarantee the exact recovery of the underlying cluster
structure in the cases when there are (a) no outliers, (b) a small number of outliers,
and (c) a large number of outliers. These results together provide the complete
picture of the performance of Program 3.1.1 in the presence of outliers.. The results
presented hold with probability at least 1 − n2 exp{−Ω(nmin)}, where nmin =

mini≤K ni is the size of the smallest cluster.

3.3.1 No Outliers
In the case where there are no outliers, we aim to recover the following matrix via
Program 3.1.1:

X∗ =
K∑
i=1

xix
T
i , xi =

1
√
ni

ci, (3.3.1)

where ci ∈ Rn is the indicator vector for cluster i, with ones in the entries corre-
sponding to the data points that belong to cluster i and zeros everywhere else. xi is
the normalized indicator vector for cluster i. So, the entries of X∗ are

X∗l,m =

 1
ni
, if both nodes l,m are in the same cluster i

0 , if nodes l,m are not in the same cluster.

The following quantities are important for our results:

• Cluster Density: For each cluster i ∈ [K], define ρi := niµi > 0, requiring
µi > 0.

• Minimum Cluster Density is defined as ρmin := mini≤K ρi > 0.

44

• Cross Cluster Density: For each pair of clusters i 6= j ∈ [K], define the cross

cluster density as γij := 2
(µi+µj

2
− µout

) (
1
ni

+ 1
nj

)−1

> 0, requiring µi+µj
2

>

µout. That is, the average of the mean similarity of any two clusters clusters i
and j must be at least as big as the mean similarity between them.

• Minimum Cross Cluster Density: is defined as γmin := mini 6=j≤K γij > 0.

• Noise threshold, Λ := 2 σ
√
n which depends only on the noise variance and

number of data points.

Theorem 3. [No Outliers] When there are no outliers, if the regularizer λ is within

the following range,

Λ < λ < min {ρmin, γmin} − 1, (3.3.2)

then X∗ is the unique optimal solution to Program 3.1.1 with high probability. If

λ > min {ρmin, γmin} − 1, then Program 3.1.1 fails to recover X∗ with high prob-

ability.

3.3.2 Small Number of Outliers
In the presence of outliers, the solution to Program 3.1.1 depends on the number
of outliers compared to the size of the smallest cluster. When nout ≤ O(nmin), we
refer to it as a small number of outliers. In addition to the cross cluster density γ
defined before, define the following:

• Effective cluster density in presence of outliers for each cluster i as ηi :=

(µi − 2µout)ni > 0, implying µi > 2µout, required only in the case of small
number of outliers.

• Minimum effective density be ηmin := mini≤Kηi.

Theorem 4. [Small Number of Outliers] If the regularizer λ is within the following

range,

Λ + µoutnK+1 < λ < min {ηmin, γmin} − 1, (3.3.3)

then X∗ is the unique optimal solution to Program 3.1.1 with high probability. If

λ > min {ηmin, γmin} − 1 then, Program 3.1.1 fails to recover X∗ with high prob-

ability.

45

3.3.3 Large Number of Outliers
When the number of outliers is large (at least Ω(

√
n)) and is comparable or larger

than the size of clusters, we cannot hope to recover X∗, which requires the entries
corresponding to the outlier region to be all zeros. Instead Program 3.1.1 groups all
the outliers together to give an extra cluster and hence recovers X̃ :=

∑K+1
i=1 xix

T
i ,

where xK+1 is the normalized indicator vector for the cluster of outliers. So, the
entries of X̃ are

X̃l,m =


1
ni
, if nodes l,m are in the same cluster i.

0 , if nodes l,m are in different clusters.
1

nK+1
if both nodes l,m are outliers.

Note that this is not a bad scenario. Rather, it is good that outliers get separated out
as a cluster and do not get merged with other clusters. Once the cluster structure
is revealed, one can compare the average similarity inside the clusters obtained and
the average similarity outside to decide if any of the clusters obtained have average
similarity very close to that of outside cluster region, and hence discard it.

In addition to the cluster densities ρ and the cross cluster denisities γ, define the
following:

• Outlier Density: ρK+1 := µoutnK+1.

• Cross Cluster-Outlier Density: For each i ∈ [K], define cross density of

cluster i with outliers as, γi,K+1 := (µi − µout)
(

1
ni

+ 1
nK+1

)−1

> 0.

• Minimum cluster density in the presence of outliers as ρoutmin := mini≤K+1 ρi.

• Minimum cross cluster density in the presence of outliers γoutmin := mini 6=j≤K+1γij .

Theorem 5. [Large Number of Outliers] If the regularizer λ is within the following

range,

Λ < λ < min {ρoutmin, γ
out
min} − 1, (3.3.4)

then X̃ is the unique optimal solution to Program 3.1.1 with high probability. If

λ > min {ρoutmin, γ
out
min} − 1, then, the Program 3.1.1 fails to recover X̃ with high

probability.

Note that Theorems 4 and 5 are not in contradiction, since if the conditions on
mean and cluster sizes are satisfied in both cases, setting λ > 2σ

√
n+ µoutnK+1

(Equation 3.3.3 in Theorem 4) would violate µoutnK+1 > λ+ 1 (Equation 3.3.4 in
Theorem 5).

46

3.3.4 Discussion:
In this section we provide discussion of the theorems presented in this paper.

1. Size of the Smallest Cluster: All three theorems stated in this section imply
ρi = µini > Λ + 1 = 2σ

√
n + 1 ∀i, and hence we require nmin ≥ Ω(

√
n)

to guarantee success, which matches the earlier known results. The results
cannot guarantee success when Λ+1 < ρmin, that is, when nmin ≤ o(

√
n). In

this regime it is not known whether the clustering problem can be efficiently
solved.

2. Relative Size of Clusters: Note that the results do not place any restrictions
on the relative size of clusters. So, we can have clusters of varying sizes: for
example, some clusters of size Θ(n) and some of size Θ(

√
n).

3. Size of Outliers: In the presence of outliers, Theorem 4 implies ρi > ηi >

Λ + µoutnK+1 + 1. So to guarantee the exact recovery of X∗ as the optimal
solution to Program 3.1.1 we require nmin ≥ max{Ω(

√
n),Ω(nK+1)}. Note

that this requirement is automatically satisfied if the number of outliers is
o(
√
n) as we need nmin ≥ Ω(

√
n) in all cases. If the number of outliers is

large in comparison to the size of the smallest cluster, we cannot guarantee
the recovery of a solution with all zero entries in the region corresponding to
the outliers.

4. Large Number of Outliers: Theorem 5 implies ρout = µoutnout ≥ Λ + 1 =

2σ
√
n+ 1. So, if the number of outliers is at least Ω(

√
n), i.e, the number of

outliers is large, then we can guarantee that they form their own cluster under
the conditions in Theorem 5.

5. Separation Between the Means Compared to the Noise Variance: For
simplicity, assume all the clusters are of equal size, ni = m and µi = µin ∀i.

a) In the case of no outliers, from γij > 2σ
√
n+ 1 (Equation 3.3.2) we get

the following sufficient condition:

µin − µout
σ

>
1

m

(
2
√
n+

1

σ

)
.

Ifm = Θ(
√
n), then as n→∞, we require µin−µout

σ
> Ω(1), whereas if

m = Θ(n) then µin−µout > 0 is sufficient to guarantee exact recovery.

47

b) In the case of large number of outliers, from Equation 3.3.4 we get:

µin − µout
σ

>

(
1

m
+

1

nK+1

)(
2
√
n+

1

σ

)
.

c) In the case of small number of outliers, from Equation 3.3.3 we get:

µin − 2µout
σ

>
1

m

(
2
√
n+

µoutnK+1 + 1

σ

)
.

So the average similarity inside the clusters will have to be higher than
twice the average similarity outside to recover X∗ in the presence of
small number of outliers.

6. Regularization Parameter: If the noise variance is known, then the regu-
larizer can be set to λ = 2σ

√
n. In case there is no information about σ,

then we suggest using the empirical variance of A or setting λ = 2
√
n. The

value of λ provides a bound on how much noise can be tolerated, e.g, if we
set λ = 2

√
n, then σ ≤ 1 can be tolerated.

3.3.5 Brief Proof Outline
In this section we provide a brief outline of the proof. Detailed proof is available
in the appendix (Appendix B). Define dual variables for the constraints of Pro-
gram 3.1.1,

1. Y ∈ Rn×n, Y < 0 for constraint X < 0.

2. ν ∈ Rn, ν ≥ 0 for constraints
∑

j Xi,j ≤ 1, ∀i.

3. Z ∈ Rn×n, Z ≥ 0 for constraints X ≥ 0.

If a feasible X̂ is an optimal solution to Program (3.1.1), then the following condi-
tions have to hold (from KKT conditions and complementary slackness):

Z + Y = λI + X̂ + 1νT −A + ν1T

trace(X̂Y) = 0, trace(X̂Z) = 0, νT (X̂1− 1) = 0.

We first construct dual variables that satisfy the conditions above. The dual vari-
ables Z,Y, ν thus obtained are functions of the problem parameters
{{µi}i∈[K], µout, σ, {ni}i∈[K], nout}. The condition Y < 0 will give the lower bound
on λ of the form Λ or Λ + µoutnout depending on the case. The conditions ν ≥ 0

give the lower bounds on the cluster densities ρ. The conditions Z ≥ 0 give the
lower bounds on cross-cluster densities γ and the effective cluster densities η.

48

0.2 0.4
0

0.2

0.4

0.6

0.8

1

(1)

µ
in

F
ra

ct
io

n
 o

f
co

rr
e
ct

 e
n
tr

ie
s

0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

(2)

µ
in

F
ra

ct
io

n
 o

f
co

rr
e
ct

 e
n
tr

ie
s

0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

(3)

µ
in

F
ra

ct
io

n
 o

f
co

rr
e
ct

 e
n
tr

ie
s

Figure 3.1: Fraction of correct entries in the solution obtained by running Pro-
gram 3.1.1 with n = 100, similarity between the clusters: µout = 0.2, standard
deviation of noise: σ = 0.1 and varying similarity inside the clusters µin, for the
three cases: (1) no outliers, (2) small number of outliers and (3) large number of
outliers. Solid blue line is the curve from the simulations and the dashed green line
is the threshold for µin predicted by theory.

3.4 Simulations
We consider an example of n = 100 data points to illustrate the sharp transitions
predicted in the main results in Section 3.3 via numerical simulations. The simi-
larity matrix is generated as follows: For l ≥ m, Alm is sampled independently
from N (µi, σ

2) if both the points l,m belong to the same cluster i, else it is sam-
pled independently from N (µout, σ

2). Note that this does not necessarily satisfy
Al,m ∈ [0, 1]. However, we will choose the µin, µout and range of σ such that
we will not be violating the condition of the average similarity inside the clusters
being positive. All the results presented are an average over 5 experiments unless
otherwise stated.

3.4.1 Sharpness of Thresholds
We use the CVX package for Matlab [GB14; GB08] to run Program 3.1.1. We set
the mean similarity between nodes that are not in the same cluster to µout = 0.2.
The standard deviation σ is set to 0.1. Note that for the clusters sizes of 20 and 80,
non-zero entries of the ideal solution are 0.05 and 0.0125 respectively. We declare
an entry of the solution matrix Xl,m to be in error if |Xl,m − Xideal

l,m | > 10−3. For
Theorems 3 and 4, Xideal is X∗ and for Theorem 5, Xideal is X̃.

1. No Outliers: We consider five clusters of size 20 each, and no outliers. We
set the regularization parameter λ = 1.001Λ = 1.001× 2σ

√
n (lower bound

on λ in Equation 3.3.2). We vary the mean similarity inside the clusters µin

49

from 0.25 to 0.5 in steps of 0.05. From Theorem 3, we expect Program 3.1.1
to succeed (to obtain solution X∗) with high probability when, µin > µout +

(λ + 1)/n1 = 0.35 (when σ = 0.1). Figure 3.1(1) shows the fraction of
correct entries of the output of Program 3.1.1. The solid blue line is the curve
obtained from the Simulations and the dashed-red line is the threshold for µin
as predicted by our analysis. We observe that the transition occurs around µin
predicted from our results.

2. Small Number of Outliers: For this case, we consider one cluster of size
n1 = 80 and the rest nout = 20 are outliers. We set the regularization pa-
rameter to λ = 1.001(Λ + µoutnout) (lower bound on λ in Equation 3.3.4)
and vary µin from 0.4 to 0.65 in steps of 0.05. From Theorem 4, we expect
Program 3.1.1 to succeed (obtain solution X∗) with high probability when,
µin > 2µout + (λ + 1)/n1 = 0.49 (when σ = 0.1). Figure 3.1(2) shows
the fraction of correct entries of the output of Program 3.1.1. The solid blue
line is the curve obtained from the Simulations and the dashed-red line is the
threshold for µin as predicted by our analysis. We observe that the transition
occurs around µin predicted from our results.

3. Large Number of Outliers: In this case, we consider one cluster of size n1 =

20 and the rest nout = 80 are outliers. We set the regularization parameter
to λ = 1.001Λ (lower bound on λ in Equation 3.3.4) and vary µin from
0.25 to 0.55 in steps of 0.05. From Theorem 5, we expect Program 3.1.1 to
succeed (obtain solution X̃) with high probability when, µin > µout + (λ +

1) (1/n1 + 1/nout) = 0.39 (when σ = 0.1). Figure 3.1(3) shows the fraction
of correct entries of the output of Program 3.1.1. The solid blue line is the
curve obtained from the Simulations and the dashed-red line is the threshold
for µin as predicted by our analysis. We observe that the transition occurs
around µin predicted from our results.

3.4.2 Impact of the Noise Variance
We generate similarity matrix on dataset of n = 600 points with µout = 0.20.
Standard deviation σ is to start with 0.01 and then varied from 0.05 to 0.20 in steps
of 0.05. Due to the limitations on the datasize that can be handled by the CVX
package on Matlab, we solve Program 3.1.1 using Alternating Direction Method of
Multipliers (ADMM) based implementation. We declare an entry of the solution
matrix X to be in error if its absolute difference from the value in ideal solution is

50

(1)

µ
in

σ

0.4 0.6

0.05

0.1

0.15

0.2

(2)

µ
in

σ

0.5 1

0.05

0.1

0.15

0.2

(3)

µ
in

σ

0.4 0.6

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 3.2: Region of success (white) and failure (black) for Program 3.1.1 on syn-
thetic data of n = 600, µout = 0.20, for varying µin and σ with (1) 3 clusters size
200 each (no outliers), λ = 1.001Λ, (2) 2 clusters of size 200 and rest nout = 200
outliers, λ = 1.001(Λ + µoutnout) (recover only the clusters), (3) 2 clusters of size
200 and rest nout = 200 outliers, λ = 1.001Λ (recover outliers as a cluster). The
dotted red lines are the thresholds for µin predicted by the theory for the corre-
sponding σ.

more that 0.001, that is |Xl,m −Xideal
l,m | > 10−3.

No Outliers: In this case we consider three clusters of equal size n1 = n2 = n3 =

200 with the same mean similarity inside the clusters µin varied from 0.25 to 1 in
steps of 0.05 and the standard deviation of noise σ starting at 0.01 and then varied
from 0.05 to 0.2 in steps of 0.05. We set λ = 1.001Λ as required by Theorem 3.

With Outliers: Here we consider two clusters of equal size n1 = n2 = 200 with the
same mean similarity inside the clusters. Rest of the nout = 200 nodes are outliers.
We have the following two cases:

Recover Only the Clusters: We set λ = 1.001Λ+µoutnout as required by Theorem 4
and vary µin from 0.25 to 1 in steps of 0.05.

Outliers Recovered as a Cluster: We set λ = 1.001Λ as required by Theorem 5 and
vary µin from 0.25 to 1 in steps of 0.05.

Figure 3.2 shows the regions of success (white) and failure (black) in each case.
The dotted red lines are the thresholds for µin predicted by the theory for the corre-
sponding σ. The transition occurs around the predicted threshold. The simulations
suggest that our thresholds are sharp.

3.5 Experiments on Real Datasets
We run the inexact implementation of Program 3.1.1 via ADMM on 3 real datasets
from UCI Machine Learning Repository. We obtain a rounded output (with entries

51

Table 3.1: Percentage of mis-classified data points

Iris digit1000
Program 3.1.1 + K-means 11.33% (K = 3) 16.6% (K = 9)
Spectral Clustering 33.33%(K = 2) 34.0% (K = 7)

round to 0 or 1) by thresholding the entries of the output of Program 3.1.1 by com-
paring it to the mean of all the entries. Then we run k-means algorithm (we run
it 5 times and pick the best solution) on the rounded output to assign clusters. We
compare it with Spectral Clustering with normalized Laplacian.

Fisher’s Iris Data Set: It has 150 data points with 50 data points in each of the
three classes (Iris Setosa, Iris Versicolour, Iris Virginica), and has four attributes
(sepal length, sepal width, petal length, and petal width). We use Gaussian Kernel
to obtain a similarity matrix, Al,m = exp(−||yl− ym||2/2σ2) with σ2 = 10 (where
y ∈ R4 are the data points). We run Program 3.1.1 with λ = 0.5

√
n.

NIST Handwritten Digits: We use the similarity matrices of digit1000 and
digitFive1000 datasets from [VM03]1. These datasets are generated using Gaus-
sian Kernel with σ = 10 on a sub-sampled data (100 elements per digit where each
digit is represented by 8×8 matrix of integer in the range 0 to 16 to obtain a 1000
data points of 64-dimensions) from the dataset available on UCI Machine Learn-
ing Repository. digit1000 has all the 1000 sample points for 10 digits whereas
digitFive1000 is a subset of with only digits 0, 2, 4, 6, and 7. In both the cases,
since the entries of the similarity matrix are very small compared to 1 (diagonal en-
tries), we set the diagonal entries to 0 and run Program 3.1.1 with λ = 2

√
nvar(A).

The rounded output for all the real datasets obtained is shown in Figure 3.3 and the
percentage of mis-classified data points is presented in Table 3.1.

3.6 Summary
In this chapter we focused on understanding the performance of convex-optimization-
based clustering in the presence of outliers when we only have the similarity matrix
given to us (with no additional information). We analyzed a simple and intuitive
convex program (3.1.1), and for the stochastic similarity model, we provided guar-
antees on its performance by deriving precise thresholds (not orderwise) on the
cluster sizes, the strength of similarity compared to noise, the number of outliers,
and the regularization parameter. We corroborate our results through simulations.

1http://www.stat.washington.edu/spectral/datasets.html

52
(a) Iris

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(b) digit1000

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Figure 3.3: Rounded output after running Program 3.1.1 on real datasets. (1) Iris
and (2) digit1000.

100 110 120 130 140 150
0

10

20

30

40

50

60

70
(a) Iris

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2
(b) Iris

950 960 970 980 990 1000
10

20

30

40

50

60
(c) digit1000

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

(d) digit1000

X

Laplacian
of A

X

Laplacian
of A

Figure 3.4: Sorted eigenvalues for the rounded output X and the normalized Lapla-
cian of the similarity matrix A for Iris and digit1000 datasets.

One of the drawbacks of convex approach is that it is computationally intensive. A
future research direction would be to scale the convex approaches for clustering to
work with large datasets.

53

C h a p t e r 4

CROWDSOURCED CLUSTERING: TRIANGLE VS EDGE
QUERY

In this chapter, we consider the task of clustering items using answers from non-
expert crowd workers. In such cases, the workers are often not able to label the
items directly; however, it is reasonable to assume that they can compare items and
judge whether they are similar or not. An important question is what queries to
make, and we compare two types: random edge queries, where a pair of items is
revealed, and random triangles, where a triple is. Since it is far too expensive to
query all possible edges and/or triangles, we need to work with partial observations
subject to a fixed query budget constraint. When a generative model for the data is
available (and we consider a few of these) we determine the cost of a query by its
entropy; when such models do not exist we use the average response time per query
of the workers as a surrogate for the cost. In addition to theoretical justification,
through several simulations and experiments on two real data sets on Amazon Me-
chanical Turk, we empirically demonstrate that, for a fixed budget, triangle queries
uniformly outperform edge queries. Even though, in contrast to edge queries, trian-
gle queries reveal dependent edges, they provide more reliable edges and, for a fixed
budget, many more of them. We also provide a sufficient condition on the number
of observations, edge densities inside and outside the clusters, and the minimum
cluster size required for the exact recovery of the true adjacency matrix via trian-
gle queries using a convex optimization-based clustering algorithm. This chapter is
based on our paper [VH16a].

4.1 Introduction
Collecting data from non-expert workers on crowdsourcing platforms such as Ama-
zon Mechanical Turk, Zooinverse, Planet Hunters, etc. for various applications has
recently become quite popular. Applications range from creating a labeled dataset
for training and testing supervised machine learning algorithms [Ray+10; Sno+08;
Von+08; SF08; Wel+10; Yi+12] to making scientific discoveries [SPD14; Lin+13].
Since the workers on the crowdsourcing platforms are often non-experts, the an-
swers obtained will invariably be noisy. Therefore the problem of designing queries
and inferring quality data from such non-expert crowd workers is of great impor-

54

Figure 4.1: Example of an edge query: “Do these two birds belong to the same
species?”

Figure 4.2: Example of a triangle query: “Which of these birds belong to the same
species?”

tance.

As an example, consider the task of collecting labels of images, e.g, of birds or dogs
of different kinds and breeds. To label the image of a bird, or dog, a worker should
either have some expertise regarding the bird species and dog breeds, or should be
trained on how to label each of them. Since hiring experts or training non-experts is
expensive, we shall focus on collecting labels of images through image comparison
followed by clustering. Instead of asking a worker to label an image of a bird, we
can show her two images of birds and ask: “Do these two birds belong to the same
species?" (Figure 4.1). Answering this comparison question is much easier than the
labeling task and does not require expertise or training. Though different workers

55

might use different criteria for comparison, e.g, color of feathers, shape, size etc.,
the hope is that, averaged over the crowd workers, we will be able to reasonably
resolve the clusters (and label each).

Consider a graph of n images that needs to be clustered, where each pairwise com-
parison is an ‘edge query’. Since the number of edges grows as O(n2), it is too
expensive to query all edges. Instead, we want to query a subset of the edges,
based on our total query budget, and cluster the resulting partially observed graph.
Of course, since the workers are non-experts, their answers will be noisy and this
should be taken into consideration in designing the queries. For example, it is not
clear what the best strategy to choose the subsets of edges to be queried is.

4.1.1 Our Contribution
In this work we compare two ways of partially observing the graph: random edge
queries, where a pair of items is revealed for comparison, and random triangle
queries, where a triplet is revealed. We give intuitive generative models for the
data obtained for both types of queries. Based on these models we determine the
cost of a query to be its entropy (the information obtained from the response to the
query). On real data sets where such a generative model may not be known we use
the average response time per query as a surrogate for the cost of the query. To fairly
compare the use of edge vs. triangle queries we fix the total budget, defined as the
(aforementioned) cost per query times the total number of queries. Empirical evi-
dence, based on extensive simulations, as well as two real data sets (images of birds
and dogs, respectively), strongly suggests that, for a fixed query budget, querying
for triangles significantly outperforms querying for edges. Even though, in contrast
to edge queries that give information on independent edges, triangle queries give
information on dependent edges, i.e., edges that share vertices, we (theoretically
and empirically) argue that triangle queries are superior because (1) they allow for
far more edges to be revealed, given a fixed query budget, and (2) due to the self-
correcting nature of triangle queries, they result in much more reliable edges.

1"

2" 3"
lll!

1"

2" 3"llm!

1"

2" 3"lml!

1"

2" 3"mll!

1"

2" 3"lmj!

1"

2" 3"

1"

2" 3"

1"

2" 3"

(a)"Allowed" (b)"Not"allowed"

Figure 4.3: Configurations for a triangle query that are (a) observed and (b) not
allowed.

56

Furthermore, for a specific convex optimization-based clustering algorithm, we also
provide theoretical guarantee for the exact recovery of the true adjacency matrix
via random triangle queries, which gives a sufficient condition on the number of
queries, edge densities inside and outside the clusters and the minimum cluster
size. In particular, we show that the lower bound of Ω(

√
n) on the cluster size still

holds even though the edges revealed via triangle queries are not independent.

4.1.2 Problem Setup
Consider n items with K disjoint classes/clusters plus outliers (items that do not
belong to any clusters). Consider a graph with these n items as nodes. In the true
underlying graph G∗, all the items in the same cluster are connected to each other
and the items that are not in the same cluster are not connected to each other. We
do not have access to G∗. Instead we have a crowdsourced query mechanism that
can be used to observe a noisy and partial snapshot Gobs of this graph. Our goal is
to find the cluster assignments from Gobs. We consider the following two querying
methods:
Random Edge Query: We sampleE edges uniformly at random from

(
n
2

)
possible

edges. Figure 4.1 shows an example of an edge query. For each edge observation,
there are two possible configurations: (1) Both items are similar, denoted by ll, and
(2) The items are not similar, denoted by lm.
Random Triangle Query: We sample T triangles uniformly at random from

(
n
3

)
possible triangles. Figure 5.1 shows an example of a triangle query. For each
triangle observation, there are five possible configurations (Figure 5.2):(1) All items
are similar, denoted by lll, (2) Items 1 and 2 are similar, denoted by llm, (3) Items
1 and 3 are similar, denoted by lml, (4) Items 2 and 3 are similar, denoted by mll,
and (5) None are similar, denoted by lmj.

4.1.3 Related Works
[KOS11; KOS14; VVV14; Zho+12; LPI12; Zha+14] and references therein fo-

cus on the problem of inferring true labels from crowdsoruced multiclass label-
ing. The common setup in these problems is as follows: a set of items are shown
to workers and labels are elicited from them. Since the workers give noisy an-
swers, each item is labeled by multiple workers. Algorithms based on Expectation-
Maximization [Zha+14] for maximum likelihood estimation and minimax entropy
based optimization [Zho+12] have been studied for inferring the underlying true
labels. In our setup we do not ask the workers to label the items. Instead we use

57

comparison between items to find the clusters of items that are similar to each other.

[Gom+11] considers the problem of inferring the complete clustering on n images
from a large set of clustering on smaller subsets via crowdsourcing. Each HIT (Hu-
man Intelligent Task) is designed such that all of them share a subset of images
to ensure overlapping. Each HIT has M images and all the

(
M
2

)
comparisons are

made. Each HIT is then assigned to multiple workers to get reliable answers. These
clustering are then combined using an algorithm based on variational Bayesian in-
ference. In our work we consider a different setup, where either pairs or triples of
images are compared by the crowd to obtain a partial graph on the images which
can be clustered.

In our previous work [VOH14a], we considered a convex approach to graph cluster-
ing with partially observed adjacency matrices, and provides an example of cluster-
ing images by crowdsourcing pairwise comparisons. However, it does not consider
other types of querying such as triangle queries. In this work, we extend the analy-
sis in [VOH14a] and show that a similar performance guarantee holds for clustering
via triangle queries.

Another interesting line of work is learning embeddings and kernels through triplet
comparison tasks in [Tam+11; WKB14; HVH14; VW12; Wah+14; HU13] and
references therein. The ‘triplet comparison’ task in these works is of type: ‘Is
a closer to b or to c?’, with two possible answers, to judge the relative distances
between the items. On the other hand, a triangle query in our work has five possible
answers (Figure 5.1) that give a clustering (discrete partitioning) of the three items.

4.2 Generative Models
Probability of observing a particular configuration y is given by:

Pr(y) =
∑
x∈X

Pr(y|x)Pr(x),

where x is the true configuration and X is the set of true configurations. Let Y be
the set of all observed configurations. Each query has a |Y| × |X | confusion matrix

[Pr(y|x)] associated to it. Note that the columns of this confusion matrix sum to 1,
i.e
∑

y∈Y Pr(y|x) = 1.

4.2.1 Random Edge Observation Models
For the random edge query case, there are two observation configurations, Y =

{ll, lm} where lm denotes ‘no edge’ and ll denotes ‘edge’.

58

Pr(y|x) lll llm lmj

lll p3 + 3p2(1− p) pq2 q3

llm p(1− p)2 p(1− q)2 + (1− p)q2 + 2pq(1− q) q(1− q)2
lml p(1− p)2 (1− p)q(1− q) q(1− q)2
mll p(1− p)2 (1− p)q(1− q) q(1− q)2
lmj (1− p)3 (1− p)(1− q)2 (1− q)3 + 3q2(1− q)

Table 4.1: Query confusion matrix for the triangle block model for the homoge-
neous case.

One-coin Edge Model: Assume all the queries are equally hard. Let the ζ be the
probability of answering a question wrong. Then Pr(ll|ll) = Pr(lm|lm) = 1− ζ ,
Pr(lm|ll) = Pr(ll|lm) = ζ . This model is inspired by the one-coin Dawid-Skene
Model [DS79], which is used in inference for item label elicitation tasks. This is a
very simple model and does not capture the difficulty of a query depending on which
clusters the items in the query belong to. In order to incorporate these differences
we consider the popular Stochastic Block model (SBM) [HLL83; CK01] which is
one of the most widely used model for graph clustering.
Stochastic Block Model (SBM): Consider a graph on n nodes with K disjoint
clusters and outliers. Any two nodes i and j are connected (independent of other
edges) with probability p if they belong to the same cluster and with probability
q otherwise. That is, Pr(ll|ll) = p, Pr(lm|ll) = 1 − p, Pr(ll|lm) = q and
Pr(lm|lm) = 1− q. We assume that the density of the edges inside the clusters is
higher than that between the clusters, that is, p > q.

4.2.2 Random Triangle Observation Models
For the triangle query model, there are five possible observation configurations (Fig-
ure 5.2), Y = {lll, llm, lml,mll, lmj}.
One-coin Triangle Model: Let each question be answered correctly with proba-
bility 1 − ζ , and when wrongly answered, all the other configurations are equally
confusing. So, Pr(lll|lll) = 1−ζ and Pr(llm|lll) = Pr(lml|lll) = Pr(mll|lll) =

Pr(lmj|lll) = ζ/4 and so on. This model, as in the case of the one-coin model
for edge query, does not capture the differences in difficulty for different clusters.
In order to include the differences in confusion between different clusters, we con-
sider the following observation models for a triangle query. For these 3 items in the
triangle query, the edges are first generated from the SBM. This can give rise to 8

configurations, out of which 5 are allowed as an answer to triangle query while the
remaining 3 are not allowed (Figure 5.2). The two models differ in how they handle

59

Pr(y|x) lll llm lmj

lll p3/zlll pq2/zllm q3/zlmj
llm p(1− p)2/zlll p(1− q)2/zllm q(1− q)2/zlmj
lml p(1− p)2/zlll (1− p)q(1− q)/zllm q(1− q)2/zlmj
mll p(1− p)2/zlll (1− p)q(1− q)/zllm q(1− q)2/zlmj
lmj (1− p)3/zlll (1− p)(1− q)2/zllm (1− q)3/zlmj

Table 4.2: Query confusion matrix for the conditional block model for the homo-
geneous case.

the configurations that are not allowed, and are described below:
Triangle Block Model (TBM): In this model we assume that a triangle query helps
in correctly resolving the configurations that are not allowed. So, when the trian-
gle generated from the SBM takes one of the 3 non-allowed configurations, it is
mapped to the true configuration. This gives a 5× 5 query confusion matrix which
is given in Table 4.1. Note that the columns for lml and mll can be filled in a simi-
lar manner to that of llm.
Conditional Block Model (CBM): In this model when a non-allowed configura-
tion is encountered, it is redrawn again. This is equivalent to conditioning on the
allowed configurations. Define the normalizing factors, zlll := 3p3 − 3p2 + 1,
zllm := 3pq2 − 2pq − q2 + 1, zllm := 3q3 − 3q2 + 1. The 5 × 5 query confusion
matrix is given in Table 4.2.

Remark: Note that the SBM (and hence the derived models) can be made more
general by considering different edge probabilities Pii for cluster i and Pij = Pji

between clusters i 6= j.

Some intuitive properties of the triangle query models described in this section are:

1. If p > q, then the diagonal term will dominate any other term in a row. That
is Pr(lll|lll) > Pr(lll|? 6= lll),Pr(llm|llm) > Pr(llm|? 6= llm) and so on.

2. If p > 1/2 > q, then the diagonal term will dominate the other terms in
the column, i.e, Pr(lll|lll) > Pr(llm|lll) = Pr(lml|lll) = Pr(mll|lll) >
Pr(lmj|lll) etc.

3. When there is a symmetry between the items, the observation probability
should be the same. That is, if the true configuration is llm, then observing
lml and mll should be equally likely as item1 and item2 belong to the same

60

cluster and so on. This property will hold good in the general case as well
except for when the true configuration is lmj. In this case, the probability of
observing llm, lml, and mll can be different as it depends on the clusters to
which items 1, 2 and 3 belong.

4.2.3 Adjacency Matrix: Edge Densities and Edge Errors
The adjacency matrix, A = AT of a graph can be partially filled by querying a
subset of edges. Since we query edges randomly, most of the edges are seen only
once. Some edges might get queried multiple times, in which case, we randomly
pick one of them. Similarly we can also partially fill the adjacency matrix from
triangle queries. We fill the unobserved entries of the adjacency matrix with zeros.
We can perform clustering on A to obtain a partition of items. The true underlying
graph G∗ has perfect clusters (disjoint cliques). So, the performance of clustering
on A depends on how noisy it is. This in turn depends on the probability of error for
each revealed edge in A, i.e, what is the probability that a true edge was registered
as no-edge and vice versa. The hope is that triangle queries help workers to resolve
the edges better and hence have less errors among the revealed edges than those
obtained from edge queries.

If we make E edge queries, then the probability of observing an edge is r = E/
(
n
2

)
.

If we make T triangle queries, the probability of observing an edge is rT = 3T/
(
n
2

)
.

Let rp (rTpT) and rq (rT qT) be the edge probability inside the clusters and between
the clusters, respectively, in A, which is partially filled via edge (triangle) queries.

In the case of one-coin model, for edge qurey, p = 1 − ζ and q = ζ . For triangle
query, pT = 1−3ζ/4 > 1−ζ = p and qT = ζ/2 < ζ = q. That is, the quality of the
edges obtained via triangle queries is better than those obtained via edge queries.

For the TBM, when p > 1/2 > q, we can show that pT > p and qT < q, and
hence quality of edges obtained via triangle queries is better. For the CBM, when
p > 1/2 > q, under reasonable assumptions on r, rT qT < rq, but depending on
the values of r and rT , rTpT can get below rp. If the decrease in edge probability
between the clusters is large enough to overcome the fall in edge density inside the
clusters, then p∆

err < pedgeerr .

In summary, when A is filled by triangle queries, the edge density between the
clusters decreases and the overall number of edge errors decreases (we observe
this in real data as well, see Table 6.1). Both of these are desirable for clustering
algorithms that try to approximate the minimum cut to find the clusters like spectral

61

0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

One−coin Model,
r=0.2, q = 1−p

p

F
ra

ct
io

n
 o

f
E

n
tr

ie
s

in
 E

rr
o
r

E

T
E

T
B

0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

Triangle Block Model,
r=0.2, q = 0.25

p

E

T
E

T
B

0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

Conditional Block Model,
r=0.2, q = 0.25

p

E

T
E

T
B

0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

One−coin Model,
r=0.3, q = 1−p

p

E

T
E

T
B

0.7 0.8 0.9
0

0.1

0.2

Triangle Block Model,
r=0.3, q = 0.25

p

E

T
E

T
B

0.7 0.8 0.9
0

0.1

0.2

Conditional Block Model,
r=0.3, q = 0.25

p

E

T
E

T
B

Figure 4.4: Fraction of entries in error in the matrix recovered via Program 4.4.1.

clustering.

4.3 Value of a Query
To make a meaningful comparison between edge queries and triangle queries, we
need to fix a budget. Suppose we have a budget to make E edge queries. To find
the number of triangle queries that can be made with the same budget, we need to
define the value (cost) of a triangle query. Although a triangle query has 3 edges,
they are not independent, and hence its relative cost is less than that of making 3
random edge queries. Thus we need a fair way to compare the value of a triangle
query to that of an edge query.

Let s ∈ [0, 1]|Y|,
∑

y∈Y sy = 1 be the probability mass function (pmf) of the obser-
vation in a query, with sy := Pr(y) =

∑
x∈X Pr(y|x)Pr(x). We define the value

of a query as the information obtained from the observation, which is measured by
its entropy: H(s) = −

∑
i∈Y si log(si). Ideally, the cost of a query should be pro-

portional to the amount of information it provides. So, if E is the number of edge
queries, then the number of triangle queries we can make with the same budget is
TB = E ×HE/H∆.

We should remark that determining the above cost requires knowledge of the gen-
erative model of the graph, which may not be available for empirical data sets. In
such situations, a very reasonable cost is the relative time it takes for a worker to
respond to a triangle query, compared to an edge query. (In this manner, a fixed
budget means a fixed amount of time for the queries to be completed.) A good rule
of thumb, which is widely supported by empirical data, is the cost of 1.5, ostensibly
because in triangle queries workers need to study three images, rather than two, and
so it takes them 50% longer to respond. The end result is that, for a fixed budget,
triangle queries reveal twice as many edges.

62

4.4 Guaranteed Recovery of the True Adjacency Matrix
In this section we provide a sufficient condition for the full recovery of the adja-
cency matrix corresponding to the underlying true G∗ from partially observed noisy
A filled via random triangle queries. We consider the following convex program
from [VOH14a] (Chapter 2):

minimize
L,S

‖L‖? + λ‖S‖1 (4.4.1)

s. t. 1 ≥ Li,j ≥ Si,j ≥ 0 for all i, j ∈ {1, 2, . . . n},

Li,j = Si,j whenever Ai,j = 0,
n∑

i,j=1

Lij ≥ |R|,

where ‖.‖? is the nuclear norm (sum of the singular values of the matrix), and ‖.‖1

is the l1-norm (sum of absolute values of the entries of the matrix) and λ ≥ 0 is the
regularization parameter. L is the low-rank matrix corresponding to the true cluster
structure, S is the sparse error matrix that accounts only for the missing edges inside
the clusters and |R| is the size of the cluster region.

When A is filled using a subset of random edge queries, under the SBM with pa-
rameters {n, nmin, K, p, q}, [VOH14a] provides the following sufficient condition
for the guaranteed recovery of the true G∗:

nmin r (p− q) ≥ 1

λ
≥ 2
√
n
√
rq(1− rq) + 2

√
nmax

√
rp(1− rp) + rq(1− rq),

(4.4.2)
where nmin and nmax are the sizes of the smallest and the largest clusters respec-
tively. We extend the analysis in[VOH14a] to the case when A is filled via a subset
of random triangle queries, and obtain the following sufficient condition:

Theorem 6. If the following condition holds:

nmin rT (pT − qT) ≥ 1

λ

≥ 3

(
2
√
n

√
rT
qT
3

(1− rT
qT
3

) + 2
√
nmax

√
rT
pT
3

(1− rT
pT
3

) + rT
qT
3

(1− rT
qT
3

)

)
,

then Program 4.4.1 succeeds in recovering the true G∗ with high probability.

When A is filled using random edge queries, the entries are independent of each
other (since the edges are independent in the SBM). When we use triangle queries
to fill A, this no longer holds as the 3 edges filled from a triangle query are not

63

independent. The key idea of our proof is as follows: The analysis in Chap-
ter 2 [VOH14a] relies on the independence of entries of A to use Bernstein-type
concentration results for the sum of independent random variables and the bound
on the spectral norm of random matrix with independent entries. We make the
following observation: Split A filled via random triangle queries into three parts,
A = A1 + A2 + A3. For each triangle query, allocate one edge to each part ran-
domly. If an edge gets queried as a part of multiple triangle queries, keep one of
them randomly. Each Ai now contains independent entries. The edge density in
Ai is rTpT/3 and rT qT/3 inside the clusters and outside respectively. This allows
us to use the results on concentration of sum of independent random variables and
the O(

√
n) bound on the spectral norm of random matrices, with a penalty due to

triangle inequality for spectral norm.

It can be seen that, when the number of revealed edges is the same (rT = r) and the
probability of correctly identifying edges is the same (pT = p and 1− qT = 1− q),
then the reovery condition of Theorem 6 is worse than that of (4.4.2). (This is ex-
pected, since triangle queries yield dependent edges.) However, it is overcompen-
sated by the fact that triangle queries result in more reliable edges (pT −qT > p−q)
and also reveal more edges (rT > r, since the relative cost is less than 3).

To illustrate this, consider a graph on n = 600 nodes with K = 3 clusters of
equal size m = 200. We generate the adjacency matrices from different models in
Section 4.2 for varying p from 0.65 to 0.9. For the one-coin models, 1 − ζ = p.
For the rest of the models q = 0.25. We run the improved convex program (4.4.1)
by setting λ = 1/

√
n. Figure 4.4 shows the fraction of the entries in the recovered

matrix that are wrong compared to the true adjacency matrix for r = 0.2 and 0.3

(averaged over 5 runs; TE = dE/3e and TB = EHE/H∆). We note that the error
drops significantly when A is filled via triangle queries than via edge queries.

4.5 Performance of Spectral Clustering: Simulated Experiments
We generate adjacency matrices from the edge query and the triangle query mod-
els (Section 4.2) and run the spectral clustering algorithm [NJW02] on them. We
compare the output clustering with the ground truth via variation of information

(VI) [Mei07] which is defined for two clusterings (partitions) of a dataset and has
information theoretical justification. Smaller values of VI indicate a closer match
and a VI of 0 means that the clusterings are identical. We compare the performance
of the spectral clustering algorithms on the partial adjacency matrices obtained from

64

querying: (1) E = dr
(
n
2

)
e random edges, (2) TB = E ×HE/H∆ random triangles,

which has the same budget as querying E edges and (3) TE = dE/3e < TB random
triangles, which has same number of edges as in the adjacency matrix obtained by
querying E edges.
Varying Edge Density Inside the Clusters: Consider a graph on n = 450 nodes
with K = 3 clusters of equal size m = 150. We vary edge density inside the cluster
p from 0.55 to 0.9. For the one-coin models, 1 − ζ = p, and q = 0.25 for the rest.
Figure 4.5 shows the performance of spectral clustering for r = 0.15 and r = 0.3

(averaged over 5 runs).
Varying Cluster Sizes: Let N = 1200. Consider a graph with K clusters of equal

0.6 0.8 1
0

0.5

1

1.5

2

2.5

One−coin,
r=0.15, q = 1−p

p

V
I
(V

a
ri
a
tio

n
 o

f
In

fo
rm

a
tio

n
)

E

T
E

T
B

0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Triangle Block Model
r=0.15, q = 0.25

p

E

T
E

T
B

0.6 0.8 1
0

0.5

1

1.5

Conditional Block Model
r=0.15, q = 0.25

p

E

T
E

T
B

0.6 0.8 1
0

0.5

1

1.5

2

2.5

One−coin
r=0.3, q = 1−p

p

E

T
E

T
B

0.6 0.8 1
0

0.1

0.2

0.3

0.4

Triangle Block Model
r=0.3, q = 0.25

p

E

T
E

T
B

0.6 0.8 1
0

0.2

0.4

0.6

0.8

Conditional Block Model
r=0.3, q = 0.25

p

E

T
E

T
B

Figure 4.5: VI for Spectral Clustering output for varying edge density inside the clusters.

0 5 10
0

1

2

3

4

5

One−coin
r=0.2, p = 1−q = 0.7

K

V
I

(V
a

ri
a

tio
n

 o
f

In
fo

rm
a

tio
n

)

E

T
E

T
B

0 5 10
0

1

2

3

4

Triangle Block Model
r=0.2, p = 0.7, q = 0.25

K

E

T
E

T
B

0 5 10
0

1

2

3

4

Conditional Block Model
r=0.2, p = 0.7, q = 0.25

K

E

T
E

T
B

0 5 10
0

1

2

3

4

One−coin
r=0.3, p = 1− q = 0.7

K

E

T
E

T
B

0 5 10
0

0.5

1

1.5

2

Triangle Block Model
r=0.3, p = 0.7, q = 0.25

K

E

T
E

T
B

0 5 10
0

0.5

1

1.5

2

Conditional Block Model
r=0.3, p = 0.7, q = 0.25

K

E

T
E

T
B

Figure 4.6: VI for Spectral Clustering output for varying number of clusters (K).

sizes m = bN/Kc and n = K m. We vary K from 2 to 12 which varies the cluster
sizes from 600 (large clusters) to 100 (small clusters, note that

√
1200 ≈ 35). We

set p = 0.7. For the one-coin models 1−ζ = p and q = 0.25 for the rest. Figure 4.6
shows the performance of spectral clustering for r = 0.2 and 0.3. The performance
is significantly better with triangle queries compared to that with edge queries.

4.6 Experiments on Real Data
We use Amazon Mechanical Turk as crowdsourcing platform. For edge queries,
each HIT (Human Intelligence Task) has 30 queries of random pairs, a sample is
shown in Figure 4.1. For triangle queries, each HIT has 20 queries, with each query
having 3 random images, a sample is shown in Figure 5.1. Each HIT is answered

65

E: Edge, T: ∆ # Workers # Unique Edges % of Edges Seen % of Edge Errors

Dogs3, Edge Query 300 E′ = 8630 7.73% 25.2%
Dogs3, ∆ Query 150 3T ′

E = 8644 7.74% 19.66%
Dogs3, ∆ Query 320 3T ′ = 17, 626 15.79% 20%

Birds5, Edge Query 300 E′ = 8319 14.27% 14.82%
Birds5, ∆ Query 155 3T ′

E = 8600 14.74% 10.96%
Birds5, ∆ Query 285 3T ′ = 14, 773 25.34% 11.4%

Table 4.3: Summary of the data colleced in the real experiments.

Query (E: Edge, T: ∆) k-means Spectral Clustering Convex Program

E′ = 8630 0.8374± 0.0121 (K=2) 0.6972± 0 (K = 3) 0.5176± 0 (K=3)
3T ′

E = 8644 0.6675± 0.0246 (K=3) 0.5690± 0 (K=3) 0.4605± 0 (K = 3)
3T ′ = 17626 0.3268± 0 (K=3) 0.3470± 0 (K=3) 0.2279± 0 (K = 3)

Table 4.4: VI for clustering output by k-means and spectral clustering for the Dogs3
dataset.

Query k-means Spectral Clustering Convex Program

E′ = 8319 1.4504± 0.0338 (K = 2) 1.2936± 0.0040 (K = 4) 1.0392± 0 (K = 4)
3T ′

E = 8600 1.1793± 0.0254 (K = 3) 1.1299± 0(K = 4) 0.9105± 0 (K=4)
3T ′ = 14, 773 0.7989± 0 (K = 4) 0.8713± 0 (K = 4) 0.9135± 0 (K = 4)

Table 4.5: VI for clustering output by k-means and spectral clustering for the Birds5
dataset.

by a unique worker. Note that we do not provide any examples of different classes
or any training to do the task. We fill A as described in Section 4.2.3 and run the k-
means, the Spectral Clustering and Program 2.1.7 followed by Spectral Clusteirng
on it. Since we do not know the model parameters and hence have no access to the
entropy information, we can use the the average time taken as the “cost” or value of
the query. For E edge comparisons, the equivalent number of triangle comparisons
would be T = E × tE/t∆, where tE and t∆ are average time taken to answer an
edge query and a triangle query respectively. We consider two datasets:

1. Dogs3 dataset has images of the following 3 breeds of dogs from the Stan-
ford Dogs Dataset [Kho+11]: Norfolk Terrier (172), Toy Poodle (150), and
Bouvier des Flanders (151), giving a total of 473 dogs images. On an average
a worker took tE = 8.4s to answer an edge query and t∆ = 11.7s to answer
a triangle query.

66

2. Birds5 dataset has 5 bird species from CUB-200-2011 dataset [Wah+11]:
Laysan Albatross (60), Least Tern (60), Artic Tern (58), Cardinal (57), and
Green Jay (57). We also add 50 random species as outliers, giving us a total
if 342 bird images. On an average, workers took tE = 8.3s to answer one
edge query and t∆ = 12.1s to answer a triangle query.

Details of the data obtained from edge query and triangle query experiments is
summarized in Table 6.1. Note that the error in the revealed edges drop significantly
for triangle queries.

For the Dogs3 dataset, the empirical edge densities inside and between the clusters
for A obtained from the edge queries (P̂E) and the triangle queries (P̂T) is:

P̂E =

0.7577 0.1866 0.2043

0.1866 0.6117 0.2487

0.2043 0.2487 0.7391

 , P̂T =

0.7139 0.1138 0.1253

0.1138 0.6231 0.1760

0.1253 0.1760 0.7576

 .
For the Birds5 dataset, the emprical edge densities within and between various clus-
ters in A filled via edge queries (P̂E) and triangle queries (P̂T) are:

P̂E =



0.801 0.304 0.208 0.016 0.032 0.100

0.304 0.778 0.656 0.042 0.131 0.123

0.208 0.656 0.912 0.062 0.094 0.096

0.016 0.042 0.062 0.855 0.154 0.110

0.032 0.131 0.094 0.154 0.958 0.158

0.100 0.123 0.096 0.110 0.158 0.224


, P̂T =



0.786 0.207 0.151 0.011 0.021 0.058

0.207 0.797 0.625 0.023 0.047 0.1

0.151 0.625 0.865 0.024 0.06 0.071

0.011 0.023 0.024 0.874 0.059 0.076

0.021 0.047 0.06 0.059 0.943 0.08

0.058 0.1 0.071 0.076 0.08 0.182


.

As we see the triangle queries give rise to an adjacency matrix with significantly
less confusion across the clusters (compare the off-diagonal entries in P̂E and P̂T).

Tables 4.4 and 4.5 show the performance of clustering algorithms (in terms of vari-
ation of information) for the two datasets. The number of clusters found is given in
brackets. We note that for both the datasets, the performance is significantly better
with triangle queries than with edge queries. Furthermore, even with less triangle
queries (3T ′E ≈ E) than that is allowed by the budget, the clustering obtained is
better compared to edge queries.

4.7 Summary
In this chapter, we compared two ways of querying for crowdsourced clustering us-
ing non-experts: random edge comparisons and random triangle comparisons. We
provided simple and intuitive models for both. Compared to edge queries that re-
veal independent entries of the adjacency matrix, triangle queries reveal dependent

67

ones (edges in a triangle share a vertex). However, due to their error-correcting ca-
pabilities, triangle queries result in more reliable edges and, furthermore, because
the cost of a triangle query is less than that of 3 edge queries, for a fixed budget,
triangle queries reveal many more edges. Simulations based on our models, as well
as empirical evidence strongly support these facts. In particular, experiments on
two real datasets suggest that clustering items from random triangle queries signif-
icantly outperforms random edge queries when the total query budget is fixed. We
also provided theoretical guarantee for the exact recovery of the true adjacency ma-
trix using random triangle queries. In the next chapter (Chapter 5), we explore how
to exploit the structure of triangle queries via tensor representations for improved
clustering performance.

68

C h a p t e r 5

CROWDSOURCED CLUSTERING: TENSOR EMBEDDING
FOR TRIANGLE QUERIES

In this chapter, we consider the problem of crowdsourced clustering of a set of
items based on queries of the similarity of triple of objects. We introduced this
approach, called triangle queries, in Chapter 4 and showed that, for a fixed query
budget, it outperforms clustering based on edge queries (i.e, comparing pairs of
objects). In Chpater 4, the clustering algorithm for triangle and edge queries was
identical and each triangle query response was treated as 3 separate edge query
responses. In this chapter, we directly exploit the triangle structure of the responses
by embedding them into a 3-way tensor. Since there are 5 possible responses to
each triangle query, it is a priori not clear how best to embed them into the tensor.
We give sufficient conditions on non-trivial embedding such that the resulting tensor
has a rank equal to the underlying number of clusters (akin to what happens with
the rank of the adjacency matrix). We then propose an alternating least squares
tensor decomposition algorithm to cluster a noisy and partially observed tensor and
show, through extensive numerical simulations, that it significantly outperforms
methods that make use only of the adjacency matrix. This chapter is based on our
paper [VZH17].

5.1 Introduction
Crowdsourcing – the process of collecting data from workers on platforms such as
Amazon Mechanical Turk for various applications has recently become quite pop-
ular [Ray+10; Sno+08]. The workers on these platforms are often non-experts and
hence the answers obtained will be noisy. Therefore both problems of designing
queries and designing algorithms for inferring quality data from such non-expert
workers are of importance. In Chapter 4 [VH16a] we considered the problem of
query design for crowdsourced clustering and showed that for a fixed query bud-
get, we can obtain better quality answers (and hence better clustering) by making
random triangle queries, where three items are compared per query (Figure 5.1) as
compared to making random edge queries where a pair of items are compared.
However, in Chapter 4, the information obtained from the triangle queries was em-
bedded into an adjacency matrix which was input to graph clustering algorithms.

69

Figure 5.1: Example of a triangle query.

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 lll llm lml mll lmj

(a) Allowed (b) Not Allowed
α

!!

β 1 β 2 β 3 0

Figure 5.2: Configurations for a triangle query that are (a) observed and (b) not
allowed.

Such an embedding treats each triangle query as 3 separate edges and ignores the
triangle structure itself. A more natural embedding is to consider a tensor where the
query result for each triple of items {i, j, k} is embedded into the ijk-th entry of a
3-way tensor. In this chapter we study tensor embedding for triangle queries.

Entry Aij of an adjacency matrix of a graph holds information about the pair of
nodes {i, j}, which has two possible configurations, edge, encoded by Aij = 1 and
no edge, encoded by Aij = 0. The true adjacency matrix, A∗, obtained by this
simple encoding has a low-rank structure that reflects the underlying clusters and
the rank is equal to the number of clusters. A triangle query has 5 possible answers
(Figure 5.2(a)): (1) All items are similar, denoted by lll, (2) Items 1 & 2 are similar,
denoted by llm, (3) Items 1 & 3 are similar, denoted by lml, (4) Items 2 & 3 are
similar, denoted by mll, and (5) None are similar, denoted by lmj. So, we need
an encoding scheme with 5 alphabets to embed the information obtained from a
triangle query. Moreover, we also would like the true tensor, T∗, obtained by this
embedding, to have a low-rank structure that reflects the underlying clusters.

70

Our Contributions: We propose a general encoding scheme for filling a tensor
from triangle queries (Section 5.3.1) and provide sufficient conditions on this en-
coding scheme to give a true tensor with unique (up to scaling and permutations)
CP-decomposition of rank equal to the number of clusters (Section 5.3.2, 5.3.3). We
also provide extensive numerical simulations (Section 5.4) that show that using ten-
sor decomposition methods can improve over clustering obtained via the adjacency
matrix.

5.2 Tensors: A Quick Recap
A tensor is a multidimensional array. [KB09] provides a very good survery on
tensors. In this chapter we focus on 3-way tensors and in this section we recall a
few properties of tensors that are relevant for our results.

A rank-1 matrix is an outer product of two vectors x⊗ y = xy>, with (x⊗ y)ij =

xiyj . Similarly, a rank-1 tensor is an outer product of 3 vectors x ⊗ y ⊗ z with
(x⊗ y⊗ z)ijk = xiyjzk. A rank-K tensor, T, can be written as a sum of K rank-1
tensors (CP-decomposition):

T =
K∑
l=1

ul ⊗ vl ⊗wl = U⊗V ⊗W,

where ul,vl,wl ∈ Cn, U = [u1, · · · ,uK], V = [v1, · · · ,vK] and W = [w1, · · · ,wK].
Recall that the Kruskal rank of a matrix A, denoted by krank(A), is the maximal
number K, such that any set of K columns of A is linearly independent. The CP-
decomposition of a tensor is unique up to scaling and permutations of the factors
under mild conditions:

Theorem 7 (Kruskal). [Kru77; SBG00] The CP-decomposition of a n × n × n

tensor, T = U ⊗V ⊗W (with U,V,W being n ×K matrices), is unique up to

scaling and permutations if krank(U) + krank(V) + krank(W) ≥ 2K + 2.

5.3 Tensor Embedding for Triangle Queries
In this section we present a scheme to encode the answers to the triangle queries in
a tensor and provide sufficient conditions that guarantee a unique (up to scaling and
permutations) rank-K CP-decomposition of the true tensor.

5.3.1 Encoding Scheme for Embedding Triangle Queries
Recall that a triangle query has 5 possible configurations (Figure 5.2(a)). We pro-
pose the following encoding scheme to embed the response to the query {i, j, k}:

71

1. If {i, j, k} are in the same cluster, Tijk = α 6= 0.

2. If i, j are in the same cluster but k is not, Tijk = β1 6= 0.

3. If i, k are in the same cluster but j is not, Tijk = β2 6= 0.

4. If j, k are in the same cluster but i is not, Tijk = β3 6= 0.

5. If {i, j, k} are all in different clusters, Tijk = 0.

And Tiii = α, ∀i. Note that T is not a symmetric tensor in general. However it
does have the following symmetries:

1. If {i, j, k} is of the configuration lll, then Tijk = Tjik = Tikj = Tjki = Tkij =

Tkji = α. Also, Tiij = Tiji = Tjii = α, and similarly for all the permutations
of {jji, iik, kki, jjk, kkj}.

2. If {i, j, k} is of the configuration llm, then Tijk = Tjik = β1, Tikj = Tjki =

β2, and Tkij = Tkji = β3. Further, Tiij = Tjii = Tjij = Tjji = Tjij = Tijj =

α. Also, Tiik = Tjjk = β1, Tiki = Tjkj = β2, Tkii = Tkjj = β3,

similarly for other configurations.

5.3.2 Low-Rank Tensor Structure
Consider a graph on n items with K disjoint clusters. Let ci ∈ Rn denote the
indicator vector of cluster i. That is, cij = 1 if node j ∈ cluster i and 0 otherwise.
Let C := [c1, · · · , cK] ∈ Rn×K . Note that each row of C has a single 1, since each
item belongs to only one cluster. Let T∗ be the full tensor filled using the scheme
in Section 5.3.1 via triangle queries when there is no noise:

T∗ = α
K∑
l=1

cl ⊗ cl ⊗ cl + β1

K∑
l=1

K∑
m=1
m 6=l

cl ⊗ cl ⊗ cm

+β2

K∑
l=1

K∑
m=1
m 6=l

cl ⊗ cm ⊗ cl + β3

K∑
l=1

K∑
m=1
m 6=l

cm ⊗ cl ⊗ cl.

(5.3.1)

The true adjacency matrix, A∗ =
∑K

l=1 clc
>
l = CC>, has a low-rank structure,

with rank(A∗) = K being the number of clusters. Our goal is to understand if the

72

true tensor T∗ (5.3.1) has such a low-rank structure. In particular, we want to write
T∗ as:

T∗ =
K∑
l=1

ul ⊗ vl ⊗wl = U⊗V ⊗W,

where ul,vl,wl ∈ Cn, U = [u1, · · · ,uK], V = [v1, · · · ,vK] and W = [w1, · · · ,wK].

The following theorem provides the conditions on the encoding scheme (Section 5.3.1)
that is sufficient for T∗ to have a unique rank-K CP-decomposition.

Theorem 8. For the encoding scheme in Section 5.3.1, T∗ is a rank K tensor for

K ≥ 2 with unique (up to scaling and permutations) CP-decomposition if the fol-

lowing hold:

1. β1β2 + β2β3 + β3β1 6= 0.

2. α = β1 + β2 + β3 −K β1β2β3
β1β2+β2β3+β3β1

.

3. β1 6= −β2, β2 6= −β3, β3 6= −β1.

5.3.3 Proof of Theorem 8
We observe that T∗ (5.3.1) can be re-written as T∗ =

∑K
l,m,n=1 Blmncl ⊗ cm ⊗ cn,

where B is a K×K×K tensor (Tucker Decomposition [KB09]). Suppose we can
write B as a sum of K rank-1 tensors:

B =
K∑
l=1

fl ⊗ gl ⊗ hl = F⊗G⊗H, (5.3.2)

where fl,gl,hl ∈ CK , F := [f1, · · · , fK], G := [g1, · · · ,gK], and H := [h1, · · · ,hK].
Then, T∗ has the following rank-K CP decomposition: T∗ = (CF) ⊗ (CG) ⊗
(CH) . So, proving the following lemma is sufficient to prove Theorem 8.

Lemma 5.3.1. For the encoding scheme in Section 5.3.1, B is a rank K tensor

for K ≥ 2 with unique (up to scaling and permutations) CP-decomposition if the

conditions in Theorem 8 are satisfied.

Proof. We prove Lemma 5.3.1 by first constructing F,G,H ∈ CK×K that sat-
isfy (5.3.2) and then showing that it is unique.

73

Construction: Comparing with (5.3.1), we note that the l−th panel of B, where
the third index is kept fixed to l (which gives a matrix), has the following structure:

B(:,:,l) =



β1 0 · · · β3 0 · · · 0
...

...
...

...
...

0 · · · β1 β3 0 · · · 0

β2 · · · β2 α β2 · · · β2

0 · · · 0 β3 β1 · · · 0

0
...

...
...

... . . . 0

0 0 · · · β3 0 · · · β1


= β1I +

[
1 el

] [0 β3

β2 Kδ

][
1>

e>l

]
, (5.3.3)

where δ := α−β1−β2−β3
K

, 1 is a vector of all 1’s and el is the standard vector with
el(l) = 1 and all other entries 0. We note that B is a circulant tensor in the following
sense:

B(:,:,l+1) = ZB(:,:,l)Z
>, where Z :=


0 0 · · · 1

1 0 · · · 0
...
0 · · · 1 0

 .
This is analogous to a circulant matrix in which the columns get circularly shifted.
Note that from (5.3.2), we can write,B(:,:,l) = FDhlG

>, where
Dhl = diag(hl1, · · · , hlK). The circulant structure of B suggests a circulant struc-
ture for the factors. Since circulant matrices are diagonalized by Fourier transforms,
we may write: F := FΛF † and G> := FΞF †, where F is K ×K Fourier ma-
trix normalized with 1/

√
K, Λ and Ξ are diagonal matrices. So, F †B(:,:,l)F =

ΛF †DhlFΞ = ΛA(l)Ξ, where A(l) := F †DhlF is a circulant matrix. Us-
ing (5.3.3), we can verify that F †B(:,:,l)F has the following structure:

β1 + β3 + β2 + δ (β3 + δ)η(l−1) · · · (β3 + δ)η(K−1)(l−1)

(β2 + δ)η−(l−1) β1 + δ · · · δη(K−2)(l−1)

(β2 + δ)η−2(l−1) δη−(l−1) · · · δη(K−3)(l−1)

...
...

(β2 + δ)η−(K−1)(l−1) δη−(K−1)(l−1) · · · β1 + δ


,

where η = ej2π/K , the K−th root of unity. Note that the submatrix obtained by
removing first row and first column of the above matrix is toeplitz. So, the cor-
responding submatrix of ΛA(l)Ξ, where A(l) is circulant, should also be toeplitz.

74

This gives us conditions (we omit the details for reasons of space) using which we
can show that Λ = diag(λ, 1, · · · , 1) and Ξ = diag(µ, 1, · · · , 1). By comparing the
entries of F †B(:,:,l)F to those of ΛA(l)Ξ, the following should hold:

β1 + β2 + β3 + δ = λµ(β1 + δ), β2 + δ = µδ, β3 + δ = λδ.

Note that, if δ = 0, then β2 = β3 = 0, which is not allowed in the scheme consid-
ered. So, assuming δ 6= 0, we get:

λ =
β3 + δ

δ
, µ =

β2 + δ

δ
, β1 + β3 + β2 + δ = λµ(β1 + δ).

Using the expressions for λ and µ, we can solve for δ and hence α in terms of
βi, i = 1, 2, 3, and K:

δ =
−β1β3β2

β1β3 + β3β2 + β1β2

, β1β2 + β2β3 + β3β1 6= 0

α = β1 + β3 + β2 −K
β1β3β2

β1β3 + β3β2 + β1β2

. (5.3.4)

Recall that A(l) = F †DhlF . So, the diagonal of FA(l)F † gives the l−th row of
H. More elaborate calculations, omitted here for the reasons of space, show that
hl = β11 + Kδel. Thus, H is a circulant matrix (as expected) with eigenvalues:
Kδ[(β1 + δ)/δ, 1, · · · , 1] (Fourier transform of the first row).

Uniqueness: If F,G,H are full rank, then their kruskal rank is K, and hence from
Theorem 7, the CP-decomposition of B (5.3.2) is unique. If β3 + δ 6= 0 (i.e, λ 6= 0)
and β2 + δ 6= 0 (i.e, µ 6= 0), then F and G are full rank. Further, if β1 + δ 6= 0, and
δ 6= 0, then H is also full rank. Using the expression for δ in (5.3.4), these sufficient
conditions translate to β1 6= −β2, β1 6= −β3, β2 6= −β3.

5.3.4 Discussion

1. The encoding scheme is a function of {β1, β2, β3, K} as they fix the value of
α.

2. T∗ with the encoding considered is not orthogonal in general, i.e, the factors
F,G,H of B and hence U,V,W of T∗ might not be orthogonal.

3. T∗ with the encoding considered is not symmetric in general, unless β1 =

β2 = β3.

4. It is interesting to note that we can recover the adjacency matrix A from T,
even when we encode all single edge results to the same, i.e, β1 = β2 = β3 =

β =⇒ α = (3−K/3) β, as long as α 6= β (when K = 6).

75

0.6 0.8 1
0

0.5

1

1.5

p

V
a
ri
a
tio

n
 o

f
In

fo
rm

a
tio

n

(a) CBM, Varying p

A

T, β = [1,1,1]

T, β = [1,2,3]

T, Complex β

0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

q

(b) CBM, Varying q

A

T, β = [1,1,1]

T, β = [1,2,3]

T, Complex β

0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

r

(c) CBM, Varying r

A

T, β = [1,1,1]

T, β = [1,2,3]

T, Complex β

2 4 6
0

0.5

1

1.5

2

2.5

K

(d) CBM, Varying K

A

T, β = [1,1,1]

T, β = [1,2,3]

T, Complex β

Figure 5.3: Comparison of VI (averaged over 10 experiments) for clustering using
the tensor (filled using different encoding schemes) compared to that obtained using
adjacency matrix, for varying different parameters for the Conditional Block Model
(Section 5.4.3).

5. In general, let βi = βe−jφi and γ := ejφ1 + ejφ2 + ejφ3 . Then from (5.3.4),
α = β(|γ|2 −K)/γ̄.

5.4 Numerical Experiments
In this section we numerically compare the performance of clustering on the ad-
jacency matrix A to that obtained using the tensor T, both filled by the same set
of triangle queries. Let r determine the sparsity (to fix a budget on the number
of triangle queries). We generate answers to d r

3

(
n
2

)
e random triangle queries us-

ing two different models (described in Section 5.4.2). T is filled using the encoding
scheme and the symmetries described in Section 5.3.1 for three different encodings:
β = [1, 1, 1], β = [1, 2, 3] and β = [1, −1+i√

2
, −1−i√

2
]. Note that both A and T have a

lot of missing entries as only a small subset of triples are observed. We use spectral
clustering [NJW02] on A (unobserved entries set to 0).

5.4.1 Clustering via Tensor Decomposition
Let Ω be the set of triangle queries and Ω be an n × n × n tensor with Ωijk = 1 if
Tijk is observed. We consider the following simple CP-decomposition objective:

min
U,V,W

n∑
i,j,k=1

{Ωijk(Tijk −
K∑
l=1

uilvjlwkl)}2, (5.4.1)

which is a non-convex optimization problem. Note that we fix the number of
clusters. We solve (5.4.1) iteratively using alternating least squares (ALS). In each
time step t, ALS updates Ut,Vt,Wt, one variable at a time assuming the other
two to be fixed. So, assuming U = Ut−1,V = Vt−1 to be fixed, we can re-
write the objective (5.4.1) as: minW

∑n
i,j,k=1{Ωij,k(Tij,k−

∑K
l=1Mij,lwkl)}2, where

Mij,l := ut−1
il vt−1

jl . Note that M = Ut−1 � Vt−1 ∈ Cn2×K , where � denotes

76

0.6 0.8 1
0

0.2

0.4

0.6

p

V
a
ri
a
tio

n
 o

f
In

fo
rm

a
tio

n

(a) TBM, Varying p

A

T, β = [1,1,1]

T, β = [1,2,3]

T, Complex β

0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

q

(b) TBM, Varying q

A

T, β = [1,1,1]

T, β = [1,2,3]

T, Complex β

0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

r

(c) TBM, Varying r

A

T, β = [1,1,1]

T, β = [1,2,3]

T, Complex β

2 4 6
0

0.2

0.4

0.6

0.8

K

(d) TBM, Varying K

A

T, β = [1,1,1]

T, β = [1,2,3]

T, Complex β

Figure 5.4: Comparison of VI (averaged over 10 experiments) for clustering using
the tensor (filled using different encoding schemes) compared to that obtained using
adjacency matrix, for varying different parameters for the Triangle Block Model
(Section 5.4.3)

Khatri-Rao product. Let Ω(w),T(w) ∈ Cn2×n be matricized Ω and T respectively,
whose rows are indexed by ij and columns by k of the tensors. Define, D

(w)
k :=

diag(Ω(w)(:, k)), where (:, k) stands for k-th column. Each row of W, equivalently,
each column of W> can be solved for by the following least squares problem:
||D(w)

k T(w)(:, k) − D
(w)
k M(W(k, :))>||2. We use the clustering C0 output by the

spectral clustering on A to initialize: [U0,V0,W0] = [C0F,C0G,C0H]. We
implemented the ALS algorithm on MATLAB using the sparse tensor functions
from tensor toolbox [B+15; BK07]. We then run k-means on [Û, V̂,Ŵ] obtained
by ALS to get clusters from T.

5.4.2 Models for Triangle Queries
We consider two models for generating answers to the triangle queries: Triangle

Block Model (TBM) and Conditional Block Model (CBM), both of which are de-
rived from the popular Stochastic Block Model (SBM) [HLL83].

SBM is a random graph model for a graph with disjoint clusters. Given the cluster
assignements to the nodes, the edges of the graph are independently generated.
Edge probability inside the clusters is p and between the clusters is q. In the context
of crowdsourcing, if a worker compares items i and j that belong to same cluster,
then she will correctly say they are similar with probability p. If they are not in
the same cluster, then the probability that she will make an error and say they are
similar is q.

For both the TBM and the CBM, given a triple {i, j, k}, the 3 edges {ij, jk, ki} are
generated using the SBM. If the configuration thus obtained is one of the 3 con-
figurations that are not allowed (Figure 5.2(b)), then: (1) TBM assumes that the
crowd worker can resolve this to the correct configuration; (2) CBM will regener-
ate the 3 edges until one of the allowed configurations is obtained. More detailed

77

descriptions of these models are available in Chapter 4.

5.4.3 Simulation Results
Consider a graph on n = 450 nodes with K = 3 clusters of equal size. We vary the
following parameters:

1. Varying p: Let q = 0.25, r = 0.1. We vary the edge density inside the
clusters p from 0.55 to 1 in steps of 0.05.

2. Varying q: Let p = 0.7, r = 0.1. We vary the edge density between the
clusters q from 0.1 to 0.25 in steps of 0.05.

3. Varying r: Let q = 0.25, p = 0.7. We vary the sparsity parameter r from 0.1

to 0.25 in steps of 0.05.

4. Varying K: Consider a graph on n = 480 nodes with clusters of equal
sizes and K = [2, 3, 4, 5, 6] and hence the cluster sizes get varied. Let q =

0.25, p = 0.7, r = 0.2.

Figures 5.3 and 5.4 show the results for the CBM and TBM respectively. We
compare the output clustering with the ground truth via variation of information

(VI) [Mei07] which is defined for two clusterings (partitions) of a dataset and has
information theoretical justification. Smaller values of VI indicate a closer match
and VI = 0 means that the clusterings are identical. We compare clustering on A

(dashed blue line) to that obtained by clustering T when β = [1, 1, 1] (dotted pink
line), β = [1, 2, 3] (solid green line) and complex β = [1, −1+i√

2
, −1−i√

2
] (solid black

line). Note that β = [1, 1, 1] performs worse as K increases (Figures 5.3(d), 5.4(d);
note that when K = 6, α = β). We also note that clustering on T encoded with
different β outperforms that obtained by A. In particular, the complex βs uniformly
outperform others.

5.5 Summary
In this chapter we considered the problem of crowdsourced custering via triangle
queries. We proposed an encoding scheme to embed the answers to triples in a
tensor and provided sufficient conditions for it to give a true tensor of rank equal to
the number of clusters. We also showed, through extensive simulations, that using
tensor decomposition for clustering significantly improves the clustering obtained

78

via the adjacency matrix. A useful future direction would be to improve the tensor
clustering algorithms that exploit the sparse structure of the noise.

79

C h a p t e r 6

CROWDSOURCED CLUSTERING: ACTIVE QUERYING

In this chapter, we consider active querying setting for the problem of clustering
n items into K disjoint clusters using noisy answers obtained from crowdsourced
workers to pairwise queries of the type: “Are items i and j from the same clus-
ter?”. We propose a novel active querying algorithm for crowdsourced clustering
which is simple and computationally efficient. We prove that our proposed algo-
rithm succeeds in recovering the clusters when the crowd workers provide answers
with error probability less than 1/2. We provide both upper and lower bounds on
the number of queries made by our algorithm. While the bounds depend on the
error probability, the algorithm does not require this knowledge. In addition to
theoretical guarantees, we also provide extensive numerical simulations as well as
experiments on real datasets, using both synthetic and real crowd workers, to pro-
vide insights in to the behavior of the number of queries made by the algorithm.
Based on both the theoretical results and the empirical observations, we conclude
that, while the queries made by active clustering algorithms are orderwise better
than random querying strategies, the advantage applies only when the datasets are
very large or when the cluster sizes are very small. We believe that our observations
could inform the design of practical crowdsourced clustering systems.

6.1 Introduction
Crowdsourcing – as the name suggests refers to using a crowd of potentially non-
expert humans to solve problems that are difficult to solve by machines. Crowd-
sourcing has become one of the most popular ways of collecting datasets for su-
pervised learning tasks [SF08; Ray+10]. There is an abundant amount of data, for
example billions of images and texts that can be readily scraped from the inter-
net. However, most of these datasets are unlabeled and it is unclear what structures
might exist in them. Crowdsourcing can be a very useful resource to explore struc-
ture in data [Wel+10].

We consider the problem of crowdsourced clustering – the problem of finding clus-
ters in a dataset with unlabeled items by querying pairs of items for similarity:
“Are items i and j from same cluster?” A simple querying strategy is to randomly
query pairs of items and then apply a graph clustering algorithm (Chapter 2) on the

80

data, viewing the unlabeled items as vertices and the answers to pairwise queries as
edges. A natural question that arises is what is an active querying strategy? In this
chapter we address this question and propose a novel algorithm (Algorithm 2) for
active querying for crowdsourced clustering. When the crowd workers are better
than random guessers, that is, the error probability is less than 1

2
, the problem of as-

signing an item to a cluster can be recast as a problem of inferring if the true param-
eter of a Bernoulli random variable is above or below 1

2
. Our algorithm is inspired

by the finite law of the iterated logarithm (LIL) for multi-armed bandits [Jam+14].
We use confidence intervals that monotonically decrease with repeated queries and
an assignment is decided once either the lower confidence interval is either above 1

2

or the upper confidence is below 1
2
.

Our Contributions: We consider the problem of crowdsourced clustering and pro-
pose a novel active querying algorithm (Algorithm 2). The proposed algorithm does
not require any knowledge of problem parameters. It is computationally efficient,
simple to implement and can recover clusters regardless of their sizes. We also pro-
vide analysis of the proposed algorithm and show that it is guaranteed to succeed in
recovering all the clusters with high probability (with error probability decaying as
1/poly(n)). Our analysis also provides upper and lower bounds on the total num-
ber of queries made by the algorithm. In addition to theoretical guarantees, we also
provide extensive numerical simulations as well as experiments on real datasets, us-
ing both synthetic and real crowd workers, to provide insights in to the behavior of
the number of queries made by the algorithm. Based on both the theoretical results
and the empirical observations, we conclude that, while the queries made by active
clustering algorithms are orderwise better than random querying strategies, the ad-
vantage applies only when the datasets are very large or when the cluster sizes are
very small.

Related Literature

In this section we briefly describe some related works.

The papers [Gom+11; VOH14a; VH16a] consider the problem of crowdsourced
clustering using pairwise similarity queries. Prior work employs passive querying
with either a deterministic pattern of queries fixed a priori [Gom+11] or randomly
chosen queries [VOH14a; VH16a] (Chapters 2, 4).

Another related line of work is entity resolution in databases where the goal is to
find data records that represent the same real world entities. There is a rich line of

81

work in this area (see [Wan+12; VBD14; VG15] and the references there in) which
use heuristics-based crowdsourcing algorithms to resolve the entities. Most of these
works assume that there is a machine generated similarity matrix between different
data records and use this information to decide which data records to query. Recent
work [MS17] provides analysis for some of the popular heuristics used when side
information is present.

Recent work [MS16] on crowdsourced clustering considers a setting similar to ours
where the probability of error made by crowd workers is assumed to be less than
1
2
. A key difference in their setting is that they forbid repeated querying. They pro-

vide upper and lower bounds on the number of queries in this setting. However,
the algorithm proposed in [MS16] that can achieve a near optimal query complex-
ity is computationally hard. Hence [MS16] propose an alternative computationally
efficient algorithm is provided, however, its query complexity is not optimal, in
particular, it grows quadratically in the number of clusters K. Furthermore, the al-
gorithm requires knowledge of the error probability. In contrast, we allow repeated
querying of the same pair of items and our algorithm is simple and computationally
efficient and achieves near optimal (up to logarithmic factors) query complexity.
The goal of repeated querying in our setting is not to drive the empirical error to 0

(which might not always be possible) but instead to guarantee that either the lower
confidence bound on the true parameter is above or the upper confidence is below
1
2
.

6.2 Problem Setup
In this section we describe the problem setup, notations and model. Consider n
items that belong to K disjoint clusters. Consider a set of crowd workers who can
provide noisy answers to pairwise queries of the type: “Are items i and j from the
same cluster?”. Let Query(i, j) denote such a pairwise query. Let Xij(s) denote the
answer provided by crowd worker s to Query(i, j). In particular, Xij(s) = 1 if the
answer to Query(i, j) by worker s is “yes” and Xij(s) = 0 if the answer is “no”.
Suppose the workers were perfect, then with Θ(nK) [MS16] queries we can assign
all the items to the correct clusters. However, the workers on the crowdsourcing
platforms are not experts and hence can make errors.

Stochastic Block Model: If two items i and j are from the same cluster then the
answer to Query(i, j) is 1 with probability p and 0 with probability 1 − p. If the
two items i and j are not in the same cluster then the answer to Query(i, j) is 1

82

with probability q and 0 with probability 1− q. So, when i and j are from the same
cluster, for all workers s,

Xij(s) =

{
1 with probability p
0 with probability 1− p

,

and when i and j are not from the same cluster, for all workers s,

Xij(s) =

{
1 with probability q
0 with probability 1− q

.

We note that this is same as Stochastic Block Model (SBM) [HLL83; CK01] used
in analyzing graph clustering (Chapter 2).

Assumptions: We assume that the answers given by different workers are inde-
pendent. We also assume that, while the workers make errors they are better than
random guessers. More formally,

Assumption 1: Xij(s) and Xij(s
′) are independent when s 6= s′.

Assumption 2: p > 1
2
> q.

For any pairs of items i and j, and any positive integer m, we use X ij(m) to denote
the average of m independent answers to the Query(i, j), that is,

X ij(m) :=
1

m

m∑
s=1

Xij(s). (6.2.1)

For any item j, we use the notation cluster(j) to denote the cluster to which item j

belongs.

Analysis of the Stochastic Block Model (SBM) helps us understand the fundamen-
tal bottlenecks and also obtain cleaner expressions in the results which are more
intuitive. However, in real settings SBM can be too limiting. The following is a
general model for our problem setting:

Generalized Model: We define confusion matrix P ∈ [0, 1]n×n associated with
the n items being clustered where Pij is the probability the answer to Query(i, j) is
1. So, for a pair of items i and j, for all workers s,

Xij(s) =

{
1 with probability Pij
0 with probability 1− Pij

.

83

Since we assume that the workers are better than random guessers, we have the
following,

Pij

{
> 1

2
if the pair of items i and j are from the same cluster,

< 1
2

otherwise.

While we present the results and analysis for SBM, we also present the extensions
of our results and analysis for the general case.

6.3 Active Query Algorithms and Performance Guarantees
We present the main results of our work in this section. We begin by describing
a simple active querying algorithm for the case when we know p and q. Later we
show how to use the ideas from this simple algorithm to extend to the setting where
we do not know p and q.

6.3.1 When we know p and q
Suppose we knew p and q, then the problem of deciding whether an item i belongs
to cluster(j) or not boils down to testing whether Xij ∼ Bern(p) or Xij ∼ Bern(q).
The following is an algorithm for such a test:

Algorithm 1 (Active querying with the knowledge of p and q). Let ∆ := 1
2
(p− q).

Set M :=
⌈

3 logn
2∆2

⌉
. Let V be the set of items to be clustered.

1. Initialization: Start with a clustering C = {C1} with just one cluster with

one element, say i, randomly chosen from V . So, C1 = {i}. Set V ← V −{i}.

2. Until V 6= φ, pick a random v ∈ V to for querying. Starting with k = 1, for

Ck ∈ C, pick an item u ∈ Ck uniformly at random and ask Query(v, u) to

M crowdworkers. One of the following scenarios holds:

a) Lower confidence bound on the empirical average of the answers is

above q: If Xuv(M) − ∆ > q, then assign v to Ck: Ck ← Ck ∪ {v}
and V ← V − {v}.

b) Upper confidence bound on the empirical average of the answer is be-

low p: If Xuv(M) + ∆ < p, then v /∈ Ck. Move to next cluster:

k → k + 1.

c) If Xuv(M) − ∆ < q and Xuv(M) + ∆ > p, then declare failure to

classify v and pick the next item.

84

If v does not get assigned to any of the existing clusters (and the algorithm

has not failed to classify v), then start a new cluster with v: C = C ∪ {v}
and update V ← V − {v}.

Following is an illustration of the test used in the algorithm described above:

∆ := 1
2
(p− q)

0 q p 1

-
Xuv(M)−∆ > q

�

Xuv(M) + ∆ < p

q + ∆

p−∆

b b

Pseudocode for Algorithm 1 is provided in the appendix (Appendix C.3).

Upper and lower bounds on the number of queries made by Algorithm 1 is given
by the following two propositions.

Proposition 1. Algorithm 1 successfully recovers all the clusters with at most

O
(
nK logn
(p−q)2

)
queries with probability at least 1− 1

n
.

Proposition 2. Ω
(

nK
(p−q)2

)
queries are necessary to guarantee success of Algo-

rithm 1 with probability at least 3
4
.

Thus, the two propositions in tandem show that the upper bound on the number of
queries made by Algorithm 1 is not improvable except up to log factors. In fact,
the log n term is also necessary if we want the error probability to decay as 1

poly(n)
.

Detailed proofs for these propositions are available in Appendix C.1.

6.3.2 Without the knowledge of p and q
Algorithm 1 relied on the fact that forM =

⌈
3 logn

2(p−q)2

⌉
queries, with high probability,

the confidence intervals are such that either the lower confidence bound holds, in
which case we assign the item being queried for to the cluster being compared to,
or the upper confidence bound holds, in which case we decide otherwise. However,
note that setting the value of M as well as the tests for upper and lower confidence
bounds required the knowledge of p and q. In most practical scenarios we do not
have this knowledge. Therefore, we propose the following algorithm, which uses
time varying confidence bounds ψ(t) which are monotonically decreasing in time t.

85

At each time t, we make a new query for an item i with cluster(j) and we update the
confidence interval around the true parameter to

[
X ij(t)− ψ(t), X ij(t) + ψ(t)

]
.

We stop repeating Query(i, j) when either the lower confidence is above 1
2

or the
upper confidence is below 1

2
.

Algorithm 2 (Active querying without the knowledge of p and q). Let V be the set

of items to be clustered. Let ζ and δ are input parameters (chosen depending on the

probability of error tolerated).

1. Initialization: Start with a clustering C = {C1} with just one cluster with

one element, say i, randomly chosen from V . So, C1 = {i}. Set V ← V −{i}.

2. Until V 6= φ, pick a random v ∈ V to for querying. Starting with k = 1,

for Ck ∈ C, pick an item u ∈ Ck uniformly at random. Start by setting the

cumulative empirical averageXvu(0) = 0. For each time step t, ask Query(v,

u) to a distinct crowdworker. Let Xvu(t) denote the answer obtained. Update

the cumulative empirical average: Xvu(t) = t−1
t
Xvu(t − 1) + 1

t
Xvu(t) and

the new confidence interval to:

ψ(t) = (1 +
√
ζ)

√
1 + ζ

2t
log

(
log ((1 + ζ)t)

δ

)
.

Repeat Query(v, u) and updating Xvu(t) and ψ(t) until one of the following

scenarios holds:

a) Lower confidence bound on the empirical average of the answers is

above 1
2
: If Xuv(t) − ψ(t) > 1

2
, then assign v to Ck: Ck ← Ck ∪ {v}

and V ← V − {v}.

b) Upper confidence bound on the empirical average of the answers is be-

low 1
2
: If Xuv(t) + ψ(t) < 1

2
, then v /∈ Ck. Move to next cluster:

k → k + 1.

If v does not get assigned to any of the existing clusters, then start a new

cluster with v: C = C ∪ {v} and update V ← V − {v}.

Pseudocode for Algorithm 2 is provided in the appendix (Appendix C.3).

Using the finite law of the iterated logarithm (LIL) bound from [Jam+14] (Theo-
rem C.2.1) we can guarantee the following under the assumptions on our model.
For this theorem ∆ := 1

2
min

{
p− 1

2
, 1

2
− q
}

.

86

Theorem 9. Algorithm 2 succeeds in recovering all the clusters exactly with at most

O
(
nK
∆2 log

(
n log 1

∆

))
queries with high probability.

More generally, we can state the following.

Corollary 1. For any ζ ∈ (0, 1), c ≥ 3, δ
nc
∈ (0, log (1 + ζ)/e), with proba-

bility at least 1 − 22+ζ
ζ
n2
(

δ
nc log (1+ζ)

)1+ζ

, Algorithm 2 succeeds in recovering all

the clusters exactly and the total number of queries made is upper bounded by

O
(
nK
∆2 log

(
nc

b3δ
log b2

∆

))
, where b2 = (1 + ζ)2, b3 = 1

(2(1+
√
ζ))3

.

Note that c, δ and ζ can be chosen such that the error probability decays as 1/poly(n).
We further note that the choice of δ and ζ also affects the size of confidence interval
ψ(t) and hence the number of queries made by Algorithm 2. Theorem 9 is obtained
by choosing c = 4 and ζ = 0.1151. Detailed proof is available in the Appendix C.2.

6.3.3 Discussion
In this section we comment on Algorithm 2.

Comparison Point

In Algorithm 2, 1
2

is used as the comparison point for the upper and lower confi-
dence bound tests. This is because of the assumption that the workers are better
than random guessers. Suppose, we know p ≥ η ≥ q for some η ∈ (0, 1), then we
could use η as a point for comparison instead of 1

2
and the algorithms and proofs

can be modified accordingly. Note that the definition of ∆ would get modified to
∆ := 1

2
min {p− η, η − q}. For example, suppose for a dataset we have p = 0.51

and q = 0.01. Then in this case, the workers are extremely good at distinguishing
items of different clusters as different, but are not as good in identifying items from
the same cluster as same cluster elements. So, a more reasonable η to use would be
0.25.

Generalization to Confusion Matrix

We define confusion matrix P ∈ [0, 1]n×n associated with the n items being clus-
tered where Pij is the probability the answer to Query(i, j) is 1. Due to the assump-
tion that the workers are better than random guessers, Pij > 1

2
when i and j are

from the same cluster and Pij < 1
2

when i and j are not not from the same cluster.
For every pair of items i and j, define ∆ij := |Pij − 1

2
|. We can modify the proof

of Theorem 9 to obtain the following:

87

Corollary 2. An upper bound on the total number of queries made by Algorithm 2

in the general case is, ∑
i,j:{i,j}∈Ω

b1

∆2
ij

log

(
nc

b3δ
log

b2

∆ij

)
,

where Ω is the set of queries made and |Ω| ≤ nK.

Modifications in Querying

In Algorithm 2, in order to decided if an item i belongs to a cluster, we ran-
domly chose an item j from the cluster being considered and Query(i, j) repeat-
edly. Instead, in order to decide if item i belongs to cluster(j), we can pick a
random element from cluster(j) each time we query. For the Stochastic Block
Model, there is no statistical change and hence the guarantee provided by The-
orem 9 still holds. For the general confusion matrix case described above (Sec-
tion 6.3.3), careful book keeping is needed, as instead of E(X ij(t)) = Pij , we
have E(X ij(t)) = 1

t

∑t
s=1 Pijs , where js is the element picked at time step s from

cluster(j).

Comparison of Algorithm 2 with Random Querying

In this section we compare active querying algorithm for crowdsourced clustering
(Algorithm 2) to using random queries followed by clustering. The state of the art
algorithm for crowdsourced clustering using random queries is a two step process.
A random subset of the

(
n
2

)
pairs, say dr

(
n
2

)
e with r ∈ (0, 1] are queried first and

then a graph clustering algorithm is run on it. We focus on computationally efficient
(polynomial time) algorithms for comparison.

• Algorithm 2 succeeds regardless of cluster sizes: Computationally efficient
graph clustering algorithms, for example, spectral clustering [McS01; R+11],
convex clustering algorithms [Che+14; VOH14a; Jal+15], have a bottleneck
in terms of the size of the smallest cluster that can be recovered. In partic-
ular, the smallest cluster has to be sufficiently large, at least Ω(

√
n), to be

recovered exactly. This bottleneck of Ω(
√
n) on the minimum cluster size is

conjectured to also be necessary for any polynomial time graph clustering al-
gorithm (related to the hidden clique conjecture). Therefore using any known
computationally efficient graph clustering algorithms after querying random

88

pairs of items can only recover clusters of size up to Ω(
√
n). On the con-

trary, the sufficient condition for exact recovery of the clusters (Theorem 9)
using the active querying algorithm (Algorithm 2), which is computationally
efficient, holds regardless of the cluster sizes.

• Algorithm 2 is free of model parameters: For random querying, the knowl-
edge of p−q and nmin is required to a priori set the number of random queries
to be made (r < 1 to make dr

(
n
2

)
e queries), if we want to guarantee the exact

recovery of clusters, unless we are making all
(
n
2

)
queries. On the other hand,

the active querying algorithm (Algorithm 2) does not require the knowledge
of p, q, K or the cluster sizes ahead of time to guarantee exact recovery.
The only assumption that it makes is that the workers are better than random
guessers (p > 1

2
> q).

• Algorithm 2 vs. random querying: Who wins? The sufficient number
of queries required to guarantee exact recovery of clusters for active query
algorithm 2 is O

(
nK
∆2 log

(
n log 1

∆

))
. Let us compare this the state of the

art sufficient conditions for exact recovery of clusters for SBM (see [Che+14;
VOH14a; Jal+15] & references there in). When the smallest cluster is Θ(

√
n),

we can guarantee exact recovery using at mostO (n2/(p− q)2) random queries.
When the smallest cluster is large, i.e, when the cluster sizes are Θ(n), we
can obtain correct clustering by using at mostO (n(log n)2/(p− q)2) random
queries. While orderwise, in both the cases, the upper bound for active is bet-
ter, the advantage does not kick in until the dataset is sufficiently large. This
is illustrated in Figure 6.1 and Figure 6.2. Both the figures are generated for
parameters p = 0.8 and q = 0.2. In Figure 6.1, there are 4 clusters of equal
size, so that it represents the scenario where the clusters are of size Θ(n) and
in Figure 6.2, there are

√
n/10 clusters of equal sizes so that it represents the

scenario with clusters of size Θ(
√
n). Note that the known computationally

efficient graph clustering algorithms have a lower bound of Ω(
√
n) on the

cluster sizes (see the discussion 4 in Chapter 2).

In summary, while active querying has advantages in terms of being free of model
parameters and that its success does not depend on a cluster size bottleneck, the
number of queries needed might be large for small datasets. Even though active
querying algorithm is competitive or better than random queries orderwise, the ad-
vantages kick in only when a large number of items are being clustered or when the

89

10
4

10
6

10
8

10
10

10
12

10
6

10
8

10
10

10
12

10
14

10
16

n (number of items)

U
p
p
e
r

b
o
u
n
d
 o

n
 n

u
m

b
e
r

o
f
q
u
e
ri
e
s

Active Querying

Random Querying

Figure 6.1: Comparison of the upper bounds on the total number of queries required
for exact clustering by active and random querying for large clusters (size Θ(n))

10
4

10
6

10
8

10
10

10
1210

5

10
10

10
15

10
20

10
25

n (number of items)

U
p

p
e

r
b

o
u

n
d

 o
n

 n
u

m
b

e
r

o
f

q
u

e
ri
e

s

Active Querying

Random Querying

Figure 6.2: Comparison of the upper bounds on the total number of queries required
for exact clustering by active and random querying for small clusters (size Θ(

√
n))

90

Figure 6.3: Empirical pdf of Tij
Empirical pdf of the number of times each query is repeated by Algorithm 2

cluster sizes are too small. As such, one might be better off using random queries
for small datasets whereas active clustering is more advantageous at large scales.

6.4 Simulations
In this section we investigate the empirical performance Algorithm 2 with varying
parameters of the model. The results presented throughout this section are averaged
over 10 trials and we set c = 7, ζ = 0.001, δ = 1/nc, unless specified otherwise.
Note that the value of ζ , c, and n determine the error probability. Recall that the
favorable event Eψ occurs with probability at least

1− n2 × 2
2 + ζ

ζ

(
1

nc log (1 + ζ)

)1+ζ

.

Depending on the error probability that we are willing to tolerate, we get to choose
the parameters ζ and c. Furthermore, recall that the ζ δ and c also influence the
confidence interval window.

ψ(t) = (1 +
√
ζ)

√
1 + ζ

2t
log (nc log ((1 + ζ)t)) .

The size of confidence interval affects the number of queries made.

Let T be the number of times Query(i, j), is repeated in order to decide whether to
assign an item i to a cluster(j) or not. Figure 6.3 shows the empirical pdf for T for

91

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

2

10
3

10
4

p (probabilty of correct answer)

maxT

minT

medianT

meanT

meanT + σ

meanT − σ

Figure 6.4: Minimum, maximum, median, mean (along with standard deviation)
of the number of repeated queries as a function of varying error probability (p).
Averaged over 10 trials).

10
0

10
1

10
2

10
3

100

150

200

250

300

350

400

450

500

550

K (number of clusters)

maxT

minT

meadianT

meanT

meanT + σ

meanT − σ

Figure 6.5: Minimum, maximum, median, mean (along with standard deviation)
of the number of repeated queries as a function of varying number of clusters (K).
Averaged over 10 trials.

92

10
2

10
3

10
4

100

200

300

400

500

600

700

800

n (number of items)

maxT

minT

medianT

meanT

meanT + σ

meanT − σ

Figure 6.6: Minimum, maximum, median, mean (along with standard deviation)
of the number of repeated queries as a function of varying number of items (n).
Averaged over 10 trials.

an example with n = 500, K = 500, p = 0.6 = 1− q. We note that the maximum
T is below the upper bound (Tup) as expected. Furthermore, we note that most of
the distribution is concentrated around the mean. In particular, for the example in
Figure 6.3, 94.5% of the queries are within 2 standard deviations of the mean. So,
the total number of queries is much less than the conservative bound of nKTup.

Recall that from Theorem 9, Tij ≤ b1
∆2
ij

log
(
nc

b3δ
log b2

∆ij

)
. We now investigate the

behavior of the maximum, minimum, mean, and median of T as a function of the
probability of correct answer p (equivalently ∆ := p − 1

2
), the number of clusters

K, and the total number of items n.

1. Varying p: We set n = 500, K = 5 with equal cluster sizes and vary p from
0.55 to 1 in steps of 0.05. We set q = 1 − p, so ∆ varies from 0.05 to 0.5.
Figure 6.4 shows the behavior of T as a function of p. As we expect, T
sharply decreases with increasing p (equivalently increasing ∆).

2. Varying K: We set n = 500, p = 1 − q = 0.8 and vary the number of
clusters K with values in the set {1, 2, 5, 10, 25, 50, 100, 500} and all the K
clusters have equal sizes. Note that when K = 1 all items are in the same
cluster and when K = 500 all items are distinct. The number of repeated
queries required to either assign or not assign an item to a particular cluster

93

is independent of the total number of clusters (note that Tup is independent
of K). Figure 6.5 shows the behavior of T as a function of K. We observe
that the median (and mean) T remains the same as K varies. Furthermore,
the total number of queries made increases linearly with K. So, the larger K
gets, the higher the chance of hitting extreme events. So, we observe a slight
increase in maximum T and a slight decrease in minimum T as K increases.

3. Varying n: We st K = 3, p = 1 − q = 0.8 and vary the number of items n
with values in the set {30, 300, 3000, 30000}. Figure 6.6 shows the behavior
of T as a function of n and we observe T grows logarithmically with n as
expected (note that the x-axis is in log scale).

6.5 Experiments Using Real Data
In this section we present experimental results using real datasets and both synthetic
and real crowdworkers.

6.5.1 Experiment with real crowdworkers
We use Dogs3 [Kho+11; VH16a] dataset for this experiment. Dogs3 dataset has
473 dogs of 3 different breeds: Norfolk Terrier (172 images), Toy Poodle (151
images), and Bouvier des Flanders (150 images). We illustrate the behavior of
cumulative averages of the responses to repeated querying on a real crowdsourcing
platform (we used Amazon Mechanical Turk).

X ij(m) :=
1

m

m∑
s=1

Xij(s) .

We chose 30 random images from Dogs3 dataset to be compared and another 30 im-
ages from the dataset to compare with. For each image i in the first set, we perform
50 repeated queries with the corresponding image j in the second set by querying
50 unqiue workers. So, same Query(i, j) is queried 50 times. We illustrate the be-
havior of the cumulative averages for 6 sample pairs in the first row of Figure 6.7.
In order to illustrate the behavior with modified querying (Section 6.3.3), we also
perform 50 queries with image i in the first set and choosing a random image from
cluster(j) for corresponding j in the second set. So, for each item i being queried,
instead of repeating Query(i, j), a random image from clusterj is chosen each time.
The cumulative averages for the same 6 samples is shown in the second row of
Figure 6.7. While there is not much difference between two strategies in general,
picking a random item each time might be more robust as it can get out of the rare

94

0 50
0

0.5

1

1

0 50
0

0.5

1

1

0 50
0

0.5

1

0

0 50
0

0.5

1

0

0 50
0

0.5

1

1

0 50
0

0.5

1

1

0 50
0

0.5

1

1

0 50
0

0.5

1

1

0 50
0

0.5

1

0

0 50
0

0.5

1

1

0 50
0

0.5

1

1

0 50
0

0.5

1

0

Figure 6.7: Cumulative averages of the answers given by crowdworkers for re-
peated queries for 6 sample items. The first row corresponds to the experiment
where Query(i, j) is repeated with same j and the second row corresponds to the
experiment where j is chosen randomly from cluster(j) each time. Note that the
true answer is at the top of each plot.

situations when repeating the same query might get one stuck with a bad candidate
from the cluster(j).

6.5.2 Experiments with simulated crowdworkers
In this section we use two datasets, Scenes4 and AllSports, which have parameters
for worker errors from a set of experiments using real crowdworkers. We use these
parameters to simulate crowdworkers.

1. Scenes4 is a subset of the Scenes dataset [Gom+11; FP05] and has 539 im-
ages of scenes from 4 categories: Indoors (308 images), suburbs (77 images),
forest (77 images), and highways (77 images). This dataset has one very
large and three moderately sized clusters. Using the data from [Gom+11],
we compute a n ×K confidence matrix, where the ik−th entry corresponds
to image i and cluster k and is computed by taking the ratio of the number of
“yes” answers out the queries made with items in cluster k. When a Query(v,
u) is made, we synthetically generate human responses using the entry in the
confusion matrix entry for item v and the true cluster corresponding to item
u as the probability of “yes”. We run Algorithm 2 with c = 4, ζ = 0.001,
which ensures the overall probability of error δ′ ≤ 0.055. Table 6.1 shows
the statistics of the number of repeated queries as well as overall queries and
the percentage of node pairs in error in the clustering obtained.

2. AllSports is a dataset of 267 images of 86 athletes from 10 different sports [VG15].
The task is to identify images of the same athlete. So, there are 86 different
athletes and cluster sizes vary from 1 to 5 (extremely small clusters). This

95

Dataset Node pair error% median T min T max T Total Queries

Scenes4 0.57%± 0.02% 77.8± 3.50 57± 0 2.29e5± 1.07e5 6.09e5± 1.64e5

AllSports 0.07%± 0.03% 64± 0 63± 0 2000± 0 8.22e5± 1.74e4

Table 6.1: Various statistics for the number of repeated queries, the total number of
queries made and the percentage of node pairs in error after running Algorithm 2
on the real datasets.

dataset has a n × n confusion matrix and for a small subset of the pairs 10

repeated queries obtained by crowdworkers on Amazon Mechanical Turk are
available. When Query(v, u) is made, if repeated queries are available for
the pair {v, u}, then we uniformly randomly pick an answer out of the 10

repeated queries. Otherwise, we generate the human response using the con-
fusion matrix. We run Algorithm 2 with c = 4, ζ = 0.001 which ensures the
overall probability of error δ′ ≤ 0.055. Table 6.1 shows the statistics of the
number of repeated queries as well as overall queries and the percentage of
node pairs in error in the clustering obtained. Algorithm 2 is able to find the
86 clusters with very few errors.

Note that for both the Scenes4 and AllSports datasets, most of the queries made
by Algorithm 2 are repeated very few times (∼ 78 for the Scenes4 and ∼ 64 for
AllSports). However, there are a few difficult items in both datasets that take signif-
icantly more number of repetitions as the probability of error associated with then
is close to 0.5. This suggests that it might be more practical to set an upper limit
on the number of repeated queries above which the items can be added to a difficult

pool. After the rest of the items are clustered, we can either use some more queries
to see how close the items in the difficult pool might be to each of the existing
clusters (and assign a low confidence with the association) or for the most difficult
queries ask an expert.

We also queried all the pairs and ran graph clustering algorithms (we used k-means,
spectral clustering, and convex clustering). For the Scenes4 dataset it recovered all 4

clusters whereas it failed for the AllSports dataset. Note that the Scenes4 dataset has
reasonably large clusters whereas AllSports has extremely small clusters. The con-
trast between these two datasets demonstrates that for small datasets with reason-
ably large cluster sizes, it might be more beneficial to do random queries, whereas
when the cluster sizes are too small active queries can still recover the clusters (see
the discussion in Section 6.3.3).

96

6.6 Summary
In this chapter, we considered the problem of crowdsourced clustering and proposed
a novel active querying algorithm. The proposed algorithm is simple, computation-
ally efficient, and does not need the knowledge of any parameters. We showed that
our proposed algorithm succeeds in recovering the clusters when the crowd work-
ers are better than random guessers. We provided a tight upper bound (up to log
factors) on the number of queries made by our algorithm. While the bounds depend
on the error probability, the algorithm does not require this knowledge. A potential
future direction would be to characterize the error rate in clustering given a fixed
budget.

97

C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

Clustering is one of the most widely used tools for exploratory data analysis. In this
thesis, we focused on two problems related to clustering:

• The first problem is that of graph clustering where we analyzed convex algo-
rithms for clustering graphs with the goal of understanding the fundamental
structural bottlenecks and trade-offs of clustering. We provided explicit con-
ditions without large unknown constants and polylog factors, on the proper-
ties of graphs that determine the efficacy of the convex clusteirng algorithms
(Chapters 2, 3).

• The second problem is that of crowdsourced clustering where the key ques-
tion addressed is: How do we design queries to obtain better quality data
from a crowd of non-expert workers? We compared two type of random
queries and demonstrated the superiority of comparing three items at a time
over two at a time. Further, we proposed and analyzed a novel active query-
ing algorithm that works without the knowledge of any problem parameters
and provided an upper bound on the number of queries that is sufficient to
guarantee exact recovery of the clusters (Chapters 4, 5, 6).

Apart from deriving theoretical guarantees that characterize various trade-offs in
the above problems, we also applied our algorithms on real datasets to demonstrate
the veracity of our assumptions.

7.1 Future Directions
We conclude this thesis with discussion on some of the challenges and potential
future directions.

Non-exact Recovery: In this thesis we focused on exact recovery of the clusters.
In particular, the sufficient conditions for successfully recovering the clusters using
convex programs derived in Chapters 2 and 3 are for exact recovery of the under-
lying low-rank matrices which encode the underlying cluster structure. Perfectly
recovering these low-rank matrices would give the exact clustering. However, if we

98

do not recover these exactly, it does not necessarily mean that the clustering fails.
Furthermore, in many practical scenarios we might be able to tolerate a few errors
in clustering. Thus it would be of interest to explore what happens when the con-
vex programs fail to recover the low-rank matrix exactly. In particular, when the
exact recovery guarantees for the convex programs fail, it is worthwhile to exam-
ine the following questions: how far away will the optimal solution to the convex
program be from the true underlying cluster structure? Would the optimal solution
completely lose all information about the cluster structure suddenly or is it gradual?
Can we characterize this trade-off as a function of problem parameters and provide
guarantees on how much of the cluster structure can still be recovered?

Overlapping Clusters: The clustering scenarios considered in this thesis have dis-
joint clusters. In some applications, it might be more ideal to consider overlapping
clusters, where nodes in a graph (or items in a dataset) could belong to more than
one cluster. One way to model overlapping clusters is to consider a soft member-

ship or probabilistic membership model where each node in the graph has a vector
of length K (where K is the number of clusters) associated with it and each entry
j of this membership vector reflects how much the node belongs to cluster j. One
such generative model is that of mixed membership model which uses Dirichlet
process to generate the membership vectors. Tensor decomposition based cluster-
ing algorithm is proposed in [Ana+13] and upper bound on the estimation errors
are provided. However the algorithm in [Ana+13] needs the knowledge of the pa-
rameters of the generative model to set the thresholds for clustering. Furthermore,
it can only recover balanced clusters and is suboptimal when the clusters are un-
balanced or when there are outliers. For example, for the planted clique problem
where a clique is planted in a random graph, it can only recover the clique if the
size is at least Ω(n2/3), whereas convex algorithms discussed in Chapter 2 can re-
cover the cliques of size Ω(

√
n). For the clustering problems with disjoint clusters,

convex programs leverage the fact that the true underlying cluster structure has an
adjacency matrix whose rank is equal to the number of clusters. Note that when we
allow overlapping clusters in a graph, the true adjacency matrix does not correspond
to a union of disjoint clique, and hence its rank is not equal to the number of clusters
anymore. It is of interest to see what kind of convex objectives and constraints can
encourage recovering cluster structures that are overlapping.

Scalable Algorithms for Semidefinite Programs: In Chapters 2 and 3, we consid-
ered convex programs for graph clustering and similarity clustering. The semidef-

99

inite programs (SDPs) we used for clustering (Programs 2.1.4, 2.1.7, 3.1.1) are
robust to noise, missing data and outliers which are of practical importance. While
convex algorithms are computationally efficient, in the sense that, they are solvable
in polynomial time, their complexity can still be prohibitive in the face of large
datasets. Most implementations of convex programs for low-rank matrix comple-
tion and recovery take O(n3) per iteration. For datasets that exceed a few thousand
of nodes, such complexity prohibits the use of SDPs. Therefore, scalable solutions
for the SDPs for low-rank matrix recovery and completion can be tremendously
useful for practical applications. There are several works recently [PW15; Yur+17]
that scale SDPs using sketching, randomized algorithms, sparsification. There are
several challenges that still need to be addressed, like the ability to handle non-
smooth objective functions like l1 norm and nuclear norm which are heavily used
in the SDPs for clustering.

Data-driven Guarantees for Clustering Algorithms and Evaluation Metrics:
In this thesis, we used block models to understand the fundamental bottlenecks and
performance guarantees for the convex optimization based algorithms for cluster-
ing. Most real world datasets are not created via generative models and hence it
is important to build on our understanding of the bottlenecks and the performance
guarantees for the convex clustering algorithms to the real world data. A pertinent
question is to understand how fragile the algorithms and their analysis are to model
mismatches. In particular, it is of interest to quantify model mismatches and how
they affect the performance guarantees of the convex algorithms. Furthermore, it is
of practical interest to have statistical quantities that we can compute using the data
and be able to provide certain level of confidence in the solution output by clustering
algorithms. While there are some works [Ben15; WM16] that look at this objec-
tive of stability and data-driven approaches, we are still far from the goal. Another
relevant problem for clustering real world datasets is that of evaluation metrics. Un-
like supervised learning, in unsupervised learning methods like clustering there is
no labeled test data available that can be used for cross-validation or comparison
of various algorithms. It is of practical importance to develop metrics for cluster-
ing that can be used for systematic evaluation and comparison of performance of
various clustering algorithms.

Optimal Similarity Comparison for Crowdsourced Clustering: In Chapter 4,
we showed that comparing three items at a time is more efficient, that is, for a fixed
budget it provides more data and less noisy data. A natural extension to this work

100

is to inquire what is the optimal number of items to compare at a time? Humans
are have limitations in terms of on average how many objects or concepts they can
comprehend. Studies on how many concepts can human short term memory com-
prehend [Cow00; Mil56] suggests that comparing more than five to seven items it
might become counter productive. There are several works in crowdsourcing liter-
ature that have used panels with large number of objects to be compared. However,
there still needs to be a systematic study that can compare the trade-offs in terms of
quality and quantity of the data obtained in this way.

Limited Budget for Crowdsourcing: In most crowdsourcing systems, we pay the
crowd workers to answer the queries, and hence working within a budget constraint
is unavoidable. In this thesis, our analysis for crowdsourced clustering provides the
number of queries that are sufficient to guarantee the exact recovery of the clus-
ters. Another viewpoint that would be of practical use is to explore the following
question: given a budget, what is the best achievable error rate of clustering using

crowdsourcing?

Machine Learning Systems with Humans-in-the-loop: In application domains
such as astronomy and biology (in particular, biological imaging), an enormous
amount of data is collected and often at a rate faster than it is being processed. In
astronomy, a single sky survey can produce tens of terabytes of data [LSS] and typi-
cally there are several such surveys that happen across a wide range of wavelengths.
Such a massive scale of data poses problems for storage as well as processing. Mit-
igating these problems require building real-time systems that decide in an online
fashion whether to keep or throw away newly arrived data. For preprocessing the
data, it is useful to design a human-in-the-loop system that uses machine learning
and signal processing tools (denoising, sampling, clustering, classification, etc.) as
well as takes input from both domain experts and non-expert crowd workers when
required and store the data in an efficient manner. Such a system can significantly
reduce the time required by astronomers and biologists to further process the data.
A challenge in these problems will be to balance the trade-offs between compu-
tational cost, real-time constraints, budget constraints, and delays associated with
human input and accuracy as well as guarantee robustness to noise.

101

BIBLIOGRAPHY

[Ame13] Brendan PW Ames. “Robust convex relaxation for the planted clique
and densest k-subgraph problems”. In: arXiv preprint arXiv:1305.4891
(2013).

[Ame14] Brendan PW Ames. “Guaranteed clustering and biclustering via semidef-
inite programming”. In: Mathematical Programming 147.1-2 (2014),
pp. 429–465.

[Ana+13] Animashree Anandkumar et al. “A tensor spectral approach to learn-
ing mixed membership community models”. In: Conference on Learn-
ing Theory. 2013, pp. 867–881.

[AR13] Charu C Aggarwal and Chandan K Reddy. Data clustering: algo-
rithms and applications. CRC press, 2013.

[AS06] Tero Aittokallio and Benno Schwikowski. “Graph-based methods for
analysing networks in cell biology”. In: Briefings in bioinformatics 7.3
(2006), pp. 243–255.

[AV11] Brendan PW Ames and Stephen A Vavasis. “Nuclear norm minimiza-
tion for the planted clique and biclique problems”. In: Mathematical
programming 129.1 (2011), pp. 69–89.

[AV14] Brendan PW Ames and Stephen A Vavasis. “Convex optimization for
the planted k-disjoint-clique problem”. In: Mathematical Program-
ming 143.1-2 (2014), pp. 299–337.

[B+15] B. W. Bader, T. G. Kolda, et al. MATLAB Tensor Toolbox Version
2.6. Available online. Feb. 2015. url: http://www.sandia.gov/
~tgkolda/TensorToolbox/.

[B+87] George EP Box, Norman Richard Draper, et al. Empirical model-
building and response surfaces. Vol. 424. Wiley New York, 1987.

[Bal+11] Sivaraman Balakrishnan et al. “Noise thresholds for spectral cluster-
ing”. In: Advances in Neural Information Processing Systems. 2011,
pp. 954–962.

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation cluster-
ing”. In: Machine Learning 56.1-3 (2004), pp. 89–113.

[BBS85] John D Barrow, Suketu P Bhavsar, and DH Sonoda. “Minimal span-
ning trees, filaments and galaxy clustering”. In: Monthly Notices of the
Royal Astronomical Society 216.1 (1985), pp. 17–35.

[Beh+11] Tara S Behrend et al. “The viability of crowdsourcing for survey re-
search”. In: Behavior research methods 43.3 (2011), p. 800.

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/

102

[Ben15] Shai Ben-David. “Clustering is easy when.... What?” In: arXiv preprint
arXiv:1510.05336 (2015).

[BK07] B. W. Bader and T. G. Kolda. “Efficient MATLAB computations with
sparse and factored tensors”. In: SIAM Journal on Scientific Comput-
ing 30.1 (Dec. 2007), pp. 205–231.

[BKG11] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. “Ama-
zon’s Mechanical Turk: A new source of inexpensive, yet high-quality,
data?” In: Perspectives on psychological science 6.1 (2011), pp. 3–5.

[CAB14] Eric C Chi, Genevera I Allen, and Richard G Baraniuk. “Convex bi-
clustering”. In: arXiv preprint arXiv:1408.0856 (2014).

[Can+11] Emmanuel J Candès et al. “Robust principal component analysis?” In:
Journal of the ACM (JACM) 58.3 (2011), p. 11.

[CGW05] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. “Clus-
tering with qualitative information”. In: Journal of Computer and Sys-
tem Sciences 71.3 (2005), pp. 360–383.

[Cha+11] Venkat Chandrasekaran et al. “Rank-sparsity incoherence for matrix
decomposition”. In: SIAM Journal on Optimization 21.2 (2011), pp. 572–
596.

[Che+14] Yudong Chen et al. “Clustering partially observed graphs via convex
optimization.” In: Journal of Machine Learning Research 15.1 (2014),
pp. 2213–2238.

[Che+15] Gary K Chen et al. “Convex clustering: an attractive alternative to hi-
erarchical clustering”. In: PLoS computational biology 11.5 (2015),
e1004228.

[CK01] Anne Condon and Richard M Karp. “Algorithms for graph partition-
ing on the planted partition model”. In: Random Structures and Algo-
rithms 18.2 (2001), pp. 116–140.

[Cou05] Julia Couto. “Kernel k-means for categorical data”. In: IDA. Springer.
2005, pp. 46–56.

[Cow00] Nelson Cowan. “The magical number 4 in short-term memory: A re-
consideration of mental storage capacity”. In: BEHAVIORAL AND
BRAIN SCIENCES 24 (2000), pp. 87–185.

[CPW10] Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. “La-
tent variable graphical model selection via convex optimization”. In:
Communication, Control, and Computing (Allerton), 2010 48th An-
nual Allerton Conference on. IEEE. 2010, pp. 1610–1613.

[CR06] Emmanuel J Candes and Justin Romberg. “Quantitative robust uncer-
tainty principles and optimally sparse decompositions”. In: Founda-
tions of Computational Mathematics 6.2 (2006), pp. 227–254.

103

[CR09] Emmanuel J Candès and Benjamin Recht. “Exact matrix completion
via convex optimization”. In: Foundations of Computational mathe-
matics 9.6 (2009), p. 717.

[CSX12] Yudong Chen, Sujay Sanghavi, and Huan Xu. “Clustering sparse graphs”.
In: Advances in neural information processing systems. 2012, pp. 2204–
2212.

[CX16] Yudong Chen and Jiaming Xu. “Statistical-computational tradeoffs in
planted problems and submatrix localization with a growing number
of clusters and submatrices”. In: The Journal of Machine Learning
Research 17.1 (2016), pp. 882–938.

[DK32] H. E Driver and A. I Kroeber. “Quantitative expression of cultural
relationships”. In: 31 (1932), pp. 211–256.

[DM15] Yash Deshpande and Andrea Montanari. “Finding hidden cliques of
size\sqrt {N/e} in nearly linear time”. In: Foundations of Computa-
tional Mathematics 15.4 (2015), pp. 1069–1128.

[DR01] Pedro Domingos and Matt Richardson. “Mining the network value of
customers”. In: Proceedings of the seventh ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM.
2001, pp. 57–66.

[DS79] Alexander Philip Dawid and Allan M Skene. “Maximum likelihood
estimation of observer error-rates using the EM algorithm”. In: Ap-
plied statistics (1979), pp. 20–28.

[EF03] Dotan Emanuel and Amos Fiat. “Correlation clustering–minimizing
disagreements on arbitrary weighted graphs”. In: European Sympo-
sium on Algorithms. Springer. 2003, pp. 208–220.

[EKX95] Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. “A database inter-
face for clustering in large spatial databases”. In: KDD. 1995.

[Fel43] William Feller. “Generalization of a probability limit theorem of Cramér”.
In: Transactions of the American Mathematical Society. 1943, pp. 361–
372.

[FH16] Santo Fortunato and Darko Hric. “Community detection in networks:
A user guide”. In: Physics Reports 659 (2016), pp. 1–44.

[For10] Santo Fortunato. “Community detection in graphs”. In: Physics re-
ports 486.3 (2010), pp. 75–174.

[FP05] Li Fei-Fei and Pietro Perona. “A bayesian hierarchical model for learn-
ing natural scene categories”. In: Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society Conference on.
Vol. 2. IEEE. 2005, pp. 524–531.

104

[FTT04] Gary William Flake, Robert E Tarjan, and Kostas Tsioutsiouliklis.
“Graph clustering and minimum cut trees”. In: Internet Mathematics
1.4 (2004), pp. 385–408.

[GB08] Michael Grant and Stephen Boyd. “Graph implementations for nons-
mooth convex programs”. In: Recent Advances in Learning and Con-
trol. Ed. by V. Blondel, S. Boyd, and H. Kimura. Lecture Notes in
Control and Information Sciences. http://stanford.edu/~boyd/
graph_dcp.html. Springer-Verlag Limited, 2008, pp. 95–110.

[GB14] Michael Grant and Stephen Boyd. CVX: Matlab Software for Disci-
plined Convex Programming, version 2.1. http://cvxr.com/cvx.
Mar. 2014.

[GG06] Ioannis Giotis and Venkatesan Guruswami. “Correlation clustering
with a fixed number of clusters”. In: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm. Society for In-
dustrial and Applied Mathematics. 2006, pp. 1167–1176.

[Gom+11] Ryan G Gomes et al. “Crowdclustering”. In: Advances in neural in-
formation processing systems. 2011, pp. 558–566.

[HLL83] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.
“Stochastic blockmodels: First steps”. In: Social networks 5.2 (1983),
pp. 109–137.

[Hoc+11] Toby Dylan Hocking et al. “Clusterpath an algorithm for clustering
using convex fusion penalties”. In: 28th international conference on
machine learning. 2011, p. 1.

[HU13] Hannes Heikinheimo and Antti Ukkonen. “The crowd-median algo-
rithm”. In: First AAAI Conference on Human Computation and Crowd-
sourcing. 2013.

[HVH14] Eric Heim, Hamed Valizadegan, and Milos Hauskrecht. “Relative com-
parison kernel learning with auxiliary kernels”. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases.
Springer. 2014, pp. 563–578.

[HWX15] Bruce Hajek, Yihong Wu, and Jiaming Xu. “Submatrix localization
via message passing”. In: arXiv preprint arXiv:1510.09219 (2015).

[Jal+15] Amin Jalali et al. “Relative Density and Exact Recovery in Heteroge-
neous Stochastic Block Models”. In: arXiv preprint arXiv:1512.04937
(2015).

[Jam+14] Kevin Jamieson et al. “lil’ucb: An optimal exploration algorithm for
multi-armed bandits”. In: Conference on Learning Theory. 2014, pp. 423–
439.

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

105

[JMF99] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. “Data clus-
tering: a review”. In: ACM computing surveys (CSUR) 31.3 (1999),
pp. 264–323.

[KB09] Tamara G Kolda and Brett W Bader. “Tensor decompositions and ap-
plications”. In: SIAM review 51.3 (2009), pp. 455–500.

[Kha+14] Mitesh M Khapra et al. “When Transliteration Met Crowdsourcing:
An Empirical Study of Transliteration via Crowdsourcing using Ef-
ficient, Non-redundant and Fair Quality Control.” In: LREC. 2014,
pp. 196–202.

[Kho+11] Aditya Khosla et al. “Novel dataset for fine-grained image catego-
rization: Stanford dogs”. In: Proc. CVPR Workshop on Fine-Grained
Visual Categorization (FGVC). Vol. 2. 2011, p. 1.

[KOS11] David R Karger, Sewoong Oh, and Devavrat Shah. “Iterative learning
for reliable crowdsourcing systems”. In: Advances in neural informa-
tion processing systems. 2011, pp. 1953–1961.

[KOS14] David R Karger, Sewoong Oh, and Devavrat Shah. “Budget-optimal
task allocation for reliable crowdsourcing systems”. In: Operations
Research 62.1 (2014), pp. 1–24.

[KPJ04] Andrew D King, N Prvzulj, and Igor Jurisica. “Protein complex pre-
diction via cost-based clustering”. In: Bioinformatics 20.17 (2004),
pp. 3013–3020.

[Kru77] Joseph B Kruskal. “Three-way arrays: rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statis-
tics”. In: Linear algebra and its applications 18.2 (1977), pp. 95–138.

[LCM10] Zhouchen Lin, Minming Chen, and Yi Ma. “The augmented lagrange
multiplier method for exact recovery of corrupted low-rank matrices”.
In: arXiv preprint arXiv:1009.5055 (2010).

[Lin+13] Chris J Lintott et al. “Planet Hunters: New Kepler planet candidates
from analysis of quarter 2”. In: The Astronomical Journal 145.6 (2013),
p. 151.

[LJG01] Weizhong Li, Lukasz Jaroszewski, and Adam Godzik. “Clustering
of highly homologous sequences to reduce the size of large protein
databases”. In: Bioinformatics 17.3 (2001), pp. 282–283.

[LLS11] Zhouchen Lin, Risheng Liu, and Zhixun Su. “Linearized alternating
direction method with adaptive penalty for low-rank representation”.
In: Advances in neural information processing systems. 2011, pp. 612–
620.

106

[LOL11] Fredrik Lindsten, Henrik Ohlsson, and Lennart Ljung. “Clustering
using sum-of-norms regularization: With application to particle fil-
ter output computation”. In: Statistical Signal Processing Workshop
(SSP), 2011 IEEE. IEEE. 2011, pp. 201–204.

[LPI12] Qiang Liu, Jian Peng, and Alexander T Ihler. “Variational inference
for crowdsourcing”. In: Advances in neural information processing
systems. 2012, pp. 692–700.

[LSS] LSST. https://www.lsst.org/.

[McS01] Frank McSherry. “Spectral partitioning of random graphs”. In: Foun-
dations of Computer Science, 2001. Proceedings. 42nd IEEE Sympo-
sium on. IEEE. 2001, pp. 529–537.

[Mei07] Marina Meilă. “Comparing clusterings—an information based distance”.
In: Journal of multivariate analysis 98.5 (2007), pp. 873–895.

[Mil56] George A Miller. “The magical number seven, plus or minus two:
some limits on our capacity for processing information.” In: Psycho-
logical review 63.2 (1956), p. 81.

[Mis+07] Nina Mishra et al. “Clustering Social Networks”. In: Proceedings of
the 5th International Conference on Algorithms and Models for the
Web-graph. WAW’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 56–
67.

[MS16] Arya Mazumdar and Barna Saha. “Clustering Via Crowdsourcing”.
In: arXiv preprint arXiv:1604.01839 (2016).

[MS17] Arya Mazumdar and Barna Saha. “A Theoretical Analysis of First
Heuristics of Crowdsourced Entity Resolution.” In: AAAI. 2017, pp. 970–
976.

[NJW02] Andrew Y Ng, Michael I Jordan, and Yair Weiss. “On spectral cluster-
ing: Analysis and an algorithm”. In: Advances in neural information
processing systems. 2002, pp. 849–856.

[OH11] Samet Oymak and Babak Hassibi. “Finding dense clusters via" low
rank+ sparse" decomposition”. In: arXiv preprint arXiv:1104.5186
(2011).

[PW15] Mert Pilanci and Martin J Wainwright. “Randomized sketches of con-
vex programs with sharp guarantees”. In: IEEE Transactions on Infor-
mation Theory 61.9 (2015), pp. 5096–5115.

[R+11] Karl Rohe, Sourav Chatterjee, Bin Yu, et al. “Spectral clustering and
the high-dimensional stochastic blockmodel”. In: The Annals of Statis-
tics 39.4 (2011), pp. 1878–1915.

[Ray+10] Vikas C Raykar et al. “Learning from crowds”. In: Journal of Machine
Learning Research 11.Apr (2010), pp. 1297–1322.

107

[SBG00] Nicholas D Sidiropoulos, Rasmus Bro, and Georgios B Giannakis.
“Parallel factor analysis in sensor array processing”. In: IEEE trans-
actions on Signal Processing 48.8 (2000), pp. 2377–2388.

[SBS12] Marta Sabou, Kalina Bontcheva, and Arno Scharl. “Crowdsourcing
research opportunities: lessons from natural language processing”. In:
Proceedings of the 12th International Conference on Knowledge Man-
agement and Knowledge Technologies. ACM. 2012, p. 17.

[Sch07] Satu Elisa Schaeffer. “Graph clustering”. In: Computer science review
1.1 (2007), pp. 27–64.

[SF08] Alexander Sorokin and David Forsyth. “Utility data annotation with
amazon mechanical turk”. In: Computer Vision and Pattern Recogni-
tion Workshops, 2008. CVPRW’08. IEEE Computer Society Confer-
ence on. IEEE. 2008, pp. 1–8.

[Sno+08] Rion Snow et al. “Cheap and fast—but is it good?: evaluating non-
expert annotations for natural language tasks”. In: Proceedings of the
conference on empirical methods in natural language processing. As-
sociation for Computational Linguistics. 2008, pp. 254–263.

[SPD14] Robert Simpson, Kevin R Page, and David De Roure. “Zooniverse:
observing the world’s largest citizen science platform”. In: Proceed-
ings of the 23rd international conference on world wide web. ACM.
2014, pp. 1049–1054.

[Tam+11] Omer Tamuz et al. “Adaptively learning the crowd kernel”. In: arXiv
preprint arXiv:1105.1033 (2011).

[Try39] J. W. Tryon. Cluster analysis: Correlation profile and orthometric
(factor) analysis for the isolation of unities in mind and personality.
Edwards brother Inc., Ann Arbor, Michigan, 1939.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
data mining. 1st. 2005.

[urla] url. url: https://griffsgraphs.wordpress.com/2012/07/02/
a-facebook-network/.

[urlb] url. url: https://www.mdc-berlin.de/10221541/en/research/
research_teams/proteomics_and_molecular_mechanisms_
of_neurodegenerative_diseases/research/research1.

[VB05] Ulrike Von Luxburg and Shai Ben-David. “Towards a statistical theory
of clustering”. In: Pascal workshop on statistics and optimization of
clustering. 2005, pp. 20–26.

[VBD14] Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. “Crowdsourc-
ing algorithms for entity resolution”. In: Proceedings of the VLDB
Endowment 7.12 (2014), pp. 1071–1082.

https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/
https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/
https://www.mdc-berlin.de/10221541/en/research/research_teams/proteomics_and_molecular_mechanisms_of_neurodegenerative_diseases/research/research1
https://www.mdc-berlin.de/10221541/en/research/research_teams/proteomics_and_molecular_mechanisms_of_neurodegenerative_diseases/research/research1
https://www.mdc-berlin.de/10221541/en/research/research_teams/proteomics_and_molecular_mechanisms_of_neurodegenerative_diseases/research/research1

108

[VG15] Vasilis Verroios and Hector Garcia-Molina. “Entity resolution with
crowd errors”. In: Data Engineering (ICDE), 2015 IEEE 31st Inter-
national Conference on. IEEE. 2015, pp. 219–230.

[VH15] Ramya Korlakai Vinayak and Babak Hassibi. “Clustering by Com-
parison: Stochastic Block Model for Inference in Crowdsourcing”. In:
Workshop on Machine Learning and Crowdsourcing, ICML. 2015.

[VH16a] Ramya Korlakai Vinayak and Babak Hassibi. “Crowdsourced Cluster-
ing: Querying Edges vs Triangles”. In: Advances in Neural Informa-
tion Processing Systems. 2016, pp. 1316–1324.

[VH16b] Ramya Korlakai Vinayak and Babak Hassibi. “Similarity clustering
in the presence of outliers: Exact recovery via convex program”. In:
IEEE International Symposium on Information Theory (ISIT), 2016.
IEEE. 2016, pp. 91–95.

[VM03] Deepak Verma and Marina Meila. “A comparison of spectral cluster-
ing algorithms”. In: University of Washington Tech Rep UWCSE030501
1 (2003), pp. 1–18.

[VOH14a] Ramya Korlakai Vinayak, Samet Oymak, and Babak Hassibi. “Graph
clustering with missing data: Convex algorithms and analysis”. In: Ad-
vances in Neural Information Processing Systems. 2014, pp. 2996–
3004.

[VOH14b] Ramya Korlakai Vinayak, Samet Oymak, and Babak Hassibi. “Sharp
performance bounds for graph clustering via convex optimization”.
In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014. IEEE. 2014, pp. 8297–8301.

[Von+08] Luis Von Ahn et al. “recaptcha: Human-based character recognition
via web security measures”. In: Science 321.5895 (2008), pp. 1465–
1468.

[Von06] Luis Von Ahn. “Games with a purpose”. In: Computer 39.6 (2006),
pp. 92–94.

[Vu05] Van H Vu. “Spectral norm of random matrices”. In: Proceedings of
the thirty-seventh annual ACM symposium on Theory of computing.
ACM. 2005, pp. 423–430.

[VVV14] Aditya Vempaty, Lav R Varshney, and Pramod K Varshney. “Reliable
crowdsourcing for multi-class labeling using coding theory”. In: IEEE
Journal of Selected Topics in Signal Processing 8.4 (2014), pp. 667–
679.

[VW12] Laurens Van Der Maaten and Kilian Weinberger. “Stochastic triplet
embedding”. In: Machine Learning for Signal Processing (MLSP),
2012 IEEE International Workshop on. IEEE. 2012, pp. 1–6.

109

[VZH17] Ramya Korlakai Vinayak, Tijana Zrnic, and Babak Hassibi. “Tensor-
based Crowdsourced Clustering via Triangle Queries”. In: IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017. IEEE. 2017.

[Wah+11] Catherine Wah et al. “The caltech-ucsd birds-200-2011 dataset”. In:
Technical Report, California Institute of Technology (2011).

[Wah+14] Catherine Wah et al. “Similarity comparisons for interactive fine-grained
categorization”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2014, pp. 859–866.

[Wan+12] Jiannan Wang et al. “Crowder: Crowdsourcing entity resolution”. In:
Proceedings of the VLDB Endowment 5.11 (2012), pp. 1483–1494.

[Wel+10] Peter Welinder et al. “The multidimensional wisdom of crowds”. In:
Advances in neural information processing systems. 2010, pp. 2424–
2432.

[WKB14] Michael J Wilber, Iljung S Kwak, and Serge J Belongie. “Cost-effective
hits for relative similarity comparisons”. In: Second AAAI Conference
on Human Computation and Crowdsourcing. 2014.

[WM16] Yali Wan and Marina Meila. “Graph Clustering: Block-models and
model free results”. In: Advances in Neural Information Processing
Systems. 2016, pp. 2478–2486.

[XCS10] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. “Robust PCA
via outlier pursuit”. In: Advances in Neural Information Processing
Systems. 2010, pp. 2496–2504.

[XJK99] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. “A fast paral-
lel clustering algorithm for large spatial databases”. In: High Perfor-
mance Data Mining. Springer, 1999, pp. 263–290.

[XOX02] Ying Xu, Victor Olman, and Dong Xu. “Clustering gene expression
data using a graph-theoretic approach: an application of minimum
spanning trees”. In: Bioinformatics 18.4 (2002), pp. 536–545.

[XT15] Dongkuan Xu and Yingjie Tian. “A comprehensive survey of cluster-
ing algorithms”. In: Annals of Data Science 2.2 (2015), pp. 165–193.

[YF04] Ossama Younis and Sonia Fahmy. “HEED: a hybrid, energy-efficient,
distributed clustering approach for ad hoc sensor networks”. In: IEEE
Transactions on mobile computing 3.4 (2004), pp. 366–379.

[Yi+12] Jinfeng Yi et al. “Semi-crowdsourced clustering: Generalizing crowd
labeling by robust distance metric learning”. In: Advances in neural
information processing systems. 2012, pp. 1772–1780.

110

[YL05] Qiaofeng Yang and Stefano Lonardi. “A parallel algorithm for cluster-
ing protein-protein interaction networks”. In: Computational Systems
Bioinformatics Conference, 2005. Workshops and Poster Abstracts.
IEEE. IEEE. 2005, pp. 174–177.

[Yur+17] Alp Yurtsever et al. “Sketchy Decisions: Convex Low-Rank Matrix
Optimization with Optimal Storage”. In: 20th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS2017). EPFL-
CONF-225653. 2017.

[Zha+14] Yuchen Zhang et al. “Spectral methods meet EM: A provably opti-
mal algorithm for crowdsourcing”. In: Advances in neural information
processing systems. 2014, pp. 1260–1268.

[Zha+15] Kai Zhang et al. “From categorical to numerical: Multiple transitive
distance learning and embedding”. In: Proceedings of the 2015 SIAM
International Conference on Data Mining. SIAM. 2015, pp. 46–54.

[Zho+12] Denny Zhou et al. “Learning from the wisdom of crowds by mini-
max entropy”. In: Advances in Neural Information Processing Sys-
tems. 2012, pp. 2195–2203.

[Zub38] J.A Zubin. “A technique for measuring likemindedness”. In: 33 (1938),
pp. 508–516.

111

A p p e n d i x A

PROOFS FOR RESULTS IN CHAPTER 2

In this appendix we provide the detailed proofs for the results presened in Chapter 2
(Theorem 1 and Theorem 2).

A.1 Proof of Results for Simple Convex Program (Theorem 1)
Recall the Simple Program 2.1.4 from Chapter 2:

minimize
L,S

‖L‖? + λ‖S‖1

subject to

1 ≥ Li,j ≥ 0 for all i, j ∈ {1, 2, . . . n}

Lobs + Sobs = Aobs

Let 1 ≥ pmin > 1
2
> q > 0 and 0 ≤ r ≤ 1. G be a random graph generated

according to the stochastic block model 2.2.1 with cluster sizes {ni}Ki=1. Let the
observation model be as defined in (Defn 2.2.2). Our goal is to show that the optimal
solution of Problem 2.1.4 is the pair (L0,S0) under reasonable conditions, where

L0 = 1
n×n
R , S0 = S0

obs = Aobs − L0. (A.1.1)

Theorem 1 is based on the following lemmas:

Lemma A.1.1. If λ > Λfail or Dmin <
1
λ

, then (L0,S0) is not an optimal solution

to the Program 2.1.4 with high probability.

Lemma A.1.2. If λ < Λsucc and Dmin > 1
λ

, then (L0,S0) is the unique optimal

solution to Program 2.1.4 with high probability.

Before we proceed, we need some additional notations. Let Ri,j = Ci × Cj for
1 ≤ i, j ≤ K + 1. One can see that {Ri,j} divides [n]× [n] into (K + 1)2 disjoint
regions similar to a grid which is illustrated in the Figure A.1. Thus, Ri,i is the
region induced by i’th cluster for any 1 ≤ i ≤ K.

Let Γout be the set of entries of adjacency matrix that are not observed. Let A1 ⊆
[n]× [n] be the set of nonzero coordinates of Aobs, and A0 ⊆ [n]× [n] be the set of
coordinates of Aobs that are zero. Then the sets,

112

Figure A.1: Illustration of {Ri,j} dividing [n] × [n] into disjoint regions similar to
a grid

1. A1 ∩R corresponds to the edges inside the clusters that are observed.

2. A1∩Rc corresponds to the set of edges outside the clusters that are observed.

3. A0∩R corresponds to the missing edges inside the clusters, that are observed
(that is, we know that the edge does not exist).

Let c and d be positive integers. Consider a matrix, X ∈ Rc×d. Let β be a subset of
[c]× [d]. Then, let Xβ denote the matrix induced by the entries of X on β i.e.,

(Xβ)i,j =

Xi,j if (i, j) ∈ β

0 otherwise .

In other words, Xβ is a matrix whose entries match those of X in the positions
(i, j) ∈ β and zero otherwise. For example, 1n×nAobs = Aobs. Given a matrix X,
sum(X) will denote the sum of all entries of X. Finally, we introduce the following
parameter which will be useful for the subsequent analysis. This parameter can
be seen as a measure of distinctness of the “worst” cluster from the “background
noise”. Here, by background noise we mean the edges over Rc. Given q, {pi}Ki=1,
let,

DA =
1

2
min

{
r(1− 2q),

{
r(2pi − 1)− 1

λni

}K
i=1

}
(A.1.2)

=
1

2
min

{
r(1− 2q),

Di − λ−1

ni

}
.

For our proofs, we will make use of the following Big O notation. f(n) = Ω(n) will
mean there exists a positive constant c such that for sufficiently large n, f(n) ≥ cn.

113

f(n) = O(n) will mean there exists a positive constant c such that for sufficiently
large n, f(n) ≤ cn.

A.1.1 Proof of Lemma A.1.1
Lagrange for the problem (2.1.4) can be written as follows:

L (L,S; M,N) = ‖L‖? + λ‖Sobs‖1 + trace(M(L− 11
T))− trace(NL),

(A.1.3)

where M and N are dual variables corresponding to the inequality constraints (2.1.5).

For L0 to be an optimal solution to (2.1.4), it has to satisfy the KKT conditions.
Therefore, the subgradient of (A.1.3) at L0 has to be 0, i.e.,

∂‖L0‖? + λ ∂‖Aobs − Lobs
0‖1 + M0 −N0 = 0, (A.1.4)

where M0 and N0 are optimal dual variables, and ∂‖L0‖? and ∂‖S0‖1 are subgra-
dients of nuclear norm and `1-norm respectively at the points (L0,S0). Note that in
the standard notation, ∂h(x) denotes the set of all subgradients, i.e., the subdiffer-
ential of the function h(.) at x. We have slightly abused the notation by denoting a
subgradient of the function h(.) at the point x by ∂h(x). In other words, ∂h(x) has
been used to denote any element in the subgradient set of h(.) at x.

Also, by complementary slackness,

trace(M0(L0 − 11
T)) = 0, (A.1.5)

and
trace(N0L0) = 0. (A.1.6)

From (A.1.1) and (A.1.5), (A.1.6), we have (M0)R ≥ 0, (M0)Rc = 0, (N0)R = 0

and (N0)Rc ≥ 0. Therefore (M0 −N0)R ≥ 0 and (M0 −N0)Rc ≤ 0.

Let L0 = UΛUT , where Λ = diag{n1, n2, . . . , nK}U = [u1 . . . uK] ∈ Rn×K ,

ul,i =

 1√
nl

if i ∈ Cl
0 else.

(A.1.7)

Then the subgradient ∂‖L0‖? is of the form UUT +W such that W ∈ {X : XU =

UTX = 0, ‖X‖ ≤ 1}. The subgradient ∂‖S0‖1 is of the form sign(S0) + Q, where
Qi,j = 0 if Si,j 6= 0 and ‖Q‖∞ ≤ 1.

114

From (A.1.4), we have

UUT + W − λ
(
sign(S0) + Q

)
+ (M0 −N0) = 0. (A.1.8)

Consider the sum of the entires corresponding to the cluster i (Ri,i), i.e.,

sum
(
L0
)
Ri,i︸ ︷︷ ︸

ni

−sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
+ sum

(
M0 −N0

)
Ri,i︸ ︷︷ ︸

≥0

= 0 (A.1.9)

Since each entry of the adjacency matrix is observed with probability r, and the
probability of missing edge inside cluster i is 1 − pi, we note that (S0

Ri,i)l,m 6= 0

with probability r(1− pi). Recall that Ql,m = 0 if S0
l,m 6= 0.

Then by Bernstein’s inequality and using ‖Q‖∞ ≤ 1, with probability 1−exp (−Ω(n2
i))

we have sum (sign(S0)) = −n2
i r(1− pi) and sum (Q) ≤ n2

i (1− r(1− pi)) .

Thus,

−sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
≥ λn2

i r(1− pi)− λn2
i (1− r(1− pi))

= λn2
i [2r(1− pi)− 1] ,

and hence LHS of equation (A.1.9) can be lower bounded as ,

ni − sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
+ sum

(
M0 −N0

)
Ri,i︸ ︷︷ ︸

≥0

≥ ni + λn2
i [2r(1− pi)− 1] .

We see that ni (1− 2r(1− pi)) < 1
λ

would imply ni + λn2
i [2r(1− pi)− 1] > 0,

in which case, the equation (A.1.4) does not hold. Hence L0 cannot be an optimal
solution to the Program 2.1.4. (Note that, pi > 1

2
and hence 2pi − 1 > 0.)

Notice that
(
UUT

)
Rc = 0 and the entries of − (sign(S0) + Q) and M0 −N0 over

Rc ∩ A1 are negative. Hence from the equation (A.1.8),

‖W‖2
F ≥ ‖

(
UUT + W

)
(Rc∩A1)

‖2
F ≥ ‖λ

(
sign(S0) + Q

)
(Rc∩A1)

‖2
F .(A.1.10)

Recall that S0
(Rc∩A1) 6= 0 and hence Q(Rc∩A1) = 0. Further, recall that by the

stochastic block model, each entry of A overRc is non-zero with probability q and
by observation model (Defn 2.2.2), each entry of A is observed with probability r.
Hence with probability at least 1−exp (−Ω(|Rc|)), |Rc∩A1| = rq(n2−

∑K
i=1 n

2
i).

Thus from equation (A.1.10) we have,

‖W‖2
F ≥ λ2rq(n2 −

K∑
i=1

n2
i). (A.1.11)

115

Recall that ‖W‖ ≤ 1 should hold true for (L0,S0) to be an optimal solution to
Program 2.1.4. ‖W‖ = |σmax(W)| ≥ ‖W‖F√

n
, which on combining with equa-

tion (A.1.11) gives us,

‖W‖ ≥ λ

√√√√rq
(
n2 −

∑K
i=1 n

2
i

)
n

.

So, if λ
√
rq
(
n2 −

∑K
i=1 n

2
i

)
/n > 1 then, (L0,S0) cannot be an optimal solution

to Program 2.1.4. This gives us the result in Lemma A.1.1.

A.1.2 Proof of Lemma A.1.2
To prove Lemma A.1.2, we need to show that when λ < Λsucc and Dmin > 1

λ
,

(L0,S0) is the unique optimal solution to the Program 2.1.4. So, we need to prove
that for all feasible perturbations (EL,ES),

(‖L0 + EL‖? + λ ‖S0 + ES‖1)− (‖L0‖? + λ ‖S0‖1) > 0. (A.1.12)

We note that S can be split as S = Sobs + Srest, where Srest denotes the entries
of S other than those corresponding to the observed entries of A. Furthermore, we
claim that at the optimal, Srest = 0, since if otherwise, the objective can be strictly
decreased by setting Srest = 0. Hence, S = Sobs.

We can lower bound the LHS of the equation (A.1.12) using the subgradients as
follows:

(‖L0+EL‖?+λ ‖S0+ES‖1)−
(
‖L0‖? + λ ‖S0‖1

)
≥ 〈∂‖L0‖?,EL〉+λ〈∂‖S0‖1,E

S〉,
(A.1.13)

where ∂‖L0‖? and ∂‖S0‖1 are subgradients of nuclear norm and `1-norm respec-
tively at the points (L0,S0). Note that in the standard notation, ∂‖x‖∗ denotes the
set of all subgradients, i.e., the subdifferential. We have slightly abused the notation
by denoting a subgradient of a norm ‖ · ‖∗ at the point x by ∂‖x‖∗.

To make use of (A.1.13), it is very important to choose good subgradients. In the
following section we will focus on construction of such subgradients.

Subgradient construction

Recall that, L0 = UΛUT , where Λ = diag{n1, n2, . . . , nK} and U = [u1 . . . uK] ∈
Rn×K , with ul as defined before. Then the subgradient ∂‖L0‖? is of the form

116

UUT + W such that W ∈ MU := {X : XU = UTX = 0, ‖X‖ ≤ 1}. ‖.‖ is
spectral norm (maximum singular value). The subgradient ∂‖S0‖1 is of the form
sign(S0) + Q where Qi,j = 0 if S0

i,j 6= 0 and ‖Q‖∞ ≤ 1.

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1)

≥ 〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,E
S〉

= 〈UUT + W,EL〉+ λ〈sign(S0) + Q,ES〉

Note that, due to the condition Lobs + Sobs = Aobs, we have ES = Eobs
L. Further,

note that sign(S0) = 1
n×n
A1∩Rc − 1

n×n
A0∩R. Choosing Q = 1

n×n
A1∩R − 1

n×n
A0∩Rc , we get,

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1)

≥
〈
W,EL

〉
+

K∑
i=1

1

ni
sum(ERi,i) + λ

(
sum(EL

A0
)− sum(EL

A1
)
)

︸ ︷︷ ︸
:=g(EL)

.

From this point onward, for simplicity we will ignore the superscript L on EL and
just use E.

Define,

g(E) :=
K∑
i=1

1

ni
sum(ERi,i) + λ (sum(EA0)− sum(EA1)) . (A.1.14)

Also, define f (E,W) := g (E) + 〈W,E〉. Our aim is to show that for all feasible
perturbations E, there exists W such that,

f (E,W) = g(E) + 〈W,E〉 > 0. (A.1.15)

Note that g(E) does not depend on W.

Lemma A.1.3. Given E, assume there exists W ∈ MU with ‖W‖ < 1 such that

f(E,W) ≥ 0. Then at least one of the followings holds:

• There exists W∗ ∈MU with ‖W∗‖ ≤ 1 and f(E,W∗) > 0.

• For all W ∈MU, 〈E,W〉 = 0.

117

Proof. Let c = 1−‖W‖. Assume 〈E,W′〉 6= 0 for some W′ ∈MU. If 〈E,W′〉 >
0, choose W∗ = W+cW′. Otherwise, choose W∗ = W−cW′. Since ‖W′‖ ≤ 1,
we have, ‖W∗‖ ≤ 1 and W∗ ∈MU. Consequently,

f(E,W∗) = f(E,W) + 〈E, cW′〉 > f(E,W) ≥ 0. (A.1.16)

Notice that, for all W ∈ MU, 〈E,W〉 = 0 is equivalent to E ∈ M⊥
U which is the

orthogonal complement ofMU in Rn×n.M⊥
U has the following characterization:

M⊥
U = {X ∈ Rn×n : X = UMT + NUT for some M,N ∈ Rn×K}.(A.1.17)

Now we have broken down our aim into two steps.

1. Construct W ∈ MU with ‖W‖ < 1, such that f(E,W) ≥ 0 for all feasible
perturbations E.

2. For all non-zero feasible E ∈M⊥
U, show that g(E) > 0.

As a first step, in Section A.1.3, we will argue that, under certain conditions, there
exists a W ∈ MU with ‖W‖ < 1 such that with high probability, f(E,W) ≥ 0

for all feasible E. This W is called the dual certificate. Secondly, in Section A.1.4,
we will show that, under certain conditions, for all E ∈ M⊥

U with high probability,
g(E) > 0. Finally, combining these two arguments, and using Lemma A.1.3 we
will conclude that (L0,S0) is the unique optimal with high probability.

A.1.3 Showing existence of the dual certificate
Recall that

f(E,W) =
K∑
i=1

1

ni
sum(ERi,i) + 〈E,W〉+ λ (sum (EA0)− sum (EA1)) .

W will be constructed from the candidate W0, which is given as follows.

Candidate W0

Based on Program 2.1.4, we propose the following:

W0 =
K∑
i=1

ci1
n×n
Ri,i + c1n×nRc + λ

(
1
n×n
A1
− 1

n×n
A0

)
, (A.1.18)

118

where {ci}Ki=1, c are real numbers to be determined.

f(E,W0) =
K∑
i=1

(
1

ni
+ ci) sum(ERi,i) + c sum(ERc).

Note that W0 is a random matrix where randomness is due to Aobs. In order to
ensure a small spectral norm, we will set its expectation to 0, i.e., we will choose
c, {ci}′s to ensure that E[W0] = 0.

Following from the partially observed Stochastic Block Model (Defn 2.2.1 and
2.2.2), the expectation of an entry of W0 on Ri,i (region corresponding to clus-
ter i) and Rc (region outside the clusters) is ci + λr(2pi − 1) and c + λr(2q − 1)

respectively. Therefore, we set,

ci = −λr(2pi − 1) and c = −λr(2q − 1),

With these choices, the candidate, W0 and f(E,W0) take the following forms:

W0 = λ
K∑
i=1

(1 + r(1− 2pi)) 1
n×n
Ri,i∩A1

+ λ(1− r(1− 2pi)) 1
n×n
Ri,i∩A0

+λr(1− 2pi)1
n×n
Ri,i∩Γout + λ(1 + r(1− 2q)) 1n×nRc∩A1

+λ(1− r(1− 2q)) 1n×nRc∩A0
+ λr(1− 2q)1n×nRc∩Γout (A.1.19)

f(E,W0) = λ [r(1− 2q) sum(ERc)]−λ

[
K∑
i=1

(
r(2pi − 1)− 1

λni

)
sum(ERi,i)

]

From L0 and the constraint 1 ≥ Li,j ≥ 0, it follows that,

ERc is (entrywise) nonnegative. (A.1.20)

ER is (entrywise) nonpositive.

Thus, sum(ERc) ≤ 0 and sum(ERi,i) ≥ 0. When λ(2pi − 1)− 1
ni
≥ 0 and λ(2q −

1) ≤ 0; we will have f(E,W0) ≥ 0 for all feasible E. This indeed holds due to
the assumptions of Theorem 1 (see (A.1.2)), as we assumed r(2pi − 1) > 1

λni
for

i = 1, 2 · · · , K and 1 > 2q.

119

We will now proceed to find a tight bound on the spectral norm of W0. We will
say that random variable X has a ∆(ζ, δ) distribution for 0 ≤ ζ, δ ≤ 1, written as
X ∼ ∆(ζ, δ) if,

X =


1 + ζ(1− 2δ) w.p. ζδ

1− ζ(1− 2δ) w.p. ζ(1− δ)

r(1− 2δ) w.p. 1− ζ

Variance of the above distribution is

Var(X) = 1− ζ + 4 ζ δ (1− δ). (A.1.21)

Theorem 10. Assume A ∈ Rn×n obeys the Stochastic Block Model (2.2.1) and let

M ∈ Rn×n. Let entries of M be as follows.

Mi,j ∼

∆(r, pk) if (i, j) ∈ Rk,k

∆(r, q) if (i, j) ∈ Rc

Then, for a constant ε′ (to be determined) each of the following holds with proba-

bility 1− exp(−Ω(n)).

• ‖M‖ ≤ 2
√
nr
√

1− r + 4rq(1− q)
+ max

1≤i≤K
2
√
nir
√

2(1− r) + 4r(q(1− q) + pi(1− pi)) + ε′
√
n.

• Assume max
1≤i≤K

ni = o(n). Then, for sufficiently large n,

‖M‖ ≤ (2
√
r(1− r + 4rq(1− q)) + ε′)

√
n.

Proof. For the first statement, let M1 be a random matrix with independent entries
distributed as:

M1(i, j) ∼ ∆(r, q).

From standard results on random matrix theory [Vu05], it follows that,

‖M1‖ ≤ (2
√
r(1− r + 4rq(1− q)) + ε′)

√
n

with the desired probability.

Also let M2 = M −M1. We note that M2 is a block diagonal random matrix.
Observe that M2 overRi,i, M2,Ri,i is the sum of two independent random variables

120

MRi,i ∼ ∆(r, pi) and−M1,Ri,i ∼ ∆(r, q). So, the variance is 2r(1−r)+4r2(q(1−
q) + pi(1− pi)). This similarly gives,

‖M2,Ri,i‖ ≤ 2
√

2r(1− r) + 4r2(q(1− q) + pi(1− pi))
√
ni + ε′

√
n

Now, observing, ‖M2‖ = sup
1≤i≤K

‖M2,Ri,i‖ and using a union bound over i ≤ K

we have,

‖M2‖ ≤ max
1≤i≤K

2
√

2r(1− r) + 4r2(q(1− q) + pi(1− pi))
√
ni + ε′

√
n.

Finally, we use the triangle inequality ‖M‖ ≤ ‖M1‖+ ‖M2‖ to conclude.

The following lemma gives a bound on ‖W0‖.

Lemma A.1.4. Recall that, W0 is a random matrix; where randomness is on the

partially observed stochastic block model Aobs and it is given by,

W0 = λ
K∑
i=1

(1 + r(1− 2pi)) 1
n×n
Ri,i∩A1

+ λ(1− r(1− 2pi)) 1
n×n
Ri,i∩A0

+λr(1− 2pi)1
n×n
Ri,i∩Γout + λ(1 + r(1− 2q)) 1n×nRc∩A1

+λ(1− r(1− 2q)) 1n×nRc∩A0
+ λr(1− 2q)1n×nRc∩Γout .

Then, for any ε′ > 0, with probability 1− exp (−Ω(n)), we have

‖1

λ
W0‖ ≤ 2

√
nr
√

1− r + 4rq(1− q)

+ max
1≤i≤K

2
√
nir
√

2(1− r) + 4r(q(1− q) + pi(1− pi)) + ε′
√
n.

Further, if max
1≤i≤K

ni = o(n). Then, for sufficiently large n, with the same probability,

‖W0‖ ≤ 2λ
√
nr
√

1− r + 4rq(1− q) + ε′λ
√
n.

Proof. 1
λ
W0 is a random matrix whose entries are i.i.d. and distributed as ∆(r, pi)

on Ri,i and ∆(r, q) on Rc. Consequently, using Theorem 10 we obtain the result.

Lemma A.1.4 verifies that asymptotically with high probability we can make ‖W0‖ <
1 as long as λ is sufficiently small. However, W0 itself is not sufficient for con-
struction of the desired W, since we do not have any guarantee that W0 ∈MU. In
order to achieve this, we will correct W0 by projecting it ontoMU. The following
lemma suggests that W0 does not change much by such a correction.

121

Correcting the candidate W0

Lemma A.1.5. W0 is as described previously in (A.1.19). Let WH be the projec-

tion of W0 onMU. Then

• ‖WH‖ ≤ ‖W0‖

• For any ε′′ > 0 (constant to be determined), with probability

1− 6n2 exp(−2ε′′2nmin) we have

‖W0 −WH‖∞ ≤ 3λε′′.

Proof. Choose arbitrary vectors {ui}ni=K+1 to make {ui}ni=1 an orthonormal basis
in Rn. Call U2 = [uK+1 . . . un] and P = UUT , P2 = U2U

T
2 . Now notice that

for any matrix X ∈ Rn×n, P2XP2 is inMU since UTU2 = 0. Let I denote the
identity matrix. Then,

X−P2XP2 = X− (I−P)X(I−P)

= PX + XP−PXP ∈M⊥
U. (A.1.22)

Therefore, P2XP2 is the orthogonal projection onMU. Clearly,

‖WH‖ = ‖P2W0P2‖ ≤ ‖P2‖2‖W0‖ ≤ ‖W0‖.

For analysis of ‖W0 −WH‖∞ we can consider terms on the right hand side of
(A.1.22) separately as we have:

‖W0 −WH‖∞ ≤ ‖PW0‖∞ + ‖W0P‖∞ + ‖PW0P‖∞.

Clearly P =
∑K

i=1
1
ni
1
n×n
Ri,i . Then, each entry of 1

λ
PW0 is either a summation of ni

i.i.d. ∆(r, pi) or ∆(r, q) mean zero random variables scaled by n−1
i for some i ≤ K

or 0. Hence any c, d ∈ [n] and ε′′ > 0

P (|(PW0)c,d| ≥ λε′′) ≤ 2 exp(−2ε′′2nmin).

Same (or better) bounds holds for entries of W0P and PW0P. Then a union bound
over all entries of the three matrices will give with probability 1−6n2 exp(−2ε′′2nmin),
we have ‖W0 −WH‖∞ ≤ 3λε′′.

122

Recall that, γsucc := max
1≤i≤K

2r
√
ni

√
2(1

r
− 1) + 4 (q(1− q) + pi(1− pi)) , and

Λ−1
succ := 2r

√
n
√

1
r
− 1 + 4q(1− q) + γsucc.

We can summarize our discussion so far in the following lemma,

Lemma A.1.6. W0 is as described previously in (A.1.19). Choose W to be pro-

jection of W0 on MU. Also suppose λ ≤ (1 − δ)Λsucc. Then, with probability

1− 6n2 exp(−Ω(nmin))− 4 exp(−Ω(n)) we have,

• ‖W‖ < 1

• For all feasible E, f(E,W) ≥ 0.

Proof. To begin with, observe that Λ−1
succ is Ω(

√
n). Since λ ≤ Λsucc, λ

√
n =

O(1). Consequently, using λΛ−1
succ < 1 and applying Lemma A.1.4, and choosing a

sufficiently small ε′ > 0, we conclude with,

‖W‖ ≤ ‖W0‖ < 1

with probability 1 − exp(−Ω(n)) where the constant in the exponent depends on
the constant ε′ > 0.

Next, from Lemma A.1.5 with probability 1−6n2 exp(−2
9
ε′′2nmin) we have ‖W0−

W‖∞ ≤ λε′′. Then based on (A.2.10) for all E, we have that,

f(E,W) = f(E,W0)− 〈W0 −W,E〉

≥ f(E,W0)− λε′′ (sum(ER)− sum(ERc))

= λ [(r(1− 2q)− ε′′)sum(ERc)]

−λ
K∑
i=1

[(
r(2pi − 1)− 1

λni
− ε′′

)
sum(ERi,i)

]
≥ 0,

where we chose ε′′ to be a sufficiently small constant. In particular, we set ε′′ < DA,
i.e., set ε′′ < r(1− 2q) and ε′′ < r(2pi − 1)− 1

λni
for all 1 ≤ i ≤ K.

Thus, by using a union bound W satisfies both of the desired conditions.

Summary so far: Combining the last lemma with Lemma A.1.3, with high prob-
ability, either there exists a dual vector W∗ which ensures f(E,W∗) > 0 or
E ∈ M⊥

U. If former, we are done. Thus, we need to focus on the latter case
and show that for all perturbations E ∈ M⊥

U, the objective will strictly increase at
(L0,S0) with high probability.

123

A.1.4 Solving for EL ∈M⊥
U case

Recall that,

g (E) =
K∑
i=1

1

ni
sum(ERi,i) + λ (sum(EA0)− sum(EA1))

. Let us define,

g1(X) :=
K∑
i=1

1

ni
sum(XRi,i),

g2(X) := sum(XA0)− sum(XA1),

so that, g (X) = g1(X) + λg2(X). Also let V = [v1 . . . vK] where vi =
√
niui.

Thus, V is basically obtained by, normalizing columns of U to make its nonzero
entries 1. Assume E ∈M⊥

U. Then, by definition ofM⊥
U, we can write,

E = VMT + NVT .

Let mi,ni denote i’th columns of M,N respectively. From L0 and the objective
function it follows that

ERc is (entrywise) nonnegative

ER is (entrywise) nonpositive.

Now, we list some simple observations regarding structure of E. We can write

E =
K∑
i=1

(vim
T
i + niv

T
i) =

K+1∑
i=1

K+1∑
j=1

ERi,j . (A.1.23)

Notice that only two components : vim
T
i and njv

T
j , contribute to the term ERi,j .

Let Ei,j ∈ Rni×nj , which is E induced by entries onRi,j . Basically, Ei,j is same as
ERi,j when we get rid of trivial zero rows and zero columns. Then

Ei,j = 1
ni(m

Cj
i)T + nCij 1

njT , (A.1.24)

where m
Cj
i is the vector corresponding to the entries of Cj in mi. Similarly, nCij is

the vector corresponding to the entries of Ci in nj .

Clearly, given {Ei,j}1≤i,j≤n, E is uniquely determined. Now, assume we fix sum(Ei,j)

for all i, j and we would like to find the worst E subject to these constraints. Vari-

124

ables in such an optimization are mi,ni. Basically we are interested in,

min g(E) (A.1.25)

subject to

sum(Ei,j) = ci,j for all i, j

Ei,j

nonnegative if i 6= j

nonpositive if i = j
, (A.1.26)

where {ci,j} are constants. Constraint (A.1.26) follows from (A.2.10).
Remark: For the special case of i = j = K + 1, notice that Ei,j = 0.

In (A.1.25), g1(E) is fixed and is equal to
∑K

i=1
1
ni
ci,i. Consequently, we just need

to do the optimization with the objective g2(E) = sum(EA0)− sum(EA1).

Let βi,j ⊆ [ni] × [nj] be a set of coordinates defined as follows. For any (c, d) ∈
[ni]× [nj]

(c, d) ∈ βi,j iff (ai,c, aj,d) ∈ A

For (i1, j1) 6= (i2, j2), (m
Cj1
i1
,n
Ci1
j1

) and (m
Cj2
i2
,n
Ci2
j2

) are independent variables.
Consequently, due to (A.1.24), we can partition problem (A.1.25) into the following
smaller disjoint problems.

min
mj
i ,n

i
j

sum(Ei,j
βci,j

)− sum(Ei,j
βi,j

) (A.1.27)

subject to

sum(Ei,j) = ci,j

Ei,j is

nonnegative if i 6= j

nonpositive if i = j

Then, we can solve these problems locally (for each i, j) to finally obtain,

g2(EL,∗) =
∑
i,j

sum(Ei,j,∗
βci,j

)−
∑
i,j

sum(Ei,j,∗
βi,j

)

to find the overall result of problem (A.1.25), where ∗ denotes the optimal solutions
in problems (A.1.25) and (A.1.27). The following lemma will be useful for analysis
of these local optimizations.

Lemma A.1.7. Let a ∈ Rc, b ∈ Rd and X = 1
cbT + a1d

T be variables and

C0 ≥ 0 be a constant. Also let β ⊆ [c] × [d]. Consider the following optimization

125

problem

min
a,b

sum(Xβ)

subject to

Xi,j ≥ 0 for all i, j

sum(X) = C0

For this problem there exists a (entrywise) nonnegative minimizer (a0,b0).

Proof. Let xi denotes i’th entry of vector x. Assume (a∗,b∗) is a minimizer. With-
out loss of generality assume b∗1 = mini,j{a∗i ,b∗j}. If b∗1 ≥ 0 we are done. Other-
wise, since Xi,j ≥ 0 we have a∗i ≥ −b∗1 for all i ≤ c. Then set a0 = a∗ + 1

cb∗1 and
b0 = b∗ − 1

db∗1. Clearly, (a0,b0) is nonnegative. On the other hand, we have:

X∗ = 1
cb∗T + a∗1d

T
= 1

cb0T + a0
1
dT = X0,

which implies,

sum(X∗β) = sum(X0
β) = optimal value

The follwing lemma is a direct consequence of Lemma A.1.7 and follows from the
structure of Ei,j given in (A.1.24) and (A.2.10):

Lemma A.1.8. In the local optimizations (A.1.27), without loss of generality, we

can assume that (m
Cj
i ,n

Ci
j) is entrywise nonnegative whenever i 6= j and entrywise

nonpositive whenever i = j.

The following lemma will help us characterize the relationship between sum(Ei,j)

and sum(Ei,j
βci,j

).

Lemma A.1.9. Let β be a random set generated by choosing elements of [c] × [d]

independently with probability 0 ≤ η ≤ 1. Then for any ε′ > 0 with probability

1− d exp(−2ε′2c) for all nonzero and entrywise nonnegative a ∈ Rd we’ll have:

sum(Xβ) > (η − ε′)sum(X), (A.1.28)

where X = 1
caT . Similarly, with the same probability, for all such a, we’ll have

sum(Xβ) < (η + ε′)sum(X).

126

Proof. We’ll only prove the first statement (A.1.28) as the proofs are identical. For
each i ≤ d, ai occurs exactly c times in X as i’th column of X is 1cai. By using a
Chernoff bound, we can estimate the number of coordinates of i’th column which
are element of β (call this number Ci) as we can view this number as a sum of c
i.i.d. Bernoulli(η) random variables. Then

P(Ci ≤ c(η − ε′)) ≤ exp(−2ε′2c).

Now, we can use a union bound over all columns to make sure for all i, Ci >
c(η − ε′)

P(Ci > c(r − ε′) for all i ≤ d) ≥ 1− d exp(−2ε′2c)

On the other hand if each Ci > c(η − ε′) then for any nonnegative a 6= 0,

sum(Xβ) =
∑

(i,j)∈β

Xi,j =
d∑
i=

Ciai > c(η − ε′)
d∑
i=1

ai = (η − ε′)sum(X).

Using Lemma A.1.9, we can calculate a lower bound for g(E) with high probability
as long as the cluster sizes are sufficiently large. Due to (A.1.23) and the linearity
of g(E), we can focus on contributions due to specific clusters i.e. vim

T
i +niv

T
i for

the i’th cluster. We additionally know the simple structure of mi,ni from Lemma
A.1.8. In particular, subvectors mCii and nCii of mi,ni can be assumed to be non-
positive and rest of the entries are nonnegative.

Lemma A.1.10. Assume, 1 ≤ l ≤ K, DA > 0. Then, with probability 1 −
n exp(−2D2

A(nl − 1)), we have g(vlm
T
l) ≥ 0 for all ml. Also, if ml 6= 0 then

inequality is strict.

Proof. Recall that ml satisfies mCil is nonpositive/nonnegative when i = l/i 6= l

for all i. Define Xi := 1
nlmCil

T
. We can write

g(vlm
T
l) =

1

nl
sum(Xl) +

K∑
i=1

λh(Xi, βcl,i),

where h(Xi, βcl,i) = sum(Xi
βcl,i

) − sum(Xi
βl,i

). Now assume i 6= l. Using Lemma
A.1.9 and the fact that βl,i is a randomly generated subset (with parameter q), with
probability 1− ni exp(−2ε′2nl), for all Xi, we have,

h(Xi, βcl,i) ≥ (r(1− q)− ε′)sum(Xi)− (rq + ε′)sum(Xi)

= (r(1− 2q)− 2ε′)sum(Xi),

127

where inequality is strict if X i 6= 0. Similarly, when i = l with probability at least
1− nl exp(−2ε′2(nl − 1)), we have,

1

λnl
sum(Xl) + h(Xl, βcl,l) ≥

(
r(1− pl) + ε′ +

1

λnl

)
sum(Xl)− (rpl − ε′) sum(Xl)

= −
(
r(2pl − 1)− 1

λnl
− 2ε′

)
sum(Xl).

Choosing ε′ = DA
2

and using the facts that r(1−2q)−2DA ≥ 0, r(2pl−1)− 1
λnl
−

2DA ≥ 0 and using a union bound, with probability 1−n exp(−2D2
A(nl− 1)), we

have g(vlm
T
l) ≥ 0 and the inequality is strict when ml 6= 0 as at least one of the

Xi’s will be nonzero.

The following lemma immediately follows from Lemma A.1.10 and summarizes
the main result of the section.

Lemma A.1.11. Let DA be as defined in (A.1.2) and assume DA > 0. Then with

probability 1 − 2nK exp(−2D2
A(nmin − 1)) we have g(EL) > 0 for all nonzero

feasible EL ∈M⊥
U .

A.1.5 The Final Step

Lemma A.1.12. Let pmin > 1
2
> q and G be a random graph generated accord-

ing to Model 2.2.1 and 2.2.2 with cluster sizes {ni}Ki=1. If λ ≤ (1− ε)Λsucc and

Dmin = min
1≤i≤n

r (2pi − 1)ni ≥ (1 + ε) 1
λ

, then (L0,S0) is the unique optimal solu-

tion to Program 2.1.4 with probability 1− exp(−Ω(n))− 6n2 exp(−Ω(nmin)).

Proof. Based on Lemma A.1.6 and Lemma A.1.11,
with probability 1− cn2 exp(−C (min{r(1− 2q), r(2pmin − 1)})2 nmin),

• There exists W ∈MU with ‖W‖ < 1 such that for all feasible EL, f(EL,W) ≥
0.

• For all nonzero EL ∈M⊥
U we have g(EL) > 0.

Consequently based on Lemma A.1.3, (L0,S0) is the unique optimal of Problem
2.1.4.

128

A.2 Proof of Results for Improved Convex Program (Theorem 2)
This section will show that, the optimal solution of Problem 2.1.7 is the pair (L0,S0)

under reasonable conditions, where,

L0 = 1
n×n
R , S0 = S0

obs = 1
n×n
R∩A0

. (A.2.1)

Also denote the true optimal pair by (L∗,S∗). Let 1 ≥ pmin > q > 0 and 0 ≤ r ≤ 1.
G be a random graph generated according to the stochastic block model 2.2.1 with
cluster sizes {ni}Ki=1. Let the observation model be as defined in (2.2.2). Theorem
2 is based on the following lemma:

Lemma A.2.1. If λ < Λ̃succ and D̃min > 1
λ

, then (L0,S0) is the unique optimal

solution to Program 2.1.7 with high probability.

Given q, {pi}Ki=1, define the following parameter which will be useful for the sub-
sequent analysis. This parameter can be seen as a measure of distinctness of the
“worst” cluster from the “background noise”. Here, by background noise we mean
the edges overRc.

D̃A =
1

2
min

{
r(1− q),

{
r(pi − q)−

1

λni

}K
i=1

}
(A.2.2)

=
1

2
min

{
r(1− q), D̃i − λ−1

ni

}

A.2.1 Perturbation Analysis
Our aim is to show that (L0,S0) defined in (A.2.1) is unique optimal solution to
Problem 2.1.7.

Lemma A.2.2. Let (EL,ES) be a feasible perturbation. Then, the objective will

increase by at least,

f(EL,W) =
K∑
i=1

1

ni
sum(EL

Ri,i) + 〈EL,W〉+ λsum(EL
A0

) (A.2.3)

for any W ∈M, ‖W‖ ≤ 1.

Proof. From constraint (2.1.9), we have Li,j = Si,j whenever Aobs
i,j = 0. So,

L∗A0
= S∗A0

. Further, recall that S can be split as S = Sobs + Srest, where Srest

denotes the entries of S other than those corresponding to the observed entries of

129

A. Furthermore, we claim that at the optimal, Srest = 0, since if otherwise, the ob-
jective can be strictly decreased by setting Srest = 0. So, without loss of generality,

S∗ = L∗A0
. (A.2.4)

Recall that,

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1)

≥ 〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,E
S〉

= 〈UUT + W,EL〉+ λ〈sign(S0) + Q,ES〉

Using sign(S0) = 1
n×n
A0∩R, and choosing Q = 1

n×n
A0−(A0∩R), we get,

‖L0 + EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1)

≥
〈
W,EL

〉
+

K∑
i=1

1

ni
sum(EL

Ri,i
) + λ

(
sum(EL

A0
)
)

︸ ︷︷ ︸
:=g(EL)

(A.2.5)

for any W ∈M.

From this point onward, for simplicity we will ignore the superscript L on EL and
just use E.

Define,

g(E) :=
K∑
i=1

1

ni
sum(ERi,i) + λsum(EA0)). (A.2.6)

Also, define f (E,W) := g (E) + 〈W,E〉. Our aim is to show that for all feasible
perturbations E, there exists W such that,

f (E,W) = g(E) + 〈W,E〉 > 0. (A.2.7)

Note that g(E) does not depend on W.

We can directly use Lemma A.1.3. So, as in the previous section, we have broken
down our aim into two steps.

1. Construct W ∈ MU with ‖W‖ < 1, such that f(E,W) ≥ 0 for all feasible
perturbations E.

130

2. For all non-zero feasible E ∈M⊥
U, show that g(E) > 0.

As a first step, in Section A.2.2, we will argue that, under certain conditions, there
exists a W ∈ MU with ‖W‖ < 1 such that with high probability, f(E,W) ≥ 0

for all feasible E. Recall that such a W is called the dual certificate. Secondly,
in Section A.2.3, we will show that, under certain conditions, for all E ∈ M⊥

U

with high probability, g(E) > 0. Finally, combining these two arguments, and
using Lemma A.1.3 we will conclude that (L0,S0) is the unique optimal with high
probability.

A.2.2 Showing existence of the dual certificate
Recall that

f(E,W) =
K∑
i=1

1

ni
sum(ERi,i) + 〈E,W〉+ λsum (EA0) .

W will be constructed from the candidate W0, which is given as follows.

Candidate W0

Based on Program 2.1.7, we propose the following:

W0 =
K∑
i=1

ci1
n×n
Ri,i + c1n×n − λ1n×nA0

, (A.2.8)

where {ci}Ki=1, c are real numbers to be determined.

f(E,W0) =
K∑
i=1

(
1

ni
+ ci) sum(ERi,i) + c sum(E).

Note that W0 is a random matrix where randomness is due to Aobs. In order to
ensure a small spectral norm, we will set its expectation to 0, i.e., we will choose
c, {ci}′s to ensure that E[W0] = 0.

Following from the partially observed Stochastic Block Model (Definition 2.2.1 and
Definition 2.2.2), the expectation of an entry of W0 on Ri,i (region corresponding
to cluster i) andRc (region outside the clusters) is ci +λr(pi− q) and c+λr(q−1)

respectively. Therefore, we set,

ci = −λr(pi − q) and c = λr(1− q).

131

With these, choices, the candidate W0 and f(E,W0) take the following forms:

W0 = λ

[
K∑
i=1

−(1− r(1− pi)) 1n×nRi,i∩A0
+ r(1− p)

(
1
n×n
Ri,i∩A1

+ 1
n×n
Ri,i∩Γout

)]
+λ
[
−(1− r(1− q))1n×nRc∩A0

+ r(1− q)
(
1
n×n
Rc∩A1

+ 1
n×n
Rc∩Γout

)]
(A.2.9)

f(E,W0) = λ [r(1− q) sum(E)]− λ

[
K∑
i=1

(
r(pi − q)−

1

λni

)
sum(ERi,i)

]
.

From L0 and the constraint 1 ≥ Li,j ≥ 0, it follows that,

ERc is (entrywise) nonnegative. (A.2.10)

ER is (entrywise) nonpositive.

Thus, sum(ERc) ≤ 0 and sum(ERi,i) ≥ 0. When λr(pi − q) − 1
ni
≥ 0 and λ(1 −

q) ≥ 0; we will have f(E,W0) ≥ 0 for all feasible E. This indeed holds due to
the assumptions of Theorem 2 (see (A.2.2)), as we assumed r(pi − q) > 1

λni
for

i = 1, 2 · · · , K and 1 > q.

Using the same technique as in Theorem 10, we can bound the spectral norm of
W0 as follows.

Lemma A.2.3. Recall that, W0 is a random matrix; where randomness is on the

partially observed stochastic block model Aobs and it is given by,

W0 = λ

[
K∑
i=1

−(1− r(1− pi)) 1n×nRi,i∩A0
+ r(1− p)

(
1
n×n
Ri,i∩A1

+ 1
n×n
Ri,i∩Γout

)]
+λ
[
−(1− r(1− q))1n×nRc∩A0

+ r(1− q)
(
1
n×n
Rc∩A1

+ 1
n×n
Rc∩Γout

)]
Then, for any ε′ > 0, with probability 1− exp (−Ω(n)), we have

‖1

λ
W0‖ ≤ 2

√
nr
√

(1− q)(1− r + rq)

+ max
1≤i≤K

2
√
nir
√

(1− pi)(1− r + rpi) + (1− q)(1− r + rq) + ε′
√
n

Further, if max
1≤i≤K

ni = o(n). Then, for sufficiently large n, with the same probability,

‖W0‖ ≤ 2λ
√
nr
√

(1− q)(1− r + rq) + ε′λ
√
n.

132

Lemma A.2.3 verifies that asymptotically with high probability we can make ‖W0‖ <
1 as long as λ is sufficiently small. However, W0 itself is not sufficient for construc-
tion of the desired W, since we do not have any guarantee that W0 ∈MU. In order
to achieve this, we will correct W0 by projecting it ontoMU. Lemma A.1.5 can
be used to here.

Recall that, γ̃succ := 2 max
1≤i≤K

r
√
ni

√
(1− pi)(1

r
− 1 + pi) + (1− q)(1

r
− 1 + q) and

Λ̃−1
succ := 2r

√
n
√

(1
r
− 1 + q)(1− q) + γ̃succ.

We can summarize our discussion so far in the following lemma:

Lemma A.2.4. W0 is as described previously in (A.2.9). Choose W to be pro-

jection of W0 on MU. Also suppose λ ≤ (1 − δ)Λ̃succ. Then, with probability

1− 6n2 exp(−Ω(nmin))− 4 exp(−Ω(n)) we have,

• ‖W‖ < 1

• For all feasible E, f(E,W) ≥ 0.

Proof. To begin with, observe that Λ̃−1
succ is Ω(

√
n). Since λ ≤ Λ̃succ, λ

√
n =

O(1). Consequently, using λΛ̃−1
succ < 1 and applying Lemma A.2.3, and choosing a

sufficiently small ε′ > 0, we conclude with,

‖W‖ ≤ ‖W0‖ < 1

with probability 1 − exp(−Ω(n)) where the constant in the exponent depends on
the constant ε′ > 0.

Next, from Lemma A.1.5 with probability 1−6n2 exp(−2
9
ε′′2nmin) we have ‖W0−

W‖∞ ≤ λε′′. Then based on (A.2.10) for all E, we have that,

f(E,W) = f(E,W0)− 〈W0 −W,E〉

≥ f(E,W0)− λε′′ (sum(ER)− sum(ERc))

= λ [(r(1− q)− ε′′)sum(ERc)]

−λ
K∑
i=1

[(
r(pi − q)−

1

λni
− ε′′

)
sum(ERi,i)

]
≥ 0,

where we chose ε′′ to be a sufficiently small constant. In particular, we set ε′′ < D̃A,
i.e., set ε′′ < r(1− q) and ε′′ < r(pi − q)− 1

λni
for all 1 ≤ i ≤ K.

Thus, by using a union bound W satisfies both of the desired conditions.

133

Summary so far: Combining the last lemma with Lemma A.1.3, with high prob-
ability, either there exists a dual vector W∗ which ensures f(E,W∗) > 0 or
E ∈ M⊥

U. If the former, we are done. Therefore, we need to focus on the lat-
ter case and show that for all perturbations E ∈ M⊥

U, the objective will strictly
increase at (L0,S0) with high probability.

A.2.3 Solving for EL ∈M⊥
U case

Recall that,

g (E) =
K∑
i=1

1

ni
sum(ERi,i) + λsum(EA0).

Let us define,

g1(X) :=
K∑
i=1

1

ni
sum(XRi,i),

g2(X) := sum(XA0),

so that, g (X) = g1(X) + λg2(X). Also let V = [v1 . . . vK] where vi =
√
niui.

Thus, V is basically obtained by, normalizing columns of U to make its nonzero
entries 1. Assume E ∈M⊥

U. Then, by definition ofM⊥
U, we can write,

E = VMT + NVT .

Let mi,ni denote i’th columns of M,N respectively.

Again as in previous section A.1.4, we consider optimization problem A.1.25. Since
g1(E) is fixed, we just need to optimize over g2(E). This optimization can be
reduced to local optimizations A.1.27. Since L0 = 1

n×n
R and the condition (2.1.9),

ERc is (entrywise) nonnegative

ER is (entrywise) nonpositive.

We can make use of Lemma A.1.8 and assume mCil is nonpositive/nonnegative
when i = l/i 6= l for all i. Thus, using Lemma A.1.28 we lower bound g(vlm

T
l) as

described in the following section.

Lower bounding g(E)

Lemma A.2.5. Assume, 1 ≤ l ≤ K, D̃A > 0. Then, with probability 1 −
n exp(−2D̃2

A(nl − 1)), we have g(vlm
T
l) ≥ λ(1 − q − D̃A)sum(vlm

T
l) for all

ml. Also, if ml 6= 0 then inequality is strict.

134

Proof. Recall that ml satisfies mCil is nonpositive/nonnegative when i = l/i 6= l

for all i. Define Xi := 1
nlmCil

T
. We can write

g(vlm
T
l) =

1

nl
sum(Xl) +

K∑
i=1

λsum(Xi
βcl,i

).

Now assume i 6= l. Using Lemma A.1.9 and the fact that βl,i is a randomly gener-
ated subset (with parameter q), with probability 1− ni exp(−2ε′2nl), for all Xi, we
have,

sum(Xi
βcl,i

) ≥ (r(1− q)− ε′)sum(Xi), (A.2.11)

where inequality is strict if X i 6= 0. Similarly, when i = l with probability at least
1− nl exp(−2ε′2(nl − 1)), we have,

1

λnl
sum(Xl) + sum(Xl

βcl,l
) ≥

(
1

λnl
+ r(1− pl) + ε′

)
sum(Xl).

Together,

g(vlm
T
l) ≥ λ

∑
i 6=l

(r(1− q)− ε′)sum(Xi) +

(
1

λnl
+ r(1− pl) + ε′

)
sum(Xl)

≥ λ(r(1− q)− ε′)
K∑
i=1

sum(Xi) = λ(r(1− q)− ε′)sum(vlm
T
l).

(A.2.12)

Choosing ε′ = D̃A
2

and using the facts that r(1− q)− 2D̃A ≥ 0, r(pl − q)− 1
λnl
−

2D̃A ≥ 0 and using a union bound, with probability 1−n exp(−2D̃2
A(nl− 1)), we

have g(vlm
T
l) ≥ 0 and the inequality is strict when ml 6= 0 as at least one of the

Xi’s will be nonzero.

The following lemma immediately follows from Lemma A.2.5 and summarizes the
main result of the section.

Lemma A.2.6. Let D̃A be as defined in (A.1.2) and assume D̃A > 0. Then with

probability 1 − 2nK exp(−2D̃2
A(nmin − 1)) we have g(EL) > 0 for all nonzero

feasible EL ∈M⊥
U .

135

A.2.4 The Final Step

Lemma A.2.7. Let pmin > q and G be a random graph generated according to

Model 2.2.1 and 2.2.2 with cluster sizes {ni}Ki=1. If λ ≤ (1− ε)Λ̃succ and

Dmin = min
1≤i≤n

r (pi − q)ni ≥ (1 + ε) 1
λ

, then (L0,S0) is the unique optimal solution

to Program 2.1.4 with probability 1− exp(−Ω(n))− 6n2 exp(−Ω(nmin)).

Proof. Based on Lemma A.2.4 and Lemma A.2.6, with probability at least
1− cn2 exp(−C(r(pmin − q))2nmin),

• There exists W ∈MU with ‖W‖ < 1 such that for all feasible EL,
f(EL,W) ≥ 0.

• For all nonzero EL ∈M⊥
U we have g(EL) > 0.

Consequently based on Lemma A.1.3, (L0,S0) is the unique optimal of Problem
2.1.7.

136

A p p e n d i x B

PROOFS FOR RESULTS IN CHAPTER 3

In this appendix we provide the detailed proofs for the results presented in Chap-
ter 3. Recall the convex program:

minimize
X

1

2
‖A−X‖2

F + λ trace(X) (B.0.1)

subject to

X < 0 (B.0.2)∑
j

Xi,j ≤ 1, for all i (B.0.3)

Xi,j ≥ 0 for all i, j ∈ {1, 2, . . . n}, (B.0.4)

where ‖.‖F is the Frobenius norm (square root of the sum of the squares of the
entries of the matrix), and λ > 0 is a regularization parameter. Also, by X < 0, we
mean that X is symmetric and has non-negative eigenvalues.

B.1 Proof Sketches
First we note that the objective function in Program 3.1.1 is strongly convex in X,
and hence has an unique optimal solution. So, it is enough to produce an optimal
solution.

Define dual variables for the constraints,

1. Y ∈ Rn×n, Y < 0 for constraint (B.0.2).

2. ν ∈ Rn, 2ν ≥ 0 for constraints (B.0.3).

3. Z ∈ Rn×n, Z ≥ 0 for constraints (B.0.4), where ≥ is entry-wise.

Lagrange can be written as,

L(X; Y,Z, ν) = max
Z≥0,Y<0,ν≥0

− 2νT 1min
X

1

2
||A−X||2F

+trace(λI− Z−Y + 1νT + ν1T + X),

(B.1.1)

where 1 ∈ Rn is a vector of all 1’s.

137

If a feasible X̂ is an optimal solution to Program (3.1.1), then the following condi-
tions have to hold (from KKT conditions and complementary slackness):

Z + Y = λI + X̂ + 1νT −A + ν1T (B.1.2)

trace(X̂Y) = 0, (B.1.3)

trace(X̂Z) = 0, (B.1.4)

νT
(
X̂1− 1

)
= 0. (B.1.5)

Since X̂,Y < 0, from(B.1.3), we get

X̂Y = YX̂ = 0. (B.1.6)

We first construct dual variables that satisfy the conditions (B.1.2) (B.1.3) (B.1.4)
and (B.1.5). The dual variables Z,Y, ν thus obtained are functions of the prob-
lem parameters {{µi}i∈[K], µout, σ, {ni}out,nK+1}. The condition Y < 0 will give
the lower bound on λ of the form Λ or Λ + µoutnout depending on the case. The
conditions ν ≥ 0 gives the lower bounds on the cluster densities ρ. The condition
Z ≥ 0 gives the lower bounds on cross-cluster densities γ and the effective cluster
densities η.

Notation: Let [m] := {1, 2, · · · ,m}. Let n be the number of data points denoted
by [n] with K disjoint clusters. Let Ci ⊂ [n] be the set of data points in cluster i
and the size (number of data points in the cluster) be ni. µi is the mean similarity
between nodes inside the same cluster i. µout is the mean similarity between nodes
that are not in the same cluster, and σ2 is the noise variance.

For a vector v ∈ Rn, v[i] denotes a vector zero-entries everywhere except for the
indices corresponding to Ci where it is equal to the entries of v corresponding to
Ci. Similarly for a matrix B ∈ Rn×n, B[i][j] denotes a matrix where the entries in
the block corresponding to Ci×Cj are the same as the Ci×Cj block in matrix B,
and the rest of the entries (entries except the block corresponding to Ci × Cj) are
zeros.

Let us first look at the case without outliers. The solution to the case with outliers
builds on the case without outliers.

138

B.2 No Outliers
For the case with K disjoint clusters and no outliers, the desired solution is

X∗l,m =

 1
ni
, if both nodes l,m are in the same cluster i

0 , if nodes l,m are not in the same cluster,
(B.2.1)

which has non-zero entries only in the region corresponding to clusters.

Our solution does not depend on the order in which the data points are arranged,
but the description of the proof will be easy to visualize when they are arranged
in the order. Thus, to aid visual understanding, assume that all the data points are
arranged in the order of which cluster they belong to. In this case, X∗ has block
diagonal structure with K ×K blocks. Diagonal blocks, X∗[i][i] = 1

ni
1[i]1

T
[i] and off

diagonal blocks, X∗[i][j] = 0 for i 6= j, i, j ∈ [K].

Let A = M + σ Φ, where Φ has i.i.d entries with zero mean and variance 1 and
M is the matrix of mean similarities. Note that M[i][i] = µi1[i]1

T
[i] and M[i][j] =

µout1[i]1
T
[j] for i 6= j ∈ [K].

The condition (B.1.6) implies, for i, j ∈ [K],

Y[i][i]1[i] = 0, (B.2.2)

and
Y[i][j]1[j] = 0. (B.2.3)

Also, since trace(X∗Z) = 0 and X∗[i][i] > 0, we have

Z[i][i] = 0. (B.2.4)

B.2.1 Expression for ν
From (B.1.2), for i ∈ [K],

Z[i][i] + Y[i][i] = λI[i][i] + X∗[i][i] −M[i][i] − σ Φ[i][i]

+1[i]ν
T
[i] + ν[i]1[i]. (B.2.5)

From (B.2.4) and (B.2.2),

0 = λ1[i] +
1

ni
1[i]ni − µi1[i]ni − σ Φ[i][i]1[i]

+1[i]

(
νT[i]1[1]

)
+ ν[i]ni. (B.2.6)

139

From which we can solve for ν[i] to obtain,

ν[i] =

(
µini − (λ+ 1)

2ni

)
1[i]

+

(
− σ

2n2
i

(
1
T
[i]Φ[i][i]1[i]

)
I[i][i] +

σ

ni
Φ[i][i]

)
1[i].

(B.2.7)

Theorem 11 (Hoeffding). Let W1, · · · ,Wm be independent random variables with

zero mean and |Wi| ≤ Ri almost surely for all i. Define

S :=
m∑
i=1

Wi τ 2 :=
m∑
i=1

Ri.

Then, Var(S) ≤ τ 2 and P{|S| > δ} ≤ 2 exp−δ
2/τ2 .

Lemma B.2.1. If −(λ+1)+niµi
2ni

> 0, ∀i ∈ [K], then ν ≥ 0 with probability at least

1− n exp
−δ2nmin

2σ2 , for δ = mini∈[K]
−(λ+1)+niµi

2ni
.

The condition −(λ+1)+niµi
2ni

> 0 implies ρi > λ + 1, i ∈ [K] from the definition of
ρi and hence the condition ρmin > λ+ 1.

B.2.2 Expression for Z

Now consider the off-diagonal blocks of (B.1.2), for i 6= j ∈ [K],

Z[i][j] + Y[i][j] = λI[i][j]︸ ︷︷ ︸
0

+ X∗[i][j]︸ ︷︷ ︸
0

−M[i][j] − σ Φ[i][j]

+1[i]ν
T
[j] + ν[i]1

T
[j].

From (B.2.3), we have

Z[i][j]1[j] + Y[i][j]1[j]︸ ︷︷ ︸
0

= −µout1[i]1
T
[j]1[j] − σ Φ[i][j]1[j]

+1[i]ν
T
[j]1[j] + ν[i]1

T
[j]1[j],

which simplifies to

Z[i][j]1[j] = −µoutnj1[i] − σ Φ[i][j]1[j] + 1[i]ν
T
[j]1[j] + njν[i]. (B.2.8)

Define,
N[i][j] = −M[i][j] − σ Φ[i][j] + 1[i]ν

T
[j] + ν[i]1

T
[j]. (B.2.9)

140

The expected value of N[i][j] is,

N̂[i][j] =(
−µout +

−(λ+ 1) + niµi
2ni

+
−(λ+ 1) + njµj

2nj

)
1[i]1

T
[j].

(B.2.10)

We now proceed to construct Z[i][j] based on N̂ as follows:

Z[i][j] = N̂[i][j] + wj
[i]1

T
[j] + 1[i]

(
ui[j]
)T
, (B.2.11)

where wj
[i] is variable vector with non-zero entries only for indices in Ci (the super-

script j is to identify its association to the block matrix Z[i][j]) and ui[j] is a variable
vector with non-zero entries only for indices in Cj (the superscript i is to identify its
association to the block matrix Z[i][j]). The variables in wj

[i] and ui[j] can be found as
a solution to the following system of equations obtained from Z[i][j]1[j] = N[i][j]1[j]

and 1T[i]Z[i][j] = 1
T
[i]N[i][j]:

wj
[i]nj + 1[i]

(
ui[j]
)T

1[j] =
(
N[i][j] − N̂[i][j]

)
1[j]︸ ︷︷ ︸

:=t1

, (B.2.12)

1[j]

(
wj

[i]

)T
1[i] + niu

i
[j] =

(
N[i][j] − N̂[i][j]

)T
,1[i]︸ ︷︷ ︸

:=t2

(B.2.13)

which can be written as,[
njI[i][i] 1[i]1

T
[j]

1[j]1
T
[i] niI[j][j]

][
wj

[i]

ui[j]

]
=

[
t1

t2

]
. (B.2.14)

Since the system of equations (B.2.14) is singular with null space spanned by
(1[i];−1[j]), we proceed by solving the following perturbed system for θ > 0,[

njI[i][i] + θ1[i]1
T
[i] (1− θ)1[i]1

T
[j]

(1− θ)1[j]1
T
[i] niI[j][j] + θ1[j]1

T
[j]

][
wj

[i]

ui[j]

]
=

[
t1

t2

]
. (B.2.15)

Left multiplying the system (B.2.15) by (1[i];−1[j])
T and observing that

(1[i];−1[j])
T (t1; t2) = 0, we obtain,

θ(ni + nj)︸ ︷︷ ︸
>0

(
1
T
[i]w

j
[i] − 1

T
[j]u

T
[j]

)
= 0

and hence,
1
T
[i]w

j
[i] = 1

T
[j]u[j]. (B.2.16)

141

Using (B.2.16) in the equations (B.2.12) and (B.2.13), we get,(
njI[i][i] + 1[i]1

T
[i]

)
wj

[i] =
(
N[i][j] − N̂[i][j]

)
1[j]

and (
1[j]1

T
[j] + niI[j][j]

)
ui[j] =

(
N[i][j] − N̂[i][j]

)T
1[i],

which can be solved to get,

wj
[i] =

1

nj

(
I[i][i] −

1[i]1
T
[i]

ni + nj

)(
N[i][j] − N̂[i][j]

)
1[j] (B.2.17)

and

ui[j] =
1

ni

(
I[j][j] −

1[j]1
T
[j]

ni + nj

)(
N[i][j] − N̂[i][j]

)T
1[i]. (B.2.18)

Substituting in (B.2.11), we get the following expression for Z[i][j],

Z[i][j] =(
−µout +

−(λ+ 1) + niµi
2ni

+
−(λ+ 1) + njµj

2nj

)
1[i]1

T
[j]

+
1

nj

(
I[i][i] −

1[i]1
T
[i]

ni + nj

)(
N[i][j] − N̂[i][j]

)
1[j]1

T
[j]

+
1

ni
1[i]1

T
[i]

(
N[i][j] − N̂[i][j]

)(
I[j][j] −

1[j]1
T
[j]

ni + nj

)
. (B.2.19)

B.2.3 Expression for Y

From (B.1.2), and the expressions for ν and Z (equations (B.2.7) and (B.2.19)), we
have a construction for Y since,

Y = −Z + λI + X∗ −M− σΦ + 1νT + ν1T .

Now that we have expressions for candidate dual variables Z,Y, ν, we proceed to
show that under reasonable conditions on the problem parameters
{{µi}i∈[K], µout, σ, {ni}i∈[K]} and the regularization parameter λ, the conditions,
Y < 0, ν ≥ 0,Z ≥ 0 hold with high probability.

B.2.4 Positive semidefiniteness of Y

The expression for Y is as follows,

Y = λI− σΦ−Z + X∗ −M + 1νT + ν1T︸ ︷︷ ︸
all have1[i]or1T

[i]
by construction

.

142

For any vector x ∈ Rn, consider the decomposition,

x =
K∑
i=1

xi1[i] + x⊥, (B.2.20)

where x⊥ is sum of components perpendicular to 1[i], i ∈ [K]. From KKT, Y1[i] =

0, 1T[i]Y = 0. Also, from construction of Z , ν and forms of X∗ and M,

xT⊥
(
−Z + X∗ −M + 1νT + ν1T

)
= 0T(

−Z + X∗ −M + 1νT + ν1T
)

x⊥ = 0.

So, xTYx = xT⊥(λI− σΦ)x⊥ ≥ (λ− σ||Φ||)||x⊥||22. Since Φ is a random matrix
with bounded i.i.d. entries with zero mean and unit variance, using the standard
results in random matrix theory [Vu05], with high probability (1 − exp (−Ω(n))),
||Φ|| = 2

√
n. Thus, if λ > σ2

√
n, then Y is positive semidefinite with high

probability (Lemma B.2.2).

Lemma B.2.2. If λ > σ2
√
n := Λ, then Y < 0 with at least 1− exp (−Ω(n)).

Summary

Lemma B.2.3. If
(
−µout + −(λ+1)+niµi

2ni
+
−(λ+1)+njµj

2nj

)
> 0, for all i 6= j ∈

[K], then Z ≥ 0 with probability at least 1 − n2 exp−(δ
′
)2Ω(nmin)/σ2

, for δ
′

=

mini,j

(
−µout + −(λ+1)+niµi

2ni
+
−(λ+1)+njµj

2nj

)
.

The condition, for all i 6= j ∈ [K],
(
−µout + −(λ+1)+niµi

2ni
+
−(λ+1)+njµj

2nj

)
> 0

implies γij > λ + 1 for all i 6= j ∈ [K] by the definition of γij , and hence the
condition γmin > λ+ 1.

From Lemma B.2.2, B.2.1, and B.2.3 we can conclude Theorem 3.

B.3 Large Number of Outliers
For the case with K disjoint clusters with large number of outliers, the desired
solution is

X̃l,m =


1
ni
, if both nodes l,m are in the same cluster i.

0 , if nodes l,m are in different clusters.
1

nK+1
if both nodes l,m are outliers.

, (B.3.1)

143

The outliers together get considered as a new cluster K + 1. We have,

X̂[K+1][K+1] = nK+11[K+1]1
T
[K+1], M[K+1][K+1] = µout1[K+1]1

T
[K+1], µK+1 = µout.

So, Z[K+1][K+1] = 0 and expressions for ν[K+1], Z[i][K+1] obtained just the same way
as for other clusters as in equations (B.2.7) and (B.2.19). The conditions ρK+1 >

λ+ 1 and γi,K > λ+ 1 for all i ∈ [K] are required for νK+1 > 0 and Z[i][K+1] > 0

respectively.

Lemma B.3.1. If λ > σ2
√
n := Λ, then Y < 0 with at least 1− exp (−Ω(n)).

Lemma B.3.2. If −(λ+1)+niµi
2ni

> 0, ∀i ∈ [K + 1], then ν ≥ 0 with probability at

least 1− n exp
−δ2nmin

2σ2 , for δ = mini∈[K+1]
−(λ+1)+niµi

2ni
.

The condition −(λ+1)+niµi
2ni

> 0 implies ρi > λ+ 1, i ∈ [K + 1] from the definition
of ρi and hence the condition ρmin > λ+ 1.

Lemma B.3.3. If
(
−µout + −(λ+1)+niµi

2ni
+
−(λ+1)+njµj

2nj

)
> 0, for all i 6= j ∈

[K + 1], then Z ≥ 0 with probability at least 1 − n2 exp−(δ
′
)2Ω(nmin)/σ2

, for δ
′

=

mini,j

(
−µout + −(λ+1)+niµi

2ni
+
−(λ+1)+njµj

2nj

)
.

The condition, for all i 6= j ∈ [K + 1],
(
−µout + −(λ+1)+niµi

2ni
+
−(λ+1)+njµj

2nj

)
> 0

implies γij > λ + 1 for all i 6= j ∈ [K + 1] by the definition of γij , and hence the
condition γmin > λ+ 1.

From Lemma B.3.1, B.3.2 and B.3.3 we can conclude Theorem 5.

B.4 Small Number of Outliers
In the case where the number of outliers is small, the desired solution is (B.2.1). So,
X∗ has non-zero entries only in the diagonal blocks for i ∈ [K] and X∗[K+1][K+1] =

0. So, from (B.1.5),
νT (X∗1− 1) = 0.

and ν ≥ 0, we get, ν[K+1] = 0. The expressions for ν[i], i ∈ [K] remain the
same as in the case of no outliers (Equation (B.2.7)). The expressions for Z[i][j] for
i 6= j ∈ [K] remain the same as in (B.2.19). From steps similar to the case of no
outliers, we can find the expression for Z[i][K+1], i ∈ [K] as,

Z[i][K+1] = N̂[i][K+1] + wK+1
[i] 1

T
[K+1] + 1[i]

(
ui[K+1]

)T
, (B.4.1)

144

where,

N̂[i][K+1] =

(
−µout +

−(λ+ 1) + niµi
2ni

)
1[i]1

T
[K+1], (B.4.2)

since ν[K+1] = 0 and w and u are defined as in (B.2.17) and (B.2.18). For Z[i][K+1] >

0 to hold with high probability we will require, −µout + −(λ+1)+niµi
2ni

> 0, which
gives the condition ηi > λ+ 1 from the definition of ηi.

B.4.1 Positive semidefiniteness of Y

The expression for Y is as follows:

Y = λI− σΦ−Z + X∗ −M + 1νT + ν1T︸ ︷︷ ︸
all have1[i]or1T

[i]
by construction

Further, X∗[K+1][K+1], ν[K+1] and Z[K+1][K+1] are all zeros.

For any vector x ∈ Rn, consider the decomposition,

x =
K∑
i=1

xi1[i] + x⊥ + xout, (B.4.3)

where x⊥ is sum of components perpendicular to 1[i], i ∈ [K] and has all zero
entries in the entries corresponding to CK+1, xout has non-zero entries only in the
entries corresponding to CK+1.

From KKT, Y1[i] = 0, 1T[i]Y = 0 for i ∈ [K]. Also, from construction of Z , ν and
forms of X∗ and M,

xT⊥
(
−Z + X∗ −M + 1νT + ν1T

)
= 0T(

−Z + X∗ −M + 1νT + ν1T
)
x⊥ = 0

xTYx = xT⊥Yx⊥ + xToutYxout + 2xToutYx⊥

= xT⊥ (λI− σΦ) x⊥ + xTout
(
λI− σΦ− µout1[K+1]1

T
[K+1]

)
xout

+2xTout

−σΦ− µout1[K+1]1
T
[1:K] + 1

T
[K+1]ν[1:K] − Z[i][K+1]︸ ︷︷ ︸

all have1[i]or1
T
[i]

x⊥

= xT⊥ (λI− σΦ) x⊥ + xTout
(
λI− σΦ− µout1[K+1]1

T
[K+1]

)
xout

+2xout
(
−σΦ[K+1][1:K]

)
x⊥,

(B.4.4)

145

where v[1:K] denotes a vector with non-zero values in entries corresponding to
∪iCi, i ∈ [K] and zeros in the entries corresponding to CK+1 and similarly for
a matrix, B[i][1:K] has non-zero block corresponding to Ci × ∪jCj, j ∈ [K] and
zero everywhere else.

Defining q := (x⊥; xout),

xTYx = qTλIq− qTσΦq− qTM[K+1][K+1]q

≥
(
λ− σ||Φ|| − µout||1[K+1]1

T
[K+1]||

)
||q||22,

(B.4.5)

since ||σΦ + µout1[K+1][K+1]|| ≤ σ||Φ||+ µout||1[K+1]1
T
[K+1]||. ||1[K+1]1

T
[K+1]|| =

nK+1. Since Φ is a random matrix with bounded i.i.d. entries with zero mean and
unit variance, using the standard results in random matrix theory [Vu05], with high
probability, ||Φ|| = 2

√
n. Hence, if λ > σ2

√
n + µoutnK+1 := Λ + µoutnout, then

Y is positive semidefinite with high probability.

Lemma B.4.1. (Small Outliers) If λ > σ2
√
n + µoutnout := Λ + µoutnout, then

Y < 0 with at least 1− exp (−Ω(n)).

Lemma B.4.2. If
(
−µout + −(λ+1)+niµi

2ni
+
−(λ+1)+njµj

2nj

)
> 0 and(

−µout + −(λ+1)+niµi
2ni

)
> 0 for all i 6= j ∈ [K], then Z ≥ 0 with probability at

least 1− n2 exp−(δ“)2Ω(nmin)/σ2
, for δ

′′
= min{ηmin, γmin}.

From Lemma B.4.1, B.2.1, and B.4.2 we can conclude Theorem 4.

146

A p p e n d i x C

PROOFS FOR RESULTS IN CHAPTER 6

In this appendix we provide proofs for the results presented in Chapter 6.

C.1 Proof for Propositions 1 and 2
Following is the proof for Proposition 1.

Proof. Define the following event:

E(∆,m) =
{
|X ij(m)− E(X ij(m))| ≤ ∆,∀ i, j

}
.

Suppose the event E(∆,m) occurs. Then the following holds:

−∆ ≤ X ij(m)−E(X ij(m)) ≤ ∆⇒ E(X ij(m))−2∆ ≤ X ij(m)−∆ ≤ E(X ij(m)).

If Xij ∼ Bern(p), then E(X ij(m)) = p. Therefore we have,

p− 2∆ ≤ X ij(m)−∆.

Recall that ∆ = 1
2
(p−q), and hence we have p−2∆ = q. So, ifXij ∼ Bern(p), then

X ij(m)−∆ > q is true when the event E(∆,m) occurs. Using similar arguments,
we can show that if Xij ∼ Bern(q), then X ij(m) + ∆ < p is true when the event
E(∆,m) occurs.

Now we need to show that under the assumptions of the proposition, the event
E(∆,m) holds with high probability. We use Hoeffding’s inequality for this:

Lemma C.1.1 (Hoeffding’s Inequality for Bernoulli Random Variables). Let {Xi}mi=1

be i.i.d random variables with Xi ∼ Bern(p). Then the Pr
(∣∣X i(m)− p

∣∣ ≥ ε
)
≤

2e−2mε2 .

From Hoeffding’s inequality, for M =
⌈

7 logn
2∆2

⌉
, for any given pair of items i and

j, |X ij(M) − E(X ij(M))| ≤ ∆ with probability at least 1 − 1
n7 . Using union

bound, we can argue that the event E(∆,M) holds with probability at least 1− 1
n5 .

Therefore, for each pair of items i and j, with M independent queries, we can
guarantee with high probability that either X ij(M)−∆ > q or X ij(M) + ∆ < p.

147

Proof for Proposition 2 is as follows.

Furthermore, Ω
(

1
∆2

)
repetitions per query and hence Ω

(
nK
∆2

)
queries are necessary

to guarantee success with probability 1− δ′.

For the lower bounds, we will use the following result on the tail probability of sum
of independent random variables due to Feller [Fel43]

Lemma C.1.2 (Feller, Lower Bound on Tail Probability of Sum of Independent
Random Variables). There exists positive universal constants c1 and c2 such that

for any set of independent random variables X1, · · · , Xm satisfying E[Xi] = 0

and |Xi| ≤ M , for every i ∈ {1, · · · ,m}, if
∑m

i=1 E[(Xi)
2] ≥ c1, then for every

ε ∈ [0,
∑m
i=1 E[(Xi)

2]

M
√
c1

],

Pr

(
m∑
i=1

Xi > ε

)
≥ c2 exp

(
−ε2

12
∑m

i=1 E[(Xi)2]

)
. (C.1.1)

We start with the following result on the tail probability of sum of independent
Bernoulli random variables due to Feller [Fel43]

Lemma C.1.3 (Lower Bound on Tail Probability of Sum of Independent Bernoulli
Random Variables [Fel43]). There exists positive universal constant a such that for

any set of iid Bernoulli random variables X1, · · · , Xm, and Var(Xi) > 0, then for

every ε ∈ [0,
√

Var(Xi)
m

],

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

(Xi − E(Xi))

∣∣∣∣∣ > ε

)
≥ a exp

(
−mε2

12Var(Xi)

)
. (C.1.2)

So, if m < Var(Xi)
∆2 ,

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

(Xi − E(Xi))

∣∣∣∣∣ > ∆

)
≥ ae

−1
12 .

We want to show that, Ω
(

1
∆2

)
repetitions per query and hence Ω

(
nK
∆2

)
queries are

necessary to guarantee success with probability 1− δ′.

Suppose we are making Query(i, j) for i /∈ cluster(j). So, Xij ∼ Bern(q). If we
make M < q(1−q)

∆2 queries, then there exists universal constant a > 0 such that,

Pr(X ij(M)− q > ∆) ≥ ae
−1
12 .

148

So, the event {X ij(M) − ∆ > q} occurs with constant probability. By definition
of ∆,

X ij(M)−∆ > q ⇒ X ij(M) > q + ∆ = 1/2− 2∆ + ∆⇒ X ij(M) + ∆ > 1/2.

So, when {X ij(M)−∆ > q} occurs, X ij(M) + ∆ > 1/2. Now, if X ij(M)−∆ >

1/2, then item iwill get wrongly assigned to cluster(j). Else, ifX ij(M)−∆ ≤ 1/2,
then Algorithm 1 will terminate due to failure.

Similar argument holds if i ∈ cluster(j), i.e. Xij ∼ Bern(p). Since at least Ω(n)

unique queries are made, if M < min p(1−p),q(1−q)
∆2 , then either constant number

of items get misclassified or the algorithm terminates due to failure. Thus, each
Query(i, j) is made Ω(1

∆2) times and since at least Ω(nK) unique queries are made,
Ω(nK

∆2) queries are needed to guarantee the success of Algorithm 1 with probability
at least 1− 1/poly(n).

C.2 Proof of Corollary 1 and Theorem 9
Define the event:

Eψ := {
∣∣X ij(t)− E(X ij(t))

∣∣ ≤ ψ(t),∀t ≥ 1,∀1 ≤ i < j ≤ n} .

We will use the following finite LIL bound (see Lemma 1 in [Jam+14]) to show
that event Eψ holds with high probability:

Lemma C.2.1 (Finite LIL Bound [Jam+14] for Bernoulli Random Variables). Let

X(1), X(2), · · · , be i.i.d. Bernoulli random variables. For any ζ ∈ (0, 1) and

δ ∈ (0, log (1 + ζ)/e),

Pr
(∣∣X(t)− E[X(t)]

∣∣ ≥ ψ(t), for any t ≥ 1,
)
≤ δ′, (C.2.1)

where ψ(t) := (1 +
√
ζ)

√
(1+ζ)

2t
log
(

log (1+ζ)t
δ

)
and δ′ := 22+ζ

ζ

(
δ

log (1+ζ)

)(1+ζ)

.

When Eψ holds, assuming all the previous assignments of items to clusters have
been correct, consider the assignment of an yet to be assigned item i. We will
first bound the number of repetitions Tij of Query(i,j) required to either assign i to
cluster(j) or decide i /∈ cluster(j). If i ∈ cluster(j), then Xij ∼ Bern(p). When Eψ
holds, ∀t ≥ 1,−ψ(t) ≤ X ij(t)− p ≤ ψ(t)⇒ −2ψ(t) + p ≤ X ij(t)−ψ(t) ≤ p. If
for some Tup, −2ψ(Tup) + p > 1/2, then we have X ij(Tp)− ψ(Tp) > 1/2. So our
goal is find an upper bound Tup such that 2ψ(Tup) < p − 1/2. Let ∆ := min{p −

149

1/2, 1/2− q}. Let Tup := b1
∆2 log

(
1
b3δ

log
(
b2
∆

))
. Define, α(t) := 1

t
log
(

log (1+ζ)t
δ

)
.

So, ψ(t) = (1 +
√
ζ)
√

1+ζ
2
α(t).

α(Tup) =
∆2

b1

1

log
(

1
b3δ

log
(
b2
∆

)) log

{
1

δ
log

{
(1 + ζ)

b1

∆2
log

(
1

b3δ
log

b2

∆

)}}
(a)

≤ ∆2

b1

1

log
(

1
b3δ

log
(
b2
∆

)) log

{
1

δ
log

{
(1 + ζ)b1

b2
2b3δ

(
b2

∆

)3
}}

=
∆2

b1

1

log
(

1
b3δ

log
(
b2
∆

)) log

{
3

δ
log

{(
(1 + ζ)b1

b2
2b3δ

)1/3
b2

∆

}}
(b)

≤ ∆2

b1

1

log
(

1
b3δ

log
(
b2
∆

)) log

{
3

δ

(
(1 + ζ)b1

b2
2b3δ

)1/3

log

(
b2

∆

)}

=
∆2

b1

1

log
(

1
b3δ

log
(
b2
∆

)) log

{
3

(
(1 + ζ)b1b

2
3

b2
2

)1/3
1

b3δ4/3
log

(
b2

∆

)}

(c)

≤ ∆2

b1

3
(

(1+ζ)b1b23
b22

)1/3

log
(

1
b3δ

log
(
b2
∆

)) log

{
1

b3δ4/3
log

(
b2

∆

)}

(d)

≤ ∆2

b1

3
(

(1+ζ)b1b23
b22

)1/3
4
3

log
(

1
b3δ

log
(
b2
∆

)) log

{
1

b3δ
log

(
b2

∆

)}

=
∆2

b1

4

(
(1 + ζ)b1b

2
3

b2
2

)1/3

log

{
1

b3δ
log

(
b2

∆

)}
,

where (a) follows from log x ≤ x,∀x > 0, (b), (c) follows from log (ax) ≤
a log x,when x > 2, a > 2 applied twice and (d) follows from log (xay) ≤ a log (xy),
when y > 1, a > 1.

Substituting in ψ(T), we obtain the following inequality:

ψ2(Tup) = (1+
√
ζ)2 1 + ζ

2
α(Tup)

2 ≤ ∆2

4

[
(1 +

√
ζ)2(1 + ζ)

8

b1

(
(1 + ζ)b1b

2
3

b2
2

)1/3
]
.

(C.2.2)

150

For (b) and (c) to go through we need the following inequalities to hold:

b2

∆
> 2 (C.2.3)(

(1 + ζ)b1

b2
2b3δ

)1/3

> 2 (C.2.4)

1

b3δ4/3
log

(
b2

∆

)
> 2 (C.2.5)(

(1 + ζ)b1b
2
3

b2
2δ

)1/3

> 2 (C.2.6)

and for (d) to go through the following inequality has to hold:

1

b3

log

(
b2

∆

)
> 1. (C.2.7)

Further, to guarantee ψ(Tup) < ∆/2, the following inequality has to hold:[
(1 +

√
ζ)2(1 + ζ)

8

b1

(
(1 + ζ)b1b

2
3

b2
2

)1/3
]
< 1. (C.2.8)

Choose: δ = 1/nc and

b1 = 3, b2 = (1 + ζ)2, b3 =
1

(2(1 +
√
ζ))3

. (C.2.9)

By substitution into inequality C.2.8, the LHS is 2
32/3

< 1.

By definition, ∆ < 1/2 and together with ζ > 0 ⇒ b2 = (1 + ζ)2 > 1, inequal-
ity C.2.3 is satisfied.

For c ≥ 3, choosing δ = 1/nc, with the choice of b1, b2, b3 as in (C.2.9), the
inequalities C.2.4, C.2.5, C.2.6 will hold for n > 7.

LHS of the inequality C.2.7 is at least 23 log 2 > 1.

Similar arguments hold good when i /∈ cluster(j), i.e, when Xij ∼ Bern(q), when
Eψ holds, 2ψ(Tup) + q < 1/2 and hence X(Tup) + ψ(Tq) < 1/2. Thus we have the
following upper bound on Tij ,

Tij ≤
b1

∆2
log

(
1

b3δ
log

(
b2

∆

))
, (C.2.10)

where δ = 1/nc, b1 = 3, b2 = (1 + ζ)2, b3 = 1
(2(1+

√
ζ))3

.

As the maximum number of unique queries that will be made is nK, the total
number of queries made is O

(
nK b1

∆2 log
(

1
b3δ

log
(
b2
∆

)))
. Also, with c such that

151

δ = 1/nc ∈ (0, log (1 + ζ)/e) and δ′ := n222+ζ
ζ

(
δ

log (1+ζ)

)1+ζ

, from Lemma C.2.1,
event Eψ occurs with probability at least 1−δ′. Further, choosing c sufficiently large
will ensure that the error probability δ′ decays as 1/poly(n).

Setting δ = 1/nc and choosing b1, b2, b3 as in Theorem 9, is valid for inequalities
(b), (c), and ψ2(Tup) ≤ ∆2/4 to hold1. Similar arguments hold good when i /∈
cluster(j), i.e, when Xij ∼ Bern(q), when Eψ holds, 2ψ(Tup) + q < 1/2 and hence
X(Tup) + ψ(Tup) < 1/2. Thus we have the following upper bound on Tij ,

Tij ≤
b1

∆2
log

(
1

b3δ
log

(
b2

∆

))
, (C.2.11)

where δ = 1/nc, b1 = 3, b2 = (1 + ζ)2, b3 = 1
(2(1+

√
ζ))3

. As the maximum num-
ber of unique queries that will be made is nK, the total number of queries made is
O
(
nK b1

∆2 log
(

1
b3δ

log
(
b2
∆

)))
. Also, with c such that δ = 1/nc ∈ (0, log (1 + ζ)/e)

and δ′ := n222+ζ
ζ

(
δ

log (1+ζ)

)1+ζ

, from Lemma C.2.1, event Eψ occurs with proba-
bility at least 1− δ′. Further, choosing c sufficiently large will ensure that the error
probability δ′ decays as 1/poly(n). Substituting c = 4 and ζ = 0.1151 gives the
simplified result in Theorem 9.

C.3 Pseudocode
Pseudocodes for the algorithms in Chapter 6 are provided below.

1See supplementary material for more details.

152

Algorithm 1 Active querying for crowdsourced clustering, with known p and q

1: Input: V : Set of items, ∆ = 1
2(p− q) , M = d7 logn

2∆2 e.
2: Output: C: Clusters.
3: Initialize: Pick an item i uniformly at random from V and set C = {{i}} and V ←
V − {i}.

4: while V 6= φ do
5: Pick v ∈ V uniformly at random.
6: for each Ck ∈ C do
7: Pick u ∈ Ck uniformly at random. Set Xk(0) = 0.
8: for t = 1 to M do
9: Xvu(t)← Query (v, u), Xk(0) = 0.

10: end for
11: if Xvu(M)−∆ > q then
12: Then v ∈ Ck, Ck ← Ck ∪ {v}. Set flag = 1. Break.
13: else if Xvu(M) + ∆ < p then
14: Then v /∈ Ck. Break.
15: end if
16: if flag = 1 then
17: Break.
18: end if
19: end for
20: if v /∈ Ck ∀Ck ∈ C then
21: C← C ∪ {v}
22: end if
23: V ← V − {v}
24: end while
25: return C

153

Algorithm 2 Active querying for crowdsourced clustering
1: Input: V : Set of items, c, η, δ.
2: Output: C: Clusters.
3: Initialize: Pick an item i uniformly at random from V and set C = {{i}} and V ←
V − {i}.

4: while V 6= φ do
5: Pick v ∈ V uniformly at random. Set flag = 0.
6: for each Ck ∈ C do
7: Pick u ∈ Ck uniformly at random. Set X̄k(0) = 0, t = 1.
8: while true do
9: Xt ← Query (v, u).

10: X̄k(t) = t−1
t X̄k(t− 1) + 1

tXt, ψ(t) := (1 +
√
η)

√
1+η
2t log

(
log ((1+η)t)

δ

)
.

11: if X̄k(t)− ψ(t) > 1
2 then

12: Then v ∈ Ck, Ck ← Ck ∪ {v}. Set flag = 1. Break.
13: else if X̄k(t) + ψ(t) < 1

2 then
14: Then v /∈ Ck. Break.
15: end if
16: t← t+ 1.
17: end while
18: if flag = 1 then
19: Break.
20: end if
21: end for
22: if v /∈ Ck, ∀Ck ∈ C then
23: C← C ∪ {v}
24: end if
25: V ← V − {v}
26: end while
27: return C

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Graph Clustering
	Crowdsourced Clustering

	Graph Clustering With Missing Data
	Introduction
	Generative Model for Partially Observed Graphs
	Exact Recovery Guarantees
	Experimental Results
	Outline of the Proofs
	Summary

	Similarity Clustering In the Presence of Outliers
	Introduction
	Generative Model for Similarity Matrices
	Exact Recovery Guarantees In the Presence of Outliers
	Simulations
	Experiments on Real Datasets
	Summary

	Crowdsourced Clustering: Triangle vs Edge Query
	Introduction
	Generative Models
	Value of a Query
	Guaranteed Recovery of the True Adjacency Matrix
	Performance of Spectral Clustering: Simulated Experiments
	Experiments on Real Data
	Summary

	Crowdsourced Clustering: Tensor Embedding for Triangle Queries
	Introduction
	Tensors: A Quick Recap
	Tensor Embedding for Triangle Queries
	Numerical Experiments
	Summary

	Crowdsourced Clustering: Active Querying
	Introduction
	Problem Setup
	Active Query Algorithms and Performance Guarantees
	Simulations
	Experiments Using Real Data
	Summary

	Conclusions and Future Work
	Future Directions

	Bibliography
	Proofs for results in Chapter 2
	Proof of Results for Simple Convex Program (Theorem 1)
	Proof of Results for Improved Convex Program (Theorem 2)

	Proofs for results in Chapter 3
	Proof Sketches
	No Outliers
	Large Number of Outliers
	Small Number of Outliers

	Proofs for results in Chapter 6
	Proof for Propositions 1 and 2
	Proof of Corollary 1 and Theorem 9
	Pseudocode

