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"[The Emperor Kublai Khan] said: "It is all useless, if the last landing place can
only be the infernal city, and it is there that, in ever-narrowing circles, the current is
drawing us."
To which Marco Polo replied: "The inferno of the living is not something that will
be; if there is one, it is what is already here, the inferno where we live every day, that
we form by being together. There are two ways to escape suffering it. The first is
easy for many: accept the inferno and become such a part of it that you can no longer
see it. The second is risky and demands constant vigilance and apprehension; seek
and learn to recognize who and what, in the midst of the inferno, are not inferno,
then make them endure, give them space."

-Italo Calvino, Invisible Cities

"It might seem limited to impose our human perception to try to deduce the grandest
cosmic code. But we are the product of the universe and I think it can be argued that
the entire cosmic code is imprinted in us. Just as our genes carry the memory of
our biological ancestors, our logic carries the memory of our cosmological ancestry.
We are not just imposing human-centric notions on a cosmos independent of us. We
are progeny of the cosmos and our ability to understand it is an inheritance."

-Janna Levin, How the Universe Got Its Spots
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ABSTRACT

This thesis presents theoretical and observational investigations in two areas of
cosmology: the detection of inflationary gravitational waves using the circular
polarization of the redshifted 21cm line from neutral hydrogen during the Dark
Ages, and the study of galactic foregrounds at low-frequencies using the Owens
Valley Radio Observatory Long Wavelength Array (OVRO LWA).

In the theoretical part of this thesis, we propose a newmethod to measure the tensor-
to-scalar ratio r using the circular polarization of the 21 cm radiation from the Dark
Ages. In Chapter II we discuss the basic principles of inflationary physics, which
is now accepted as a standard paradigm for the generation of perturbations in the
early universe. Along with density (scalar) perturbations, inflation also produces
gravitational wave (tensor) modes. In Chapter IV we outline a novel, albeit futuristic
method to detect inflationary gravitational waves. Our method relies on the splitting
of the F = 1 hyperfine level of neutral hydrogen due to the quadrupolemoment of the
CMBduring theDarkAges. We show that unlike the Zeeman effect, where MF = ±1
have opposite energy shifts, the CMB quadrupole shifts MF = ±1 together relative
to MF = 0. This splitting leads to a small circular polarization of the emitted 21cm
photon, which is in principle observable. Further, we forecast the sensitivity of future
radio experiments to measure the CMB quadrupole during the era of first cosmic
light (z ∼ 20). The tomographic measurement of 21 cm circular polarization allows
us to construct a 3D remote quadrupole field. Measuring the B-mode component
of this remote quadrupole field can be used to put bounds on the tensor-to-scalar
ratio r . We make Fisher forecasts for a future Fast Fourier Transform Telescope
(FFTT), consisting of an array of dipole antennas in a compact grid configuration,
as a function of array size and observation time. The forecasts are dependent
on the evolution of the Lyman-α flux in the pre-reionization era, that remains
observationally unconstrained. Finally, we calculate the typical order of magnitudes
for circular polarization foregrounds and comment on their mitigation strategies. We
conclude that detection of primordial gravitational waves with 21 cm observations
is in principle possible, so long as the primordial magnetic field amplitude is small,
but would require a very futuristic experiment with corresponding advances in
calibration and foreground suppression techniques.

In the observational part of this thesis, we investigate the cross-correlation between
low-frequency radio maps from the Owens Valley Radio Observatory Long Wave-
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length Array (OVRO LWA) and tracers of the ISM: dust, Hα, and HI. Our goal is
to search for any anomalous radiative processes at low frequencies (20 − 80 MHz).
In Chapter III we discuss the basic principles of 21cm cosmology and provide an
overview of current and planned 21cm experiments. Broadband foreground sources
pose the greatest challenge to 21cm tomography and need to be characterized care-
fully before the technique becomes a sensitive probe of the dark ages and the epoch
of reionization. The foregrounds are expected to be predominantly galactic and
approximately four orders of magnitude larger than the cosmological signal. In
Chapter V, we investigate the nature of the diffuse Galactic radio emission in the
20 − 80MHz frequency range using data from the OVRO-LWA. We cross-correlate
LWAmaps with tracers of ISM (dust, Hα, HI) from a number of surveys , to investi-
gate galactic foregrounds relevant to detection of 21cm signal from the Dark Ages.
We describe a formalism to compute the cross-power spectra between LWA maps
and ISM tracers. Our results are consistent with no correlation between tracers of
the gas and dust in the ISM at high Galactic latitudes (b > 55◦) and low-frequency
maps from the LWA, at scales ` ∼ 10 − 600 at a 99.9% confidence level.
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C h a p t e r 1

INTRODUCTION

“For the Ancient Greeks, the future was something that came upon them from behind
their backs, with the past receding away before their eyes. When you think about
it, that’s a more accurate metaphor than our present one. Who really can face the
future? All you can do is project from the past, even when the past shows that such
projections are often wrong. And who really can forget the past? What else is there
to know?"
-Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

One of the most remarkable consequences of the theory of relativity is that our
ability to look further into space allows us to peer back into our past. Over the last
century, breathtaking theoretical and technological innovations have allowed us to
probe large volumes of the universe, allowing us to reconstruct our cosmic history,
from the Big Bang to the present day. Cosmology today is no longer an esoteric
philosophical exercise; instead it is a rigorous empirical science.

An avalanche of data from the cosmic microwave background (CMB), galaxy sur-
veys, gravitational lensing, supernova studies, cluster counts and chemical abun-
dance studies have led to the construction of a "concordance" model of modern
cosmology, with tightly constrained parameters. The broad consensus about the
history of the universe is as follows: the universe began through an exponentially
expanding phase called inflation, which seeded the initial perturbations in density.
These density perturbations then grew via gravitational collapse to form stars and
galaxies and the complex cosmic web we see today.

However, the standard "concordance" model throws up as many mysteries as it aims
to explain. According to the standard model, the universe today consists of only 5%
baryonic matter, 27% dark matter that consists of particles that are not part of the
standard model of particle physics, and perhaps most mysteriously and 68% dark
energy, about which, we know very little about. The leading candidate for dark
energy is the cosmological constant Λ, which leads to accelerated expansion during
late stages of the universe’s evolution and whose energy density remains constant
as the universe expands. Dark matter on the other hand is posited to be "cold" (i.e.
particle velocities are non-relativistic) and collisionless (i.e the particles do not have
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electromagnetic or strong interactions with baryonic matter, and likely don’t have
any self-interaction). Together these compose the standard ΛCDM model of the
universe.

While parameters of the concordancemodel of the universe are accuratelymeasured,
the physical underpinnings of these parameters remain far from clear. The biggest
questions that remain unanswered are: what is dark matter? What is the nature
of dark energy? How did the universe evolve from a smooth initial state to the
complex structures we see around us? And finally, what is the physics of the
process that generates perturbations in the early universe? The work presented in
this thesis presents some new avenues to approach these questions. The first part
of this thesis presents a novel way to test inflation using circular polarization of
the 21cm line emitted by neutral hydrogen at high redshifts. The second part of
the thesis investigates some observational challenges in probing the universe using
21cm radiation.

The rest of the chapter is organized as follows: in Sec. 1.1 we provide a whirlwind
overview of different observational probes of the universe, in Sec. 1.3 we provide
an overview of this thesis.

1.1 Measuring the Universe
The standard cosmological model is essentially parameterized by two functions:
the cosmic expansion history a(t) and the cosmic clustering history, in terms of
the power spectrum at different redshifts P(k, z). The cosmic expansion history
is determined by the zeroth order Friedmann equation and depends on the energy
budget of the universe as well as the equation of state of dark energy. The power
spectrum P(k, z) can be factored as a product of the primordial power spectrum that
depends on the physics of the early universe and a transfer function that characterizes
the physics of late stage evolution.

There are several observational probes of P(k, z) using the fluctuations inside our
observable horizon. The most widely-known is the Cosmic Microwave Background
(CMB), which is the relic radiation from when the universe was around 400,000
years old. The density fluctuations in the CMB have been measured with exquisite
precision by a number of experiments, most recently by the Planck satellite. Fig. 1.1
shows the map of the CMB after removal of galactic and extragalactic foregrounds.

The other probes of cosmological fluctuations include the distribution of galaxies,
the Lyman-α forest, weak lensing, and cluster abundances. These probes measure
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Figure 1.1: The cosmic microwave background map after removal of galactic and
extragalactic foregrounds from the Planck mission gives us a snapshot of a nearly
homogeneous universe around 380,000 years after the big bang.

fluctuations in the universe at much smaller scales and at later stages. As such
their interpretation has to deal with complicated non-linear effects as well as more
messy astrophysics during the late stages of the universe. Fig. 1.2 from Tegmark &
Zaldarriaga 2002 shows the different probes that measure the matter power spectrum
at various scales. As evident from the figure, the CMB probes the largest scale
fluctuations while Large Scale Structure (LSS) probes smaller and intermediate
length scales.

1.2 The Low Frequency Frontier: Mapping the Universe with the 21cm Line
Given the deluge of information about the content and evolution of the universe, one
might wonder: what next? Beyond the three big questions discussed in the previous
section, the details of the evolution of the universe since the epoch of recombination
to the present day remains to be observationally constrained. Recent measurements
have put stringent constraints on the nature of this evolution, but there are no direct
measurements of the major phase changes in the universe since recombination. For
about 800million years after the big bang, the universe consisted primarily of neutral
hydrogen. After the formation of the first luminous objects, the hydrogen atoms got
"re-ionized" and eventually led to the formation of stars and galaxies that we see
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Figure 1.2: Different cosmological probes and the length scales they probe adapted
from Tegmark & Zaldarriaga 2002: The figure shows power spectrum of density
fluctuations in the Universe as predicted by the ΛCDM model (red line) and the
various probes used to measure the power spectrum at different length scales. This
figure is based on data available in 2002 and cosmological LSS probes have advanced
significantly since then. However, the essential mapping of probes to scales is the
same.

today.

This thesis deals with theoretical and observational aspects of one of the frontiers
of modern observational cosmology: the use of 21cm radiation from the hyperfine
splitting of neutral hydrogen to probe the universe during the first billion years, from
the so called Dark Ages to the late stage reionized universe. Current and upcoming
21cm experiments are poised to revolutionize cosmology by enabling a detailed
understanding of astrophysics: when did the first stars form? When did reionization
begin? What reionized the universe? 21cm experiments will also revolutionize
cosmology and fundamental physics by allowing for the measurement of the largest
accessible volume inside the horizon.

One of the crucial periods of cosmic evolution that 21cm experiments aim to con-
strain is the Epoch of Reionization (EoR). The current evidence and constraints
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on reionization come from the absorption of the Lyman-α line in the spectra of
high-redshift quasars. The optical depth to neutral hydrogen for Lyman-α pho-
tons is extremely high, implying that even a small fraction of neutral hydrogen in
the universe saturates the absorption signature. This leads to the Gunn-Peterson
trough Gunn & Peterson 1965, which can help constrain the redshift when the uni-
verse is almost entirely ionized. Observations indicate that this redshift is around
z ∼ 6. Large scale fluctuations in the polarization of the CMB also helps constrain
the stage when the reionization was partially complete. Recent Planck data Planck
Collaboration et al. 2016 indicates that the average redshift at which reionization
occurs is is likely between z = 7.8 and 8.8. The data also indicates that the Universe
was ionized at less than the 10% level at redshifts above z ∼ 10 ruling out models of
early reionization. Other constraints on reionization come from Lyman-α damping
wings of high redshift Gamma-Ray Bursts (Miralda-Escudé 1998; Barkana & Loeb
2004) and from the detection of high-redshift galaxies (Robertson et al. 2010).

While we have a broad-brush picture of the process of reionization, the details of
the process are rather poorly understood. When did the first stars form and what
was their composition? How did the first X-ray sources affect the evolution of the
IGM? What was the role of blackholes, both supermassive as well as stellar mass?
How did the Lyman-α background evolve just prior to reionization?

Astronomy, however, is still fundamentally a discovery driven science. As we
shall see in subsequent chapters, the real promise of 21cm experiments lies in
their ability to make 3D maps of the universe at scales that are unprecedented.
This cosmic cartography will enable us to not just measure known cosmological
parameters with great accuracy, it will very likely provide new surprises. The
volumes that these experiments will open up will enable quite literally the largest
physics laboratories in the universe. Beyond measuring cosmological parameters,
this laboratory can potentially be used to answer fundamental physical questions
such as constraining the strength of primordial magnetic fields, detect annihilating
dark matter, or constraining models of early Dark Energy.

1.3 Overview of this Thesis
With cosmology poised to undergo a revolution with upcoming 21cm experiments,
it is timely to investigate the scientific promises and the observational challenges
associated with these efforts. This thesis provides two new contributions, one
theoretical and one observational, to the field of 21cm cosmology.
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The theoretical part of the thesis proposes a new way to detect inflationary grav-
itational waves using the circular polarization of the 21cm line. Unlike linear
polarization, which gets scrambled up due to Faraday rotation, circular polarization
of 21cm is expected to be a relatively clean signal. Given the scientific interest in
testing inflation via the detection of gravitational waves from the early universe, this
method provides a novel experimental strategy for the future. While the experiments
that can use the circular polarization method are still rather futuristic at this stage,
the technique highlights the rich array of physical processes that can be probed
by future 21cm experiments. Given the long-term interest in testing inflationary
physics, this method will hopefully help make the scientific case for the ultimate
21cm experiment. The material relevant to the theoretical part of the thesis are con-
tained in Chapter II, which discusses the fundamentals of inflationary cosmology
and Chapter IV, which outlines the new technique for detecting inflationary GWs
using circular polarization.

The observational part of the thesis uses new data from Owens Valley Long Wave-
length Array (OVRO LWA) and publicly available ISM tracer maps to investigate
potential galactic foregrounds at low frequencies. 21cm experiments are limited by
the dynamic range they can achieve against low-redshift sources of low-frequency
radio emission. Multi-frequency maps produced by the LWA provide a powerful
tool to characterize the low-frequency radio emission from our own Galaxy. We
describe a technique to detect cross-correlations between LWA maps and known
tracers of the ISM: dust, Hα, and HI. We conclude this part of the thesis by putting
the first upper limits on the level of cross-correlation between low-frequency maps
and tracers of the ISM. The major contribution of this part of the thesis is rul-
ing out any anomalous ISM emission at low-frequencies. The material relevant to
the observational part of the thesis are contained in Chapter III, which discusses
the fundamentals of 21cm cosmology and Chapter V, which reports results of the
cross-correlation analysis using LWA and ISM maps.

The work presented in this thesis was originally written in two papers, one of which
has been submitted to the arxiv (https://arxiv.org/abs/1707.03514) and other will be
submitted with the LWA data release. The papers are:

• "Detecting Primordial Gravitational Waves With Circular Polarization of the
Redshifted 21cm Line- Forecasts" which was led by me. The formalism
for the generation of circular polarization due to inflationary gravitational
waves was led by my advisor (which led to “Paper-I” of the series) and
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the forecasts for future experiments was led by me (“Paper-II”). I also led
the estimation of circular polarization foregrounds that are important for the
proposed technique.

• "Characterizing foregrounds for redshifted 21cm radiation using the Long
Wavelength Array: cross-correlation with Tracers of the ISM" which was
written in collaboration with Michael Eastwood. Michael produced the LWA
maps (which will be published in a separate paper) and I led the cross-
correlation analysis.

It is my hope that this thesis will communicate the scientific promise of 21cm
cosmology, even though some of the ideas presented might be rather futuristic,
while also providing a pragmatic view of the observational challenges that need to
be overcome.

1.4 Other Work
During my thesis I also contributed to other papers that are not included as a part of
this thesis. These include:

• "Detecting Primordial Gravitational Waves With Circular Polarization of the
Redshifted 21cm Line- Formalism" led by my advisor Chris Hirata. This
paper provides the formalism for the generation of 21cm circular polarization
due to a remote quadrupole field. I was involved in the writing of the paper
and the calculation connecting the circular polarization signal to observable
power-spectra (which is included in a separate the forecasts paper). I provide
a broad outline of the calculation reported in this paper in Chapter IV.

• "A new probe of magnetic fields in the pre-reionization epoch: II Detectabil-
ity" led by Vera Gluscevic. This paper makes forecasts for detecting extremely
small primordial magnetic fields using the local anisotropy of the 21cm tem-
perature power spectrum. We show that depending on the reionization history,
and subject to the control of systematics from foreground subtraction, an ar-
ray of dipole antennas in a compact grid configuration with a collecting area
slightly exceeding one square kilometer can achieve a 1σ detection of mag-
netic fields with strength 10−21 Gauss comoving (scaled to present day value)
within three years of observation. I was involved in the calculation of the
noise power spectra.
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• "Inflationary Freedom and Cosmological Neutrino Constraints" led by Roland
de Putter. In this paper we show that combining CMB and LSS datasets
can help robustly constrain the sum of neutrino masses to

∑
mν < 18eV at

95% confidence level using Planck+BOSS+H0 measurements without mak-
ing assumptions about the shape or functional form of the primordial power
spectrum. I was involved in the data analysis using Planck and BOSS data, in-
cluding modifying CAMB to include a free-form primordial power spectrum,
and generating parameter constraints for the free-form power spectrum. I was
also involved in the interpretation of the results and writing of the paper.
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C h a p t e r 2

OVERVIEW OF INFLATIONARY COSMOLOGY

Despite the breathtaking diversity in structure at planetary and galactic scales, the
universe is remarkably homogeneous at the largest scales. The homogeneity of the
observable universe is one of the key observational puzzles of modern cosmology.
In the standard big-bang model, patches in the sky that are larger than 2 degrees
across in angular size should be causally independent and hence cannot thermalize.
However, observations of the Cosmic Microwave Background (CMB) by Penzias
& Wilson (Penzias & Wilson 1965) showed that the CMB was remarkably smooth
on large scales. In fact the CMB, which traces the matter distribution in the early
universe, is homogeneous to better than one part in 10,000. This remarkable
smoothness of the CMB at the largest scales is known as the horizon problem.
Figure 2.1 illustrates the horizon problem schematically in the standard cosmological
model.

A second puzzle in observational cosmology is that the total energy density of the
universe is almost equal to the critical energy density. There is no natural physical
explanation for this value in the standard big-bang model and it leads to what is
known as the flatness problem. In a series of papers in the early 1980s (Guth 1981;
Albrecht & Steinhardt 1982; Linde 1982), it was hypothesized that a period of
exponential expansion in the earliest stages of the universe, known as inflation can
solve both of these puzzles. The idea postulated that a new scalar field in the very
early universe could drive this exponential expansion. Inflation would thus take a
small, causally connected patch in the very early universe and expand it to the size
of the observable universe.

A by-product of an exponentially expanding phase is the generation of perturbations
in the metric (Guth & Pi 1982; Hawking 1982; Linde 1982; Rubakov et al. 1982),
hence inflation not only solves the horizon and flatness problems but provides
a natural explanation for the generation of structure in the universe: the scalar
component of these perturbations lead to density perturbations we observe at the
largest scales. Inflation also predicts the generation of tensor modes or gravitational
waves; the detection of these gravitational waves will thus be a ‘smoking gun’ for
inflation and provide awindow into the earliest, most energetic epoch of the universe.
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Figure 2.1: Conformal diagram for standard FRW cosmology. In standard cosmol-
ogy there are ∼ 105 causally disconnected patches (figure adopted from Baumann
2009).

In this chapter we aim to provide a brief review of inflationary physics starting
with the homogeneous background evolution during inflation and the generation
of perturbations. We also discuss the the proposed experimental tests of inflation
using CMB polarization. The formalism outlined in this chapter will provide useful
background for our discussion in Chapter IV. Details of the calculations outlined
in this chapter can be found in standard textbooks (eg: Dodelson 2003) or review
articles (see for eg Kamionkowski & Kovetz 2016).

2.1 The Physics of Inflation: Homogenous Evolution
Anexpanding homogeneous and isotropicUniverse can be described by aFriedmann-
Robertson-Walker (FRW) metric at the largest scales:

ds2 = −dt2 + a2(t)
(

dr2

1 − kr2 + r2dΩ2
)

(2.1)

where a(t) is the scale factor parametrizing the background expansion rate. The
growth rate of the universe (Hubble parameter) is given by,

H ≡ Ûa
a

(2.2)

Assuming the evolution of the universe at the largest scales is governed by general
relativity, the equation of motion for the scale factor is given by the Friedmann
equations:

H2 =
ρ

3M2
pl

H + ÛH2 = − ρ + 3p
6M2

pl

(2.3)
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Figure 2.2: Inflation extends conformal time to negative values. The end of inflation
is at τ = 0. As we can see in the figure, causally disconnected patches at τ = 0 were
in causal contact before inflation (figure adopted from Baumann 2009).

where p and ρ are the density and pressure of the background stress-tensor, which
is assumed to be a perfect fluid. This is a valid assumption for a universe which
is dominated by dark matter. Here we assume ~ = c = 1, Newton’s constant
G = 1/(8πMPl)2, and Planck mass, MPl = 2.435 × 1018 GeV.

Conformal Time and Causal Structure
We now turn to the kinematics of light-rays in the FRW metric- the kinematics of
light- or null curves- determines the causal structure of the FRW spacetime. Null
curves are defined by the condition ds2 = 0. They are easier to describe in terms of
the conformal time that is defined as1,

τ =

∫
dt

a(t) (2.4)

1note that conformal time is sometimes denoted by η (as we do in Chapter IV). However, η is
used to denote one of the the slow-roll parameters in this chapter hence the use of τ for conformal
time.
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With this definition, and assuming spatial isotropy, we can write the FRWmetric as,

ds2 = a2(τ)[−dτ2 + dχ2] (2.5)

which is the Minkowski metric scaled by a time-dependent conformal factor a(τ).
In the metric defined by Eq. 2.5, light-rays travel in straight lines at ±45◦ in the
τ− χ plane, making it easy to understand the causal structure of an isotropic, curved
spacetime like the FRW metric.

Another quantity of interest is the the maximal comoving distance that light can
travel between two times τ1 and τ2, known as the (comoving) particle horizon. The
size of the particle horizon from a given spacetime point determines the causally
connected region of spacetime,

χ(τ) = τ − τi =

∫ t

ti

dt
a(t) (2.6)

The particle horizon where ti corresponds to the big-bang singularity (i.e. a(t) = 0)
can be written as

τ =

∫ t

0

dt
a(t) =

∫
(aH)−1dlna (2.7)

The conformal time is thus proportional to (though not equal to) the comoving
Hubble radius (aH)−1.

Inflation: Kinematics
The dynamics of the universe during the radiation and matter dominated stage is
governed by,

d
dt
(aH)−1 > 0 (2.8)

which implies that an observer in an expanding background will see a growing
horizon of size H−1. In this case more information enters the horizon as time
progresses.

For background evolution during inflation, this condition is reversed, i.e. d/dt(aH)−1 <

0, which leads to a shrinking Hubble sphere and an exponentially growing scale fac-
tor a(t) ∝ eHt .

We define the equation of state parameter as,

w ≡ p
ρ

(2.9)
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Figure 2.3: Inflation postulates that the energy density of the universe is dominated
by the vacuum energy associatedwith the displacement of a scalar field (the inflaton).
The inflaton potential is unknown and needs to be constrained by observations. Here,
shown for illustration are two toy models for the inflaton potential from ((figure
adopted from Kamionkowski & Kovetz 2016)).

Defining ε ≡ − ÛH/H2, Friedmann equations imply,

ε =
3
2
(1 + w) (2.10)

Inflation thus requires that w < −1/3.

Inflation: Dynamics
The equation of state necessary for inflation comes from the a hypothesized scalar
field φ called the "inflaton" with an associated potential V(φ) (see Figure 2.3).

During inflation, the stress-energy tensor of universe is dominated by the scalar field
and it sources the evolution of the FRW background. We now set out to determine
the conditions under which the scalar field can lead to accelerated expansion. The
pressure and energy density components of the stress-energy tensor are given by,

p =
Ûφ2

2
− V(φ) ; ρ =

Ûφ2

2
+ V(φ) (2.11)

The corresponding Friedmann equation governing time-evolution φ is given by,

Üφ + 3H Ûφ + ∂φV(φ) = 0 (2.12)

Note that here the potential acts like a driving force ∂φV(φ) while the expansion of
the universe acts like a friction term H Ûφ.

We now define two quantities (called the slow-roll parameters) as,

ε ≡ −
ÛH

H2 =
Ûφ2

2M2
plH

2
(2.13)

and
η =

Ûε
Hε

(2.14)
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For inflation to occur both ε, η < 1.

We now make two approximations to simplify the equation of motion (Eq. 2.12).
First, we assume that ε << 1 implying Ûφ2/2 << V(φ), leading to a simplification
of the Friedmann equation to,

H2 ≈ V
3M2

pl
(2.15)

This implies that the Hubble rate during inflation is determined entirely by the
inflaton potential. The second assumption we impose is η << 1, which simplifies
the equation of motion (Eq. 2.12) to,

3H Ûφ ≈ −∂φV(φ) (2.16)

We thus have reduced a second order equation of motion to a first order equation,
needing us to specify only one initial condition.

Together these two conditions are known as the slow roll approximation which can
be summarized as,

ε ≈
MPl2

2

(
∂φV
V(φ)

)2
<< 1 (2.17)

and
η = −2

ÛH
H2 −

Ûε
2Hε

<< 1 (2.18)

2.2 The Physics of Inflation: Generation of Perturbations
In this section we provide a brief discussion of the generation of primordial density
and tensor perturbations from quantum fluctuations during inflation. The discussion
does not delve into the technical details of the calculation (for details see Baumann
2009). Instead we provide a heuristic outline for the calculation.

Scalar Perturbations
Consider a scalar field φ that varies in space and time. Since the energy density
is dominated by φ, spatial fluctuations in φ will lead to spatial fluctuations in the
energy density which will induce fluctuations in the spacetime metric.

The perturbations for the scalar field and the metric during inflation are given by,

φ(t, x) = φ̄(t) + δφ(t, x) , gµν(t, x) = ḡµν(t) + δgµν(t, x) , (2.19)
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where

ds2 = gµν dxµdxν

= −(1 + 2Φ)dt2 + 2aBidxidt + a2[(1 − 2Ψ)δi j + Ei j]dxidx j (2.20)

The metric perturbations can be decomposed into Scalars, Vectors, and Tensors (the
SVT decomposition), given by,

Bi ≡ ∂i B − Si , (2.21)

where
∂iSi = 0 , (2.22)

and
Ei j ≡ 2∂i j E + 2∂(iFj) + hi j , (2.23)

where
∂iFi = 0 , hi

i = ∂
ihi j = 0 . (2.24)

We ignore the vector perturbations, Si and Fi since they decay with the expansion
of the universe. Instead we focus on the scalar and tensor modes.

An important characteristic of perturbations in GR are that they are not unique, but
depend on the choice of coordinates or gauge. Note that tensor fluctuations are
gauge-invariant, but scalar fluctuations depend on the choice of gauge. We choose
a gauge defined by vanishing momentum density i.e. δT0i = 0 which corresponds
to δφ = 0. This is known as the comoving gauge. The scalar metric (to linear order
in perturbation theory) can be written as,

g0ν = 0 ; gi j = a2(t) exp[2ζ(®x, t)]δi j (2.25)

where ζ(®x, t) is the curvature perturbation. The φ = 0 comoving spatial surfaces
have a three-curvature of R(3) = 4/a2∇2ζ and hence ζ is referred to as the comoving
curvature perturbation. It can be shown that ζ is conserved on super-horizon
scales for adiabatic fluctuations irrespective of the equation of state of the matter.
This provides an essential link between the fluctuations created during inflation and
observables in the late universe.

The non-dynamical metric perturbations δg00 and δg0i are further related to ζ

through the Einstein equations; this removes another extra metric degree of freedom.
We provide a quick overview of the ADM formalism that relates δg00, δg0i, and ζ
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through constraint equations and how it can be used to compute the second-order
action for the comoving curvature perturbation in quadratic order in ζ .

For the slow-roll model described earlier, the action is given by,

S =
1
2

∫
d4x
√−g

[
R − (∇φ)2 − 2V(φ)

]
, (2.26)

Our goal is to compute the perturbations of this action due to fluctuations in the
scalar field and the metric in the ADM formalism. In the ADM formalism the
spacetime is sliced into three-dimensional hypersurfaces given by

ds2 = −N2dt2 + gi j(dxi + N idt)(dx j + N jdt) . (2.27)

where gi j is the three-dimensional spatial metric on constant t-slices. The lapse
function N(x) and the shift function Ni(x) contain the same information as the metric
perturbations Φ and B. They correspond to non-dynamical Lagrange multipliers in
the action. In the ADM formalism, the action can be written as,

S =
1
2

∫
d4x
√−g

[
NR(3) − 2NV + N−1(Ei j E i j − E2)+

N−1( Ûφ − N i∂iφ)2 − Ngi j∂iφ∂jφ − 2V
]
, (2.28)

where
Ei j ≡

1
2
( Ûgi j − ∇iNj − ∇ j Ni) , E = E i

i . (2.29)

Ei j is related to the extrinsic curvature of the three-dimensional spatial slices Ki j =

N−1Ei j .

The ADM action given in Eqn.(2.28) leads to the constraint equations for the
Lagrange multipliers N and N i,

∇i[N−1(E i
j − δ

i
j E)] = 0 , (2.30)

R(3) − 2V − N−2(Ei j E i j − E2) − N−2 Ûφ2 = 0 . (2.31)

To solve the constraints, we split the shift vector Ni into scalar and vector components

Ni ≡ ψ,i + Ñi , where Ñi,i = 0 , (2.32)

and define the lapse perturbation as

N ≡ 1 + α . (2.33)
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The quantities α, ψ and Ñi then admit expansions in powers of ζ ,

α = α1 + α2 + . . . ,

ψ = ψ1 + ψ2 + . . . ,

Ñi = Ñ (1)i + Ñ (2)i + . . . , (2.34)

With an appropriate choice of boundary conditions one may set Ñ (1)i ≡ 0. At first
order (2.31) implies

α1 =
Ûζ

H
, ∂2Ñ (1)i = 0 . (2.35)

Similarly at first order Eqn. (2.30) implies,

ψ1 = −
ζ

H
+

a2

H
ε ∂−2 Ûζ , (2.36)

Solving these constraints and plugging the first-order solutions for N and Ni into the
ADM action, we get the second-order action in ζ

Sζ =
1
2

∫
d4x a3 Ûφ2

H2

[ Ûζ2 − a−2(∂iζ)2
]
. (2.37)

This can be written as,

Sζ =
∫

dτ
∫

d3 ®xa3
(
Ûv2

2
− (∇xv)2

2a2

)
(2.38)

where ®x is a comoving coordinate and v =
√

2M2
Plεζ

2 is the Mukhanov variable.
Here ε is the slow-roll parameter. ε appears in the definition of v because of the
Ûφ term in Eqn.2.37 and through Eqn.2.13. Note that if φ is constant (i.e. ε = 0),
then even large perturbations in ζ would have no effect on the action; the definition
of the canonically normalized variables thus needs to contain ε for the generation
of perturbations. As we shall see later, the magnitude of ε determines the relative
enhancement of scalars with respect to tensors.

Fourier transforming the spatial part of v we have,

Sζ =
∑

k

∫
dτa3

(
| Ûvk |2

2
−

(
k
a

)2 |vk |2
2

)
(2.39)

which is similar to the action for a collection of uncoupled oscillators. The equation
of motion for each Fourier mode is the same as the equation of motion for a simple
harmonic oscillator with a time-dependent frequency and a friction term,

Üvk + 3H Ûvk + (k/a)2vk = 0 (2.40)
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This is the Mukhanov-Sasaki equation. So far our discussion has been completely
classical. Inflation however takes quantum fluctuations and transforms them into
classical perturbations. We shall briefly describe how this quantization works and
how it relates to classical observables.

We begin by quantizing the field v in analogywith the a quantumharmonic oscillator.
The quantum operators corresponding to v and it’s conjugate momentum v′ are
defined as,

v → v̂ =

∫
dk3

(2π)3
[
vk(τ)âkeik·x + v∗k(τ)â

†
ke−ik·x

]
. (2.41)

The Fourier modes vk can be written as,

vk → v̂k = vk(τ)âk + v
∗
−k(τ)â

†
−k , (2.42)

where â†−k and âk are the creation and annihilation operators. They satisfy the
canonical commutation relation

[âk, â
†
k′] = (2π)

3δ(k − k′) , (2.43)

if the mode functions are normalized as follows

〈vk, vk〉 ≡
i
~
(v∗kv

′
k − v

∗
k
′vk) = 1 . (2.44)

This normalization provides one of the boundary conditions on the solutions of
Eqn. (2.40). The second boundary condition comes from a choice of vacuum. The
vacuum state for the fluctuations is defined by,

âk |0〉 = 0 , (2.45)

In the de-Sitter limit, the vaccum state is given by the Bunch-Davies mode functions

vk =
e−ikτ

√
2k

(
1 − i

kτ

)
. (2.46)

The two boundary conditions (2.44) and (2.46) are sufficient to fix the mode func-
tions.

We define a field,
ψ̂k ≡ a−1v̂k (2.47)

and compute the corresponding power spectrum of the field

〈ψ̂k(τ)ψ̂k′(τ)〉 = (2π)3δ(k + k′) H2

2k3 (1 + k2τ2) . (2.48)
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On superhorizon scales, |kτ | � 1 we get,

〈ψ̂k(τ)ψ̂k′(τ)〉 → (2π)3δ(k + k′) H2

2k3 . (2.49)

Using Eqn. (2.49), we can compute the power spectrum of ζ = H
Ûφ ψ at horizon

crossing,
a(t?)H(t?) = k, (2.50)

The power spectrum of the curvature perturbations can be defined by,

〈ζk(t)ζk′(t)〉 = (2π)3δ(k + k′) 1
2k3

H4
?

Ûφ2
?

. (2.51)

where ? indicates that a quantity is calculated at horizon crossing. Defining the
dimensionless power spectrum ∆2

ζ (k) by,

〈ζkζk′〉 = (2π)3δ(k + k′)Pζ (k) , ∆
2
ζ (k) ≡

k3

2π2 Pζ (k) , (2.52)

we get

∆
2
ζ (k) =

1
(2π)2

H4
?

Ûφ2
?

. (2.53)

Since ζ is constant on super-horizon scales the spectrum at horizon exit determines
the power spectrum until a given fluctuation mode re-enters the horizon.

Evaluating the power spectrum at the specific instant of horizon exit extends the
result for pure de Sitter background to the slow-roll, quasi-de Sitter space. In that
case different modes exit the horizon as slightly different times since a?H? has a
different value. This procedure leads to the appropriate result for the power spectrum
during slow-roll inflation. Note that during slow-roll expansion the time-evolution
is given by,

aH = −1
τ
(1 + ε) (2.54)

while for pure de Sitter expansion the scale factor is Hubble rate H is related to t

via a(t) ∝ eHt or a = −(Hτ)−1.

Thus inflation converts subhorizon quantum fluctuations to classical superhorizon
perturbations. After inflation ends, the superhorizon fluctuations re-enter the hori-
zon (see Figure 2.4) and become the density fluctuations we see in the CMB and
LSS.

The primordial curvature perturbation is a realization of a randomfield inwhich each
Fourier amplitude ζk drawn from a Gaussian distribution with variance 〈|ζk |2〉 =
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 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 2.4: All scales that are relevant to cosmological observations today were
larger than the Hubble radius until a ∼ 10−5. However, at sufficiently early times,
these scales were smaller than the Hubble radius and therefore causally connected.
Figure adopted from Baumann 2009.

H2/(4M2
Plεk3). The curvature power spectrum can be written in terms of the Planck

mass Mpl as,

∆
2
ζ (k) =

H2

8π2M2
Plε

(2.55)

Planck measurements constrain ∆2
ζ (k) ≈ 2.2 × 10−9.

Tensor Perturbations
Gravitational waves are solutions of the sourceless Einstein’s equations. Consider
an FRW universe with a metric,

gi j = a2(t)(δi j + 2hi j) (2.56)

The Einstein-Hilbert action for this metric expanded to quadratic order in hi j ,

Sh =
1
4

∫
dt

∫
d3 ®xa3M2

Pl

(
Ûhi j

2

2
−
∂k h2

i j

2a2

)
(2.57)

Fourier transforming and summing over two GW polarizations gives,

Sh =
∑

p=+,×

∑
k

∫
dta3

(
| Ûvp,k |2

2
−

(
k
a

)2 |vp,k |2

2

)
(2.58)

where vp = (hpMPl)/2. As in the case of scalars, each Fourier mode and each
polarization behaves like a simple harmonic oscillator. Using arguments similar to
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the one used for scalars we can show that the gravitational wave power spectrum,
after summing over the two polarizations is given by,

∆
2
h(k) ≡ 2

k3

2π2 〈|hp,k |2〉 =
2H2

π2M2
Pl

(2.59)

Since H2 ∝ V during inflation, the tensor amplitude is determined by the energy
density of the Universe during inflation. The tensor amplitude is described using
the tensor-to-scalar ratio r ,

r ≡
∆2

h

∆2
ζ

= 16ε ≈ 0.1
(

1
(2 × 1016GeV)4

)
(2.60)

The strongest bounds on r come from the joint analysis of Planck, which puts upper
limits on r < 0.07 (BICEP2 Collaboration et al. 2016).

2.3 Experimental Tests of Inflation
In the previous section we discussed the generation of power spectra associated
with the curvature ζ and tensor h fluctuations generated during inflation. We
showed that the power spectra depend on the physics of inflation- specifically the
inflaton potential. In this section we provide a short overview of how the power
spectra Pζ (k) and Ph(k) are associated with observables related to the CMB. The
CMB polarization is one of the most promising probes of inflation and this section
outlines the kind of calculation that goes into translating inflationary physics to
observables. We shall not discuss other proposed techniques to detect inflationary
gravitational waves using large scale structure (for instance, see Smith et al. 2006
for a discussion on direct detection of GWs from inflation). Later in this thesis,
we provide a novel way to detect inflationary gravitational waves using the circular
polarization of the 21cm line.

Inflation can be thought of as a shrinking Hubble horizon, which implies that during
inflation fluctuations exit the horizon. At late stages, and at lower-energies, these
fluctuations re-enter the horizon and we can probe them using observables like the
CMB aniostropy. This is possible because perturbations that exit the horizon during
inflation remain "frozen" and hence encapsulate information about Pζ (k) and Ph(k).
Figure 2.4 adapted from Baumann shows how a given comoving wavenumber exits
the horizon and then re-enters right before recombination. Once the curvature
perturbations ζ re-enter the horizon, they lead to density fluctuations in the matter
distribution. These density fluctuations eventually get imprinted on the CMBwhich
we can detect using experiments like Planck.
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CMB Temperature Anisotropies
We now discuss the we the evolution of perturbations after the modes re-enter
the horizon and eventually become the anisotropies we observe in the CMB. In
this section we outline the essential machinery needed to translate the primordial
fluctuations to the observed CMB spectrum.

After entering the horizon, the curvature perturbations lead to density fluctuations
in the primordial plasma. As the universe cools, the formation of neutral hydrogen
leads to the photons decoupling. These photons get redshifted and are observed
today as CMB photons. The CMB anisotropies thus contains information about the
primordial density perturbations.

The measured CMB temperature fluctuation map on the sky can be expanded in
terms of spherical harmonics,

Θ(n̂) ≡ δT(n̂)
T
=

∑̀
m

a`mỲ m(n̂) , (2.61)

where,
a`m =

∫
dΩY ∗`m(n̂)Θ(n̂) . (2.62)

Here, Ỳ m(n̂) are the standard spherical harmonics on a 2-sphere. The statistical
isotropy of the universe allows us to define the angular power spectrum of the CMB
in terms of the the multipole moments a`m as,

CTT
` =

1
2` + 1

∑
m

〈a∗`ma`m〉 ; 〈a∗`ma`′m′〉 = CTT
` δ``′δmm′ , (2.63)

CMB temperature fluctuations are dominated by the scalar modes ζ . The linear
evolution which relates ζ and temperature anisotropies is determined by the transfer
function ∆T`(k) through the k-space integral

a`m = 4π(−i)`
∫

d3k
(2π)3

∆T`(k) ζk Ỳ m(k̂) (2.64)

Moreover, we can write down the power spectrum of the curvature fluctuations as,

〈ζkζk′〉 = (2π)3Pζ (k) δ(k + k′) . (2.65)

If the primordial fluctuations are Gaussian then Pζ (k) contains all the information
about the primordial fluctuations. In fact, single-field slow-roll inflation predicts
that ζ should be Gaussian to a very high degree.
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Substituting Eqn.(2.64) & (2.65) into Eqn.(2.63) and using the identity∑̀
m=−`

Ỳ m(k̂)Ỳ m(k̂′) =
2` + 1

4π
P`(k̂ · k̂′) , (2.66)

we get
CTT
` =

2
π

∫
k2dk Pζ (k)︸︷︷︸

Inflation

∆
2
T`(k)︸ ︷︷ ︸

Transfer Function

. (2.67)

The transfer function ∆T`(k) depends on the background cosmology parameters
and can be computed numerically using Boltzmann-codes such as CAMB The
primordial spectrum Pζ (k) can be measured by deconvolving CTT

`
, using a given

transfer function, which depends on the background cosmology.

We can observe the fluctuations that were outside the horizon even at recombination
by measuring the largest-scale features in CTT

`
. This is known as the Sachs-Wolfe

regime, where the transfer function is simply a geometric projection from recombi-
nation to z = 0 and is given by a Bessel function,

∆T`(k) =
1
3

j`(k[τ0 − τrec]). (2.68)

We can show that this implies that CTT
`

at large scales is,

`(` + 1)CTT
` ∝ `

ns−1 . (2.69)

Thus the measurement of the temperature angular power spectrum of the CMB at
the largest scales can be used to constrain ns, the scalar spectral index. Planck data
indicates that ns = 0.968 ± 0.006 (Planck Collaboration et al. 2016).2

CMB Polarization Anisotropies
Thomson scattering between electrons and photons leads to a polarization of the
CMB and this polarization can be used to probe primordial fluctuations, particularly
tensor modes. Measurement of the CMB polarization is the primary scientific
motivation behind the next generation of CMB experiments (Kamionkowski &
Kovetz 2016). In this section we briefly review the physics of CMB polarization and
how it relates to tensor modes. Details about the calculation of CMB polarization
anisotropies can be found in Dodelson 2003.

2Note that the measurement of ns by Planck relies on a fit to the whole CMB spectrum- the
Sachs-Wolfe plateau at the largest angular scales are included but have large cosmic variance errors.
Instead, the constraint comes from the acoustic peaks and the damping tail regions.
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Figure 2.5: Current constraints on the scalar spectral index ns and tensor-to-scalar
ratio r , for a variety of slow-roll inflationary models. Figure adopted from Planck
Collaboration et al. 2016.

TheCMB is polarized because free electrons during recombination see an anisotropic
radiation field sourced by primordial density fluctuations. The linear polarization
arises due to the quadrupole of the radiation field incident on an electron (in its
rest frame). The CMB polarization thus encodes information about the primordial
density (or scalar) fluctuations.

Since polarization is not a scalar field, the standard decomposition in terms of
spherical harmonics as discussed in the previous section is no longer applicable.
Linear polarization is then described by the Stokes parameters Q = 1

4 (I11 − I22) and
U = 1

2 I12, where Ii j(n̂) is the 2 × 2 intensity tensor. Here n̂ denotes the direction on
the sky. The components of Ii j are defined relative to two orthogonal basis vectors ê1

and ê2 perpendicular to n̂. The polarization magnitude and angle are P =
√

Q2 +U2

and α = 1
2 tan−1(U/Q). The temperature anisotropy is given by T = 1

4 (I11 + I22)
and is invariant under a rotation in the plane perpendicular to n̂. Therefore the
temperature field can be expanded in terms of scalar (spin-0) spherical harmonics.

The quantities Q and U, transform under rotation by an angle ψ as a spin-2 field
(Q±iU)(n̂) → e∓2iψ(Q±iU)(n̂). The harmonic analysis ofQ±iU therefore requires
expansion on the sphere in terms of tensor (spin-2) spherical harmonics

(Q ± iU)(n̂) =
∑̀
,m

a±2,`m ±2Ỳ m(n̂) . (2.70)
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Figure 2.6: The top panel shows a polarization pattern composed only of E modes.
The polarization pattern is tangential around hot spots and radial around cold spots.
The bottom panel shows a polarization pattern composed only of B modes. The
polarization pattern surrounding hot and cold spots of the B mode show a swirling
pattern. Note that the E-mode is parity invariant while the B-mode is not. Figure
adopted from Kamionkowski & Kovetz 2016.

We now introduce linear combinations of the moments a±2,`m,

aE,`m ≡ −
1
2

(
a2,`m + a−2,`m

)
, aB,`m ≡ −

1
2i

(
a2,`m − a−2,`m

)
. (2.71)

This allows us to define two spin-0 fields instead of the spin-2 quantities Q and U

E(n̂) =
∑̀
,m

aE,`m Ỳ m(n̂) , B(n̂) =
∑̀
,m

aB,`m Ỳ m(n̂) . (2.72)

The scalar quantities E and B completely describe a linear polarization field. E-
mode polarization is curl-freewith polarization vectors pointing radially around cold
spots and tangentially around hot spots. B-mode polarization is divergence-free but
has a curl: the polarization vectors have a net vorticity around any given point on
the sky (see Fig. 2.6).

The symmetries of temperature and polarization anisotropies allow four types of
correlations: CTT

`
, CTE

`
, CEE

`
, and CBB

`
. CT B

`
and CEB

`
are zero due to symmetry
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Figure 2.7: Theoretical predictions for the temperature (black), E-mode (red), and
tensor B-mode (blue) power spectra. Also shown are expected values lensing
B-modes (green). Current measurements of the B-mode for BICEP2/Keck Ar-
ray (yellow), POLARBEAR (orange), and SPTPol (dark orange). Figure adopted
from Abazajian et al. 2016.

arguments. The angular power spectra are defined as,

CXY
` ≡

1
2` + 1

∑
m

〈a∗X,`maY,`m〉 , X,Y = T, E, B . (2.73)

It was pointed out by Seljak & Zaldarriaga 1997 & Kamionkowski et al. 1997
that density perturbations create E-modes but no B-modes. Tensor perturbations,
however, create both E-modes and B-modes. Since scalar density perturbations do
not produce B-modes while tensor perturbations do, detection of these B-modes
will be a smoking-gun evidence for inflation. The theoretical predictions for the
B-modes due to tensors and the current observational limits are shown in Figure 2.7.

While density perturbations do not induce a curl in the polarization in linear theory,
B-modes can be generated at higher order in perturbation theory. The largest non-
linear effect that leads to the generation of B-modes in the CMB is gravitational
lensing of the high redshift CMB by intervening density perturbations. The B-mode
signal due to gravitational lensingwas first detected by the SPTPol telescope (Hanson
et al. 2013).
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2.4 Conclusion
Measurement of the B-modes of the CMB is the most promising strategy to detect
inflationary gravitational waves in the immediate term. One of the caveats for the
detectability of inflationary gravitational waves is that their strength (determined
by r) depends on the (hitherto unknown) model of inflation. Models of single-
field slow-roll (SFSR) inflation predict a range of values of r , from order unity
to very low values. While models that predict r of order unity are already ruled
out by observations, power-law inflationary potentials that predict r of the order of
1 − ns are the most interesting to immediate term CMB experiments. On the other
hand, Higgs-like potentials can lead to r ∼ 0.001 which can be probed by the next
generation of CMB experiments. SFSR models with very flat potentials, where
inflation ends when the inflation falls off a cliff (for example, the second panel in
Fig.2.3), can lead to very low values of r and these are not likely to be detected even
with the next generation CMB experiments.

While there is no broad consensus on “natural” models of inflation, given the mea-
surements of the scalar spectral index ns, SFSR models with power-law potentials
that predict values of r ∼ 0.01 can potentially be detected by ground-based CMB
experiments over the next decade. Note that the measurement of r will enable us
to directly measure the energy scale of inflation V1/4

in f ∼ 10−3(r/0.01)1/4MPl , where
MPl is the Planck mass.

The current upper bounds on r from the combination of the CMB B-mode and
other observables are r < 0.07 (95% CL) (BICEP2 Collaboration et al. 2016). The
measurement of the scalar spectral index ns by Planck rules out very low values of
r (r < 10−4) for many of the simplest models, although model dependency implies
one could get lower values of r in special cases (see Kamionkowski & Kovetz 2016
for a discussion on inflationary models that predict low values of r). Measuring
B-modes at the r > 0.002 level is the goal of future CMB “Stage-IV” experiments
(Abazajian et al. 2016). However, for low values of r CMB B-mode experiments
need to confront challenging Galactic foregrounds and the contaminating lensing
signal. In the event of a detection it will be crucial to verify the result using
techniques that have independent systematics.

There have been other techniques proposed to measure r using large-scale structure
observables (Dodelson et al. 2003; Alizadeh & Hirata 2012; Schmidt & Jeong
2012; Schmidt et al. 2014; Chisari et al. 2014), although the surveys required even
to detect r ∼ 0.07 are rather futuristic. Direct detection of the gravitational waves



28

at high-frequencies with a network of space-based laser interferometers has also
been proposed (Corbin & Cornish 2006; Kawamura et al. 2011). In Chapter 4 we
propose a new technique to detect inflationary gravitational waves using the circular
polarization of the 21 cm line. This technique, while futuristic, has the potential to
probe r ∼ 10−5 using an array of closely packed dipole antennas with a side length
of 1000 km. In the event that near-term CMB B-mode experiments measure a value
of r , our technique could potentially be used to verify the detection. In the case that
the value of r < 10−3, our technique would be a viable way to probe inflationary
gravitational waves at low r .
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C h a p t e r 3

OVERVIEW OF 21CM COSMOLOGY

The distribution of matter approximately 400,000 years after the Big Bang has been
exquisitely measured using the statistics of the CMB. The first stars and galaxies
formed within the first billion years of the universe and led to the formation of
the complex cosmic web that has been probed by galaxy surveys over the past two
decade. However, both the CMB and galaxy surveys map out a small fraction of the
universe’s comoving volume. As seen in Figure. 3.1, a large volume of the universe
remains unexplored by current cosmological probes.

The epoch of the universe after recombination and before the first galaxies formed
is often referred to as the Cosmic Dark Ages, since the universe was mostly neutral
and gravity was the dominant force governing the evolution. Probing the Dark Ages
will provide access to a large number of modes in the matter distribution of the
universe, allowing us to put stringent constraints on cosmological parameters. It
will also allow us to understand the phase transition of the universe from an almost
neutral state to a completely ionized state, due to the first stars and galaxies.

The efforts to probe the dark ages rely on the observation of low-frequency radio
emission from the hyperfine transition of neutral hydrogen. The interaction between
the proton and electron spins in neutral hydrogen leads to a splitting of the ground
state of neutral hydrogen. Transition between these hyperfine states leads to the
emission of a photon with a wavelength of about 21cm. The emitted 21cm photon
is then redshifted due to the expansion of the universe. For a given model of
the expansion of the universe we can thus observe different redshifts or distances
by tuning the frequency. Using multi-frequency radio experiments, we can thus
construct 3D, tomographic maps of the universe during the dark ages.

In this chapter I review the basic physics of the 21cm signal and the statistical
tools useful for measuring the signal. I also discuss the essentials of low-frequency
interferometers, which are used to detect the 21cm signal. Details about 21cm
cosmology and observations can be found in reviews by Furlanetto et al. 2006 and
Pritchard & Loeb 2012.
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Figure 3.1: 21 cm observations can potentially map the largest volumes of the
observable universe, while the CMB can probe a 2D surface at z ∼ 1100. and LSS
surveys can map small volumes of the local universe. Note that more than half of
the comoving volume of the universe lies at z > 20. Figure adopted from Tegmark
& Zaldarriaga 2009.

3.1 Physics of the 21cm Signal
21cm cosmology is made possible due to a simple radiative process in the early
universe: the CMB acts as a backlight for neutral hydrogen atoms in the high-
redshift IGM leading to absorption or emission of the 21 cm line. To describe the
21cm signal, we typically use the specific intensity Iν at a given frequency ν. For
low-frequencies we can use the Rayleigh-Jeans limit of the blackbody spectrum to
relate Iν to the brightness temperature Tb via,

Iν ≡
2kbTbν

2

c2 . (3.1)

The radiative transfer equation for hydrogen atoms at redshift z backlit by the CMB
with temperature Tγ(z) can then be written as,

Tb(ν) = Ts(1 − exp[−τν]) + Tγ(z) exp[−τν]. (3.2)
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Here τν is the the optical depth of the cloud due to the hyperfine transition and Ts is
the spin temperature defined by,

n(F = 1)
n(F = 0) =

g1
g0

exp[−T∗
Ts
] (3.3)

, where F = 0 denotes the spin-antiparallel hyperfine level, F = 1 denotes the
spin-parallel level, g1 = 3 and g0 = 1 are the statistical weights and T∗ = ~ωh f /kB =

68mK is the hyperfine splitting in temperature units. We observe 21cm emission if
Ts > Tγ and absorption if Ts < Tγ.

The optical depth along a line of sight of a hydrogen cloud is given by,

τν =

∫
dl[(1 − exp(−E10/kBTs)]σ0φ(ν)n0 (3.4)

, where n0 = nH/4, nH being the hydrogen density and the 21cm cross-section is
given by σ(ν) = σ0φ(ν), with σ0 ≡ 3c2 A10/8πν2, where A10 is the spontaneous
decay rate of the spin-flip transition, and the line profile is normalized by,∫

φ(ν)dν = 1 (3.5)

To evaluate the optical depth we need to determine the path length as a function of
frequency l(ν) which determines the range of frequencies dν over the path dl that
corresponds to a given observed frequency νobs. This is done using the Sobolev
approximation that assumes a linear velocity profile locally v = (dv/dl)l and then
using the Doppler shifted frequency νobs = νem(1 − v/c).

The spin temperature depends on three processes:

• Absorption or stimulated emission of CMB photons near the 21cm transition.
This leads to a coupling between Ts and Tγ

• Collisional excitation and de-excitation of hydrogen atoms. These include
hydrogen-hydrogen collisions, hydrogen-electron collisions, and hydrogen-
proton collisions. This leads to a coupling between Ts and the kinetic gas
temperature Tk

• Resonant scattering of Lyman-α photons from the first stars, which can change
the spin state via theWouthuysen-Field effect This leads to a coupling between
Ts and TLyα.
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Figure 3.2: The transitions relevant for the Wouthuysen-Field effect. Solid line
transitions contribute to spin flips. Transitions denoted by dashed lines are allowed
but do not contribute to spin flips. Figure adopted from Pritchard & Loeb 2012.

The Wouthuysen-Field effect is illustrated in Figure 3.2. The figure shows the
hyperfine 1S and 2P levels or hydrogen. If the hydrogen is initially in the hyperfine
singlet state, the absorption of a Lyα photon will excite it to either of the central
2P hyperfine states. The other two hyperfine states are inaccessible due to selection
rules. The subsequent emission of a Lyα photon can bring the atom back to either
of the two ground state hyperfine levels. In the case when the atom transitions to
the triplet state, a spin-flip takes place. Thus resonant scattering of Lyα photons can
lead to a spin flip.

The Wouthuysen-Field effect couples the spin temperature Ts to the color tem-
perature TLyα of the radiation field. TLyα is a measure of the shape of the ra-
diation field as a function of frequency around the Lyα line and is defined as
h/kBTLyα = −d log nν/dν, where nν is the photon occupation number. In the cases
we are interested in the optical depth to Lyα scattering is very large and leads to a
large number of scatterings of Lyα photons that bring the radiation field and the gas
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Figure 3.3: The evolution of the 21 cm global signal depends on different physical
processes at different epochs. The evolution of the brightness temperature Tb leads
to the 21cm signal appear either in absorption or in emission against the CMB. The
top panel shows a slice through a simulation showing the evolution of Tb and the
heating due to the first generation stars and galaxies. The bottom panel shows the
sky-averaged global 21 cm signal, which largely traces the evolution of the spin
temperature and neutral fraction of hydrogen. Figure adopted from Pritchard &
Loeb 2012.

into local equilibrium, for frequencies near the line center. This leads to TLyα ≈ Tk .

In equilibrium, the spin temperature is given by,

T−1
s =

T−1
γ + xcT−1

K + xαT−1
α

1 + xc + xα
, (3.6)

where xc is the collisional coupling coefficient and xα is the Lyman-α coupling
coefficient. Note that these are not fundamental parameters but instead depend
on cross-sections as well as macro-physics parameters like gas density and Lyα
intensity

Observationally, we are interested in the brightness temperature of the 21cm line.
Quantummechanically, the 21 cm transition is a forbidden transition, with a lifetime
for spontaneous emission of ∼ 3× 107 years. Therefore τν is small and we can work
in the optically thin regime. The brightness temperature fluctuation relative to the
CMB at redshift z in the optically thin limit is given by

δTb(r̂, ν) ≈ 27xH

(
Ts − Tγ

Ts

) (
1 + z

10

)1/2
(1 + δb)(1 + δx)

(1 + z)H(z)
∂| |v| |

mK, (3.7)
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where r̂ is unit direction vector, xH is the mean neutral hydrogen fraction, v| | is the
velocity along the line-of-sight direction, δb is the fractional baryon overdensity,
and δx is the neutral fraction overdensity. The variation of these parameters across
space and along redshift leads to a rich 3D field of the 21cm brightness temperature.
The statistics of this brightness temperature field encapsulate both fundamental
cosmological parameters as well as astrophysics during the Dark Ages.

3.2 Evolution of the 21cm Signal
The evolution of the brightness temperature Tb across frequency, and hence across
redshift, depends on both cosmological parameters (eg: the matter power spectrum),
as well as more complex astrophysical qualities (e.g., the Lyman-α flux), as evident
fromEqn 3.7. The evolution of the spatially averaged, "global" 21cm signal is shown
in Figure 3.3 (adapted from Pritchard & Loeb 2012). Future 21cm experiments will
thus need to construct high-resolution maps of Tb across multiple redshifts.

Meaningful cosmological information from the maps can only be extracted statisti-
cally. The quantity of interest is the power spectrum of the brightness temperature
field, defined as,

〈T̂∗b (k)T̂b(k′)〉 = (2π)3δ(k − k′)PT (k), (3.8)

where T̂b is the 3D spatial Fourier transformof theTb field. The angle brackets denote
an ensemble average and δ(k − k′) is the Dirac delta function. For a statistically
isotropic 21cm signal, P(k) is the same as P(k). We also define,

∆
2
21(k) =

k3

2π2 P(k), (3.9)

which measures the contribution to the root-mean-square fluctuations in Tb per
logarithmic bin in k. We plot different theoretical models of ∆2

21(k) corresponding
to different ionization fractions of the IGM in Figure. 3.4.

The power spectrum of the brightness temperature is a redshift dependent quantity.
Here we summarize the different regimes and the key physical processes at play:

• HighRedshifts (40<z<200): Compton scattering of the residual free electrons
after recombination leads to thermal coupling of the gas to the CMB at
z > 200, and this leads to a tight coupling between Tγ, Tk and Ts and they
are effectively the same. This leads to no net absorption or emission of 21cm
photons and the brightness temperature is zero. It is only around z ∼ 200,
when this coupling is broken that 21cm cosmology becomes possible.
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Figure 3.4: The evolution of the 21 cm power spectrum as a function of the ionized
fraction is expected to reveal the astrophysical processes that drove reionization
and the nature of the first stars and galaxies. The right side of the y-axis shows
neutral fraction of the universe. As the universe goes from almost neutral (yellow)
to ionized (gray), the overall amplitude of the power spectrum decreases. Moreover,
as reionization proceeds the high-k power decreases since reionization bubbles start
forming at small scales and then grow to larger scales.

After z ∼ 200, the gas begins to cool adiabatically: Tk ∝ (1 + z)2 while the
CMB temperature Tγ ∝ (1 + z). This sets Tγ > Ts and the signal appears in
absorption until z ∼ 40 when collisional coupling stops becoming effective.
During this period the 21cm fluctuations are sourced purely by the dark matter
distribution and measurement of the 21cm power spectrum during this epoch
can enable us to probe the matter power spectrum with exquisite precision.

• Intermediate Redshifts (6<z<40): At intermediate redshifts the first lumi-
nous objects in the universe form and the IGM transitions from being mostly
neutral to mostly ionized. The UV photons interact with the IGM in two ways:
photons with E > 13.6 eV are ionizing and lead to coupling of the Tk with



37

the ionizing sources. These UV photons have a very short mean free path in
the neutral medium and lead to ionized HII regions with a sharp boundary.
Photons with 10.2 < E < 13.6 eV redshift until they enter a Lyman series
resonance and subsequently generate Lyα photons via atomic cascades. The
Lyα photons couple to Ts via the Wouthuysen-Field effect.

Since the neutral fraction in the universe is still high, Tα is almost equal
to Tk , leading to a second dip in the global signal and the 21 cm signal
becoming visible in absorption. The heating of the IGM due to the first x-ray
sources leads to Tk becoming more than Tγ, which leads to 21cm emission
from certain parts of the IGM. The spatial structure of the 21cm field is
thus far more complex during this epoch and depends on the Lyman-α field,
the distribution of x-ray sources and the background evolution of dark matter.
Note that the scattering of Lyα photons off hydrogen atoms is rather inefficient
in heating the gas- the spectral distortion of the Lyα photons during scattering
greatly reduces the heating rate. Hence Lyα heating requires very large Lyα
fluxes and is likely to be more efficient at later times. On the other hand
X-ray heating of the gas is likely to be very efficient during this epoch. X-ray
photons have a very long mean free path, and hence are able to heat the gas
at greater distances from the source,. Moreover, X-rays can be produced in
large quantities once the first compact objects are formed. X-rays heat the
gas primarily through photo-ionization. Heating happens via energetic photo-
electrons generated due to photo-ionization that dissipate their energy through
heating the gas.

Around z ∼ 10 ultraviolet photons from the first generation of high-mass stars
start "re-ionizing" the universe. This leads to growing "bubbles" of ionized
material, centered on the most luminous objects, that eventually grow in size
and coalesce. During reionization the power shifts from high-k scales to low-
k scales since the ionized fraction is low at large scales, leading to a higher
21cm signal (there is no 21cm signal from the ionized bubbles). Studying the
power spectrum as a function of redshift can thus allow us to constrain the
process of reionization and understand the first luminous sources

• Low Redshifts (z<6): While the universe is almost completely ionized at
low redshifts, there are pockets of neutral hydrogen trapped in galaxies due
to self-shielding. Aggregated over a number of galaxies this can lead to a
21cm signal at low-redshifts. The unresolved 21cm signal from the galaxies
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Figure 3.5: The evolution of the universe from the CMB (extreme left) to the current
day (extreme right). After the CMB the universe goes through the Dark Ages when it
is largely neutral. As the first stars and galaxies light up, the universe gets reionized.
Reionization is inhomogeneous and fills the the universe with merging bubbles of
ionized hydrogen. Image credit: HERA/Avi Loeb/SciAm

is thus similar to a low-resolution galaxy survey and can be used as a low-z
cosmological prove via themeasurementBaryonAcousticOscillations (BAO).
As with galaxy surveys, these measurements need careful modeling of the
bias. The intensity mapping of the 21cm line however, has many advantages
over traditional galaxy surveys. The large instantaneous field of view enables
faster survey speeds, the telescopes are comparatively cheap and the redshift
resolution can be very high since it is determined digitally. The key challenge
for 21 cm intensity mapping experiments are astrophysical foregrounds which
are many orders of magnitude larger than the cosmological signal. However,
the dominant foregrounds (galactic and extragalactic synchrotron and free-
free emission) are spectrally smooth and can in principle be removed using
their spectral information. Chromatic instrument response can introduce
foreground component that is not spectrally smooth; however, this spectrally
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un-smooth component is confined to a “foreground wedge” at low k‖ and k⊥.
Seo & Hirata 2016 showed that this wedge effect can be very detrimental
to determination of the angular diameter distance at z ∼ 1 − 2. Calibration
techniques that remove the foreground wedge will thus be critical for using
the BAO feature in 21cm intensity mapping surveys as a cosmological probe.

3.3 Low Frequency Radio Interferometers: Basics
While the detection and characterization of the 21cm signal holds great scientific
promise, the measurements are exceedingly challenging. There are a number of low-
frequency radio interferometers that are currently online or are under-construction
whose primary scientific goal is to measure the 21cm power spectrum from the
Epoch of Reionization (EoR) and the Dark Ages. In this section we review the
basics of low-frequency radio interferometers. We set up our notation and review
definitions of quantities describing sensitivity of interferometric radio arrays; we
then focus on the derivation of the noise power spectrum that will be relevant to
our calculations in Chapter IV. The discussion in this section is based on Gluscevic
et al. 2017, in which I contributed to the calculation of the noise power spectrum.

Definitions
The redshifted 21–cm signal can be representedwith specific intensity at a location in
physical space I(®r) or in Fourier space Ĩ(®k). If θx and θy are the angular offset from a
reference point in the field of observation, and θν is an offset in the frequency (radial)
direction from a chosen reference frequency, these functions become I(θx, θy, θν)
and Ĩ(u, v, η), respectively. Here, vector ®k (in the units of comoving Mpc−1) is a
Fourier dual of ®r (comoving Mpc), and likewise, θx (rad), θy (rad), and θν (Hz) are
duals of the coordinates u (rad−1), v (rad−1), and η (seconds), respectively. Notice
that θx and θy represent the angular extent of the patch in the sky, while θν represents
its extent in frequency space. The two sets of coordinates are related through linear
transformations in the following way

θx =
rx

χ(z), u =
kx χ(z)

2π
,

θy =
ry
χ(z), v =

ky χ(z)
2π

,

θν =
H(z)ν21

c(1 + z)2
rz, η =

c(1 + z)2
2πH(z)ν21

kz,

(3.10)

where ν21 = 1420.4 MHz is the frequency corresponding to the 21–cm line in the
rest frame of the emitting atoms; H(z) is the Hubble parameter; and χ(z) is the
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comoving distance to redshift z which marks the middle of the observed data cube
where rz and θν intervals are evaluated. Note that 2πθiu = ri ki, for i ∈ {x, y}. The
convention we use for the Fourier transform is

I(®r) = 1
(2π)3

∫
Ĩ(®k)ei®k ·®r d®k,

Ĩ(®k) =
∫

I(®r)e−i®k ·®r d®r,
(3.11)

where Fourier–space functions are denoted with tilde. Similarly,

I(θx, θy, θν) =
∫
Ĩ(u, v, η)e2πi(uθx+vθy+ηθν)dudvdη,

Ĩ(u, v, η) =
∫
I(θx, θy, θν)e−2πi(uθx+vθy+ηθν)dθxdθydθν .

(3.12)

From Eqs. (3.10)–(3.12), the following relation is satisfied

Ĩ(®k) = c(1 + z)2χ(z)2
H(z)ν21

Ĩ(u, v, η), (3.13)

where the proportionality factor contains the transformation Jacobian drxdrydrz
dθxdθydθν

.
Finally, the relationship between the specific intensity in the uv–plane and the
visibility function V(u, v, θν) is given by the Fourier transform of the frequency
coordinate,

V(u, v, θν) =
∫
Ĩ(u, v, η)e2πiθνηdη,

Ĩ(u, v, η) =
∫
V(u, v, θν)e−2πiθνηdθν .

(3.14)

Here, θν,max − θν,min = ∆ν is the bandwidth of the observed data cube, centered on
z. The visibility is typically has units of milliKelvins or Janskys depending on the
units in which intensity is measured.

Visibility Variance
Here we derive the variance of the visibility for an interferometric array of two
antennas separated by a baseline ®b = (bx, by), each with an effective collecting
area Ae, observing a single element in the uv plane for time duration t1, with total
bandwidth ∆ν = νmax − νmin. We choose notation that is consistent with the rest of
this section, and adapted to the purpose of discussingmeasurement of a cosmological
signal (as opposed to the traditional context of radio imaging). However, similar
derivation can be found in the radio astronomy literature (see, e.g., Refs. Thompson
et al. 2001; Perley et al. 1986), and in the literature discussing forecasts for 21–cm
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Figure 3.6: Schematic of a two antenna interferometer.

experiments (see, e.g., Refs. Mao et al. 2008; Furlanetto et al. 2009; Pober et al.
2014; Mao et al. 2008).

A schematic of the experimental setup considered here is shown in Fig. 3.6. Modes
with frequencies that differ by less than 1/t1 cannot be distinguished, andmodeswith
frequencies in each interval 1/t1 are collapsed into a discrete mode with frequency
νn = n/t1, where n ∈ Z . Thus, the number of measured (discrete) frequencies is
Nν = t1∆ν. Electric field induced in a single antenna is

E(t) =
Nν∑
n

Ẽ(νn)e2πiνnt, (3.15)

while the quantity an interferometer measures is the correlation coefficient between
the electric field Ei in one and the electric field E j in the other antenna, as a function
of frequency,

ρi j(ν) ≡
〈Ẽ∗i (ν)Ẽ j(ν)〉√
〈|Ẽi(ν)|2〉〈|Ẽ j(ν)|2〉

. (3.16)

Let us now assume that

〈Ẽ∗i (νn)Ẽ j(νm)〉 = σ(ν)2δmn. (3.17)
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In the following, for clarity, we omit the dependence on ν. The real (or imaginary)
part of ρ has the following variance

var(Re[ρi j])
1

2Nν
=

1
2t1∆ν

. (3.18)

Before continuing, let us take a brief digression to show that the above formula
implicitly assumes that the electric fields in the two antennas have a very weak
correlation, ρ � 1. Consider two random Gaussian variables, x and y, both with
zero mean values, where var(x) ≡ 〈(x − 〈x〉)2〉 = 〈x2〉 − 〈x〉2 = 〈x2〉, and similarly
for y. Their correlation coefficient is ρ ≡ 〈xy〉√

〈x2〉〈y2〉
. In this case, the following is

true
var(xy) = 〈x2y2〉 − 〈xy〉2 = 〈x2〉〈y2〉 + 〈xy〉2

= 〈x2〉〈y2〉 + ρ2〈x2〉〈y2〉 = var(x)var(y)(1 + ρ2),
(3.19)

so that when ρ is small, var(xy) = var(x)var(y), which was assumed in the first
equality of Eq. (3.18).

Resuming the derivation, if different frequencies are uncorrelated, the result of
Eq. (3.18) implies

〈|ρi j(ν)|2〉 =
1

t1∆ν
. (3.20)

The final step requires a relation between intensity on the sky I(θx, θy, ν) (within
the beam solid angle Ωbeam, centered on the direction n̂ = (θx, θy)) and the electric
fields measured in the two antennas,

〈Ẽ∗i (ν)Ẽ j(ν)〉 ∝
∫
Ωbeam

dθxdθyI(θx, θy, θν)

×ei 2πν
c (bxθx+byθy)R(θx, θy),

(3.21)

where R(θx, θy) is the antenna response function (the shape of the beam in the sky),
which we will assume to be unity. Furthermore, 2πν

c (bxθx + byθy) ≡ 2π(uθx + vθy)
is the phase delay between the two antennas (position in the uv plane measures the
phase lag between the two dishes in wavelengths). The coefficient of proportionality
in the above Equation is set by various instrumental parameters and is not relevant
for our purposes. From Eq. (3.16), it follows that

ρi j(ν) =

∫
Ωbeam

dθxdθyI(θx, θy, θν)e2πi(uθx+vθy)∫
Ωbeam

dθxdθyI(θx, θy, θν)
, (3.22)

where the denominator in the above formula approximately integrates to (for a small
beam) ∫

Ωbeam

dθxdθyI(θx, θy, θν) ≈ ΩbeamI(θx, θy, θν). (3.23)
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We can now use the approximate expression for the resolution of a single dish,

Ωbeam =
λ2

Ae
, (3.24)

the Rayleigh–Jeans law (or the definition of the brightness temperature),

I(θx, θy, θν) =
2kBTsky
λ2 , (3.25)

and note that the numerator in Eq. (3.22) matches the definition of visibility from
Eq. (3.14), to get

ρi j(ν) =
Ae

2kBTsky
V(u, v, θν). (3.26)

Combining Eq. (3.26) and Eq. (3.20), we get the final result of this derivation,

〈|V(u, v, θν)|2〉 =
1
Ωbeam

( 2kBTsky
Ae
√

t1∆ν

)2

×δD(u − u′)δD(v − v′)δθνθν′,
(3.27)

where the visibility V is a complex Gaussian variable, centered at zero, and un-
correlated for different values of its arguments, and the factor of Ωbeam came from
converting from Kronecker delta to a Dirac delta function. Note finally that we con-
sidered the contribution to the visibility from the noise only (the system temperature
+ the foreground sky temperature, in the absence of a signal); in the presence of a
signal, Tsky should be the sum of the signal and the noise temperatures.

Power spectra and noise
In this Section, we derive the noise power spectrum for the brightness–temperature
fluctuation measurement. We start by defining a brightness–temperature power
spectrum as

〈Ĩ(®k)Ĩ∗(®k′)〉 ≡ (2π)3PĨδD(®k − ®k′), (3.28)

where δD is Dirac delta function. The observable quantity of the interferometric
arrays is the visibility function—a complex Gaussian variable with a zero mean and
the following variance

〈V(u, v, θν)V(u′, v′, θ′ν)∗〉

=
1
Ωbeam

( 2kBTsky
Ae
√
∆νt1

)2
δD(u − u′)δD(v − v′)δθνθ ′ν,

(3.29)

where Tsky is the sky temperature (which, in principle, includes both the foreground
signal from the Galaxy, and the instrument noise, where we assume the latter to be
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subdominant in the following); t1 is the total time a single baseline observes element
(u, v) in the uv plane; Ae is the effective collecting area of an antenna; kB is the
Boltzmann constant; ∆ν is the bandwidth of a single observation centered on z; and
the last δ in this expression denotes the Kronecker delta.

Combining Eqs. (3.14) and (3.29), and taking the ensemble average,

〈Ĩ(u, v, η)Ĩ∗(u′, v′, η′)〉

=
1

t1Ωbeam

(2kBTsky
Ae

)2
δD(u − u′)δD(v − v′)δD(η − η′),

(3.30)

where we used the standard definition∫
e2πiθν(η−η′)dθν = δD(η − η′). (3.31)

Taking into account the relation of Eq. (3.13), using Eq. (3.28), and keeping in mind
the scaling property of the delta function, we arrive at

PN
1 (®k) =

c(1 + z)2χ2(z)
Ωbeamt1H(z)ν21

(2kBTsky
Ae

)2
, (3.32)

for the noise power per ®k mode, per baseline.

In the last step, we wish to get from Eq. (3.32) to the expression for the noise power
spectrum that corresponds to observation with all available baselines. To do that,
we need to incorporate information about the array configuration and its coverage
of the uv plane. In other words, we need to divide the expression in Eq. (3.32) by
the number density of baselines nbase(®k) that observe a given mode ®k at a given time
(for a discussion of the uv coverage, see the following Section). The final result for
the noise power spectrum per mode ®k in intensity units is

PN (®k) = c(1 + z)2χ2(z)
Ωbeamt1H(z)ν21

(
2kBTsky

)2

A2
enbase(®k)

, (3.33)

and in temperature units

PN (®k) = λ
4c(1 + z)2χ2(z)
Ωbeamt1H(z)ν21

T2
sky

A2
enbase(®k)

, (3.34)

where λ = c/ν21(1 + z).



45

The UV coverage
The total number density nbase(®k) of baselines that can observe mode ®k is related to
the (unitless) number density n(u, v) of baselines per dudv element as

nbase(®k) =
n(u, v)
Ωbeam

, (3.35)

where 1
Ωbeam

represents an element in the uv plane. The number density integrates
to the total number of baselines Nbase,

Nbase =
1
2

Nant(Nant + 1) =
∫
half

n(u, v)dudv, (3.36)

where Nant is the number of antennas in the array, and the integration is done on one
half of the uv plane1. We assume that the array consists of many antennas and that
time average of n(u, v) should be computed to account for Earth’s rotation.

In this work we focus on a specific array configuration that is of particular interest
to cosmology—a compact grid of dipole antennas2, with a total collecting area of
(∆L)2, and a maximum baseline length3 of ∆L. In this setup, the beam solid angle
is 1 sr, the effective area of a single dipole is Ae = λ

2, and the effective number of
antennas is Nant =

(∆L)2
λ2 . For such a configuration, the number density of baselines

entering the calculation of the noise power spectrum reads

n(u, v) = (∆L
λ
− u)(∆L

λ
− v). (3.37)

The relation between ®k = (k, θk, φk) and (u, v) is

u⊥ ≡
χ(z)
2π

k sin θk,

u = u⊥ cos φk,

v = u⊥ sin φk,

(3.38)

where the subscript⊥ denotes components perpendicular to the line–of–sight direc-
tion n̂, which, in this case, is along the z axis. From this, the corresponding number

1This is because the visibility has the following property V(u, v, θν) = V∗(−u,−v, θν), and only
a half of the plane contains independent samples.

2Note that a densely filled array allows for higher surface brightness sensitivity to extended
structures, which is essential for 21cm cosmology. While our calculation is geared towards a
compact grid of dipoles as in the case of an Fast Fourier Transform Telescope (FFTT), Eq. 3.35 is
more generally valid. Note that the Long Wavelength Array (LWA) discussed in Chapter V is not a
FFTT.

3Note that for a square with area (∆L)2 tiled in dipoles, there is a very small number of baselines
longer than ∆L, but we neglect this for simplicity.
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of baselines observing a given ®k is

nbase(®k) = (
∆L
λ
− χ(z)

2π
k sin θk cos φk)

×(∆L
λ
− χ(z)

2π
k sin θk sin φk).

(3.39)

As a last note, when computing numerical results, we substitute the φk–averaged
version of the above quantity (averaged between 0 and π/2 only, due to the four–fold
symmetry of the experimental setup of a square of dipoles) when computing the
noise power, in order to account for the rotation of the baselines with respect to the
modes in the sky. This average number density reads

〈nbase(®k)〉φk =
(
∆L
λ

)2
− 4
π

∆L
λ

χ(z)
2π

k sin θk

+
1
π

(
χ(z)
2π

k sin θk

)2
,

(3.40)

assuming a given mode k is observable by the array, such that its value is between
2πLmin/(λ(z)χ(z) sin θk) and 2πLmax/(λ(z)χ(z) sin θk), where Lmin and Lmax are
the maximum and minimum baseline lengths, respectively. If this condition is not
satisfied, 〈nbase(®k)〉φk = 0.

3.4 Overview of Experimental Efforts
There are several ongoing and planned efforts to detect the 21cm signal from the
dark ages as well as the epoch of reionization. While no experiment has made a
detection of the 21cm power spectrum, many experiments have set interesting upper
limits and have created exquisite maps that can be used to characterize foregrounds
for upcoming experiments. I provide a brief overview of the experiments here.

Current Efforts

• LongWavelength Array (LWA): The Owens Valley LongWavelength Array
(OVRO LWA) is a 288-antenna interferometer located at the Owens Valley
Radio Observatory (OVRO). The The LWA is a low-frequency instrument
with instantaneous bandwidth covering 24− 82 MHz. The OVRO LWA hosts
the 512-input LEDA correlator, which allows the OVRO LWA to capture the
entire visible hemisphere in a single snapshot image. We discuss the LWA
configuration in detail in Chapter V.

• The Murchison Widefield Array: The MWA is a multi-purpose interfer-
ometer in Western Australia. It consists of 128 tiles, each made of 16 dual-
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polarization dipole antennas. The MWA can form a discrete set of primary
beams on the sky, each with a FWHM of 30 degrees. For EoR observations,
this allows observers to adapt a “drift and shift" observation strategy, where
the primary beam can shift once every 30 mins.

• The Low Frequency Array (LOFAR): LOFAR consists of two interferome-
ters, of which the High Band Array, is geared towards 21cm observations. The
LOFAR-HBA is similar to MWA in that each element of the interferometer
is a analog phased array of 16 dipoles. While the collecting area for LOFAR
is much larger than MWA, it cannot carry out correlations across every tile.
The high level of RFI in the Netherlands also means LOFAR needs very fine
frequency resolution, making correlations costlier.

• The Precision Array for Probing the Epoch of Reionization (PAPER):
PAPER is an experiment exclusively dedicated to 21cm EoR observations
located in the Karoo Desert of South Africa. It has 128 dipoles that sit on top
of ground screens that are arranged in a highly redundant configuration. The
redundant configuration allows for maximum sensitivity for a small number
of baselines, ideal for EoR experiments.

• TheCanadianHydrogen IntensityMappingExperiment (CHIME): CHIME
is a cylindrical telescope with several feeds placed along the focal axis of each
cylinder. The cylinders cannot be physically steered nor can the telescope
electronically form and steer a beam. Instead, CHIME uses a zenith-pointing,
drift-scan strategy like the LWA. The experiment is optimized for 21 cm inten-
sity mapping at redshifts z ∼ 0.8 − 2.5 where neutral hydrogen tomography
will allow for a measurement of the Baryon Acoustic Oscillations (BAO)
across the redshift range.

Planned Experiments

• The Hydrogen Epoch of Reionization Array (HERA): HERA is a 21cm
experiments under construction in the South African Karoo Radio Astronomy
Reserve. When complete, it will comprise of 350 14-m parabolic dishes
observing from 50 to 250 MHz. HERA sacrificies pointing and sky coverage
to substantially increase collecting area giving it an an order of magnitude
more sensitivity than ongoing 21cm experiments.
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• The Square Kilometre Array (SKA): The SKA is the most ambitious 21cm
experiment planned to begin observations by late 2020s. In the first phase
it will actually consist of two interferometers, the SKA1-LOW in Australia
and the SKA1-MID in South Africa. 21cm cosmology will be the focus for
SKA1-LOW, and will consist of 130,000 dipoles spread between 500 stations
for a total collecting area of about 0.4km2. Each dipole in the array will be
individually digitized and dipoles in a station will be added together to form
30 simultaneous beams of around 1 square degree.

Observational Challenges
While 21 cm tomography holds immense scientific promise, there remain a number
of technical challenges that need to be addressed before the technique can be used
for extracting cosmological information. The next generation of radio experiments
will push the limits of digital signal processing: for instance, the SKA is expected
to generate data at rates of 1015 bits/second which is ten times the current global
internet traffic.

Astrophysical foregrounds pose the most serious challenge to the detection of the
cosmological 21 cm signal. Much alike the CMB signal, the 21 cm signal is buried
under much stronger, spectrally smooth foregrounds. In the case of the CMB,
the intrinsic blackbody nature of the signal at different frequencies was exploited
to distinguish it from foregrounds that have a non-thermal frequency dependence.
For the 21 cm signal, measurement at different frequencies corresponds to signals
from spatially distinct regions (since frequency corresponds to redshift). Hence the
cosmological 21 cm signal is expected to have structure in frequency space, while
the foregrounds are expected to be spectrally smooth. This property can in principle
be exploited to remove the foregrounds.

At low frequencies, synchrotron emission from our Galaxy and other radio galaxies
are the dominant foregrounds. Additionally there is a small contribution from
free-free emission. Unresolved extragalactic radio galaxies also contribute to the
foreground and the emission from these radio sources is dominated by synchrotron
emission. Both synchrotron and free-free emission are spectrally smooth and this
feature can be exploited to remove them by using maps at multiple frequencies that
21 cm tomography experiments will produce.

Spectrally un-smooth foregrounds include radio frequency interference (RFI) from
terrestrial sources that can dominate over galactic and extragalactic foregrounds.
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Most 21 cm experiments are thus situated/planned in radio-quiet regions. The chro-
matic nature of an interferometer also introduces spectral features in astrophysical
foregrounds and these features depend on the instrument. As discussed in Sec. 3.2,
this un-smooth component is confined to a “wedge” at low k‖ (corresponding to
wavenumbers along the line of sight) and low k⊥ (corresponding to wavenumbers
on the plane of the sky). This chromaticity of interferometers also means that they
need to be very carefully calibrated across different frequencies before the spectrally
smooth foregrounds can be removed.

Finally, the ionosphere leads to a time-dependent variation in the signal since it acts
like a turbulent plasma screen. The careful characterization of the ionosphere at
high cadence, and across a wide field-of-view will thus be critical to extract the
cosmological signal.

These technical challenges have not deterred intrepid efforts to detect the cosmolog-
ical 21 cm signal. While we only have (weak) upper limits on the power spectrum at
low-frequencies today, improved instrumentation and better analysis techniques are
likely to enable the first measurement of the cosmological 21 cm power spectrum in
the next decade.
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C h a p t e r 4

DETECTING PRIMORDIAL GRAVITATIONAL WAVES WITH
CIRCULAR POLARIZATION OF THE REDSHIFTED 21 CM

LINE

ABSTRACT

We propose a new method to measure the tensor-to-scalar ratio r using the circular
polarization of the 21 cm radiation from the Dark Ages. Our method relies on the
splitting of the F = 1 hyperfine level of neutral hydrogen due to the quadrupole
moment of the CMB during the Dark Ages. We show that unlike the Zeeman effect,
where MF = ±1 have opposite energy shifts, the CMB quadrupole shifts MF = ±1
together relative to MF = 0. This splitting leads to a small circular polarization of
the emitted 21cm photon, which is in principle observable. Further, we forecast the
sensitivity of future radio experiments to measure the CMB quadrupole during the
era of first cosmic light (z ∼ 20). The tomographic measurement of 21 cm circular
polarization allows us to construct a 3D remote quadrupole field. Measuring the
B-mode component of this remote quadrupole field can be used to put bounds on
the tensor-to-scalar ratio r . We make Fisher forecasts for a future Fast Fourier
Transform Telescope (FFTT), consisting of an array of dipole antennas in a compact
grid configuration, as a function of array size and observation time. We find that
a FFTT with a side length of 100 km can achieve σ(r) ∼ 4 × 10−3 after ten years
of observation and with a sky coverage fsky ∼ 0.7. The forecasts are dependent
on the evolution of the Lyman-α flux in the pre-reionization era, that remains
observationally unconstrained. Finally, we calculate the typical order of magnitudes
for circular polarization foregrounds and comment on their mitigation strategies. We
conclude that detection of primordial gravitational waves with 21 cm observations
is in principle possible, so long as the primordial magnetic field amplitude is small,
but would require a very futuristic experiment with corresponding advances in
calibration and foreground suppression techniques.
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4.1 Introduction and Motivation
The idea that the early universe underwent a period of inflationary expansion, is
one of the cornerstones of modern cosmology. Inflation was originally invoked
as a solution to the flatness and horizon problems Guth 1981 but proved to be a
powerful explanation for the generation of initial perturbations in the early universe,
that eventually evolved to the large scale structure we see today Guth & Pi 1982;
Bardeen et al. 1983; Hawking 1982; Linde 1982; Mukhanov & Chibisov 1981.
Increasingly precise cosmological tests have verified the predictions of the simplest
single-field-slow-roll inflationary models; that the primordial density perturbations
are adiabatic, nearly Gaussian, and nearly (but not exactly) scale-invariant Planck
Collaboration et al. 2016a; Planck Collaboration et al. 2016b; Martin 2016.

Beyond the predictions for primordial density (scalar) perturbations, inflation also
predicts the existence of a stochastic gravitational wave background, with a nearly
scale-invariant power spectrum Abbott & Wise 1984; Rubakov et al. 1982; Fabbri
& Pollock 1983; Starobinskiı̌ 1979. Detection of these inflationary gravitational
waves would be a smoking gun for inflation, and their detection would open up a
completely new window into both the physics of the very early universe and physics
at otherwise inaccessible energy scales, V1/4

in f ∼ 10−3(r/0.01)1/4MPl , where r is the
tensor-to-scalar ratio and MPl is the Planck mass.

The principal near-term strategy to detect inflationary gravitational waves relies on
the fact that waves with wavelengths comparable to the horizon size would induce
a gradient free “B-mode” pattern in the polarization of the CMB via Thomson scat-
tering Kamionkowski et al. 1997a; Kamionkowski et al. 1997b; Seljak 1997; Seljak
& Zaldarriaga 1997; Zaldarriaga & Seljak 1997. There are several experimental
efforts underway to detect the B-mode pattern in the CMB polarization, including
ABS (Atacama B-mode Search) Essinger-Hileman et al. 2010, ACTPol Naess et al.
2014, BICEP2/Keck Array BICEP2 Collaboration et al. 2014; BICEP2 and Keck
Array Collaborations et al. 2015 and POLARBEAR/Simons Array Arnold et al.
2014. The search for inflationary gravitational waves remains the top scientific
priorities for future CMB experiments (see the CMB S4 Science Book Abazajian
et al. 2016).

As discussed in Chapter 2, the strength of the inflationary gravitational waves is
encoded in the tensor-to-scalar ratio r , which is related to the Hubble rate during
inflation and in turn depends on the energy scale at which inflation takes place. It is



52

defined as r = ∆2
h/∆

2
ζ where,

∆
2
ζ (k) ≡

k3

2π2 〈|ζ |
2〉 (4.1)

is the power spectrum of the curvature perturbations and

∆
2
h(k) ≡ 2

k3

2π2 〈|hk |2〉 =
2
π2

H2

M2
pl

(4.2)

is the gravitational-wave power spectrum (summed over two polarizations), where
H is the Hubble rate during inflation. The value of r depends on the model of
inflation considered. Current constraints on r from the combination of the CMB
B-mode and other (more model-dependent) observables are r < 0.07 (95% CL)
BICEP2 Collaboration et al. 2016.

Galactic foregrounds, primarily due to dust emission, make the detection of tensor
modes using the CMB particularly challenging. Gravitational lensing due to scalar
perturbations also produce a B-mode pattern and might fundamentally limit the
values of r that can be probed using the CMB. In the event that future CMB
experiments do detect B-modes due to inflationary GWs, it is important to devise
methods, with different systematic errors, that will conclusively prove that the GW
signal is indeed primordial. Furthermore, in the event that the value of r . 0.001,
planned CMB experiments are unlikely to be able to detect B-modes. It is thus
appropriate to investigate alternative methods to detect inflationary gravitational
waves.

Hirata et al. 2017 calculated the effect of the CMB quadrupole during the Dark
Ages of the universe on the splitting of the F = 1 hyperfine excited level of neutral
hydrogen at high redshifts. We showed that unlike the Zeeman effect, where MF =

±1 have opposite energy shifts, the remoteCMBquadrupole shifts MF = ±1 together
relative to MF = 0. This leads to a small circular polarization of the emitted 21cm
photon, which is in principle observable.

Measurement of the circular polarization of the 21cm signal using future radio
interferometers can allow us to construct a 3D remote CMB quadrupole field (i.e.
the quadrupole component of the CMB skies observed by hydrogen atoms at high
redshifts) during the cosmic Dark Ages. Just like the CMB polarization field, this
field can be decomposed into E and B modes. The measurement of B modes of this
new remote quadrupole field, can then be used to put bounds on r .
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In this chapter we forecast the ability of future radio experiments to measure the
remote quadrupole of the CMB using the circular polarization of the 21 cm line.
We show that a very large Fast Fourier Transform Telescope (FFTT) Tegmark
& Zaldarriaga 2009 can in principle construct a remote quadrupole field at high
redshifts (z ∼ 20), and we make forecasts for the measurement of r as a function of
array size and survey duration.

This chapter is organized as follows: we provide a broad outline of the formalism
presented in Hirata et. al. (2017) in Sec. 4.2 and provide an outline for our method
in Sec. 4.3. In Sec. 4.4 we make forecasts for the measurement of the remote
quadrupole of the CMB using Fast Fourier Transform Telescopes. In Sec. 4.5 we
compute the power spectrum of the remote CMB quadrupole and sensitivity to r . In
Sec. 4.6 we discuss various foregrounds that are relevant to our measurement, and
in Sec. 4.7 we summarize and discuss the implications of our results.

4.2 Formalism
Scattering processes between photons and neutral hydrogen atoms in the early
universe can affect 21cm observables, and lead to novel probes of physics at high
redshifts. An extensive review of the physics of the 21 cm transition can be found
in Furlanetto et al. 2006. Recently, Venumadhav et al. 2014 and Gluscevic et al.
2017 considered the effect of magnetic fields in the early universe on the splitting of
the F = 1 hyperfine excited level of hydrogen. At high redshifts, a neutral hydrogen
atom is bathed in an anisotropic 21 cm radiation bath due to density fluctuations
in the gas. Such an anisotropic radiation field leads to spin polarization of the
neutral hydrogen atoms in the F = 1 state, and hydrogen atoms in the excited F = 1
state align with the quadrupole of the incident 21 cm radiation. The presence of
an external magnetic field leads to the precession of atoms in the F = 1 state,
and the emitted 21 cm radiation is misaligned with the incident 21 cm quadrupole.
Gluscevic et al. Gluscevic et al. 2017 showed that this effect can be used to probe
large scale magnetic fields during the Dark Ages; an array of dipole antennas in
a compact grid configuration with a collecting area of approximately one square
kilometer can achieve a σ(B) ∼ 10−21 Gauss (comoving, scaled to present day
value), after 3 years of observation.

Beyond the Zeeman splitting due to an external magnetic field, the CMB anisotropy
at high redshifts also leads to a splitting of the F = 1 level but the symmetry
properties is different from the magnetic field case. In the case of an external
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Figure 4.1: Energy Level Splitting

magnetic field (Zeeman effect), the energy levels of the MF = ±1 levels shift in
opposite directions, while the CMB anisotropy leads to a shift in the same direction
(see Fig. 4.1). The emitted 21 cm photon in the latter case has small circular
polarization.

In the remainder of this section we sketch the calculation described in detail in
Hirata et. al. 2017. We are interested in calculating the relative change in the sub
level energies EMF=1 − EMF=0 due to an anisotropic external blackbody.

In second-order perturbation theory, an interaction can break the degeneracy be-
tween two otherwise degenerate states. Consider the three MF = ±1, 0 for the F = 1
hyperfine level. In the case of Zeeman effect it is a DC magnetic field that leads to
this breaking of degeneracy; in our case we consider the AC magnetic field from a
non-resonant radiation field Γ.

The interaction leads to a change in the Hamiltonian matrix element between two
degenerate states:

∆E ji =

〈
〈 j |Hint |i〉 +

∑
n,Γ

〈 j |Hint |n, Γ〉〈n, Γ|Hint |i〉
E j − En,Γ

〉
rad

, (4.3)

where Hint is the Hamiltonian of the interaction, |n〉 denotes an intermediate state of
the hydrogen atom, and En,Γ is the energy of |n〉 plus the additional energy due to all
photons present or absent in the intermediate state |Γ〉 relative to the initial photon
state. The expectation value is taken over statistical realizations of the radiation
field.

Hirata et. al. (2017) compute both electric dipole and magnetic dipole interactions
and show that the magnetic dipole interaction dominates. For the case of a magnetic
dipole interaction, the interaction Hamiltonian for the atom and the incident can be
written as Hint = µ · B. Consider, an incident radiation field at frequency ω and
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with a quadrupolar anisotropy of the form T(n) = Tγ[1+ a20Y20(n)]. Here we chose
a quadrupole that is symmetric around the z-axis for simplicity. We can use this
symmetry to determine the contribution of the other a2m’s. We can show that the
energy splitting of the degenerate levels due to the quadrupolar anisotropy a20 is
given by,

∆Emag.dip.
11 − ∆Emag.dip.

10
~

= −
√

5
π3

µ2
Bωh f aradT2

γ

k2
B

a20

= −4.4 × 10−10 s−1
(

Tγ
60 K

)2
a20. (4.4)

where µB is the Bohr magneton, arad is the radiation energy density constant, and
Tγ is the blackbody temperature. For typical CMB quadrupole anisotropies of order
2 × 10−5, and temperatures of order 60 K (z ∼ 20), the energy splitting and hence
the precession rate is of order 10−14 s−1. This result can be generalized to other
components of the quadrupole (see Equation (17) in Hirata et. al. (2017)).

The atomic density matrix evolves due to the energy shift ∆Em,m′ and the evolution
equation is given by,

Ûρshift
mm′ = i[ρ,∆E]mm′ = iρmm1∆Em1m′ − i∆Emm1ρm1m′ . (4.5)

By using the expression for the energy shift due to a quadrupolar field ∆Em,m′ in the
evolution equation above, we can solve for the time-evolution of the components of
the atomic density matrix. The calculation is rather involved and beyond the scope
of this chapter. Here we provide a simple argument for why a CMB quadrupole
leads to a circular polarization of the re-scattered 21 cm photons.

Neutral hydrogen atoms in the excited triplet (F = 1) state have a magnetic dipole
moment and preferentially emit perpendicular to the magnetic moment. In an
isotropic bath of 21 cm photons the magnetic dipole moments do not have any
preferred direction or alignment. However, the 21 cm photon field in the early
universe has a quadrupole due to density fluctuations. The 21 cm quadrupole
leads to the magnetic moments being aligned perpendicular to the direction of the
quadrupole.

Now consider the effect of the CMB quadrupole moment along the z-axis on spin
polarized hydrogen atoms aligned along the z-axis, in a coordinate system where



56

the observer is along the x-axis. The quadrupolar anisotropy of the incident CMB
radiation along the z-axis, leads to an energy level splitting of the atoms aligned
along the z-axis (as shown in Fig. 4.1). Meanwhile, atoms aligned along x and y
axis remain unaffected.

The energy level splitting for atoms aligned along the z-axis leads to a energy dif-
ference in the re-scattered photons along the x-axis (the line-of-sight); re-scattering
from atoms along the x and y axis does not lead to an energy shift. Quantum me-
chanically, the energy difference in the re-scattered photons corresponds to a phase
shift, and this phase shift leads to a circular polarization of the re-scattered photons
from the atoms aligned along the z-axis.

Note that if the quadrupole is aligned along the line-of-sight (x-axis), the re-scattered
photons reaching the observer are from atoms aligned along z and y axis (since re-
scattering is preferentially perpendicular to the magnetic moment), and do not have
a quadrupole-induced phase shift. Hence the CMB quadrupole that is symmetric
along the line-of-sight does not lead to a circularly polarized 21 cm photon.

Hirata et. al. (2017) solve the detailed radiative transfer equations using the
components of the atomic density matrix obtained using the prescription described
earlier. The final result of the calculation is a circular polarization amplitude due to
transition from F = 1 to the F = 0 state and is related to the CMB quadrupole by,

Vobs = −
√

2π
25
√

3

TsT?Kmag f τ2δ

Tγ0 A(1 + 0.75x̃α)(1 + x̃c + x̃α)

×
(
1 −

Tγ
Ts

)
=[a21Y21(k̂) + 2a22Y22(k̂)].

(4.6)

where k̂ is the direction of the wavenumber; x̃α and x̃c parametrize the rates of depo-
larization of the ground state by optical pumping and atomic collisions respectively;
Ts and Tγ are the spin temperature and the CMB temperature at redshift z; f is the
rate of growth of structure, and is ≈ 1 in the matter-dominated era; δ is the density
contrast; τ is the 21 cm optical depth, a2m is the CMB quadrupole at the redshift z;
and Kmag is a combination of constants given by,

Kmag ≡
√

50
3π3

µ2
Bωh f aradT2

γ,0

k2
B

= 1.65 × 10−12 s−1, (4.7)

The spin-zero spherical harmonics Y2m are defined in the usual way.



57

Note that the circular polarization signal in Eq. 4.6 depends on k̂- the 3D orientation
of the wave vector. Hence by measuring the circular polarization in a tomographic
survey we can, in principle, extract the CMB multipoles a21 and a22.

4.3 Outline of the Method
The measurement of the new circular polarization power-spectra can allow us to
measure the remote quadrupole of the CMB, in a given volume-pixel in the sky,
at a high redshift (z > 10). For a wide-angle, tomographic 21 cm survey, we can
measure the remote quadrupole of the CMB in many voxels in the sky, allowing
us to construct a 3D remote quadrupole field at high redshifts. The 3D remote
CMB quadrupole field in turn can be decomposed into E and B modes in analogy
with the decomposition of the CMB polarization field Kamionkowski et al. 1997a;
Kamionkowski et al. 1997b; Seljak & Zaldarriaga 1997; Zaldarriaga & Seljak 1997;
Seljak 1997. We show that the power-spectra of the "B-modes" of the remote
quadrupole field can be used to measure the tensor-to-scalar ratio r . A schematic of
our method is shown in Fig. 4.2.

One way of thinking about at our method is to imagine neutral hydrogen in all the
voxels in Fig. 4.2 to be independent CMB-quadrupole detectors. The construction
of the new remote quadrupole field during the dark ages allows for the statistical
measurement of the E and B modes which in turn contains information about
primordial tensor modes (i.e. gravitational waves). Our method is similar to the
one proposed in Ref. Kamionkowski & Loeb 1997, but the authors suggest the use
of discrete clusters to reconstruct the CMB quadrupole moments at their locations.
Our method, in principle, allows for construction of a continuous field of remote
quadrupole moments, and probes higher redshifts than those accessible to the cluster
method (see also Refs. Cooray & Baumann 2003; Doré et al. 2004; Skordis & Silk
2004; Portsmouth 2004; Bunn 2006; Alizadeh & Hirata 2012).

4.4 Measuring the Remote Quadrupole of the CMB
In this section we compute the sensitivity of future tomographic 21 cm surveys
to measure the remote quadrupole of the CMB at high redshifts. We begin by
reviewing some basic notation relevant to remote CMB quadrupole measurements.
The experimental setup ideal for this measurement is the Fast Fourier Transform
Telescope (FFTT) setup, due to its excellent surface brightness sensitivity compared
to sparsely sampled arrays Tegmark & Zaldarriaga 2009. We review the FFTT setup
and make Fisher matrix forecasts for the measurement of the remote quadrupole for
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Figure 4.2: Tomographic measurements by Fast Fourier Transform Telescopes
(FFTTs) would allow us to measure the remote quadrupole of the CMB a2m(z)
(m = 1, 2) in volume pixels ("voxels") of volume Vc in narrow slice of redshift
space. Creating a map of remote quadrupole moments across many voxels allows
us to construct a spin-weight m field, which can be decomposed into E and B
modes. Measurement of the B-modes of this field allows us to put bounds on the
tensor-to-scalar ratio r .

different FFTT configurations. In this section, the CMB quadrupole is simply taken
as an input; we will compute its statistical properties and the role of scalar and tensor
perturbations in Sec. 4.5.

Relation of the 21 cm power spectrum to the remote quadrupole of the CMB
The central idea of our technique is that the circular polarization of the emitted 21cm
radiation from the high-redshift hydrogen cloud depends on the remote quadrupole
of the CMB at that redshift depends on through Eq. (4.6). Specifically, the existence
of a CMB quadrupole at some position results in the creation of new power spectra
involving the circular polarization that would otherwise be zero. We focus on the
temperature-circular polarization cross-power spectrumTV , since its signal-to-noise
ratio scales with the amplitude of the CMB quadrupole effect (SNR∝ a2m) instead
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of the case of the circular polarization auto-power spectrum VV (SNR∝ a2
2m):

PTV (k) =
∂Tobs

∂δ
(k) ∂Vobs

∂δ
(k) Pδ(k). (4.8)

The temperature perturbation is given by the usual relation,

∂Tobs

∂δ
= 37.3 mK

(
1 + z

20

)1/2 (
1 −

Tγ
Ts

)
[1 + (k̂ · n̂)2]. (4.9)

From Eq. (4.6) we can see that the circular polarization transfer function ∂Vobs/∂δ
is given by,

∂Vobs

∂δ
= −8.6 mK

(
1 + z

20

)2 Tγ
Ts

(
1 −

Tγ
Ts

)
× 1
(1 + 0.75x̃α)(1 + x̃c + x̃α)
×=[a21Y21(k̂) + 2a22Y22(k̂)]. (4.10)

The circular polarization transfer function depends on the direction of the wavenum-
ber k̂.

The power spectrum PTV (k) is thus sensitive to 4 of the 5 types of quadrupole
moments of the CMB. Each of these 4 quadrupole moments leads to a quadrupole
dependence of the TV spectrum:

• An xz CMB quadrupole (<a21 < 0) leads to a positive TV spectrum for
kykz < 0 and negative for kykz > 0.

• A yz CMB quadrupole (=a21 > 0) leads to a positive TV spectrum for
kx kz > 0 and negative for kx kz < 0.

• An x2 − y2 CMB quadrupole (<a22 > 0) leads to a positive TV spectrum for
kx ky < 0 and negative for kx ky > 0.

• An xy CMB quadrupole (=a22 < 0) leads to a positive TV spectrum for
k2

x − k2
y > 0 and negative for k2

x − k2
y < 0.

• The observable PTV (k) is not sensitive to the m = 0 CMB quadrupole mode
that is symmetric around the line of sight.
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Local power spectrum and detectability
In this section we evaluate sensitivity of future tomographic 21 cm surveys to the
remote quadrupole of the CMB. The ability to measure the remote CMB quadrupole
can be determined using the Fisher formalism: in a region of comoving volumeVc,
we have

Fµν =
∫

d3k

(2π)3
Vc[∂PTV (k)/∂pµ][∂PTV (k)/∂pν]
[PTT (k) + NTT (k)][PVV (k) + NVV (k)]

, (4.11)

where Vc is the comoving volume and pµ are the parameters – in this case the 4
measurable quadrupole components: <a21, =a21, <a22, and =a22. Here NTT (k)
is the temperature noise power spectrum, and NVV (k) is the circular polarization
noise power spectrum. For a dual-polarization interferometer with the same noise
temperature in both polarizations, NVV (k) = NTT (k). We discuss the noise power
spectrum in Sec. 4.4. Under the further assumption of noise power spectra that are
symmetric around the line of sight (which occurs when the distribution of baselines
is nearly circularly symmetric), the Fisher matrix reduces to

Fµν = Vc

©­­­­­«
w1 0 0 0
0 w1 0 0
0 0 w2 0
0 0 0 w2

ª®®®®®¬
. (4.12)

That is, there is an inverse variance per component of wm (units: Mpc−3) per unit
comoving volume, which may be different for the m = 1 and m = 2 quadrupole
components. The Fisher estimate of the variance in <a2m or =a2m is 1/(wmVc).
Two diagonal elements of Eq. (4.11) suffice to determine w1 and w2.

Fast Fourier Transform Telescopes
The ideal experimental setup for measuring the remote quadrupole of the CMB
using the circular polarization of 21 cm is the proposed Fast Fourier Transform
Telescope (FFTT) as described in Tegmark & Zaldarriaga 2009. The FFTT consists
of a tightly packed array of simple dipole antennas in a regular rectangular grid. The
electric field is digitized at the antennae and subsequent correlations and Fourier
transforms are done digitally. The FFTT is based on the simple idea that if the
antennae are arranged on a rectangular grid, Fast Fourier Transforms can be used
to scale the cost as Nlog2N instead of N2 (where N is the number of antennae).
The FFTT concept allows for mapping of a very wide field of view with very high
sensitivity, making it ideal for 21 cm tomography experiments.
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A schematic of the FFTT design we consider for the forecasts in this paper is shown
in Fig. 4.2. We consider a square array designwith a compact grid of dipole antennas
with side length L, effective area L2, that observes for a time τ with a bandwidth δν
around some frequency ν. In principle the array can observe the entire visible sky
at any given time. The figure shows how we split the 3D volume of the universe
at high redshifts observed by the array into smaller volume pixels ("voxels"). Our
goal is to estimate the detectability of the remote CMB quadrupole in each of these
voxels.

The experiment is characterized by three key parameters: the length of the array
L, the time of observation τ and the system temperature Tsys. The noise power
spectrum per mode k (in intensity units) is given by

NTT (k) =
λ4c(1 + z)2D2

M(z)
ΩbeamτH(z)ν21

T2
sys

A2
enbase(k)

, (4.13)

where DM(z) is the comoving distance to the redshift z, Ae is the collecting area,
and nbase(k) is the number density of baselines that observe a given mode k at a
given time. Here noise is reported in temperature units, T in K and NTT (k) in K2

Mpc3 (Gluscevic et al. 2017).

A given mode in the sky k, will be observed by many baselines of the FFTT during
an observation campaign. Hence the noise power spectrum needs to be weighed
by the number of baselines observing a given mode k. The number of baselines
observing a mode ®k is given by

〈nbase(k)〉 =
(

L
λ

)2
− 4
π

L
λ

DM(z)
2π

k sin θk

+
1
π

[
DM(z)

2π
k sin θk

]2
, (4.14)

where θk is the polar angle and φk the longitude in a coordinate system where the
line of sight is along the z axis. The number of baselines is averaged over φk ,
which is appropriate if at least ∼ 90◦ of Earth rotation occurs over the course of an
observing window.

Results for reference experiments
Wenowproceed to evaluate the sensitivity of a tomographic 21 cm survey tomeasure
the remote quadrupole of the CMB during the pre-reionization epoch, at a given
redshift z and for a "voxel" of volume Vc. Specifically, we compute the elements
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Figure 4.3: Inputs used for the sensitivity calculation, computed for standard cos-
mology using the 21CMFAST code. The plot shows the fiducial models for spin,
kinetic, and CMB temperatures.

of the Fisher matrix (Eq. 4.11), for different FFTT configurations and observation
times.

We consider a square-grid configuration for the FFTT with a length L and collecting
area Ae = L2. The time τ for computing the noise spectra in Eq. (4.13) is the
observing time, which is smaller than the wall-clock time since a given portion of
the sky is visible for only part of the day. We assume a system temperature of
Tsys = 1000K.

Other inputs to the sensitivity calculation include: the spin and kinetic tempera-
tures of the IGM, along with the CMB temperature (Fig. 4.3); the quantities that
parametrize the rate of depolarization of the ground state by optical pumping and
atomic collisions (Fig. 4.4). These quantities are calculated using the 21CMFAST
code (Mesinger et al. 2011), and the matter power spectra from the CAMB code
(Lewis et al. 2000). As inputs to 21CMFAST and CAMB, we use standard cosmologi-
cal parameters (H0 = 67 km s−1 Mpc−1, Ωm = 0.32, ΩK = 0, ns = 0.96, σ8 = 0.83,
w = −1) consistent with Planck measurements (Planck Collaboration et al. 2016c).
For the 21CMFAST runs, we set the sources responsible for early heating to Popula-
tion III stars by setting Pop= 3, and keep all other input parameters at their default
values, with the exception of the star formation efficiency, F_STAR. For our fiducial
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Figure 4.4: Inputs used for the sensitivity calculation, computed for standard cosmol-
ogy using the 21CMFAST code. The plot shows the fiducial models for quantities
that parametrize the rate of depolarization of the ground state by optical pumping
and atomic collisions as discussed in the text and in Gluscevic et al. 2017

.

calculation we choose F_STAR=0.0075. The fiducial model is chosen to match the
models fromHaardt &Madau 2012 at z = 15which were computed by extrapolation
of the flux measurements from observations at much lower redshifts. As reported
by Gluscevic et al. 2017 this model is physically reasonable, since it produces a
sufficient number of ionizing photons to reionize the universe at lower redshifts.

A FFTT can in principle observe the entire sky above the horizon. However, the
image degrades rapidly near the horizon and the useful field of view is about half
Ω ∼ π. The angular resolution of a FFTT is θres ∼ λ/

√
A. The angular scale of the

"voxel" in which the CMB quadrupole is measured to be approximately ten times the
angular resolution of the telescope. The maximum comoving wavenumber probed
by the FFTT (kmax) is given by

kmax =
2π

dA(z) θres
. (4.15)

Note that every super-pixel can be observed simultaneously and so τ for a super-
pixel is the total time that the FFTT observes a given patch of the sky. The Fisher
integral takes place over a super-pixel and we take kmax corresponding to the angular
resolution of the survey. The minimum wavenumber probed is taken to be several
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Figure 4.5: Temperature, circular polarization, and noise power spectra relevant to
the Fisher calculation. We compute the power-spectra for observations correspond-
ing to z = 19.5. Noise power-spectra for two different configurations of FFTTs are
shown.

orders of magnitude smaller than kmax (the Fisher integral is not sensitive to the
choice of kmin).

To estimate the Fisher integral we plot the relevant power spectra in Eq. (4.11),
including the noise power spectrum for different configurations of the FFTT in
Fig. 4.5. From the figure we note that PTT (k) � NTT (k) and NVV (k) � PVV (k).
The Fisher integral in Eq. (4.11) can then be approximated to give

w1 =
1
(2π)3

(
8.6 mK

(
1+z
20

)2 (
1 − Tγ

Ts

) (
Tγ
Ts

))2

NVV (1 + 0.75x̃α)2(1 + x̃c + x̃α)2

×
∫ kmax

kmin

d3k(=(Y21(θ, φ)))2Pδ(k) (4.16)

and

w2 =
2
(2π)3

(
8.6 mK

(
1+z
20

)2 (
1 − Tγ

Ts

) (
Tγ
Ts

))2

NVV (1 + 0.75x̃α)2(1 + x̃c + x̃α)2

×
∫ kmax

kmin

d3k(=(Y22(θ, φ)))2Pδ(k). (4.17)
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Figure 4.6: Elements of the Fisher matrix w1 as a function of redshift z, computed
for a model of reionization described in the text. For our fiducial model, both w1
and w2 peak at z = 19.5, i.e. the redshift where the Lyman-alpha coupling becomes
efficient (x̃α ∼ 1).

The value of w1 and w2 is a function of redshift and depends on the reionization
and spin-excitation history of the universe during the pre-reionization era. In par-
ticular it is sensitive to the Lyman-α flux during this epoch which is unconstrained
by observations. We use the fiducial model shown in Fig. 4.4 and described in
Ref. Gluscevic et al. 2017. As seen from the figure, for our fiducial model, w1 and
w2 peak around z = 19.5 and our technique is most sensitive in this redshift range.
Note that this is likely to change when the Lyman-α flux in the pre-reionization era
becomes better constrained.

4.5 Power spectrum of the remote CMB quadrupole and sensitivity to the
tensor-to-scalar ratio

We now consider how well we can measure the tensor-to-scalar ratio using remote
quadrupole measurements. This requires us to consider the remote quadrupole
moments as a statistical field, compute their power spectrum, compare this to the
noise computed in §4.4, and finally perform the Fisher matrix sum over modes.
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Figure 4.7: Elements of the Fisher matrix w2 as a function of redshift z, computed
for a model of reionization described in the text. For our fiducial model, both w1
and w2 peak at z = 19.5, i.e. the redshift where the Lyman-alpha coupling becomes
efficient (x̃α ∼ 1).

E- and B-mode decomposition of remote CMB quadrupoles
The “derived data product” from the analysis of §4.4 is amap of theCMBquadrupole
moments a2q (q , 0: we use q here instead of m to avoid confusion below) in each
super-pixel of comoving volumeVc. These moments are measured with respect to
the local coordinate basis vectors {êθ, êφ, n̂ = êr}. This quadrupole is derived from
the local power spectrum PTV (k) in each super-pixel. Viewed from the perspective
of the observer, a∗2q is a spin-weight q field. In analogy to the decomposition of the
CMB polarization field Zaldarriaga & Seljak 1997, wemay perform a spin-weighted
spherical harmonic transformation:

a∗2q(χ, n̂) =
∞∑

`=|q |

∑̀
m=−`

bq`m(χ) qỲ m(n̂). (4.18)

The dependence on comoving distance χ is retained since we do not decom-
pose the radial direction into eigenmodes. The symmetry property a2,−q(χ, n̂) =
(−1)qa∗2q(χ, n̂) implies that

b∗q`m(χ) = (−1)mb−q,`,−m(χ). (4.19)
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Furthermore, parity inversion results in the transformation a2q(χ, n̂) → a2,−q(χ,−n̂),
or equivalently bqlm(χ) → (−1)l b−q,lm(χ). Wenowdefine the electric andmagnetic-
parity versions of these quadrupole moments: for q > 0,

bE,q
`m (χ) =

1
2
[bqlm(χ) + b−q,lm(χ)] and

bB,q
`m (χ) =

1
2i
[bqlm(χ) − b−q,lm(χ)]. (4.20)

These moments obey the same complex conjugation properties as usual electric and
magnetic moments, i.e. bE,q∗

`m (χ) = (−1)mbE,q
`,−m(χ) and bB,q∗

`m (χ) = (−1)mbB,q
`,−m(χ).

Under parity inversion, bE,q
`m (χ) picks up a factor of (−1)`, whereas bB,q

`m (χ) picks up
a factor of −(−1)`.

The statistics of the CMB quadrupole moment fields can thus be described in terms
of the cross-power spectra of these fields at the various comoving distances, e.g.

CB1,B2
`
(χ, χ′) = 〈bB1∗

`m (χ)b
B2
`m(χ

′)〉. (4.21)

Parity considerations imply a vanishing cross-spectrum between the E, q and B, q′

moments. Furthermore, there is no primordial scalar contribution to the B1 or B2
moments.

B-mode power spectrum of the remote CMB quadrupole
We compute the power spectrum of the remote CMB quadrupole by the standard
method – that is, we consider first a single Fourier mode (a plane primordial gravi-
tational wave) with wave vector along the z-axis, then rotate it to an arbitrary angle,
and finally perform a stochastic average using the power spectrum in the initial
conditions.

Consider a gravitational wave with wave number K and strain hR propagating in the
z-direction and with right-circular polarization, i.e. with metric

gµν = a2

©­­­­­­«
−1 0 0 0
0 1 + 1√

2
hReiK x3 1√

2
ihReiK x3 0

0 1√
2
ihReiK x3 1 − 1√

2
hReiK x3 0

0 0 0 1

ª®®®®®®¬
. (4.22)

The normalization is chosen to coincide with the common normalization of tensor
perturbations (e.g. Baumann 2009) with r = ∆2

h(k)/∆
2
ζ (k) = 16ε in slow-roll single-

field inflation. This plane gravitational wave leads to a tensor ` = 2 CMB multipole
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moment
∆T(r, p̂, η)

T̄
= hR0eiK x3

∞∑̀
=2
(−i)`

√
4π

2` + 1
Θ

T
` (η)Ỳ 2(p̂), (4.23)

at position r, for photons traveling in direction p̂, and at conformal time η defined
as,

η(z) =
∫ t(z)

0

dt
a

(4.24)

ΘT
`
are the tensor multipole moments generated by a unit-amplitude gravitational

wave and hR0 is the initial amplitude. Rotational symmetry guarantees that only
m = 2 terms exist in the sum over spherical harmonics. The ` = 2 multipole
moments measured at some position on the sky and some comoving distance χ(z)
are then

a2m(χ, n̂) = −
√

4π
5

hR0eiK χ cos θ
Θ

T
2 (η0 − χ)

×[D2(φ, θ, 0)]m,2, (4.25)

whereD2(φ, θ, 0) is the passive rotationmatrix associated with rotating the reference
frame for the multipoles from {ê1, ê2, ê3} to {êθ, êφ, n̂}.

The ` = 2 multipole moments from Eqn.(4.25) can be re-written in terms of the
spin-weighted spherical harmonics,

a∗2q(χ, n̂) = −
4π
5

hR0e−iK χ cos θ
Θ

T∗
2 (η0 − χ) qY2,−2(n̂). (4.26)

The solution for bq`m(χ) can then be written as

bq`m(χ) =
∫

a∗2q(χ,n) qY ∗`m(n̂) d
2n̂

= −4π
5

hR0Θ
T∗
2 (η0 − χ)

∫
e−iK χ cos θ

qY2,−2(n̂) qY ∗`m(n̂) d
2n̂

= −(4π)
3/2

5
hR0Θ

T∗
2 (η0 − χ)δm,−2

∞∑̀
′=0

√
2`′ + 1(−i)`′ j`′(K χ)∫

0Ỳ ′0(n̂) qY2,−2(n̂) qY ∗`,−2(n̂) d
2n̂

= −4π
√

2` + 1
5
(−1)qhR0Θ

T∗
2 (η0 − χ)δm,−2

∞∑̀
′=0
(2`′ + 1)(−i)`′ j`′(K χ)

(
`′ 2 `

0 q −q

) (
`′ 2 `

0 −2 2

)
. (4.27)

Under the transformation q↔ −q, this changes sign if `′ − ` is odd and remains the
same if `′ − ` is even; thus for the B-mode, only the `′ − ` odd terms contribute (see
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Eq. 4.20). The triangle inequality restricts |`′ − ` | ≤ 2, so the sum then reduces to
`′ = ` ± 1. Substituting in the Wigner 3 j symbols yields for q > 0:

bB
q`m(χ) = −

2π (−i)`δm,−2√
5(2` + 1)

hR0Θ
T∗
2 (η0 − χ)[

(−1)q
√
(` + 2)(` + q̄) j`−1(K χ) −

√
(` − 1)(` + 1 − q̄) j`+1(K χ)

]
(4.28)

where we have defined q̄ ≡ (−1)qq. Use of the rules for combining spherical Bessel
functions Abramowitz & Stegun 1972 allows the further simplifications:

bB
q`m(χ) = −2π

δm,−2

i`

√
2` + 1

5
hR0Θ

T∗
2 (η0 − χ) fq`(K χ), (4.29)

where we have defined the functions

f1`(x) =
√
(` − 1)(` + 2) j`(x)

x
(4.30)

and
f2`(x) = j′`(x) + 2

j`(x)
x

. (4.31)

These functions are always real, and we have f11(x) = 0.

It remains to express the B-mode power spectrum of the remote quadrupole compo-
nents. This requires us to obtain the product of two bB

q`m(χ)s and average over the
direction of the plane wave; this is equivalent to summing over m and dividing by
2` + 1. Thus for a plane wave in a random direction, we find

CBq,Bq′

`
(χ, χ′) = 1

2` + 1

∑̀
m=−`
〈bB∗

q`m(χ)b
B
q′`m(χ

′)〉

=
4π2

5
|hR0 |2ΘT

2 (η0 − χ)ΘT∗
2 (η0 − χ′)

× fq`(K χ) fq′`(K χ′). (4.32)

If we finally replace the plane wave with a statistical distribution of gravitational
waves, we find

CBq,Bq′

`
(χ, χ′) = 8π2

5

∫ ∞

0
Θ

T
2 (η0 − χ)ΘT∗

2 (η0 − χ′)

× fq`(K χ) fq′`(K χ′)∆2
h(K)

dK
K
, (4.33)

where ∆2
h(K) is the contribution to the variance of the strain per logarithmic range

of K (i.e. dVarh/d ln K) per gravitational wave polarization (right or left). A
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factor of 2 has been inserted to account for the existence of two gravitational wave
polarizations.

Note that although the spherical harmonic decomposition of a spin-1 field admits
an ` = 1 component, the q = 1 B-mode of the remote quadrupole vanishes – i.e.
CB1,B1
`
(χ, χ′) = 0 – because f11(x) = 0. This is mathematically expected because

there is no ` = 1 gravitational wave mode.

Incorporation of the tensor transfer function
We now also need the tensor transfer function ΘT

2 (η). Fortunately, in the matter-
dominated era, well after recombination, there is an analytic solution for this. The
strain amplitude has the simple time dependence

hR(η) = hR0
3 j1(Kη)

Kη
. (4.34)

The tensor transfer function is then given by evaluating the temperature quadrupole
at the origin at time η using the line-of-sight expression for the photon temperature
perturbation Seljak & Zaldarriaga 1996; Hu & White 1997; in what follows, we
assume the temperature perturbation due to the gravitational wave is built up from
the time of recombination η∗ to the time η in question. We work in terms of the
real-space temperature perturbation Θ(µ′, φ′), where µ′ = cos θ′ is the direction
cosine of the photon’s trajectory:

Θ
T
2 (η)

= − 5
√

6
16πhR0

∫
(1 − µ′2)e−2iφ′

Θ(µ′, φ′) dµ′ dφ′

= − 5
√

6
16πhR0

∫
(1 − µ′2)e−2iφ′

[∫ η

η∗

(1 − µ′2)e2iφ′

×−
ÛhR(η′)
2
√

2
eiKµ′(η′−η) dη′

]
dµ′ dφ′

=
5
√

3
16hR0

∫ η

η∗

[∫ 1

−1
(1 − µ′2)2eiKµ′(η′−η)dµ′

]
ÛhR(η′)dη′

=
5
√

3
16hR0

∫ η

η∗

16 j2(K(η − η′))
[K(η − η′)]2

ÛhR(η′) dη′

=
5
√

3
16hR0

∫ η

η∗

16 j2(K(η − η′))
[K(η − η′)]2

hR0
−3 j2(Kη′)

η′
dη′

= −15
√

3
∫ η

η∗

j2(K(η − η′)) j2(Kη′)
K2(η − η′)2η′

dη′. (4.35)
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Equation (4.35) is an integral form for the tensor transfer function; it is straight-
forward to compute. With the help of Eq. (4.33), the general remote quadrupole
B-mode power spectrum for tensors can be obtained.

Sensitivity to tensor-to-scalar ratio
The uncertainty in the tensor-to-scalar ratio can be forecast using Fisher matrix tech-
niques. In general, if there is a Gaussian-distributed data vector d with covariance
C, then the Fisher approximation for the uncertainty in the tensor-to-scalar ratio r is

σ−2
r =

1
2

Tr
(
C−1 ∂C

∂r
C−1 ∂C

∂r

)
. (4.36)

In our case, we will write as the data vector d the sequence of B-mode moments
bBq
`m(χ): up to some `max , the number of such moments is Nd = 2Nz(`2

max−4), where
Nz is the number of redshift slices and `2

max − 4 =
∑`max

`=2 (2` + 1) is the number of
multipoles. In harmonic space, for uniform full-sky coverage, C is thus an Nd × Nd

matrix that is block-diagonal with 2Nz × 2Nz blocks; the block corresponding to
multipole ` will be denoted C(`) and is repeated 2` + 1 times. We may thus write
Eq. (4.36) as

σ−2
r =

f 2
deg

2

`max∑̀
=2
(2` + 1)Tr

[
C−1
(`)
∂C(`)
∂r

C−1
(`)
∂C(`)
∂r

]
. (4.37)

Here fdeg is a degradation factor due to reduced sky coverage. In CMB forecasts,
it is often assumed that the information content scales with the sky coverage fsky,
in which case fdeg = f 1/2

sky . This is only an approximation however Knox 1997 and
is generally valid only for sky coverage ∆θ ≥ 2π/∆`, where ∆` is the width of the
features in `-space under consideration. Since the B-mode spectrum peaks at the
largest scales, this is only marginally true; forecasts for the reionization B-mode that
evaluate the cut-sky matrix inversion have shown a factor fdeg ∼ f 2

sky for Galactic
Plane cuts with fsky > 0.7 Amarie et al. 2005. In this paper, we consider only
observations of the full sky minus the Galactic Plane with an assumed fdeg = 0.5,
and stress that Eq. (4.37) for σr is uncertain at the factor of ∼ 2 level even for this
case.

The matrix C(`) can be broken up into signal S(`) and noise N(`). The noise power
spectrum is diagonal in z-space:

N(`)qz,q′z′ =
1

wq[χ(z)]2∆χ
δqq′δzz′, (4.38)
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Figure 4.8: Forecasts for σr for different FFTT telescope configurations. The
parameters used to make these forecasts are described in Fig. 4.4 & 4.3 and in
Section 4.4. For the given Lyman-α flux model the values of weights w1 and w2
peak around z ∼ 19.5 as shown in Fig. 4.7. For our forecasts we consider a shell
with zmin = 18 and zmax = 23. Note that the live observation time quoted here will
be shorter than the wall-clock time of the survey.

where ∆χ = c∆z/H(z) is the width of the redshift slice and χ(z) is the comoving
distance. (The denominator is the conversion from sr on the sky toMpc3 of comoving
volume). The signal matrix is

S(`)qz,q′z′ = CBq,Bq′

`
[χ(z), χ(z′)], (4.39)

which is proportional to the tensor-to-scalar ratio r . We thus have ∂C(`)/∂r = S(`)/r ,
which is independent of r .

Finally, we need the relation between ∆2
h(k) and r . This is

∆
2
h(k) = r∆2

ζ (k) = 2.4 × 10−9r . (4.40)

In Fig. 4.8, we plot the forecasts for σr for different fiducial values of r , for dif-
ferent FFTT configurations. We choose the pre-reionization Lyman-α flux model
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described in Sec. 4.4; for this fiducial model the values of w1 and w2 peak around
z ∼ 19.5. The observation time τ entering the expression for noise in Eq. (4.13) is
the time for observing a given portion of the sky that is above the horizon of a given
location. We note that this is different from the total live observation time tobs which
is longer than τ. Here tobs is longer by a factor equal to the fraction of the day that a
given survey region is above the horizon and is related to τ via

tobs = τ
Ωtotal
Ωinstant

. (4.41)

A FFTT can in principle observe the entire sky above the horizon at a given instant,
corresponding to Ωinstant = 2πsr. However, the image quality degrades near the
horizon and the effective Ωinstant = π sr. For fsky ∼ 0.7 the corresponding Ωtotal =

2.8π sr (note that achieving this fsky will need two experiments – one in the northern
and one in the southern hemisphere). Fig. 4.8 shows our forecasts in terms of the
observation time tobs. We note that there is a third time-scale in our experiments
which is the wall-clock time. Practically, an experiment is unlikely to be on-line
for the entirety of a survey, and wall-clock time will thus be longer than tobs. The
wall-clock time determines the total duration of a survey.

4.6 Foregrounds
Foreground contamination by Galactic and extragalactic sources poses the most
serious challenge to detecting the cosmological 21 cm temperature and circular
polarization signals. Broadband Galactic and extragalactic foregrounds at low-
frequencies are expected to be approximately four orders of magnitude larger than
the cosmological temperature signal, and their removal has been the subject of
extensive study. Broadly, the approaches for foreground removal involve using both
the angular structure of foregrounds, and the spectral smoothness of synchrotron
and free-free radiation (as compared to the highly structured cosmological signal)
to distinguish them from the cosmological signal (Di Matteo et al. 2002; Di Matteo
et al. 2004; Zaldarriaga et al. 2004; Oh & Mack 2003; Liu & Tegmark 2012).

Linear polarization of the redshifted 21cm radiation has been examined by Babich
& Loeb 2005. They considered the intrinsic polarization of the 21 cm line due to
Thomson scattering during reionization, leading to a 21 cm E-mode signal. This
signal is expected to be completely scrambled up by Faraday rotation, although De
& Tashiro 2014 concluded that extremely accurate Galactic rotation measure maps
might allow one to reconstruct the intrinsic linear polarization signal.
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Circularly polarized foregrounds at low-frequencies, relevant for our technique,
are not as well-understood. King & Lubin 2016 created foreground maps of
circular polarization induced by Galactic magnetic fields in the GHz frequency
range (relevant for CMB observations) and more recently (Enßlin et al. 2017)
have created predicted Galactic circular polarization maps based on synchrotron
templates at 408MHz (see also Oppermann et al. 2012). In this section we examine
potential foregrounds that could contaminate the measurement of the cosmological
21 cm circular polarization signal relevant to our method.

There are two broad mechanisms that can contaminate the cosmological circular
polarization signal: the intrinsic circular polarization of galactic or extragalactic
foreground sources, and that generated during propagation through the interstel-
lar/intergalactic medium. The former is expected to be spectrally smooth and could
potentially be removed using spectral smoothness arguments described earlier. The
circular polarization induced due to propagation effects can lead of confusion with
the cosmic signal, since it depends on the spatial structure of the ISM/IGM, and
may have a complicated frequency dependence due to Faraday rotation. As such, it
is important to estimate the amplitude and approximate angular structure of these
foregrounds in order to assess the feasibility of our technique.

Circularly polarized foregrounds could in principle spoil our measurement in one
of two ways. One would be if the circularly polarized foregrounds were correlated
with the total intensity with a quadrupolar spatial/spectral pattern such as to mimic
a cosmological signal. We discuss in each case whether we expect this to be an
issue. The other would be if the circularly polarized foregrounds did not have such a
pattern, but were so bright as to effectively add noise to the measuredTV correlation
and prevent the remote CMB quadrupole estimator from reaching the theoretical
thermal noise limit. We can understand this “foreground noise” problem if we
consider the TV cross spectrum as a function of wavenumber,

∆
2
TV (k) ≡

k3

2π2 PTV (k), (4.42)

and recall its uncertainty:

σ[∆2
TV (k)] =

√
1

Nmodes
∆2

TT,tot(k)∆2
VV,tot(k), (4.43)

where Nmodes is the number of modes probed, and ∆2
VV,tot(k) is the sum of the

intrinsic cosmological signal ∆2
VV,cosmo(k), the instrument noise ∆2

VV,noise(k), and
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the foregrounds ∆2
fore(k). We have assumed here that the foregrounds for 21 cm

temperature have been successfully removed using techniques described in the lit-
erature. As discussed in Section 4.4, ∆2

VV,noise(k) ≈ ∆2
TT,noise(k) and from Figure 4.5

we see that ∆2
VV,noise(k) � ∆2

VV (k). Hence the “foreground noise” contribution to
σ[∆2

TV (k)] depends on the relative magnitude of ∆2
VV,fore(k) and ∆

2
VV,noise(k).

In this section we make order-of-magnitude estimates of ∆2
VV,fore(k) due to the

synchrotron emission from the galaxy and extragalactic point sources. These fore-
grounds turn out to be the dominant foregrounds but we argue that they can be
removed because of their spectral smoothness in frequency space. We also estimate
∆2

VV,fore(k) due to propagation effects through the ISM. These foregrounds are ex-
pected to have features correlated to structures in the ISM and are not spectrally
smooth. However, we show that these foregrounds are not likely to be important for
our proposed method.

Spectrally Smooth Circular Polarization from Synchrotron
The synchrotron radiation from ultra-relativistic electrons in the interstellar medium
is the strongest source of foregrounds at low-frequencies (Haslam et al. 1982). It
is strongly linearly polarized. At low frequencies in linear polarization, even a
spatially smooth signal is mixed to small angular scales by Faraday rotation, leading
to typical fluctuating signals of a few Kelvin. This signal has been constrained or
observed with many instruments at frequencies < 200 MHz (Bernardi et al. 2009;
Pen et al. 2009; Bernardi et al. 2013; Jelić et al. 2014; Moore et al. 2015; Jelić et al.
2015). In both cases the limits on the Stokes I parameter were ∆I . 10 K over
the range of angular scales probed. (The spatially smooth component can be much
brighter.)

Synchrotron radiation is expected to have a small fraction of circularly polariza-
tion. The circular polarization in synchrotron radio emission has been observed in
quasars (Roberts et al. 1975), AGNs (Wardle et al. 1998; Homan & Wardle 1999),
and the galactic center (Sault & Macquart 1999). While the degree of circular po-
larization in these sources is not completely well-understood, it is believed to arise
from a combination of intrinsic circular polarization of synchrotron radiation and
propagation effects in a plasma (Macquart & Melrose 2000).

The degree of circular polarization of Galactic synchrotron has not yet been mea-
sured, but we can make rough estimates of the strength of this foreground using
measured limits on the Stokes I parameter. For an electron with Lorentz factor γ
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gyrating around a field line at an angle θ to the line of sight, the degree of circular
polarization observed, to the first order in γ (Legg & Westfold 1968; de Búrca &
Shearer 2015),

V
I
≈ cot θ

( νg
ν

)1/2
≈ γ−1 cot θ (4.44)

where νg = (eB)/(2πγmec) is the gyromagnetic frequency.

The typical Lorentz factor of relativistic electrons that lead to synchrotron radiation
in the frequency range νradio ∼ 50 − 150MHz is

γ =

√
2πmecνradio

eBgal
∼ 1000, (4.45)

where we take the typical magnetic field in the ISM to be Bgal ∼ 1µG.

Since ∆I . 10K, the typical circular polarization signal from relativistic electrons
in the galaxy is expected to be ∆V ≈ 0.01K in temperature units, and the typical
value of ∆2

VV,sync(k) ≈ 10−4 K2.

As seen in Fig. 4.9, ∆2
VV,sync(k) is many orders of magnitude larger than ∆2

VV,noise(k),
and is the most dominant foreground for our method. Moreover, since the sign of the
TV correlation depends on the direction of the magnetic field (toward or away from
the observer), and the Galactic magnetic field has a large-scale coherent component,
we expect significant TV correlations even averaged over a patch of many tens of
degrees. However, this synchrotron circular polarization signal is spectrally smooth
and hence the same foreground removal techniques applied to total intensity should
be applicable Liu & Tegmark 2012. In particular, it is confined to modes with
k‖ ≈ 0.

Circular Polarization Foregrounds from Faraday Rotation
Faraday rotation of linearly polarized light through a closed plasma interconverts Q

and U Stokes parameters but does not lead to generation of Stokes V , to the first
order in the galactic magnetic field Bgal. However, in the next order in Bgal, Faraday
rotation can lead to an "leaking" of Stokes Q and U to produce Stokes V .

The Galactic synchrotron radiation is expected to have a high degree of linear
polarization and the leakage of power from Stokes Q andU toV , due to propagation
through the cold plasma in the ISMcan result in aCP foreground. Unlike the intrinsic
CP signal discussed in Section 4.6, this signal is not smooth in frequency space. The
signal is expected to trace structures in the ISM and, if it has significant amplitude,
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Figure 4.9: Order of magnitude of expected foregrounds for the circular polarization
signal from Galactic synchrotron (purple line) and due to Faraday rotation through
the ISM (orange line) compared against the noise power spectra expected for for
three different configurations of FFTTs.

can potentially mimic the cosmological signal. In this section we estimate the
angular power spectrum of the CP signal due to propagation effects in the Galaxy.

Consider the polarization of radiation that is propagating through a cold plasma.
The transfer equation for the radiation propagating along the z direction is given by

dQ
dz

= −2
ω

c
[nUV − nVU],

dU
dz

= −2
ω

c
[nVQ − nQV], and

dV
dz

= 2
ω

c
[nUQ − nQU], (4.46)

where nU , nQ, and nV are the real anti-symmetric components of the refractive index
tensor ni j and are given by

nU = −πnee2

meω2

(
e

meωc

)2
2Bx By,

nQ = −πnee2

meω2

(
e

meωc

)2
(B2

y − B2
x), and

nV =
πnee2

meω2
e

meωc
Bz . (4.47)
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The circular polarization produced by propagation through a medium is then the
integral

V =
∫

2ω
c
(nQU − nUQ) dz. (4.48)

To estimate the order of magnitude of V , we need estimates of the birefringence
coefficients (nQ, nU); the linear polarization (Q,U); the path length through the ISM;
and the coherence length zcoh over which the integrand retains the same sign. The
birefringence coefficients are from Eq. (4.47); this implies

∆
2
VV,Faraday ∼

(
4πe4

m3
eω3c3

)2

n2
e LgalB4zcoh∆

2
QQ,sync. (4.49)

The coherence length zcoh could be set by either de-correlation of (nQ, nU) or of
(Q,U); the latter occurs on a distance scale of order a Faraday rotation cycle,

zcoh ∼
c

2ω|nV |
∼ m2

ec2ω2

2πnee3B
. (4.50)

Plugging this into Eq. (4.49) gives

∆
2
VV,Faraday ∼

8πe5B3ne

m4
eω4c4

Lgal∆
2
QQ,sync. (4.51)

For order-of-magnitude purposes, we take ∆2
QQ,sync ∼ 10 K2 (the order of magnitude

of recent detections or upper limits), a path length of 30 parsecs, a Galactic magnetic
field of B ∼ 10−5 G, and an electron density ne ∼ 0.03 cm−3.

This leads us to an estimate of ∆2
VV,Faraday ≈ 10−9 K2. As seen in Fig. 4.9 the circular

polarization foreground due to Faraday rotation is much lower than the noise power
spectra of the proposed experimental setups. Note that we have not determined the
peak angular scale for this foreground; since the Galactic magnetic field and hence
(nQ, nU) exhibit large-scale coherence, we expect the circular polarization induced
by Q,U → V conversion to trace the same angular scales as linear polarization.

Since at low frequencies the linear polarization has been rotated through many
cycles, we expect a very weak correlation of (Q,U) (and hence V) with the total
synchrotron intensity.

Extragalactic Point Sources
After Galactic synchrotron, unresolved, extragalactic point sources are expected
to be one of the most challenging foregrounds for 21 cm tomography (Liu et al.
2009; Di Matteo et al. 2004). An interferometer is usually characterized by a
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Figure 4.10: Order of magnitude of expected foregrounds for the circular polariza-
tion signal from unresolved point sources (blue, green, and purple line)and Faraday
rotation due to the ionosphere (orange line) compared against the noise power spectra
expected for three different configurations of FFTTs.

classical confusion limit, defined as having one source above the threshold flux Sc

per m synthesized beams. Then the threshold flux density Sc is defined such that
m × 1.13 θ2 N(Sc) = 1. Here N(s) is the number density of sources above flux
density s and θ is the FWHM of each synthesized beam. Here we assume that
N(s) = Asβ which implies,

Sc = (1.13mA)−1/βθ−2/β (4.52)

Here we consider the classical confusion limit calculated at 74MHz for the VLSS
survey which gives A = 1.14, β = −1.3, and m = 12.9 as calculated by Cohen (Co-
hen 2004), and the units of flux are in Jansky and beam size is in degrees.

We can detect and remove point sources of flux S from a survey if the thermal
noise of the survey is much less than S and if the source has a flux density much
greater than Sc. Sources with flux density less than Sc will lead to a confusion
noise even in the limit of infinite integration time. In this section we assume
that the resolved point sources have been removed using standard techniques and
estimate the noise contribution to ∆2

VV,fore(k) due to unresolved point sources, for
different configurations of FFTTs. To estimate the foreground contribution due
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to unresolved point sources we need the classical confusion for low-frequency
radio experiments. Here we consider the confusion limit calculation based on
the VLSS sky survey at 75 MHz Cohen 2004 given by Eq.( 4.52). For a FFTT
the beam size is θ ∼ λ/L where L is the side length. For observations around 68
MHz and for FFTT side lengths of 10, 100, 1000km the beam size corresponds to
θ = 0.025 , 0.0025 & 0.00025 degrees respectively. The corresponding confusion
limits are Sc = 3× 10−2 , 8.6× 10−4 & 2.5× 10−5 respectively. The contribution to
the temperature power spectrum due to unresolved point sources (flux less than Sc

per beam) is

∆
2
TT =

l2

2π
CTT

l ≈
l2

2π

(
λ2

2kB

)2 ∫ Sc

0
S2 dN

dS
dS, (4.53)

where ∆2
TT is the total power per logk, N(S) is the number density of sources above a

flux S and l = k(1+z)DA(z). We use a power law source count function, N(S) = ASα

where A = 1.14 and α = −1.3 Cohen 2004. The point source foreground at low
frequencies is dominated by synchrotron emission from radio-loud galaxies and
AGNs Ghosh et al. 2012; Di Matteo et al. 2004; the circular polarization foreground
due to the confused background of point sources is given by

∆
2
VV,fore ≈

(
V
I

)2
∆

2
TT,fore. (4.54)

The measured circular polarization fraction for typical radio-loud AGNs is V/I ∼
10−4 at 4.9 GHz (Rayner et al. 2000). Note that these measurements are dominated
by the brightest radio-galaxies while the point sources dominating the foregrounds
we are interested in are likely to bemuch fainted. The fractional circular polarization
for blazars are expected to be much higher (e.g. Rayner et al. 2000) but these blazars
are not likely to dominate the unresolved point source background.

Assuming the circular polarization of radio galaxies is dominated by synchrotron,
the degree of circular polarization at low frequencies (relevant to our estimates) can
be determined by scaling V/I ∝ γ−1 ∝ ν−1/2, so at 68 MHz V/I is a factor of 8.5
larger than at 4.9 GHz. We plot ∆2

VV,fore for different configurations of the FFTT in
Fig. 5.3. The synchrotron emission from point sources is expected to vary smoothly
in frequency space, whereas the redshifted 21 cm signal varies rapidly in frequency
space (similar to the galactic synchrotron signal). This is a similar situation to 21
cm temperature, and similar techniques should be applicable (Wang et al. 2006; Liu
& Tegmark 2012).
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We note that the sign of the circular polarization of a point source is determined by
its internal magnetic field structure, so our result for∆2

VV,fore is not affected by source
clustering so long as the sign of V is independent for each source. Furthermore,
under these circumstances, there is no systematic contribution to TV , only a source
of excess noise in VV .

Atmospheric Effects
Radio propagation through the Earth’s atmosphere is one of the key calibration
challenges in low-frequency radio astronomy. At low frequencies (ν ≤ 200 MHz),
propagation effects through the ionosphere become dominant. The physics of the
propagation of the radio waves through a magnetized ionosphere is well understood.
There are two primary effects at play after the polarization-dependent geometrical
refraction by the ionosphere is removed. First, propagation through a turbulent
ionosphere leads to stochastic interferometric visibilities, which contribute to an
additional “scintillation noise” to the measurement of the power spectrum (e.g.
Vedantham & Koopmans 2016). This scintillation noise can be larger than the
thermal noise associated with low-frequency radio experiments.

Second, and most directly relevant here, is the inter-conversion of the polarization
Stokes parameters (Q, U, V) and hence the generation of additional circular polar-
ization signal due to Faraday rotation as discussed in Section 4.6. This mechanism
for generating Stokes V is much more significant in the Earth’s ionosphere than
in the ISM since the magnetic field B is much larger (generation of V depends on
B2 times column density, unlike regular Faraday rotation that depends on B times
column density). Since again at low frequencies the ionosphere can result in & 1
cycle of Faraday rotation, we use Eq. (4.51), with low-frequency linear polarization
of order ∆QQ,gal ∼ 10K (see discussion in Section 4.6). The typical electron density
in the F-layer of the ionosphere is ne ∼ 105 cm−3, the magnetic field is B ∼ 0.5 G,
and the typical path length is L ∼ 500 km. At 1 + z ∼ 20 this leads to an expected
circular polarization signal of ∆2

VV,atm ≈ 1K. We plot the expected order of magni-
tude of ∆2

VV,atm due to atmospheric Faraday rotation against the noise power spectra
in Fig. 5.3. As evident from the figure, the is likely to be the most challenging
foreground for low-frequency circular polarization studies.

Calibration and correction of Faraday rotation distorted low-frequency measure-
ments has been extensively studied in the literature, particularly in the context of
ongoing 21 cm experiments. Similar techniques could potentially be applied to
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remove the ionospheric circular polarization signal, but obviously they would have
to be pushed many orders of magnitude beyond the present state of the art. Nev-
ertheless, it is clear that the ionosphere represents perhaps the greatest foreground
challenge to cosmological circular polarization studies.

4.7 Discussion
In Paper I of this series, we showed that the remote CMB quadrupole during the
pre-reionization epoch leads to a small circular polarization of the emitted 21 cm
radiation. In this paper we showed that measurement of the temperature-circular
polarization cross-spectrum PTV (k) allows us to measure the remote quadrupole of
the CMB. The remote quadrupole field at high redshifts can then be decomposed
into E and B modes, and we showed that measurement of the B modes of this field
can help us measure the tensor-to-scalar ratio r . We showed that, given the fiducial
model for pre-reionization physics, a Fast Fourier Transform Telescope (FFTT) with
side length 100 km can achieve σ(r) ∼ 4 × 10−3 after ten years of observation
while a FFTT of side length 1000 km can achieve σ(r) ∼ 10−5 after ten years of
observation time.

One of the key results of this paper is that the sensitivity to measuring the re-
mote CMB quadrupole is sensitive to the measurement of the modes with largest
wavenumber (corresponding to the longest baselines in an interferometric experi-
ment). For the fiducial model of pre-reionization physics considered in our paper,
Fig. 4.7 implies that the method is most sensitive around z ≈ 19.5, i.e. the time at
which Lyman-α coupling becomes efficient in the fiducial model. Fig. 4.8 shows the
sensitivity to measuring the tensor-to-scalar ratio r as a function of the side length
of a FFTT, and for different observation times.

Our forecasts depend on assumptions made about the pre-reionization history of the
universe, in particular on the rate of depolarization of the ground state of hydrogen
through Lyman-α pumping, which is proportional to the mean Lyman-α flux. The
parameters for the fiducial model that we consider for our sensitivity calculation
are shown in Fig. 4.4. We note however that the Lyman-α flux at the redshifts
of interest is completely unconstrained observationally; the “optimal” window in
redshift, when xα ∼ O(1), would be earlier (later) if the Lyman-α flux is higher
(lower). We note that lower Lyman-α flux would be advantageous for our method,
since it places the transition at higher observed frequency where the foregrounds
are less severe.
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Another assumption in our technique is that the magnetic fields during the Dark
Ages are below the "saturation limit" as described in Gluscevic et al. 2017. A
saturated magnetic field has a strength such that the precession of hydrogen atoms in
in the hyperfine excited state is much faster than the decay (natural or stimulated) of
the excited state. If the magnetic field is above the saturation limit, then the circular
polarization signal will be suppressed. However most conventional models for mag-
netic fields during the Dark Ages predict unsaturated magnetic fields. A constraint
on magnetic field strength during the Dark Ages as described in Refs. Venumad-
hav et al. 2014; Gluscevic et al. 2017 will thus be crucial before embarking on an
experiment that uses the technique described in this paper.

To contrast our results to existing bounds on the tensor-to-scalar ratio, we note
that the current upper bounds on r from the combination of the CMB B-mode and
other observables are r < 0.07 (95% CL) (BICEP2 Collaboration et al. 2016). Next
generation "Stage-4" CMB experiments have a goal of probing r ≤ 0.002 (Abazajian
et al. 2016), although several challenges remain in dealing with systematic effects.

Other authors have proposed techniques to detect inflationary gravitational waves
that, while futuristic, have the potential to confirm a CMB detection, probe another
range of scales, and/or improve sensitivity to r . Some of these techniques are based
on conventional large-scale structure observables (Dodelson et al. 2003; Alizadeh
& Hirata 2012; Schmidt & Jeong 2012; Schmidt et al. 2014; Chisari et al. 2014),
although the surveys required even to detect r ∼ 0.07 are very futuristic and many
run up against cosmic variance limitations. Direct detection of the high-wavenumber
gravitational waves with a network of space-based laser interferometers has been
studied (Corbin & Cornish 2006; Kawamura et al. 2011).

The techniquesmost comparable to this work are other proposals using the enormous
number ofmodes in redshifted 21 cm radiation. While the foreground-to-signal ratio
is much higher for 21 cm experiments than for the CMB, the 21 cm measurement is
a line measurement against a continuum foreground (as opposed to the continuum
CMB signal) and so the ultimate factor by which foregrounds can be suppressed in
analysis could be much larger. Masui & Pen 2010 proposed using the large number
of Fourier modes available in a 21 cm survey to measure the intrinsic distortion
of large scale structure due to inflationary gravitational waves. For a FFTT with
L = 100 km their technique can detect r ∼ 10−3 which is similar to our forecasts.
Book et al. 2012 proposed using the weak lensing of the 21 cm intensity fluctuations
by gravitational waves to put bounds on r . This involves the measurement of the 21
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cm power spectrum up to very small angular scales; to reach r ∼ 10−3, they would
need to probe to lmax ∼ 105, requiring an array size of L & 100 km.

The method proposed in this series is the first to make use of the 21 cm circular
polarization signal (in cross-correlation with temperature: TV). It is also very
futuristic, in the sense of requiring L ∼ 100 km radio arrays (or ∼ 5×108 antennas).
However, the foregrounds in circular polarization are much fainter than in brightness
temperature, so our method for measuring r may turn out to be less problematic than
methods based on the local anisotropy of the temperature power spectrum. In any
case, the radio arrays that could implement the TT methods (Masui & Pen 2010;
Book et al. 2012) are likely similar to what one would need forTV , so the techniques
could be used to cross-check each other.

While the experimental setup required for the circular polarization method is very
futuristic, it illustrates the rich array of physical processes and diagnostics that are
in principle available in 21 cm surveys. Given the long-term interest in detecting
inflationary gravitational waves, we hope that this idea will serve both to further
motivate the goal of the ultimate 21 cmcosmology experiment, and inspire additional
work on novel applications.
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C h a p t e r 5

CHARACTERIZING FOREGROUNDS FOR REDSHIFTED 21cm
RADIATION USING THE LONG WAVELENGTH ARRAY:

CROSS-CORRELATION WITH TRACERS OF ISM

ABSTRACT

Broadband foreground sources pose the greatest challenge to 21cm tomography and
need to be characterized carefully before the technique becomes a sensitive probe
of the dark ages and the epoch of reionization. The foregrounds are expected to
be predominantly galactic and approximately four orders of magnitude larger than
the cosmological signal. In this paper, we investigate the nature of the diffuse
Galactic radio emission in the 20 − 80MHz frequency range using data from the
Owens Valley Radio Observatory LongWavelength Array (OVROLWA).We cross-
correlate LWA maps with tracers of ISM from a number of surveys, to investigate
galactic foregrounds relevant to detection of 21cm signal from the Dark Ages. We
compute the cross-power spectra between LWA maps at different frequencies with
dust, Hα, and HI tracers. Our results are consistent with no correlation between
tracers of the gas and dust in the ISM at high Galactic latitudes (b > 55◦) and
low-frequency maps from the LWA, at scales ` ∼ 10 − 600 at a 99.9% confidence
level.
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5.1 Introduction
The detection of the redshifted 21cm radiation from neutral hydrogen at high red-
shifts is expected to revolutionize our understanding of cosmology and astrophysics
in the coming decades. Detection of the signal will provide valuable information
about the post-recombination history of the universe, including the Dark Ages as
well as information about formation of the first ionizing sources and the subsequent
re-ionization of the Intergalactic Medium (IGM) due to these sources (Hogan &
Rees 1979; Madau et al. 1997; Tozzi et al. 2000; Iliev et al. 2002; Furlanetto et al.
2004a; Furlanetto et al. 2004b; Loeb& Zaldarriaga 2004; Barkana & Loeb 2005; for
a comprehensive review see Furlanetto et al. 2006). 21cm tomography is expected
to produce 3D maps of the matter distribution dramatically larger than current large
scale probes, enabling precision tests of inflation and potentially placing extremely
strong constraints on cosmological parameters such as the dark energy equation of
state), spatial curvature and neutrino mass (McQuinn et al. 2006; Mao et al. 2008
and references therein).

In practice, 21 cm tomography involves imaging the radio sky with low-frequency
radio interferometers at different frequencies (corresponding to different redshift
slices) and collating them to a 3D map. These images however are expected to
be dominated by galactic foregrounds, particularly synchrotron emission from the
Milky Way. These foregrounds are in fact expected to be around four orders of
magnitude brighter than the cosmological signal, making the detection of the latter
extremely challenging (de Oliveira-Costa et al. 2008; Bernardi et al. 2011).

One of the key observational challenges in detecting the cosmological 21cm signal
is modeling and characterizing the Galactic radio emission at low frequencies. This
has generated a lot of interest in modeling and removing Galactic foregrounds at
low frequencies. Two broad strategies have emerged: early ideas involved using the
spatial structure of foregrounds to separate them from the cosmological signal (Di
Matteo et al. 2002;Oh & Mack 2003; Santos et al. 2005;Zaldarriaga et al. 2004).
More recent proposalsmake use of the spectral structure in the intrinsic cosmological
signal, which varies rapidly in frequency space since a small difference in frequency
corresponds to mega-parsecs of cosmological distance, over the foreground signal
that is spectrally smooth (Liu & Tegmark 2012 and references therein).

Beyond understanding low-frequency foregrounds, understanding diffuse radio emis-
sion from the Galaxy is interesting in its own right. de Oliveira-Costa et al. 2008
modeled the diffuse galactic radio emission across the 10MHz-100GHz range. Their
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Global Sky Model (GSM), implemented a Principal Component Analysis (PCA) on
the 11 highest quality radio maps across the 10MHz-100GHz frequency range. The
GSM is extensively used in the astrophysics community, including putting limits on
the power spectrum from the Epoch of Reionization (EoR) (see Ali et al. 2015).

One of the key limitations of theGSM is the lack of all skymaps in the low-frequency
range, relevant to 21cm tomography experiments. For the high resolution GSM,
crucial for 21cm studies, the model hinges on the 408 MHz Haslam maps (Haslam
et al. 1981, Haslam et al. 1982). . More recently Zheng et al. 2017 have extended
the original GSM by using 29 maps in the 10 MHz to 5 THz range, including the
Parkes maps at 85 MHz and 150 MHz (Landecker & Wielebinski 1970). The GSM
in the 10 MHz-100 MHz range, still remains largely an extrapolation, and direct
observational characterization of galactic emission at these frequencies, with large
sky and frequency coverage, and high resolution, has been missing.

In this paper we investigate the spatial structure of radio emission from the galaxy us-
ing data from theOwensValley RadioObservatory LongWavelengthArray (OVRO-
LWA) in the 20− 80MHz frequency range. We cross-correlate low-frequency LWA
maps with known tracers of the Milky Way Interstellar Medium (ISM). Our motiva-
tion is twofold: we wish to detect if known ISM tracers emit at the radio frequencies
relevant to 21cm tomography studies. Secondly, since there have been no all-sky ob-
servations at these frequencies, we wish to detect any anomalous radiative processes
at these low-frequencies.

For our analysis, we cross-correlate the LWA maps with full-sky maps of known
tracers of the ISM: dust, Hα and HI.We compute auto and cross-spectra for different
cuts in the sky off the plane of the galaxy that are relevant to current and future 21cm
experiments. The techniques used are similar to the methods to detect weak-lensing
(Hirata et al. 2004; Hirata et al. 2008)) or the ISW effect (Ho et al. 2008) using
cross-correlation of Large Scale Structure (LSS) and CMB maps.

This chapter is organized as follows: we provide some historical context for the
search for unknown radio foregrounds in Section 5.2. Section 5.3 describes the
OVRO LWA experiment and in Section 5.4 we provide an overview of the data
processing required to generate low-frequency maps. The ISM datasets used in our
cross-correlation analysis are described in Section 5.5; the methodology and results
of cross-correlation different maps are in Section 5.6 and 5.7.
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5.2 Motivation: Characterizing Low-Frequency Radio Foregrounds
While the radio foregrounds at 10-100 MHz range are relatively unexplored, the
explosion of CMB experiments over the past two decades have led to an exhaustive
treatment of radio foregrounds at higher frequencies. While the radiative processes
expected to dominate the radio skies in the 10 − 100MHz regime are expected to
be different from the CMB sky, the CMB studies provide an important historical
context for this work.

The continuum emission mechanisms from the diffuse ISM in the 10-100 GHz range
were expected to be dominated by two radiative processes:

1. Free-free emission (thermal bremsstrahlung)
2. Synchrotron emission due to relativistic electrons in the galaxy

However, radio emission below 40GHz, with hints of anomalous spectral properties,
was first reported in the analysis of COBE DMR data by Kogut et al. 1996 who
initially identified it as free-free emission but this was ruled out on energetic grounds
(Draine & Lazarian 1998). The observations were confirmed by ground-based mea-
surements at smaller angular scales (de Oliveira-Costa et al. 1997;Leitch et al. 1997).
and it was established that the emission was dust-correlated (de Oliveira-Costa et al.
1999; de Oliveira-Costa et al. 2002) The thermal dust emission (due to vibrational
modes) at these frequencies is expected to be negligible. It was eventually pro-
posed proposed that the dust-correlated Anomalous Microwave Emission (AME) is
electric dipole radiation from tiny, rapidly spinning dust grains (Draine & Lazarian
1998). The spinning dust model provides an excellent fit to the data (Planck Collab-
oration XX 2011). However, there remains high-latitude diffuse emission that has
not been definitely associated with a known radiative processes. Potential explana-
tions for this unexplained emission include magneto-dipole radiation from thermal
fluctuations of magnetized grains (Draine & Lazarian 1999; Liu et al. 2014).

At 10− 100MHz frequencies, the sky is expected to be dominated by three radiative
processes:

1. Synchrotron emission from relativistic emission in the galaxy
2. Free-free emission (thermal bremsstrahlung),
3. Hydrogen recombination
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The thermal dust emission (from vibrational modes) and the spinning dust emission
at these frequencies are not expected to be observationally significant.

The LWA maps are the first high-resolution radio maps (reaching up to l ∼ 1000),
with a large frequency and sky coverage in the 20 − 800MHz frequency regime.
Given the importance of this frequency window for 21cm tomography studies, it it is
important to investigate unexpected foreground sources in these maps. Our goal in
this paper is to search for spatial/morphological correlations between known tracers
of the ISM and radio maps from the LWA. Our work is similar in spirit to the hunt
for "foreground X" during the post-WMAP era (Finkbeiner 2004;Finkbeiner et al.
2002;de Oliveira-Costa et al. 2004).

Beyond search for any anomalous low-frequency emission, it is also important to
characterize known foregrounds to extract meaningful cosmological information
from 21cm experiments. Recent analysis of the BICEP2/Keck Array data showed
that extrapolating foreground templates, especially those derived from small regions
in the sky, to low-frequencies can be misleading. For instance, extrapolating the
all-sky observations of Planck at 353 GHz to 150 GHz (the BICEP2 frequency)
led to an estimate of the B-mode angular power spectrum that was consistent with
dust (Planck Collaboration et al. 2016), refuting an earlier claim that the B-mode
was due to inflationary gravitational waves. Thus instead of relying on the GSM to
make extrapolated templates of the foregrounds at low-frequencies, it is crucial to
compare the low-frequency maps to known ISM tracers as a "sanity check".

There has also been a growing interest in using cross-correlations of future 21cm
maps with CMBmaps to extract cosmological information (see for example Tashiro
et al. 2010). The foreground contamination in such cross-correlation studies depends
on any cross-correlation between low-frequency maps and and ISM structure traced
by dust or Hα maps. It is thus timely to investigate whether any such correlation
exists.

5.3 The Long Wavelength Array
The Owens Valley Long Wavelength Array (OVRO LWA) is a full cross-correlation
interferometer designed for all-sky imaging fromOwensValley. TheLWA is an array
of 288 dual polarization antennas, with each antenna consists of two perpendicular
dipoles (see figure). It has an instantaneous bandwidth covering 24MHz to 82MHz.
It has the largest number of correlated baselines operational: 33,000 baselines with
60 MHz bandwidth. The OVRO-LWA hosts the 512-input correlator, a "large-N"
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Figure 5.1: Map of the antenna layout for OVRO LWA. Black circles correspond to
the 251 core antennas. The black triangles correspond to the 32 expansion antennas
that extend the maximum baseline of the array. The 5 crosses are antennas equipped
with noise-switched front ends for calibrated total power measurements. This figure
was provided courtesy of Michael Eastwood and to be published in Eastwood et. al.
(in prep)

correlator developed by the Large-Aperture Experiment to Detect the Dark Ages
(LEDA, Kocz et al. 2015). The instrument is described in detail in Hallinan et al.
(in prep) and the data processing for making all-sky maps are described in Eastwood
et. al. (in prep).

The relative faintness of the 21cm signal and the presence of strong foregrounds
implies that, to make a detection, an ideal 21cm experiment needs to measure a large
number of cosmological modes, with long integration times, and careful calibration.
The large field-of-view of the OVRO-LWA, and its frequency range thus makes it
an ideal experiment for 21cm cosmology, focused on the dark ages.
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Of the the 288 antennas, 251 are arranged within a 200 meter diameter "core" that
enables very high thermal sensitivity. An additional 32 "expansion" antennas are
placed up to 2 kilometers away from the central core of the interferometer. These
antennas are used to image the entire sky with 10 arcminute resolution in a single
snapshot. Finally, there are 5 antennas equipped with noise-switched receivers that
allow for calibrated total power measurements of the sky. For the maps analyzed in
this paper we just use the core and the expansion antennas.

Both the core and the expansion antennas use the same broadband dipole. The first
stage of amplification occurs at the antenna (in a white box at the top of the post
holding the dipole antennas- see figure). The first-stage amplifier is uncooled since
the additional noise due to an uncooled first-stage amplifier is negligible compared
to the sky brightness. For the core antennas, the signal is then transported via a
coaxial cable to an electronics shelter, while for the expansion antennas the analog
signal is sent to the electronics shelter via a fiber optic cable.

In the electronics shelter, the signal enters into a shielded analog signal processing
rackwhere the signal is further amplified and passes through a configurable bandpass
filter that filters out FM radio (at the top of the band) and RFI at the bottom of the
band. After this the signal is digitized with a sampling rate of 196.602 MHz. There
is a coarse-delay correction but no fine-delay correction on the signal. The signal
is then correlated by the 512-input LEDA correlator Kocz et al. 2015. There are 13
second integrations in the correlator (chosen so that the integrations evenly divide
a sidereal day). There are 2398 frequency channels (24 kHz wide). The channel
width is determined by bandwidth smearing constraints (wider channels wash out
the signal) and computational limits (narrower channels are more computationally
expensive). The correlator delivers full polarization information, however at this
stage the data processing does not use this information to make full polarization
maps.

5.4 Observations and Data Processing
In this section, we briefly describe the data processing and imaging algorithm used
to obtain the maps that we use for our cross-correlation analysis. Details of the
algorithm and data processing can be found in Eastwood et. al. (in prep).

The low-frequency radio maps used in this chapter were produced using data from
the OVRO-LWA that was collected over 28 consecutive hours starting at on 2017-
02-17 12:00:00 UTC time. This observation run was chosen since it coincided
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Figure 5.2: 3-color all-skymap generatedwithm-mode analysis imaging techniques.
This figure was provided courtesy of Michael Eastwood and to be published in
Eastwood et. al. (in prep)

with rains in OVRO, which improve the RFI environment on the site. During the
observations, the LWA operated as a zenith-pointing drift scanning interferometer
(Eastwood et. al. (in prep)).

The antenna gains are measured and calibrated against Cyg A and Cas A: the
brightest radio point sources in the northern hemisphere. This is done using a
data track when both Cyg A and Cas A are at high elevations. Since, the OVRO
LWA is a drift scanning interferometer, the primary beam is measured by making
a set of symmetry assumptions (eg: assuming that the primary beam is invariant
under north-south and east-west flips) and then measuring the flux of several bright
sources (Cyg A, Cas A etc.) as they pass through the field of view and fitting a
beam model composed of Zernike polynomials to the measurements. There is radio
frequency interference (RFI) from badly insulated power line poles that arc and
produce pulsed, broadband RFI. These sources can be identified and removed by
noting that averaged over a 24 hour period, true sky components are smeared along
tracks of constant declination, while the power lines are not. The removal of RFI is
made challenging by the fact that the sources are at low elevation, and the antenna
response is practically unknown; Eastwood et. al. (in prep) describe a method
called “peeling” that peels RFI sources from the averaged visibilities, obtained after
smearing the visibilities over > 24 hours.

Imaging the sky involves estimation of the sky brightness Iν(r̂) in the direction r̂
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and frequency ν. However, as discussed in Chapter 3, an interferometer measures
visibilities, Vi j,ν between pairs of antennas. For antennas separated by a baseline ®bi j ,
and with a beam function Aν(r̂) we have,

V i j
ν =

∫
sky

Aν(r̂)Iν(r̂) exp
(
2πir̂ · ®bi j/λ

)
dΩ . (5.1)

Imaging thus involves estimating Iν(r̂) given the available measurements V i j
ν from

an interferometer.

Solving the matrix equation that results from discretization of the above equation is
however computationally very expensive. For an interferometerwith Nbase baselines,
measuring Nfreq frequency channels over Ntime discrete integrations, and a sky that
is discretized into Npix pixels, the total dataset can be represented through a matrix
of complex numbers with dimensions of (NbaseNfreqNtime) × (Npix). For a single-
channel LWA measurement this is a 5 petabyte array, and the simple solution of the
matrix equation needs prohibitive computation power.

m-Mode Analysis
Eastwood et. al. (in prep), have implemented a novel method that exploits the
drift-scan strategy of the OVRO-LWA. This method, called m-mode analysis, uses
a temporal symmetry in equation 5.1 that greatly reduces the amount of computing
time, by allowing us to write down a block-diagonal matrix relationship between
an observed quantity (the m-modes) and the spherical harmonic coefficients of the
sky (Shaw et al. 2014; Shaw et al. 2015). We briefly outline the method below.

For a drift-scan telescope like theOVRO-LWA, the visibilities are a periodic function
of the sidereal time. The Fourier transform of the visibilities with respect to the
sidereal time φ ∈ [0, 2π) is,

V i j
m,ν =

∫ 2π

0
V i j
ν (φ) exp

(
− imφ

)
dφ (5.2)

This Fourier transform gives us a set of m-modes V i j
m,ν where m = 0, ±1, ±2, . . . is

the Fourier conjugate of φ, with higher values of m corresponding to variability of
the visibility on shorter timescales.

It can be shown that the m-modes V i j
m,ν can be written as a linear combination

of interferometer response on the sky Bi j
lm,ν (which encodes information about the

baselines and the antenna beams) and the spherical harmonic coefficients of the sky
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brightness alm,ν.
V i j

m,ν =
∑

l

Bi j
lm,νalm,ν , (5.3)

This equation is a a matrix equation with a block-diagonal matrix BBB,

BBB =

©­­­­­«
m = 0

m = ±1
m = ±2

. . .

ª®®®®®¬
. (5.4)

Consider a vector vvv whose components are the list of m-modes and the vector aaa

containing the list of spherical harmonic coefficients. In order to take advantage of
the block-diagonal structure in BBB, we sort the values of vvv and aaa by the value of m,
grouping positive and negative values of m together. The matrix equation can then
be written as,

vvv︷          ︸︸          ︷©­­­«
...

m-modes
...

ª®®®¬ =
BBB︷                                ︸︸                                ︷©­­­«

. . .

transfer matrix
. . .

ª®®®¬

aaa︷  ︸︸  ︷©­­­«
...

alm
...

ª®®®¬ . (5.5)

To proceed we choose the spherical harmonics on the sky for all ` < `max, where
`max corresponds to the longest baselines in the array. For the maps generated for
this chapter we use `max = 1000. This construction reduces the size of the transfer
matrix to 500 MB. This also reduces computational complexity by breaking up
the matrix inversion problem into independent blocks. For the case of the LWA
the m-mode analysis breaks up the matrix equation into ∼ 103 independent blocks,
saving a factor ∼ 109 in processing time.

The inversion problem is however only one of the challenges confronting imaging
using drift-scan interferometers like the LWA. The removal of bright point sources,
terrestrial RFI at low-frequencies, and characterizing ionospheric effects that break
the assumptions of Equation 5.2 make map-making particularly challenging. East-
wood et. al (in prep) describe the map making process in detail and the methods are
beyond the scope of this thesis.

In the remainder of this chapter we use low-frequency maps from the LWA that
have been generated using methods described above and cleaned for RFI and point
sources as our primary data input.
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5.5 External Data Sets
Wedescribe the dust, Halpha, HI andLWAradiomaps used in our analysis below; the
data sets are summarized in Table I. All maps were converted to ITRF coordinates,
pixelized using HEALPix RING scheme (Górski et al. 2005) with a resolution
nside = 512 for the LWA and dust maps, nside = 1024 for HI maps and nside = 256
for the Hα maps (corresponding to 12 × nside2 equal area pixels across the sky).

IRAS + DIRBE/COBE Maps
We use the extrapolated full-sky maps by Finkbeiner et al. 1999 (FDS99) of sub-
millimeter and microwave emission from diffuse interstellar dust in the Galaxy.
These maps are constructed by extrapolating from the 100µm emission and the
100/240µm flux ratio maps generated by Schlegel et al. 1998 (SFD98) from the
Infrared Astronomy Satellite (IRAS) and Diffuse Infrared Background Experiment
on COBE (DIRBE/COBE). These maps were made by combining high resolution
(but relatively poorly calibrated) data from IRAS and the lower angular resolution
(0.7◦) maps from DIRBE which exquisitely calibrated. This map is a good predictor
of the microwave emission from Galactic dust.

The extrapolation of 100-240µm SFD98 maps to microwave frequencies is compli-
cated by the details of the composition and emissivity properties of interstellar dust.
FDS99 use a two-component dust model to extrapolate the dust emissivity across
the sky at GHz frequencies. The maps have the zodiacal light and point sources
removed.

For the cross-correlation power spectrum analysis cut out the galactic plane by
removing pixels with −30◦ ≤ l ≤ 30◦. We also make a cut for the southern
hemisphere "blindspot" for LWA (see Fig. 1). We then cut the sky into five regions
described in Section III. A.

HαMaps
We use the full-sky template map of the Galactic free–free emission component
at 30 GHz created by Dickinson et al. 2003. Their template is based on Hα data
from the Wisconsin H-Alpha Mapper (WHAM) survey Haffner et al. 2003 at 1◦

resolution for the Northern Hemisphere, and the Southern H-Alpha Sky Survey
Atlas (SHASSA) for the Southern hemisphere.

Dickinson et al. 2003 correct the Hα maps for dust absorption using the 100 − µm
dust maps of Schlegel et al. 1998 and convert the dust-corrected Hα data into



99

a radio surface brightness. The template provides an accurate map of the radio
emission in the frequency range of 100 MHz–100 GHz, and electron temperature
range 3000-20,000 K. We note that another Hα template map by Finkbeiner 2003
is frequently used in the CMB community. However, the resolution of their map
is not same across the sky and is thus not suitable for the kind of cross-correlation
analysis that is our goal in this chapter.

HI Maps
For galactic HI emission, we use data from the full-sky HI4PI Survey (HI4PI
Collaboration et al. 2016) which combines data from the Effelsberg-Bonn HI Sur-
vey (Winkel et al. 2016) and the Galactic All-Sky Survey (McClure-Griffiths et
al. 2009). The map traces HI emission over the full sky with radial velocities
|vLSR | < 600 km s−1 (470 km s−1 for the southern hemisphere, with a spectral reso-
lution of 1.45 km s−1. The survey has an angular resolution 16.1′ and a sensitivity
of 43 mK. The survey corrects for stray radiation that is reliable even in low-column
density regions of the sky. For the cross-correlation analysis we use the HI4PI maps
with a HEALPix resolution of nside = 1024.

5.6 Cross-Correlation Power Spectrum Analysis
Sky Cuts
We are interested in investigating cross-correlations between LWA maps and ISM
tracers in parts of the sky that are most interesting to 21cm cosmology. This
involves cutting out the galactic plane and looking at parts of the sky at relatively
high galactic latitudes in the northern hemisphere (or low galactic latitude in the
southern hemisphere). For the analysis reported in this chapter we consider a
patch in the northern hemisphere at high galactic latitudes b > 55◦. Note that the
LWA blindspot restricts us to use only very low galactic latitudes in the southern
hemisphere.

Methodology
Themethodology we adopt is similar to CMB×LSS cross-correlationmeasurements
to measure the ISW effect (Padmanabhan et al. 2005 and Ho et al. 2008) as well
as weak gravitational lensing (Hirata et al. 2004 Ho et al. 2008). We outline the
method here for completeness. To compute the cross-spectra, we begin by arranging
temperature fluctuations in different maps into a single data vector,

x = (xν, xI), (5.6)



100

where xν is a vector with radio temperature fluctuations (with the monopole sub-
tracted), in a frequency band centered at ν, at every HEALPix pixel; similarly, xl is
the effective temperature fluctuation of the ISM tracer under consideration (i.e. I =
dust or Hα or H I). The total length of x is Npix,ν + Npix,I where Npix,ν is the number
of pixels in the LWA map and Npix,I is the number of pixels in the ISM tracer map.

The covariance matrix of x is,

C = Cdiag +

(
0 CνI†

CνI 0

)
, (5.7)

where Cdiag is,

Cdiag =

(
Cνν + Nνν 0

0 CI I + NI I

)
, (5.8)

where N X X is the noise matrix. The submatrices CXY are defined by,

CXY
i j =

∑
lm

CXY
l Y ∗lm(n̂

X
i )Ylm(n̂Y

j ), (5.9)

where n̂X
i is the direction of the ith pixel of the vector xX .

In order to construct an optimal estimator for the radio-ISM cross-spectrum, we need
the auto-correlation matrix for the LWA radio and the ISM maps. We estimate the
power spectra first using theHEALPypackage. HEALPyuses theHEALPix package
developed by Górski et al. 2005. We use the anafast routine to calculate the initial
auto-correlation matrix. Anafast performs a harmonic analysis of the HEALPix
maps up to maximum spherical harmonic order `max by computing integrals on the
whole sphere. The package is not optimally suited to make accurate power-spectra
estimates for cut maps and accounting for pixel-level noise. Instead it provides a
rough initial estimate for the auto-spectra that can be fed into our routine.

We then parametrize CνI
l as a sum of bandpowers P̃i,l , with amplitudes ci that need

to be estimated,
CνI

l =
∑

i

ci P̃i,l . (5.10)

We estimate ci by constructing quadratic combinations of the data (Tegmark 1997;
Seljak 1998),

Qi =
1
2

xtC−1
diag

∂C
∂ci

C−1
diagx. (5.11)
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Map 1 Map 2

Sky Cuts and Removing the LWA Blindspot

Determine priors for each map using anafast

Run maps through Powspec:
1. Compute C-1 using cinverse
2. Compute Qi using quad
3. Compute Fij   using fisher

Compute power spectra using Equation (5.12)

Figure 5.3: Outline for powspec

Qi is related to the estimate ĉi by the response matrix F,

ĉi =
∑

j

(F−1)i jQ j, (5.12)

where,

Fi j =
1
2

tr
[
C−1

diag
∂C
∂ci

C−1
diag

∂C
∂c j

]
, (5.13)

ĉi is a good approximation to the maximum likelihood estimates of ci if CνI
l <<√

Cνν
l C I I

l . If the fiducial power spectra and noise used to compute C−1
diag correctly

describe the data then covariance matrix of ĉi is inverse of the response matrix
(in this case the response matrix F is the Fisher matrix). The matrix Cdiag is
known as a "prior" in quadratic estimation theory (not to be confused with Bayesian
priors). Equation (7) is unbiased regardless of the choice of prior (though it is no
longer a minimum variance estimator for a bad choice of prior). Details about the
implementation of this algorithm can be found in Padmanabhan et al. 2005 and
Hirata et al. 2008.
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Errors
We estimate the errors on the power spectra by splitting each region into eight
jackknives. The error-bars are computed by using the standard deviation of the
power-spectra computed on each independent jackknife using,

σ2
P(k) = (N − 1)

N∑
i=1
(Pi(k) − P̃(k))2/N . (5.14)

One of the key assumptions while using jackknife errors is that the correlation
length is smaller than the length scale associated with one jackknife region. The
angular scales at which we estimate the cross-correlations are in the multipole range
` ∼ 10 − 550 corresponding to angular scales ≤ 18◦ while the typical angular scale
of the jackknife regions in our analysis is ∼ 45◦. Hence this assumption holds for
our error estimates.

A second, more subtle, assumption in computing our error bars is that each jackknife
region is an independent realization of the foreground sky. However, we obviously
have access to one sky, and the foregrounds in different parts of the sky can have
(and do have) different morphologies. Hence, the jackknife error bars should be
interpreted as the uncertainty on our measurements given a very morphologically
inhomogeneous sample, instead of an uncertainty derived from “independent” mea-
surements of the same sky.

Priors
To compute the priors Cdiag required for the cross-correlation power spectrum
analysis, we need an estimate the auto-correlation of each LWA map and the ISM
tracer maps. We do this by using the anafast routine included in the HEALPix
package (Górski et al. 2005). Anafast performs a harmonic analysis of the HEALPix
maps up to maximum spherical harmonic order `max by computing integrals on the
whole sphere. Anafast is not optimally suited for measuring power-spectra on cut
maps (unlike the algorithm outlined above). However, it provides a rough estimate
of the auto-spectra in the maps that can then be used in our analysis. While setting
the priors we set Cl >> Cl≥2 for l = 0, 1 to reject the monopole and dipole modes
from the cross-correlation analysis.

m-Mode suppression
The construction of LWA maps using m-mode analysis leads to spurious power at
low-m’s, seen as horizontal stripes in the raw maps. For our analysis, we artificially
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Figure 5.4: Cross-spectra between LWA map and Dust map with power injected in
the l = 250 − 300 band

inject power that is comparable to Cl >> Cl≥2 for m = 0, 1 to reject the low-m
modes from the cross-correlation analysis.

Simulations and Tests
To test the powspec routine, we injected power in the l = 250− 300 band in the dust
map and estimated the cross-spectra with the LWA1 map as well as the auto-power
spectrum of the dust map with the injected power. The recovered Dust-LWA1 cross-
spectra is shown in Figure 5.4 while Figure 5.5 shows the auto-power spectrum of
the dust map. The powspec routine recovers the correct power in the relevant band.

5.7 Results
Figs. 5.6, 5.7 and 5.8 plot the cross-correlations between the LWA and the Dust,
Hα, and HI maps respectively, for the Northern Sky cut. We report on the northern
hemisphere here since this is an interesting window for 21cm observations and
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Figure 5.5: Recovered auto-power spectrum of the dust map with power injected in
the l = 250 − 300 band

Table 5.1: Summary of LWA maps used for cross-correlations

Map ν / MHz ∆ν / MHz
LWA1 41.760 0.024
LWA2 46.992 0.024
LWA3 52.224 0.024
LWA4 57.456 0.024
LWA5 62.688 0.024
LWA6 67.920 0.024
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Figure 5.6: Dust map correlations with the six LWA maps for the northern sky-cut.
The correlations are normalized with the auto-spectra as described in the text

because the LWA blind-spot, and galactic contamination allow for only a small
window in the southern hemisphere.

We report the cross-correlations normalized with the corresponding auto-spectra
such that,

ρ` =
CX×Y
`√

CX×X
`

CY×Y
`

(5.15)

such that ρ` is dimensionless. The errors reported are the jackknife errors on the
cross-correlations described in Sec. 5.6.

From Fig. 5.6 we see that the cross-correlations of the dust map with low-frequency
LWA maps is consistent with zero at the largest scales. We calculate the t-statistic
for each ` bin under a null hypothesis that there is zero cross-correlation in a given
` bin, with 7 d.o.f. (since there are 8 jackknife regions). Table 5.2 reports the
t-statistic for each ` bin (first row for a given ` band) and the corresponding p-value
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Figure 5.7: Hα map correlations with the five LWA maps for the northern sky-cut.
The correlations are normalized with the auto-spectra as described in the text

(second row for a given ` band). As seen from the table, we cannot rule out the
null-hypothesis of zero cross-correlation at the p < 0.001 level.

We plot the cross-correlations of the Hα map with low-frequency LWA maps in
Fig. 5.7 and the results of a t-test under the null-hypothesis of zero cross-correlation
are reported in Table 5.3. As seen from the table, we cannot reject the null-hypothesis
of zero cross-correlation at the p < 0.001 level. The only exception is the cross-
correlation of the LWA5 map with the Hαmap in the ` = 140−160 band. However,
we believe this is likely related to systematics in the LWA5 map since the maps in
other frequency bands are consistent with zero cross-correlation.

Finally, Fig. 5.8 shows results of the cross-correlation of the HI map with low-
frequency LWA maps and Table 5.4 reports the results of a t-test under the null-
hypothesis of zero cross-correlation. As seen from the table, we cannot rule out the
null-hypothesis of zero cross-correlation at the p < 0.001 level.
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Figure 5.8: HI map correlations with the five LWA maps for the northern sky-cut.
The correlations are normalized with the auto-spectra as described in the text

5.8 Implications for 21cm Foregrounds
In this section we discuss the implications of our cross-correlations on the emissions
from different phases of the ISM at low-frequencies.

Dust
Dust traces density in the ISM and dust maps used in our analysis trace the ther-
mal emission from dust at high frequencies. The cross-correlation between low-
frequency LWAmaps and the dust maps is sensitive to low-frequency emission from
dust or any gas phase of the ISM that is traced by the (high-frequency) dust maps.
There are no known mechanisms for dust emission at low-frequencies. The ionized
gas phase of the ISM traced by the dust distribution could potentially be a source
of free-free radiation and radio recombination lines. In any case, given the history
of surprises in low-frequency foregrounds from the ISM, it is essential to check if
there is any anomalous emission at low-frequencies.
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If there is an unknown radiative mechanism for dust at low-frequencies, that occurs
in high density regions, it will be reflected in the cross-correlation and we can put
limits on the emissivity of the emission process. We can write,

Tlow(ν) = Tsync(ν) + TX,low(ν) (5.16)

Assuming that the synchrotron emission is not correlated with dust, the cross-
correlation between LWA and high frequency dust maps can be used to put con-
straints on the emissivity of dust at low-frequencies (denoted by X).

Finkbeiner 2004 reports the emissivity per dust in terms of the optical depth at
100µm, τ100µ and we use those units in our analysis to enable comparison to his
results. Theorists typically quote emissivities in units of per Hydrogen atom (Jy
cm2 sr−1 per H atom). However, the hydrogen column density is not well measured,
and measurements using the gas-to-dust ratio can vary across regions. To avoid this,
Finkbeiner 2004 reports dust emissivities in terms of optical depth at 100µm defined
with respect to a blackbody at a reference temperature T = 18.175K. In these units
the typical dust emissivities in the cold neutral, warm neutral, and warm ionized
phase of the ISM is measured to be ∼ 10 MJysr−1.

To put constraints on low-frequency emissivity, we note that,

jν ∝ Tν2 (5.17)

where ν is the frequency associated with a given map and T is the antenna temper-
ature in the Rayleigh-Jeans regime. We can thus write

CLWA×dust
` =

j X
ν

jdust
ν

(
νhigh

νlow

)2
Cdust×dust
` (5.18)

Choosing νlow = 94GHz corresponding to the dust map we have,

jν=94GHz = τ94GHzB(18K, 94GHz) (5.19)

where τ94GHz is the optical depth at 94GHz and B is the Planck function. Assuming
τ ∝ ν1.7 (Finkbeiner 2004), we have,

τ94GHz = τ100µm

(
94 GHz

3000 GHz

)1.7
(5.20)

This allows us to write the emissivity of dust at low-frequencies in units of τ100µm.
Using our measurements of CLWA×dust

`
, Cdust×dust

`
at ν = 94GHz, and the measure-

ments of jν in units of τ100µ (from Fig. 3 in Finkbeiner 2004), we plot the upper
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Figure 5.9: Upper limits on the dust emissivity at low-frequencies in terms of τ100µm,
the optical depth at 100µm.

limits on the emissivity of a potential X component in dust emission in Fig. 5.9
using LWA maps in four different frequency bands.

Note that extrapolating the free-free emissivity from high-frequencies (Fig. 2
in Finkbeiner 2004) leads to an emissivity per τ100µ of ∼ 1 MJysr−1 at low-
frequencies (the extrapolated contribution due to thermal and spinning dust emission
is expected to be negligible in comparison). The free-free emissivity depends on
estimates of the free-free-to-dust ratio that can vary significantly between different
regions of the sky. Hence, our estimated upper limits of ∼ 0.11 MJysr−1 for dust
emissivity at low-frequencies as reported in Fig. 5.9, are reasonably consistent with
extrapolated values from high-frequencies.
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Hα emission
The low-frequency temperature at low-frequencies observed byLWAcan bemodeled
as,

Tlow(ν) = Tsync(ν) + T f f (ν) − Tsync(ν)τ f f (5.21)

where Tsync(ν) is the synchrotron temperature at low-frequencies that is likely to
dominate the LWA maps, T f f (ν) is due to free-free emission, and τ f f is the Hα
optical depth.

The free-free brightness temperatureT f f (ν) is a function of the electron temperature
Te,

T f f (ν) = Teτ f f (ν) (5.22)

and the free-free optical depth is given by,

τ f f (ν) = 2.4 × 10−4
(

Te

104K

)−0.45 ( ν

50MHz

)−2.1
(

IHα

0.5R

)
(5.23)

Thus, if we assume the synchrotron temperature Tsync, in appropriate units, the
cross-spectra of the LWA maps and the Hα can be used to put constraints on the
electron temperature Te as a function of scale,

CLWA×Hα
l = 2.4 × 10−4(Te − Tsync)

(
Te

104K

)−0.45 ( ν

50MHz

)−2.1
CHα×Hα

l (5.24)

The ionized ISM is expected to have structures on all scales and the limits on the
electron temperature as a function of angular scale ` are thus a proxy for structures
in the electron density distribution of the ISM (with low-`s corresponding to larger
structures and vice-versa).

The synchrotron temperature of the sky at low-frequencies has been measured and
is typically Tsync ∼ 800K Rogers & Bowman 2008. From the measured CHα×Hα

l

and the estimated cross-spectra we plot the upper limits on Te as a function of scale,
for a fiducial value of the synchrotron temperature in Fig. 5.10. Note that we get an
upper limit of the order of 106K at most scales. The electron temperature is highest
in HII regions (around 104K) and in the cold, diffuse ISM it is expected to be around
∼ 103K, which is consistent with our upper limits.

5.9 Conclusion
The primary goal of this chapter was to present a cross-correlation analysis between
low-frequency maps produced by the OVRO LWA in the 20 − 80 MHz regime and
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Figure 5.10: Upper limits on the electron temperature as a function of scale from
cross-correlation of LWA maps with Hα template, for a synchrotron temperature
Tsync = 1000K

other known tracers of the ISM: dust, Hα, and HI. We described a formalism that
can be used to determine optimal, unbiased error-bars on the cross-correlations.
The primary results of this chapter are in Figures. 5.6, 5.7, & 5.8.

We also discussed the implications of our cross-correlation analysis on the determi-
nation of the electron temperature as a function of scale as well as the dust emissivity
at low-frequencies. The cross-correlation of low-frequency maps with Hα maps
gives an upper bound of 106 K at the scales probed (` ∼ 10 − 600). This is about
103 times higher than the expected electron temperature in the ISM.

The cross-correlation of the low-frequencymapswith dust maps provides interesting
new upper bounds on dust emissivity at low-frequencies. We put an upper bound on
the dust emissivity per τ100µm to be jν/τ100µm ∼ 0.01MJy sr−1 at low-frequencies.
This is an order of magnitude smaller than the extrapolated free-free emission from
high frequencies; however, Finkbeiner 2004 used different regions of the sky to
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obtain these constraints and the free-free-to-dust ratio can vary greatly between sky
regions.

Accurate characterization of low-frequency foregrounds is critical if we intend to
remove them and extract the cosmological 21cm signal. However, there are few
direct constraints on foregrounds in the 10-100 MHz regime; most models rely on
extrapolation of theGlobal SkyModelwhich hinges on high-frequency observations.
In the event that there is an unknown, frequency dependent foreground at low-
frequencies which is correlated with known tracers of the ISM, cross-correlation
studies like the one reported in this chapter can potentially detect it.

In this chapter we embarked on a ‘fishing expedition’ for unknown low-frequency
foregrounds. In the past, such efforts have been not only been instrumental in
identifying new foregrounds for cosmology, but also added richly to our under-
standing of the ISM. As better low-frequency maps become available, with better
controlled systematics and larger integration times, the cross-correlation method-
ology presented in this chapter can be used to search for anomalous emission in
other regions of the sky that are of interest to 21 cm experiments (especially win-
dows in the southern hemisphere). It would be particularly interesting to put upper
bounds on dust emissivity in different regions of the sky, using cross-correlation
results since (as discussed earlier), the free-free-to-dust ratio can differ significantly
across regions. Finally, better low-frequency maps will provide an observational
anchor at low-frequencies for the Global Sky Model that will be critical for 21 cm
experiments.

The results in this chapter have been derived using the HEALPIX package developed
by (Górski et al. 2005). We acknowledge the use of the Legacy Archive for Mi-
crowave Background Data Analysis (LAMBDA). Support for LAMBDA is provided
by the NASA Office of Space Science.

5.10 Appendix A: Statistical Tests



113

Table 5.2: Summary statistics for t-tests on the LWA×Dust cross-correlation to
check for zero correlation. The t-statistic is calculated for each ` bin under a null
hypothesis that there is zero cross-correlation in the given ` bin, with 7 d.o.f. (since
there are 8 jackknife regions). First row for a given ` band reports the t-statistic and
the corresponding p-value is given in the second row for a given ` band.

` band LWA1×Dust LWA2×Dust LWA3×Dust LWA4×Dust LWA5×Dust LWA6×Dust
2-12 -0.003 0.206 0.014 -1.068 -0.717 0.095

(0.997) (0.843) (0.989) (0.321) (0.497) (0.927)
12-25 4.160 4.392 3.928 3.732 3.121 3.968

(0.004) (0.003) (0.006) (0.007) (0.017) (0.005)
25-37 -1.853 -1.594 -2.230 -1.600 -1.321 -1.892

(0.106) (0.155) (0.061) (0.154) (0.228) (0.100)
37-50 2.766 2.756 3.065 2.895 2.686 3.024

(0.028) (0.028) (0.018) (0.023) (0.031) (0.019)
50-62 -1.590 -1.737 -1.469 -1.607 -2.233 -1.357

(0.156) (0.126) (0.185) (0.152) (0.061) (0.217)
62-75 2.933 2.874 2.424 2.559 2.201 2.476

(0.022) (0.024) (0.046) (0.038) (0.064) (0.042)
75-88 0.554 2.803 0.124 1.694 2.799 0.298

(0.597) (0.026) (0.905) (0.134) (0.027) (0.775)
88-100 0.606 0.629 0.573 0.084 0.247 0.465

(0.563) (0.549) (0.584) (0.935) (0.812) (0.656)
100-120 -1.733 -2.205 -1.769 -1.605 -2.126 -1.609

(0.127) (0.063) (0.120) (0.153) (0.071) (0.152)
120-140 1.892 3.116 3.219 3.534 1.874 2.915

(0.100) (0.017) (0.015) (0.010) (0.103) (0.023)
140-160 0.156 -0.594 2.209 -0.027 1.116 -0.786

(0.881) (0.571) (0.063) (0.979) (0.301) (0.458)
160-180 3.133 4.840 2.090 2.623 2.606 2.848

(0.017) (0.002) (0.075) (0.034) (0.035) (0.025)
180-200 2.037 2.185 1.292 1.524 1.945 1.311

(0.081) (0.065) (0.238) (0.171) (0.093) (0.231)
200-250 1.403 2.860 1.921 0.795 1.983 2.425

(0.203) (0.024) (0.096) (0.452) (0.088) (0.046)
250-300 0.679 -1.194 -0.896 0.448 0.814 1.252

(0.519) (0.271) (0.400) (0.668) (0.442) (0.251)
300-400 6.197 7.453 3.244 4.009 1.428 0.593

(0.000 (0.000) (0.014) (0.005) (0.196) (0.572)
400-500 2.427 3.097 4.617 1.716 5.172 3.779

(0.046) (0.017) (0.002) (0.130) (0.001) (0.007)
500-600 2.447 5.485 3.328 4.609 3.266 5.203

(0.044) (0.001) (0.013) (0.002) (0.014) (0.001)
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Table 5.3: Summary statistics for t-tests on the LWA×Hα cross-correlation to check
for zero correlation. The t-statistic is calculated for each ` bin under a null hypothesis
that there is zero cross-correlation in the given ` bin, with 7 d.o.f. (since there are
8 jackknife regions). First row for a given ` band reports the t-statistic and the
corresponding p-value is given in the second row for a given ` band.

` band LWA1×Hα LWA2×Hα LWA3×Hα LWA5 ×Hα LWA6×Hα
2-12 1.236 1.565 2.133 1.599 2.450

(0.256) (0.162) (0.070) (0.154) (0.044)
12-25 -0.645 -0.418 -0.234 -0.766 -0.351

(0.540) (0.688) (0.821) (0.469) (0.736)
25-37 1.992 1.612 1.150 2.107 1.772

(0.087) (0.151) (0.288) (0.073) (0.120)
37-50 -0.986 -0.711 -1.317 -0.712 -0.132

(0.357) (0.500) (0.229) (0.499) (0.899)
50-62 0.280 0.507 -0.270 -0.885 0.247

(0.788) (0.628) (0.795) (0.406) (0.812)
62-75 2.338 2.717 2.387 2.227 2.650

(0.052) (0.030) (0.048) (0.061) (0.033)
75-88 1.491 1.770 1.461 2.022 -0.058

(0.180) (0.120) (0.188) (0.083) (0.955)
88-100 2.828 0.847 5.452 5.955 3.443

(0.025) (0.425) (0.001) (0.001) (0.011)
100-120 -2.518 -1.912 -2.930 -2.120 -1.803

(0.040) (0.097) (0.022) (0.072) (0.114)
120-140 1.422 4.726 3.594 5.644 3.211

(0.198) (0.002) (0.009) (0.001) (0.015)
140-160 2.424 4.515 4.262 6.750 4.319

(0.046) (0.003) (0.004) (0.000) (0.003)
160-180 -0.730 0.699 2.591 5.573 1.976

(0.489) (0.507) (0.036) (0.001) (0.089)
180-200 0.928 1.189 4.855 3.748 3.031

(0.384) (0.273) (0.002) (0.007) (0.019)
200-250 0.020 1.315 5.115 0.679 -1.046

(0.985) (0.230) (0.001) (0.519) (0.331)
250-300 -5.805 -3.687 -1.428 -3.157 -4.495

(0.001) (0.008) (0.196) (0.016) (0.003)
300-400 0.950 1.182 -2.658 -1.779 -0.633

(0.374) (0.276) (0.033) (0.118) (0.547)
400-500 -3.271 -1.283 -3.027 -3.927 -1.840

(0.014) (0.240) (0.019) (0.006) (0.108)
500-600 -0.380 -1.018 -1.207 -1.490 -1.569

(0.715) (0.343) (0.267) (0.180) (0.161)



115

Table 5.4: Summary statistics for t-tests on the LWA×HI cross-correlation to check
for zero correlation. The t-statistic is calculated for each ` bin under a null hypothesis
that there is zero cross-correlation in the given ` bin, with 7 d.o.f. (since there are
8 jackknife regions). First row for a given ` band reports the t-statistic and the
corresponding p-value is given in the second row for a given ` band.

` band LWA1×HI LWA2×HI LWA3 ×HI LWA4×HI LWA5×HI LWA6×HI
2-12 0.014 0.203 0.023 -0.492 -0.161 0.308

(0.989) (0.845) (0.982) (0.638) (0.876) (0.767)
12-25 3.111 3.170 2.961 2.905 2.420 3.457

(0.017) (0.016) (0.021) (0.023) (0.046) (0.011)
25-37 -0.687 -0.594 -0.963 -0.696 -0.346 -0.848

(0.514) (0.571) (0.368) (0.509) (0.740) (0.424)
37-50 2.399 2.407 2.886 2.916 2.482 2.625

(0.048) (0.047) (0.023) (0.022) (0.042) (0.034)
50-62 -0.610 -1.203 -0.703 -0.773 -1.274 -0.727

(0.561) (0.268) (0.505) (0.465) (0.243) (0.491)
62-75 3.151 3.009 2.354 3.153 1.756 2.055

(0.016) (0.020) (0.051) (0.016) (0.122) (0.079)
75-88 -2.279 -0.455 -2.635 -1.334 -1.055 -2.724

(0.057) (0.663) (0.034) (0.224) (0.327) (0.030)
88-100 -0.441 -0.987 -0.817 -1.087 -0.969 -0.568

(0.672) (0.357) (0.441) (0.313) (0.365) (0.588)
100-120 -2.697 -3.291 -2.698 -2.721 -3.566 -2.947

(0.031) (0.013) (0.031) (0.030) (0.009) (0.021)
120-140 0.827 2.458 2.457 2.439 0.876 2.116

(0.436) (0.044) (0.044) (0.045) (0.410) (0.072)
140-160 -0.985 -1.772 -0.977 -2.888 -1.072 -1.883

(0.358) (0.120) (0.361) (0.023) (0.319) (0.102)
160-180 3.595 3.974 3.779 3.499 2.176 3.590

(0.009) (0.005) (0.007) (0.010) (0.066) (0.009)
180-200 1.996 3.692 1.740 1.093 3.175 2.409

(0.086) (0.008) (0.125) (0.311) (0.016) (0.047)
200-250 -1.389 0.950 -2.472 -1.352 -1.344 -1.923

(0.207) (0.374) (0.043) (0.218) (0.221) (0.096)
250-300 -1.620 -1.646 -2.339 -0.950 -0.964 -1.641

(0.149) (0.144) (0.052) (0.374) (0.367) (0.145)
300-400 3.950 1.961 1.982 5.315 0.297 1.559

(0.006) (0.091) (0.088) (0.001) (0.775) (0.163)
400-500 0.966 1.907 2.326 2.266 3.032 2.500

(0.366) (0.098) (0.053) (0.058) (0.019) (0.041)
500-600 -2.024 0.002 0.018 -2.301 -2.108 -0.177

(0.083) (0.999) (0.986) (0.055) (0.073) (0.865)
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