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ABSTRACT

This thesis addresses mechanism design problems in three different contexts.

Chapter 2 compares two widely used student assignment mechanisms, the deferred-
acceptance algorithm (DA) and the Boston algorithm (BA), in the context of the
Chinese College Admission System. Two features of this system separate the study
in this chapter from previous studies. First, the maximal number of schools that a
student can apply to is fixed, and is significantly smaller than the total number of
schools nationwide. Second, schools’ preferences over applicants are not publicly
observed. Under further assumptions, which include that applicants have the same
preferences over schools and schools rank applicants by a common standard, I find
that students are more likely to compete for seats at top schools under DA than
BA. Furthermore, there are cases in which students’ over-competition of top schools

under DA results in a less efficient outcome compared to BA.

Chapter 3 studies the mechanism design problem in a market where buyers have
type-dependent outside options. Previous literature usually assumes that buyers
obtain a fixed value if they do not participate in a sale. This chapter focuses on
scenarios in which the value of the option outside of a particular sale varies across
different types of buyers. In such a scenario, an optimal mechanism for selling a
private-valued item to unit-demand buyers is a second-price auction, with either a
reserve price or a fixed show-up fee. This mechanism induces segregation of the
market: buyers with a type which values the item high enough will exercise their

outside option.

Chapter 4 analyzes grant-issuing processes in a mechanism design framework.
Applicants submit their proposals for projects that may not be carried out without
external funds. The grant issuer makes a selection from the proposals and decides the
amount to award each selected project within a budget. This chapter characterizes
optimal mechanisms to efficiently allocate the grant-issuer’s budget. The optimal
mechanism overcomes the problem of mis-allocation of the current merit-based
mechanism. However, the problem of crowding-out private funds still stands. This
chapter also shows how the specific form of institutional constraints — the flexibility
of the budget constraint, and whether an applicant can reject a grant after being

rewarded — affects the form of the optimal grant-issuing mechanism.
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Chapter 1

INTRODUCTION

In this thesis, I address three mechanism design problems in the contexts of school

choice, private-value auctions, and grant issuing.

Chapter 2 is inspired by the Chinese college admission process. From 2005, the
Chinese College Admission System started adopting the deferred-acceptance algo-
rithm (DA) to replace the Boston algorithm (BA). Chapter 2 theoretically examines

the impact of this transition.

Comparisons between DA and BA have been made in a variety of scenarios in
previous studies. For example, (Abdulkadiroglu and Sonmez, 2003) pointed out
that DA outperforms BA in both strategy-proofness and efficiency in the context
of public school choice. Nonetheless, there are two features special to the Chinese
College Admission System that have not received a thorough discussion. The first
feature is that students can apply to no more than a fixed number % of colleges. The
second feature is that students do not have complete information about the colleges’

preferences over their competitors.

I incorporate these features in a model where applicants have the same preferences
over schools, and schools rank applicants by a common standard. In this model, the
advantages of DA over BA in strategy-proofness and efficiency no longer hold. I find
that students under DA are more likely to use the truth-telling strategy — ranking
the top £ schools in truthful order on their preference lists. This strategy results in
fierce competition among students for seats at the top k£ schools. Consequently, the
seats at lower-ranked schools are left empty and a significant fraction of students
are left unmatched. This leads to my second finding: under certain conditions, BA
outperforms DA in terms of efficiency, as measured by the sum of students’ and
schools’ expected utilities.

Chapter 3 characterizes an optimal mechanism in a market where buyers have
options outside of the mechanism with various values. Most studies on optimal
auction design assume that the seller is a monopoly, and hence all buyers face
an outside option valued at zero. However, this is no longer the case nowadays,
since similar items are available through different channels. For example, when a

cellphone seller on eBay selects her selling mechanism, she must account for the
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availability of cellphones of the same model on Amazon. In this case, different
buyers value the cellphone differently, and they could value the outside option (a

cellphone on Amazon) differently as well.

I consider a market where a seller sells an item to risk-neutral buyers with unit
demand. Similar items are available to all buyers at a fixed price somewhere else.
Buyers have privately-observed types that determine their item valuation. They make
participation decisions after observing their types. In analogy to the competition
between Amazon and eBay, I assume that the items corresponding to the outside
option have weakly higher qualities, which are publicly observed. In this market, I
characterize an optimal mechanism for the seller: a second-price auction conducted
among buyers who participate in the seller’s sale, with either a reserve price or
a show-up fee. This optimal mechanism induces market segregation: low-value
buyers exit the market, medium-value buyers participate in the seller’s auction,

while buyers with high values exercise their outside option right away.

Chapter 4 focuses on grant-issuing mechanisms. Grants are an important source of
funding for various types of projects. Despite the large size and common use of
grants in practice, there are few theoretical studies on how to efficiently allocate a
grant-issuer’s budget. Towards that end, I consider the following model. To apply
for a grant, applicants need to simultaneously submit their project proposals to the
grant issuer. Each proposed project, if carried out, generates a value composed of
two parts: a public value and a private value. The public value, or the “merit” of a
proposal, is a benefit received by the whole society. The private value is a net benefit
received exclusively by each proposer. The grant issuer can assess the public value
of each project perfectly, but has little knowledge about its private value besides the
amount reported by the applicant in the proposal. Each proposer’s utility comes
from the private value of his project and the payment from the grant if he is awarded.
In particular, the public value does not concern proposers. In contrast, the grant
issuer cares about both the public value and the private value, i.e. the total welfare.
The goal of the grant issuer is to design proper rules to select which project should
be supported by the grant, and how much to pay for the selected projects, such that

the total welfare is maximized.

Two sets of institutional constraints are considered: the budget constraint and the
constraint of individual rationality. Depending on specific scenarios, I consider
variations of each constraint: the ex ante and ex post budget constraints represent

a flexible and a strict bugdet respectively; the constraints of ex post and interim
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individual rationality reflect whether or not a proposer can turn down a grant at
no cost. It turns out that if the grant issuer faces an ex ante budget constraint,
the optimal mechanism does not depend on which of the two specifications of
individual rationality is imposed. The mechanism can be implemented by take-
it-or-leave-it offers made from the grant issuer to proposers. Each offer specifies
a maximal amount of payment to each proposer. Intuitively, this offered payment
increases as the budget increases. Furthermore, the higher public value a project
generates, the larger the amount offered by the grant issuer. If the grant issuer faces
an ex post budget constraint, which is a stronger constraint, the form of optimal
mechanism differs with different specifications of individual rationality. If the
optimal mechanism is constrained by interim individual rationality, in the optimal
mechanism, a proposal is selected only when the reported private value exceeds a
cutoff. The payment depends on other proposers’ private values. This mechanism
generates the same welfare for the grant issuer as in the ex ante budget scenario. If
the optimal mechanism is constrained by ex post individual rationality, the cutoff
selection rule is no longer optimal. In other words, whether a proposer is selected

can depend on the reported private value of other proposers.



Chapter 2

CENTRALIZED COLLEGE ADMISSIONS UNDER
APPLICATION CONSTRAINTS AND INCOMPLETE
INFORMATION

2.1 Introduction

Every year, hundreds of thousands of Chinese high school graduate students in each
province are matched to over a thousand colleges throughout the country via a cen-
tralized student assignment mechanism — the Chinese College Admission System.
From 2005, provinces started adopting the deferred-acceptance algorithm (DA) to
replace the Boston algorithm (BA) that had been used in the system. By 2017, 30 out
of 31 provinces in China have adopted the deferred-acceptance algorithm,! covering
99% of high school graduates.? This transition was triggered by the work of Ab-
dulkadiroglu and Sonmez, 2003, in which the authors pointed out DA’s advantages
over BA in stability, strategy-proofness, and efficiency. Nonetheless, there are two
features special to the Chinese College Admission System that are not incorporated
in their work. The first feature is that students can apply to no more than a fixed
number of colleges. The second feature is that students usually do not have complete
information about the colleges’ preferences over their competitors. The goal of this
paper is to theoretically compare the student assignment outcomes induced by DA

and BA with the presence of these two features.

In both DA and BA, each student submits a list demonstrating her preference over
schools to the centralized system. Each student is first considered by the school
that is ranked on top of her list. If rejected, she is considered by her next preferred
school according to her preference list. The procedure goes on until each student is
accepted or her preference list is exhausted. Among students who are considered by
a school, the school accepts the most preferred applicants up to its capacity. In DA,
a school forms a temporary match with students: if a more preferred student shows
up after the school’s capacity is fulfilled, the school will reject the least preferred
student in order to accept the more preferred one. In BA, however, once a school

accepts a student, the school cannot reject her upon the arrival of more preferred

'The exception is Qinghai. Data sources: £00.gl/4LE4m7;
http://www.gaosan.com/gaokao/123716.html; http://www.gaosan.com/gaokao/147431.html
2Data source: http://edu.sina.com.cn/gaokao/2015bm/
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students. This indicates that under BA, the students who rank a school higher on
their preference lists have a higher priority of getting accepted by that school, even

if the school prefers other students who rank it lower.

The properties of DA have been extensively explored in two-sided matching the-
ory.3> Among them, the properties of strategy-proofness and stability are especially
important for school choice problems. First, in DA, students’ dominant strategy is
to truthfully report their preferences over schools. Therefore, DA guarantees that
students suffer no loss if they do not strategize. Second, DA generates stable out-
comes. In other words, when the student assignment outcome is realized, there are
no students and schools who would prefer each other to the assignment outcome.
In contrast, as pointed out by Abdulkadiroglu and Sonmez, 2003, BA does not have

either of these properties.

DA’s advantages over BA, however, stand under fairly strict conditions: (1) there
are no restrictions on the number of schools that a student can apply to, and (2) both
schools and students have complete information about each other’s true preferences.
In the Chinese College Admission System, however, neither of these two conditions
is satisfied. First, students are allowed to apply to no more than a fixed number of
colleges, and this number is far smaller than the total number of colleges.# Second,
incomplete information is inevitable. On the preference list, students rank pairs
composed of a university and a desired major within that university. The capacity
for each major is fixed. Even if students know their standing among all students,
there is lack of information about their direct competitors — students who share
their interest in a particular major. Consider a student who is interested in computer
science. In order to study computer science in college, she will directly compete
for the seats of this major in each college with other students who have the same
interest. The problem is that the information about a student’s interest in majors is

usually private.

With the presence of restrictions on applications and incomplete information, DA is
no longer strategy-proof and can generate ex-post unstable and inefficient outcomes.
In this paper, I compare DA and BA in a simplified environment. I consider one

given major. The capacity and quality of each school are given with regard to this

3See Roth and Sotomayor, 1992 for a review.

4The fixed number varies across provinces. For example, in Henan province, the province with
the largest number of high school graduates, students can apply to up to nine universities, while in
Guangdong province, the second largest province, students can only apply up to seven universities.
The number in either case is much smaller than a rough estimation of the total number of 1000
colleges in China.
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major. Furthermore, each student has two potential types: interested in the given
major or not. If a student is not interested in the major, she will apply to other majors
and hence does not compete for seats of the given major. If she is interested, she
will apply to the schools with the given major and get a utility equal to the quality
of the school that she is ultimately admitted to. A school’s utility from accepting
a student equals the student’s grade (GPA). Capacities and qualities of schools are
publicly observed. Students also have complete information about all students’
GPAs. However, they do not know other students’ types except for the distribution
of types.

Given the set of students who are interested in the given major, there is a unique
stable matching in this environment: students with the highest GPAs match with
the school of the highest quality up to its capacity; among the remaining students,
students with the highest GPAs match with the school of the second highest quality

up to its capacity, etc.

When students’ types are private information, and students can each apply to only a
limited number £ of schools, the stable matching will not be achieved by either DA
or BA. I show that students under DA are more likely to use the truth-telling strategy
— incorporating the top k schools in their preference lists and ranking them in
truthful order. This strategy results in a fierce competition among students for seats
at top k schools. Consequently, seats of schools with lower ranks will be empty and
a significant fraction of students will be left unmatched. This leads to my second
finding: under certain conditions, BA outperforms DA in terms of efficiency, as

measured by the sum of students’ and schools’ expected utilities.

My work is related to several strands of literature. First, it follows the long history of
work directed at the school choice problems. Roth and Sotomayor, 1992 reviewed
work in which the school choice problem is modeled as a many-to-one matching
procedure. After Abdulkadiroglu and Sonmez, 2003, much work has followed
discussing the relative merits of different school choice mechanisms in terms of
strategyproofness (P. A. Pathak and Sonmez, 2011; Abdulkadiroglu, P. Pathak,
et al., 2006; Kesten, 2012) and efficiency (Erdil and Ergin, 2008; Kesten, 2010;
Abdulkadiroglu, P. A. Pathak, and Roth, 2009). Among them, the most related is
the study of school choices with a restriction on the number of applied schools.
Haeringer and Klijn, 2009 compared BA, DA, and Top Trading Cycles algorithm
(TTC) in a complete information setting with limited number of applications. They

showed that BA can generate stable outcomes under conditions where DA and TTC
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fail. However, in experiments, more stable outcomes are achieved under DA than
both BA and TTC (Calsamiglia, Haeringer, and Klijn, 2010). My paper focuses
on analyzing efficiency instead of stability of BA and DA. This is because with
the incorporation of incomplete information into the model, neither BA nor DA

generates ex-post stable outcomes.

This paper also closely relates to the discussion of matching under incomplete in-
formation about preferences. Roth, 1982 showed that there is no stable matching
mechanism that has truth-telling as a dominant strategy for every individual. This
result was later generalized to the case of incomplete information about individual
preferences (Roth and Rothblum, 1999). Ehlers and Massé, 2004 further showed
that truth-telling is an equilibrium induced by a stable mechanism if and only if there
exists a unique stable matching based on the common belief of preferences. Feather-
stone and Niederle, 2011 studied BA and DA in an environment that guarantees the
existence of truth-telling equilibrium under a stable mechanism (Eeckhout, 2000).
They identified conditions under which BA yields more efficient outcomes than DA,
and confirmed their theoretical result in experiments. Abdulkadiroglu, Che, and
Yasuda, 2011 also discovered situations where BA outperforms DA in efficiency in
a different context. Compared to their work, my model additionally includes the
constraint on applications. Under this constraint, both BA and DA are unstable, and

truth-telling equilibrium is no longer guaranteed.

Lastly, this paper is related to literature on decentralized college admissions. Studies
on centralized student assignment mechanisms are usually based on the context of
public school choice. Schools’ welfare in this context is vaually ignored.> In
contrast, in the context of college admission, the quality of enrolled students affects
the welfare of colleges from a lot of aspects, such as potential alumni donation,
research funding, and the schools’ reputation. As a result, schools’ utilities also
consist an important part in the model of college admission problems ( Chade, Lewis,
and Smith, 2003, Chade and Smith, 2006, and Che and Koh, 2016, among others).

In this paper, I follow their work by taking the schools’ benefit into consideration.

The rest of this paper is organized as follows: Section 2 sets up the model. Section
3 discusses equilibrium strategies of students under both BA and DA. Section
4 compares the welfare generated by the equilibrium strategies and presents an
example in which BA yields a more efficient outcome than DA. Section 5 concludes

and points out possible extensions. All proofs are relegated to the appendix.

3See Erdil and Ergin, 2008 for an example.



2.2 Model
This section contains three parts: the setup of the environment, the introduction
of two student assignment mechanisms, and the formal description of two main

assumptions underlying the papers’ results.

Environment
There are m students in total, denoted by M = {1,2,...,m}. One major is exoge-

nously given, and schools with this major are denoted by N = {51, 5s,...,S5,}.

Let Q = {q,...,q,} denote schools’ qualities regards to the major. Without loss
of generality, ¢ > g2 > --- > ¢, > 0.° For the tractability of the model, assume
further that schools’ qualities have a constant ratio, i.e. ql’q—tl = ¢ € (0,1) for
1 =1,...,n — 1, and normalize ¢; = 1. A smaller c represents a larger difference
in schools’ qualities. Each school has a fixed capacity of the given major. Assume

that capacities and qualities of schools are common knowledge.

For an arbitrary student ¢ € M, let g; denote student :’s GPA. Assume further that
g1 > ¢ga > ... > gmn > 0. One obvious caveat of this assumption is that it abstracts
away cases in which two students have the same grade. I make this assumption out of
a twofold consideration: theoretically, this assumption largely simplifies the analysis
in students’ equilibrium strategies, as will be shown in the next section; empirically,
for each student who participated in the Chinese College Entrance Examination, the
probability of there being another student having the same score is very small.” So
how the mechanism assigns two students with the same score does not significantly
affect each student’s strategy.

Assume that all students’ GPAs are common knowledge, and school j’s utility from

accepting student 7 is 2’s GPA g;.

There are two types of students: students who are interested in the given major and
students who are not. If a student is interested in the major, assume that her utility

from admission to school j is school j’s quality g;. If the student is not interested

b1t is without loss of generality to assume no two schools have the same quality, since students
can see schools of the same quality as one school with larger capacity.

7 According to most college recruiting policies in China, if two students from the same province
have the same total score, their rankings depend on a sequence of comparisons between several
disciplines individually. The details of this comparison differ for different provinces, but they share
a similar spirit. For example, colleges in Shanxi Province compare students’ scores in math (with
maximal score of 150), verbal (maximal score of 150), and science (maximal score of 300). From a
student’s point of view, given her score, the probability of there being another student having the exact

L where the denominator is larger than the number of students registered for the

same score is 15025300
exam in any province. http://gaokao.chsi.com.cn/gkxx/zc/ss/201705/20170526/1607986501-6.html
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in the major, she receives a negative utility from studying this major in any schools,
and hence will not apply. The probability of a student being interest is denoted by
7 € (0,1). Furthermore, students’ interests are independent from one another.® If
a student ends up getting rejected by all schools on her preference list, she gets a
utility valued 0. Similarly, if a school has a seat that is not assigned to any student,

the school receives a utility valued O for that seat.

Two student assignment mechanisms

This paper focuses on two student assignment mechanisms: the deferred-acceptance
algorithm (DA) and the Boston algorithm (BA).

Both mechanisms start with students reporting their preferences over schools. I
assume that reported preferences are strict. In the first round, students’ application
files go to the schools on top of their preference lists. Schools accept their most
preferred students until they reach their capacity and reject the rest. In the second
round, students’ files go to the second school on their preference lists if they are
rejected by their reported favorite schools. BA and DA depart from each other at
how schools consider the applicants from the second and following rounds. Under
DA, schools’ acceptance of students is tentative in each round. Specifically, schools
rank applicants of the current round together with those who they have accepted
in all previous rounds. Then they accept their most preferred students up to their
capacity and reject the rest. Under BA, in contrast, schools’ acceptance of students
is permanent. In other words, schools only rank the applicants of the current round
and accept their most preferred ones up to the remaining capacity accounting for the
seats taken in all previous rounds. Both mechanisms continue until each student is

either accepted by a school or rejected by all schools on her preference list.

Constraints on applications and incomplete information

Given the set of students who are interested in the major, there is a unique stable
matching — a positive assortative matching. In this match, the school with the
highest quality admits students of top grades up to the school’s capacity; the school
with the second highest quality admits students with the highest grades among the

rest, and so on. This match is also utilitarian efficient.

This stable and efficient match can be achieved by both DA and BA if there are

8These assumptions are only for notational simplicity. The results in Section 3 can be easily
generalized to cases where different students have different probabilities 71, ..., 7, or where the
distributions of students’ types are not independent.
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no restrictions on applications and there is complete information about students’
types. In what follows, I analyze the matching outcome under two additional
assumptions: first, each student can apply to no more than £ schools, where k < n;
second, students’ types are private knowledge. Each student only knows her own
type and the probability of other students being interested in the major. In other
words, although students know their GPA standings among all students, they have
incomplete information about their direct competitors. In particular, they do not

know the schools’ preferences among other applicants.

2.3 Equilibrium strategies

In this section, I discuss equilibrium strategies of students who are interested in
the major. First, I simplify the strategy space by ruling out the “order-reversal
strategies”, strategies in which \S; is reported preferable to .S; while S; is actually

more preferred. Formally,

Definition 1. A strategy is an order-reversal strategy, if there exist v,j such that
S; PS,; in a student’s reported preference list among her reported acceptable schools,

while S; PS; in the true preference.

Lemma 1. Order-reversal strategies are weakly dominated under DA.

To show this result, suppose there is a student that uses an order-reversal strategy P.
Then there must exist two adjacent schools \S; and S; on the student’s preference list,
such that their reported order S PS; is areversal of the true preference S; P.S;. Now
consider a new strategy P’, in which the order of S; and S; is swapped to S, P’ S
while everything else remains the same as P. We can show that under DA, strategy

P’ generates a weakly better outcome for the student than P in all possible cases.

Fist, if the student is accepted by a school that is reported preferable to both S; and
S; under P, nothing changes if we swap S; and S; to the truthful order. Second,
if the student is accepted by a school reported less preferable than both S; and .S;,
or unmatched, it indicates that the capacities of both S; and S; are fulfilled with
students of higher GPAs, so swapping the order will not change the outcome. Third,
if the student is accepted by S; under P, it implies that there are not enough students
with higher GPAs to fulfill the capacity of S;. In this case, the student will still end
up with S; if we swap the order to S, P’ S;. At last, if the student is accepted by
S; under P, like previous case, it means there are not enough students with higher
GPAs to fulfill the capacity of S;. Under P’ the student can guarantee a seat at S;.
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What'’s different is that now S; is ranked higher than S;. It gives the student a chance
of getting admitted to S; before her file goes to S;. Therefore, by reporting S,P'S s

the student will end up with either .S; or S, a better outcome than 5.

Remark 1. The above argument does not hold for BA. Under BA, the student can
be accepted by S; under P but get rejected by both S; and S; under P’. This is
because BA endows students with a higher priority to get accepted by a school if
they rank that school higher on their preference lists. By moving S; one place down,

the student can lose the seat of S to someone who ranks S; higher.

Remark 2. If the schools are allowed to be indifferent between students, and ties
are broken randomly, the argument for Lemma 1 is no longer applicable. This
is because with indifference, each student’s matching outcome is uncertain, even
when all competitors’ GPAs and their strategies are given. In fact, under DA, the

order-reversal strategies are no longer dominated.

The intuition is that by using an order-reversal strategy, a student can avoid competing
directly with other applicants for the same school in the same round. She only needs
to compete with those tentatively accepted students, and this can lead to a larger
probability of getting admitted. To see this more clearly, consider an example with
three schools and four students. Suppose each school has one seat and all schools
are indifferent among all students. Assume that each student can apply to up to two
schools. When all the other three students report S; ]582, if the fourth student does
the same, her probability of getting accepted by 5] is }l. In contrast, if she reports
S, PSy, her probability of getting accepted by .5, becomes %.9

The above discussion shows that by focusing on strict preferences, we are able to

simplify the strategy space and avoid technical complications.

If a student lists top k& schools in truthful orders, she is in fact truthfully revealing her
preference subject to the application restriction. In what follows, I call this strategy

“truth-telling.” Formally,

Definition 2. A strategy is truth-telling if the reported preference is S PS,...P&,.

First note that under BA, if all students but one use the truth-telling strategy, it

is without loss of generality to rule out order-reversal strategies for the remaining

9By reporting S, PS5, the probability of the student getting accepted by S is % If she is not
accepted by S5, her file goes to S7, and she will compete with the student who was tentatively
accepted by 51 in the first round. So her probability of getting accepted by Sy is (1 —3) 3 = 3. A

2
complete and detailed analysis of the example can be found in the appendix.
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student.

Lemma 2. Given that all other students use the truth-telling strategy, order-reversal

strategies are weakly dominated for a student under BA.

The argument for this result is simple: given that all other students’ strategies are
truth-telling, if the student is matched with .S; under an order-reversal strategy, she
can achieve a (weakly) better outcome by reporting S; 1 if ¢« > 1 or S; if i = 1 as
her favorite school, leaving the rest place blank on her preference list. This strategy

is not an order-reversal strategy.

Lemmas 1 and 2 together show that under both mechanisms, if all students but one
are truthful, the remaining student will not rank a less preferred school on top of a
more preferred school. In particular, the truth-telling strategy is not ruled out. It is
interesting to see when this student also reports truthfully. The results are presented

in the following proposition.

Proposition 1. Given the distribution of students’ types m, for mechanism s, where
s € {BA,DA}, there exists & € (0,1) such that the truth-telling strategy is an
equilibrium strategy for all applicants under mechanism s if and only if 0 < ¢ < ¢°.
Furthermore, ¢4 < &,

The first part of the result is quite intuitive: when reporting her preferences, a student
is making a trade-off between less preferred but safe choices and more preferred but
risky choices. The larger the difference between schools’ qualities, the more risk a
student is willing to bear by applying to better schools. In the extreme case, when ¢
is close to 0, no school other than the top school is worth attending. As a result, it

is an equilibrium for all applicants to use the truth-telling strategy.

For the second part of the result in Proposition 1, recall that under BA, the higher
a school is ranked on a student’s preference list, the higher priority of the student
to get accepted by that school. In particular, if a student ranks a school higher than
anyone else, she is guaranteed a seat at that school. In contrast, under DA, even if a
student reports a school as her favorite school, she still needs to compete with others
who rank the school lower on their lists. As a result, by misreporting her preference,
a student can hope for a better outcome under BA than DA. It should be expected

that the truth-telling strategy is less appealing for students under BA.

BA’ EDA)

By Proposition 1, when ¢ € (¢ , students under DA will all apply to the

top k schools. In this equilibrium, all schools worse than S; will end up empty.
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This is not the case for BA and schools worse than S; will have applicants. It is
clear that the matching outcome under DA is not a Pareto improvement over BA.
However, further analysis is required to determine which mechanism generates a

more efficient outcome in terms of the total social welfare.

2.4 Efficiency
In this section, I provide an example in which BA is more efficient than DA in terms

of total welfare received by both sides.

Example 1. Let m = n = 3. The maximal number of schools that a student can
apply is k = 2. The school quality ratio ¢ = 0.6. Set the probability of each student
applying to these schools T = % Suppose that each school has only one seat. When

g3 is large enough, BA generates a higher social welfare than DA.

To show the result in this example, first note that the equilibrium strategy under DA
is truth-telling for all students, should they apply to these schools, whereas this is

not the case under BA.
Lemma 3. Under DA, it is an equilibrium that all three students report Sy PS,. 10

Lemma 4. Under BA, it is an equilibrium that student 1 reports S, PSs, student
2 reports S1PS,y with probability % and S1PS; with probability %, and student 3
reports S1PS, with probability % and S, PS5 with probability %.

It is worth noting that the different procedures of DA and BA make it different
to verify the equilibrium strategies under each mechanism. Under DA, from a
student’s perspective, only the strategies of students with higher grades affect her
decision. For example, whether student 3 reports Sy PSQ or SQPS;; does not affect
the expected utility of student 2. In contrast, under BA, the strategies of all students
affect outcomes. The expected utility of student 2 from reporting .Sy PS, decreases
if student 3 reports SQPS3 instead of S ]352. This fact of BA leads to the mixed
strategy equilibrium. If student 3 reports S; PS,, student 2’s best response is the
truth-telling strategy as well. If student 2 reports truthfully, student 3’s best response

is S, PS5, so that she can guarantee a spot in school 2. Given student 3’s strategy

10Note that the top student is always indifferent between strategies 511552, S1]5S3, and S.
Furthermore, the specific strategy used by the top student does not affect the equilibrium strategy
derivation for the other students, nor does it affect the utility of schools. As a result, although there
are multiple equilibria, they are equivalent in terms of the utilities of schools and students in these
equilibria.
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S, PS5, student 2’s best response is no longer the truth-telling strategy, since that
way student 2 can end up unmatched. Instead, the best response for student 2 is
S1PS5. Student 3’s best response to this strategy is the truth-telling strategy, since
this way student 3 can end up with at least school 2. It can be seen that no two

strategies are mutual best responses. So there are no pure strategy equilibria.

Given the equilibrium strategy profile, we can compare the expected utility of schools

and students generated by the equilibrium strategy.

First, in the identified equilibrium, the top school prefers the outcome under DA,
while the bottom school prefers the outcome under BA. This is because under
the truth-telling strategy induced by DA, all applicants apply to the top school.
Meanwhile no students apply to school 3. In contrast, under BA, it is likely that
student 3 gives up school 1 and turns to her safety choice schools 2 and 3. Student
2 also may also give up school 2 and applly to school 3 instead. These changes in
strategies make it possible for school 3 to fulfill its capacity, and make school 1 less
competitive. Furthermore, school 2 also prefers DA. Compared to DA, under BA,

school 2 is more likely ending up either with student 3 or empty.

Second, on the student side, the bottom student is better off under BA. To see this,
note that by reporting S, PS,, student 3 is guaranteed a seat at school 2. Since the
student mixes between 5'21553 and S, ]552, her utility from the two strategies must
be equal. So under BA her utility is school 2’s quality c. Comparatively, under
DA, the student has a small probability of getting admitted by school 1 or school 2.
Meanwhile, it is possible for her to end up unmatched. Her expected utility is lower
than the utility of a guaranteed seat at school 2. At last, the middle student suffers
under BA. Since under DA she can at least be admitted by school 2, but under BA,

she may end up in school 3 or even unmatched.

For the total welfare, when all three students apply, the matching outcome under
DA is always assortative for the top 2 schools and top 2 students. But there is an
efficiency loss due to school 3 and student 3 never being matched. Differently, under
BA, the matching outcome is more complicated and not necessarily assortative, but
the bottom school and bottom student will not be left unmatched. Under BA,
efficiency loss is largely attributed to the possibility of the middle student being
unmatched. When g3 is large enough, it means the utility of any school from
admitting student 3 is large enough. In this case, under BA, the efficiency gain from
guaranteeing student 3 a seat in a school can compensate the efficiency loss due to

the possibility of missing student 2.
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2.5 Conclusion and Discussion

The design of a student assignment mechanism is a key issue in school choice
problems. In the context of the Chinese College Admission System, this paper
compares two widely used mechanisms: the deferred-acceptance algorithm (DA)
and the Boston algorithm (BA). In this context, there is a limit on the number of
schools that a student can apply to, and students have incomplete information about

schools’ preferences. There are two main findings:

First, under both mechanisms, the truth-telling strategy is an equilibrium strategy
of all applicants if the difference in school qualities is large enough. Furthermore,
the threshold of this difference under BA is larger than DA. In other words, when
schools’ qualities are not very different from one another, the truth-telling strategy

is more appealing to applicants under DA than under BA.

Second, though a conclusion has not been reached about efficiency in general, there
are cases where BA, compared to DA, benefits bottom schools and students at the
expense of the welfare of top schools and top students. With certain parameter
values, BA can be more efficient than DA in the sense that BA yields a higher total
welfare.

One natural extension would be to characterize equilibria under BA and DA when
truth-telling does not constitute part of an equilibrium under either mechanism. This
is the case when school qualities are close to one another. Intuitively, students have
more incentive to misreport under BA. As a result, the equilibrium strategy profiles
under BA are expected to be “further” from truth-telling than under DA. Haeringer
and Halaburda, 2013 provided a measure of the distance between a strategy to

truth-telling. Their measure may be utilized for the analysis in this direction.

Another possible extension would allow for heterogeneity in student and school
preferences. Although this paper considers students with two types of preferences,
all students who participate in the application process have aligned preferences. In
reality, except for its quality, schools usually have features that different students
value differently, such as the location, size, alumni, etc. In addition, in many student
assignment systems other than the Chinese College Admission System, different
schools may have different preferences over students.!! However, this extension
would require nontrivial changes of the model in this paper. In particular, the
characterization of students’ types can be multi-dimensional. This will tremendously
complicate the analysis if students are assumed to only know their own types.
"Che and Koh, 2016
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2.6 Appendix

More about the example in Remark 2, Section 3

In the example there are three schools and four students. Each school has only one
seat and each student can only apply to up to two schools. All schools are indifferent
over all four students. Under DA, if the other three students all report S; PSQ, then
for the fourth student, she has four options after eliminating dominated strategies:
81]582, S ]583, 521583, and 821551. Note that the last strategy is an order-reversal

strategy. Now we compare the expected utilities from these strategies:

* If the student reports Sy P35S, like the others, she can be accepted by S with
probability %1. If she is rejected by Sy, she will be accepted by Sy with
probability % As such, her expected utility is

1 1\ 1

- 1—-)= 2.1

il ( 4) 3 1)
e If the student reports S; PS,, she will be accepted by S; with probability %.

If she is rejected by S, she will be accepted by S3 for sure since no other

students apply for S3. As a result, her expected utility becomes

-+ - 2.2

1t (2.2)

* If the student reports Sy PSs, she will compete with other two students who

were rejected by S;. Her probability of getting accepted by S5 is % If she is
rejected by .S,, she will go to S for sure. So her expected utility is

1 2,

—c+ = 23

3¢ + 3¢ (2.3)

e If the student reports S, PS;, she will compete with two student who are
rejected by S7. She will be accepted by S5 with probability % If she is rejected
by S, she will compete with the student who was tentatively accepted by 5.
Her probability of getting accepted by S| is % As aresult, her expected utility

from this order-reversal strategy is
1 1\ 1
= 1—=)= 24
3¢+ ( 3) 5 (2.4)

It can be seen that when c is small enough (¢ < %ﬁ), the expected utility under
the order-reversal strategy is the highest. In other words, the order-reversal strategy

is not dominated.
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Proof of Proposition 1

Proof. Given that all other students are truth-telling, under the constant ratio ¢ of
schools’ qualities, a student of GPA g¢’s expected utility is denoted by EUY(d’),
where o’ stands for the student’s strategy. We start the proof with the following

lemma:

Lemma S. Under BA, given the probability 7 of each student applying to the schools,
if the truth-telling strategy is an equilibrium strategy for all applicants under some

€ (0, 1), then for ¢ € (0, ¢, it is also an equilibrium strategy for all applicants.

Proof. Let a denote the truth-telling strategy. It suffices to show that

min{ EUZ(a) — EUZ(a)} @5)

is either non-increasing in c or nonnegative.

Let pJ denote the probability of the student of GPA ¢ being matched with S; if all
students are truth-telling. In what follows, since we only discuss the strategy of the
student with GPA ¢, we drop the sup-script g for notational simplicity. Under BA,
given that all other students are truth-telling, we can apply Lemma 2 to calculate the

highest utility that a student can get by deviating from the truth-telling strategy.

EUY
max BUZ(d') =

!
ax {1<nll<akX 1229@% < Z;pi) QI+1>QQ} (2.6)
Recall that

G =c" 2.7)
Substitute (2.6) and (2.7) into (2.5) and rearrange to obtain

min{EUZ(a) — BUZ(a)} =

l k
_ RYRE ! =1
min {Krlrglg 1 (Z pic ™t —(1 ;pz)c ) ,;pzc C} (2.8)

i=l+1

Suppose (2.8) is increasing in ¢ at ¢ = ¢; € (0,1). It suffices to show that
?;E{E Ug (a) — EUZ (a’)} > 0. Since the right-hand side of (2.8) is continuous in
¢, there exists a 0 > 0 such that for all ¢; € (¢1,¢1 + ) N (0, 1)

Zr/giér;{EUgl(a) — EUY (a)} — gl;iérg{EUgZ(a) — EUJ (a")} <0 (2.9)
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Consider the following cases:
k .
Case 1: min{EUgl(a) — EUS (d)} = Y pic ' —
a'#a i=1

By definition

a'#a

min{ EUY (a) — EUY (a Z

As a result,

0> min{ EUZ, (a) — BU, (o)} — min{ EUZ () — BUZ(a')}

/#a
k k
> -1 -1
el PiCy C1 DiCy C2
i=1 i=1
k _ i
it — it
= p >1
5 €l — C
=1
k _ <C_2)’L 1
i—2 C1
RS T e
1=2 C1

Since the last Equation holds for all ¢; € (¢, ¢; +9) N (0, 1), we can let ¢, approach

¢ and have
1 — (& i—1
Z i fim @)
c2—c1+ 1-— z—?
& sz (1—1)—1>0
This means
k .
0 (Z picﬁfl - Cl>
i=1
>0
801 -
Therefore,

k k
St =Y p 07— 0=0
=1 i=1

i.e. min{EUY (a) — EUY (a’)} > 0.

a'#a

k X *
Case 2: Jlflrlli{ll{EUgl(a) —EUg(a)} = ¥ picy = (1— sz) .

i=l*+1
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By the same logic as in Case 1, we have
k k
i=l*+1 =l +1
d 1 1
Z pz(cll - CZQ )

&1- E g < S = pre1 (¢
Cl*+1 L = Prr+1\CG

+ sz” l*—__f )

1l*+2
1— (2)
él—zpz—;g& prle = ZPZZ“W
ZQI*Z_]'
sz I +1

i=1*+2

—c)

1*

@sz (i—1) =+ 1)1 => p)e >0

i=l*+2 i=1

k . - *
a( > pica-Q—u—zpi)c?“)

=041 i=1

I*

k
= D me = (L= o) 20

i=l*+1 i=1

ie. H/I;H{EUQ( a)— EUZ (a')} > 0. O

Next, for DA, similar result holds:

Lemma 6. Under DA, given the probability m of each student applying to the schools,
if the truth-telling strategy is an equilibrium strategy for all applicants under some

€ (0, 1), then for ¢ € (0, ¢, it is also an equilibrium strategy for all applicants.

Proof. Similar to the proof of Lemma 5, it suffices to show that

rr&n{EUg( a) — EUI(a")} (2.10)

is either non-increasing in c or nonnegative.

Under DA, applying Lemma 1, the highest utility of a student by deviating from
truth-telling is

k+1 k+1
9(a") — /.
max EUZ(a') = max {lggx_ 1 <Z pigi+ Y pzq,> 2; pqu} (2.11)

i=l+2
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where p; and p, are the probabilities of the student getting admitted by .S; under
the truth-telling strategy and a deviation of truth-telling strategy, respectively. It is

straightforward t0 see that p; > p; for [ +2 < i < k and p, > p,. Furthermore,
k+1 k+1

> p,—l—szandez—l

=142
Substitute (2.11) into (2.10) to get

a'#a 0<i<k—1
i=l+1 =142

k1
min{ EU?(a) — EU(a')} = min (Z pic’ Zp' i 1) (2.12)

Suppose (2.10) is increasing in ¢ at ¢ = ¢; € (0,1). It suffices to show that
?;E{EUgl(a) — EUY (a')} is nonnegative. Since the right-hand side of (2.10) is

continuous in ¢, there exists a § > 0 such that for all ¢, € (¢1,¢; +9) N (0,1),

rr/gén{EUg (a) — EUY (a')} — rr&n{EUé(a) — EUJ(a")} <0 (2.13)

Let i* € arg 1 mln (plc1 —(1- ij)ck) If i* > 1, then
J#i

k k+1 k k+1
: ) ra—=1\) : ) / i—1
o> g, (v = ) - g, (3w - 3t

i=l+1 1=142 i=l+1 i=l+2
k k+1 k k+1
D o B O T o
= Di y21e Di 218
1=1*+1 i=1*+2 i=i*+1 1=1*+2
k . .
| Zﬂpz@’fl(l — (&)
1=7*
& N . >1
> piei (1 (2))
1=1*+
i 1 i—1
7 : C_2 1 .

- ZZ;Jrlplc 621—1>ICI}+ L (01) ) 'L:;Jrlpl (Z 1) >1
k+1 i1 L Vi1 k+1 . -
e (L= T (G702 pie (- 1)

=%+ 1=1*+
k - k+1 .
o( 3 pett - ¥ )
=%+ 1=1*+
= >0
801 -
k k+1
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If ¥ = 0, by same argument we have

k ,
> pie(i—1)

=142 >1
k+1 o -
> picy (i—1)
i=1*+2
k - k+1 -
i— /i
O 2. pci = 2. pich
i=1*+1 1=1*+2 Z 0
301
k k+1
i—1 i—1
= D pdT = > plert 20
i=i*+1 1=1*42

Next, we prove ¢%4 < P4, Note that

k+1 !
Z Pidi < <1 - Zp;) Qi+1

=142 =1
and

k+1

ZP;%‘ < @
=2

Compare (2.6) and (2.11) to obtain

max EUY(a’)?4 > max EUY (a')P4
a'#a a'#a

BA DA
= (Ech(a) — IIIIQXEU(:?(G,)) < (Ech(a) — H};LXEU&Q(G,))

It shows that if the expected utility from the strategy of truth-telling is the highest
under BA, it must also be the highest under DA. So if the truth-telling strategy is an
equilibrium strategy under BA, it must also be an equilibrium strategy under DA.

At last, we show that there exist ¢?4 and P4 such that the truth-telling strategy is
an equilibrium strategy for all applicants. This is quite straightforward: first note
that the right-hand side of (2.8) is positive as ¢ — 0+ as long as p; > 0 for some
i€{l,...,k}. Sincew € (0,1), p; > (1—m)™ ! > 0. So eP4 € (0, 1) must exist.

We show previously that P4 > @BA agaresult, cPA € (0,1) also exists. U]



22

Proof of Lemma 3

Proof. By Lemma 1, it suffices to consider strategies S; ﬁ’S2, S ]383, 52]353, and
Ss.

It is straightforward to see that reporting .S, PS, is a dominant strategy for students
of g; and g, under DA. Given their strategies, the expected utilities of the student of

gs from these strategies are

EU9%(S,PSy)P4 = 27(1 — m)e + (1 — 7)?

EU%(8,PS3)PA = 2 + 27(1 — 1) + (1 — m)?

EU%(S3PS3)PA = n2c® + 21(1 — m)e + (1 — 7)%¢
EU%(S5)P4 =

Plug in 7 = 0.5 and ¢ = 0.6 to see that S1PS, brings the highest expected utility.
So it is an equilibrium strategy of the student of g3 to report Sy PS, as well. [l

Proof of Lemma 4

Proof. We need to verify that the strategy in Lemma 4 is indeed an equilibrium

strategy.

Given the students of g; and g3’s strategies, for the student of g5:

EU®(S,PS5)

EU® (S, PSs)

EU9%(S,PS3)PA = EU%(S,PS,)P4 = EU%(S,)P4 = ¢
EU%(S3)P4 = EU# (S3PS,)P* = EUP(S3P8,)"* = ¢

PSy)PA=6(1 — 74 me) + (1 —0)(1 — 7 + (1 — 7)7e)
PS3)PA =1 — 7+ nc?

where 4 is the probability of the student with g5 reporting S; P.S,. Plugin § =
5, and 6 = 0.6 to get EU92(51P52)BA = EU92(51P53)BA > EU92(SQPS3
EU9%(S3)BA,

)

Given the students of g; and g,’s strategies, for the student of gs:

o2n(1—m)e) + (1 =) (1 —7)2+ (1 — (1 —7)?)c)

(1 —(1=m))e*) + (1 =-0)2r(l - m)c* + (1 - 7))
= BU%(S,)P4 = ¢

BA — EU9%(S3P8,)P4 = ¢
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where 0 is the probability of the student of g, reporting S1PS,. Pluginf = %,
and 5 = 0.6 to get EUQZS(SIJ-Q’SZ)BA = EU93(SQJ553)BA > EU93(51P53 BA
EU%(S3)B4,

1
7T:§,

Note that in this example, strategies S PS 3, O PS 1, and S yield the same expected
utility for student 3. In addition, student 2’s utility remains the same no matter
which of the three strategies is employed by student 3. As a result, there are
multiple equilibria, but they are equivalent in terms of the utilities generated from

the equilibrium strategies. [

Proof of Example 1

Proof. Given the equilibrium strategies characterized in Lemma 3, under DA, school

I’s expected utility is
EUpy = mgi + (1 = m)mwgs + (1 — 7)°7gs (2.14)

The first term on the right-hand side shows that if student 1 is interested in the major,
she will list Sy as her top choice and S, receives g; from accepting the student. The
second term represents the utility S; receives if student 1 is not interested but student
2 applies to the schools. The third term corresponds to the case when neither student
1 or 2 is interested in the major but student 3 is interested and hence applies to the

schools.
Following the same logic, other schools’ expected utilities are
EUY, = 72gs +2(1 — m)7%gs

EUY, =0

Similar calculations can be made given the equilibrium strategies under BA (Lemma
4).

1
EUgf4 =7mg+ (1 —m)mga + (1 — 71')27ng3

4 1 92 1 9
EUgi‘ = gﬂ'gg —+ gﬂ' (271'(1 — 7T)g3 + 7-(2 (592 + §g3)> + (1 o 71_)7_[_2592
1
EUgix = 7T2§92

It can be immediately seen that EUDY > EULY, and EUY, < EUZY,. In other
words, the top school prefers DA to BA, while the bottom school prefers BA. In
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addition, when 7 = 0.5 and ¢ = 0.6,

1 13

EUpis + EUpy + EURy — BURy — BUg, — EURY = 1292 = 1359
Since % < %, when g3 is close to gs, the school side suffers a loss if the mechanism
switches from DA to BA.

For students, under DA
EUE, =me+ (1 —m)
EU%, =27(1 —7)c+ (1 —7)?

Under BA
EU%, =1
EUE, =7+ (1)
EUL, =c

It can be seen that EU}y = EUZ,, EUY, > EUY,, and EUY, < EU},. In other
words, the top student is indifferent between two mechanisms, the median student
benefits from DA, while the bottom student suffers under DA. In addition, when
7 = 0.5and ¢ = 0.6,

EUY + EU%, + FUY, — EUL, — EUY, — EUS, = 0.07

So DA is beneficial to students overall, but it can hurt the school side when all

students have relatively high grades. In particular, when % g3 — 1—15 g2 > 0.07, BA

yields a higher social welfare than DA. [
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Chapter 3

OPTIMAL MECHANISMS WITH TYPE-DEPENDENT
OUTSIDE OPTIONS

3.1 Introduction

Most studies on optimal mechanism design assume that the seller is a monopoly, and
hence all buyers face an outside option valued at zero.! However, this is no longer
the case in today’s differentiated marketplace. For example, when a cellphone seller
on eBay selects her selling mechanism, she must account for the availability of
cellphones of the same model on Amazon. In this case, different buyers value the
cellphone differently, and in particular, they value the outside option (a cellphone
on Amazon) differently as well. It is natural to ask: what is the optimal mechanism

for a seller when potential buyers have heterogeneously valued outside option?

I address this question by considering a market where a seller sells an item to risk-
neutral buyers with unit demand. Similar items are available to all buyers at a fixed
price somewhere else. Buyers have privately observed types that determine their
item valuation. They can either visit the seller or exercise the outside option, but
not both.2 Buyers make their participation decision after observing their types.3
In analogy to the competition between Amazon and eBay, I assume that the items
of the outside option have weakly higher qualities, and that qualities are publicly
observed.

I characterize an optimal mechanism for the seller: a second-price auction conducted
among buyers who participate in the seller’s sale, with either a reserve price or a
show-up fee. In addition, this optimal mechanism induces market segregation: low-
value buyers exit the market, medium-value buyers participate in the seller’s auction,

and buyers with high values exercise their outside option right away.

This form of the optimal mechanism is surprisingly simple considering the com-

plexity of the set of mechanisms the seller could consider. In my model, because of

ISee Klemperer, 1999 for a review.

2We can also interpret the outside option as a sale conducted by a second seller, and we assume
the buyer does not approach both simultaneously, which is confirmed empirically by (Haruvy et al.,
2008). For cases without assuming exclusion, see Gerding et al., 2008.

3This setup is in line with McAfee, 1993, Burguet and Sdkovics, 1999, etc. For scenarios where
buyers learn their value after visiting sellers, see Peters and Severinov, 1997 and Damianov, 2012.
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the endogeneity of buyers’ participation decisions (Jullien, 2000), the seller’s mech-
anism is a menu of allocation and payment rules for each possible set of visitors.
Nonetheless, I show that the optimal mechanism’s allocation and payment rules are

independent of the set of visitors.

Related literature

My work is closest to Krishna and Perry, 1998 and Jullien, 2000. Both papers
consider a general form of type-dependent outside options. Krishna and Perry,
1998 derive the optimal mechanism within the class of mechanisms which require
full participation, i.e. no buyer exercises her outside option. I relax this requirement
in my model. Jullien, 2000 considers partial participation in a single principal-
agent model, while my model resides in a more complicated context, since there are
multiple buyers competing for a single item and each buyer’s surplus depends on

other buyers’ decisions.

The literature on the feature of “buy-it-now” in online markets has a similar way
of modeling the outside option as my work. This strand of literature is motivated
by the prevalence of a combined use of fixed price and an auction as a pricing
mechanism in practice (Mathews, 2004). As a result, studies of this topic usually
focus on analyzing the benefit brought by the “buy-it-now” feature to sellers, while
regards the form of the auction as given. (See Ockenfels, Reiley, and Sadrieh, 2006
and Haruvy et al., 2008 for surveys.)

Another strand of literature that deals with type-dependent outside options is in
the context of competing mechanisms. Initiated by McAfee, 1993, the optimal
mechanism design problem has been studied in a framework where there are mul-
tiple sellers competing with each other for potential customers. This framework
allows for more complex features of outside options. Besides type-dependence,
a buyer’s outside option of visiting one seller is endogenously determined by the
mechanisms offered by other sellers and the visiting choices of other buyers. The
optimal mechanism is in general intractable because of the intricate interactions be-
tween sellers and buyers. For tractability, researchers mainly focus on large markets
(McAfee, 1993, Peters and Severinov, 1997), a restricted space of sellers’ mecha-
nisms (Burguet and Sdkovics, 1999, Hernando-Veciana, 2005, Ashlagi, Monderer,
and Tennenholtz, 2011, Pai, 2010, Ivanova-Stenzel and Salmon, 2011), or a re-
stricted space of buyers’ strategies (Virdg, 2010). In the current paper, I explore the
optimal mechanism given a specific setting of outside options without imposing any
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of the above restrictions.

There are studies that consider endogenous participation in auctions from perspec-
tives other than type-dependent outside options. Palfrey and Pevnitskaya, 2008
studied the self-selection problem regarding to participants’ risk attitude when bid-
ders make participation choices before knowing their private types. Merlob, Plott,
and Zhang, 2012 introduced an entry fee in a procurement auction. The entry fee
is paid from the bidders to the auctioneer, and aims to screen out bidders with high
costs. In both papers, since all bidders face a fixed outside option, their participation

decisions in equilibrium show a different pattern from my paper.

The rest of this paper is organized as follows: Section 2 sets up the model and states
the main result. Section 3 provides a sketch of the proof. Section 4 concludes and

points out possible extensions. The proofs are relegated to the appendix.

3.2 Model

There are N + 1 risk-neutral buyers with unit demand. Let N' = {1,..., N + 1}
denote the set of buyers. Each buyer has a private type v € [0,1]. Buyers’ types
are drawn independently and identically from a distribution F'(v) with associated
density f(v). Let g(v) and G(v) denote the density and cumulative distribution
function of the joint distribution respectively, where v = (vy,...,vy41). From
independence, g(v) = Iicpn f(v;) and G(v) = [ien F(v;). Let V = [0, 1]V
denote the space of buyers’ types. The types are observed privately, while their

distribution is common knowledge.

There is one seller selling one unit of an item of quality & € (0, 1]. If a buyer does
not participate in the seller’s sale, he can buy one unit of the item of quality 1 at
a fixed price p somewhere else. Both p and qualities are exogenously given and

publicly observed.

The value to a buyer of receiving one unit of the item is the product of the item’s
quality and the buyer’s type. The corresponding surplus of the buyer, S(v), is this
value net of her payment. If the buyer refrains from entering the market altogether,
utilizing neither the seller nor the outside option, I say that the buyer has exited the

market. In that case, a buyer gets a surplus of zero.

I focus on the optimization of the seller’s revenue. The seller specifies how to
sell her item by announcing an incentive compatible direct mechanism. Here,
by “direct mechanism” I mean the allocation and payment of the item depend on

participants’ reported types. By “incentive compatible” I mean in equilibrium, if a
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buyer participates in the sale, he cannot achieve higher surplus by misreporting his
type, given that all other participants report truthfully. According to the revelation
principle, it is without loss of generality to focus on incentive compatible direct

mechanisms.

Formally, let Z C N denote the set of buyers who visit the seller. The seller’s

mechanism can be expressed as

{Q", M }zcw (3.1)

In (3.1), Q% : [0, 1] — Al determines the probability of each visitor in Z C A
getting the item based on the reported type, where APl stands for the standard
simplex with dimension |Z|. M7 : [0, 1]* + Rl determines the payment made
from each visitor in Z to the seller. The seller can make payments to buyers, i.e.

payments can be negative.

I only consider anonymous mechanisms in this model. An anonymous mechanism
does not distinguish buyers by their identities. In particular, the allocation and

payment rules of such a mechanism only depend on the number of visitors.

As an illustrative example, think of a market with two buyers N' = {1, 2}. The setZ

of buyers who visit the seller canbe (), {1}, {2}, or {1, 2}. The seller should therefore

announce four allocation rules (and corresponding payment rules), one for each
. 0 Y {1} {1} {2} {2} d (O

case: (QY, Q) (@17 (1), @z '(21)), (Q17 (22), Q7 (22)), and (@7 (21, 22),

Qém} (x1,2)), where z; is buyer i’s reported type. For anonymous mechanisms,

there are two restrictions of the mechanisms: (a) Qil}(xl) = 52}(@) whenever

x1 = T2; and (b) Qim}(ml, 33’2) = 5172}(372, $1)~

Facing any given mechanism, each buyer needs to make two decisions: (1) to partic-
ipate in the seller’s sale or to exercise the outside option (participation strategy), and
(2) if participate, which type to report to the seller (reporting strategy). The equilib-
rium concept of the buyers’ game is the perfect Bayesian symmetric equilibirum. In
an equilibrium, no buyer can achieve a higher expected surplus by deviating either in
the participation strategy or the reporting strategy. In addition, buyers with identical
values employ the same strategy. In incentive compatible direct mechanisms, the
equilibrium reporting strategy is reporting truthfully, hence we only need to consider

buyers’ participation strategy.

At last, I follow the convention that if a buyer expects to receive a zero surplus

regardless of his participation decision, he exits the market.
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My main result characterizes an optimal mechanism:#

Theorem. Suppose the distribution of private types has a full support on [0,1]

f(v)
1-F(v)

An optimal mechanism conducts a second-price auction among the seller’s visitors

with a non-decreasing hazard rate and a non-increasing density function.

with either a reserve price or a show-up fee.

I provide a sketch of the proof for this result in the next section.

3.3 Solve for optimal mechanisms
I follow two steps to prove the theorem: I first simplify the mechanism space and

then derive an optimal mechanism within the simplified mechanism space.

Mechanism space simplification
My first result shows that the symmetric equilibrium participation strategy is a cutoft

Strategy:

Proposition 1. Given any incentive compatible direct mechanism of the seller, in
any symmetric equilibrium of the buyers, there exist v € [0,p| and v € [p, 1], such
that buyers with type v € (v,v) visit the seller, v € (0,1) buy the item from the

outside option, and v € [0, v] exit the market.

To see why buyers always use a cut-off strategy in equilibrium, first note that buyers
with private value below p, the fixed price asked in the outside option, have a zero
value for the outside option. If a buyer with value vy < p chooses to visit the
seller, it means this buyer has a positive surplus by visiting the seller. Incentive
compatibility of the seller’s mechanism requires buyers’ surplus from participating
in the sale increases with their value. As a result, any buyer with value above v, and
below p should also visit the seller. This gives the cut-off strategy for buyers with

value below p.

For buyers with value above p, although their surplus by visiting the seller increases
with their values, the value of the outside option grows more. This result is mainly
driven by the assumption that the seller has only one unit of the item with weakly

lower quality. More specifically, suppose a buyer with value uy > p exercises the

“Note that this is not the unique optimal mechanism. In fact, any variation of the allocation
rule and the payment rule on a zero-measure set does not affect the seller’s surplus. Besides, there
are mechanisms that do not fall in the class incentive compatible direct mechanisms and they can
generate the same surplus for the seller.
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outside option in equilibrium. Now think about a buyer with a slightly higher value
ug + A. Compared to the previous buyer, the surplus of this buyer from visiting the
seller increases by roughly ¢(ug)kA, where ¢(-) < 1 is the probability of a buyer
winning the item from the seller. Meanwhile, the increase in the value of the outside
option for this buyer is A. Since £ < 1 by assumption, the increase in the surplus
from visiting the seller is smaller. If the buyer with value u, finds it more beneficial
to exercise the outside option, the buyer with value vy + A must find even more so.

Therefore, the buyers with value above p also uses a cut-off strategy.

With type-dependent outside options and no requirement of full participation, the
major complication of the problem is the contingency of mechanisms on the number

of visitors. Proposition 2 further simplifies the mechanism space.

Proposition 2. Any symmetric equilibrium outcome of a mechanism can be imple-
mented by an incentive compatible direct mechanism, which is in addition indepen-

dent of the number of visitors.
Proof. Denote by 7(+) buyers’ equilibrium participation strategy. By Proposition 1,
r(v) is either 1 or O for v € [0, 1] almost everywhere.

Given the original mechanism (Q, M) and any realization of private values v, let
J* C N denote the set of buyers who visit the seller in equilibrium. Formally,
;e 7+r(v;) = 1. Forany Z C N and for any i € Z, let

Q7 v r(w) =1

Q7 (vh) = (32)
0 Otherwise
MF (V) = M (vl (3.3)
forall 7 C M\ {i}.

It can be verified that (1) Q% (v?) € [0,1] and djer Q(v7) < 15 (2) Q is positive
responsive; (3) Q is incentive compatible; and (4) r(v) is still an equilibrium under

the mechanism (Q, M). This completes the proof. O

In addition, the constructed mechanism generates a unique equilibrium participation

strategy, and this makes the optimality problem well-defined.

Lemma 1. The symmetric equilibrium outcome under a mechanism in Proposition

2 is unique up to a zero-measure set of types.
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The proof is rather technical and is relegated to the appendix.

Since the mechanism does not depend on the set of visitors, we can denote the
allocation rule and the payment rule simply by (Q(v), M(v)). In other words, it
suffices to study mechanisms which emulate the seller observing all buyers’ values

and allocating the item among them.

Optimal mechanisms

An optimal mechanism is an allocation rule and a payment rule which maximize
ZZV:J{I E(kr(v)m(v)), where r(v) is the probability of a buyer with value v visiting
the seller in equilibrium. Since buyers’ equilibrium strategy is a cutoft strategy
by Proposition 1, there exist thresholds v and v such that r(v) = 1 if v € (v,0)
and r(v) = 0 otherwise. As an alternative method of calculating v and v given
the seller’s mechanism, we can regard the thresholds as the seller’s choice, and
impose the requirement that they are the equilibrium thresholds for buyers. This

requirement is referred to as the participation constraints.

We can now solve for the optimal mechanism using standard techniques: we link
the payment scheme to the allocation rule through the incentive compatibility con-

straints, and account for the feasibility constraint ), - Q;(v) < 1.

Lemma 2. The solution to the following optimization problem provides an optimal

mechanism, where the objective is

max [ a0 T 000w v- )i

Q,m(0),7,u;) Py

+ (N + Dkm(0)(F(1) — Fv) = A) — (N + DA —p)  (3.4)

subject to the second order incentive compatibility constraint, participation con-
straints, and feasibility constraints. \ > 0 is the Lagrangian multiplier for the

participation constraints. (-) is the “adjusted virtual value”:

1—F(v) 1—F(©)+ A

YO =T T T

(3.5)

The objective function in (3.4) intuitively illustrates the structure of the expected
revenue. The term ¢(v;)Q;(v;, v_;) in the integral shows one source of the revenue:
the seller get a buyer’s adjusted virtual value by giving him the item. The adjusted
virtual value for buyers is Myerson’s virtual value adjusted to the endogeneity of

participation.
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The first constant term represents the revenue loss from paying a show-up fee
—km(0) to participants. In Myerson, 1981 this number is 0. Now with endogenous
participation, the seller may have incentive to pay a strictly positive show-up fee to
encourage buyers with higher values to participate in the sale. But the payment is

made to all participants regardless of their types.

The last term shows the cost that the seller needs to pay if she would like to keep
buyers with value above p into her sale. For these buyers, their values for the outside
option are positive and increase with their types. To keep them in the sale, the seller
needs to make extra sacrifice, such that these buyers’ loss of giving up the outside

option is well compensated.

Note that v can be interpret as the reserve price, which is set by the seller to screen
out buyers with low values. An incentive compatible mechanism can have either a
positive reserve price, or a positive show-up fee, but not both. Otherwise buyers
with value below the reserve price will over-report their types to get the show-up

fee.

From (3.4), it is optimal for the seller to assign the item to a buyer with the
highest adjusted virtual value. It is routine to verify this allocation rule satisfies the
incentive compatibility constraints when the distribution of values has an increasing
hazard rate and a nonincreasing density function. Given the allocation rule, it is
straightforward to derive the payment rule. It turns out that it has the same form as
a second-price auction with either a reserve price or a show-up fee. The theorem

then follows.

Remarks

Despite their similarity, there are significant differences between the optimal mech-

anism identified here and in Myerson, 1981.

The first difference is technical. Note that the condition for the second-price auction
to be optimal is more strict here. This is because an increasing hazard rate is not
sufficient to guarantee the fulfillment of the second order incentive compatibility

constraint, which requires the item to go to the buyer with the highest private

1—F(0)+A
fvi)

non-creasing hazard rate together with a non-increasing density function, such as a

value. Due to an additional term in the adjusted virtual value function, a
uniform distribution or an exponential distribution, can guarantee that the adjusted
virtual value is monotonic in v. To assign the item to the buyer with the highest

reported value is then in line with assigning the item to the buyer with the highest
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adjusted virtual value.

Second, there is, in general, no closed form solution for the optimal reserve price
or show-up fee. This is because a higher reserve price, or a lower show-up fee, on
one hand increases the seller’s revenue directly, but on the other hand decreases the
revenue by generating less participation in terms of v — v. The resolution of the
tension between “price” and “quantity” depends on specific forms of the distribution
of private values, as well as the value of parameters k£ and p. One general feature of

the reserve price is that it never exceeds Myerson’s optimal reserve price.

Corollary 1. The optimal reserve price satisfies v* < ¢~ '(0), where ¢(v) =
1-F(v)
fv)

This result directly follows the Theorem and is intuitive. With the type-dependent
outside option, a low reserve price has the merit of increasing the turnout of the
sale. Roughly speaking, with the competition of another seller, the seller of interest

must decrease the price in order to attract more potential buyers.

For a large market, we can obtain a more detailed characterization.

Proposition 3. Let N — oo, then the optimal show-up fee is 0, and the optimal
(F@-F@)IP) _

reserve price v satisfies v — )

When N — oo, only buyers with values v < p visit the seller. The highest bid is
practically the fixed price of the outside option. Since the participants of the sale all
have a zero-valued outside option, the optimal reserve price hence coincides with
the Myerson’s optimal reserve price, given that buyers’ private values are distributed

according to the original distribution truncated at p.

3.4 Conclusion and discussion

In this paper I study an optimal mechanism design problem for a seller when buyers
have a type-dependent outside option. I model the outside option as the opportunity
to buy items of the same or higher quality at a fixed price from somewhere else. I
relax the full participation requirement imposed in Krishna and Perry, 1998, so that
the seller’s mechanism specifies the allocation and payment rules in all possible cases
of who show up in her sale. Despite the complication in the seller’s mechanism, I
derive an optimal mechanism that is fairly simple to characterize: a second price
auction conducted among buyers who participate in the seller sale, with either a

reserve price or a fixed show-up fee. In addition, the optimal mechanism leads to a
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segregation of the market: low value buyers exit the market, medium value buyers
visit the seller, in hope of getting the item at a price lower than the fixed price of the

outside option, and buyers with high value exercise their outside option.

Reiss, 2008 and Kirchkamp, Poen, and Reiss, 2009 consider the outside option from
a different perspective. In their models, the outside option is a payoff received by
a buyer if he fails in the auction. This idea can be incorporated into my model by
keeping the outside option available after the seller’s sale. This additional trading
opportunity for the buyers benefits and hurts the seller at the same time. On the
one hand, buyers are more willing to participate in the seller’s sale, since they face
less opportunity costs by doing so. On the other hand, the additional payment that
buyers can get when they fail the auction provides an incentive of underbidding
(Kirchkamp, Poen, and Reiss, 2009). To induce truth-telling among buyers, the
seller has to offer more as the information rent than Myerson, 1981. Furthermore,
the new informational rent is increasing in buyers’ types. These effects complicate
the optimal mechanism design problem substantially, since the seller’s revenue is not
necessarily maximized by assigning the item to a buyer with the highest bid. It calls
for more future work to get a detailed characterization of the optimal mechanism in

this setup.

3.5 Appendix

Proof of Proposition 1

Proof. Let r;(v) denote the probability of Buyer i visiting the seller when his
private value is v. Since we only consider symmetric equilibrium, r;(v) = r(v) for
all 7 € N. Given the participation strategy, the probability of buyersinaset 7 C N/
visiting Seller 2 is

RI(v) = Wjerr(v)hean 7 (1 — r(v;)) (3.6)

By definition, 0 < R7(v) < 1, and for any v € V,

N+1

Y Y RI(v)=1 (3.7)

=0 JCN|T|=i

First consider buyers with value v > p. It suffices to show that in equilibrium (a)
it is not the case that buyers with values on a nonzero measure set are indifferent
between visiting the seller and the outside option; and (b) if there exists a vy > p
such that the surplus of a buyer with vy is larger by visiting the seller, then it is also

the case for buyers with value v € (p, vp).
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Suppose r(-) is an equilibrium participation strategy for buyers under an incentive
compatible direct mechanism {Q%, M*}zcy. If r(v) = 0 for v € (p,1) almost
everywhere, which means in equilibrium almost no buyers with value above p visit
the seller, set v = p and we are done. Otherwise, by (3.6), Rw(v_i) < lforv_;ina

nonzero measure set.

The surplus of a buyer from visiting the seller is

S(v;) = k/ ﬁ: Z (Q;ju{z‘} (v, — MZ,JU{i} (Vju{z‘})>

—1 =0 JCN (T |=)
RI(v_)g(v_)dv_; (3.8)

For notational simplicity, let

p(v;) = / oY @UUETINHRI (vo)g(vo)dv (3.9)

V=i j=0 JcN\{i},|T|=j

N
t(v;) = / Z Z Miju{i} (vIUHRI (v_)g(v_)dv_;  (3.10)
8 =0 JCN\{i}| T |=5
By incentive compatibility, S(v) is increasing in v for v € {v : r(v) > 0}. In
addition, for any v, v’ € {v: r(v) > 0}

(p(v) = p(v))v = t(v) = t(v') = (p(v) = p(v'))V/

Now let’s take a closer look at p(v), which is the probability of a buyer with value

v winning the item from the seller if he visits the seller.

Lemma 3. 0 < p(v) < 1. In addition, if R'(v_;) < 1 forv_, in a nonzero measure

set, p(v) = 1 only for v in a zero-measure subset of [0, 1].

Proof. By (3.7) and the fact that 0 < @Q; < 1, we have 0 < p(v) < 1.

To prove the second part, suppose towards a contradiction that p(v) = 1 for v
on a nonzero measure set S C [0,1]. By (3.9) and (3.6), p(v) = 1 only if
Q7Y (vIUiY) = 1 for some J and for v7 € [0,1]1] almost everywhere. So
Q7 (vIU) = 1 for v € S ¢ [0, 1]+ almost everywhere as well. Since
R%(v_;) < 1, we must have a .7 such that Q71" (v7U{i}) = 1 for v7U{} € SITI+1
almost everywhere and | 7| > 0. By anonymity, for any j € J ,iju{i} (V7P =1
also holds for v € SWI*1. Then Y, Q71 (v7U(1) = | 7| +1 > 1, violating

the requirement for () to be an allocation rule. 0
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From Lemma 3 we can get another important result: in equilibrium buyers with

almost all values use a pure participation strategy:

Lemma 4. r(v) € {0, 1} for v € [p, 1] almost everywhere.

Proof. By assumption, (v) > 0 for v in a nonzero measure subset of [0, 1]. If a
buyer uses a mixed participation strategy, i.e. r(v) € (0, 1), she must be indifferent
between visiting the seller and the outside option. In other words, S(v) = v — p.

This implies on a non-zero measure set, given any pair of v, v 4+ € where € > 0, we

need v + € — S(v +¢€) = v — S(v). Substitute and rearrange, and we need
(1 —kp(v+e€))e+k(t(v+e€) —t(v)) = k(p(v+€) —p(v))v =0  (B.11)
Note that t(v + €) — t(v) > (p(v +€) — p(v))v, (3.11) implies
(1 —Fkp(v+e)e<0 (3.12)

Since k¥ < 1 and p(v) = 1 only on a zero-measure set, (3.12) cannot hold on a

non-zero set of v. ]

Suppose a buyer with value vy does not participate in equilibrium. Now we show
that any buyer with value v > v, should also exercise their outside option. Suppose
not, i.e. there exists a v’ > vy such that the buyer with value v’ participate in the

auction. It means
V' = p < maxk(p(0)v" — 1(2)) = k(p(v')o" — ("))
But for vy we have
v — p = maxk(p(d)vg — 1(2)) = k(p(v')vo — ("))
By assumption, v — p > vy — p. Therefore,
o =5 < k(p(W)0 — (1)) = k(p(v' vy — t(v')) = kp(t)(v' — vp)

Since kp(v') < 1 and the equality holds only on a zero-measure set, we reached a
contradiction. As aresult, the equilibrium participation strategy must be a threshold

strategy.

At last we consider the equilibrium participation strategy for buyers with value
below p. Since we apply the convention that if a buyer receives a zero surplus both

from the seller and the outside option, she exits the market, then we only need to
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prove that if there exists a 1y < p such that the surplus of a buyer with w is bigger
by visiting the seller, then it is still the case for buyers with value v € (ug, p). This
follows directly from S(v) > k(p(ug)v — t(ug)) > k(p(uo)v — t(ug)) > 0. So we
complete the proof. 0

Proof of Lemma 1

Proof. The uniqueness holds for a more general set of mechanisms.

Definition 1 (Positive responsiveness). Let v* = (vg)rea. Call an allocation rule

positively responsive if both of the following conditions are satisfied:

1. forany J,Z C N, J C T implies Q7 (v7) > Q¥(v?) forany i € TN J,
and for any v € V;

2. forany J,T C N satisfying J\(JNZI) # 0, I\(TNZL) # 0, and TNI # ),
ifvp < v foranyk € J\(JNI)andl € I\(TNI), then Q7 (v7) > QF(v?)
foranyi1 € ZNJ, and for any v € V

A direct mechanism is positively responsive if the allocation rule of the mechanism

is positively responsive.

The positive responsiveness of a mechanism restricts the dependence of the mecha-
nism and the number of buyers who show up. The first condition requires a buyer’s
probability of winning the item to be nonincreasing with the number of buyers who
participate. And the second condition requires a buyer’s probability of winning to
be nonincreasing when the “average value” of visitors is higher. In particular, the

mechanism we construct in the proof of Proposition 2 is positively responsive.
Now we prove the uniqueness of equilibrium for positive responsive mechanisms.

By Proposition 1, the only way of having multiple equilibria is that there are different
thresholds. Suppose towards a contradiction that both (u,%;) and (u,, ) are
equilibria thresholds and (u, ;) # (us,u2). Then it can be exactly one of the

following six cases:
Lowy <wy, Uy < ug;
2. uy > Uy, Uy < Ug;

3. Uy < Uy, Uy = Us;
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4. uy > uy, U > Us;
5. uy < Uy, Uy > Us;
6. uy > uy, Uy = Us;
Note that Cases 4-6 can be obtained from Cases 1-3 by switching labels, so we only
need to consider the first three cases.
Figure 3.1 illustrates some of the cases:

S(v) S(v)
Outside Outside
Option

X
v v v v v v

=
I
<
<)

Figure 3.1: Uniqueness of equilibrium participation strategy

Denote buyers’ surplus from visiting the seller in each equilibrium as S and S,

and the set of buyers visiting the seller given a realized value v is J;(v) and J5(v).

For Case 1, there must exist buyers with value v € (u,, ;) such that S <
S On the other hand, given v, in equilibrium it must be v, < wv; for any
ke Tiv)\(Ji(v) N Ta(v)), and for any [ € Jo(v)\(J1(v) N J2(v)). So by
Definition 1, we must have Q7" (v71(V)) > Q7™ (v7%2()). By (3.9), this implies
SW(v) > S@(v). This is a contradiction.

For Case 2, buyers with value v € (u,, @;) must have S} < S, However, since
u; > us and Uy < Us, the set of buyers visiting Seller 2 in equilibrium must be
Ji(v) C Ja(v) for any v. By the definition of positive responsiveness, we have
Q7 (vh)) > QPN (v and this implies that S > S® . So we have

reached a contradiction again.

For Case 3, the argument is similar to Case 2, only in this case we should have
SM > S for buyers with value v € (u,, is), but the positive responsiveness
requires SV < S,
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As aresult, none of the cases can happen, so we must have (u,, @) = (us, 42). This

completes the proof of uniqueness. [

Proof of Lemma 2

Proof. First we introduce the notation of the reduced forms of allocation and pay-

ment rules:

Qz‘(U) = Qi(vu V—i)g—i<V—i)dV—i (3.13)
Vi

m;(v) = M;(v,v_))g_i(v_;)dv_; (3.14)
V_;

Since the distribution of buyers’ values are identical and the mechanism does not
depend on identities, we have ¢;(v) = ¢(v), and m;(v) = m(v) for all i € N.

For incentive compatibility to be satisfied, we need it to be optimal for a buyer to
report her type truthfully if she visits Seller 2. Let © denote the reported type, and

then a buyer’s surplus from visiting the seller is

S(v) = max k(q(0)v —m(v)) (3.15)

— k(g(v)v — m(v)) (3.16)

Lemma 5. S(v) is continuous and convex in v. In addition,
S(v) = 5(0) +/ kq(x)dt (3.17)
0

This lemma simply follows from the requirement of incentive compatibility and the

envelope theorem.
To guarantee the convexity of S(v), we need that S’(v) is nondecreasing in v. So

Condition (SOIC). The reduced forms of the allocation rule q(v) satisfies the second

order incentive compatibility (SOIC) constraint if q(v) is nondecreasing in v.

By (3.15) and (3.17), we have

km(v) = kvg(v) — S(0) — /0“ kq(x)dx (3.18)
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By Proposition 1, the equilibrium participation strategy r(v) = 1 if and only if
v € [u,7]. Then

E&w@%ﬂ@):—smy/fﬂwdu+kjwamfwxwmm; (3.19)

where

(3.20)

By (3.15) we have S(0) = —km(0), and plug in (3.13) to get

> E(kmy(vi) = (N + 1)km(0)(F(v) — F(v))
ieN

- /Vg(v) > (kQi(vi, v_i)d(v:))dv (3.21)

ieN

To guarantee that v and v define an equilibrium participation strategy, we need the
buyer with value v to be indifferent between visiting the seller and the outside option
when v < 1. When v = 1, we need that visiting the seller makes the buyer with
the highest value weakly better off comparing to buying from the outside option.

Formally, we need

—km(0) + k/v q(z)dx =0 —p ifo<1 (3.22)

—km(0) + k:/ q(z)dx >v—1p ifo=1 (3.23)

Similarly, if v, the buyers with v = v must be indifferent between visiting the seller
and the outside option if v > 0. If v = 0, we need to have the buyer with the lowest
value to be weakly better off to visit the seller. Since buyers with value below v

have no chance to win the item, we have

|<

5@ =S50)+ | a(o)ds = 5(0) = ~km(0)
0
The participation constraint for buyers with value v is simply

ifv>0 (3.24)
if v = (3.25)
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And at last

O<v<p=<v<l (3.26)

To summarize, the objective is

Q,nfgg;;&(N + 1)km(0)(F(v) — F(v))

+/Q(V)Z(in(%U—iW(%)dV
v ieN

subject to the participation constraints in (3.22) to (3.26), the second order incentive
compatibility constraint, and the feasibility constraints which guarantees that Q(-)

is indeed an allocation rule

Q(v)>0 VieN, WweV (3.27)
Y Quv)<1 Wwev (3.28)
1eN

We focus on the participation constraints and ignore other conditions for now, and

we can write down the Lagrangian for the problem:
L(Q,m(0),v,v;A) = (N + 1)km(0)(F(v) — F(v))
k i\Viy U—g % d
+ [ 00) k@i 0-90lo )i

ieN

+AY (—km(O) +k / gi(z)dr — (v — p))

ieEN v

Rearrange to get

L£(Q,m(0),0,0;A) = (N + Dkm(0)(F(v) — F(v) = A) = (N + 1)A(v - p)

+ /ng > (kQi(vi, v-i)u(vi))dv

ieN
This is the objective function in (3.4). L]

Proof of Proposition 3.2

Proof. 1t is straightforward to see from the objective function that when the dis-

tribution of private types has a non-decreasing hazard rate and a non-increasing
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density function, the optimal allocation rule is to assign the item with a visitor with

the highest private value. We only need to drive the payment rule.

By (3.18), we have
/ kM (v, v_3)g_i(v_i)dv_; = / (km(()) + kv;Q; — /Ui in(x,vi)dx)
V_; vV 0
g_i(v_;)dv_;
A simple way to have this equality is to set

k’Mi(UZ‘, V—i) = k:m(O) + l{fleZ - /Ui k?QZ(ZE, V_Z‘)d{E (329)
0

According to the allocation rule, if a buyer with value v loses, she still loses the item
when she has a value below v; while if a buyer wins, she still wins as long as her
value is above both the second highest value and having a positive adjusted virtual

value. As a result, from (3.29) we can derive

m(0) + max{v® »~1(0)} Q;=1
m(0) Qi=0

M;(vi, v_;) =

where v(?) denotes the second highest value among the seller’s visitors.

We can interpret m(0) as a show-up fee and ¢~ *(0) as the reserve price. Further-
more, v = ¢~ !(0). From the proof of Lemma 2 we can see that only when v = 0,
m(0) can be strictly negative. As a result the optimal mechanism is a second price

auction with either a reserve price or a show-up fee, but not both. 0
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Chapter 4

OPTIMAL GRANT-ISSUING MECHANISMS

4.1 Introduction

Grants are an important source of both private- and government-based funding for
various types of projects (science, education innovation, support for developing
societies, etc.). More than five trillion dollars of US Federal grants have been
awarded since 2008, accounting for about 20% of total government spending.!
Private foundations also award billions of dollars in grants each year in areas such as
health and education to improve social welfare.? Despite the large size and common
use of grants in practice, there are few theoretical studies on how to efficiently
allocate a grant-issuer’s budget. This paper aims to derive an optimal grant issuing

method under a mechanism design framework.

To capture the essence of the grant issuing process, this paper considers the following
model. To apply for a grant, applicants need to simultaneously submit their project
proposals to the grant issuer. Each proposed project, if carried out, generates a value
composed of two parts: a public value and a private value. The public value, or
the “merit” of a proposal, is a benefit received by the whole society. The private
value is a net benefit received exclusively by each proposer. It can be interpreted
as the personal gain net of the personal cost. For example, a computer scientist
who receives a grant from the National Science Foundation (NSF) can conduct a
project which improves the performance of a widely used algorithm (public value).
In addition, the receipt of the grant per se is an honor to the scientist (personal
gain). On the other hand, to conduct the project, the scientist needs to bear its
cost on equipment and overhead (personal loss). For each project, the grant issuer
can assess its public value perfectly, but has little knowledge about its private value
besides the amount reported by the applicant in the proposal. Each proposer’s utility
comes from the private value of his project and the payment of the grant if he is
awarded. In particular, the public value does not concern proposers. In contrast,

the grant issuer cares about both the public value and private value, i.e. the total

!Other types of spending include contracts, loans, direct pay-
ments to individuals, insurance payments, etc. Data source:
https://www.usaspending.gov/Pages/TextView.aspx ?data=OverviewOf AwardsByFiscal YearTextView

2 http://data.foundationcenter.org/#/fc 1000/subject:all/all/total/list/2012



48

welfare. The goal of this paper is to design proper rules that determine which project
are supported by the grant and how much to pay for the selected projects, such that

the total welfare is maximized.

Before tackling that problem, we need to discuss two sets of institutional constraints:
the budget constraint and the constraint of individual rationality. In different sce-

narios, there are different specifications of these constraints.

Oftentimes, the grant issuer faces a budget. For example, governmental funding
agencies may face a budget by the congress appropriation. Similarly, private foun-
dations may be bound by donations. In principle, having some flexibility over the
total amount of expenditures could be beneficial. Such flexibility would allow the
grant issuer to adjust the overall spending according to the quality of the submitted
proposals. Specifically, if the grant issuer is allowed to smooth her budget across
budget sessions, when there is very few high quality proposals in a session, she
can save her budget for sessions when a lot of proposals show high quality. In
contrast, if the budget is fixed within each session, even proposals of high quality
could lose the opportunity to get funded. This is the case when many other high
quality proposals happen to be submitted in the same session. Intuitively, variable
funding amounts over time and flexible application deadlines suggest a potentially
more flexible budget constraint, such as the Justfilms grant of the Ford Foundation
and Grants for Art and Culture of Japan Foundation.®# In many other cases, the
budget is fixed and a deficit is not allowed. For example, for the grant supporting
studies on human trafficking in the Asia-Pacific region, the fixed number of rewards
and the fixed amount of payment for each selected project indicate a strict of budget
of 35,000,000.5 In this paper, both forms of budget are discussed.

Another set of constraints is about how the grant issuer can manage to have all
proposers apply for the grant. For each proposer, if he expects the benefit is less
from applying for the grant than what he could have obtained on his own, he will not
apply. The grant issuing process needs to avoid such situations in order to encourage
as many applications as possible. This constraint is usually called the constraint
of individual rationality in literature. We should note that in the context of grant
application, it is not obvious how to calculate what a proposer can get from applying

to the grant. In this paper I consider two different scenarios.

3http://www.fordfoundation.org/work/our-grants/justfilms/
4 http://www.jfny.org/arts_and_culture/smallgrant.htm]
3200.gl/lyVXYss
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In the first scenario, there are no contracts or legal obligations for the grant applicant
to conduct the project upon the receipt of the grant. In other words, if a proposer is
awarded the grant, but realizes the size of the grant is insufficient to cover the cost
of the project, he can reject the grant at no cost. For the grant issuer, a rejection of a
grant is the same as, if not worse than, the proposer does not apply for the grant. To
avoid such rejection, the grant issuing process needs to guarantee enough payment
to cover the costs of selected proposals. This case is referred to as ex post individual

rationality.

The second scenario is that contracts, legal obligations, or potential value of the
grant forbid the proposer from turning down a grant if he gets rewarded. For
example, the receipt of a grant from NSF provides a shining entry on the proposer’s
resume, as it can be used as an indicator to the proposer’s credibility for future
funding opportunities. As a result, even if the grant is insufficient to cover cost of
the project, the proposer is still willing to accept the grant and conduct the project.
In this case, the grant issuer does not need to worry about the grant being turned
down. To encourage applications, she only needs to make sure the proposers are
better off in expectation by applying to the grant. This is referred to as interim

individual rationality.

In general, any outcome of a mechanism subject to a fixed budget can be achieved
under a flexible budget of the same size. Therefore, the grant issuer should obtain
a higher social welfare when the budget is flexible. It turns out that whether the
flexible budget provides a strictly better outcome depends on the forms of individual
rationality: for interim individual rationality, the results under fixed and flexible
budget constraints are the same; for ex post individual rationality, the welfare under

a flexible budget is strictly higher.

Specifically, if the grant issuer faces a flexible budget, the optimal mechanism does
not depend on the specification of individual rationality. The mechanism can be
implemented by take-it-or-leave-it offers made from the grant issuer to proposers.
Each offer specifies a maximum amount of payment to each proposer. Intuitively,
this offered payment increases as the budget increases. Furthermore, the higher

public value a project generates, the larger amount offered by the grant issuer.

If the grant issuer faces a fixed budget, the form of optimal mechanisms differs with
different specifications of individual rationality. If interim individual rationality is
considered, in the optimal mechanism, a proposal is selected only when the reported

private value exceeds a cutoff. The payment depends on other proposers’ private
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values. This mechanism generates the same welfare for the grant issuer if she faces
a flexible budget of the same size. If ex post individual rationality is considered,
the cutoff selection rule is no longer optimal. In other words, whether a proposer is

selected can depend on the reported private value of other proposers.

The framework of this paper is closely related to the frameworks used in the research
of auctions and procurements. However, some features special to the context of grant
issuing process depart this paper from studies of those areas. In auctions, the total
number of objects is usually exogenously given.® In contrast, the total number of
awarded grants can be contingent on the number and quality of proposed projects.
In procurements, the quantity of delivered objects is usually assumed to be a non-
negative real number, but the outcome of a proposal is binary: either it is carried out
successfully, or it fails to deliver.” These differences largely simplify the analysis
and result in a tractable optimal mechanism even when there is asymmetry between

grant proposers, who serve the role of bidders in the current paper.8

This paper also contributes to the literature comparing and connecting different
specifications of the budget constraint and individual rationality in various contexts
(Kosmopoulou, 1999). The relation of interim and ex post individual rationality
has been discussed extensively in the bilateral trading literature (Myerson and Sat-
terthwaite, 1983, Gresik, 1991, Flesch, Schroder, and Vermeulen, 2016, etc.). In
contrast, as is pointed out by Severinov and Song, 2010, it has not been sufficiently
explored to connect two types of individual rationality constraints in the context
involving multiple participants. For this context, Makowski and Mezzetti, 1994
established the equivalence between ex ante budget balance with ex post individual
rationality and ex post budget balance with interim individual rationality. This pa-
per further discusses the case with ex post budget constraint and ex post individual

rationality.

For the literature on grants, Ensthaler and Giebe, 2014 reviewed empirical studies
that analyze the effects of grants on innovation activities. Comparatively, there
are few papers theoretically analyzing the grant issuing process. Giebe, Grebe,
and Wolfstetter, 2006 point out the inefficiency of the widely applied merit-based

mechanism. They emulated grant applications in a first-price auction setting in a

6See Krishna, 2009 for a review.

7See Laffont and Tirole, 1993 for a review on studies of procurements. Hainz and Hakenes,
2012 considers different success possibilities of projects in a different context.

8The introduction of asymmetric bidders in auctions generally brings a lot of complications. See
for example Hubbard, Kirkegaard, et al., 2015
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lab experiment and obtained an improvement in efficiency. Their work was later
extended by Ensthaler and Giebe, 2014. They propose an incentive compatible
auction to further improve the efficiency of grant allocation. This paper studies the

grant issuing process in a more general setting and focus optimal mechanisms.

The rest of this paper is organized as follows. In Section 2 I describe the formal
model. Sections 3 and 4 discuss the derivation of an optimal mechanism under
flexible and fixed budget constraints, respectively. Section 5 concludes. All technical

results and details of proofs are relegated to the appendix.

4.2 Model

There are N proposals for a grant. Each proposer, if his proposal is selected by the
grant issuer, will conduct the project and generate a value composed of two parts: a
public value and a private value. The public value, or the “merit” of a proposal, is
the benefit to the whole society and is assumed to be perfectly evaluated by the grant
issuer. Lets = (s1,...,sy) denote the vector of public values. The private value
is a net benefit received exclusively by each proposer. It can be interpreted as the
personal gain net of the cost. The personal gain can be in forms such as reputation
improvement or a sense of achievement, brought by the project to its proposer; the
cost is the opportunity cost of each proposer to conduct the proposed project. Let
v = (vy,...,vy) denote the vector of private values. Each v; is privately known
to proposer i. I assume each private value is distributed according to a CDF Fj(-)
associated with a PDF f;(-) with full support on V; = [v,, ;]. The distributions of
private values are independent. Denote by F'(+) the joint CDF of private values, and
V = x ¥, V; the support of the joint distribution. I assume that the distributions of

private values are common knowledge.

There is heterogeneity over two aspects of the model: the various public values of
participants and the different distributions of private values. In particular, I allow

for the distribution of a proposal’s private value to be depend on its public value.

Each proposer can decide whether or not to apply for the grant after observing his
private value. The proposers who apply for the grant submit proposals simultane-
ously. If a proposer is not selected by the grant issuer, I assume that he can choose
whether or not to carry out the project on his own. If he does, he will generate the
same public value and private value, but he receives no funds from the grant; if not,
no value will be generated. The equilibrium concept I use is the Bayesian Nash

Equilibrium.
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By the revelation principle, it is without loss of generality to focus on incentive
compatible direct mechanisms. For direct mechanisms, the action that a proposer
can take is to report his private value v; € V;. The selection and payment results
are determined by these reports. Formally, q(V) = (¢;(V))i=1,..~, and t(¥V) =
(ti(V))i=1...~n. Here, ¢; is the probability of proposer i to be selected, and ¢; is
the payment awarded to proposer ¢, given that he is selected. If proposer ¢ is not

selected, it is not without loss of generality to set t; = 0

Each proposer cares only about his private value. So if proposer ¢ reports 0; while
all other participants report their private values truthfully, his utility given his actual

private value v; is

Ui(03;v;) = /v '(Qi(ﬁiav—ixvi + (03, v_i)) + (1 = qi(0;,v—;)) max(v;, 0))

dF,Z'(V,Z) (41)

Considering the integrand, the first term is the benefit that proposer ¢ can get if he is
selected. By assumption, once the proposal is selected, the proposer has to conduct
the project and realize a private value of v; in addition to the payment specified by
the mechanism ¢;(0;, v_;). The second term is the benefit he can get if not selected.
The proposer will decide whether or not to conduct the project without funds from
the grant. Since the proposer only cares about the private value v;, he will not carry

out the project unless the private value is non-negative.

Incentive compatibility requires that no proposer has an incentive to misreport given

truthful reports of all other proposers. Formally,
Definition 2. A direct mechanism is incentive compatible if
v; € arg max U; (05 v;), 4.2)

where U;(0;; v;) is defined in (4.1).

In addition, individual rationality deems it unacceptable for proposers to obtain less
by applying to the grant than what they could have obtained on their own. In order
to encourage as many applications as possible, the grant mechanism needs to satisfy
the constraint of individual rationality, i.e. to guarantee that no proposer suffers a
loss from applying for the grant. Since the calculation of a proposer’s utility from
applying to the grant varies in different scenarios, different forms of the constraint

of individual rationality need to be considered.
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In the first scenario, proposers can turn down a grant after getting rewarded, i.e. to
freely walk away from the mechanism after the realization of selection and payment
outcome. To avoid losing proposers in the end, the mechanism needs to satisfy ex
post individual rationality. In this case, all proposers should be willing to accept
every possible outcome of the mechanism, compared to what they can get outside

of the mechanism. Formally,

Definition 3. An incentive compatible mechanism (q, t) satisfies ex post individual

rationality if and only if

(V) (v; + t;(v)) + (1 — ¢;(v) max{v;, 0}) > max{v;, 0} 4.3)

If the proposers face an extremely high cost of rejecting the grant once they are
awarded it, to encourage applications, the grant issuing mechanism needs to satisfy
interim individual rationality. Under this constraint, the utility each proposer can
get outside of the mechanism does not exceed his expected utility from applying for
the grant.

Definition 4. A direct incentive compatible mechanism satisfies interim individual

rationality if

Ey_,Ui(vi;v;) > max{v;,0} 4.4)

—1

forall i and v; € V;.

The grant issuer cares about both the public value and the private value. If all
proposers report truthfully their private values, the utility function of the grant

issuer is
W(aq) = /VZ (6:(v)(si +vi) + (1 = q;(v))L(v; = 0)(s; + v;)) dF'(v)  (4.5)

Inside the summation is the total value, public and private, generated by each
proposer: the first term shows that if proposer i is selected, he has to carry out the
project and hence realize both types of values. The second term comes from the
fact that if a proposer is not selected, he only generates a total value of s; + v; if the

private value v; is no less than zero.

For simplicity, assume s; > —v, for all 4, so that all proposals are desirable for the

grant issuer.
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The grant issuer faces an exogenously given budget. For example, governmental
funding agencies may face a budget by the congress appropriation. Similarly,
private foundations may be bound by donations. To represent different flexibility of

the budget constraints, I consider two scenarios.

In the first scenario, the budget can be over- or under- spent at the end of the grant
issuing process, but before receiving proposals, the grant issuer needs to make sure
the expected total payment does not exceed the budget B. This budget constraint is

referred to as the ex ante budget constraint. Formally,

Definition 5. A mechanism (x,t) satisfies the ex ante budget constraint if
N
Ey ) ¢(v)t(v)<B (4.6)
i=1

In contrast, the ex post budget constraint requires the total payment not exceeding
the budget for every possible payment realization. In particular, no over-spending

is allowed. Formally,

Definition 6. A mechanism (x,t) satisfies the ex post budget constraint if

>  t(v)<B 4.7)

i€{j:q;(v)>0}

4.3 Grants with ex ante budget constraint

In this section, I derive optimal mechanisms when the grant issuer only needs to
make sure the expected total payment does not exceed the budget. Depending on
whether the proposers can forgo the grant based on the associated payment, we need

to solve the following two problems:

Problem 1.

max / S (@) (s + ) + (1= (V)L = 0)(s; +v1)) dF (v)

q,t
subject to incentive compatibility (4.2), ex post individual rationality (4.3), and ex
ante budget constraint (4.6).

and

Problem 2.

max /V S @ (9) s+ 00+ (1= ()T > 0)(si + 02)) AF(Y)

q,t
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subject to interim incentive compatibility (4.2), interim individual rationality (4.4),

and ex ante budget constraint (4.6).

It turns out that there is a mechanism that solves both problems,® as characterized

in Proposition 4:

Proposition 4. Suppose all private value distributions have an increasing hazard

fi(vs)
1—F;(v;)

following mechanism (q*,t*) solves both Problems 1 and 2:

rate

, then there exist thresholds m = (mq, ..., my) such that m; < 0 and the

. 1 v >2m
¢ (vi, v_;) = (4.8)
0 v <m;
—T Vi 2T,
t: (’UZ', V—i) = . (49)
0 UV < T

Proposition 4 narrows down the candidates for the optimal mechanisms to mecha-
nisms with a “cutoff selection rule” and a “fixed price payment rule.” In this class
of mechanisms, the probability of selecting a proposal ¢ does not depend on the
proposer’s reported value, as long as it is above the threshold 7;. In addition, the
selected proposer receives a fixed amount from the mechanism designer —;. Based
on Proposition 4, to find an optimal mechanism, it suffices to find a set of optimal

thresholds 7 such that the mechanism designer’s objective function is maximized.

To show this result, we first consider Problem 2. In this case, we can apply the
techniques used in Myerson, 1981 and use the Lagrangian multiplier to incorporate
constraints of budget and individual rationality into the objective function. It turns
out that the optimal mechanism should select proposals with a positive “virtual
value.” This value is an adjustment of each proposal’s private value due to the
budget constraint and the sacrifice made by the grant issuer to induce a truthful
report. Like in Myerson, 1981, an increasing hazard rate of the distribution of
private values guarantees a positive correlation between v; and the virtual value. As
a result, we can simply implement a cutoff selection rule for each participant, in
which a proposal will be selected if and only if it generates a non-negative virtual

value. It is straightforward to see this selection rule is incentive compatible. In

9The solutions to Problems 1 and 2 are not unique. If a mechanism solves one of the problems,
any variation of the mechanism on a zero-measure set of private values also solves that problem.
This paper characterizes only one of the multiple optimal mechanisms.
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addition, it can be verified that the solution also satisfies the ex post individual

rationality and hence is also a solution to Problem 1.

Note in particular that —m; is paid to all applicants with private value above 7;,
including proposers with v; > (. This result demonstrates the problem of “crowding-
out private funds” in grant issuing process. (Wallsten, 2000) Ideally, grants should
be only awarded to projects in need of external financial aids. Proposition 4 shows
that when projects can be carried out without grants, they will still apply to the
grant and use public funds as a substitute of private funds. This result is led by the
constraint of incentive compatibility. To induce applicants report truthfully about
their private values, the grant issuer has to pay them more than what is needed to
support their projects as “information rents.” Otherwise the applicants will extract

the information rents in forms of misreporting their private values.

An interesting feature of the cutoff selection rule and the fixed price payment rule is
their implementation: instead of collecting all participants-reported private values,
the mechanism designer can simply provide each participant a take-it-or-leave-it
offer of a payment of —m;. This way, a proposer will accept the offer if and
only if his private value is above 7;, and the optimal selection would be realized

automatically.

To take a closer look at the optimal vector of thresholds 7, first note that if B >
vazl(—gi), i.e. when the budget is large enough to support all proposals, the
optimal mechanism can simply set m; = v, so that all proposals are selected and
paid at the maximal cost. If the budget is relatively small, the derivation of 7;’s
depends on specific forms of private type distributions and hence becomes much

more intricate. In what follows, I provide a more detailed characterization.

Proposition 5. Suppose v; > 0, v, < 0 for all i, and f!(v;) > 0 for v; € |v,;, 1),
then for any 1, the optimal threshold m; is weakly increasing with the public value
s;, weakly decreasing in the public value of other projects s; for j # i, and weakly

decreasing in the budget B.

Note that f/(v;) implies an increasing hazard rate. So the results in Proposition 5

applies to a smaller set of distributions than Proposition 4.

The impact of public values on the optimal threshold is very intuitive. Since the
grant issuer cares about the total of both public and private values, a higher public

value of a project can compensate for its low private value. As a result, the grant
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issuer is more willing to select and pay more for projects with higher public values.
On the other hand, since the budget is fixed, a higher payment to one project will
result in a lower payment to other projects. Therefore, a higher public value of the

other project will lead to a lower chance of selecting any particular project.

It does not mean that the budget should always go to the project with the highest
public value and then move on to the project with the second highest public value,
etc. until exhausted. This type of mechanisms is often referred to as the merit-based
mechanism (Giebe, Grebe, and Wolfstetter, 2006). One problem of the merit-based
mechanism is that it does not take the private value of projects into consideration.
Setting a high threshold in the selection rule helps screening out projects with low
private values. If the grant issuer always supports the project with the highest public
value, regardless of its reported private value, when the project’s private value is
very low, the total welfare generated by this project is no longer the highest among
all projects. This is especially true when the difference between public values is
not very large. In addition, paying too much money for the project with the highest

public value diminishes the funding opportunity for other projects.

For an example, let v = —1 and v = 1. Suppose the budget is B = 1.5 and there
are only two proposals. Table 4.1 provides optimal thresholds corresponding to
different values of s; and s,. By assumption, Project 1 has a higher public value.
If it is optimal to always select Project 1, we should see m; = —1. According to

table 4.1, this is not the case if the difference between public values of two projects

is small.

S1 So ™1 9

2 | 1] -1 |-06
1.9/ 1] -1 |-0.6
1.8/ 1] -1 [-0.6
.77 1] -1 |-0.6
1.6 1] -1 |-0.6
1.5(1 | -1 |-06
141 -1 |-06
131 11]-09|-0.7
1.2 11]-09|-0.7
1.1 1]-0.8]|-0.8

Table 4.1: Optimal thresholds of two proposals, v = -1, v =1, B =1.5

Next we take a closer look at the impact of the budget on the optimal thresholds.

Proposition 5 states that if the budget increases, every threshold 7; weakly decreases.
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In other words, given the realized private values of projects, an increase in the budget
can lead to the selection of some projects that are not selected under a smaller budget.
Furthermore, those projects which were selected under the smaller budget will still

be selected. Therefore, no projects will be hurt by the budget increase.

Note that the assumption of 7; > 0 plays a crucial rule in this result. Otherwise
the increase in budget may no longer yield a Pareto improvement. Suppose there
is a project ¢ with extremely high public value compared to all other projects, and
v; < 0. Since the highest possible private value is negative, proposer ¢ will never
carry out this project without external funds. If B < —p;, the budget is not enough
to fund it completely, leaving no chance for the project to be carried out. When the
budget increases such that B > —1;, it is possible for the grant issuer to support
this extremely beneficial project. To maximize the total welfare, the budget should
be entirely used on this project, resulting in all previously selected projects losing

their funding.

It should be pointed out that the payment rule in Proposition 4 does not satisfy the ex
post budget constraint. For example, if all proposals have private values of exactly 7,
the total payments exceed the budget since 31 (—;) > SN (1—Fy(m;)(—m)) = B.

In fact, the ex ante budget constraint is a very weak constraint. To see this, consider

the following problem:

Problem 3.

q,t

mipe [ 37 (@) (s 00 = M (V)W) AP (Y

subject to incentive compatibility (4.2) and interim individual rationality (4.4),

where A > 0 is an exogenous constant.

In this problem, the budget constraint is substituted with an additional term in the
objective function —A 3"V ¢;(v)t;(v). In other words, instead of facing a budget
constraint, the grant issuer can spend as much as she wants on supporting the
proposed projects, but suffers from a cost proportional to her expenditure. The

value of A reflects how sensitive the grant issuer is to the total expenditure.

The objective function in Problem 3 and the Lagrangian of Problem 2 that incorpo-
rates the budget constraint are very similar. If we set )\ the to be the value of the
Lagrangian multiplier that solves Problem 2, or set the budget in Problem 2 equal

to the optimal total payment in Problem 3, the two problems are equivalent.
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4.4 Grants with ex post budget constraint

In this section, we discuss the mechanism design problem when the grant issuer
has a budget that cannot be exceeded after the selection and payment outcome is
realized. Like in the previous section, two forms of individual rationality constraints
are considered. First, if the proposers can freely exit the mechanism only before the
announcement of the selection and payment outcome, we need to solve the following

problem:

Problem 4.

q;t

max/vz (@i(v)(s;i +v;) + (1 — q;(v)I(v; > 0)(s; + v;)) dF(v)

subject to interim incentive compatibility (4.2), interim individual rationality (4.4),

and ex post budget constraint (4.7).

An optimal selection rule to Problem 4 also turns out to be a cutoff rule. Different

from Problem 2, the corresponding payment rule becomes more involved.

Proposition 6. Suppose the distribution function has an increasing hazard rate.
Then there exists m = (my,...,my) such that m; < 0 for all i and the following

mechanism (q*, t*) solves Problem 4:

I v>m
q; (v, vy) = (4.10)
0 v<my
\ —Ti+ 53 2y (Cm (L= Fi(my)) = T} (vy)) v = m
t; (vi,v-;) = ;
0 UV < T
(4.11)
where T (v;) is the expected payment and satisfies: 1) (v;) = —m; for v; > m,

T (v;) = 0 for v; < m;, and S~ | —m;(1 — Fy(m;)) < B.
To derive the results in Proposition 6, we first consider a weaker form of ex post
budget constraint that is easier to deal with:

Definition 7. A mechanism (q, t) satisfies the weak ex post budget constraint if

N

Z%(V)ti(V) <B (4.12)
i=1

forall v € [v,v]V.
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Note that if the selection rule is such that a grant is either issued with probability 1
or not at all, the weak ex post budget constraint coincides with the ex post budget

constraint.

Following the technique of d’Aspremont and Gérard-Varet, 1979, we can show an
equivalence between the weak ex post budget constraint and the ex ante budget

constraint:

Lemma 6. If an incentive compatible mechanism (q, t) satisfies the ex ante budget
constraint, then there exists an incentive compatible mechanism (q,t*) such that
Ti(vi) = [, a(V)t;(v)dF_(v_;) for all i and (q,t*) satisfies the weak ex post

budget constraint.

The logic behind the result of Lemma 6 is as follows. If a mechanism satisfies
the ex ante budget constraint, it means the expected total payment does not exceed
the budget. We only need to construct a new payment rule, without touching the
selection rule. Towards that end, the constructed ex post payment rule preserves the
expected payment, but the ex post payment is adjusted by adding terms with zero
expectation in order to satisfy the ex post budget constraint. If the adjustment part
for each proposer does not depend on his own report, incentive compatibility still

holds under the new payment rule.

With Lemma 6, we can first focus on solving the problem with interim individual
rationality and ex ante budget constraint, which is solved in Proposition 4. Then we
apply the selection rule in Proposition 4 and adjust the payment rule to satisfy the

weak ex post budget constraint.

Note that the optimal selection rule in Proposition 4 is binary. So the ex post budget
constraint is equivalent to weak ex post budget constraint. Therefore the above

mechanism is also optimal for Problem 4.

In Proposition 6, the selection rule is still a cutoff rule, but the payment rule no
longer corresponds to a fixed price. Instead, it depends on other proposers’ reported
types and cannot be implemented by take-it-or-leave-it offers. In particular, the
mechanism in Proposition 6 requires all thresholds ;’s to be announced to all
participants. This is different from the last section, where proposers only need to

know their own threshold.

Furthermore, the mechanism in Proposition 6 does not satisfy ex post individual

rationality. Compared to Proposition 4, the payment rule here has an additional
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term. This term helps keep budget balance when many proposers are selected at
the same time. The more proposers are selected, the less each of them will receive.
In the extreme case, when all proposers report exactly the thresholds, the payment
for each proposer is —m; + > j2i(Fj(mj)m;) < —m;, and this violates ex post

individual rationality.

Next we discuss the case where the proposers can reject a grant if their proposals
are selected. Combined with the fixed budget constraint, the optimization problem
becomes more intricate. In particular, the techniques used to solve the previous
problems are no longer applicable, since a cutoff selection rule is no longer optimal,

as demonstrated in the following example.

Example 2. Suppose there are two proposers with s and s,. Each proposer has
two potential private values: vy and vy. Assume vy, < vy < 0 and each proposer
has value vy with probability p and vy, with probability 1 — p. In addition, assume
—vp < B < —2up and sy + vy, < sg + vy < s1 +vy. Then it is not an optimal

mechanism to have a cutoff selection rule in the above setting.

In the above example, the budget can be spent on at most one project. In addition,
the difference between public values s; and s is quite small. Consider the following

mechanism, where the selection rule is:

a(vg,) =q(vp,vp) =1 q(vp,vm) =0

(-, vr) = @(vg,ve) =0 q(vg,vg) = 1.

The corresponding payment rule is:

tl(/UH7 ) = tl(U[nUL) = —UL tl('UL,UH) =0

t2('JUL) - tQ(UH7UH) - 0 tQ(UL7UH> = —vL.

It is straightforward to see that this mechanism satisfies ex post budget constraint
and ex post individual rationality. To verify incentive compatibility, first note that
no proposer has an incentive to misreport if they have a private value vy. Since
proposers with vy will always conduct the project, they are better off getting selected
and paid. Reporting v;, will decrease the possibility of getting selected and hence
decrease the expected payment. So any proposer with vy will avoid reporting vy..
On the other hand, proposers with v; have no incentive to over-report. This is
because regardless of their reports, they always receive a utility of 0. Therefore,

incentive compatibility holds.
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The selection rule in the above mechanism is no longer a cutoff rule, since whether
a participant is selected depends on the other participant’s report. In addition, this
mechanism generates a higher welfare than any cutoff selection rules that satisfy

both ex post individual rationality and the ex post budget constraint.

It is worth noting that in this example, the form of optimal mechanisms depends
highly on public values. Suppose, instead, that the difference between s; and s is
very large (s; — so > vy — vp), then the first project should always be selected by
setting the threshold at v;,. The corresponding optimal mechanism takes the form of
a cutoff selection rule. As a result, even if the proposers have no information about
public values, they can make inferences from the form of the mechanism announced

by the grant issuer.

4.5 Conclusion and discussion

This paper discusses optimal mechanism design problems of the grant issuing pro-
cedure under different environments. If the grant issuer faces a flexible budget,
the optimal selection rule is a cutoff rule: each proposal is selected only when the
reported private value is higher than a proposer-specific threshold. The threshold
for each proposer decreases in the budget, decreases in the public value that can be
generated by the proposer’s project, and increases with the public value generated
by other proposers’ projects. If there is an extremely high cost for the selected
proposers to turn down the grant, the optimal selection rule has the same form even
when the grant issuer faces a fixed budget. In contrast, if the grant issuer faces
a fixed budget and selected proposers can turn down the grant freely, whether a
proposer can be selected depends on the reported private values of other proposers,

and hence a cutoff selection rule is not necessarily optimal.

The above result shows the value of maintaining a flexible budget and imposing a
high cost of rejecting a grant to prevent proposers from backing out after the grant
is awarded. The absence of both factors not only brings a loss in social welfare, but

also makes the implementation of optimal mechanism very complicated.

The mechanisms proposed in this paper overcome the problem of misallocation
brought by the merit-based mechanisms (Giebe, Grebe, and Wolfstetter, 2006). By
setting a proposer-specific threshold, my mechanism screens out the projects with

low private values, which is neglected in the merit-based mechanisms.

However, the inefficiency caused by the problem of crowding-out private funds

(Wallsten, 2000) still stands in my mechanism. To induce applicants to report
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truthfully about their private values, the grant issuer has to pay them more than what
is needed to support their projects as “information rents.” As a result, projects which
can be carried out without external financial support will use grants as a substitute

for private funds.

One aspect that is not modeled in this paper is moral hazard. In reality, the selected
proposers may take much less effort into the project after receiving the grant and
hence provide lower merit than the initial assessment. This case can be ruled
out when both of the following conditions are satisfied: first, there is no noise in
measuring the quality of the project; and two, the cost of breaking their promises is
large enough so that no proposers are willing to take the risk. For grants provided
by institutions like the National Institutes of Health (NIH), the delivery in the end
of the grant period is usually very specific. In addition, reputation helps proposers
maintain a long relationship with the grant issuer. In this case moral hazard is rare
and the model is applicable. For other grants especially grants for basic sciences, it
is difficult to tell whether the failure of a project comes from the lack of effort or the
risk of the project itself. In these cases, moral hazard is possible and future work is

needed.

4.6 Appendix
Constraints simplification
In this section, I show some technical results to simplify the constraints and these

results will be used for further proof of the main results of this paper.

Let u;(v;) = U;(v;; v;). For notational simplicity, let

Qu(vi) = / 0i(vis v )AF () @.13)

1) = [ e v-t(w v dF(v-) (@.14)
Intuitively, @Q;(v;) and T;(v;) respectively represent proposer i’s probability of get-
ting selected and his payment in expectation of other proposers’ private values. In
what follows I refer to @;(v;) and T;(v;) as the expected selection and payment rules

respectively. !0

For incentive compatible mechanisms, the participants’ utility functions can be

characterized in the following lemma:

10T previous literature, (; and T are usually referred to as the “reduced forms” of ¢; and ¢;
(Border, 1991 for example). However, in this paper q is not required to be a simplex. So I use
different terms to avoid confusion.
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Lemma 7. A direct mechanism is interim incentive compatible if and only if

u; + f: Qi(2)dz v; <0
u; (v;) = u (4.15)
u; + fz' Qz(z)dz +v; v; >0

where w; is a constant and Q;(v;) is non-decreasing in v;.

The proof is omitted since it follows standard techniques used in Krishna, 2009.

Note that proposers with v; > 0 will realize their private value regardless of the
selection result, so they have incentive to under-report (over-report) if the utility
from participating in the mechanism is growing at a rate lower (higher) than 1. Asa
result, in Lemma 7, the mechanism has to provide these proposers a utility function
growing exactly at 1. For the rest proposers, the selection outcome matters more,
since if not selected, they will receive a utility valued at 0. In line with Myerson,
1981, it turns out these participants have no incentive to misreport if and only if the
utility grows at a rate which is exactly their probability of getting selected, and the

expected selection rule has to be monotonic.

By substituting the utility function of Lemma 7 into Definition 8, the constraint of

interim individual rationality can be simplified.

Lemma 8. An incentive compatible mechanism (q, t) satisfies the interim individual

rationality if and only if

>0 (4.16)

IS

Proof. Plug (4.15) into (4.16) to get

u; + f;l Qi(z)dz >0 v; <0

u;(v;) > max{v;,0} < .
u; + fu- Qz(Z)dZ +v,>v v >0

Note that u; = u;(v;). So the result in Lemma 8 means that as long as the proposer
with the lowest possible private value is willing to participate in the mechanism,
proposers with higher private values must be willing to participate as well. In
particular, although the proposers with private value above zero has better outside

option (v; as opposed to 0 for participants with private value below zero), it is still
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enough to guarantee their participation just by providing the lowest private value

participant a non-negative utility.

At last, the ex ante budget constraint can also be simplified as the following:

Lemma 9. A mechanism (x,t) satisfies the ex ante budget constraint if and only if

i (Qi + /VO (1;(—22(;}1) - Uz’) Qi(vi)dFi<Ui>> <B 4.17)

i=1 !
The proof is omitted since the result follows directly from previous lemmas.

One interesting feature of (4.17) is that the left-hand side shows as if the payment
is only made to participants with private value below zero. However, this does not
mean no payment will be made to participants with positive private values. Plugging
(4.15) into (4.1), it is easy to see that the payment for participants with v; > 0 is
ff Qi(z)dz, which does not depend on v;. This means the information rent to induce
trﬁthful reports from participants with positive private value is a constant. On the
other hand, different from Myerson, 1981, the information rent for participants with
value below 0 is %, instead of %v(g) %U(U)) in (4.17) contains

both the payment to participants with value v; < 0 and v; > 0.

. The term

Proof of Proposition 4
Proof. We first solve problem 2:

By Lemmas 7, 8 and 9, Problem 2 can be simplified as the following:

%ELXZ /v (Qs(V)(s; + ;) + (1 — Qs(v)I(w; > 0)(s; + v3)) dFy(w;)

s.t. Q;(v;) non-decreasing in v; for all 4

u; >0

1

i <@z + /VO (%}Zfl) - Uz‘) Qi(vi>dFi(Ui)> <B

i=1

Zi
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We ignore the monotonicity constraint on (); for now and write down the Lagrangian

N
L(Q,u;p1,) =pB + Z(v -

+§;</ Qi(v;) (sz (14 p)v; ul ff@() )>dF(vz))
+i / " (55 + 0)dEy () .18)

First note that it is without loss of generality to focus on mechanisms with v, = 0.
This is because if in a mechanism there exist some u, > 0, the value objective
function won’t change if we set u; = 0 and keep the allocation rule (); the same
as before. In addition, the new mechanism also satisfies compatibility, individual

rationality, and budget constraint.

Second, the last term (4.18) does not depend on the value of Q for v; > 0. So we

only need to focus on the selection of Q for v; € [v;,0].

For notational simplicity, let ¢;(v;) = s;+ (14 p1)v; — pmilve) fl? “;Z) It is straightforward

to see that it is a pointwise optimal solution if for v; € [v, 0],

When the distribution function has an increasing hazard rate, ¢;(v;) is an increasing
function of v;. So there exists m; € [v;, 0] such that ¢;(v;) > 0 for 0 > v; > m; and
¢z(vz) < 0 forv; < .

Correspondingly, the payment rule

0 V; < T

By the constraint of incentive compatibility, @;(v;) has to be non-decreasing in v;.
If m; < 0, Q;(0) = 1, then we need Q;(v;) = 1 and T;(v;) = —m; for v; > 0. If
m; = O,then @} (v;) = 0, and T;*(v;) = 0 for all v; < 0. In this case, for v; > 0, set
Qi (v;) = 1 and T (v;) = 0 = —m;, the objective function reaches maximum and
all constraints are still satisfied. As a result, Q}(v;) = 1 and T;*(v;) = —m; for all
v; > 0.
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At last, it is straightforward to check that (Q*, T*) can be implemented by (q*, t*)

given in the proposition.

Note that the cutoff selection rule and fixed price payment rule also satisfy ex post
individual rationality (4.3), which is a stronger constraint than the interim individual
rationality. So the optimal mechanism in Proposition 4 is also optimal subject to ex

post individual rationality. [

Proof of Proposition 5

Proof. First of all, if B > Zi]\il(—gi), the optimal solution is to set ; = 4, which
is independent of s; and B, so Proposition 5 holds naturally. If B < Zij\il(—yi),

we start the proof with Lemma 10:

Lemma 10. If B < Zf\;l (—v;), there exists A > 0 such that each optimal threshold

m; satisfy exactly one of the three conditions:

1. m;=0and &(mi; A) <0
2 7= vy and €(m; \) > 0

3. m € (v;,0) and E(mi; ) =0

and Y"1, (1= Fy(m;))(—=m;) = B, where &(vi; X) = s; + (1 4+ Moy — Mz s

the adjusted virtual value.

Proof. To solve for the optimal thresholds, by Proposition 6, substitute the cutoff
selection rule and fixed payment rule into the grant issuer’s utility function (4.5) and

ex ante budget constraint (4.17), and the problem becomes

N .

maxz / (Si + 'U,L>fz(’Ul)d’UZ (419)
v

sty (1= Fy(m))(-m) < B (4.20)
=1

Incorporate the budget constraint into the objective function by applying the La-

grangian multiplier, and we have

LN = /(s ) fwdv + AB =AY (1 = F(m)(—m) (421
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The first order derivative

oL
om A= (s + mi(1 4+ A) film;) — AFi(mi) (4.22)
And the second order derivative
2L ,
92 —(L420) fi(m) — (si + (L4 A)m) fi(m) (4.23)
It is straightforward to see that when f/(v;) > 0, 2275 < 0 so that (4.21) is concave

in 7; and hence the optimization problem has a unique solution.

Note that 7; € [v, 0], so the maximizer 7; must satisfy either g—é mi=0 > 0, g—fi iy <
0, or % mew0) = 0. Substitute these conditions into (4.22) to obtain the result in
Lemma 10. [

Lemma 11. The optimal thresholds ;’s are nondecreasing in \.

Proof. First, suppose m; € (v;,0). By 10, we have
A= (s +mi(1 + ) fi(mi) — AFi(m;) = 0

Take derivative of A\ to obtain

om,;
87; (L+20) film) + (L + s + N fi(mi)m) = 1 = Fy(m) — mifi(m)  (4.24)
The multiplier of % on the left-hand-side of (4.24) is positive since A > 0 and by

assumption f/(m;) > 0.

To tell the sign of the right-hand side of (4.24), let g(x) = 1 — Fj(x) — = f;(x).
Then ¢'(z) = —2f;(z) — xf/(z) < 0on (—v;,0). Since g(0—) =1 — F;(0) > 0,
g(m;) > 0 for m; € (—v,;,0). So the right-hand-side of (4.24) is positive.

on;

As a result, o

> 0 for m; € (—v;,0).
Now suppose m; = 0, then by Lemma 10,
(1 = Fy(m) — m fu(mi) )A — (i + m) fi(mi) = 0

When ) increases, keeping ; the same, the left-hand side increases as well, since
by previous discussion (1 — Fj(m;) — m;fi(m;)) > 0. So the above condition still

holds and the updated 7 should still be 0. So ; is nondecreasing in A

At last, suppose 7m; = v,. Then by Lemma 10,

(1 = Fi(m) — mifi(mi))A = (s + m) fi(mi) <0
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When ) increases, keeping 7; the same, the left-hand side also increases, and the
above condition may fail. If it still holds, the updated 7] does not change. Otherwise,
the new 7} will increase. Any of these cases should happen, 7; is nondecreasing in
A

This completes the proof of the lemma. 0

Now we consider the changes of m; with s; and s;. If s; increases with everything
else held the same, including A, 7; decreases and the budget is in short. To keep
budget balance, by Lemma 11, A\ must increase so that all thresholds 7; for j # ¢
increase. However, the increase in A must be small enough so that the decrease in
m; due to the increase in s; is not offset by the increase in A, otherwise all thresholds
are higher and the there is extra budget that can be used to improve the objective

function. As a result, the increase in s; will cause decrease in 7; and increase in 7
for j # 1.
When the budget B increases, A must decrease, otherwise the increase in A will lead

m; s increase by Lemma 11 and there will be extra budget, making the thresholds no

longer optimal. As a result, the increase in B will cause the decrease in 7; for all :.

This completes the proof of Proposition 5. [

Proof of Lemma 6

Proof. For notational simplicity, let

[, Qi(2)dz — Qi(vi)vi v; <0

Az(vz) = 0
[, Qi(2)dz v; >0

(4.25)

Construct
Then
T;(UZ) = / ti(V)dF_Z(V_Z)
Vi

1
w1 ), Do AEMP L) T AR @27

Since T;(v;) = u; + A;(v;), compare terms with (4.27), and we have

1
U = a; — ﬁ/ v%:Aj(vj)dF—i(V—i) (4.28)
By



Then

This completes the proof.
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