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ABSTRACT 

Transition metals are used as catalysts in the laboratory and by nature to facilitate 

difficult chemical transformations. Herein, three different metal containing catalysts are 

discussed: Pd and Ni catalysts towards the formation of carbon-carbon (C-C) bonds and Fe 

catalysts towards the reduction of N2 to NH3.  

In Chapter 2, mechanistic studies of Pd- and Ni-catalyzed cross-coupling reactions 

are discussed. The mechanism of transmetalation of a Pd-catalyzed Suzuki cross-coupling 

reaction is studied using a stereochemical probe, revealing that transmetalation occurs with 

retention of configuration, consistent with transmetalation occurring through a frontside-

attack mechanism. Next, to explore the viability of a transmetalation first pathway in an 

asymmetric Negishi cross-coupling reaction, S = 1/2 NiIBr and NiI–alkyl complexes were 

synthesized, crystallographically characterized, and their reactivities explored. Based on 

these reactivity studies, evidence against a transmetalation first pathway is provided using a 

variety of spectroscopic methods. 

In Chapter 3, new Fe(N2)(H)x complexes are synthesized. These complexes catalyze 

the reduction of N2 to NH3 and the yields for NH3 are improved if the reactions are performed 

in the presence of Hg lamp photolysis. Preliminary mechanistic studies exploring the role of 

light are discussed. In the final chapter, new ligand scaffolds are developed that can bind a 

Lewis acidic and Lewis basic metal center. These ligand frameworks support one- and two-

atom bridges between the two metal sites. Finally, we discovered that some of the new 

complexes are catalysts for N2 to NH3 reduction and olefin hydrogenation.  
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INTRODUCTION 

  



2 
 

1.1 Motivation: Transition Metal Catalysis  

Transition metal catalysis touches many fields of chemistry. As catalysts, transition 

metals facilitate the synthesis of structurally diverse organic molecules, ranging from ethane 

(H3CCH3) to structures with complex architectures, containing multiple carbon-carbon (C-

C) bonds, ring systems, and stereocenters.1 One particularly useful transition metal-catalyzed 

process discussed in this thesis is cross-coupling, in which two carbon atoms can be coupled 

to form a new C-C bond.2 In these reactions, the transition metal center binds to the two 

carbon atoms to be coupled and mediates bond formation through a process called reductive 

elimination (vide infra).1 To date, many cross-coupling conditions have been reported and 

some of these methods have been used in the synthesis of commodity chemicals.3 In the first 

part of this thesis, the mechanism by which Pd- and Ni-catalyzed C-C coupling occurs is 

probed using a variety of spectroscopic techniques.  

Long before chemists used transition metals as catalysts in the laboratory, nature did. 

Transition metals are found in the active sites of a variety of enzymes;4 for example, 

nitrogenase, which contains both Fe and Mo centers.5 Nitrogenase catalyzes the reduction of 

N2 to NH3 under ambient conditions. To better understand this structurally complex enzyme, 

many groups have studied molecular complexes that bind dinitrogen and, in some cases, 

reduce dinitrogen to ammonia or hydrazine.6 In the last two chapters of this thesis, new 

synthetic iron catalysts are shown to reduce dinitrogen to ammonia catalytically. Most 

interestingly, the yield for ammonia is increased when the catalytic reactions are performed 

in the presence of light.  
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1.2 Palladium- and Nickel-Catalyzed Cross-Couplings 

 

Scheme 1.1. General Pd- or Ni-catalyzed cross-coupling reaction with alkyl substrates.  

One of the most important reactions in synthetic chemistry is carbon-carbon (C-C) bond 

formation. In fact, the scientists who pioneered the development of the transition metal-

catalyzed cross-coupling reactions have been awarded Nobel prizes.2 In a typical cross-

coupling reaction, an electrophilic carbon atom (C-X) is coupled to a nucleophilic carbon 

atom (C-M) to form a new C-C bond (Scheme 1.1). The electrophile is typically an alkyl 

halide, triflate, or tosylate and the nucleophile is typically an organometallic reagent; for 

instance, when an alkylzinc reagent is used as the nucleophilic partner, the cross-coupling is 

called a Negishi reaction and when an alkylborane is used, a Suzuki-Miyaura reaction. Other 

varieties of cross-couplings are known and vary by the nucleophilic partner, such as the 

Hiyama, Stille, and Kumada reactions, which couple organosilanes, -stannanes, and 

Grignards, respectively.  

While early cross-coupling investigations focused on the coupling of Csp2 centers,7-9 

more recent studies are focused on the coupling of Csp3 centers (Scheme 1.1).10-12 Attempts 

to develop cross-coupling methods using Csp3 centers were initially impeded due to slow 

oxidative addition of alkyl substrates and undesired β-hydride elimination.13-15 Recently, the 

use of alkyl substrates has been made possible by the employment of bulky or polydentate 
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ligands with palladium, or by exchanging palladium for nickel as the transition metal 

catalyst.2, 16 

By coupling two alkyl substrates, the possibility of asymmetric induction at one or both 

of the sp3 carbon atoms is introduced.17 To this end, tremendous effort has been made in the 

development of asymmetric cross-coupling reactions; in particular, the Fu group has 

specialized in the development of Pd- and Ni-catalyzed cross-coupling reactions.18-27 Chapter 

2 of this thesis focuses on understanding the mechanism of Pd- and Ni-catalyzed cross-

couplings between two alkyl substrates, with an emphasis on asymmetric nickel catalysis as 

the details of this mechanism are not as well understood.  

The mechanism of Pd-catalyzed cross-coupling reactions is thought to proceed by a 

polar, two-electron process, cycling between Pd(0) and Pd(II) intermediates (Figure 1.1).1 In 

the first step of the catalytic cycle, oxidative addition occurs to provide a PdII-alkyl 

intermediate. Transmetalation between an organometallic reagent, such as an organoborane, 

-silane, -zinc, or –magnesium reagent, etc. provides a PdII-dialkyl intermediate, which can 

undergo subsequent reductive elimination to provide the cross-coupling product. The finer 

details of the Pd-catalyzed cross-coupling, such as the stereochemical outcome of each step, 

are thought to be more complicated and substrate-dependent.28 In this thesis, a 

stereochemical probe is employed to gain insight into the transmetalation step of a Pd-

catalyzed Suzuki cross-coupling between primary alkylborates and primary alkyl 

electrophiles.  
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Figure 1.1 General mechanism for a Pd-catalyzed cross-coupling reaction.  

While the mechanism of Pd-catalyzed cross-couplings are well understood, at the 

time of this work, little was known about the mechanism of Ni-catalyzed cross-coupling 

reactions using alkyl substrates. For the studies reported in this thesis, Vicic’s proposed 

mechanism for a Negishi coupling between primary alkyl electrophiles (Figure 1.2) provided 

a starting point for thinking about the Negishi reaction discussed herein.29-33 Unlike the Pd-

catalyzed cross-coupling, this reaction was thought to proceed by odd-electron Ni species 

and radical intermediates. In the first step of the reaction, transmetalation between the 

alkylzinc cross-coupling partner and a terpyridine bound NiI-X species provides a NiI-alkyl 

intermediate, which can undergo subsequent oxidative addition to provide a NiIII-dialkyl 

species that can reductively eliminate to provide the cross-coupling partner. In these 

particular mechanistic reports, Vicic studied primary, unactivated electrophile. In the studies 

reported herein, an activated electrophile is under investigation. The difference in reactivity 

between the two types of electrophiles may result in different reaction mechanisms.  
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Figure 1.2. Mechanism for Negishi coupling of alkyl substrates reported by Vicic.   

1.3. Iron-Catalyzed Dinitrogen Reduction to Ammonia 

The main focus of Chapter 1 of this thesis is the formation of a new C-C bond. In the 

subsequent chapters, achieving N-N bond cleavage in dinitrogen is the primary goal. DNA, 

proteins, and amino acids are just a few of the nitrogen-containing biomolecules that support 

all life.34 The N atoms in these molecules are ultimately derived from dinitrogen (N2). 

Although N2 makes up approximately 80% of the earth’s atmosphere, it is not the direct 

source of N atoms for organisms because of the extremely strong nonpolar bond between the 

two nitrogen atoms (BDE = 225 kcal/mol) rendering it inert.35 Instead, N2 must first be fixed 

to a bioavailable source of N atoms, ammonia (NH3).  

 

Scheme 1.2. The methods for nitrogen reduction to ammonia include the Haber-Bosch 

process (left) and biological nitrogen fixation by nitrogenase (right).  
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The catalytic process that converts N2 to NH3 is called nitrogen fixation and it can be 

achieved industrially through the Haber-Bosch process or biologically using an enzyme, 

nitrogenase (N2ase) (Scheme 1.2).35-36 The industrial process for N2 fixation is energy 

intensive and requires extreme conditions: high temperatures, pressures, an iron or ruthenium 

catalyst, and methane steam reforming to provide dihydrogen (H2) (Scheme 1.2, left).36 

N2ase, on the other hand, is capable of fixing dinitrogen at ambient temperatures and 

pressures (Scheme 1.2, right).35, 37 Three nitrogenases are known and vary only in the atomic 

compositions of their active sites: FeMo, FeFe, and FeV nitrogenase.38 A molecular 

understanding of how the active sites of these enzymes bind and reduce N2 is unknown. 

 

Figure 1.3. The FeMo-cofactor.   

FeMo nitrogenase is a complex enzyme containing three different types of FeS 

clusters: a [4Fe-4S] cluster, a dicubane-like [8Fe-7S] cluster (i.e. P-cluster), and the catalytic 

site for N2 reduction (shown in Figure 1.3), the FeMo-cofactor, an [Mo-7Fe-9S-C] cluster. 

The presence of so many metal centers hinders mechanistic and spectroscopic studies. To 

provide a foundation for thinking about the mechanism of biological N2 fixation, many 

simplified structural and functional models of the nitrogenase cofactor have been 

synthesized.39-41  
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Figure 1.4. Select examples of molecular Mo catalysts for N2 reduction.42-44   

While the structural models exhibit the cubane nature of nitrogenase, they are 

generally unreactive towards dinitrogen. On the other hand, the functional models can reduce 

N2 to N2H4 or NH3, but differ structurally/electronically from the metal centers in the FeMo 

cofactor. Given that both Mo and Fe centers are present in FeMoco, functional model systems 

based on both Mo and Fe have been developed. Early studies focused on determining 

whether molecular Mo complexes could reduce N2 to NH3 catalytically.45 Both Schrock and 

Nishibayashi showed that Mo is capable of fixing N2 to NH3 (Figure 1.4).42, 46  

 

Figure 1.5. (Left) The first Fe-based molecular catalyst for dinitrogen reduction to 

ammonia47 and (right) two limiting mononuclear mechanisms for N2 reduction to NH3.48  

Recent studies of FeMoco have implicated Fe as the more likely substrate binding 

site.49-50 In 2010, Peters et al. reported the first Fe catalyst for N2 reduction to NH3 (Figure 
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1.5, left).47 Fe complexes with a variety of reduced NxHy substrates have been isolated using 

the trisphosphinoborane system shown above, demonstrating the possibility of forming 

similar intermediates during biological dinitrogen reduction (Figure 1.5).51-52 Based on these 

results, Peters et al. suggested that a single Fe center of FeMoco could bind and activate N2 

(Figure 1.5, in color).47, 53  

Based on reactivity studies with mononuclear metal centers, two limiting pathways 

for dinitrogen reduction have been proposed (Figure 1.5).48  These pathways are called the 

distal, or Chatt-type, pathway while the second is called the alternating pathway. The names 

of the pathways reflect the manner of protonation during dinitrogen reduction. The distal 

pathway proceeds by protonation at the β or distal N atom (Figure 1.5, top), while the 

alternating pathway proceeds by sequential protonations of the  and β N atoms (Figure 1.5, 

bottom). Recent studies suggests that a hybrid pathway is also possible using a mononuclear 

Fe system.52 All of these pathways involve one metal center, but can be applied to more than 

one metal center as well.  

 

Figure 1.6. The presumed off-path iron hydride species can be converted back to an on-path 

intermediate with excess acid and reductant.  

One interesting mechanistic feature of biological nitrogen fixation is the formation 

of H2 in addition to the desired product, NH3 (Scheme 1.2, right). Some speculate that N2 
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binding is in fact coupled to H2 loss.54-56 The synthetic catalyst systems developed by our 

group,53 including the catalyst shown in Figure 1.5, also function as hydrogen evolution 

catalysts. Freeze quench 57Fe Mössbauer spectroscopic studies of a catalytic reaction using 

P3
BFe(N2)- have shown that a significant amount of the iron is present as an iron hydride-

borohydride species (Figure 1.6, left).53 This species is presumed to be an off-path 

intermediate, and can be converted back to the on-path anionic species P3
BFe(N2)- with 

excess acid and reductant. P3
BFe(N2)- can then undergo protonation and/or reduction to 

presumably provide many of the proposed intermediates shown in Figure 1.5. Chapter 3 

focuses on using light to photo-eliminate H2 from off-path hydride species as an alternative 

to consuming acid and reductant equivalents to transform off-path to on-path intermediates.  

 

1.4 Chapter Summaries 

In the first part of Chapter 2, the mechanism of the transmetalation step of a Suzuki 

cross-coupling reaction is studied using a stereochemical probe, revealing that 

transmetalation occurs with retention of configuration. The observed stereochemical 

outcome suggests that transmetalation occurs through a frontside-attack mechanism. In the 

second part of Chapter 2, the mechanism of an asymmetric Ni-catalyzed cross-coupling 

reaction between benzylic bromides and alkylzinc reagents is probed through the synthesis 

of Ni complexes that are proposed to be catalytically relevant. The reactivity of these Ni 

complexes towards each of the cross-coupling partners is assessed using EPR and UV-Vis 

spectroscopies. These spectroscopic studies show (1) how Ni(I) species can be generated 

from the Ni(II) precatalyst, (2) the presence of a Ni-centered radical during cross-coupling 
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reactions in progress, and (3) the formation of a Ni(I)-alkyl complex through stoichiometric 

transmetalation reactions of a discrete Ni(I)Br complex. Overall, we provide evidence for an 

oxidative addition first pathway by studying the relative rates of oxidative addition versus 

transmetalation of the key Ni(I)Br complex. 

In Chapter 3, a new catalyst for dinitrogen reduction is described. Inspired by 

nitrogenase’s ability to lose H2 upon photolysis as well as literature reports of synthetic 

Fe(H)x losing H2 to bind N2 in the presence of light,55, 57-59 we subjected our catalytic reactions 

to light to determine whether more ammonia would form. Excitingly, we observe enhanced 

ammonia yields in the presence of Hg lamp and blue LED photolysis. Preliminary 

mechanistic studies suggests that H2 elimination is one role light can play in transforming an 

otherwise inert Fe(N2)(H)2 species to a catalytically relevant Fe(N2) species, which can 

undergo productive reduction and protonation to eventually yield ammonia.  

In Chapter 4, FeM (M = Zr or Na) complexes are synthesized using new dinucleating 

ligands. These complexes are capable of bridging both hydride (when M = Zr) and N2 ligands 

(when M = Na). In addition to exploring the reactivity of these complexes with N2, we found 

that some of the complexes are active for catalytic dinitrogen reduction to ammonia and 

olefin hydrogenation to alkanes.  

In summary, this thesis truly demonstrates the power of transition metals as catalysts 

for small molecule transformations. C-C bond formation and N-N bond cleavage are 

discussed specifically. Although new catalysts are developed in this thesis, we also focus on 

understanding how these catalysts interact with their respective substrates and mediate 

otherwise difficult transformations. 
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C h a p t e r  2  

TOWARDS UNDERSTANDING THE MECHANISM OF 
PALLADIUM- AND NICKEL-CATALYZED CROSS-COUPLING 

REACTIONS WITH ALKYL SUBSTRATES 
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2.1 General Introduction 

Carbon-carbon (C-C) bond formation is one of the most important reactions in 

chemistry as a large number of molecules contain C-C bonds. Although there are many ways 

to form a C-C bond, transition metal-catalyzed cross-coupling reactions have truly 

revolutionized organic synthesis by creating new bond disconnection strategies.1-3 Early 

investigations of cross-coupling reactions, including the chemistry honored by the 2011 

Nobel prize in Chemistry, have focused on Pd-catalyzed bond formation with sp- or sp2-

hybridized carbon atoms.4-6 Along with other groups,7-9 the Fu group specializes in the 

development of C-C bond formation using sp3-hybridized carbon atoms.10-24 Relative to 

couplings involving Csp and Csp
2 carbon centers, these methods were previously unexplored, 

and considered challenging to develop because of the relatively slow oxidative addition of 

alkyl halides (when compared to Csp
2-X and Csp-X centers) and unproductive β-H elimination 

from Pd-alkyl species formed during catalysis.25-27 In 2002, the Fu group reported  the 

isolation of a PdII-alkyl species bearing β–hydrogen atoms which was competent for both 

stoichiometric and catalytic cross-coupling reactions with alkyl substrates.28 The PdII-alkyl 

species was stable and only underwent β-H elimination upon heating. Of particular 

importance in achieving productive bond formation and suppressing β-H elimination was the 

choice of phosphine ligand. 

In this chapter, two classes of cross-coupling reactions using alkyl substrates, the 

Suzuki-Miyaura and Negishi cross-coupling reactions are discussed.10, 29 These two reaction 

classes differ with respect to the nucleophilic coupling partner, B vs Zn respectively. Both 

classes exhibit increased functional group compatibilities afforded by the milder nucleophilic 
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coupling partners when compared to other cross-coupling classes.3 In the first part of Chapter 

2, a stereochemical probe is employed to gain insight into a Pd-catalyzed Suzuki cross-

coupling between alkylborates and alkyl electrophiles. In the second part of Chapter 2, 

mechanistic studies on an asymmetric Ni-catalyzed Negishi reaction between alkylzinc 

bromides and bromoindanes are described. Due to the different properties of Pd and Ni, these 

two cross-coupling reactions differ mechanistically (vide infra).2, 9  

2.2 Transmetalation Study 

The mechanisms of Pd-catalyzed cross-coupling reactions between two carbon atoms 

have been thoroughly studied.2 The widely accepted catalytic cycle for a Suzuki cross-

coupling reaction between an alkyl electrophile and alkylborate involves Pd0 and PdII 

intermediates as illustrated in Figure 2.1.2  

 

Figure 2.1. Pd-Catalyzed Suzuki Cross-Coupling Reaction Mechanism. Catalytic cycle for 

a Pd-catalyzed Suzuki-Miyaura cross-coupling between an alkyl halide and alkylborate. The 



17 
 

transmetalation step under investigation starred. OA = oxidative addition, TM = 

transmetalation, and RE = reductive elimination.  

In general, a commercially available Pd0 or PdII pre-catalyst is employed in addition 

to one or two equiv of an electron rich phosphine.3 In the case of a PdII starting material, 

reduction to Pd0 is required to form the catalytically active species A. Catalysis begins with 

oxidative addition (OA) of an alkyl electrophile to form PdII-alkyl intermediate B which 

undergoes subsequent transmetalation (TM) with an electron rich alkylborate to form the 

PdII-dialkyl species C. Intermediate C then undergoes reductive elimination (RE) to yield 

the cross-coupling product and the active Pd0 catalyst. The development of cross-coupling 

reactions employing alkyl halide substrates has been complicated by the off-cycle β-hydride 

elimination of PdII alkyl intermediates such as B (Figure 2.1). Variations in catalyst design 

such as the use of sterically demanding, electron-rich phosphine ligands impede β-hydride 

elimination. By employing bidentate ligands, the availability of a cis open coordination site, 

deemed necessary for β-hydride elimination, through dissociation of a ligand becomes less 

likely due to the chelate effect.28 
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Scheme 2.1. Stereochemical outcomes of the products can be controlled by the addition of 

additives.30  

Herein, we focus on the mechanism of transmetalation as this step is essential for 

controlling the stereochemical outcome of the cross-coupling reaction. The mechanism of 

transmetalation involving organotin, -silicon, -zinc, and -boron reagents have been 

thoroughly studied.31-38 In many cases, the stereochemical outcome of transmetalation is 

substrate dependent, leading to either inversion of retention of configuration. Understanding 

how the substrate or reaction parameters influence the mechanism of transmetalation will 

allow for the rational design of stereochemically complex organic molecules. For example, 

Suginome et al. has reported that the stereochemical course of transmetalation with 

enantiomerically-enriched alkylboranes can be controlled by the employment of two 

different additives, allowing both enantiomers of product to be accessed through a single 

enantiomer of the alkylborane starting material (Scheme 2.1).30 
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2.3 Results and Discussion  

2.3.1 Synthesis of Diastereomerically Enriched Deuterium-Labeled Substrates 

In 2001, Fu et al. reported the first Pd-catalyzed Suzuki reaction between primary 

alkyl bromides and alkylboranes (Scheme 2.2).3, 10 In this chapter, we describe a 

stereochemical probe using diastereomerically-enriched alkylborane reagents to study the 

nature of transmetalation for this reaction.10, 39  

 

Scheme 2.2. Pd-catalyzed cross-coupling reaction under investigation.10 

The synthesis of diastereomerically enriched deuterium-labeled substrates is shown 

in Scheme 2.3. Commercially available 4-bromobenzyl bromide was treated with NaH and 

benzyl alcohol to yield the disubstituted alkyl ether 2.1 which was then subjected to 

Sonagashira reaction conditions to yield TMS-protected alkyne 2.2 (TMS = 

trimethylsilyl).40-41 TMS-deprotection of 2.2 followed by treatment with deuterated 

Schwartz’s reagent and D2O provided the cis-deuterium labeled alkene 2.5 required for 

analysis.42-43 To obtain the trans-deuterium labeled alkene 2.7, alkyne 2.3 was treated with 

n-butyllithium and quenched with D2O to provide deuterated alkyne 2.4. Subsequent 

treatment of 2.4 with deuterated Schwartz’s reagent followed by a H2O quench provided the 

trans-deuterium labeled alkene 2.7.42 The cis- and trans-deuterium labeled alkenes were then 
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hydroborated to provide the syn and anti-isomers of the alkylboranes, 2.6 and 2.8 

respectively.  

 

Scheme 2.3. Synthesis of deuterium-labeled substrates required for stereochemical study.  

2.3.2 Stereochemical 1H NMR Study 

The diastereomerically-enriched substrates 2.6 and 2.8 were subjected to the 

previously reported cross-coupling conditions (Scheme 2.2)10 and the stereochemical 

outcomes of the reactions were analyzed by 1H (2D decoupled) NMR spectroscopy. Based 

on 1H NMR spectroscopy, the cross-coupled products were obtained with retention of 

configuration as shown in Scheme 2.4. The possible transition states for transmetalation and 

their resultant stereochemical outcomes are outlined in Figure 2.2.  
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Scheme 2.4. Stereochemical probe for understanding the mechanism of transmetalation with 

primary alkyl cross-coupling partners.  

 

Figure 2.2. Potential transition states and stereochemical outcomes for transmetalation 

between an alkylborate and a palladium center. For simplicity, the borate center is designated 

with a “B”.  

Starting from an enantiomerically enriched alkylborane, transmetalation of the alkyl 

group may occur through one of three possible transition states.32 In Figure 2.2 path A, 

transmetalation occurs through an open SE2 backside attack, resulting in inversion of 
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configuration at the stereogenic carbon center. It is also possible, through an open transition 

state, for transmetalation to occur with an SE2 frontside attack, leading to retention of 

configuration at the transferred carbon atom (Figure 2.2, path B). Finally, a cyclic transition 

state is also possible through intramolecular coordination of a ligand (X) to both the 

palladium center and the boron atom. Due to the rigidity of a cyclic transition state, SE2 

frontside attack occurs resulting in retention of configuration at the stereogenic carbon center 

(Figure 2.2, path C). The results reported above suggest that transmetalation between a 

primary alkylborane and a PdII(X)(alkyl) species occurs with retention of configuration. Both 

pathways B and C are reasonable and cannot be distinguished experimentally.   

2.4 Transmetalation Study Conclusions 

Thus far, we have shown that transmetalation of a primary alkylborane to palladium 

occurs with retention of configuration. This stereochemical outcome is consistent with a 

frontside SE2 attack during transmetalation. Because Pd-catalyzed cross-couplings are 

stereospecific reactions, products are often obtained with good enantioselectivity if an 

enantiomerically enriched starting material is used. In the next portion of Chapter 2, we will 

discuss an asymmetric Ni-catalyzed cross-coupling reaction between alkyl substrates. Ni-

catalyzed cross-coupling reactions differ mechanistically from the previously discussed Pd-

catalyzed cross-couplings and may result in the development of complementary methods. In 

terms of stereochemistry and mechanism, Pd-catalyzed reactions are  stereospecific as 

oxidative addition and transmetalation occur through two-electron SN2 and SE2 pathways 

respectively.44 Ni-catalyzed reactions, on the other hand, may proceed through achiral radical 

intermediates, making the development of stereoconvergent transformations possible.45 
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2.5 Well-Defined Ni(I) Complexes  Provide Mechanistic Insights into an 
Asymmetric Cross-Coupling 

 

The Fu group has developed a number of asymmetric Ni-catalyzed cross-coupling 

reactions using a variety of nitrogenous chiral ligands (Scheme 2.5).14-16, 18, 22-23, 29 In the 

second portion of Chapter 2, the syntheses of the first well-defined NiI-complexes containing 

a chiral ligand are described.a,46 NiI complexes are less explored relative to their Ni0/NiII 

counterparts but they are often invoked as intermediates in a variety of catalytic reactions, 

including cross-couplings.47-48 Understanding the reactivity of these species towards the 

electrophilic/nucleophilic cross-coupling partners will aid in the development of future 

catalysts for cross-coupling reactions.  

 

Scheme 2.5. General asymmetric Ni-catalyzed cross-coupling reaction.   

                                                 
a At the time of this work, no NiI-complexes containing a chiral ligand had been 

reported. 2.11 (NiBr) and 2.12 (NiBr2) have since been reported. This contribution as well 
as the mechanistic studies discussed herein are acknowledged as preliminary results in the 
referenced paper. 
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In contrast to Pd-catalyzed cross-couplings, the mechanism of nickel-catalyzed 

cross-couplings has only recently been explored. Vicic reported studies on a Negishi 

reaction between an unactivated electrophile and alkylzinc bromide reagent.49-51 Based on 

the reactivities of terpyridine-ligated NiI-Me and NiII-Me species towards the cross-

coupling partners (Figure 2.3a), a transmetalation first pathway was proposed (vide infra). 

Hu also proposed a transmetalation first pathway with a bimetallic oxidative addition step 

for an alkyl-alkyl Kumada coupling using an anionic N2N pincer ligand.52 More recently, 

Wiex proposed a radical chain mechanism for a (bipyridine)Ni-catalyzed reductive cross-

coupling between aryl and alkyl iodides (Figure 2.3b).53-54  

 

Figure 2.3. Key mechanistic insights from previous studies: (a) the stoichiometric 

competence of NiI-Me provides support for a transmetalation first pathway;50 and (b) 

various mechanistic probes suggest a bimetallic oxidative addition step as shown.52-53  

 

2.6 Results and Discussions 

As a starting point for mechanistic studies, we attempted to synthesize Ni 

complexes bearing the pybox, diamine, and box ligands shown in Scheme 2.5. 

Unfortunately, attempts to synthesize four coordinate Ni complexes using bidentate ligands 

led to polymeric species (bridging halide structures) which were difficult to isolate and 
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characterize in solution. On the other hand, the tridentate iPrPybox ligand led to soluble, 

readily characterizable Ni species in high yields.  

 

Scheme 2.6. Previously reported asymmetric coupling under investigation.29 

 

Our success with iPrPybox led us to explore the asymmetric nickel-catalyzed 

Negishi cross-coupling reaction between indenyl bromides (1-bromoindanes) and 

alkylzinc reagents using iPrPybox as the chiral ligand (Scheme 2.6). Relative to the 

hydrocarbon electrophiles explored by Vicic, 1-bromoindanes are activated electrophiles 

because the bromide is in a benzylic position, making it more susceptible to homo- or 

heterolytic bond cleavage. The different reactivities of the activated 1-bromoindanes versus 

the unactivated alkyl bromides previously studied by Vicic could lead to different reaction 

mechanisms. Furthermore, our reaction is asymmetric and the mechanism of 

stereochemical induction is unknown.  

 

2.6.1 Synthesis and Reactivity of Novel NiI Complexes 

Two single-electron mechanisms were initially considered based on literature 

precedent (Figure 2.4).51-53 Each pathway contains three elementary steps, oxidative 

addition (OA), transmetalation (TM), and reductive elimination (RE), and differ only in 
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the order of the TM and OA steps. Both catalytic cycles invoke a NiIII(alkyl)indenyl 

complex which undergoes reductive elimination to yield the cross-coupling product.  

 

 

Figure 2.4. Two possible single-electron mechanisms for the asymmetric Negishi cross-

coupling under investigation where X = Br, R = indenyl’, and R’ = alkyl.  
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To explore the viability of a transmetalation first pathway in an asymmetric cross-

coupling reaction, relevant S = 1/2 2,6,-Bis[(4S/R)-(–/+)-isopropyl-2-oxazolin-2-yl]pyridine 

bound NiIBr complex and NiI–alkyl complex (bearing β-hydrogen atoms) were synthesized 

and crystallographically characterized. Evidence against a transmetalation first pathway is 

provided by EPR, 19F NMR, and UV-vis spectroscopic studies which demonstrate that the 

rate of oxidation of the NiIBr by the electrophile is significantly faster than the rate of 

transmetalation of the NiIBr with the alkylzinc reagent. Furthermore, attempts to prepare a 

NiI–alkyl complex by transmetalation with an alkylzinc reagent were not successful. 

Stoichiometric chemistry with a well-defined NiI-alkyl complex provides cross-coupling 

product in low efficiency but with comparable enantiomeric excess relative to the previously 

reported catalytic method. Finally, EPR spectra of catalytic cross-coupling reactions reveal 

the presence of a NiIII species. The key novelties of this study include the crystallographic 

characterization of catalytically relevant (iPrPybox)NiIBr, (iPrPybox)NiIIBr2, and 

(iPrPybox)NiI-alkyl complexes (the first NiI-alkyl complex bearing β-hydrogen atoms).  

The NiIBr and NiIIBr2 complexes were synthesized, crystallographically 

characterized, and tested for catalytic competence. Inspired by my adoptive time in the Peters 

group, I attempted a comproportionation of NiIIBr2glyme and Ni(cod)2 in the presence of 

iPrPybox. Excitingly, this provided the midnight purple complex 2.11 in 89% yield, the first 

NiI complex to be isolated by the Fu group (Figure 2.5a). By EPR, 2.11 provides a rhombic 

EPR signal at 77K in DMA, with g1 = 2.26, g2 = 2.17, and g3 = 2.12, consistent with a metal-

centered radical (Figure 2.6). The NiIIBr2 complex 2.12 was readily prepared by treating 

NiIIBr2glyme with iPrPybox (Figure 2.5b). The X-ray crystal structures of 2.11 and 2.12 are 

shown in Figure 2.5c and 2.5d respectively. Both complexes were catalytically competent 
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(Table 2.1, entries 2 and 3), yielding the cross-coupling product in comparable yields and 

enantioselectivities relative to the reported conditions (entry 1).  

 

Figure 2.5. Characterization of nickel halide complexes bearing the iPrPybox ligand: (a) 

NiIBr and (b) NiIIBr2 syntheses and (c) NiIBr and (d) NiIIBr2 crystal structures. Ellipsoids 

shown at 50% probability.  

 

Figure 2.6. EPR spectrum of 2.11 in DMA at 77K. 
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Table 2.1. Catalytic competence of the nickel bromide complexes. All entries are reported 
as an average of two runs. *1st run with (+)-iPrPybox and second run with ()-iPrPybox. 

 

Entry Catalyst Yield (%) ee (%) 

1* 10% NiBr2diglyme and 13% iPrPybox 73 92 

2 10% (+)-iPrPybox-2.11  65 90 

3 10% ()-iPrPybox-2.12 70 89 

 

With complex 2.11 in hand, we sought to prepare a NiI-alkyl complex with iPrPybox 

to test for its stoichiometric reactivity. We were particularly interested in isolating a nickel(I) 

alkyl species bearing β-hydrogen atoms as such an intermediate is believed to participate in 

the cross-coupling under investigation (Figure 2.4, top pathway). Although NiI-alkyl 

complexes have been previously reported, no examples contain alkyl groups with β-

hydrogen atoms. 49, 55-57     

When 2.11 is treated with a Grignard reagent at -78 C, the EPR signal 

corresponding to the NiBr complex disappears and a new EPR signal arises with g = 2.01. 

Isolation of the putative NiI-alkyl species was not possible under these reaction conditions 

(presumably due to the presence of Mg salts) as the product quickly decomposed upon 

warming to room temperature. Alkylation reactions using softer alkylborate reagents 

allowed for the preparation and isolation of the σ-alkyl complex 2.17 (Figure 2.7a), which 

was characterized by EPR spectroscopy and X-ray crystallography (Figure 2.7b and 2.7c). 
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Consistent with Vicic’s reported EPR spectrum of an electronically similar 

(terpyridine)NiI-Me complex, the EPR spectrum of (iPrPybox)NiI-alkyl complex shows a 

signal consistent with an organic-based radical, suggesting that the unpaired electron 

resides primarily on the iPrPybox ligand (Figure 2.7b).51 The NiI-alkyl complex adopts a 

square planar geometry in the solid state and represents the first crystallographically 

characterized NiI-alkyl complex bearing β-hydrogen atoms.  

 

Figure 2.7. NiI-alkyl (a) synthesis, (b) EPR spectrum in DMA at 77K and (c) crystal 

structure. Ellipsoids are shown at 50% probability.  

 

When 2.17 was subjected to the cross-coupling conditions, both the expected cross-

coupling products 2.20 and 2.21 were formed (Scheme 2.7). Furthermore, a stoichiometric 
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reaction between 2.17 and the electrophile provided the cross-coupling product in low yield 

but with comparable enantiomeric excess to the parent catalytic system (Scheme 2.8). 

Although Vicic’s results with discrete Ni-alkyl complexes suggests that an oxidative 

addition first pathway is unlikely (Figure 2.3), the competency of the Ni-alkyl species does 

not exclude a transmetalation or oxidative addition first pathway. 2.17 could react with the 

electrophile to give an on-path NiIII-dialkyl intermediate; for instance, the NiI-alkyl 

complex could be oxidized by the bromoindane electrophile to form a NiIIBr(alkyl) 

complex. Radical recombination of the benzyl radical would yield a NiIII(alkyl)(indenyl) 

complex, which is an intermediate invoked in both pathways discussed above (Figure 2.4). 

Reductive elimination would provide cross-coupling product. Additional studies were 

performed to learn which pathway was more likely.  

 

Scheme 2.7. Cross-coupling reaction using [()-iPrPybox]NiI-alkyl as a precatalyst with 

GC yields and enantioselectivies reported as an average of two  runs.  

 

Scheme 2.8. Stoichiometric reaction between NiI-alkyl and electrophile.  
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In contrast to results with Grignard or alkylborate reagents, attempts to prepare 2.17 

by transmetalation with alkylzinc reagents resulted in either complex EPR spectra 

inconsistent with the desired product or EPR spectra of unreacted NiBr. The apparent 

inability of alkylzinc reagents to effect alkyl transfer to provide a NiI-alkyl species raised 

concerns regarding the viability of a transmetalation first pathway.  

The stoichiometric transmetalation reaction between alkylzinc bromide 2.22 and 

2.11 was probed further using 19F NMR spectroscopy, UV-Vis spectroscopy, and GC-MS. 

By 19F NMR spectroscopy, after minutes at 0 °C, the alkylzinc reagent was intact, in line 

with the EPR results showing a metal-centered radical (see experimental section). UV-vis 

spectroscopy revealed a second order rate constant for transmetalation of 10-1 M-1s-1 

(Figure 2.8), consistent with the slow reaction between the NiBr complex and alkylzinc 

reagent observed using EPR and NMR spectroscopy.  

 

Figure 2.8. UV-vis spectra for reaction of 2.11 with alkylzinc bromide 2.22: (a) purple trace 

is before addition of alkylzinc reagent and blue trace is post reaction monitoring (b) NiBr 

consumption monitored by following the absorbance at 870 nm over time. 
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To further investigate whether a transmetalation first or oxidative addition first 

pathway is more feasible, we next explored the reactivity of the NiIBr complex with the 

electrophilic cross-coupling partner (Figure 2.9). When 2.11 was treated with 1-

bromoindane, homocoupled electrophile was observed. In addition, the reaction mixture is 

EPR silent, indicating the formation of NiII products. This process is associated with an 

instantaneous color change from purple to orange. The formation of NiIIBr2 was confirmed 

by 1H NMR spectroscopy. The second-order rate constant for this process was measured by 

UV-Vis spectroscopy to be approximately 10-4 M-1s-1.  

 

Figure 2.9. UV-vis spectra for reaction of 2.11 with a bromoindane electrophile: (a) purple 

trace is before addition of electrophile and orange trace is post reaction monitoring (b) NiBr 

consumption monitored by following the absorbance at 870 nm over time. 

 

The relative rates of oxidation of the NiIBr by the electrophile (10-4 M-1s-1) versus 

transmetalation with the nucleophile (10-1 M-1s-1) suggest that a mechanism involving 

transmetalation to 2.11 is not viable for this particular Negishi reaction. In the presence of 
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an activated electrophile, such as 1-bromoindane, oxidation of the NiBr complex will 

outcompete transmetalation. This result contrasts with Vicic’s report in which a 

transmetalation first pathway was proposed for a coupling using unactivated alkyl 

bromides. The results reported herein and Vicic’s studies are not inconsistent; indeed, when 

the reaction between 2.11 and cyclopentyl bromide was monitored by UV-vis spectroscopy, 

a second order rate constant for oxidation of the NiIBr complex to NiIIBr2 was determined 

to be 10-1 M-1s-1 (Figure 2.10). This rate is comparable to the rate of transmetalation and 

more studies are required to determine whether unactivated electrophiles are coupled by a 

transmetalation first pathway under our reaction conditions.  

 

Figure 2.10 UV-Vis study of reaction between 2.11 and cyclopentyl bromide: (a) purple 

trace is before addition of cyclopentyl bromide and blue trace is post reaction monitoring (b) 

NiBr consumption monitored by following the absorbance at 870 nm over time. 

 

2.6.2 Additional Mechanistic Insights 

To investigate how EPR active species could be generated during catalysis, the EPR 

silent NiBr2 complex was treated with nucleophile 2.14 and the reaction monitored using 
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EPR spectroscopy. When 2.12 is treated with one equivalent of the alkylzinc bromide 

reagent, a metal-centered radical is observed by EPR (Figure 2.11a). When 2.12 is treated 

with 16 equivalents of the nucleophile, simulating catalytic conditions, two EPR active 

species are observed: a ligand-based radical signal and a metal-centered radical signal 

(Figure 2.11b). When the NiBr2 complex is treated with a bromoindane, no EPR active 

species are observed.  

 

Figure 2.11. EPR spectra provide evidence for the generation of S = 1/2 species upon 

treatment of a DMA solution of 2.12 at –15 C with (a) 1 equiv of 2.14 and (b) 16 equiv of 

2.14. 

As previously mentioned, S = 1/2 complexes 2.11 and 2.17 were characterized by 

EPR spectroscopy. To determine whether these species were present under catalytic 

conditions, cross-coupling reactions using the various catalyst systems were monitored by 
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EPR spectroscopy,b revealing that neither of the isolated NiI species were observed; 

instead, unknown metal-centered radical species were encountered (Figure 2.12).  

 

Figure 2.12. Catalytic reactions in progress monitored using EPR spectroscopy, each 

spectrum represents a reaction using a different catalyst: (a) the in situ generated catalyst 

system, (b) 2.11 or (c) 2.12 as the catalyst. 

 

The EPR signal in Figures 2.12b and 2.12c is generated more cleanly when the 

discrete complexes 2.11 or 2.12 are employed and has been putatively assigned as a NiIII 

complex based on comparison with reported EPR spectra of related NiIII complexes.58-60 

We attempted to generate the same EPR signal by treating either the NiI-alkyl or NiIBr 

complex with various alkyl bromide reagents, but did not observe the desired signal. 

Inspired by the ability of CF3 groups to stabilize high oxidation state metal complexes,59-60 

we treated the NiI-alkyl complex with Umemoto’s reagent. To our delight, the same 

putative NiIII signal is observed (Figure 2.13). Given the EPR active species of this reaction 

                                                 
b Aliquots were taken after 25 minutes. 1H NMR spectroscopy was used to monitor the 

depicted cross-coupling and revealed that at 25 minutes, a 10% yield of product is obtained.  
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mixture has not yet been isolated and the similiarities between EPR spectra of NiIII with 

various ligands,58-60 we cannot assign the structure based on EPR spectroscopy alone. 

Nonetheless, the signals observed in Figures 2.12 and 2.13 likely correspond to a NiIII 

centered radical. More studies are needed to determine whether this species is catalytically 

relevant.     

 

 

Figure 2.13. EPR spectrum of reaction between 2.17 and Umemoto’s reagent. 

 

2.7 Conclusions     

Based on previously reported mechanistic studies of Negishi cross-couplings of 

unactivated alkyl electrophiles, we explored the viability of a transmetalation first pathway 
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in the context of an asymmetric Negishi reaction using an activated alkyl electrophile. The 

synthesis and crystallographic characterization of two new S = 1/2 NiI species are reported. 

Three important pieces of data, (1) the inability of an alkylzinc bromide reagent to 

effectively transmetalate to a well-defined NiBr complex to provide a NiI-alkyl complex 

stoichiometrically, (2) the high reactivity of the NiBr complex towards the electrophile 

under stoichiometric conditions, and (3) the poor reactivity of the NiI-alkyl complex in a 

stoichiometric cross-coupling reaction, suggest that a transmetalation first pathway is 

unlikely to be operative. Preliminary EPR spectroscopic data of catalytic reactions in 

progress show a signal reminiscent of previously reported NiIII complexes. The same signal 

can be generated upon treatment of the NiI-alkyl with an electrophilic CF3 source, 

presumably forming a NiIII(alkyl)(CF3) complex. Additional studies towards identifying 

the observed NiIII complex, looking at the mechanism of oxidative addition and reductive 

elimination in more detail, and determining the stereochemistry-determining step of the 

reaction are warranted. Based on reports published after this work, one potential 

mechanism for oxidative addition involves two Ni centers: a NiI-X center that generates R 

and a NiII-alkyl species which recombines with R (Figure 2.14).46, 52-53 
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Figure 2.14. Potential mechanism based on the evidence gathered from this work and 

analogous studies performed with aryl zinc reagents.46  
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2.8 Experimental Section 

2.8.1 General Information 

The following reagents were purchased and used as received: Aldrich: benzyl 

alcohol, 4-bromobenzyl bromide, sodium hydride (60% dispersion in mineral oil), 

bis(benzonitrile)Pd(II) chloride, copper iodide, 2,6-bis[(4R)-(+)-isopropyl-2-oxazolin-2-

yl]pyridine, 2,6-bis[(4S)-(−)-isopropyl-2-oxazolin-2-yl]pyridine, nickel(II) bromide 

ethylene glycol dimethyl ether complex, nickel(II) bromide 2-methoxyethyl ether complex, 

dimethylacetamide (anhydrous, 99.8%), phthalimide, 1-bromo-3-phenylpropane, 3-(4-

methoxyphenyl)-1-propanol, phosphorous tribromide, allyl bromide, 9-

borabicyclo[3.3.1]nonane dimer, 5-(trifluoromethyl)dibenzothiophenium 

trifluoromethanesulfonate. Alfa: 5-fluoro-1-indanone, 6-methoxy-1-indanone, iodine. 

Strem: Bis(cyclooctadiene)nickel(0). Schwartz’s and deuterated Schwartz’s reagents were 

synthesized using a known procedure.43 THF, pentane, benzene, toluene were dried in a 

solvent-purification system with the aid of activated alumina. All deuterated solvents were 

purchased from Cambridge Isotope Laboratories. All reactions were carried out in oven-

dried glassware under a nitrogen atmosphere unless otherwise specified.  

1H data and 13C NMR data for the Ni studies were collected on Varian 600 MHz, 

Varian Inova 500 MHz, and Varian Mercury 300 MHz spectrometers at ambient 

temperature. 19F NMR data and VT NMR data was collected on a Varian Inova 500 MHz 

spectrometer at the described temperature and 19F NMR data were referenced using 

trifluorotoluene as an internal standard. GC analyses were carried out on an Agilent 6890 

series system with DB-1 column (length 30 m, I.D. 0.25 mm), and Agilent 6850 series system 

with G-TA column (length 30 m, I.D. 0.25 mm). GC-MS analyses were performed on an 
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Agilent 6980 series system equipped with an Agilent 5973 Network Mass Selective Detector. 

HPLC analyses were carried out on an Agilent 1100 Series system, using Daicel 

CHIRALCEL® columns (internal diameter 4.6 mm, column length 250 mm, particle size –

–5 μm). SFC analyses were performed on a Thar SFC system equipped with an Agilent 

1315B DAD detector using Daicel CHIRALCEL® columns or Daicel CHIRALPAK® 

columns (I.D. 4.6 mm, column length 250 mm, particle size 5 μm) at 40 °C. X-band EPR 

spectra were obtained on a Bruker EMX spectrometer. Optical spectroscopy measurements 

were taken on a Cary 50 UV-vis spectrophotometer using a 1 cm two-window quartz cell. 

XRD studies were conducted at the Beckman Institute at Caltech using a Bruker SMART 

1000 CCD and at the Stanford Synchrotron Radiation Lightsource (SSRL). 

2.8.2 Synthesis 

 

Benzyl ether 2.1. To a cooled (0 °C) solution of NaH (60% in mineral oil, 3.2 g, 80 mmol) 

in DMF (40 mL), benzyl alcohol (4.0 g, 25 mmol) was added. After 30 min, a solution of 

4-bromobenzyl bromide (10 g, 40 mmol) in DMF was added to the stirring reaction mixture 

carefully. After 24h, the reaction mixture was diluted with water (100 mL). The aqueous 

layer was extracted with dichloromethane (2 × 160 mL) and ethyl acetate (1 × 160 mL). 

The combined organic layers were washed with brine, dried over Na2SO4, and concentrated 

in vacuo. Purification by flash chromatography (15:1 hexanes:EtOAc) gave benzyl ether 

2.1 as an oil (11 g, 96%). 1H NMR (500 MHz, Chloroform-d) δ 7.40 – 7.37 (m, 2H), 7.27 

(m, 2H), 7.23 – 7.19 (m, 1H), 7.16 (s, 2H), 7.16 – 7.13 (m, 2H), 4.46 (s, 2H), 4.41 (s, 2H). 
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TMS-protected alkyne 2.2. Compound 2.2 was synthesized by adapting a known 

procedure for Sonagashira couplings.41 To a solution of bis(benzonitrile)Pd(II) chloride 

(83 mg, 0.22 mmol) and copper iodide (27 mg, 0.14 mmol) in dioxane (7 mL), tri-tert-

butylphosphine (1.9 mL, 0.25 M in dioxane, 0.47 mmol), diisopropylamine (1.2 mL, 8.7 

mmol), benzyl ether 2.1 (2.0 g, 7.2 mmol), and ethynyltrimethylsilane (1.2 mL, 8.7 mmol) 

was added in a glovebox. The reaction mixture was removed from the glovebox, put under 

an N2 atmosphere, and stirred at ambient temperature. After 5h, the reaction mixture was 

diluted with ethyl acetate (40 mL), filtered through a small silica pad with ethyl acetate 

(120 mL), dried over MgSO4, and concentrated in vacuo. Purification by flash 

chromatography (50:1 hexanes:EtOAc) gave TMS-protected alkyne 2.2 as an oil (2.1 g, 

>98%).  1H NMR (300 MHz, Chloroform-d) δ 7.47 – 7.42 (m, 2H), 7.36 – 7.35 (m, 1H), 

7.34 (m, 2H), 7.30 (m, 2H), 7.27 (m, 1H), 7.25 (m, 1H), 4.53 (s, 4H), 0.24 (s, 9H). 

 

Alkyne 2.3. To a solution of TMS-protected alkyne 2.2 (2.1 g, 7.2 mmol) in MeOH (25 

mL), was added potassium carbonate (90 mg, 6.5 mmol). The reaction mixture was put 

under an N2 atmosphere and stirred at ambient temperature. After 3h, the reaction mixture 

was concentrated in vacuo and the resultant oil was diluted with aqueous sodium 

bicarbonate (25 mL). The aqueous layer was extracted with diethyl ether (3 × 100 mL) and 

the combined organic layers were dried over MgSO4 and concentrated in vacuo. 

Purification by flash chromatography (30:1 hexanes:EtOAc to 15:1 hexanes:EtOAc 
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gradient) provided alkyne 2.3 as an orange oil (1.3 g, 83%).  1H NMR (300 MHz, 

Chloroform-d) δ 7.52 – 7.47 (m, 2H), 7.38 (m, 2H), 7.37 (m, 2H), 7.35 (m, 1H), 7.34 – 

7.31 (m, 2H), 4.57 (m, 4H), 3.08 (s, 1H). 

 

Deuterium-labeled alkyne 2.4. To a cooled (–78 °C) solution of alkyne 2.3 (250 mg, 1.1 

mmol) in THF (2.25 mL), nBuLi (0.65 mL, 2.6 M in hexanes, 1.7 mmol) was added slowly. 

After 1h, D2O (0.8 mL) was added and the reaction mixture was warmed to room 

temperature. Any excess base was quenched with saturated aqueous NH4Cl (3 mL). The 

aqueous layer was extracted with diethyl ether (3 x 15 mL) and the combined organic layers 

were dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography 

(30:1 hexanes:EtOAc to 15:1 hexanes:EtOAc gradient) provided deuterium-labeled alkyne 

2.4 as an orange oil (252 mg, >98%). 1H NMR (500 MHz, Chloroform-d) δ 7.49 – 7.46 

(m, 2H), 7.37 – 7.34 (m, 4H), 7.32 (m, 3H), 4.55 (m, 4H). 2D NMR (400 MHz, Chloroform 

with Chloroform-d reference) δ 3.08 (s, 1D).  

 

Cis-1,2-dideuterioalkene 2.5. Compound 2.5 was synthesized by adapting a known 

procedure.42 To a solution of bis(cyclopentadienyl)zirconium chloride deuteride (384 mg, 

1.48 mmol) in toluene (2.15 mL), alkyne 2.3 (300 mg, 1.37 mmol) was added in a glovebox 

and stirred at room temperature. After 2h, the red reaction mixture was concentrated in 

vacuo and the resultant oil was taken up in diethyl ether (1.9 mL), removed from the 

glovebox, and cooled to 0 °C. To the cooled reaction mixture, degassed D2O (1 mL) was 
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added. After 15 min, the crude reaction mixture was warmed to room temperature, filtered 

through silica with diethyl ether (50 mL), and concentrated in vacuo. Purification by flash 

chromatography (30:1 hexanes:EtOAc) gave cis-1,2-dideuterioalkene 5 as an oil (265 mg, 

87%).  1H NMR (500 MHz, Chloroform-d) δ 7.44 – 7.41 (m, 2H), 7.40 – 7.37 (m, 4H), 

7.35 (m, 2H), 7.34 – 7.28 (m, 2H), 7.23 – 7.19 (m, 1H), 5.81 – 5.66 (m, 1H), 4.57 (m, 4H). 

2D NMR (400 MHz, Chloroform with Chloroform-d reference) δ 6,77 (s, 1D), 5.29 (s, 1D). 

 

Trans-1,2-dideuterioalkene 2.7. Compound 2.7 was synthesized by adapting a known 

procedure.42 To a solution of bis(cyclopentadienyl)zirconium chloride deuteride (322 mg, 

1.24 mmol) in toluene (1.8 mL), alkyne 2.4 (252 mg, 1.13 mmol) was added in a glovebox 

and stirred at room temperature. After 2h, the red reaction mixture was concentrated in vacuo 

and the resultant oil was taken up in diethyl ether (1.6 mL), removed from the glovebox, and 

cooled to 0 °C. To the cooled reaction mixture, degassed H2O (1 mL) was added. After 5 

min, the crude reaction mixture was warmed to room temperature, filtered through silica with 

diethyl ether (50 mL), and concentrated in vacuo. Purification by flash chromatography (30:1 

hexanes:EtOAc) gave cis-1,2-dideuterioalkene 5 as an oil (167 mg, 65%).  1H NMR (400 

MHz, Chloroform-d) δ 7.45 – 7.41 (m, 2H), 7.40 – 7.38 (m, 4H), 7.37 – 7.30 (m, 3H), 5.25 

(s, 1H), 4.60 – 4.57 (m, 4H). 2D NMR (400 MHz, Chloroform with Chloroform-d reference) 

δ 6,77 (s, 1D), 5.79 (s, 1D). 
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Benzyl-4-tetradecylbenzylether 2.9. To a solution of 9-BBN dimer (60 mg, 0.24 mmol) in 

THF (0.88 mL) was added cis-1,-2-dideuterioalkene 2.5 (100 mg, 0.44). The reaction 

mixture was stirred for 14h to provide alkylborane 2.6 as a 0.5 M solution. In a separate 

reaction vial equipped with a stir bar, Pd(OAc)2 (3 mg, 0.015 mmol), PCy3 (9 mg, 0.030 

mmol), K3PO4•H2O (105 mg, 0.46 mmol) was added. To these solids, alkylborane 2.6 (0.8 

mL, 0.4 mmol) and bromododecane (91 µL, 0.381 mmol) was added. The reaction was 

capped and stirred in the glovebox. After 24h, the crude reaction mixture was filtered through 

silica with diethyl ether (50 mL) and concentrated in vacuo. Purifation by preparative thin 

layer chromatography (40:1 hexanes:EtOAc) provided benzyl-4-tetradecylbenzylether 2.9 as 

an oil (86 mg, 57%).  1H NMR (600 MHz, Chloroform-d) δ 7.40 – 7.33 (m, 4H), 7.29 (m, 

3H), 7.17 (m, 2H), 4.56 (s, 2H), 4.53 (s, 2H), 2.58 (d, J = 6.2 Hz, 1H), 1.58 (m, 1H), 1.26 (s, 

22H), 0.89 (t, J = 7.0 Hz, 3H). 2D NMR (400 MHz, Chloroform with Chloroform-d 

reference) δ 2.59 (s, 1D), 1.59 (s, 1D). 

 

Benzyl-4-tetradecylbenzylether 2.10. To a solution of 9-BBN dimer (60 mg, 0.24 mmol) 

in THF (0.88 mL) was added trans-1,-2-dideuterioalkene 2.7 (100 mg, 0.44). The reaction 

mixture was stirred for 14 h to provide alkylborane 2.8 as a 0.5 M solution. In a separate 

reaction vial equipped with a stir bar, Pd(OAc)2 (3 mg, 0.015 mmol), PCy3 (9 mg, 0.030 

mmol), K3PO4•H2O (105 mg, 0.46 mmol) was added. To these solids, alkylborane 2.8 (0.8 

mL, 0.4 mmol) and bromododecane (91 µL, 0.381 mmol) was added. The reaction was 
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capped and stirred in the glovebox. After 24h, the crude reaction mixture was filtered through 

silica with diethyl ether (50 mL) and concentrated in vacuo. Purifation by preparative thin 

layer chromatography (40:1 hexanes:EtOAc) provided benzyl-4-tetradecylbenzylether 2.10 

as an oil (56 mg, 37%).  1H NMR (600 MHz, Chloroform-d) δ 7.32 – 7.26 (m, 3H), 7.23 – 

7.16 (m, 4H), 7.09 (d, J = 7.7 Hz, 2H), 4.49 (s, 2H), 4.45 (s, 2H), 2.50 (d, J = 9.3 Hz, 1H), 

1.55 – 1.46 (m, 1H), 1.18 (s, 22H), 0.81 (t, J = 6.9 Hz, 3H). 2D NMR (400 MHz, Chloroform 

with Chloroform-d reference) δ 2.59 (s, 1D), 1.59 (s, 1D). 

 

(2,6-Bis[((4R)-(+)-isopropyl-2-oxazolin-2-yl]pyridine)Ni–Br Complex 2.11. The title 

compound was prepared using a modified reported procedure.61 To a solution of 2,6-

Bis[((4R)-(+)-isopropyl-2-oxazolin-2-yl]pyridine (1.65 g, 5.47 mmol) in THF (100 mL) was 

added NiBr2•glyme (844 mg, 2.74 mmol) and Ni(cod)2 (753 mg, 2.74 mmol) sequentially as 

solids providing a midnight purple colored reaction mixture within minutes. After 45 min, 

the reaction mixture was concentrated in vacuo to remove any volatiles and the resultant 

purplish blue solid was filtered and washed with pentane (3 ✕ 20 mL) to yield complex 2.11 

as a purple, fluffy solid (73%). To a solution of a small amount of this solid in THF (2 mL), 

pentane was diffused to give purplish black air-sensitive crystals suitable for X-ray 

diffraction. Compound is paramagnetic. 1H NMR (400 MHz, THF-d8) δ 9.62 (br), 2.37 (br), 

0.35 (br). Anal. Calcd for C17H23BrN3NiO2: C, 46.41; H, 5.27; N, 9.55. Found: C, 46.29; H, 

5.17; N, 9.37.46 
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(2,6-Bis[((4R)-(+)-isopropyl-2-oxazolin-2-yl]pyridine)Ni(Br)2 Complex 2.12. To a 

solution of 2,6-Bis[((4R)-(+)-isopropyl-2-oxazolin-2-yl]pyridine (488 mg, 1.62 mmol) in 

THF (30 mL) was added NiBr2•glyme (500 mg, 1.2 mmol) providing a deep red orange 

colored reaction mixture within minutes. After 5 h, the deep red reaction mixture was filtered 

through celite to remove any insoluble material and concentrated in vacuo until a solid began 

to precipitate. This mixture was transferred to a 20 mL scintillation vial with a minimal 

amount of THF such that all the remaining solid went into solution. The 20 mL vial was 

placed in a large jar with pentane and capped, and yielded deep orange crystals of complex 

2.12 (691 mg, 82%) overnight. These crystals were suitable for x-ray diffraction and turned 

green within a period of hours. Compound is paramagnetic. 1H NMR (400 MHz, THF-d8) δ 

66.5 (s, 2H), 37.54 (s, 2H), 17.33 (s, 3H), 11.92 (s, 2H), 8.58 (s, 2H), 4.72 (s, 6H), 4.18 (s, 

6H). Anal. Calcd for C17H23Br2N3NiO2: C, 39.27; H, 4.46; N, 8.08. Found: C, 39.36; H, 4.53; 

N, 8.15.46 
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(2,6-Bis[((4R)-(+)-isopropyl-2-oxazolin-2-yl]pyridine) 2.17.  

Preparation of Alkylborate.  The alkylborate was prepared using a modified reported 

procedure. To a mixture of KOt-Bu (144 mg, 1.28 mmol) and iBuOH (195 μL, 2.11 mmol) 

in an 8 mL vial, the alkylborane (1.6mL, 1.0 M stock solution in iPr2O) and THF (1.8 mL) 

was added. The reaction mixture was stirred for 30 min at ambient temperature, providing 

the alkylborate as a 0.45 M solution in a mixture of iPr2O and THF, which was used without 

further purification.   

Synthesis of 2.17. To a solution of (R)-iPrPybox NiBr (500 mg, 1.14 mmol) in benzene (12.5 

mL), was added the alkylborate (3.28 mL, 0.45 M in THF and iPr2O). The reaction was 

stirred vigorously for 2 min at ambient temperature. The crude mixture was filtered through 

celite and concentrated providing 2.17 as a brown solid (414 mg, 66% yield). *Note that a 

solution of complex 2.17 is not stable at ambient temperature for extended periods of time. 

The solid should be stored at –35 °C.  

Synthesis of X-ray Quality Crystals of 2.17. To a solution of (R)-iPrPybox NiBr (80 mg, 

0.182 mmol) in benzene (2 mL), was added the alkylborate (525 μL, 0.45 M in THF and 

iPr2O). The reaction was stirred vigorously for 2 min at ambient temperature. The crude 

mixture was filtered through celite at –78 °C in the glovebox coldwell. Diffusion of 

tetramethylsilane to this toluene solution of complex 2.17 at –35 °C for 24h provided brown 

crystals suitable for x-ray diffraction.  
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Preparation of Alkylborane Precursor.  

 

2-allylisoindoline-1,3-dione. The title compound was prepared according to a reported 

procedure from allyl bromide and phthalimide.62 The product was obtained as white needles 

(92% yield).  

Alkylborane 2.16. The title compound was prepared according to a reported procedure using 

2-allylisoindoline-1,3-dione and 9-BBN dimer.15 The product was obtained as a 1M stock 

solution in iPr2O.   

Preparation of Cross-Coupling Partners 

These procedures have not been optimized. 

 

1-bromoindane. The title compound was prepared according to a reported procedure from 

1-indanol.29 The product was obtained as a clear yellow oil (95% yield). 

1H NMR (500 MHz, Chloroform-d) δ 7.48 – 7.46 (m, 1H), 7.31-7.25 (m, 3H), 5.63 (dd, J = 

2.4, 6.1 Hz, 1H), 3.27–3.19 (m, 1H), 2.96-2.89 (m, 1H), 2.67-2.53 (m, 2H). 
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5-fluoroindan-1-ol. The title compound was prepared according to a reported procedure 

from 5-fluoro-1-indanone.29 The product was obtained as faint yellow crystals (85% yield). 

1H NMR (500 MHz, Chloroform-d) δ 7.38 – 7.31 (m, 1H), 6.92 (m, J = 9.2, 6.9, 2.1, 1.2 

Hz, 2H), 5.21 (q, J = 6.4 Hz, 1H), 3.10–3.00 (m, 1H), 2.81 (dddd, J = 16.2, 8.6, 6.3, 1.0 

Hz, 1H), 2.51 (dddd, J = 13.4, 8.4, 6.8, 5.1 Hz, 1H), 1.98 (dddd, J = 13.4, 8.5, 6.3, 5.0 Hz, 

1H), 1.73 (dt, J = 6.8, 1.2 Hz, 1H).  

 

1-bromo-5-fluoroindane 2.13. 5-fluoroindan-1-ol (3.87 g, 25.5 mmol) was suspended in 

Et2O (30 mL) in an oven-dried flask under nitrogen and cooled to –5 °C. A solution of PBr3 

(1.2 mL, 12.7 mmol) in Et2O (9 mL) was added dropwise over 15 min by syringe. The 

reaction mixture was allowed to stir at –5 °C for 1 h. After 1 h, the reaction was quenched 

by the addition of icy water. The biphasic solution was transferred to a separatory funnel and 

the aqueous layer was extracted with Et2O (3 ✕ 50 mL) at low temperature. The combined 

organic layers were washed with icy H2O (30 mL) and icy NaHCO3 (30 mL) at low 

temperature, dried using MgSO4, and concentrated in vacuo at room temperature. The 

resultant oil was filtered through a cotton pipette plug to provide the product as a clear faint 

yellow oil (78% yield) and used without further purification. 1H NMR (300 MHz, 

Chloroform-d) δ 7.38 (dd, J = 8.1, 5.2 Hz, 1H), 6.93 (ddt, J = 9.5, 8.4, 1.3 Hz, 2H), 5.56 (dd, 
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J = 6.1, 2.3 Hz, 1H), 3.27 – 3.11 (m, 1H), 2.88 (ddd, J = 16.4, 7.4, 2.9 Hz, 1H), 2.72 – 2.46 

(m, 2H). 

 

6-methoxyindan-1-ol. The title compound was prepared according to a reported procedure 

from 6-methoxy-1-indanone.29 The product was obtained as a clear colourless oil (92% 

yield). 

1H NMR (300 MHz, Chloroform-d) δ 7.35 – 7.28 (m, 1H), 6.85 – 6.74 (m, 2H), 5.20 (q, J 

= 6.5 Hz, 1H), 3.80 (s, 3H), 3.15 – 2.95 (m, 1H), 2.89 – 2.69 (m, 1H), 2.48 (dddd, J = 

13.6, 8.5, 6.7, 5.4 Hz, 1H), 1.97 (dddd, J = 13.2, 8.5, 5.9, 4.5 Hz, 1H), 1.69 – 1.63 (m, 

1H). 

 

1-bromo-6-methoxyindane 2.18. 6-methoxyindan-1-ol (1.95 g, 11.9 mmol) was suspended 

in Et2O (15 mL) in an oven-dried 40 mL scintillation vial under nitrogen and cooled to –5 

°C. A solution of PBr3 (0.56 mL, 5.94 mmol) in Et2O (8 mL) was added dropwise over 15 

min by syringe. The reaction mixture was allowed to stir at –5 °C for 2 h. After 2 h, the 

reaction was quenched by the addition of icy water. The biphasic solution was transferred to 

a separatory funnel and the aqueous layer was extracted with Et2O (3 ✕ 30 mL) at low 

temperature. The combined organic layers were washed with icy H2O (15 mL) and icy 

NaHCO3 (15 mL) at low temperature, dried using MgSO4, and concentrated in vacuo at room 

temperature. The resultant oil was filtered through a cotton pipette plug to provide the 
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product as a clear faint yellow oil which solidified overnight after being stored at –40 °C 

(86% yield) and used without further purification. 1H NMR (300 MHz, Chloroform-d) δ 7.16 

(m, J = 8.4, 1.3, 0.6 Hz, 1H), 6.95 (dt, J = 2.5, 0.6 Hz, 1H), 6.83 (dd, J = 8.3, 2.5 Hz, 1H), 

5.55 (dd, J = 6.1, 2.5 Hz, 1H), 3.81 (s, 3H), 3.18 – 3.03 (m, 1H), 2.88 – 2.75 (m, 1H), 2.68 – 

2.46 (m, 2H). 

 

1-(3-bromopropyl)-4-methoxybenzene. The title compound was prepared according to a 

reported procedure starting from 3-(4-methoxyphenyl)-1-propanol.63 The product was 

obtained as a clear yellow oil (79%). 1H NMR (300 MHz, Chloroform-d) δ 7.16 – 7.08 (m, 

1H), 6.88 – 6.80 (m, 1H), 3.79 (s, 1H), 3.39 (t, J = 6.6 Hz, 1H), 2.72 (t, J = 7.3 Hz, 1H), 

2.13 (dq, J = 8.2, 6.6 Hz, 1H). 

 

(3-(4-methoxyphenyl)propyl)zinc(II) bromide 2.14. The title compound was prepared 

according to a reported procedure starting from 1-(3-bromopropyl)-4-methoxybenzene 

with the exception that the yield was determined by titration with iodine at room 

temperature.64 The product was obtained as a 1 .5 M stock solution in DMA (94% yield).  
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(3-phenylpropyl)zinc(II) bromide 2.19. The title compound was prepared according to a 

reported procedure starting from 1-bromo-3-phenylpropane1 with the exception that the 

yield was determined by titration with iodine at room temperature.3 The product was 

obtained as a 1.51 M stock solution in DMA (94% yield).  

 

(4-fluorophenethyl)zinc(II) bromide 2.22. The title compound was prepared according to 

a reported procedure starting from 1-(3-bromopropyl)-4-fluorobenzene1 with the exception 

that the yield was determined by titration with iodine at room temperature.3 The product was 

obtained as a 1.92 M stock solution in DMA. 

 

2.8.3 Cross-Coupling Reactions 

Table 2.1. Catalytic Competence of Complexes 2.11 and 2.12. 

Entry 1. In a glovebox, NiBr2glyme (35.3 mg, 0.10 mmol) and 2,6-Bis[((4R)-(+)-isopropyl-

2-oxazolin-2-yl]pyridine (39.2 mg, 0.13 mmol) were suspended in DMA (1.7 mL) in a 4 mL 

vial equipped with a stir bar. The resultant heterogenous orange mixture was capped and 

stirred vigorously. After 15 min, the vial was uncapped and the solution was transferred to a 

second 4 mL vial containing 1-bromo-5-fluoroindane and stir bar. This vial was capped and 

sealed with electrical tape, removed from the glovebox, and placed in a 0 °C bath. After 5 

min, the alkylzinc bromide reagent (1.1 mL, 1.5M) was added via syringe and the top of the 
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vial greased. After 24 h of vigorous stirring at 0 °C, the reaction was quenched with EtOH 

(100 μL). Column chromatography (hexanes  25%DCM) provided the product as a clear 

colourless oil, which slowly solidified overtime at ambient temperature. The second run was 

conducted with 2,6-Bis[((4S)-(–)-isopropyl-2-oxazolin-2-yl]pyridine. 

The ee’s were determined via HPLC using an OJ-H column (eluent: 1% isopropanol in 

hexanes; flow rate: 0.5 mL/min) with tr (major): 47.432 min, tr (minor): 51.745 min: 

1st run: 209 mg (74% yield, 92% ee). 2nd run: 203 mg (71% yield, 92% ee). 

1H NMR (500 MHz, Chloroform-d) δ 7.16 – 7.02 (m, 3H), 6.94 – 6.77 (m, 4H), 3.79 (s, 

3H), 3.11 – 3.02 (m, 1H), 2.88 (ddd, J = 16.2, 8.6, 4.7 Hz, 1H), 2.79 (dt, J = 16.0, 8.0 Hz, 

1H), 2.60 (qdd, J = 13.8, 8.4, 6.8 Hz, 2H), 2.36 – 2.24 (m, 1H), 1.83 (dddd, J = 12.9, 9.3, 

6.6, 4.9 Hz, 1H), 1.76 – 1.61 (m, 3H), 1.49 – 1.35 (m, 1H). 13C NMR (500 MHz, 

Chloroform-d) δ 157.70, 146.13, 142.92, 134.59, 129.25, 124.31, 124.24, 113.72, 113.71, 

112.79, 112.61, 111.39, 111.22, 55.25, 43.95, 35.20, 34.71, 32.50, 31.48, 31.46, 29.66. 

 

Entry 2. Entry 2 was set up in an analogous manner to entry 1, with the exception that no 

additional ligand was added and the (R)-iPrPybox complex 2.11 in DMA provided a 

homogeneous midnight purple solution.  

1st run: 181 mg (64% yield, 90% ee). 2nd run: 188 mg (66% yield, 90% ee). 

1H NMR spectral data matched the data reported above.  

 

Entry 3. Entry 3 was set up in an analogous manner to entry 1, with the exception that no 

additional ligand was added and the (S)-iPrPybox complex 2.12 in DMA provided a 

homogeneous deep orange/red solution.  
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1st run: 200 mg (70% yield, 88% ee). 2nd run: 200 mg (70% yield, 91% ee). 

1H NMR spectral data matched the data reported above. 

 

Scheme 2.6. Catalytic competence of 2.17. 1-bromo-6-methoxyindane 2.18 (1.0 mmol, 1.0 

M stock solution in DMA) was suspended in additional DMA (150 μL) in a 4 mL vial 

equipped with a stir bar, in the glovebox coldwell at –40 °C. To this frozen solution, was 

added (3-phenylpropyl)zinc(II) bromide (1.6 mmol, 1.49 M stock solution in DMA). The 

frozen solution was capped, sealed with electrical tape, and removed from the glovebox. The 

reaction mixture was placed in a 0 °C bath and after 1 min of vigorous stirring, (S)-iPrPybox 

Ni-alkyl complex 2.17 (0.5 mL, 0.2 M stock solution in DMA) was added via syringe and 

the vial cap greased. After 24 h at 0 °C, the reaction was quenched with EtOH (100 μL) and 

tetradecane (260 μL, 1 mmol) was added as an internal standard. Yield was determined by 

GC analysis (referenced to calibrated tetradecane). Column chromatography (1st column: 

hexanes  50%Et2O; 2nd column on product A: hexanes  40%DCM; 2nd column on B: 

hexanes  50%Et2O) provided each product in >98% purity (determined by GC) for ee 

analysis. Both runs were conducted with Ni-alkyl complex bearing (S)-iPrPybox ligand.c  

The ee’s for product A were determined via HPLC using an OD-H column (eluent: 1% 

isopropanol in hexanes; flow rate: 0.5 mL/min) with tr (major): 13.873 min, tr (minor): 15.852 

min.  

                                                 
c As a reference, the parent cross-coupling reaction between 1-bromo-6-methoxyindane 

and (3-phenylpropyl)zinc(II) bromide provided the cross-coupling product in 95% ee.  
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The ee’s for product B were determined via SFC using an OD-H column (eluent: 5% 

methanol in isopropanol; flow rate: 2.5mL/min) with tr (major): 12.743 min, tr (minor) 

13.803 min.   

1st run:  product A: 45% GC yield, 91% ee, product B: 1% GC yield, 88% ee. 2nd run: product 

A: 45% GC yield, 91% ee, product B: 1% GC yield, 90% ee.  

Product A (authentic sample): 

1H NMR (500 MHz, Chloroform-d) δ 7.33 – 7.25 (m, 2H), 7.24 – 7.15 (m, 3H), 7.13 – 

7.07 (m, 1H), 6.75 – 6.67 (m, 2H), 3.79 (s, 3H), 3.14 – 3.04 (m, 1H), 2.84 (ddd, J = 15.0, 

8.5, 4.5 Hz, 1H), 2.79 – 2.60 (m, 3H), 2.28 (dtd, J = 12.4, 7.9, 4.5 Hz, 1H), 1.94 – 1.83 

(m, 1H), 1.82 – 1.63 (m, 3H), 1.52 – 1.40 (m, 1H). 

Product B (authentic sample): 

1H NMR (500 MHz, Chloroform-d) δ 7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 5.5, 3.0 

Hz, 2H), 7.12 – 7.06 (m, 1H), 6.76 – 6.66 (m, 2H), 3.78 (s, 3H), 3.78 – 3.71 (m, 2H), 3.10 

(ddd, J = 12.3, 8.5, 6.3 Hz, 1H), 2.88 – 2.69 (m, 2H), 2.28 (dtd, J = 12.6, 8.0, 4.8 Hz, 

1H), 1.93 – 1.79 (m, 2H), 1.83 – 1.62 (m, 2H), 1.52 – 1.39 (m, 1H). 

13C NMR (126 MHz, Chloroform-d) δ 168.42 , 148.56 , 135.89 , 133.87 , 132.14 , 

124.80, 123.18 , 112.07 , 109.32 , 55.45 , 44.53 , 38.12 , 32.50 , 32.00 , 30.48 , 26.67 . 

 

Scheme 2.7. Stoichiometric reaction between complex 2.17 and 1-bromo-6-

methoxyindane 2.18. In a glovebox, (R)-iPrPybox-2.17 (54.8 mg, 0.10 mmol) was 

suspended in DMA (2.65 mL) in a 4 mL vial equipped with a stir bar. The resultant 

homogeneous brown mixture was capped, sealed with tape, removed from the glovebox, and 

placed in a 0 °C bath. After 3 min, 1-bromo-6-methoxyindane (100 μL, 1.0 M stock in DMA) 
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was added via syringe and the cap greased. After 24 h of vigorous stirring at 0 °C, the reaction 

was quenched with EtOH (100 μL). Column chromatography (hexanes  50%Et2O) 

provided the product as a clear colourless oil, which slowly solidified overtime at ambient 

temperature. The second run was conducted with 2,6-Bis[((4S)-(–)-isopropyl-2-oxazolin-2-

yl]pyridine bound Ni–alkyl. 1st run:  24% GC yield, 93% ee. 2nd run: 23% GC yield, 91% ee. 

 

2.8.4 Spectroscopic Studies of NiBr (2.11) 

Transmetalation of Complex 2.11 with (4-fluorophenethyl)zinc(II) bromide 

EPR Study of Complex 2.11 with (4-fluorophenethyl)zinc(II) bromide. (+)-iPrPybox 

2.11 (400 μL, 0.05 M stock solution in DMA) was suspended in an EPR tube equipped with 

a 14/20 joint, in the glovebox coldwell at 0 °C, and additional DMA (150 μL) was added. To 

this solution, (4-fluorophenethyl)zinc(II) bromide (10.4 μL, 1.92 M stock solution in DMA) 

was added, the EPR tube fitted with a stopcock, removed from the glovebox, and frozen in 

liquid nitrogen for an initial EPR spectrum collected at 77K (above left). The EPR tube was 

then carefully warmed to 0 °C. After 1 h, the EPR tube was again frozen in liquid nitrogen 

and a final EPR spectrum collected at 77K (above right).  

19F NMR Study of Complex 2.11 with (4-fluorophenethyl)zinc(II) bromide 2.22. Ni Br 

(2.11) (316 μL, 0.05 M stock solution in DMA) was suspended in a piercable screw cap 

NMR tube in the glovebox coldwell at –15 °C and additional DMA (520 μL) was added. The 

NMR tube was sealed, removed from the glovebox quickly, wrapped with parafilm, and 

placed in a –15 °C dry ice/acetone bath. An initial NMR timepoint was collected at 0 °C. To 

this solution at –15 °C, the alkylzinc reagent (8.2 μL, 1.92 M stock solution in DMA) was 

quickly added and the top of the NMR cap greased. The NMR tube was rapidly inverted 3 
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times followed by temperature equilibration at –15 °C in a dry ice/acetone bath. After 1 min, 

the NMR tube was quickly put into the NMR probe and data collected at 0 °C.  

 

UV-vis Study of Complex 2.11 with (4-fluorophenethyl)zinc(II) bromide (Figure 2.8). 

(+)-iPrPybox-2.11 (300 μL, 2.6 mM stock solution in DMA) was suspended in a cuvette 

containing DMA (2.7 mL) and a stir bar in the glovebox. The cuvette was fitted with a septum 

cap, removed from the glovebox, and an initial UV-vis spectrum collected at 0 °C. (4-

fluorophenethyl)zinc(II) bromide (20 μL, 39 mM stock solution in DMA) was added in one 

shot via syringe and data collection started. Consumption of the NiBr complex was 

monitored by following the absorbance at 870 nm over time 

Oxidation of complex 2.1-NiBr with electrophiles 

EPR Study of Complex 2.11 with 1-bromoindane. (+)-iPrPybox-2.11 (8.8 mg, 0.02 

mmol) was suspended in DMA (560 μL) in a 4 mL vial, in the glovebox coldwell at -15 °C. 

This resultant midnight purple/blue solution was taken up via syringe and quickly added to 

a vial containing 1-bromoindane (39.4 mg, 0.20 mmol) at -15 °C. The reaction mixture 

turned orange instantaneously. After 1 min, a portion of the reaction mixture was aliquotted 

to an EPR tube equipped with a 14/20 joint. The EPR tube was fitted with a stopcock, 

removed from the glovebox, and frozen in liquid nitrogen to provide the above EPR spectrum 

at 77K. 

1H NMR Study of Complex 2.11 with 1-bromoindane. To a midnight purple solution of 

()-iPrPybox-2.11 in DMA (200 μL), 1-bromoindane (39.4 mg, 0.20 mmol) in C6D6 (500 

μL) was added at ambient temperature. The reaction mixture turned orange instantaneously.  
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GC Study of Complex 2.11 with 1-bromoindane. To a 4 mL vial containing 1-

bromoindane (39.4 mg, 0.20 mmol), a midnight purple solution of ()-iPrPybox-2.11 in 

DMA (500 μL) was added at ambient temperature. The reaction mixture turned orange 

instantaneously and was filtered through an acrodisc. The reaction vessel was removed from 

the glovebox, diluted with EtOAc, and the organic product distribution subjected to GC 

analysis.  

 

UV-Vis Study of Complex 2.11 with 1-bromo-5-fluoroindane (Figure 2.9). (+)-

iPrPybox-2.11 (300 μL, 2.6 mM stock solution in DMA) was suspended in a cuvette 

containing DMA (2.7 mL) and a stir bar in the glovebox. The cuvette was fitted with a septum 

cap, removed from the glovebox, and an initial UV-vis spectrum collected at 0 °C. 1-bromo-

5-fluoroindane 2.13 (20 μL, 39 mM stock solution in DMA) was added in one shot via 

syringe and data collection started. Consumption of the NiBr complex was monitored by 

following the absorbance at 870 nm over time 

UV-Vis Study of Complex 2.11 with cyclopentyl bromide (Figure 2.10). (+)-iPrPybox-

2.11 (300 μL, 2.6 mM stock solution in DMA) was suspended in a cuvette containing DMA 

(2.7 mL) and a stir bar in the glovebox. The cuvette was fitted with a septum cap, removed 

from the glovebox, and an initial UV-vis spectrum collected at 0 °C. Cyclopentyl bromide 

(20 μL, 39 mM stock solution in DMA) was added in one shot via syringe and data collection 

started. Consumption of the NiBr complex was monitored by following the absorbance at 

870 nm over time 
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2.8.5 Miscellaneous EPR Studies 

Figure 2.11 (a). 77K EPR experiment of 2.12 and (3-(4-methoxyphenyl)propyl)zinc(II) 

bromide 2.14 in DMA (Stoichiometric reaction). 2.12 (10.4 mg, 0.02 mmol) was 

suspended in DMA (540 µL) in an EPR tube equipped with a 14/20 joint in the glovebox 

coldwell at –15 °C. 2.14 (13 µL, 1.57 M in DMA) was added. After 2 min, the EPR tube was 

sealed with a stopcock, removed quickly from the glovebox, carefully placed in a liquid 

nitrogen bath, and a 77K EPR spectrum collected. Experimental parameters; Microwave 

power, 2.046 mW; microwave frequency, 9.398 GHz; modulation amplitude, 2 G; gain, 

5020; time constant, 40.960. 

 

Figure 2.11 (b). 77K EPR experiment of 2.12 and (3-(4-methoxyphenyl)propyl)zinc(II) 

bromide 2.14 in DMA (simulating catalytic conditions). 2.12 (10.4 mg, 0.02 mmol) was 

suspended in DMA (345 µL) in an EPR tube equipped with a 14/20 joint in the glovebox 

coldwell at –15 °C. 2.14 (205 µL, 1.57 M in DMA) was added. After 2 min, the EPR tube 

was sealed with a stopcock, removed quickly from the glovebox, carefully placed in a liquid 

nitrogen bath, and a 77K EPR spectrum collected. Experimental parameters; Microwave 

power, 2.041 mW; microwave frequency, 9.400 GHz; modulation amplitude, 2 G; gain, 

5020; time constant, 40.960. 

 

General procedure for cross-coupling reactions monitored by EPR (Figure 2.12, a–c): 

Ni catalyst (0.02 mmol) [and ligand (7.8 mg, 0.026 mmol) when applicable] was suspended 

in DMA (345 µL) in a 4 mL vial in the glovebox coldwell at –15 °C. This solution was added 
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to a 4 mL vial containing 2.13 (43.0 mg, 0.20 mmol) equipped with a stirbar. The resultant 

mixture was removed from the coldwell and stirred at ambient temperature for 2 min. The 

reaction mixture was then rechilled in the glovebox coldwell at  –15 °C and the alkylzinc 

reagent 2.14 (205 µL, 1.57 M in DMA) was added. After 25 min, a portion of the reaction 

was aliquoted to an EPR tube containing a 14/20 joint, sealed with a stopcock, removed 

quickly from the glovebox, carefully placed in a liquid nitrogen bath, and a 77K EPR 

spectrum collected. (a) Experimental parameters; Microwave power, 2.041 mW; microwave 

frequency, 9.398 GHz; modulation amplitude, 2 G; gain, 5020; time constant, 40.960. (b) 

Experimental parameters; Microwave power, 2.036 mW; microwave frequency, 9.399 GHz; 

modulation amplitude, 2 G; gain, 5020; time constant, 40.960. (c) Experimental parameters; 

Microwave power, 2.041 mW; microwave frequency, 9.397 GHz; modulation amplitude, 2 

G; gain, 5020; time constant, 40.960. 

 

77K EPR experiment of Ni-Alkyl (2.17) and Umemoto’s Reagent (Figure 2.13). To a 

solution of complex 2.17 (40.0 mg, 0.073 mmol) in benzene (1.5 mL) was added Umemoto’s 

reagent (80 µL, 1.0 M in DMA). After 1 min, the crude reaction mixture was filtered through 

celite, and the benzene lyophilized. The resultant red oil was taken up in toluene and 

aliquoted to an EPR tube equipped with a 14/20 joint, sealed with a stopcock, removed 

quickly from the glovebox, and carefully placed in a liquid nitrogen bath, after which a 77K 

EPR spectrum was collected. Experimental parameters; Microwave power, 2.051 mW; 

microwave frequency, 9.396 GHz; modulation amplitude, 2 G; gain, 5020; time constant, 

40.960.  
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C h a p t e r  3  

N2-TO-NH3 CONVERSION BY A TRIPHOS-IRON CATALYST AND 
ENHANCED TURNOVER UNDER PHOTOLYSIS 

Buscagan, T. M. et al. (2017). “N2-to-NH3 Conversion by a Triphos-Iron Catalyst and 
Enhanced Turnover Under Photolysis”. In: Angew. Chem. Int. Ed. 2017, 56, 6921–6926. 
doi: 10.1042/BJ20150183. Some additional unpublished work is included herein.  
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3.1 Introduction 

Bridging iron hydrides are proposed to form at the active site of MoFe-nitrogenase 

during catalytic dinitrogen reduction to ammonia and may be key in the binding and 

activation of N2 via reductive elimination of H2. This possibility inspires the investigation 

of well-defined molecular iron hydrides as precursors for catalytic N2-to-NH3 conversion. 

Herein, we describe the synthesis and characterization of new P2
PPhFe(N2)(H)x systems that 

are active for catalytic N2-to-NH3 conversion. Most interestingly, we show that the yields 

of ammonia can be significantly increased if the catalysis is performed in the presence of 

mercury lamp irradiation. Evidence is provided to suggest that photo-elimination of H2 is 

one means by which the enhanced activity may arise.  

Biological nitrogen reduction is catalyzed by nitrogenase enzymes and the active site 

of the most well-studied MoFe-nitrogenase, the FeMo-cofactor (FeMoco), contains seven 

iron centers and one molybdenum center (Figure 3.1, top).1-3 Interest in understanding the 

mechanism/s of biological nitrogen fixation has inspired many biochemical,4-6 

spectroscopic,7-8 theoretical,9 and synthetic model studies.10-20 While a wealth of insight has 

been gained, a detailed atomic level understanding of biological nitrogen fixation is yet to 

be resolved. 
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Figure 3.1. (Top) The FeMoco active site of MoFe-nitrogenase.6 (Bottom) Conversion of a 

proposed E4(4H) intermediate state of FeMoco to an activated E4 state with N2 bound.21 

 

Iron is the only metal present in all three of the known nitrogenases (MoFe-, VFe-, 

FeFe-nitrogenase) and heterogeneous iron catalysts are among the most common in the 

industrial Haber-Bosch process.22 These facts have motivated our group and others to 

develop single (or multiple) site Fe complexes that can bind and activate 

dinitrogen.15,17,18,23-27 To this end, we have reported the catalytic reduction of nitrogen to 

ammonia using Fe complexes supported by a tetradentate P3
E ligand scaffold (E = B, C, or 

Si).17, 20, 28-32 Using the P3
BFe catalyst, significant turnover to generate NH3 has been 

demonstrated.20,32 Other Fe systems supported by carbene and phosphine ligands have also 

shown efficacy for catalytic N2-to-NH3 conversion in recent reports.15,18 Freeze quench 

57Fe Mössbauer spectroscopic studies of a catalytic reaction using our P3
BFe(N2)- system 
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have shown that a significant amount of the iron is tied up as an iron hydride-borohydride 

complex, (P3
B)(-H)Fe(N2)(H), believed to be an off-path state of the system;20 this species 

can presumably convert back to an on-path P3
BFe(N2){0,1-} species via formal H2 loss under 

turnover conditions. 

 

 

Scheme 3.1. Reductive elimination of H2 from a polyphosphine iron complex in the 

presence of N2 and sunlight leads to an activated Fe(N2) complex.36-39 

Bridging hydride ligands have been proposed to accumulate at the FeMoco under 

turnover conditions (“E4(4H) state”, Figure 3.1, bottom) and may be key in the binding and 

activation of N2 via reductive elimination of H2.
 3,21,33-35a

 Recently, photochemically 

induced loss of H2 from a presumed E4 state of the FeMoco has been suggested.35 The 

likelihood that M-H species may serve as common intermediates and/or side products of 

catalytic nitrogen fixation,21 motivates further studies of iron hydrides using well-defined 

molecular systems that fix N2. In this latter context, molecular Fe(H)x complexes bearing 

terminal hydride ligands have been reported to undergo photosubstitution of N2 with 

concomitant release of H2 (Scheme 3.1).36-38 In addition, Fe(H)x (x = 2 or 3) complexes are 

known that readily lose H2 upon exposure to N2.36, 39-40 
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To expand the structural diversity of synthetic iron hydride catalysts capable of catalytic 

N2-to-NH3 conversion,15,17,18,20 we targeted a triphosphine ligand that supports reactive 

Fe(N2)(H)x fragments. Herein, we report the synthesis of a dinuclear [FeI(H)]2(-N2) 

complex supported by a trisphosphine ligand, P2
 PPh (Figure 3.2), that is a catalyst for N2-to-

NH3 conversion in the presence of [H(OEt2)2][BArF
4] (HBArF

4, BArF
4 = tetrakis(3,5-

bis(trifluoromethyl)phenyl)borate) and potassium graphite (KC8). Of primary interest is that 

significantly enhanced ammonia yields (as much as ~180% increase) are observed under Hg 

lamp irradiation. Based on this observation, we also examine the previously reported, 

P3
BFe(N2)- catalyst system (Figure 3.2)17,20 and show that it too gives significantly higher 

catalytic turnover (by ~50%) under Hg lamp photolysis. 

 

 

Figure 3.2. The new diiron(I)--N2 catalyst (left) and previously reported P3
BFe(N2)- provide 

higher yields of ammonia under Hg lamp photolysis.  
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3.2 Results and Discussion 

3.2.1 Synthesis of Fe(N2)(H)x Complexes Supported by a Novel P2
PPh Ligand 

Synthesis of P2
PPhFe complexes. P2

PPh (3.1) was synthesized by the addition of phenyl 

Grignard to the known bis(o-diisopropylphosphino-phenyl)-chlorophosphine41 and exhibits 

two overlapping doublets centered at  = -2.2 ppm and two overlapping triplets at δ = -14.3 

ppm by 31P NMR spectroscopy, suggesting a mixture of rotamers. Complexation of 3.1 with 

one equivalent of FeBr2 yielded paramagnetic P2
PPhFeBr2 3.2 as a purple-black crystalline 

solid (87% yield, Scheme 3.2). The solid-state structure of 3.2-FeBr2 shows a distorted 

trigonal bipyramidal geometry at iron with τ5 = 0.54 (see appendix).42 The solution 

magnetism of 3.2-FeBr2 indicates spin equilibria, with solution magnetic moments of 3.40μB 

at 200 K and 4.29μB at 328 K. The 57FeCl2 complex (3.2-57FeCl2) was analogously 

synthesized and exhibits similar solution magnetism. The solid-state Mӧssbauer spectrum of 

the 57FeCl2 complex was collected (see appendix) and gives rise to two quadrupole doublets: 

a minor S = 2 species ( = 0.85 mm s-1 and EQ = 2.74 mm s-1) and a major S = 1 component 

( = 0.53 mm s-1 and EQ = 0.62 mm s-1).  



70 
 

 

Scheme 3.2. Synthesis of Fe complexes discussed herein.  

 

 [P2
PPhFe(H)]2(μ-N2) synthesis and characterization. Treatment of 3.2-FeBr2 with two 

equivalents of NaHBEt3 in THF at low temperature under an N2 atmosphere provided the 

diamagnetic, diiron(I) species [P2
PPhFe(H)]2(μ-N2) 3.3 as a green-black crystalline solid (64% 

yield, Scheme 3.2). The solid-state structure of 3.3 shows end-on N2 binding between the 

two iron centers (N-N distance of 1.15 Å; Figure 3.3a). While the hydride ligands (one 

hydride ligand per Fe center) could not be located in the Fourier difference map, their 

presence was confirmed by IR spectroscopy. The Fe-D analogue, 3.3D, was synthesized 

using LiDBEt3 in toluene. Infrared spectra of solid 3.3 and 3.3D exhibit expected peak shifts 

in the Fe-H(D) vibrations from 1833 and 1734 cm-1 for 3.3 to 1324 cm-1 and 1256 cm-1 for 
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3.3D (see appendix), consistent with the predicted values calculated from a simple harmonic 

oscillator model (1309 cm-1 and 1237 cm-1). While 3.3 does not feature a rigorous inversion 

center in the solid state, its (NN) vibration is expected to be very weak and is not discernable 

in the recorded IR spectra. Additional evidence for the presence of the hydride ligands was 

gained by treatment of 3.3 with two equiv of methyl triflate, which led to the formation of 

methane in 97% yield as measured by gas chromatography (GC).  

 Dinuclear 3.3 populates a low spin singlet ground state, as discerned by the 1H NMR 

spectrum (see appendix), presumably due to antiferromagnetic exchange between two S = 

1/2 centers. This scenario contrasts that of a related diiron(I) linear-N2-bridged system 

supported by tris(phosphine)borate ligands ([PhBP3]Fe)2(-N2), where the ground spin state 

is instead S = 3 from weak ferromagnetic coupling between two S = 3/2 centers.43 The local 

low spin environment of each iron center in 3.3 is derived from the presence of a strong-field 

hydride ligand and its 5-coordinate environment. The Fe-P distances in 3.3 are notably 

shorter (Fe-Pavg = 2.16 Å) than those in high spin ([PhBP3]Fe)2(-N2) (ranging from 2.34 to 

2.39 Å), reflecting its low spin iron centers. 
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Figure 3.3. (a) X-ray structure of 3.3 with displacement ellipsoids shown at 50% 

probability (solvent and second dinuclear Fe molecule not shown; minor component of 

disordered isopropyl groups omitted for clarity). (b) The 80 K, 50 mT solid-state 57Fe 

Mössbauer spectrum of 3.3. Data represented by black points, simulation represented by 

purple line. (c) The 80 K, 50 mT 57Fe Mössbauer spectrum of a 2-MeTHF solution of 3.3. 

Major S = 0 component represented with a blue line, and minor S = 1/2 component 

represented by a yellow line. (d) X-band Continuous Wave (CW) EPR spectra (black) of 

3.4 (top trace) and 3.4D (bottom trace) in 2-MeTHF with simulations of each (red).  
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Whereas the 80 K solid-state Mӧssbauer spectrum of 3.3 in a parallel magnetic field 

(50 mT) shows only one quadrupole doublet ( = 0.15 mm s-1 and EQ = 0.78 mm s-1), 

consistent with a single S = 0 species (Figure 3.3b), a Mӧssbauer spectrum of 3.3 obtained 

as a 2-MeTHF glass instead shows the clear presence of two distinct quadrupole doublets 

in approximately a 95:5 ratio. The major component is fit satisfactorily with parameters for 

3.3 ( = 0.15 mm s-1 and EQ = 0.80 mm s-1). The minor component is fit with the 

parameters  = 0.34 mm s-1 and EQ = 2.25 mm s-1, similar to S = 1/2 phosphine-iron 

compounds we have previously characterized (Figure 3.3c).20 The 77 K X-band EPR 

spectrum of 3.3 in 2-MeTHF confirms the presence of a Kramer’s doublet signal, consistent 

with the presence of a low spin S = 1/2 species [P2
PPhFe(N2)(H)] (Figure 3.3d). These data 

suggest that, in solution under nitrogen, dinuclear 3.3 partially dissociates into two 

[P2
PPhFe(N2)(H)] species, 3.4 (Scheme 3.2). 

 To confirm the identity of the minor S = 1/2 solution component 3.4, we performed 

Q-band (33.7 GHz) Davies ENDOR on 2-MeTHF solutions of both 3.3 and the isotoplogue 

3.3D (see appendix). This study confirms the presence of two 31P nuclei with similar 

hyperfine couplings (31P1 A = [70 70 62] MHz, 31P2  A = [76 76 66] MHz) in addition to 

a third, more strongly coupled 31P nucleus (31P3 A = [142 144 158] MHz). A large 1H 

coupling (1H A = [18 64 52] MHz), consistent with a metal-bound hydride, is observed in 

the natural abundance sample and is of greatly reduced intensity in the sample containing 

the 3.4D isotopologue (Figure 3.4a). Davies ENDOR was also acquired using pulse 

parameters optimized for detection of deuterium hyperfine couplings, and here only the 

3.4D sample shows 2D ENDOR signals from a bound deuteride (Figure 3.4b), which are 
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well simulated by simply scaling the 1H hyperfine values for the hydride by the 

gyromagnetic ratios of 2D and 1H (γ ൌ gn(2D)/gn(1H) = 0.1535). The X-band CW EPR 

(Figure 3.3d) and Q-band electron spin-echo detected EPR (ESE-EPR) (see appendix) of 

3.4 and 3.4D in 2-MeTHF are well-simulated using the 31P, 1H and 2D hyperfine values 

determined from the ENDOR spectra with g = [2.0980 2.0900 2.0019]. 

 

Figure 3.4. ENDOR spectra of 3.4 and 3.4D in 2-MeTHF: (a) Comparison of field-

dependent Q-band 1H Davies ENDOR of 3.4 (black) and 3.4D (blue). (b) Comparison of 

field-dependent Q-band 2D Davies ENDOR of 3 (black) and 3-D (blue). 
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3.2.2 Catalytic N2-to-NH3 Reduction with Light Enhancement 

Table 3.1. Catalytic dinitrogen reduction to ammonia with synthetic iron complexes.[a] 

 

 Variation HBArF
4 

(equiv) 
KC8  

(equiv) 
Mean ± SD  
(equiv NH3) 

1 None 300 360 7.5 ± 0.8 
2[b] Overnight 300 360 8.7 ± 0.7 
3 Hg Lamp 300 360 18.1 ± 0.8 
4[b] Blue LED 300 360 21.3 ± 0.4 
5[b] P2

PPh, no Fe  150 180 <0.1 
6[b] P2

PPh, no Fe, Hg Lamp 150 180 <0.1 
7[b] 2-MeTHF instead of Et2O 300 360 0.5 ± 0.3 
8 None 3000 3600 24.5 ± 1.2 
9 Hg Lamp 3000 3600 66.7 ± 4.4 
10[b] 3.5 instead of 3.3  150 180 2.6 ± 0.1  
11[b] 3.5 instead of 3.3, Hg Lamp 150 180 8.9 ± 0.9  
12 P3

BFe(N2)- instead of 3.3 1500 1800 60.0 ± 3.7 
13 P3

BFe(N2)- instead of 3.3, Hg Lamp 1500 1800 88.1 ± 8.0 
14[b,c] (P3

B)(-H)Fe(N2)(H) instead of 3.3 150 180 6.0 ± 0.3 
15[b,c] (P3

B)(-H)Fe(N2)(H) instead of 3.3, Hg lamp 150 180 8.5 ± 1.0 
[a] All entries are an average of 3 runs unless otherwise noted.  
[b] average of 2 runs  
[c] Hydrazine was also detected (see main text).  
Note: Ammonia yields are reported per complex. 

 

Catalysis. Using HBArF
4 as the acid and KC8 as the reductant, [P2

PPhFe(H)]2(μ-N2) catalyzed 

the reduction of N2 to NH3 at -78 °C in Et2O and achieved turnovers of 7.5 ± 0.8  equivalents 

of NH3 per complex in the presence of 300 equiv acid and 360 equiv reductant (150 and 180 

equiv per Fe, respectively; Table 3.1, entry 1). Allowing the reaction to stir longer did not 

lead to an increase in yield (entry 2). These results establish catalytic turnover for this new 

iron catalyst system; its efficiency is not as high as for the P3
BFe(N2)- catalyst, where the 
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presence of substantially less acid/reductant was needed to achieve a similar amount of NH3. 

We wondered whether light might improve the yield of ammonia, and employed a Hg lamp 

to test this possibility. We reasoned that photolysis during catalysis might enhance the break-

up of [P2
PPhFe(H)]2(μ-N2) to a more catalytically active state, for example the 

[P2
PPhFe(N2)(H)] monomer discussed above, and/or might cause H2 elimination from less 

active states, such as the dihydride complex P2
PPhFe(N2)(H)2 3.5 that is discussed below. We 

were gratified to observe that significantly more ammonia was formed (18.1 ± 0.8 equiv 

NH3; ~140% improvement in overall yield at the same loading) under Hg lamp photolysis 

conditions (entry 3). The catalysis was also enhanced in the presence of a Blue LED (21.3 ± 

0.4 equiv NH3, entry 4).  When the reaction was performed with the P2
PPh ligand and no Fe 

(entries 5 and 6), no NH3 was detected regardless of mercury lamp photolysis. The effect of 

photolysis was more pronounced at higher loadings of HBArF
4 and KC8; 3000 equiv acid 

and 3600 equiv reductant led to 66.7 ± 4.4 equiv NH3 generated, compared to only 24.5 ± 

1.2 equivalents in the absence of photolysis (entries 8 and 9). This correlates to ~180% 

improvement in NH3 yield in the presence of mercury lamp irradiation.  

 

3.2.3 Preliminary Mechanistic Investigations 

To discern what types of iron species might be formed under conditions relevant to the 

overall catalysis, an analysis of the Fe-containing products after 3.3 was exposed to 10 equiv 

of acid and 12 equiv of reductant was undertaken and revealed the formation of the dihydride 

P2
PPhFe(N2)(H)2 3.5 (93% yield based on 31P integration) by NMR and IR spectroscopies 

(Scheme 3.2). The data for 3.5 show a strong N2 vibration at 2071 cm-1 (IR) and two hydride 
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resonances in the 1H NMR spectrum at  -8.87 and -20.5 ppm in C6D6. The presence of two 

phosphine resonances in the 31P NMR spectrum ( = 119 and 110 ppm) indicate that the 

iPr2P- donors are related by symmetry. A structure consistent with these data features a 

hydride ligand that bisects the two iPr2P-donors, trans to the N2 ligand, and another hydride 

ligand trans to the central phosphine donor of the chelated tris(phosphine) ligand. The 

conversion of 3.3 to 3.5 can be rationalized by the presence of proton and electron equivalents 

under N2 as 3.3 and 3.5 differ by an H-atom, along with binding of an additional equiv of N2. 

Although multiple pathways can be proposed to describe the conversion of dinuclear 3.3 to 

dihydride 3.5, one pathway includes the reduction of 3.3 to two equiv of anionic 

[P2
PPhFe(N2)(H)]- in the presence of excess KC8 (see appendix). The X-ray structure of the 

sodium analogue is shown in Figure 3.5. Protonation of this anion would lead to 3.5.  

 

Figure 3.5. X-ray crystal structure of [P2
PPhFe(N2)(H)]Na anion.a  

                                                 
a Unpublished work. 
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Dihydride 3.5 can be independently synthesized and characterized in solution. Exposure 

of a degassed THF solution of 3.3 to H2, followed by re-exposure to N2, provides 3.5 in good 

yield as determined by NMR spectroscopy. The 80 K, solid-state Mӧssbauer spectrum of a 

2-MeTHF solution of 3.5 shows one quadrupole doublet with parameters  = 0.05 mm s-1 

and EQ = 0.45 mm s-1 (see appendix). When 3.5 was subjected to the catalytic conditions 

(150 equiv of HBArF
4 and 180 equiv of KC8), 2.6 ± 0.1 equiv of ammonia were detected 

(entry 10). A greater than 3-fold increase in yield (8.9 ± 0.9 equiv NH3) was observed when 

the catalysis was instead performed in the presence of Hg-lamp irradiation (entry 11), 

suggesting that light-induced H2 elimination may expose a more catalytically active state of 

the system, for example by liberating “P2
PPhFe0(N2)’’. 

 

 

Scheme 3.3. Possible roles for light in catalysis: photodissociation of dinuclear 3.3 to a 

monomer (top) and/or reductive elimination of H2 from dihydride 3.5 (bottom).   

 

To probe whether light might facilitate the break-up of [P2
PPhFe(H)]2(μ-N2) 3.3 to 

monomeric P2
PPhFe(N2)(H) 3.4 (Scheme 3.3, top), a THF solution of 3.3 was exposed to Hg 

lamp photolysis at -78 C in an EPR tube. After 10 minutes of photolysis, the tube was freeze-

quenched at 77 K and its X-band EPR spectrum was acquired. The intensity of the S = 1/2 

signal increased, but by a barely discernable amount over time (see appendix). Given that 
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there is appreciable break-up of 3.3 to 3.4 in solution under N2 in the absence of photolysis 

(vide supra), a photodissociation pathway of 3.3 (Scheme 3.3) seems unlikely to be the 

source of the enhanced NH3 yields under photolysis given how little the signal of 3.4 

increases under irradiation.  

 

Figure 3.6. The 80 K, 0 mT, 57Fe Mössbauer spectra of dihydride 3.5; data is represented 

with black points, simulation in green, major component in orange, and minor component in 

blue (a) pre-photolysis, (b) after 10 minutes, (c) after 1 hour, and (d) after 4 hours of 

photolysis at 77K in 2-MeTHF.  

 

Given the propensity of Fe(H)2 species to undergo photoinduced reductive 

elimination of H2 (e.g., Scheme 3.1 and Scheme 3.3, bottom) we also subjected a yellow 

toluene-d8 solution of purified dihydride 3.5 in an NMR tube to Hg lamp photolysis.  After 

1 hour of photolysis, the yellow solution color of 3.5 had undergone a marked color change 
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to deep red (see appendix for a comparison), demonstrating appreciable photoinstability. To 

further discern the nature of this species, an EPR spectrum of a photolyzed sample of 3.5 in 

2-MeTHF was acquired and no S = 1/2 signal was observed (see appendix).b Finally, 

Mössbauer data was acquired and revealed the growth of a second species with parameters 

most consistent with an S = 1 species (Figure 3.6).b While we do not know the photo-

generated product/s, we speculate “P2
PPhFe0(N2)’’ is one plausible candidate (Scheme 3.3).  

 

Figure 3.7. Hydride region of 1H NMR spectrum of a toluene-d8 solution of (P3
B)(-

H)Fe(N2)(H) pre-photolysis (bottom) and after 10 minutes of Hg lamp photolysis at -78 C 

(top). The proton(s) corresponding to the 1H resonance are depicted in red and are underlined. 

 

A similar experiment using the aforementioned hydride/borohydride complex (P3
B)(-

H)Fe(N2)(H), observed during catalysis with P3
BFe(N2)- by freeze quenched Mössbauer 

studies,20  provided more tractable spectroscopic results. Thus, a toluene-d8 solution of 

(P3
B)(-H)Fe(N2)(H) was subjected to mercury lamp photolysis at -78 C in an NMR tube, 

                                                 
b Unpublished work. 
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leading to the formation of P3
BFe(N2) and (P3

B)(-H)Fe(H2)(H), as discerned by 1H NMR 

spectroscopy (Figure 3.7). This observation can be explained as follows: Reductive 

elimination of H2 from (P3
B)(-H)Fe(N2)(H) can form P3

BFe(N2). Remaining (P3
B)(-

H)Fe(N2)(H) may then undergo H2 for N2 substitution to generate known (P3
B)(-

H)Fe(H2)(H). These observations suggest that an irradiation strategy may also lead to 

increased NH3 catalysis efficiency by P3
BFe(N2)-. Accordingly, at high acid and reductant 

loadings, a substantial increase in the equivalents of ammonia was observed, with up to 94 

equiv of ammonia being detected (88.1 ± 8.0 with light versus 60.0 ± 3.7 with no light, entries 

12 and 13). We also performed the catalysis using (P3
B)(-H)Fe(N2)(H) and found that more 

ammonia was generated in the presence of light (entries 14 and 15); in addition, hydrazine 

was detected, 3.5 ± 1.0 with light versus 0.7 ± 0.4 with no light.c  

3.3 Conclusions 

We have synthesized and characterized a new diiron(I) [P2
PPhFe(H)]2(μ-N2) complex 

that is active for catalytic N2-to-NH3 conversion. This species partially dissociates into an S 

= ½ [P2
PPhFe(N2)(H)] species in solution under N2, as established by  Mӧssbauer, EPR, and 

ENDOR spectroscopies. A monomeric dihydride complex, P2
PPhFe(N2)(H)2, forms under 

conditions that model the catalysis, and its N2-to-NH3 conversion activity is also enhanced 

under photolysis, consistent with its observed photoinstability. These observations lead us to 

speculate that photoinduced release of H2 is beneficial to the catalysis, perhaps via generation 

of “P2
PPhFe0(N2)’’. While mechanistic studies are needed to explore this hypothesis further, 

                                                 
c Unpublished work. 
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the previously reported P3
BFe(N2)-  system, where an off-path (P3

B)(-H)Fe(N2)(H) species 

appears to limit catalytic efficiency, also shows enhanced NH3 yields under irradiation. 

Accordingly, irradiation of (P3
B)(-H)Fe(N2)(H) generates (in part) previously characterized 

P3
BFe0(N2). 

The [P2
PPhFe(H)]2(μ-N2) system described herein expands on the few well-defined iron 

systems that mediate catalytic nitrogen fixation against a backdrop of many related iron 

complexes that have not shown catalytic efficacy under the conditions discussed herein.17 

Dinuclear [P2
PPhFe(H)]2(μ-N2) differs from tetradentate P3

EFe catalysts,17,20  and also a 

recently reported bis(phosphine)pyrrole system, through its use of a trisphosphine donor 

auxiliary that doesn’t present other heteroatom donors to the iron center.15 In this context, 

Ashley and co-workers have recently reported an iron system supported by only phosphine 

donors that is selective for N2-to-N2H4 conversion;44  the present [P2
PPhFe(H)]2(μ-N2) system 

does not generate catalytic quantities of hydrazine under the conditions employed here, or 

with Ashley’s reported conditions (see appendix). The factors that control the N2-fixing 

abilities and product profiles of these various iron systems are rich and present a fascinating 

topic for comparative studies. 
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3.4 Experimental Section 

3.4.1 General Information 

All manipulations were carried out using standard Schlenk or glovebox techniques 

under an N2 atmosphere. Unless otherwise noted, solvents were deoxygenated and dried by 

thoroughly sparging with N2, followed by passage through an activated alumina column in a 

solvent purification system by SG Water, USA LLC. Solvents were tested with a standard 

purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm 

effective moisture removal. Deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc., degassed, filtered through an alumina plug, and dried over 3Å molecular 

sieves prior to use. Bis(o-diisopropylphosphino-phenyl)-chlorophosphine,41 [Na][BArF
4] 

(BArF
4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate),45 [H(OEt2)2][BArF

4],45 KC8 

(potassium graphite)46, P3
BFe(N2),29a and (P3

B)(-H)Fe(N2)(H)55  were prepared according to 

literature procedures. All other reagents were purchased from commercial vendors and used 

without further purification unless otherwise stated.  

 

Physical Methods. Elemental analyses were performed by Midwest Microlabs, LLC 

(Indianapolis, IN) or by the Beckman Institute X-Ray Crystallography Facility (Pasadena, 

CA) on a PerkinElmer 2400 Series II CHN Elemental Analyzer.  1H and 13C NMR chemical 

shifts are reported in ppm relative to proton and carbon resonances from solvents as internal 

standards. Solution phase magnetic moments were acquired using the Evans method.47 

Optical spectroscopy measurements were taken on a Cary 50 UV-Vis spectrophotometer 

using a 1-cm two-window quartz cell. Fourier transform infrared ATR spectra were collected 



84 
 

on a Thermo Scientific Nicolet iS5 Spectrometer with diamond ATR crystal (utilized iD5 

ATR insert).  

 

X-ray Crystallography. XRD studies were carried out by the Beckman Institute X-Ray 

Crystallography Facility (Pasadena, CA) on a Bruker AXS KAPPA APEX II diffractometer 

coupled to an APEX II CCD detector with graphite monochromated Mo Ka radiation (λ = 

0.71073 Å) for the structure of compound 3.2-FeBr2 (CCDC 1521910) or on a Bruker AXS 

D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Mo 

Ka radiation (λ = 0.71073 Å) for the structure of compound 3.3 (CCDC 1521909). The 

structures were solved by direct methods using SHELXS48 and refined against F2 on all data 

by full-matrix least squares with SHELXL-201449 using established refinement techniques.50 

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included 

into the model at geometrically calculated positions and refined using a riding model. The 

isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value 

of the atoms they are linked to (1.5 times for methyl groups). For 3.3, all disordered atoms 

were refined with the help of similarity restraints on the 1,2- and 1,3-distances and 

displacement parameters as well as rigid bond restraints for anisotropic displacement 

parameters. Compound 3.3 crystallizes in the triclinic space group P-1 with two molecules 

in the asymmetric unit along with two half occupied pentane molecules. One phosphorous 

ligand on each molecule was disordered. In the second molecule (Fe11 and Fe12), one of the 

PiPr2 moieties was disordered over three positions. Attempts to refine a two component 

disorder led to iPr moieties with incorrect geometries and high residual electron density 

maxima. Refinement of the second molecule required stronger restraints on the anisotropic 
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displacement parameters and the disordered aromatic rings were restrained to be flat. The 

two half occupied pentane molecules are located near crystallographic inversion centers and 

disordered appropriately.  

 

Mössbauer Spectroscopy. Mössbauer spectra were recorded on a spectrometer from SEE 

Co. (Edina, MN) operating in the constant acceleration mode in a transmission geometry. 

The sample was kept in an SVT-400 cryostat from Janis (Wilmington, MA). The quoted 

isomer shifts are relative to the centroid of the spectrum of a metallic foil of α-Fe at room 

temperature. Solid samples were prepared by grinding solid material into a fine powder and 

then mounting in a Delrin cup fitted with a screw-cap as a boron nitride pellet. Solution 

samples were transferred to a sample cup and chilled to 77 K inside of the glovebox, and 

unless noted otherwise, quickly removed from the glovebox and immersed in liquid N2 until 

mounted in the cryostat. Data analysis was performed using version 4 of the program 

WMOSS (www.wmoss.org) and quadrupole doublets were fit to Lorentzian lineshapes. 

Unless otherwise noted, Mössbauer spectra were collected with an applied 50mT parallel 

field at 80K.  

 

CW EPR Spectroscopy. X-band EPR spectra were obtained on a Bruker EMX spectrometer 

at 77 K in a liquid nitrogen immersion dewar using Bruker Win-EPR software (ver. 3.0). 

Samples were prepared as 3-17 M solutions prepared as frozen glasses in 2-

methyltetrahydrofuran. Samples were collected at powers ranging from 6 to 7 mW and 
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modulation amplitudes of 1-2 Gauss. Spectra were simulated using the EasySpin51 

simulation toolbox (release 5.1.8) with Matlab 2016b. 

Pulse EPR Spectroscopy. All pulse Q-band (≈ 33.7 GHz) EPR and electron nuclear double 

resonance (ENDOR) experiments were aquired using a Bruker (Billerica, MA)  ELEXSYS 

E580 pulse EPR spectrometer equipped with a Bruker D2 resonator. Temperature control 

was achieved using an ER 4118HV-CF5-L Flexline Cryogen-Free VT cryostat manufactured 

by ColdEdge (Allentown, PA) equipped with an Oxford Instruments Mercury ITC. 

Pulse Q-band electron spin-echo detected EPR (ESE-EPR) field-swept spectra were acquired 

using the 2-pulse “Hahn-echo” sequence (ߨ – ߬ – 2/ߨ – echo) and subsequently, each field 

swept echo-detected EPR absorption spectrum was modified using a pseudo-modulation 

function (modulation amplitude = 1.5 mT) to approximate the effect of field modulation and 

produce the CW-like 1st derivative spectrum.52 

Pulse Q-band ENDOR was acquired using the Davies pulse sequence (ߨ െ ோܶி െ	ߨோி െ

ோܶி െ  ோிߨ ,echo), where ோܶி is the delay between mw pulses and RF pulses – ߨ – ߬ – 2/ߨ	

is the length of the RF pulse and the RF frequency is randomly sampled during each pulse 

sequence. For the 2D Davies ENDOR experiments collected from 0.5 – 20.5 MHz, an LP-

2500 low-pass filter (Vectronics, Starkville, MS) with a cutoff frequency of 35 MHz was 

used to eliminate signals from 1H harmonics. 

In general, the ENDOR spectrum for a given nucleus with spin ܫ= ½ (1H, 31P) coupled to the 

S = ½ electron spin exhibits a doublet at frequencies  

 
േߥ ൌ ฬ

ܣ
2
േ  ேฬ (1)ߥ
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where ߥே is the nuclear Larmor frequency and ܣ is the hyperfine coupling. For nuclei with 

	ܫ ൒ 1 (14N, 2D), an additonal splitting of the ߥേ manifolds is produced by the nuclear 

quadrupole interaction (P) 

 
േ,௠಺ߥ

ൌ ฬ ேߥ േ
3ܲሺ2݉ூ െ 1ሻ

2
ฬ 

(2) 

 

 

Pulse Q-band Electron spin echo envelope modulation (ESEEM) spectra were collected 

using the three pulse sequence (2/ߨ – ܶ –  2/ߨ – ߬ – 2/ߨ – ߬ – echo) with a four step phase 

cycle. 

Simulations of all pulse EPR data were achieved using the EasySpin simulation toolbox 

(release 5.1.8) with Matlab 2016 using the following Hamiltonian: 

෡ܪ  ൌ ሬറ଴݃ܤ஻ߤ መܵ ൅ መܫሬറ଴ܤே݃ேߤ ൅ ݄ መܵ ∙ ࡭ ∙ መܫ ൅ መܫ݄ ∙ ࡼ ∙  መܫ

 

(3) 

In this expression, the first term corresponds to the electron Zeeman interaction term where 

 ஻ is the Bohr magneton, g is the electron spin g-value matrix with principle components gߤ

= [gxx gyy gzz], and መܵ is the electron spin operator; the second term corresponds to the nuclear 

Zeeman interaction term where ߤே is the nuclear magneton, ݃ே is the characteristic nuclear 

g-value for each nucleus (e.g. 1H,2D,31P) and ܫመ is the nuclear spin operator; the third term 

corresponds to the electron-nuclear hyperfine term, where ࡭ is the hyperfine coupling tensor 

with principle components ࡭ = [Axx Ayy Azz]; and for nuclei with ܫ	 ൒ 1, the final term 

corresponds to the nuclear quadrupole (NQI) term which arises from the interaction of the 

nuclear quadrupole moment with the local electric field gradient (efg) at the nucleus, where 
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 is traceless and ࡼ ,is the quadrupole coupling tensor. In the principle axis system (PAS) ࡼ

parametrized by the quadrupole coupling constant ݁ଶܳݍ/݄ and the asymmetry parameter ߟ 

such that: 

 
ࡼ ൌ	ቌ

௫ܲ௫ 0 0
0 ௬ܲ௬ 0
0 0 ௭ܲ௭

ቍ ൌ
݁ଶܳݍ/݄
ܫሺ2ܫ4 െ 1ሻ

൭
െሺ1 െ ሻߟ 0 0

0 െሺ1 ൅ ሻߟ 0
0 0 2

൱ (4) 

 

where 
௘మொ௤

௛
ൌ ܫሺ2ܫ2 െ 1ሻ ௭ܲ௭	and ߟ ൌ 	

௉ೣ ೣି௉೤೤
௉೥೥

. The asymmetry parameter may have values 

between 0 and 1, with 0 corresponding to an electric field gradient with axial symmetry and 

1 corresponding to a fully rhombic efg. 

The orientations between the hyperfine and NQI tensor principle axis systems and the g-

matrix reference frame are defined by the Euler angles (α, β, γ). 

 

14N ENDOR/ESEEM. The low-intensity features between 5 and 10 MHz which appear in 

the 2D Davies ENDOR of both 3.4 and 3.4D (Figure A3.49) arise from the hyperfine 

coupling from the proximal 14N of the bound N2 moiety. The presence of this 14N hyperfine 

coupling was corroborated by the use of Q-band 3-pulse ESEEM, which is particularly 

sensitive to hyperfine couplings to I = 1 nuclei near cancellation (ܣ ൌ  ௟ሻ. These featuresݒ2

are well simulated by an axial hyperfine tensor with A = [5.4 5.8 9.0] MHz and a fairly large 

quadrupole coupling constant of 3.6 MHz with a very small asymmetry parameter η = 0.08, 

consistent with the 14N nucleus being in a bonding environment with axial symmetry. 

Simulations of the experimental data also indicate a rotation of the hyperfine and quadrupole 



89 
 

tensors relative to the g-matrix reference frame by β = 90°, (rotation of the PAS z-axis about 

the x-axis). These results confirm that N2 remains bound in species 3.4. 

 

Ammonia Quantification. The catalytic reaction mixture was cooled to 77 K and allowed 

to freeze. The reaction vessel was opened to the atmosphere and to the frozen solution was 

slowly added a fourfold excess (with respect to acid) solution of a NaOtBu in MeOH (0.25 

M) over 1–2 minutes. The solution was allowed to freeze, then the tube was sealed and 

allowed to warm to room temperature and stirred at room temperature for 10 minutes. An 

additional Schlenk tube was charged with HCl (3 mL of a 2.0 M solution in Et2O, 6 mmol) 

to serve as a collection flask. The volatiles of the reaction mixture were vacuum transferred 

into the collection flask. After completion of the vacuum transfer, the collection flask was 

sealed and warmed to room temperature. Solvent was removed in vacuo, and the remaining 

residue dissolved in H2O (1 mL) to make a stock solution that was used for both the ammonia 

ad hydrazine quantification. An aliquot of this solution (20 μL) was then analyzed for the 

presence of NH3 (present as NH4Cl) by the indophenol method.53 Quantification was 

performed with UV−Vis spectroscopy by analyzing the absorbance at 635 nm.  

 

Hydrazine Quantification. Hydrazine quantification was performed using the same stock 

solution from the ammonia quantification. An aliquot of the stock solution (20 μL) was 

analyzed for the presence of N2H4 (present as N2H5Cl) by a standard spectrophotometric 

method.54 Quantification was performed with UV−Vis spectroscopy by analyzing the 

absorbance at 458 nm. *Note that no hydrazine was observed under the reaction conditions. 
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Standard NH3 Generation Reaction Procedure for [P2
PPhFe(H)]2(-N2) (3.3). All 

solvents were stirred with Na/K for ≥1 hours and filtered through alumina prior to use. In a 

nitrogen-filled glovebox, a stock solution of the catalyst in THF (3.4 mM) was prepared. 

(Note: a fresh stock solution was prepared for each experiment and used immediately.) An 

aliquot of this stock solution (18 or 90 μL, 0.06 or 0.30 μmol) was added to a Schlenk tube 

and evaporated to dryness under vacuum to give a thin film of 3.3. The tube was allowed to 

cool to 77 K in the glovebox cold well. To the cold tube was added a solution of 

[H(OEt2)2][BArF
4] (93 mg, 0.092 mmol) in Et2O (0.5 mL). This solution was allowed to 

freeze before the vial that contained the [H(OEt2)2][BArF
4] was rinsed with an additional 0.5 

mL of Et2O and added to the tube. After the acid layer had frozen, a suspension of KC8 (15 

mg, 0.11 mmol, 1.2 equiv relative to [H(OEt2)2][BArF
4]) in 0.5 mL of Et2O was added to the 

cold tube. The temperature of the system was allowed to equilibrate for 5 minutes. A stir bar 

was added to the tube before it was sealed with a Teflon screw-valve. The Schlenk tube was 

passed out of the box into a liquid N2 bath and transported to a fume hood. The reaction 

vessel was then transferred to a dry ice/acetone bath where it thawed to -78 °C and was 

allowed to stir for at least 1 hour. The tube was then allowed to warm to room temperature 

with stirring, and stirred at room temperature for 5 minutes. 

 

Standard NH3 Generation Reaction with Hg Lamp Photolysis Procedure for 

[P2
PPhFe(H)]2(-N2) (3.3). All solvents were stirred with Na/K for ≥1 hours and filtered 

through alumina prior to use. In a nitrogen-filled glovebox, a stock solution of the catalyst in 

THF (3.4 mM) was prepared. (Note: a fresh stock solution was prepared for each experiment 
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and used immediately.) An aliquot of this stock solution (18 or 90 μL, 0.06 or 0.30 μmol) 

was added to a Quartz Schlenk tube and evaporated to dryness under vacuum to give a thin 

film of 3.3. The tube was allowed to cool to 77 K in the glovebox cold well. To the cold tube 

was added a solution of [H(OEt2)2][BArF
4] (93 mg, 0.092 mmol) in Et2O (0.5 mL). This 

solution was allowed to freeze before the vial that contained the [H(OEt2)2][BArF
4] was 

rinsed with an additional 0.5 mL of Et2O and added to the tube. After the acid layer had 

frozen, a suspension of KC8 (15 mg, 0.111 mmol, 1.2 equiv relative to [H(OEt2)2][BArF
4] in 

0.5 mL of Et2O was added to the cold tube. The temperature of the system was allowed to 

equilibrate for 5 minutes. A stir bar was added to the tube before it was sealed with a Teflon 

screw-valve. The Schlenk tube was passed out of the box into a liquid N2 bath and transported 

to a fume hood. The reaction vessel was then transferred to a dry ice/isopropanol bath which 

was positioned under a Hg lamp and turned on 1 minute prior to transfer of the Schlenk tube 

to the bath. The entire reaction apparatus was surrounded by foil and the reaction vessel was 

allowed to stir for at least 1 hour before the Hg lamp was turned off and the Schlenk tube 

was allowed to warm to room temperature with stirring, and stirred at room temperature for 

5 minutes. 

 

Standard NH3 Generation Reaction Procedure for [P2
PPhFe(H)]2(-N2) (3.3) Allowed to 

Warm to Room Temperature Overnight. The procedure was identical to that of the 

standard catalytic reaction protocol with the changes noted. The reaction was allowed to 

warm from -78 C to room temperature overnight (approximately 16 hours). 
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Standard NH3 Generation Reaction Procedure for P2
PPh

 (3.1). The procedure was 

identical to that of the standard catalytic reaction protocol with the changes noted. A stock 

solution of 3.1 in THF (3.4 mM) was prepared. (Note: a fresh stock solution was prepared 

for each experiment and used immediately.) An aliquot of this stock solution (180 μL, 0.62 

μmol) was used. 

 

Standard NH3 Generation Reaction with Hg Lamp Photolysis Procedure for P2
PPh

 (3.1). 

The procedure was identical to that of the standard catalytic reaction protocol with Hg lamp 

photolysis with the changes noted. A stock solution of 3.1 in THF (3.4 mM) was prepared. 

(Note: a fresh stock solution was prepared for each experiment and used immediately.) An 

aliquot of this stock solution (180 μL, 0.62 μmol) was used. 

 

Standard NH3 Generation Reaction Procedure for [P2
PPhFe(H)]2(-N2) (3.3) Using 2-

MeTHF as the Solvent, Instead of Et2O. The procedure was identical to that of the standard 

catalytic reaction protocol with the changes noted. The reaction solvent was 2-MeTHF. 

 

Standard NH3 Generation Reaction Procedure for P2
PPhFe(N2)(H)2 (3.5). The procedure 

was identical to that of the standard catalytic reaction protocol with the changes noted. A 

stock solution of 3.5 in THF (3.4 mM) was prepared. (Note: a fresh stock solution was 

prepared for each experiment and used immediately.) An aliquot of this stock solution (180 

μL, 0.62 μmol) was used. 
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Standard NH3 Generation Reaction with Hg Lamp Photolysis Procedure for 

P2
PPhFe(N2)(H)2 (3.5). The procedure was identical to that of the standard catalytic reaction 

protocol with Hg lamp photolysis with the changes noted. A stock solution of 3.5 in THF 

(3.4 mM) was prepared. (Note: a fresh stock solution was prepared for each experiment and 

used immediately.) An aliquot of this stock solution (180 μL, 0.62 μmol) was used. 

 

Standard NH3 Generation Reaction Procedure for P3
BFe(N2

-). The procedure was 

identical to that of the standard catalytic reaction protocol with the changes noted. A stock 

solution of P3
BFe(N2

-) in THF (9.5 mM) was prepared. (Note: a fresh stock solution was 

prepared for each experiment and used immediately.) An aliquot of this stock solution (12 

μL, 0.11 μmol) was used. 

 

Standard NH3 Generation Reaction with Hg Lamp Photolysis Procedure for P3
BFe(N2

-

). The procedure was identical to that of the standard catalytic reaction protocol with Hg lamp 

photolysis with the changes noted. A stock solution of P3
BFe(N2

-) in THF (9.5 mM) was 

prepared. (Note: a fresh stock solution was prepared for each experiment and used 

immediately.) An aliquot of this stock solution (12 μL, 0.11 μmol) was used. 

 

Standard NH3 Generation Reaction with Blue LED Photolysis Procedure for 

[P2
PPhFe(H)]2(-N2) (3.3). The procedure was identical to that of the standard catalytic 

reaction protocol with Hg lamp photolysis with the changes noted. A blue LED was used in 

place of a Hg lamp. 
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Standard NH3 Generation Reaction Procedure for (P3
B)(-H)Fe(N2)(H). The procedure 

was identical to that of the standard catalytic reaction protocol with the changes noted. A 

stock solution of (P3
B)(-H)Fe(N2)(H) in THF (9.6 mM) was prepared. (Note: a fresh stock 

solution was prepared for each experiment and used immediately.) An aliquot of this stock 

solution (64 μL, 0.61 μmol) was used. In addition, due to the insolubility of the iron hydride 

borohydride species, a 3:1 mixture of Et2O:toluene was used as the solvent for the catalytic 

reaction.   

 

Standard NH3 Generation Reaction with Hg Lamp Photolysis Procedure for (P3
B)(-

H)Fe(N2)(H). The procedure was identical to that of the standard catalytic reaction protocol 

with Hg lamp photolysis with the changes noted. A stock solution of (P3
B)(-H)Fe(N2)(H) 

in THF (9.6 mM) was prepared. (Note: a fresh stock solution was prepared for each 

experiment and used immediately.) An aliquot of this stock solution (64 μL, 0.61 μmol) was 

used. In addition, due to the insolubility of the iron hydride borohydride species, a 3:1 

mixture of Et2O:toluene was used as the solvent for the catalytic reaction.   
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3.4.2 Synthesis 

 

P2
PPh (3.1). To a stirring solution of bis(o-diisopropylphosphino-phenyl)-chlorophosphine 

(0.304 g, 0.671 mmol) in THF (5 mL) was added dropwise phenyl magnesium chloride (3 

M in Et2O, 0.24 mL, 0.705 mmol) at -78 °C. The yellow reaction mixture was stirred for 2 

hours at -78 °C and then allowed to warm to room temperature. After stirring for an additional 

15 minutes at room temperature, the reaction was concentrated to 3 mL. To the concentrated 

solution, dioxane (3 mL) was added which resulted in the precipitation of an off white solid 

(MgCl2 salts). The heterogeneous mixture was filtered through celite, the salts washed with 

pentane (3 x 5 mL), the filtrate collected and solvent removed in vacuo to provide a pale 

yellow oil. The oil was triturated with pentane (5 mL) and resuspended in pentane, which 

resulted in the precipitation of a white crystalline solid. The solid was isolated, washed with 

pentane (3 x 5 mL), and dried under vacuum to give P2
PPh (3.1) (0.307 g, 0.432 mmol) in 

64% yield. 1H NMR (C6D6, 400 MHz) δ ppm 7.49 – 7.40 (m, 2H), 7.39 – 7.31 (m, 2H), 7.08 

(t, J = 6.7 Hz, 7H), 6.97 (t, J = 7.5 Hz, 2H), 2.11 (td, J = 7.0, 2.6 Hz, 2H), 1.98 (hept, J = 7.1 

Hz, 2H), 1.18 (td, J = 13.8, 7.0 Hz, 12H), 0.92 (ddd, J = 32.8, 11.5, 7.0 Hz, 12H). 31P{1H} 

(C6D6, 162 MHz) δ ppm -2.17 (dd, J = 152.5, 6.0 Hz, 2P, P-Ar), -14.26 (dt, J = 158.7, 147.0  

Hz, 1P, P-Ph). 13C NMR (C6D6, 101 MHz) δ ppm 148.42 (m), 142.42 (m), 139.73 (dt), 

135.64 (d), 134.88 (m), 132.44 (m), 128.91 (s), 128.45 (d), 24.94 (m), 20.56 (m), 19.88 (m). 

ESI-MS (electrospray): calcd for C30H41AgP3
+ 601.15 m/z, found: 601.27 m/z.  
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P2
PPhFeBr2 (3.2-FeBr2). P2PPh (3.1) (0.306 g, 0.619 mmol) and ferrous bromide (0.140 g, 

0.649 mmol) were combined in THF (20 mL) in the glovebox. The dark black-purple 

solution was stirred vigorously over two hours. The crude reaction mixture was concentrated 

in vacuo until 10 mL of THF remained and then filtered through celite. To the concentrated 

stirring black-purple solution, 10 mL of pentane was added dropwise, resulting in the 

precipitation of a dark black-purple solid. The dark solid was isolated on a frit, washed with 

pentane (3 x 1 mL), and dried under dynamic vacuum to give P2
PPhFeBr2 (3.2-FeBr2) (0.3822 

g, 0.538 mmol) in 87% yield. 1H NMR (THF-d8, 400 MHz) δ ppm 133.90, 56.82, 9.86, 9.00, 

8.14, 7.81, 7.65, 7.25, 7.12, 6.70, 5.06, 4.09, 3.90, 3.70, 3.56, 2.88, 2.23, 1.72, and 0.96 ppm. 

μeff (THF-d8, Evans’ method, 298K): 3.92μB. UV-Vis (THF, nm {cm-1M-1}): 486 {1,300}, 

591 {980}. Anal calcd for C30H41Br2FeP3: C, 50.73; H, 5.82. Found: C, 50.82; H, 5.92. 

 

3.2-57FeCl2 was synthesized using an identical procedure, except with 57FeCl2 in place of 

FeBr2, and gave similar features by 1H NMR: 1H NMR (C6D6, 400 MHz) δ ppm 120.81, 

108.39, 16.39, 11.43, 10.08, 9.02, 8.63, 3.58, 3.28, 3.26, 1.63, 142, 1.25, 1.12, 0.88, 0.28, -

2.90 ppm.  
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[P2
PPhFe(H)]2(-N2) (3.3). To a dark purple solution of P2

PPhFeBr2 (3.2-FeBr2) (0.0522 g, 

0.073 mmol) in THF (5 mL) at -78 °C was added sodium triethylborohydride (1 M in toluene, 

0.13 mL, 0.14 mmol) dropwise. The reaction mixture was stirred at -78 °C for 4 hours. The 

dark green solution was allowed to warm to room temperature, stirred for an additional hour, 

and then concentrated in vacuo. The resultant green oil was resuspended in pentane (3 mL), 

filtered through celite, and the reaction vessel and salts washed with pentane (3 x 1 mL). The 

concentrated intense green filtrate slowly precipitated 3.3 (0.0275 g, 0.024 mmol) overnight 

as dark green crystalline needles in 64 % yield. IR (KBr; cm-1): 1833 (νFeH), 1734 (νFeH). 

(Note: Weak coupling of the Fe-H vibration to a symmetry allowed N-N vibration is 

plausible; however, we have not been able to unambiguously assign the N-N vibration 

through 15N2 labeling studies. We expect admixed 14N2 in the sample owing to technical 

challenges with its synthesis. We have included the IR spectrum of the 15N2 labeled data 

below.) 1H NMR (THF-d8, 500 MHz) δ ppm 8.15 (d, J = 7.5 Hz, 2H), 7.52 (d, J = 7.5 Hz, 

2H), 7.43 (t, J = 7.3 Hz, 2H), 7.26 (t, J = 7.3 Hz, 2H), 7.14 (t, J = 7.3 Hz, 2H), 6.63 (d, J = 

7.4 Hz, 2H), 6.12 (t, J = 7.5 Hz, 1H), 2.99 (broad s, 2H), 2.59 (broad s, 2H), 0.72 (m, 6H), 

0.42 (m, 6H). 31P{1H} (THF-d8, 202 MHz) δ ppm -44.32 (very broad singlet). UV-vis (THF, 

nm {cm-1M-1}): 338 {1,200}, 655 {380}. Anal calcd for C125H180Fe4N4P12: C, 64.33; H, 7.77; 
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N, 2.40. Found: C, 63.94; H, 7.92; N, 2.71. (*Note: 3.3 crystallizes as 2 dinuclear complexes 

with 1 pentane molecule.) 

 

[P2
PPhFe(D)]2(-N2) (3.3D). 3.3D was prepared using the synthetic procedure for 3.3 with 

the following changes noted. Toluene was used as the reaction solvent and LiDBEt3 was used 

instead of NaHBEt3. IR (KBr; cm-1): 1839 (νNN), 1734 (νNN), 1324 (νFeD), 1256 (νFeD) 

(predicted νFeD = 1309, 1237 cm-1. The 1H NMR spectrum of 3.3D matched that of 3.3. 

 

 

P2
PPhFe(N2)(H)2 (3.5). A Schlenk tube containing 3.3 (0.020 g, 17.1 mol) in THF (2 mL) 

was freeze-pump-thawed (3X) and exposed to 1 atmosphere of H2. The reaction tube was 

stirred vigorously at room temperature for 24 hours before it was freeze-pump-thawed (2X), 

re-exposed to 1 atmosphere of N2, and stirred for another 24 hours, during which the reaction 

turned mustard yellow. The reaction mixture was then concentrated in vacuo and the resultant 

thin film was suspended in pentane and filtered through celite. The yellow solid was washed 

with pentane (3 x 1mL) and dried under vacuum. 1H NMR (C6D6, 400 MHz) δ ppm 7.90 (t, 

J = 6.5 Hz, 2H), 7.46–7.41 (m, 4H), 7.05 (q, J = 7.8, 7.3 Hz, 5H), 6.95–6.92 (m, 1H) (1 C-

HAr overlapped with C6H6 peak, but all 13 C-HAr can be resolved with THF-d8), 2.47–2.42 

(m, 4H), 1.56 (q, J = 6.9 Hz, 6H), 1.26 (q, J = 7.2 Hz, 6H), 1.13 (q, J = 6.6, 6H), 0.59 (q, J = 



99 
 

6.9, 6H), -8.82 (broad singlet, 1H), -20.43 (broad singlet, 1H). 1H NMR (THF-d8, 500 MHz) 

δ ppm 8.09 (t, J = 6.4 Hz, 2H), 7.77 (d, J = 7.2 Hz, 2H), 7.40 (p, J = 7.2 Hz, 4H), 7.22–7.15 

(m, 5H), 2.67 (h, J = 6.8 Hz, 2H), 2.56–2.50 (m, 2H), 1.43 (q, J = 7.0 Hz, 6H), 1.15–1.19 (m, 

12H), 0.46 (q, J = 6.9, 6H). The coupling of the two hydride resonances can be resolved in 

the 1H NMR at low temperature (THF-d8, 500 MHz, -78 C) δ ppm -9.43 (m, 1H), -20.71 

(m, 1H). 1H{31P δ 110 ppm} (THF-d8, 500 MHz, -78 C) δ ppm -9.43 (td, J = 38.2 , 15.7 Hz, 

1H), -20.71 (td, J = 43.2 , 15.6 Hz, 1H).  1H{31P δ 120 ppm} (THF-d8, 500 MHz, -78 C) δ 

ppm -9.43 (dd, J = 30.6 , 15.7 Hz, 1H), -20.71 (dd, J = 24.0 , 15.6 Hz, 1H).  31P{1H} (C6D6, 

162 MHz) δ ppm 119.07 (m, 2P, PiPr2), 110.22 (m, 1P, PPh). 31P{1H} (THF-d8, 202 MHz) δ 

ppm 120.79 (m, 2P, PiPr2), 111.95 (m, 1P, PPh). 13C NMR (C6D6, 101 MHz) δ ppm 150.72 

(m), 149.52 (m), 141.31 (d), 132.33 (d), 130.86 (t), 129.50 (d), 31.68 (t), 27.54 (td), 20.36 

(t), 19.80 (dd). IR (KBr; cm-1): 2058 (νNN), 1812 (νFeH). IR (thin film from evaporation of 

C6D6; cm-1): 2071 (νNN), 1796 (νFeH). UV-Vis (THF, nm {cm-1M-1}): 335 {4,600}, 386 

{4,000}. Anal calcd for C30H43FeN2P3: C, 62.08; H, 7.47; N, 4.83. Found: C, 61.16; H, 7.85; 

N, 4.82. 

 

3.4.3 Miscellaneous Experiments 
 
GC Analysis of the headspace of addition of 2 equiv of MeOTf to [P2

PPhFe(H)]2(-N2). 

In a nitrogen filled glovebox, a solution of 3.3 (5.0 mg, 4.3 mol) in toluene (2 mL) was 

prepared in a 70 mL Schlenk tube containing a 14/20 joint. The 14/20 joint was sealed with 

a rubber septum at room temperature and subsequently chilled to -78 C in the glovebox 

coldwell. In a separate vial, a stock solution of MeOTf (10 L of MeOTf in 2 mL of toluene, 
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46 mM in toluene) was prepared. To the Schlenk tube containing 3.3, 200 L of the MeOTf 

stock solution was added at -78 C through the rubber septum using a 1 mL disposable 

syringe and the rubber septum was quickly covered with tape. After 20 minutes of stirring at 

-78 C, the reaction was allowed to warm to room temperature and stirred for an additional 

1.5 hours before the headspace was analyzed for methane by GC chromatography (97% yield 

methane).  

 

IR and NMR Spectral Analysis of addition of 10 equiv of [H(OEt2)2][BArF
4]) to 

[P2
PPhFe(H)]2(-N2) followed by 12 equiv of KC8 per Fe Center. To a 20 mL scintillation 

vial was added 3.3 (0.006 g, 5.1 mol) in THF (500 μL) and the solvent removed in vacuo 

to generate a dark emerald green thin film (in order to mimic the catalytic run procedure). 

The 20 mL vial containing the thin film of 3.3 was charged with a stir bar. In a separate 4 

mL vial, a solution of [H(OEt2)2][BArF
4] (103 mg, 102 μmol) in Et2O (1 mL) was made. 

Finally, in another 4 mL vial, a suspension of KC8 (16.5 mg, 122 mol) in Et2O (1 mL) was 

prepared. All three vials were chilled in the glovebox coldwell at -78 °C for 30 minutes. The 

solution of [H(OEt2)2][BArF
4] was quickly added to the vial containing the thin film of 3.3. 

Residual [H(OEt2)2][BArF
4] in the 4 mL vial was rinsed using pre-chilled Et2O (0.5 mL). The 

red-orange reaction mixture was stirred at -78 °C for 5 minutes, after which the suspension 

of KC8 in Et2O was added rapidly. Residual KC8 in the 4 mL vial was rinsed using pre-

chilled Et2O (0.5 mL). The reaction mixture was then stirred for 45 minutes at -78 C before 

it was allowed to warm to room temperature and stirred for an additional 15 minutes. The 

reaction mixture was then filtered through glass filter paper into a 20 mL vial containing 
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triphenylphosphine (0.003 g, 11.4 μmol) as a 31P NMR internal standard and the resultant 

crude mixture was concentrated to ½ the original volume and transferred to an NMR tube. 

The integration of the 31P resonances suggested the formation of P2
PPhFe(N2)(H)2 in 

approximately 93% yield. The NMR solution was then transferred to a 20 mL vial in the 

glovebox and concentrated to provide an orange thin film which was subsequently analyzed 

by 1H and 31P NMR spectroscopies in C6D6 and matched the data reported above.  

 

 
NMR Spectral Analysis of addition of 3 equiv of KC8 to [P2

PPhFe(H)]2(-N2) yields 

[P2
PPhFe(N2)(H)]K. A 20 mL vial containing 3.3 (0.016 g, 13.8 mol) in THF-d8 (500 L) 

was chilled to -78 C in the glovebox coldwell. In a separate 4 mL vial, KC8 (5.6 mg, 41.6 

mol) was chilled to -78 C. Both vials were allowed to cool for 20 min before the KC8 was 

added to the vial containing 3.3 as a solid. The reaction mixture was stirred vigorously at -

78 C for 1 hour before PPh3 (3.6 mg, 13.8 mol) was added to the vial as a solid. The vial 

containing the PPh3 was rinsed with THF-d8 (2  50 L) and the rinsings added to the 

reaction vial. The reaction mixture was then filtered to a J. Young tube and the reaction vial 

rinsed with THF-d8 (2  100 L) and the rinsings added to the tube. The tube was frozen at 

77K until it was warmed back to -78 C for NMR analysis. 1H NMR (THF-d8, 500 MHz, -

78 °C) δ ppm 7.78 (q, J = 4.4 Hz, 2H), 7.53–7.45 (m, 2H), 7.11–6.99 (m, 9H), 2.51–2.42 (m, 

2H), 2.42–2.32 (m, 2H), 1.20–1.05 (m, 18H), 0.35 (p, J = 8.5, 7.5, 6H), -10.21 (td, J = 68.1, 

26.6, 1H). *Accurate integrations of the aromatic C-H region are precluded by the presence 

of triphenylphosphine. 31P{1H} (THF-d8, 202 MHz, -78 °C) δ ppm 121.92 (t, J = 41.8 Hz, 
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1P, PPh), 116.96 (d, J = 39.9 Hz, 2P, PiPr2). IR (thin film from evaporation of THF-d8; cm-

1): 1857 (νNN), 1718 (νFeH).  

 

NMR Spectral Analysis of addition of 2 equiv of [H(OEt2)2][BArF
4] to [P2

PPhFe(H)]2(-

N2) yields [P2
PPhFe(N2)(H)]BArF

4. A 20 mL vial containing 3.3 (0.011 g, 9.4 mol) in 

diethyl ether (1 mL) was chilled to -78 C in the glovebox coldwell. In a separate 4 mL vial, 

a diethyl ether solution of HBArF
4 (0.019 g, 18.4 mol, 250 L diethyl ether) was chilled to 

-78 C. Both solutions were allowed to cool for 20 min before the HBArF
4 solution was added 

to the vial containing 3.3 at -78 C in one shot. The vial containing HBArF
4 was subsequently 

rinsed one time with 250 L of pre-chilled diethyl ether and the rinsings were quickly added 

to the vial containing 3.3. The reaction mixture was stirred vigorously at -78 C for 1 hour 

and 15 minutes before it was allowed to warm to room temperature and stirred for an 

additional 10 minutes. The reaction mixture was then concentrated in vacuo and the resultant 

orange thin film was suspended in THF-d8 (300 L) and filtered through a cotton plug to a 

vial containing hexamethylbenzene as a 1H internal standard (0.003 g, 18.9 mol). The 

reaction vial was then rinsed with THF-d8 (2  200 L) and filtered to the vial containing 

hexamethylbenzene. The orange solution was then transferred to an NMR tube for spectral 

analysis. 1H NMR (THF-d8, 400 MHz) δ ppm 8.22–8.10 (m), 7.85–7.69 (m), 7.59–7.50 (m), 

7.36 (t, J = 7.9, 1H), 7.30–7.27 (m), 7.27–7.21 (m), 6.60 (t, J = 9.3 Hz, 2H), 3.14–2.92 (m, 

4H), 1.56–1.41 (m), 1.35–1.14 (m), -16.85 (dt (q), J = 54.9, 1H). *Note that the presence of 

a paramagnetic species and BArF
4 prevents the accurate integration of the arene and alkyl –

CH3 peaks. 31P{1H} (THF-d8, 162 MHz) δ ppm 113.41 (overlapping dt, J = 34.6, 25.0 Hz, 
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1P, PPh), 95.75 (dd, J = 29.5, 7.5 Hz, 2P, PiPr2). 11B NMR (THF-d8, 128 MHz) δ ppm -4.68 

(s). 19F NMR (THF-d8, 376 MHz) δ ppm -61.51 (s). IR (thin film from evaporation of THF-

d8; cm-1): 2193 (νNN), 2162 (νNN), 2069 (νFeH).  

 

EPR Spectral Analysis of Photolysis of [P2
PPhFe(H)]2(-N2). To two EPR tubes was added 

200 L each of a 3.4 M stock solution of [P2
PPhFe(H)]2(-N2) in 2-MeTHF. The samples 

were frozen at 77 K and an EPR spectrum was collected for each tube. The samples were 

then carefully thawed to -78 C in a dry ice/isopropanol bath and photolyzed for different 

amounts of time at -78 C: 10 minutes and 1 hour. The samples were then quickly transferred 

to a liquid nitrogen bath and a second spectrum collected for each tube.  

 

Experimental conditions: microwave frequency = 9.409 GHz; microwave power = 6.423 

mW; modulation frequency = 100 kHz; modulation amplitude = 1 G; conversion time = 82 

ms; time constant = 20.5 ms; temperature = 77 K. Simulation parameters: g = [2.0980 2.0900 

2.0019]; 31P1 A = [70 70 62] MHz, colinear with g; 31P2 A = [76 76 66] MHz, colinear with 

g; 31P3 A = [142 144 158] MHz, Euler angle β of 20° relative to g tensor; Hydride 1H A = 

[18 64 52] MHz, Euler angle β of 20° relative to g tensor, Deuteride 2D A = 1H A*(gn(2D)/ 

gn
 (1H)) = [2.8 9.8 8.0] MHz.  

 

NMR Spectral Analysis of Photolysis of P2
PPhFe(N2)(H)2. To a quartz J. Young tube was 

added a solution of 3.5 (9.5 mg, 16.0 mol) in 200 L toluene-d8 using a micropipettor. The 

vial containing the solution of 3.5 was subsequently washed (3 x 200 L toluene-d8). In a 
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separate vial, a toluene-d8 stock solution of dioxane was prepared (1.17 M, 10 L of dioxane 

in 90 L of toluene-d8). To the J. Young tube was added 14 L of the dioxane solution and 

the tube quickly capped. Initial 31P and 1H NMR analysis of the solution pre-photolysis were 

collected at -78 C. The J. Young tube was then cooled to -78 C in an isopropanol/dry ice 

bath and subjected to varying amounts of Hg lamp photolysis. *All spectra were collected at 

-78 C. Consumption of starting material was confirmed by comparing the relative 

integrations of the hydride protons to an internal standard (dioxane). A sample photo (Figure 

A3.43) is provided to show the drastic color change after 30 minutes of photolysis at -78 C. 

 

UV-Vis Spectral Analysis of Photolysis of P2
PPhFe(N2)(H)2. To a 1 cm cuvette was added 

500 L of a stock solution of 3.5 (1 mg, 0.8 mol, in 3 mL THF). An additional 2.5 mL of 

THF was added to the cuvette before it was capped and removed from the glovebox. The 

cuvette was then chilled to -78 C in the UV-Vis instrument and a spectrum acquired. The 

cuvette was then removed from the instrument and cooled to -78 C in an isopropanol/dry 

ice bath and subjected to Hg lamp photolysis for 10 min. The cuvette was then carried quickly 

to the UV-Vis spectrometer in the -78 C bath and inserted into the instrument where it was 

allowed to equilibrate for 2 minutes before a spectrum was acquired.  

 

Mössbauer Analysis of Photolysis of (P2
PPh)57Fe(N2)(H)2. To a Mössbauer cup was added 

200 L each of a 3.4 M stock solution of (P2
PPh)57Fe(N2)(H)2 in 2-MeTHF. The sample 

was frozen at 77 K and a Mössbauer spectrum was collected of the starting material. The 
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sample was then photolyzed for different amounts of time at 77K: 10 minutes, 1 hour, and 4 

hours and Mössbauer spectra collected after each time point.  

 

EPR Spectral Analysis of Photolysis of P2
PPhFe(N2)(H)2. To two EPR tubes was added 

200 L each of a 3.4 M stock solution of the P2
PPhFe(N2)(H)2 in 2-MeTHF. The samples 

were frozen at 77 K and an EPR spectrum was collected for each tube. The samples were 

then carefully thawed to -78 C in a dry ice/isopropanol bath and photolyzed for different 

amounts of time at -78 C: 10 minutes and 30 minutes. The samples were then quickly 

transferred to a liquid nitrogen bath and a second EPR spectrum collected for each tube. 

 

NMR Spectral Analysis of Photolysis of (P3
B)(-H)FeN2(H). Due to the instability of 

(P3
B)(-H)FeN2(H) to dynamic vacuum, the iron hydride-borohydride complex was 

generated in situ according to known methods.56
 To a Schlenk tube was added a suspension 

of TPBFeN2 (26.8 mg, 39.7 mol) in 1 mL of toluene-d8 using a micropipettor. The vial 

containing the solution of TPBFeN2 was subsequently washed (3 x 500 L toluene-d8) and 

the washings pipetted into the Schlenk tube. The tube was freeze-pump-thawed (3X), and an 

atmosphere of H2 added. After stirring the reaction mixture overnight, the tube was freeze-

pump-thawed (3X) again, and exposed to an atmosphere of N2, before it was allowed to stir 

for 24 hours. The tube was then freeze-pump-thawed (3X) to get rid of any residual H2 and 

exposed to an atmosphere of N2. An 800 L aliquot of the reaction mixture was pipetted into 

a J. Young NMR tube. Initial 31P and 1H NMR analysis of the light orange (P3
B)(-

H)FeN2(H) solution pre-photolysis revealed no remaining (P3
B)(-H)FeH2(H) adduct. The J. 
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Young tube was cooled to -78 C in an isopropanol/dry ice bath and subjected to Hg lamp 

photolysis for 10 min. Room temperature 1H and 31P NMR spectra of the reaction were 

obtained and revealed the growth of (P3
B)(-H)FeH2(H) and P3

BFeN2 in addition to remaining 

(P3
B)(-H)FeN2(H).  
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C h a p t e r  4  

NOVEL LIGAND FRAMEWORKS FOR HETEROBIMETALLIC 
COMPLEXES 
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4.1 Introduction 

 In this chapter, the synthesis and reactivity of heterobimetallic complexes 

supported by novel ligand frameworks is discussed. Although bimetallic complexes 

have been studied in the past,1-3 only recently has their application to catalytic 

transformations been explored.4-10 Herein, we describe the synthesis of two 

structurally related dinucleating ligands, P2
SiCp and P2

PCp, designed to accommodate 

both an early and late metal center using asymmetric metal binding sites. In this 

context, both Fe and Zr can be site-specifically installed. Preliminary reactivity 

studies with these two ligand platforms suggests that the P2
PCp system is more 

amenable towards achieving cooperative reactivity.   

 

Figure 4.1. Examples of small molecule activation by heterobimetallic complexes. 

(Left) H2 activation11 and (right) CO2 activation.12  

 While many monometallic catalysts have been described in the literature, 

heterobimetallic catalysts systems are less common. A bimetallic approach may lead 

to divergent reactivities, mechanisms, and transformations not possible with 

mononuclear systems. Early–late heterobimetallic complexes containing both Lewis 

acidic and Lewis basic metal centers have been reported to exhibit cooperative 
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activation of non-polar small molecules, such as N2,13 H2,8 and CO2 (Figure 4.1).12 

Unlike systems with one transition metal center and a metalloid, such as Na, Al, or 

B, bimetallic complexes containing two transition metals provide additional d-

orbitals for ligand interactions.14 The incorporation of two different metals may 

impart unique characteristics, including redox properties,13, 15 metal-metal bonding,11, 

16 and cooperative substrate binding.17  

 Studying the small molecule binding and reactivity of heterobimetallic model 

complexes may also provide insight into the nature of small molecule binding and 

activation in biological systems, which often contain heterometallic active sites.18-21  

For instance, the observation that N2 fixation occurs most efficiently at an enzyme 

active site containing multiple Fe centers and a Mo center (in FeMo nitrogenase) 

suggests that more than one of these metals participates in N2 activation. In fact, out 

of the three known types of nitrogenases (FeFe, FeV, and FeMo), the FeMo 

nitrogenase is the most efficient for N2 reduction to NH3 under ambient conditions.22 

Interestingly, FeV nitrogenase is the most effective for CO reduction to C2 and other 

hydrocarbon products.23 Although the mechanism by which these active sites 

mediate substrate reduction is unknown, but the differing nature of the metals in the 

active site may lead to different substrate selectivities. Many monometallic Fe and 

Mo complexes are capable of catalytic N2 reduction to NH3,24-26 such as the examples 

discussed in Chapters 1 and 3, but no hetereobimetallic complexes capable of 

catalytic N2 fixation have been reported. These observations merit the development 

of simplified heterobimetallic complexes capable of substrate binding and reduction, 



113 
 
such as with N2. Studying the binding modes supported by these complexes as well 

as their catalytic properties may help guide our analysis of more complex systems.  

 Herein, we describe the synthesis of dinucleating ligands designed to 

accommodate small molecule binding between an early and late metal center. Given 

the wealth of metallocene chemistry,27 we chose to incorporate a cyclopentadienyl 

(Cp) fragment to bind the early metal center in our dinucleating framework and 

phosphine ligands to bind the late metal center. To demonstrate that the dinucleating 

ligand framework accommodates two different metals and allows for substrate 

binding between the two metals, we targeted FeZr complexes.  

 

Figure 4.2. Previously reported binding modes for monometallic and bimetallic 

metal complexes.  

 Zr was of particular interest due to its ability to bind N2 through different 

coordination modes (Figure 4.2); for example, zirconocene complexes are capable of 

bridging dinitrogen in the common end-on/end-on fashion as well as in a side-

on/side-on and side-on/end-on fashion, depending on the nature of the Cp ligand.28-

30 Unlike Zr, Fe has only been reported to bind N2 in an end-on fashion either 

terminally or by bridging the N2 ligand to a second metal center.31-33 Since the 

relationship between the nature of N2 binding and functionalization are still being 

explored,34 we hoped to design a dinucleating ligand that could accommodate all 
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three binding-modes. By incorporating both Zr and Fe, it may be possible to access 

new N2 binding modes for Fe as well as access new reactivities towards small 

molecules such as CO2, H2, and olefins.  

 In the first part of the chapter, a P-Si-P ligand containing a pendant Cp group 

is discussed. This particular ligand supports [Fe(μ-H)2Zr(X)] units with two bridging 

hydride ligands that hold the two metals in close proximity; however, no Fe–Zr 

interaction is observed. These complexes are diamagnetic and were characterized 

using a variety of spectroscopic techniques and X-ray crystallography. Although this 

ligand platform showed that an early and late metal could be accommodated by the 

novel dinucleating ligand, the formation of bridging hydrides between the two metal 

centers hindered additional reactivity studies. In the second part of the chapter, a 

related P-P’-P ligand platform with a pendant Cp group is discussed in which the 

formation of an FeZr complex without bridging hydrides is achieved. Along the way, 

the reactivity of the monometallic P2
PCpFe complex was explored.    

 

4.2 Results and Discussion  

4.2.1 Synthesis and Reactivity of P2
SiCp-Supported Complexes 

 To achieve site selective metalation of two different metals, a novel ligand 

containing a cyclopentadienyl fragment for binding of an early metal center and a 

SiP2 fragment for binding of a late metal center was synthesized (Scheme 4.1). The 

previously reported HSiP2Cl precursor35 was treated with 5 equivalents of LiCp in 

THF with gentle heating to provide P2
SiHCp (4.1) in 63% yield on gram scales.  
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Scheme 4.1. Synthesis of P2
SiCp and  P2

SiCp-supported complexes. 

 The resonances corresponding to the protons on the Cp portion of the ligand 

are observed in the 1H NMR spectrum as a doublet of triplets at 6.57 ppm. This 

resonance splits into two distinct triplet resonances at 6.79 and 6.05 ppm when 4.1 is 

treated with commercially available Cp*ZrCl3 in THF at room temperature (see 

appendix). In addition, a new singlet at 1.82 ppm in the 1H NMR spectrum, 

corresponding to the incorporation of the 15 protons of the Cp*–Me substituents, 

confirms the formation of 4.2 in 66% yield (Scheme 4.1). An X-ray crystal structure 

of 4.2 is shown in Figure 4.3. Interestingly, in the solid-state structure of the complex, 

there is no interaction between the phosphorus atoms of the ligand and the Zr center. 

This can be attributed to the unfavorable steric interaction that would arise between 
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the methyl substituents on the Cp* ligand and the isopropyl groups on the phosphorus 

atoms.  

 

Figure 4.3. X-ray crystal structures of P2
SiCp-supported complexes. Ellipsoids are 

shown at 50% probability.  

Recently reported syntheses of homobimetallic diiron complexes from our 

group provided insight into possible Fe metalation strategies at the Si–H binding 

site.36-37 Complexation of 4.2 with 1.1 equivalents of FeBr2, followed by reduction 

with six equivalents of sodium amalgam provided a mixture of products from which 

4.3 and 4.4 could be identified (Scheme 4.1, Figure 4.3). The X-ray structure of 4.3   

(Figure 4.3) shows two bridging hydride ligands between the Fe and Zr centers as 

well as a terminal hydride ligand on the Zr center in the Fourier difference map. One 

of the hydride ligands is a result of the Si–H bond activation upon Fe metalation. 
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Because the complexation of FeBr2 does not go to completion, given the lability of 

FeBr2 in the bisphosphine framework, the other two hydride ligands could come from 

C–H activation of the Cp*–Me groups or the isopropyl groups of a zirconocene 

species. C–H activation of the solvent is also a possibility. All three hydride 

resonances are detected in the 1H NMR spectrum and the expected coupling between 

the hydride ligands is confirmed by the COSY NMR spectrum (see appendix). Two 

inequivalent phosphine resonances are observed in the 31P spectrum, consistent with 

the C1 symmetry of the complex. An N2 stretch of 2065 cm-1 is observed in the solid 

state IR spectrum and a d(N–N) of 1.114 Å is observed in the X-ray crystal structure, 

consistent with weak activation.   

One potential mechanism by which complex 4.4 is formed upon reduction of 

the Zr(IV)Cl2 fragment to a Zr(II) intermediate, which could undergo an 

intramolecular C–H bond activation of the ligand. The solid state structure of 4.4 

shows the presence of one bridging hydride, consistent with one of the two hydridic 

resonances observed in the 1H NMR spectrum at -15.60 and -18.70 ppm. The COSY 

NMR of the crude reaction mixture confirms the coupling between these two hydride 

signals (see appendix). Although the second hydride could not be located by X-ray 

crystallography, the doublet of triplets at -18.70 ppm in the 1H NMR is consistent 

with the second hydride coupling to the bridging hydride ligand and two ‘equivalent’ 

phosphine ligands, suggesting that the second hydride is located between the two 

phosphorus atoms. Decoupling experiments, 1H (31P decoupled) and 31P (1H 

decoupled), as well as HMBC NMR spectroscopy corroborate the structural 

assignment of 4.4 (see appendix). The wider P–Fe–P’ bond angle of 133.32° 
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observed in the solid state structure of 4.4  relative to the 106.82° bond angle observed 

for 4.3 is also consistent with this structural assignment (Figure 4.3).  

A reproducible synthetic route to 4.3 was accessed by complexation of 4.2 

with 1.1 equivalents of FeBr2, followed by the addition of 4.4 equivalents of 

NaHBEt3,38-39 providing 4.3 in 28% yield as the major Fe-containing species by 1H 

and 31P NMR spectroscopy (Scheme 4.1). The diamagnetism of 4.3 allows for the 

formal oxidation state of the two metal centers to be assigned as Fe(II) and Zr(IV), 

with both metals having an 18 electron count. Furthermore, the internuclear Fe–Zr 

distance of 2.97 Å, determined in the solid state structure of 4.3, indicates that there 

is no Fe–Zr bond. Although there is no Fe–Zr bond, the two metal centers could still 

communicate electronically. To determine whether the metals interact electronically, 

the terminal hydride ligand on the Zr center was replaced with an electron 

withdrawing triflate group. Treatment of 4.3 with methyl triflate provided 4.5 as a 

dark turquoise crystalline solid in 70% yield. An X-ray structure of 4.5 is shown in 

Figure 4.3 and confirms the replacement of the terminal Zr hydride ligand with an 

electron-withdrawing triflate ligand. Given the different electronic and steric profiles 

of the terminal ligands on the Zr center in 4.3 and 4.5, a less activated N2 ligand of 

4.5 might be expected. Indeed, a stretch of 2077 cm-1 in the solid state IR spectrum 

of 4.5 was determined, suggesting that the electron withdrawing triflate group on the 

Zr center results in a less activated N2 on the more electron deficient Fe center. 

As seen in the solid state structure of the complexes above, the desired side-

on or side-on/end-on coordination modes of N2 were not achieved. To learn whether 

the heterobimetallic complex could bridge other substrates, 4.3 was treated with CO2. 
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CO2 reduction to formate and other reduced products is thought to proceed by hydride 

insertion. Although 4.3 has three M-H bonds only one insertion event occurs with the 

terminal Zr-H (Scheme 4.1, compound 4.6). The bridging hydride ligands do not 

react in the presence of excess CO2. Other small molecules, such as CO and and 

tBuNC led to displacement of N2 on the Fe center. Overall, cooperative reactivity 

between the two metals was not observed. From this point, a new ligand system was 

targeted.  

4.2.2 Synthesis and Reactivity of P2
PCp-Supported Complexes 

 

Scheme 4.2. Synthesis of P2
PCp and  P2

PCp-supported complexes. 
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 P2

PCp (4.7) was synthesized by the addition of LiCp to the known bis(o-

diisopropylphosphino-phenyl)-chlorophosphine40 and exhibits a doublet at  = -1.9 

ppm and two overlapping triplets centered at δ = -28.9 ppm by 31P NMR 

spectroscopy, suggesting a mixture of rotamers (see appendix). Complexation of 4.7 

with one equivalent of FeBr2 yielded paramagnetic P2
PCpFeBr2 4.8 as a purple-black 

crystalline solid (Scheme 4.2). Treatment of 4.8-FeBr2 with three equivalents of 

NaHBEt3 in THF at low temperature under an N2 atmosphere provided the 

diamagnetic [P2
PCpFe(N2)(H)2]Na complex (4.9).  

 

Figure 4.4. X-ray crystal structures of P2
PCp-supported complexes. Ellipsoids are 

shown at 50% probability. 

 Excitingly, the solid-state structure of 4.9 demonstrated that the P2
PCp ligand 

was capable of supporting N2 between the two metal binding sites (Figure 4.4, upper 

right). Complex 4.9 exhibits an N2 stretch of 1993 cm-1 in the solid state IR. The 
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neutral complex 4.11 could be generated by treating 4.9 with an equivalent of HBArF

4 

and exhibits an N2 stretch of 2068 cm-1. Upon treatment of 4.9 with two equiv of 12-

c-4, a shift in the N-N vibration to 2031 cm-1 was observed. 4.9 serves as a good 

starting material for the generation of heterobimetallic complex 4.12 (Scheme 4.2). 

As expected, the Cp ring is oriented down to avoid steric interactions between the 

isopropyl groups on the phosphines ligated to iron and the ligands on Zr in the solid 

state structure (Figure 4.4 bottom).  

 

Figure 4.5. Catalysts discussed in Chapter 3.  

 Ligand 4.7 differs from ligand 3.1 (discussed in Chapter 3) by the 

replacement of the phenyl group with a cyclopentadienyl group. Given the 

similarities of catalysts 3.5 (Figure 4.5), and 4.9, we anticipated that the latter would 

catalyze the reduction of dinitrogen to ammonia. To our delight, we observed 

catalytic amounts of ammonia upon treatment of 4.9 with HBArF
4 and KC8. 

Mononuclear 4.9 gives a comparable yield to dinuclear complex 3.3 (discussed in 

Chapter 3), both in the absence and presence of light (entries 1-4). Performing the 

catalysis in the presence of a blue LED increases the amount of ammonia formed 

(entry 5). Interestingly, the structurally similar P2
PPhFe(N2)(H)2 (3.5), which contains 

a –Ph group in place of the “NaCp” group, provides a lower yield of ammonia (2.6 ± 

0.1 equiv when 150 equiv of HBArF
4 and 180 equiv of KC8 used).  The crown ether 
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encapsulated Na salt 4.10 is also a competent catalyst for dinitrogen reduction 

(entries 7). Most interestingly, the hetereobimetallic complex 4.12 yields slightly 

more ammonia (6.4 equiv) than the Fe-only analogue (4.1 ± 0.3 equiv). Although 

additional studies are needed to fully understand the nature of this enhancement, Zr 

appears to benefit the catalysis. It would be interesting to look at other reaction 

conditions to determine whether the improved yield using the heterobimetallic 

catalyst can be enhanced further. Additional reductants, such as Na/Hg and Cp*
2Co, 

in place of KC8, were also attempted but did not lead to ammonia formation. 

 

Table 4.1. Catalytic dinitrogen reduction to ammonia with synthetic iron 

complexes.[a] 

 

 Variation HBArF
4 

(equiv) 
KC8  

(equiv)
Mean ± SD  
(equiv NH3) 

1 None 41 49 4.1 ± 0.3 
2 Hg Lamp 41 49 5.9 ± 0.4 
3 None 136 170 5.0 ± 0.6 
4 Hg Lamp 136 170 8.4 ± 0.1 
5[b] Blue LED 136 170 10.8 
6[c] 4.10 instead of 4.9 150 180 4.8 ± 0.2 
7[b] 4.12 instead of 4.9 46 50 6.4 

 
[a] All entries are an average of 3 runs unless otherwise noted.  
[b] Result of a single run. 
[c] Average of 2 runs. 
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Iron-catalyzed olefin hydrogenations have been previously reported.41-46 In 

the case of the triphos-supported 4.9, we speculated that the NaCp moiety of the 

complex could mediate proton delivery to the olefin by acting as a proton relay.  

 

Scheme 4.3. Catalytic hydrogenation of styrene using 4.9.  

Upon addition of an excess of styrene and 4 atm of H2 to complex 4.9 at room 

temperature, we observed the formation of ethylbenzene (Scheme 4.3). The 

disappearance of styrene and the appearance of the hydrogenated product was 

detected by 1H NMR spectroscopy (see appendix) and the product confirmed by GC-

MS. An unactivated olefin, 1-octene, could also be successfully hydrogenated using 

4.9.   Stoichiometric experiments with the olefin and H2 substrates were conducted 

to gain mechanistic insights. Although treatment of 4.9 with 1.1 equiv of styrene led 

to no observable reaction by 1H NMR spectroscopy (see appendix), the addition of 

H2 to 4.9 led to the formation of an H2 adduct (see appendix). Additional studies are 

required to determine what role the NaCp unit plays in catalysis.   

 

4.3 Conclusions 

 Heterobimetallic complexes containing an early metal and late metal center 

could lead to the cooperative binding and activation of non-polar substrates. Progress 

towards ligand frameworks that can support Lewis acidic and Lewis basic metal 

centers has been made. In part one of this chapter, we describe [Fe(μ-H)2Zr(X)] 
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complexes which support two bridging hydride ligands between the Fe and Zr metal 

centers. In the second part of chapter four, we describe a structurally related P2
PCp 

ligand capable of supporting Fe and Na which are bridged by dinitrogen. Using 4.9, 

Zr can be installed to yield a heterobimetallc complex, 4.12, which also catalyzes the 

reduction of dinitrogen to ammonia.  Beyond nitrogen reduction, we discovered that 

4.9 is also a catalyst for olefin hydrogenation.  
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4.4 Experimental Section 

4.4.1 General Information 

General Considerations. All manipulations were carried out using standard Schlenk 

or glovebox techniques under an N2 atmosphere. Unless otherwise noted, solvents 

were deoxygenated and dried by thoroughly sparging with N2, followed by passage 

through an activated alumina column in a solvent purification system by SG Water, 

USA LLC. Solvents were tested with a standard purple solution of sodium 

benzophenone ketyl in tetrahydrofuran in order to confirm effective moisture 

removal. Deuterated solvents were purchased from Cambridge Isotope Laboratories, 

Inc., degassed, filtered through an alumina plug, and dried over 3 Å molecular sieves 

prior to use. Bis(o-diisopropylphosphino-phenyl)-chlorosilane,35 bis(o-

diisopropylphosphino-phenyl)-chlorophosphine,40 [Na][BArF
4],47 

[H(OEt2)2][BArF
4],47 and KC8

48
 were prepared according to literature procedures. All 

other reagents were purchased from commercial vendors and used without further 

purification unless otherwise stated.  

 

Physical Methods. Elemental analyses were performed by Midwest Microlabs, LLC 

(Indianapolis, IN) or at the Beckman Institute Crystallography facility on a 

PerkinElmer 2400 Series II CHN Elemental Analyzer.  1H and 13C NMR chemical 

shifts are reported in ppm relative to proton and carbon resonances from solvents as 

internal standards. Solution phase magnetic moments were acquired using the Evans 

method.49 Optical spectroscopy measurements were taken on a Cary 50 UV-vis 
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spectrophotometer using a 1-cm two-window quartz cell. Fourier transform infrared 

ATR spectra were collected on a Bruker ATR Spectrometer with diamond ATR 

crystal (utilized iD5 ATR insert).  

Mössbauer Spectroscopy. Mössbauer spectra were recorded on a spectrometer from 

SEE Co. (Edina, MN) operating in the constant acceleration mode in a transmission 

geometry. The sample was kept in an SVT-400 cryostat from Janis (Wilmington, 

MA). The quoted isomer shifts are relative to the centroid of the spectrum of a 

metallic foil of α-Fe at room temperature. Solid samples were prepared by grinding 

solid material into a fine powder and then mounting in a Delrin cup fitted with a 

screw-cap as a boron nitride pellet. Solution samples were transferred to a sample 

cup and chilled to 77 K inside of the glovebox, and unless noted otherwise, quickly 

removed from the glovebox and immersed in liquid N2 until mounted in the cryostat. 

Data analysis was performed using version 4 of the program WMOSS 

(www.wmoss.org) and quadrupole doublets were fit to Lorentzian lineshapes. Unless 

otherwise noted, Mössbauer spectra were collected with an applied 50 mT parallel 

field at 80 K.  

 

X-ray crystallography. XRD studies were carried out at the Beckman Institute 

Crystallography facility on a Bruker Kappa Apex II diffractometer (Mo K 

radiation). Structures were solved using OLEX and refined against F2 on all data by 

full-matrix least squares with SHELXL. The crystals were mounted on a glass fiber 

or a nylon loop with paratone N oil.  
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Ammonia Quantification. The catalytic reaction mixture was cooled to 77 K and 

allowed to freeze. The reaction vessel was opened to the atmosphere and to the frozen 

solution was slowly added a fourfold excess (with respect to acid) solution of a 

NaOtBu in MeOH (0.25 M) over 1–2 minutes. The solution was allowed to freeze, 

then the tube was sealed and allowed to warm to room temperature and stirred at 

room temperature for 10 minutes. An additional Schlenk tube was charged with HCl 

(3 mL of a 2.0 M solution in Et2O, 6 mmol) to serve as a collection flask. The volatiles 

of the reaction mixture were vacuum transferred into the collection flask. After 

completion of the vacuum transfer, the collection flask was sealed and warmed to 

room temperature. Solvent was removed in vacuo, and the remaining residue 

dissolved in H2O (1 mL) to make a stock solution that was used for both the ammonia 

ad hydrazine quantification. An aliquot of this solution (20 μL) was then analyzed 

for the presence of NH3 (present as NH4Cl) by the indophenol method.50 

Quantification was performed with UV−Vis spectroscopy by analyzing the 

absorbance at 635 nm.  

 

Standard NH3 Generation Reaction Procedure for 4.9. All solvents were stirred 

with Na/K for ≥1 hours and filtered through alumina prior to use. In a nitrogen-filled 

glovebox, a stock solution of the catalyst in THF (10 mM) was prepared. (Note: a 

fresh stock solution was prepared for each experiment and used immediately.) An 

aliquot of this stock solution (60–200 μL, 0.68–2.3 μmol) was added to a Schlenk 

tube and evaporated to dryness under vacuum to give a thin film of 4.9. The tube was 
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allowed to cool to 77 K in the glovebox cold well. To the cold tube was added a 

solution of [H(OEt2)2][BArF
4] (93 mg, 0.092 mmol) in Et2O (0.5 mL). This solution 

was allowed to freeze before the vial which contained the HBArF
4 was rinsed with 

an additional 0.5 mL of Et2O and added to the tube. After the acid layer froze, a 

suspension of KC8 (15 mg, 0.111 mmol) in 0.5 mL of Et2O (1.2 equiv relative to 

[H(OEt2)2][BArF
4]) was added to the cold tube. The temperature of the system was 

allowed to equilibrate for 5 minutes. A stir bar was added to the tube and the tube 

sealed with a Teflon screw-valve. The Schlenk tube was passed out of the box into a 

liquid N2 bath and transported to a fume hood. The reaction vessel was then 

transferred to a dry ice/acetone bath where it thawed to -78 °C and was allowed to 

stir for at least 1 hour. The tube was then warmed to room temperature with stirring, 

and stirred at room temperature for 5 minutes.  

 

Standard NH3 Generation Reaction with Hg Lamp Photolysis Procedure for 4.9. 

All solvents were stirred with Na/K for ≥1 hours and filtered through alumina prior 

to use. In a nitrogen-filled glovebox, a stock solution of the catalyst in THF (10 mM) 

was prepared. (Note: a fresh stock solution was prepared for each experiment and 

used immediately.) An aliquot of this stock solution (60–200 μL, 0.68–2.3 μmol) was 

added to a Quartz Schlenk tube and evaporated to dryness under vacuum to give a 

thin film of 3.9. The tube was allowed to cool to 77 K in the glovebox cold well. To 

the cold tube was added a solution of [H(OEt2)2][BArF
4] (93 mg, 0.092 mmol) in 

Et2O (0.5 mL). This solution was allowed to freeze before the vial that contained the 

[H(OEt2)2][BArF
4] was rinsed with an additional 0.5 mL of Et2O and added to the 
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tube. After the acid layer had frozen, a suspension of KC8 (15 mg, 0.111 mmol, 1.2 

equiv relative to [H(OEt2)2][BArF
4] in 0.5 mL of Et2O was added to the cold tube. 

The temperature of the system was allowed to equilibrate for 5 minutes. A stir bar 

was added to the tube before it was sealed with a Teflon screw-valve. The Schlenk 

tube was passed out of the box into a liquid N2 bath and transported to a fume hood. 

The reaction vessel was then transferred to a dry ice/isopropanol bath which was 

positioned under a Hg lamp and turned on 1 minute prior to transfer of the Schlenk 

tube to the bath. The entire reaction apparatus was surrounded by foil and the reaction 

vessel was allowed to stir for at least 1 hour before the Hg lamp was turned off and 

the Schlenk tube was allowed to warm to room temperature with stirring, and stirred 

at room temperature for 5 minutes. 

 

Standard NH3 Generation Reaction with Blue LED Photolysis Procedure with 

4.9. The procedure was identical to that of the standard catalytic reaction protocol 

with Hg lamp photolysis with the changes noted. A blue LED was used in place of a 

Hg lamp. 

 

Standard NH3 Generation Reaction Procedure with 4.10. The procedure was 

identical to that of the standard catalytic reaction protocol with the changes noted. A 

suspension of 4.10 (1.9 mg, 2.0 μmol) was prepared in THF (300 μL). An addition 

300 μL was used to the rinse the vial containing 4.10 and the solvent removed in 

vacuo. 
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Standard NH3 Generation Reaction Procedure with 4.12. The procedure was 

identical to that of the standard catalytic reaction protocol with the changes noted. A 

stock solution of 4.12 in THF was prepared. (Note: a fresh stock solution was 

prepared for each experiment and used immediately.)  

 

Standard NH3 Generation Reaction Procedure for 4.9 and Cp2
*Co as the 

Reductant. The procedure was identical to that of the standard catalytic reaction 

protocol with the changes noted. Cp2
*Co was used as the reductant. 

 

Standard NH3 Generation Reaction Procedure for 4.9 and Na (Hg) as the 

Reductant. The procedure was identical to that of the standard catalytic reaction 

protocol with the changes noted. Na/Hg was used as the reductant. 
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4.4.2 Synthesis Details 

P2
SiCp-Supported Complexes 

P2
SiHCp

 (4.1, Cp’).  HSi(Cl)(PiPr)2 (5.19 g, 11.5 mmol) and LiCp (3.5 g, 48.6 mmol) 

were combined in THF (40 mL), removed from the glovebox, and heated to 62°C. 

After two days, the reaction mixture was cooled to room temperature and 

concentrated. The crude orange oil was introduced to the dry box, resuspended in 

C6H6 (40 mL) and filtered through celite. The orange filtrate was concentrated, 

triterated with pentane (3 x 15 mL), concentrated, and resuspended in pentane (10 

mL), resulting in the precipitation of an off-white solid. The suspension was allowed 

to sit at -35°C overnight.  The off-white precipitate was collected on a glass-frit (F) 

and washed with pentane (3 x mL). The resulting off-white powder, HSi(Cp)(PiPr)2 

(4.1, 3.51 g, 7.22 mmol, 63%), was dried under vacuum.  1H NMR (5 : 1 C6D6 : THF-

d8, 400 MHz, ppm): δ 7.94  (d, J = 7.6 Hz, 2H, Ar-H), 7.44 (dd, J = 7.8, 2.7 Hz, Ar-

H), 7.25  (m, 2H, Ar-H), 7.15  (t, J = 7.4 Hz, 2H, Ar-H), 6.76  (t, J = 4.9 Hz, 1H, Si-

H), 6.57  (dt, J = 15.1, 2.4 Hz, 4H, Cp-H), 2.19  (m, 2H, methine C-H), 2.09  (m, 2H, 

methine C-H), 1.16 (m, 12H, methyl C-H), 1.04 (m, 12H, methyl C-H). 13C NMR (5 

: 1 C6D6 : THF-d8, 100.6 MHz, ppm): δ 148.25 (dd, J = 41.0, 2.5 Hz), 142.96 (d, J = 

13.3 Hz), 139.07 (dd, J = 13.4, 1.5 Hz), 131.26 (d, J = 2.3 Hz), 128.23 (s), 127.89 

(d, J = 1.4 Hz), 115.22 (s), 108.29 (s), 25.25 (dd, J = 13.6, 2.3 Hz), 24.73 (d, J = 

13.5 Hz), 20.42 (m). 31P NMR (5 : 1 C6D6 : THF-d8, 161.9 MHz, ppm) δ -0.18. 29Si 

NMR (5 : 1 C6D6 : THF-d8, 79.47 MHz, ppm): δ -32.6 (t, JSi-P =  20.4 Hz, Si–H). IR 
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(solid): ν(Si-H) = 2137, 2107 cm-1. ESI-MS (electrospray): calcd for C29H41AgP2Si 

m/z 586.2, found (M+) 587.1 m/z.  

Cp*Cp’ZrCl2 (4.2).  Cp*ZrCl3 (605 mg, 1.82 mmol) and 4.1 (884 mg, 1.82 mmol) 

were combined in THF (5 mL) in the glovebox, After two hours, the reaction mixture 

was concentrated, and the crude yellow oil was resuspended in C6H6 (8 mL) and 

filtered through celite. The yellow filtrate was concentrated, triterated with pentane 

(3 x 15 mL), concentrated, and resuspended in ether (10 mL), resulting in the 

precipitation of a yellow powder. The suspension was allowed to sit at room 

temperature overnight. The yellow precipitate was collected on a glass-frit (M) and 

washed with pentane (3 x mL). The resulting yellow powder, Cp*Cp’ZrCl2 (4.2, 937 

mg, 1.21 mmol, 66%), was dried under vacuum.  1H NMR (C6D6, 400 MHz, ppm): 

δ 8.49 (d, J = 8.7 Hz, 2H, Ar-H), 7.29 (m, 4H, Ar-H), 7.18 (m, 2H, Ar-H), 6.79 (t, J 

= 2.5 Hz, 2H, Cp-H), 6.54  (t, J = 6.8 Hz, 1H, Si-H), 6.05 (t, J = 2.5 Hz, 2H, Cp-H), 

1.90 (m, 2H, methine C-H), 1.82 (s, 15H, Cp* C-H), 1.72 (m, 2H, methine C-H), 

1.03 (m, 12H, methyl C-H), 0.74 (m, 12H, methyl C-H). 13C NMR (C6D6, 100.6 

MHz, ppm): 145.24 (d, J = 16.7 Hz), 145.26 (d, J = 2.2 Hz), 144.83 (d, J = 2.1 Hz), 

140.35 (dd, J = 14.4, 6.8 Hz), 131.78 (d, J = 2.4 Hz), 129.26 (s), 126.49 (d, 2.7 Hz), 

124.27 (s), 123.80 (t, J = 6.6 Hz) 117.24 (s), 26.51 (d, J = 14.9 Hz), 24.67 (d, J = 14.2 

Hz), 21.8 (d, J = 15.1 Hz), 20.32 (m), 12.48 (s). 31P NMR (C6D6, 161.9 MHz, ppm): 

δ 0.12 (s). 29Si NMR (C6D6, 79.47 MHz): δ -27.7 (t, JSi-P =  18.2 Hz, Si–H). IR (solid): 

ν(Si-H) = 2154 cm-1. Elemental: Anal. Calcd for C39H55Cl2P2SiZr: C, 60.36; H, 7.14. 

Found: C, 59.98; H, 7.13. 
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[Fe(μ-H)2Zr(H)] (4.3). Cp*Cp’ZrCl2, 4.2, (1.77 g, 2.28 mmol) and ferrous bromide 

(540 mg, 2.51 mmol) were combined in THF (15 mL) in the glovebox, After 30 min, 

the reaction mixture was concentrated, and the yellow oil was triterated with pentane 

(3 x  5 mL) to provide a yellow powder. The yellow powder was suspended in toluene 

(35 mL) and cooled to -78 °C. To this stirring solution, NaHBEt3 (1.0M in toluene, 

9.6 mL) was added. The reaction mixure was allowed to warm to room temperature 

overnight, concentrated, resuspended in benzene (10 mL), and filtered through celite, 

and the brown filtrate concentrated. The brown residue was then resupsended in ether 

and allowed to sit overnight, resulting in the precipitation of a magenta solid. The 

magenta powder was collected on a glass-frit (M), washed with pentane (3 x mL), 

resuspended in THF, and cooled to -78 °C. To the chilled THF solution, pentane was 

added dropwise, resulting in the precipitation of a magenta powder. The magenta 

powder, [Fe(μ-H)2Zr(H)] (4.3, 500 mg,   0.64 mmol, 28%), was collected on a glass-

frit (M), washed with pentane (3 x mL), and dried under vacuum. 1H NMR (C6D6, 

400 MHz, ppm): δ 8.40 (m, Ar-H), 7.55 (m, 2H, Ar-H), 6.79 (s, 1H, Ar-H), 5.41 (d, 

J = 21.0 Hz, 2H, Cp-H), 4.99 (s, 1H, Cp-H), 4.61 (m, 1H, Zr-H), 2.44 (m, 2H, methine 

C-H), 2.12 (s, 15H, Me-H), 1.84 (m, 2H, methine C-H), 1.52 (m, 6H, Me-H), 1.22 

(m, 6H, methyl C-H), 0.58 (dd, J = 14.0, 6.7, 3H, methyl C-H), 0.06 (dd, J = 13.2, 

6.7, 3H, methyl C-H), -17.26 (m, 1H, Fe-H-Zr), -20.69 (m, 1H, Fe-H-Zr). 13C NMR 

(THF-d8, 100.6 MHz, ppm): 156.07 (d, J = 49.04 Hz), 154.70 (d, J = 43.90 Hz), 

150.36 (d, J = 40.5 Hz), 149.06 (d, J = 46.9 Hz), 149.06 (d, J = 46.9 Hz), 133.12 

(dd, J = 18.4, 12.5 Hz), 128.96 (s), 128.83 (s), 128.53 (s), 128.26 (s), 127.68 (d, J = 

4.4 Hz), 126.88 (dd, J = 8.7, 3.7 Hz), 117.06 (s), 113.06 (s), 111.73 (s), 110.95 (s), 
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110.41 (s), 34.88 (s), 32.31 (d, J = 7.7 Hz), 29.47 (d, J = 9.2 Hz), 28.43 (d, J = 19.0 

Hz), 26.68 (d, J = 18.2 Hz), 26.2 (s), 23.88 (d, J = 6.5 Hz), 23.02 (s), 20.67 (s), 20.18 

(d, J = 4.1 Hz), 19.55 (d, J = 2.9 Hz), 19.16 (dd, J = 8.5, 5.4 Hz), 18.51 (d, J = 5.8 

Hz), 18.15 (d, J = 4.9 Hz), 14.21 (s), 12.69 (s). 31P NMR (C6D6, 161.9 MHz, ppm): 

δ 100.94 (m), 91.43 (m). IR (solid): ν(N-N) = 2065 cm-1. Elemental: Anal. Calcd for 

C39H58FeN2P2SiZr: C, 59.14; H, 7.38; N, 3.54. Found: C, 58.71; H, 7.14; N, 3.17. 

 

[Fe(μ-H)2Zr(CH2)] (4.4). Cp*ZrCl3 (136.8 mg, 0.411 mmol) and 4.1 (200 mg, 0.411 

mmol) were combined in THF (5 mL) in the glovebox.  After two hours, ferrous 

bromide (97.5 mg, 0.452 mmol) was added. The reaction was stirred for 30 min, 

concentrated, and the yellow oil was triterated with pentane (3 x 5 mL) to provide a 

yellow powder. The yellow powder was suspended in toluene (8 mL). To this 

solution, freshly prepared Na(Hg) amalgam (174.4 mg Na, mmol,  17 g Hg) was 

added and the reaction mixure was stirred vigorously overnight. After 1 day, 

additional freshly prepared Na(Hg) amalgam (55 mg Na, mmol,  7.5 g Hg) was added 

to the reaction and stirred overnight. The reaction solution was then decanted, filtered 

through celite, and the filtrate concentrated. Slow evaporation of ether provided a 

mixture of 4.3 and 4.4 as magenta and purple x-ray quality crystals respectively. 

 

[Fe(μ-H)2Zr(OTf)] (4.5). To a stirring solution of [Fe(μ-H)2Zr(H)], 4.3, (50 mg, 

0.063 mmol) in benzene, methyl triflate (7.0 μL, 0.063 mmol) was added. After 1 

hour, crystals formed and the resulting suspension was allowed to sit at room 

temperature for 12 hours. The blue-green crystals were collected on a glass-frit (M) 
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and washed with pentane (3 x 1 mL), furnishing [Fe(μ-H)2Zr(OTf)] (4.5, 41.4 mg, 

0.044 mmol, 70%). 1H NMR (toluene-d8, 400 MHz, ppm): δ 8.20 (m, 2H, Ar-H), 

7.52 (dd, J =  7.8, 4.1 Hz, 1H, Ar-H) 7.31 (td, J = 7.3, 2.4 Hz, 1H, Ar-H) 7.21 (td, J 

= 7.2, 2.6 Hz, 1H, Ar-H) 7.08 (m, 3H, Ar-H), 6.77 (q, J = 2.2 Hz, 1H, Cp-H), 6.02 

(q, J = 2.5 Hz, 1H, Cp-H), 5.88 (dq, J = 2.5 Hz, 1H, Cp-H), 4.78 (q, J = 2.4 Hz, 1H, 

Cp-H), 2.41 (m, 2H, methine C-H), 2.07 (m, 2H, methine C-H), 1.96 (s, 15H, Me-

H), 1.60 (m, 3H, Me-H), 1.33 (m, 12H, Me-H), 0.86 (m, 2H, Me-H), 0.65 (dd, J = 

9.5, 6.6 Hz, 3H, Me-H), 0.43 (dd, J = 14.2, 7.0 Hz, 2H, Me-H), -0.23 (dd, J = 13.7, 

6.8 Hz, 2H, Me-H), -16.85 (ddd, J = 35.3, 15.7, 10.7 Hz, 1H, Zr-H-Fe), -20.58 (ddd, 

J = 24.6, 10.8, 7.0 Hz, 1H, Zr-H-Fe). 13C NMR (toluene-d8, 100.6 MHz, ppm): 

155.25 (d, J = 50.3 Hz), 151.16 (d, J = 42.7 Hz), 149.15 (d, J = 41.2 Hz), 147.47 (d, 

J = 48.8 Hz), 132.05 (m), 129.62 (s), 126.57 (s), 126.23 (s), 125.86 (s) 123.78 (s), 

121.28 (s), 118.09 (s), 111.80 (s), 32.20 (s), 30.91 (s), 28.25 (d, J = 12.1 Hz), 25.17 

(s), 24.07 (s), 17.73 (m), 12.09 (q, J = 128.9 Hz).  31P NMR (toluene, 161.9 MHz, 

ppm): δ 100.46 (m), 86.21 (m). 19F NMR (toluene, 376.4 MHz): δ -73.78 (t, JSi-P =  

18.2 Hz, Si–H).  IR (solid): ν(N-N) = 2077 cm-1. Elemental: Anal. Calcd for 

C40H57F3FeN2O3P2SSiZr: C, 51.11; H, 6.11, N, 2.98. Found: C, 50.78; H, 5.86, N, 

2.97. 
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P2

PCp-Supported Complexes  

 

P2
PCp (4.7). Lithium cyclopentadienide was prepared by treating freshly cracked 

cyclopentadiene (10 mL, 121.8 mmol) with n-BuLi (1.6 M in hexanes, 116 mmol) in 

THF (130 mL) at -78 °C. The reaction was warmed to room temperature overnight. 

The reaction vessel was brought into the glovebox where the white solid was filtered, 

washed with pentane, and dried under vacuum.  

 

To a stirring solution of bis(o-diisopropylphosphino-phenyl)-chlorophosphine (4.7) 

(2.5 g, 5.52 mmol) in THF (10 mL) was added dropwise lithium cyclopentadienide 

(0.44 g, 6.07 mmol) in THF (4 mL) at -78 °C. The reaction was stirred for 2 hours at 

-78 °C and then warmed to room temperature. After stirring for an additional 15 

minutes at room temperature, the solvent was removed in vacuo.  The crude oil was 

resuspended in benzene (10 mL), filtered through celite, concentrated, and the 

resultant oil triterated with pentane (3 x 2 mL) to provide a cream colored solid. The 

cream colored solid was washed with pentane (3 x 5 mL) and dried under vacuum to 

give P2
PCp (4.7) (2.18 g, 4.53 mmol) in 82% yield. 1H NMR (400 MHz, C6D6, data 

reported for major regioisomer) δ 7.33 (dtd, J = 8.8, 5.0, 4.4, 2.6 Hz, 2H), 7.18 (d, J 

= 4.1 Hz, 2H), 7.13 – 7.06 (m, 2H), 7.02 (q, J = 9.2, 7.5 Hz, 2H), 6.47 (dd, J = 3.1, 

1.6 Hz, 1H), 6.42 (t, J = 4.5 Hz, 2H), 3.05 (s, 2H), 2.13 (pd, J = 6.9, 3.0 Hz, 2H), 2.07 

– 1.93 (m, 2H), 1.26 – 1.11 (m, 12H), 0.95 (ddd, J = 12.5, 6.9, 3.3 Hz, 12H). 31P 

(C6D6, 400 MHz, ppm, data reported for major regioisomer): -1.80 (d, J = 149.0 Hz, 

2P), -28.5 (t, J = 149.0  Hz, 1P). 13C NMR (101 MHz, C6D6) δ 149.19 (ddd, J = 33.6, 
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11.5, 6.4 Hz), 148.63 – 147.94 (m), 145.88 (dt, J = 17.5, 7.1 Hz), 144.35 (d, J = 17.2 

Hz), 143.20 (d, J = 12.0 Hz), 142.92 – 141.83 (m), 137.60 (d, J = 6.2 Hz), 136.81 (d, 

J = 18.6 Hz), 134.76 – 134.39 (m), 134.39 – 134.02 (m), 133.28 (d, J = 4.6 Hz), 

133.05 (d, J = 5.4 Hz), 132.33 (dd, J = 6.0, 2.3 Hz), 128.82 (d, J = 2.4 Hz), 46.56 (d, 

J = 19.6 Hz), 43.29 (d, J = 5.3 Hz), 26.00 – 23.43 (m), 21.40 – 19.36 (m). ESI-MS 

(electrospray): calcd for C29H41AgP3
+ 589.15 m/z, found: 589.11 m/z; Ligand + 

MeCN was also found: calcd for C31H44NP3 523.27 m/z, found: 523.87 m/z 

 

P2
PCpFeBr2 (4.8-FeBr2). P2

PCp (4.7) (0.338 g, 0.700 mmol) and ferrous bromide 

(0.166 g, 0.770 mmol) were combined in THF (20 mL) in the glovebox. The dark 

black purple solution was stirred vigorously over two hours. The crude reaction 

mixture was filtered through celite and the filtrate evaporated in vacuo to give a 

midnight purple crystalline solid. The purple solid was isolated on a frit, washed with 

pentane (3 x 5 mL), and dried under dynamic vacuum to give P2
PCpFeBr2 (4.8-FeBr2) 

(0.481 g, 0.689 mmol) in 98% yield. 1H NMR (400 MHz, C6D6) δ 142.04, 33.92, 

16.59, 15.48, 11.28, 6.99, 6.08, 4.45, 3.82, 2.48, 1.52, -2.07, -2.71. μeff (THF-d8, 

Evans’ method, 298K): 3.82 μB. Anal calcd for C29H41Br2FeP3: C, 49.89; H, 5.92. 

Found: C, 49.64; H, 5.81. 

 

4.8-57FeCl2 was synthesized using an identical procedure, except with 57FeCl2 in 

place of FeBr2, and gave similar features by 1H NMR: 1H NMR (400 MHz, C6D6) δ 

125.84, 79.64, 18.00, 11.28, 8.61, 7.60, 4.07, -0.22. 
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[P2

PCpFe(N2)(H2)]Na (4.9). To a dark purple solution of 4.8-FeBr2 (0.0578 g, 0.083 

mmol) in THF (5 mL) at -78 °C was added sodium triethylborohydride (1 M in 

toluene, 0.18 mL, 0.18 mmol). The reaction mixture was stirred at -78 °C for 1.5 

hours before a final portion of sodium triethylborohydride (0.05 mL, 0.05 mmol) was 

added and the solution stirred for an additional 1.5 hours at -78 °C. The brown 

reaction mixture was warmed to room temperature, stirred for 2 hours, and 

concentrated in vacuo. The resultant brown oil was resuspended in benzene (2 mL), 

filtered through celite, and the reaction vessel and salts washed with benzene (3 x 1 

mL). The brown filtrate was concentrated in vacuo and the brown powder 

resuspended in 5 mL of Et2O, which resulted in the precipitation of the yellow 

crystalline solid 4.9 (0.0181 , 0.027 mmol) in 36% yield. 1H NMR (400 MHz, C6D6) 

δ 8.40 (q, J = 4.9 Hz, 2H), 7.48 (d, J = 5.9 Hz, 2H), 6.33 (s, 2H), 5.92 (s, 2H), 2.50 

(dp, J = 14.2, 7.1 Hz, 4H), 1.59 (q, J = 7.2 Hz, 6H), 1.42 (dd, J = 13.9, 6.4 Hz, 6H), 

1.18 (q, J = 6.7 Hz, 6H), 0.61 (q, J = 6.9 Hz, 6H), -9.02 (bs, 1H), -19.34 (bs, 1H). 31P 

(THF-d8, 400 MHz, ppm): 121.3 (bs, 2P), 108.23 (t, J = 17.1  Hz, 1P). 13C NMR (101 

MHz, THF-d8) δ 154.93 – 153.41 (m), 149.12 (dt, J = 44.1, 17.6 Hz), 131.72 (t, J = 

6.5 Hz), 129.12 – 126.88 (m), 112.35 (d, J = 13.0 Hz), 109.60 (d, J = 49.5 Hz), 106.30 

(d, J = 11.1 Hz), 66.14, 32.82 (t, J = 3.0 Hz), 21.40 – 18.27 (m), 15.51.  IR (KBr; cm-

1): 1993 (N–N), 1775 (Fe–H). Anal calcd for C29H42FeN2NaP3: C, 58.99; H, 7.17; N, 

4.74. Found: C, 58.87; H, 7.20; N, 4.54. 

 

[(P2
PCp)(H)2Fe-N2]Na(12-c-4)2 (4.10). The 12-c-4 salt of 4.9 was synthesized in an 

analogous manner as 4.9 using 4.8 (169 mg, 0.242 mmol), except once the crude 
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material was suspended in benzene, two equiv of 12-c-4 (0.080 mL, 0.484 mmol) 

was added, which led to the precipitation of a yellow solid. The yellow solid was 

isolated on a frit and rinsed with benzene, yielding 4.10 (157 mg, 69% yield).  IR 

(KBr; cm-1): 2031 (N–N), 1774 (Fe–H). Anal calcd for C45H74FeN2NaO8P3: C, 57.33; 

H, 7.91; N, 2.97. Found: C, 57.21; H, 7.75; N, 2.88. 4.10 has not been characterized 

in solution yet, because it is not soluble in common organic solvents.  

 

P2
PCpFe(N2)(H2) (4.11). To a yellow solution of 4.9 (0.018 g, 0.027 mmol) in THF 

(1 mL) at -78 °C was added HBArF
4 (0.0274 g, 0.027 mmol). The reaction mixture 

was stirred at -78 °C for 1 hour, then at room temperature for 1 hour. The orange 

reaction mixture was subsequently concentrated in vacuo and the resultant orange oil 

resuspended C6D6 for NMR analysis. A purification procedure has not yet been 

developed given the high solubility of the compound in numerous solvents. 1H NMR 

(400 MHz, C6D6) δ 8.34 (s, 2H), 7.91 (d, J = 6.5 Hz, 2H), 7.41 (s, 2H), 7.12 – 6.99 

(m, 2H), 6.36 (d, J = 5.3 Hz, 2H), 6.30 (s, 2H), 3.08 (s, 2H), 2.44 (dt, J = 13.9, 6.9 

Hz, 4H), 1.57 (q, J = 7.3 Hz, 6H), 1.27 (q, J = 7.3 Hz, 6H), 1.08 (dq, J = 12.2, 6.8, 

6.4 Hz, 6H), 0.60 (q, J = 6.9 Hz, 6H), -8.38 – -9.75 (m, 1H), -20.49 (s, 1H). 31P NMR 

(162 MHz, C6D6) δ 119.25 (d, J = 46.7 Hz, 2P), 98.01 (s, 1P). IR (thin film; cm-1): 

2068 (N–N), 1790 (Fe–H). 

 

(P2
PCp)Fe(N2)(H)2Cp*ZrCl2 (4.12). To a yellow solution of 4.9 (0.0403 g, 0.061 

mmol) in THF (5 mL) at -78 °C was added Cp*ZrCl3 (0.0202 g, 0.061 mmol). The 

reaction mixture was stirred at -78 °C for 1 hour, then at room temperature for 2 
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hours. The orange reaction mixture was subsequently concentrated in vacuo and 

the resultant orange oil resuspended in diethyl ether (2 mL). The crude solution was 

filtered through celite, and the reaction vessel and salts washed with diethyl ether 

(3 x 1 mL). The red/orange filtrate was concentrated in vacuo again and dried under 

vacuum for 2 hours before it was resuspended in 1 mL of Et2O, which resulted in 

the precipitation of red orange crystals of 4.12 (0.0426 g, 0.0453 mmol) in 74% 

yield. 1H NMR (400 MHz, toluene-d8) δ 9.19 (t, J = 6.8 Hz, 2H), 7.37 (d, J = 7.7 

Hz, 2H), 7.24 (t, J = 7.5 Hz, 2H), 7.09 (q, J = 8.0, 7.5 Hz, 2H), 6.55 (q, J = 2.9 Hz, 

2H), 5.26 (d, J = 2.9 Hz, 2H), 2.55 – 2.28 (m, 4H), 1.63 (s, 15H), 1.50 (q, J = 7.1 

Hz, 6H), 1.27 – 1.11 (m, 12H), 0.48 (p, J = 8.8, 6.9 Hz, 6H), -8.90 (q, J = 50.3, 46.8 

Hz, 1H), -20.57 (dt, J = 62.7, 43.1 Hz, 1H). 31P NMR (162 MHz, toluene-d8) δ 

118.34 (d, J = 56.0 Hz, 2P), 105.24 (s, 1P). IR (KBr; cm-1): 2065 (N–N), 1786 (Fe–

H). 
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4.4.3 Reactivity Studies 

 

[Fe(μ-H)2Zr(OCHO)] (4.6). 4.6 was generated in situ for spectral analysis. To a 

magenta solution of 4.3 (0.030 g, 0.038 mmol) in a J. Young tube (C6D6, 0.6 mL) at 

room temperature was added 1 atm of CO2. The J. Young tube was rotated and 

spectra collected after 10 minutes of mixing and then 12 hours of mixing. 

 

Olefin Catalysis 1H NMR Spectroscopic Studies with 4.9. To a J. Young tube 

containing a mixture of complex 4.9 (4.1 mg, 6.9 μmol) and an excess of styrene 

(14.2 μL, 0.124 mmol) in 0.6 mL of 7:1 C6D6 : THF-d8, was added 4 atm of H2. The 

reaction was monitored over time using NMR spectroscopy. 31P and 1H NMR spectra 

were collected after 1 hour  and 9 hours of mixing. 

 

1H NMR and IR Spectroscopic Investigation of H2 Addition to 4.9. To a yellow 

solution of 4.9 (0.015 g, 0.025 mmol) in a J. Young tube (10: 1 toluene-d8 :THF-d8, 

0.6 mL) at room temperature was added 4 atm of H2. The J. Young tube was rotated 

and a spectrum collected after 22 hours of mixing.  

 

1H NMR Analysis of the Reaction Between Styrene and 4.9. To a yellow solution 

of 4.9 (4.1 mg, 6.9 μmol) in a J. Young tube (7:1 C6D6 : THF-d8, 0.6 mL) at room 

temperature was added 1.0 equiv of styrene (0.8 μL, 6.9 μmol). The J. Young tube 

was rotated and spectra collected after 10 minutes and 1 hour of mixing.
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Chapter 2 Appendix. 

Pd Chemistry: NMR Spectra 
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Ni Chemistry Spectra 

 

 

Figure A2.14. EPR Study of Complex 2.11 with (4-fluorophenethyl)zinc(II) bromide. 

(a) Experimental parameters; Microwave power, 2.026 mW; microwave frequency, 9.405 

GHz; modulation amplitude, 2 G; gain, 5020; time constant, 40.960 (b) Experimental 

parameters; Microwave power, 2.036 mW; microwave frequency, 9.404 GHz; modulation 

amplitude, 2 G; gain, 5020; time constant, 40.960. 
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Figure A2.15 19F NMR spectra (DMA, 376 MHz, 0 C) of 2.11 with (4-

fluorophenethyl)zinc(II) bromide 2.22 (a) after 2 min and (b) after 3 hr. Reaction of 2.11 
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provides predominantly starting material 2.22. Other products formed are shown with their 

respective 19F NMR chemical shifts.  

 

 

 

Figure A2.16. EPR Study of Complex 2.11 with 1-bromoindane. Experimental parameters; 

Microwave power, 2.041 mW; microwave frequency, 9.499 GHz; modulation amplitude, 2 

G; gain, 5020; time constant, 40.960. 
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X-ray Data 

 

Thermal ellipsoid representation of 2.11-NiBr. A second molecule and a THF molecule 
have been omitted for clarity.  

Table A2.1 Crystal data and structure refinement for 2.11 (tmb05) 
Identification code  tmb05  
Empirical formula  C19H27BrN3NiO2.5  
Formula weight  476.05  
Temperature/K  100.15  
Crystal system  monoclinic  
Space group  P21  
a/Å  5.8729(2)  
b/Å  18.1779(7)  
c/Å  18.9801(9)  
α/°  90  
β/°  95.041(3)  
γ/°  90  
Volume/Å3  2018.42(14)  
Z  4  
ρcalcmg/mm3  1.567  
m/mm-1  2.962  
F(000)  980.0  
Crystal size/mm3  0.3 × 0.17 × 0.01  
Radiation  MoKα (λ = 0.71073)  



161 
 

2Θ range for data collection  4.482 to 75.392°  
Index ranges  -9 ≤ h ≤ 9, -27 ≤ k ≤ 27, -28 ≤ l ≤ 31  
Reflections collected  72097  
Independent reflections  16187 [Rint = 0.0542, Rsigma = 0.0763]  
Data/restraints/parameters  16187/1/486  
Goodness-of-fit on F2  0.984  
Final R indexes [I>=2σ (I)]  R1 = 0.0359, wR2 = 0.0582  
Final R indexes [all data]  R1 = 0.0710, wR2 = 0.0643  
Largest diff. peak/hole / e Å-3 0.75/-0.75  
Flack parameter 0.009(3) 

 

 
 
Thermal ellipsoid representation of 2.12-NiBr2. A second molecule and a THF molecule 
have been omitted for clarity.  
 
Table A2.2. Crystal data and structure refinement for 2.12-NiBr2 (tmb08). 
Identification code  tmb08  
Empirical formula  C19H27Br2N3NiO2.5  
Formula weight  555.96  
Temperature/K  100.15  
Crystal system  monoclinic  
Space group  P21  
a/Å  13.2569(5)  
b/Å  10.8461(4)  
c/Å  16.1968(6)  
α/°  90  
β/°  107.367(2)  



162 
 

γ/°  90  
Volume/Å3  2222.70(15)  
Z  4  
ρcalcmg/mm3  1.661  
m/mm-1  4.489  
F(000)  1120.0  
Crystal size/mm3  0.41 × 0.32 × 0.18  
Radiation  MoKα (λ = 0.71073)  
2Θ range for data collection  4.588 to 83.28°  
Index ranges  -24 ≤ h ≤ 24, -20 ≤ k ≤ 20, -29 ≤ l ≤ 30  
Reflections collected  189417  
Independent reflections  29929 [Rint = 0.0438, Rsigma = 0.0488]  
Data/restraints/parameters  29929/1/504  
Goodness-of-fit on F2  1.009  
Final R indexes [I>=2σ (I)]  R1 = 0.0313, wR2 = 0.0548  
Final R indexes [all data]  R1 = 0.0496, wR2 = 0.0583  
Largest diff. peak/hole / e Å-3 1.03/-0.75  
Flack parameter 0.0113(18) 
 

Table A2.3 Crystal data and structure refinement for 2.17. 

 

Identification code  tmb14 

Empirical formula  C28H33N4NiO4 

Formula weight  548.29 

Temperature  296.15 K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 1 21 1 

Unit cell dimensions a = 14.7477(7) Å  = 90° 

 b = 5.6865(3) Å β = 112.189(3)° 

 c = 19.1442(9) Å γ = 90° 

Volume 1486.59(13) Å
3
 

Z 2 

Density (calculated) 1.225 Mg/m
3
 

Absorption coefficient 0.689 mm
-1

 

F(000) 578 

Crystal size 0.11 x 0.14 x 0.04 mm
3
 

Theta range for data collection 1.491 to 34.552°. 
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Index ranges -22  h  23, -9  k 8, -30  l 28 

Reflections collected 43380 

Independent reflections 11456 [R(int) = 0.0724] 

Completeness to theta = 25.242° 100.0 %  

Absorption correction None 

Max. and min. transmission 1.0000 and 0.8917 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 11456 / 1 / 383 

Goodness-of-fit on F2 1.053 

Final R indices [I>2sigma(I)] R1 = 0.0526, wR2 = 0.1175 

R indices (all data) R1 = 0.0878, wR2 = 0.1366 

Absolute structure parameter 0.019(7) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.830 and -0.697 e Å
-3
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NMR Spectra 
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Chapter 3 Appendix. 

A3.1 Catalysis Details 

Table A3.1. Results of individual runs using 3.3 at 300 equiv acid loading per complex with 
no photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on 
H+) 

A 0.123 8.91 9.0 
B 0.111 7.98 8.0 
C 0.092 6.53 6.6 

 
Table A3.2. Results of individual runs using 3.3 at 300 equiv acid loading per complex 
with no photolysis, allowed to warm to room temperature overnight. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.126 9.17 9.2 
B 0.113 8.13 8.2 

 
Table A3.3. Results of individual runs using 3.3 at 300 equiv acid loading per complex with 
Hg lamp photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on 
H+) 

A 0.274 18.4 20.6 
B 0.252 18.8 18.9 
C 0.232 17.2 17.3 

 
Table A3.4. Results of individual runs using 3.1 at 150 equiv acid loading per complex with 
no photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on 
H+) 

A 0.005 -0.04 0 
B 0.002 -0.16 0 

 
Table A3.5. Results of individual runs using 3.1 at 150 equiv acid loading per complex with 
Hg lamp photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on 
H+) 

A 0.009 0.10 0.2 
B 0.007 0.01 0.02 

 
Table A3.6. Results of individual runs using 3.3 at 300 equiv acid loading per complex with 
no photolysis and 2-MeTHF instead of Et2O as the reaction solvent. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.009763 0.26 0.3 
B 0.014944 0.56 0.7 
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Table A3.7. Results of individual runs using 3.3 at 3000 equiv acid loading per complex 
with no photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.068 23.5 2.4 
B 0.074 25.9 2.7 
C 0.069 24.1 2.5 

 
Table A3.8. Results of individual runs using 3.3 at 3000 equiv acid loading per complex 
with Hg lamp photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.183 67.4 6.9 
B 0.191 70.6 7.3 
C 0.169 62.0 6.3 

 
Table A3.9. Results of individual runs using 3.5 at 150 equiv acid loading per complex with 
no photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.074 2.56 5.2 
B 0.074 2.58 5.2 

 
Table A3.10. Results of individual runs using 3.5 at 150 equiv acid loading per complex 
with Hg lamp photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.224 8.27 16.3 
B 0.257 9.53 19.3 

 
Table A3.11. Results of individual runs using P3

BFe(N2
-) at 1500 equiv acid loading per 

complex with no photolysis. 
Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.294 59.2 11.8 
B 0.317 64.1 12.8 
C 0.281 56.7 11.2 

 
Table A3.12. Results of individual runs using P3

BFe(N2
-) at 1500 equiv acid loading per 

complex with Hg lamp photolysis. 
Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.390 79.1 15.8 
B 0.450 91.5 18.2 
C 0.462 93.9 18.7 
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Table A3.13. Results of individual runs using 3.3 at 300 equiv acid loading per complex 
with Blue LED photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.281 21.01 21 
B 0.289 21.58 22 

 

Table A3.14. Results of individual runs using (P3
B)(-H)Fe(N2)(H) at 150 equiv acid 

loading per complex with no photolysis. *Yield based on all nitrogenous products. 
Run Absorbance 

(NH3) 
Equiv 

NH3/Complex 
Absorbance 

(N2H4) 
Equiv 

N2H4/Complex 
% Yield  

(Based on H+) 
A 0.158 5.81 0.032 0.44 14 
B 0.168 6.17 0.078 0.97 13 

 
Table A3.15. Results of individual runs using (P3

B)(-H)Fe(N2)(H) at 150 equiv acid 
loading per complex with Hg lamp photolysis. *Yield based on all nitrogenous products. 

Run Absorbance 
(NH3) 

Equiv 
NH3/Complex 

Absorbance 
(N2H4) 

Equiv 
N2H4/Complex 

% Yield  
(Based on H+) 

A 0.247 9.2 0.232 2.76 24 
B 0.211 7.85 0.360 4.24 24 
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A3.2 Spectroscopic characterization of compounds 3.1, 3.2, 3.3 and 3.5. 
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175 
 

 



176 
 

 

  



177 
 

 

  



178 
 

 

  



179 
 

 

Figure A3.7. X-ray crystal structure of 3.2-FeBr2 with thermal ellipsoids shown at 50% 

probability.  

 

Figure A3.8. Solid-state 57Fe Mӧssbauer spectrum of 3.2-57FeCl2. Data presented in black 
points, simulation represented by solid orange line, major S = 1 component (95 % of the total 
Fe) represented with purple line (fit with  =  0.53 mm s-1, EQ= 0.62 mm s-1, R = 0.35 mm 
s-1 and L = 0.35 mm s-1), and minor S = 2 component (5 % of the total Fe) represented by 
yellow line (fit with  =  0.85 mm s-1, EQ = 2.74 mm s-1, R = 0.29 mm s-1 and L = 0.29 
mm s-1).   
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Figure A3.12. Solid-state IR spectrum of 3.3 (KBr); νFe-H = 1833 cm-1; νFe-H = 1734 cm-1. 

 

 

Figure A3.13. Infrared spectrum of solid 3.3 and 3.3D overlaid. Astericks indicate Fe-D 
vibrations and hashtags indicate Fe-H vibrations. 3.3 exhibited expected peak shifts in the 
Fe-H(D) vibrations from 1833 and 1734 cm-1 for 3.3 to 1324 cm-1 and 1256 cm-1 for 3.3D. 
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Figure A3.14. Solid-state IR difference spectrum of 3.3D and 3.3. 

 

 

Figure A3.15. Solid-state IR difference spectrum of 3.3 and 3.3-15N2 overlaid. 
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Figure A3.17. (a) Solid-state 57Fe Mӧssbauer spectrum of 3.3. Data presented in black 
points, simulation represented by solid purple line (fit with  = 0.15 mm s-1, EQ = 0.78 mm 
s-1, R = 0.71 mm s-1 and L = 0.71 mm s-1) (b) 57Fe Mossbauer spectrum of a 4.2 mM solution 
of 3.3 in 2-MeTHF. Data presented in black points, simulation represented by solid purple, 
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major S = 0 component (95 % of the total Fe) represented with blue line (fit with  =  0.15 
mm s-1, EQ = 0.80 mm s-1, R = 0.43 mm s-1 and L = 0.43 mm s-1), and minor S = 1/2 
component (5 % of the total Fe) represented by yellow line (fit with  =  0.34 mm s-1, EQ = 
2.25 mm s-1, R = 0.33 mm s-1 and L = 0.33 mm s-1). 
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A3.21. 31P NMR of 3.5 (C6D6, 162 MHz).  
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Figure A3.23. IR (KBr) of 3.5; νNN = 2058 cm-1; νFeH = 1812 cm-1. 
 

 

Figure A3.24. IR (thin film deposited from C6D6) of 3.5; νNN = 2071 cm-1;νFeH = 1796 cm-1. 
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Figure A3.25. UV-Vis of 3.5 in THF (l = 1 cm, c = 0.1 M). 

 
 
 
 

 
 

Figure A3.26. 0 mT, 57Fe Mӧssbauer spectrum of a 4.5 mM solution of 3.5 in 2-MeTHF. Fit 
with  = 0.05 mm s-1, EQ = 0.45 mm s-1, R = 0.39 mm s-1 and L = 0.39 mm s-1. Data 
presented in black points, simulation represented by solid orange line.  
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A3.3 Miscellaneous Experiments 

 
 
Figure A3.27. 31P NMR of 3.5 (C6D6, 162 MHz). 

 

 
Figure A3.28. IR (thin film deposited from C6D6) of 3.5; νNN = 2071 cm-1;  
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νFe-H = 1794 cm-1. 

 
 

Figure A3.29. 31P NMR spectrum of the crude reaction between dinuclear 3.3 and KC8 

(THF-d8, 202 MHz, -78 C). The triplet centered at δ 121.92 ppm and the doublet centered 
at δ 116.96 ppm are consistent with a molecule that has two distinct phosphines, both of 
which couple to each other. Coupling to the proton resonance corresponding to the hydride 
ligand could not be resolved. 
 

 
Figure A3.30. 1H NMR spectrum of the crude reaction between dinuclear 3.3 and KC8 
(THF-d8, 500 MHz, -78 C). The triplet of doublets centered at  -10.21 ppm is consistent 
with the presence of one hydride ligand which couples to two distinct phosphines. 
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Figure A3.31. IR spectrum of the crude reaction between dinuclear 3.3 and KC8. The N-N 
vibration at 1857 cm-1 is consistent with an anionic FeN2

- moiety.   
 
 

 
 
Figure A3.32. 31P NMR spectrum of the crude reaction between dinuclear 3.3 and HBArF

4 

(THF-d8, 162 MHz). The triplet of doublets centered at δ 113.41 ppm and the doublet of 
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doublets centered at δ 95.75 ppm are consistent with a molecule that has two distinct 
phosphines, both of which couple to each other and a hydride ligand. 
 

 
 

Figure A3.33. 1H NMR spectrum of the crude reaction between dinuclear 3.3 and HBArF
4 

(THF-d8, 400 MHz). The two overlapping triplet of doublets centered at δ -16.85 ppm is 
consistent with the presence of one hydride ligand which couples to two distinct phosphines. 
(a) Full spectrum and (b) zoomed in diamagnetic region.  
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Figure A3.34. 11B NMR spectrum of the crude reaction between dinuclear 3.3 and HBArF
4 

(THF-d8, 162 MHz). 
 

 
 
Figure A3.35. 19F NMR spectrum of the crude reaction between dinuclear 3.3 and HBArF

4 
(THF-d8, 376 MHz). 
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Figure A3.36. (a) Magnified IR spectrum of the crude reaction between dinuclear 3.3 and 
HBArF

4 and (b) full IR spectrum. The N-N stretches located at 2194 and 2264 cm-1 are 
consistent with a cationic FeN2 complex. The high intensity peaks in the fingerprint are from 
BArF

4. 
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Figure A3.37. EPR spectra of 3.3 in 2-MeTHF before (blue) and after 10 min of photolysis 
(black). 
 
 
 

 
 
Figure A3.38. EPR spectra of 3.3 in 2-MeTHF before (blue) and after 1 hour of photolysis 
(black). 
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Figure A3.39. Difference EPR spectra derived from Figures A3.37 and A3.36 above in 2-
MeTHF after 10 minutes (red) and 1 hour of photolysis (green). 
 
 
 

 
 
Figure A3.40. 31P NMR spectra (toluene-d8 , 202 MHz) of P2

PPhFe(N2)(H)2  before photolysis 
(spectrum a), after 5 minutes of Hg lamp photolysis at -78 C (spectrum b), after 30 minutes 
total of Hg lamp photolysis at -78 C (spectrum c), and after 1 hour total of Hg lamp 
photolysis at -78 C (spectrum d). 
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Figure A3.41. 1H NMR spectra (500 MHz, toluene-d8) of P2
PPhFe(N2)(H)2  before photolysis 

(spectrum a), after 5 minutes of Hg lamp photolysis at -78 C (spectrum b), after 30 minutes 
total of Hg lamp photolysis at -78 C (spectrum c), and after 1 hour total of Hg lamp 
photolysis at -78 C (spectrum d). *new signal; note that integrations are relative to a dioxane 
internal standard, which integrates as 1.  
 
 

 
Figure A3.42. UV-Vis of 3.5 (golden yellow) in THF and 3.5 after 10 minutes of 
photolysis at -78 C (wine red). 
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Figure A3.43. Photograph showing qualitative color change of 3.5 pre- (left) and post-
photolysis (right). 
 
 
 
 
 

 

Figure A3.44. EPR spectra of 3.5 in 2-MeTHF before (black trace) and after 10 minutes of 
Hg lamp photolysis (blue trace) at -78 C. 

 



203 
 

 
 
Figure A3.45. 31P NMR spectra (toluene-d8 , 162 MHz) of (P3

B)(-H)Fe(H)N2  (spectrum a) 
and after 10 minutes of Hg lamp photolysis (spectrum b). 

 

 
 
Figure A3.46. Hydride region of the 1H NMR spectra (toluene-d8 , 400 MHz)  of (P3

B)(-
H)Fe(H)N2  (spectrum a) and after 10 minutes of Hg lamp photolysis (spectrum b). 
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A3.4 Pulsed EPR Data 
 
 

 
 

Figure A3.47. Q-band Pseudomodulated Electron Spin-Echo (ESE) detected EPR spectra 
(black) of 3.4 (top trace) and 3.4D (bottom trace) in 2-MeTHF with simulations of each (red). 
Experimental conditions: microwave frequency = 33.702 GHz; π pulse length = 40 ns; 
interpulse delay τ = 300ns; pseudmodulation function amplitude = 1.5 mT; shot repitition 
time (srt) = 7 ms; temperature = 12 K. Simulation parameters are as described in Table A3.16. 
Asterisks indicate the position of a background signal from the resonator.  
 
 
 
Table A3.16. EPR Simulation parameters for 3.4 and 3.4D.  
 

Parameter 1 2 3 Euler Angles 
(α,β,γ)° between 

A and g 
matrices 

g-value 2.0980 2.0900 2.0019 N/A 
31P 1 A (MHz) 70 70 62 (0, 0, 0) 
31P 1 A (MHz) 76 76 66 (0, 0, 0) 
31P 1 A (MHz) 142 144 158 (0, 20, 0) 

Hydride 1H A (MHz) 18 64 52 (0, 20, 0) 
Deuteride 2H A (MHz) 2.8 9.8 8.0 (0, 20, 0) 

 



205 
 

 
 

Figure A3.48. Comparison of field-dependent Q-band 1H Davies ENDOR of 3.4 (black) and 
3.4D (blue) in 2-MeTHF. Experimental conditions: microwave frequency = 33.702 GHz; 
MW π pulse length = 40 ns; interpulse delay τ = 300ns;  pulse length = 15 µs; TRF delay = 1 
µs; shot repitition time (srt) = 7 ms; temperature = 12 K; RF frequency randomly sampled. 
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Figure A3.49. Comparison of field-dependent Q-band 2H Davies ENDOR of 3.4 (black) and 
3.4D (blue) in 2-MeTHF. Experimental conditions: microwave frequency = 33.702 GHz; 
MW π pulse length = 80 ns; interpulse delay τ = 300ns;  RF π pulse length = 40 µs; TRF delay 
= 1 µs; shot repitition time (srt) = 7 ms; temperature = 12 K; RF frequency randomly 
sampled. 
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Figure A3.50. Field-dependent Q-band 1H Davies ENDOR of 3.4 (black) in 2-MeTHF with 
simulations of three  31P (green, cyan, and blue) and one Hydride 1H (purple) hyperfine 
couplings. Summation of individual component ENDOR simulations is displayed in red. 
Remaining unsimulated peaks centered around the 1H Larmor frequency (c.a. 48-51 MHz) 
stem from weak couplings from the isopropyl groups of the P2

P’Ph ligand and the bulk solvent. 
Simulation parameters are listed in Table A3.16. Experimental conditions: microwave 
frequency = 33.702 GHz; MW π pulse length = 40 ns; interpulse delay τ = 300 ns;   pulse 
length = 15 µs; TRF delay = 1 µs; shot repitition time (srt) = 7 ms; temperature = 12 K; RF 
frequency randomly sampled. 
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Figure A3.51. Field-dependent Q-band 2H Davies ENDOR of 3.4D (black) in 2-MeTHF 
with simulations of two weaker 31P (green, cyan) couplings and one deuteride 2H (purple) 
hyperfine coupling. Summation of individual component ENDOR simulations is displayed 
in red. Simulation parameters are listed in Table A3.16. Experimental conditions: microwave 
frequency = 33.702 GHz; MW π pulse length = 80 ns; interpulse delay τ = 300ns;   pulse 
length = 40 µs; TRF delay = 1 µs; shot repitition time (srt) = 7 ms; temperature = 12 K; RF 
frequency randomly sampled.  
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Figure A3.52. Field-dependent Q-band Davies ENDOR of 3.4 (black) in 2-MeTHF with 
simulations of the 14N hyperfine coupling and nuclear quadrupole interaction (red). Though 
only the higher frequency peaks are observed, 14N couplings are centered at the 14N Larmor 
frequency  split by the hyperfine coupling A and further split by the nuclear quadrupole 
interaction (NQI) (denoted by goal posts at the two most extreme field positions). Simulation 
parameters: 14N A = [5.4 5.8 9.0] MHz; e2qQ/h = 3.6 MHz, η = 0.08 with both the hyperfine 
and nuclear quadrupole tensors rotated by β = 90° relative to the g-tensor. Experimental 
conditions: microwave frequency = 33.702 GHz; MW π pulse length = 80 ns; interpulse 
delay τ = 300ns;   pulse length = 40 µs; TRF delay = 1 µs; shot repitition time (srt) = 7 
ms; temperature = 12 K; RF frequency randomly sampled. 
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Figure A3.53. Three pulse ESEEM waveforms (left) and corresponding Fourier-transform 
spectra of 3.4 (black) in 2-MeTHF collected at 1153 mT with simulations of the 14N 
hyperfine coupling and nuclear quadrupole interaction (red). Simulation parameters: 14N A 
= [5.4 5.8 9.0] MHz; e2qQ/h = 3.6 MHz, η = 0.08 with both the hyperfine and nuclear 
quadrupole tensors rotated by β = 90° relative to the g-tensor. Experimental conditions: 
microwave frequency = 33.702 GHz; MW π pulse length = 20 ns; interpulse delay τ = 100-
180 ns; Initial delay T = 100 ns incremented by dT = 16 ns;  shot repitition time (srt) = 7 ms; 
temperature = 12 K. 
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Figure A3.54. Three pulse ESEEM waveforms (left) and corresponding Fourier-transform 
spectra of 3.4 (black) in 2-MeTHF collected at 1200 mT with simulations of the 14N 
hyperfine coupling and nuclear quadrupole interaction (red). Simulation parameters: 14N A 
= [5.4 5.8 9.0] MHz; e2qQ/h = 3.6 MHz, η = 0.08 with both the hyperfine and nuclear 
quadrupole tensors rotated by β = 90° relative to the g-tensor. Experimental conditions: 
microwave frequency = 33.702 GHz; MW π pulse length = 20 ns; interpulse delay τ = 100-
180 ns; Initial delay T = 100 ns incremented by dT = 16 ns;  shot repitition time (srt) = 7 ms; 
temperature = 12 K. 
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A3.5 X-Ray Diffraction Data 
 
Table A3.17. Crystal data and structure refinement for 3.2-FeBr2. 
Identification code a16018_a 
Empirical formula C30H41Br2FeP3 
Formula weight 710.21 
Temperature/K 100.0 
Crystal system orthorhombic 
Space group P212121 
a/Å 11.0296(15) 
b/Å 16.3022(12) 
c/Å 17.4950(13) 
α/° 90 
β/° 90 
γ/° 90 
Volume/Å3 3145.7(5) 
Z 4 
ρcalcg/cm3 1.500 
μ/mm-1 3.190 
F(000) 1448.0 
Crystal size/mm3 0.44 × 0.35 × 0.3 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection/° 5.514 to 87.492 
Index ranges -20 ≤ h ≤ 21, -31 ≤ k ≤ 31, -33 ≤ l ≤ 33 
Reflections collected 127248 
Independent reflections 24009 [Rint = 0.0566, Rsigma = 0.0385] 
Data/restraints/parameters 24009/0/333 
Goodness-of-fit on F2 0.980 
Final R indexes [I>=2σ (I)] R1 = 0.0245, wR2 = 0.0512 
Final R indexes [all data] R1 = 0.0330, wR2 = 0.0525 
Largest diff. peak/hole / e Å-3 0.86/-0.49 
Flack parameter -0.0048(16) 
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Table A3.18.  Crystal data and structure refinement for 3.3. 
 
Identification code  P16044 
Empirical formula  C62.50H88Fe2N2P6 
Formula weight  1164.86 
Temperature  100(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 12.2816(7) Å α = 72.8813(19)° 
 b = 19.2311(12) Å β = 77.5344(19)° 
 c = 27.8255(17) Å γ = 80.1633(19)° 

Volume 6092.2(6) Å
3
 

Z 4 

Density (calculated) 1.270 Mg/m
3
 

Absorption coefficient 0.673 mm
-1

 
F(000) 2476 

Crystal size 0.200 x 0.150 x 0.100 mm
3
 

Theta range for data collection 2.143 to 38.568°. 
Index ranges -21 h 21, -33 k 33, -48 l 48 
Reflections collected 499030 
Independent reflections 68875 [R(int) = 0.0921] 
Completeness to theta = 25.242° 99.9 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7481 and 0.7111 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 68875 / 3763 / 1824 

Goodness-of-fit on F2 1.023 
Final R indices [I>2sigma(I)] R1 = 0.0573, wR2 = 0.1282 
R indices (all data) R1 = 0.1148, wR2 = 0.1492 
Extinction coefficient n/a 

Largest diff. peak and hole 1.754 and -1.489 e Å
-3
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Table A3.19 Crystal structure and refinement data for [P2
PPhFe(N2)(H)]Na anion. 

Empirical formula  C30H41FeN2NaO2P3 
Formula weight  613.28 
Temperature  100(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 18.3186(19) Å α = 76.428(5)° 
 b = 18.4812(14) Å β = 72.660(5)° 
 c = 26.336(4) Å γ = 60.990(3)° 

Volume 7399.5(15) Å
3
 

Z 8 

Density (calculated) 1.101 Mg/m
3
 

Absorption coefficient 0.563 mm
-1

 
F(000) 2587 

Crystal size 0.12 x 0.15 x 0.29 mm
3
 

Theta range for data collection 2.170 to 30.758°. 
Index ranges -26  h  26, -26  k  26, -36  l 37 
Reflections collected 503698 
Independent reflections 42658 [R(int) = 0.1196] 
Completeness to theta = 26.000° 100.0 %  

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 42658 / 0 / 1627 

Goodness-of-fit on F2 0.848 
Final R indices [I>2sigma(I)] R1 = 0.0606, wR2 = 0.1511 
R indices (all data) R1 = 0.0971, wR2 = 0.1772 
Extinction coefficient n/a 

Largest diff. peak and hole 3.025 and -1.052 e Å
-3
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Chapter 4 Appendix. 

A4.1 Catalysis Details 

Table A4.1. Results of individual runs using 4.9 at 41 equiv acid loading per complex with no 
photolysis.  

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.372 3.91 28 
B 0.421 4.45 32 
C 0.385 4.06 29 

 

Table A4.2. Results of individual runs using 4.9 at 41 equiv acid loading per complex with Hg 
lamp photolysis. *10 μL aliquots (instead of 20 μL aliquots) of 1 mL water stock solution used for 
ammonia stock solution. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.277 5.79 42 
B 0.265 5.54 40 
C 0.304 6.36 46 

 

Table A4.3. Results of individual runs using 4.9 at 136 equiv acid loading per complex with no 
photolysis. *10 μL aliquots (instead of 20 μL aliquots) of 1 mL water stock solution used for 
ammonia stock solution. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.072 4.59 10 
B 0.087 5.62 12 
C 0.074 4.67 10 

 

Table A4.4. Results of individual runs using 4.9 at 136 equiv acid loading per complex with Hg 
lamp photolysis. *10 μL aliquots (instead of 20 μL aliquots) of 1 mL water stock solution used for 
ammonia stock solution. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.126 8.39 19 
B 0.125 8.29 18 
C 0.248 8.42 19 

 

Table A4.5. Results of individual runs using 4.9 at 136 equiv acid loading per complex with blue 
LED photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.317 10.82 24 
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Table A4.6. Results of individual runs using 4.10 at 46 equiv acid loading per complex with no 
photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.404 4.65 29 
B 0.428 4.93 32 

 

Table A4.7. Results of individual runs using 4.12 at 46 equiv acid loading per complex with no 
photolysis. 

Run Absorbance Equiv NH3/Complex % Yield (Based on H+) 
A 0.540 6.4 39 

 

  



217 
 

A4.2 Spectroscopic Characterization of 4.1-4.12 
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Figure A4.5. Solid-state IR spectrum (KBr) of 4.1.  
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Figure A4.6. ESI-MS spectrum of 4.1. 
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Figure A4.11. Solid-state IR spectrum (KBr) of 4.2.  
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Figure A4.15. Solid-state IR spectrum (KBr) of 4.3.  
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Figure A4.16. 1H (top) and 1H (31P decoupled, bottom) NMR spectra of a mixture of 4.3 
and 4.4. 

 

 

Figure A4.17. 31P (top) and 31P (1H decoupled, bottom) NMR spectra of a mixture of 4.3 
and 4.4.  
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Figure A4.24. Solid-state (KBr) IR spectrum of 4.5.  
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Figure A4.27. IR (thin-film) Spectrum of 4.6.  
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Figure A4.32. UV-Vis spectrum of a THF solution of 4.8-FeBr2.  
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Figure A4.37. UV-Vis spectrum of a THF solution of 4.9.  

 

 

 

Figure A4.38. Mӧssbauer spectrum of a THF solution of 4.9.  
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Figure A4.39. Solid-state (KBr) IR spectrum of 4.9.  
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Figure A4.42. IR (thin-film) Spectrum of 4.11.  

 

 



257 
 

 



258 
 

 



259 
 

 

Figure A4.45. Solid-state (KBr) IR spectrum of 4.12.  
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A4.3 Miscellaneous Experiments 

 

Figure A4.46. 1H NMR Spectra (400 MHz, 10: 1 toluene-d8 :THF-d8) of 4.9  before the 
addition of H2 (bottom) and after 22 hours total of mixing (top).  
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Figure A4.47. 31P NMR Spectra (400 MHz, 10: 1 toluene-d8 :THF-d8) of 4.9  before the 
addition of H2 (bottom) and after 22 hours total of mixing (top).  

 

 

Figure A4.48. Thin firm IR spectrum of 4.9  after the addition of H2 and 22 hours total of 
mixing.  
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Figure A4.49. 1H NMR spectra (400 MHz, 7:1 C6D6:THF-d8) of (a) 4.9, (b) 4.9 with 1.0 

equiv of styrene and (c) after 1 h of mixing.  
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Figure A4.50. 31P NMR spectra (400 MHz, 7:1 C6D6:THF-d8) of (a) 4.9, (b) 4.9 with 1.0 
equiv of styrene and (c) after 1 h of mixing.  
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Figure A4.51. 1H NMR spectra (400 MHz, 7:1 C6D6:THF-d8) of a catalytic hydrogenation 
of styrene: (a) 5 mol% 4.9 and 20 equiv of styrene, (b) after the addition of 4 atm of H2 and 
1 h of mixing; and, (c) after 9 h of mixing. “S” stands for starting material (styrene) and 
“P” stands for product (ethylbenzene).  
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Figure A4.52. 31P NMR spectra (400 MHz, 7:1 C6D6:THF-d8) of a catalytic hydrogenation 
of styrene: (a) 5 mol% 4.9 and 20 equiv of styrene, (b) after the addition of 4 atm of H2 and 
1 h of mixing; and, (c) after 9 h of mixing. 
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Figure A4.53. Thin firm IR spectrum of 4.9  post-catalytic reaction.   
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A4.4 X-Ray Diffraction Data 

Table A4.8. Crystal structure and refinement data for 4.2.  
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Table A4.9. Crystal structure and refinement data for 4.3.  

 

  



269 
 

Table A4.10. Crystal structure and refinement data for 4.4.  
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Table A4.11. Crystal structure and refinement data for 4.5.  
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Table A4.12. Crystal structure and refinement data for 4.8.  

Structure  4.8 
Empirical formula  C29H41Br2FeP3 
Formula weight  695.32 
Temperature  220(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P21/n 
Unit cell dimensions a = 10.7898(3) Å = 90° 
 b = 17.1975(5) Å = 94.9717(11)° 
 c = 16.7737(5) Å  = 90° 

Volume 3100.78(16) Å3 
Z 4 

Density (calculated) 1.489 Mg/m3 

Absorption coefficient 3.222 mm-1 
F(000) 1420 

Crystal size 0.08 x 0.08 x 0.14 mm3 
Theta range for data collection 2.162 to 27.495°. 
Index ranges -14  h  13, -22  k  22, -21 l 21 
Reflections collected 90995 
Independent reflections 7096 [R(int) = 0.0488] 
Completeness to theta = 25.242° 99.9 %  

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 7096 / 0 / 354 

Goodness-of-fit on F2 1.024 
Final R indices [I>2sigma(I)] R1 = 0.0441, wR2 = 0.0917 
R indices (all data) R1 = 0.0647, wR2 = 0.1019 
Extinction coefficient n/a 

Largest diff. peak and hole 1.236 and -1.310 e.Å-3 
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Table A4.13. Crystal structure and refinement data for 4.9. 

Structure  4.9 
Empirical formula  C29H42FeN2NaP3 
Formula weight  166.85 
Temperature  99.98 K 
Wavelength  0.71073 Å 
Crystal system  Trigonal 
Space group  R -3:r 
Unit cell dimensions a = 21.2383(3) Å = 116.34° 
 b = 21.2383(3) Å = 116.34° 
 c = 21.2383(3) Å  = 116.34° 

Volume 4638.11(16) Å
3
 

Z 31 

Density (calculated) 1.852 Mg/m
3
 

Absorption coefficient 2.740 mm
-1

 
F(000) 2511 

Crystal size ? x ? x ? mm
3
 

Theta range for data collection 2.257 to 30.507°. 
Index ranges -30  h  30, -29  k  30, -29  l  28 
Reflections collected 80684 
Independent reflections 9346 [R(int) = 0.5262] 
Completeness to theta = 26.000° 99.9 %  

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 9346 / 0 / 341 

Goodness-of-fit on F2 0.862 
Final R indices [I>2sigma(I)] R1 = 0.0755, wR2 = 0.1807 
R indices (all data) R1 = 0.1826, wR2 = 0.2233 
Extinction coefficient n/a 

Largest diff. peak and hole 0.653 and -0.718 e Å
-3
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Table A4.14. Crystal structure and refinement data for 4.12.  

Structure  4.12 
Empirical formula  C29H43Cl2FeN2P3Zr 
Formula weight  222.14 
Temperature  100.0 K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P 1 21/n 1 
Unit cell dimensions a = 14.6427(8) Å = 90° 
 b = 11.9454(6) Å = 103.233(3)° 
 c = 27.1841(14) Å  = 90° 

Volume 4628.6(4) Å3 
Z 33 

Density (calculated) 2.630 Mg/m3 

Absorption coefficient 4.602 mm-1 
F(000) 3416 

Crystal size 0.16 x 0.33 x 0.35 mm3 
Theta range for data collection 6.761 to 43.721°. 
Index ranges -10  h  22, -11  k  14, -52  l  -4 
Reflections collected 12311 
Independent reflections 8860 [R(int) = 0.0352] 
Completeness to theta = 26.000° 34.5 %  
Absorption correction None 

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 8860 / 0 / 493 

Goodness-of-fit on F2 0.832 
Final R indices [I>2sigma(I)] R1 = 0.0338, wR2 = 0.0664 
R indices (all data) R1 = 0.0607, wR2 = 0.0729 
Extinction coefficient n/a 

Largest diff. peak and hole 0.455 and -0.353 e Å-3 
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