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ABSTRACT

We consider several issues involved with searching for and studying different types of compact
bodies using the gravitational waves from binary inspirals. In Chapter 2, we use a radiation-
reaction force formalism to compute (to leading post-Newtonian order) the inspiral evolution of
a circular, nonequatorial orbit around a spinning black hole. We find that an initially circular
orbit remains circular under radiation reaction and is driven towards antialignment with the black
hole’s spin direction. In Chapter 3, we apply this same formalism to orbits which are elliptical
as well as nonequatorial. In addition, we prove that circular orbits remain circular exactly. In
Chapter 4, we show that all the multipole moments of a massive, compact body (whose gravita-
tional field is stationary, axially symmetric, and reflection symmetric across the equatorial plane)
can be determined from the gravitational waves produced by a much less massive, compact object
inspiraling in a contracting circle in the equatorial plane. We show that the moments are encoded
in the waves’ evolution in (at least) four independent functions of the gravitational-wave frequency:
the gravitational-wave energy, the precession frequency of the orbit when slightly eccentric, the
precession frequency of the orbit when slightly nonequatorial, and the gravitational-wave phase
evolution. In Chapter 5, we compute the structure and the multipole moments of a spinning boson
star with large self-interaction. We find that only three moments are needed to specify all the star’s
properties, and that the pattern of moments is very different from that for black holes. In Chapter
6, we estimate how accurately a gravitational-wave detector can estimate the multipole moments of
the central body from the gravitational waves produced by an inspiraling compact object. We find
that, typically, a space-based detector such as LISA (as opposed to an Earth-based detector such as
LIGO) is necessary to get accurate enough measurements of the multipole moments so as to search
for massive, compact, non-black-hole objects. In Chapter 7, as a model for computing the full
details of the gravitational waves from an orbital inspiral, we compute the scalar waves produced

by a scalar charge in a circular, equatorial orbit around a body with arbitrary multipole moments.
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1 Introduction

Gravitational-wave detectors will provide us with ears to detect events such as stellar collapses,
pulsars, the stochastic background of gravitational-wave sources, and the inspirals and collisions
of black holes and other compact objects into each other [1, 2]. While experimenters construct
these detectors, theorists must construct templates for the expected waveforms, to be used both
for searching for the expected sources and, if their waves are detected, for deducing the properties
of the source.

Inspiraling-binary sources (consisting of two compact objects such as neutron stars or black
holes orbiting around each other while emitting gravitational waves) are of great interest because
they give clean and direct information as to the nature of gravity in the strong-field regime. From
this viewpoint, there is a special interest in inspiraling binaries with a large mass ratio between
the two objects. This is because the characteristics of the smaller-mass member of the binary
do not have a significant effect on the gravitational waveforms; the waveforms carry information
solely and cleanly about the characteristics of the larger-mass object. In particular, the waves
can give a detailed and highly accurate map of the more massive object’s gravitational field and
other properties as they exist in the absence of the inspiraling object. This is in contrast to the
complexities that would arise if the masses were comparable and the waves depended strongly on
the properties of both objects and their mutual interactions.

The smaller-mass object serves as a gravitational-wave-producing test probe of the larger-mass
object’s external gravitational field. The smaller-mass object is often (as in Chapters 2 and 3)
referred to as “the particle.” For the most part, the properties of the smaller-mass object are
insignificant. All that is important about it is the value of its mass p and the requirement that
it is compact enough that it does not tidally disrupt during the inspiral. This object might be a
white dwarf, a neutron star, or a small black hole, with a mass typically on the order of 1M (one

solar mass).



The mass M of the larger-mass object is, of course, subject to the condition that u < M.
For the gravitational waves to be in the highly relativistic range of interest, the object must be
compact enough that its radius is only a few times GM/c? = M (here and throughout this thesis,
we use units where Newton’s gravitational constant G and the speed of light ¢ are set to unity).
For a circular orbit of radius r, the frequency F of the produced gravitational waves will primarily
be at twice the orbital frequency: F ~ 2(M/r®)Y/2/(27) = (M/r®)}/?/x. Therefore, since we are
interested in the strong-gravity case in which r also can become as small as a few times M, then
we would want to use a gravitational-wave detector which is highly sensitive in a range from lower
frequencies up to, say, 0.1/M = 2 x 10*Hz(Mg /M).

Several broad-band, laser-interferometer gravitational-wave detectors are under construction
or in planning stages. Among them, the Caltech-MIT Laser Interferometer Gravitational-Wave
Observatory (LIGO) (3] will measure “high-frequency” waves from ~ 10 Hz to ~ 500 Hz. At such
frequencies, our above mentioned application would be well-suited if the mass M were less than
~ 300Mg (but much greater than p). The European Space Agency’s proposed, space-based Laser
Interferometer Space Antenna (LISA) [4] will measure “low-frequency” waves, with a sensitivity
range from about 10~* Hz to 10! Hz. This will be best-suited for a central object with mass M
in the range ~ 105 Mg to ~ 3 x 107 M.

A compact object with such a high mass M so as to be in one of the above ranges would
likely be a black hole, since ordinary matter of that mass and compactness could not support itself
against collapse. We temporarily assume that it is a black hole. As a result of the black-hole no-
hair theorem [5], these Kerr (spinning) black holes need only two parameters—their mass and their
spin angular momentum—to describe them. Hence, the space of templates for possible inspiral
waves would be describable by a small set of parameters.

Despite this, computation of the templates is difficult. It consists of three tasks: computing
the motion of the particle in the absence of gravitational radiation by using a set of constants of

motion, computing the gravitational waves produced by that motion, and finally, computing how



the radiation reaction associated with those waves modifies the constants of motion. Fortunately,
in the limit of 4 < M, the timescale for the modification of the constants of motion is much longer
than an orbital period, so that each task can be solved relatively independently of the others. Here

is how one might go about solving each task:

1. Although the orbit is very complex, in general being both elliptical (having a nonzero ec-
centricity) and out of the black-hole’s equatorial plane, the task of computing the motion
ignoring radiation is tractable because there exist three constants of motion (see §33.5 of
Ref. [6]): the orbital energy, the component of the orbital angular momentum along the
black hole’s spin axis, and the so-called “Carter constant,” which is (roughly speaking) the
sum of the squares of the orbital angular momentum along the other two axes. With these
constants of motion, computation of the coordinates of the particle along its path reduces to

fairly simple integrations.

2. The task of computing the waves can be done using the Teukolsky formalism, which allows for
a separation-of-variables solution to the gravitational-wave-generation equations. Although

this task is complicated in practice, it is straightforward in principle.

3. The task of computing the effects of radiation reaction on the constants of motion is easy for
the energy and the angular momentum along the black hole’s spin axis. This is because the
sum of the orbital energy and the energy carried in the gravitational waves is conserved, and
similarly so for the angular momentum. Therefore, the values of these two constants decay at
the rate that energy and angular momentum are carried away by the waves (both to “infinity”
and into the hole). However, there is no conservation law to determine the evolution of the
Carter constant. Without the ability to compute the Carter constant’s evolution, we would
only be able to solve the restricted case of the orbital motion being in the spinning black
hole’s equatorial plane (which is any plane if the black hole is not spinning). In that case,

the Carter constant would be and would stay zero.



In Chapter 2 of this thesis (each of Chapters 2 through 7 is a separate, published or submitted
paper, corresponding to Refs. (7, 8, 9, 10, 11, 12|, respectively), we develop a different method that
allows for solving for the evolution of all three constants of motion, even when the orbit is out
of the equatorial plane. By computing a radiation reaction force which acts on the particle, we
compute how this force changes the three constants. As expected, the computed changes in the
first two constants of motion are in agreement with the changes predicted by using conservation
laws. Knowledge of the previously uncomputed evolution of the third constant completes the circle
of tasks.

Unfortunately, our Chapter 2 calculation is restricted to the limit of large orbits (that is, we
compute the first post-Newtonian term in a post-Newtonian series). Moreover, we compute the
evolution only for orbits which are initially “circular.” These “circular orbits” are ones which have
a constant value of (Boyer-Lindquist coordinate) radius r; they are not really circles because the
plane of the orbit precesses around the black hole’s spin axis. Our result shows that these orbits
remain circular under radiation reaction, at least to the leading post-Newtonian order to which
the calculation is valid. That is, the initially circular orbit will evolve into another circular orbit at
a smaller value of r. Interestingly enough, the orbital angular momentum evolves slightly towards
antialignment with the black hole’s spin angular momentum.

Chapter 3 is an extension of Chapter 2 to orbits which are elliptical in addition to being out of
the equatorial plane. Similar to the case with circular orbits, radiation reaction drives eccentric,
large orbits towards antialignment with the black hole’s spin. Chapter 3 also contains a proof of a
conjecture by Kennefick and Ori (which they have independently proved by a different method [13])
that circular orbits around a Kerr black hole remain circular exactly (not just in the limit of large
radius, as shown in Chapter 2). Our proof is based on a property that these circular orbits possess:
they are “reflection symmetric” in the sense that the path of the orbit on one side of the equatorial
plane is duplicated by the path on the other side during the next half orbit. This symmetry is

preserved under radiation reaction. It turns out that slightly elliptical (noncircular) orbits are



never reflection symmetric. Therefore, a circular orbit, which is reflection symmetric and must
remain so even as it evolves under radiation reaction, can only evolve into another circular orbit.

Our discussion in Chapters 2 and 3 is based on the assumption that the larger-mass object
(the central body) with mass M is a black hole. For the remainder of this thesis (Chapters 4
through 7), we consider how we can use the gravitational waves to determine whether the central
body is indeed a black hole or instead some other type of massive, compact object [14]—e.g., a
(hypothetical) boson star [17], soliton star [18], or naked singularity. In Chapter 4, we look at
how the gravitational waves carry the information to make such a determination. In Chapter 5,
we consider boson stars as a concrete example. In Chapter 6, we consider how the noise of the
gravitational-wave detectors affects how accurately we can make the determination. In Chapter
7, we develop a numerical scheme that might aid in the construction of the templates needed to
search for non-black-hole, compact bodies.

To what extent do the gravitational waves carry information of the exterior gravitational field
of the larger-mass object? This question is addressed in Chapter 4 of this thesis. We restrict the
gravitational field of the central body to be stationary (unchanging in time), axially symmetric,
and reflection symmetric across the equatorial plane. We can describe this exterior gravitational
field by two infinite sets of Geroch-Hansen scalar multipole moments [15, 16]. One set consists
of the mass moments, which include the mass itself (which is M), the mass quadrupole moment,
and an infinite sequence of higher moments. The other set consists of the current moments, which
include the spin angular momentum, the current octopole moment, and an infinite sequence of
higher moments. For black holes, these moments satisfy simple relations among themselves, as
dictated by the black-hole “no-hair” theorem (really “two-hair” theorem): All the moments can
be expressed uniquely in terms of the mass and the spin. For other types of candidate objects
that we might search for, such as boson stars [17], soliton stars [18], or naked singularities, these
moments may satisfy some completely different relations, or may all be independent.

In Chapter 4, we restrict attention to the simplest case of the orbiting object traveling through



vacuum in the central body’s equatorial plane in a circle which slowly shrinks in radius as gravi-
tational waves are emitted. We show that all the multipole moments are encoded in these gravi-

tational waves, in fact in (at least) four independent ways:

1. The dominant gravitational-wave frequency F' (twice the orbital frequency Fi,p) sweeps up-
wards as a function of time. If we could measure the cumulative gravitational-wave energy
that has been emitted as a function of the dominant gravitational-wave frequency, Eqw(F),
or equivalently d Eqw/dF, then we would be able to deduce the moments from this function.
This ability arises because each moment first appears in the post-Newtonian expansion for the
energy at a different post-Newtonian order. We show how to compute the post-Newtonian
expansion for the energy as a function of orbital frequency. We list the first few terms of
this series. Unfortunately, we cannot actually measure the cumulative energy, because we
can only measure the energy that is emitted in the direction of Earth instead of that emitted
in all directions. However, this exercise shows that the waves carry the values of all the

moments.

2. If the orbit is not exactly a circle, but rather slightly elliptical, then the orbit will precess at a
frequency Fprec,1 which is a function of the orbital frequency (and correspondingly, a function
of the dominant gravitational-wave frequency F' = 2F,,). This precession law Fprec,1(F)
can be measured by gravitational-wave detectors. We perform the same type of analysis as
we just described for the energy, and conclude that the function Fprec,1(F') contains, in an

extractable form, all the moments of the central body.

3. If the (almost) circular orbit is slightly out of the equatorial plane (of a non-spherically-
symmetric central body), then the orbit will precess with a different type of precession than
that described above for elliptical orbits. This precession frequency, which is a function of
the gravitational-wave frequency, Fpreca(F'), can be measured by the detectors. We show

that it contains in extractable form all the body’s moments.



4. The most accurate way of determining the moments is by measuring the phase ® of the
dominant gravitational-wave frequency component, as a function of that frequency F. Here
too, we show that each moment appears at a different order in the post-Newtonian series and
thus can be extracted from measurements of ®(F). However, while we do know how each
moment first enters into the series, we have not yet calculated how the moment appears at
higher orders. That is, we have not solved the (very difficult) equations for wave generation
around a body with arbitrary multipole moments. Therefore, we cannot give a complete
prescription of how all the moments can be determined, but rather just a proof that if
the series were completely known, then all the moments could be deduced from &(F), or

equivalently from d®/dF = 27 F/(dF/dt).

As mentioned, our analysis in Chapter 4 is performed with some idealizing assumptions (nearly
circular orbits, nearly in the equatorial plane) and with a key task left incomplete [computing the
full details of ®(F')]. Let us assume that these gaps are filled by the time that the inspiral sources
are detected and analyzed, so that we can measure the multipole moments of the central body.
How well can these moments determine what the central body is? First of all, we have to hope that
the central body is spinning; for if not, then it would probably be spherically symmetric and all the
moments except for the mass would be zero. By measurements of the multipole moments alone,
we cannot distinguish a spherically symmetric black hole from, say, a spherically symmetric soliton
star. But even if the central body is spinning, it might be the case that the moments of another
type of candidate object may satisfy relations among themselves which are indistinguishably close
to the relations that a black hole’s moments satisfy. To get a feel for whether or not this is so, it
would be useful to see how the moments for another type of object are related to each other.

For such an other candidate object, we choose spinning boson stars with large self-interaction.
Boson stars are conglomerations of a scalar field ¢ with scalar field mass m, held together by
gravity and supported against collapse by the Heisenberg uncertainty principle. Equivalently, they

are a condensate of a huge number of zero-spin bosons which interact gravitationally. These “stars”



were first studied by Ruffini and Bonazolla in 1968 [17]. However, the Ruffini-Bonazolla stars had
masses far below the range of interest for gravitational-wave detectors. In 1986, Colpi, Shapiro,
and Wasserman [19] discovered that by adding a large self-interaction term A|¢|* to the scalar field
Lagrangian, the mass of the star can be made large. In fact, it can be made large enough so as
to be relevant for our purpose. They considered only nonspinning boson stars. Our objective is
to generalize their results to the spinning case, for only in that case are the moments (besides the
mass) nonzero.

In Chapter 5 of this thesis, we compute the structure of these large-A boson stars, subject to
the plausible condition that the emission of waves has driven the star into a stationary and axially
symmetric state. We find that such stars are completely described by three parameters (three
“hairs”). (This is analogous to a black hole being described by two “hairs”, its mass and spin.)
One parameter is A}/2/m?, which sets the overall scale of the star; that is, all quantities with
dimensions of length such as the mass of the star and the radius of the star scale with A}/2/m2.
Because this first parameter has a rather trivial effect, our computations effectively span a two-
dimensional space. The second parameter corresponds to the spin of the star. The third parameter
corresponds to the compactness of the star.

For a representative set of “points” in this two-dimensional space, we compute the structure
of the star and, from that, the values of the first few multipole moments. Each computation is
done by solving Einstein’s gravitational-field equations with a method of Komatsu, Eriguchi, and
Hachisu [20]. It consists of taking the field equations G*¥ = 8xT#" and keeping on the left-hand
side terms for which we know the flat-space Green’s function while moving to the right-hand side
all the other terms. The metric functions can be numerically computed as integrals of the Green’s
function multiplied by the sum of 87T*¥ and the terms that were brought over to the right-hand
side. Since these terms involve the metric functions themselves, several iterations have to be
performed to converge on the solution.

We find that spinning boson stars are shaped like doughnuts, with vacuum along the axis of



symmetry (the spin axis). We also find that for the same mass and spin, a boson star will typically
have a much larger quadrupole moment than will a black hole, making the two types of objects
distinguishable.

Given values of the three parameters that specify a spinning boson star, we can compute
all the moments. These computed moments can be compared with the moments measured by
gravitational-wave detectors. For example, we can use the first three measured moments (the
mass, the spin angular momentum, and the mass quadrupole moment) to deduce the three boson
star parameters. Then, we can use these three values and the results of Chapter 5 to compute the
value of the next moment (the current octopole moment). Finally, we can compare this computed
value with the measured value of the current octopole moment. If there is good agreement, then
we have evidence for a spinning boson star, and we can be sure the object is not a black hole.

The results in this thesis thus far give us (after the detectors are built and the full details of the
waves have been computed) the ability to search for black holes and A|¢|* boson stars. Expanding
this list to include other types of candidate objects will require studies of these objects. For
such studies that involve numerical computations, it would be useful to know how accurate those
computations have to be. If the gravitational-wave detectors can only measure a certain moment
to some accuracy, then for the purpose of searching for that object, the value of that moment
would not need to be calculated to much greater accuracy. In Chapter 6 of this thesis, we turn to
the data analysis question of the expected accuracies for measuring the multipole moments.

Similar data analysis calculations have been performed by others: Finn [21], Finn and Cher-
noff [22], Cutler and Flanagan [23], and Poisson and Will [24] have established the data analysis
formalism (that we shall use) and have analyzed measurement accuracies for the mass and spin
parameters of compact binaries for Earth-based detectors such as LIGO. Poisson [25] has used the
same type of data analysis formalism for space-based detectors such as LISA. Our objective is to
extend these works to include the measurement accuracies for higher order multipole moments.

Our calculation requires making several assumptions, most significantly that the inspiraling
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object travels in a circular orbit in the central body’s equatorial plane. We estimate the mea-
surement accuracies by using a simplified model for how the templates depend on the multipole
moments, a model consisting of only the leading post-Newtonian order effect of each moment on
the waveforms. Although this model might introduce sizable errors in our analysis, we use it for
two reasons: First, just knowing the order-of-magnitude accuracy for each moment is useful infor-
mation for determining to what accuracy various calculations have to be performed. Second, we
currently have no choice, because, as mentioned in our discussion of Chapter 4, nobody has yet
computed the full details of the gravitational waves produced from an inspiral around a body with
arbitrary multipole moments.

If we assume an amplitude signal-to-noise ratio S/N = 10 for the measured signals, then it
turns out that LIGO cannot give sufficiently accurate measurements of the moments to determine
whether the central body is a black hole or some other type of compact object. On the other hand,
for the same signal-to-noise ratio, LISA can make this determination with high accuracy. The
difference arises from the fact that, typically, a signal measured by LISA (at frequencies F ~ 10~3
to 10! Hz) has many more cycles than one measured by LIGO (at F ~ 10*! to 10*3 Hz).

Our analyses in Chapters 4 and 6 are primarily limited by the fact that we do not currently
have a good algorithm for solving the equations for wave generation around a body with arbitrary
multipole moments and by the fact that we consider only circular orbits in the equatorial plane.
For our final chapter, we make an attempt to tackle the former limitation. We would like to
compute the full details of the gravitational waves produced when the orbiting particle travels in
a circle and the central body has arbitrary multipole moments. This itself involves two difficulties:
First, the two-dimensional gravitational-wave-generation differential equations cannot be solved
by a separation-of-variables method. Second, the problem is complicated by the gravitational field
having many tensor components which are coupled in those equations. (Neither of these difficulties
occurs when the central body is a black hole, as Saul Teukolsky showed in his Caltech Ph.D. thesis

a quarter-century ago.)
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Chapter 7 is an attempt to develop a method that tackles only the first difficulty: we solve the
problem with the gravitational-wave-generation equations replaced by the scalar-wave-generation
equation and with the object (in a circular, equatorial orbit) given a scalar charge. This toy prob-
lem allows for the development of an efficient algorithm for solving a two-dimensional differential
equation which is similar to but simpler than the problem we eventually want to solve.

Our method uses a numerical iteration process very similar to that used in Chapter 5 for
solving for the structure of boson stars. We take the curved-space scalar field equation and keep
on one side of the equation only the flat-space d’Alembertian term (for which we know the Green’s
function) and place on the other side all other terms. Then we iterate much as is done in Chapter
5. The method turns out to converge very efficiently for orbits of radius greater than about 8 M,
but is not that efficient for smaller orbits. The next, yet undone, step would be to replace the
scalar-wave generation equation with the gravitational-wave generation equations.

Clearly, there are many tasks left for the future. This thesis may only be a preview of these
tasks, but it demonstrates that upon completion of them, upon construction of the detectors, and
upon measurements of the signals, we will have the power to confirm the existence of black holes
and search for other exotic, compact objects. Although it may be unlikely that any very massive,
compact objects besides black holes actually exist in sufficient profusion to be found, any discovery

of such an object would be of so high importance as to make these tasks worth pursuing.
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2 Effect of gravitational radiation reaction on circular or-

bits around a spinning black hole

Abstract

The effect of gravitational radiation reaction on circular orbits around a spinning (Kerr) black
hole is computed to leading order in S (the magnitude of the spin angular momentum of the
hole) and in the sirength of gravity M/r (where M is the mass of the black hole, r is the orbital
radius, and G = ¢ = 1). The radiation reaction makes the orbit shrink but leaves it circular,
and drives the orbital plane very slowly toward antialignment with the spin of the hole: tan(./2) =
tan(uo/2)[1+4(61/72)(S/M?)(M/r)*/?], where ¢ is the angle between the normal to the orbital plane

and the spin direction, and 1o is the initial value of ¢, when r is very large.

The earth-based LIGO/VIRGO network of gravitational wave detectors (which is now un-
der construction) will be used to search for and study the gravitational waves from “particles,”
such as neutron stars and small black holes, spiraling into massive black holes (mass M up to
~ 300Mp); and ESA’s planned space-based LISA [1] interferometer will do the same for inspirals
into supermassive black holes (M up to ~ 107Mg). To search for the inspiral waves and extract
the information they carry will require templates based on theoretical calculations of the emitted
waveforms; and to compute the waveforms requires a detailed understanding of how radiation
reaction influences the orbital evolution.

For several years a stumbling block has impeded computations of the evolution, when the orbital
plane of the particle is inclined to the equatorial plane of a spinning hole: No practical method has
been developed to deduce how radiation reaction influences the evolution of the orbit’s “Carter

constant” (2, 3], which governs the orbital shape and inclination angle. This paper describes the
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first progress on this problem: a “post-Newtonian” gravitational radiation reaction force is used to
compute the full orbital evolution to first order in S, the magnitude of the spin angular momentum
of the black hole, and leading order in the strength of gravity M/r at the orbital radius r. (Here
and throughout, units with G = ¢ = 1 are used.) The analysis is restricted to orbits that initially
are “circular” (more precisely, orbits which have constant radius »—these orbits are circular in the
“orbital plane” discussed below, but this plane precesses). However, the method can readily be
extended to noncircular orbits [4] and (with considerably more difficulty) should be extendible to
the fully relativistic regime r ~ M.

The computation of the evolution presented here proceeds as follows: First, in the absence of
radiation reaction, the orbital motion and the associated constants of motion are reviewed. Then,
the leading order radiation reaction accelerations that act on the orbiting particle and on the
hole are derived and used to compute the radiation-reaction-induced evolution of the constants of
motion. Finally, the evolution of the orbit—its shape and inclination angle—is obtained.

The leading order effect of the spin on the (otherwise Newtonian) orbit was deduced long ago
by Lense and Thirring [5] (reviewed by Landau and Lifshitz [6])—though, of course, they regarded
the central body as a star rather than a black hole. In fact, our analysis does not require the
body to be a black hole (rather, it can be any spinning body), but since this is the primary case
of physical interest, the discussion is phrased in terms of a black hole.

Let spherical polar coordinates, r, 6, and ¢, centered on the black hole, be used to describe the
location of the particle (these coordinates describe the relative separation of the two bodies), with
the hole’s spin along the polar axis. The Lagrangian [7] for the motion of the particle (which, for
now, does not have to be circular) is given, to linear order in S but otherwise in solely Newtonian
theory, by

I

L= 5 (1"2 + 726 + 12 sinz(O)q;:) +

uM  2uSsin?6 .
—— ——— (1)

o r
where u is the mass of the particle. In general, an overdot represents d/dt. The entire analysis is

to leading order in . To leading order in S and in M/r, the motion resulting from this Lagrangian
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is the same as in the Kerr metric, which describes the gravitational field of a spinning hole. The

use of flat space coordinates, which ignores M/r corrections, is adequate to leading order.
Following standard procedure [8], the Hamilton-Jacobi equation associated with the Lagrangian

(1) can be shown to have a separation-of-variables (2, ¢, r, ) solution, which reveals three constants

of motion:

E = % (152 + r26% + p? sinz(B)éz) - #’ (2)

. 2
L, = pr? sinz(B)d; - w, (3)
Q+IL} = uirt (62 + sin? (6)¢2) — 4p®Srsin®(6) 4. (4)

Comparing these expressions to Eqs.; (33.31) of Ref. [3], it is clear that E, L,, and Q correspond,
to leading order in S and in M/r, to the constants of motion for a test particle in the Kerr metric:
the energy minus the test particle mass, the z-component (component along the spin axis of the
hole) of angular momentum, and the Carter constant, respectively.

The apalysis of radiation reaction, below, is in Cartesian coordinates, z; = rsinfcos ¢, z3 =
rsin@sin ¢, and z3 = rcosf. In these coordinates, the constants of motion (2)-(4) become (re-

peated indices are summed)

B uM
E = —2*:Bj1!j - m?, (5)
7%
. 2uS (22 + 22
L, = I‘fajkzjﬂk_‘—'“il_?)’ (6)
(31"”:')3/2
‘ 5 . 4p*Sezjpzid
Q + Lg = uzegjk:njz:ke.-;mz;zm — —-Iw—klj/:k . (7)
3m3m)

Let the orbital plane have inclination angle ¢ (restricted to 0 < ¢ < 7, where ¢ > 7/2 corresponds

to an orbit counter-rotating relative to the spin), defined as

L,

(@ + L) .

cos L =

The constants of motion admit orbits of constant radius, just as for the Kerr metric in Boyer-

Lindquist coordinates. One of the Euler-Lagrange equations implies that, for » to be constant,
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8L/a8r = 0, which leads to

r= My ?[1+6(S/M?)y cos d, (9)
2\ ~1/3
Y= (Q“:-ML;) ) (10)

The positive root in any square root is always chosen.

The following relationship between the constants of motion for circular orbits is easily derived:

B —%,t.l.y2 [1 - 4(S/M?*)y?cosi]. (11)

The other two Euler-Lagrange equations predict that 6(t) and ¢(t) are the same as for a circular
orbit in the case when S = 0, except that ¢ is altered to ¢ = ¢|s=o + 25/r3. By transforming

these angular motions to Cartesian coordinates, the following equations for the orbit are obtained:

25t . . (2S5t
2 = r [cos(ﬂgt) cos (r_-") cos ¢ — sin (§24t) sin (-;3-)] i (12)
25t t
z3 = 7 [sin(ﬂat) cos (r_a) + cos (Qt) sin (21.13) cos L] § (13)
z3 = rcos(Qt)sing, (14)
where the angular velocity in the z3 direction is
Qg = M1y [1 - 12(5/M?)y3 cos ] . (15)

These equations describe a circular orbit on a plane (the orbital plane, which is inclined at angle
¢ to the equatorial plane) which precesses around the spin axis of the black hole with angular
velocity 25/ (the Lense-Thirring precession). Because the particle’s motion is the sum of the
circular motion and the plane precession, the particle itself does not travel on a fixed plane, nor
does it travel in a circle, nor does it cross the equatorial plane at angle ¢, but rather at an angle
' [9].

Turn, now, to the gravitational radiation reaction force (or acceleration) that slowly modifies the
above orbital motion. The emitted waves and their associated radiation reaction can be expressed

in terms of the multipole moments of the “system” (particle plus hole) [10, 11]. In the absence
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of spin, § = 0, the reaction, at leading order in M/r, is due to the mass quadrupole moment I;;
of the system; when S # 0, the leading order influence of S on the reaction is due in part to the
mass quadrupole moment I;; and in part to the current quadrupole moment J;;. The moments I;;
and Jj; are usually written as integrals over the mass and momentum densities of the source. For
the black hole, however, this cannot be done, and even for a neutron star the standard integrals
are invalid because they ignore the star’s relativistic gravity. There is an alternative approach,
however, that does work for this black-hole-plus-particle system: the moments are defined in terms
of the weak, asymptotic gravitational fields far from the hole and particle. When this is done, all
the standard formulas of the multipolar gravitational wave formalism remain valid [10].

The standard theory of the radiation reaction force (for example, Ref. [11]) is generally for-
mulated in the center-of-mass Cartesian coordinate system {z}}, which differs from the black-
hole-centered coordinates {z;} used above. In the asymptotic, center-of-mass coordinates, the
hole (or rather its asymptotically spherical gravitational field [10, 12]) moves along the path
zi(t) = —(u/M)zx(t) with its spin still pointing in the z3 direction, and the particle moves
along the path z},(t) = [1 — (u/M)]z(t). Correspondingly, to leading order in /M, the mass and

current quadrupole moments are

Li = [p2z]™™", (16)
3 STF
PBi€ kmThEm — E(,u./M)z,-Séja . (17)

Here, STF means “symmetrize and remove the trace,” and z; = z;(t) is the trajectory of the
particle in the hole-centered coordinates, as given by Eqs. (12)-(14).

Equations (16) and (17) agree with the 4 < M limit of the moments given in Kidder, Will,
and Wiseman (Ref. [7], Eqs. (14a,c)). The first term of J;; is the standard contribution due
to the motion of the particle; the second term arises from the motion of the spin of the hole
relative to the asymptotic, center-of-mass inertial frame: when the current dipole moment, due

to the hole’s spin angular momentum J; = S§;3, is displaced from the system’s center of mass
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by éz; = —(u/M)z; due to the orbital motion, that displacement produces a current quadrupole
moment J;; = [3/26z.J;]5TF = [second term in expression (17)], as one can deduce from the
asymptotic metric components by which the moments are defined: Eq. (11.1b) of Ref. [10].
Consider, for the moment, the radiation reaction force acting individually on the hole or on
the particle. Let the object of interest (hole or particle) have a location :c_f,- and velocity :c; in
the asymptotic, center-of-mass coordinates. Then, for the moment ignoring the object’s spin, its

radiation reaction acceleration (force divided by mass) is given by

glreact) _ I(s) 16 7(6) s

32
5 —glik fb+4551m ok TqZk + 45€JP9J(k)=kE + qub"rg]p) T,T (18)

This can be derived from Egs. (11) and (12) of Blanchet and Damour [11], keeping only the mass
quadrupole and current quadrupole moment terms. Here, the brackets denote antisymmetrization:
Cijk) = (Cjr — Ckj)/2. The number in parentheses to the upper right of a multipole moment
indicates taking that number of time derivatives.

The coupling of the object’s spin angular momentum J; to the radiation reaction field due to

Ji; produces an additional radiation reaction acceleration,

(react)

8 (s
a; I-piﬂ = _EJ“(‘T— )Ji/m, (19)

where m is the mass of the object. If the spinning object were nearly Newtonian, Eq. (19) could be
derived by adding up the velocity dependent radiation reaction force [massxEq. (18)] on each bit
of mass inside the source and then dividing by the total mass m of the object. For the black hole,
such a procedure is invalid; however, the result (19) must still be true: The analysis of Thorne and
Hartle [12], specifically their Eq. (1.9b), shows that the force on any isolated spinning object in a
“gravitomagnetic field” (the type of radiation reaction field that is responsible for this force [11])
is the same as for a spinning mass with only weak self-gravity.

Since the constants of motion, E, L,, and @Q, are defined and expressed in terms of black-hole-
centered coordinates rather than center-of-mass coordinates, their evolution must be computed

using the radiation reaction acceleration of the particle relative to the black hole, i.e. the difference
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of the accelerations of the particle and the hole relative to the center-of-mass:

GJ = ag'reu‘:t)ngrticlg — a‘grcact)lblnck hole (20)
5 18 6 32
—EIJ(h)zk + 45671’9];51:)3?3" 4 -—-E‘,qu;k)zkz:q
32
+ 2 Epal J,E}p)quk s (S/M)Jgj). (21)

Here, the moments I;; and J;; are given by Egs. (16) and (17). There is no contribution to (21)
(up to leading order in p) from the acceleration on the hole except through the spin interaction
(19), which gives the fifth term in Eq. (21). For the J;; in the contribution to the acceleration
on the particle [the second, third, and fourth terms of Eq. (21)], only the second term of Eq. (17)
needs to be kept: the contribution from the first term is not at leading order in M/r for either
terms not involving S or terms involving S. Similarly, the J3; in the fifth term of Eq. (21) requires
only the contribution from the first term of Eq. (17).

By differentiating Egs. (5)-(7) with respect to time and using the a; of Eqgs. (20) and (21) as
the radiation reaction contribution to #;, we obtain the following evolution of the “constants” of

motion:

E — ,u,i:jaj, (22)
I:, = HE3jkTjAk, 28)
. 4 25 A .
Q+L = 2p%;kTiEr€iimTiOm — _’(L = h)‘-;’]/‘:lc (24)
Zmdm

lWhile Egs. (16)—(24) are valid for noncircular orbits as well as circular orbits, we will treat
only circular orbits here. Suppose that the orbit initially is circular, so the trajectory of the
particle zg(t) in the hole-centered coordinates is given by Eqs. (12)—(14). Then, the evolution of
its constants of motion, F, L;, and Q + Li, can be computed as follows. Insert the trajectory of
the particle (12)-(14) into Eqs. (16) and (17) to get the I;; and J;; moments. Then, insert these
moments and the trajectory of the particle into Eq. (21) to get the relative radiation reaction

acceleration. Insert this acceleration into Eqgs. (22)-(24) for the time derivatives of E, L,, and
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Q@+ L2, and average the resulting expressions over an orbit. [The averaging, denoted by (), can be
taken to involve times —7 /€y < t < +7/€Qy, and because of this restriction to small ¢, for terms
in the trajectory (12)-(14) that have argument 25t/r3, the cosine can be replaced by 1 and the

sine can be replaced by its argument, thereby simplifying the calculation.] The result is [13]

(E) e 2 — !0 (1 - ﬁi cos ) (25)

5 M2 12 M?
' 32u 61 — 687 cos? 1 Sy°
(L) = -2, (+_24—ML) (26)
. 64 313 §
<Q+ L§> = —-5-y3y6 (1 ﬁmc sa) (27)

Equations (25) and (26) agree [16] (after trivial conversions of notation) with previous results
(Ref. [14], Eqgs. (3.13), (3.18) and Ref. [15], Eqs. (4.10), (4.11)).

These time derivatives of the constants of motion have two major implications for the orbital
evolution: First, they imply that the orbit, which was assumed initially circular, remains circular;
this can be seen from the fact that they preserve the circular-orbit relationship (11). Second, when

combined with Egs. (8), they imply the following evolution of the orbital plane’s inclination angle:

du 244 puS i
(dt) = ===y sin ¢. (28)

This equation implies that radiation reaction drives the orbital plane toward antialignment with
the spin, as might be intuitively expected since that orientation minimizes the energy of spin-orbit
coupling [17].

By combining Eq. (28) with the leading order change in r, 7 = —%"‘(u/M )y®, the following

differential equation relating r and . is obtained:

de 61 § (M\*?
s ey [ in ¢. 29
—dlnr _ 48 M? ( r ) S 29)

The time-averaging of the left hand side of Eq. (29) is not explicitly written down. Integrating
Eq. (29) yields

tan(s/2) = tan(io/2)[1 + 75 (S/M’)(M/r)anl (30)
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where 1o is the value of the inclination angle when the orbit has large radius.

Equation (30) shows, for example, that for an § < M? black hole, if the particle orbits with
a small inclination angle (0 < . < =), then . fractionally changes by 0.06 from its initial value at
large radius to its value at 7 ~ 6 M. The regime r < 6M is of special interest; it is there that waves
from the final stages of inspiral can give high-accuracy maps of the hole’s spacetime geometry [18].
However, when » ~ 6 M, our leading order analysis breaks down, so that to be able to map the
hole’s geometry, the analysis must be carried out to higher order in M/r and S.

The above analysis illustrates the power of the radiation reaction force method to reveal the
detailed evolution of a system under radiation reaction. The case solved was sufficiently simple to
give an easily presented solution. A future paper (4] will give more details of the above calculations,
along with the generalization to eccentric orbits. Hopefully, future work with radiation reaction
forces will: (1) Generalize the analysis to an arbitrary mass ratio 4/M and the case of both masses
having spin. (2) Extend the analysis to higher order in M/r and in S. (3) Achieve a similar

calculation of the orbital evolution in the fully relativistic Kerr metric.
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3 Effect of gravitational radiation reaction on nonequato-

rial orbits around a Kerr black hole

Abstract

The effect of gravitational radiation reaction on orbits around a spinning black hole is analyzed.
Such orbits possess three constants of motion: ¢, e, and a, which correspond, in the Newtonian limit
of the orbit being an ellipse, to the inclination angle of the orbital plane to the hole’s equatorial
plane, the eccentricity, and the semi-major azis length, respectively. First, it is argued that circular
orbits (e = 0) remain circular under gravitational radiation reaction. Second, for elliptical orbits
(removing the restriction of e = 0), the evolution of ¢, e, and a is computed to leading order in S
(the magnitude of the spin angular momentum of the hole) and in M/a, where M is the mass of

the black hole. As a decreases, . increases and e decreases.

3.1 Introduction

The Earth-based Laser Interferometer Gravitational Wave Observatory-(LIGO-)VIRGO [1, 2] net-
work of gravitational wave detectors (which is now under construction) and the European Space
Agency’s planned space-based Laser Interferometer Space Antenna (LISA) [3] will be used to
search for and study the gravitational waves from “particles”, such as neutron stars and small
black holes, spiraling into massive black holes (mass M up to ~ 300Mg for LIGO/VIRGO and up
to ~ 107M for LISA). To search for the inspiral waves and extract the information they carry
will require templates based on theoretical calculations of the emitted waveforms, which in turn
require a detailed understanding of how radiation reaction influences the orbital evolution.

When the orbital plane of the particle is inclined to the equatorial plane of a spinning hole,
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only one method has been successfully implemented to deduce how radiation reaction influences
the evolution of the orbit’s “Carter constant” (4, 5], which governs the orbital shape and inclination
angle. This method, which uses a “post-Newtonian” gravitational radiation reaction force, was
described in a previous paper [6], but there only applied to “circular orbits” (orbits of constant
Boyer-Lindquist radial coordinate r) for simplicity. This follow-up paper has a two-fold purpose:
First, in Sec. 3.2, we will argue that circular orbits remain circular under gravitational radiation
reaction. Second, in Sec. 3.3, we will compute the evolution of elliptical orbits under radiation
reaction, but only to leading order in S, the magnitude of the spin angular momentum of the black
hole, and leading order in M /a, where M is the black hole’s mass and a is the size of the orbit, as

defined more precisely below. (Here and throughout, units with G = ¢ = 1 are used.)

3.2 Evolution of circular orbits

Several years ago, Ori [7] put forth the conjecture that circular orbits in the Kerr metric remain
circular even under gravitational radiation reaction. Here, we will argue in favor of the conjecture.
We will start by reviewing some properties of elliptical and circular orbits in the Kerr metric.
Then we will argue that a circular orbit and the reaction force acting on it have a type of reflection
symmetry that ensures that the orbit remains circular under radiation reaction, in the limit of the
particle’s mass being small compared to the hole’s mass.

In the absence of gravitational radiation, the geodesic motion of a particle in orbit around a
Kerr black hole is well-known and discussed, for example, in Sec. 33.6 of Ref. [5]. The location
of the particle can be described in Boyer-Lindquist coordinates r, 8, ¢, and t. The orbit can be
described by three constants of motion: the energy E, the angular momentum along the hole’s
spin axis L;, and the Carter constant Q. The particle’s rest mass u can be counted as another
constant of the motion. The energy F is defined as the relativistic energy of the particle minus its
rest mass, so that “E — u” in the language of Ref. [5] corresponds to “E” here. We will restrict to

bound orbits, that is E < 0 and, as a consequence (see Ref. [4]), @ > 0.
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An interesting feature of the Kerr metric in Boyer-Lindquist coordinates is the existence of
nonequatorial, circular, geodesic orbits. These orbits are circular in the sense that the particle
maintains a constant Boyer-Lindquist coordinate r; however, the plane of the circular orbit is not
fixed but rather precesses around the hole’s spin axis. Such orbits exist and are stable for values
of E, L,, and Q that give R = 0, dR/8r = 0, and 8°R/8r? < 0, where R (see Eq. (33.33c) of

Ref. [5]) is defined by

R = [(E+u)(r*+S*/M?) - L,5/M)*

—(r? — 2Mr + S /M?) [i*r? + (L, — Su/M — SE/M)* + Q] . (31)

For an arbitrary orbit with constants E, L,, and Q, there might be some other energy £ < E
(E depends on L, and Q) such that, if the orbit had energy E(L,,Q) rather than E, the orbit
would be circular and stable. In such a case, as an alternative set of constants to E, L,, and @,

the constants ¢, e, and a can be defined as follows:

L,
cost = w, (32)
E
1-— 3 = =
e L (33)
_ EF

Here 7 = #(L,,Q) is the radius of the circular orbit with constants E, L,, and Q. Note that a
should not be confused with the conventional notation for the spin of the black hole, which is S
here.

The positive root in Eq. (32) or in any other square root is always chosen. We choose the angle
¢ to lie in the range 0 < + < , so that + < 7/2 corresponds to an orbit co-rotating relative to the
spin and ¢ > 7/2 to counter-rotating. Also, e is chosen as nonnegative.

This set of constants ¢, e, and a has the conceptual advantage that in the Newtonian limit of

large a, the orbit of the particle is an ellipse of eccentricity e and semimajor axis length a, on a
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plane with inclination angle ¢ to the hole’s equatorial plane. When not in the Newtonian limit,
interpreting ¢, e, and a as the inclination angle, eccentricity, and semimajor axis length must be
done with the caveat that since the orbit is not an ellipse, then words such as “eccentricity” are
subject to a modified interpretation and can be misleading.

Even though the particle’s motion is complicated when not in the Newtonian limit, some of
the parameters that describe the particle’s motion need not be specified. For example, we are
not concerned with the value of ¢ or ¢, because making a ¢ or ¢ translation does not change the
physics in the axisymmetric, stationary Kerr metric. Another symmetry is that if the orbital
motion is flipped over the hole’s equatorial plane, i.e., 6(t) is replaced by = — 6(t), the motion can
be considered the same. All such ¢ and t translations and @ reflections leave the shape of the orbit
unchanged.

We can think of the particle as undergoing oscillatory, coupled motion in the » and 6 directions.
We define one orbital revolution to be one oscillation cycle as measured by the § motion. Given
any chosen starting point of an orbital revolution with coordinate 8p, the revolution can be broken
into two half revolutions, the first when the particle goes from 6y to 7 — 6 half a 6-cycle later, and
the second when the particle goes from 7 — 6 back to 6o another half 6-cycle later. [Because of
the coupling of the » motion with the 8 motion, the # motion does not peak at the same extrema
every cycle. Therefore, |7/2 — 6p| has to be chosen small enough that the orbit does indeed go
through m — 8 and 6y in the following cycle. However, this is a very minor restriction for the rest
of Sec. 3.2, where in proving that circular orbits stay circular, we only consider circular and almost
circular orbits (we do not have to consider generally eccentric orbits since we know that a circular
orbit cannot immediately become generally eccentric without first being slightly eccentric). In
such case, the peaks of the § motion are almost the same every cycle.]

Now we consider the effect of gravitational radiation reaction on an orbit. We assume that the
rest mass 4 is small enough for the adiabatic approximation to hold: the timescale of gravitational

radiation reaction is much longer than any other timescale in the problem. Then the particle moves
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very nearly on a geodesic path characterized by the constants of motion ¢, e, and a; and only on
a very long timescale (which varies like 1/p as p — 0, because the radiation reaction acceleration
scales like u) is this motion substantially modified by gravitational radiation reaction.

We now consider, for an orbit slowly inspiraling due to radiation reaction, an orbital revolution
that satisfies the following condition, to which we give the name reflection symmetry: Consider
the point on the orbit that is at the beginning of the orbital revolution. Denote by rg, 8o, 7o,
éo, and q'So the Boyer-Lindquist spatial coordinates of that point and their time derivatives. (Here
and throughout, an overdot represents d/dt.) Then there are two other locations later on the path

with coordinates

™ = 7o+ pnf+ h.o, (35)
0, —7/2 = (=1)*"(8o — /2 + pnb) + h.o., (36)
fn = o+ pnf+ho, (37)
b = 6o+ uné + h.o,, (38)
bn = o+ .U’nz; + h.o., (39)

for n = 1/2 (a half revolution after n = 0) and n = 1 (a full orbital revolution after n = 0). The
functions with tildes are not functions of u. The “h.o.” terms are any terms that go to zero faster
than p as u — 0 (higher order in u than linear).

Because of the initial conditions at the beginning of the first and second half revolutions (at
n = 0 and n = 1/2, respectively), the shape of the first half revolution (the path connecting the
n = 0 and n = 1/2 locations) deviates from the shape of the second half revolution (the path
connecting the n = 1/2 and n = 1 locations) by a path deviation of order u. Of course, these two
paths also differ by a ¢ translation, a ¢ translation, and a reflection across the equatorial plane. But
as we discussed above, these are unimportant differences because of the symmetries; the shapes of
the paths are the same.

Now that we have written Egs. (35)-(39), we temporarily (for the remainder of this paragraph)
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go back to the case of no radiation reaction, i.e., we set to zero the p terms and the h.o. terms in
Egs. (35)-(39). Clearly, a circular orbital revolution satisfies Eqs. (35)—(39) for any initial n = 0
location chosen on the circular orbit. But could there be an eccentric orbit which also satisfies
Eqgs. (35)—(39)? The answer is negative, as we shall now show. A slightly eccentric orbit (one
with the value of e small enough that e? terms are negligible) would have the same 8(t) and ¢(t)
motion regardless of the value of e, but » — # would oscillate with an amplitude proportional to
e. This can be verified from the Kerr-metric geodesic equations, Eqs. (33.32) of Ref. [5]. In the
Newtonian limit, the oscillation of » — 7 would be periodic with the same period that 8(t) has, but
when not in the Newtonian limit the  and r oscillations would have different periods. If an orbit
were to be reflection symmetric, then » — 7 would have to have the same value when the orbital
motion is at fp as it does when it is at  — 8y at the next value of n. This would require that
either » — 7 oscillate at a frequency that is an even integer multiple of the @ oscillation frequency,
or r — 7 have zero amplitude (a circular orbit). The former is never the case, as can be verified by
numerically [8] examining circular orbits in the Kerr metric over the space of possible physically
acceptable values of S, L, and Q. The fact that » — 7 does not resonate with an even multiple of
the 6 frequency implies that a slightly eccentric orbit cannot be reflection symmetric.

Now we shall return to the case of interest: that with gravitational radiation reaction. What
precisely do we refer to when we discuss circular orbital revolutions, when the orbital revolution is
not actually circular but is slowly inspiraling? A good, but not unique, definition is one that agrees
with the result in the case of no radiation reaction: We define that a circular orbital revolution is
one that satisfies Eqs. (35)—(39), while an eccentric orbital revolution is one that does not (at least
for slight eccentricity: as mentioned above, we are not considering generally eccentric orbits). An
orbital revolution with weak radiation reaction is defined as circular if and only if it is reflection
symmetric.

We now consider starting with an initial orbital revolution that is circular, or equivalently,

that is reflection symmetric, i.e., that satisfies conditions (35)—(39). For small u, ignoring the
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h.o. (higher than u) corrections, we would expect that the third half revolution (the first half
of the next orbital revolution) would have a shape that deviates from that of the second half
revolution by the same amount as the shape of the second half revolution deviates from that of
the first. We expect this, because from conditions (35)-(39) above, the initial conditions of the
third half revolution differ from those of the second by the same amount (to linear order in u)
as those of the second differ from those of the first; and the acceleration on the particle should
similarly be equally (also to linear order in p) different between corresponding locations on the
second and third half revolutions as between corresponding locations on the first and second. The
orbit remains circular for the additional half revolution. If there is any eccentricity added, it is in
the h.o. terms, but in the p — 0 limit, this is ignorable compared to the shrinking of the orbit,
which varies like u (the terms involving tildes).

We can repeat the above argument to get the shape of the fourth half revolution, as well as
the fifth, sixth, etc. In fact, the argument can be repeated to any chosen number, nmax, of orbital
revolutions, as long as that chosen number does not go to infinity as u — 0; for if it did, then we
would not be guaranteed that after the infinite number nymax of orbits, the h.o. corrections of the
above paragraph would be ignorable. For example, we could choose ny,x to be 100, but we could
not choose it to be 100M/u. The orbit remains reflection symmetric (or equivalently, it remains
circular) for n up to nmax, where n increments by 1/2. In other words, there is a location, with
coordinates r,, 0, Tn, én, and <i>,,, satisfying Eqgs. (35)-(39) for any n up to nmax.

The constants of motion E, L,, and Q (or equivalently, ¢, e, and a) evolve in such a way that
in going from n = 0 to n = npay a circular orbit remains circular. By assigning new values of ro,
8o, #o, 80, and do as the old Priss Primess PRmass éﬂm,, and d.:nm,, the argument can be repeated,
over and over again. The rates of loss of E, L,, and Q will then continue at such a rate so as to
maintain circularity.

A more intuitive picture of why a circular orbit remains circular was provided by Ori [7], who

first pointed out that the incommensurability of the » and @ periods is the key reason why the
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argument can be made without knowing the nature of the reaction force: Even if the radiation
reaction were to take the bizarre form of somebody with a hammer hitting the particle every time
the particle is at some value of 8, there would have to be another person across the equatorial plane
at  — @ with a hammer hitting the particle in a corresponding way, as dictated by the orbital
symmetries. Since the r — 7 frequency is not an even multiple of the 8 frequency, the hammer hits
cannot constructively interfere with each other and produce an eccentricity.

If an orbit is circular, then just knowing the rates of change of E and L, (for example, by
knowing the energy and angular momentum carried off in the gravitational waves) is enough to
determine the full orbital evolution since the evolution of Q is constrained such that the conditions

listed immediately before Eq. (31) are satisfied, for as long as the orbit itself is stable.

3.3 Leading order effect of spin on eccentric orbits

We now wish to consider general, not just circular, orbits around a black hole. But in doing so, we
restrict ourselves to only considering the leading order effect of spin. We will use the formalism of
a radiation reaction force described in a previous paper [6] and merely state how the method as
described in that paper generalizes to orbits with eccentricity.

When one is only interested in leading order in S and in M/r (or equivalently, M/a, in terms of
orbit parameters), the effect of the hole’s Kerr metric on the particle’s motion can be substituted
with a spin-orbit interaction in three dimensional flat-space. Let spherical polar coordinates r, 6,
and ¢, centered on the black hole, be used to describe the location of the particle (these coordinates
describe the relative separation of the two bodies), with the hole’s spin along the polar axis. The
Lagrangian (Ref. [9], Eq. (4)) for the motion of the particle is given, to linear order in S but

otherwise in solely Newtonian theory, by

uM  2uSsin? 64.5

L= %[7"2 + 72607 + r?sin’(6)4%] + r r -

To leading order in S and in M/r, the motion resulting from this Lagrangian is the same as in
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the Kerr metric. The use of flat space coordinates, which ignores M/r corrections, is adequate
to leading order. Using the same coordinate variable names r, 6, and ¢ for these coordinates as
for the Kerr metric’s Boyer-Lindquist coordinates does not cause conflict and should not cause
confusion. Alternatively, we can use Cartesian coordinates, z; = rsinfcos¢, zz = rsinfsin g,
and z3 = rcosf.

The Lagrangian (40) admits three constants of motion, called E, L,, and Q because they are
the same constants as we have in the Kerr metric, to leading order in S and in M/r. The values

of these constants are:

E = g[iﬂ + 726 4 r?sin?(6)¢?] — # (41)

. 2
Ly, = pr? sin’(e)q'ﬁ - Z_p,.S':i_H’ (42)
Q+ L2 = u?r*[6® + sin?(6)¢?) — 4u®Sr sin?(6)¢. (43)

The combination @ + L? is a more natural constant to work with than Q. If S were equal to zero,
then Q + L? would be the square of the total angular momentum.
The constants of motion ¢, e, and a, when considered only to leading order in S and in M/r,

are related to E, L;, and Q by:

L,
CoBL = W: (44)
E(Q+L? SMuPL,
1—e? = —2—&%-;[—2—) (1-{-4(?_*—_’%5—333), (45)
. My SMulL,
o = -3 (revm) =

It is easy to verify these, by checking that the E and # that would make Eqgs. (32)—(34) give
Eqs. (44)—(46) satisfy (at leading order in S and in M/a) the stable circular orbit constraints
listed immediately before Eq. (31). Note that Eqs. (44)-(46) are valid for arbitrary eccentricity e;
they do not require e < 1.

It is possible to express the instantaneous time derivative of each constant of motion, dE/dt,

dL,/dt, or d(Q + L2?)/dt, as a function of », z3, #, £3, and the constants of motion; there is no
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occurrence of ¢ (because of the axisymmetry) or é (as this is determined with L,, r, and 6 known)
in any of the expressions. If S were zero then there could be no z3 dependence, rather only r
dependence, since there is no physically preferred direction when spin is absent. Thus, an z3 or
z3 can only show up in a term that includes a factor of S. Because of this, to compute the time
derivative of each constant of motion to Newtonian order plus the spin correction, z3(¢) only needs
to be known to Newtonian order, because the spin correction to z3 would be an 5% term in the
derivative of the constant of motion. On the other hand, the radial motion r(t) of the particle has
to be known to Newtonian order plus the spin correction. The ¢(t) motion does not have to be
known at all for computing the evolution of the constants of motion.

Let us, then, compute r and z3 to the necessary orders. One of the Euler-Lagrange equations

yields
=T+ Q;Tff sif;. (47)
The solution of this, in terms of a parameter ¥, is
= @ nge)c/cf:;M) (1 + (2L;#zgﬂ (6 + 2ecos ¢)) y (48)
d% _@ w(hlLE):i :ﬁ(g;zm) (1 5 G(ZL;LLZ;; ) _ (49)

In the Newtonian limit of S = 0, these are the equations for a Keplerian ellipse, with the true
anomaly ¥ being the angle on the orbital plane of the particle relative to periastron as seen from

the hole.

To Newtonian order, 3 = rcosf can be expressed as

z3 = rsine sin(y + o). (50)

Here, 1 is some constant that describes the orientation of the ellipse on the orbital plane. As seen
from the hole, 1o is the angle between the direction of the periastron and the intersection of the

equatorial and orbital planes.
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The orbital period, from periastron to periastron, is

3 dt m 3/2

It happens that T, when written in this form, does not have an explicit S dependence.

This motion we have just described is that in the absence of gravitational radiation reaction;
now we will compute the effect of the radiation reaction acceleration. We can take the equations
for the rates of change of E, L,, and Q due to radiation reaction for a particle going around a
more massive spinning body from Egs. (10), (13), and (14) of Ref. [6]. These equations give us
formulas for E, L,, and d(Q + L?)/dt as functions of the displacement of the particle relative
to the hole in Cartesian coordinates, z;, and the relative velocity ;. There will also be higher
order time derivatives of z, (such as &, etc.), but these derivatives can be eliminated from the
expressions for E‘, f;,, and Q + L? with the aid of the Euler-Lagrange equations [derived from (40)

when expressed in Cartesian coordinates—note that repeated indices are summed over 1,2,3]:
= M 4 T L,
oy = -r—an:k + 5 (—-—63];]:1 + 6 — €3k T + 6 k) (52)

The time evolution of each constant of motion can thereby be expressed in terms of r, #, z3, 23,
and the constants of motion. The trajectory (48)-(51) can be inserted into these expressions, and
then time averaged using
: I . 8k
By=z [ dp=_F 53
(B)=7 [ vzt (53)

and similarly for L, and @ + L2. The result is [8]
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— cos(21p) sin® ¢ [ge2 + '1%64])] ) (85)
) M 3 3/2
@iy = 20 (2) ()" [+1)
S M\ 97 99
) (o) oo

The evolution of these constants can be converted, using Eqs. (44)—(46), to the other set of con-

stants:
11/2 4
N o wS (M 1 . [244 252, 19,
(&) = M4(a) (—1_62) S““[E+Te g
2 26 4
— cos(20) | 8e +?e ' (57)
, 64 p (M\°7 1 \? 73, 37,
@ = -523) (=) |(+5° %)
s M\ 133 337 , 2965 , 65 4
‘m(a—u-ez)) °°“(E+Te TR )] (58)
<é> _ o (M1 )P 3044 1217
T M?\a 1-¢? 15
S M \*? 1364 5032 , 263 ,
. (a—_—(l—ez)) cost (—5 +TE Tt )] (59)

After trivial conversions of notation, Eqgs. (54)-(56) agree with previous results: Egs. (15) of
Ref. [6] and (the first line of) Eq. (3.14) of Ref. [10], each of which is a special case of Egs. (54)—(56).
In most cases, the terms with the cos(210) can be dropped because they average to zero; to
see when this can be done, consider the following: The Newtonian approximation to the motion is
that the particle travels in an ellipse. The first correction to this motion is, as Einstein computed

for Mercury, that the periastron position of the ellipse shifts on a timescale of
Tprec ~ M(M/a)~%?(1 - €?). (60)

The radiation reaction timescale for terms that involve 1, as computed by evaluating

sint

(5)1"0 terms '

is
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(There are also factors of order unity that involve e which were ignored. If Traq were computed
differently, for example by evaluating L,/ (i,)% terms; it would contain factors of + as well.)

In the Newtonian limit, 1 is fixed, but with the periastron precession, ¥ changes slightly after
each orbit, by a post-Newtonian correction that was ignorable until now: When Traq 3> Tprec, the
cos(2%o) in Eqgs. (55) and (57) averages to zero, and the terms with that factor can be dropped.
For extremely eccentric orbits, Traq might not be much greater than Tprec, so the 1o terms must
be kept. In all other respects, the periastron precession can be ignored because it just gives terms
higher order in M/a (terms we have neglected). The only effect of the precession, to which our
analysis is sensitive, is the averaging away of 1 in the case that Traq 3> Tprec-

From Eq. (57), it is clear that the angle . changes such as to become antialigned with the spin.
In Ref. [6], this conclusion was reached for circular orbits; finite eccentricity does not change, but
only enhances, this result. However, the statement that “the inclination angle antialigns with the
spin” is subject to the warning that we mentioned above when introducing ¢: With the orbit not
confined to a fixed plane, the angle ¢ is not the only way we could define “inclination angle” [6].

Equation (59) has two important consequences: First, to leading order, orbits tend to circular-
ize, as is a well-known fact. Second, if an orbit is circular, then e = 0 and (é) = 0, so the orbit
remains circular. This is expected, since this is the leading order limit of the general result in
Sec. 3.2.

The above analysis is just one step in a general program for understanding the effects of
radiation reaction on orbiting, spinning bodies. Future steps in this program include: generalizing
the analysis to an arbitrary mass ratio u/M and to the case of both masses having spin, extending
the analysis to higher order in M/r and in S, and achieving a similar calculation of the orbital

evolution in the fully relativistic Kerr metric.
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4 Gravitational waves from the inspiral of a compact ob-

ject into a massive, axisymmetric body with arbitrary

multipole moments

Abstract

The gravitational waves, emitted by a compact object orbiting a much more massive central body,
depend on the central body’s spacetime geometry. This paper is a first attempt to ezplore that depen-
dence. For simplicity, the central body is assumed to be stationary, azially symmetric (but rotating),
and reflection symmetric through an equatorial plane, so its (vacuum) spacetime geometry is fully
characterized by two families of scalar multipole moments M; and S; with! =0, 1, 2, 3, ... ; and
1t is assumed not to absorb any orbital energy (e.g., via waves going down a horizon or vie tidal
heating). Also for simplicity, the orbit is assumed to lie in the body’s equatorial plane and to be
circular, ezcept for a gradual shrinkage due to radiative energy loss. For this idealized situation, it
18 shown that several features of the emitted waves carry, encoded within themselves, the values of
all the body’s multipole moments M;, S; (and thus, also the details of its full spacetime geometry).
In particular, the body’s moments are encoded in the time evolution of the waves’ phase ®(t) (the
quantity that can be measured with eztremely high accuracy by interferometric gravitational-wave
detectors); and they are also encoded in the gravitational-wave spectrum AE(f) (energy emitted per
unit logarithmic frequency interval). If the orbit is slightly elliptical, the moments are also encoded
in the evolution of ils periasiron precession frequency as a function of wave frequency, Q,(f); if
the orbit is slightly inclined to the body’s equatorial plane, then they are encoded in its inclinational
precession frequency as a function of wave frequency, Q.(f). Ezplicit algorithms are derived for
deducing the moments from AE(f), Q,(f) and Q,(f). However, to deduce the moments ezplicitly

from the (more accurately measurable) phase evolution ®(t) will require a very difficult, ezplicit
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analysis of the wave generation process—a task far beyond the scope of this paper.

4,1 Introduction

For some years, Thorne [1] has been arguing that it should be possible to extract, from the
gravitational waves produced by a small object spiraling into a massive black hole, a map of the
massive hole’s spacetime geometry. This paper is a first attempt to develop the mathematical
foundations for such a map extraction. As we shall see, the key to the map extraction is a theorem
(proved in this paper) that—at least in certain idealized circumstances—the waves emitted by
a small object spiraling into a massive body carry, encoded in themselves, the values of all the
body’s multipole moments [2, 3], which characterize the vacuum spacetime geometry outside any
stationary body (black hole or otherwise).

A separate paper by this author, Finn, and Thorne [4] discusses semiquantitatively the imple-
mentation of this paper’s results in the analysis of future gravitational-wave data. As is discussed
there, the goals of such a data analysis would be (i) to extract from the observed waves the values
of the central body’s lowest few multipole moments, (ii) to see whether those moments are in
accord with the black-hole “no-hair” theorem (which states that the hole’s spacetime geometry
and thence all its moments are fully determined by its mass and its spin angular momentum),
and (iii) via observed violations of the no-hair theorem, to search for unexpected types of massive,
compact bodies (e.g. soliton stars and naked singularities) into which are spiraling small objects
(white dwarfs, neutron stars, or small-mass black holes).

Such interesting observational studies can be carried out with moderate precision by the
Earth-based network of laser-interferometer gravitational-wave detectors [LIGO, VIRGO, GEO600,
TAMA] [5], which is now under construction and which can study central bodies with masses up

to ~ 300Mg. Much higher precision will be achieved by the Laser Interferometer Space Antenna
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(LISA) [6], which is likely to fly in 2014 or sooner and can study central bodies with masses

~ 3 x 10% to 3 x 10"Mg. See Ref. [4] for details.

For this paper’s first analysis of extracting the central body’s moments from gravitational-wave

data, we make the following idealizing assumptions:

(i)

(iif)

The central body has a vacuum, external gravitational field which is stationary, axisymmetric,
reflection symmetric across the equatorial plane, and asymptotically flat. Correspondingly,
the body’s multipole moments turn out to be scalars: The spacetime geometry can be charac-
terized by mass multipole moments M; and mass-current multipole moments S; [3], and the
odd-M moments and even-S moments vanish—i.e., the nonvanishing moments are the mass
Mo = M, the mass quadrupole moment M2, M4, Ms, ... , and the spin angular momentum

S1, the current octopole moment Sg, Sg, S7, .

The inspiraling object is sufficiently compact and has a sufficiently small mass that its orbit
evolves slowly and adiabatically from one geodesic orbit to another; and on the timescale of

one orbital period, the orbit can be regarded as geodesic.

The geodesic orbits, through which the inspiral evolves, lie in the equatorial plane, or very
nearly so, and are circular, or very nearly so. (For the M 5 300Mg central bodies that
can be studied by earth-based interferometers, radiation reaction is likely, in fact, to have
circularized the orbit long ago; but for the M ~ 10°Mg central bodies studied by LISA, the
orbit is likely to be highly noncircular due to recent perturbations by other orbiting objects
[7]. This should be a warning that the analysis of this paper is only a first treatment of what

must ultimately be a much more complicated problem.)

The central body does not absorb any of the inspiraling object’s orbital energy; i.e., we can
neglect any energy that goes down the central body’s horizon (if it has a horizon), and we can
neglect tidal heating. This implies that all of the energy lost from the orbit gets deposited

into outgoing gravitational waves.
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For a system that satisfies our idealizing circular-orbit assumption (iii), the gravitational waves
are emitted primarily (but not solely) at twice the orbital frequency, and correspondingly the

dominant gravitational “spectral line” is at the frequency

20 @
Tar 7w

f , (63)

where §2 is the orbital angular frequency.

As time passes, radiation reaction will cause the orbit to shrink gradually; and correspondingly,
f will be a slowly varying function of time ¢. There will also be emissions at frequencies %f, %f,
2ify v s

In this paper we shall focus on aspects of the waves that can be computed without facing any
serious complications of the theory of wave emission. We avoid analyzing wave emission in detail
because, for a body with arbitrary multipole moments, such an analysis will be very complex.
Fortunately, we can make considerable progress by focusing almost solely on gravitational-wave
quantities that depend only on the properties of the central body’s circular geodesic orbits.

One such quantity is a gravitational-wave spectrum AE(f), defined as follows: During a short
interval of time when the waves’ principal frequency is evolving from f to f + df, we take all the
energy emitted into the principal spectral line, plus all being emitted into all the other lines nf
with n = 1, 3,2, 3, ... ; and we add all that energy together to obtain a total emitted energy
dEwave- By our idealizing assumption (iv), this is equal to the energy lost from the orbit —dE as
the orbital angular frequency varies from Q = 7 f to Q +dQ = n(f + df). The quantity AE(f) is
the corresponding amount of gravitational-wave energy per logarithmic interval of frequency:

dEwave _ dE
= --= (64)

AE=f
Two other gravitational-wave quantities that can be computed without facing the complications
of wave-emission theory [as well as without requiring assumption (iv) above| are the frequencies

of wave modulation that result from orbital precession. There are two types of precession and

corresponding two wave modulations: (i) if the orbit is slightly elliptical, then the ellipse can
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precess (a “precession of the orbit’s periastron”) at some angular frequency Q, that depends in
some way on the orbital radius and thence on the waves’ primary frequency f; (ii) if the orbit is
slightly inclined to the central body’s equator, then the orbital plane will precess at some angular
frequency {2, that also depends on f. These orbital precessions will modulate the emitted waves
at the angular frequencies Q,(f) and Q,(f).

In Sec. III of this paper, we shall develop algorithms for computing these three gravitational-
wave quantities, AE, ,, and (1;, as power series in f, or equivalently in the dimensionless pa-
rameter

v=(xM[)'/? = (MQ)3. (65)
In the Newtonian limit, v is the orbiting object’s linear velocity.

In Sec. II [Egs. (79)—(81)], we will write down the first few terms of those power series. As
is suggested by the forms of those explicit series, our algorithms enable us to express the power
series’ coefficients entirely in terms of the central body’s multipole moments M; and S;. Moreover,
if (via idealized measurements) we could learn any one of the wave functions AE(f), Q,(f), or
Q.(f), then by expanding that function as a power series in v = (*M f)*/? and examining the
numerical values of the coefficients, we would be able to read off the values of all the multipole
moments M, S;.

This result is not of great practical interest, because a system of interferometers can achieve
only a modest accuracy in any attempt to measure the functions AE(f), Q,(f), and Q,(f) (and
also because of the idealizing assumptions that have been made). Of greater practical interest
will be measurements of the time evolution ®(t) of the waves’ phase, since via the method of
“matched filters” this quantity can be measured with very high accuracy (~ 1/10* to ~ 1/107
depending on the system [4, 8]). This phase evolution ®(t¢) actually contains contributions from
all the waves’ spectral lines as well as from precessional modulations. In discussing ®(t), we
shall assume, for simplicity, that the orbit is precisely circular and equatorial so there are no

precessions; and we shall focus solely on the portion of ®(t) that is associated with the primary
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frequency, ®3(t) = 2r [ fdt = 2 [ Qdt. A knowledge of this primary phase evolution is equivalent
to a knowledge of the number of cycles AN that the primary waves spend in a logarithmic interval

of frequency,

_ 2 _ fAEB(f)
AN = df/dt = dEwave/dt

(66)
Here dEyave/dt is the gravitational-wave luminosity, or equivalently the rate of loss of orbital
energy, —dE/dt.

To compute dEyayv./dt fully, even with our idealizing assumptions, would require dealing with
all the complexities of wave-emission theory. Fortunately, however, we can compute the leading-
order contribution of each central-body multipole M; or S; to dEyave/dt using fairly elementary
wave-generation considerations. We do so in Sec. IV, and we then use Eq. (66) to deduce each
multipole’s leading-order contribution to the power-series expansion of N(f) [Eq. (135) below].
Just as was the case for our other three wave functions AE(f), Q,(f), and Q,(f), each multipole
appears first at a different order in the series: M; at order v? (beyond where My = M enters
at leading order), and S; at v?'*+!. This guarantees that, from the power series expansion of the
(accurately measurable) phase evolution AN(f), one (in principle) can read off the values of all
the central-body multipole moments. However, to produce a full algorithm for doing so would
require dealing with the full complexities of wave-emission theory.

Our derivation and presentation of these results is organized as follows: In Sec. II, we write
down the spacetime metric for the central body; we derive equations describing the metric’s nearly
equatorial and nearly circular geodesic orbits, through which the inspiraling object moves; we use
those orbital equations to derive expressions for our gravitational-wave functions AFE, §2,, and Q,
[Eqgs. (79)-(81)] in terms of the central body’s metric; and we state (with the proof to follow in
Sec. 4.3) the first few terms of the expansions of these quantities in powers of v = (7 M f)!/? with
coefficients depending on the central body’s multipole moments. In Sec. III, we briefly review key
portions of the Ernst formalism for solving the axisymmetric, vacuum Einstein field equations and

of the Geroch-Hansen multipole-moment formalism [2, 3] by which the resulting solutions can be
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expressed in terms of multipole moments; and then we devise algorithms for computing the power
series expansions of AFE, Q,, and §2,. The explicit power series of Sec. II are derived from those
algorithms. In Sec. IV, we digress briefly from the main thread of the paper, to discuss an issue
of principle that can be delicate: how to deduce the mass M from the power series expansion
Q. (v). Finally, in Sec. V, we use elementary wave-generation arguments to compute the leading-
order contribution of each central-body multipole to the gravitational luminosity, and thence to

the waves’ phase-evolution function AN(f).

4.2 Functions of the multipole moments

In this section, we will review the foundations for analyzing the three functions AE(f), Q,(f),
and §2,(f) that contain full information of the multipole moments of the central body. The metric
produced by the central body, ignoring the effects of the much less massive orbiting object, can be

written in terms of (t,4,p,2z) as (units where G = ¢ = 1 are used throughout)
1
ds® = —F(dt — wdg)? + % (e27(dp® + d2?) + p?de?] , (67)

where F, w, and v are functions of p and |z|. Instead of specifying these functions, it is more
convenient to classify the metric by the Geroch-Hansen [2, 3] multipole moments associated with
it. Because of the axisymmetry, specifying the 2! + 1 independent components of the I-th tensor
multipole moment is equivalent to specifying the scalar multipole moment formed by the product of
the tensor moment with I symmetry axis vectors, and then dividing by I!. As discussed and defined
in Hansen [3], these scalar multipole moments can be classified into two families, corresponding
to mass and mass current (i.e. momentum density), parametrized by integer values of | > 0.
Because of the reflection symmetry across the equatorial plane, the mass multipole moments can
be nonzero only for even I: M, My, My, ... , M;, ... . The mass monopole moment is the mass
itself, so the “0” subscript of My is omitted. Similarly, the current multipole moments can be

nonzero only for odd I: Sy, Sa3, ..., Si, ... . For example, the Kerr metric with mass m and spin
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a has M; + iS; = m(ia)' [Ref. [3], Eq. (3.14)]. The letters M and S are used here to refer to the
multipole moments of the central body alone, as opposed to the letters I and J which will be used
in Sec. 4.5 when discussing the multipole moments of the entire system, including the orbiting
object.

When radiation reaction is neglected, the orbit of the small object is governed by three conserva-

tion laws. The first follows from the standard normalization condition for the object’s four-velocity:

dt\? dt\ [dé de\? dp\? dz\?
- 1=gu (a;) + 2014 (E) (E) + Go¢ (E) + Gpp (ﬁ) + 9z (E) : (68)

The lack of t-dependence in the metric implies that the energy per mass u of the small object is a

conserved quantity. It has value

E dt d¢

; = =0t (d'r) — gt (d—‘l") . (69)
Similarly, the “z-component” of angular momentum per mass of the small object,

L: _ dt do

£ (&) on (2).

is conserved because of the lack of ¢-dependence in the metric.
If the object is moving in a circle along the equator z = 0, then the orbital angular velocity (or

“angular frequency” as we shall call it) is

Q=9 _ —9w,t V/(9¢4,0) — 911,0944,0
dt 9o4.0

(71)
This is easily obtained from the geodesic equation and by imposing the conditions of constant
orbital radius, that dp/dr = 0 and d?p/dr? = 0.

A circular orbit also implies that dp/dT = 0 and dz/dr = 0 in Eq. (68), while d¢/dT = Q dt/dr,

so that solving for dt/dr in Eq. (68) and substituting in Eq. (69) gives:

—gut — G1pS2
E - git — 9t¢ = (72)
B /=gt — 29142 — ggeSd
Similarly, a circular orbit implies, from Eq. (70), that
& _ Gig + Gpefd (73)

B V—9tt — 29:Q — 944822 i
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The orbit might also be slightly different from a circle in the equatorial plane: it might be
slightly elliptical or slightly out of the equatorial plane. In this case, Eqs. (69) and (70) can be

solved for dt/dr and d¢/dr, which can be inserted into Eq. (68) to get

2 3
gs0\ E? gw) EL, gu\ L2 dp dz
LRE NPT iy o P8 s —
+(p’)#’ ! (/ﬁ i T\ ) w0 \ar) T \ar) (74)

where the fact that

g = 93,; — G1t9¢¢ (75)

was used. When the left-hand side of Eq. (74) is expanded in powers of z and of §p = (radial
displacement from the value of p which, along with z = 0, maximizes the left hand side), and
when only the leading-order (quadratic) terms in z and ép are kept, then Eq. (74) becomes the
law of energy conservation for a two-dimensional harmonic oscillator. The vanishing of the mixed
pz derivative of the left hand side (because of the reflection symmetry, taking a single z derivative
gives zero) implies that the motions in the p and z directions are independent of each other. These
motions correspond to the periastron precession and the orbital plane precession, which are at

frequencies 2, and 2,, respectively. The precession frequencies are

gee g
Qa = Q- (__2'_ [(gtt 4 gtnﬁn)z ( :f) yaa
gt 2 [ Gt L
—2(gee + 969Q) (919 + 99452) (—p:) saa + (9tp + 94452) (p_g) ma])  (76)

where « is p or z, and the expression is evaluated at z = 0. The “,,,” signifies double partial
differentiation with respect to the @ index. Eq. (76) was derived by evaluating the second derivative,
with respect to either p or z, of the left hand side of Eq. (74). Then, the values of E and L, were
substituted from Eqgs. (72) and (73). This substitution is valid only in the limit of small deviations of
the orbit from a circle in the equatorial plane. The second derivatives were then used to determine
the frequencies of the harmonic oscillators in the p and z directions which, when subtracted from
€1, give the precession frequencies of Eq. (76).

The metric functions and their derivatives, when evaluated at z = 0, can all be expressed as
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power series in 1/p. From Eq. (71), Q2 can be expressed as

Q = (M/p®)}*(1 + series in p~1/?) (77)
so that
1/p = (M/Q?)"/3(1 + series in p~1/?)
= (M/Q*)'3(1 + series in Q/3). (78)

Since AE/p, 2,/Q, and Q,/Q are all functions of 1/p and §2, then they too can be expressed as
power series in 2}/, We shall see that the coefficients of these power series can be used to obtain
the moments.

These power series have the following forms, as can be derived by an algorithm described in
Sec. 4.3 below. Listing just the first few terms, which are functions of the lowest three mass

moments M, M3, and M, and the lowest two current moments Sy and Ss, the functions are [using

v = (MQ)Y3):
AE _ 1, 1, 205 21 M\ o, 285 ,
s = 3 3ty s tas)? T3’

205 805} T0My\ , (815  SiMy 55
et . SN S —— ——o
( 16+27M*+9M3) 2 M2 T O M4
L (8615 1158] 935M; 35MF 35 M) .

128 18 M* " 24 M® ' 12M® 12 M°S

(1655 1408 S} 968 S, M, 352 53)1,11 ( 45927 123 S2

et et T ME 9 M

+—A gt 94713

V4TM, 93M]  SIMy , 5155 99Mi) i
56 M3 ' 4 MS M7 MS 4 MS

8::3;!—?4 - 15745% - %ﬁ—i— 2—553;? +125;;3 +3o§;5) V4., (80)
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—_ = 2— 7—-——- — — 66—
R) M + = 2 M3 s + 3M3 v o | A1 e GM“

153 52 153 M, 39M§ 15 Mg\ 4 53 S1 M, S3\
+(28M4+28M3 B MS 2 M° ”*( Sre t 31 15@)”

69 5] 69 M; 41M7 389 SiM; 5153 M\ 1o
+(7m+7m+7m i '41F"151’4‘5)" *

(81)

These expressions give some indication as to why all the multipole moments are obtainable
from any one of the functions AE(v), Q,(v), or Q,(v) [with v = (MQ)'/3 = (xM f)*/3]. The
current moment S; (I = 1,3,5, ...) always first appears in the coefficient of Q(3'+3)/3 in AE/p,
and of Q(3+1)/3 in 0,/ and Q,/Q. The mass moment M; (I = 2,4, 6, ...) always first appears in
the coefficient of 2(3'*2)/3 in AE/y, and of 2%/2 in Q,/$ and 2, /0. Since each multipole moment
makes its first appearance at a different order, then one would expect that all the moments can be
obtained from these functions.

In AE/u, the first two powers of Q2 have coeflicients that involve only M, but to different powers.
This allows not only for the determination of the mass, but also if AE/u is only measurable up
to a proportionality constant (for example, because p or the distance to the source is not known
exactly), this constant can be determined. In Q,/Q, the mass M can be determined from the
first term. In 2,/§2, there is no term that involves only the mass. If all the terms in the Q,/Q
expansion are zero (because M; = 5; = 0 for [ > 1), then the mass M cannot be determined at
all from Q,/Q. This case corresponds to the gravitational field of the more massive object being
spherically symmetric, so that there is no orbital plane precession possible. If some of the terms
in the Q,/Q expansion are nonzero, then it is possible to determine M from this expansion, as we

shall see in Sec. 4.4.

4.3 Determination of the multipole moments

In this section we shall develop an algorithm by which the power series expansions (79)-(81) can be
derived, to all orders; and we shall show that each moment S; or M; first appears in that expansion

at the order described in Sec. 4.2. The appearance of each moment at a unique order guarantees
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that the multipole moment can be determined from knowledge of the power series.

We will divide this presentation into five parts. In part A, we will review the Ernst potential
and its relation to the metric. We will show that the Ernst potential is completely determined
everywhere by a set of coefficients called a;o and a;; which describe the metric on the equatorial
plane. In part B, we will show that all the a;o and a;; can be determined from AE/u, Q,/Q, or
Q./9. In part C, the algorithm described in part B to do this will be summarized. In part D, we
will show how to go from the a;o and a;; to the multipole moments M; and S;. In part E, we will
show how Egs. (79)-(81) can be derived.

In Secs. 4.3 and 4.4, we assume that any one of the dimensionless functions, AE/u, Q,/9Q, or
Q,/9, is known exactly to all orders in Q. In addition, in Sec. 4.3, we assume that M is known—if
AE/p or Q,/$ is the known function, then M is easily extracted from the first term in either
series (79) or (80); if Q,/Q is the known function, then M can be determined from the algorithm

described below in Sec. 4.4.

4.3.1 The Ernst potential

Fodor, Hoenselaers, and Perjés [9] give details of the computation of the multipole moments from

the complex potential é , a function of p and 2. This E is related to the Ernst potential [10] £ by

/2 2 _f
E=Fyip=YELTZ &

YE - % (82)
Ve +22+¢
where F is related to the metric by [see Eq. (67)]
g = —F, (83)

and 9 is related to the metric by [Ref. [11], Eq. (I.3b)]

o0 /
Foy.,,

constant z

The Ernst potential £ is powerful for generating stationary, axisymmetric solutions to the grav-
itational field equations. It contains all the information of the spacetime geometry in a single,

complex function, and thus so also does f !
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The potential £ has the property that it can be expanded as [Ref. [9], Eq. (15)]

.- i 2k

The a;x can be nonzero only for nonnegative, even j and nonnegative k. Because of the reflection
symmetry across the equatorial plane, a;; is real for even k and imaginary for odd k.

Since the measured function, any one of AE/pu, Q,/Q, or Q,/Q, is directly related to the metric
in the region around the equatorial plane z = 0, then it is most convenient to convert the measured

function into the coefficients that contain information of the equatorial plane metric, namely, a;o

and a;;.

Assume for the moment that for any positive, even integer m, all the ajo with j = 0,2, ... ,m
and the a;; with j = 0,2, ... ,m —2 are known; and assume that for any positive, odd integer m,
all the ajo with j =0,2, ... ,m —1 and aj; with j =0,2, ... ,m — 1 are known.

From these a;o and a;1, all the a;x for j + k < m can be computed from [Ref. [9], Eq. (16)]

1
= (reeesyem—— ] o 2 2
Qr,s+2 GTOGTD) ( (r+2)°arsa,s +
z aua;_,,_,,',_,_,, [apq(p2 +q* — 4p — 5q — 2pk — 2q1 — 2)
k,pygq
+apt2,9-2(P+ 2)(P+ 2 — 2k) + ap_2,042(q + 2)(g + 1 - 21)] ) ~ (86)

The sum is over all integer values of k, I, p, and ¢ that give nonzero contributions, namely 0 < k < r,
0<I<s5+1,0<p<r—k,—-1<¢qg<s—1I and k and p even.

All the coefficients a;; that are within the summation sign in Eq. (86) have the property that
j+k < r+s+2. Thus, a, 42 (with s > 0) is a function of the a;o and a;_1,3 with j < r+s+2, but
no higher order ajo or a@;_1,;. This shows explicitly that £, and thence also the entire spacetime
metric, are fully determined by a knowledge of the a;o and a;_1,1, or equivalently a knowledge of

the equatorial plane metric.



53
4.3.2 Computing a;o and a;,

The process [12] of determining the ajo and a;, from AE/pu, Q,/Q, or Q,/Q occurs in iterations,
each stage labeled by n = 0,1,2, ... . For now, assume that it is AE/u that is known, rather than
Q,/9 or Q,/Q. Assume that the a;o are known up to order j = 2n, and the a;; are known up
to order j = 2n — 2. That is, ago, az0, @40, ... , G2n,0 and ao1, Gz1, G431, ... , G2n—3,1 are known.
(At the n = 0 stage, only ago = M is known.) All unknown ajo and aj; are set to zero at this
nth stage. The goal of this nth stage is to figure out what azn 32,0 and az,,; must be in order to
reproduce the observed functional form for AE/pu.

From the known values of a;o and a;;, the metric functions g:; and g:;4 on the equatorial
plane can be computed with Eqs. (82)-(85). Then, the metric function g44 can be obtained from
Eq. (75).

Therefore, with the ajo known up to j = 2n, the a;; known up to j = 2n — 2, and all other a;o
and a;; (temporarily) set to zero, the three metric functions g4, gi¢, and gg4 can be expressed as
power series in 1/p on the equatorial plane z = 0. Then, Q2 can be computed as a power series in
1/p using Eq. (71). This series can be inverted to have 1/p as a series in {2, so that the metric
functions are power series in 2. With Eqgs. (64) and (72), we can compute AE/u as a power series
in Q; we will call this computed function (AE/u),. The n subscript denotes the fact that this is
as computed only using the known a;o and a;; at stage n, and setting all unknown a;o and a;; to
zero. In particular, azn42,0 and aan,1 were set to zero in calculating (AE/u)n, and we will remedy
this situation below.

We can express these two functions—the actual, measured AE/u that is being deciphered, and

the computed (AE/u),—as power series in Q1/3:

AE/p = Y A0°3, (87)

(AE/pwn = > Ba2*/3, (88)

It is easy to verify that if a2,,1 (which is unknown at this nth stage) were changed from zero
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to a nonzero value, then to leading order in Q, (AE/u), would change by

.16n + 20
—f——a

: nnilM—(2n+1)Ian(4n+5)/3_ (89)

The Q(47+€)/3 term would not change if agn,; were changed; however, if the Ggn+43,0 term were

changed from zero to a nonzero value, then (AE/u), would change to lowest order by

_(4n+ 3)9(4ﬂ +6) G342, oM~ (P H+3)/3Q(n+6)/3, (90)

Based on these facts, then the azn,; and azn42,0 terms can be computed at the nth iteration
stage, by simply setting the azn,; and azn 42,0 seen in Egs. (89) and (90) to the values that would
have made (AE/u), agree with AE/pu to order Q(#7+6)/3 (rather than setting asn 1 and azn42,0

to zero as was done at the beginning of the nth stage): we set

'9M(2"+1)/3
@an,1 lm'(x‘hn«n — Bynss), (91)
gM(2n+3)/3
@2n+2,0 )(A4n+s — Banye)- (92)

" (4n+3)(4n +6)

Then the process can be repeated at the (n + 1)th iteration stage.

Now, we will repeat the above argument of part B for what to do at the nth stage if instead of
AE/p, it is Q,/9 that is known. A similar procedure as in the AE/u case can be followed, except
that instead of Eq. (72), Eq. (76) must be used. To compute the g?? function that appears in this
equation, it is necessary to compute the v function that appears in the metric (67) evaluated on

the equatorial plane [see, for example, Ref. [11], Eq. (I.4a) or Ref. [13], Eq. (7.1.26)]:

) el -

Following a similar argument as in the AE/u case, at the iteration labeled by n,

(2/Q)n =Y Da0*/? (94)

can be computed to order Q2(47+4)/3 and compared to

0,/0="2 C.%, (95)
a
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It is easily verifiable that the leading order effect of an az,,1 on (Q,/Q). is

1:(2" 4 4)02n,1M_(2n+3)/39(4"+3)/3, (96)

and aan,; has no effect on the Q(4n+4)/3 term. The leading order effect of an G2n+2,0 o0 (2,/Q)n

is
(n+ 1)(2n + 3)azn42,0M ~(3n+8)/3q(in+4)/3 (97)

From these facts, the next two coefficients should be set to

 M(n+3)/3

Qan,1 - W(me — Dyn43), (98)
M(2n+5)/3

A2n+2,0 (Can+4 — Danta). (99)

(n+1)(2n+3)

If it is ,/Q that is known, then it is also necessary to compute the second derivatives of the
metric functions git,22, §t¢,22, and g¢4,2z, evaluated on z = 0. These require the a;; and a3 terms,

which can be obtained from Eq. (86). At the iteration labeled by n,
(Ru/Q)n = Y HQ%2 (100)
«
can be computed to order Q2(47+4)/3 and compared to
/0= F.0, (101)
a

Following the same type of argument as in the case of AE/u and Q,/9Q, the effects of azn,; and

G2n 42,0 ON (2:/Q)n are:

— i(2n + 2)agn, M~ (In+3)/3q(4nt3)/3, (102)

— (n +1)(2n + 3)agn4a,0M (A +8)/3q(in+4)/3 (103)
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respectively, and ajn,; has no effect on the 2(4"+4)/3 term. The next two coefficients therefore

should be set to:

M (2n+3)/3
@2n,1 ITH-(FMM = Hany3), (104)
M(2n+5)/3
42,0 = —7———r—o<(Fin+a— Hanide). (105)

(n+1)(2n +3)

Whether analyzing AE/pu, Q,/Q, or 92, /1, this iteration can be repeated up to an indefinite

order.

4.3.3 Summary of above

To summarize the iterative process that allows for the determination of the ajo and the a;;:

Stage n, Step 1: With the a;jo up to j = 2n and the a;; up to j = 2n— 2, and the higher order
ajo and a;; set to zero, use Eqgs. (82)—(85) and (75) to compute gs1, gi¢, and gg¢ as functions of
1/p on the equatorial plane.

Stage n, Step 2: From these gy, g:¢, and g44, compute (AE/u), [with the help of Eqs. (64)
and (72)], (2,/2)n [with Eqgs. (76) and (93)], or (Q2,/9), [with Eqgs. (76), (86), and (93)] as a
function of Q [with the aid of Eq. (71) to get 1/p as a function of Q].

Stage n, Step 3: Set the values of asn,1 and azn 42,0 using Eqgs. (91) and (92) for AE/pu, Egs. (98)
and (99) for Q,/Q, or Egs. (4.3.2) for Q,/Q.

Stage n, Step 4: Go to Stage n + 1, Step 1.

4.3.4 Computing the moments

After as many as desired of the a;o and a;; terms have been computed, the aj; can be computed
with Eq. (86). Then, using the algorithm in Ref. [9], the multipole moments can be computed

from the a;x: in terms of

oI
Il
Wi
1l

p2+z2’ P2+32, (106)
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the multipole moments are

M4i8 = _sP 107
‘ T - $=0,7=0 e

where these s&"), not to be confused with the S;, are recursively computed by

s 513 )
si” =§ il = a‘., 5 = B‘_, (108)
1[ 8 O i a n—
S‘(‘n) - [ a_st(:: 1)+( )ﬁss 1)+a([ .+.1....2n]ah._.._p_) S( 1)

+@a-n)a+n-1)nSr+(n-a)(n-a-1) ('n - E) sta

+a(a — 1)y253" - [a(a ~ 1)R115"5% + 2a(n — a) Rip8" 32
+(n—a)(n—-a- 1)}}2,5‘&"-7)] (n— g)], (109)

in which Ry, Ry3, and Ry, are given by

. . -2
B = [(ﬁ’+z’)|£|’— 1| (GG} +GiGy) (110)
with
N ) P S S
Gl—za paf’ Gi—paﬁ+zaj+fl (111)
and from these f?.;_-,—,
n = (p/2)(R11 - Raa), 72 = pRia. (112)

Therefore, knowledge of the mass M and AE/pu, Q,/Q, or 2,/ allows for determination of the
M; and S;.

We have seen that each aj and a;—,,; is determined from AE/pu, Q,/9, or Q,/Q by the value of
a certain coefficient in the power series expansion. Then, with Eq. (86), all the a,, with r+s =l are
determined, and with Eqgs. (106)-(112), it can be verified that a variation of £ by D rpazi GrsP 2°

leads to a variation in M; + 15; such that

= M, +iS; + L.O.M. (113)
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“L.0.M.” is an abbreviation for lower order moments: some combination of M; and S with j < I

and k < l. Equivalently by virtue of Eq. (86),

(i— 1)
i

aw = (=12 M; + L.O.M., (114)

I
TS+ LO-M. (115)

Q11 = i(_l)(l—l),’z

Given an integer m, for even m, knowing the a;o up to amo and the a;; up to am-—3,; is equivalent
to knowing M, Sy, M3, S3, My, ... ,Sm-1, Mpm; for odd m, knowing the ajo up to am-1,0 and
the aj; up to am—1,1 is equivalent to knowing M, Sy, M3, S5, My, ... ,Mpy_1,Sm. Thus there is
a unique term in the power series expansion of any one of the functions AE/u, Q,/Q, or Q,/Q
where each multipole moment appears to leading order, and there is a prescribed algorithm for

obtaining the moments.

4.3.5 Deriving expansions for AE/u, Q,/Q, and Q,/0Q

Finally, Eqgs. (79)-(81) can be derived as follows: First, use the method of part D above to compute

M, as a function of aqo, @20, . .. , @0, and ao1, @21, ... , @1-2,1 (or S; as a function of ago, @20, ... ,
ai-1,0, and ao1, @21, ... , @i-1,1). Then, by inverting the series, obtain ajo as a function of My,
S1, M3, ..., Si—1, My, (or ai_;,; as a function of My, Si, M3, ... , Mi_1, 5). Inverting is trivial

as long as the problem is solved for the I — 1 case before trying to solve for the I case. The metric
functions and from these, AE/u, Q,/Q, or Q,/Q, can then be expressed as functions of the ajo
and a;j; using the equations in part A. Then inserting the values of these a;o and a;; in terms of
the multipole moments, we obtain Egs. (79)-(81).

Alternatively, we can derive the expansions by simply figuring out how the different combi-
nations of the multipole moments appear in the expansions. First of all, each term has as many
powers of M as are required to produce the correct dimensions. Then, for example, to find the S;S3
dependence in the Q,/Q function, an Q,/Q can be chosen (by varying the function order by order

as needed) such that when the above algorithm to compute the multipole moments is performed
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on this chosen 2,/€2, all the multipole moments except Sy and Sj are zero, while S; and Ss take
on different nonzero values. Then, looking at the (2,/2), function as computed in Step 2 of the
above iterative process, the dependencies of Q,/Q on S1S3, S?S3, 5153, etc., can be inferred by
examining how (€2,/Q)n changes as S; and S3 change values. For brevity, shown in Egs. (79)-(81)
are the first few terms only, but additional ones are not hard to compute. The calculation was
verified by checking that when the moments take on their Kerr values, Eqs. (79)-(81) give the

correct expressions that can be computed independently, directly from the Kerr metric.

4.4 Determination of the mass for 2,/Q

With AE/u or Q,/9 known as a function of §, it is easy to determine the mass M since it appears
in the first term in either expansion, Eq. (79) or (80). For §2,/1Q, it will be shown in this section
that M can be determined in the case that there is some precession (£2,/Q is not zero for all
€2). This is possible because up to any order in the Q expansion of Q,/Q = 3", FoQ2/3, there
are roughly twice as many terms as multipole moment variables, and information of the mass is
contained in the redundant terms.

If the coefficient of the € term in the expansion of §2,/Q is nonzero (F3 # 0), then a method

to determine M can be derived by examining Eq. (81). If F4 # 0, then the mass is

4Fs — TF2\*/?
= ——= 116
M ( o : (116)

while if F4 = 0, then the mass is

3/2
2
M:(m, 4F3 41F, Fm) _ (117

372 T\ ors T 36, 3F2
In the case that the coefficient of the Q2 term in the €2,/ expansion is zero (F3 = 0), there is
a general procedure that can be followed to obtain the mass. With the equations of Sec. 4.3,

specifically, those leading up to Expressions (102) and (103) but carrying the process out to one

more order, the next-to-leading order effects of the azn,1 (for n > 1) and aan42,0 (for n > 0) on
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(Q:/Q)n are

—2in(2n + 3)agn, M ~(3n+1)/3q(4n+8)/3 (118)

—2(n + 1)2(2n + 3)agn42,0M ~3n+3)/3qUn+6)/3 (119)

Comparing these with Expressions (102) and (103), the mass can be determined by looking at
the first nonzero term in the 2,/ expansion. If the first nonzero term is an Q(4n+3)/3 term for

integer n > 1, then the mass is

_( (n+ 1) Py \*?
M= (n(2n+3)FM+3 : (120)

If the first nonzero term is an Q(47+4)/3 term for integer n > 0, then the mass is

B 1 3/2
== T
M = (—(Zn oY 2)F4n+4) . (121)

After M is determined, then the multipole moments can be determined as described in Sec. 4.3,

where it is assumed that M is known.

4.5 Leading order effect of the multipole moments on the gravitational-

wave phase evolution

Another interesting but much more accurately measurable function of 2 is the gravitational-wave
phase evolution for circular orbits in the equatorial plane, expressed as AN as a function of 2, as
defined in Eq. (66).

Unfortunately, a similar analysis cannot be conducted for AN as was done for the other func-
tions, because the dE\yave/dt that appears in AN cannot be computed from the Ernst formalism.
Rather dEwave/dt = —dE/dt can only be computed by solving wave equations to compute the
wave generation: equations which (apparently) will not decouple from each other nor allow a
separation-of-variables solution. These hindrances make the calculation much more difficult than

solving perturbations of the Kerr metric, for which decoupling and separation-of-variables do in
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fact occur and simplify the problem. To make the situation in the general case even more difficult,
AN depends also on the inner boundary conditions for the gravitational-wave equations and on the
amount of energy absorbed by the central body through, for example, a horizon or tidal heating of
matter. These inner conditions are not, in general, determined from just the multipole moments.
However, at least in the case of a Schwarzshild black hole, the effects of the horizon do not appear
until a very high order [14]. It is perhaps possible that just as we made the idealizing assumption
(iv) of energy balance when computing AE, we can also make some type of simplicity assumption
(such as regularity of the wave functions at the origin), and get an accurate enough answer, but
this is not clear. Despite this uncertainty, if in the future the task were undertaken to determine
AN as a function of at least the lowest few multipole moments, the potential to experimentally
test the “no-hair” theorem for black holes would be very promising [4]. It will be shown below
that if we once again make our four idealizing assumptions, then AN contains full information of
all the multipole moments. While we cannot yet construct a general algorithm to actually extract
all the multipole moments from AN, we can, it turns out, extract M, S;, and M (enough, in
principle, to test the no-hair theorem). The following is just a limited discussion of how each
multipole moment appears to leading order in AN, which in turn depends on how each multipole
moment appears to leading order in AFE and in the gravitational-wave luminosity.

We will divide the discussion in three parts. In part A, we will show a simple way, based on
the mass quadrupolar radiation formalism, to compute how central-body multipole moments with
> 2 (M;, S3, My, ...) show up to leading order in the gravitational-wave luminosity, —dE/dt.
For example, we will see how M, first shows up at v* order (beyond where M first appears) in
the luminosity. However, while we can compute this M;v* term, we cannot compute, for example,
M3v® or Mv® terms. In part B, we will show that there is another effect which must be taken
into account when calculating the leading order influence of S; (at v® order) on the luminosity.
Moreover, we will calculate the leading order occurrence of not only S; but also S? (which shows

up at v* order) in the series expansion for the luminosity. The S?v* term is calculated for its
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usefulness in part C, where the leading order effect of the multipole moments M;, S, and S? on
AN are computed. From these leading order effects, and some well-known terms derived elsewhere,
we also infer the entire series for AN up through v* order (including S;v%, S?v*, and M;v*). From
this fully known part of the series we get a simple way of testing the no-hair theorem. Incidentally,
we could also, for example, calculate the leading order effect of M? on the luminosity, which is an
M3v® term, but this would be of little practical value since we cannot calculate M,v® terms at
present anyway. Therefore, we will limit this