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to thank my family: my parents, Bibba and Hjölli; siblings, Anna and Einar; grandparents,
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Abstract

To understand the physics of earthquakes, it is important to know what happens during

individual events. Dissembling the information about the source process from the recorded

seismograms is a difficult and non-unique process, as there are severe trade-offs between

many of the source parameters. In this thesis we attempt to add information from frequen-

cies not used during the initial modeling of individual events to put more constraints on

the source process, to learn about specific source parameters important to the physics of

earthquakes. We model earthquakes using a spectral element method for wave-propagation

that accurately accounts for the Earth’s 3D elastic structure. We study the rupture speed of

the 2001 Kunlun, China earthquake, the continuity of slip during the 1998 Balleny Islands

event and the duration of slip during the 2004 Sumatra-Andaman, Indonesia earthquake.

Finally, we explore the feasibility of using adjoint methods to learn about the earthquake

source.
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Chapter 1

Introduction

At the core of earthquake seismology is understanding what happens during an earthquake,

and why. The difficulty of studying many aspects of Earth science, and earthquake seismol-

ogy in particular, is that several components of the experimental setup are not under our

control. We cannot control where and when the earthquakes occur. Instead the community

has diligently distributed seismometers around the globe, on sparesly populated islands, in

the deserts of Africa and even on the South Pole, continuously recording data, waiting for

the next signal to arrive. However, even with this great network of seismometers, the data

available to study earthquakes is often not as complete as we had wanted and we are left

to make judgments based on the limited data available. This leads to non-uniqueness.

As the recorded seismogram contain both information on the source of the earthquake

and the propagation path between the source and the station, earthquake seismologists are

left to separate the effects, in order to learn about the earthquake source. This leaves us

to use the parts of the traces where the effects of the structure are well understood. In an

oversimplification, we can say that the very long-period surface waves, which can in general

be modeled well using simple 1D structural Earth models, give a point source view of the

earthquake, such as the magnitude and the orientation of the fault plane involved. The first

arrival body-waves have higher resolution to changes in the magnitude and orientation of

slip along the fault-plane but are not very sensitive to the long period components of the

slip, i.e. the moment.

The goal of this thesis is to increase the available data by using additional phases and pe-

riods, to add constraints to pre-existing models. By accurately accounting for the Earth’s

3D structure, we can include phases that are sensitive to 3D structure in the modeling.

Computing full wave field seismograms for a 3D structure is a difficult problem and compu-
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tationally expensive. Here we use a spectral element method (SEM) to compute accurate

3D synthetics for finite source models and compare to data.

In Chapter 2 we develop measurement techniques that will be used throughout the

thesis, applying the 3D modeling to the 2001 Bhuj, India earthquake, that had a simple

source, in order to estimate how well we can account for the 3D structure.

In Chapter 3 we use traditional body-wave modeling to construct several different source

models for the 2001 Kunlun, China earthquake, each with a fixed rupture speed. By com-

puting global surface-waves for these models, and comparing them to data, we put a limit

on the rupture speed. The rupture speed is critical in understanding the fracture energy of

earthquakes.

In Chapter 4 we focus our attention on the 1998 Balleny Islands, Antarctic Plate earth-

quake. This large intraplate event is thought to have had a large non-double couple com-

ponent and perhaps be comprised of two events separated by a 100 km unbroken patch.

The unbroken patch implies dynamic triggering of earthquake rupture over a large distance.

Here we show that we can match a wide range of data with continuous slip on a single fault

plane, that can be explained by standard rupture-propagation models.

The 2004 Sumatra earthquake was the largest event to occur in the age of modern

broadband seismology. In Chapter 5 we describe the constraints imposed on the source

model by long-period surface waves, and 3D modeling of static offsets recorded on far-field

GPS receivers. Due to the large size of the event we have to look at periods larger than

those normally used to infer information about source processes.

In chapter Chapter 6 we describe how to use adjoint methods to obtain source models

of earthquakes using a variety of data. We discuss the connection between adjoint methods,

time-reversal and stacking. We apply time-reversal methods to high-frequency P-waves

from the Sumatra earthquake, and compare with results from stacking. We further do

time-reversal simulations of the Sumatra earthquake, as well as simulate the first step of an

adjoint method to obtain better source models.
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Chapter 2

The 2001 Bhuj, India earthquake

2.1 Introduction

In later chapters of this thesis we use 3D spectral-element method (SEM) numerical sim-

ulations of seismic wave propagation to extract information about the earthquake source,

assuming that the Earth’s elastic structure is accurately accounted for. In this chapter we

wish to test that assumption for a source that is well known. This can be accomplished

effectively by comparing data and synthetics for an event that has a simple source, i.e., a

source that is compact in both space and time relative to the periods and wavelengths of

the simulated waves.

The Mw 7.6, January 26, 2001, Bhuj, India, event (Fig. 2.1) fits this requirement very

well. The rupture area is small, 40 km × 40 km, as inferred from aftershocks (Negishi et al.,

2001). Finite fault inversions indicate that the main slip occurred on a smaller patch of

the fault, 15 km × 25 km or 10 km × 20 km, as estimated by Antolik and Dreger (2003)

and Mori (2001), respectively. Throughout the following chapters we consider waves with

periods longer than 40 seconds and wavelengths on the order of hundreds of kilometers,

much larger than the source dimensions. The source-time function of the Bhuj event is also

short, about 20 s (Antolik and Dreger , 2003; Mori , 2001). Since the source region is much

smaller than the wavelength of the waves we are considering and the source duration is

shorter than the periods we use, the source can be adequately described as a point source

for our purposes. Due to the large moment of the event, the signal-to-noise ratio is high,

even at long periods. In this section we will focus on estimating the relative effects of the

3D crust and mantle on waveforms of surface waves. We use the Harvard centroid-moment

tensor (CMT) solution (Ekström et al., 2003) for all the simulations.
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Figure 2.1: The 2001 Bhuj, India, earthquake ruptured a relatively small fault patch given
its large magnitude. The compactness of the source, both in space and time, makes it ideal
for studying the effects of 3D heterogeneity on seismic waveforms. The high variability in
crustal structure near the source provides a difficult test for current 3D models. In this
study we simulate the event based upon the moment tensor from the Harvard CMT catalog
(Ekström et al., 2003) and a Gaussian source-time function.
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2.2 Data retrieval and processing

We retrieve data for the event from the IRIS data center (www.iris.edu) for most perma-

nent global stations recording 1 sample-per-second broadband data. We remove the instru-

ment response from the records using deconvolution to obtain ground displacement. For

each event we calculate synthetic waveforms, using mode summation for one-dimensional

(1D) Earth models and a spectral element method (SEM) for 3D Earth models (Komatitsch

and Tromp, 2002a,b). We use 1D Earth model PREM (Dziewonski and Anderson, 1981) and

a 3D Earth model that combines mantle model S20RTS (Ritsema et al., 1999) and crustal

model Crust2.0 (Bassin et al., 2000). The 3D SEM synthetics incorporate the effects of

gravity, rotation, topography and bathymetry, the oceans, and attenuation.

We limit our attention to the period range between 40 s and 500 s. The upper bound is

determined by the noise at periods beyond the long-period corner of the instrument response

(360 s for most stations used in this study), which tends to be amplified by deconvolution

of the response; the lower bound reflects the shortest period of the 3D synthetics.

2.3 Quantifying the quality of a model

Throughout this thesis we will be comparing how well different models fit the observed

data. Furthermore, we want to see how the differences vary with frequency. We choose to

quantify the difference between the three component data, d, and synthetics, s, in terms of

a transfer function that can be represented by two terms; a frequency-dependent amplitude

anomaly δ lnAi(f) and a frequency-dependent time-shift δτi(f), for station i as a function

of frequency f . We use a multi-taper measurement technique (Thomson, 1982) based on

prolate spheroidal eigentapers (Slepian, 1978) following Laske and Masters (1996) and Zhou

(2004), to obtain the transfer function. A discussion on multi-taper measurements is given

in appendix A. In this formulation the best model is the one that requires the smallest

shifts and amplitude corrections.

We use an 800 second window centered on t = ∆/3.7 km/s, where ∆ is the epicentral

distance, for the measurements. We use the first five 2.5π prolate spheroidal tapers to

estimate the transfer function. This choice leads to independent estimates of the true

spectra every 2.5/L Hz, where L is the length of the time series. For a window length of

800 s this corresponds to independent estimates every 2.5/800 = 0.003125 Hz.
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The transfer function tells us how to “multiply and shift” each frequency component

in order to best fit the data. If the data and synthetics are similar to start with, the

“reconstructed” synthetic will be nearly identical to the data. If the traces are dissimilar,

there is no way to shift and multiply the different frequency components to make the traces

look like each other. In this case the interpretation of the obtained measurements, δ lnAi(f)

and δτi(f), is not obvious, and thus we discard those data. Again we are faced with choosing

a misfit parameter. Three parameters that could be used are the waveform misfit:

WM = |d− s|2/(d · d), (2.1)

the maximum cross-correlation value (note that since the waveforms are already aligned,

this is the value at zero shift),

CCmax = d · s/[(d · d)(s · s)]1/2, (2.2)

and the “amplitude ratio” of the data and synthetics,

AR = (d · d)/(s · s)− 1. (2.3)

It can be shown that when the data and synthetics are similar the waveform misfit is

the square of the cross-correlation value. They start to differ when the waveform misfit

is around 0.5. Both parameters measure the similarity of the waveforms. The amplitude

ratio is measuring the overall similarity of the amplitude of the traces. We only retain

measurements when the waveform misfit between the data and reconstructed synthetic is

larger than 0.7 (or CCmax > 0.84). We discard data with amplitude ratios of 0.2 or larger.

This procedure leads us to another estimate of the quality of a model. If the model is poor,

many of the waveforms will be discarded. We therefore also track the number of stations

with waveforms that are similar to the observed ones, according to the above criteria.

2.3.1 Combining measurements

Each multi-taper measurement gives us an estimate of the time shift, δτi(f), and the am-

plitude anomaly, δ lnAi(f), at station i and frequency f . This provides us with a large

number of measurements for each model. In order to visualize the results we combine the
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measurements, either integrating over all frequencies at a given station, monitoring the

variation with receiver location or summing all the measurements at a given frequency over

stations to see the variation with frequency. We define the average time shift at a given

frequency as:

δτ(f) =
1
N

N∑
i=1

δτi(f), (2.4)

and the average time-shift at station i:

δτ i =
1

f1 − f0

∫ f1

f0

δτi(f)df ; (2.5)

finally, the average over all measurements is given by:

δτ =
1
N

N∑
i=1

1
f1 − f0

∫ f1

f0

δτi(f)df. (2.6)

It can also be of interest to see how much the data vary around the average value. Since each

measurement is not independent of the adjacent values, and is not normally distributed,

these are not the standard deviations in the language of statistics, but the second moment

of the measurements around the mean. We define the variations around the averages as:

στ (f) =

{
1
N

N∑
i=1

[δτi(f)− δτ(f)]2
}1

2

(2.7)

and the average time-shift at station i:

στ
i =

{
1

f1 − f0

∫ f1

f0

[δτi(f)− δτ i]2df

}1
2

(2.8)

finally, the average over all measurements is given by:

στ =

{
1
N

N∑
i=1

1
f1 − f0

∫ f1

f0

[δτi(f)− δτ ]2df

}1
2

(2.9)

For the amplitudes, we define δ lnA(f), δ lnAi, δ lnA, σln A(f), σln A
i , σln A in the same

manner.



8

2.4 Importance of the crust

Although we can compute waveforms for an Earth model which incorporates lateral varia-

tions in the crust and the mantle, it is of interest to see whether a simpler Earth model can

produce similar fits to the data. Therefore, we calculate synthetic waveforms for the India

event using three different Earth models: (1) 1D model PREM (Dziewonski and Anderson,

1981), (2) PREM combined with 3D crustal model Crust2.0 (Bassin et al., 2000), and (3)

mantle model S20RTS (Ritsema et al., 1999) combined with Crust2.0.

We obtain multi-taper measurements of time shifts and amplitude ratios for the above

mentioned models at 92 stations distributed globally. The data (black) are shown together

with the synthetics (red) and the reconstructed synthetics (green) in figures 2.2–2.5, 2.6–

2.9, 2.10–2.13 for the three respective Earth models. The data and synthetics are filtered

between 50 and 500 seconds before applying the measurements. Together with each trace we

show the four different misfit estimates between the data and the reconstructed synthetic,

from left to right, top to bottom: WM , CC2
max, CCmax, and AR. Those parameters that

are outside of the cutoff values are marked red. A total of 50, 46 and 73 traces pass the

test for the three respective models. Notice that the traces that do not pass the test are

those that are very different to start with, often those that have small amplitudes. Not

surprisingly, the highest frequencies are the ones that are most poorly fit.

One could imagine that if a different low pass was applied, more traces would be retained.

To examine this we repeat the exercise with different band passes, keeping the high pass

at 500 seconds but varying the low pass from 40 to 200 seconds. The number of retained

records is plotted as a function of frequency for the three models in figure 2.15. The number

of records retained remains similar for periods between 50 and 200 seconds for the 3D model,

but drops off more rapidly with frequency for the models with a 1D mantle. At 40 seconds

only 50–70% of the records are retained.

We compare the amplitude anomalies and the time shifts for the records that are re-

tained for all 3 models, for the band pass between 50 and 500 seconds (Fig. 2.15). The

average amplitude anomalies, δ lnA(f) are similar for all models, indicating that the mo-

ment estimate would be similar for all three Earth models. The average time shifts, δτ(f),

however show a very different picture. The two models with a 1D mantle are on average

faster than observed for the very long periods, but after that, they are significantly slower
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Figure 2.2: 1D synthetics (a). Data (black) are shown together with the synthetics (red)
and the reconstructed synthetics (green). Data and synthetics are filtered between 50 and
500 seconds. Together with each trace we show the four different misfit estimates between
the data and the reconstructed synthetic, from left to right, top to bottom: WM , CC2

max,
CCmax, and AR. Those parameters that are outside of the cutoff values are marked red.
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Figure 2.3: 1D synthetics (b). For description see Fig. 2.2.
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Figure 2.4: 1D synthetics (c). For description see Fig. 2.2.
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Figure 2.5: 1D synthetics (d). For description see Fig. 2.2.
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Figure 2.6: 3D crust, 1D mantle (a). For description see Fig. 2.2.
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Figure 2.7: 3D crust, 1D mantle (b). For description see Fig. 2.2.
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Figure 2.8: 3D crust, 1D mantle (c). For description see Fig. 2.2.
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Figure 2.9: 3D crust, 1D mantle (d). For description see Fig. 2.2.
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Figure 2.10: 3D crust, 3D mantle (a). For description see Fig. 2.2.
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Figure 2.11: 3D crust, 3D mantle (b). For description see Fig. 2.2.
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Figure 2.12: 3D crust, 3D mantle (c). For description see Fig. 2.2.
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Figure 2.13: 3D crust, 3D mantle (d). For description see Fig. 2.2.
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Figure 2.14: Multitaper measurements of time shift δτ , and amplitude δ lnA, for all stations
between distances of 40◦and 140◦, for a period of 207 seconds. The nodal regions are masked
out.

than observed, the one with 3D crust more so then the PREM model. The average time

shift for the 1D model is very close to zero at all the frequencies probed. The variability in

the amplitude, σln A(f) is similar for all the models, with the 3D model performing some-

what better at all frequencies. The variability in time shifts, στ (f), is the smallest for the

3D model at all periods, except at 270 seconds, ranging from around 7 seconds at periods of

270 seconds to 16 seconds at periods of 50 seconds. The model with 3D crust and 1D mantle

has the largest time shifts, with similar values as the 3D model at long periods, and up to

26 seconds at periods between 50 and 100 seconds. The final misfit values when integrated

over the frequency range from 0 to 0.02 Hz are shown in table 2.1, and in table 2.2 for the

frequency range from 0 to 0.01 Hz.

Table 2.1: Average amplitude anomalies and time shifts for the three models, averaged over
all stations and frequencies from 0 to 0.02 Hz

Model δ lnA δτ σln A στ

1D mantle + 1D crust 0.01 −11.21 0.43 20.61
1D mantle + 3D crust −0.02 −16.03 0.42 22.52
3D mantle + 3D crust 0.04 −1.00 0.38 11.30
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Table 2.2: Average amplitude anomalies and time shifts for the three models, averaged over
all stations and frequencies from 0 to 0.01 Hz

Model δ lnA δτ σln A στ

1D mantle + 1D crust -0.02 −3.442 0.19 14.04
1D mantle + 3D crust -0.05 −8.67 0.22 15.62
3D mantle + 3D crust -0.01 −2.13 0.15 8.38

2.5 Discussion

The degradation of fit when adding the 3D crustal model to PREM (model 2) is observed

for many stations. It seems somewhat counterintuitive that the waveforms are not as well

fit when we use a model that includes 3D variations in the crust compared to when we use

one that does not. This is because the average velocity in the upper layers of the Earth

is well approximated by PREM. Removing the top of PREM and replacing it with a more

realistic 3D crustal model without changing the mantle disturbs the balance between the

crust and upper mantle velocities. By doing so we recover the observed dispersion of the

surface waves, which is critically dependent on the distribution of velocities in the crust,

but we change the group speed, which is more dependent on the average velocity with

depth (hence the larger δτ). We recover both the dispersion and the arrival time when we

incorporate 3D mantle model S20RTS in our simulations.

Earlier studies have shown that lateral heterogeneity can cause significant amplitude

variations of long-period surface waves due to focusing and defocusing (Lay and Kanamori ,

1985). For the paths studied here the 3D models shows smaller amplitude anomalies than

the 1D model at periods of 200 seconds and shorter, indicating that they better reproduce

the observed focusing.

We find that it is not sufficient to use a 3D crustal model in combination with a 1D

mantle model to compute accurate synthetics for surface waves on a global scale at periods

between 40 and 200 s. In fact, some stations show better fits for a strictly 1D model. To

match the data, the 3D structure of both crust and mantle has to be incorporated. The

good agreement between data and synthetics at periods of 50 s and longer indicates that, at

least for these paths, the effects of 3D heterogeneity on the waveforms is mostly accounted

for by the 3D model. In subsequent chapters we will repeatedly use the frequency dependent

measurements introduced here.
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Chapter 3

The 2001 Kunlun, China
earthquake

3.1 Introduction

Macroscopic earthquake source parameters provide insight into the processes occurring on

the fault plane during rupture. The dynamics of earthquake faulting are controlled by how

much energy is dissipated as fracture energy during rupture propagation. The direct de-

termination of fracture energy with seismological methods is extremely difficult. However,

theories in fracture mechanics (Mott , 1948; Kostrov , 1966; Eshelby , 1969; Freund , 1972)

show that the fracture energy can be estimated from the rupture speed. In general, a fast

rupture speed (e.g., comparable to, or faster than, the Rayleigh- or shear-wave speed) indi-

cates that the fracture energy is much smaller than the radiated energy, and the earthquake

is considered very “brittle.” Unfortunately, the rupture speed of earthquakes is notori-

ously difficult to estimate. The distribution of slip in space and time on the fault plane is

frequently determined from short-period body waves. Due to limited resolution, and trade-

offs, the determination is easiest for long and narrow faults, generally long strike-slip faults.

However, for most global stations, the take-off angle is close to vertical which is nodal for

strike slip events. As a result the models can be sensitive to small changes in rake angle, as

well as scattering near the source, and the inversions can produce models that show similar

fit synthetics to the data, despite having different slip distributions.

Here we determine the rupture speed of the 2001 Kunlun, China earthquake, which

ruptured unilaterally along a 400 km segment of the left-lateral strike-slip Kunlun fault (Lin

et al., 2002; van der Woerd et al., 2002; Xu et al., 2002). The event occurred in a remote and
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mountainous region making direct observations of the rupture difficult. However, the large

moment of the event and the separation between the epicenter (reported by the National

Earthquake Information Center, NEIC) and the best-fit point source, as determined by the

Harvard CMT project (Ekström et al., 2003), indicated that the rupture was unusually long.

Furthermore, the distribution of aftershocks extended over 350 km east of the epicenter (as

reported by the NEIC). This length of rupture was supported by observations of surface

breaks (Lin et al., 2002; Xu et al., 2002; van der Woerd et al., 2002) and early body-wave

models (Lin et al., 2003). Subsequently several studies have focused on different aspects of

the earthquake, including the surface break (Lin et al., 2003; Klinger et al., 2005; Fu et al.,

2005; King et al., 2005; Xu et al., 2006), the slip on the fault derived from optical images

(Klinger et al., 2006), InSAR images (Lasserre et al., 2005) and seismology (Lin et al., 2003;

Bouchon and Vallée, 2003; Ozacar and Beck , 2004; Antolik et al., 2004; Robinson et al.,

2006).

In this chapter we determine finite fault slip models, based on body-wave inversions,

for several different rupture speeds. We then compute synthetic surface waves using a 3D

Spectral Element Method (SEM) and compare the resulting seismograms to data, obtaining

an independent estimate of the quality of the models. The trade-offs are dependent on the

phase speed of the phase being looked at, making it advantageous to look at waves with

very different phase speeds.

3.2 Body-wave modeling

3.2.1 Data

We retrieved data for the event from the IRIS data center (www.iris.edu) for most per-

manent global stations recording 20 sample-per-second broadband data. We use data from

26 stations at distances between 65
◦

and 90
◦
. The lower bound is determined by selecting

only stations that do not have a PP arrival within a 120 second window after the arrival

of the initial P-wave. This is assuming that the duration of rupture was less than 120

seconds. The upper bound is chosen to reduce the interference of the PcP phase, which has

a high amplitude at distances larger than 90◦. The P-arrivals are aligned on a predicted

travel time computed for the NEIC epicentral location (90.54◦E, 35.96◦N). It is common

practice in body-wave modeling to pick the first arrivals to align records, however, due to
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Figure 3.1: The Mw 7.9, November 11, 2001, Kunlun, China, earthquake broke a 400 km
long section of the Kunlun fault. The black dots in the lower inset show left-lateral surface
offset measurements from Klinger et al. (2006). The red dots show the horizontal, fault
normal, component of motion (negative sign indicates thrust motion) from the same study.
The corresponding solid lines show our smoothed versions of the surface slips that are used
as a constraint to the body-wave inversions. The yellow lines indicate the surface projections
of the fault planes used in our modeling.



27

the emergent nature of the onset of rupture for this event, the first arrival is not always

clear, so we choose not to do so. We removed the instrument response from the records

using deconvolution to obtain ground displacement and then band-pass filtered between 1.6

and 120 seconds. The records and their geographical distribution are shown in Fig. 3.2.

 

RER 

AIS 

TAM 

PATS 

CAN 

COLA 

WAKE 

PAF 

PAB 

MBAR 

CTAO 

PVC 

KWAJ 

WRAB 

INK 
RES 

JOHN 

BGCA 

WHY 

NWAO 

PMG LSZ 

KDAK 

FRB 

SCHQ 
LLLB 

140 secs.

Time (s) (aligned on p)

Kunlun BHZ
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◦
and 90

◦
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eastward directivity of rupture.

3.2.2 Inversion

We invert the data for magnitude, direction, timing and duration of slip, on each subfault

of a prescribed fault plane. We constrain the slip of the top row of subfaults to be equal to
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the observed surface slip, where available, and constrain the ends to have a small slip. The

subfaults are 10 km along the surface, and 2 km in depth. We use a simulated annealing

algorithm to fit the wavelet transform of the seismograms (Ji et al., 2002). We impose both

a moment constraint and a smoothness constraint, as well as a constraint on the rupture

speed. There are many input parameters in this type of inversion, and the outcome can

be quite dependent on the parameters chosen. Perhaps the most difficult parameter to

choose is the geometry of the prescribed fault plane. However, as previous seismological

studies have focused on determining the fault geometry (Ozacar and Beck , 2004; Antolik

et al., 2004; Robinson et al., 2006), we wish not to repeat that exercise, but rather to use

the values found in previous studies, and focus on obtaining a more robust estimate of the

rupture speed.

Two seismological studies of this event use a one-fault parameterization (Bouchon and

Vallée, 2003; Lin et al., 2003). Other studies, however, all point out that the first 30 seconds

of the body-wave train are not well explained by a one fault-plane model, and invoke one

(Robinson et al., 2006) or two (Ozacar and Beck , 2004; Antolik et al., 2004) more fault

planes to match the observed records. Although the surface waves that we will be studying

in the following sections of this chapter are not very sensitive to the first 30 seconds of the

rupture, due to the small slip at that time, we choose to use a three fault plane solution in

order to remove that as a source of discrepancy. The surface projections of the faults used

in this study are shown in Fig. 3.1

The first motions of the earthquake, indicate left-lateral slip on a steep fault plane,

oriented roughly east–west (Ozacar and Beck , 2004; Antolik et al., 2004). This is consistent

with the westernmost surface breaks, west of Taiyang (Sun) Lake (Xu et al., 2002; Lin et al.,

2003; Klinger et al., 2005; Fu et al., 2005; Klinger et al., 2006; Xu et al., 2006). We choose

the first segment to align with surface breaks, striking 95◦and dipping 85◦.

The second segment is required to fit a sharp spike in the moment rate function that

clearly does not have the same source mechanism as the remaining parts of the rupture

(Antolik et al., 2004). The evidence for surface slip between the first and third fault segments

is small, and most likely the rupture did not reach the surface. The mechanism, however, is

consistent with slip on a buried normal fault coincident with an extensional graben located

south of Buka Daban Feng. We use strike 34◦, dip 54◦and rake −145◦, as obtained by

Antolik et al. (2004).
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The main segment, is chosen to align with surface breaks, striking 99◦, but extending

slightly further to the south than the documented surface offsets. We use a dip of 74◦, con-

sistent with the Harvard CMT and Antolik et al. (2004) and close to the value of 70◦obtained

by Ozacar and Beck (2004). Large fault normal motions have been measured from satellite

images (Klinger et al., 2006), requiring a non-vertical fault plane along at least part of

the fault. We constrain the top of the model to match the observed displacements at the

surface, as measured using pixel tracking of optical images (Klinger et al., 2006). We use a

running average window of 30 km to average their values (see Fig. 3.1).

We use a crustal model in the source location extracted from Crust 2.0 (Bassin et al.,

2000). The values used are shown in Table 3.1.

Table 3.1: Crustal model used in body-wave source inversions

Depth [km] vp[km/s] vs[km/s] ρ[kg/cm3]
0–21 6.0 3.5 2.70
22–43 6.4 3.7 2.85
43–65 7.1 3.9 3.10
65- 8.0 4.6 3.45

3.2.3 Body-wave inversion results

We perform 9 inversions, each for fixed rupture speeds of vr = {2.5, 3.0, 3.2, 3.4, 3.5, 3.6, 3.8, 4.0, 4.5}

km/s respectively, covering the reasonable range as determined by dividing the rough es-

timates of the length of rupture, 400–450 km, by the duration, 120 seconds. If a small

moment constraint is applied, the moment becomes highly dependent on the rupture speed.

This is in part an artifact, because if the rupture speed is very small, it will take a long time

for the rupture to reach the end of the fault. The latter part of the rupture, especially after

120 seconds, is not well constrained by the seismograms, so spurious slip can be added after

that time, without significant impact on the fit. The moment rate, though, is quite well

constrained by the seismograms. The moment rate changes very little with rupture speed.

The main difference is the timing of the end of the rupture, because that is controlled by

the time when the rupture reaches the end of the fault. The moment goes from a value of

10.2 ∗ 1020 Nm for a rupture speed of 2.5 km/s to a value of 4.7 ∗ 1020 Nm for a rupture

speed of 4.5 km/s. The waveform misfit function becomes close to flat for a range of rupture
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speeds between 3.2 and 3.6 km/s (Fig. 3.7). As is to be expected, the surface waves are

very sensitive to the moment, and, as will be shown in a later section, they clearly rule out

models with very large or very small moments. The body waves, on the other hand, are not

as sensitive to the moment, and we therefore constrain the moment of each of the inversions

to a fixed value. We first constrain it to the value given by the Harvard moment tensor,

5.9 ∗ 1020 Nm. This, however, turns out to be too low to match the surface waves (see

section 3.3), and we finally constrain the moment to 6.75 ∗ 1020Nm which is consistent with

the surface waves. The slip distributions for those inversions are shown in Figs. 3.3–3.4.

The waveform fits are shown in Fig. 3.6–(b).

There are several noticeable features in the models. First, as the rupture speed increases,

the largest slip patch moves further away from the epicenter. This is not surprising, as

the strongest constraint from seismograms is on the timing of an event, resulting in a

strong trade-off between rupture velocity and the location of the main slip patch. Another

noteworthy feature is the continuity between slip at the surface and at depth. For the models

with the smallest rupture speeds, the surface slip between 300 and 350 km is confined only

to the top 2–4 km. This is clearly an artifact of the fault being too long compared to the

duration of the rupture. Also, when the rupture speed gets very high, the rupture front

reaches the end of the fault before the end of the prescribed rupture duration, 120 seconds.

Thus, in a way, by constraining the slip at the surface, the length of the rupture, and the

rupture duration, we are constraining the rupture velocity to roughly a value between 3

and 4 km/s. The duration of rupture is estimated to be around 120 seconds by previous

studies.

The waveform misfit as a function of rupture speed is shown in Fig. 3.7 for the three

sets of models. The unconstrained models have a slightly lower misfit than the constrained

ones, and the higher moment models perform better at low rupture speeds, than the ones

constrained to M0 = 5.9 ∗ 1020Nm. The minima for all suits of models are at 3.6 km/s,

although the models rupture speeds between 3.2 and 3.8 km/s have similar misfits.
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Figure 3.3: Slip distributions obtained with fixed rupture speeds and the moment con-
strained to values obtained by surface waves.
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Figure 3.4: Slip distributions obtained with fixed rupture speeds and the moment con-
strained to values obtained from surface waves.
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Figure 3.6: Waveform fits obtained for slip distributions with the rupture speed fixed at (i)
2.5 km/s (ii) 3.0 km/s (iii) 3.5 km/s (iv) 4.0 km/s (v) 4.5 km/s.
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3.3 Surface-wave analysis

The body-wave analysis yielded a “best fit model,” defined as the model that produced

waveforms that were most similar to the observed waveforms (had the smallest waveform

misfit). However, as there is noise in the data (for example created by small changes in

rake angles or scattering near the source), it is not a given that the model that produces

the best fits is the one closest to the true slip distribution. As an independent evaluation

we now compute surface waves for the slip distributions obtained in the previous section,

and compare the resulting synthetic seismograms to observed surface-wave data.

3.3.1 Data and measurements

As in the previous chapter of this thesis, we use data for the event from the IRIS data

center (www.iris.edu) for most permanent global stations recording 1 sample-per-second

broadband data. We removed the instrument response from the records using deconvolution

to obtain ground displacement. We compute synthetic waveforms, using a spectral element

method (SEM), for 3D Earth models (Komatitsch and Tromp, 2002a; 2002b). We use a 3D

Earth model that combines mantle model S20RTS (Ritsema et al., 1999) and crustal model

Crust2.0 (Bassin et al., 2000). The 3D SEM synthetics incorporate the effects of gravity,

rotation, topography and bathymetry, the oceans, and attenuation. We limit our attention

to the period range between 40 and 500 seconds.

We use multi-taper measurements (see section 2.3) to quantify the time shifts and am-

plitude ratios between the synthetics and the observed data. We can both compare the

measurements obtained for each station i at a fixed frequency f , δτi(f) and δ lnAi(f), or

the combined measurements at a fixed frequency, averaged over stations; δτ(f), δ lnA(f),

or at a given station, averaged over frequencies; δτ i and δ lnAi. Also of interest is the

variation of the measurements relative to these values; στ (f), σln A(f), στ
i and σln A

i .

3.3.2 Results

In order to better understand how the average measurements are varying, we look at

the original measurements, at a fixed frequency, and their variation with azimuth δτi(f),

δ lnAi(f) (Fig. 3.8). At a period of 207 seconds there is still a slight effect of the directivity

in the amplitude measurements. Note how the low rupture speeds have higher δ lnAi’s than
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Figure 3.8: Amplitude ratios (δ lnA) and time shifts (δt) as measured at each station, for
a frequency of 4.8 mHz (period of 207 seconds). The top panel shows the models for vr =
2.5, 3.0, 3.5, 4.0 km/s. and the lower panel for vr = 3.2, 3.4, 3.6, 3.8 km/s.

the other models in the direction of rupture, and vice versa. The time shifts have a very dif-

ferent pattern. Focusing for instance on those measured from a model with vr = 2.5 km/s,

we can see that the time shifts are most negative (the synthetics are late) in the direction

of rupture, at an azimuth of 100◦. In the opposite direction, however, the time shifts are

not nearly as negative. The measurements for vr = 3.0 km/s show a similar pattern. The

measurements for vr = 4.0 km/s show the opposite pattern, with synthetics in the rupture

direction arriving earlier than observed, and those in the anti-rupture direction arriving

later than observed. This can be understood in terms of the centroid location of the slip

distributions. If the model centroid is closer to the epicenter than the observed centroid

(when the rupture speed is too small) the synthetics will be late in the rupture direction,

and vice versa. The opposite will happen when the rupture speed is too fast. From the

above analysis we can therefore conclude that vr = 3.0 km/s is too slow, and vr = 4.0 km/s
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is too fast. Note that we have masked out the measurements near the nodes of the radiation

pattern, because the measurements become difficult when the amplitudes are small.

Next we look at the measurements as a function of frequency, averaged over all stations.

The results are shown in Figs. 3.9 and 3.10. The average amplitude ratio, δ lnA(f), at

long periods reflects the ratio of the moment of the synthetics and the data. When the

moment is not constrained, the ratio varies as a function of frequency. As seen in Fig. 3.9

(a) the moment of the model is too large for rupture speeds of 2.5–3.5 km/s. The moment

for rupture speed 4.0 km/s is slightly small. This illustrates the need to fix the moment

in the body-wave inversions. We therefore proceeded to constrain the moment to the value

predicted by the best-fitting point source (the Harvard CMT), M0 = 5.9∗1020 Nm. However,

as seen in Figs. 3.9 (b) and 3.10 (b), this moment is slightly smaller than needed to match the

surface waves. We therefore fix the moment in the third sets of inversions to M0 = 6.75∗1020

Nm. The amplitude ratios δ lnA(f) are a filtered estimate of the spectral ratios of the

moment rate functions. Thus, a constant line corresponds to a difference in moment between

the two models. A sloping line however, indicates a difference in the shape of the spectral

ratios, or the shape of the moment rate function. We observe that the models with rupture

speeds between 3 and 3.5 km/s all have near zero amplitude ratios for a wide frequency

range. The average time shifts, at long periods, are related to the centroid time of the

model. A zero time shift at long periods indicates the model has the same centroid time as

the real earthquake. Varying time shifts with frequency indicate a difference in the shape of

the moment rate function. We note that all the models have a somewhat small average time

shift, but the flattest curves are those with rupture speed 3–3.5 km/s. The variation around

the mean of both the amplitude ratios, and the time shifts are the variables that tell us how

the measurements change with azimuth, and therefore are the ones that contain the most

information of the directivity. We expect the ratios to go up somewhat with frequency,

since our ability to account for the 3D effects diminishes with frequency, as observed in

chapter 2. The smallest variation in amplitude ratios are observed for models with rupture

velocities of 3–3.5 km/s, although the difference is not large between models. The difference

between rupture speeds is more evident for the variation in time shifts, as can be expected

from examining Fig. 3.8. The smallest time shifts over all are observed for the model with

rupture speed of 3.2 km/s, although rupture speeds of 3.4–3.5 km/s produce similar results.

The model with rupture speed 3.0 km/s predicts the largest time shifts for long periods
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Figure 3.9: Multitaper measurements for the 3 different suites of models, for rupture speeds
of 2.5, 3.0, 3.5, 4.0 km/s. The columns show the measurements for (left to right) models with
no moment constraint, M0 constrained to 5.9 ∗ 1020 Nm and M0 constrained to 6.75 ∗ 1020

Nm. The rows show (top to bottom) δ lnA(f), δτ(f), σln A and στ (f).
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Figure 3.10: Same as Fig. 3.9, for rupture speeds vr=3.0, 3.2, 3.4, 3.6 km/s.
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(above 160 seconds), but the smallest time shifts observed for shorter periods (around 100

seconds).
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Figure 3.11: Measurements of δ lnA, δτ , σln A and στ (left to right, top to bottom).

The overall averaged values of amplitude ratios and time shifts, and the variations

therein are shown in Fig. 3.11. The average amplitude variation is mainly related to the

moment of the event, which we fixed, and therefore does not provide much information on

which rupture speed can best predict the data. The average time shifts can be influenced

by a timing error of the hypocenter. Therefore we choose the model with the “flattest”

curve as a function of frequency to be the “best fit” models for δ lnA, δτ . These are models

with rupture speeds of 3–3.5 km/s. The models with smallest σln A and στ are the ones

with rupture speeds of 3.0–3.5 km/s and 3.2–3.5 km/s, with the lowest values at 3.0 and 3.2

km/s, respectively. Note that σln A is only slightly higher than the value of 0.15 obtained

for the Bhuj, India, earthquake 2 and στ for rupture speeds of 3–3.5 km/s is smaller the

value of 8.38 seconds observed for the Bhuj earthquake. This indicates that the models fit

the data as well as can be expected given the accuracy of the 3D structure.
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3.4 Relationship between surface offsets and the moment-

rate function

An interesting aspect of the Kunlun earthquake is the mismatch between the shapes of the

moment-rate function and the observed surface slip distribution. The moment rate was

very small during the first 45 s of the event in comparison to next 45 seconds (Fig. 3.5),

but the surface slip as reported by Xu et al. (2002), Lin et al. (2003), van der Woerd et al.

(2002) and Klinger et al. (2005) is more uniform along the fault.

We wish to explore the relationship between the moment-rate and slip along the fault.

In finite-fault inversions, the moment rate, Ṁ(t) is well constrained, at least up to a long-

period component. The moment rate, can be written as follows:

Ṁ(t) =
d

dt

∫
Σ

m(x, t)dΣ (3.1)

where the integral is over the faultplane Σ. The moment density tensor, is given by

m(x, t) = µ(x)∆s(x, t)[ν̂(x)σ̂(x) + σ̂(x)ν̂(x)] (3.2)

where µ is the shear modulus ∆s is the magnitude of slip, σ̂ is the slip direction and ν̂ is

the fault normal. In order to easily compare the moment rate and the surface slip, we have

to make some simplifying assumption. First we assume that the slip direction and the fault

normal do not change along the fault plane. Then:

Ṁ(t) = [ν̂σ̂ + σ̂ν̂]
d

dt

∫
Σ

µ(x)∆s(x, t)dΣ =
√

2M̂Ṁ(t) (3.3)

where M̂, the unit source-mechanism tensor, is defined such that, such that M̂ : M̂ = 1

(Dahlen and Tromp (1998), p 167). The slip along the surface of the fault is, in general,

thought to be quite complicated. Here we will assume that neither µ or ∆s change along

dip, and only look at the changes in properties along strike:

Ṁ(t) =
d

dt

∫ xf

0

∫ w(x)

0
µ(x)∆s(x, t)dydx =

d

dt

∫ xf

0
w(x)µ(x)∆s(x, t)dx (3.4)

If we now further assume that once the rupture front reaches each point along the fault at
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time ts(x), they have the same slip-time history, such that ∆s(x, t) = D(t− ts(x))∆s(x) we

get:

Ṁ(t) =
∫ xf

0
w(x)µ(x)Ḋ(t− ts(x))∆s(x)dx (3.5)

In order to proceed, we need the the form of ts(x). In general, for a unilateral rupture,

propagating at speed v we have:

ts(x) =
∫ x

0

1
v(x)

dx (3.6)

For a constant rupture speed, therefore ts(x) = x/v and using a change of variables ξ = x/v

we get:

Ṁ(t) =
∫ xf /v

0
w(ξv)µ(ξv)Ḋ(t− ξ)∆s(ξv)vdξ (3.7)

Now we can rewrite the moment rate as a convolution:

Ṁ(t) = Ḋ(t) ∗ v[w(vt)µ(vt)∆s(vt)] (3.8)

The slip rate at a point is often viewed as a boxcar, where the length of the boxcar is the

duration of slip. For a long fault, this is small in relation to the time it takes to rupture the

whole fault, and the moment rate function can therefor be seen as a slightly filtered version

of the function [w(x)µ(x)∆s(x)]. It is also of interest to understand how the relationship

between the moment rate and the surface slip changes if the rupture speed changes. For

simplification we will then assume that the slip rate is a delta function, δ(t − ts(x)). In a

model where the rupture speed jumps from one fixed value v1 to another fixed value of v2

at time t1 we would have:

Ḋ(t) =

 δ(t− x/v1) : t < t1

δ(t− t0 − x/v2) : t > t1
(3.9)

where t0 = t1(v2 − v1)/v2

Ṁ(t) =

 v1w(v1t)µ(v1t)∆s(v1t) : t < t1

v2w(v2t + x0)µ(v2t + x0)∆s(v2t + x0) : t > t1
(3.10)

where x0 = t1(v1−v2). Now we can conclude that if the earthquake propagated unilaterally
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at a fixed rupture speed, the rake angle remained constant along strike, if the slip averaged

over depth is the same as the observed surface slip distribution, and if the shear modulus in

the medium around the fault zone does not vary laterally, then the moment-rate function

should have the same shape as the observed surface slip distribution. However, as can be

seen by comparing Fig. 3.1 and Fig. 3.5 these quantities are quite different. From the above

analysis, we can conclude that either the depth of the fault or the shear modulus varies

significantly along strike, the surface slip is not a good indicator of the slip averaged over

depth, the rupture speed varies along strike or a combination thereof. Constraining the slip

at depth to match the surface slip, assuming a constant fault width and shear modulus,

and inverting the surface waves (which are highly sensitive to the moment-rate function)

Bouchon and Vallée (2003) attribute this disparity to a variation in rupture speed. In this

study we have fixed the rupture speed in each inversion, assumed a constant shear modulus

along the fault and attributed the disparity between surface slip and the moment rate

function to variation in slip with depth. This works very poorly when the rupture speed is

out of the reasonable range (as for vr=2.5 and 4.5 km/s), and the disconnect between slip

at the surface and at depth seems unreasonable. However, the models with rupture speeds

between 3.2 and 3.8 km/s show a better continuity between the surface slip and the slip at

depth. It is probably reasonable to assume that the variation in shear modulus along the

fault is not substantial. It is however conceivable that both the variation in rupture speed

along strike and the variation in slip with depth are significant.

3.5 Conclusions

Incorporation of 3D wave-speed structure in the SEM allows us to accurately model surface

waves with periods longer than 100 s. Using the resulting synthetics, we estimate that the

average rupture speed of the 2001, Kunlun, China, earthquake is 3.0–3.5 km/s. This is to

be compared to the local shear wave speed, that is 3.5 km/s, or the Rayleigh speed which is

0.92vs = 3.15 km/s. The range unfortunately is too large to conclude whether the rupture

speed exceeded the shear-wave speed or not. The average value is similar to, or somewhat

lower, than the values of 3.4 km/s obtained by Ozacar and Beck (2004) and 3.6 km/s by

Antolik et al. (2004) from body-wave modeling. This value is significantly lower than the

3.7–3.9 km/s obtained by Bouchon and Vallée (2003) from modeling surface waves recorded



45

at regional distances. The aforementioned studies indicate a low rupture speed during the

initial stages of rupture. In order to keep the average rupture speed at the estimated value,

this would suggest larger rupture speeds, perhaps supershear, during the later stages of

rupture, as suggested by Bouchon and Vallée (2003). A transition from low rupture speed

at early stages of rupture, to higher rupture speed at the later stages, could explain in part

the difference in shape between the moment-rate function and the surface-slip distribution,

although it is not advisable to attribute the whole difference to this effect as there are other

effects that can produce the same result.
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Chapter 4

The 1998 Balleny Islands
earthquake

4.1 Introduction

The Mw 8.1, March 25, 1998 event in the Antarctic plate, near the Balleny Islands, occurred

on a fault about 300 km from the nearest plate boundary (Fig. 4.1). This event has been

studied extensively by many authors as it exhibits many peculiarities. The tectonic setting

is somewhat puzzling both due to the distance to the nearest plate boundary and because

most fault models prescribe slip on a fault plane perpendicular to the fracture zones in this

region. Due to sparse instrumentation in the southern hemisphere, source inversions are

difficult; still, many slip models have been obtained from body waves for this earthquake

(Kuge et al., 1999; Nettles et al., 1999; Antolik et al., 2000; Henry et al., 2000; Tsuboi et al.,

2000). The Harvard CMT solution has a large non-double couple component that Kuge

et al. (1999) explain in terms of slow normal fault slip during the event and Antolik et al.

(2000) interpret as a compound rupture of a normal fault and a strike slip fault. One of the

more detailed body-wave source models (Henry et al., 2000) has a 100 km stretch of no slip

between two distinct slipping fault patches (Fig. 4.5), and therefore the fault propagation

is difficult to explain with the standard rupture model in which rupture propagation is

controlled by a stress concentration at the crack tip. By using surface waves (with periods

of 135 seconds and longer) Henry et al. (2000) conclude that the non double-couple part of

the moment tensor is ill constrained. They present two purely double-couple solutions that

give near equal fits to the surface-wave data (we will refer to these as HenryC and HenryD)

and similar fits as the Harvard CMT, thereby eliminating the need for a non double-couple
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component of the moment tensor. They then invert body waves for a source model which

yields a new double-couple focal mechanism, HenryF, similar to HenryD.

Here we first compare the radiation patterns for the different focal mechanism, to in-

vestigate whether we could distinguish between them by looking at long period (100–500

second) surface waves. We then compute surface waves for the finite source model based

on body waves, presented by Henry et al. (2000), to see whether this model, without a non

double-couple component, can explain the observed surface waves.

120˚E 140˚E 160˚E 180˚

70˚S

65˚S

60˚S

55˚S

50˚S

45˚S

40˚S

HenryF

HenryD

HarvardCMT

Figure 4.1: The Balleny Island earthquake occurred relatively far from plate boundaries
(thin red lines), and most researchers agree that the fault plane is close to perpendicular to
the plate fabric. We use the source model from Henry et al. (2000) to calculate 3D synthetic
seismograms. The moment tensor shown is that favored by Henry et al. (2000), and the
source-time function is a modified version of the source-time function from the same study.
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4.2 Point sources

We compute the radiation pattern as described by Ben-Menahem and Harkrider (1964)

and Kanamori and Given (1981) for three unit point sources: the Harvard CMT, HenryD

and HenryF (Fig. 4.1). The source parameters are given in table 4.1. The moment tensor

elements are normalized such that the full moment tensor is given by M = M0m, the scalar

moment is given by M2
0 = (M : M)/2 and the centroid time is given by t0. The radiation

patterns are shown in Fig. 4.2. The difference between HenryF and the others is evident

for the smaller lobes of the radiation pattern, between 20◦–90◦and 200◦–270◦, but solutions

HarvardCMT and HenryD are very similar, and it would be very difficult to distinguish

between them if there was a little bit of noise in the data. We therefore conclude that with

our data set we would not be able to distinguish between the two models.

Table 4.1: Comparison of focal mechanisms used to model the Balleny Island earthquake

Model M0 mrr mθθ mφφ mrθ mrφ mθφ t0
HarvardCMT 1.86 ∗ 1021 -0.3557 0.4959 -0.1401 0.3718 -0.2156 0.7869 37.4
HenryD 1.30 ∗ 1021 -0.3079 0.4766 -0.1687 -0.1971 0.4265 0.7773 36.6
HenryF 1.40 ∗ 1021 -0.2068 0.3891 -0.1823 -0.1928 0.3630 0.8470 36.8
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Figure 4.2: Radiation patters for three different unit point sources, computed at 256 seconds.
Notice that models HenryD and HarvardCMT are near indistinguishable, whereas HenryF
has larger amplitude Rayleigh waves between 20◦–90◦and 200◦–270◦.
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The waveforms computed for the Harvard CMT are shown in Fig. 4.3. At a first glance

they seem to match the data remarkably well. However, when scrutinizing, the synthetics

to the west are generally smaller than the data and vice versa. For comparison with later

sections we compute multi-taper estimates of time shifts and amplitude anomalies between

data and synthetics, in a similar fashion as in previous chapters. The results are shown in

Fig. 4.4 for periods of 207 and 420 seconds, for both Rayleigh and Love waves.

The amplitude anomalies δ lnAi resemble a fairly smooth sine-wave pattern, positive

to the west and negative to the east, that can be explained by west-ward propagating

rupture (Ben-Menahem, 1961). The time shifts δτi are near zero for all azimuths at 207

seconds, for both Rayleigh and Love waves. At 420 seconds they are also near zero for

westward azimuths, for both wave types, although significantly different from zero in east-

ward azimuths. The synthetics arrive as much as 20 seconds earlier than the data in

east-ward azimuths for Rayleigh waves, and 40 seconds for Love waves. This general shape

of the sinusoidal pattern of time shifts can be explained by a mislocation of the source. The

baseline of the sinusoid is then indicative of the source delay relative to the estimated one,

here around 15 seconds. The amplitude of the sinusoid is related to the mislocation of the

source. This results show that the 400 seconds waves are consistent with a point source

that occurs later and further west than the point source consistent with the 200 seconds

waves. From this we can immediately expect some sort of asymmetric triangular source

time function, with a rapid rise in slip near the epicenter, slowly falling off in time and

towards the west. The Harvard CMT was constructed to fit mantle waves of 135 seconds

and longer and does a very good job of matching the data at 207 seconds. It is interesting,

however, that there is such a discrepancy for the longer period data, indicating that the

source is not well matched by a point source at 135 seconds and longer.

4.3 Body-wave source model

As the point source modeling indicates that a non double-couple component is not needed to

match the data, although allowable, it is of interest to see whether a purely double-couple

body-wave model can fit the surface waves. We use the source-time history from Henry

et al. (2000) to calculate 3D synthetics for the Balleny Islands event (Fig. 4.5). The model

was obtained by inverting body waves for the slip on two fault planes. The slip is mainly



50

PET
ADK
KIP
PPT

PTCN
UNM
SDV
LPAZ
PEL

PTGA
PLCA
BDFB

TSUM
BOSA
LBTB

BGCA
FURI
HYB

CHTO

WMQ
KMI
ENH
XAN
TLY
ULN

TATO
SSE
HIA

INCN
MDJ

MAJO
YSS

6.70511
23.4797
48.5275
72.5464
94.4587
100.811
134.307
144.691
147.236
148.68
149.67
163.688
225.451
228.569
230.267
235.067
256.104
295.343
313.769
314.775
319.195
326.519
327.177
329.555
330.364
335.533
336.553
339.688
342.279
345.786
351.496
355.726

Vertical Transverse

Figure 4.3: Waveforms at stations between 60 and 120 degrees computed for the Harvard
CMT. Data are shown in black and the 3D synthetics in red. All traces have been band-pass
filtered between 100 and 500 seconds. The vertical component is shown on the left and the
transverse component on the right. Shown are 3000 seconds, aligned on the arrival of the
Rayleigh and Love waves for the vertical and transverse components respectively. Station
names are shown on the left and azimuths in the middle. Notice that the amplitudes of the
data are generally overestimated to the east and underestimated to the west.
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Figure 4.4: Multitaper measurements of amplitude anomalies and time shifts between data
and synthetics computed for the Harvard best-fit point source. As expected for a point
source, there is an amplitude anomaly associated with the directivity. Positive amplitudes
denote larger data than synthetics. Positive time shifts indicate earlier arrivals in the
synthetics than data. Both the amplitude and the time-shift patterns show clearly that the
main propagation of rupture was to the west. Near-nodal azimuths are shown as shaded
areas.
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Figure 4.5: Source model from Henry et al. (2000) used in our simulations. The authors
emphasize that the well-constrained parts of the solution are those in the rectangular boxes
marked on the plots, which they refer to as subevents 1 and 2.



53

concentrated in a region within 100 km away from the hypocenter, rupturing mainly to the

west. In addition there is slip around 80 seconds after the first event, 250 km to the west.

The regions, in space and time, where the authors are confident in their slip models are

shown with white boxes on Fig. 4.5.

At first glance (Fig. 4.6), the waveforms are very well predicted by the synthetics.

However, upon closer inspection of the long-period waves in front of the main arrival of the

surface waves it becomes clear that the very long-period part of the data is not matched by

the synthetics. The observed amplitude discrepancies between east and west are similar as

those for the Harvard CMT, indicating that the source does not produce the required amount

of directivity. To quantify the differences we again turn to the multi-taper measurements

of amplitude differences and time shifts (Fig. 4.7). As observed in the waveforms, the

amplitudes towards the west are under predicted, both in the Rayleigh and Love waves.

However, the amplitude ratios for the Rayleigh waves do not form a simple sinusoid as

a function of azimuth as for the Harvard CMT. Instead, the amplitude ratios are sligtly

smaller, or similar, to the southwest than to the southeast, close to zero in the northeast

and very large in the northwest. By comparing the amplitude anomalies for model HenryD

(Fig.4.7) with the radiation patterns for the point sources (Fig. 4.2) we can guess that

this is a result of using the focal mechanism HenryF. This focal mechanism was obtained

from body waves and although Henry et al. (2000) state that the difference in misfit to the

surface data between HenryD and HenryF is negligible at 135 seconds, this indicates that,

in fact, HenryD can predict the longer-period surface waves better. We therefore repeat the

simulation using the same slip model but using the surface-wave focal mechanism HenryD.

The waveforms for this model are shown in Fig. 4.8 and the amplitude anomalies and time

shifts are shown in Fig. 4.9.

The pattern of amplitude ratios for the Rayleigh wave is now showing a similar pattern

as that for the Harvard CMT, although offset by a constant, with smaller amplitudes than

observed in the eastward direction, but similar to observed to the west. A similar pattern can

be seen for the Love wave, although the data around the nodes (in the shaded regions) show

significant variations. Notice that almost all the amplitude ratios are positive, indicating

that the model has a moment that is smaller than needed to explain the data. The time shifts

for both the Rayleigh wave and the Love wave indicate an earlier arrival than observed in all

directions, and more so in the west than in the east. This indicates that there is significant
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Figure 4.6: Waveforms computed for model HenryF. Data are shown in black and the 3D
synthetics in red. All traces have been band-pass filtered between 100 and 500 seconds. The
vertical component is shown on the left and the transverse component on the right. Shown
are 3000 seconds, aligned on the arrival of the Rayleigh and Love waves for the vertical and
transverse components respectively. Station names are shown on the left and azimuths in
the middle. Same as Fig. 4.3, except for the synthetics used. Notice that the synthetics
to the west are generally small compared to the data, and that over all the synthetics are
slightly shifted forward relative to the data. These differences are quantified at fixed periods
in Fig. 4.7.
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Figure 4.7: Multitaper measurements of amplitude anomalies and time-shifts between data
and synthetics computed for the Henry et al. (2000) source model (Fig. 4.5), with focal
mechanism HenryF. Note that almost all the amplitude measurements are positive, indicat-
ing that the amplitudes of the long-period seismic waves are underestimated by this model.
Note that the directivity is underestimated as well (the amplitude ratios are azimuthally
dependent).
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Figure 4.8: Waveforms computed for model HenryD. Data are shown in black and the 3D
synthetics in red. All traces have been band-pass filtered between 100 and 500 seconds.
The vertical component is shown on the left and the transverse component on the right.
Shown are 3000 seconds, aligned on the arrival of the Rayleigh and Love waves for the
vertical and transverse components respectively. Station names are shown on the left and
azimuths in the middle. The differences in the synthetics for mechanisms HenryD and
HenryF are not readily discerned by eye, but are extracted by the amplitude ratio and
time-shift measurements (Fig. 4.9).
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Figure 4.9: Multitaper measurements of amplitude anomalies and time shifts between data
and synthetics computed for the Henry et al. (2000) source model (Fig. 4.5), with focal
mechanism HenryD. The main differences between using focal mechanisms HenryD and
HenryF are seen in the amplitude ratios of in the Rayleigh wave. The amplitude ratio is
now more similar to a simple sinusoid, indicating that the remaining discrepancy is due to
how the rupture propagates along the fault plane, not the geometry thereof.
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slip at later times than predicted by the body-wave model.

4.4 Modification of the body-wave model

Since the overall amplitudes of the synthetics for the finite source model with focal mech-

anism HenryD match the records at shorter periods (Fig. 4.8) but not at long periods

(Fig. 4.9), we can exclude the possibility that the source time function should be scaled by

a constant. Furthermore, the observed time shifts indicate that the missing slip occurs at

a later time than the main slip prescribed by the body-wave model.

The lack of long-period energy is not surprising when we consider that the data used

for the body-wave inversion were band passed between 2 and 120 s, and thus the very long-

period energy in the body waves was filtered out. Furthermore, body-wave inversions are

known to be insensitive to the long period components of slip and therefore to the moment

of an earthquake (Ekström, 1989). We would like to find a model that can explain the data

over the entire frequency range. Consequently, we need to add a component that augments

the amplitude of the signal at long periods, but does not affect the shorter periods. One

way of doing this is to assume that the two subevents described by Henry et al. (2000)

are on a single fault plane and modify their model by adding slip between the two events.

We accomplish this by adding slip to the fault with a moment rate function of the form:

Ṁ(t) = ∆M0 sin(πt/T ), t ∈ [0, T ] sec, where ∆M0 is the total moment of the added slip

and T is the duration of the rupture. The slip is assumed to propagate along the entire

fault with a fixed rupture speed of 300/T km/s (Fig. 4.10). Adding long period slip to

body-wave source inversion was common practice in the late 80’s (e.g. Kikuchi and Fukao

1987 and Beck and Ruff 1987) when interpreting body waves recorded by the WWSSN

network that had a limited bandwidth. Due to the insensitivity of body waves to the long-

period components of slip, however, this is still a useful practice in the age of modern digital

seismology.

Notice that here there are two free parameters, the added moment, ∆M0 and the dura-

tion of rupture, T . We experimented with both, using trial and error, to obtain good fits to

the long-period radiation pattern. We found that ∆M0 = 8∗1020 Nm and T = 100 seconds

give the best fits. The duration of rupture in the original model is T = 90 seconds, but that

gives a slightly worse fit to the time shifts. The waveforms for this new model are shown
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Figure 4.10: The slip model modified from Henry et al. (2000) to better fit the long-period
radiation pattern. Point sources are added along the line representing a constant rupture
speed of 3.0 km/s in a smooth manner as described in the text.
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in Fig. 4.11 and the multi-taper measurements in Fig. 4.12

On average the time shifts and amplitudes of both Rayleigh and Love waves are close

to zero. There are significant variations in the nodal regions, indicating that perhaps we

could obtain better fits by a slight rotation of the strike of the event. Comparing to Fig. 4.4

and Fig. 4.9 we see that the model with an added component of smooth slip has smaller

amplitude anomalies and time shifts than the other finite fault models.

4.5 Discussion

We computed long-period synthetics for a body-wave source model of the Balleny Island

event (Henry et al., 2000), but find that the model predicts much smaller amplitudes at long

periods than observed. We present a modification of the Henry et al. (2000) source model

that incorporates long-period slip across the whole fault plane. The need for this added

slip can be understood by looking at the moment-rate functions for the different models

(Fig. 4.13). The Harvard CMT is the point source that best fits the long-period data, in this

case surface waves low-pass filtered at 135 seconds. The source has a triangle source time

function (here represented by the Gaussian that best fits the triangle) with a half duration

that is scaled from the moment (Fig. 4.13). In an ideal case, the center of the triangle

coincides with the first moment of the moment rate function of the earthquake. Comparing

the moment rate function of the Harvard CMT and the one from Henry et al. (2000) we can

immediately see that the centroid of the second model is too early. Comparing the source

spectra, we can see that the difference between the original finite model and the modified

model only appears at 80 seconds and longer. We can also see that at 200 seconds we are

not yet at the flat part of the spectra for the finite models.

We have compared the models visually at 207 seconds and 420 seconds. We can give

a more quantitative measure of the quality of fit of the models by using the definitions of

δ lnA and δτ . These values, averaging over all azimuths and periods between 100 and 500

seconds are given in Fig. 4.14. The average amplitude ratios are close to zero for both the

Harvard CMT and the modified finite model. However, the finite models with both focal

mechanisms have large average time shifts and amplitude anomalies. The variations around

the averages are largest for the Harvard CMT and smallest for the modified finite model.

We also note that the averages for this frequency band are similar to those obtained for
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Figure 4.11: Same as Fig. 4.8 except with synthetics computed for the modified source
model. Now the amplitude and phase of the surface waves match the data better. Further-
more, it is interesting to note that even the earlier phases, that were not used to constrain
the model, are also better matched.
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Figure 4.12: Multitaper measurements of amplitude anomalies and time shifts for the mod-
ified Henry et al. (2000) source model (Fig. 4.10). Notice that on average now all the
measurements are close to zero, for both Rayleigh and Love waves, at both periods of 207
and 420 seconds.



63

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 1019

Time [sec]

M
om

en
t!

ra
te

 [N
m

/s
]

Harvard CMT

This study

Henry et al

10!3 10!2 10!1
0

0.5

1

1.5

2

2.5
x 1021

Frequency [Hz]

Sp
ec

tra
l A

m
pl

itu
de

Figure 4.13: Moment-rate functions for the models presented, both in time domain and
frequency domain. The vertical gray line is at 200 seconds, indicating that at that period
we are still not at the flat part of the spectrum.

the India earthquake (see chapter 2), indicating that we cannot expect much improvement

relative to this model at periods between 100 and 500 seconds.

As the modified source model has continuous slip on one fault plane, it is by some

measure the simplest model that has been shown to fit both the body waves and the long-

period surface waves. The model by Kuge et al. (1999) is composed of five nearly pure

strike-slip events, the first three corresponding to the first subevent in this study, and

the last two corresponding to the second subevent. In order to fit the non double-couple

component they add three normal faulting subevents, with long rupture duration, at the

ends of the strike-slip events. The long duration is needed to reduce the body-wave radiation

from the normal subevents, as they are much more efficient at radiating far-field P-waves

than strike-slip subevents. In this model there is a 60 km gap between the two clusters

of subevents. This setting is explained in terms of a series of en echelon strike-slip faults

connected by normal faulting events. Other researchers (Nettles et al., 1999) also model

the event as five nearly pure strikes-slip events, but point out that the second two have a

10±5◦counterclockwise rotation in strike, going from 281◦to 271◦, relative to the first three.

They suggest this could indicate a curved fault or two faults slightly offset from each other.

They make no attempt at explaining the non double-couple component, and by comparison

to the study of Kuge et al. (1999) and Henry et al. (2000) it is unlikely that this purely

strike-slip solution would explain the long-period data. By using finite fault modeling of
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body waves, Antolik et al. (2000) suggest that the non double-couple component of the

Harvard CMT can be explained by compound rupture on two faults: one nearly pure strike

slip fault, consistent with the first motions, and the other an oblique normal fault rotated

∼25◦relative to the first. Both Antolik et al. (2000) and Henry et al. (2000) point out that

the first motions of the P-wave require that the rupture started as nearly pure strike-slip.

It may seem somewhat puzzling, tectonically, that a 300 km narrow intraplate fault

could have a dip and rake as large as suggested by the surface wave modeling. As described

above, other studies have suggested a combination of normal faulting and strike-slip faulting

to explain the surface-wave radiation, although those have been aimed at explaining the non

double-couple component of the Harvard CMT which we find consistent with the surface-

wave data, albeit not necessary.

4.6 Conclusions

We have compared the observed surface waves for the Balleny Islands event to those com-

puted for four different source models: one surface-wave point-source model (HarvardCMT),

one finite fault model with two different fault orientations (HenryD and HenryF) and one

finite model combining model HenryD and a smooth component of slip extending over the

whole fault in space and time, propagating unilaterally along the fault. We have shown

that by adding this component of slip we can significantly improve the fits to the amplitude

and phase of surface waves. The modified body-wave model provides reasonable fits to the

long-period surface waves, as well as the body waves, without invoking slip on multiple fault

planes, or on unconnected fault patches. The continuity of slip indicates that this event

can be explained by standard fracture mechanics models where the rupture is driven by the

stress concentration at the crack tip. We have only proven the existence of such a model,

not its uniqueness. We present this as the simplest model that gives a reasonable match to

a wide range of data sets, although a more segmented rupture cannot be ruled out.

This study emphasizes the importance of including long-period waves in finite fault

modeling. The most basic approach is to constrain the models to have the correct moment,

centroid time and location. Here we further match the azimuthal amplitude pattern due to

the directivity of the rupture. Care has to be taken to use waves that have periods several

times longer than the duration of the source to estimate the point-source parameters. By
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combining the body-wave modeling with the surface-wave modeling we retain both the

robustness of the surface waves and the detail of the body waves.
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Chapter 5

The 2004 Sumatra, Indonesia
earthquake

5.1 Introduction

The December 26th, 2004 Sumatra, Indonesia earthquake is the largest event occuring in

the last 40 years, and it caused immeasurable death and destruction. It is also the largest

event to be recorded on modern broadband instruments. However, there has been a debate

as to how big the event is and as to the duration of slip. Here we detail some of the modeling

that took place early on, and show how by looking at different parts of the spectrum one

can get a different estimate of the size and duration.

5.2 Constraints from long-period surface waves

5.2.1 Data and processing

We obtain 6 hours of data from from the IRIS data center (http://www.iris.edu), recorded

on instruments with corner period above 300 seconds We have taken care to discard data

from stations showing non-linear response due to the large amplitudes involved. We com-

puted long-period seismograms for several available source models. We perform two sets

of simulations for each source model, one using the SEM method as in previous chapters

(Komatitsch and Tromp, 2002a), and one using normal mode summation. This is necessary

since the SEM method uses an approximate method for incorporating self-gravitation, the

Cowling approximation, and that causes significant errors, particularly in phase, at periods

above 800 seconds. We compare vertical component data and synthetics in several pass-
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Figure 5.1: Topography/Bathymetry in the region of the great 2004 Sumatra earthquake.
Shown are the Harvard CMT estimates in the first month after the earthquake. The CMT
for the main event is shown with the large beach ball. Note that the aftershocks extend
almost to 15◦North. Also note that the centroid is located very close to the southern end
of the aftershock zone, and the hypocenter. The black lines are 50 and 100 km depth slab
contours (Gudmundsson and Sambridge, 1998).

bands to estimate how well the different source models reproduce the observations. In each

passband we take the envelope of the traces (data and synthetics), select a window around

the surface wave, pick the maximum amplitude of the envelope within that window, and

measure the ratio of the amplitude of data and synthetics. We also measure the time shift

between data and synthetics using cross-correlation, for each passband.

5.2.2 Harvard CMT and preliminary finite-fault model

The Harvard CMT solution was published very shortly after then event. This point source

solution is close to the epicenter (within 1.5◦). About a week after the event a preliminary

finite fault model, based on modeling of P- and S-waves, was published (Ji , 2005). The finite

fault model (Fig. 5.2) has a similar moment and location of maximum slip as the Harvard
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CMT and prescribes slip on a 400 km long fault. The model suggests nearly unilateral

propagation to the north and up dip.

Figure 5.2: Left: Slip distribution (Ji , 2005) for a preliminary finite fault model. Right:
Observed (black) and computed (red) waveforms for the preliminary source model. Shown
are waveforms in southward azimuths, which are the most difficult azimuths to fit. The
waveforms are normalized by

√
sin∆, where ∆ is the great circle arc distance between data

and stations, to correct for the geometrical spreading of the surface waves. The azimuth is
shown with numbers on the left and ∆ is shown next to the station name on the right.

We compute synthetics for both the Harvard CMT and the preliminary slip model.

The preliminary slip model shows reasonably good fits to the surface waves in the passband

200–500 seconds (Fig. 5.2). Although the synthetic waveforms in some azimuths have signif-

icantly shorter duration than observed, for example GUMO (Guam) and WRAB (Western

Australia) others have not, for example EFI (Falkland Islands) and NNA (Peru). The spa-

tial extent of the fault plane for the preliminary slip model is substantially smaller than the

aftershock area (see f.ex. Fig. 5.1). Furthermore, we received reports on significant uplift

at Port Blair in the Andaman Islands, about 600 km north of the end of the preliminary

slip mode (from various websites, collected by Roger Bilham and later published in Bilham

et al. (2005)). These observations , in particular the observations of uplift in the Andaman

Islands, seem contradictory to the preliminary slip model (Ji , 2005). This model is based
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on the first 200 seconds of the P-wave train. After that time other phases (e.g., PP) ar-

rive, and modeling using just body waves becomes difficult (see for example Ammon et al.

(2005), Model I), unless the other phases are accurately accounted for. Since the north

bound of the fault is selected based on the length of the time window between the arrivals

of the P-wave and the PP-wave there is no reason to believe that there is no slip further

north. However, as the finite fault model does a relatively good job of explaining the overall

amplitude and phase of the 200–500 seconds surface waves, one could conclude that there

was not significant slip further north, exciting waves at these periods.

In order to see if the preliminary slip model, and the Harvard CMT, can predict the

waveforms in other period bands, we compare the amplitude ratios of data and synthetics

and the time shifts between them at different periods (as detailed in section 5.2.1). The

results are shown in Fig. 5.3.

Harvard CMT

Preliminary Slip model

Figure 5.3: Amplitude ratios (left) and time shifts (right) for the Harvard CMT (top) and
the preliminary slip model (bottom). A model that can accurately describe the data will
have amplitude ratios of unity and zero time shifts. Amplitude anomalies larger than unity
indicate larger data than synthetics, and positive indicate earlier arrivals in synthetics than
data. Shown are measurements for data and synthetics filtered in different band-passes. It
can be seen that both models predict the shorter periods better than the longer periods.

Focusing first on the results from the Harvard CMT, we can see that the overall ampli-

tude of the surface waves are well matched at periods of 100–500 seconds, although there
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is a large amount of directivity, such that data in northwestward azimuths is larger than

synthetics, and smaller in southeastward azimuths. The overall amplitude ratio at 1000–

2000 seconds is close to two. The time shifts at 100–500 seconds are close to zero, as to

be expected since that is the period band that is used to estimate the Harvard CMT. For

longer period data there are time shifts of up to 50–100 seconds observed.

The preliminary finite-fault model has overall amplitude ratios of data and synthetics

close to unity for periods of 100–1000 seconds. The amplitude ratios at longer periods are

larger, in the range of 1.5 to 2. The time shifts show a similar pattern as those measured for

the Harvard CMT, although a little larger on average. This shows that in order to obtain

an accurate slip model for this earthquake, we need to look at the very long-period data,

those with periods of 1000 seconds and longer.

The discrepancy between the fault area of the model, and the fault area suggested by

aftershocks and subsidence in the Andamans, in addition to the “frequency dependence” of

the moment as interpreted from figures similar to Fig. 5.6 led to the idea that the slip in

the northern part was somehow slow, either with a small rupture speed or long rise time.

Slow slip could accommodate slip on a larger area without exciting seismic waves in the

period band of 200-500 seconds.

5.2.3 Final slip models

The very long duration of the earthquake makes traditional body-wave modeling difficult.

In order to match the long period slip during the earthquake, surface waves have to be

included in the inversion. Two models based on surface waves are are published in Ammon

et al. (2005). The first (Model II, from Hong-Kie Thio) is based entirely on surface waves,

and the second (Model III, from Chen Ji) is based on body waves, short-period surface

waves from four nearby stations and long-period surface waves from the global network.

Model III is a later iteration of the preliminary model presented in the last section, and

changed over time as successive iterations were shown not to match the long-period surface

waves (this study) and/or the excitation of the Earth’s normal modes (work by Alex Song,

published in part in Park et al. (2005)). Since the surface waves are now being used to

construct the models, it is not a surprise that the resulting synthetics fit the data very well.

The slip models, and their corresponding waveforms, are shown in Fig. 5.4 and Fig. 5.5.

The frequency dependent amplitude ratios and time shifts for both models are shown
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Figure 5.4: Slip distribution obtained from body-waves and surface waves (Ammon et al.
(2005), Model III), and predicted waveforms. Compare to Fig. 5.2.
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NWAO 41.9057° 150.563°

WRAB 45.5351° 121.883°

GUMO 51.0438° 75.0911°

CTAO 55.9703° 116.666°

CASY 70.1956° 173.078°

SUR 77.7507° 236.096°

MIDW 87.1199° 62.0369°

SBA 89.3531° 168.343°

TRIS 105.071° 232.564°

PMSA 116.487° 190.193°

EFI 126.338° 201.041°

TRQA 138.967° 208.979°

RPN 147.124° 138.916°

NNA 167.518° 224.444°

PAYG 174.862° 62.2484°

Figure 5.5: Slip distribution obtained from surface waves (Ammon et al. (2005), model II)
and predicted waveforms. Compare to Fig. 5.2 and Fig. 5.4.
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in Fig. 5.3. Both models provide good matches to the observed data. The two surface

Final slip model
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Figure 5.6: Amplitude ratios and time shifts for the final source models, Ammon et al.
(2005), Model III (top) and Model II (bottom). Compare to Fig. 5.3.

wave models have been shown to match the excitation of the Earth’s normal modes (Park

et al., 2005). As shown in previous chapters of this thesis, we have to look at periods that

are significantly longer than the duration of the earthquake to estimate if all the slip is

accounted for in the models. The moment-rate function for Model III and its spectra are

shown in Fig. 5.7. By comparing the synthetic wave-form and the moment-rate function,

we see that multiple phases other than the direct P-wave arrive within the duration of the

source. As a result of this, traditional body-wave modeling can not be used reliably. We

also see that the flat portion of the spectra is at periods of 1000 seconds or longer for this

model.

5.3 Constraints from GPS measurements

In the last section we showed how the source models changed as we successively looked

at longer and longer periods. The ultimate long-period part of the spectrum is the static

field. For this giant earthquake static offsets were recorded on GPS receivers at very large

distances, up to thousands of kilometers away (Banerjee et al., 2005). The long-period

surface waves were used to obtain the source models, and therefore the comparison of
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Figure 5.7: The top trace shows a mode-summation synthetic seismogram, for an event
with the mechanism of the Harvard CMT, but a short source duration, at a distance of 60◦.
The central panel depicts the moment rate function for model III (Ammon et al., 2005) on
the same time scale as the trace above. For comparison we show the moment-rate function
for the 2001 Kunlun earthquake, multiplied by 5. The bottom panel shows the spectral
amplitudes of the two moment-rate functions shown in the central panel.
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those to data do not provide an independent estimate of the quality of the source models.

However, we can test the models by checking their predictions to a new data set, the static

offsets.

Traditionally, in geodetic modeling, uniform or layered half-space structural models

have been used to invert for the slip on a given fault plane. To explain offsets from great

earthquakes at very large distances spherical models are needed (Banerjee et al., 2005). In

the previous section we used the spectral element method (SEM) to compute 3D global

seismograms (Komatitsch and Tromp, 2002a). The method computes the full wave field,

and therefore includes the static field “for free.” Here we show how one can estimate the

static field from the SEM simulations, and apply the method to several source models

produced for the Sumatra earthquake. Using this method we can compute static offsets for

a model that incorporates the Earth’s topography, ellipticity and 3D elastic structure.

5.3.1 Data and modeling

Two studies estimate the static field from the earthquake (Banerjee et al., 2005; Vigny et al.,

2005). These are difficult measurements and several factors can influence the estimates.

Both studies use data from the continuous IGS network, in addition to other data. The

first mentioned study estimates the offsets by differencing the averages measured over five

days before the earthquake and five days after the earthquake, whereas the latter uses one-

day averages. As we expect some postseismic motion, this time difference can influence the

estimates of the offsets.

We compute the dynamic field for the entire globe, a total of 100 minutes. The dynamic

field includes the static component as shown in Fig. 5.8. In order to estimate the static

displacement, we take the average displacement at times between 2000 and 4000 seconds

after the initiation of rupture. The start time is chosen to correspond to the time that most

of the first-arrival waves have passed, and the end time is such that the second arrival waves

have not yet arrived. If the static displacements are very small, the contribution from the

waves may be significant, so we only attribute significance to estimates larger than 1 mm.

In order to minimize the effect of high frequency waves on the measurements, we alter the

time history of the models, such that all the subsources comprising the model, start off

at the same time, with a long rise time (200 seconds). As we are looking at the static

component the time history of the source does not impact our results.
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Figure 5.8: Example of estimating the static field from the seismograms. The unfiltered
seismogram from the forward run (blue), the time window used for estimating the static
offset (black) and the estimated offset (red), for the three components at station IISC.

5.3.2 Results

We compute the static offsets for three source-models; the two finite-fault models presented

above (Ammon et al., 2005)and a slip model derived from static offsets in the near field

(Chlieh et al., 2007). The first thing to note is that there is a relatively big difference

between the data themselves. The largest motions in the far-field are seen to the east and

to the west. As we are strictly modeling the coseismic displacements, one would expect the

predicted offsets to be closer to the estimate by Vigny et al. (2005) than Banerjee et al.

(2005), as they use a shorter averaging time after the earthquake to obtain the offsets,

reducing the influence of postseismic motions. In fact, both Ammon et al. (2005) model II

and III have slightly smaller predictions than observed by Vigny et al. (2005), which are

in turn smaller than those estimated by Banerjee et al. (2005). The model based on static

data predicts, generally, slightly larger motions than the seismic models.
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Figure 5.9: Observed (blue and black) and computed (red) static displacements for the
combined body-wave and surface-wave model Ammon et al. (2005), model III. The two
data sets represent data processed by different authors.

5.4 Discussion and conclusions

We have shown how the preliminary finite-fault models failed at predicting the very long-

period surface waves, and how a modified model (model III) could match body waves,

short-period and long-period surface waves, the Earth’s normal modes and far-field static

offsets. Tsunami data can also be explained by slip models with similar moments (Fujii

and Satake, 2007; Piatanesi and Lorito, 2007), although some tsunami researchers advocate

slip with a tsunami component (Seno and Hirata, 2007). By combining modern broadband

records and a wide suite of modeling techniques we obtain a model for the great Sumatra

earthquake that is self-consistent over the seismic frequency band. This model involves

rupture propagation at a speed on the order of 2.5 km/s and rise times on the order of 20

seconds.

However, our preferred model (model III) has been shown (Chlieh et al., 2007) to severely

underpredict the near-field static offsets. Part of this discrepancy can be explained by post-

seismic motion in the month following the event. Models based on purely static data predict

larger slip, in particular in the Nicobar and Andaman segments, and at shallower depths.
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Figure 5.10: Same as Fig. 5.9, with model predictions by Ammon et al. (2005), model II.
We note that the predicted offsets are somewhat smaller than for model III.
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Figure 5.11: Same as Fig. 5.9 with model prediction for a static source model (Chlieh et al.
(2007), model G.)
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The seismic model is not very sensitive to the location of slip down dip, and although not

shown here, a large part of the remaining discrepancy could be removed by shifting the

slip up dip and making it more compact, while keeping the moment constant, similar to

the models presented in (Chlieh et al., 2007). The geodetic data above the fault plane

are point measurements, and without the constraint on the moment from seismological

data, it is difficult to know how to distribute the slip on the fault plane, between the data

points. However, this illustrates how difficult it can be to model the seismic source, and

how adding one data set can change seemingly robust results significantly. We emphasizes

the importance of using multiple data sets for seismic source modeling, and that caution

should be exercised when interpreting the details of the models.

5.5 Acknowledgements

The work presented in this chapter was done in close collaboration with Chen Ji, Mohamed

Chlieh and Hiroo Kanamori, and was published in part in Ammon et al. (2005) and Chlieh

et al. (2007).



81

Chapter 6

Adjoint source inversions

6.1 Introduction

As we have seen in previous chapters, the seismic source inverse problem has many trade-

offs, and the result of an inversion can change significantly depending on the data set used.

The entire waveform contains information about the earthquake source, but in order to

minimize the effects of errors in 3D structural parameters, only selected parts are used in

most analyses, e.g. body waves and long-period surface waves. By accurately accounting

for 3D structure one can use a larger portion of the seismogram to determine the source

parameters, thereby reducing trade-offs. In the previous chapters we have shown how this

can be accomplished in a forward modeling sense, but now we focus our attention on how

we can use the 3D synthetics to invert for source models in an efficient way. As computing

accurate broad-band synthetics for a 3D Earth is still expensive, we wish to use a method

that limits the number of simulations.

Adjoint methods to obtain structural models were introduced into seismology by Taran-

tola (1984). He shows how, in the acoustic approximation, the gradient of a misfit function

can be estimated by propagating the residuals between data and synthetics backward in

time. By stepping in the direction of the gradient he iteratively solves for a structural

model. He also gives an expression for the updated source time function in terms of the

time-reversed wave field. Later studies (Gauthier et al., 1986; Tarantola, 1987, 1988) fo-

cused on developing and applying the method to improve structural models. A more general

description of adjoint methods was given by Talagrand and Courtier (1987). An example

of estimating the magnitude and direction of a point force, using an adjoint method in

combination with a conjugate gradient method, is given by Tromp et al. (2005), and an
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example of the source-location problem in 2D is given by Tape et al. (2007).

The first step of the adjoint method is the back-propagation of the difference between

data and synthetics. An initial estimate can be given by the “zero” model, thus back-

propagating the data, reversed in time. This step in and of itself is known as “time-

reversal imaging”. McMechan (1982) illustrates how in an exploration geophysics setting

point sources and line sources can be located by back-propagating the recorded data in

a synthetic model. In a later study this method is applied to data from the Long Valley

caldera in California (McMechan et al., 1985). An example of application to a synthetic

finite source is given by Chang and McMechan (1991). Gajewski and Tessmer (2005) apply

time-reversal imaging to synthetic data, emphasizing the ability of this method to locate

events without picking phases. Time-reversal imaging has also been used to determine

the duration and extent of the 2004 Sumatra earthquake by back-propagating long-period

global surface waves (Larmat et al., 2006). To interpret the time-reversed field in terms of

a finite source they deconvolve the time-reversed field from a smaller event from that of the

main event.

Several studies have focused on the experimental side of time-reversal imaging, which is

often refered to as “time-reversal acoustics” or “time-reversal mirrors” (for an overview see

Fink , 1997). The experiments include a source that sends waves through complex media,

and receivers that can retransmit the signal reversed in time such that the waves refocus on

the source. The method has been applied successfully in the laboratory and in the ocean.

6.2 Theory

In any modeling process we wish to find a model that can reproduce the observed data.

The first question to ask is how to quantify the similarity of the model prediction and

the data. In body-wave source modeling it is common practice to use the waveform misfit

function (Nolet , 1987), or the squared difference between data d and synthetics s, recorded

at receivers r located at xr, integrated over a time window [0, T ]:

χ(m) = 1
2

N∑
r=1

∫ T

0
||s(xr, t,m)− d(xr, t)||2dt. (6.1)
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We wish to find the minimum of this function with respect to the model parameters. As

shown by Tarantola (1984, 1987, 1988) the gradient of this function can be estimated

numerically, given a model vector m, and then one can iteratively take steps towards the

minimum. The gradient with respect to the model parameters can be written as:

δχ =
N∑

r=1

∫ T

0
[s(xr, t,m)− d(xr, t)] · δs(xr, t,m)dt (6.2)

We are interested in a source inversion, so the model parameters can be written as a

distributed moment-tensor source m(x, t) on a fault plane Σ. The surface-density moment

tensor is given by (Dahlen and Tromp, 1998):

m = µ∆s(σ̂ν̂ + ν̂σ̂), (6.3)

where µ is the shear modulus, ∆s is the magnitude of the slip vector, σ̂ is the slip direction

and ν̂ is the fault normal. It is of convenience to define the distributed moment-tensor

source in the volume V ;

m̃(x, t) = m(xs, t)δ(x− xs), (6.4)

where xs ∈ Σ. The ith component of the response can be written as (Aki and Richards,

1980; Dahlen and Tromp, 1998):

si(x, t) =
∫ t

0

∫
Σ

∂′jGik(x,x′; t− t′) mjk(x′, t′)d2x′dt′ (6.5)

=
∫ t

0

∫
V

∂′jGik(x,x′; t− t′)m̃jk(x′, t′)d3x′dt′, (6.6)

where G(x,x′; t− t′) is the Green’s function response due to a point force. The change in

the response δsi(x, t) with respect to the model parameters then is:

δsi(x, t) =
∫ t

0

∫
V

∂′jGik(x,x′; t− t′)δm̃jk(x′, t′)d3x′dt′. (6.7)

Substituting the expression for δsi(x, t) into Eq. 6.2, and changing the order of integration

we get

δχ =
N∑

r=1

∫ T

0

∫
V

∫ T

t′
[si(xr, t)− di(xr, t)]∂′jGik(x,x′; t− t′)δm̃jk(x′, t′)d3x′dtdt′. (6.8)
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Figure 6.1: A forward simulation on the left, contrasted with an adjoint simulation on the
right. In a forward simulation, the source-time function is inserted at the location of the
source, and the resulting wave field is recorded at the receiver. In the adjoint simulation,
the time-reversed difference between data and synthetics is inserted at the location of the
receiver, as a force, and the resulting wave field, the adjoint wave field, is recorded at the
location of the initial source. Setting the synthetics to zero, and back-propagating the data
directly (as pictured here) is referred to as time-reversal imaging.

Tromp et al. (2005) define the waveform adjoint source as:

f †i (x, t) =
N∑

r=1

[si(xr, T − t)− di(xr, T − t)]δ(x− xr), (6.9)

and the resulting waveform adjoint field as the field that is generated by this source:

s†k(x
′, t′) =

∫ t′

0

∫
V

Gki(x′,x; t′ − t)f †i (x, t)d3xdt. (6.10)

By change of variables, and invoking the reciprocity of the Green’s function, they show that

we can write

s†k(x
′, T − t′) =

N∑
r=1

∫ T

t′
[si(xr, t)− di(xr, t)]∂′jGik(x,x′; t− t′)dt. (6.11)

By substituting this result into Eq. 6.8, and dropping the primes, we get

δχ =
∫ T

0

∫
V

∂js
†
k(x, T − t)δm̃jk(x, t)d3xdt. (6.12)
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In vector format

δχ =
∫ T

0

∫
V
∇s†(x, T − t) : δm̃(x, t)d3xdt. (6.13)

Using the symmetry of the moment tensor we finally obtain:

δχ =
∫ T

0

∫
V

ε†(x, T − t) : δm̃(x, t)d3xdt (6.14)

where we have defined ε† = 1
2 [∇s + (∇s)T ], which we will refer to as the adjoint strain. If

we assume that the moment density is confined to a fault plane Σ, and only the moment-

density is perturbed, not the fault plane, such that δm̃(x, t) = δm(xs, t)δ(x− xs), then we

get the result presented by Tromp et al. (2005):

δχ =
∫ T

0

∫
Σ

ε†(xs, T − t) : δm(xs, t)d2xdt, (6.15)

where xs ∈ Σ. This equation shows that the adjoint strain tells us in which direction in

parameter space to go in order to obtain a better source model.

It can be difficult to visualize the result of integrating the adjoint strain multiplied by

the source-time history, which can, generally, be described by a step-like function (such as

a Heaviside function or an error function). Another way of writing Eq. 6.15 is obtained by

integrating by parts:

δχ = [I(ε†)(xs, T − t) : δm(xs, t)]T0 +
∫ T

0

∫
Σ

I(ε†)(xs, T − t) : δṁ(xs, t)d2xdt, (6.16)

where I(ε†)(x, t) =
∫ t
−∞ ε†(x, t′)dt′. We can make the first term vanish by choosing t=0

before the initiation of the source, and thenm(x, 0) = 0.

We can also allow for a perturbation in the location of the fault plane h(xs), in the

direction of the fault normal ν̂. Then we get another term accounting for the mislocation

of the fault plane:

δ ˙̃m(x, t) = δṁ(x, t)δ(x− xs) + ṁ(x, t)δh(xs)∂νδ(x− xs), (6.17)

and the change in misfit becomes:

δχ =
∫ T

0

∫
Σ

I(ε†)(xs, T −t) : δṁ(xs, t)d2xdt+
∫ T

0

∫
Σ

∂νI(ε†)(xs, t) : ṁ(xs, t)d2xdt. (6.18)
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Note that in order to update the location of the fault plane we monitor the directional

derivative of the strain across the fault plane. The contraction with m ensures that only

the strains corresponding to large moment-tensor elements contribute to the change in

misfit.

For a point source in space, with time dependence S(t− ts) we write ˙̃m(x, t) = Mδ(x−

xs)Ṡ(t− ts). Now the change in the moment density with respect to the source parameters

(M,xs, ts) is:

δ ˙̃m(x, t) = δMδ(x−xs)Ṡ(t−ts)+δxs·∇δ(x−xs)MṠ(t−ts)−δtsMδ(x−xs)S̈(t−ts), (6.19)

and the change in misfit is:

δχ =
∫ T

0
Ṡ(t− ts)I(ε†)(xs, T − t) : δMdt (6.20)

+
∫ T

0
Ṡ(t− ts)δxs · ∇sI(ε†)(xs, T − t) : Mdt (6.21)

−
∫ T

0
S̈(t− ts)δtsI(ε†)(xs, T − t) : Mdt. (6.22)

A similar result for waves on a membrane was obtained by Tape et al. (2007). As the

slip-rate is often described by a gaussian, or a box-car, the first term shows that the change

in the point-source moment-tensor elements is given by an integral of a windowed version

of the integral of the adjoint strain. The second term again shows how an update of the

location of the source can be obtained by monitoring the gradient of the adjoint strain, at

the location of the source. The third term describes how to update the source-time history.

In finite fault modeling, one often chooses a fault plane discretization in space and time,

such that:

ṁ(x, t) =
∑
p

∑
q

ṁpqδ(x− xp)δ(t− tq). (6.23)

Substituting for δm in Eq. 6.15 we have:

δχ =
∑
p

∑
q

δṁpq : I(ε†)(xp, T − tq) (6.24)

The quantity I(ε†)(xp, T − tq) therefore corresponds to the moment-rate function of the

updated source.
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Finally it is of interest to write the change in moment tensor elements in terms of the

standard fault parameters, strike ζ, dip i and rake γ. Writing (Aki and Richards, 1980)

m = µ∆s[sin 2i sin γ r̂r̂− (sin i cos γ sin 2ζ + sin 2i sin γ sin2 ζ)θ̂θ̂

+ (sin i cos γ sin 2ζ − sin 2i sin γ cos2 ζ)φ̂φ̂

− (cos i cos γ cos ζ + cos 2i sin γ sin ζ)(r̂θ̂ + θ̂r̂) + (cos i cos γ sin ζ − cos 2i sin γ cos ζ)(r̂φ̂ + φ̂r̂)

− (sin i cos γ cos 2ζ + 1
2 sin 2i sin γ sin 2ζ)(θ̂φ̂ + φ̂θ̂)]. (6.25)

We can now write the perturbation in m in terms of the fault parameters (µ∆s, ζ, i, γ).

Substituting into Eq. 6.4 then Eq. 6.14 we can write the change in misfit as

δχ =
∫ T
0

∫
Σ K∆s(r, T − t)δ(µ∆s)(r, t) dΣ dt +

∫
Σ Kγ(r)δγ(r) dΣ +

∫
Σ Ki(r)δi(r) dΣ

+
∫
Σ Kζ(r)δζ(r) dΣ +

∫
Σ Kh(r)δh(r) dΣ. (6.26)

Explicit expressions for the kernels K∆s, Kγ , Ki, Kζ , and Kh are given in appendix B.

Here we have obtained expressions for the gradient of a waveform misfit function. Tromp

et al. (2005) show how choosing a different misfit function, such as a travel-time or amplitude

misfit, can be used in a similar manner as the waveform misfit, and the difference appears

in the form of the adjoint source f †(x, t).

We have shown several ways to estimate the gradient of the misfit function, δχ, de-

pending on the parametrization of the earthquake source. In order to update the model

parameters, m, we need to decide how to use the gradient to get a new estimate. There are

several known methods, such as steepest decent methods and conjugate gradient methods.

The inversion for the amplitude of a point force source (Tromp et al., 2005) in 3D and the

location and timing of a point source in 2D (Tape et al., 2007) were performed using a

conjugate gradient method.

6.3 The connection between adjoint methods, time-reversal

imaging and stacking

As we saw in the previous section, the first step of an adjoint method is the back-propagation

of the time-reversed data traces. This is the core of time-reversal methods (McMechan,
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1982). Lately, several studies have applied stacking methods, in order to track the origin of

high frequency radiation of large earthquakes (Krüger and Ohrnberger , 2005a; Ishii et al.,

2005) and to locate earthquakes that do not have a clear beginning (Kao and Shan, 2004;

Ekström, 2006). Here we wish to show the similarity between time-reversal imaging and

stacking methods, by relating the adjoint field (Eq. 6.10) to the equation given for the stack

by Ishii et al. (2005):

sj(t) =
N∑

k=1

(pk/Ak)uk(t− tPjk + ∆tk), (6.27)

where sj(t) is the stack at test location j, uk is the vertical component seismogram recorded

at station k, pk is a polarity correction, Ak is an amplitude correction, tjk is the travel

time between test source j and station k computed for a 1D reference model, and ∆tk

is an empirical “station correction” for 3D effects. The amplitude, polarity and station

correction factors are obtained by cross-correlating the very first few seconds of the recorded

seismograms with a reference stack. To enhance the image, the authors square the stack and

integrate over short time windows to obtain the “brightness”. They relate the brightness

to the energy radiated from the test-source location during each successive time window.

For comparison, we start with the adjoint source (Eq. 6.9) for the “zero” model, i.e. with

the synthetics set to zero. We also allow for a weighting factor wr and a time shift ∆tr for

each trace:

f †i (x, t) =
N∑

r=1

wrui(xr, T − t + ∆tr)δ(x− xr). (6.28)

We now convolve this source with the Green’s function to obtain the adjoint wave field

s†k(x, t) =
∫ t

0

∫
V

Gki(x,x′; t− t′)f †i (x′, t′)d3x′dt′ = (6.29)

N∑
r=1

∫ t

0
wiGki(x,xr; t− t′)ui(xr, T − t′ + ∆tr)dt′. (6.30)

In order to compare to Eq. 6.27 we focus on the vertical component of the wave field,

and use only the vertical component of the adjoint field. We can then drop the indices

denoting the component:

s†(x, t) =
∫ t

0

N∑
r=1

wiG(x,xr; t− t′)u(xr, T − t′ + ∆tr)dt′ (6.31)
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We now decide to record the adjoint field only at selected test locations j (which could be

located on a grid). We further refer to the locations of the receivers as k. Now we can drop

the x-dependence and the Green’s function Gjk then corresponds to the zz element of the

Green’s tensor, from source location j to receiver location k:

s†j(t) =
N∑

k=1

∫ t

0
wiGjk(t− t′)uk(T − t′ + ∆tk)dt′. (6.32)

At this point we have to assume the shape of the Green’s function. Comparing to the

direct P-wave, we can assume that the Green’s function is a delta function at time tjk, which

is the travel time between test source j and receiver k, multiplied by an amplitude factor,

ajk, that contains information on excitation and path effects, or Gjk(t−t′) = ajkδ(t−t′−tjk)

(Aki and Richards, 1980). Now the adjoint field can be written as:

s†j(t) =
N∑

k=1

∫ t

0
wiajkδ(t− t′ − tjk)uk(T − t′ + ∆tk)dt′ (6.33)

If we want to look at the adjoint field at and just after the start time of the source T we

get:

s†j(T − t) =
N∑

k=1

wkajkuk(t− tjk + ∆tk), (6.34)

which can be compared to:

sj(t) =
N∑

k=1

(pk/Ak)uk(t− tPjk + ∆tk). (6.35)

Thus, in order to compare the results, we can multiply the adjoint sources f †k by wk =

pk/(Akajk). If we are using the same Earth model for the back-propagation as is used to

compute tPjk we can also apply the shifts ∆tk (obtained from cross-correlation), to the data

before back-propagation in order to correct for 3D effects.

6.4 Back-propagation of high frequency radiation

In order to demonstrate the similarity between the time-reversal method and stacking meth-

ods in practice, we apply the theory to the Hinet data set for the Sumatra earthquake. Hinet

(http://www.hinet.bosai.go.jp/) is a dense array of high-frequency bore-hole instruments in
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Japan. The sensors have a corner frequency of 1 second and are all buried by at least 100

meters, reducing noise from the surface. There are around 700 Hinet stations distributed

over the Japanese Islands, continuously recording, providing us with an unequaled high-

frequency data set for a giant earthquake. The data set has been shown to give an estimate

of the extent and duration of the 2004 Sumatra earthquake using stacking methods (Ishii

et al., 2005; Krüger and Ohrnberger , 2005b). The location of the array relative to the

earthquake source area is shown in Fig. 6.2.

Figure 6.2: Geometry of the simulations used for stacking and back-propagation of high-
frequency data. The Hinet stations used in the study are shown with red triangles and
the source area is shown with the small rectangle. The region of simulations for the back-
propagation is shown with a large rectangle (65◦across in each direction).

6.4.1 Stacking

Here we repeat the experiment of Ishii et al. (2005) for comparison with the back-propagation

method. We compute the stacks for a grid of test locations in the region around the source,

according to Eq. 6.27. We start with a total of 552 vertical component records. We estimate

the time-shifts and polarity corrections, ∆tk and pk, based on cross-correlation of the first

four seconds of the records with a reference stack, as described by Ishii et al. (2005). Only

records with cross-correlation factors higher than 0.7 are retained, leaving 384 records. The
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amplitude normalizing factor Ak is given by the ratio of the maximum amplitude within the

four second window of the trace versus the stack. Once the stack is obtained for all the test

locations, we compute the square of each stack, and integrate over 30 second time windows.

The integral over the time window at each location is referred to as the brightness and can

be related to the energy radiated from the test location within the time window (Ishii et al.,

2005) . By tracking the location of high brightness through successive time windows one can

monitor the spatio-temporal origin of the high-frequency energy. The results of the stacking

the unfiltered Hinet data is shown in Fig. 6.3. The high-frequency stacks show remarkable

focusing on a small region on the fault plane. Some smearing (southwest to northeast)

is visible, in the direction of the array. The highest brightness is seen at times between

60-90 seconds and 300-330 seconds. The integral of the brightness over times from 0-600

seconds is also shown in Fig. 6.3. As is evident from Eq. 6.27 the stack is only based on the

direct P-wave. The other arrivals within the seismograms stack incoherently and therefore

do not contribute as much to the stack as the direct P-wave. Furthermore, at these very

high frequencies (the dominant frequencies in the Hinet records are 1-2 seconds), phases

that travel substantial distances near the surface (such as PP) are highly attenuated. The

favorable stacking properties of high-frequency P-waves together with the spatially dense

high-quality data lead to the stunning results shown in Fig. 6.3. Despite recent development

in high-performance computing, simulating waves at 1 seconds over regional distances is still

a challenge. In order to compare to the stacking method to back-propagation methods we

therefore need to low-pass filter the Hinet data before stacking. We remove the instrument

response from the data by deconvolution and band-pass between 3 and 10 seconds. The

results of stacking the filtered data is shown in Fig. 6.4. As to be expected for longer pe-

riod data the focusing is not as point like. Furthermore, the relative amplitude between

successive time-windows changes more than for the shorter period data. At times between

300-330 seconds the highest brightness is off the fault plane. We interpret this as an effect

of constructive stacking of other phases than P within the time-window. Also notice that

the highest value of integrated brightness over the whole time window is further north than

for the unfiltered stacks.
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Figure 6.3: The results of stacking unfiltered Hinet data. The color of each pixel indicates
the brightness (the relative value of the integral of the squared stack) over the time-window
specified. Note the high localization of the source in each window. This is a repeat of the
experiment by (Ishii et al., 2005).
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Figure 6.4: Same as Fig. 6.3 except the data has been low-pass filtered at 3 seconds before
stacking. Notice the larger area of high brightness, as to be expected due to the longer
periods involved. Also note the increase of artifacts, in particular the area of high brightness
far west of the subduction zone in the time window between 300 and 330 seconds.
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6.4.2 Time-reversal imaging of high-frequency data

Now we wish to repeat the experiment from the last section, where we stacked Hinet data

to determine the spatio-temporal location of the source of high-frequency energy, using the

time-reversal methodology. We therefore prepare the data in the same way as before, by

shifting the traces by ∆tk and multiplying them by pk/Ak. To be more accurate we should

also multiply the traces by the term 1/ak, that accounts for the excitation and propagation

effect from station to test source. However, since we are using a 1D model, and the paths

between all the sources and receivers are similar, that factor is not included. We then

reverse the traces in time, and insert them as simultaneous sources into a wave-propagation

solver. We use the same spectral-element code as described in previous chapters, with

modifications for adjoint simulations (Liu, 2006). However, in order to compare to the

stacking methods, we use the 1D Earth model PREM Dziewonski and Anderson (1981).

The region of the simulation is shown in Fig. 6.2. The simulation takes around 27 hours

on 1225 3.2MHz processors, and is accurate to 2.8 seconds. We record the displacement on

a grid of test-sources for comparison to the stacks. We now time-reverse the records, and

process the traces in the same way as the stacks, i.e. square them and integrate over 30

second time windows. The results are shown in Fig. 6.5.

The location of high brightness shows a propagating rupture starting in the south and

moving north, with similar sized area of high brightness as the filtered stack (Fig. 6.4). We

do not expect the results to be identical between the two methods, as the back-propagation

procedure includes constructive interference of all the phases present within the data traces

(one can view this as stacking on all the phases within the seismogram simultaneously),

whereas the stacks only include the direct P-wave. However, the figures are remarkably

similar, with the exception of the absence of constructive interference in the window between

60–90 seconds and the location of high brightness in time-window 300-330 seconds, which

is closer to the fault as seen by the time-reversal experiment.

6.5 Time-reversal imaging of long-period data

We have shown that we can track the propagation of rupture for the Sumatra earthquake,

by back-propagation of high-frequency data. At this stage we know just the location of the

source of high-frequency energy, and the relative magnitude thereof. However, we are also
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Figure 6.5: Time-reversed high-frequency data from the Hinet array. The time-reversed
velocities have been processed in the same way as the stacks in section 6.4.1. Notice how
the bright patch in window 300-330 seconds is now concentrated closer to the fault plane.
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interested in the magnitude of the slip and the mechanism. We have shown in the previous

section how to relate these quantities to the adjoint wave field. We do not expect the high-

frequency data to contain much information on these quantities, so we turn to long-period

data. Larmat et al. (2006) have shown that long-period data (of 200 seconds and longer)

from the Sumatra earthquake can be successfully time-reversed with convergence on the

source. They deconvolve the time-reversed field for a smaller event from the time-reversed

field for the main event to infer the slip history of the source. Here we wish to use the

formalism presented in section 6.2 to directly infer the slip history of the source from the

time-reversed field. We apply the method to three of the large earthquakes studied in

previous chapters, the 2004 Sumatra earthquake, the 2001 Kunlun, China earthquake and

the 1998 Balleny Islands earthquake.

6.5.1 Data and processing

We use three component, broad-band data from the global network, obtained from the

IRIS data center (http://www.iris.edu), deconvolved to displacement and band-pass filtered

from 60 to 500 seconds. The duration of the records is 100 minutes starting from the

hypocentral time. We then apply weights to the data that are inversely proportional to

the number of records in each azimuth range (as seen from the source), so that azimuths

with a lot of stations do not dominate the reversed field. We now use the time-reversed

records as simultaneous sources and solve for the adjoint wave field, using a spectral-element

method, as before. We store the resulting wave field (displacements and strains) on a

grid surrounding the epicentral area. We visualize the field in two ways. The first is as

snapshots of the integral of the adjoint strain at successive times. We look at each of the

six independent components separately. According to Eq. 6.24 the integrated strain at

each point is related to the moment-rate function function of the first-guess source model.

Together with the snapshots we plot the square of the integral of the adjoint strain integrated

over the entire time window to get an estimate of where the largest amplitudes are. In

order to graphically enhance the image we also plot the envelope of the strains, squared

and subsequently integrated over short time windows. Together with these maps we plot

the same quantity integrated over the whole time window.
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6.5.2 Interpretation of adjoint strain maps

We wish to interpret the integrated adjoint strain, in terms of the moment-rate function,

according to Eq. 6.24. We recall that the moment surface density m can be written as

m = µ∆s(ν̂σ̂ + σ̂ν̂) (Eq. 6.3) where µ is the shear modulus, ∆s is the magnitude of

slip, ν̂ is the fault normal and σ̂ is the direction of slip. We define m̂ = ν̂σ̂ + σ̂ν̂, for

convenience. Note that in this definition m̂ is not a unit tensor, but has length
√

2. For

a vertical, east-west oriented, strike-slip fault ν̂ = N̂ and σ̂ = Ê, and therefore m̂ =

ÊN̂ + N̂Ê. Here we have defined Ê, N̂ and Ẑ to be the unit vectors pointing east, north

and up respectively. Comparing this to equation 6.24 we see that for an east-west oriented,

vertical, strike-slip earthquake, we expect only the NE component of strain to be large on

the fault plane. However, if the fault plane has a non-vertical dip, and ν̂ = aN̂ + bẐ, then

m̂ = a(ÊN̂+N̂Ê)+b(ÊẐ+ẐÊ), and therefore we expect both the NE and EZ components

of the adjoint strain to be large on the fault plane. In a general case the relative sizes of

the moment-tensor elements on the fault plane are thus indicative of the relative size of the

moment-tensor elements of the original source.

It is also illuminating to examine the form of the equation describing the gradient of the

misfit function, δχ, for a point source (Eq. 6.22). The first term shows how the change in

moment-tensor elements is governed by the integral of the adjoint strain with the source-

time history. The second term, which prescribes how to update the source location, involves

the gradient of the adjoint strain with respect to the source coordinates, double dotted with

the moment-tensor. Thus, only the gradient of the elements of the strain tensor that are

large contribute. In the example of the east-west oriented, vertical strike-slip fault, we

would expect the NE component of the adjoint strain field to collapse to a peaked function

in space. The second term of Eq. 6.22 describes how to move the source location to the top

of the peak. The third terms prescribes how to update the source-time history.

One way of viewing the time-reversed wave field is as the restored original wave field.

The slip on the fault plane produces a strain with an orientation governed by ν̂σ̂ + σ̂ν̂

on the fault. However, the slip on the fault also induces other strains off the fault. As

discussed above, an east-west oriented, vertical, purely strike-slip fault results in a large

NE component of strain on the fault plane. However, for example, in the extensional

and compressional quadrants around the fault plane, we expect to see large EE and NN
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components of strain, with opposite sign in the respective quadrants. We expect these

secondary strains to appear in the maps of the adjoint strain, off the fault plane. In the

second iteration of the adjoint method, where we back-propagate the difference between

data and synthetics computed for the initial guess source model, these strains will vanish.

The off-fault strains in the maps illustrate the trade-off between the source location and

the mechanism, inherent in the inversions.

As the surface of the Earth can be assumed to be traction free, the strains involving Z

should vanish at the surface. This is connected to the well known problem in seismology

that for very shallow earthquakes, the EZ and NZ components of the moment tensor are

ill constrained. The ZZ component is often constrained by forcing the moment tensor to

have zero trace. As there is no information in the adjoint strain on how to update the EZ,

NZ and ZZ elements of the moment tensor, at very shallow depths, the misfit does not

depend on them, and they will not be changed from the initial value.

6.5.3 Application to the 2004 Sumatra earthquake

The 2004 Sumatra, Indonesia earthquake occurred on a curved fault plane, with NNW–SSE

strike in the south, and N–S strike further north, as discussed in chapter 5. The slip was

close to pure thrust in the south, with more oblique slip in the north. The dip of the fault

plane is thought to have been close to 10◦. We therefore expect ν̂ = (aÊ + bN̂ + cẐ) with

c > a > b, and σ = (dÊ + eN̂ + f Ẑ) with d > e > f . The largest moment tensor elements

would therefore be EZ component. However, we also expect large EE and ZZ components.

The time-reversed field for the Sumatra earthquake is shown in Figs. 6.6–6.11. The

different components of strain show varying levels of localization on the fault plane. Com-

ponents EE, NN and ZZ have large amplitudes on the fault plane, whereas others have

the largest amplitudes off the fault plane. The northward rupture propagation is visible

on several components, although the signature from the southern part of the fault plane is

much more visible. Only the EZ component has larger amplitudes in the north than in the

south.

6.5.4 Application to the 2001 Kunlun China earthquake

As discussed previously in this thesis the Kunlun earthquake ruptured unilaterally from

the west to the east, over a duration of about 120 seconds. The mechanism was left-lateral
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Figure 6.6: Top: Snapshots of the integral of the adjoint strain (component SEE) for the
Sumatra earthquake. Bottom: Envelope of adjoint strain (component EE), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. For more detail see section
6.5.1.
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Figure 6.7: Top: Snapshots of the integral of the adjoint strain (component SEZ) for the
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Figure 6.8: Top: Snapshots of the integral of the adjoint strain (component SNE) for the
Sumatra earthquake. Bottom: Envelope of adjoint strain (component NE), squared and
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6.5.1.
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Figure 6.9: Top: Snapshots of the integral of the adjoint strain (component SNN) for the
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Figure 6.10: Top: Snapshots of the integral of the adjoint strain (component NZ) for the
Sumatra earthquake. Bottom: Envelope of adjoint strain (component NZ), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. For more detail see section
6.5.1.
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Figure 6.11: Top: Snapshots of the integral of the adjoint strain (component ZZ) for the
Sumatra earthquake. Bottom: Envelope of adjoint strain (component ZZ), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. For more detail see section
6.5.1.
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strike slip on a fault-plane dipping 74◦to the north, with components of thrust and normal

faulting at different locations along strike. The largest moment-rate was observed at around

60 seconds after the initiation of rupture. The fault normal is ν̂ = (aN̂ + bẐ) with a > b

and the slip vector is σ̂ = (cÊ + dẐ) with c > d. We therefore expect the large on-fault

strains to be the NE, the EZ, NZ and the ZZ components.

The time reversed field for the Kunlun earthquake is shown in Figs. 6.12-6.17. Indeed

the adjoint strain shows a clear westward propagation, with large on fault strains for the

NE and NZ components. The ZZ component is also non-zero on the fault, but not as

localized as the NE and NZ components. The other components have larger off-faults

strains. The largest strains are observed at times between 30-120 seconds. Thus both the

location timing, and relative magnitude of the strains are consistent with what we expect

from the discussion above (section 6.2).
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Figure 6.12: Left: Snapshots of the integral of the adjoint strain (component EE) for
the Kunlun earthquake. Right: Envelope of adjoint strain (component EE), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. The bold line indicates the
fault trace (Xu et al., 2006). For more detail see section 6.5.1.
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Figure 6.13: Left: Snapshots of the integral of the adjoint strain (component NE) for
the Kunlun earthquake. Right: Envelope of adjoint strain (component NE), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. The bold line indicates the
fault trace (Xu et al., 2006)For more detail see section 6.5.1.
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Figure 6.14: Left: Snapshots of the integral of the adjoint strain (component EZ) for
the Kunlun earthquake. Right: Envelope of adjoint strain (component EZ), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. The bold line indicates the
fault trace (Xu et al., 2006). For more detail see section 6.5.1.
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Figure 6.15: Left: Snapshots of the integral of the adjoint strain (component NN) for
the Kunlun earthquake. Right: Envelope of adjoint strain (component NN), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. The bold line indicates the
fault trace (Xu et al., 2006). For more detail see section 6.5.1.
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Figure 6.16: Left: Snapshots of the integral of the adjoint strain (component NZ) for
the Kunlun earthquake. Right: Envelope of adjoint strain (component NZ), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. The bold line indicates the
fault trace (Xu et al., 2006). For more detail see section 6.5.1.
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Figure 6.17: Left: Snapshots of the integral of the adjoint strain (component ZZ) for
the Kunlun earthquake. Right: Envelope of adjoint strain (component ZZ), squared and
integrated over the given time windows. The slices are all plotted on the same scale (except
the top left one), and the maximum value is given in the title. The bold line indicates the
fault trace (Xu et al., 2006). For more detail see section 6.5.1.

6.5.5 Application to the 1998 Balleny Islands earthquake

The 1998 Balleny Island earthquake ruptured unilaterally from the east to west, over a du-

ration of about 100 seconds. The mechanism is debated, but left-lateral slip on a southward

dipping fault plane is advocated by several researchers (for more discussion see chapter 4

this thesis). The highest moment-rate was observed at around 60 seconds after the initia-

tion of rupture. The orientation of the fault is very similar as to the Kunlun earthquake,

with a fault normal is ν̂ = (aN̂ + bẐ) with a > b and the slip vector is σ̂ = (cÊ + dẐ) with

c > d. We therefore expect the large on-fault strains to be the NE, the EZ, NZ and the

ZZ components.

The time reversed field for the Balleny Islands earthquake is shown in Figs. 6.18-6.23.

The adjoint strain shows an eastward propagation, with large on fault strains for the EE,

EZ, NE and NN components. The other components have larger off-faults strains. The

largest strains are observed during the first 60 seconds.
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Figure 6.18: Left: Snapshots of the integral of the adjoint strain (component EE) for the
Balleny Islands earthquake. Right: Envelope of adjoint strain (component EE), squared
and integrated over the given time windows. The slices are all plotted on the same scale
(except the top left one), and the maximum value is given in the title. The bold line
indicates the fault trace used in Chapter 4. For more detail see section 6.5.1.
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Figure 6.19: Left: Snapshots of the integral of the adjoint strain (component EZ) for the
Balleny Islands earthquake. Right: Envelope of adjoint strain (component EZ), squared
and integrated over the given time windows. The slices are all plotted on the same scale
(except the top left one), and the maximum value is given in the title. The bold line
indicates the fault trace used in Chapter 4. For more detail see section 6.5.1.
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Figure 6.20: Left: Snapshots of the integral of the adjoint strain (component NE) for the
Balleny Islands earthquake. Right: Envelope of adjoint strain (component NE), squared
and integrated over the given time windows. The slices are all plotted on the same scale
(except the top left one), and the maximum value is given in the title. The bold line
indicates the fault trace used in Chapter 4. For more detail see section 6.5.1.
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Figure 6.21: Left: Snapshots of the integral of the adjoint strain (component NN) for the
Balleny Islands earthquake. Right: Envelope of adjoint strain (component NN), squared
and integrated over the given time windows. The slices are all plotted on the same scale
(except the top left one), and the maximum value is given in the title. The bold line
indicates the fault trace used in Chapter 4. For more detail see section 6.5.1.
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Figure 6.22: Left: Snapshots of the integral of the adjoint strain (component NZ) for the
Balleny Islands earthquake. Right: Envelope of adjoint strain (component NZ), squared
and integrated over the given time windows. The slices are all plotted on the same scale
(except the top left one), and the maximum value is given in the title. The bold line
indicates the fault trace used in Chapter 4. For more detail see section 6.5.1.
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Figure 6.23: Left: Snapshots of the integral of the adjoint strain (component ZZ) for the
Balleny Islands earthquake. Right: Envelope of adjoint strain (component ZZ), squared
and integrated over the given time windows. The slices are all plotted on the same scale
(except the top left one), and the maximum value is given in the title. The bold line
indicates the fault trace used in Chapter 4. For more detail see section 6.5.1.
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6.6 Conclusions and future direction

We have discussed the theory of an adjoint source inversion and detailed how it can be

applied, for several source parameterizations. We have examined the connections between

adjoint methods, time-reversal imaging and stacking. We have applied time-reversal imaging

to a high frequency data set, from the Japanese Hinet array, and compared to results from

stacking. We further applied time-reversal imaging to full waveforms from three large

earthquakes, back-propagating them through a 3D synthetic model, accurate at periods of

60 seconds and longer. The resulting adjoint strains show the propagation of rupture on

the fault plane, indicating the feasibility of using them in an adjoint source inversion. The

maps of integrated adjoint strain give us an indication of the location (in space and time) of

slip without any a priori assumptions on the fault parameters. These maps can be used to

choose a fault parameterization, which can then be used to take the next step in an adjoint

inversion.

We have made several choices along the way that affect the evaluation of the gradient of

the misfit function. We chose to use a waveform misfit, but alternatively we could have used

a travel time or amplitude misfit. We also chose to use the whole waveform, but we could

have chosen to use several different windows with different weights. The filtering of data

is also important, and it would be of interest to use higher frequency data to obtain more

detail. The limitation is that the 3D Earth model used should be able to produce synthetics

that accurately match the data in the chosen time and frequency windows. Other choices

to be made are the fault parameterization and the specific gradient-based inverse method

to use.

In cases where the 3D models do not accurately account for the structure, corrections

can be applied to the adjoint sources before back-propagation. An example of that was

given for the time-reversal imaging of the Hinet dataset, where the data where shifted

and multiplied before back-propagating. One could also imagine a setting where a smaller

“calibration” event could be used obtain corrections to certain phases, that could be applied

to the data before back-propagating.

By using adjoint methods to obtain finite-fault source models, we can efficiently account

for the Earth’s 3D structure in the modeling, allowing us to use a larger portion of the seis-

mogram. This in turn can help reduce some of the trade-offs plaguing finite fault modeling.
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The next step in this line of research would be to carry out the inversion, using one of the

gradient based methods, such as the conjugate gradient one. The maps of the adjoint strain

for the Kunlun and Balleny earthquakes in particular show good promise for applying this

technique. The adjoint method gives us a new way of viewing the inverse problem, allowing

for inclusion of data that is dependent on the Earth’s 3D structure, that could provide us

with more details about the slip-history of earthquakes. By better constraining the kine-

matic slip models we can provide better constraints on parameters important for rupture

dynamics, for example the rupture speed and the continuity of slip.
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Appendix A

Quantifying differences between
two time series: Multitaper
measurements

We quantify the difference between data and synthetics in terms of a transfer function. We

use a multitaper measurement technique (Thomson, 1982), based upon prolate spheroidal

eigentapers (Slepian, 1978). This method was first applied to geophysical applications by

Park et al. (1987). The following is based on the treatment by Laske and Masters (1996)

and Zhou (2004). Another useful discussion of multitaper measurements can be found in

Percival and Walden (1993), p 333–347.

We wish to quantify the differences between two time series. We start with a data trace

d(t) and a corresponding synthetic trace s(t). We want to compare individual phases in

the seismograms. More specifically, we want to estimate the time shift and amplitude ratio

between the traces, as a function of frequency, within a given time window. We quantify

the difference between the data and synthetics in terms of a transfer function, T (f), that

satisfies

[d(f)− T (f)s(f)]2 = minimum (A.1)

In this case the solution is just:

T (f) =
d(f)
s(f)

. (A.2)

Writing the synthetic as s = Ae−iτ and the data as d = [A + δA]e−i[τ+δτ ] we can write:

d = Ts = s[1 + δA/A]e−iδτ (A.3)
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with T = [1 + δ lnA]e−iδτ . In the Born approximation d = s + δs, and thus T = 1 + δT

where δT = δs/s. For small δτ we have e−iδτ ≈ 1 − iδτ . Correct to first order in small

perturbations:

δT = T − 1 = [1 + δ lnA][1− iδτ ]− 1 ≈ δ lnA− iδτ (A.4)

and finally

δτ = −Im
(

δs

s

)
, δ lnA = Re

(
δs

s

)
(A.5)

A.1 Multitaper measurements

In the discussion above we did not specify the type of window to use. Care has to be

taken when windowing, as the type of window can affect the measurement, due to spectral

leakage. This is a well-known problem in signal processing, as windowing in the time

domain corresponds to convolution of the Fourier transform of the windowing function in

the frequency domain. Denoting the window in the time domain by h(t) and in the frequency

domain by h(f) the windowed data becomes

dw(t) = h(t)d(t) (A.6)

or in the frequency domain

dw(f) = h(f)⊗ d(f) (A.7)

where ⊗ denotes convolution. To get an accurate estimate dw(f) of d(f) we want h(f) to be

as close to a delta function as possible. If we choose h(t) to be a boxcar, then h(f) is a sinc-

function (Fig. A.1). When we convolve d(f) with the sinc-function, its side lobes cause the

spectral values away from f to contribute to the estimated value at f . This example suggests

we should choose a windowing function without side lobes in the frequency domain, such

as a cosine taper. This choice reduces the spectral leakage, but it creates a new problem,

as the signal in the middle of the window is weighted more heavily than the signal at the

edges, thereby biasing the measurement. In order to minimize the spectral leakage while

keeping the bias at a minimum, we use a multitaper measurement technique (Thomson,

1982). This technique uses several tapers, hj(t), all concentrated within a small window in

the frequency domain, without side lobes, to window the data and the synthetics. We denote
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Figure A.1: The time and frequency versions of a boxcar.

the data windowed by the jth taper by dj(f) and the corresponding windowed synthetic

by sj(f). The basic idea is that even though the spectra from each of the windowed traces

is biased, by using orthogonal tapers and averaging the spectra one gets a less biased final

spectral estimate. An added benefit is that since we get several estimates for each spectral

measurement we can compute the error in the estimate, in addition to the average.

A.2 Prolate spheroidal eigentapers

Now we focus our efforts on finding the ideal tapers (or windows) that have compact support

in the frequency domain while still sampling a large part of the trace in the time domain.

Suppose we have chosen a measurement window with width

L = N∆t, (A.8)

where L denotes the length of the time window, ∆t the sampling rate, and N the number

of time samples contained in the window. The Rayleigh frequency is then

fR =
1
L

=
1

N∆t
. (A.9)

This is the lowest frequency, i.e., the longest period, that we can hope to resolve with

a window length L. The highest frequency, i.e., shortest period, that we can resolve is

determined by the Nyquist frequency:

fc =
1

2∆t
. (A.10)
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Figure A.2: The first five 2.5 π tapers.

The frequency content of our time window [0, L] lies between [−fc, fc]. The frequency

spacing ∆f is equal to the Rayleigh frequency:

∆f =
2fc

N
=

1
N∆t

= fR. (A.11)

Our objective is to find to find functions (tapers) that are optimally concentrated within

the window W in the frequency domain. For convenience we define the window width in

terms of the Rayleigh frequency fR, such that W = kfR. Now our objective is accomplished

by optimizing the quantity

λ =
∫ W
−W |h(f)|2df∫ fc

−fc
|h(f)|2df

. (A.12)

This leads to an eigenvalue problem with eigenvalues λj and associated eigenfunctions (“pro-

late multitapers”) hj(f) (Slepian, 1978). A remarkable property of the eigenvalues λj is

that the first 2k = 2LW values are ∼ 1, and the remaining eigenvalues quickly drop off to

zero. The implication is that only the first 2k eigentapers are optimally concentrated in the

window W . So for small k the window is narrow, and for large k it is wider. Similarly, for

a long time window L the frequency window W is narrower, and for a short time window L

the frequency window W is wider. Effectively one is choosing the width W around the tar-

get frequency of interest over which you are going to average the measurement. Frequently

the tapers are referred to in terms of their k in the form “k π tapers” (“π” for prolate).

Next, one uses the multitapers as windowing functions. Suppose we have a time se-

ries s(t) with a corresponding spectrum s(f). Now, rather than working with the time

series directly, we multiply it by the 2k multitapers to get 2k versions of the time series:
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sj(t) = hj(t)s(t), j = 1, . . . , 2k. (A.13)

In the frequency domain, this corresponds to a convolution with the frequency-version

of the taper, leading to 2k spectral estimates:

sj(f) = s(f)⊗ hj(f) =
∫ fc

−fc

s(f ′)hj(f − f ′) df ′, j = 1, . . . , 2k. (A.14)

Here one can really see how the spectrum s(f ′) is convolved with the taper centered on f ′,

hj(f − f ′). So the wider the bandwidth of hj , i.e., the wider W , the more we average over

neighboring frequencies. In the limit k → 0 we get a delta function, which corresponds to

an infinite boxcar taper in the time domain.

A.3 Transfer function for multitaper measurements

Now that we have made a choice of windowing function, we can go back to estimating the

transfer function T (f). In this case we wish to find T (f) such that:

||d(f)− T (f)s(f)||2 = minimum (A.15)

where d(f) = [d1(f), ..., dj(f), ..., d2k(f)]T is a 2k-dimensional vector that contains the 2k

spectral estimates dj(f) = d(f)⊗ hj(f). The solution is given by sT [d− T s] = 0, i.e.,

T =
∑2k

j=1 djs
∗
j∑2k

j=1 sjs∗j
(A.16)

Now we have T = sTd/sT s = sT (s + δs)/sT s or with T = 1 + δT :

δT =
∑2k

j=1 δsjs
∗
j∑2k

j=1 sjs∗j
(A.17)

Rembembering eq. (A.4) we get the expressions:

δτ = −Im

[∑2k
j=1 δsjs

∗
j∑2k

j=1 sjs∗j

]
, δ lnA = Re

[∑2k
j=1 δsjs

∗
j∑2k

j=1 sjs∗j

]
(A.18)
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A.4 Effect of taper parameters

The main parameter controlling the behavior of the taper is k. Figures (A.3)-(A.4) illustrate

the effect of k. We use the first five prolate spheroidal tapers to estimate the spectra. The

spectra of these tapers are localized within 2.5/L where L is the length of the time series.

Remembering equation (A.7), this leads to independent estimates of the true spectra every

2.5/L Hz. For a window length of 800 s this corresponds to independent estimates every

2.5/800 = 0.003125 Hz.

A.5 Combining measurements

Each multitaper measurement gives us an estimate of the time shift, δτi(f), and the am-

plitude anomaly, δ lnAi(f), at station i and frequency f . This provides us with oodles of

measurements for each run. In order to visualize the results we combine the measurements,

either integrating over all frequencies at a given station and to see the variation with re-

ceiver location or summing all the measurements at a given frequency over stations to see

the variation with frequency. We define the average time shift at a given frequency as:

δτ(f) =
1
N

N∑
i=1

δτi(f) (A.19)

and the average time shift at station i:

δτ i =
1

f1 − f0

∫ f1

f0

δτi(f)df (A.20)

finally, the average over all measurements is given by:

δτ =
1
N

N∑
i=1

1
f1 − f0

∫ f1

f0

δτi(f)df (A.21)

It can also be of interest to see how much the data varies around the average value. Since

each measurement is not independent of the adjacent values, and is not normally distributed,

these are not the standard deviations in the language of statistics, but is the second moment
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Figure A.3: The effect of changing k for a fixed window length. The observed (black) and
synthetic (magenta) traces are shown at the top left. The other waveform plots compare the
data to the reconstructed seismograms for various k. The multitaper measurements, with
error bars, are shown on the left, the square of the measurements is shown on the right. The
colored lines represent measurements made using different k. The number of tapers is set to
2k. Here we only show measurements that are “independent,” or k/L apart in the frequency
domain. Notice how small values of k give many measurements with high variance, and
large values of k give few measurements (in the case of k=5, only three measurements), but
small variance. Fig. A.4 shows the same, for k=2, 2.5, 3.
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Figure A.4: The effect of changing k for a fixed window length. Same as Fig. A.3 except
other values of k.
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of the measurements around the mean. We define the variations around the averages as:

στ (f) =

√√√√ 1
N

N∑
i=1

(δτi(f)− δτ(f))2 (A.22)

and the average time-shift at station i:

στ
i =

√
1

f1 − f0

∫ f1

f0

(δτi(f)− δτ i)2df (A.23)

finally, the average over all measurements is given by:

στ =

√√√√ 1
N

N∑
i=1

1
f1 − f0

∫ f1

f0

(δτi(f)− δτ)2df (A.24)

For the amplitudes, we define δ lnA(f), δ lnAi, δ lnA, σln A(f), σln A
i , σln A in the same

manner.
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Appendix B

Fault-Plane Kernels

In this appendix we give explicit expressions for the finite-fault kernels K∆s, Kγ , Ki, Kζ ,

and Kh. The variation of the moment-density tensor (6.25) with respect to the scalar

moment density µ∆s, the rake angle γ, and the dip and strike angles i and ζ, which control

the orientation of the local fault plane, is given by

δm = [sin 2i sin γ r̂r̂− (sin i cos γ sin 2ζ + sin 2i sin γ sin2 ζ)θ̂θ̂ + (sin i cos γ sin 2ζ − sin 2i sin γ cos2 ζ)φ̂φ̂

− (cos i cos γ cos ζ + cos 2i sin γ sin ζ)(r̂θ̂ + θ̂r̂) + (cos i cos γ sin ζ − cos 2i sin γ cos ζ)(r̂φ̂ + φ̂r̂)

− (sin i cos γ cos 2ζ + 1
2 sin 2i sin γ sin 2ζ)(θ̂φ̂ + φ̂θ̂)]δ(µ∆s)

+ µ∆s[sin 2i cos γ r̂r̂ + (sin i sin γ sin 2ζ − sin 2i cos γ sin2 ζ)θ̂θ̂

− (sin i sin γ sin 2ζ + sin 2i cos γ cos2 ζ)φ̂φ̂

+ (cos i sin γ cos ζ − cos 2i cos γ sin ζ)(r̂θ̂ + θ̂r̂)− (cos i sin γ sin ζ + cos 2i cos γ cos ζ)(r̂φ̂ + φ̂r̂)

+ (sin i sin γ cos 2ζ − 1
2 sin 2i cos γ sin 2ζ)(θ̂φ̂ + φ̂θ̂)]δγ

+ µ∆s[2 cos 2i sin γ r̂r̂− (cos i cos γ sin 2ζ + 2 cos 2i sin γ sin2 ζ)θ̂θ̂

+ (cos i cos γ sin 2ζ − 2 cos 2i sin γ cos2 ζ)φ̂φ̂

+ (sin i cos γ cos ζ + 2 sin 2i sin γ sin ζ)(r̂θ̂ + θ̂r̂)− (sin i cos γ sin ζ − 2 sin 2i sin γ cos ζ)(r̂φ̂ + φ̂r̂)

− (cos i cos γ cos 2ζ + cos 2i sin γ sin 2ζ)(θ̂φ̂ + φ̂θ̂)]δi

+ µ∆s[(2 sin i cos γ cos 2ζ + sin 2i sin γ sin 2ζ)(φ̂φ̂− θ̂θ̂)

+ (cos i cos γ sin ζ − cos 2i sin γ cos ζ)(r̂θ̂ + θ̂r̂) + (cos i cos γ cos ζ + cos 2i sin γ sin ζ)(r̂φ̂ + φ̂r̂)

+ (2 sin i cos γ sin 2ζ − sin 2i sin γ cos 2ζ)(θ̂φ̂ + φ̂θ̂)]δζ. (B.1)

Therefore, the Fréchet derivative (6.14) may be rewritten in the form (6.26), where

K∆s = ε† : [sin 2i sin γ r̂r̂− (sin i cos γ sin 2ζ + sin 2i sin γ sin2 ζ)θ̂θ̂

+ (sin i cos γ sin 2ζ − sin 2i sin γ cos2 ζ)φ̂φ̂
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− (cos i cos γ cos ζ + cos 2i sin γ sin ζ)(r̂θ̂ + θ̂r̂) + (cos i cos γ sin ζ − cos 2i sin γ cos ζ)(r̂φ̂ + φ̂r̂)

− (sin i cos γ cos 2ζ + 1
2 sin 2i sin γ sin 2ζ)(θ̂φ̂ + φ̂θ̂)], (B.2)

Kγ =
∫ T

0

ε†(T − t) : [sin 2i cos γ r̂r̂ + (sin i sin γ sin 2ζ − sin 2i cos γ sin2 ζ)θ̂θ̂

− (sin i sin γ sin 2ζ + sin 2i cos γ cos2 ζ)φ̂φ̂ + (cos i sin γ cos ζ − cos 2i cos γ sin ζ)(r̂θ̂ + θ̂r̂)

− (cos i sin γ sin ζ + cos 2i cos γ cos ζ)(r̂φ̂ + φ̂r̂)

+ (sin i sin γ cos 2ζ − 1
2 sin 2i cos γ sin 2ζ)(θ̂φ̂ + φ̂θ̂)]µ∆s(t) dt, (B.3)

Ki =
∫ T

0

ε†(T − t) : [2 cos 2i sin γ r̂r̂− (cos i cos γ sin 2ζ + 2 cos 2i sin γ sin2 ζ)θ̂θ̂

+ (cos i cos γ sin 2ζ − 2 cos 2i sin γ cos2 ζ)φ̂φ̂ + (sin i cos γ cos ζ + 2 sin 2i sin γ sin ζ)(r̂θ̂ + θ̂r̂)

− (sin i cos γ sin ζ − 2 sin 2i sin γ cos ζ)(r̂φ̂ + φ̂r̂)

− (cos i cos γ cos 2ζ + cos 2i sin γ sin 2ζ)(θ̂φ̂ + φ̂θ̂)]µ∆s(t) dt, (B.4)

Kζ =
∫ T

0

ε†(T − t) : [(2 sin i cos γ cos 2ζ + sin 2i sin γ sin 2ζ)(φ̂φ̂− θ̂θ̂)

+ (cos i cos γ sin ζ − cos 2i sin γ cos ζ)(r̂θ̂ + θ̂r̂) + (cos i cos γ cos ζ + cos 2i sin γ sin ζ)(r̂φ̂ + φ̂r̂)

+ (2 sin i cos γ sin 2ζ − sin 2i sin γ cos 2ζ)(θ̂φ̂ + φ̂θ̂)]µ∆s(t) dt, (B.5)

Kh =
∫ T

0

∂νε†(r, T − t) : [sin 2i sin γ r̂r̂− (sin i cos γ sin 2ζ + sin 2i sin γ sin2 ζ)θ̂θ̂

+ (sin i cos γ sin 2ζ − sin 2i sin γ cos2 ζ)φ̂φ̂− (cos i cos γ cos ζ + cos 2i sin γ sin ζ)(r̂θ̂ + θ̂r̂)

+ (cos i cos γ sin ζ − cos 2i sin γ cos ζ)(r̂φ̂ + φ̂r̂)

− (sin i cos γ cos 2ζ + 1
2 sin 2i sin γ sin 2ζ)(θ̂φ̂ + φ̂θ̂)]µ∆s(t) dt. (B.6)
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