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ABSTRACT 

Metallic materials deform through discrete displacement bursts that are commonly 

associated with abrupt dislocation activities, i.e. avalanches, during plastic flow. 

Dislocations might be active prior to the textbook yielding, but it is unclear whether these 

activities can be discerned as smaller strain events, i.e. microplasticity. Novel 

experimental approaches involving nanomechanical experiments are developed to detect 

and to quantify microplastic deformation that occurs during compression of micron- and 

sub-micron sized single crystalline copper nano-pillars. The experiment, focusing on 

metals’ pre-yield regime, reveals an evolving dissipation component in the storage and 

loss moduli that likely corresponds to a smooth transition from perfect elasticity to 

avalanche-dominated plastic deformation. This experimental investigation is corroborated 

by mesoscopic plasticity simulations, which apply to a minimal model that combines fast 

avalanche dynamics and slow relaxation processes of dislocations. The model's 

predictions are consistent with the microscopic experiments and provide constitutive 

relationship predicting microplastic crackling noise being upconverted by small stress 

perturbations. Another experimental investigation on unload-reload cyclic behavior of 

copper nano-pillars post yielding shows a decaying microplastic hysteresis with emergent 

power laws and scaling features, which signifies an ever-explored reversible-to-

irreversible transitions in metal deformation, as seen in other nonequilibrium systems. To 

study microplasticity in macroscopic metallic samples, an instrument is custom-built 

based on Michelson interferometer and achieves unprecedented high displacement noise 

resolution of 10−14m/√Hz in the frequency range of 10 – 1000 Hz. The macroscopic 

experiment has resolved a driving-modulated microplastic noise in bulk cantilever steel 
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samples under nominal elastic loading. The characteristics of the noise resemble those 

of the microplastic noise predicted from the micromechanical simulations developed from 

microscopic experiments.  
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Chapter 1:  Introduction 

1.1 Summary 

Microplasticity is firstly defined in a macroscopic context in Section 1.2.1 as the pre-yield 

non-linear deviation from the linear behavior of metallic materials below the yielding 

stress, which, in the textbook description, strictly separates the irreversible plastic regime 

from the reversible elastic regime of deformation. The evidence for the presence of 

microplasticity can be found in many traditional mechanical behaviors of bulk metallic 

materials, such as creep and fatigue (Section 1.2.2), internal friction (Section 1.2.3), and 

Bauschinger effect (Section 1.2.4). 

In order to study the microscopic physics of microplasticity, Section 1.3 discusses the 

nature of dislocation-limited plasticity revealed in small-scale metals. Section 1.3.1 

introduces the difference between macroscopic and microscopic metals deformation. 

Section 1.3.2 reviews the primary experimental methodology for small-scale study of 

dislocation plasticity – the uniaxial compression tests on single crystalline micro- and 

nanopillars. Section 1.3.3 examines the characteristics of microplasticity envisioned from 

the statistical physics point of view. The novelty and significance of the statistical study 

on dislocation avalanches are discussed in this subsection with a focus on their 

connections to microplastic deformation of metallic materials. 

Section 1.4 discusses an important motivation of this thesis work, i.e. noise study for 

advanced LIGO. Section 1.4.1 introduces some background, i.e. how advanced LIGO 

works and why mechanical noise can be a problem. Section 1.4.2  introduces the basics 
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of Michelson interferometer configuration, based on which advanced LIGO achieves 

ultra-high differential displacement resolution. The interferometry methodology also 

serve as the basis for the macroscopic experimental study on microplasticity. 

1.2 Microplasticity in Macroscopic Deformation of Metals 

1.2.1 Engineering Yielding and Dislocation Plasticity 

Metallic materials are used in many mechanical systems. It is normally assumed that they 

behave elastically, that is, the exhibited strain is proportional to the applied stress. The 

mechanical behavior follows Hookean relationship due to stretching of atomic bonds. 

Upon elastic loading, there is no permanent shape change and the deformation is 

completely and instantaneously recoverable. However, elastic loading cannot go forever. 

Irreversible deformation of the materials, signified by a non-linear deviation in the 

mechanical response, occurs when loading exceeds certain limit. Polycrystalline materials, 

which include most metal and metal alloys, show more strain with incremental stress 

beyond the elastic regime, a behavior called plastic deformation. Figure 1.1 (a) shows a 

schematic of the stress-strain response for typical polycrystalline materials. The 

distinction between elasticity and plasticity is not crisp. The loading stress separating the 

two regimes, i.e. the yield stress, is conventionally defined by a 0.2% strain offset criterion 

as illustrated in Figure 1.1 (a). 
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Figure 1.1 The stress-strain response of quasi-static uniaxial compression tests on metallic 

materials. (a) An illustration of typical mechanical response of polycrystalline materials, (b) Sample 

compression test data for a single-crystalline copper nanopillar (with diameter of 500 nm and 

nominal aspect ratio of 3:1). 

Early on, Frenkel (1924) assumed that the plastic deviation is caused by shearing of atomic 

planes off each other1. Based on this assumption, the estimated yield strength 𝜏 ≈
𝜇

2𝜋
 , 

where 𝜇 is the shear modulus of the materials, turns out to be order of magnitudes (~100x) 

larger than the experimental observations. Later, Polayni2, Taylor3, and Orowan4 (1934) 

independently found that the flow of dislocations – the topological disjunctions in periodic 

lattices – should be responsible for the ‘weaker-than-expected’ strength observed 

experimentally in crystalline materials. These lattice mismatches act as weak spots that 

can easily carry strain by hopping mechanism. The deformation picture of metallic 

materials therefore has to incorporate the complex behavior of dislocation flow rather than 

simple atomic-bond stretching and breaking.  

The dislocations were first mathematically described by two vectors. One is the burger 

vector 𝒃 describing the resulting displacement in a perfect lattice because of the presence 

of a dislocation, and the other is the sense vector 𝝃. The dislocations shear under stress. 
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The stress can be both external and internal. In the simplest case, an applied uniaxial 

loading stress 𝜎 is projected to a resolved shear stress 𝜏𝑟𝑠𝑠 acting on the dislocation as 

𝜏𝑟𝑠𝑠 = 𝑚𝜎. The project factor 𝑚 = cos(𝜃) cos(𝜙) is the Schmid factor, where 𝜃 and 𝜙 

are the angles between the loading direction and the Burgers vector and the slip plane 

normal. The force acted on the dislocation per unit length is 𝜏𝑏. A more general expression 

for the force 𝑭1 acting on a dislocation with sense vector 𝝃1 and burger vector 𝒃1 induced 

by an arbitrary stress 𝜎𝑖𝑗 is known as the Peach-Kohler formula, 

𝑭1 = 𝝃1  × (𝜎𝑖𝑗 ⋅ 𝒃1). (1.1) 

The stress can also be internal. Dislocation and dislocation interact through the elastic 

field induced by lattice distortion due to their presence. The internal interactions of 

dislocations play crucial role in deformation process of bulk metallic materials. For 

example, it leads to the plain-old Taylor hardening explanation for work hardening1, that 

is, the flow stress of a metallic sample increases over deformation simply because of an 

increase in dislocation density – the dislocations have to overcome stronger mutual elastic 

interaction to be able to move through the more clustered network. The stress required to 

force two dislocations with spacing 𝑙 to pass each other against their interaction is 𝜏 =

𝛼𝐺𝑏/𝑙, where 𝛼 is a constant, 𝐺 is the shear modulus, and 𝑏 is the magnitude of burger 

vector. For a network with dislocation line density 𝜌, the spacing between dislocations 

can be approximated as 𝑙 ~𝜌−1/2. The hardening stress will simply increase with the 

dislocation density, 

𝜏~𝛼𝐺𝑏√𝜌. (1.2) 
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The Taylor hardening explanation is clearly over simplified, but it reveals the important 

role the complex collective behavior of dislocations can play in plastic deformation. 

With the presence of dislocations, an authentic elastic deformation of crystal lattices 

(recoverable and instantaneous) under finite applied stress is questionable. This suspicion 

is reinforced by the ambiguity in the definition of engineering yielding. Prior to this 

arbitrarily defined threshold stress, there could be nonlinear deviation from elastic-linear 

deformation behavior due to dislocation activities. From high-resolution extensometry, 

etch-pit studies, or x-ray topography, signatures of micro-deformation have been reported 

at stresses significantly below the engineering yield stress in bulk single crystalline 

materials5–8, but the microscopic physics of these emergent pre-yield deformation have 

not been well-captured9,10. 

The characteristics of microplasticity are not only of importance to improve the precise 

functional materials design. They also provide a pathway to resolve the defect ensemble 

evolution while the material is approaching a ‘failure’ transition, which can result in in-

depth understanding of the microscopic origins of plasticity, or other macroscopic 

mechanical properties of metallic materials involving non-linear dislocation activities 

under small stress or stress perturbation. 

1.2.2 Creep and Fatigue 

Plastic strain that occurs at low stress has been studied in the context of creep and fatigue 

in metals. Under macroscopic stress below the critical stress, dislocations can overcome 
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the bowing stress threshold occasionally and move infrequently due to thermal or 

athermal excitations. In thermal creep, the fraction of ‘active’ dislocations decreases over 

time, corroborated by the observation that the creep rate dies away quickly under constant 

stress and temperature4,11. In fatigue test, damage accumulates over cyclic loading and can 

finally lead to catastrophic failure of the materials12.  

Both creep and fatigue can be viewed as the manifestation of the microplasticity in 

metallic materials over long-term. The tests do not resolve microscopic pre-yield 

dislocation activities but an accumulation of the infinitesimal microplastic strains. 

1.2.3 Internal Friction 

Plasticity is usually associated to energy dissipation. Under elastic stress excitations 

(usually at high frequencies), metallic materials exhibit internal friction (IF)13. IF is energy 

dissipation associated with deviation from Hooke’s Law, and usually manifested as stress-

strain hysteresis in cyclic loading. IF is usually measured as energy loss factor 𝑄−1 =
𝛥𝑊

2𝜋𝑊
, 

where 𝛥𝑊 is the energy dissipated per cycle and 𝑊 is the maximum elastic energy stored 

during a cycle.  

In the fully recoverable regime, Anelastic Relaxation mechanisms are considered to be the 

main source of IF. Anelasticity manifests as a formation of a closed loop in mechanical 

response upon unloading and is typically modeled by standard linear solid composed of 

ideal (Hookean) elastic solid component, a spring with stiffness k, and an ideal 

(Newtonian) liquid component, a dashpot with damping factor η. Anelastic relaxation 

usually occurs when the cyclic driving amplitude is small. Since there is a relaxation time-
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scale associated to the dynamics, the energy dissipation has a frequency dependent peak 

at critical damping. The underlying mechanism of anelasticity is found to be point defect, 

dislocation, interface, or thermo-elastic related relaxation 13. 

Dislocation-Related Amplitude-Dependent Internal Friction (ADIF) is a non-linear 

damping mechanism, which is amplitude-dependent, and frequency independent, and is 

more relevant in the aspect of stress-modulated mechanical noise. This type of hysteretic 

behaviors were reported to occur in the plastic regime. The amplitude dependence can be 

very sensitive to the microstructures of the sample, which makes it difficult to collect data 

with meaningful statistics to compare between different ADIF studies.  

1.2.4 Bauschinger Effect 

Polycrystalline material commonly exhibits hysteresis behavior due to Bauschinger effect 

(BE): the dislocations pile up at internal interfaces under loading, forming stable cell 

structure, but will slip back upon reverse loading with aid of backstress14. BE is usually 

observed when loading direction is reversed. In the uni-directional loading, stress 

ratcheting15,16 has been observed in polycrystalline materials, or other experiment on 

single-crystalline metals but with the presence of large strain gradients, such as torsion of 

micron scale metallic wires17. In the uni-directional and uniaxial loading tests on 

macroscopic single crystals, little or no recoverable plasticity was found, except for 

specific small-scale systems with unusual microstructures such as passivated thin-films 

and nanopillars18–20, freestanding nanocrystalline film21,22, or pentatwinned silver 

nanowires23. Unidirectional BE is usually named “anomalous” or “unusual” BE.  
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There is no good explanation why unidirectional BE does not show up ubiquitously in 

crystal deformation. From a microscopic view, under an arbitrary hardening stress, some 

dislocations can be marginally stable due to their complex long-range interactions. During 

unloading the local backstress can become large enough to facilitate reverse motion of 

these dislocations24,25. Reversible plasticity might be a subgroup of pre-yield 

microplasticity that has not been resolved or examined carefully. 

1.3 Microplasticity in Small Scale Mechanics 

1.3.1 Dislocation Limited Plasticity in Small-scale Metals 

Mechanical deformation of materials is usually described by smooth stress-strain relations; 

for examples, see textbook Ref26,27 and an illustration in Figure 1.1 (a). For a long time, 

the plastic dislocation flow in metals was considered fundamentally continuous and 

deterministic. Acoustic emission tests have pioneered in resolving stochastic and discrete 

events in macroscopic samples. The acoustic emission (AE) tests on single-crystalline ice 

have revealed intermittent sound events at resolved shear stress far below the yielding 

stress28. In the experiments with ice, high signal to noise ratio is achieved by freezing the 

microphones into the sample to obtain necessarily rigid mechanical contact, and acoustic 

signals due to dissipation events not correlated with dislocation activities, like micro-

cracks, can be distinguished by investigating the transparent bulk of the sample. The 

results obtained from this methodology is size and materials-wise limited.  

Uchic et al. first applied the uniaxial compression methodology on focused ion beam 

(FIB)-machined Ni micro-pillars29. Greer and Nix then extended it to Au nanopillars30, 

and since then the discrete and stochastic nature of plasticity, manifested as the step-like 
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serrations in the loading curves shown by the sample stress-strain data from Ni micro-

pillars31, has been ubiquitously observed in small-scale single-crystalline metals, with 

smaller samples exhibiting higher stresses 31–34. 

The emergent size effect in strength has been studied in the framework of dislocation 

starvation35, which is on the contrary to the Taylor hardening mechanism in bulk metallic 

materials (see Section 1.2.1, Equation 1.2). This source-limited strengthening36 has mainly 

been attributed to the unique nanoscale plasticity mechanisms, where the operation of 

individual dislocation sources, single arm or surface, governs deformation and 

strength37,38. 

These serrations in deformation found their origin in the stochastic nature of dislocations, 

where these large intermittent events have been intensively studied in small scale as 

dislocation avalanches, that is the slip of one dislocation triggers sequent slips of other 

dislocations, like a domino effect. In large sample, avalanches exhibit smaller size 

fluctuations39,40 and the large number of avalanche events will be globally smoothed. In 

micromechanical tests, the coherent drive on a small number of dislocations allows the 

large local stochastic strain bursts to be observed. The revealed dislocation dynamics in 

small-scale plasticity is not trivial and highly nonlinear.  

The in-situ TEM indentation on micron-sized Al grains and compression on 160 nm 

diameter Ni pillars show incipient dislocation motion upon loading, way before any 

discernible strain events are triggered36,41. These microplasticity events should be 

reflected in the loading curve but they are buried in machine noise. The in-situ TEM cyclic 

loading test shows dislocations healing through constant low amplitude stress cycles24. 
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The in-situ TEM observations are insightful regarding preyield dislocation activities, 

but the conclusion is limited to a small-scale system – the sample has to be small enough 

to allow electron transparency. A constitutive relation characterizing microplastic stress-

strain response needs to be applied and tested in macroscopic samples.  

1.3.2 Uniaxial Compression Experiments 

Uniaxial compression on FIB machined small-scale single crystalline <111> orientated 

copper is chosen to be the primary experimental methodology for dislocation plasticity 

study for multiple reasons. First of all, the uniaxial loading on single crystalline crystals 

prohibits the presence of strain gradients. FCC crystals are an easy-glide system: with the 

well-defined slip planes the dislocation dynamics can be reduced to a 2-dimensional 

problem. The <111> oriented FCC crystal is loaded in the high-symmetry direction, where 

multi-slips are simultaneously excited to avoid single-slip-induced unidirectional- 

displaced surface steps that can foster stress concentration and promote a bending mode 

during the plastic deformation. The sample is limited to small-scale pillars with submicron 

or few-micron diameters with a relatively small number of mobile dislocation sources. 

Last but not the least, the specific system – <111> orientated single crystalline copper 

nanopillars – has been intensively studied in earlier work42,43, and benchmarked with 

microstructural characterization, materials properties, and mechanical behaviors under 

quasi-static displacement- and load-controlled loading conditions for comparison and 

sanity check. 
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Figure 1.2 Schematics demonstrating the fabrication process and nanomechanical testing.  (a) 

Nanopillar samples are fabricated via Focused Ion Beam (FIB) milling. (b) The Hysitron 

nanoindenter transduces voltage to a force applied to the sample via the three-plate assembly 

and measures the displacement of the tip mounted on the central plate through antenna. 

The micro or nanopillars were machined by Focused Ion Beam (FIB) with FEI dualbeam 

(high voltage electron beam for imaging and ion beam for milling) Versa 3D instrument, 

as illustrated in Figure 1.2 (a). The pillars with an aimed aspect ratio of 3:1 are fabricated 

following a concentric-circles top-down methodology using a Galium ion beam40,44,45 

under operative voltage of 30 kV. The samples are milled from a bulk single crystalline 

sample (>99.9999% purity) with one side polished to a <30 Å rms roughness, oriented in 

<111> direction. The ion current starts with 5 nA for outerrings milling, and is reduced 

in steps to 30 pA for the final finishup in order to minimize gallium ion implantation to 

the pillars and the sidewall tapering issue. Although it is known that FIB can introduce 

surface damage to the pillars by forming small dislocation loops or an amorphous layer46, 
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the deformation mechanism of small-scale fcc metals are dominantly determined by the 

initial microstructure rather than the fabrication technique42. 

The nanocompression experiments were carried out in a nanoindenter (Triboindenter, 

Hysitron) equipped with a custom-made flat punch 8 μmdiameter diameter diamond tip. 

Figure 1.2 (b) is a schematic illustration of the transducer assembly in a three-plate 

configuration. The tip is mounted to the charged central plate. The central plate is 

suspended by compliant leaf springs. Alternate-current (AC) voltages with equal 

amplitudes are applied to the upper and lower plates 180 degree out of phase for 

independent measurement of central-plate displacement. An additional direct-current (DC) 

voltage is applied to the lower plate to drive the central plate via capacitive force.  

The tip alignment with respect to the sample stage is carefully calibrated to ensure 

centered contact with sample surface and uniaxial loading. For nanomechanical testing, 

the instrumental drift is a commonly present problem. The nanoindenter assumes a 

constant drifting rate throughout single test and actuate to correct for it accordingly. The 

drift rate is measured as the displacement rate of tip with a 2 μN load held on the sample 

surface.  

1.3.3 Statistical Physics in Crystal Deformation 

In nanomechanical experiments on single crystalline micro- or nanopillars, large strain 

bursts are unambiguously distinguished as serrations in the stress-strain curves as shown 

in Figure 1.1 (b). The extent of these strain bursts usually ranges from nanometers to a 

few microns29,31,47–49. The analysis of strain bursts shows that the slip size distributions 

follow power laws spanning orders of magnitudes: 
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𝐷(𝑆) ∼ 𝑆−𝜅 , (1.3) 

where 𝑆 denotes the slip size. 𝜅 is the universal scaling exponent and is found to be 𝜅 =

1.5 28,50. The emergent power-law and scaling indicate that dislocations in crystals at 

yielding transition are a driven nonequilibrium system, which shares similarities with 

other nonequilibrium systems exhibiting crackling noise such as magnetics, charge 

density waves, and earthquakes25,51.  

Plastic deformation of crystals has been described by a depinning picture52,53, in which 

dislocations can be pinned at random defect points that are randomly distributed 

throughout the sample. These defect points serve as quenched pinning sites and attribute 

threshold stresses locally to the dislocations. The dislocation can depin and slip when the 

total stress acted on it exceeds the pinning threshold. Under external loading, dislocation 

lines are driven though pinning disorders. The driving force, long-range coupling force, 

and local pinning force together on the dislocations compete in a complex manner. The 

dislocations behave collectively as elastic manifold undergoing depinning transition and 

produce scale-invariant avalanches54,55.  

The depinning description of crystal deformation is challenged by a jamming picture, in 

which intermittent strains can arise with no presence of immobile pinning sites, but from 

mutual long-range elastic interactions of dislocations, i.e. dislocations can jam themselves 

through entanglements and behave collectively28,56–58. The dislocation dynamics 

simulation based on the jamming mechanism shows that the same scaling of strain bursts 

holds for very small stresses far below the yielding threshold59, and that the cyclic stress 



 

 

14 

with stress amplitude smaller than the yield stress can excite intermittent events at stress 

peaks60. 

A minimal micromechanical model has predicted a stress-tuned critical behavior in crystal 

plasticity: the power-law slip size distributions are shown to have stress-dependent cutoffs,  

𝐷(𝑆) ∼ 𝑆−𝜅𝑓𝑆[𝑆(𝜏𝑐 − 𝜏)
1/𝜎], (1.4) 

where  𝜅 = 1.5, 𝜎 = 0.5, 𝜏𝑐  is the critical failure stress, and 𝑓𝑆(𝑥) is an exponentially 

decaying universal scaling function61. The proposed stress-tuned criticality has been 

validated in micromechanical experiments by analyzing the large post-yield avalanche 

size distribution47. It is unclear whether smaller strain bursts, undetected by the instrument, 

are present in the deformation of such micro- and nanosized single crystals, especially 

prior to the yield point, which is commonly defined as the start of the first detected burst. 

1.4 Macroscopic Experiment 

1.4.1 Mechanical Noise in Advanced LIGO 

The mechanical noises induced by dislocation slips can be a potential source of noise for 

instruments that require ultra-high strain resolutions, for example, the Advanced Laser 

Interferometer Gravitational-wave Observatory (LIGO) detectors62,63. 

Advanced LIGO aims to detect gravitational wave signal using Michelson Interferometer 

techniques64 (For details about the basics of Michelson Interferometer, see Section 1.4.2). 

A gravitational wave propagating to the detector can squeeze and stretch the space during 

one half-cycle of the wave, which has an effect of lengthening one Michelson arm and 
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shortening the other. Split laser beams travel through the two 4 km arms and recombine 

at the beam splitter. In an ideal configuration, the gravitational wave differential strain 

induces a phase shift between the two interfering beams that can be detected by the 

photodetectors a laser power change. 

Advanced LIGO has aimed and achieved an ultra-high strain resolution on an order of 

10−22/√Hz  near the frequency of the signal detection (20-2000 Hz), that is, a 

displacement resolution of order 10−19m/√Hz at the low frequency end of the range (10-

20 Hz)64. In order to achieve the unprecedented strain resolution, all sources of 

environmental or instrumental noises that can induce differential displacement of the 

Michelson arms have to be considered. For example, seismic noise can couple to the 

Michelson signal through asymmetry of the interferometer. The test masses (TMs, the end 

mirrors of the Michelson Interferometer) are suspended by a quadruple pendulum (QUAD) 

for horizontal isolation and three stages of maraging steel for vertical isolation65, as shown 

in Figure 1.3. The suspension system gives ~ 10 billion times suppression of the ground 

motion in the high frequency regime. However, below the last stage of maraging steel 

blades, called the upper intermediate mass (UIM), there is no more spring blade damping. 

Any mechanical noise arising in the UIM subjected to the residual seismic modulation can 

propagate down to the TM, couple to its horizontal motion through earth curvature, and 

give rise to noise that can contaminate the gravitational wave signal. 

.  
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Figure 1.3 The aLIGO test mass suspension system consists of a quadruple pendulum 

incorporating 3 stages of maraging steel cantilever springs. Drawing adapted from Ref. 65. 

A major part of this thesis work is devoted to address the following questions about this 

potential mechanical noise: first, the existence of this type of noise is hypothetical – Does 

mechanical noise rise in the bulk metals' elastic functioning regime? If so, how does the 

noise depend on external stress? What is the magnitude of this noise reflected in advanced 

LIGO sensitivity? These questions can be potentially addressed by advanced experiments 

with ultra-high displacement sensitivity. 

1.4.2 Michelson Interferometer Configuration 

Advanced LIGO bases its detection on Michelson Interferometer configuration. Figure 

1.4 demonstrates a simplified scheme of Michelson Interferometer. The beam entering 
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from the symmetric port is divided by the beam splitter into two parts, reflected by the 

end mirrors, and existed from symmetric and asymmetric ports. 

 

Figure 1.4 Simplified schematics of a typical Michelson interferometer configuration indicating field 

propagations through symmetric (SY) and asymmetric (AS) arms. 

Following the convention of field representations, the reflected and transmitted beams can 

be expressed given the incoming beam 𝜓𝑖𝑛𝑝𝑢𝑡, reflectivity 𝑟, and transmissivity 𝑡,, 

𝜓𝑟 = 𝑖𝑟𝜓𝑖𝑛𝑝𝑢𝑡, (1.5𝑎) 

𝜓𝑡 = 𝑡𝜓𝑖𝑛𝑝𝑢𝑡. (1.5𝑏), 

The beam propagating through the two Michelson arms can be tracked from the input 

beam 𝜓𝑖𝑛𝑝𝑢𝑡 = 𝜓1. The fields at the asymmetric (AS) and symmetric (SY) ports, 𝜓𝐴𝑆 =

𝜓6,  𝜓𝑆𝑃 = 𝜓8 can be calculated, 

𝜓𝐴𝑆 = −𝜓1(𝑒
−2𝑖𝜅𝑥1𝑟1√𝑟𝐵𝑆√𝑡𝐵𝑆 + 𝑒

−2𝑖𝜅𝑥2𝑟2√𝑟𝐵𝑆√𝑡𝐵𝑆), (1.6𝑎) 

𝜓𝑆𝑌 = 𝑖𝜓1(𝑒
−2𝑖𝜅𝑥1𝑟1√𝑡𝐵𝑆√𝑡𝐵𝑆 − 𝑒

−2𝑖𝜅𝑥2𝑟2√𝑟𝐵𝑆√𝑟𝐵𝑆), (1.6𝑏) 

SY

AS

Laser
Lx

Ly

ry

rx

2 3

4

5

7 6

1

8



 

 

18 

where 𝑟𝐵𝑆  and 𝑡𝐵𝑆  are the reflectivity and transmissivity of the beam splitter; the 

degrees of freedom can be reduced by exploiting the relation 𝑡𝐵𝑆 = 1 − 𝑟𝐵𝑆 . κ is the 

wavenumber of input laser.  𝑟1 and 𝑟2 are reflectivity of end mirror 1 and 2. Ideally the 

reflectivity of two mirrors would be identical. In reality, they might defer by small amount,  

𝑟1 = 𝑟 +
𝛿𝑟

2
, (1.7𝑎) 

𝑟2 = 𝑟 −
𝛿𝑟

2
. (1.7𝑏) 

Similarly, 𝑥1 and 𝑥2, the beam path lengths of the two Michelson arms, can have different 

values,  

𝑥1 = 𝑥 +
𝛿𝑥

2
, (1.8𝑎) 

𝑥2 = 𝑥 −
𝛿𝑥

2
. (1.8𝑏) 

The photodetector has no sensitivity to any phase information but only the beam power. 

Substituting everything,  

𝐼𝐴𝑆 = 𝜓𝐴𝑆𝜓𝐴𝑆 = 𝜓1𝜓1(1 − 𝑟𝐵𝑆)𝑟𝐵𝑆[𝛿𝑟
2 + (4𝑟2 − 𝛿𝑟2) cos2(𝜅𝛿𝐿)] , (1.9𝑎) 

𝐼𝑆𝑌 = 𝜓𝑆𝑌𝜓𝑆𝑌 =
1

4
𝜓1𝜓1[(2𝑟 + 𝛿𝑟 − 2𝑟𝐵𝑆𝛿𝑟)

2 − 4(4𝑟2 − 𝛿𝑟2) (1 − 𝑟𝐵𝑆)𝑟𝐵𝑆 cos
2(𝜅𝛿𝐿)].

                                                                                                                                                  (1.9𝑏)

From the above equations for beam power, the contrast defect 𝐶 = 𝐼𝑚𝑖𝑛/𝐼𝑎𝑣𝑔  can be 

calculated with varying 𝛿𝐿, by knowing that cos2(𝜅𝛿𝐿) ∈ [0,1] and < cos2(𝜅𝛿𝐿) > =
1

2
 : 
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𝐶𝐴𝑆 =
𝛿𝑟2

𝛿𝑟2  +  
1
2
(4𝑟2 –  𝛿𝑟2)

 

=
2𝛿𝑟2

𝛿𝑟2 + 4𝑟2
, (1.10𝑎) 

𝐶𝑆𝑌 =
(𝛿𝑟 + 2𝑟 − 2𝑟𝐵𝑆𝛿𝑟)

2 − 4(4𝑟2 − 𝛿𝑟2)(1 − 𝑟𝐵𝑆)𝑟𝐵𝑆

(𝛿𝑟 + 2𝑟 − 2𝑟𝐵𝑆𝛿𝑟)2 −
1
24
(4𝑟2 − 𝛿𝑟2)(1 − 𝑟𝐵𝑆)𝑟𝐵𝑆

 

=
(𝛿𝑟 + 2𝑟(1 − 2𝑟𝐵𝑆))

2

(𝛿𝑟 + 2𝑟)2(1 − 2𝑟𝐵𝑆) + 2(𝛿𝑟2 + 4𝑟2)𝑟𝐵𝑆
2  . (1.10𝑏) 

The differential signal d is the differential variation, 𝛿𝐿 = 𝛿𝐿0 + 𝑑. The common mode 

signal 𝑐 is 𝐿 = 𝐿0 + 𝑐. As such, the sensitivity, or the optical gain, for differential and 

common mode signals are 
𝑑𝐼𝑖

𝑑𝛿𝐿
 and 

𝑑𝐼𝑖

𝑑𝐿

 , where 𝑖  represents either the antisymmetric or 

symmetric ports. 𝐼𝑖 has no dependence on 𝑑𝐿, which means that theoretically the rejection 

for the common mode signal is perfect. Then the sensitivity 𝑔𝑖  for the differential 

displacement signal 𝑑𝐿 becomes,  

𝑔𝐴𝑆 =
𝑑𝐼𝐴𝑆
𝑑𝛿𝐿

=  −𝐼𝑖𝑛𝑝𝑢𝑡𝜅(4𝑟
2 − 𝛿𝑟2)(1 − 𝑟𝐵𝑆)𝑟𝐵𝑆 sin(2𝜅𝛿𝐿), (1.11a) 

𝑔𝐴𝑆 =
𝑑𝐼𝑆𝑌
𝑑𝛿𝐿

=  𝐼𝑖𝑛𝑝𝑢𝑡𝜅(4𝑟
2 − 𝛿𝑟2)(1 − 𝑟𝐵𝑆)𝑟𝐵𝑆 sin(2𝜅𝛿𝐿) . (1.11𝑏) 

Using Equation (1.9a, 1.9b) and based on the error propagation theory, how the input laser 

power noise, a.k.a. laser intensity noise66, is coupled to the Michelson signal can be 

computed as, 
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𝛿𝐼𝐴𝑆
𝛿𝐼𝑖𝑛𝑝𝑢𝑡

=
𝐼𝐴𝑆
𝐼𝑖𝑛𝑝𝑢𝑡

= (1 − 𝑟𝐵𝑆)𝑟𝐵𝑆[𝛿𝑟
2 + (4𝑟2 − 𝛿𝑟2) cos2(𝜅𝛿𝐿)] , (1.12𝑎)

 

𝛿𝐼𝑆𝑌
𝛿𝐼𝑖𝑛𝑝𝑢𝑡

=
𝐼𝑆𝑌
𝐼𝑖𝑛𝑝𝑢𝑡

=
1

4
[(𝛿𝑟 + 2𝑟 − 2𝑟𝐵𝑆𝛿𝑟)

2 − 4(4𝑟2 − 𝛿𝑟2) (1 − 𝑟𝐵𝑆)𝑟𝐵𝑆 cos
2(𝜅𝛿𝐿)]. (1.12𝑏)

 

For frequency noise coupling66, the noise goes in as a fluctuation of the wave number 𝜅 =

2𝜋𝜈/𝑐, where 𝜈 is the laser frequency and 𝑐 denotes speed of light, 

 𝛿𝐼𝐴𝑆 =
𝜕𝐼𝐴𝑆
𝜕𝜅

𝜕𝜅

𝜕𝜈
 𝛿𝜈

=  −
2𝜋

𝑐
𝐼𝑖𝑛𝑝𝑢𝑡𝛿𝐿(4𝑟

2 − 𝛿𝑟2)(1 − 𝑟𝐵𝑆)𝑟𝐵𝑆 𝑠𝑖𝑛(2𝜅𝛿𝐿)𝛿𝜈 = 𝑔𝐴𝑆𝛿𝐿
𝛿𝜈

𝜈
, (1.13𝑎)

 

𝛿𝐼𝑆𝑌 =
𝜕𝐼𝑆𝑌
𝜕𝜅

𝜕𝜅

𝜕𝜈
 𝛿𝜈

=  
2𝜋

𝑐
𝐼𝑖𝑛𝑝𝑢𝑡𝛿𝐿(4𝑟

2 − 𝛿𝑟2)(1 − 𝑟𝐵𝑆)𝑟𝐵𝑆 𝑠𝑖𝑛(2𝜅𝛿𝐿)𝛿𝜈 = 𝑔𝑆𝑌𝛿𝐿
𝛿𝜈

𝜈
. (1.13𝑏)

 

Divided by its corresponding optical gain 𝑔𝑖, the signal can be converted to an equivalent 

displacement noise. Conventionally, the laser intensity or frequency noise are represented 

in percentage form, 

𝛿(𝛿𝐿)𝑖 =
𝐼𝑖
𝑔𝑖
(
𝛿𝐼𝑖𝑛𝑝𝑢𝑡

𝐼𝑖𝑛𝑝𝑢𝑡
) + 𝛿𝐿 (

𝛿𝜈

𝜈
) . (1.14) 

If all optical elements in the interferometer configuration are ideal, that is, the reflectivity 

equals the transmissivity of the beam splitter  𝑟𝐵𝑆 = 𝑡𝐵𝑆 =
1

2
 , and the end mirrors have 

perfect reflectivity,  𝑟1 = 𝑟2 = 1,  the fields can be rewritten in terms of the sum and 

difference of the arm lengths, 
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𝜓𝐴𝑆 = −𝜓𝑖 (
𝑒−2𝑖𝜅𝑥1 + 𝑒−2𝑖𝜅𝑥2

2
) = 𝑖𝜓𝑖𝑒

−𝑖𝑘(𝑥1+𝑥2) sin(𝜅(𝑥1 − 𝑥2)) , (1.15𝑎) 

𝜓𝑆𝑌 = −𝜓𝑖 (
𝑒−2𝑖𝜅𝑥1 − 𝑒−2𝑖𝜅𝑥2

2𝑖
) = 𝜓𝑖𝑒

−𝑖𝑘(𝑥1+𝑥2) cos(𝜅(𝑥1 − 𝑥2)) . (1.15𝑏) 

How the optical gain varies with different parameters, i.e. Michelson balance tuning 𝛿𝐿, 

input laser power 𝐼𝑖𝑛𝑝𝑢𝑡 , difference in end mirror reflectivity 𝛿𝑟 , and beam splitter 

reflectivity 𝑟𝐵𝑆, can be numerically investigated. Default values are set for the simulation 

parameters as shown in Table 1.1. 

 

Table 1.1 Default parameter values for Michelson Interferometer configuration simulation. 

Based on the default set of parameters, the optical gain can be simulated using Equation 

(1.11a) and (1.11b). Figure 1.5 shows how the optical gain changes versus each parameter 

tuning.  
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Figure 1.5 Simulation results showing how the optical gain 𝑔𝑖 changes with different Michelson 

parameters, i.e. Michelson balance tuning, difference in end mirror reflectivity, input laser power, 

and beam splitter reflectivity. 

with all other parameters held constant, tuning the microscopic length difference 𝛿𝐿 of the 

two arms gives interference fringes at both ports. The bright fringe tuning is set to – 𝜆 for 

symmetric and +𝜆  for asymmetric ports. Independently, the end mirror reflectivity 

difference is tested from -0.2 to 0.2, input laser power from 5 to 15 mW, and beam splitter 

reflectivity from 0 to 1; the corresponding optical gain variations with the expected trend 

or symmetry are shown in Figure 1.5. 

1.5 Objectives and Outline 

Existing experiments studying microplastic deviations from a perfect elastic behavior in 

metals usually apply to a quasi-static loading condition. The work in this thesis focuses 

specifically on the microplastic events that can be excited by prescribed slow-varying 

stress perturbations. No such mechanically up-converted noise has been explicitly 

resolved far below the conventionally-defined yield stress. The first question is whether 

the noise can be unambiguously detected and quantified.  
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One consequential interest of this thesis work is to investigate the physics and 

mechanism of microplasticity. Is microplastic deformation simply smaller plastic 

deformation? Does microplasticity serve as a precursor to elastic-to-plastic or other sorts 

of failure transitions?  

Another intriguing direction is to study microplasticity across the scale. Acoustic emission 

(AE) tests have resolved large dissipation events in macroscopic metallic samples67–72, 

which have been correlated to dislocation dynamics in the plastic regime71, but the 

experimental resolution is yet high enough to resolve small pre-yield events like those 

observed in the ice samples28,73. One interesting question is whether the microplastic 

events studied in the small-scale metals would show up in the bulk metallic samples as a 

simple statistical averaging from stacks of microscopic-volume response. 

This thesis is devoted to answer the questions raised above and is outlined as follows: 

Chapter 1 gives a review of the former studies that are closely related to microplasticity 

behavior of metallic materials. Chapter 2 discusses the explicit probing of microplastic 

deformation in the pre-yield regime of single-crystalline copper nanopillars. Chapter 3 

extends the discussion of microplasticity to the post-yielding regime. Chapter 4 switches 

gears and investigates microplasticity in the bulk metallic materials using interferometry 

techniques. Chapter 5 concludes the thesis with final remarks and suggestions of future 

work. 
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Chapter 2:  Microplasticity in Small-Scale Crystals 

As introduced in Chapter 1, in small-scale metallic systems, collective dislocation activity 

has been correlated with size effects in strength and with a step-like plastic response under 

uniaxial compression and tension. Yielding and plastic flow in these samples are often 

accompanied by the emergence of multiple dislocation avalanches. Dislocations might be 

active preyield, but their activity typically cannot be discerned because of the inherent 

instrumental noise in detecting equipment. Alternate current load perturbations via 

dynamic mechanical analysis are applied during quasistatic uniaxial compression 

experiments on single crystalline Cu nanopillars with diameters of 500 nm and compute 

dynamic moduli at frequencies 0.1, 0.3, 1, and 10 Hz under progressively higher static 

loads until yielding. By tracking the collective aspects of the oscillatory stress-strain-time 

series in multiple samples, an evolving dissipative component of the dislocation network 

response that signifies the transition from elastic behavior to dislocation avalanches in the 

globally preyield regime is observed. Microplasticity, which is associated with the 

combination of dislocation avalanches and slow viscoplastic relaxations, is postulated to 

be the cause of the dependency of dynamic modulus on the driving rate and the quasistatic 

stress. A continuum mesoscopic dislocation dynamics model is constructed to compute 

the frequency response of stress over strain and obtain a consistent agreement with 

experimental observations. The results of the experiments and simulations present a 

pathway to discern and quantify correlated dislocation activity in the preyield regime of 

deforming crystals.  
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2.1 Introduction 

Using basic forms of mechanical loading, such as a force- or displacement-controlled 

compression, careful examination of the data provided evidence for the presence of short 

plastic instabilities before the onset of the obvious and apparent strain bursts 9,42,43,47,49, 

e.g., 100–400 MPa regime of 500 nm copper pillars, as shown in Section 1.2.1, Figure 1.1 

(b). The higher yield stress observed in small-scale samples compared to their 

macroscopic counterparts can be understood in terms of dislocation starvation, where 

upon compression, the initially present mobile dislocations have a higher probability of 

annihilating at a nearby free surface than multiplying or being entangled with other 

dislocations35,74. This dislocation source exhaustion mechanism might involve preyield 

dislocation activities. In situ transmission electron microscope (TEM) nanoindentation 

experiments revealed the onset of dislocation motion before the first obvious displacement 

excursion36,41. In situ Laue microdiffraction work with micron-sized Ni sample showed 

that a dislocation structure forms at ∼0.65 of the yield stress and continues to develop until 

global yielding is reached75. Creep experiments on single crystals of ice detected acoustic 

emission events at resolved shear stresses far below the yield stress28,73. These 

observations have yet to be connected to constitutive relations and a quantifiable stress-

strain response. Discrete dislocation dynamics (DDD) simulations suggest the existence 

of intermittent events in the preyield regime of crystalline materials59,60 and a significant 

loading rate effect on strain burst response of nano- and microcrystals due to dislocation 

jamming and relaxation76. Stress-induced probabilistic cross-slip relaxation has also been 

associated with several nontrivial aspects of crystal plasticity77. It is natural to question 

whether microplasticity be detected and quantified in crystals’ preyield regime. 
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Machine noise has been the Achilles’ heel of numerous experimental nanomechanical 

investigations. Attempts have been made to characterize the machine noise, with reported 

values of ∼0.2 nm displacement-, ∼30 nN force- noise floor, and a thermal drift of < 0.05 

nm/s for the prevalently used Hysitron TI 950 Triboindenter in quasistatic mode. In 

uniaxial compression experiments, a flat nanoindenter tip applies compressive load to the 

top of a commonly cylindrical sample, a so-called micro- or nanopillar, and the indenter-

sample friction, as well as the electromagnetic assembly responsible for the load control 

produce substantial and inevitable machine noise. In addition, noise caused by thermal 

drift sets a limit on the duration of such experiments, which renders long-time mechanical 

experiments like cyclical or fatigue loading, as well as creep tests virtually impossible to 

interpret. Statistical probing is necessary to detect any possible nonlinear dislocation 

activities, which cause axial displacements below the machine noise. Dynamic 

mechanical analysis (DMA) is applied at multiple frequencies that span three orders of 

magnitude, from 0.1 to 10 Hz, on multiple 500 nm-diameter single crystalline Cu 

nanopillars. The overall DMA behavior is statistically characterized and compared with 

mean- field dislocation depinning predictions. 

2.2 Experimental Methodology 

2.2.1 Nanomechanical Testing 

500 nm diameter single-crystalline copper samples are prepared following the sample 

fabrication procedure described in Section 1.3.2. The nanomechanical experiments were 

carried out in a nanoindenter (Triboindenter, Hysitron) introduced in Section 1.3.2. Figure 

2.1 (a) conveys a representative compressive engineering stress-strain data, with the inset 
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showing the corresponding time series of load and displacement, zoomed into the 

preyield regime. In the experiment, a uniaxial quasistatic load that monotonically 

increased in a stepwise fashion is applied to an individual nanopillar. Small stress 

oscillations with the amplitude of 6 μN and a fixed frequency in the range between 0.1 

and 10 Hz were superimposed over the static load to each 15-s step interval.  

 

Figure 2.1 Dynamic mechanical analysis on Cu nanopillars. (a) Engineering stress vs strain during 

DMA measurements on a Cu sample at a frequency of 0.3 Hz. (b) SEM images of an as-fabricated 

(pre-) and compressed (post-) ∼500 nm diameter Cu pillar with a nominal aspect ratio of 3∶1. 

Figure reprinted with permission from [X. Ni, et al. Phys. Rev. Lett. 118, 155501 (2017)] Copyright 

(2017) by the American Physical Society. 

Before the initiation of each compression experiment, the stages and piezo drive are settled 

for more than 145 s in order to equilibrate the in-contact displacement drift and the last 

20-s drift data is used to estimate the thermal drift rate for subsequent correction. Only 

those experiments where the thermal drift rate was less than 0.05 nm/s were analyzed. The 
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loading time before the occurrence of the first large strain event was usually within the 

first 200 s for all tests. Figure 2.1(b) shows the representative pre- and post- compression 

SEM images of a representative Cu nanopillar. 

2.2.2 Dynamic Mechanical Analysis 

The dynamic modulus is defined as the frequency response of stress over strain 

E(ω, σ0) =  𝜎(𝜔)/𝜀(𝜔), where 𝜎0 is the applied quasistatic stress and 𝜔 = 2𝜋𝑓 is the 

driving frequency. Using this definition, extract the dynamic modulus can be extracted 

from the oscillations that are imposed at each quasistatic stress 𝜎0  using a frequency 

domain analysis. 

The time series of stress 𝜎(𝑡) and strain 𝜀(𝑡) are fitted using the following form which 

also includes a linear drift term: 

𝜎𝑓(𝑡) =  𝑥𝑟 cos(𝜔𝑡) + 𝑥𝑖 sin(𝜔𝑡) + 𝜎𝑑𝑡 + 𝜎0, (2.1𝑎) 

𝜀𝑓(𝑡) =  𝑢𝑟 𝑐𝑜𝑠(𝜔𝑡) + 𝑢𝑖 𝑠𝑖𝑛(𝜔𝑡) + 𝜀𝑑𝑡 + 𝜀0, (2.1𝑏) 

where 𝑥𝑟 , 𝑥𝑖, 𝜎𝑑 , 𝜎0, 𝑢𝑟 , 𝑢𝑖 , 𝜀𝑑 , 𝜀0  are fitting parameters for the stress and strain. The 

complex dynamic modulus 𝐸 can then be calculated as a function of the 𝜔 and 𝜎0, 

𝐸(𝜔, 𝜎0) =  
𝑥𝑟 − 𝑖𝑥𝑖
𝑢𝑟 − 𝑖𝑢𝑖

= 𝐴(𝜔, 𝜎0)𝑒
𝑖𝜙(𝜔, 𝜎0), (2.2) 

where 𝐴 and 𝜙 are the amplitude and phase components of the dynamic modulus. 

This type of DMA is applied with different driving frequencies (0.1, 0.3, 1, and 10 Hz) 

and measurements are taken from six samples for each frequency driving test. The 
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dynamic modulus can be solved at each quasistatic loading step at the single driving 

frequency using the fitting procedure described above. The quasistatic stress at each step 

is normalized by the yield stress of the system 𝜎𝑦𝑠. Amplitude and phase lag are binned 

in stresses for sample statistics. The binning average and standard error for amplitude and 

phase lag were calculated as a function of the stress bin centers and are shown for each 

driving frequency in Figure 2.1 (a). The DMA data reveal a maximum of ∼70% decrease 

in the average amplitude and a maximum of ∼60° increase in the average phase lag as the 

applied quasistatic stress approaches yielding at 
𝜎0

𝜎𝑦𝑠
= 1 (∼400 MPa).  

 

Figure 2.2 Dynamic modulus versus stress resolved from experiments. Figure reprinted with 

permission from [X. Ni, et al. Phys. Rev. Lett. 118, 155501 (2017)] Copyright (2017) by the 

American Physical Society. 



 

 

30 

This plot also shows that these deviations from elastic behavior are more pronounced 

for slower driving frequencies. These results are in stark contrast to the DMA data 

collected from the same type of uniaxial compression on a ∼500 nm-diameter fused silica 

(FS) nanopillars, which exhibits a constant amplitude of ∼65 GPa and a no-delay response 

for the driving frequencies of 1 Hz and 10 Hz.  

The amorphous FS samples that are of the same pillar geometry but contain no dislocation 

sources are tested for calibration purpose. The FS nanopillars are fabricated by FIBing 

from bulk FS sample . A thin-layer of gold with a thickness of ~40 nm is deposited on the 

surface of the bulk FS for e-beam imaging. As shown in Figure 2.3 (a), the gold thin-film 

starts to delaminate from the sample surface after being exposed to the ion beam. Figure 

2.3 (b) shows that no residual gold is left on the as-fabricated FS pillar. 

 

Figure 2.3 SEM images of a fused silica sample (a) during fabrication, and (b) after fabrication. 

The deposited gold thin-film completely delaminates from the sample surface. 

The perfectly elastic DMA behavior of FS nanopillars serves as strong evidence that the 

observed nontrivial change in dynamic modulus with quasi-static stress in copper is 

related to dislocation dynamics. 
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2.3 Mesoscopic Plasticity Simulation 

2.3.1 Modeling Framework 

To reveal the underlying mechanisms that drive the observed nontrivial loss behavior in 

Cu as the applied stress approaches yielding, a continuum crystal plasticity model is 

constructed aiming at capturing the salient aspects of the observed mechanical behavior. 

This model considers the energetics of two competing processes: the dislocation-driven 

abrupt strain jumps and the slow stress-controlled relaxations towards minimum system 

energy state. To capture both the fast avalanches and the slow viscoplastic relaxations, a 

cellular automaton constitutive microplasticity model enhanced with an additional 

continuous-in-time strain field that follows a viscoplastic constitutive law is utilized77–79. 

The modeled shear strain consists of the elastic and plastic components 𝛾 =  𝛾𝑒 + 𝛾𝑝. The 

elastic term is calculated using Hooke’s law. The plasticity model that captures the plastic 

term can be realized using detailed continuum plasticity modeling approaches26. It is 

reasonable to assume that in a single representative volume element for single-crystalline 

fcc crystals, the following criteria hold: (i) uniaxial loading activates one dominant 

crystallographic slip system, A, with another system, B, assisting dislocation glide along 

A1, and (ii) dislocations carry plastic distortion via two distinct mechanisms: (a) fast 

                                                 

1 Although the bulk is nominally high-symmetry orientated, in a large deformation picture, 

the pillars would point towards dominant slip systems. The <111> orientation leads to a 
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dislocation avalanche-like glide and (b) slow, stress-relaxation-driven secondary glide 

on A caused by the coupled A-B dislocation mechanisms (e.g., double cross slip)77. With 

contributions from both mechanisms, the total plastic strain can be expressed as 

𝛾𝑝 = 𝛾𝑝
(𝑎) + 𝛾𝑝

(𝑏). (2.3) 

In the fast dislocation avalanche-driven mechanism, a volume element at location 𝒓 yields 

a random plastic strain 𝛿𝛾𝑝
(𝑎)

 if the local stress 𝜏(𝒓) is larger than a local depinning 

threshold 𝜒(𝒓) [31,40,41], where 𝜒(𝒓) follows a uniform distribution [42]. After each 

avalanche, the threshold value is redrawn from the same distribution. On the other hand, 

the slow relaxation mechanism follows a typical constitutive viscoplastic law, 

 �̇�𝑝
(𝑏) =

𝐷

𝐺
(𝜏(𝒓))

𝑛
, (2.4) 

where 𝐷 is the relaxation constant, 𝐺  is the shear modulus, and 𝑛 ∈ [1, 3] < 10 is the 

critical quantity to define another time scale which is slow compared to the fast avalanche 

process43.  

                                                 

slip system with near zero resolved shear stress, leaving lots of dislocations that can 

function as the B slip system42.  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For numerical simplicity, this methodology is applied to edge dislocations only, for 

which the local resolved shear stress can be explicitly calculated as 

𝜏(𝒓) = 𝜏𝑒𝑥𝑡 + 𝜏𝑖𝑛𝑡(𝒓) + 𝜏ℎ𝑎𝑟𝑑(𝒓), (2.5) 

where 𝜏𝑒𝑥𝑡  is the applied external quasistatic stress combined with the oscillation 

component,  

𝜏𝑒𝑥𝑡 = 𝜏0 + 𝜏𝐴 𝑠𝑖𝑛(𝜔𝑡) , (2.6) 

and 𝜏ℎ𝑎𝑟𝑑  is the stress that arises from dislocation hardening, 

𝜏ℎ𝑎𝑟𝑑(𝑟) =  −ℎ𝛾𝑝(𝒓). (2.7) 

where ℎ represents a mean-field phenomenological hardening parameter78–80.  

𝜏𝑖𝑛𝑡 is the stress that accounts for the long-range interactions with other dislocations, 

𝜏𝑖𝑛𝑡(𝒓) = ∫ 𝑑
2𝒓′𝐾(𝒓 − 𝒓′)𝛾𝑝(𝒓

′), (2.8) 

where 𝐾 serves as the interaction kernel for single slip straight edge dislocations. For the 

stress kernels of complete circular dislocation loops or screws, in principle, the results 

would be unchanged, since all these kernels are sufficiently long ranged53,81.  

2.3.2 Model Implementation 

The model implementation is such that the system is meshed into N ×  N elements, with 

N = 32. Similar loading conditions are prescribed to eight random initial configurations 

as in the experiments, with different driving frequencies of 1, 2, 8, and 64 rad/s. The rate 

equation associated to Equation 2.3 can be numerically solved by Euler integration with 
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a fixed time step 𝛥𝑡 = 10−2s. The model assumes that a fast avalanche-driven channel 

𝛾𝑝
(𝑎)

 and a slow 𝛾𝑝
(𝑏)

 contributes equally to the total plastic strain 𝛾𝑝.  

In the fast avalanche channel, a random depinning threshold 𝜒(𝒓) is assigned to each 

volume element at location 𝒓. The value of each local threshold 𝜒(𝒓) is drawn from a 

uniform distribution in the range [0, 2] GPa. This phenomenological choice of threshold 

distribution will be argued in detail in Section 2.3.3. In the fast avalanche channel, for 

each time step, the local resolved stress 𝜏(𝒓) is compared to the local depinning threshold 

𝜒(𝒓). Whenever 𝜏(𝒓) > 𝜒(𝒓), the local volume will yield a plastic strain 𝛿𝛾𝑝 = 𝜀. For 

each depinning event, the strain burst size ε is a random number drawn from a uniform 

distribution in the range [0, b], where b is the magnitude of the burger vector. The volume 

element will keep yielding until 𝜏(𝒓) ≤ 𝜒(𝒓).  

The slow relaxation channel is described by Equation 2.5. The relaxation rate is expected 

to be of order 10−6~10−4 𝑠−1 for FCC single crystals37,77,82. Relaxation constant D in for 

the copper nanopillar system is found to be ∼ 10−4 𝑠−1 via a parametric study in Section 

2.3.3. The shear modulus G of copper has a value of ∼ 70 GPa83. The strain-rate sensitivity 

exponent n = 1 is set for the simplest generalized case77. 

Deformation in single slip system considers the slip in x direction, slip planes normal to y 

axis, and strain field independent of z. The internal stress accounts for the long-range 

interactions with other dislocations in two dimensions79,80 as, 

𝜏𝑖𝑛𝑡(𝒓) = ∫𝑑
2𝒓′𝐾(𝒓 − 𝒓′)𝛾𝑝(𝒓

′) 
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= 𝐶∫𝑑2𝒓′ [
1

(𝒓 − 𝒓′)2
−
8(𝑥 − 𝑥′)2(𝑦 − 𝑦′)2

(𝒓 − 𝒓′)6
] 𝛾𝑝(𝒓

′) , (2.9) 

which can be calculated in Fourier space in the simulations, 

𝜏𝑖𝑛𝑡(𝒌) = −𝐶𝛾(𝒌)
𝑘𝑥
2𝑘𝑦
2

|𝒌|4
. (2.10) 

The coupling coefficient C, which decides the strength of long-range internal interactions 

amongst volume elements, is found to be 8000 GPa according to a direct comparison 

between simulation and experimental results in Section 2.3.3.  

The phenomenological hardening parameter h in Equation 2.7 to is set to be 0.14 GPa77. 

For the external stress, 20 compressive stress steps from 100 to 500 MPa are prescribed, 

with constant driving amplitude 30 MPa and oscillation interval of 15 s, as in the 

experiment. The resolved shear dynamics on a single slip system e.g. (111)⟨011⟩ is 

considered. Eight random initial configurations are simulated for each of the four 

different driving frequency tests at 1, 2, 8, and 64 rad/s with a fixed time step of 0.01 s. A 

smaller time step of 0.001 s doesn’t generate significantly different results. 

2.3.3 Parameter Settings 

The effects of three important parameters are investigated in simulation: 1. the distribution 

𝑃(𝜒) of local depinning threshold 𝜒, 2. the coupling coefficient C, and 3. the relaxation 

time scale 𝐷.  

With a constant relaxation rate 𝐷 = 10−4 s−1 and a single-frequency oscillation at 2 rad/s, 

the effect of the threshold distribution 𝑃(𝜒) is empirically studied in the quasi-static limit. 
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For simplicity, the distribution is assumed to be uniform over an interval [0, 𝜒𝑚𝑎𝑥]
84. 

Whether a specific form of the distribution will play a role is beyond the scope of this 

study. As demonstrated in Figure 2.4, if all other parameters are held constant but the 

upper bound of the threshold distribution  𝜒𝑚𝑎𝑥 is changed, the global yield stress 𝜎𝑦𝑠 of 

a configuration will change accordingly – a higher cap of the threshold distribution can 

lead to a ‘stronger system’. In Figure 2.4 the inset shows the measured 𝜎𝑦𝑠  vs. the 

prescribed  𝜒𝑚𝑎𝑥  and a linear relationship is observed, which is as expected since the 

avalanche-driven plasticity is controlled by the Heaviside function 𝛩(𝜏 − 𝜒). 

 

Figure 2.4 Sample simulation results with different threshold distribution 𝑃(𝜒). The figure shows 

stress-strain relations that demonstrate the effect of the threshold distribution on the quasi-static 

behavior of the system. The inset shows a linear fit for the measured yield stress vs. the prescribed 

distribution upper bound 𝜒𝑚𝑎𝑥.  

The coupling coefficient 𝐶  determines how ‘collective’ the slip events are. To 

demonstrate this, quasi-static behavior of systems with different coupling strength 

spanning three orders of magnitude, from ∼ 103 to 105 GPa, are simulated for comparison. 
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The larger 𝐶 is correlated to a weaker system that globally yields at a lower stress, but 

the empirical parameter 𝜒𝑚𝑎𝑥 can be adjusted to compensate for the change in system 

strength as described previously, while all other parameters are kept constant.  

Figure 2.5 shows the stress vs. strain response of three systems with 𝐶 = 1.2 × 103, 3.5 × 

104, 1.0 × 105 GPa, where different threshold distribution with 𝜒𝑚𝑎𝑥 = 250, 550, 2500 

MPa are used correspondingly to maintain the global yield stress at ∼ 400 MPa. From the 

sample simulation results, a smaller 𝐶  can be associated to a more homogenous and 

deterministic plastic behavior, while the systems with larger 𝐶  deform through more 

stochastic and collective strain bursts. A typical experimental quasi-static behavior is 

shown in the Figure 2.5 inset. For a direct comparison between simulation and experiment 

the collectiveness is quantified as the cutoff size of strain bursts present during the test. 

Setting the value of 𝐶 to be 8000 GPa (with 𝜒𝑚𝑎𝑥 = 300 MPa) pro- vides good agreement 

between simulated and experimental data. Nevertheless, the DMA results are insensitive 

to the choice of coupling coefficient in a wide range from ∼101 to ∼104 GPa. Considering 

only the quasi-static limit behavior, in order to reproduce the experimental results, the 

threshold distribution range and the coupling coefficient can be tuned to adjust the 

nominal yield stress of the system and the degree of collectiveness to match the one 

measured in experiments.  
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Figure 2.5 Sample simulation results with different coupling strength. The figure shows 

representative simulated stress vs. strain relations using different coupling coefficient C from∼103 

to105 GPa. 𝜒𝑚𝑎𝑥 is scaled for to keep each system yield globally at ~400 MPa. The results are 

compared with the inset experimental stress vs. strain response during DMA measurements at a 

frequency of 0.3 Hz. 

Figure 2.6 presents the stress-strain relation and DMA analysis of the simulation data with 

zero relaxation 𝐷  = 0, along with three different 𝐷  values that span three orders of 

magnitude. The set of simulations uses the same uniform threshold distribution in the 

range [0, 550] MPa. Small oscillations at frequency 2 rad/s are superimposed to each stress 

hold. The main figure shows that the relaxation rate does not affect the quasi-static 

response. Systems with different relaxation constant yield globally at the same 

compressive stress 𝜎  ∼ 400 MPa. Figure 2.6 inset shows the single-frequency DMA 

analysis at 2 rad/s. In the limit 𝐷 = 0, the dynamic modulus amplitude is independent of 

the quasi-static stress level, and the phase is zero throughout loading, whereas finite 

relaxation is related to the dissipation mechanism – a larger relaxation rate is shown to be 

associated with a more significant decrease in amplitude and increase in phase under 
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modulation. In tuning the simulation parameters to obtain a system close to the 

experimental observation, the relaxation constant 𝐷 controls the AC dissipation behavior 

of the system that can be quantitatively characterized by the DMA analysis. 

 

Figure 2.6 Sample simulation results with different relaxation rate. The figure shows representative 

stress-strain relations of systems with different relaxation constant D from 0 to 10−3𝑠−1. The inset 

compares the DMA analysis of the simulation results with different relaxation constant D. 

The final choice of the simulation parameters is based on an agreement between 

simulation and experimental results, in both quasi-static and AC limit, achieved by tuning 

the upper bound of the uniform threshold distribution 𝑃(𝜒), coupling coefficient 𝐶, and 

the relaxation constant 𝐷. 
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2.4 Results and Discussions 

2.4.1 Elastic-to-Plastic Transition 

Figure 2.7 shows the same frequency domain analysis of the dynamic modulus using 

simulation results like the ones shown in Figure 2.2 for the experimental data.  

 

Figure 2.7 Dynamic modulus versus stress resolved from simulations. Figure reprinted with 

permission from [X. Ni, et al. Phys. Rev. Lett. 118, 155501 (2017)] Copyright (2017) by the 

American Physical Society. 

The qualitative agreement between simulations and experiments motivates further 

quantitative comparison. Existing simulations investigated the effect of cyclic loading on 

the evolved dislocation network and predicted a scaling relation between the normalized 

strain rate amplitude and the driving frequency, focused on the mean-field depinning 

theory framework60,85,  
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|𝜀|̇

|𝜎|
∼ 𝜔𝜅 , (2.11) 

where 𝜅 = 1 corresponds to a simple harmonic oscillator, i.e., perfectly elastic behavior, 

and 𝜅 = 0.82 corresponds to a system driven close to the pinning threshold 𝜒. The strain 

rate amplitude is normalized by the stress amplitude 
|�̇�|

|𝜎|
, which is equivalent to 

𝜔

𝐴
, where 

𝐴 is the dynamic modulus amplitude measured via DMA.  

 

Figure 2.8 Scaling analysis of the normalized strain-rate amplitude. (a) The normalized strain rate 

amplitude scaling over driving frequency analysis60 using experimental DMA data and (b) 

simulation DMA data. The figures show explicitly the fitting for scaling parameter κ using Equation 

2.11 at different quasistatic stress levels. The inset presents the measured κ as a function of 

normalized stress. Figure reprinted with permission from [X. Ni, et al. Phys. Rev. Lett. 118, 155501 

(2017)] Copyright (2017) by the American Physical Society. 
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Figure 2.8 shows the scaling analysis of the normalized strain rate amplitude vs driving 

frequency for the dynamic modulus amplitude calculated from the experiments and 

simulations at different quasistatic loads. The insets show the scaling parameter 𝜅 as a 

function of the normalized stress. These plots convey that at both small and large stress 

regimes, experiments and simulations produce scaling behaviors that are in agreement 

with the mean-field depinning predictions, and a smooth, microplastic crossover connects 

these two extreme regimes. The experiments and simulations reveal enhanced micro- 

plasticity activities as the system is stressed close to yielding. The actual mechanism that 

is responsible for the increased “susceptibility” to plasticity can be a thermally activation 

process like cross slip, or the collective dislocation bowing out due to long-range 

interactions, i.e., the Andrade mechanism57. 

2.4.2 Driving Modulated Microplastic Events 

Using the DMA simulation results, the statistics of microplasticity events the oscillatory 

stress excitations before the avalanche-dominated post-yield regime can be investigated 

during and placed in the context of the commonly observed distributions of large plastic 

events in small-scale. An avalanche is considered to finish simultaneously in a single time 

step, so avalanche event size 𝑆 is equivalent to the strain increment. The stress-binned 

complementary cumulative distribution function (CCDF) of 𝑆 can be integrated, 

CCDF(𝑆)~ ∫ 𝑃
∞

𝑆

(𝑆′)𝑑𝑆′, (2.12) 

where 𝑃(𝑆) is the probability distribution function of slip size 𝑆. For each quasi-static 

stress state, CCDF(𝑆) is evaluated from eight random configurations driven at frequency 
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2 rad/s. Only one frequency result is presented here because no frequency dependency 

is observed with regard to the event size distribution.  

 

Figure 2.9 Complementary cumulative distribution function CCDF of simulated avalanche event 

sizes S. The distribution analysis proves the presence of larger abrupt microplasticity event as 

more stress is applied – the arrow points toward the stress-increasing direction. The dissipation 

behavior converges to a saturated state when the system is approaching the nominal yielding. 

Figure 2.9 shows the event distribution CCDF(𝑆) as a function of applied quasi-static 

stress 𝜎0 , where 𝜎0  is normalized by the global yield stress. As 𝜎0  is increased, more 

large-size slip events are present during the oscillations. The distribution saturates when 

the stress is approaching the nominal yield point. The overall behavior is qualitatively 

consistent with a proximate depinning critical point as well as the experimental trend 

observed in Ref. 47. However, the system sizes studied do not permit the identification of 

the universality class and whether it follows mean-field scaling CCDF(𝑆) ∼ 𝑆−0.5 47,61or 

not59. Given the purpose of the modeling, the simulation focuses on the regime that could 

reveal pre-yield dissipation activities caused by the small pre- or intra-avalanche events. 
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The model does not have a mean-field interaction kernel, and can fail for the post-yield 

large-event regime. 

Using the same simulation system, the correlation of the microplasticity events to the 

oscillatory drive is investigated. Focusing on the stochastic burst events, simulations are 

set up for two random configurations with the same parameters and investigate the 

differential strain rate output.  

 

Figure 2.10 The differential-strain-modulation simulation scheme. The main figure is the 

prescribed stress vs. time, with a zoom-in in subsequent oscillation ON and OFF periods shown 

in the left inset.  

As is shown in Figure 2.10, a constant quasi-static stress 𝜎0 = 300 MPa is applied to both 

configurations, on top of which a 30 MPa, 2 rad/s stress oscillation is turned on and off in 

sequent 100-s time intervals. The total test time goes up to 6000 s. The drive on the two 
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independent configurations is always simultaneous – if no stochastic strain events occur 

the differential strain rate 𝛥𝜀̇ = 𝜀1̇ − 𝜀2̇, or equivalently the differential slip size 𝛥𝑆 =

𝑆1 − 𝑆2, will remain zero. In other word, the size of 𝛥𝑆 characterizes the magnitude of 

stochastic microplasticity events. 

 

Figure 2.11 The differential strain rate data, or equivalently, the differential slip size ∆S vs. time 

data in oscillation ON and OFF intervals, marked as red and blue separately. The time-series data 

are folded into two periods of driving, with the black curves showing the folded oscillatory driving 

stress. 

Figure 2.11 shows how the differential event size 𝛥𝑆 changes over stress oscillation. The 

red and blue data are 𝛥𝑆 in time series during the oscillation ON and OFF intervals, folded 

into two periods of driving. The comparison between the ON and OFF segments shows 

that larger differential strain events emerge when there is a finite stress perturbation, 

though the predominant quasi- static stress 𝜎0  is the same. The black curves are the 

prescribed stress oscillation 𝜎 − 𝜎0 vs. time. During the ON segments, 𝛥𝑆 increases when 

the external stress is approaching its global maximum, as the quasi-static stress direction 
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is assigned positive – there is clearly a correlation between the microplasticity event 

size and the external drive. 

The event size distribution and the differential strain modulation analysis characterize the 

contents of the dissipative component resolved in the DMA experiments as stochastic 

strain events. These microplasticity activities can be excited by stress perturbations around 

nominally elastic loading and are correlated to the drives. Larger microplasticity events 

are expected to occur when the system is loaded at a quasi-static stress level closer to the 

global yield stress. It will be interesting to directly detect these events in future high strain 

resolution experiments. The simulation results will be directly applied as a theoretical 

basis for the macroscopic experiment on microplasticity in Section 4.5.4. 

2.5 Summary 

Oscillatory loads are imposed in the nominal elastic regime of the uniaxially compressed 

500 nm-diameter single crystalline Cu nanopillars. Monotonically increasing stresses 

above the bulk yield point of ∼10 MPa86,87 are applied to investigate the mechanically 

correlated material response. Analysis of the cumulative oscillatory response reveals a 

substantial deviation from the nominally perfectly elastic behavior, as well as an emergent 

dissipation signature in what has always been considered preyield regime. This finding 

resembles prior research on amplitude-dependent internal friction in metallic materials13,88. 

The nanomechanical experimental observations are corroborated by a mesoscale 

dislocation plasticity model, which accounts for dislocation avalanches (fast processes) 

and the viscoplastic response (slow time scales) during oscillatory loading. A formulated 

scaling analysis shows a smooth transition of the system from perfect elasticity to 
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dislocation depinning-driven plasticity that occurs at loads lower than the global yield 

stress. This approach represents a new pathway to investigate and quantify the abrupt 

plastic events that emanate from dislocation activities even in the preyield regime that 

occur ubiquitously during deformation of small-scale single crystals below instrumental 

noise levels. 

The developed methodology can be applied to characterize preyield dislocation dynamics 

in extensive list of fcc, bcc, and hcp materials. The micromechanical study sheds light on 

detecting crackling noise in macroscopic sample subjected to nominal elastic loading. The 

observation of such events might lead to better prediction of plastic yielding and even 

incipient fracture for structural materials. The preyield mechanical noise itself can be a 

hidden problem for instrumentation that requires high strain sensitivity. An effort in 

searching for the same type of microplastic noises in macroscopic samples will be 

discussed in Chapter 4.  
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Chapter 3:  Yield-Precursor Dislocation Avalanches in 

Small-Scale Crystals 

The transition from elastic to plastic deformation in crystalline metals shares both history 

dependence and scale-invariant avalanches behavior with other non-equilibrium systems 

under external loading. Many of these other systems, however, typically exhibit purely 

elastic behavior only after training through repeated cyclic loading; recent studies in these 

other systems show power laws and scaling of the hysteresis magnitude and training time 

as the peak load approaches a reversible-irreversible transition (RIT). This chapter 

discusses the discovery of yield-precursor dislocation avalanches in small crystals, which 

shows that the deformation of crystalline materials shares these key features. Yielding and 

hysteresis in uniaxial compression experiments of single-crystal Cu nano- and 

micropillars decay under repeated cyclic loading; the amplitude and decay time diverge 

as the peak stress approaches the failure stress, with power laws and scaling as seen in 

RITs in other nonequilibrium systems. These effects are observed to become smaller as 

the pillars become larger, perhaps explaining why scale-invariant training effects have not 

been observed in macroscopic samples. 

3.1 Introduction 

As introduced in Section 1.2.1, the mechanical deformation of macroscopic metals is 

usually characterized by the yield stress, below which the metal responds elastically, and 

beyond which plastic deformation is characterized by complex dislocation avalanches25. 

In small-scale crystals, these avalanches are manifested as discrete strain bursts in the 
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stress-strain response of the sample. The yield stress depends on the history of the 

sample, i.e. under uniaxial loading paths. Textbooks say that if the sample were to be 

unloaded and immediately re-loaded, the yield stress would be defined by the previous 

maximum stress – most metals work harden under increasing loading, with no deviations 

from linear-elastic response below each yield stress27. Many features of this description 

are shared by other nonequilibrium systems under deformation: dilute colloidal 

suspensions89,90, plastically-deformed amorphous solids47,91–95, granular materials96–99, 

and simulated dislocation systems100 exhibit a transition with clear analogies to work 

hardening and yield stress. In all of these other systems, the loading/unloading hysteresis 

disappears only after repeated cycling to the maximum stress, coined as material training. 

The complex avalanches that mediate deformation in these other systems exhibit power 

laws and scaling in the limit of maximum stress approaching a critical value, the so-called 

reversible-irreversible transition (RIT) that separates trainable and untrainable regimes. 

This work uncovers that sub-micron- and micron-sized metals display the same RIT, with 

the training hysteresis reduction in larger sample volumes.  

3.2 Quasistatic Compression Experiment 

3.2.1 Yield-precursor Avalanches 

The ‘textbook description’ of yield stress and work hardening does not hold for metallic 

micro- and nano-pillars under uniaxial loading. In these experiments, the plastic strain 

bursts lead to a drop in the applied force caused by the finite machine stiffness under both 

displacement- and loading-rate control. The indenter tip used to compress these samples 

re-attains the prescribed load after a fast avalanche event is completed (see Figure 3.1). In 
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most experiments, this stress drop catch-up process is manifested by a spontaneous 

unloading-reloading response. The stress that initiates an avalanche can be regarded as the 

updated yield stress of the deformed pillar.  

Figure 3.1 (a) shows a typical stress-strain response during displacement controlled (DC) 

compressions of single-crystalline <111>-oriented copper micropillars. This plot reveals 

the presence of occasional strain bursts during the post-avalanche reloading process at 

stresses that are lower than the current “yield stress”, which is defined as the previous 

maximum stress that triggered the most-recent avalanche unloading event, as exemplified 

Figure 3.1 (b). The presence of yield precursor avalanches contrasts with the conventional 

definition of history-dependent yield point that strictly separates the purely elastic 

behavior upon unloading and reloading from irreversible plasticity. 

 

Figure 3.1 Precursor avalanches present in the quasistatic uniaxial compression experiments on 

different size of single crystalline copper pillars. (a) Sample stress-strains and (b) a close-up of a 

fast-avalanche induced unloading-reloading process. The sample starts to deviate from elastic 

response before reaching the updated “yield stress” defined as the previous maximum stress.  
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In the monotonic loading experiments above, larger pillars loaded under displacement 

control (DC) generally produce shorter avalanche strains39,40 and are less frequently 

spontaneously unloaded by the instrument compared with the smaller pillars. Load-

controlled (LC) compression experiments with several prescribed unload-reload cycles 

along the quasi-static compression are conducted to gain controls over the unloading 

amplitude and frequency to investigate the effect of system size on precursor avalanche 

behavior, where “system size” refers to the overall pillar volume.  

 

Figure 3.2 Precursor avalanches present in the uniaxial unload-reload cyclic compression 

experiments on different size of single crystalline Cu pillars. (a) Sample stress-strain and (d) the 

reconstructed non-Hookean stress-strain for two representative load-controlled (LC) unload-

reload compression experiments (see Section 3.2.2 for detailed reconstruction procedures) on 3 

μm and 500 nm diameter pillars.  

Figure 3.2 (a) shows such unload-reload stress-strain response of representative 500 nm 

and 3 𝜇m diameter Cu pillars. Figure 3.2 (b) compares their yield-precursor stress-strain 

response, 𝜎𝑟  vs. 𝜀0, where 𝜎𝑟  is the stress reconstructed as an average of all reloading 

stresses zeroed at their previous maximum stress, at a fixed reloading plastic strain 𝜀0. 

The next Section will describe the reloading stress-strain reconstruction protocol in details. 
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The types of precursor avalanches observed during the deformation of micropillars that 

extend over ∼ 10−4 strains at precursor stresses that are ~ 60 MPa lower than the previous 

maximum stress would pose significant corrections to Hookean elastic behavior if they 

persisted to macroscopic systems. An integral over the reloading reconstructed stress-

strain, 

𝑈 = −∫ 𝜎𝑑𝜀, (3.1) 

evaluates the energy per volume dissipated by the precursor avalanches, the precursor 

dissipation, as indicated by the shaded area in Figure 3.2 (d) for 3 𝜇m diameter samples. 

The precursor dissipation of ~ 60 kPa in the smaller 500 nm diameter pillars is larger than 

that of ~ 4 kPa in the larger 3 𝜇m diameter samples, which suggests that the precursor 

avalanches may disappear in macroscopic samples, perhaps explaining why it has not been 

thoroughly examined in existing literature.  

3.2.2 Reloading Stress-strain Reconstruction 

In the previous Section, a reloading stress-strain reconstruction protocol is applied to 

analyze the yield-precursor behavior for different size pillars. As the occurrence of 

avalanches upon reloading is stochastic in small-scale crystals, the main purpose of the 

stress-strain reconstruction is to average all the reloading curves as a measure of the 

ensemble precursor deviation from the textbook “peak stress” yielding. 

Figure 3.3 (a) shows a sample stress-strain data of load-controlled (LC) uniaxial 

compression tests on 500 nm diameter pillars with prescribed unload-reload cycles. The 

cyclic loading rate is ~ 400 MPa/s, while the maximum stress is increased by ~ 5 MPa per 
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cycle, which is equivalent to a quasistatic ramping rate of ~ 1.4 MPa/s. A minimum 

stress of ~ 40 MPa is set to maintain tip-sample contact.  

For the reconstruction process, the origins of each reloading process are shifted such that 

the stress is zeroed at the previous maximum stress (usually at the start of unloading) and 

the strain is zeroed at the beginning of each reloading, which is demonstrated in Figure 

3.3 (b). During reloading, if a new avalanche happens before reaching the previous 

maximum stress (re-zeroing stress), it is a precursor avalanche. 

 

Figure 3.3 Re-zeroing reloading stress-strain in unload-reload experiments: (a) A sample stress-

strain curve for the unload-reload test on a 500 nm diameter Cu pillar (b) A closer look at the 

sample unload-reload cycles demonstrating where the stress of each reloading is re-zeroed with 

the previous maximum stress (textbook yield stress updated upon deformation) and the strain is 

re-zeroed with the starting strain of the reloading process. 

Each re-zeroed reloading process for any pillar is then treated as an individual reloading 

test on one nanopillar. The total precursor behavior for the pillars can be reconstructed 

according to a Gedanken experiment on a macroscopic sample composed of stacks of 

nanopillars either in parallel or in series, as illustrated in Figure 3.4.  
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Figure 3.4 Schematics of the Gedanken compression experiments with (a) in-parallel (prescribed 

strain) and (b) in-series (prescribed stress) configurations.  

The reloading response of each pillar can be interpolated and averaged along the 

monotonically increasing strain 𝜀0 (in-parallel) or stress 𝜎0 (in-series) for the ensemble 

response. Figure 3.5 (a) shows examples of the in-series and in-parallel interpolation of 

the single reloading curve shown in Figure 3.3 (b) and zeroed at 𝑂1. 

In the in-parallel configuration, for the 𝑖𝑡ℎ pillar, strain 𝜀𝑖 = 𝜀0 is controlled and stress 𝜎𝑖 

encodes the material’s response. The system composed of N pillars has a stress response, 

 

𝜎𝑟 =
1

𝑁
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= (𝐸 + 𝛿𝐸)𝜀0.  (3.2) 
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In Equation 3.1, 𝛿𝐸 =
1

𝑁
∑ 𝛿𝐸𝑖
𝑁
𝑖=1  characterizes the plastic response of the N-pillar 

system. 𝜎𝑟  and 𝜀0  are the reconstructed stress and strain. Similarly, the series 

reconstructed strain 𝜀𝑟 can be expressed with respect to the prescribed stress 𝜎0,  

 

Figure 3.5 Stress-strain reconstruction according to the Gedanken compression experiments on 

micropillars (a) Examples of the in-series strain and in-parallel stress interpolation of the single 

reloading curve shown in Figure 3.3 (b) and zeroed at origin 𝑂1. (c) The averaging stress-strain 

reconstruction of the reloading curves for both in-parallel and in-series cases for the sample load-

controlled test shown in Figure 3.3. 

Figure 3.5 (b) shows the sample in-series and in-parallel averaging reconstruction of 

reloading stress and strain for the same unload-reload test on a 500 nm diameter Cu pillar 

as shown in Figure 3.3. In the previous section, present the in-parallel reconstruction for 

tests on seven identically-prepared pillars for each size. The elastic strain fitted from the 

linear reloading regime, 𝜎𝑟 ∈ [−300,−100] MPa is subtracted to keep only the Non-

Hookean part of strain in the final results. The elastic fit for the sample in-parallel 

reconstruction stress-strain is shown in Figure 3.5 (b). 

The same reconstruction analysis can be applied to the conventional load- or 

displacement-controlled nanomechanical experiments. In the quasi-static, uniaxial 
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loading experiments, the plastic strain bursts usually lead to drops in the applied force 

caused by the finite machine stiffness under either displacement or load control. Figure 

3.6 (a) shows a sample stress-strain of a load-controlled compression test on a 500 nm 

diameter Cu pillar, marked with the onset and finish of each avalanche event: at the 

beginning of a displacement burst of size Δ𝑥, the force applied to the sample drops by 

𝑘Δ𝑥, with 𝑘 being the machine stiffness. Driven by the feedback control, the indenter tip 

will re-attain the prescribed load on the sample after a fast avalanche event is completed. 

This stress-drop-and-catch-up process is manifested as a spontaneous unload-reload 

response. The stress that initiates an avalanche can be regarded as the updated yield stress 

of the deformed pillar. The yielding avalanche triggers the following unloading process. 

When the avalanche finishes, the load control re-engages and starts the reloading process. 
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Figure 3.6 Stress-strain reconstruction for finding precursor avalanches in the quasistatic load-

controlled experiment: (a) A sample stress-strain curve for the unload-reload test on a 500 nm 

diameter Cu pillar (b) A closer look at the sample unload-reload cycles demonstrating the re-

zeroing process. (c) Examples of in-series strain and in-parallel stress interpolation of the single 

reloading curve shown in (b), zeroed at origin O1. (d) The averaging in-parallel and in-series stress-

strain reconstruction of all reloading curves shown in (a). 

Figure 3.6 (b-d) exemplify the reconstruction process for the load-controlled experiment 

shown in Fig S3(a) following the same protocol as the one applied to the unload-reload 

experiments: (b) first shift origins of the stress-strain data after each yielding avalanche 

with the stress zeroed at the start of the avalanche and strain zeroed at the end of the 

avalanche, (c) interpolate the in-series strain or in-parallel stress, and (d) take averages of 

the interpolated strain/stress for the stress-strain reconstruction. 

3.2.3 Precursor Avalanches in Different Loading Modes 

The stress-strain reconstruction analysis can be applied to displacement-controlled and 

load-controlled quasistatic compression tests, as well as unload-reload cyclic compression 

tests, on different size Cu pillars with diameters of 300 nm, 500 nm, 700 nm, 1 𝜇m, and 

3 𝜇m. The sample stress-strain measurements are shown in Figure 3.7 (a-c), while the in-

parallel reconstructed reloading curves are correspondingly shown in Figure 3.7 (d-e). 

Each reconstruction analysis takes averages of all reloading curves from individual tests 

on seven identically-prepared pillars. The elastic strain is subtracted from the 

reconstructed strain; the results keep only the plastic precursor strain. The reconstructed 

non-Hookean reloading stress-strain quantitatively evaluates the averaging yield-

precursor avalanche behavior of a specific size of Cu pillar under a specific loading mode. 
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Figure 3.7 Precursor avalanches present in different loading-mode uniaxial compression 

experiments on different size Cu pillars. Sample stress-strain (top) and in-parallel reconstructed 

non-Hookean stress-strain (bottom) for (a, d) displacement-controlled (DC) monotonic-loading, (b, 

e) load-controlled (LC) monotonic-loading, and (c, f) unload-reload cyclic-loading compression 

experiments on different size pillars. In general, less precursor dissipation is observed in larger 

Cu pillars. 

In all cases, precursor dissipation is prevalently observed in small pillars. A comparison 

amongst the different loading mode results provides insights into the precursor avalanche 

behavior: 1. Larger precursor strains are observed in displacement-controlled tests than 

load-controlled tests. As shown in Figure 3.7 (a) and (b), the avalanche-induced unloading 

amplitudes in displacement-controlled tests are on average larger than those in the load-

controlled experiments. This might infer that the size of precursor strains is dependent on 

unloading stress amplitude. 2. The precursor strains in unload-reload tests are much 

smaller than those of the displacement-controlled tests, though the unloading amplitude is 

of the similar scale (for the 500 nm diameter pillars). One possible explanation is that part 

of the “precursor strains” observed in the quasistatic compression tests are “unfinished” 

(a) (b) (c)

(d) (e) (f)

Figure S3
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avalanches caused by non-perfect control: unlike the prescribed unloading in unload-

reload tests, unloading processes in the monotonic loading test are spontaneously 

triggered by fast avalanches; thus, stress always drops during a slip event, which might 

interrupt the growing avalanche, leaving residual avalanche to be re-activated upon the 

subsequent reloading process. 3. Larger precursor dissipations are observed in smaller 

pillars. This emergent size dependency can be an intrinsic size effect of materials’ yield 

precursor behavior; on the other hand, it can also be a result of smaller pillars undergoing 

larger unloading amplitude as shown in in Figure 3.7 (a) and (b) – smaller pillars exhibit 

larger strain bursts, which in turn, will give larger stress drops due to the inherent machine 

stiffness in both displacement- and load-controlled tests.  

The analysis results on simulated data (using 3D discrete dislocation dynamics) show 

similar qualitative behavior (G. Costantini and S. Zapperi, unpublished). Further 

investigation on the emergent size effect, e.g. doing same-amplitude unload-reload tests 

on different sizes of pillars, is beyond the scope of this work. 

3.3 Cyclic Training Experiment 

Cyclic loading experiments are then conducted to study how the precursor hysteresis 

changes under repeated loading to the same maximum stress, analogous to experiments 

on other non-equilibrium systems89,90. 3 𝜇m diameter single crystalline Cu pillars are 

chosen as to be the primary experimental system because it is sufficiently large amongst 

the “small-scale” counterparts to exhibit failure under quasistatic loading as well as 

relatively deterministic precursor avalanche behavior. Figure 3.8 shows the stress-strain 
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data from three representative experiments on the left along with the scanning electron 

microscope (SEM) images of a typical pillar pre- and post-compression on the right.   

 

Figure 3.8 Cyclic training loading on micro-pillars. Left: stress-strain response from a training 

experiment on a 3 𝜇𝑚 diameter copper pillar. Unloading and reloading stress-strain curves are 

marked in blue and red respectively. The maximum stress is increased in six steps. At each step, 

100 unload-reload cycles are prescribed. Right: pre- and post-test scanning electron microscope 

(SEM) images a sample pillar. 

Yield stress 𝜎𝑌 is defined as the intersection between the stress-strain data and the 0.2% 

strain offset elastic loading segment according to the standard engineering criteria, which 

gives 𝜎𝑌 ~ 160 MPa for the 3 𝜇m diameter Cu pillars. The failure stress, 𝜎𝑐, defined as 

the stress beyond which the samples are no longer able to support additional applied load, 

is ~ 420 MPa. Above this stress, the sample continually deforms plastically at a constant 

stress. Five-step maximum cyclic stress is prescribed from 228 MPa (0.54 𝜎𝑐) to 452 MPa 

(1.08 𝜎𝑐) at equal stress intervals of 56 MPa (0.13 𝜎𝑐). In each stress step, 100 unload-

reload cycles are applied, during which the sample is loaded to the same maximum stress 
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and unloaded to a minimum of 56 MPa to maintain contact between the compression 

tip and the sample. The yield precursor dissipation evolution over cycles at each stress 

step, from an integral over each unload-reload cycle, 𝑈 = ∫ 𝜎𝑑𝜀. 

3.3.1 Drift Correction 

Before looking closely into the precursor behavior over a large number of stress cycles, 

the thermal or instrumental drift during such tests with long testing time has to be taken 

care of. During tests with long unloading/reloading segment time, the instrumental drift 

in the machine can result in large discrepancies between the measured displacement and 

the actual sample displacement. This can give rise to errors in the calculation of the 

precursor hysteresis, which is very sensitive to the measurement of displacement during 

each unload-reload cycle.  

Figure 3.9 (a) and (b) demonstrate the drift problem in the training experiment on 3 𝜇m 

diameter Cu pillars by comparing the precursor hysteresis calculated over cycles of the 

same maximum stress ~ 350 MPa between the tests with 2 s (short), 80 MPa amplitude 

unloading/reloading segments and the tests with 4 s (long), 160 MPa amplitude 

unloading/reloading segments. Both tests use the same loading rate of 40 MPa/s. For the 

4 s segment tests shown in Figure 3.9 (b), the precursor dissipation decays to negative 

values, which is unphysical for a uniaxial compression test on single crystalline metals. 

The negative hysteresis that is slowly-varying over time can be explained by the usually 

negative thermal drift present in the nanoindentation tests. An offline drift correction is 

applied to each unload-reload cycle. Figure 3.9 (c) shows the post-drift-correction 

precursor hysteresis vs. cycle data for the same set of 4 s segment tests, which mitigates 
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the unphysical negative values and exhibits similar decay-over-cycle behavior as that 

for the short segment test. 

 

Figure 3.9 Effect of instrumental drift on the calculated precursor dissipation for 3 μm diameter Cu 

pillars. (a) Tests with 2 s (short) individual unloading/reloading segments show a clean decay of 

the average precursor dissipation. (b) Average precursor dissipation for tests with 4 s (long) 

unloading/reloading segments exhibit unphysical negative values (c) A drift correction on the 4 s 

segment test data mitigates the negative values and discloses a decay behavior. 

 

Figure 3.10  Demonstration of the drift correction process: (a) An example raw stress vs. strain 

data of subsequent unloading and reloading segments. The segments are individually linearly 

fitted to account for the slow instrumental drift in addition to the Hookean elastic strain; The fitting 

excludes data in the top 80 MPa segment within which precursor avalanches are present. (b) The 

linearly fitted strains are subtracted from the unloading and loading segments respectively to 

correct for the instrumental drift. The shaded area in the figures indicates the precursor hysteresis 

calculated from its corresponding set of data. 
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The drift correction is applied to each unload-reload cycle as the following. One raw 

stress-strain cycle, shown in Figure 3.10 (a), is taken as an example. The precursor 

hysteresis associated to the cycle is marked by the shaded area. Since the individual 

unloading/reloading segment duration (< 1s)  is short, the drift rate during each segment 

is assumed to be constant. A linear fit is prescribed to each unloading/reloading segment 

below the onset stress of precursor avalanches (the top 80 MPa segment), to account for 

the Hookean strain as well as the linear drift. In Figure 3.10 (b), the linearly fitted strain 

is subtracted from the overall unloading/reloading strain for the drift-corrected hysteresis 

behavior. The post-correction deformation is plastic only. 

3.3.2 Decay of Precursor Dissipation over Cyclic Loading 

Figure 3.11 shows the sample 2nd, 5th and 8th cycles of drift-corrected data cycled to 340 

MPa in Figure 3.8, with precursor dissipation indicated by the shaded areas. The sample 

data shows a decay in precursor dissipation in later cycles. 

 

Figure 3.11 The reconstructed stress vs. strain during the 2nd, 5th, and 8th cycles with maximum 

stress held at ~ 340 MPa. The shaded area represents the energy dissipated through precursor 

avalanches, which decreases over cyclic loading. 
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The same multistep cyclic load function is applied to nine identically prepared samples. 

It is reasonable to assume that for a cycle at a specific stress step, the intrinsic precursor 

dissipation behavior is equivalent across all samples within statistical variation.  

 

Figure 3.12 The precursor dissipation energy U decays with the number n of prior loading cycles 

at different maximum stress. 

Figure 3.12 shows the average and standard error of the precursor dissipation as a function 

of cycle number for increasing stress steps. These plots unambiguously demonstrate the 

training phenomenon: the precursor hysteresis decays with cycling. Increasing the 

maximum stress triggers new precursor avalanches and new training cycles. Below the 

catastrophic failure stress  𝜎𝑐 , the precursor dissipation virtually vanishes. Above the 

failure stress, the hysteretic dissipation continues beyond the prescribed 100 stress cycles, 

which indicates that the training is incomplete.  

The decay of precursor dissipation, 𝑈, versus number of cycles, 𝑛, is characterized using 

a fitting function 𝑈𝑓(𝑛)
90, 

𝑈𝑓(𝑛) = (𝑈0 − 𝑈∞)𝑒
−
𝑛
𝜏𝑛−𝛿 + 𝑈∞, (3.3) 
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where 𝑈∞ = 𝑈𝑓(𝑛 → ∞) is the estimated steady-state dissipation, and 𝑈0 is the initial 

dissipation. The power law decay of 𝑈𝑓 hints at the fluctuation behavior near the critical 

point. δ is evaluated from a simple power law fitting to the approximate critical behavior 

at 𝜎max ~ 𝜎𝑐,  

𝑈𝑓
′(𝑛) = 𝑈𝑓(𝑛;  𝜏 → ∞, 𝑈∞ → 0) =  𝑈0𝑛

−𝛿 . (3.4) 

A long-term 500 cycle training data at stress step 𝜎max = 1.08 𝜎𝑐 is used for the power-

law fitting for δ, as shown in Figure 3.13. Over large number of cycles with the 

engineering maximum stress prescribed to be constant, the large plastic deformation in 

high-symmetry direction can cause a decrease in the true maximum stress applied to the 

sample due to volume conservation. As the cycling at the stress level above the critical 

stress goes, the maximum stress eventually falls below the critical stress over large 

precursor strain – the precursor dissipation does not decay to finite steady-state value over 

long cycling tests.  

 

Figure 3.13 Power-law fitting to the long cycling training behavior. The precursor dissipation vs. 

cycle behavior at the stress σmax ∼ σc is approximately critical and can be characterized by a 

simple power-law decay for the fitting of the power-law exponent δ in the general model. The mean 
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value spikes at n ~ 55, 92, 162 are occasional large precursor avalanches present in individual 

tests. 

The fitted mean power-law exponent 𝛿~0.68  is applied in the general fitting model 

(Equation 3.3) for all stress steps. 𝑈0 is the initial value of 𝑈𝑓. The fitting parameters, τ 

and 𝑈0, as well as their confidence intervals were obtained using a nonlinear regression 

model featuring the Levenberg-Marquardt nonlinear least squares algorithm101,102. Each 

data point is weighted by the measurement error. The estimation error for the k-th 

parameter is taken as the 95% confidence interval, 2𝜎𝑘. 

3.4 Results 

3.4.1 Reversible-to-Irreversible Transition (RIT) in Crystal Deformation 

When plotting the characteristic time scale, 𝜏, as a function of proximity to critical point 

on a log-log scale in Figure 3.14, a striking resemblance to the colloidal suspension 

systems shows up, which indicates that stress-driven dislocations in small-scale metals 

exhibit RIT behavior similar to that seen in sheared colloidal particles90.  
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Figure 3.14 Training experimental results showing precursor dissipation activity at different 

maximum stresses. A direct comparison of dislocation RIT behavior gleaned from the Cu 

micropillar compression experiments with that reported for a colloidal particle system in sheared 

suspension90, which provides evidence for a divergence of necessary cycle time τ to reach a 

reversible state, close to the critical failure stress. 

This RIT behavior is not seen in 2D simulations of discrete dislocation dynamics at zero 

temperature, which do not capture dislocation creation or annihilation; the mechanisms 

and physical conditions underlying this behavior in simulations and experiments remain 

important questions for future studies. 

Since the power-law exponent δ in the general fitting model is obtained from a critical 

point behavior approximation – a pure power-law fitting of the cyclic precursor 

dissipation data at the maximum-stress step close to the critical stress, it is necessary to 

investigate the error tolerance for the fitted δ: the power-law divergent behavior of the 

fitted time scale τ should not be sensitive to the changes of the prescribed power law 
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component δ in a range. This range can be evaluated by investigating fitted τ vs. 𝜎𝑚𝑎𝑥 

for different values of δ.  

 

Figure 3.15 Fitting for decay time constant τ for 3 μm diameter pillars with different values of 

power-law exponent δ. Different δ-value fits are represented by different colors: (a) Fittings to U 

vs. n at increasing maximum stress, (b) fitted τ vs. σmax, and (c) a scaling analysis of τ vs. σmax. 

The fittings to the 3 𝜇m diameter pillar cyclic precursor dissipation data using different 

values of δ, sweeping the range 0.3 ~ 0.8 in a 0.1 interval, are shown in Figure 3.15 (a). 

Figure 3.15 (b) shows the fitted 𝜏 vs. 𝜎𝑚𝑎𝑥 with the same δ sweep. The scaling analysis 

of 𝜏 shown in Figure 3.15 (c) demonstrates that the divergent behavior of the training time 

constant does not change much when 𝛿 is in the range 0.3 ~ 0.7. 
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3.4.2 Size Effect 

The precursor avalanches training behavior is investigated with smaller sizes of pillars 

with diameters of 0.5 μm and 1 μm. For 0.5 μm pillars, a total of twenty-six pillars were 

tested using six different maximum stresses ranging from 550 MPa to 800 MPa, with 

increments of 50 MPa. For 1 μm pillars, seven pillars were tested using five different 

maximum stresses ranging from 300 MPa to 600 MPa with increments of 75 MPa. For 

both training tests, a minimum stress of 100 MPa is maintained to keep the actuation punch 

in contact with the sample. 

 

Figure 3.16 Precursor dissipation vs. number of cycle data for (a) 1μm diameter pillars and (b) 

0.5μm diameter pillars. For all sizes and in all steps with σmax < σc, the precursor dissipation can 

be trained away after a certain number of cycles. The magnitude of precursor dissipation is in 

general larger in smaller size pillars. 

The analysis procedures described in previous sections for the 3 𝜇m diameter pillars apply 

the same to examine the cyclic precursor dissipation behavior for the smaller 500 nm and 
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1 𝜇m diameter pillars. The precursor dissipation vs. number of cycle analysis results 

are shown in Figure 3.16. It is worth noting that the training tests for 500 nm diameter 

pillars have too small unloading/reloading amplitude for drift correction. For both sizes 

of pillars, the precursor dissipation can be trained away after a certain number of cycles.   

 

Figure 3.17 The characteristic decay time τ versus maximum stress σmax (normalized by yield 

stress σY) estimated for different pillar sizes. 

Figure 3.17 compares the fitted decay time 𝜏 versus maximum stress 𝜎𝑚𝑎𝑥 (normalized 

by yield stress 𝜎𝑌) results for different pillar sizes. For 1 𝜇m diameter pillars, the decay 

time slightly increases with stress. For 500 nm diameter pillars, it is hard to distinguish 

the training behaviors at different maximum stress from the available data. 

3.5 Discussion 

Analogous to the colloidal suspension systems, it is plausible that at low stresses, the 

strongly interacting dislocations in the pillars may rearrange themselves into a stable 
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configuration as the system reloads the first time. At higher peak stresses, the 

dislocation rearrangements in one cycle may trigger a cascade of further avalanches in 

subsequent cycles. In small-scale crystalline plasticity, the RIT corresponds to the stress 

at which additional cycling continues to plastically deform the system with no additional 

applied forces, which corresponds to the failure stress. 

The critical behavior of the precursor avalanches observed here is potentially related the 

power-law distribution of dislocation avalanches observed in nano- and micropillars under 

monotonic loading. The precursor avalanches at an RIT usually diverge in size only near 

the failure stress. Plasticity avalanches under monotonic loading are usually considered to 

be a ‘self-organized criticality’31, which exhibits a power law scaling along the entire 

loading curve. Friedman et al.47 measured a cutoff in the avalanche size distribution that 

diverged only as the stress approaches the ‘failure’ stress’61 – precisely as one would 

expect for the approach to an RIT. 

3.6 Summary  

This work sheds light on the overlooked signature of yield precursor avalanches in 

conventional nanomechanical experiments. The amount of dissipation due to yield 

precursor avalanches is shown to decay over repeated stress training cycles. This training 

behavior is reminiscent of prior research on ratcheting in fatigue deformation studies 15,16, 

as well as the unloading effect on yield point phenomena103,104. The characteristic decay 

time is found to increase with the applied maximum stress. The apparent divergence of 

the time constant at a maximum stress near the quasistatic failure stress (see Figure 3.14) 

indicates that the flow transition of the dislocation system is fundamentally a RIT 
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transition. These observations may lead to a better understanding of plasticity and 

catastrophic failure in crystalline materials governed by complex dislocation dynamics. 

This fundamental connection between dislocation systems and other non-equilibrium 

systems can provide new insights into the microstructural design of novel materials. 
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Chapter 4:  Crackling Noise Experiment 

The pre-yield dislocation activities in micro or nano-scale metals have been discussed in 

previous chapters. One open question is whether these microplastic events can be resolved 

in the bulk materials. Is it only a matter of resolution or if there is any fundamental 

difference between the deformation physics of small-scale and bulk materials. In order to 

study the potential pre-yield microplastic events in macroscopic materials, an instrument 

is developed aiming at characterizing non-linear mechanical noise in metals subjected to 

elastic load. In macroscopic systems, microplastic deformation is expected to manifest as 

a non-stationary noise modulated by external disturbances applied to the material – a form 

of mechanical upconversion of noise. If they were to be detected – they should exhibit 

scale-free properties (maybe with cutoffs), manifested as crackling noise51 introduced in 

Section 1.3.3. The main motivation for this work is to investigate the mechanical 

upconversion noise, a.k.a. crackling noise, in maraging steel components (cantilevers and 

wires) in the suspension systems of terrestrial gravitational wave detectors, as introduced 

in Section 1.4.1. Such instruments are planned to reach ambitious displacement 

sensitivities. Mechanical noise in the cantilevers could prove to be a limiting factor for the 

detectors’ sensitivities, mainly due to non-linear upconversion of low frequency residual 

seismic motion to the frequencies of interest for the gravitational wave observations.  

An experimental setup aiming at resolving the crackling noise in microplastic regime is 

custom-built with a target sensitivity ~ 10−15 𝑚/√𝐻𝑧  in the frequency range of 10 –1000 

Hz. A driving modulated noise is detected at the level of ~ 10−14 𝑚/√𝐻𝑧 at frequency 

𝑓 = 20 Hz with a shape of 1/𝑓3. The characteristics of the noise is compared with the 
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microscopic simulation results obtained in Section 2.4.2. An upper limit for the 

crackling noise level in advanced LIGO sensitivity is estimated based the prototype 

experiment measurements. 

4.1 Introduction 

This work investigates the possible influence of non-linear mechanical noise on the 

Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors. The 

Advanced LIGO detectors are large-scale ground-based laser interferometers intended to 

observe gravitational waves62. To be successful, the LIGO detectors must reach an 

extreme displacement sensitivity in the audio frequency band. At the low frequency end 

of this band (10–20 Hz), the horizontal motion of the 40 kg fused silica mirrors, acting as 

test masses, must be only about 10−19𝑚/√𝐻𝑧. Since the detector is located on the ground, 

it employs complex seismic isolation systems to reduce the contamination of the 

sensitivity by local seismic activity. The Advanced LIGO test mass suspension 

system65,105 (see Figure 1.3) consists of a quadruple pendulum for horizontal isolation and 

incorporates three stages of 50 cm- long cantilever spring pairs, made of maraging steel106 

for vertical isolation. The suspension wires are made of steel music wire, with the 

exception of the wires connecting test mass and the penultimate PUM mass, which are 

made of fused silica bonded to the mirror, to reduce thermal noise. Any mechanical noise 

occurring within the cantilevers or in the wires will propagate to the test mass at some 

level. In particular, the lowest set of cantilever springs, which are installed in the second 

mass from the top (the upper intermediate stage, or UIM), will couple most strongly to 

vertical displacement of the test mass, since there is less vertical isolation between them 
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and the test mass than for those cantilevers that are higher up the chain. In turn, vertical 

motion of the test mass will couple to its horizontal displacement, which is the degree of 

freedom which is measured to detect gravitational waves, due to mechanical imbalances 

in the suspension system and, ultimately, to the Earth’s curvature65. Thus, even if the 

impulsive strain events at the test mass are small, their combined influence can introduce 

background noise which could limit the interferometer sensitivity.  

Metals can also exhibit creep noise107. Although the underlying micro-mechanics of 

mechanical up-conversion of microplasticity and creep may be related, creep has an event 

rate that decreases quickly after the initial stress, and experimental investigations have 

shown that the creep can be reduced with the use of maraging steel108–111. This work 

however focuses on mechanical events that are continuously triggered by a time varying 

external perturbation, such as the Advanced LIGO suspension cantilevers which are 

subjected to by the local micro-seismic activity of the ground. In addition, since it is 

virtually impossible to distinguish between events happening in the cantilevers from those 

happening in the suspension wires or in the clamps, the system mimics as close as possible 

the Advanced LIGO configuration for cantilevers, wires, and clamps. It is known that 

mechanical noise occurs when metals are stressed in the plastic regime. In the Advanced 

LIGO suspension system, however, the cantilever and wires loads are solidly within the 

macroscopically elastic regime, specifically about 50% of the yield stress106. Interest is in 

the first direct detection in macroscopic-scale metals for discrete, stochastic deviation 

from linear mechanical behavior in crystalline materials this far below the engineering 

yield stress. 
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The effort is not in trying to detect individual slip events, but the stochastic noise that 

would arise as a sum of a large number of small events. Such noise might have a non-

stationary nature, with power depending on the external perturbation, as predicted in 

Section 2.4.2. In particular, given the performance of the Advanced LIGO seismic 

isolation system, it is expected that the residual low frequency motion of the suspension 

cantilevers could excite broadband mechanical noise, resulting in non-linear up-

conversion and a broad-band power spectrum of displacement noise, time-correlated with 

the driving force or force rate. Thus, an increased rate of larger events is expected when 

the stress or stress rate of the cantilever is increased with respect to the equilibrium 

position.  

4.2 Measurement Methodology 

The experiment is based on Michelson Interferometer configuration described in Chapter 

1. The setup is designed to resolve transient differential motion of two identical cantilever 

blade tips under common mode stress excitation. 
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Figure 4.1 Simplified schematics of the Michelson Interferometer layout employed. Figure 

reprinted from [G. Vajente, et al. Rev. Sci. Instr. 87, 065107 (2016)], with the permission of AIP 

Publishing. 

Figure 4.1 shows simplified schematics demonstrating the interferometer layout used in 

this experiment. 𝑥1 and 𝑥2 represent the motion of mirrors 1 and 2, which are suspended 

from the two test cantilevers. “SY” and “AS” refer to the “symmetric” and “anti-

symmetric” ports, respectively. The setup transduces the differential displacement 𝛥𝑥 =

𝑥1 − 𝑥2 to an optical signal 𝐼𝐴𝑆/𝑆𝑌.  

The testing cantilever samples are mounted symmetrically onto a central post to avoid 

modulation on optical gain. The blades are pre-curved, but loaded to be flat with a mass 

by wire. The Michelson end mirrors are mounted to the bottom of the mass, so the length 

change of the optical arm well represents the vertical motion of the blade tip. Sensor-

actuator pair is applied to control or drive the two blades. Ideally, this differential signal 

gained by the optical layout would be the uncorrelated crackle events. The study focuses 
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on the possibility that non-linear phenomena could up-convert low frequency (below 1 

Hz) excitations of the metals into high frequency (audio band) noise in their elastic regime.  

The Michelson signal is investigated in two different states for statistical significance: 

with an additional oscillatory drive ON and up-conversion noise present, and with the 

drive OFF and no up-conversion noise present. In the designed experiment, a low-

frequency (0.2 − 2 rad ⋅ s−1) small amplitude (30 μm) common-mode drive is turned ON 

and OFF in sequent half-hour measurement segment. 

4.3 Experimental Setup 

4.3.1 Suspension System 

The most important degree of freedom in the system is the vertical one, since it 

corresponds to the direction of the Michelson interferometer measurement. In the first 

prototype experiment112, the sensitivity of the interferometer at frequencies below a few 

hundred Hz is dominantly limited by seismic noises. A double stage suspension systems 

is designed for seismic noise isolation. 

The ground motion in a typical urban location is orders of magnitude larger than the 

targeted sensitivity of this experiment. The measured motion of the optical table showed 

a displacement noise of the order 10−8 m/√Hz at 𝑓 = 10 Hz, rolling off with frequency 

roughly like  𝑓−3 . Ideally, if the optical system is infinitely rigid and the two test 

cantilevers are perfectly equal, vertical motions of the optical board will be rejected as 

common mode variation of the Michelson arms. However, in practice, motions of the 
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optical board can couple to the differential signal via asymmetry of the Michelson 

configuration due to imperfections of the system. 

Using a simple elastic model of the two cantilevers, the residual coupling of common 

vertical motion 𝑥𝑐𝑜𝑚𝑚  of the board to differential displacement 𝑥𝑑𝑖𝑓𝑓  of the two 

cantilever tips can be estimated as, 

xcomm
xdiff

∼ (
𝑓0
𝑓
)
2

(2
𝛿𝑓0
𝑓0
+
𝛿𝐿

𝐿
) , (4.1) 

where 𝑓  is the measurement frequency, 𝑓0  is the mean resonance frequency of the 

cantilevers, 𝛿𝑓 is the resonant frequency mismatch, 𝐿 is the mean cantilever length from 

the clamping to the wire suspension point, and 𝛿𝐿 is the difference in cantilever lengths. 

The expression works in frequency range 𝑓0 < 𝑓 < 𝑓1, where 𝑓0 ∼ 2 Hz and 𝑓1 ∼ 150 Hz 

is the first higher order resonance of the loaded cantilever. 

A difference in the two resonant frequencies of about 5 mHz and a difference in the two 

lengths of 0.5 mm, well within machining tolerances, provide a common mode rejection 

factor of about 6000.  The suspension system is designed as two cascaded stages with 

characteristic frequencies close to 2 Hz in order to provide an additional factor of 2000 of 

vertical isolation at 10 Hz.  
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Figure 4.2 A simplified schematic of the seismic isolation system, highlighting the key components 

and the two stages of vertical and horizontal isolation. Figure reprinted from [G. Vajente, et al. 

Rev. Sci. Instr. 87, 065107 (2016)], with the permission of AIP Publishing. 

Figure 4.2 shows a simplified schematic of the suspension system. Each stage is composed 

of maraging steel cantilevers, roughly 30 cm long, 7 cm wide, and 2 mm thick. Four 

cantilevers suspend the intermediate stage from a support structure with maraging steel 

wires, and two additional cantilevers support the optical breadboard from the intermediate 

stage, with another two wires attached to the sides of the board, above its center of mass. 

Each cantilever supports a load of about 10 kg, which corresponds to about 50% of their 
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yield stress. Both the optical board and the intermediate stage have a mass of about 20 

kg. The intermediate stage includes a stack of rubber to provide some passive damping of 

the suspension resonant modes. 

 

Figure 4.3 The 3-dimensional rendering (left, reprinted from [G. Vajente, et al. Rev. Sci. Instr. 87, 

065107 (2016)], with the permission of AIP Publishing) as well as a photo (right) of the 

measurement apparatus showing the suspension system (Sec. 4.3.1), the vertically suspended 

optical breadboard (Sec. 4.3.2), and the displacement sensors and actuators for the board (Sec. 

4.3.3). 

Figure 4.3 shows a three-dimensional rendering in parallel with a photo of the suspended 

instrument. The optical board that holds the Michelson interferometer hangs vertically 

inside the support structure. The breadboard is suspended by two stages of vertical and 

horizontal isolation.  

The suspended board is balanced by counter weights, shown for example in Fig 4.4 (a), 

to make sure the center of mass of the board is right below the suspension point. A laser 
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collimator is built for balancing reference: firstly, an optical board is mounted vertically 

to an optical table horizontally leveled using a spirit level. A He-Ne laser is mounted onto 

the optical board so its output beam passes through two far-separately irises mounted at 

the same heights on the table, so that the beam path is parallel to the optical table. One 

vertical edge of the optical board is aligned to a plumb line so the collimator setup can be 

transferred to another optical table that might not be leveled. 

 

Figure 4.4 Board being balanced using counterweights and laser collimator. Quadrature 

Photodiode (QPD) is mounted at the back of the  first steering mirror (M1) on the optical board. 

The motions of the optical board and the load masses are sensed and controlled using 

Optical Sensor and Electro-Magnetic actuator (OSEM), the integrated optical position 

sensor and electro-magnetic actuator. Twelve OSEMs are installed to sense and actuate 

the total twelve degrees of freedom. Figure 4.5 shows the representative spectra of the 

three-axis free motions of the two load masses freely-suspended from the maraging steel 

blades. 
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Figure 4.5 Reference OSEM spectrum of free suspension configuration taken in air. 

The entire system is housed inside a vacuum chamber, to reduce contamination of the 

optics, noise due to air fluctuations, and acoustic disturbances. 

4.3.2 Optical Setup 

Figure 4.6 (left) is a schematic illustrating details of the optical setup based on Michelson 

configuration. Figure 4.6 (right) presents the schematics in overlap with a photo of the 

real experiment for comparison. 
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Figure 4.6 (Left) Simplified optical scheme of the Michelson interferometer, reprinted from [G. 

Vajente, et al. Rev. Sci. Instr. 87, 065107 (2016)], with the permission of AIP Publishing. (Right) 

The schematic optical paths in overlap with a photo of the optical board. 

The macroscopic blades are prototypes of the cantilever blades used in the aLIGO 

suspension system. They have a dimension of about 12 cm length, 1.8 cm width, and 0.8 

mm thickness. The blades are mounted symmetrically onto a central post. The blades are 

pre-curved and then loaded to be flat with a mass by wire. The Michelson end mirrors are 

glued to the bottom of the mass, so the length change of the optical arm well represents 

the vertical motion of the blade tip. A magnet is mounted at the tip of the blade so the 

blade can be controlled and driven by a shadow sensor - magnetic coil actuator pair. 

4.3.3 Sensor-Actuator, Electronics, and Wiring 

The Photodiode (PD) Transimpedance Amplifier (TIA) circuits are mounted to the back 

of the optical board in vacuum in order to amplify the diode signal at a closer stage. On 

065107-8 Vajente et al. Rev. Sci. Instrum. 87, 065107 (2016)

FIG. 6. Simplified optical scheme of the Michelson interferometer. Only the main beams and optical components are shown: reflections from the secondary

surfaces and beam dumps are not drawn for simplicity. Also, actuators and displacement sensors have been removed.

C. Seismic isolation

The dominant limitation to the sensitivity of the first

version of the measurement system was seismic noise at

frequencies below a few hundred Hz. Indeed, the ground

motion in a typical urban ground location can bemany orders

of magnitude larger than our target sensitivity. The measured

motion of an optical table in our lab showed a displacement

noise of the order 10−8 m/
p

Hz at 10 Hz, decreasing with

frequency roughly like f −3. The most important degree of

freedom in our system is the vertical one, since this corre-

sponds to the direction of the Michelson interferometer mea-

surement. Ideally, if the optical system was infinitely rigid

and the two test cantilevers were exactly equal, any vertical

motion of the optical breadboard would result in a common

modevariation of theinterferometer arm lengths. Thus, sincea

Michelson interferometer hasvirtually infinitecommon mode

rejection, it should not be a↵ ected by seismic motion of the

ground. However, thereisalimit tothelevel thetwocantilevers

can be made equal: in particular, di↵ erences in the material,

machining, and clamping can result in a mismatch of the

resonant frequency and of the distance from the clamp to

the wire suspension point. A trade-o↵ is necessary between

the requirements on the cantilever equality and the perfor-

mance of the seismic isolation system: a worse matching

of resonant frequency or distance would require increased

performance on thesuspension system. It can beshown using

a simple elastic model of the two cantilevers that the residual

coupling of common vertical motion xcomm to di↵ erential

displacement xdi↵ of the two cantilever tips is given by

xdi↵

xcomm

⇠

 
f0

f

! 2 "

2
δ f0

f0

+
δL

L

#

, (13)

where f is the measurement frequency, f0 is the cantilever

mean resonant frequency, δ f0 is the di↵ erence between the

two resonant frequencies, L is the mean of the cantilever’s

length from the clamp to the wire attachment point, and δL

is the length mismatch. Thetwo expressions abovearecorrect

for frequencies larger than f0 (about 2 Hz) and smaller than

thefirst higher order resonance of theloaded cantilever (about

150 Hz).

A di↵ erence in the two resonant frequencies of about

5 mHz, obtained experimentally in the first prototype, and a

di↵ erencein thetwo lengthsof 0.5mm, well within machining

tolerances, provideuswith acommon moderejection factor of

about 6000. So, to reach thedesired displacement sensitivity at

10Hz, thesuspension system must provideanadditional factor

of 2000 of vertical isolation at 10 Hz. This isachievableusing
 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  131.215.220.162 On: Sun, 12

Jun 2016 01:41:13
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the back of the optical board is also mounted a counterweight driven by DC motor for 

precise balancing purpose. Picomotors are integrated to one of the end mirrors for 

Michelson alignment. The folding mirror in one of the Michelson arms (AS arm in this 

case) is mounted on a translational stage for Michelson arm lengths balancing. 

 

Figure 4.7 Vacuum feedthrough wiring through stages to avoid seismic noise short circuiting 

The cabling and wiring configuration for all in-vacuum electronics is illustrated in Figure 

4.7. The solid lines represent the more compliant flat cables for seismic coupling concerns. 

The flat cable is combed into thin wires for minimum stiffness and twisted at the back of 

the board toward the yaw mode in order not to stiffen the more critical roll mode. Outside 

susp OSEM PD+COIL 24-pin

25-pin feedthrough2

board OSEM LED 4-pin + 

susp OSEM LED 4-pin

9-pin feedthrough1

Motors  8-pin

9-pin feedthrough2

board OSEM PD+COIL 24-pin

25-pin feedthrough3

Axcelitas PD 12-pin

25-pin feedthrough1

22-pin = 

Axcelitas PD 12-pin + 

Motors 8-pin + 

spare 2-pin 

susp OSEM PD+COIL 24-pin + susp OSEM LED 4-pin + 2 spare pin

30-pin connector on board

board OSEM PD+COIL 24-pin + board OSEM LED 4-pin + 2 spare pin

30-pin connector on board

15

8

Tstage 4-pin + pico motor 4-pin + 1 spare pin

9-pin connector, soldered  

Axcelitas PD 12-pin + 2 spare pin

14-pin plugin to 12-pin connector on board
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the suspensions the cables are swapped to twisted paired cables drawn as the wavy lines 

for electromagnetic field decoupling. 

4.3.4 Lock Acquisition 

Servo feedback is implemented to control the Michelson interferometer length at half-

fringe, i.e. to lock the Michelson113. The Michelson error signal 𝑥1 to be controlled is 

given by the difference of the two PD readings: 

𝑥1 =  𝐼𝐴𝑃 − 𝐼𝑆𝑃, (4.2) 

A simplified version of the control model is illustrated in Figure 4.8, where 𝐹 is the servo 

filter composed of multiple digital filters with different functionalities designed for the 

locking purpose, 𝐴 is the actuation function determined by the dual-cantilever blades 

mechanics, and 𝐻  is the Michelson interferometer transducing the differential 

displacement of cantilever tips to an optical signal 𝑚. ADC and DAC are analog-to-digital 

and digital-to-analog conversion channels.  Post ADC, A digital noise 𝑥𝑒𝑥𝑐 can be injected 

to the servo loop for characterization purpose. The total noise 𝑥2 being passed to the servo 

filter is a sum of the injected noise and the measured error signal 𝑥1. The servo filter 

outputs a control signal 𝑥𝑜𝑢𝑡 to suppress differential motion of the cantilever tips. The 

DAC converts the control signal in addition to the prescribed common mode actuation 

signal 𝑥𝐴 to an actuation voltage 𝑉𝐴 to drive the coils. The ideal differential displacement 

signal due only to the microplastic deformation of the cantilever blades is denoted as 𝑑𝑥, 

but in reality, other types of noises can couple through the slight asymmetry of Michelson 
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arms and contaminate the differential motion readout as 𝑑𝑥𝑛  (see Section 4.4 for 

details). The measured differential displacement is 𝑑𝑥𝑠. 

 

Figure 4.8 Simplified schematics for the SERVO model. 

The primary lock filter is designed based on the double-blade actuation model. In order to 

engage the lock filter, notches filter that consists of multiple narrow-band band-stop filters 

is applied to avoid exciting high frequency motions with a high quality-factor that can 

cause loop instability.  

When Michelson is locked in relatively low noise, the plant transfer function (TF) 𝐴𝐻 can 

be measured as 
𝑉𝐴

𝑥1
 with noise 𝑥𝑒𝑥𝑐 injection. The plant TF is expected to have the same 

shape as the actuation function 𝐴, because in locked condition the optical transducer 

transfer function 𝐻 is simply a constant gain. The measured plant TF, as shown in Figure 

4.9, follows primarily the expected shape of a double pendulum. The plant TF 

measurements can be well captured by a 10th order model. A plant compensator filter can 
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be designed using a 2nd order fit to an inverse of the plant TF accompanied by a time-

delay correction. A boost filter, i.e. a low-pass filter to boost control gain at low 

frequencies, can be engaged when the system is locked with enough phase margin (>30 

degree). In addition, resgain filters can be designed to gain extra control over the low 

frequency resonance peaks of the mechanical system. 

 

Figure 4.9 Measurement of the plant transfer function with noise injected to the loop. The plant 

can be fitted with a 10th order model. The pair-pole structure at ~ 136 Hz can be fitted with 2nd 

order model. A plant compensator lock filter is designed accordingly. 
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4.3.5 Michelson Signal Calibration 

The optical gain of the setup can be measured and updated every time a new lock is 

acquired. A linear approximation for the optical gain estimation (See Section 1.4.2 for 

details) gives: 

𝑔 = (
2𝜋

𝜆
⋅ 𝐼𝐴)

−1

(4.3) 

The peak to peak amplitude of the fringes 𝐼𝐴 is estimated using minimum 𝐼𝑚𝑖𝑛 and mid 

𝐼𝑚𝑖𝑑  values (because maximum power of the fringes saturates the PD readings), 

𝐼𝐴 =  2(𝐼𝑚𝑖𝑑 − 𝐼𝑚𝑖𝑛). (4.4) 

The minimum value 𝐼𝑚𝑖𝑛 is measured by taking averages of the time-windowed minimum 

of PD output while a 5 Hz noise excitation is injected to the servo loop to make sure the 

fringes run fast enough to reach their minimum within the time window. The mid value 

𝐼𝑚𝑖𝑑 is taken as an average of PD readout when Michelson is locked at mid fringe. 

The actuation function 𝐴  is measured as the plant TF divided by optical gain. The 

compensated displacement can be calculated from the control signal 𝑐 (in units of 𝜇𝑁) 

through the actuation function. The differential displacement signal 𝛿𝑥𝑠 can be recovered: 

𝛿𝑥𝑠 = 𝑥1𝑔
−1 − 𝐴𝑐, (4.5) 

with proper dewhitening and whitening of the signal. 
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The quality of the calibration can be examined upon closed-loop transfer function 

(CLTF) measurements with 𝑥𝑒𝑥𝑐 noise injection, where, if 𝐴 and 𝑔 are properly measured 

and fitted, the calibrated CLTF should have the same shape as the measured CLTF: 

𝑥1
𝛿𝑥𝑠

~
𝑥2
𝑉𝑒𝑥𝑐

 . (4.6) 

A sample comparison of the two-way CLTF measurements is shown in Figure 4.10. 

 

Figure 4.10 Two-way closed-loop transfer function measurements agree in shape when the 

Michelson signal is well calibrated. 

4.3.6 Cantilever Samples 

The maraging steel blade samples used in the table-top experiment are a scaled-down 

prototype of the cantilever spring blades used in the advanced LIGO suspension system. 
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They are manufactured using the same process for advanced LIGO. The basic chemical 

and mechanical properties have been examined in literature106,110. Figure 4.11 (a) shows 

a SEM image of a mechanically polished maraging steel sample, cut directly from the 

blade sample used in the experiment. Figure 4.11 (b) is an electron backscatter diffraction 

(EBSD) investigation on the polycrystalline grain structures, while the phase map shown 

in Figure 4.11 (c) confirms that maraging steel is in BCC phase. 

 

Figure 4.11 Electron backscatter diffraction investigation on a mechanically polished maraging 

steel sample. (a) SEM images of the sampled surface area, marked with sharp scratch. (b) EBSD 

(a)

(b)

(c)
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map of the same region shows a polycrystalline microstructure with average grain sizes of ~ 5 

um. (c) a phase map of the same region shows that the crystal structure of maraging steel is BCC. 

In order to investigate materials dependency, experiments with high carbon steel blades 

are done in the same setup. The high carbon steel is believed to be a crackling-noisy 

material because it exhibits large hysteresis in cyclic loading test, and is reported to inherit 

large internal friction damping110,114. The off-the-shelf AISI1074 steel is used as the 

experimental high-carbon spring steel materials. Electrical discharge machining (EDM) 

cuts the high-carbon steel strips into the same dimension as the maraging steel blades. The 

as-received blades are cold-rolled for pre-curvature.  

Macroscopic mechanical tests on single pre-curved blades are done in Instron loading 

frame for a characterization of the basic mechanical behavior of the blades. A gripped 

tension configuration is applied to avoid the contact slip occurred in the compression test.  

 

Figure 4.12 Cycling tension experiments on a single precurved blade in Instron loading frame 

showing a work hardened yield point evolution over maximum stress. 

Figure 4.12 shows cycling tension experiments on a single pre-curved blade, where the 

blade yields quickly, followed by an elastic unloading. The re-loading process is then 

elastic because in macroscopic scale, the work-hardening defines the historically 
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maximum load as the new yielding point of the materials system (See also Chapter 3). 

The further increase in the maximum load will continue plastically deform the materials.  

With this property, blades can be designed with the same thickness2 but different initial 

pre-curvature and different deformation history to achieve a same load to load them 

straight; in the meantime the static load equals the desired percentage of the yielding of 

the blades. Since it’s expected from the nanomechanical study that the higher the static 

load, the more crackling noise in the materials system, experiments are done with high-

carbon blades loaded nominally at ~ 90% of the yielding.  

4.4 Source of Noises and Sensitivity 

4.4.1 Noise Budget 

A noise budget is an accounting of the noises that add up to form the noise floor of the 

instrument. Figure 4.7 (a) shows the noise budget, generated using half-hour locked data 

in the maraging steel blades configuration, that investigates the amplitude spectral density 

of the total noise (a.k.a. the limiting sensitivity) along with variety of sources of noise. 

The counterpart noise budget for high-carbon steel blades configuration is shown in 

Figure 4.7 (b). The budgets take care of seismic and acoustic noise (Section 4.4.2), 

electronics (ADC and dark) noise (Section 4.4.3), laser intensity noise (Section 4.4.4), 

laser frequency noise (Section 4.4.5), beam scattering noise (Section 4.4.6), beam jittering 

                                                 

2 The thickness of the blades is chosen carefully so the loaded high carbon steel cantilever 

has a desired resonance frequency close to that of the maraging steel cantilever (<2 Hz). 
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noise (Section 4.4.7), shot noise (Section 4.4.8), and voice coil actuation noise (Section 

4.4.9).  

 

Figure 4.13 Noise budget for the Michelson setup installed with (a) maraging steel and (b) high-

carbon steel cantilever springs 
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In the noise budget plots, the sum of all considered sources of noise (SUM) 

accommodates most part the measured Michelson sensitivity (MICH). Other sources of 

noise that can contribute to the discrepancy are beyond the scope of this study. The setup 

has achieved  a displacement resolution on the order of 10−14m/√Hz in the frequency 

range of 20 - 1000 Hz. 

4.4.2 Seismic and Acoustic Noise 

In the running experiment, the coupling from seismic and acoustic noise to Michelson 

signal can be measured using coherence projection. The seismic noises can be detected by 

a tri-axial Wilcoxon accelerometer. The environmental acoustic noise 𝑝 is detected by a 

microphone. The inter-coupling between the three-axis seismic noise and acoustic noise 

measurements has to be considered. Using the accelerometer measurement  𝒂 =

[𝑎𝑥; 𝑎𝑦; 𝑎𝑧] along with the microphone measurement 𝑝, multicoherence3 function 𝑚𝑐𝑜ℎ𝑠 

between the Michelson signal 𝐘 = 𝑥1 and the multichannel noise 𝐗𝐬 = [𝑎𝑥; 𝑎𝑦; 𝑎𝑧; 𝑝] can 

be obtained. In frequency domain, the total noise  𝑛�̃� contributed to the Michelson signal 

from the seismic and acoustic noises can be estimated as 𝑛�̃� = 𝑥1̃ ⋅ 𝑚𝑐𝑜ℎ𝑠. 

4.4.3 Electronics Noise 

In the digital control system, analog-to-digital conversion (ADC) as well as digital-to-

analog conversion (DAC) are common sources of noise. For ADC, the original analog 

                                                 

3 An extension of the more common two-channel magnitude square coherence targeted to 

estimate the coherence of a target signal with a set of correlated auxiliary channels. 
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current signals from PDs are converted to voltage signals through the TIA stage 

described in Section 4.3.2. The dark noise 𝑛𝑑𝑎𝑟𝑘 of the PD contributes part of the total 

electronic noises. The analog voltage signal 𝑠 + 𝑛𝑑𝑎𝑟𝑘 is whitened and fed to the ADC 

channel. ADC adds additional noises 𝑛𝐴𝐷𝐶 to the whitened signal. The signal is recovered 

by digital dewhitening filter designed as the inverse transfer function measured from the 

analog whitening stage 𝑇𝑤ℎ𝑖𝑡𝑒𝑛𝑖𝑛𝑔 = 𝑊𝑜𝑢𝑡/𝑊𝑖𝑛 . The whitening process helps reduce 

ADC noise. The propagated residue electronic noise 𝑛𝑒 = 𝑛𝑑𝑎𝑟𝑘 + 𝑛𝐴𝐷𝐶 can be estimated 

by measuring error signal 𝑥1 = 𝑠 + 𝑛𝑑𝑎𝑟𝑘 + 𝑛𝐴𝐷𝐶  when laser and room lights were off, 

that is, when 𝑠 → 0. The noise in error signal can be calibrated in time to a noise in 

Michelson signal using Equation 4.5. The DAC noise manifests itself as voice-coil 

actuation noise and will be specifically discussed in Section 4.4.9 in details. 

4.4.4 Laser Intensity Noise 

The coupling function from the laser intensity noise to the Michelson readout can be 

measured when intensity noise becomes a dominant source of noise for the system. The 

normal variation of laser power can be monitored in time as the sum of the photodiodes 

readings 𝐼𝑛𝑢𝑙𝑙 = 𝐼𝐴𝑃 + 𝐼𝑆𝑃. The excess intensity noise can be generated by modulating the 

laser current. Giving the total laser power 𝐼𝑛𝑢𝑙𝑙
′ with high relative intensity noise (RIN), 

the propagation term can be measured as a transfer function 𝐺𝐼 = 𝑑𝑥𝑠
′/𝐼𝑛𝑢𝑙𝑙

′ , where 𝑑𝑥𝑠
′  is 

the Michelson signal measured with the noisy intensity laser input. The intensity noise 

can be projected as 𝑛𝐼 = 𝐺𝐼𝐼𝑛𝑢𝑙𝑙 using the high-frequency measurement of 𝐺𝐼. 
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4.4.5 Laser Frequency Noise 

Following the field representation model of Michelson Interferometer configuration, the 

frequency noise of the laser 𝑑𝜈 is coupled to the Michelson signal 𝑑𝑥𝑠 as 

 𝑑𝑥𝑠 = 
𝑑𝜈

𝜈0
 𝛥𝐿, (4.7) 

where 𝜈0  is the laser frequency, 𝜈0 =
𝑐

𝜆
=
3 × 108𝑚⋅𝑠−1

1064 ×109𝑚
= 2.8195 × 1014Hz,  and 𝑑𝐿  is 

the macroscopic differential arm length. The Nd:YAG master laser has a typical free-

running frequency noise 𝑛𝜈 = 𝑑𝜈 at the level of ∼ 100
𝐻𝑧

√𝐻𝑧
 ×  100

𝐻𝑧

𝑓
 , where 𝑓 denotes 

the spectral frequency.  

The coupling term from laser frequency noise 𝑑𝜈 to Michelson signal can be estimated as 

𝐺𝑓 =
𝛥𝐿

𝜈0
=
𝑑𝑥𝑠

′

𝑛𝜈
′  when frequency noise 𝑛𝜈

′  is injected to the laser source by piezo driving the 

lasing crystal. A flat magnitude shape can be obtained for |𝐺𝑓| when taking measurements 

with >0.6 coherence. Figure 4.14 shows a sample transfer function measurement.  
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Figure 4.14  A Bode plot of the frequency noise to Michelson signal coupling transfer function. 

The Michelson arm balance can be improved to reduce the frequency noise coupling. The 

arm length difference 𝛥𝐿 can be measured as,  

𝛥𝐿 =  
𝜈0
𝑑𝜈

𝑚

𝐺𝑓
. (4.8) 

with a single frequency line (1111 Hz) 20 kHz amplitude frequency noise 𝑑𝜈 injected to 

the laser. The asymmetry can be reduced by moving the translational stage (onto which 

one folding mirror is mounted; see Section 4.3.3 for details). 

4.4.6 Beam Scattering 

The Michelson signal can be contaminated by ghost beam scattered from moving elements. 

Ghost beam refers to the beam that deviates from the designed optical path (See Section 

4.3.2 for details of the optical path) and is not properly dumped. The motion of the 
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scattering element 𝑧 causes phase shift 𝜙 ∈ [0,
2𝑧

𝜆
] of the scattered light, which will 

result in a noise plateau in frequency range 𝑓 ~ |�̇�| ∈ [0,
2

𝜆
|�̇�|] in the Michelson spectrum 

with a corner frequency, 

𝑓𝑚𝑎𝑥 =
2

𝜆
𝑣, (4.9) 

where 𝑣 = |�̇�| is the speed of the scattering element. The scattering noise is usually non-

stationary. When the Michelson sensitivity is limited by scattering noise, the band-limited 

root-mean-square (BLRMS) of the Michelson signal can correlate significantly in time to 

motions of some optical elements. Spectrogram analysis on Michelson signal can be 

applied to diagnose for beam scattering. Figure 4.15 shows (a) the spectrogram analysis 

of an example Michelson measurement. In the configuration, the low-frequency 

Michelson BLRMS are detected to have high coherence with the end mirror motion 

quantified as 
𝑑

𝑑𝑡
|𝑧1 + 𝑧2|, where 𝑧1, 𝑧2  are OSEM measurements for the two blade tip 

motions. Figure 4.15 (b) shows that the time-varying low-frequency noise plateau cutoff 

overlaps perfectly with the corner frequency estimation 𝑓𝑚𝑎𝑥 =
2

𝜆

𝑑

𝑑𝑡
|𝑧1 + 𝑧2|. 
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Figure 4.15 Spectrogram of Michelson signal in a configuration where spurious beam is a 

dominating noise source. (a) The spectrogram shows that the Michelson signal is non-stationary. 

(b) The time-varying low frequency noise plateau (yellow) cutoff overlaps perfectly with the corner 

frequency calculated from scattering noise estimation (red). 

When scattering noise dominates the low-frequency Michelson behavior, beam scattering 

noise contribution can be estimated from measurements of the mirror motion 𝑧 = |𝑧1 +

𝑧2|. The calculation follows a simple field model and assumes that a fraction  𝑟𝑠𝑐 of the 
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beam power impinging on the mirror is scattered back and couples again with the main 

beam. The field arriving at the photodiode is perturbed by the scattered light: 

𝜓 = 𝜓0 +√𝑟𝑠𝑐  𝜓0 𝑒
𝑖
4𝜋
𝜆
𝑧. (4.10) 

The power read by the photodiode becomes, 

𝐼 = 𝐼0(1 + 𝑟𝑠𝑐) + 2𝐼0√𝑟𝑠𝑐 cos (
4π

𝜆
𝑧) . (4.11) 

The beam scattering noise 𝑛𝑠𝑐  can be estimated by assuming uncorrelated scattered light 

from single bounce from the two end mirrors: 

𝑛𝑠𝑐 =  𝑔 ⋅ 2𝐼0√𝑟𝑠𝑐√cos2 (
4π

𝜆
𝑧1) + cos2 (

4π

𝜆
𝑧2) , (4.12) 

where 𝑔 is the optical gain, and a maximum 𝑟𝑠𝑐 is chosen to match the low frequency 

sensitivity in the Michelson spectrum. The sample projection for the noisy case (with the 

presence of spurious beams) is shown in Figure 4.16 with the scattering fraction computed 

to be 𝑟𝑠𝑐~10
−8. 
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Figure 4.16 A projection of beam scattering noise for the example case with presence of spurious 

beams.  

Figure 4.17 below shows the spectrogram analysis of the Michelson signal sampled from 

a quiet measurement segment. The spectrogram is superimposed with the corner 

frequency profile estimated from the in-time end mirror motion measurement. 
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Figure 4.17 Sample spectrogram analysis of high-passed Michelson signal during quiet 

measurement period superimposed with the corner frequency profile estimated from end mirror 

motions. 

The signal is high-passed to avoid spectral leakage caused by short FFT windowing. The 

spectrogram analysis shows a relatively stationary Michelson behavior (in contrast to the 

noisy case shown in Figure 4.15) and resolves no correlation between the mirror motion 

and the Michelson signal. 

4.4.7 Beam Jitter 

A Quadrant Photodiode (QPD) is installed onto the optical board after the first steering 

mirror (M1) for in-time beam jitter measurements. The location of the QPD is shown in 

Figure 4.4. The QPD uses the transmitted beam from M1 (∼ 99% reflectivity) with a 

power of ∼ 0.1 mW to measure the 2-dimensional motion of the beam on optical elements. 
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The beam is centered on the QPD within the ~ 1 mm linear sensitivity range. The 

transducing factors are calibrated ex-situ using translational stage to be 𝑔𝑥 =

6.98 V/mm, 𝑔𝑦 = 6.22 V/mm. The QPD readout works also as a reference point for in-

vacuum Michelson alignment purpose. The noise contribution from beam jittering to the 

Michelson sensitivity is estimated using coherence projection 𝑛𝑗 = 𝑑𝑥𝑠 ⋅ 𝑚𝑐𝑜ℎ𝑗 , where 

𝑚𝑐𝑜ℎ𝑗  is the multi-coherence between 𝐘 = 𝑑𝑥𝑠  the Michelson signal and 𝐗 =

[𝐼𝑄𝑃𝐷
𝑥 ; 𝐼𝑄𝑃𝐷

𝑦
] is the multichannel QPD measurement of beam jitter in x- and y- direction. 

4.4.8 Shot Noise 

Shot noise is one of the fundamental limits of the laser interferometer techniques that 

depends on laser power115. The shot noise level at all frequencies is given by equation 

𝑛𝑠ℎ𝑜𝑡 = √2 ⋅ ℎ𝑝 ⋅ 𝜈0 ⋅ 𝐼𝑖𝑛𝑝𝑢𝑡 , (4.13) 

where ℎ𝑝 is the plank constant, 𝜈0 is the laser frequency, and 𝐼𝑖𝑛𝑝𝑢𝑡 is the total input laser 

beam power, which is ∼ 18 mW , and estimated in time by the sum of AP and SP 

photodiode readings 𝐼𝑛𝑢𝑙𝑙 = 𝐼𝐴𝑃 + 𝐼𝑆𝑃. 

4.4.9 Actuation (DAC) noise 

The actuation noise can be highly nonlinear due to digital discretization or harmonic 

distortion of DAC. This type of digital noise can be uncorrelated in the two actuation 

channels, and therefore can be coupled to the Michelson signal in a similar way as 

crackling noise. 



 

 

105 

A current monitor is implemented to directly measure the current sent to the 

interferometer coil actuators. The measurement is initially limited by sensing noise. A 

low-noise 10X instrumentation amplifier is installed to achieve an intrinsic sensing noise 

lower than the one produced by the DAC driving the coils. The sum of the two current 

monitor readouts is a direct estimation of the DAC noise that can induce transient 

differential driving force on the blade tips. This force noise can project to the differential 

motions of the cantilever tips through the actuation transfer function (See Section 4.3.4 

for details). 

With the Michelson locked, the coil current monitors see only the control signal. The 

transfer function 𝐶𝑐𝑢𝑟𝑟𝑚𝑜𝑛 =  𝑥𝑜𝑢𝑡
𝑠𝑒𝑟𝑣𝑜/𝑥𝑖𝑛

𝑐𝑢𝑟𝑟𝑚𝑜𝑛 gives a direct calibration of the current 

monitor input (in ADC counts) in units of the control signal (μN). The resulting TF, as 

shown in Figure 4.18 (a), is flat in magnitude above 10 Hz, and follows the shape of the 

whitening filter of the current monitor (not of the coil driver) below 10 Hz. The calibration 

filters are designed by fitting 𝐶𝑐𝑢𝑟𝑟𝑚𝑜𝑛 for each coil. 
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Figure 4.18 Current monitor measurement calibration. (a) The transfer function between current 

monitor input and the locking control signal measured when Michelson is locked, the fitted model 

of which calibrates the current monitor input in units of the control signal. (b) The transfer function 

measured between current monitor output and the control signal checks the performance of the 

current monitor calibration. 

After applying the calibration filter, the current monitor output 𝑥𝑜𝑢𝑡
𝑐𝑢𝑟𝑟𝑚𝑜𝑛 should be equal 

to the control signal 𝑥𝑜𝑢𝑡
𝑠𝑒𝑟𝑣𝑜. Whether the current monitor signal is properly calibrated can 
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be checked by measuring directly the transfer function 𝑥𝑜𝑢𝑡
𝑠𝑒𝑟𝑣𝑜/𝑥𝑜𝑢𝑡

𝑐𝑢𝑟𝑟𝑚𝑜𝑛 . The 

measurement for an example setup is shown in Figure 4.18 (b). The measured transfer 

function has unity gain at all frequencies. The phase rotates away from zero starting from 

frequency ~ 20 Hz. but in the same way for 𝑧1 and 𝑧2 calibration. Since it is the noise 

power, i.e. the 𝑑𝑧 = 𝑧1 + 𝑧2 spectrum, that matters in the end, this common phase delay 

should not affect the results of the upconversion noise analysis to be described soon in 

Section 4.5. 

4.5 Upconversion Noise Demodulation 

In Chapter 2, the microscopic investigation on microplasticity predicts a form of crackling 

noise arising under slow varying stress modulation. Specifically, Section 2.4.2 describes 

how the predicted noise amplitude changes under an external oscillatory stress. The 

primary goal of the data processing is to quantify the noise power being modulated, or 

upconverted by the low-frequency stress excitation. A demodulation analysis based on 

Fourier series analysis is developed to extract the collective results of the mechanical 

upconversion noise predicted by the micromechanical study at multiple driving frequency 

components. 

4.5.1 Demodulation Analysis 

In Section 2.4.2, Figure 2.11 predicts that the simulated crackling noise arising from 

microplastic deformation of metals has an amplitude that goes up and down with the 

sinusoidal stress. If a sinusoidal force, 

𝐹0(𝑡) = 𝐹0 sin(Ω𝑡) , (4.14) 
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is applied, due to the physical coherence between the crackling noise power and the 

driving, the noise amplitude 𝐴 can be extracted by a Fourier series expansion of the total 

signal power 𝑠2(𝑡), with the basis frequency being the driving frequency Ω: 

𝑠2(𝑡) = 𝐴1𝐼 sin(Ω𝑡) + 𝐴1𝑄 cos(Ω𝑡) + 𝐴2𝐼 sin(2Ω𝑡) + ⋯ (4.15) 

The above equation sets the definition of in-phase and quadrature signals with respect to 

the driving force: 

 sin(Ω𝑡) → 1𝐼, 

cos(𝛺𝑡) → 1𝑄, 

sin(2Ω𝑡) → 2𝐼, 

cos(2𝛺𝑡) → 2𝑄… 
(4.16)  

The Fourier amplitude 𝐴𝐾 can be estimated by averaging the signal power multiplied by 

the corresponding Fourier term 𝐾 = 1𝐼, 1𝑄, 2𝐼, … in a finite time stretch 𝑇: 

𝐴𝐾
𝑇 = < 𝑠2 ⋅ 𝐾 >𝑇 . (4.17) 

A band-pass filter can be applied to the signal to investigate band-limited noise behavior 

in specific frequency range 𝒇 = [𝑓1, 𝑓2]. The band-limited crackling noise power density 

𝑃𝐾;𝒇  can be computed from the band-limited Fourier amplitude, 𝐴𝐾;𝒇
𝑇 = < 𝑠𝒇

2 ⋅ 𝐾 >𝑇 , 

where 𝑠𝒇(𝑡) is the band-passed signal: 

𝑃𝐾;𝒇
𝑇 =

2 ⋅ 2

𝛥𝑓
 |𝐴𝐾;𝒇

𝑇 |. (4.18) 
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In the normalization pre-factor, 𝛥𝑓 = |𝑓2 − 𝑓1|is the analysis bandwidth. The first 

factor two comes from < sin2(Ω𝑡) > = < cos2(Ω𝑡) > = 0.5; the second factor of two 

comes from single-to-double sided power spectrum conversion. The mean and standard 

error of 𝑃𝐾;𝒇 can be obtained from multiple 𝑇 time window sampling. This demodulation 

process is expected to help distinguish the crackling noise from other stationary, or non-

stationary but driving-uncorrelated background noise. 

4.5.2 Sinusoidal Noise Demodulation 

In order to validate the demodulation analysis, the first thing to do is to apply the analysis 

to a controlled, manually generated signal that is being modulated in a known fashion. A 

general form of such signal 𝑠(𝑡) is: 

𝑠(𝑡) =  𝑏(𝑡) + 𝐺(𝑡)𝑛(𝑡), (4.19) 

where 𝑏(𝑡) is the background random noise, and 𝑛(𝑡) is the noise modulated by a time 

varying function 𝐺(𝑡). The signal power is 

𝑠2(𝑡) =  𝑏2(𝑡) + 𝐺(𝑡)𝑏(𝑡)𝑛(𝑡) + 𝐺2(𝑡)𝑛2(𝑡). (4.20) 

When averaged over a timescale that is fast for the noises 𝑏(𝑡) and 𝑛(𝑡) but slower with 

respect to the characteristic timescale of 𝐹 = 𝐺2(𝑡), the signal power becomes  

𝑠2 = 𝑏2 + 𝐹 𝑛2, (4.21) 

where 𝑠2 =< 𝑠2(𝑡) >, 𝑏2 = < 𝑏2(𝑡) >, 𝑛2 = < 𝑛2(𝑡) > . The coupling term 𝐺(𝑡) <

𝑏(𝑡)𝑛(𝑡) >  goes to zero because 𝑏(𝑡)  and 𝑛(𝑡)  are independent. A simple form of 

modulation on 𝑛2  is a sine wave acting on 𝑛2 , i.e. 𝐹(𝑡) = sin (Ω𝑡) . Following the 
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demodulation process described in the previous section, the noise power (with analysis 

bandwidth of Δ𝑓), for example, modulated in phase at the frequency 1Ω, would be, 

𝑃1𝐼;𝒇 =
4

Δ𝑓
 < 𝑠2(𝑡) ⋅ sin(Ω𝑡) >  

= < (𝑏2 + sin(𝜔𝑡) 𝑛2) sin(𝜔𝑡) > 

= < sin(𝜔𝑡) 𝑏2 +
cos(2𝜔𝑡) + 1

2
𝑛2 > 

= < sin(𝜔𝑡) > 𝑏2 +
1

2
< cos(2𝜔𝑡) > 𝑛2 +

1

2
𝑛2 

=
2

Δ𝑓
𝑛2. 

(4.22)  

For testing purpose, a data train 𝑠 is created as a sum of a stationary background noise 𝑏 

and a signal 𝑛. The background noise has a flat spectrum with amplitude of 1/√𝐻𝑧. The 

signal spectrum is shaped like 1/𝑓 and is modulated by a sinusoidal function 𝐹(𝑡) at any 

frequency and phase. The demodulation analysis is applied to the band-passed data to 

investigate the spectral frequency dependency of the demodulated signal. The 

demodulation analysis on the simulated sinusoidally-modulated data reconstructs the 

correct signal spectrum. 

4.5.3 Generic Noise Demodulation 

The demodulation technique is also tested against a more generic form of modulated 

signal. In general, the noise amplitude can follow any modulation shape. In particular, a 
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noise mimicking the simulated microplastic noise (Sec 2.4.2) is produced: the 

amplitude is everywhere zero but has a smooth peak around the maximum of the drive. 

 

Figure 4.19 A generic form of noise with a prescribed amplitude of 1 and modulation frequency at 

0.095 Hz is generated to mimic the simulated crackling noise as shown in Figure 2.11. 

In the sample simulation, the background noise has a flat spectrum of amplitude 1/√𝐻𝑧. 

The signal is constructed as follows: An additional random noise is low-passed from 10 

Hz to be shaped like 1/𝑓. The modulation shape is constructed by convolving a square 

wave with a Hanning window. The square wave function has an amplitude of 1 in the time 

window 0.2 𝑇0 −  0.25 𝑇0, where 𝑇0 = 2𝜋/Ω is the driving period. The Hanning window 



 

 

112 

has the same width (0.05 𝑇0) as the square wave. The sample segment of generated 

noise is plotted in contrast with the total noise and in parallel with the prescribed driving 

in Figure 4.19. The demodulation analysis on the simulated generically-modulated data 

reconstructs the prescribed signal form and amplitude. 

4.5.4 Simulated Crackling Noise Demodulation 

The simulation noise injection tests described and validated in the previous sections can 

be applied to the simulated crackling noise data. The microplastic simulation is based on 

the microscopic model described in Sec. 2.3.1. Using the same simulation parameter for 

single-crystalline copper, 𝑁 number of samples can be generated independently with the 

randomness inherited in the different initial dislocation configurations. The load function 

is prescribed in accordance with the crackling noise experiment condition, i.e. a quasistatic 

stress plus a superimposed small-amplitude oscillatory stress. The same load function is 

applied to all the samples and the strain response of each sample is computed. One 

crackling noise measurement can be acquired as the differential strain rate from two 

independent samples. (𝑁
2
)  combination pairs of differential strain response can be 

constructed from simulation results from 𝑁  number of independent samples through 

bootstrapping. The ensemble result is a mean square of the differential strain rates, 

< 𝛿𝜖̇ > =
1

𝑁
∑ (𝜖�̇�
𝑖𝑗

− 𝜖�̇�)
2. (4.23) 

According to the preliminary microscopic simulation prediction (see Chapter 2 for details), 

the driving frequency is one of the most important parameters that affect the demodulated 
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noise behavior (See Figure 2.7). Different driving frequency tests are simulated for a 

driving frequency dependency study. 

Figure 4.20 shows the sample demodulated amplitudes 𝐴𝐾;𝒇 = √𝑃𝐾;𝒇  of signals band-

passed in frequency range 20-25 Hz vs. the number of testing segments, where 𝑃𝐾;𝒇 is 

defined by Equation 4.18. The statistical results are obtained from bootstrapping 

differential strain rate measurements from 𝑁 = 8 independent simulation samples. For 

each sample, a quasistatic stress at 75% of the nominal yield stress is applied (See Section 

2.4.2 for details). An oscillatory drive is turned ON and OFF sequentially around the 

quasistatic stress. One simulation test contains sixty driving ON/OFF segments. Each 

segment lasts 1000 seconds. The driving stress amplitude during the ON segments is 

prescribed to be 10% quasistatic stress and is zero during the OFF segments. The driving 

frequency for the sample simulation run is 1 rad ⋅ s−1.  

The demodulated noise amplitude 𝐴𝐾;𝒇 is analyzed in each driving segments following 

the demodulation process described in Section 4.5.1. In the figure, the ON-segment results 

are marked in red, while the OFF-segment results are marked in blue. The demodulated 

amplitude during ON segments settles to relatively constant finite values after ~ 30 cycles.  
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Figure 4.20 Sample demodulated differential strain rate amplitude for 1 rad/s micromechanical 

simulation vs. sequent driving ON/OFF segments. 

A finite demodulated noise shows up in all Fourier terms when the oscillatory driving is 

ON. The amplitude 𝐴𝐾;𝒇 is positive for components 𝐾 = 1𝐼, 1𝑄, 2𝐼, 4𝑄 and negative for 

the rest. The demodulation signal reconstructed from the average Fourier amplitudes of 

the last fifteen ON segments agrees with the crackling noise profile shown in Figure 2.11. 

4.6 Experimental Data Analysis 

4.6.1 Offline Seismic Noise Subtraction 

As is shown in Figure 4.13, the seismic noise is limiting the Michelson sensitivity at low 

frequencies. An offline seismic noise subtraction analysis based on FFT filtering and 

subtraction can be implemented following the procedures:  
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1. For each 1800-s segment of locked Michelson data, compute the averaged 

transfer function, as well as the coherence between one axis accelerometer signal e.g. 

𝑎𝑧 (see Sec 4.4.2) and the Michelson signal 𝑑𝑥𝑠  

2. Compute the full length FFT of both z-accelerometer signal and Michelson signal. 

3. Interpolate the averaged transfer function and coherence to the FFT frequency bins. 

4. Set all bins with low coherence to zero. 

5. Subtract the accelerometer signal FFT times the transfer function from Michelson 

signal FFT. 

6. Convert the subtracted 𝑑𝑥𝑠 signal FFT back to time domain with an inverse FFT. 

This technique provides a time series of the seismic-noise-subtracted Michelson signal for 

each driving segment of data.  

This offline technique has many advantages: it gives the best possible subtraction during 

each lock (even if it's non-causal); it provides a time series which can be used for the 

standard analysis in time domain and for further noise hunting; it can be applied to all 

measurements with the in-time seismic noise measurements; it can be easily extended to 

any other channel which turns out to be coherent with the Michelson signal. 

4.6.2 Line Removal 

The Michelson signal spectrum is polluted by a large amount of lines, which makes it 

difficult to find a good frequency band for the demodulation analysis. An algorithm is 

implemented to automatically detect the lines in a given frequency band and remove them 

in the time domain. The line detection algorithm works as follows: 

1. Compute the power spectral density 𝑃𝑠 of the signal. 
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2. Subdivide the desired frequency band (for example 100-2000 Hz) into a small 

number (256) logarithm spaced bands. 

a. For each band, compute the mean value and the standard deviation of 

log10 𝑃𝑠 over all the bins in the band. 

b. Remove all the bins with values of log10 𝑃𝑠 which deviate from the mean 

value more than three times the standard deviation. 

c. Repeat from (a) until all points are within 3 times the standard deviation. 

d. The mean value is a good estimation of the background noise in the band, 

without the contribution of the lines. 

3. Interpolate the estimated background noise to all the original frequency bins. 

4. Select all the bins of the original PSD for which the value is more than five times 

the estimated background: those are the lines to be removed. 

5. Collate together all the adjacent bins found in the previous step. 

6. Each group will be a single line: estimate the mean frequency, peak value, width, 

and total power. 

Then, for each of the detected lines, a time domain filter is created, implementing a notch 

with tuned frequency and Q-factors. 
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Figure 4.21 Sample Michelson spectrum showing the line removal results. 

Figure 4.21 shows an example of the result. Some of the lines are over-notched. However, 

this is not harmful – if a line is notched more than necessary, the signal power in that 

frequency is simply discarded.  
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4.6.3 Segment Quality 

Each crackling noise measurement run lasts about two days. The data can be contaminated 

by excessive environmental noise from time to time. The quality of the segment has to be 

evaluated on half-hour basis. Criteria are set to omit noisy segments from analysis. 

The alignment of the interferometer affects the sensitivity. The beams are overlapped at 

the PDs and the Michelson arms are balanced before the measurement starts. As time goes, 

the alignment can drift due to, for example, the deflation of the air legs that can change 

the float table leveling. The in-line calibration inspects the quality of Michelson alignment 

by monitoring the in-time variation of optical gain with a single-line noise injection (111 

Hz): the optical gain is calibrated using fringe amplitudes when the setup is optimally 

aligned at the beginning. The change in alignment manifests itself in the change in the 

excited error signal.  

The in-line calibration is equivalent to a single line measurement of the open-loop transfer 

function (OLTF)  
𝑥1

𝑥2
 (See Section 4.3.4 for details about the servo loop). As the gain of 

the OLTF has a known approximate shape of 1/𝑓, where it crosses the unity gain can be 

estimated from the gain measured at the injection line. Unity gain frequency (UGF) is 

therefore monitored all the time. The average and standard deviation of UGF value in each 

half-hour segment is recorded. When the lock configuration is stable, the UGF has small 

fluctuations (with a typical standard deviation of ~ 5 Hz) around the optimally designed 

UGF value (~ 60 Hz). The segments with mean UGF values out of the normal range of 

55-65 Hz or exceptionally large standard deviations (> 15 Hz) are discarded. 
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The low frequency (25-50 Hz) spectral power is integrated and threshold is set to spot 

segments with excessive low-frequency noise arising in the Michelson setup that are most 

likely caused by unusually large seismic or acoustic noise during that measurement 

segment.  

4.6.4 Demodulate Crackling Noise 

The demodulation techniques described in Section 4.5 are useful for discriminating 

periodic signals from stationary background. Since crackling noise is expected to be 

upconverted from the slow-varying external driving, the demodulation amplitudes at 

harmonics of the driving frequencies are investigated in each of the driving ON/OFF 

segments. Following the similar demodulation procedure as described in Section 4.5.4 for 

the simulated crackling noise data, the calibrated Michelson signal in units of meters are 

band-passed in the relatively quiet frequency bands, squared, and then demodulated. 
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Figure 4.22 Sample demodulated Michelson signal amplitudes in frequency band 30-35 Hz for a 

0.19 Hz driving crackling noise experiment in sequent driving ON/OFF segments 

Figure 4.22 shows the sample demodulation results 𝐴𝐾;𝒇  for the Michelson signal in 

frequency band 𝒇 = [30, 35] Hz, over numbers of 0.19 Hz driving ON (red) and OFF 

(blue) segments at multiple frequency components 𝐾 = 𝑛𝐼/𝑄, where 𝑛 = 1, 2, 3, 4. The 

peak-to-peak driving amplitude is ~ 30 𝜇𝑚  according to the OSEM shadow sensor 

monitoring of the cantilever-tip displacement. The segments with exceedingly large errors 

are thrown away. 

4.6.5 Student-t Test Sample Statistics 

A two-sample Student-t test is applied to tell if, by null hypothesis, the average 

demodulation amplitudes in the driving ON segments and those in the driving OFF 

segments are independent random samples drawn from the same normal distributions with 
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equal means. The 95% confidence interval on the difference of the population means, 

𝑐𝐾;𝒇 , with lower bound 𝑐𝐾;𝒇
𝑚𝑖𝑛  and upper bound 𝑐𝐾;𝒇

𝑚𝑎𝑥 , is a statistical evaluation of the 

demodulation amplitudes upconverted in the ON segments. When 𝑐𝐾;𝒇
𝑚𝑖𝑛 ⋅ 𝑐𝐾;𝒇

𝑚𝑎𝑥  > 0, or 

when the null hypothesis can be rejected at the 5% significance level, there is a statistically 

significant difference between demodulation amplitudes in ON segments from those in 

OFF segments. 

Figure 4.23 shows the sample statistical results for the same 0.19 Hz driving experimental 

data demodulation as the one for Figure 4.22. In the figure, Michelson sensitivity spectrum 

is plotted in blue for reference. The blue shades around the Michelson mean spectrum 

shows the maximum and minimum fluctuation of the sensitivity in all measurement 

segments for the entire test run. The confidence intervals of the demodulated amplitudes 

are shown as solid boxes in all analyzed frequency bands. Different colors indicate 

different student-t test results. Red/green boxes represent a positive/negative amplitude 

detected at the 5% significance levels in that frequency band. The left/right bounds of the 

boxes indicate the frequency band limits, while the upper/lower bounds of the boxes are 

confidence intervals. Black lines are the noise amplitude upper bounds for the frequency 

bands in which Student-t test fails rejecting the null hypothesis, i.e. ∅ ∈ [𝑐𝐾;𝒇
𝑚𝑖𝑛, 𝑐𝐾;𝒇

𝑚𝑎𝑥]. The 

noise upper bound is drawn as the maximum absolute value of the confidence interval. 
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Figure 4.23 Summary spectrum for the 0.19 Hz driving experiment showing the student-t statistical 

results on demodulation amplitudes from all test segments for Michelson signal in solid boxes, 

current monitor sum in dashed boxes. Boxes upper/lower bounds indicate the confidence intervals. 

Red/green/black denotes a positive/negative/failed detection of the demodulated noise amplitudes 

from Student-t test. 
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4.6.6 Actuation Noise Subtraction 

The demodulation technique incorporating the statistical analysis works to distinguish the 

noises with amplitude correlated to drive. There could be systematic noises that are also 

modulated by the common-mode drive. Examples include the actuation noise. The 

actuation current signals sent to the voice coils to drive or control the cantilever samples 

are independently measured by the two current monitors (see Section 4.4.9 for details). 

The electronic source of actuation noise that can couple to the Michelson signal is 

monitored by the sum of the current monitor outputs, which characterizes the uncorrelated 

actuation force on the cantilever blades. The same demodulation technique is applied to 

the current monitor sum to quantify the modulated actuation noise power. The noise can 

be projected to a differential displacement noise in different frequency bands through the 

actuation transfer function multiplied by the linear approximate optical gain (see Section 

4.3.5 for details). 

The actuation noise is analyzed in summary spectrum in the same way as the Michelson 

demodulation signal. Figure 4.23 projects the statistical demodulation results for the 

actuation noise in dashed lines for the sample 0.19 Hz test in the Michelson spectrum. 

Colors indicate positive/negative/no detection following the same convention described 

in the previous section. 
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Figure 4.24 Summary spectrum of demodulation results before and after actuation noise 

subtraction for different frequency driving experiments on maraging steel blades. 

The superimposed actuation noise amplitude can be subtracted from the Michelson signal 

in frequency domain. Figure 4.24 left and right columns compare the sample 2𝐼 

demodulation signal (in solid box) before and after this subtraction.  

Figure 4.24 (a), (b) and (c) shows the demodulation results for experiments with different 

driving frequency at 0.19 Hz, 0.27 Hz and 0.317 Hz, but with the same driving amplitude. 
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The actuation noise increases with the driving rate. When the actuation noise 

dominates the differential motion of the cantilever samples, e.g. the case with driving 

frequency of 0.317 Hz, the projected demodulated actuation noise matches reasonably 

well with the total demodulated Michelson signal as expected. 

4.7 Results 

4.7.1 Power-law Fitting on Demodulation Amplitudes 

The crackling experiment explores test runs with different driving frequencies spanning 

two orders of magnitude timescale from 0.0317 to 0.317 Hz, but with the same peak-to-

peak displacement amplitude of ~ 30 𝜇𝑚. Figure 4.25 shows the sample demodulated 

actuation-noise-subtracted Michelson signal for the 0.19 Hz driving test. 

Throughout all driving frequency measurements, positive 1𝐼  and negative 2𝑄 

demodulated noises rise consistently in low frequency range (< 60 Hz). The demodulated 

noise amplitudes 𝐴𝐾(𝑓) =  𝐴𝐾;𝒇, where 𝑓 =
(𝑓1+𝑓2)

2
, seems to follow a power law relation 

with the spectrum frequency 𝑓. 

For each demodulation components and in the frequency range 15-60 Hz, if demodulated 

noises with amplitudes of the same sign are detected in more than four 5-Hz interval 

frequency bands, the average demodulated noise amplitude 𝐴𝐾(𝑓) vs. spectrum frequency 

𝑓 can be fitted using a power law model for each demodulation component 𝐾: 

𝐴𝐾(𝑓) = 𝐴𝐾,0𝑓
−𝜅 , (4.24) 
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Figure 4.25 Power law fitting of demodulated noise amplitudes in the summary spectrum for 

sample 0.19 Hz driving experiments on maraging steel blades. 
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where 𝐴𝐾,0 is the gain fitted as a measure of the noise level. The power-law exponent 

is expected to have a value of 𝜅 = 3: the demodulation results from the microplastic 

simulation give a 𝑓−1  spectral frequency dependency of differential strain of two 

independent sample and the cantilever spring structural response gives an additional 𝑓−2 

shape. The parametric estimation on the gain 𝐴𝐾,0 can be obtained from a weighted non-

linear regression on the mean values of demodulation amplitude, 𝐴𝐾 = (𝑐𝐾
𝑚𝑎𝑥 + 𝑐𝐾

𝑚𝑖𝑛)/2. 

The fit is weighted by 𝑤 = 1/𝛿𝐴𝐾
2 , where 𝛿𝐴𝐾  is the standard error 𝛿𝐴𝐾 = (𝑐𝐾

𝑚𝑎𝑥 −

𝑐𝐾
𝑚𝑖𝑛)/2.  

The fitting result 𝐴𝐾
′  are shaded bands superimposed to the raw demodulation data in 

Figure 4.25, with the width of the bands indicates the fitting error:  

𝐴𝐾,𝑚𝑎𝑥
′ = (𝐴𝐾,0

′ + 𝛿𝐴𝐾,0
′ ) 𝑓−3, (4.25𝑎) 

𝐴𝐾,𝑚𝑖𝑛
′ = (𝐴𝐾,0

′ − 𝛿𝐴𝐾,0
′ ) 𝑓−3. (4.25𝑏) 

The noise gain 𝐴𝐾,0
′  obtained from spectrum analysis leaves the demodulation sign 

information out. The Fourier amplitude can be positive or negative. The final noise gain  

𝐴𝐾,𝛼
′  absorbs the sign of the Fourier amplitude mean, 𝛼: 

𝐴𝐾,𝛼
′ = 𝛼𝐴𝐾,0

′ , (4.26) 

for a comprehensive characterization of the upconversion noise. 

4.7.2 Experimental vs. Simulation Results 

The fitted noise gain 𝐴𝐾,𝛼
′  characterizes the demodulated noise at each Fourier component 

𝐾. Figure 4.26 (a) shows the demodulation noise gain 𝐴𝐾,𝛼
′  obtained from the different 
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driving frequency but same driving amplitude tests on the maraging steel blades (see 

previous section, Figure 4.25). In all test runs, no systematic demodulation noises have 

been detected at components 𝐾 = 3𝐼, 3𝑄, 4𝐼 for the 𝐴𝐾,0
′  estimation4. There is a weak 

driving frequency dependency: the average value of the absolute noise amplitudes 

increases with driving frequency for all demodulation components, which means that the 

demodulated noise level is in general higher when the blades were driven with faster 

excitations. 

Different driving frequency oscillation tests can be done with microplastic simulation on 

single crystalline copper – simulation parameters are kept the same as prescribed in 

Section 2.3.3. For each driving frequency, eight independent samples are tested with the 

same simulation parameters and prescribed stress. The differential strain noise level, 

measured from a pair of samples, can be estimated as an average of the demodulated strain 

rate amplitudes over all spectral frequency bands, 𝐴𝐾,0
′ = < �̇�𝐾(𝑓) >. Different pairs of 

independent samples generate demodulation results for the sample statistics for each 

driving frequency test (Section 4.5.4). Figure 4.26 (b) shows the estimated demodulated 

noise amplitude 𝐴𝐾,𝛼
′  vs. driving frequency 𝐹𝑑𝑟𝑖𝑣𝑒 obtained from simulation tests with the 

same oscillation stress amplitude.  

                                                 

4 For each Fourier component 𝐾, a minimum of four data points of 𝐴𝐾;𝒇 is required for the 

power-law fitting estimation for 𝐴𝐾,0
′ . 
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Figure 4.26 Demodulated noise level at different Fourier components vs. driving frequency (a) 

estimated from the different-driving-frequency but same-driving-amplitude experiments on 

maraging steel blades, and (b) obtained from different-driving-frequency but same-driving-

amplitude micromechanical simulations on single crystalline copper. 
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Both experimental and simulation results show prominent positive 1𝐼 and negative 

2𝑄 noise. However, the experiments and simulations seem to see opposite trends in the 

frequency dependency of the noise amplitudes. Also, the experiments do not resolved 

consistent noises in 1𝑄, 2𝐼, 3𝐼, 3𝑄, 4𝐼, 4𝑄 components as the simulations do. 

4.8 Discussion 

4.8.1 Demodulated Noise Profile Reconstruction 

A demodulation noise profile 𝑛𝑟
2 can be reconstructed using the Fourier series: 

𝑛𝑟
2(𝑡) =∑ 𝐴𝐾,𝛼

′ 𝐹𝐾
𝐾

(𝑡). (4.27) 

Figure 4.27 summarizes the representative experimental and simulation demodulation 

signal reconstruction results for different driving frequency tests. The oscillatory drive 

amplitude is scaled to unity, while the signal profile is scaled by its standard deviation for 

visualization purposes.  

 

Figure 4.27 The reconstructed experimental and simulation demodulated signals for different 

driving frequency tests. 
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Both experimental and simulation reconstructed signals feature a peak noise amplitude 

around the peak of the drive, where the external drive approaches a global maximum, as 

the quasi-static load /stress is applied in the positive direction.  

However, the current experiments are limited by sensitivity and/or statistics to resolve a 

more complete Fourier profile of the driving-modulated noise for a more confident 

comparison with the simulation results. Whether the upconversion noise detected in the 

experiment is indeed crackling noise due to microplasticity or not still needs further 

investigation. 

4.8.2 Materials Dependency 

Preliminary results from crackling noise experiment with high-carbon steel blades (See 

Section 4.3.6 for more information) shows a similar noise profile dominated by positive 

1𝐼  and negative 2𝑄  demodulation. The absolute value of the power-law fitted noise 

amplitude gain 𝐴𝐾
′  is plotted in logarithm versus the demodulation components 𝐾 for both 

maraging steel and high-carbon steel experiments in Figure 4.28.  

The difference between the high-carbon steel and maraging steel setup is the steel 

materials that the cantilever samples are made from. There is a small engineering 

difference in the cantilever stiffness. While the load masses load the pre-curved maraging 

steel blades flat at ~50% of the nominal yielding stress, the high-carbon steel blades are 

loaded to ~90% of the nominal yielding stress.  
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Figure 4.28 Preliminary results from crackling noise experiment with high-carbon steel blades 

shows a similar feature and level of demodulated noise as maraging steel blades. 

A larger amplitude of crackling noise is anticipated in high-carbon steel cantilever 

samples:  
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1. Metallic materials exhibiting higher internal friction, acoustic emission, and 

quasistatic hysteresis are expected to exhibit larger microplastic noise (See Section 

4.3.6 for details). 

2. Larger microplastic dissipation is expected to occur in samples that are loaded with 

higher quasistatic stress closer to the yielding point (See Chapter 2 for details)  

Up to this point, although the mean values of the noise gain resolved at 1𝐼 and 2𝑄 are 

higher in the high-carbon steel setup than in the maraging steel one, there is no statistically 

meaningful way to tell difference between the noise levels of the two materials within 

error bars. More data as well as more experiments with different driving frequencies are 

upon request to improve statistical significance. 

4.9 Crackling Noise Projection in Advanced LIGO 

A mechanical-upconversion noise resolved in the prototype maraging steel blades 

experiment is expected to rise also in the maraging steel quadruple suspensions (QUAD) 

and propagate to the test mass. In order to apply the crackling noise experimental results 

to predict for an upper limit of crackling noise in advanced LIGO (aLIGO), two 

discrepancies have to be taken into consideration: 1. the maraging steel blades used in 

aLIGO are almost three times larger than the prototype cantilever samples used in the 

table-top experiment, and 2. the cantilever blades are integrated to different dynamic 

system.  

A macroscopic model was developed by Vajente116 to take into account the scaling of 

crackling noise through blade dimensions and the displacement noise propagation through 
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blade dynamics, via which the upconverted mechanical noise is projected to a lateral 

motion of the test mass as an estimation for the level of crackling-induced noise in aLIGO. 

4.9.1 Scaling Model 

The crackling noise experiment samples and the aLIGO QUAD blades are of the same 

trapezium geometry, with length 𝐿, thickness ℎ, and variable width 𝑏(𝑧) = 𝑏0(1 − 𝛽𝑧/𝐿), 

where 𝛽 is a shape factor, 𝑏0 is the major width, and z is the coordinate along the blade 

length. Similarly, 𝑥 is the transverse coordinate along the blade width, and 𝑦 along the 

blade thickness. The same macroscopic model can be developed and applied to both 

cantilever blades. 

 

Table 4.1 Summary of the main mechanical and geometrical properties of the large aLIGO and 

small crackling noise experiment maraging blades. 

The sizes of the aLIGO maraging blades and the crackling noise experiment blades are 

different, as shown in Table 4.1. For a scaling purpose, the crackling noise is assumed to 

arise locally in microscopic volume of materials and propagate elastically to the cantilever 

tip. More specifically: 
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• Each crackling event spans a region of the metallic crystal lattice that is much 

smaller than the volume of the blade. 

• Beside from crackling events, the blade behaves like an ideal elastic body. 

• The rate and amplitude of crackling events depend locally only on the stress and 

stress rate. 

Assuming that events are uncorrelated, noise due to a large number of events can be 

computed through an integration of a Poisson distribution over the entire blade, with 

amplitude and rate depending on the position, the power spectral density of the vertical 

test mass motion 𝑆𝑇𝑀(𝜔) can be written as an incoherent sum of all crackling events, 

𝑆𝑇𝑀(𝜔) = |�̃�(𝜔)|
2∫ 𝑑𝑧

𝐿

0

∫ 𝑑𝑦 ∫ 𝑑𝑥

𝑏(𝑧)
2

–
𝑏(𝑧)
2

 2𝑟(𝑧, 𝑥, 𝑦) < 𝑓0(𝑧, 𝑥, 𝑦)
2 > |�̃�(𝜔, 𝑧, 𝑥, 𝑦)|

2
,

ℎ
2

−
ℎ
2

(4.28) 

where 𝑟(𝑥, 𝑦, 𝑧) is the local crackling event rate, and �̃�(𝜔, 𝑥, 𝑦, 𝑧) is the response of the 

blade and suspended elements to a single, localized force with an amplitude 𝑓0(𝑥, 𝑦, 𝑧) 

and a time evolution in Fourier space �̃�(𝜔).  

The microscopic physics of crackling noise is described by the event rate and amplitude 

2𝑟(𝑥, 𝑦, 𝑧) < 𝑓0(𝑧, 𝑥, 𝑦)
2 > . A general power expansion model 𝐶(𝑧, 𝑥, 𝑦) =

 2𝑟(𝑥, 𝑦, 𝑧) < 𝑓0(𝑧, 𝑥, 𝑦)
2 > is used to encode the crackling noise behavior, 

𝐶(𝑧, 𝑥, 𝑦) = 𝐶0 + 𝐶1𝜎 + 𝐶2𝜎
2 + 𝐶3�̇� + 𝐶4�̇�

2 + 𝐶5𝜎𝜎
2. (4.29) 
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4.9.2 Elastic Model 

With the assumption that, apart from the crackling noise, the blade can be described as a 

perfect elastic body. An elastic model of the blade and the suspension is built to compute 

the equilibrium shape of a pre-curved blade and the corresponding static stress, the 

response of the blade to low-frequency perturbations (seismic noise in the QUAD, driving 

force in crackling noise experiment), and the test mass motion due to a single crackling 

event.  

 

Figure 4.29 Simplified models of the quadruple suspension system for cases that (a) the UIM 

stage is free to move, (b) the displacement of the UIM stage is prescribed, and (c) the force on 

the blade tip is prescribed. 

For these purposes, in addition to the case where the static equilibrium condition due to 

the load and initial pre-curvature can be computed with the UIM fixed to ground, three 
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dynamic cases, as illustrated in Figure 4.29, are considered for the cantilever 

suspension system modeling:  

(a) The response of crackling noise events of interest is above 10 Hz, i.e. higher than all 

resonant frequencies of the QUAD stages above the UIM, hence the UIM can be modeled 

as a free mass. 

(b) To compute the response to seismic noise in the QUAD, the upper stages of the QUAD 

can be neglected and a motion of the UIM can be prescribed. 

(c) in the case of the crackling noise experiment, the blade is clamped to a mass that is 

much larger than the load, so the upper stage can be approximated as fixed and a 

prescribed force is acting on the blade tip. 

Same equation of motion for the blade tip motion applies to all cases,  

𝐸𝐼(0) (1 − 𝛽
𝑧

𝐿
 )𝑤′′ − 𝐸𝐼(0)

2𝛽

𝐿
𝑤′′′ + 𝜌𝐴�̈� =  𝐴𝑓 − 𝜌𝐴�̈�0, (4.30) 

where 𝑤(𝑧) is the blade neutral surface position as a deviation from the equilibrium. 𝑤′ 

denotes derivatives with respect to z and �̇� denotes derivative with respect to time. In the 

equation, 𝐸 is the young’s modulus, 𝜌 is the density, 𝐴 is the cross-section area, 𝐼0 is the 

transverse momentum, and 𝑓 is the force due to single crackling event. 

Different boundary conditions for this equation encode the dynamics of the suspended 

stages. The equations are solved numerically through eigenmode expansion to get the 

blade tip response to seismic motion and a single crackling event. The eigenfrequencies 

and modes depend on the suspended elements. 
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4.9.3 Noise Projection 

The numerical results solved from eigenmode expansion for the equation of motion allows 

an expression of the propagated crackling noise spectrum as a function of integrals of the 

eigenmodes, factoring out most of the blade dimensions. In frequency space, the prototype 

experiment suspended block (load mass) response 𝑆𝑏𝑙𝑜𝑐𝑘 and aLIGO test-mass response 

𝑆𝑇𝑀  can be written in terms of the coefficients 𝐼 ’s that are integrals of the specific 

functions of the modes. 

𝑆𝑏𝑙𝑜𝑐𝑘(𝜔) =
|�̃�(𝜔)𝑇1(𝜔)|

2

6𝜔4
𝜔0
2(𝐿)ℎ3𝑏0𝐸

2

𝜌2𝐴0
2 [

𝐼0

𝑅0
2𝐿
𝐶2 +

𝐼1
𝑅0𝐿3

(−2𝐶2𝐹0 − 𝐶5𝐹0̇)

+
𝐼2
𝐿5
(𝐶2𝐹0

2 + 𝐶4�̇�0
2 + 𝐶5𝐹0�̇�0)],                                                           (4.31𝑎) 

𝑆𝑇𝑀(𝜔) =
|�̃�(𝜔)𝑇2(𝜔)|

2

6𝜔4
𝜔0
2(𝐿)ℎ3𝑏0𝐸

2

𝜌2𝐴0
2 [

𝐼0

𝑅0
2𝐿
𝐶2 +

𝐼1�̂�

𝑅0𝐿3𝜔0
2
(2𝐶2�̈�0 + 𝐶5𝑥0)

+
𝐼2�̂�

2

𝐿5𝜔0
4
(𝐶2�̈�0

2 + 𝐶4𝑥0
2 + 𝐶5�̈�0𝑥0)].                                                       (4.31𝑏) 

In the expression for the prototype experiment (Equation 4.31a), 𝐹0  is the controlled 

driving force and  𝑇1 is the transfer function from blade tip motion to vertical motion of 

the suspended block. Using this expression, the demodulation measurements 𝐴𝐾 from the 

crackling noise experiment can be used to estimate for the 𝐶 coefficients, 
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(4.32) 

The system is over constrained and thus non-invertible; however it can be solved through 

pseudo-inverse and by choosing the best estimates of the coefficients at each frequency in 

a least square sense. 

In the expression for the test mass (Equation 4.31b), 𝑥0 is the seismic residual motion of 

the UIM stage, and 𝑇2 is the transfer function from the blade tip motion to vertical motion 

of the test mass. The noise behavior of the test mass can be estimated with a knowledge 

of the 𝐶 coefficients acquired from the prototype measurements. 

4.9.4 Projection Results 

Figure 4.30 shows a projection of the crackling noise experiment demodulation 

measurements to displacement noise on test mass, following the assumptions that 

crackling noise indeed scales as derived from the macroscopic model described in 

previous subsections, and that the coupling from test mass vertical motion to test mass 
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horizontal motion is of the order of 10−3. Seismic motion data from Hanford is used 

to estimate the motion of the UIM, 𝑥0. 

 

Figure 4.30 Projection of the crackling noise experiment demodulation measurements to 

displacement noise on test mass through different coupling coefficients. 

The final result is summarized in Figure 4.31. The three curves are manually drawn bands 

through the projections; each corresponds to a possible dependency of crackling noise on 

the local stress and stress rate. The predicted crackling noise upper limit in aLIGO is 

significantly lower than 1/10 of the aLIGO design curve. The projection results conclude 

that the mechanical upconverted noise arising in the last stage of the maraging steel blades 

of the QUAD suspension is not limiting the aLIGO sensitivity. 
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Figure 4.31 The projected crackling noise to the test mass in comparison to aLIGO design curve. 

4.10 Summary 

The crackling noise experiment is a prototype experiment built to study microplasticity in 

macroscopic scale. The setup is based on Michelson interferometer and is designed to 

resolve transient differential motion of two identical cantilever blade tips under prescribed 

load excitation. Ideally, the differential signal gained by the optical layout would come 

from the uncorrelated microplastic events occurred in the independent blade samples.  

A high displacement resolution of the setup is achieved not only by a careful isolation of 

the environmental noise but also a systematic design in sensing and control. A variety of 
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sources noises that can couple to the differential signal through Michelson 

asymmetries have been discussed and investigated. Noise budgets are generated 

accordingly for maraging steel and high-carbon steel blades configurations. Both 

configurations have a differential displacement sensitivity on an order of 10−14𝑚/√𝐻𝑧 

in the frequency range from 20 to 1000Hz.  

According to the microscopic simulation prediction, crackling noise can be mechanically 

upconverted by the external stress oscillations. The excited noise power is correlated to 

the external drive. In the macroscopic experiment, a common-mode sinusoidal force is 

applied to the two blades in sequent drive ON and OFF segments. Similar loading 

condition can be prescribed to two independent samples in micromechanical simulations. 

The simulation results resolve a broadband high-frequency component of the differential 

strain changing with the oscillatory stress.  

A signal demodulation analysis (based on Fourier series expansion) is developed to 

quantify the amplitude of band-limited noise being modulated by the driving force. The 

demodulated amplitudes measured from ON and OFF segments are compared statistically 

using Student-t test; the noise level is detected as a difference in statistical mean with a 

95% confidence interval. The analysis on experimental data resolves an up-conversion 

noise, of which the dominant modulated noise behavior shares similarity with that 

predicted by the micromechanical simulation. 
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Chapter 5:  Conclusions and Outlook 

Microplasticity is one of the missing pieces in the study of deformation of metallic 

materials that encodes profound information about microstructural evolution of the 

dislocation network that governs the bulk plasticity behavior. The main reason why this 

important piece has been left out is due to experimental limitations: the conventional bulk 

mechanical experiments cannot resolve microplastic activities. This thesis focuses on 

studying microplasticity in both microscopic and macroscopic scale using advanced 

experimental techniques.  

Chapter 2-3 explores microplasticity in micron- and submicron-scale FCC metals. Using 

nano-DMA and cyclic training experiments on single crystalline copper pillars, and 

incorporating a minimum model based mesoscopic plasticity simulations, the work shows 

that microplasticity is present in metallic materials, both pre-yield and post-yield. The 

mechanism is attributed to a competition between fast avalanches and slow relaxation of 

dislocations. The work also concludes that the evolution of microplastic dissipation is 

associated to the smooth elastic-to-plastic transition in the pre-yield regime, as well as a 

reversible-to-irreversible transition in the post-yield regime. The studies suggest that the 

quantification of microplasticity can be used to predict global yielding or catastrophic 

failure of metallic materials.  

Chapter 4 presents a macroscopic experiment based on Michelson Interferometry, in 

which a driving modulated noise has been detected. The resolved noise finds similar 

characteristics with the microscopic simulation prediction, which indicates a potential 

mapping from the building block understanding of metallic materials deformation to the 
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complex engineering-scale observation. The results can give important guidance to 

scientific instrumental design, such as the noise study for advanced LIGO. 

This thesis work has paved a way to probe microplasticity across the scale and explored 

the connections between the microplastic activities with the metallic materials' 

susceptibility to plasticity and irreversibility, which points new routes of investigating 

fatigue or incipient fracture of structural materials via microplasticity or crackling noise. 

For example, the nano-DMA experiment can be incorporated to fatigue crack tests. 

Investigating the dissipation behavior of a pre-notched small-scale metallic sample 

undergoing fatigue cycles would hint on how microstructures change before the large 

crack initiates. As the work demonstrates that microplasticity in metals encodes fruitful 

information about deformation history – it opens opportunities for distinguishing ‘as-

received’ metals from ‘elastically’ loaded ones via mechanical perturbations. The 

microscopic experimental/simulation results can be directly compared with large-scale 

crackling noise experimental results. The study can possibly lead to novel non-destructive 

testing (NDT) methods 

The crackling noise experiment has left the future work a large parameter space to explore. 

For example, the dependency of the crackling noise amplitude on the quasistatic load is 

worth of further investigation. Another interesting thing to inspect is the materials 

dependency. The present work compares only maraging steel with high-carbon steel. The 

study methodology can be applied to extensive lists of metallic materials and even beyond 

metals. 
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In the present work, the nature of interferometry study limits the multi-scale 

investigation of microplastic deformation in the context of uncorrelated mechanical 

behavior. However, the current work does not exclude the possible existence of coherent 

microplastic behavior of independent samples that are subjected to the same loading or 

driving conditions. For future work, the microscopic simulation and experimental 

methodology presented in this thesis can be adapted to explore the ‘common mode’ of 

microplastic deformation. 

Last but not the least, the study on microplasticity in metals can offer important 

experimental-model insights for other systems exhibiting crackling noise, especially for 

those large rare events are of primary research interest, e.g. earthquakes. Recent work has 

shown that the low-amplitude tidal stresses can have significant correlation with small-

quake events, which indicates increased fault susceptibility to large earthquake 

generation117. The intrinsic similarity between dislocation and fault dynamics etc. can 

possibly inspire new ways to improve catastrophic failure event forecasting.  
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Appendix A: Exceptional Resilience of Small-Scale Shape 

Memory Alloys (SMA) under Cyclic Stress-Induced Phase 

Transformation 

Shape memory alloys that produce and recover from large deformation driven by 

martensitic transformation are widely exploited in biomedical devices and microactuators. 

Generally, their actuation work degrades significantly within the first few cycles and is 

reduced at smaller dimensions. Further, alloys exhibiting unprecedented reversibility have 

relatively small superelastic strain, 0.7%. These raise the questions of whether high 

reversibility is necessarily accompanied by small work and strain and whether high work 

and strain is necessarily diminished at small scale. Here we conclusively demonstrate that 

these are not true by showing that Au30Cu25Zn45 pillars exhibit 12 MJ m−3 work and 

3.5% superelastic strain even after 100 000 phase transformation cycles. Our findings 

confirm that the lattice compatibility dominates the mechanical behavior of phase-

changing materials at nano to micron scales and points a way for smart microactuators 

design having the mutual benefits of high actuation work and long lifetime. 

A.1 Introduction 

By far, the most successful application of shape memory alloys (SMA) is the stent,1,2 that 

is, the expandable tube used to treat narrowed or weakened arteries in the human’s body. 

This application only requires one-time stress-induced phase transformation so that the 

tube can be easily squeezed into a tiny radius and stand in place after the removal of stress. 

There are many patents and demonstrations for nano- and microactuation applications 
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using SMA,3,4 but the functional degradation of general SMA upon cyclic phase 

transformations 5−7 strongly hinders such applications in reality. Recent advances in shape 

memory alloys8,9 show that small thermal hysteresis and high mechanical fatigue correlate 

closely with the satisfaction of the cofactor conditions,10 that is, conditions on lattice 

parameters that enable the formation of various elastically compatible microstructures 

during phase trans- formation. These conditions can be achieved by doping and tuning 

compositional variables. Chluba et al.9 have demonstrated a Co/Cu doped NiTi-based 

SMA family in which Ti54Ni34Cu12 and Ti54.7Ni30.7Cu12.3Co2.3 thin films show ultra-low 

mechanical fatigue properties over millions of full transformation cycles. Compared with 

their nearby compositions, the lattice parameters of these alloys satisfy the cofactor 

conditions closely. The alloy Ti54Ni34Cu12 presented nano-precipitates of Ti2Ni.11 These 

were theorized to contribute to the exceptional reversibility: the compatible 

austenite/marten- site interfaces that follow from the cofactor conditions10 are also 

approximately parallel to the interfaces of the coherent precipitates.11 Using a similar 

development strategy, the bulk SMA Au Cu Zn 8 was found to satisfy the cofactor 30 25 45 

conditions for multiple twin systems. Thermal cycling tests on this alloy showed a nearly 

zero-migration in transition temperature and latent heat, as well as <2° thermal hysteresis 

for 16 000 thermal cycles. An important future application area for SMA is nano- to 

microscale actuation.2,3,12 Thus, it is particularly interesting to investigate whether the 

formation of abundant compatible microstructures under the cofactor conditions has 

implications for work output and reversibility in the small-scale regime.   
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A.2 Sample Preparation 

Previous in situ synchrotron X-ray Laue microdiffraction (μSXRD) analysis of 

Au30Cu25Zn45 confirmed the fact that the phase transformation of this alloy between L21 

austenite and the P21 martensite is not accompanied by the formation of intermetallic 

precipitates.13 The lattice parameters closely satisfy the cofactor conditions for a family 

of ⟨100⟩ compound twins and ⟨110⟩ type I/II twins simultaneously. Quantitative 

characterization of microstructures at phase transformation revealed the elimination of 

elastic transition layers between austenite and single or multiple-twinned martensite 

variants.13 In this work, we utilize the geometrically nonlinear theory of martensite and 

nanomechanical experiments to investigate the cyclic mechanical behavior of 1−2 μm-

diameter cylindrical pillars carved from a single austenite grain of Au30Cu25Zn45 plate 

using focused ion beam (FIB) milling. These were subject to uniaxial compressive loading. 

The crystallographic orientation of the resulting pillars deviated from [001]L21 
by 11.25°. 

A.3 Nanomechanical Experiment 

Two types of experiments were conducted: (1) ex situ cyclic compression tests in a 

nanoindenter equipped with a custom-made 8 μm diameter diamond tip (TriboIndenter, 

Hysitron, Inc.) and (2) in situ compression with a 2 μm diameter diamond tip built in a 

custom-made instrument comprised of a nanoindenter-like module (PI 85 PicoIndenter, 

Hysitron, Inc.) inside of a Dual Beam FIB (Versa 3D, FEI) that permits in situ video 

recording and imaging.  
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Figure 1 demonstrates the results from the cyclic compression tests conducted in the 

ex situ TriboIndenter on the sample with ∼2 μm diameter and ∼6 μm height. At each cycle 

10n, n = 0, 1, 2, ... 5, the force−displacement response was acquired for a full phase 

transformation cycle by quasi-static displacement control, that is, load up to the elastic 

regime of martensite and unload down to undeformed austenite. The force−displacement 

data was converted to the true stress− strain curve using the procedure outlined in 

reference.14 The result is shown in Figure A.1a for the first cycle (blue) and 100 000th 

cycle (red). The superelastic plateau strain, defined as the difference between strains at 

the states of martensite start/finish, and marked as Ms and Mf in Figure A.1a, is ∼3.7% 

for cycle 1 and ∼3.5% for cycle 100 000, both corresponding to about 300 MPa 

transformation stress. At the end of the 100 000th cycle, nearly 7% total strain at 800 MPa 

peak stress was completely recovered upon unloading. The scanning electron microscopy 

(SEM) images of post-mortem samples at the end of the first, 1000th, 10 000th, and 100 

000th cycles are shown in Figure A.1b−e. These images show the formation of a thin 

carbon layer on the sample surfaces, typical for performing experiments in vacuum 

chambers of electron microscopes, which started to peel off at higher cycle numbers. No 

signs of permanent deformation nor structural damage of the sample were observed at any 

point during the experiments.  
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Figure A.1: Au30Cu25Zn45 shape memory 2 μm diameter pillar subjected to 100000 compression-

induced phase transformation cycles. (a) Stress versus strain data for the first and last cycles of 

the 2 μm diameter pillar. Ms and Mf mark the martensite start/finish states, respectively. (b−e) 

Post-mortem SEM images of the 2 μm diameter pillar after cycle 1, 1000, 10 000, and 100 000 

respectively. Figure reprinted with permission from [X. Ni, et al. Nano Lett. 16, 12, 7621-7625]. 

Copyright (2017) American Chemical Society. 
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Figure A.2 Comparison of cyclic degradation between nearly equal- atomic NiTi (Miyazaki et al. 

(1986)5) and Au30Cu25Zn45 micrometer pillars (this work). The work is calculated using eq 1 as 

the area under the stress−strain curve between Ms and Mf shown in Figure A.1a. Figure reprinted 

with permission from [X. Ni, et al. Nano Lett. 16, 12, 7621-7625]. Copyright (2017) American 

Chemical Society. 

We define the one-way work, W, as the area underneath the stress (σ)−strain (ε) curve 

between Ms and Mf states during the compression-induced martensitic transformation, 

W = ∫ 𝜎(𝜖)𝑑𝜖.
𝑀𝑓

𝑀𝑠

(1) 

Figure A.2 presents the one-way work calculated using Eq. (1) for 1 and 2 μm diameter 

Au30Cu25Zn45 pillars of the same crystallographic orientation. It reveals a subtle size 

effect that the 1 μm pillar has less work than the 2 μm pillar. The average work over 100 

000 cycles is ∼10 MJ m−3 for 1 μm pillar and ∼12 MJ m−3 for 2 μm pillar, either of which 
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is among the largest values of one-way work used for modern actuation systems15−19 

and is comparable to the bulk NiTi,5,20 that is, the most successful SMA exploited for 

actuation systems and self- expandable stents.2,15,17 

A.4 Results 

In contrast to bulk NiTi, which at comparable stresses loses nearly half of its work within 

only 100 cycles,5,21,22 these micrometer structures retain their large actuation work over 

100,000 cycles. 4∼5% one-way superelastic strain was also observed in some shape 

memory alloys such as ferromagnetic SMAs Ni2MnX (X = In, Sn, Ga) and Cu-based 

SMAs; however the phase transformations in these alloys were driven in much lower 

stress, that is, <50 MPa23,24 for ferromagnetic SMAs and ∼100 MPa for most Cu-based 

SMAs.6,16 

We have characterized the superelasticity phenomenon related to martensitic 

transformation by burst events, defined as sudden jumps in force−displacement 

response,25 which varies from cycle to cycle in these samples. This is consistent with the 

irreproducibility of formation of martensite micro- structure observed in bulk.8,13 

However, the total work remained virtually the same in each cycle. Normally, in uniaxial 

compression experiments on martensitic pillars a single shear band with sharp re-entrant 

corners forms,18,26,27 leading to strong stress concentrations. Despite of the large 

superelastic plateau strain delivered by the pillars studied in this work, their lateral 

surfaces remain smooth. Evidently, satisfaction of the cofactor conditions permits 
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numerous low and zero elastic energy nanostructures exhibiting quite smooth 

deformations even at such a small scale. 

A.5 Discussion 

In cubic to monoclinic transformations, there are 12 distinct martensite variants with 

stretch tensors relative to austenite, related by the point group of austenite (𝒫24):ℳ =

{𝑈1, … , 𝑈12} = {𝒬𝑖𝑈𝒬𝑖
𝑇: 𝒬𝑖 ∈  𝒫

24}.28,29 According to energy minimization, the specific 

variants of martensite that form upon loading depend on the crystal orientation of the 

austenite micropillar and on the mechanical loading conditions. We characterized the end-

surface normal of the micropillars by synchrotron Laue diffraction to be N̂ = (0.150, 

−0.125, 0.981), that is, close to a high symmetry direction (0, 0, 1) with a slight angular 

deviation 11.25°. Such a near high symmetry orientation gives rise to four variants that 

approximately minimize the total free energy. If we assume that only one of these four 

variants nucleates and grows from the austenite in each of the loading cycles, the resultant 

compressive strain will be 4.7%, which corresponds to the two shear strains of 7% and 4% 

determined by the crystallographic equations of martensite.28,29 However, the measured 

plateau strain, Mf − Ms = 3.5%, in Figure A.1a is significantly lower than the compressive 

strain calculated from a single variant of martensite, which implies the existence of 

multiple martensite variants. Although a multivariant microstructure may compromise the 

compressive strain, it better accommodates the loading device, which tends to favor 

neither bending nor shear of the pillar. The satisfaction of the cofactor conditions 

facilitates this process by allowing for a plethora of elastically compatible 

austenite/twinned martensite structures.  
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Figure A.3 SEM images of the 2 μm diameter pillar under in situ nanomechanical experiments. 

(a,c) The undeformed austenite phase; (b,d) the 5% strained martensite phase. Figure reprinted 

with permission from [X. Ni, et al. Nano Lett. 16, 12, 7621-7625]. Copyright (2017) American 

Chemical Society. 

To examine this process in more detail, we utilized a custom- made in situ nanomechanical 

loading module to observe the formation of martensite inside the electron microscope 

while simultaneously performing the compression tests. Figure A.3 shows the SEM 

images for another ∼2 μm-diameter pillar sample at 0% and 5% compressive strain. This 

pillar underwent a significant deformation, ∼7%, including elastic deformation and phase 
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transformation, yet its surface remained smooth and did not exhibit large lateral shear. 

The SEM image in Figure A.3d, which shows parallel and unequally distributed wavy-

patterns of the transformed pillar, is consistent with twinning having varying volume 

fractions. This microstructure is distinct from what has been observed in ordinary shape 

memory single-/polycrystals under uniaxial loading,21,22,26,30 and from the microstructure 

of nano- and micropillars deformed plastically by the motion of dislocations.14,31  

 

Figure A.4 Formation of microstructure under uniaxial compressive loading predicted by the 

geometrically nonlinear theory of martensite. (a) Undeformed austenite phase. (b) Twinned 

martensite satisfying the cofactor conditions subject to the uniaxial loading. Figure reprinted with 

permission from [X. Ni, et al. Nano Lett. 16, 12, 7621-7625]. Copyright (2017) American Chemical 

Society. 
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We chose the variant giving the biggest compressive strain upon loading, by which 

we constructed a (10̅1) type I twin system. On the basis of the geometrically nonlinear 

theory of martensite,10 we postulated a homogeneous deformation that maps the austenite 

phase, shown in Figure A.4a, to the deformed martensite phase consisting of the (10̅1) 

type I twin lamellae with varying volume fractions, shown in Figure A.4b. The average 

deformation gradient of a N̂ -oriented pillar with 1:3 aspect ratio results in a 3.2% 

compressive strain and a 1.8% shear strain. Compared to the shear strain caused by 

forming a single variant, the presence of the compatible (10̅1) type I twin reduces the shear 

deformation by a large margin. In addition, the calculated compressive strain agrees with 

the plateau strain (Figure A.1a) measured from the ex situ nanocompression experiments. 

The austenite and martensite interface normals are calculated from the crystallographic 

equation of martensite (see Supporting Information), m0 = (0.742, 0.092, −0.665) for the 

blue variant, and m1 = (−0.665, 0.092, 0.742) for the green variant. The formation of these 

twin lamellae matches the martensite morphology observed from in situ nanomechanical 

experiments. The angle between the trace of interface and N̂ is ∼142° shown in Figure 

A.4b, compared to the angle ∼138° measured from the SEM image in Figure A.3d. Under 

the cofactor conditions satisfied by this alloy, it is possible to have untwinned 

austenite/martensite interfaces that are nearly parallel to a family of twin boundaries that, 

in fact, are those favored by the Schmid law. Normally, the scale of micro- structure in a 

martensitic material is a consequence of the balance between the energy of stressed 

transition layers and the total interfacial energy on twin boundaries. However, in the 

microstructure calculated in Figure A.4 there are theoretically no stressed transition layers, 

and therefore with only the penalty of interfacial energy quite complex microstructures 
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are possible even below 1 μm scale. As shown in Figure A.3, these microstructures 

can form without sharp re-entrant corners and with volume fractions of both martensite 

variants and of austenite/martensite that vary smoothly with the loading condition.  

A.6 Summary 

In summary, the alloy Au30Cu25Zn45, which closely satisfies the cofactor conditions, 

exhibits unprecedented levels of work and reversibility in nanomechanical experiments. 

The analysis suggests that this is due to the presence of numerous compatible 

austenite/twinned martensite structures. As a consequence, the pillar can deform 

pseudohomogeneously, even at micron scale, by using twinned nanostructures. The results 

may inspire the design of small-scale superelastic and actuation devices for which high 

levels of work and reversibility are particularly important.  
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