THEORETICAL INVESTIGATIONS IN
NONLINEAR QUANTUM OPTICS,
THEORY OF MEASUREMENT,
AND
PULSATIONS OF GENERAL RELATIVISTIC

MODELS OF NEUTRON STARS

Thesis by

Bonny L. Schumaker

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1985

(Submitted May 15, 1985)



-ii1~

Nature reveals herself willingly, I believe, but in proportion to our attentive-
ness. For a theoretical physicist, this attentiveness takes the form of a careful
questioning of what he sees, or of what he thinks he sees, in nature. Often his
discoveries, great or small, are a result of a persistent, demanding examination
of issues previously neglected or assumed understood. It is in this spirit that
this collection of papers is presented. While none of them represents a break-
through in our understanding of how nature works, it is hoped that they offer a
useful contribution to the description of a wide variety of physical systems, par-

ticularly those that can be modeled as harmonic oscillators.
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ABSTRACT

This thesis is a collection of six papers. The first four constitute the
heart of the thesis; they are concerned with quantum mechanical properties
of certain harmonic-oscillator states. The first paper is a discourse on
single-mode and two-mode Gaussian pure states (GPS), states produced
when harmonic oscillators in their ground states are exposed to potentials
that are linear or quadratic in oscillator position and momentum variables
(creation and annihilation operators). The second and third papers develop
a formalism for analyzing two-photon devices (e.g,, parametric amplifiers
and phase-conjugate mirrors), in which photons in the ouput modes arise
from two-photon transitions, i.e., are created or destroyed two at a time.
The states produced by such devices are single-mode and two-mode
"squeezed states”, special kinds of GPS whose low-noise properties make
them attractive for applications in such fields as optical communications
and gravitational wave detection. The fourth paper is an analysis of the
noise in homodyne detection, a phase-sensitive detection scheme in which
the special properties of (single-mode) squeezed states are revealed as an
improved signal-to-noise ratio relative to that obtained with coherent states

(the states produced, e.g., by a laser).

The fifth and sixth papers deal with problems of a different nature from
that of the previous papers. The fifth paper considers the validity of the
"standard quantum limit" (SQL) for measurements which monitor the posi-
tion of a free mass. It shows specifically that when the pre-measurement
wave functions of the free mass and the measuring apparatus(es) are Gaus-
sian (in the general sense, which includes so-called "contractive states"),
measurements described by linear couplings to the position or to both the

position and momentum are limited by the SQL. The sixth paper develops
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the mathematical theory of torsional (toroidal) oscillations in fully general
relativistic, nonrotating, spherical stellar models, and of the gravitational

waves they emit.
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INTRODUCTION

The advent of the laser in the 1960's brought with it a host of new
observable phenomena. The intense light from a laser operating far above
threshold results from the coherent excitation of a single mode of the elec-
tric fleld; the fluctuations (noise) associated with the light reflect only
quantum-mechanical zero-point fluctuations, and nothing more. Nonlinear
effects, unobservable with ordinary light because they arise from couplings
between matter and radiation that are second order and higher in the field
strength, are observable with laser light. These effects give rise to a wide
variety of phenomena, such as harmonic generation,! optical phase conjuga-
tion,® and squeezed-state light.® Squeezed-state light is the motivation for

the first four papers of this thesis.

Quantum mechanics describes the output of a laser as a collection of
modes (harmonic oscillators) of the electromagnetic field, each of which is
in a "coherent state."*® A (single-mode) coherent state is an eigenstate of
the annihilation operator a for the mode ([a, at] = 1). It therefore has the
sharpest complex amplitude {a) allowed by quantum mechanics. The "total

noise"
(|Aa|?) =<{Aadat)gn, = %({Aa Aat) + {AaTAa)),
Aa =a —{a), (1)

of a coherent state, equal to the sum of the variances of the real and ima-
ginary parts of a, is the minimum allowed by quantum mechanics (the half-
quantum of "zero-point noise"). The vanishing of {(Aa)?) implies that the
variances (squared uncertainties) of the real and imaginary parts of e*¢a for
any S ("rotated” dimensionless position and momentum variables), are

identical. The coordinate- and momentum-space wave functions of a



-2 -

coherent state are therefore Gaussians, whose widths (in dimensionless

units) are identical.

In the Fourier decomposition of an electric field (or other quantized
field composed of bosonic modes), the annihilation operators appear as the
Fourier components of the positive-frequency part of the field. Just as it is
useful when discussing a single mode to distinguish between the real and
imaginary parts of the annihilation operator, it is useful when discussing a
collection of modes, i.e., an (electric) field, to distinguish between two
(time-dependent) linear combinations of the positive- and negative-
frequency parts of the field; these combinations are called quadrature-phase
operators (or simply quadrature phases). They are the operators which
appear when one decomposes the field into parts that vary as cosQ(¢ —z)
and sinQ (¢ z), where the frequencies associated with the field are regarded
as symmetric around a carrier frequency (). For a field composed of modes
in coherent states, the (time-averaged) variance of the fleld, or the sum of
the variances of the quadrature phases, is the minimum allowed by quantum
mechanics; this is because it is proportional to the sum of the total noises of
each mode, each of which is equal to its minimum allowed value. Further,
the vanishing of of the complex number {(AE(V)?), where E(*) is the
positive-frequency part of the coherent-state field, implies that the vari-
ances of the quadrature phases (and all "rotated”" quadrature phases) are

identical.

Clearly coherent states do not describe all (pure) states with Gaussian
wave functions ('Gaussian pure states”, or "GPS"). Likewise, fields com-
posed of modes in coherent states do not describe all fields with Gaussian
quantum fluctuations. Gaussian pure states are produced when harmonic

oscillators in their ground states are exposed to potentials (interaction
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Hamiltonians) that are linear or quadratic in creation and annihilation
operators. Hence, although they may affect N oscillators (N = 1), thus pro-
ducing an N-mode GPS, the interaction Hamiltonians that produce GPS are
summs of Hamiltonians that either involve a single oscillator or couple two
oscillators. This means that the properties of fields with Gaussian quantum
fluctuations reflect the properties of single-mode and two-mode GPS. Paper
1 in this collection, entitled "Quantum mechanical pure states with Gaussian
wave functions,"” is a treatise on single-mode and two-mode GPS. Many com-
ments which would naturally appear in this Introduction have been omitted,
in favor of referring the reader to the Introduction of that paper. That
Introduction will also serve to familiarize the uninitiated reader with the

material contained in Papers 2, 3, and 4 of this thesis.

Coherent states are produced from the vacuum state by interaction
Hamiltonians that are linear in creation and annihilation operators ('one-
photon' processes). Physically, this says that coherent states are produced
when an oscillator in its ground state is subjected to a classical force (e.g.,
an electrical current). Gaussian pure states that are not coherent states
are produced from coherent states by interaction Hamiltonians that are
quadratic in creation and annihilation operators, i.e., by processes which
involve two-photon transitions. The changes in the wave functions and noise
properties of the field from those of coherent states and flelds composed of
modes in coherent states are a result of correlations between the photons in
each pair. Single-mode GPS that are not coherent states are produced by
degenerate two-photon interactions, in which two photons from the same
mode are created or annihilated simultaneously. They are known in quan-
tum optics as ''single-mode squeezed states.” The adjective "squeezed"

alludes to the fact that the variance of the real or imaginary part of eta,
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for some 0, is smaller than it would be in a coherent state. Two-mode GPS
that are not coherent states are produced by all combinations of (i) degen-
erate two-photon interactions (one for each mode), (ii) frequency-converting
interactions, in which a photon from one mode is annihilated while a photon
from the other mode is created, and (iii) nondegenerate two-photon interac-
tions, in which two photons from different modes are simultaneously created
or annihilated. The frequency-converting interaction by itself cannot pro-
duce a state with noise properties that are different from those of a
coherent state. The two-mode GPS that are produced from (two) coherent
states by nondegenerate two-photon interactions are called "two-mode
squeezed states.” They (as distinguished from states that are products of
two single-mode squeezed states) are the natural analog, both formally and
physically, of single-mode squeezed states. For further discussion, please
see the Introduction to Paper 1 (especially Section I.g). A thorough discus-
sion of two-mode squeezed states and their significance for the noise proper-
ties of (multimode) electric fields is contained in Papers 2 and 3 of this

thesis.
A brief summary of each of the papers in this collection follows.

Paper 1, entitled "Quantum mechanical pure states with Gaussian wave
functions,” is a comprehensive discussion of single-mode and two-mode
Gaussian pure states (GPS). In it I investigate the physical and group
theoretical significances of the Hamiltonians and unitary operators associ-
ated with GPS. These are used to develop a natural classification of all GPS.
The properties of single-mode and two-mode GPS are discussed. Efficient
vector notations are introduced, for both single-mode and two-mode GPS,
which provide a powerful way to derive and describe properties of GPS and

the unitary operators associated with them.
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Papers 2 and 3 are the first two papers in a series that describes a new
formalism for two-photon quantum optics; they appear in the May, 1985
issue of Physical Review A The objective in this series of papers is to
develop a formalism that can successfully describe real "two-photon” dev-
ices (e.g., parametric amplifiers and phase conjugate mirrors), which are of
increasing theoretical and experimental interest because of their ability to
produce squeezed states. The fundamental operators of the formalism are
the (Fourier components of the) quadrature-phase operators described
above, and the fundamental states are the two-mode squeezed states. Paper
R (Paper I in the series) lays a foundation for the formalism; it defines the
fundamental operators and states and describes the noise properties of
fields produced by two-photon devices. These fields have a special kind of
noise, called "time-stationary quadrature phase” (TSQP) noise, so named
because for them all noise moments (moments with the mean excitations
removed) of the quadrature-phase operators are time-independent. By
comparison, the fields produced by one-photon devices such as the laser,
i.e., coherent-state fields, have an even more special kind of noise, "time-
stationary” (TS) noise, so named because all noise moments of the electric
field, as well as of the quadrature phases, are time-independent. Paper 3 in
this thesis (Paper II in the series) provides the mathematical foundation for
the formalism. It introduces a two-component vector notation that natur-
ally describes the properties of states (or fields) that have TSQP noise. This
vector notation is a special case of the more general vector notation
developed in Paper 1 of this thesis for describing all two-mode GPS. Proper-
ties of two-mode squeezed states and various unitary operators associated
with them are investigated thoroughly. [ am currently writing Paper III of

this series (it does not appear in this thesis). That paper will define
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quasiprobability distributions (QPDs) for fields with TSQP noise, based on the
quadrature-phase operators. The use of QPDs is equivalent to a density
operator description of the fields; it enables one to describe real devices,

which exhibit losses and other nonideal effects.

Paper 4 of this collection is a short paper, published in Optics Letters in
May, 1984, entitled "Noise in homodyne detection.” It is a simple but
rigorous analysis of the important sources of noise in homodyne detection.
Homodyne detection is a phase-sensitive detection scheme, which works by
combining at a beam splitter a monochromatic input fleld with a strong
local-oscillator field, and monitoring one or both output ports. The relative
strength of the local-oscillator field guarantees that (i) the dominant contri-
bution to the output-field intensities is proportional to the mean field of that
input-field quadrature phase which was in phase with the local oscillator
(i.e., to the real or imaginary part of e*®{a), since the input field is mono-
chromatic), and (ii) the dominant noise in the output fields is proportional
to the variance of that quadrature phase. A reduction in the noise in one
quadrature phase relative to its coherent-state value, i.e., squeezing, is thus
manifested as an improved signal-to-noise ratio over that obtained when the
input field is a coherent state. This paper shows that "two-port” homodyn-
ing, in which one monitors both output ports of a 50-50 beam splitter with
photodetectors and then subtracts the photodetector outputs, is insensitive
to local-oscillator quadrature-phase noise; hence it provides (i) a means of
detecting reduced quadrature-phase fluctuations (squeezing) that is more
sensitive than conventional (one-port) homodyning, and (ii) an output
signal-to-noise ratio that can be a modest to significant improvement over
that of one-port homodyning and direct detection. The magnitude of the

improvement is a function of how “squeezed" the input field is and how



efficient the photodetectors are.

Paper 5 is a short paper [ wrote between January and March, 1984, but
chose not to submit for publication. It examines the validity of the "stan-
dard quantum limit" (SQL) for certain kinds of measurements of the position
of a free mass. The SQL says that one cannot predict the outcome of the
second of two successive, identical measurements of the position of a free
mass with an accuracy better than (Rr/m )% where T is the time interval
between the measurements. My active interest in this subject was sparked
by an article by Horace Yuen® that appeared in Physical Review Letters in
August, 1983. In it he argued that the use of "contractive states” enables one
to beat the SQL. Contractive states are free-mass states with the most gen-
eral kind of Gaussian wave function (the wave function of a single-mode
squeezed state); i.e., they are states in which the position and momentum
variables are correlated with each other in a way that is independent of
their mean values. The kinds of measurements that Yuen proposes are not
measurements which we know how to realize (he has made this clear in pub-
lished comments since his original Letter). There is no proof available, and
perhaps no reason to believe, that the kinds of measurements of which he
speaks could not beat the SQL. However, his article and others since his
have revealed confusion regarding the precise statement of the SQL and the
measurements to which it applies. In this paper I consider the validity of
the SQL for measurements described by linear couplings to the position or
to both the position and momentum of the mass.” It is shown that whenever
the pre-measurement wave functions of the free mass and the measuring
apparatus(es) are Gaussian (which includes Yuen's "contractive states"),

such measurements are subject to the SQL.



-8 -

Paper 6, written in collaboration with Kip S. Thorne, presents the
mathematical theory of torsional oscillations in fully relativistic, nonrotat-
ing, spherical stellar models; and it examines the gravitational waves emit-
ted as a consequence of these oscillations. The motivation for this analysis
lies with neutron stars, which have crusts and perhaps also solid cores that
could undergo such oscillations. These oscillations might be observed in
pulsar timing data, as subpulses or in "post-glitch” data, or by gravitational
wave detectors available ten or twenty years from now. The analysis uses
first-order perturbation theory and ignores all damping except that due to
gravitational radiation reaction. For each harmonic, the paper presents
equations of motion, an action principle, and a proof that the oscillations are
stable. An eigenvalue problem is posed for the eigenfunctions and eigenfre-
quencies of the normal modes with outgoing gravitational waves. Five
methods of solving the eigenvalue problem are presented. An appendix
develops a general theory of action principles for systems with radiative

boundary conditions.
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ABSTRACT

This paper examines single-mode and two-mode Gaussian pure
states (GPS), quantum mechanical pure states with Gaussian wave
functions. These states are produced when harmonic oscillators in
their ground states are exposed to potentials (interaction Hamil-
tonians) that are linear or quadratic in the position and momen-
tum variables (annihilation and creation operators) of the oscilla-
tors. The physical and group theoretical properties of these Ham-
iltonians and the unitary operators they generate are investigated.
They are used to develop a natural classification of all GPS. Pro-
perties of single-mode and two-mode GPS are discussed. An
efficient vector notation is introduced and used to derive many of
the important properties of GPS and the Hamiltonians and unitary

operators associated with them.
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1. INTRODUCTION AND OVERVIEW

This paper considers Gaussian pure states (GPS), quantum mechanical
pure states that have Gaussian wave functions. These states are particularly
relevant to the description of a harmonic oscillator with a nearly classical,
coherent excitation whose intrinsic quantum mechanical fluctuations are
important. Such a description arises, for example, in connection with the
transmission or detection of coherent optical signals,? or high-precision
measurements of a macroscopic oscillator's displacement, as in the detec-
tion of gravitational waves.3* Gaussian pure states are familiar in quantum
optics, where they describe the coherent output from a laser and the
predicted "squeezed-state” light®® from an optical parametric amplifier.
For the theorist, these states have the satisfying feature that the Hamiltoni-
ans for the physical processes that produce them are known and have sim-

ple, easily interpreted forms.

Gaussian pure states are produced when harmonic oscillators in their
ground states are subjected to particular kinds of time-dependent poten-
tials, or interaction Hamiltonians. The oscillators might be mechanical or
electrical, or they might be the normal (bosonic) modes of a quantized field
such as the electromagnetic field; for purpose of illustration, I shall have the
last of these examples in mind throughout this paper. The interaction Ham-
iltonians that produce GPS are polynomials that are linear and/or quadratic
in the oscillators’ position and momentum variables. Hence, although they
may affect N oscillators (N = 1), thus producing an N-mode GPS, the
interaction Hamiltonians are sums of Hamiltonians that either involve a sin-
gle oscillator or couple two oscillators. This has the important consequence
that one need look only at single-mode and two-mode GPS in order to under-

stand the fundamental features of all N-mode GPS. Single-mode GPS and
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their subsets have been studied by many people during the last six
decades.” '® The goal of this paper is to help make the less widely known and

understood two-mode GPS as familiar as their single-mode counterparts.

Associated with any oscillator is a real, positive, constant frequency (2.

The quantum mechanical free Hamiltonian for the oscillator is
HV =Qata, Q=0Qr, (1.1a)

where a and a' are annihilation and creation operators for the mode
([a, at] = 1). (Here and throughout this paper I use units with A =c = 1.)
The expectation value of ata, the photon-number operator for the mode, is
the number of photons in the mode. The free Hamiltonian for N oscillators
is the sum of N single-mode free Hamiltonians:

Hy™ = ﬁ O afa;, 0 =0p. (1.1b)

J=1

The stationary states for each oscillator (eigenstates of Hy(!)) are the

number states |n),
|nd = (n1)H#(ah)" |0}, (1.2a)
HoV nd =nQ|n), (1.2b)

where the state vector |0) represents the ground state. Throughout this
paper the state vector |0), or the term "vacuum state”, means the tensor
product of the ground states of N oscillators, for any N = 1. The vacuum
state, unlike the other number states, is also an eigenstate of the annihila-
tion operators for all the modes. Its wave function is Gaussian, whereas the

wave functions for the other number states |n), n = 1, are not.?
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The forms of the interaction Hamiltonians that produce (or preserve)
Gaussian pure states are derived in this paper by considering the most gen-
eral single-mode and two-mode Gaussian wave functions, in which all param-
eters are arbitrary, subject to normalization. The wave functions imply that
Gaussian pure states are eigenstates of certain kinds of linear combinations
of creation and annihilation operators. These linear combinations in turn
determine the general form of the unitary operators that relate Gaussian
pure states to the vacuum state, in the following way. Let the most general
(normalized) N-mode GPS be expressed formally as the state vector

0]
UM |0, where UM =e 6™ 5 o unitary operator with Hermitian gen-

erator Ho®).

Since the vacuum state is an eigenstate (with zero eigenvalue)
of the annihilation operators a;, 7 = 1,2,...,N, an N-mode GPS is an eigen-
state (with zero eigenvalue) of the transformed annihilation operators
gj = UM a; U™t The (Gaussian) wave functions imply that the operators
g;j are linear combinations of annihilation and creation operators plus a con-
stant, which in turn implies that the Hermitian generator He™) consists only
of linear and bilinear combinations of annihilation and creation operators.
There are no further restrictions on the generator He™), so He™) consists,
in general, of all possible linear and bilinear combinations of annihilation

and creation operators.

¥l = e_WGU\n that relate N-mode GPS to the

The unitary operators Ug
vacuum state factor naturally into unitary operators whose generators are
(Hermitian) linear combinations of creation and annihilation operators, and
unitary operators whose generators are {Hermitian) bilinear combinations
of creation and annihilation operators. There are N unitary operators whose

generators are linear in creation and annihilation operators, one for each

mode, and they are identical to each other in form. They are called
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"displacement operators".!® In contrast, the unitary operators whose gen-
erators are bilinear combinations of creation and annihilation operators
divide into four basic types, which differ fundamentally from each other in
both their physical and group theoretical significance. In this paper they
are referred to as rotation, mixing, single-mode squeeze, and two-mode
squeeze operators. This division reflects the underlying structure of the
N(2N + 1)-parameter Lie algebra consisting of all bilinear combinations of N
creation and annihilation operators. These unitary operators and their gen-

erators are described below.

The proof (for N =1 and N = 2) that the unitary operator Us®™) whose
generator Hg™) is a sum of all linear and bilinear combinations of creation
and annihilation operators factors into a product of displacement, rotation,
mixing, and squeeze operators is subsumed by more general proofs given in
Sections IIC, 1IIC, and Appendix A. There each term in the generators He(W
and H¢® is allowed to have an arbitrary time dependence (subject to overall
Hermiticity), and the unitary evolution operator U¥)(¢), the solution to the
Schrodinger equation 18, UM(¢) = HeWM(t) UM(¢), UM(0) = 1, (N = 1,2), is
shown to factor into a product of these unitary operators. The Hermitian
forms associated with the displacement, rotation, mixing and squeeze opera-
tors thus take on a physical meaning, in addition to their group theoretical
roles. When allowed to take on time dependences, they represent the
interaction Hamiltonians that produce (or preserve) Gaussian pure states.

Their properties are now described.
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a. Interaction Hamiltonians

The interaction Hamiltonians that produce Gaussian pure states divide
naturally into two broad categories: those that conserve the (total) number
of photons in the mode(s), and those that do not. Those that conserve total
photon number leave the vacuum state unchanged, and their effect on other
GPS is merely to redistribute the photons among the different modes. Of
greater interest here are those interactions that do not conserve the total
photon number, but that do preserve the Gaussian nature of a state. As
stated above, all interaction Hamiltonians that produce (or preserve) GPS
are polynomials that are linear and/or quadratic in creation and annihila-
tion operators (i.e., in position and momentum variables). Conversely, all
such interaction Hamiltonians describe physical processes that produce (or
preserve) Gaussian states. Those that conserve the total photon number
must consist of products of equal numbers of creation and annihilation
operators. The requirement that they also preserve Gaussians implies that
they have the (normally-ordered) forms

HO(E) = % Ty()ata;, Ty =0, (1.9

tJj=1

where the II;;(t) are arbitrary complex-valued functions of time ¢. In con-
trast, the Hamiltonians that produce (or preserve) GPS but do not conserve

the total number of photons have the forms

H,W¥(¢t) = f IAME) gy —iN;(t) gt (1.4a)
=1
N

HW(t) = ¥ RicE) may — Hidy(t)asTat, (1.4b)
1=

where A;(t) and ¢;;(t) are arbitrary complex-valued functions of time.
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The photon number-conserving interactions defined in Eq. (1.3) divide
naturally into two types. The first is made up of the terms for which i = 7;

for each mode i these Hamiltonians have the form
HeW(t) = wi(t) aTay . wi(t) = w(t), (1.5)

which looks like the free Hamiltonian for the mode but with a time-
dependent real function (not restricted to positive values) in place of the
frequency. These Hamiltonians conserve the number of photons in each
mode; hence they conserve the total energy, as well as the total number of
photons. They are referred to in this paper as rotation Hamiltonians. Like
the free Hamiltonian, they cause a time-dependent exchange of kinetic and
potential energy within each mode, but unlike the free Hamiltonian, the

time dependence need not be harmeonic.

The second type of photon number-conserving interaction is made up of
the terms in Eq. (1.3) for which i # j. For each pair of modesi and j, these

Hamiltonians have the form
H&J(t) = Hu(t)a.,_fa.J + H,;}(t)ajfa.i : 1 ?‘j : (16)

These interactions conserve the total number of photons in each pair of
modes, but not the number in each mode separately; i.e., the Hamiltonian
Hpij(t) commutes with the sum, but not the difference, of the photon-
number operators for the two modes. Physically, they describe "ideal”
frequency-converting interactions, in which a photon of frequency Q; < ()
and a "pump" photon of (or photons of total) frequency (Q; — ;) are des-
troyed simultaneously to produce a photon of frequency (; (and vice-versa).
The interaction is "ideal" if the pump(s) can be assumed to have an unlim-

ited supply of photons, and so be described by a classical function 1 ().
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The interactions defined in Eq. (1.4), which do not conserve photon
number, are of three types. The first consists of the linear Hamiltonians
H,M(t), each of which describes the interaction of an oscillator with a clas-
sical force characterized by a function A(t) (e.g., a classical current).!®!!
These will be seen to conserve quantities related to the noise (uncertainties)
of a GPS. The second type of interaction consists of those quadratic Hamil-
tonians H5®(¢) that couple two different modes (i # j). For a pair of modes

1, j these Hamiltonians have the form

Hag(t) = et may —ie(t)aTat, 177 . (1.7)

These interactions conserve the difference in the number of photons in the
two modes, but not the total number; i.e., the Hamiltonian Hgi,-(t) com-
mutes with the difference, but not the sum, of the photon-number operators
for the two modes.?® Physically, these describe "ideal" nondegenerate two-
photon interactions, in which two photons of frequencies (); and Q; are des-
troyed simultaneously to produce a pump photon of (or photons of total)
frequency (Q; +Q;) (and vice-versa). The simplest example of a device that
operates on such an interaction is a nondegenerate parametric
amplifier,'®?0 which uses a single pump at frequency (Q; + (;); the two
modes are called the signal and the idler. Another example is a four-wave
mixer ?'"® which uses two pumps, the sum of whose frequencies is ((; + Q;);
here the two modes are the transmitted and reflected waves. The interac-

tion is "ideal" if the pump(s) can be described by a classical function ¢(¢).

The third type of interaction that does not conserve photon number
consists of the quadratic Hamiltonians Hp)(t) that involve single modes

(i =j). For each mode these Hamiltonians have the form

HD(t) = Bi¢*(t)a? - Bid(t)al. (1.8)
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Physically, these interactions describe ideal degenerate two-photon interac-
tions in which two photons of frequency () from the same mode are des-
troyed simultaneously to produce a pump photon of (or photons of total)
frequency 20 (and vice-versa). Such an interaction is used, for example, in a
degenerate parametric amplifier. For specificity throughout the remainder
of this paper, whenever I need an example of a device that operates on a
two-photon interaction {degenerate or nondegenerate), I shall have in mind

the simplest example -- an ideal parametric amplifier.

b. Unitary operators

The unitary operators that relate one GPS to other GPS with the same
total number of photons are generated by the photon number-conserving

(v)

Hermitian forms Hp They are of two types: rotation operators, which act

on one mode at a time, and "mixing" operators, which couple two modes.

For each mode a rotation operator F(6) is defined by
R(8) = ei#ale g = g+ (1.9)

[Eq. (1.5)]. Formally, R(8) rotates the real and imaginary parts of a (i.e.,
position and momentum) into each other. For each pair of modes i,j a

mixing operator T(q,¥) is defined by

T(3.x) = exp[q (e **Xa;'a; — e*Xa;Ta;)], i #j (1.10a)
[Eq. (1.6)], where g and x are real numbers defined on the intervals

O<q < ¥%m, ~Yr<x<¥%m. (1.10b)

Formally, 7(gq.x) unitarily transforms a; and g; into linear combinations of

each other.
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The unitary operators that relate one GPS to other GPS with different
total photon number are generated by the (non-photon-number-conserving)
Hermitian forms A, and H;¥). Again, they are of two types: those that
act on one mode at a time, and those that couple two modes. For each
mode a displacement operator!®!! and a single-mode squeeze opera-

tor 121323 are defined by

D(a,u) = explua® —u*a], (1.11)
Si(r.¢) = exp[}hr (e #?a? — e¥?q1?)] (1.12a)

[Egs. (1.4a), (1.8)]. Here u is a complex number, and 7 and ¢, known as the

squeeze factor and squeeze angle, are real numbers defined on the intervals
0<7 <=, “brn<o<khnm. (1.12b)

Formally, the displacement operator adds a constant (u) to a, thus chang-
ing the mean values of the position and momentum variables. The single-
mode squeeze operator mixes a with a’. Consequently, it induces a correla-
tion between the position and momentum variables that is independent of
their mean values. This correlation can result in a narrowing of the
coordinate-space wave function, with a corresponding broadening of the

momentum-space wave function.

For each pair of modes a two-mode squeeze operator®*~*7 S(r,¢) is

defined by
S(r.¢) = explr(e #*aqa; — e a;Tq;N)], i #j (1.13)

[Eq. (1.7)]. where 7 and ¢ are defined as above [Eq. (1.12b)]. The two-mode
squeeze operator mixes @; with ¢;f (and a; with a;"). Consequently, it

induces correlations between the positions and momenta of the two modes
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(but not of each mode, as the single-mode squeeze operator would do); i.e.,

it causes a; and a; to become correlated.

c. Gaussian pure states

Turn now from discussion of the interaction Hamiltonians and unitary
operators associated with GPS to the states themselves. Although it is use-
ful to classify the interaction Hamiltonians and unitary operators according
to whether they conserve the total number of photons, it is not so useful to
classify the states according to their total number of photons. More useful
for classifying GPS is a quantity that ignores the mean excitation ({a;),
j =12 - ,N) and focuses exclusively on the total (second-moment) noise
associated with the state. The total noise of a single-mode GPS is defined as
the sum (hence the adjective "total") of the squared uncertainties (vari-
ances) in the real and imaginary parts of a. The minimum total noise
allowed by quantum mechanics (i.e., by the commutator [a, a'] =1) for
each mode is therefore one half quantum ("zero-point noise"). This
minimum is realized if and only if the state is an eigenstate of the annihila-
tion operator for that mode. Note that although the total noise of a mode
includes in its definition the half quantum of zero-point noise, this is not the
significance of the adjective "total.” The total noise of an N-mode GPS is
defined as the sum of the contributions from ("total noises" of) each mode.
The total noise of a GPS can be thought of as the noise content of the state
in units of photon number; it is the number of photons, including the haif
quantum from each mode due to zero-point noise, that would be left in the
state if the mean excitation were removed. The total noise of a state is a
more fundamental quantity than the total number of photons. It is con-

served if the total number of photons is conserved, but the converse is not
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true. [For example, a classical force interacting with an oscillator(s)
changes the total number of photons, but not the total noise; see Section

11A.3.]

When considering two or more modes one should note the distinction
between the total noise and another quantity, the total noise energy. The
total noise energy of a GPS is the noise content of the state in units of
energy; it is the energy (including zero-point energy) that would be left in
the state if the mean excitation were removed. For a single mode the the
distinction is not important, since the total noise energy is equal to the pro-
duct of the total noise and the mode's frequency. But for two or more
modes with different frequencies, the total noise and the total noise energy
are not proportional to each other. They are proportional to each other only
when the total noises of all the modes are identical. Just as photon number
is a more convenient quantity than energy for classifying the potentials that
produce GPS, so total noise is a more convenient quantity than total noise

energy for classifying GPS.

It is shown below that all linear interaction Hamiltonians H,¥)(t), as
well as all photon number-conserving interaction Hamiltonians Hz(M(t),
conserve the total noise of an N-mode state. Further, these are the only
interaction Hamiltonians that conserve both the total noise and the Gaus-
sian nature of a state. This means that states unitarily related to each other
by products of rotation, mixing, or displacement operators all have the
same total noise. Conversely, all GPS with the same total noise are related
to each other by (products of) rotation, mixing, and displacement coperators.
Only the quadratic, non-photon-number-conserving potentials H,("(t) can
change the total noise of a state. There are, therefore, two broad classes of

GPS. The first class consists of all states unitarily related to the vacuum
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state by products of displacement, rotation, and mixing operators. These
states have a total noise equal to that of the vacuum state, the minimum
allowed by quantum mechanics (4N, for an N-mode state). Put another
way, the first class consists of all (normalized) eigenstates of annihilation
operators. The second class consists of all states unitarily related to states
in the first class by products of single-mode and/or two-mode squeeze
operators. The total noise of these states is necessarily greater than that of

the vacuum state.

d. Coherent states

The single-mode GPS produced when an oscillator in its ground state is
acted on by a classical force, i.e., subjected to the linear interaction Hamil-
tonian H,{)(t), is called a single-mode coherent state.!®!! Formally, a
single-mode coherent state, symbolized by the state vector |wmdcen, is
defined as that state unitarily related to the vacuum state by the single-

mode displacement operator,

|4 con = D(a, u) [0) . (1.14)

It is an eigenstate of the annihilation operator a with eigenvalue x. An N-
mode coherent state is simply a tensor product of N single-mode coherent
states. For example, a two-mode coherent state, symbolized by the state

vector | con (OF |4, - con). is defined by
l/j‘>coh = | MDcoh = |HMadcoh |H-Dcoh
= D(@v. ) Do) |0) = D(@.p) 10> (1.15)

It is an eigenstate of the annihilation operators a, and a_ for each meode,
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with eigenvalues x4 and u_, respectively. All normalized N-mode states that
are eigenstates of the annihilation operators for their modes can be
described as N-mode coherent states. That is, all states unitarily related to
a coherent state by products of rotation, displacement, and mixing opera-
tors can be described as another coherent state, with different eigenvalues.
Glauber!®!! and others'®®~%® beginning in the early 1960's have used
coherent states to build a powerful description of the electromagnetic field.
Today these states are at the heart of quantum optics, providing the basis

for a sophisticated theory of the laser, for example.

e. Single-mode squeezed states

For a single mode, there is only one interaction Hamiltonian, HA(8),
that can produce a GPS whose total noise differs from (i.e., is greater than)
that of a coherent state. The state produced when an oscillator in a
coherent state is subjected to an interaction described by Hz!)(¢) is called
a "single-mode squeezed state” *!31623 (SMSS). Formally, a SMSS, symbol-
ized by the state vector |ug)(rq). is defined as that state unitarily related to
the single-mode coherent state |ug)con by the single-mode squeeze opera-

tor,

lﬂa)(r,w)asl(r-w)l/i&coh' (1~16)

The SMSS |uaY(r.4) is an eigenstate of the "single-mode squeezed annihila-

tion operator'?428

a(r,¢) = Sy(r.¢)a S,'(r.¢) . (1.17)

with complex eigenvalue u, Any state unitarily related to the SMSS |ug(r )

by products of single-mode rotation, displacement, and squeeze operators
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can be expressed as another SMSS |u/q) (.4 (multiplied by an unobservable
overall phase factor), with different squeeze factor, squeeze angle, and
eigenvalue. As stated earlier, the unitary operator generated by any combi-
nation Hg( of the Hermitian forms Hp(", H,(V, and H,(" (i.e., the solution
to the Schrodinger equation 18, U(t) = Hg(Y) U(t), U(0) = 1) can always be
written as the product of a single-mode rotation, displacement and squeeze
operator, and an overall phase factor (Section IIC and Appendix A). Since
these Hermitian forms are the only ones associated with single-mode GPS
(proved in Section IIB, by considering the most general single-mode Gaus-
sian wave functions), the SMSS |uq)(r.4) of Eq. (1.16), with 7 and ¢ defined
over the ranges (1.12b), represents the most general (normalized) single-

mode GPS.

Single-mode squeezed states were introduced independently by Stoler !?
("minimum-uncertainty packets’) and Lu'd ("new coherent states”). They
have been discussed in detail by Yuen !® in the context of quantum optics
under the name "two-photon coherent states” or "TCS". Their properties
and possible application to back-action evading techniques® for

t,23 who

gravitational-wave detection were first considered by Hollenhors
coined the adjective "squeezed”. For more recent discussions see, e.g.,
Refs. 5 and 8. "Generalizations" of coherent states, which include single-
mode squeezed states, have been described from a group theoretical
approach by Barut and Girardello,'* Perelomov,'® and others.33* The pro-

perties of single-mode squeezed states are summarized briefly here and

below in Sections IIA.5 and IIB.

Recall that the total noise of a single-mode GPS is the sum of the vari-
ances of the real and imaginary parts of the annihilation operator a, or,

equivalently, of e*®a, where ¢ is any real number. The total noise of a
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single-mode coherent state is equal to %, the smallest value allowed by
quantum mechanics (the half quantum of zero-point noise). This implies
that, for all choices of ¢, the two variances are equal to each other and equal
to the minimum value allowed by quantum mechanics for the square root of
their product. Contrast this with single-mode squeezed states. For certain
ranges of the squeeze angle ¢ (or, equivalently, for those conjugate observ-
ables defined by certain ranges of §), one of the variances is smaller than it
would be in a coherent state. The other variance is greater than it would be
in a coherent state, since the total noise of a SMSS is greater, but this does
not alter the potential practical advantages offered by the reduced uncer-
tainty in the one observable. These advantages are the impetus for the
current experimental effort to produce squeezed states; %737 applications
have been proposed in low-noise optical communications'? and high-
precision interferometric experiments,38~% for example. For a particular
value of the squeeze angle ¢ (¢ = —8) the variance of one observable (the

2" smaller than its

real part of e **a) is minimized and is a factor e
coherent-state value, while the variance of other (the imaginary part of
e *?a) is maximized and is a factor e® larger than its coherent-state value.

Only for this value of ¢ is the product of the variances equal to its minimum

allowed value, as in a coherent state.

The important parameter of a squeezed state is its squeeze factor 7,
not its squeeze angle ¢. There are a number of ways to understand this.
First, the conjugate observables defined as the real and imaginary parts of a
deserve no special status relative to the real and imaginary parts of e®’a.
In actual experiments one would tune the apparatus to respond to whichever
observable has the smallest uncertainty. Second, as the SMSS i,U~a>(r,¢)

evolves freely, its squeeze angle changes, but its squeeze factor r does not.
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The uncertainties oscillate between the conjugate observables (as does the
energy between potential and kinetic), but the total noise, which depends
only on 7, is constant. Even if an oscillator in a SMSS is acted on by a classi-
cal force (i.e., multiplied by a product of rotation and displacement opera-
tors), its squeeze factor remains constant, and only its squeeze angle and
eigenvalue (hence its complex amplitude {a)) change. If, however, an oscil-
lator in a SMSS is subjected to a new degenerate two-photon interaction
[H;()(t)] - ie., multiplied by another single-mode squeeze operator - it will
go into another SMSS, with different squeeze factor, squeeze angle, and

eigenvalue.

f. Two-mode Gaussian pure states

For two modes, there are three interaction Hamiltonians in H,®(t) that
can produce a GPS whose total noise is greater than that of a coherent
state. Two of these are the degenerate two-photon interaction Hamiltonians
HyN(t) of Eq. (1.8), one for each mode. The third is the nondegenerate
(two-mode) two-photon interaction Hamiltonian Hz,_(t) defined in Eq. (1.7).
The most general kind of (normalized) two-mode GPS is produced when two
oscillators, each in a coherent state, are exposed to all three of these qua-
dratic interaction Hamiltonians. Formally, this state, symbolized by the

state vector |ug > (or |fg+ Hg-)). is related to a two-mode coherent state by

a product of the three squeeze operators:
|ljg> = Sl+(r+- ¢+) Sl_(T_. §0-—)S(7'v 90) l/:{'g >coh = Ug |/i'g >coh ' (1'18)

It is an eigenstate of the transformed annihilation operators g = Uy a. Ug',
with complex eigenvalues ug.. The order of the three squeeze operators in

Eq. (1.18) has been chosen for convenience only. All states unitarily related
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to the GPS |u, ) defined by Eq. (1.18B) by any product of rotation, displace-

ment, mixing, and squeeze operators can be expressed as another two-mode

GPS |u'g> with the same form as Eq. (1.18), but with different parameters

T. T, @i P Mgy, and g, Further, the unitary operator generated by any
combination Hg® of the Hermitian forms Hz®), H,®), and H,® (ie., the
solution to the Schrodinger equation 8, U(t) = Ho® U(t), U(0) = 1) can
always be written as the product of two single-mode rotation and displace-
ment operators, a mixing operator, an operator like U;, and an overall

phase factor (see Appendix A). It is for these reasons that the state |ug )

defined by Eq. (1.18) is said to represent the most general normalized two-

mode GPS.

If two oscillators, each in a coherent state, are subjected only to degen-
erate two-photon interactions [Ha{!(¢)], the resulting (two-mode) state is
simply a tensor product of two single-mode squeezed states. If, however,
they are subjected only to a nondegenerate two-photon interaction
12428

[Hz,_(t)], the resulting state is called a "two-mode squeezed state

(TMSS). Formally, a TMSS, symbolized by the state vector |[ug)(rq). is

defined as that state unitarily related to the two-mode coherent state

| oY con DY the two-mode squeeze operator,

S(T.¢) |ﬁja>coh' (1.19)

Ii

l/ja>(r.w) = '/Jvah Ffa—>(r.¢)

The TMSS |uq?(r.4) is an eigenstate of the "two-mode squeezed annihilation

operators'?42¢

a.(r.¢) = S(r.¢)a,SHr.¢), (1.20)

with complex eigenvalues u,,. The properties and importance of two-mode
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squeezed states in the context of quantum optics are the subject of a recent
series of papers by Caves and me.?®®® They are motivated briefly here and

discussed further in Section III.

g. Two-mode squeezed states

The two-mode squeezed states (1.19) are the natural two-mode analogs
of single-mode squeezed states [Eq. (1.16)]. Formally, this is because they
are unitarily related to two-mode coherent states in the same functional way
that single-mode squeezed states are related to single-mode coherent
states. More precisely, the operators a;a;, a;'a;", and (a;'a; + a;7e; + 1)
generate the same (noncompact, pseudo-unitary) group SU(1,1) as the
operators %a? %a™ and (ata +%) (see Sections IIC, IIIA, and IIIC
below).!%#! Physically, a two-mode squeezed state can be produced in a
parametric amplifier by using a single pump whose photons have energy
Q.+, just as a single-mode squeezed state can be produced in the degen-
erate limit of a parametric amplifier by using a single pump with photons of
energy 2(). In contrast, production of the general two-mode GPS (1.18)
would require three separate parametric amplifiers -- i.e., three different

pumps, with photon energies 2(24, 2Q2_, and Q, +(_.

Like a single-mode squeezed state, a two-mode squeezed state is a state
in which the variance of one of two conjugate observables is smaller than it
would be in a coherent state. For a single-mode squeezed state the natural
conjugate observables are the real and imaginary parts of a (or rotated ver-
sions thereof). But what are they for two-mode squeezed states? Analyses
of optical heterodyning,*® together with the properties of two-mode
squeezed states, indicate that natural choices for these observables are the

quadrature-phase operators £, and E; of the electric (or magnetic) field £
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(or similarly defined quantities if the oscillators are not modes of the elec-
tromagnetic field). The following qualitative remarks give a general idea of
the nature and significance of the quadrature phases. For further discus-

sion, the reader is referred to Refs. 1, 2, 24-27, 43, and 44.

In optical heterodyning an input fleld £ x E;cosQ(t-z) +
E,sinQ(t —z), composed of upper and lower sidebands of a carrier fre-
quency (2, is combined at a beam splitter with a strong local-oscillator field
at the carrier frequency. One or both of the beam-splitter output ports is
then monitored with a photodetector(s).*>*® The relative strength of the
local-oscillator field guarantees that (i) the dominant contribution to the
output-field intensities is proportional to the mean field of that quadrature
phase which was in phase with the local oscillator, e.g., {E}>, and (ii) the
dominant noise in the output fields is proportional to the noise in (variance
of) that quadrature. A reduction in the noise in one quadrature phase rela-
tive to its coherent-state value is therefore manifested in heterodyning as

an improved signal-to-noise ratio.

The upper and lower sidebands of the input field consist of modes with
frequencies Q + ¢ and Q — ¢, respectively, where the "modulation frequen-
cies" ¢ take on all (positive) values in some bandwidth Ae (0 < Ae < Q). The
quadrature phases have no time dependence at the carrier frequency (;
they carry only the time dependences at frequencies ¢. The signal observed
in heterodyning, e.g., {£,), is an amplitude or phase modulation of the car-
rier wave at frequency (, with modulation frequencies £¢. One can filter the
output of the photodetector(s) to pick out the contribution from a single
modulation frequency ¢, i.e., from one pair of modes, with frequencies (1 + ¢.
The noise properties of this filtered output thus reflect the noise properties

of a two-mode state.
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When measured in units of energy, the minimum contribution that two
modes with frequencies Q+& can make to the total noise (variance) of the
electric fleld is %(Q+¢) + ¥(Q—¢) = 0. This minimum is realized only if both
modes are in coherent states; they then contribute a zero-point noise of %Q
to each quadrature phase. The relations between the quadrature phases
and the creation and annihilation operators [Egs. (1.21) below, or Refs. 24-
27] reveal that the minimum contribution that two modes of frequencies
() £& can make to the noise in either quadrature phase is &, much smaller
than that realized by a (two-mode) coherent state. Note that while a
reduced noise in one quadrature phase relative to its coherent-state value
implies that the noise in the other quadrature phase and the total noise of
the electric fleld must both be larger than their respective coherent-state
values, the latter do not degrade the output signal-to-noise ratio obtained in
heterodyning. For the noise in one quadrature phase to be smaller than its
coherent-state value of %Q, the two modes must be correlated with each
other, in the way that would be produced by a nondegenerate two-photon
interaction like (1.7); that is, the two modes must be in a state whose uni-
tary relation to a (two-mode) coherent state includes a two-mode squeeze
operator S(r, ¢). For a specific value of the squeeze factor r, this reduction
may or may not be enhanced if, in addition, the two modes are also
separately squeezed [by adding degenerate two-photon interactions like
(1.8)]; in general, however, the reduction is greatest when the modes are
correlated but not separately squeezed, i.e., when the two modes are in a

two-mode squeezed state [Eq. (1.19)].

The obvious advantage heterodyning offers is that one can transmit a
signal at frequencies (Q+¢ as amplitude or phase modulation of a carrier

wave at frequency (1 (modulation frequency & < (), and have a noise
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associated with that signal that is much smaller than the zero-point noises
1% (Q +¢) that would accompany the same signal if it were sent directly at the
frequencies Q+&. The "quadrature-phase zero-point noise’ ¥%¢ is very small,
and with real photodetectors essentially unobservable. That it is in principle
nonzero, however, is consistent with what one might expect physically; it
says that the zero-point noise of %¢ associated with any signal transmitted
directly at frequency & cannot be made to vanish by "disguising”" the signal

as amplitude or phase modulation of a carrier wave at frequency ( > &.

The properties of two-mode GPS can be described in terms of the
annihilation and creation operators (a, and a.') of the two modes; this is
the approach taken in Section III of this paper. However, more useful opera-
tors, at least for two-mode GPS that are not coherent states, are ones that
reflect directly the statistics of the quadrature phases E; and £3 the
natural conjugate observables associated with two-mode states. Such (non-
Hermitian) operators have been defined** ™’ and they are called
"quadrature-phase amplitudes.” Just as the annihilation operators a, are
proportional to the positive-frequency Fourier components at frequencies
(0 +¢ of the electric-fleld operator F, the quadrature-phase amplitudes o
and ag are proportional to the positive-frequency Fourier components at fre-
quency ¢ of the quadrature-phase operators £, and £;. They are defined as

the following linear combinations of a, and a_:
oy = RO)E[(Q + e)fa, + (0 - e)%a_f], (1.21a)
ap = (RO)#[—1 (Q + e)ta, +1(Q - e)ka T]. (1.21b)

The factors (Q +¢)* arise from the requirement that the square of the elec-
tric field be proportional to the total energy of the field (see also the discus-

sion of conjugate variables for two-mode GPS in Section IIIA.1a). The factor
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0% is included so that o;"a; and ap'ap are dimensionless operators whose
units are number of quanta at the carrier frequency Q. The factor 2% is a

convenient choice for the overall normalization.

The total noise of a; or ag, i.e., the sum of the variances of its real and
imaginary parts, is a number proportional to the noise in (variance of) £, or
E, (at frequency &), in units of number of quanta at the carrier frequency Q.
The minimum contribution J%¢ which a pair of modes with frequencies Q+¢
must make to the total noise of each quadrature phase is a consequence of

the commutation relations of the quadrature-phase amplitudes:
(o, ay"] = [ag, 2] = 2/0Q;
[an ag'] = [oyf ag] =1 ;
(a1, a2] = 0. (1.22)

These imply that the minimum total noise of a; or az is %&/Q, or,
equivalently, that the minimum total noise energy of a; or ap is ¥%&. They
also imply that the minimum value for the product of the total noises in o,
and ag is ¥; this minimum is realized only by two-mode coherent states (see

Refs. 25 and 26).

The correlations between the modes in a two-mode squeezed state are
such that the only nonvanishing noise moments of «; and a; (moments with
the mean excitations {a,) and {ag) removed) are those with equal numbers
of quadrature-phase amplitudes and their Hermitian conjugates, e.g.,
Cagat), {ayta;), ete. This implies that all time-dependent noise moments
of the quadrature phases £, and £, vanish. Fields with this property are
said to have "time-stationary quadrature-phase” (TSQP) noise.?*~?7 The van-

ishing of certain noise moments of the quadrature-phase amplitudes or,
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equivalently, of certain noise moments of the annihilation and creation
operators a; and a.' for each pair of modes, allows the properties of two-
mode squeezed states to be described with the same techniques (i.e., the
same number of parameters, and the same group theoretical construction)
used to describe single-mode squeezed states (see the discussions in Sec-

tions IIT1A.5 and IIIC).

h. Outline of this paper

Section II of this paper is a review of single-mode Gaussian pure states.
Section IIA looks at the unitary operators associated with single-mode GPS
and reviews some of the properties of coherent states and single-mode
squeezed states. Section IIB considers the most general single-mode Gaus-
sian wave function and from it shows that the most general single-mode GPS
is a single-mode squeezed state. Section IIC uses a two-component vector
notation to provide a compact and powerful way to express the properties of
single-mode GPS and their associated unitary operators. Section IIl is a
detailed discussion of two-mode Gaussian pure states which parallels closely

in structure but is necessarily more complicated than that of Section I

Some useful details are relegated to appendices. Appendix A outlines
the procedure and gives supporting details for writing the unitary evolution
operator associated with the most general (time-dependent) linear combina-
tion of interaction Hamiltonians that can produce single-mode and two-
mode GPS as a product of squeeze, rotation, mixing, and displacement
operators. Appendix B derives the phase factors for the general single-mode
and two-mode GPS coordinate-space wave functions. Appendix C elaborates
on a point made in Section IIIB concerning the criterion for two arbitrary

complex operators to have a complete (or overcomplete) set of



-84 -

simultaneous, normalizable eigenstates.
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II. SINGLE-MODE GAUSSIAN PURE STATES

A Introduction and Review

1. Notation and Definitions

The quantum mechanical operators naturally associated with a har-
monic oscillator are the Schrodinger-picture (SP) annihilation operator a
and its adjoint af, the creation operator. Equivalent operators are the
dimensionless position and momentum £ and 5; these are Hermitian opera-

tors, constant in the SP and related to a and a' by

£=2%(a +a), P =2%(—ia +iah); (2A.1a)

a=2%Z% +ip). (RA.1b)

The position and momentum are equal to 2* times the real and imaginary
parts of a, respectively. The creation and annihilation operators and the
dimensionless position and momentum obey the standard commutation

relations:
[@.at] =1, £.p]=1. (2A.2)

The complex amplitude of a single-mode state, always denoted in this
paper by the symbol u, is the expectation value of a; it is related to the

mean position and momentum z4 and pg by
p=<ay =2H(E) +i{p)) = R7*(zo +ip) . (2A.3)

The noise moments of the operators a and a' or £ and p provide a use-
ful way to characterize states associated with harmonic oscillators. Noise

moments of any operator B are moments of AB = B —{B), the operator
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minus its mean. Note that an operator AP is defined only with reference to
a particular state, which defines { #). All noise moments of a and a' (or £
and p) for Gaussian states are expressible in terms of the second-order
noise moments. There are two second-order noise moments of the annihila-

tion operator a. These are the complex number

{(Aa)?) = (a?) —{ad? = {(Aa")?)*, (2A.4a)
and the positive real number

{|Aa|?> =<hada g = h{AaAat + AaTAa) (2A.4b)

(the subscript "sym" denotes a symmetrized product). These second-order
noise moments of a are related to the three (real) second-order noise

moments of £ and § by
((8a)?) = B(<(A2)%) — <(AP)*D) + i AZAPD qym . (2A.52)
(laa |2 = H((A2)%) +<(8P)?D) (RA.5b)

[Egs. (RA.1)]. The total (second-moment) noise of a single-mode GPS is
{|Aa |?), the sum of the variances (squared uncertainties) of the real and

imaginary parts of a.

The commutation relations (2A.2) enforce the following lower limits on

the product and sum of the variances of £ and 5:*’
C(AZ)2) C(AP)*) = Y + A AP Em= K, (RA.6a)
LA + (PP = |Aa|PP=K + [{(aa)®> 2= K. (2A.6b)

Equalities hold in the first of each of these inequalities if and only if the

state is an eigenstate of certain linear combinations of £ and § (or a and a')
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—-i.e., if and only if the state is a Gaussian pure state (see Section IIB).

2. Single-mode rotation operator

Consider now the single-mode rotation operator R(6), defined by

R(8) = g toata — o —ie Hie(22+p?) (2A.72)
[Eq. (1.9)]. It satisfies

R™Y8) = RY(8) = R(-8) . (2A.7b)

For an oscillator characterized by frequency Q, #(Qt) is the evolution opera-

tor associated with the free Hamiltonian Hg,

Ho'V = Qate = %0 (2% + p% - 1), (RA.Ba)

iH A
e H _ Bty (2A.8b)

The rotation operator acting on any number eigenstate |n) simply multi-
plies it by the phase factor e*™¢ [Egs. (1.2)]; in particular, it leaves the

vacuum state unchanged:

R(s8) 10> = |O) . (2A.9)

The rotation operator unitarily transforms the annihilation operator a

~

into e*®a - i.e., it rotates £ and § into each other:

R(8)a R'(8) = e*®a

a(e), (2A.10a)

R(8)Z RT(8) = £ cosg — P sing = £(8) , (2A.10Db)

R(8)p R'(8) = £sin6 + Ppcose =p(8) . (RA.10c)
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The unitarity of R (6) ensures that £(¢) and 5(8) are conjugate observables,
[£(6),p(8)] =i. The transformation (2A.10a) shows that an eigenstate of a
remains an eigenstate of a when operated on by a rotation operator, i.e., as
it evolves freely. The rotation operator clearly preserves the total number

of photons in the mode,
R'6)a'a R(6) = a'a (2A.11)

(hence also the total energy). The effect of the rotation operator is merely
to transfer energy between kinetic (5%) and potential (£?). It therefore also

preserves the total noise,
(R'(6) |aa |2 R(8)> = (|Aa|?), (RA.12a)

its effect on a state being merely to redistribute the noise between the posi-

tion and momentum variables,
(R'(6) (Aa)? R(8)) = {[Aa(-8)]?) = e‘z"“((Aa)z) . (RA.12b)

Note in Egs. (2.12) that the operator Aa on the left-hand side of the equa-
tions is Aa = a — (R'(8)a R(6)), whereas on the right-hand side it is
Aa = a - {a). A similar remark holds throughout this paper wherever the
moments or noise moments of operators in a state |¥) are compared with

those in a state U |¥).

Finally, note that the simple form of K (8) implies that the product of an
arbitrary number of rotation operators can be expressed trivially as a single

rotation operator, using the rule

R(6)R(8") = R(6 + 6') . (2A.13)
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3. Single-mode displacement operator

The single-mode displacement operator!®!! is defined by

D(a, p) = e#s! —p*e = gl PoF ~=af) _ , HiPoZo ipof [ izof (RA.14)
[Eq. (1.11)]. It satisfies the following equalities:

D™Ha,pu) = D'(a,p) = D(a, —u) = D(-a, u) . (RA.15)

Properties of D{a,u) are discussed in Refs. 10, 11, 31, and 21. Most impor-

tant is the way it unitarily transforms the annihilation operator:
D(a,uw)aDi(a,u)=a —pu. (2A.18)

This shows that an eigenstate of a remains an eigenstate of @ when operated
on by a displacement operator. In particular, the single-mode coherent
state |w)con defined as D(a, u) acting on the vacuum state [Eq. (1.14)], is an
eigenstate of a with eigenvalue u. The additive nature of this transforma-
tion implies that when the displacement operator acts on a state it changes
all moments of a and a' {(e.g., the complex amplitude {a), and the photon
number {a'a)). However, since the transformation merely adds a complex
number to a, the noise moments of a and a' are left unchanged. Thus, when
the displacement operator acts on a state, it displaces the wave function,

but does not modify its shape.

Two other properties of the displacement operator are useful here.
First, it is unitarily transformed by the rotation operator in the following

way:
R(8) D(a, ) BY(6) = D[a(6). u] = D[a.u(~8)] , (RA.17a)

we) =e®u (2A.17b)
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[Egs. (2A.10), (2A.14)]. That D(a,u) doesn't commute with the rotation
operator reveals why it doesn't preserve photon number. It also shows that
the form of the displacement operator is invariant under a unitary transfor-

mation of a generated by the rotation operator:
D(a,u) = D[a(6),u(6)] . (RA.18)

Second, the transformation (2A.186) implies that the product of two displace-
ment operators is another displacement operator, multiplied by a phase fac-

tor:
D(a, ') D(a,u) = M) D(a, u+u') . (RA.19)

These properties, like the transformations (2A.10a) and (2A.16), show that
any eigenstate of a remains an eigenstate of a when displaced and/or
allowed to evolve freely. For example, as a coherent state [Eq. (1.14)]

evolves freely, it changes in the following way:

R(Qt) |/J'>coh = !#(_Qt»coh = !e—iﬂt /J'>coh ’ (2A-20)

All single-mode states that are eigenstates of a are unitarily related to
the vacuum state by products of rotation and displacement operators. Con-
versely, all such states are eigenstates of a. These states comprise the
entire class of single-mode states whose total noise is equal to that of the
vacuumn state. The special properties of the rotation operator -- that it
preserves the total number of photons, that it preserves the total noise, and
that it preserves coherent states -- are a consequence of one essential pro-
perty: the unitary transformation it induces on a merely multiplies a by a
phase factor; i.e., it never mixes a with a’. To find unitary operators that do

not conserve the total noise and that generate new states from coherent
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states (states with a total noise greater than that of the vacuum state), one
must consider operators -- single-mode squeeze operators -- that mix a with

al.

4. Single-mode squeeze operator

The single-mode squeeze operator'®!3% is defined by

Si(r.¢) = exp[lr (e %¥a? — g9 al?)], (2A.21a)

0<r<e, Yrc<p<khn (RA.21b)
[Egs. (1.1R2)]. It satisfies the following equalities:

SiHr. @) = S\(r.p) = Si(-1.¢) = S\(r .o+ }m). (RA.22)

Properties of S(r.¢) are discussed in Refs. 23, 25, and 26. Most important

is the way it unitarily transforms the annihilation operator:

Si(r.¢)a Si'(r,¢) = a coshr + ate®?sinhr = a(r. ¢) (2A.23a)
[Eq. (1.17)]. Inverting this relation gives a in terms of a and a':
a = S,'(r.¢)alr.¢) S,(r.¢) = a(r.¢)coshr — al(r.¢)e®¢sinhr . (2A.23b)

A state unitarily related to an eigenstate of a by a single-mode squeeze
operator is an eigenstate of the single-mode squeezed annihilation operator
a(r,¢) (sometimes denoted simply by a). The unitarity of S,(r,¢) ensures
that [a(r, @), af(r.¢)] = [a,a'] = 1.

The transformation (2A.23) implies that when the squeeze operator acts
on a state it changes the noise moments of @ and a’. That is, it modifies the

shape of the wave function (and, if the mean position or momentum is

nonzero, displaces it as well). In particular, it preserves neither the total
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number of photons nor the total noise of a state,
{S,M(r,¢)ata S,(r,¢)> = sinh®r + cosh2r {afa) — sinh2r Re(e #?{atPA.24a)
(S, ¢) |Aa|?S,(r, ¢)) = cosh2r {|Aa|?) — sinh2r Re(e 2% { (Aa )2 XPA.24b)

Equation (RA.24b) shows explicitly that any state whose unitary relation to
the vacuum state (or to any eigenstate of a) includes a single-mode squeeze

operator has a total noise greater than that of the vacuum state.

A few other properties of the single-mode squeeze operator are useful
here. First, it is unitarily transformed by the rotation operator in the fol-

lowing way:
R(8)S\(r.¢)R'(6) = Si(r. ¢ —6) (RA.25)

[Egs. (RA.10), (RA.21)]. That S,(r,¢) doesn't commute with the rotation

operator reveals why it doesn't preserve photon number [Eq. (2A.24a)].

Second, it unitarily transforms the displacement operator in the follow-

ing way:
S1H(r.9) D(a, u) S\(r.¢) = D(a, 1) (2A.26)
Mo = coshr + u*e®?sinhr (2A.27)

[Egs. (RA.14). (RA.23a)]. This relation reflects the fact that the form of the
displacement operator is invariant under unitary transformations of a that
are linear in @ and a' (and that do not add to a a constant). Such unitary
transformations are generated only by {(products of) rotation and single-
mode squeeze operators. The invariance under rotations was noted in Egq.
(RA.18). The invariance under transformations generated by the single-

mode squeeze operator says that



D(a, ) = D(a, o) - (2A.28)

This equality implies that the SMSS |ug)(r. ). defined by Eq. (1.16) as the
squeeze operator S(7, ¢) acting on the coherent state |y con can as well
be defined as the displacement operator D(a,u) acting on the squeezed

vacuumi:

’lu"a>(1',¢) = SI(T-ﬁa) '/Jfa>coh = D(a-,u')sl(r-go)IO) . (2A.29)

The complex number u is equal to {a), the state's complex amplitude. It is

related to the eigenvalue u, by
i = pgcoshr — p,*e??sinhr (RA.30)

[ Eq. (RA.23b)]. With this definition one can easily verify the statement made
in the Introduction: any state unitarily related to the SMSS I;,L(,)(,w by a
product of rotation and displacement operators is equal to another SMSS
(multiplied by an unobservable overall phase factor) with the same squeeze

factor r, but with different squeeze angle and eigenvalue. For example,

e!m®) D(a, i) S\(r. ¢ —6) |0

R(8) D(a.u) |/1'a>(r.¢)

eilm(/.m") lﬁa)(r. $—8)

B=e U+ W) (RA.31)

[Eqs. (2A.17), (2A.19), (2A.25)].

Finally, the product of two different single-mode squeeze operators is
another single-mode squeeze operator, multiplied by a phase factor and a
rotation operator [see Egs. (2C.18) below]. For the case ¢ = ¢’ the relation

simplifies to
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Syt @) Si(r. @) = Si(r+7'.9) . (2A.32)

It is proved in the next section, by considering the most general single-
mode Gaussian wave function, that the generator H¢(! of the unitary opera-

i (1)
6™ that relates any single-mode GPS to the vacuum state is a

tor Ug() = e
sum of linear and bilinear combinations of @ and a'. In Section IIC and
Appendix A it is shown that this unitary operator factors into a product of
single-mode displacement, squeeze, and rotation operators. The properties
described in this section ensure that any product of single-mode rotation,
displacement, and squeeze operators can be expressed as the product of a
displacement operator and a squeeze operator, multiplied on the right by a
rotation operator (and an overall phase factor). Since the rotation operator
has no effect on the vacuum state, one finds that the most general single-
mode GPS is equal to a single-mode squeezed state, defined by Eq. (2A.29).
It is produced when a harmonic oscillator in its ground state is exposed to
the interaction Hamiltonians Hg(1)(¢), H,1(t), and H,{!)(¢) described in the

Introduction [Egs. (1.3) and (1.4)].

5. Single-mode GPS

Much of the interest in single-mode GPS has centered around the so-
called "minimum-uncertainty states"'? (MUS) -- states that minimize the

product of the uncertainties in Z and p:

(A2 ((8P)?D = X (MUS) (2A.33)
[Eq. (RA.8a)]. These are (single-mode) GPS that satisfy

Im{(Aa)?> = (AZAP D gym = O (RA.34)

[Egs. (RA.5)]. It is shown below [see Egs. (2B.5) or (2B.6)] that a single-mode
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state is a MUS if and only if it is an eigenstate of the linear combination
Z+1y{'P, 71 =7 > 0. Another set of single-mode states consists of those
that have "random-phase noise", i.e., whose noise moments are invariant

under rotations. Such states satisfy the condition

([a2(e)]*) =<[ap(6)]?) foralls (2A.352)
or, equivalently,

{(Aa)?*> = 0. (2A.35b)

The intersection between these two sets of states is the set of single-mode
coherent states; i.e, coherent states are MUS that have random-phase

noise. Coherent states therefore satisfy
(AZABY oy = {(Ba)?) =0, (2A.36a)
{(A2)%) = ()% =< |Aa|?) =}, (2A.36b)

The last equality in Eq. (RA.36b) tells one that a coherent state is an eigen-
state of the annihilation operator a; it has the minimum total noise allowed

by quantum mechanics [Egs. (2A.6)].

By extending the definition (2A.33) of a MUS to include all states related
to MUS by the rotation operator F(g) one obtains all single-mode GPS. This
is bécause the condition (RA.34) can always be met for some rotated annihi-
lation operator e*®*a = R(g)a R'(8) [Eq. (RA.10a)], with 6 chosen to make
Im{e??¢(Aa)?) = 0. The second-order noise moments for the most general
normalized single-mode GPS, a single-mode squeezed state, follow directly
from the transformation (2A.R3) and those for a coherent state.
Equivalently, they can be found by noting that the noise moments of the

squeezed annihilation and creation operators a(r,¢) and af(r,¢) for the
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SMSS l,u.,,)(r,,) are identical to those of @ and a' for a coherent state, since

| o) (r.q) IS an eigenstate of a(r, ¢). They are
{(Aa)?) = —Y%e®?sinh2r , (RA.37a)
{|Aa|?) = %coshlr . (2A.37b)

Thus, the SMSS |us(r4) is a MUS for the conjugate variables £(—y) and

B(~o):
([AZ(=9)P) = he ™ . [MP(—9)]?) = he?, (RA.38a)

{AZ(-p) AP (~¢)Deym = 0 . (RA.38b)
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B. Single-mode Gaussian wave functions

Consider now the coordinate-space wave function for an arbitrary
single-mode Gaussian pure state, symbolized here for generality by the
state vector |ug). The GPS |ug ) is an eigenstate of operators g whose gen-
eral form is discussed below, with eigenvalue yg. [Although g will be seen to
have the form of single-mode squeezed annihilation operators a(r, ¢), the
symbol g is used here to refer to all operators of which single-mode GPS are
eigenstates -- i.e., all multiples of single-mode squeeze annihilation opera-
tors, for all 7 and ¢.] The wave function is written in terms of the dimension-
less position variable z, the eigenvalue of the Hermitian operator Z. The
most general (normalized) single-mode Gaussian coordinate-space wave

function has the form

{z|ug> = Ny oHi%z o Hrozo P Hr (= -20° (2B.1)
Here

zo=(2) = [Tdzz [{z|ug)|?, (2B.2a)

Po=<BY = =i [ dz {uy |z 0.{z |y . (2B.2b)

are the mean values of the position and momentum, ¥ is a complex number
related to the second-order noise moments of Z and p, d, is an unobserv-
able phase angle (separated out for reasons discussed below), and N, is a
(real) normalization constant determined by the condition {ug|ug> = 1.
The subscript "z" on the phase angle d, serves only to distinguish 6, from
the phase angle §, which appears in the momentum-space wave function
(Egs. (2B.40)-(2B.43) below]; 8, has no dependence on z. Normalizability

dictates that
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Re(y) =7 >0, (2B.3)
and the normalization constant N, is equal to

Ny = (n/y)7%. (2B.4)

The most important parameter in the wave function (2B.1) is the com-
plex number y. The form of the wave function tells one that the state |ug>
is an eigenstate of the linear combination £ + iy"!$, and hence that v is

related to the second-order noise moments of £ and § by

Y=E7 +’i72 = ‘4(<A57\Aﬁ>3ym+%’i) = _’L<(Aﬁ)2> (2B 5&)
<(az)%) {AZ AP ) gym — Yi
The real and imaginary parts of v are therefore equal to
1 L B D) ayen
= Re = — =Im = ———— 2B.5b
7 (7) 2285 Ya ) 25 ( )

and the absolute square is

2 _ (AP)*)
bd (2D (2B.5¢)

Inverting these expressions gives the second-order noise moments of £ and

P in terms of ¥:
C(A2)%> = (Ry))™h. <(49)2) = [BRe(y )] = [7[2(Ry) 7!,
(AZADY qym = —(R71) 72 - (*B.6)
The normalization constant N, can thus be rewritten as

N, = (n/ )% = (2n¢(a2)2)) X | (2B.7)
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That the state |ug» is an eigenstate of £ + iy”!p means that it is also
an eigenstate of the operator a + (y+1)7!(y-1)a' The second-order noise
moments of @ and a' are therefore more naturally expressed in terms of the

complex number

-1 (e _ (|al®> -}
B T " T 8 <(a® By

Inverting these expressions gives the variance and symmetric variance of a

in terms of both I" and 7:
{(aa)?) = =(1 = [TI¥)7IT = =(y* + D (4y) 7 (¥ - 1), (2B.9a)
<laa | =4(1+ T3 (L = T3 = (1 + [7[®) (4r) ™" (2B.9b)
Note also that
1= |T1% =4y [y + 177, (2B.10)

hence normalizability dictates that |I'| < 1.

From the above relations one can see how the three real pieces of infor-
mation in the second-order noise moments for a single-mode GPS reduce to

two independent pieces, since
{(AZ)?) ((AP)?Y = X + (AZ APYE = (AT AP) (AP AZD (2B.11a)
(lAa BX2 =) + [{(Aa)?)|? (2B.11b)

cIl. S. 5 . ese relations are made more obvious elow S.
[cf. Egs. (2A.8)]. Th 1 d bvious below [Eq;

(2B.31), (2B.32)].

The remaining parameter in the wave function (2B.1) is the phase angle
6z, in general it can be any real number. The phase angle é, is unobserv-

able, but for a state defined as a particular unitary operator acting on the
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vacuum state it has a well-defined value, provided one assigns a phase angle
to the vacuum-state wave function. The reason that the phase factor R
separates naturally from the rest of the overall phase factor in the wave
function lies with the definition (2A.14) of the single-mode displacement
operator. That definition, together with the correspondence $-+-id, [Eq.
(2A.2)], implies that if one "displaces” any single-mode pure state |¥), by
operating on it with the single-mode displacement operator D(a,u), the

resulting wave function is related to the original wave function {z |¥) in the

following way:
(z|D(a,w) | = e HPF0,®Po 0 _ 2 19y (2B.12)

Formally, therefore, one way to obtain an arbitrary single-mode pure state
[¥,) with complex amplitude w is to operate with the displacement operator
D(a,u) on a state |¥) = Uy |0) that has the desired noise properties but

has zero complex amplitude ({0| Ug'a Uy |0) = 0):
|¥,> = D(a,u) Ug|0) . (2B.13)

The property (2A.18) of the displacement operator then ensures that |¥,>

has complex amplitude u,
(Yule ¥, =u. (2B.14)

Any normalized single-mode pure state with complex amplitude x can
be defined by an expression like (2B.13). The advantage of this definition is
that the state's mean values zq and pg (or the complex amplitude u) are
determined solely by the displacement operator D(a,u) and its noise
moments of a and a' are determined solely by the unitary operator U, Any

normalized single-mode GPS |ug ) with complex amplitude u can therefore



= 51 -
be formally defined by
lpg > = D(a,u) Uy |0) . (2B.15)

Note the following three properties of U,: First, it is uniquely defined only
up to (right-hand) multiplication by a rotation operator R(8) and an overall
phase factor. Second, since it defines the noise moments of a and a' (or
and ) for the GPS |ug ), it has associated with it two independent real
parameters (over and above that of a rotation operator and phase factor).
Third, since the state |y, ) has complex amplitude u, the expectation value
(0| Us"a U, |0) must vanish.

s,

The phase factor e in the wave function {z |ug > is given, from Egs.

(2B.1) and (2B.12), by

we, _ (2=0/05 [0
[Kz=0[|0, 0] °

(2B.16)

The phase angle ¢, has no dependence on the complex amplitude u, pro-
vided U; does not; any dependence of U; on u is artificial, however, in the
sense that it does not affect the state’s complex amplitude {a). Consider,
for illustration, the coherent state |weon=D(a,u) |0 [Eq (1.14)], for
which the operator U, is the identity operator. Equation (2B.12) says that
the wave function for the coherent state | con is related to the vacuum-

state wave function {z |0) by
_  #ipgZy =Py
{Z|Weon = ¢ ez ~xg|0), (RB.17)

so the phase angle J, for a coherent-state wave function is just equal to the
phase angle d§, assigned to the vacuum-state coordinate-space wave func-

tion; conventionally, dp is set equal to zero.
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The form of its wave function shows that a single-mode GPS ]p,g> is an
eigenstate of operators g which are proportional to the linear combinations
£ +iy7'p or a +'a” The label uy for the GPS |ug > is chosen to be the

eigenvalue of g. Thus one can write the following relations:

g ldig? =y g (2B.18a)
gxZ+iy!'p x a+Tlal, (2B.18b)
Mg X Tg+ 17 'pg x pw+Tu*. (2B.18c)

It is instructive to consider the general form for the operators g of which

the single-mode GPS |y, ) is an eigenstate:
g=pca+psa=p;(a+Tal)
=pp Z + 1P 0 = ppl# + 190} . (2B.19a)
Here pp. pz. pc. and ps are complex numbers, related to each other by

Po=R27H(op £p2) . pp=RR(pe £ps) (2B.20)

8

The eigenvalue y, is related to the complex amplitude x4 and the mean posi-

tion and momentum by similar relations,

Mg = pc i+ ps b* = ppZo+1pzPo- (%B.19b)

Inverting Eqs. (2B.19a,b) leads to the following expressions for a and the

complex amplitude u in terms of g and the eigenvalue pg:

a=[g.9"] " (o9 —psg") . (2B.21a)

(a) =[g. "] oftg —ps i4g) - (RB.21b)

j =
I
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These relations imply the important equality
D(a,p)=D(g.[9.9"] 1y . (2B.22)

The equality (2B.22) enables one to see explicitly how the form of the
unitary operator U, which defines a single-mode GPS |ug» through Eq.
(2B.15), is determined by the form of the operators g. To see this, begin
with an alternative definition for the GPS |y, > [the equality (2B.22) will be
seen to ensure that this definition is equivalent to the definition (2B.15)].
First, assume that |[ug> is related to the vacuum state by some unitary

operator U:
lg> = U [0 . (2B.23a)

It is convenient to define another unitary operator U; by

U= U; D(a,ug), (RB.23b)

so that the state ]pg> is equal to the operator U, acting on the coherent

state ]#g)cohv
lug> = Uy D(a, pig) 10> = Uy | gD con - (RB.24)

It is then consistent with the eigenvalue equation (2B.18a) that the opera-
tors g be unitarily related to the annihilation operator a through the opera-

tor Ug:
g="Ua Ugf. (2B.25)

The form of U, is thus determined by the form of the operators g. The
equivalence of the definitions (2B.15) and (2B.24) for |ug > is a result of the

unitarity of U,, which ensures that [g,g"'] =[a,a'] =1 and the forms
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(2B.19) of g; these imply the equality
D(a, p) = D(g.ug) (2B.26)

[Eq. (2B.22)]. Thus, any single-mode GPS |ug)> has the following two

equivalent definitions:
ltgd = D(a, ) Uy 10> = Uy D(a, ag) 10> = Uy | g Deon - (2B.27)

Return now to the general forms (2B.19) for the operators g of which
single-mode GPS are eigenstates. Two of the four degrees of freedom in the
expressions (2B.19a) for g are removed by the wave function {z |ug >, which

specifies the ratios
Pp/ Pz =7, ps/pec =T . (2B.28)

The third degree of freedom in g has already been partially removed by the
requirement that g have a complete (or overcomplete) set of normalizable
eigenstates, i.e., that the commutator (g, g7] be a positive real number (see
Appendix C). It is removed completely if one specifies that g be unitarily

related to the annihilation operator a [Eq. (2B.25)], which implies that
[9.9"]=[a,at]=1. (2B.29)

The commutator [g, g'] can be written in the following different ways, using

Eqgs. (2B.5) and (2B.8):
l9.9"] = ZRe(Pz‘Pp) =2|pz 5271 = |pz i2/<(A£)2>
=2 |pp[*Re(y™") = | pp |2/ < (8D)?)

= lpe|® = lps 12 = [pc [2(1 = IT13) = |pc [3(C A2 |?) + A7
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o= s BT 1) = ps B0 |2 =)7L
=plps (L - ]PIZ) = —pc'ps <(Aa)2>_l : (2B.30)

These expressions show that the operators g have normalizable eigenstates
if and only if the wave function {z |y > is normalizable -- i.e., if and only if
v, >0, or |I'| <1 [Egs. (2B.3) and (2B.10)]. Note also that normalizability
requires that the numbers p,, pz, and p. be nonzero. The requirement that

g be unitarily related to a --i.e., that [g, g7] = 1 — implies that

Re(Pz‘pp) =%, loc 12— lps|®=1 . (RB.31)

The only remaining degree of freedom in g is its overall phase. Multiplying g
by a phase factor e*® is equivalent to multiplying U, (on the right) by a rota-
tion operator R(6). The definition (2B.27) of |ug > shows that this freedom
reflects the fact that a coherent state remains a coherent state when multi-

plied by a rotation operator [Eq. (2A.20)].

The expressions (2B.30) for the commutator [g, g'] reveal the following
simple relations between the second-order noise moments of a, a’, £, and
and the numbers pp, pz. pc. and ps for operators g that are unitarily

related to a:

C(A2)%) = |pz 12, <(8P)%> = lpp |2,

{AZ AP gym = —Im(pz*pp) ; (%B.32a)
{(Aa)?) = —pc*ps | (2B.32b)
C18a|® = %(lpc |2+ |ps1?) = lpc 1 =1o=lps |* + 1 (2B.3Rc)

[cf. Eqs. (B.8) and (2B.9)]. These expressions make obvious the relations

(B.11) between the different second-order noise moments.



- 58 -

The form of the unitary operator U; in the definition (2B.27) of the
single-mode GPS |uy > is determined by the unitary transtormation (2B.25)
and the form of g [Egs. (2B.19a), (2B.31)]. The linearity and absence of any

—H,(

i ' 1)
additive constants in the transformation imply that U; =e "7 ', where Hg“)

is a (Hermitian) linear combination of the three operators a'a, a?,

and a'?
That is, the generator H,( of U, has the general form [Ho") + Hp(V]
defined in the Introduction [Egs. (1.1)-(1.4)]. It is shown in Section IIC and
Appendix A that this operator U; can always be written as a product of a
single-mode squeeze operator and a single-mode rotation operator (and an
unobservable overall phase factor). That the rotation operator can be
neglected in the general form for U; can be seen in a couple of ways. First,
the rotation operator can be placed either to the right or left of the squeeze
operator, without changing the general form of U, [Eq. (2A.25)]; when placed
to the right of the squeeze operator the rotation operator acts like the iden-
tity operator on the vacuum state and hence is inconsequential. Second,
note that the parameter 6 in the rotation operator is related to the overall
phase of the operator g, which can be chosen arbitrarily; it is zero if

pc = pc* Hence the operator U is equal to a single-mode squeeze operator,

and the state defined by Eq. (2B.27) with Uy = Sy(r.¢) is the SMSS

| tad(rg) = D@, 1) Si(r.0) |0} = S1(7.9) | Hadcoh (2B.33)

[Eq. (1.16)]. Thus, any (and all) single-mode GPS can be described as a

SMSS, for some values of 7 and ¢ and some complex amplitude w.

The SMSS |u,)(r4) is an eigenstate of the squeezed annihilation opera-

tor

a(r.¢) = S,(r.¢)a S,'(r.¢) = a coshr + ate??sinhr (2B.34a)



= 5’? =
= 27%(coshr +e?*?sinhr) £ + i 2%(coshr —e%?sinhr)$ (2B.34b)

[Eq. (RA.24); cf. Eq. (2B.19a)]. The complex numbers p;, ps, [ and pp. pz. 7.
which define the noise moments of a, af, £, and P, are therefore related to =
and ¢ by

pe = coshr , pg = e*?#sinhr ; pp = 27 #(coshr + e®?sinhr);  (2B.35a)

z

. % sinhr)
[ =p./p. = e tanhr | - _ (coshr +e P si ’ 5B.35b
Fut Pe 7 = Pp/Pa (coshr — e%?#sinhr) 288y

The complex amplitude x and the eigenvalue u, are related to each other by
u=<{ad = ygcoshr — uXe??sinhr (2B.36a)
We = pcoshr + u*e®?sinhr (2B.36b)

[Egs. (2B.19b) and (RB.21b)]. The second-order noise moments of a SMSS in
terms of 7 and ¢ can be obtained by inserting the expressions (2B.35) into

the relations (2B.32):

{(A2)? = |pz | = ¥ (cosh2r — sinh2rcoslyp) , (2B.37a)
{(8P)* = |pp |? = ¥(cosh2r + sinh2rcosy) . (2B.37b)
(AEAPY gy = —Im(pz *pp) = —JhsinhRrsinly (2B.37c)
{(Ba)? = —p.*py = —$e%¥sinh2r (2B.38a)
(laa|® =%(|pc |* + |ps|?) = hcosh2r . (2B.38b)

The phase angle §, in the coordinate-space wave function for the SMSS
| ko) (r.¢) is obtained from Eq. (2B.16). The calculation is described in Appen-

dix B. The result is
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w6, _ (coshr —e %% sinhr )% - (o= *)*
|coshr — e #*®sinhr |%# ~ |p, |#

4 (2B.39)

To conclude this discussion of single-mode Gaussian wave functions,
consider briefly the momentum-space wave function for a single-mode Gaus-
sian pure state, {p|ug>. obtained by Fourier transforming {z |ug> [Eq.
(2B.1)]; here the dimensionless momentum variable p is the eigenvalue of
the Hermitian operator . The momentum-space wave function has the fol-

lowing form:

(P 1g? = fw Z?%eﬂ(z lg) = My e % emﬁ°e_ﬁ°pe—(p—p°)2/27(2B.4Oa)

where the (real) normalization constant X is
X, = (r{(4p)D)H, (2B.40b)
and the phase angle d, is related to the coordinate-space phase angle d; by

R L S —i ((AZ AP gym + )

=e —— _ (2B.41)
171 | (A% ABD gy + i |
. b, .
For the single-mode squeezed state ]ua)(m) the phase factore “ 7 is
) 280 o % *\%
o Hibp _ coshr + e ®**¥sinhr)? _ (pg) (2B.42)

" |coshr + e #¢sinhr % |p, %
The position and momentum probabilities have the usual Gaussian forms:
(2 lug) |2 = (Rr((a8)D) H ¢ eV @ (2B.43a)

K |ugd |2 = (2 (AB)R ) H o " PO XKUY (2B.43b)
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C. Twocomponent vector notation for single-mode GPS

The previous discussion has shown that the unitary operators that
relate single-mode GPS to the vacuum state and to other single-mode GPS
are rotation operators, displacement operators, and single-mode squeeze
operators. Since these operators induce linear transformations on a and a'

(or £ and P), it is useful to define the two-component operator column vec-

tors 29,16,33,28
a P z
a=| ¢ = P =Aa, (2C.1a)
A= ,2—%[_1,i i] = (AN, (2C.1b)

The expectation values of these operator column vectors are column vectors

whose components are complex numbers (for a), or real numbers (for Z):

Zo

<>=Po

Ry

=Ap. (2C.2)

~

7
=) = .
Sk [#‘] £
The adjoints of the operator column vectors are the row vectors

d'=(ata), #=(25)=£ (2c.3)

~

Ry

where a superscript "7" means transpose. The transpose of the adjoint of

an operator column vector is denoted by a superscript " *"

(2C.4)

t

'Ry

T
b

Similar definitions hold for column vectors of complex numbers. Note that

the product of a column vector and a row vector, e.g., aa', is a tensor pro-

duct (i.e., a matrix), whereas the product of a row vector and a column
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vector, e.g., ala, is a scalar product (i.e., an operator or number).

The two-dimensional matrices that arise naturally with this vector nota-

tion are the Pauli matrices g, 0,5, 03 and the identity matrix 1, defined by

a=01 G=O—Ii a=lo 1=[10] _2C.5
151 0] 9%2%|5 ¢ s=lo-1| 1=|01) (2C.5a)
These satisfy

Uigj = 6‘11 + isijkalc , 'i, j, k= 1. 2. 3. (2C5b)

It is also useful to define rotated versions of ¢, and oy,

= ; 0 e?r
0y = 0,COSR¢p — 0p8InR¢ = | 24 (2C.6a)
. 2‘
Op-¥n = 015iNR¢ + 0zcosp = [ie ng _1% WJ - (2C.8b)

Note that [0y, 0,_ys] = [0, 02] =R 03.

The commutation relations for a, a' and £, p are conveniently

expressed by the Hermitian commutator matrices

[a, a'] = aat — (a*a”)T =03, (2C.7a)
(£ 2T =227 - (£227)T = AogA' = -0, . (2C.7b)

The (single-mode) rotation, displacement, and squeeze operators are

expressed in vector notation by

R(6) = exp[—igata] = e#*®exp[-Kisa'a], (2C.Ba)

D(a,u) = explua’ — u*a] = expla’ozu] (2C.8b)
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Si(r,p) = exp[hr (e %%a? — e*?a®)] = exp[-hira'o,yra]. (2C.Bc)

A unitary transformation of the column vectors a or Z generated by the

displacement operator results in the addition of a constant column vector:

D(a.w)aDWa,u)=a-pu. D(a,pu)iDlNa,u) =2Z-¢ (RC.9)

[Eq. (2A.16)]. Unitary transformations generated by rotation operators and

squeeze operators result in matrix transformations of a and £ An easy way

to obtain these transformation matrices is to note the following general
relation, for arbitrary two-dimensional matrix K, which follows from the fact

that the commutator matrix [a, a'] = g3

[a'Ka, a] = Kpa ,
KQE—O'STFK+[K, 0'3]=—0'3<K+0'1KT0'1)- (2Cloa)

This implies that

afKe -d'Ka K
e” “ae ~ “=e¢ ’a. (2C.10b)

~

The matrix transformations on a and Z generated by the rotation operator

R(¢) are therefore

R(8)aR'(s8) = ¢*%a, (2C.11a)
R(8)2RY(8) = Ae*®™3AT2 = ¢ %2, (2C.11b)

isog _ |et® 0 -igo, _ [cosd —sing 1
€ _[ 0 : g ~ |siné cosé (2C.11c)
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[cf. Eqs. (2A.10)].
The matrix transformations on a and Z generated by the single-mode

squeeze operator S,(r,¢) are

S\(r.p)aSf(r.¢) = G,a=alr.g). (2C.12a)
Sir.@)25:'(r.p) = AG ATZ, (2C.12Db)
where

219 o
G, = [e_ggs;il;hr ¢ Co:g;_hr = coshr 1 + sinhra, =e’?, (2C.13a)
+ _ | coshr + sinhr cos2¢ sinh7 sinl¢
AG ,A" = [ sinhr sin2¢ coshr — sinhr cosRy
= er (0gcosRe + 0, 5in2g) (ZC. 13b)

[Eq. (RC.1b)]. The Hermitian matrix G , has the following important proper-

ties:

Gy =Crg=Coryn=03Cr 403 (RC.14a)
Go=e"" =S sor )i Gan=e "= [SUL WET ) o)
Goe= eiw'oaq'q’_wg-iw‘va ; (2C.14c)
GoelGroe=Guiryg (2C.14d)

(see also Appendix A of Ref. 26).

The transformation matrices (2C.11) and (RC.13) arise naturally,
without specific reference to the single-mode rotation and squeeze opera-

tors, from the requirement that a unitary transformation on a (or £ and p)
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preserve the commutators (2C.7). This is most easily seen by considering

the real, two-dimensional matrices # that describe unitary transformations

I

on the (real) column vector z Mz = UaU' The unitarity of U implies that

these matrices preserve the (antisymmetric) commutator matrix

(2, g"‘] = -0, [Eq. (2C.8b)], i.e.,

ﬁUQHT=17T0'2H=0'2. (2C15a)

The real matrices M that satisfy this condition have unity determinant.
They comprise the three-parameter symplectic group Sp(2,R).*! The com-
plex two-dimensional matrices M that describe unitary transformations on

the column vector a = A2, Ma = Ua U', are unitarily related to the real

matrices M by the matrix 4 [Eq. (2C.1b)]:
M=A"MA. (2C.15b)

These matrices M comprise the three-parameter, noncompact group
SU(1,1),*! isomorphic to Sp(2.R); it consists of all complex, two-dimensional
matrices that have unitary determinant and that preserve the metric o3

(i.e., the commutator matrix [a, a'] = a3),

MUsMT=O'3=MTO'3M. (2CI5C)

The three free (real) parameters associated with the transformation
matrices M and M can be identified with the parameters of the unitary
operators that induce the matrix transformations. The generators of these
unitary operators are bilinear combinations of the annihilation and creation
operator; i.e., the unitary operators are the single-mode rotation and
squeeze operators. The underlying Lie algebra for these groups is that of

(combinations of) the three operators a? a'® and a'a. The preceding
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discussion of the single-mode rotation and squeeze operators shows that the

transformation matrix ¥ has the general form

_ tea - 1603 _ e‘ coshr ei(2¢+ )sinhr
M=c¢ 3 = e 3 = ; : s 2C.15d
¥ T8 e (2p+9) sinhr e ‘% coshr ! ( N )

where ¢, 7, and ¢ are real, continuous parameters [Eq. (2A.21b)].

The general forms for the transformation matrices ¥ (hence also #)
can also be obtained in other ways. For example, one might first note that

any two-dimensional matrix ¥ that describes a unitary transformation on a

must satisfy
M*=0, Ma,, (2C.16a)

since a = g, a* This means that the matrix # has the general form

a B
M= 8* ot (2C.18b)
where o and § are arbitrary complex numbers. It also implies that
MaosMtos = Moy MT 0g = (detM) 1. (2C.18¢)

The last equality in (2C.18c) is satisfied by all two-dimensional matrices #;
the first is satisfied by only (and all) those matrices ¥ that satisfy (2C.16a).
The unitarity of the transformation ensures that the Hermitian commutator

matrix [a, a'] = o3 is preserved [Eq. (2C.15¢)] and that the antisymmetric

commutator matrix [a, a’ ] =i gy is preserved, i.e.,

Mo MT =a,= Ml 02 M . (2C.16d)

Either of these conditions, together with (2C.16a) or (2C.16c), implies that



- 65

det# = 1. Hence the matrices # have the general form (2C.15d), and the

real matrices M are given by M = A M AT,

Many properties of the single-mode squeeze operator S,{(r,¢) that
would otherwise be difficult to see can be found from properties of the
transformation matrix G, ,. For example, one can factor S,{(r, ¢) into a pro-

duct of exponentials of a'a, a?

and a™ simply by factoring the matrix G
into exponentials of other matrices (linear combinations of the Pauli
matrices) which have a commutator algebra that is identical to that of
(a'a)sym, %a® and %a® (see, e.g., Refs. 15, 48, or 26). These factored forms
are useful, for example, for expressing a SMSS as a sum over number states,
a technique useful for calculating the phase factor "% in the wave function
for a SMSS (see Appendix B). These factored forms are listed in Appendix B

[Eq. (B.12)] of Ref.26 ; one of the most useful is
Sy(r,¢) = (coshr)#e #le™ g -In(coshriala gi*a? ['=e?tanhr . (2C.17)

Also, the product of two different squeeze operators can be found from the
product of two different matrices G.,. In this way one finds that any pro-
duct of single-mode squeeze operators can always be expressed as the pro-
duct of one single-mode squeeze operator and one rotation operator, by vir-

tue of the following rule:
S\(r', 0)S\(r.¢) = e ®R(B) S (R, &) = e *®S (R.&—-0) R(®) . (2C.1Ba)

The real numbers 0, R, and ¢ are related to 7', ¢, r, and ¢ by the matrix

equality

ieoa _ eiGCOShR ei(z@—e) Sinh.}? o Cr‘ C (zc 48b)
-— - 'v _r‘yw' o

e B g COB] i
Cr.e e 128 ginhR e *®coshR

[Eq. (B.14) of Ref. 26]. For the special case ¢ = ¢' this gives the simple
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relation
ST @) Si(r'. @) = Si(r +7'.¢) (2C.18c)

[Eq. (2C.14d)].
The vector notation simplifies the task of ordering noncommuting uni-

tary operators. For example, using the matrix transformations given above

one finds that

R(8)D(a,p) = exp[gfe“‘"sasg]ﬁ(e) = D(a,e~®u) R(8) , (2C.19a)
R(8) S\(r.9) = exp[fr ate ** "o, 4 e***a] R(o)

= exp[ /T a'0y_syna] R(6) = Si(r.p—6) R(6) . (2C.18Db)
D(a,p) Si(r.¢) = S\(r.¢)exp[a’ Cr yo34]

= 5,(r. @)explal o Cr p ] = Sy(r.9)D(a. pa) |

Y
9 w | = Gl (2C.19¢)
e U e

[cf. Eqs. (2A.17), (2A.25), (2A.26)-(2A.28)].

The vector notation is particularly useful for calculating second-order
noise moments of a, af, £, and §. The matrix of second-order noise

moments of a and a'is the Hermitian matrix

@ = {8abdaDgym = $(CAata’) +{Aa*aal)T)

- [Sio® S )= e w20
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The matrix of second-order noise moments of £ and p is the (real, sym-

metric) covariance matrix

= (AZAET Doy = H(CAEAZT) + (AZDZTHT)

~

[ <y (82 88)em
(8% MBYaym < (4D)D

=AQAt=F =5, (2C.21)
The relations (2B.11) imply that for single-mode GPS these matrices satisfy
Qo3Qaz =41, (2C.22a)

302 80’2 = x 1. (2C22b)

Hence their determinants are equal to . For a coherent state, both are

proportional to the identity matrix:
@eoh = Beoh = %1 (2C.23)

(Egs. (RA.36)].
The noise matrices @ and & for a state |¥) are related to those of a

rotated state R(8) | ¥) by

{R'(6) (Aaba g R(6)) = & 7" @e**"

= 221<91<A(t2(‘12r>)2> e_?iéa(Alg’))z) ; (2C.24a)

(RY(6) (A2A2T )gymR(8)) = Ae * AT S A T3 4T
=e'®ge %% (2C.24b)

They are related to those of a state S,(r.¢) | ¥ by
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{Si'(r. ¢) (AaBal)gym Si(T. ¢)) = C+ ,@C, 4. (2C.252)
(5117, ¢) (MZ282T )y Si(r.9)) = AC, JATSAC, LA (2C.25b)

This immediately tells one, for example, that the noise matrices for a

single-mode squeezed state |u,), , are
Qf"u = %Cgrv = %C_g-,.,w = %03 Cg,-'wa's ) (2C26a)
84, S HAC g yA' = %02 A Cop ,AT 0, (2C.26b)

[Egs. (2C.13c), (RC.23)]. The squeezing effect is clearly visible in the
transformation of the noise matrix 8 [Eq. (2C.25b)]. When ¢ =0, this

transformation says that

~Tr'e ¥
332 3

{S"(r.9) (A-?A?T)symsl(r-io)) e

e 2r ((A£)2) CAZADPDgm

(AZAP gy ¥ {(8P)%) | (RC.27)

Finally, the vector notation enables one to show with relative ease how
the unitary operator whose generator is a linear combination of the Hermi-
tian forms Hgr(V, H,{V, and H,) factors into the product of a single-mode
squeeze, rotation and displacement operator (and an overall phase factor).
More generally, by giving these generators arbitrary time dependences one
can calculate the evolution operator associated with the most general com-
bination of Hamiltonians that can produce single-mode GPS. This result is
given here briefly, details that are important for the calculation are
presented in Appendix A. Equivalent results have been obtained by Yuen.!®

The single-mode rotation Hamiltonian Hp(!(¢) is expressed in vector

notation by
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Hp(t) = o(t)a'a = Ko(t) (a'a - 1), (2C.28a)

where w(t) is an arbitrary real-valued function of time ¢ [Egs. (1.3)]. The

linear and quadratic Hamiltonians A,()(¢) and H,())(¢) are expressed by

It

H\(¢) =i af oz [;S.t(z)] ; (2C.28b)

Hy(t) = $x(t) a0, yna, (2C.28¢)

where A is a complex-valued function of time, and « and ¢, are real-valued

functions of time [Egs. (1.4), (RC.6b)].

The evolution operator U(t) is the solution to the equation
18, U(t) = [Hp((¢) + HO(E) + HOB]U(E)
Uo)=1. (2C.29)
It can be written as the product
Ut) = e S\(r.¢) R(6) D(a, 1) (2C.30a)
=eD(a,u)S,(r.¢)R(8) . (2C.30b)

where 6, 6, 7, and ¢ are real-valued function of time, and x is a complex-
valued function of time [cf. Eq. (2B.27)]. For notational convenience here I
often drop explicit reference to the time dependence of these functions,
e.g., T =7(t) etc. Thestate |y, = U(t) |0} is an eigenstate of an operator
g = U(t)a U'(t) (with eigenvalue ugy), whose relation to a is described by

the vector relation

2= [gr] = 5.(r.9) R(8)aRY(8) S\(r.¢) = "G ya .
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[Egs. (C.10)]. The eigenvalue y, is therefore related to the complex ampli-
tude u = {a) by
[ K

e ] = eiMSCm,E.. (2C.31b)

The calculations in Appendix A show that the functions 7, ¢, 6, y, (or u), and
§ are related to the Hamiltonian functions «, ¢,, @, and A by the following

matrix, vector, and scalar equalities:

FOpyn — 91+ (¢9+8)Cory=wl+ KOg Y (2C.32a)
iy =BG A, (2C.32b)
6+ %(8 —w) = Wiufogiy = Im(u*)) . (2C.32¢)

(Dots denote derivatives with respect to time.) The initial conditions, dic-

tated by U(Q) = 1, are

6(0) = 7(0) = 6(0) = ug(0) = (0) = 0. (2C.33)

t

For illustration, consider the case g, = ¢, — fc.)(t)dt, ¢x, = constant. Then
0

Eq. (RC.3Ra) gives

¢

r(t) = _offc(t)dt , (2C.34a)

1

P(t) = ¢x = pe, — ]w(t)dt , o(t) = fo(t)dt . (2C.34b)
[¢] 0

If no driving is present in this case [A(t)=0], then uy, =6 =0 and

U(t) = Sy(r.pe) R(8) = R(e)Sl(r,;a,co). Now consider the case where both «

t
i fo(t)at
and ¢, are constant, and A(t) =Ae ° . Ao = constant [when
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w(t) = w = constant, this corresponds to driving the oscillator on reso-
nance]. Then r(t) = «t, the angles ¢(t) and 6(t) are still given by Eq.

(2C.34b), and the function ug is given by the vector relation

t

¢
. .
g = {dt g" ™ C‘,d_,xo_&eﬂns):o = fat Cet.g, Mo
/ =

¢
& it (C"’no -1) 22i¢‘°031\" = C‘,,,‘oei{U(‘)d‘ US,LNL ; (2C.35)
The phase angle 6(t) is
8(t) = (Zi/c)”‘éofa%as(l - C‘o,,q,‘o)bc
= k" (coshkt — l)Im(ezwx")\o*z) : (2C.36)

Note that the solution to the problem of factoring the unitary operator
whose generator is any linear combination of the Hermitian forms Hz(V,
H,M, and A5V can be obtained from the above equations, by setting all the
Hamiltonian functions (k, ¢. @, A\) equal to constants, solving the coupled
differential equations (2C.32), and then setting the dummy parameter ¢t to

unity. Thus,

i[Ho (1 (1) (1) '
g WHRY + H + HT efvexp[-Yia(wl + K0, ¥n) @+ atogA] (RC.37)

can be put in the factored forms (2C.30), with 6, 7, ¢, 6, and y, (or u) the

solutions to Egs. (2C.32) when ¢t = 1. One immediately finds that
T =k, ® = P =6, (2C.38)

The parameters uy and ¢ are the solutions, at £ = 1, to the vector and scalar

equations
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iwt
=g C“'%‘“‘ AL (2C.39a)

4 N

6 = Im(ug * 1y ) = Im(u*N) . (2C.39b)
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. TWO-MODE GAUSSIAN PURE STATES

A Introduction

1. Notation and Definitions

a Dimensionless Position and Momentum Variables

Consider now two oscillators, with characteristic frequencies w; and w_
(wy = w_). Each oscillator can be described by its own set of annihilation
and creation operators -- a,, a," and a_, a_t - or, equivalently, by the
dimensionless coordinate and momentum operators Z,, p, and Z_, H_.

These operators are related to each other by

£, =2%(a, +a.h), P. = 2#(—~ia, +1ia.h), (3A.1a)

il

a, =2*(£, +1p,) (3A.1b)

(Egs. (RA.1)]. They obey the commutation relations
[a,, a,%] =1, (£ Pe] =1, (3A.Ra)
(a+, a-]=[aw af] =[2. P=] =[£..2-]=[F+.F-]=0. (3A.2b)

While the operators £, and £_ (f, and §_) are both dimensionless, they
do not have the same "units”, since the natural units of length (momentum)
for the two oscillators differ. Dimensionless position and momentum opera-
tors that have compatible units for the two oscillators can be obtained by
dividing the usual dimensional position and momentum operators by new
units of length Ly and momentum Py. In general, Ly and Py can be chosen

quite arbitrarily, subject to the dimensional restriction Ly Py = 1 (= h), but
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there is a natural choice for them. To see this, let the two oscillators be
modeled as masses m, on springs (the result will also hold, however, for the
normal modes of a quantized field). Their natural units of length and
momentum are (m;w,) #and (m, w,)*, respectively. Now choose quantities
m and (), with dimensions of mass and (time)™!, respectively, and define
Lo=(mQ)# Py=(mQ)¥% The dimensionless position and momentum

operators . and P, for this choice are
Q:=A"12,, Py=M\P: . (3A.3a)
Ay = Po i (my Qt)% = Lo(m, Qt)% =(m./ m)* (ws/ Q)’é : (3A.3b)

Thus, for equal masses with m, = m_ = m, or for normal modes of a quan-
tized field, the natural choice for A, is (wy/ Q)*. For modes of the elec-
tromagnetic field, these conjugate variables @, and P, are the Fourier com-
ponents of the vector potential and its conjugate momentum, the electric
fleld. The free Hamiltonian for the two modes, written in terms of &, and

P, has the canonical form
H® = BAP2+ (0 /02Q2+ PR+ (0/D)?Q2]. (3A.4)

In most of this discussion of two-mode Gaussian pure states I use the vari-
ables £, and p., rather than @, and P., because they provide an easy com-
parison with the previous discussion of single-mode states. The field vari-
ables @. and P, or, equivalently, the quadrature-phase amplitudes «; and a3
[Egs. (1.21) and (1.22)], are useful for describing the special noise proper-
ties of two-mode squeezed states. The field variables & and P. are related

to the quadrature-phase amplitudes defined in Eqs. (1.21) by

Re(oy) = RO)7'[(Q+2) Qs + (Q-2) Q-]



P
Re(og) = (RQ)™H(Ps + P-) .
Im(e) = (RO)™ (P4 — P-),
Im(az) = (RO [(Q+e) @+ — (Q-2) Q-] (3A.52)

Re(a;) = Koy + ;') , Im(ay) = =i¥(e; —oyt), j=12. (3A5Db)

b. Twocomponent Vector Notation

An obvious way to generalize one's mathematics from a single mode to
two modes is to replace the single-mode annihilation and creation operators
a and a' by the two-component operator column vectors?®!

a,t
"

*

~

(3A.6)

1R
il

These column vectors should not be confused with the two-component
column vectors defined in Section IIC for a single mode. The same symbol is
used here because it is natural and because the risk of confusion is low; the
single-mode column vector never appears in conjunction with two-mode
column vectors (i.e., it never appears in this section). The column vectors
for the dimensionless position and momentum variables £, and 5, are

related to a and af by

-4 [? =2%(@a+a*), pP= [?] = 27R(—ia + ia*) ; (3A.7a)
a=R7#(£ +1ip) (3A.7b)

[cf. Egs. (2A.1)]. The adjoints and transposes of these column vectors are

defined in the usual way (see Section II.C). Similar definitions hold for
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column vectors of complex numbers; e.g., the column vector for the com-
plex amplitudes u, and u- is

p= (g) = [Zt] = 2"”(50 + 180) , (3A.8a)

where z; and py are the column vectors for the mean positions zy, and

momentums pg., respectively,

{ 3

& z
zo = <:~;> = zgt = 2‘*(& + ,Lj,"') ) (3A.8b)
po={p> = ggj = 27#(~iu + iu*) (3A.8c)
\ J

[cf. Eq. RA.3)]. This two-component vector notation is used throughout this
section in order to present the two-mode results in a simple form that
resembles as closely as possible the single-mode results. For example, the

commutation relations (3A.2) take on the matrix form

[a at] =aaf - (a*a”)T =1,

~ o~

[a.aT]= aal - (aa”) =[a,, a_]Jigy=0; (3A.9a)

(2.27]=[pp"]=0. (3A.9b)
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c. Second-order Noise Moments

For a single mode there are only two relevant Hermitian operators, Z
and p (or one complex operator, a), and hence only three real second-order
noise moments to consider - {(A£)?), <{(AP)®>, and <AL APDgym. or,
equivalently, {(Aa)?) and {|Aa |®). For two modes, there are four relevant
Hermitian operators, £, and p., and hence ten real second-order noise
mormments to consider; six of these are associated with each of the modes
separately, and four describe correlations between the modes. The four
correlated noise moments are {AZ,AZ ), {APp.AP_>, and {AF.AP+), or,
equivalently, the complex noise moments {Aa,Aa_) and {Aa.Aa_"). The
two-mode analog of {(Aa)®) is the complex, symmetric matrix 7"

((Aa,)?> (Aa,Aa )
T ={baba™> = | (pq, 00 ((Aa)?y | =T (3A.10a)

The two-mode analog of { |Aa |?) is the Hermitian matrix @:
Q = {AaAa) g = B AaAat) + ¥{Aa*Aal DT

<]Aa+]2> {Aa,Aa_t)
= (<da_sa,ty (Jaacpry |59 (4108}

[cf. Eqs. (RA.4)].

The two-mode analogs of the three real second-order noise moments of

-~

Z and P are the three real, two-dimensional covariance matrices S;, Sp.

and Szp:

ey ozaed|
¢ =S5 s (3A.11a)

AZ,AZ ) ((AF)%D

)
(0P (PP
So = BT = | (apuap > <(apy®y | T (34 110)
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S = (AZMDT Yoy = HCAZARTY + H(APAETHT

(A2 0B Doy (OB, AP

(BEABY (DB S (8A.11c)

The matrices S; and S, are positive semi-definite -- i.e., their traces and
determinants are nonnegative;*’ they are positive-definite, if one excludes
eigenstates of £, and £_ or o, and p_. Such states are excluded here, for
although they can be viewed in a formal sense as limiting cases of GPS, they
are not normalizable, since their wave functions are delta functions.
Throughout this paper, therefore, S, and S, are positive-definite (i.e.,

nonzero).

The noise matrices T and & are related to the covariance matrices S;,

Sp. and Szp by
T =K%(S; —Sp) + %i (ST + Sip) . (3A.12a)
Q=%(Sz + Sp) + %i(Spp” = Sp) (3A.12b)

[Egs. (3A.1); cf. Egs. (RA.5)]. These matrix equalities are a compact way of

writing the following relations between the second-order noise moments:
((Aa.)?) = BIC(AZ.)2) — (8P L)?) + RiCAZ . AP D sym] . (3A.13a)
(l8a.[?> = BI(AZ.)%) + <(4B.)*D], (3A.13b)
(haba_) = B[(AZ, A2 ) — (AP AP + i(KAZ_ AP + (AZ,AP )], (BA.13c)
(Aa,ba ) = BI(AZAE ) + (AP.AP ) +i(CAZ_AP ) — (AZ AP )] . (3A.13d)
The total noise of a two-mode GPS is

(18ay|?) + (|da_|?> =Tr@ = %Tr(S; + Sp) . (3A.14)



oy

The analog for two-mode states of the uncertainty principles (RA.8) is a
matrix relation between the noise matrices S;, Sp, and Sz, or, equivalently,

between @ and 7.*® This relation says that the real matrix

Sz Sp — 1 — Sgp? (3A.15a)
and the Hermitian matrix

F-p-rr (3A.15b)

are both positive semi-definite (psd), and they vanish identically if and only
if the state is an eigenstate of two independent linear combinations of Z,,
Z_, P, and p_ (or a,, a_, a,’, and a_T) - i.e., if and only if the state is a
two-mode Gaussian pure state (see Section IIIB). Note that the diagonal ele-
ments of the matrices (3A.15a) and (3A.15b) are identical. A psd two-
dimensional Hermitian matrix must have both diagonal elements nonnega-
tive, and it is equal to the null matrix if and only if both diagonal elements
vanish. This implies the following two (equivalent) sets of uncertainty princi-

ples:
CI8a.]2y = 4 + [<(Aa.)? |2 + [(Aa,ha 3 |? — [(Aa,ha ) (2, (3A16a)
C(A2.)2 (AP = 4 + (AR AP DB + (AZ AP > (AZ_85.)
- (A2 AZ DA LAP LD . (3A.16b)

Equations (3A.16a) and (3A.186b) each represent a pair of uncertainty princi-
ples, one for the upper ("+") sign, and one for the lower ("-") sign; the two
sets (not the members of each pair) are equivalent. Equalities hold in these
expressions if and only if the matrices (3A.15) vanish, i.e., if and only if the

state is a two-mode Gaussian pure state. If the two modes are uncorrelated
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with each other, these expressions reduce to the single-mode uncertainty

principles (2A.8) for each mode.

2. Rotation Operators

Associated with each of the two modes is a single-mode rotation opera-

tor,

i b
R.(g) = e %% "% (3A.17)

whose properties were discussed in Section IIA.2. It is useful to define
another pair of commuting unitary operators, Up(g) and Uy(9), equivalent

to R,.(¢) and R_(8), as follows:

-igata

Ur(6) = R.(8)R_(8)=e ~~; (3A.18a)

—1'.9117030

Uu(8)=R.(8)R_16) =e (3A.18b)

For notational convenience denote the general product of two single-mode

rotation operators (angles 6,, 8_) by the symbol R(8), and define angles 65

and 64 by
R(6) = R.(6+) R(6-) = Up(8s) Uy(64) = exp[—ia’aa], (3A.19a)
B=6851+6405= 90* 60_] , (3A.19b)
6s =Y%(6,+6.), 84 = H(6,.—6_). (3A.19c¢)

For two oscillators characterized by frequencies Q + &, Up(Qt) Uy(et) is the

evolution operator associated with the free Hamiltonian Hq®) 3¢

Ho® = Qa'a + satoga, (3A.20a)
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e~ H®t - 0ty Uy (et) . (34.20b)

The operators Up(6) and Uy(6) acting on any (two-mode) number eigenstate

—“(n,+n_)e —~(n,—m_)e

|n,,n_) multiply it by the phase factors e and e , respec-

tively; in particular, they leave the vacuum state unchanged:
Ur(8) (0> = |0), Uu(e) |0) = |0 . (3A.21)

A unitary transformation generated by Uz(6) produces a common

phase change of the annihilation operators -- i.e., it transforms a into e‘®a,

~

and rotates £ and p into each other:

Up(8) a Up'(e) = e®a = “*(9)] . (3A.22a)

Ur(8)Z Up'(6) = Zcose — psing = ;+§2§ (3A.22Db)
o gy e e o B8]
Ur(6)p Up'(8) = Z£sing + psing = 5.(s) (3A.22¢c)

[Egs. (2A.10)]. The notation here means that each component of the column
vector undergoes the (same) unitary transformation. A unitary transforma-
tion generated by Uy(6) produces an opposite phase change of the annihila-

tion operators:

, a.(8)
Ua(8)a Uu'(6) = e*a= | . ) ] 34230
z.(s)
Uu(8)Z Uy'(6) = Zcoss — ggPsing = 2 (-8) | (3A.23b)
E-
p+(e)
Uy(8)p Uy'(8) = 03Zsing + Pcoss = ;5+(—9) (3A.23c)
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The product of two single-mode rotation operators therefore unitarily

transforms a in the following way:

R sy = (1] |= et ena s ateanatp) (04.242)
(£.(6,)

R(¢) Z R(6)" = ;j(gt) = 2(6) (3A.24b)

RO FR(S) = |50 | = 50 (34.240)

[cf. Egs. (RA.10)].

Both Ug(¢) and Uy(9) preserve the total number of photons in each
mode separately, i.e., they preserve both the sum and the difference of the

number of photons:

(Ug'(6)ata Ug(6)) = (alad, (Uu'(6)ataUy(e)y = <a'a); (3A.25a)
(Ugr™(8)a'o3a Ug(6)) = (aloza) {Uu'(s)a’ 030 Uy(6)> =<afoga) .
(3A.25b)

They therefore also preserve the total noise of each mode separately. This

is seen by replacing a'a in Eq. (3A.25a) by the operator for the sum of the

total noises,

(Aaf AQ)gyr, = ¥ (AaTAa + AaT Aa*) = |Aa,|? + [Aa_|?, (3A.28)
and replacing a'oga in Eq. (3A.25b) by the operator for the difference in the
total noises of the two modes,

AdfozAa = AaT ggAa* = |Aa,|? — |Aa_|?. (3A.27)
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[Recall that the operators Aa, are defined only with reference to a particu-
lar state, which defines {a.); see comment after Eq. (2A.12b).] The noise
matrices 7 and @ for a state |¥) are related to those of the rotated state

R(6) |¥) in the following ways:
(Ri(6) Aada” R(6)> = (Aa(-6)AaT(~6)) = e 2T 2

e % ((Aa)?) e T (AaAa)

o 20 (Aa,Aad e-2i&_<(Aa_)2> : (3A.28a)
(RY(8) (82 )aymR() = Aa(~6) Al(~6) s = ¢ 12 @t
{|Aa,|?> e %% (pAq At
(3A.28b)

e?% (Aa_Aa,T) <lba_|?>
[Eq. (3A.R4a); cf. Egs. (2A.12)].

3. Two-mode Displacement Operator

The two-mode displacement operator'®!! is simply a product of two

single-mode displacement operators,
D(a.p) = D(a4,pus) D(a-, p-) = exp[a’y - u'a]

Hipg"
¥ P explipe £ ~iz’§]  (34.29)

= expli(pe £ — 2" P)] = e
[cf. Eq. (RA.14)]. It satisfies the following equalities:

D™H(a, u) = DY

R

'/j) = D(a, -u) = D(—g,;j) , (3A.30)

~ ~

The properties of D(a,u) follow directly from those of the single-mode dis-
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placement operator D(a,u) (Section IIA.3). Most important is the way it uni-

tarily transforms the annihilation operators for the two modes:

Dia,u)aDliap)=a—-pu. (3A.31)

~

This implies that when the displacement operator acts on a (two-mode)

state,it preserves all noise moments of a, and a,".

Two other properties of the two-mode displacement operator are useful
here. They are the two-mode analogs of the properties (RA.17)-(2A.20).
First, it is unitarily transformed by the product of two single-mode rotation

operators in the following way:

R(9) D{a. ))R(9)' = Dla(e). u] = Dla. p(~9)] = D(, e~i2p)

~ o~

= D(a+,e—".9+,u+)D(a_,e_w‘,u_) : (3A.32a)
. 18,
(o) = e'ep = e'®re 4%, = [Zgg} = | %40 7 (3A.32b)
~ ~ ~ 47— e " p_

[Egs. (3A.24a), (3A.29)]. This transformation shows the invariance of the
form of the displacement operator under unitary transformations generated

by the rotation operator:
D(a,p) = Dla(6).u(6)] . (3A.33)

Second, the product of two two-mode displacement operators is another dis-

placement operator, multiplied by a phase factor:

Dla,w)D(a.p)=e ~~ D{a u+u) (3A.34)

(cf. Eq. (RA.19)]. These properties, like the transformations (3A.24a) and
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(3A.31), show that any eigenstate of a, or a_ remains an eigenstate of a, or
a_ when displaced and/or allowed to evolve freely. A two-mode coherent
state [Eq. (1.15)], for example, changes in the following way as it evolves

freely:

R(g) ]E’>coh = |/f(_§)>coh = |e_‘ia‘+,ur+: e_io_/Jf—>coh i (3A.35)
where 6, = (Q + &) ¢t [cf. Eq. (RA.R0].
4. Mixing Operator

The two-mode mixing operator T(q,) is defined by

T(g.x) = exp[g(e ®Xa Ta, —e®*Xa,Ta_)] = exp[-iga'o,y,a],  (3A.36a)

0<q <¥m, Yr<xy<knm (3A.36b)
[Egs. (1.10), (RC.10b)]. It satisfies the following equalities:
T™Mg.x) = THg.x) = T(-g.x) = T(q.x+}m) . (3A.37)

It is called a mixing operator because it unitarily transforms the annihila-

tion operators for the two modes into each other:

T(g.x0aTHg.x) = Fgxa, (3A.38a)

RiX g -
2x= | e Bxting * cosg | = €057 1+ ising g yr = & " (34.38)

]
i

[Note that the matrix oy_y, appears in both T(g.x) and the transformation

matrix Fy, because the matrix of commutators [a, a'] = 1 is the identity
matrix, i.e., because [a'Ka, a] = =K a; cf. Egs. (2C.10).] The unitary matrix

Fyq x has the following important properties:
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Fax ' = Fax' = Fqx = Faxstn = 03Fg 403, (3A.39a)
Fro=e"= S0 S0 ). Fuye=e¥0t= (2050 isIn] - (34.390)
Fax = e X Fa.x—x g (3A.39c)
FaxFax = Fosqx (3A.39d)

The transformation (3A.38a) ensures that states unitarily related to eigen-
states of a; and a_ by mixing operators are themselves eigenstates of a,
and a_. This shows, for example, that the mixing operator, like the rotation

operators, leave the vacuum state unchanged:
T(g.x) |0 =10). (3A.40)

This can also be seen from the factored forms for T(q,x) given below [Eq.

(3A.45)].

The unitarity of Fj, ensures that the mixing operator preserves the

total number of photons in the two modes:
(THg.x)a'aT(g.x)) = al Fgy Fy,'ad =<a'a) . (3A.41a)
It therefore also preserves the total noise of the two modes:

{THq.x) (80T A) gy T{q XD = {ACTAD 5y, = ([Aa, [*) + ([Aa_[?) . (3A.41b)

The noise matrices 7 and @ for a state |¥) are related to those of the

transformed state T(g,x) | ¥> in the following ways:

{THq.x)bata” T(q.x)> = Fax' T Fyx*. (3A.42a)

{T'(q.x) (8aBal)gym T(q. XD = Fy\f @ Fyx (3A.42b)
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[Egs. (3A.38)]. Equation (3A.42b) shows that for states whose noise matrix @
is proportional to the identity matrix 1, the mixing operator also preserves
the difference in the noises of the two modes, i.e., it preserves the total
noise of each mode separately. Such states include all eigenstates of a, and
a_, all two-mode squeezed states, and all products of two single-mode
squeezed states with identical squeeze factors. For the general two-mode
GPS (1.18), the total noise of each mode will be separately preserved under
a mixing transformation only for a specific g and x, determined by the con-

dition
({|Aas|?) =< |Aa_|?))sing — 2Re(e #X{Aa,Aa_T))cosqg = 0. (3A.43)

The mixing operator and the two rotation operators represent all the
unitary operators that induce matrix transformations on the column vector

a. The transformation matrices associated with them comprise the group

U(R) of two-dimensional, unitary matrices that preserve the identity matrix,

i.e., that preserve the commutator matrix [a, a'] = 1. The most general ele-

ment of this group has the form

_ ‘l;ﬂ" 1’.94 Og _ iO, ied £}
My=e ‘e Fax=¢e Fq.xwde
. iy i(Rx +6q) .
_ s e %cos e sin
=e ' —1’.(2x+9d)q. ~i8y 1 (3A.442)
—e sing e cosq

for some real numbers 65, 84, g, and x. [t is the transformation matrix that

results from a unitary transformation of a by a product of the two rotation

operators and a mixing operator, i.e.,

Mye=T(q.x)R(6)aR(s) T'(q.X) . (3A.44b)
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The unitary matrices associated with the unitary operators Uy(64) and
T(q.x) form the three-parameter group SU(R), i.e., they are the elements of
U(2) with unity determinant. The underlying Lie algebra for these operators

is that of the operatorsa_ta,, a,'e_, and (a_Ta_ —a,%a,).

Properties of the mixing operator can be obtained directly from pro-
perties of the matrix £y, just as properties of the single-mode squeeze
operator are obtained from properties of the transformation matrix G ..
For example, the mixing operator can be factored into a product of
exponentials of the operators a_Ta,, a,Ta_, and (a_Ta- — a,'e,), simply by
factoring the matrix Fy, into exponentials of matrices (linear combinations
of the Pauli matrices) that have the same commutator algebra as those
operators. These matrices are o_, o4, and -og, respectively, where
0. = %(0, £10z). The mixing operator T(g,x) thus has the following

equivalent factored forms:

T(q,x) = e M eh*e®aosB = ghed o —2e?f 4l 1B

= g M GfB A% = 5B 5 -he?/ AT 5 Av4

@~ TB ghte®¥ 4 5 -AdY _ SA4 1B ,-AAY '

A=e®*Xtang, f =In(cosq).
A=ata,, B=ala_-a,'a,. (3A.45)

These factored forms show explicitly that the mixing operator leaves the

vacuum state unchanged [Eq. (3A.40)]. The matrix equality

1 1
FoxFdx = Ff.nez Beel OSFc,n—e (3A.46a)

shows that the product of two different mixing operators is another mixing



= 89 =
operator, multiplied by a rotation operator:
™(q' X)) T(q.X) = Uu(®) T(¢,n) = T(¢m—0©) Uy(@) (3A.46b)
here the real numbers ¢, 7, and © are related to g, q', x, and x' by
e*®cos¢ = cosq cosq' + e®*&X"X)sing sing", (3A.46c)
e 8- sin¢ = e®Xsing cosq' — e®X sing’ cosq . (3A.46d)
For the special case y = x' this gives the simple relation

T(g.x)T(g'.x)=T(g+q".x) (3A.46€)

[Eq (3A.394d)].
The property (3A.39¢) of the transformation matrix Fy , shows that the

mixing operator T(q,x) is unitarily transformed by the rotation operators in

the following way:

R(6) T(g. x)R'(8) = T(g.x~64) (3A.47)

That T(g,x) commutes with Ugz(8) but not with Uy(g) reveals why it
preserves the total number of photons (hence the total noise), but not the
difference in the number of photons in the two modes. The mixing operator
unitarily transforms the two-mode displacement operator in the following

way:
THq.x) D{(a. w) T(g.x) = D(Fg'a.u) = D(a Fgyp) . (3A.4Ba)

This shows that the form of the (two-mode) displacement operator is invari-

ant under unitary transformations of a generated by a mixing operator:

D(g,&) = D(F’q,xg, Fq.xlj) . (3A.48b)
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These transformations, together with the properties described above, enable
one to verify the statement made in the Introduction: a state unitarily
related to a two-mode coherent state by any product of rotation, displace-
ment, and mixing operators is equal to another coherent state (multiplied

by an unobservable phase factor). For example,

Im(u? £, )

R(6) D(a, ) T(q.X) |Dcon = e |BYcon .

K= lj(_f) + Fq.x—edtg(_f) : (3A.49)

All states that are eigenstates of both a, and a_ are unitarily related to
the vacuum state by products of rotation, displacement, and mixing opera-
tors. Conversely, all such states are eigenstates of a, and a_. These states
comprise the entire class of (two-mode) states whose total noise is equal to
that of the vacuum state. The special properties of the rotation and mixing
operators -- that they preserve the total number of photons, that they
preserve the total noise, and that they preserve coherent states -- are a
consequence of one essential property: these operators generate the most
general unitary matrix transformation of the annihilation operators and
nothing more; i.e., they never mix creation operators with annihilation
operators. To find unitary operators that do not conserve the total noise
and that generate new states from coherent states (states with a total noise
greater than that of the vacuum state), one must consider operators -- the
single-mode and two-mode squeeze operators -- that mix creation and

annihilation operators.
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5. Squeeze operators for two modes

The single-mode squeeze operators
S1:(r, 9) = exp[lhr (e ?¥a,® — % aJe)] (3A.50)

were discussed in Section IIA.4. Each single-mode squeeze operator uni-
tarily transforms the annihilation operator for its mode into a linear combi-

nation of the annihilation and creation operator for that mode:
Si:(r,9)a;S1:(r, ¢) = a,coshr + a,e®?sinhr (3A.51)
[Eqgs. (RA.21)-(RA.R3)]. In vector notation these transformations are

S14(T4 94) S1-(T-, ‘P—)gsx—T(T—. @) S14M(ry. 94) = Py = + Pis g' : (3A.52a)

e“**sinhr, @
P =10 e | (345%D)

coshr, 0
Py = 0 coshr_

Recall that a single-mode squeeze operator preserves neither the total

number of photons nor the total noise of a mode [Egs. (2A.24)].

The two-mode squeeze operator S(r, ¢) is defined by

S(r,¢) = exp[r (e *fa,a_ —e??a,fa_ 1]
= exp(¥r (e **alg,a — e**al0,a*)], (3A.53a)
0<r<>=, -Yrn<eg<kn (3A.53b)

[Eq. (1.13)]. It satisfies the following equalities:

S7Hr.p)=SNr.¢) =S(—r.9) = S(r.o+4m) . (3A.54)

Properties of S(r,¢) are discussed in Refs. 25 and 26. Most important is
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that it unitarily transforms a. into a linear combination of a, and a "
S(r.¢)a;SH(r. ¢) = aycoshr + az'e®?sinhr = a,(r,¢) (3A.55)
[Eq. (1.20)]. Invector notation, these transformations take the form
S(r,gp)g.ST(r,go) = acoshr + olg"‘ez""sinhr = a(r. ). (3A.56a)

Inverting this relation gives the vector expression for a in terms of a(r, ¢)

and a*(r, ¢):
a = SH(r.¢) g('r,go) S(r.p) = a(r,¢) coshr + g, a*(r,p) e®?sinhr . (3A.56b)

A state unitarily related to an eigenstate of a, and a_ by a two-mode
squeeze operator is an eigenstate of two "two-mode squeezed annihilation
operators'?* %8 q (7, ¢) (sometimes denoted simply by a,, or by the column

vector ). The unitarity of S(r,¢) ensures that the commutator algebra of

a, and a,' is identical to that of a, and a,™:

[a(r.9). of(r.¢)] = [a,af] = 1, (3A.57a)
la(r. ¢). gf(r. ©)]=[as, a-]igeg=[a a’]=0 (3A.57b)

[cf. Egs. (3A.8)].

The transformations (3A.55)or (3A.56) imply that the two-mode squeeze
operator preserves neither the total number of photons nor the total noise

of a (two-mode) state:

{Sr,p)afaS(r,¢)> = sinh® + cosh2r {a'a) — 2sinh2r Re(e **¥{a,a_)),

(3A.58a)
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(St(r. ¢) (AaTAQ)gym S (7. ¢)> = cosh?r {Aa’Aa) g, — RsinhRr Re(e %% (Aa,Aa))

(3A.58b)

[cf. Egs. (RA.24)]. Equation (3A.58b) shows explicitly that any (two-mode)
state whose unitary relation to the vacuum state (or to any eigenstate of a,
and a_) involves a two-mode squeeze operator has a total noise greater than
that of the vacuum state. The two-mode squeeze operator does, however,
preserve the difference in the number of photons, and therefore also the

difference in the total noises, of the two modes:

(S'(r.p)aTo3aS(r, ¢)) =<afosa) (3A.59a)
(S’f(7'.:p)Ac~zT asAgS(r,;a» = (Ag*asAg> : (3A.59b)

The relations between the noise matrices 7 and @ for a state |¥) and for the
state S(r,¢) |¥) follow from the transformation (3A.56). The matrices T

and @ for a TMSS are given explicitly below (see part 7 of this section).

The two-mode squeeze operator and the two rotation operators
represent all the unitary operators that induce matrix transformations on
another two-component column vector,

Q.
]

a = [a_T . (3A.80)

The transformation matrices associated with them comprise the group
U(1,1) of two-dimensional, complex matrices that preserve the metric as,

i.e., that preserve the commutator matrix [a', '] = 03. The elements of this

group have the general form

_ 184 16403 _ 184 —184 03
M=e % Gg=e C’,,wg’e
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. i iR +8,) .
164 e *coshr e ~*sinhr

=e - 3A.61
e L(2v+9’)smhr e ‘%*coshr ( =)

for some real numbers 64, 65, 7, and ¢ [cf. Eq. (2C.15g)]. It is the transfor-
mation matrix that results from a unitary transformation of the column vec-

tor @' by a product of two rotation operators and a two-mode squeeze opera-

tor, i.e.,

Ha = S(r.9)R(8)  R(8)S'(r. ) (3.61)

[Egs. (3A.24) and (3A.55)]. The transformation matrices associated with uni-

tary transformations on a' by the rotation operator Ug(6s) and the two-

mode squeeze operator S(r, ¢) form the three-parameter group SU(1,1), the
elements of U(1,1) with unity determinant. They are the same transforma-
tion matrices that arise in connection with the single-mode two-component
column vector defined in Section IIC; there they describe unitary transfor-
mations induced by the single-mode rotation and squeeze operators. This
similarity is the formal reason that two-mode squeezed states are the
natural analog of single-mode squeezed states. The underlying group struc-
ture of the unitary operators associated with the most general two-mode
GPS is considerably more complicated than the three-parameter group
SU(1.,1) (see Section IIIC). The group structure of the unitary operators
associated with two-mode squeezed states, however, is SU(1,1). This is a
consequence of the fact that two-mode squeezed states have special noise

properties (TSQP noise; see the discussion in Section I.g).

The underlying Lie algebra associated with the unitary operators Ug(8s)
and S(r,¢) is that of the operators a,a_, a_ta,, and a,fa, +a_ta_+ 1. It
is the same Lie algebra as that associated with the single-mode rotation

operator R(6) and squeeze operator S;(r,¢), i.e., it is that of the operators
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%a? %a™, and afa + % Hence all the results for single-mode GPS can be
converted to analogous results for two-mode squeezed states simply by
replacing these single-mode operators with the corresponding two-mode
operators. This immediately enables one, for example, to write factored
expressions for the two-mode squeeze operator [Eq. (2C.17)], and to write
the product of two different two-mode squeeze operators as the product of a
two-mode squeeze operator and a rotation operator Ugp(8) [Egs. (2C.18)].
States with TSQP noise can be described completely by a two-component

vector notation, in which the fundamental operator column vector is a' [Eq.

(3A.60)] or, equivalently, the column vector formed from the quadrature-

phase amplitudes a, and ag:

A= z; = ANa', (3A.62a)
11 A+ 0 O+s &
AEZ‘%[_,L 1] A=l0 e A= (3A.62b)

[cf. Egs. (1.21)]. Such a description is motivated and developed in Refs. 24-
26. In contrast, more general two-mode GPS require a four-component vec-
tor notation, described in Section IIIC of this paper.

The property (2C.14c) of the transformation matrix G, 4, or the relation
(3A.24a) together with the definition (3A.53), shows that the two-mode
squeeze operator is unitarily transformed by the rotation operators in the

following way:

R(9) S(r.¢) Ri(6) = S(r.¢-8,) (34.63)

[cf. Egs. (RA.25) or (2C.19b)]. That S(r,») commutes with Ug(6) but not

with Ug(6) reveals why it preserves the difference in the number of photons
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(hence the difference in the total noises), but not the total number of pho-
tons in the two modes [contrast this with the mixing operator, Eq. (3A.47)].
It unitarily transforms the two-mode displacement operator in the following

way:
SHr.) D(a. ) S(r.¢) = D(a ua) . (3A.64)
lq = jcoshr + o, u*e??sinhr (3A.65)

[Egs. (3A.29), (3A.56a)]. This shows that the form of the displacement opera-

tor is invariant under unitary transformations of a generated by the two-

mode squeeze operator:
D(a.p) = D(t fa) - (3A.66)
This equality implies that the TMSS |uq(r.4). defined by Eq. (1.19) as S(r, ¢)

acting on the two-mode coherent state |u,)con can as well be defined as the

displacement operator D(a, u) acting on the (two-mode) squeezed vacuum:

|ad o) = S(T.9) [Hadcon = D(a. ) S(r.¢) |0) . (3A.67)

The complex numbers u,, u_ are the complex amplitudes {a,), {a_), iLe.,

i = <{ay. They are related to the eigenvalues fy+, o DY
i = pgcoshr — oy ua*e*¥sinhr (3A.68)

[Eq. (3A.56b); cf. Eqs. (RA.36)-(RA.30]. These transformations, together with
the properties described above, enable one to verify the statement made in

the Introduction: a state unitarily related to the TMSS |y (r,4) by @ product

of rotation and displacement operators is equal to another TMSS (multiplied
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by an unobservable phase factor) with the same squeeze factor r, but with

different squeeze angle and eigenvalues. For example,

ilmut )
R(g)D(g' /5") I&a>(r,¢) =e - D(E'E)S(T-‘P_gs) I0>

im(pty)

=e ~ I/j’a>(r,¢—&,) )

B = u(=8) + w(-9) (3A.69)

~

[Eqgs. (3A.32), (3A.34), (3A.65)].

Finally, one should note the formal relation between a product of two
single-mode squeeze operators and a two-mode squeeze operator. Physi-
cally, these represent very different processes. The product of two single-
mode squeeze operators is, roughly speaking, the evolution operator for a
process in which two harmonic oscillators, each in a coherent state, are
separately squeezed [i.e., each is subjected to a degenerate two-photon
interaction Hamiltonian (1.8)]. In contrast,a two-mode squeeze operator is
the evolution operator for a process in which two harmonic oscillators, each
in a coherent state, are made to become correlated, through the nondegen-
erate two-photon interaction Hamiltonian (1.7). Although these operators
differ profoundly from each other in a physical sense, in a purely formal
sense they are (unitarily) equivalent. The unitary operator that transforms
them into each other is a mixing operator. That is, by defining certain
linear combinations of a, and a_, call them b, and b_, one can write the
two-mode squeeze operator S(r,¢) as a product of two single-mode squeeze
operators, one for the "b,-mode" and one for the ""b_-mode'.'33325 This for-

mal equivalence is described by the following general relation:

T(£Um, 04) S14(T 4 ) S1-(T 0 ) TT(£Um, 94) = S14(7s, 9.) S1-(rs. 9-) S(£7q. 9s)
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Ts = Bresry), #s = Blor £9.). (3A.70a)

For the special case 7y = 0 (r, = —r_), this can be rewritten as
TUm oq + M) S14(T.9¢4) S1 (1. 9) THUm, 4 +47) = S(r,ps —4m) . (3A.70b)

These relations provide another way to see why the natural nondegenerate
(two-mode) analog of degenerate (single-mode) squeezing is the squeezing
produced by the nondegenerate two-photon interaction Hamiltonian (1.7) --
i.e., by the two-mode squeeze operator S(r, ¢); it is not the separate squeez-
ing of two single modes by degenerate two-photon interaction Hamiltonians
like (1.8). A physical explanation was given in the Introduction: both single-
mode and two-mode squeezing can be accomplished in a parametric
amplifier by using a single pump; one simply moves away from degeneracy,
and the resulting state is a two-mode squeezed state. These relations show
in another way why a two-mode squeezed state is not equivalent physically
to two single-mode squeezed states. They tell one that in order to produce a
two-mode squeezed state by separately squeezing two single modes (or
vice-versa), one would have to first turn on a mixing interaction (frequency
converter), then separately squeeze the two modes, and then turn on
another mixing interaction. Separately squeezing two single modes does not
produce a state with the reduced noise properties of a two-mode squeezed

state.

6. Product of three squeeze operators

Consider now the unitary operator U; that relates the most general

normalized two-mode GPS to a two-mode coherent state:

Uy = S14(T+,94) S1-(r-,9-) S(1. ¢) (3A.71)
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[Eq. (1.18)]. Note that the inverse of U, is obtained by changing the signs of
T, 7-, and 7 and reversing the order of the squeeze operators:

U7 =0T = S(=r,9)S1(—7_,9.) S1e{-T4.¢) . (3A.72)

The operator U, transforms the operator column vector a into a linear com-

bination of @ and a*:

~

UyaU,"=FPoa+ P *sgs[g*]; (3A.73a)

the complex matrices P, and F; are equal to
P, = coshr Py, + e®*¥sinhr o, P;s*, (3A.73b)
Ps = coshr Pys + e®?sinhr o, Py * (3A.73c)

[Egs. (3A.52) and (3A.56); see also Eq. (3B.35) below]. States unitarily
related to eigenstates of a, and a_ by U, are eigenstates of the transformed
annihilation operators g, and g-. The unitarity of Uy ensures that the com-

mutator algebra of g, and g.' is identical to that of ¢, and a.™

(9.9"]={a a']=1, (3A.74a)

lg.9" =19+ 9-liog=[a. a"]=0 (3A.74b)

~

[cf. Egs. (8A.9)]. Because of the presence of both single-mode squeeze
operators, U, does not, in general, preserve any of the noise moments of a,
or a,.’ The components of the noise matrices T and @ for a coherent state

and for a general two-mode GPS |ugy) = Uy |4y Dcon are given below [Egs.
g Mg gty

(3A.84)].
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Many properties of Uy follow trivially from the corresponding properties
of the three squeeze operators (e.g., the way it is unitarily transformed by
rotation operators); these are left to the reader. Two properties, however,
deserve special attention. First, U, unitarily transforms the two-mode dis-

placement operator in the following way:

UgTD(g.,;f) U, = D(g,,z;bg) . (3A.75)
Mg = PC l‘L + PS /J,‘ (3A.76)

[Eqs. (3A.29), (3A.73)]. This relation reflects the fact the form of the two-

mode displacement operator is invariant under unitary transformations of a
that are linear in a and a* (and that do not add to a a constant column vec-

tor). Such unitary transformations are generated only by (products of)
rotation, mixing, and squeeze operators. The invariance under transforma-
tions generated by rotation, mixing, and two-mode squeeze operators has
already been noted [Egs. (3A.33), (3A.48), (3A.66)]. The invariance under

transformations generated by Uy says that
D(g, /;L) = D(g./fg) . (3A.77)

This equality implies that the general two-mode GPS |ug ). defined by Eq.
(1.18) as the operator U; acting on the two-mode coherent state |ug)con,
can as well be defined as the product of the displacement operator D(a, 1)

~

and U, acting on the vacuum state:
|ty > = Ug [pgdeon = D(a ) Uy |0) . (3A.78)

The complex numbers u;, u- are the complex amplitudes {a,), {a_), ie.,
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u = {a). They are related to the eigenvalues g, g by

p=Plug =P ug*. (3A.79)

The second important property to note is that the product of two
different operators U; and U;' can always be expressed as another operator
U, (i.e., another product of the three squeeze operators), multiplied (on the
right) by rotation operators and a mixing operator. This property is not
necessarily obvious, since it requires knowing that when single-mode and
two-mode squeeze operators are commuted through each other, the result
can always be expressed as a product of three squeeze operators (i.e., an
operator like Uy), multiplied (on the right) by rotation and mixing opera-
tors. This fact follows as a special case of the general proof, given in Section
[IIC and Appendix A, that the evolution operator associated with any two-

mode GPS can always be expressed in this form.

It is proved in the next section, by considering the most general two-
mode Gaussian wave function, that the generator H¢® of the unitary opera-

—iH (3
e that relates a two-mode GPS to the vacuum state is a sum

tor Uy®) =e
of linear and bilinear combinations of a,, a_, a,f, and a_" In Section IIIC
and Appendix A it is shown that this unitary operator factors into a product
of displacement, squeeze, mixing, and rotation operators. The properties
described in this and the previous sections ensure that any product of rota-
tion, mixing, squeeze and displacement operators can be expressed as the
product of a displacement operator and an operator like U,, multiplied on
the right by rotation operators and a mixing operator (and an overall phase
factor). Since the rotation and mixing operators have no effect on the

vacuum state, one finds that the most general two-mode GPS is the state

| g > defined by Eqs. (3A.71) and (3A.78). It is produced when two harmonic
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oscillators in their ground states are exposed to the interactions HR(Z)(t),

H,®)(t), and H,®(t) described in the Introduction [Eqs. (1.3) and (1.4)].

7. Two-mode GPS

The noise matrices T and @ (or S;, Sp, and Sz) for two-mode coherent
states and products of two single-mode squeezed states can be obtained
directly from the noise moments of single-mode coherent and squeezed
states, given in Section II [Eqs. (RA.37) or (2B.39)]. For a product of two

single-mode squeezed states, S,:(7:+,9+)S1-(T-, ¢-)|Madcor, the noise

matrices are

T=-y g 2%+ sinh@r, 0
- 0 e <e- sinh2r_

_,,| coshir, 0
Q=% 0 coshlr_ |- (3A.80)

For a two-mode squeezed state the noise matrices 7 and @ are not
diagonal, but they have particularly simple forms. This is a consequence of
TSQP noise, which says that the noise moments {(Aa,)?>, {(Aa_)?>, and
(Aa,Aa_t) vanish, or, equivalently, that the noise moments {(Aa;)?>,
({Aa2)?), and {Ax;Aaz) of the quadrature-phase amplitudes vanish (see Sec-
tion I.g). The noise matrices for a two-mode squeezed state can be obtained
from the transformation (3A.56) and the noise matrices for a coherent state.

For the TMSS Ig,,l)(rw [Eq. (3A.67)] they are

T = —%e?*%sinh2ro,, @ = %cosh2r1. (3A.81)

The second-order noise moments of the quadrature-phase amplitudes for a

two-mode squeezed state are
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{|Aa;|?) = %[coshr — (1 —&%/ O?)%sinh2r cos2¢ ],
{|Aag|?) = %[cosh2r + (1 —&% 0% *sinh2r cos2p ],
(Ao Ace Y gym = (1 — 2/ O YEsinh2r sin2¢ + %i e/ Qcosh2r | (3A.8B2)

[Egs. (1.21) or (3A.6R); cf. Egs. (2B.37)]. The noise matrices Sz, Sp, and Sz

for a two-mode squeezed state also have simple forms:

_ cosh2r —sinhR7 cos@
Sz = %[ —sinh@r cos¢ coshlr ¢] :
_ - coshlr —sinh2r cos2¢
Sp =035z 03 = %[—sinhZ'r cosRyp coshlr ] :
Szp = —sinh2r sin2¢p g, . (3A.83)

The noise matrices T and @ for the general two-mode GPS |u,> [Egs.

(3A.71), (3A.78)] can be obtained from the transformation (3A.73) and the
noise matrices for a coherent state, or from Egs. (3B.32) and (3B.35) below.

Their components, the noise moments of a, and a,', are
{(Aa,)?)> = —Y%cosher e***+sinh2r, .
{Aa,Aa_) = —%sinh2r (e*?coshr, coshr_ + g 9~ sinhr, sinhr_) ,
{|Aa,|?)> = %coshlr coshlr, ,
a,Aa_ty = %sinh2r (e ® coshr, sinhr_ + e > "®* coshr _sinhr, .
{Aa,Aa_ty = Y¥sinher (e 7% coshr, sinh (¢ =#4) coshr_sinh
(3A.84)

The choice for the order of the three squeeze operators in U, [Eq. (3A.71)]
was made so that the noise moments {(Aa,)?> and { |Aa, |?> would have this

simple form.
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By analogy with single-mode MUS, the natural definition for "minimum

uncertainty states" (MUS) is those states for which

Sz Sp =41 (3A.85a)
[Eq. (3A.15a); cf. Eq. (2A.33)]. These are (two-mode) GPS that satisfy

ImT =Im@ =Sz =0 (3A.85Db)

[Egs. (3A.12)]. Thus, the states that satisfy Eqs. (3A.85) have Gaussian wave
functions, and their second-order noise moments of a, and a,' satisfy the

following four conditions:

Im{Aa,pa ') =0, (3A.86a)
Im{Aa,Aa_) =0, (3A.86b)
Im{(Aa,)?) = Im{{(Aa,)?*> = 0. (3A.86¢)

It is shown below [Egs. (3B.5) or (3B.68)] that a two-mode state satisfies Egs.
(3A.85) if and only if it is an eigenstate of the (components of the) linear

combination £ + 1 M{!Pp, where M, is a real, symmetric, positive-definite

matrix. The set of MUS consists of all two-mode coherent states, two-mode
squeezed states with ¢ = 0, and products of single-mode squeezed states
with ¢, = ¢_ = 0. Milburn® has proposed a more restrictive definition of
two-mode MUS; his definition does not include the two-mode squeezed states

among the MUS.

Similarly, one could define the two-mode analogs of single-mode states
with random-phase noise to be states whose noise moments are invariant

under rotations by R(8) = Up(6s) Uy(84). Such states must have T = 0 and

Q diagonal [Egs. (3A.28)]. Note that the condition
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Sz(6) = Sp(6) foralle,, 6, (3A.87a)
where
Sz(8) = KOE(8)MET(8)> . Sp(e) = <AB(8) ABT(8)) . (3A.87b)

is equivalent to the condition 7" = 0, but is not adequate to ensure invariance
under rotations produced by Uy(84), and hence does not define random-
phase noise for two-mode states [Egs. (3A.12), (3A.24b,c); cf. Eqs. (2A.35)].
The intersection between these two sets of states, i.e., MUS that have

random-phase noise, is the set of two-mode coherent states, which have
(Szp )coh = Tcoh =0, (BA.BBa)
(Sz)coh = (Sp )coh = Qcoh = % 1 (3A.88b)

[cf. Egs. (RA.38)].

By extending the definition (3A.85) of MUS to include all states related
to MUS by the rotation operator Ug(6s), one obtains all two-mode squeezed
states. This is because TSQP noise, i.e., the vanishing of the noise moments
{Aa,Aa_ "), {(Aa,)?), and {(Aa_)?), means that the noise moments of a
two-mode squeezed state are invariant under rotations by Ug(64), but not
by Ug(6s) [Eqs. (3A.28)]. For a two-mode squeezed state to be a MUS, the
noise moment {Aa,Aa_)> must be real. This means that two-mode squeezed
states are MUS for an infinite set of rotated variables £.(6.) and $.(8,).
defined by the condition that %(6,+6.)=86s = —¢, ie., a two-mode

squeezed state satisfies
Sz(6s = _io)sp(es =-g)=X1,

Sep(6s = —¢) =0, (3A.89)



- 106 -

This fact is yet another indication that the noise in a two-mode squeezed
state is the natural analog of the noise in a single-mode squeezed state, i.e,
of the noise in all single-mode GPS. Invariance under rotations by Ug(64)
has no meaning at degeneracy, where Uy(84) becomes the identity opera-

tor.

By extending the definition (3A.85) of MUS to include all states related
to MUS by both rotation operators, Ug(6s) and Uy(64), one obtains, in addi-
tion to all two-mode squeezed states, all states that are products of two
single-mode squeezed states. States that are products of two single-mode
squeezed states are MUS for a particular set of rotated variables, Z.(—¢,)

and p.(—¢.). Thus, products of single-mode squeezed states satisfy
Sz(-¢) Sp(-¢) =41,

p(—¢) =0. (3A.90)

Finally, by extending the definition (3A.85) of MUS to include all states
related to two-mode MUS by products of rotation and mixing operators, one
obtains all two-mode GPS. This is so because the four conditions (3A.86) can
always be met for some operators defined as linear combinations of a; and
a_ by a transformation like (3A.44b), with appropriate choices for the four

parameters g, x, 6+, and 6_.
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B. Two-mode Gaussian wave functions

Consider now the coordinate-space wave function for an arbitrary two-
mode Gaussian pure state symbolized by the state vector |ug+, g-> or, for

compactness, ]ug), The wave function is written in terms of the dimension-

less position variables z,, the eigenvalues of the Hermitian operators Z..
The most general (normalized) two-mode Gaussian coordinate-space wave

function has the form
(ziz_|pg) = Ny %1z o HiPoiZor + Po7o-) o 1P0sZs + Po2)
exp[—%M,, (Az,)? — Moo (Ax )2 — Yo(M 12+ Mp) Az Az ]

FipTzy ipylz HozT Moz
a RS ~ ~

L6
= Nge% z e i

Az_]' AZtht-—<ft> (BB-I)

[cf. Eq. (2B.1)]. Here z; and pq are the column vectors for the mean position

and momentum [Egs. (3A.7)], with components defined by

To. =2 = fdz«rfdr—zt !<x+z—]ljg> I (3B.Ra)
Pos =P = —ifdx+fdr_ </:f,g |2z ) 6,,t<:z:+x_i;~1,g) : (3B.2b)

M is a two-dimensional, complex matrix whose components #;; are related
to the second-order noise moments of £, and p., 6, is an unobservable

phase angle (separated out for reasons discussed below), and N, is a (real)

normalization constant determined by the condition {ug |ug> = 1. The sub-
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(It}

script "z" on the phase angle §, serves only to distinguish d§, from the phase
angle 6, which appears in the momentum-space wave function [Egs.
(3B.38)-(3B.41) below]; 6, has no dependence on z,. For convenience it is
assumed henceforth that the matrix M is symmetric, M = M7 (M3 = M2));
this assumption can be lifted if all statements about M that follow are inter-
preted as statements about %(# + MT). Normalizability dictates that the

real part of M be positive-definite -- i.e., that
TrM, >0, detHM; >0,
M, =ReM =%(HM + M*), (3B.3)

and the normalization constant N, is equal to
Ny = (n?/ detd;)™ (3B.4)

[cf. Egs. (RB.R)-(RB.4)].

The most important parameters in the wave function {3.B.1) are the
three complex numbers that make up the (symmetric) matrix ¥. The form

of the wave function tells one that the state |ug)> is a simultaneous eigen-
state of the components of the linear combination £ +i#"!p, and hence

that the matrix M is related to the noise matrices S;, Sy, and Sz by
M=M +iMy= =157 (Sp + i 1) = =S, (Spp = 1)1 (3B.5a)
The real and imaginary parts of M are therefore equal to
My=ReM =%S;™', Mp=1mM = -S;7' S, (3B.5b)

and the absolute square of its determinant is
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detS,
detS;

|detM |? = (3B.5c)

[cf. Egs. (B.5)]. Equation (3B.5c) shows that for normalizable two-mode
GPS the matrix M must be nonsingular [if det¥ = 0, the wave function in the
momentum representation is a delta function; see discussion below Egs.
(3A.11)]. Inverting these expressions gives the covariance matrices S,, S,

and S, in terms of the matrix M:
S, =(M)™', S, =[2Re(M Y],
Sep = —(RM,\)" ' M, (3B.8)

[cf. Eq. (RB.8)]. The normalization constant N, can thus be rewritten as

Ny = (r%/ detM;) ¥ = (4n?detS, )X (3B.7)

~

[cf. Eq. (2B.7)].
That the state |ug) is an eigenstate of the components of £ +iM7'p

~

means that it is also an eigenstate of the components of

a+ (M +1)"' (M —1)a* The noise matrices 7 and @ are therefore more

naturally expressed in terms of the symmetric complex matrix
F'=T=M+1)"' (M -1)=—(Q+4%1)'T=—Q-%1)T*! (3B.8)

[cf. Eq. (2B.8)]. Inverting these expressions gives the noise matrices T and

@ in terms of the matrices I" and M

~
1

—T(1-T*T)"! = —(1 =TT*)"IT

—(M* + 1) (aM ) (M 1), (3B.9a)
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Q=B +TT*)(1-TT*) ' =(M + )7 (1 + MM*)(¢M,)" (M + 1) (3B.9b)
[ct. Eqs. (2B.9)]. Note also that
1-TT*=(M+ 1) 4M, (M*+ 1)L, (3B.10)

hence normalizability requires that the (Hermitian) matrix (1 —I'T*) be
positive-definite. The above expressions reveal, though not in a transparent
way, how the ten real pieces of information in the second-order noise

moments for a two-mode GPS reduce to six independent pieces, since
BeSp =¥ + B, (3B.11a)
FP=Y1+TT* (3B.11b)

[cf. Egs. (8A.13) and (2B.11)]. They also reveal that the following matrix pro-

ducts are symmetric:
Szp Sz =(Szp Sz)T| Sp Szp = (Sp Szp)T- QT =(@ T)T': TQ*. (3B.11c)

These relations are made more obvious below [Egs. (3B.30)-(3B.32)].

The remaining parameter in the wave function (3B.1) is the phase angle
6;; in general it can be any real number. The phase angle §, is unobserv-
able, but for a state defined as a particular unitary operator acting on the
(two-mode) vacuum state it has a well-defined value, provided one assigns a
phase angle to the vacuum-state wave function. The properties of the dis-

%id,

placement operator reveal why the phase factor e separates naturally

from the overall phase factor in the wave function {z|ug>. The definition

(3A.29) of the two-mode displacement operator implies that the wave func-

tion for a "displaced’ two-mode state D(a, u) | ¥) is related to the wave func-

tion of the original state |¥) in the following way:
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Hip'zo imo’z

{z|D(a, pu) [¥) = e e ™ “{z-zo| V) (3B.12)

[cf. Eq. (2B.12)]. A natural way, therefore, to obtain an arbitrary two-mode

pure state ]\I’#> with complex amplitudes u, and p_ is to operate with the
two-mode displacement operator D(g. W4) on a state |¥y) = Up|0) that has

the desired noise properties but has zero complex amplitudes

(<0|Uc?§Uo]0> = 0):
19> = D(a 1) Up [0 . (3B.13)

The property (3A.31) of the displacement operator then ensures that |¥,>

has complex amplitudes x4 and u-,

<\If&|g|\lf&> =4 (3B.14)

Any normalized two-mode pure state with complex amplitudes u, and
4_ can be defined by an expression like (3B.13). The advantage of this
definition is that the state's mean values zy, and pg. (or complex ampli-

tudes u,) are determined solely by the displacement operator D(a, ), and

its noise moments of a, and a.' are determined solely by the unitary opera-

tor Up. The (normalized) two-mode GPS I;ﬁ) with complex amplitudes .,

M- can therefore be formally defined by
|g > = D(a.u) Uy |0) . (3B.15)

Note the following three properties of Uy: First, it is uniquely defined only
up to (right-hand) multiplication by rotation operators F.(¢,), a mixing

operator T(q,x). and an overall phase factor. Second, since it defines the
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noise moments of a, and a." (or £, and §.) for the GPS |y ), it has associ-

ated with it no more than six independent real parameters (over and above
those of the rotation and mixing operators and phase factor). Third, since
the state I/ﬁ,) has complex amplitudes p,, -, the expectation value

{0|U;'aU, |0) must vanish.

Kié,

The phase factor e in the wave function {z|¥,) is given, from Egs.

(3B.1) and (3B.12), by

yis, _ Kz =z_=0|U; | D)
T Kzy=z_=0|U, |0 |

e (3B.186)

[cf. Eq. (RB.15)]. The phase angle §; has no dependence on the complex
amplitudes u,, provided U; does not, any dependence of U, on wu, is
artificial, however, since it does not affect the state’'s complex amplitudes
{ag). Consider, for illustration, the two-mode coherent state

| Weon = D(a, ) |0> [Eq. (1.15)], for which the operator U, is the identity
operator. Equation (3B.12) says that the wave function for |w) .. is related

to the vacuum-state wave function {z |0 by

HipgTzy ipglz
o

(Z{weon = e (2 -20|0) (3B.17)

so the phase angle §, for a two-mode coherent-state wave function is equal

to the phase angle assigned to the two-mode vacuum-state wave function.
The form of its wave function shows that a two-mode GPS |ug» is a

simultaneous eigenstate of linearly independent operators g, and g_., which
are linear combinations of the two operators defined by the components of

£+iM'pora+Ta* The label uy (g4, ig-) for the GPS |ug ) is chosen to
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be the eigenvalues of g (g+, g-). Thus, one can write the following relations:

g kg > = g [lg > . (3B.18a)
g=K(f+iM‘1§)=R'(g+Pg*), (3B.18b)
Hy =K<f°+iM-lB°)=‘7((/;‘+mf)' (3B.18c)

where K and K are two-dimensional nonsingular matrices. It is useful to
consider the general form for all independent operators g,, g- of which the

two-mode GPS |ug) is an eigenstate:

= Pyf +iP,p = P, (£ +iM7'P) . (3B.19a)

Here P, P;, P;,and P are two-dimensional complex matrices, related to

each other by

P,=2%(P, +B,), P,=2#%(P, +tF). (3B.20)

s z

The eigenvalues g+, ig- are related to the complex amplitudes uy, u- and

the mean positions and momentums Zg., po. by similar relations,

Hy =pro+iP;EQ=ch+Ps/LL" (3B.19b)

Inverting Eqgs. (3B.19) leads to the following expressions for a and w in terms

of g and g

a=PiTy'g - PI(T3)™g" (3B.21a)

2
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p=La) = Py ug = LI g (3B.21b)

where Ty = [g, g"]is the Hermitian commutator matrix

'g_ % (3B.21¢)

[cf. Egs. (2B.21)]. These relations imply the important equality
D(a.p) = D(g.Tg" g ) (3B.22)

[cf. Eq. (2B.22)].

The equality (3B.22) enables one to see explicitly how the form of the
unitary operator Uy, which defines a two-mode GPS through Eq. (3B.15), is
determined by the forms of the operators g, and g_. To see this, begin with

an alternative definition for the GPS [y, ) [the equality (3B.22) will be seen

to ensure that this definition is equivalent to the definition (3b.15)]. First,

assume that |ug ) is related to the vacuum state by some unitary operator

U
g > = Ulo. (3B.23a)

It is convenient to define another unitary operator Uy by

U=U; D(a.ug) . (3B.23b)

~ o~

so that the state 1/.557) is equal to the operator U, acting on the two-mode

coherent state | g Deon.

|E’9> =1 D(g'{{v) 0> = U, [/jg>coh- (3B.24)
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It is then consistent with the eigenvalue equations (3B.18a) that the opera-
tors g+ and g - be unitarily related to the annihilation operators a; and a_,

respectively, through the operator U :

g =Ugal,". (3B.25)

~

The form of Uy is thus determined by the forms of the operators g, and g_.
Note that this relation says that both a, and a_ are transformed by the
same unitary operator, U;. The equivalence of the definitions (3B.15) and

(3B.24) for I‘i’9> is a result of the unitarity of Uy and the fact that both a,

and a_ are transformed by the same unitary operator, which ensure that

[g.9"] =[a, a'] =1, and the forms (3B.19) of g, and g_; these imply the
equality
D(a.pu) = D(g. g ) (3B.26)

[Eq. (3B.22)]. Thus, any two-mode GPS l;ﬁ> has the following two equivalent

definitions:
g > =UD(ag) [0> = Ulpgdeon = D(a.n) U|0) (3B.27)

[cf. Eq. (2B.27)].

Return now to the general forms (3B.19) for the operators g, and g_ of
which two-mode GPS are eigenstates. Six of the sixteen degrees of freedom

in the expression (3B.19a) for g are removed by the wave function (:f!,gg 2

which specifies the (symmetric) matrix products
PP =M, P7lP, =T. (3B.28)

Six more degrees of freedom have already been partially removed by the
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requirement that g, and g_ have a complete (overcomplete) set of simul-
taneous, normalizable eigenstates, i.e., that the commutator [g., g-] =0

and the Hermitian commutator matrix [g, g'] be positive-definite (for

~

further discussion of this requirement see Appendix C). These degrees of
freedom are removed completely if one specifies that the operators g, and
g- be unitarily related to a, and a_, respectively, by the same unitary

operator [Eq. (3B.25)], which implies that

(g.9"]=[a a']=1. (3B.29)

The commutator [g,, g_] is related to the matrices in the expression

(3B.24a) for g in the following way:

= BBt = B Pt = B [ — (U )] BT
:PCPST—PSPCT=PC(PT_I‘)PCT' (BB.BOa)

Thus, the requirement that [g,, g-] = 0 is satisfled if and only if the matrix

M in the wave function {z |y, ) is symmetric. (Recall that I originally stipu-

lated that M was symmetric. This condition merely reminds one that the

two-mode state |ug) with wave function (3B.1) is an eigenstate of
£+ i[%(M + MT)]'P. and not of £ + i M1 P, unless ¥ = MT.) The Hermitian
commutator matrix [g, g'] can be written in the following different ways,

using Eqs. (3B.5) and (3B.8):

(. g = BBt 4+ Py BT =R, My Pt = P S, BT

~ o~
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= 2P, Re(M ™) Pt = P, S, 1 Pyt

=P P'-FP =P (1-TT*)P.T= P (@ + $1)' ~.T

= £ (M) = 1] AT = A (@ - S AT

=P (1-IT" Pl =-P, T P} (3B.30b)

[cf. Eq. (2B.30)]. These expressions show that the operators g, and g have
simultaneous normalizable eigenstates if and only if the wave function

{(z|pg> is normalizable -- i.e., the (symmetric) real matrix M, [or

(1 —T'I'*)] is positive-definite [Eqgs. (3B.3) and (3B.10)]. Note also that g,
and g_ can have simultaneous normalizable eigenstates only if the matrices
Py, Pz, and P, are nonsingular. The requirement that g, and g_ be unitarily
related to a, and a_ through the same unitary operator -- i.e., that

[g. g"] = 1 - implies that

~ o~

P,P,f+ PPt =P, Pt =P Pt=1. (3B.31a)

Two other useful properties of these matrices are revealed by using the

expression (3B.21a) for a in terms of g and g* and setting [a, a'] = 1. For the

matrices P, and F; these properties are
Im(P T3 Pp) = Im(P' Ty  P,) = 0, (3B.31b)
Re(P"Ty'P,) = %1. (3B.31c)
For the matrices P, and P they are
Pt P = 4B I B (3B.31d)

BRI B, =B R =1, (3B.31e)
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From now on | restrict attention to operators g,, g- that satisfy [g, QT] =1

i.e., to operators g, and g_ that are unitarily related to a, and a_ by the
same unitary transformation. This entails no loss of generality, since by
taking appropriate linear combinations of other operators g,', g-' for which

[g'. g'7] is positive-definite but not proportional to the identity matrix, one
can always define operators g,, g_ that satisfy [g.9"] = 1. Henceforth,

therefore, the operators g, and g_ are assumed to be related to a; and a_

by an expression like Eq. (3B.25).
The four remaining degrees of freedom in the expression (3B.19a) for g
represent the freedom to multiply g by an arbitrary unitary matrix and an

overall phase factor, acts which do not change the commutator matrix

(9. g"] = 1. Multiplying g in this way is equivalent to (right-hand) multiplying

the operator Uy of Eq. (3B.25) by a mixing operator T(g,x) and two rotation

operators K.(6.) [Egs. (3A.44)]. The definition (3B.27) of |ug > shows that

this freedom reflects the fact noted in Section 3A.4 that a (two-mode)
coherent state remains a coherent state when multiplied by rotation and

mixing operators [Eq. (3A.49)].
The expressions (3B.30b) for the commutator matrix [g, g'], together

with the matrix properties described above, reveal the following simple rela-
tions between the noise matrices for a two-mode GPS and the complex
matrices Py, P;, P, and P for operators g, g- unitarily related to ay, a-

by the same unitary operator:
Se=F'Pp, S =BtF, Sp=-Im(FTR): (3B.32a)

T = __PCTPS , (3B32b)
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Q=%(P P+ PTR*)=P'P, - %1 =P T P*+ 1 (3B.32¢)

[cf. Egs. (3B.6), (3B.9), and (2B.32)]. These expressions, together with with
Egs. (3B.30) and (3B.31), make apparent the relations (3B.11) between the

noise matrices.
The form of the unitary operator Uy in the definition (3B.27) of the two-
mode GPS |ug > is dictated by the transformation (3B.25) and the form of g,

and g_ [Egs. (3B.19a), (3B.31)]. The linearity and absence of any additive

(@)
constants in the transformation imply that U, = e , where Hg(z) is a

(Hermitian) linear combination of the ten bilinear products of a, and a,'
(a;fay, aa, a.? a,a_f, and their adjoints). That is, the generator H,® of
U, has the general form [ Ho® + Hp® + H,® ] defined in the Introduction
[Egs. (1.1)-(1.4)]. It is shown in Section IIIC and Appendix A that this opera-
tor Uy can always be written as a product of two single-mode squeeze opera-
tors, a two-mode squeeze operator, two rotation operators, and a mixing
operator (and an unobservable overall phase factor). That the rotation and
mixing operators can be neglected in the general form for Uy can be seen in
a couple of ways. First, the rotation and mixing operators can be placed in
any position relative to the squeeze operators, without changing the form of
U, [Egqs. (2A.25), (3A.47), (3A.63), (3A.70)]; when placed to the right of the
squeeze operators, they act like the identity operator on the vacuum state
and hence are inconsequential. Second, the parameters 6., g, and x in the

rotation and mixing operators are related to multiplication of g by a unitary

matrix, which can be chosen arbitrarily [Eqs. (3A.44)]; they are made zero
if the diagonal elements of the transformation matrix P, are chosen to be
real. Hence the operator U; is equal to the product of two single-mode

squeeze operators and a two-mode squeeze operator -- i.e., to the operator
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U, defined in the preceding section [Eq. (3A.71)].

The two-mode GPS defined by Eq. (3B.27) with U, equal to a product of

three squeeze operators [Eq. (3A.71)] is an eigenstate of the operators g

defined by Egs. (3A.73). The matrices P, and P, are therefore given by Egs.

(3A.73):
b = _coshr coshr, e ) sinhr sinhr_
¢ = | Rl w) sinhr sinhr, coshr coshr_ '
[ 2
P = e ?* coshr sinhr, e®?sinhr coshr_ (3B.35)
s 7 | e®*¢sinhrcoshr, ezw‘coshr sinhr - .

The matrices P, and P, follow from these according to the relations (3B.25).
The complex amplitudes u., u- and eigenvalues ug +, g are related to each

other by
w=K =Py - Py

pg = Pop+ Pop® (3B.36)

~ ~

[Egs. (3B.19b) and(3B.21b)]. The noise matrices Sz, Sp, Sz, T and @ for the

two-mode GPS |ug ) are obtained by inserting these expressions (3B.35) for

P.. Ps, Py, and P, into Egs. (3B.32). The components of the noise matrices

T and @ were given explicitly in the preceding section [Eq. (3A.84)].
The phase angle §, in the coordinate-space wave function {z|u, > for
the GPS |ug ) = Uy |4y D con is obtained from Eq. (3B.16). The calculation is

described in Appendix B. The result is

wie, (detP *)%
= W (BB‘B'?)
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[cf. Eq. (2B.39)].

To conclude this discussion of two-mode Gaussian wave functions, con-
sider briefly the momentum-space wave function for a two-mode Gaussian

pure state, (gf,(ﬁ), obtained by Fourier transforming {z|u,»> [Eq. (3B.1)];

here the dimensionless momentum variables p, are the eigenvalues of the
Hermitian operators .. The momentum-space wave function has the follow-

ing form:

= dz,dr_ 4%
(plugd = [ —5——¢ * *Czlyy)

5. Hpdzg i ~%apT W~ Ap
=N, e Hhe e e R (3B.38a)

where the (real) normalization constant X is
N, = (4n?detS, )% (3B.38b)

[cf. Egs. (3B.1), (3B.7), and (2B.40)]. The phase angle d, is related to the

coordinate-space phase angle d, by

i, _ -6, detM _ -, det(S;, + #i 1)

= —, (3B.39
. [detdd | © |det(Syp + 4 1)| L
i s, .
For the state |4y > = Uy |ig Dcon the phase factore ™77 is
; *\%

|detP, [#

[cf. Eq. (RB.4R)].

The position and momentum probabilities have the usual Gaussian

forms:
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HAzT S 1Az

[<zlug > |7 = (4ndetS, ) He (3B.41a)
- —nAgfs—lAp
I(E}/jgﬂ = (4n®detS, ) e % (3B.41b)

[cf. Egs. (2B.43)].
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C. Fourcomponent vector notation for two-mode GPS

The previous discussion has shown that the unitary operators that
relate two-mode GPS to the vacuum state and to other two-mode GPS are
rotation, mixing, displacement, and squeeze operators. Since these opera-
tors induce linear transformations on a, and a,' (or £, and p.), it is useful

to define the four-component operator column vectors

a z
a=| . f= § = Ag, (3C.1a)
A= 2*[_,}1 111] = (AN (3C.1b)

[cf. Egs. (RC.1)]. Here and throughout this section the components of four-
component vectors are grouped into two two-component vectors, and the
commponents of four-dimensional matrices are grouped into four two-
dimensional block matrices. The symbol 1 is used to denote both the two-
and four-dimensional identity matrices. The expectation values of these

operator column vectors are column vectors of complex numbers (for a) or
~

real numbers (for :f):

B =
p=C® = | £5<B |5 | =M (3c.2)

The adjoints of the operator column vectors are the row vectors

at=(af a’), £'=(2"p7)=2", (3C.3)

ay)

where a superscript "7" means transpose. The transpose of the adjoint of

an operator column vector is denoted by a superscript "*":
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IR

(@) =a*= . @ =z (3C.4)

'R
'Yy )
n

2y

Similar definitions hold for column vectors of complex numbers. Note that

the product of a column vector and a row vector, e.g., aa', is a tensor pro-
LR

duct (i.e., a four-dimensional matrix), whereas the product of a row vector

and a column vector, e.g., a.Tz-, is a scalar product (i.e., an operator or
~

number).

There are six (Hermitian) four-dimensional matrices, in addition to the

identity matrix, that arise naturally with this vector notation. They are

_(01 _{0 =it _(1 0).
n=(4) m=(8 Y m=(3 ) (3C.52)
o1 0 n _|0%2 0 _19s 0
Fl = 0 -0, g = 0 0z Fs = 0 —0g (3C5b)

Different, but equivalent, matrices have been used by Milburn® to discuss a
subset of two-mode GPS. Each of these two sets of matrices satisfies proper-

ties analogous to those of the two-dimensional Pauli matrices. For example,
21;21' =t5ij1+iaijk2k 1 PIPJ =5ij1+’1:8ijkr‘k 7 'l:,j,k = 1.2.3. (SCSC)

It is useful to define rotated versions of ¥;, ¥z and I'}, I'x:

2i
L, = I cosR¢ — Lzsinyp = e_goi¢ 1 . Ow 1] . (3C.6a)
. rn 219
Zyyn = Z;sinRy + Tycosyp = [ie_%(, 1 %D 1] ; (3C.8b)

0, 0

[, = ['cosRp — ['zsinl¢ = [ O gk (3C.Bc)
]
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Tyn =T'1sinR¢p + [zcoslp = [owa}(n —09‘_5‘"] (3C.6d)
?

[cf. Egs. (2C.6)]. Note that [Z,, T, ] = Zg, and [T}, Tyyn] = 's. The follow-

ing projection matrices are also useful:
%(1+23F3)EP+. %(1—231-‘3)513_. (BCBe)
Some of the most useful properties of these matrices follow:

[Pt' Zj]=[Fj.23]=O; E¢P32¢="‘P3; 2¢Fx2¢=—F‘; (3C'7a)

X
2i(p—-9¢)Z
B, Zy=en M, g nB, =5, (3C.7b)
PRt R U 1 S (3C.7¢)
P 2ixF3 - ia) - .
+€ 2¢Pt—Pt2¢ixn szlePF—Pi):st. (3C7d)
P, e®% _ p e ™5 = 55T, 4. (3C.78)

The commutation relations for a,, a,." and Z,, p, are expressed by the

Hermitian commutator matrices

[a, o] =aa —(E*ET)T=23. (3C.Ba)
(2 27 = 22" - (Z£7)7 = AT = -1y (3C.8b)

[Egs. (3A.9); cf. Egs. (RC.7)].

The rotation, mixing, displacement, and squeeze operators for two

modes are expressed in this vector notation in the following ways:

R(9) = " * exp[ i al Nea].,
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Ne=6,P,+6_P_=8,1+6423[3=21 (3C.9a)
[cf. Egs. (3A.19)];

T(g.x) = exp[—Fiq a' Ty Ta0] (3C.9b)
[Egs. (3A.38)];

D(a, ) = exp[a’ T3] (3C.9¢)

S14(re94) S1(T_,9_) = exp[~}i ETNI z'] -
Ni=r P Yy yn+7-P. Ty yn (3C.9d)
[Eq. (3A.50)];

S(r.p) = exp[-}ia'Nza],

i o2
0 —ire~*?g,

Ng—z—'rzvp—}(n‘rlzs:irzidrl: i,.e—zwgl 0

(3C.9¢)

[Egs. (3A.53)].

A unitary transformation of a or z generated by the (two-mode) dis-

placement operator results in the addition of a constant column vector:

Da. ) =

. 333

D(a,p)aD¥a,p)=a—-p. Diapw) -§ (3C.10)

2Ry

(Eq. (3A.31)]. Unitary transformations generated by rotation, mixing, and

squeeze operators result in matrix transformations of @ (and .f) One way to

obtain these transformation matrices is to note the following general rela-

tion, valid for an arbitrary four-dimensional symmetric matrix K, which
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follows from the fact that the commutator matrix {2. gT] =g

[a'Ka a] = Koa, (3C.11a)
—(Kg + KgT) (Ko + KT
Ko=-Z3(K +3,KT%,) = [ (ch"+ chT)) ((Kabr . [gd )) , (3C.11b)
where the matrix K is defined to be
_ | Kz Ky

with K, Ky, K;. and Ky arbitrary two-dimensional matrices. Note that if K,

Ky, K;, and Ky are all symmetric,
KO:_(KG+Kd)ZB+[K. 23] (BC.lld)
Equation (3C.11a) implies that

atKa -atKg
eN Nae RY A
~

= ¢fog. (3C.11e)
L]

This relation, together with the expressions (3C.9), implies that the matrix

transformation induced on a by the rotation operators is

R(s)aR(s) = o' Ve¥3g (3C.12)

[Egs. (3A.23)]. The matrix transformation on a induced by the mixing opera-

tor is

T(g.x)aT(q.x) = eiqrx*‘"z (3C.13)

[Egs. (3A.39)]. A product of two single-mode squeeze operators induces the

matrix transformation
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S1:{T . 04) S1-(r_, ¢—)E'Sl—f(7'—v @) S1t(ry, P4) = Plz"

Plc Pls ] (BC 14)

_ r,,Eh r_E’_ _
P,=P.e +P_e =p.» Py,

[Egs. (3A.52)]. Finally, the matrix transformation induced on a by a two-

mode squeeze operator is

S(r.e)aS"(r.¢) = Poa.

2ig
L coshr 1 e“®sinhr o,

Pe= e #¢sinhr g, coshr1

(3C.15)

[Egs. (3A.56)]. The simple form of the transformation matrix P, associated
with the two-mode squeeze operator S(r,¢) or, equivalently, the simple
form of the matrix N, that defines S(r,¢) [Eq. (3C.9¢)], shows why the pro-
perties of two-mode squeezed states can be described using only a two-
component vector notation. This two-component vector notation is one
which naturally groups a, with a_" and a_ with a,' [see Eq. (3A.60) and sur-

rounding discussion].

The product of the transformation matrices (3C.14) and (3C.15), i.e.,

the transformation matrix that results from unitarily transforming a with

the product §,4+S,-S = U, of three squeeze operators, is denoted by the

symbol P,

SI+SI—SE(SI+SL—S)TE ng-Ugtngau

Fe P
] (3C.18)

PEP2P1=[ps* P.*

(Egs. (3A.73)]. The transformation matrices for f are unitarily related to
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those for a by the unitary operator A[Eq. (3C.1b)].

The transformation matrices (3C.12)-(3C.18) arise naturally, without
specific reference to the rotation, mixing, or squeeze operators, from the
requirement that a unitary transformation ona, and a_ (or Z,, Z_, §,, and
p_) preserve the commutators (3C.9). Consider first the real, four-
dimensional matrices M that describe unitary transformations on the (real)

column vector £ MZ= UZ:‘UT. The unitarity of U implies that these
L] L]

matrices preserve the (antisymmetric) commutator matrix [f. fT] = =X,

[Eq. (3C.8b)], Le.,
HZQHT=HT22H=22. (BCl'?a)

The real matrices M that satisfy this condition have unity determinant.
They comprise the ten-parameter symplectic group Sp(4,R).#! Milburn® has
used the properties of Sp(4,R) to describe a subset of two-mode GPS which
he calls "minimum-uncertainty states” (a more restrictive subset that that
described in Section IIIA.7 of this paper). The complex, four-dimensional

matrices ¥ that describe unitary transformations on the column vector

a=A'Z Ma= UEUT, are unitarily related to the real matrices M by the
R L] L]
matrix A [Eq. (3C.1b)]:

M=ATA. (3C.17b)

These matrices M comprise a ten-parameter subgroup of the fifteen-
parameter, noncompact group SU(R,2). The latter consists of all complex,
four-dimensional matrices that have unitary determinant and that preserve

the metric Zg (i.e., the commutator matrix [a. g*] = L),

MZSMT=23=MT23M . (-BC].?C)
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The ten free (real) parameters associated with the transformation matrices
M and M can be identified with the parameters of the unitary operators U
that induce the matrix transformations. The generators of these unitary
operators are bilinear combinations of the annihilation and creation opera-
tors for the two modes; i.e., these unitary operators are the rotation, mix-
ing, and squeeze operators for the two modes. The underlying Lie algebra
for these groups is that of (combinations of) the ten bilinear products of a,,
a_, a,', and a_". The preceding discussion of the rotation, mixing, and

squeeze operators shows that the matrices ¥ have the general form
M= eVe¥s giglunp (3C.17d)

where 6., 7., 7, 9., ¢, q, and x are real, continuous parameters [Egs.
(3C.1R)-(3C.18)].

The general forms for the transformation matrices # and # can also be
obtained in other ways. For example, note that any four-dimensional matrix

M that describes a unitary transformation on a must satisfy

M*=3,M%, . (3C.18a)

since @ = ¥, a* This means that the matrix ¥ has the general form
Ry R

Ma Mb
H= s el (3C.18b)

where M, and M, are arbitrary two-dimensional {complex) matrices. It also

implies that
MZ(;MTEB‘—' jwz:zMTZg (8C18C)

[cf. Eq. (RC.16c)]. The unitarity of the transformation ensures that the
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Hermitian commutator matrix Lg gf] = X3 is preserved [Eq. (3C.17¢)] and

that the antisymmetric commutator matrix [a, %T] =1 Y, is preserved,
L]

M MY =Za=MTEH ; (3C.18d)

i.e., both products in (3C.18¢) are equal to the identity matrix. These condi-
tions remove six of the sixteen degrees of freedom associated with the
matrix M of Eq. (3C.18b), by imposing the following equivalent sets of condi-

tions on the two-dimensional matrices M; and M,:

My Mt - My Myt =1,

My M7 = (Mg M,7)T =0 (3C.18e)
[imposed by the first equality in Eq. (3C.17¢) or (3C.18d)], or

Mt M, — M,T My* =1,

Mt My — (Mt M,)T =0 (3C.18f)

[imposed by the second equality in Eq. (3C.17¢) or (3C.18d)]. These condi-
tions also ensure that detM =1 Hence the matrices M have the general

form (3C.17d), with ten free real parameters.

The four-component vector notation is a powerful aid in calculating the
(second-order) noise matrices @, T, Sz, Sp. and Sz for two-mode Gaussian
(pure or mixed) states. The four-dimensional matrix that contains all

second-order noise moments of a, and a.'is the Hermitian matrix

INT @ T
@ = (AaAaD g = %0282 +(Ba*A8TDT) = | oy u | = (3C.192)

The four-dimensional matrix that contains all second-order noise moments
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of £, and P, is the (real, symmetric) covariance matrix

8 = (8202 o = B((O2AZT + (B202T)T)
Sy S
z[s;T Sf]z“@”:s*:s?' (3C.19b)

The relations (3B.11) imply that for two-mode GPS these matrices satisfy
QT 8% = X1, (3C.20a)
FTa88s =% 1 (3C.20b)

[cf. Eqs. (2C.22)]. Hence their determinants are both equal to . For a two-

mode coherent state both are proportional to the identity matrix:
@ooh = Bcoh = %1 (BC.ZI)

[Eqgs. (3A.89)]

The noise matrix @ for a (two-mode) state |¥) is related to that of a

rotated state R(g) |¥) by

iN4E,

(R (880N m B = ¢ 0% g (3C.22)

in agreement with Eqs. (3A.28). It is related to that of a state T{q,x) | ¥ by

(T(g,X) (8280 Yoy T(g X)) = & ¥ 1xH" g™ hxckr (3C.23)

Finally, the noise matrix @ for a state |¥) is related to that of a state

S1+51-S |¥) = Uy ¥ by

(Uy " (82480 )gym Uy > = P71 QP (3C.24)

This immediately tells one, for example, that the noise matrix @ for the
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(most general) two-mode GPS |;~1,g> defined by Eq. (3B.R3) is
@y, = K(PTP)™ = %53 P'PLs . (3C.25)

These are precisely the noise moments derived in the preceding sections

[Egs. (3B.32) or (3A.84)].

Finally, the four-component vector notation is a useful aid for seeing
how the unitary operator whose generator is an arbitrary combination of the
Hermitian forms Hp®, H,® and H,® factors into a product of three
squeeze operators, a mixing operator, a (two-mode) rotation operator, and a
(two-mode) displacement operator (and an overall phase factor). By giving
these generators arbitrary time dependences, one can calculate the evolu-
tion operator associated with the most general combination of Hamiltonians
that can produce two-mode GPS. This result is given here, with some sup-

porting details presented in Appendix A.

The rotation Hamiltonians associated with two-mode GPS are expressed

in vector notation by

Hpy(t) + Hp O(t) = o, + $a'N, 2,

Nyo=wy Py +w P =ws1+ w8303,

Wy = Wy T g ws =¥lw+w); (3C.26a)
d

Hp.(t) =¥p ET Fxp—xn L3, (3C.26b)

where w, (or ws, wg), p. and x, are real-valued function of time ¢ [Egs. (1.3),
(3A.20), (3A.36); cf. Eqs. (3C.9a,b)]. The linear and quadratic Hamiltonians

associated with two-mode GPS have the forms
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A A
~ +
A= A= [A_] . (3C.26¢)

where A, are complex-valued function of time ¢;

Haul(t) + Hp 0(8) = o' Ny a,
Ni=kePiZy yn+ K P T, (3C.286d)
+ e

(Egs. (1.4); cf. Egs. (3C.9¢,d)], where k, and g, _are real-valued functions of

t; and
Hou (t) = %zTNgg , Ne=kZy ynl 23 (3C.26¢)
[cf. Eq. (3C.9¢e)], where « and ¢ are real-valued functions of time ¢.
The evolution operator U(t) is the solution to the equation
i8, U(t) = HBA ()Y U(t), U =1,
He® = [Hp, WV + Hoe O+ Hpo  + H® + H,, 0 4 g, W4 g, ], (30.27)
It can be written as the product

U(t)

€S 14 (ry, 94) S1(T9-) S(r. @) T{q. X) R(6+.6-) D(a,ug)  (3C.28a)

1]

e D(a 1) S14(rs.94) S1-r-.9) S(r.@) T(q. ) R(6+.6-) . (3C.28b)

where r,, 7, ¢,, ¢, ¢, x, and 6, are real-valued functions of time, and ug, {or
W.) are complex-valued functions of time [cf. Eqs. (3B.27)]. [For notational

convenience here, [ often drop explicit reference both to the time
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dependence of these functions and to the dependence on these functions of
the unitary operators, e.g., 7, =7.(t), and S;, = S,.(r.. ¢.).] The state

['9,'9> = U(t) |0) is an eigenstate of operators g, = U(t)a, Ut(t) (with eigen-

values ug.), whose relations to a, are described by the vector relation

Q

g= g =5+ S-S TRaR'TTSTS, 15,1

= e"e¥sgiglarpo (3C.29a)

[Egs. (3C.12)-(3C.18)]. The eigenvalues py. are therefore related to the

complex amplitudes u, = {a.) by

= | = oMeZagighurp,, (3C.29b)
L] g L)

The relations of the functions 7, 7., ¢, ¢., 6. (or 65, 84), Ug: (or u.), and 6 to

the Hamiltonian functions «, €., ¢, Pr, W (or ws, wq), and A, take the form

of matrix, vector, and scalar equalities. The vector and scalar equalities are

g = ewﬁzseiqrx%Pb, (3C.30a)

8+ 6y — w5 = HipdTaftg = Im{us*Ar + %A ) (3C.30b)

(Dots denote derivatives with respect to time.) The matrix equality is given
in its full generality in Appendix A [Egs. (A.13)-(A.15)]. The initial condi-

tions, dictated by U(0) = 1, are

5(0) = 7(0) = 7,(0) = g(0) = 6,(0) = 145.(0) = 11, (0) = 0. (3C.31)
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For illustration, consider the case

t
P, = Peg fc')t dt
0

P T Xp

t t
e =ge,— fosdt . xp=xp, — fugadt (3€.32)
0 0

where ¢, ¢c, and x,, are constants. The matrix equality then implies that

¢
$r=c,. P=¢c. X=Xo. 6.= fw.dt; (3C.33a)
0

p = q cosh2r cosh2ry — 7 sinh2r, ,

£, =7, + ¢ sinhlr ,

& = 7 cosh2ry — ¢ cosh2r sinh2r, , (3C.33b)
T,STg £T4 . (3C.33c)

If the mixing interaction is absent (p = 0), and if £, = k_ = &', the four cou-

pled equations (3C.33b) have the following simple solutions:
¢
r+=r_=f/c'dt, 'r=f/cdt, g=0. (3C.34)
0

The phase angle § and complex numbers ug. (or u.) are obtained by using

these solutions to solve the vector and scalar equalities (3C.30a,b).
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Appendix A: Evolution operators for GPS

In this appendix I derive certain properties of the unitary operators
associated with single-mode and two-mode GPS which are useful for calculat-
ing the general evolution operators described in Sections I1IC and IIIC [Egs.

(2C.28)-(2C.39), Egs. (3C.26)-(3C.33)].

1. Single-mode GPS

One way to find the single-mode evolution operator U(t) defined by Egs.
(2C.2B)-(RC.30) is to take the derivative with respect to time of either of the
factored expressions (2C.30) for U(t), and match terms with the Hamil-
tonian. This is the approach described here. An alternative approach, which
permits calculation of everything except the phase factor e* in the expres-
sions (2C.30) for U(t), is to solve in the Heisenberg picture the matrix equa-

tion a(t) = M(t)a(0), and identify the unitary operator U, that generates #;
then a(t) = U;Ta(0) U, 2® The product of U, and a displacement operator is
the evolution operator U(¢), up to an overall phase factor.

The first {and hardest) task involved with computing the time derivative
of the expressions (2C.30) for U(t) is to compute the (first-order) deriva-
tives of each of the unitary operators S,(r,¢), £{¢), and D(a, u); the second
task is to commute these operators through each other. The time derivative

of the expression (2C.30a) for U{t) is
UUt=16+ 8,58+ 5, (RR") 8+ 8, R{D, ;1) RTS8t (A.1)

where D, = D(a,u,), and a superposed dot denotes a single derivative with

respect to time. These time derivatives can be found using the general rule

el ®ler©= § UL o5y Ly 1w Lip i fe o (a2

Lo+ 1) 3!
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(derived in Part 3 of this appendix). The time derivative of S,(r,¢) can be

calculated with the help of the following facts:

'O'¢ = —Z;b Op—Yr b’q,_x" = 2¢ Oy,

[a'0yyna. a'o,a] = 4iaa,

~ o~

a'o, yra,a'a]l =4iato,a.
g 2 i p~

~

The result is

S1S\' = Hid[-p1+¢pCoy,+70,y]a.

The time derivatives of £(8) and D(a, uy) are

RE'=-Y%ig(a’a—-1),
Dngf=(gT-}é/3;)asgg-

Note that gy = 8; (1g) # ().

(A.3a)

(A.3b)

(A.3c)

(A.4)

(A.5)

(A.6)

Commuting the operators through each other to find the last two terms

in Eq. (A.1) is accomplished using the transformations in Egs. (2C.10) and

(2C.11). Equating i U U' to the sum of the Hamiltonians on the right-hand

side of Eq. (2C.29) then results in the relations (2C.32), which define the

functions 7, ¢, 6, yy (or u), and ¢ uniquely in terms of the Hamiltonian func-

tions «, ¢, Q, and A
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2. Two-mode GPS

As in the single-mode case, the first task is to calculate the (first-order)
derivatives of the various unitary operators, and the second is to commute

the operators through each other. The time derivative of the expression

(3C.28a) for U(t) is
UUt=id + Uy Ut + Uy (TTY) Ut + U, T(RRY) TT 1T
+ U, TR(D, DR TT U, T, (A7)

where Dy = D(a, ug ), Uy = 514 5,-S, and a superposed dot denotes a single

derivative with respect to time. Using the relation (A.2) one finds the follow-

ing expressions for the derivatives of these operators:
RR =ié, — ¥i a'Nya.
Ny=6,P, +86_P_=6,1+64%305; (A.8)
TT'=-%id dra,
My = —xZgTs(1 - ¥ 0¥y 4 g Ty 4 T ; (A.9)
(8 S14512) (8145, = K gtM,g. :

_r, 2“,+ 2r_t

Mi=¢,Pi(e - +§-Ple -1

+ ++P+Z¢+_xﬂ + 7"_.P_Z¢_—x11' ; (AlO)
S St=-Y%i o' M2,

Ma= (e %1% 1) 4+ 5, 4 T 5q: (A11)
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Dy Dyt = (o' = Yopg ") Tafag - (A.12)

Commuting the operators through each other to find the last three
terms in Eq. (A.7) can be accomplished with the help of the transformations
described in Egs. (3C.12)-(3C.16). Equating iU U’ to the sum of the Hamil-
tonians on the right-hand side of Eq. (3C.27) then results in matrix, vector,
and scalar equalities, which define the functions 7, 7, ¢, 9. 9. X, 9., M. (Or
t:), and 6 uniquely in terms of the Hamiltonian functions «, ., ¢,. Peg Pr Xpr
(., and A.. The vector and scalar equalities were given in Egs. (3C.30). The

matrix equality is

N, + pZg Fx,,—i(ﬂ + Kk Py Z%;Xﬂ +K_P_ E%__x,, + 4+ waﬁxﬂ‘?lzs
= M, + P MaP, + P iy P+ Ple 0y o xdrp (A.13)

[Egs. (3C.12)-(3C.18) and (A.8)-(A.12)]. The matrix transformations required
in order to put the right-hand side of Eq. (A.13) into a form that is easily
compared with the left-hand side (the Hamiltonian) can be accomplished
fairly easily by making use of the properties of the matrices ¥; and I'; noted
in Egs. (3C.5)-(3C.7). The terms that comprise the right-hand side of Eq.
(A.13) are listed below, with the four-dimensional matrix that multiplies it

listed at the left of each term. The following shorthand notations are used:
PP FX=0.,
Xt6d =74,
$+ s =7

By= B I Eg = il By (A.14)
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The terms are as follows:

P,: =@+ cosh2r,[6, + ¥s cosh2r + ¥4 cos2q]

+ sinhRr sinh2r, [¥4 sin2q cosR6, — ¢ sinl6, ], (A.15a)
P_: —@_+ cosh2r_[6_ + ¥, cosh2r — ¥4 cos2q]
+ sinh2r sinh2r_ [¥4 sinlq cosRé - + ¢ sinR6_ ], (A.15b)

Z3l'y3n: ¢ coshr coshr,coshr_,

E3l's,-6_+xxm —q coshlr sinhr, sinhr_,

E30, +x—yn: —7 sinhr,coshr_,

Z3l'y—6_~yn: 7 sinhr_coshr, ; (A.15¢)
Pelg,dn: T+,

P.Z,, +6,%n: =9 sinh2r sinh®r,

PyZy,s,n: ¢ sinh2r cosh?r, ; (A.15d)
Pl s e,

P_Z, +5_yn: ¢ sinh2rsinb?r_,

P_%, s yn: =g sinh2r cosh®r_, (A.15¢€)
Byyn: 7 coshr,coshr_,

By, +6_Yn: —r sinhr, sinhr _,

Byvs,yn: —9 coshlr sinhr, coshr_,
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By+s_yn: g coshlrsinhr_coshr, ; (A.15f)

B ysotg sinh2r coshr, coshr_ ,

P i
Byig,+6_: Vs sinhlr sinhr,sinhr_,

By+s, 74 5inq coshlr sinhr, coshr_,

Bgyis 74 sinlq coshlr sinhr_coshr, ; (A.15g)
Z3l'y: 7q4sinlq coshlr coshr, coshr_,

Z3l'y+s,+6_ ' 7a Sin2q coshlr sinhr, sinhr_,

E3l'y+s, 1 Vs sinhlr sinhr, coshr_,

Z3l'y-s_: 7¥s sinh2r sinhr_coshr, ; (A.15h)
Pl sinh2r, [6, + ¥ cosh2r + ¥4 cos2q],

P.Zy,+s,  7asin2q sinh2r sinh®r,

P.%4,-6, 7Yasin2q sinh2r cosh®r, ; (A.151)
P_%, : sinh2r_[6_ + ¥, coshr — 4 cos2q],

P_%, 45 : 7asin2q sinh2r sinh?r_

P_%, s : 7qsin2q sinh2r cosh?r_ . (A.15))

The obvious simplifying case is that considered in Section IIIC [Eq. (3C.32)],

i.e., the case with
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The results for this case and further simplifying cases are given in Section

I1C.

3. Derivation of Equation (A.2)
The formula (A.2) for 8, e/ ) can be found as follows: First, use the stan-

dard definition for derivatives, and keep only terms of lowest order in At:

(A.17)

ef+8) _of(®) |y [ ef ()F8F(E) _ or ()
Af TAt -0 At '

- lim
6.l = py »o[

Next, use the definition of e® to write

J

. : n-1 Sk e
ervaet = WM ror SVl LIBEL Ny L] + O(At)?]. (A18)
= n n n

As n - =, let 1/n - dz, where the variable z (=j7/n) runs from 0 to 1.

Then
. 1 .
gl *MF _of = Atfdz e? fe2 el + O(AL)?. (A.19)
o]

The relation (A.2) is then proved by noting that

el f e~ =i;}f:!—2f"f§ =f+zlf. f1+ g—f[f.if.f’m - (AR0)
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Appendix B: Phase factors for wave functions
The phase factors e®% and e % in the single-mode and two-mode
coordinate- and momentum-space wave functions can be found using Egs.
(2B.18) and (3B.16), respectively. The method described here for single-
mode GPS (i.e., single-mode squeezed states) makes use of a factored form
for the single-mode squeeze operator [Eq.(2C.17)]. Another method, not
described here but straightforward, uses a differential equation approach.®!
For the most general two-mode GPS the calculation is more challenging.
One could try to use the same method described here for single-mode GPS,
which would require computing a factored forms(s) for the product of the
three squeeze operators. These factored forms are not as convenient as
their single-mode counterparts, however, because they involve many opera-
tors that do not leave the vacuum state unchanged. The differential equa-
tion approach, while possibly more promising, still involves a painful process
of commuting operators through each other. Although no simple derivation
is given here, the phase factor for a general two-mode GPS can be guessed
with reasonable certainty. Of course, for two-mode squeezed states the cal-
culation is no more difficult than for a single-mode squeezed state, since the
two-mode squeeze operator factors just as easily. Similarly, for states that

are a product of two single-mode squeezed states the phase factor is just

the product of the single-mode phase factors.

The coordinate-space phase factor e®% for a single-mode squeezed

state is found, from Eq. (2B.16), by calculating
{z=0]Sy(r.¢) 0. (B.1)

The factored form for S(r, ¢) given in Eq. (2C.17) implies that

Sy(r,9) |0) = (coshr)* zlo (Zfe®etanhr )* 1ot ony | (B.2)

n!
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The wave function for a number state |n) = (n)!#(a’)® |0) is!”

(z|n) =(2"n!)*H,(z){z|0), (B.3a)
where
{z|0) = mHheH#a? (B.3b)

and H,(z) is a Hermite polynomial with the property that
Hyn (0) = (-1)" 2™ (Bn — 1)1 . (B.3c)

These relations then imply that

{z=0|S(r.¢)|0) = m4(coshr)* i Lz—’—L—?;I—lH(}éez""tanhr »
n=0 '

= m4(coshr — e??sinhr)*. (B.4)

The phase factor in the coordinate-space wave function of a single-mode

squeezed state |uq)(r 4 is therefore

#i6, _ (coshr — e ®¢sinhr)% _ (pz*)%
|coshr — e **sinhr |% oz 1%

e (B.5)

as given in Eq. (2B.39).

The phase factors in the wave functions of two-mode squeezed states
can be calculated in this same way, since factored forms for the two-mode
squeezed operator are known and result in no more complication than
encountered above. Using the factored form analogous to that in Eq.
(2C.17), i.e., with the relevant two-mode operators replacing the single-mode
operators (see the discussion in Section IIIA.5), one obtains the following

phase factor for the wave function of a two-mode squeezed state |La)(r 4):
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JHits _ (cosh® — e #¢sinh? )*

|cosh®r — e #¢ginh?r |% (oS

For a product of two single-mode squeezed states the phase factor is simply
the product of the phase factors for two single-mode squeeze states, as
given by Eq. (B.5). These results, and the form of the single-mode phase fac-
tor (B.5), suggest strongly that the phase factor for the coordinate-space

wave function for the general two-mode GPS |ug ) = S14+S1-S | 4D con is given

by the following expression:

wie,  (detP,*)%

= T (B.7)
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Appendix C: Simultaneous eigenstates of complex operators

The complex (non-Hermitian) operators relevant for Gaussian states
are linear combinations of creation and annihilation operators. The commu-
tators of such operators with their Hermitian conjugates are (real)
numbers. The discussion in Sections IIB and IIIB showed that a single opera-
tor g of this type has a complete set of normalizable eigenstates if and only
if the commutator [g,g'] is a positive real number, since the latter is
equivalent to the condition that the wave function be normalizable (if

[g.g"] =0, the wave function is a delta function).

Two-mode Gaussian pure states are eigenstates of two linearly indepen-
dent complex operators g, and g_, each of which is a linear combination of
the creation and annihilation operators for the two modes. The discussion in
Section IIIB showed that two such operators have a common, complete
(overcomplete) set of normalizable eigenstates if and only if (i) the commu-
tator [g,, g-]1=0, and (ii) the commutator matrix T, is positive-definite;
these conditions followed from requiring that the (two-mode) wave function

be normalizable. The commutator matrix Tg is defined as

bl ]

=TgT,

i i
wetpe= g 625

gz[g"], (C.1)

The requirement that g, and g_- commute with each other if they are to
have a complete set of simultaneous eigenstates is obvious, without recourse
to a wave function. The further requirement that Ty be positive-definite, but
not necessarily diagonal, is not so obvious; one might expect at first that the

two operators must commute completely, i.e., that the commutator
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[g+ g-T] must also vanish. Following is a simple argument that shows why

T, must be positive-definite, and why it need not be diagonal.

Let g+ and g_ be two complex operators (with ¢ -number commutators)

that commute with each other completely,

g+ 9-1=[g+g-T]1=0, (C.2)

Suppose also that each has a complete (or overcomplete) set of normaliz-
able eigenstates, i.e., [gs, g+T] > 0. Clearly there exist normalizable states
that are eigenstates of both g+ and g—-, and hence also of all linear combina-
tions of g, and g-. Consider two such (independent) linear combinations,
g+ and g_', defined by

g = [gi:] =Kg. (C.3)

~ ~

where K is any two-dimensional nonsingular matrix (detK # 0). The opera-
tors g’ and g_' will certainly commute with each other, [g./, g_'] = 0, but
the commutator [g,', g-'T] will not, in general, be zero. It will vanish if, for
example, the operators g.' and g_' are obtained by unitarily transforming
g+ and g_ by the same unitary operator U, g,' = Ug. U', since then all
commutators are preserved. If, however, the operators g, and g_' are

obtained by unitarily transforming g+ and g- by different unitary operators,
g:' =Usg: Uy, (C.4)

then only the commutators [g., g:'] must be preserved, and the commuta-
tor [g+', g_"] need not vanish. The commutator matrix for the operators

g+ and g_'is

Ty = Lg’ gt]l = KT, K". (C.5)
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In general, all elements of T, can differ from those of Ty. The property of
the commutator matrix that is preserved in the transformation (C.5) is
positive-definiteness. A Hermitian matrix is positive-definite if and only if its

eigenvalues are positive; iL.e., if i is a vector of complex numbers with com-

ponents w4, 1 =1,2, ..., N and M is an N-dimensional matrix with com-

ponents M;;, then M is positive-definite if and only if
P M= My >0 (C.8)

for all vectors . This shows clearly that T, is positive-definite if and only if

Ty is positive-definite, since

/NJ.TTgH= (K%)TTg-(K;j)z 0. (C.7)
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This paper introduces a new formalism for analyzing two-photon devices (e.g., parametric ampli-
fiers and phase-conjugate mirrors), in which photons in the output modes are created or destroyed
two at a time. The key property of a two-photon device is that it excites pairs of output modes in-
dependently. Thus our new formalism deals with two modes at a time; a continuum multimode
description can be built by integrating over independently excited pairs of modes. For a pair of
modes at frequencies Qxe¢, we define (i) quadrature-phase amplitudes, which are complex-amplitude
operators for modulation at frequency € of waves “cos(Q(t —x/¢)]” and “sin[Q(t —x /¢)]" and (ii)
two-mode squeezed states, which are the output states of an ideal two-photon device. The
quadrature-phase amplitudes and the two-mode squeezed states serve as the building blocks for our
formalism; their properties and their physical interpretation are extensively investigated.

I. INTRODUCTION AND OYERVIEW

In this and the accompanying paper we introduce a new
formalism for analyzing a particular class of nonlinear
optical devices—devices that we call two-photon devices.
The light produced by any optical system is an excitation
of various modes of the electromagnetic field; the defining
feature of a two-photon device is that its output light is
generated by the simultaneous emission of two photons
into two of the output modes. Examples of two-photon
devices include parametric amplifiers, where the simul-
taneously excited output modes are called the signal and
the idler, and phase-conjugate mirrors (four-wave mixers),
where the output modes are the transmitted and reflected
waves.

Two-photon devices can produce, in principle, special
states of the electromagnetic field called squeezed states'
or two-photon coherent states.” Squeezed states™* have
manifestly nonclassical properties; they might find appli-
cation in low-noise optical communications’~’ and in
high-precision interferometric measurements.®° Experi-
ments to generate squeezed states and to investigate their
properties are now underway in several laboratories.!%~'2

Two-photon devices are to be contrasted with one-
photon devices, such as the laser, in which photons are
emitted into the output modes one at a time. The analyti-
cal tools of quantum optics were developed to describe
and analyze one-photon processes; thus they are designed
to analyze situations in which the modes of the elec-
tromagnetic field are excited independently. These tools
are, in general, not adequate for analyzing two-photon de-
vices, because a two-photon device excites modes in pairs,
instead of singly. This series of papers develops a new set
of analytical tools, which are suited to the description and
analysis of two-photon devices. A brief, preliminary ac-
count of our work can be found in Ref. 13.

To motivate our approach, we start by reviewing briefly
the formalism of one-photon optics. This review is
heuristic, with emphasis on the features that tailor the
formalism to the description of one-photon processes; in
particular, we treat the electromagnetic field classically,
ignoring its quantum-mechanical commutation relations.
Consider a beam of light produced by a one-photon de-
vice, and idealize the beam as a plane wave with a particu-
lar linear polarization. The electric field can be written as
the sum of positive- and negative-frequency parts:

Elx,0)=E"*x,t) +E' " (x,0) (1.1

where

E iz 0= [ 22 p(glemii-re),

(1.2)
E'=(EW) .

Here E(w) is the complex amplitude of the plane-wave
mode at (positive) frequency w, and the integration runs
over the bandwidth # of interest. That the photons in the
beam are created one at a time means that the fluctuations
in the electric field are due to random emission of single
photons which have various frequencies and phases. As a
result, the fluctuations at different frequencies are in-
dependent, and the fluctuations at each frequency are dis-
tributed randomly in phase. The mathematical embodi-
ment of these two statements is

(AE(w)AE(0") =0, (1.32)

(AE(m)AE'(m"»=2"—Cy(w)2frs<w—w'), (1.35)
where AE(w)=E(w)—(E(w)), #(w) is the flux spectral

density of the electric field fluctuations (dimensions of en-
ergy per area), and b is a units-dependent constant (e.g.,

3068 ©1985 The American Physical Society
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b=4m in cgs Gaussian units). In Egs. (1.3) and
throughout this first section, brackets denote a classical
statistical average. The noise produced by a one-photon
device is conveniently characterized by a single function
of frequency (w), derived from the second moments of
the complex amplitudes. Equivalent to Egs. (1.3) is the
more compact statement that the electric field has time-
stationary (TS) noise; i.e., the variance of the electric field
is constant:

< n_ [ do
S(AEx0 = [ T2 5 ) (1.4)
[AE(x,t)=E(x,t)—(E(x,2))].

Implicit in this discussion of TS noise is the assump-
‘tion, made throughout this paper, that the noise is Gauss-
ian, so that second moments are sufficient to characterize
it. An important consequence of Gaussian TS noise,
which does not hold for TS noise in general, is that the
modes at different frequencies are statistically indepen-
dent (Egs. (1.3)]. The restriction to Gaussian noise will be
lifted in a future paper (paper III of this series), where the
relations among Gaussian noise, TS noise, and statistically
independent modes will be considered.

The key property of a one-photon device is that its output
consists of independently excited modes with TS noise. In
terms of constructing a formalism, this property has two
crucial consequences, which can be thought of as the
cornerstones of one-photon optics: (i) one can deal with
one plane-wave mode at a time, building a continuum
multimode description by integrating over independently
excited single modes; (ii) the natural variable to charac-
terize the excitation of each mode is its complex ampli-
tude E(w).

One is now in a position to identify the fundamental
“building blocks” of one-photon optics. Specialize to a
single mode at frequency . The natural quantum-
mechanical operator for the mode is its annihilation
operator

al@)=(2cd, /b#w)' *E(0) (1.5)

which is just the mode's complex amplitude rewritten in
“units” of square root of the number of quanta per root
Hz. (4, is an appropriate “‘quantization area” transverse
to the propagation direction.) The natural quantum states
for the mode are the coherent states'*—the states generat-
ed from the vacuum by an ideal one-photon process (e.g.,
a classical current distribution radiating into the vacuum).
The coherent states are eigenstates of the annihilation
operator; thus they have the sharpest complex amplitude
permitted by quantum mechanics. The formalism of
one-photon optics is founded firmly on the annihilation
operator as the fundamental operator and on the coherent
states as the fundamental quantum states.

Real one-photon devices do not exhibit ideal behavior.
Describing their nonideal behavior requires consideration
of the complicated interaction of the light with atomic
systems and of the effects of losses and their associated
fluctuations. One approach to analyzing the light pro-
duced by a real one-photon device is to derive an equation
for the evolution of the reduced density operator (quan-
tum state) of the electromagnetic field. This equation,

which is called the master equation, is generally a compli-
cated operator equation not directly amenable to analysis.
A powerful technique for rendering the master equation
more tractable is to convert it into an equivalent c-number
partial differential equation—a Fokker-Planck equa-
tion—for the evolution of a quasiprobability distribution
(QPD). A QPD is a rigorous and complete representation
of a density operator (i.e., it contains all the quantum
statistics associated with the density operator), but it re-
tains the appearance and some of the interpretation of a
classical probability distribution.

The definition and interpretation of the QPD’s used in
one-photon optics (“‘one-photon QPD’s”) are intimately
related to the use of the annihilation operator and the
coherent states as the fundamental building blocks." ="
More than one QPD is associated with a given quantum
state, each QPD corresponding to a different way of or-
dering the creation and annihilation operators. For a sin-
gle mode of the electromagnetic field, each one-photon
QPD is a function of a complex number u, which is a c-
number analog of the mode's annihilation operator. The
expectation value of a suitably ordered product of creation
and annihilation operators is calculated using the ap-
propriate QPD as though it were a classical probability
distribution. The one-photon QPD’s are powerful tools
for analyzing real one-photon devices, but based as they
are on the annihilation operator and the coherent states,
they are tools designed specifically for one-photon pro-
cesses and are not necessarily suited to the analysis of
two-photon devices. For example, one of the most useful
and most used one-photon QPD’s is the Glauber-
Sudarshan P function,'®!%!* which reproduces the nor-
mally ordered statistics of a and a'; this QPD does not
exist as a well-behaved distribution for the squeezed states
that can be produced by two-photon devices.?

Our philosophy has been that a new task requires new
tools. The first step is to identify new operators and new
quantum states, which are suited to the description of
two-photon processes; this task is carried out exhaustively
in papers I and II of this series. The second step is to use
these operators and states to define “two-photon QPD's”
that can be used to analyze real two-photon devices; this
task will be tackled in paper IIIL.

To simplify the introduction of our formalism, consider
as an example a parametric amplifier, the prototype for
all two-photon devices. In a paramp an intense laser
beam at frequency 2Q—the pump beam—illuminates a
suitable nonlinear medium. The nonlinearity couples the
pump beam to other modes of the electromagnetic field in
such a way that a pump photon at frequency 2Q) can be
annihilated to create “signal” and “idler” photons at fre-
quencies (Jte and, conversely, signal and idler photons
can be annihilated to create a pump photon. Thus the
light produced by a paramp consists of pairs of simul-
taneously emitted photons which excite pairs of modes
at frequencies (te. In general, the modes in each
pair have correlated complex amplitudes [ie,
(AE(D+€)AE(Q —€))70; cf. Eq. (1.3a)]. This fact tells
one immediately that the formalism of one-photon optics
must be abandoned; the correlations produced by two-
photon processes cannot be described in terms of indepen-
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dently excited single modes.

The electric field at the output of a paramp has the
same form as Eq. (1.1); the difference lies in the correla-
tion between the modes in each pair. It is useful to
rewrite the field by factoring out the time dependence at
frequency Q. Define (real) quadrature phases £,(x,t) and
E,(x,t) by

E'N s (B, iE, e T W =5/ ; (1.6)

E, +iE, is the complex amplitude of the electric field, de-
fined with respect to the carrier frequency Q. In terms of
the quadrature phases, the electric field is given by

E(x,t)=E(x,t)cos[Qt —x/c)]
+E,(x,0)sin[Q(t —x /c)] ; (1.7)

thus, £, and E, describe modulation of waves
“cos(Qt—x/c)]” and “sin(Q(t—x/c)].”” The quadra-
ture phases can be written in terms of their Fourier com-
ponents:

EM(X,”= fa%[Em(e)e—““-X/“

+En(€le’ =3 m=1,2,

(1.8)

Here the integral runs over a suitable set 2 of (positive)
modulation frequencies €, and

E\(e)=E(Q+€)+E"(Q—¢),
E,(e)=—iE(Q+e)+iE*(Q—¢).

(1.9a)
" (1.9b)

The Fourier component £,(¢) [E,(€)] is a complex am-
plitude for modulation at frequency €, of a wave
cos[Qe—x/c)] (sin[Qt—x/c)]). Now consider the
emission of a pair of photons at frequencies Q*e. The
conventional view is that these photons excite a pair of
modes that are sidebands of the carrier frequency (); an
equally good alternative view is that they excite directly a
modulation at frequency € of a wave at frequency Q.
Roughly speaking, if the phases of the two photons are
such that £(Q+¢€)=E"(Q—¢), then they excite E,(¢); if
the phases are such that E(Q+¢)=—E*(Q—¢), then
they excite E,(e). Our message is that two-photon optics
should be formulated in a different language from one-
photon optics. In one-photon optics attention focuses on
the electric field £(x,¢) and its Fourier components E(w);
emission of a photon excites a mode at a particular fre-
quency. In two-photon optics attention shifts to the
quadrature phases E,(x,t) and E,(x,t) and their Fourier
components E,(¢) and E,(¢); emission of a pair of pho-
tons excites one of the quadrature phases at a particular
modulation frequency.

With this new language in hand, the discussion of
natural variables for two-photon optics is just a transla-
tion of the preceding review of one-photon optics. The
fluctuations in the quadrature phases are due to random
emission of pairs of photons, which excite the quadrature
phases at various modulation frequencies with various
phases [phase in this context is the phase of the (complex)

Fourier component E,(€) or £,(€)]. As a result, the fluc-
tuations at different modulation frequencies are indepen-
dent, and the fluctuations at each modulation frequency
are distributed randomly in phase. This means that the
quadrature phases have time-stationary noise—a kind of
noise that we call time-stationary quadrature-phase
(TSQP) noise.'»*' For Gaussian noise the conditions for
TSQP noise are

(AE,(€)AE, (') =0, (1.10a)

(AE,,.(E)AE:(E'))=-§'}’,,,,,(E)211'5(5-—e’), (1.10b)

where  m,n=1,2, AE,(e)=E,(e)—(E,(e)), and
 ma(€)=m(€) is the flux spectral-density matrix for
the quadrature-phase fluctuations (dimensions of energy
per area; cf. Eqgs. (1.3)]. Equivalent to Egs. (1.10) is the
time independence of the covariance matrix of the quad-
rature phases:

¢ de "
Z—b'(AE,,,(x,I)AE,.(x,l))=fg§Rc[./’,,,,(s)]

(.11
[ma=1,2; AEp(x,0)=Epn(x,t)=(En(x,2)); “Re”
denotes “the real part of”]. Unlike TS noise, TSQP noise
allows the quadratures to carry different amounts of noise
(& 1177 22), and it allows them to have a nonvanishing
time-stationary correlation [Re(.”);3)%0]. This means
that the variance of the electric field is not, in general,
constant:

FAAEG 1)
= ﬁg_:'{y“-:-'J/’:z-}-(y”—J’Pn)COS[ZQ(l—I/C)]

+2Re( S 5)sin[2Q(t —x /¢)]} (1.12)

[cf. Eq. (1.4)]. Equations (1.11) and (1.12) can be inter-
preted as saying that the fluctuations in the electric field
are not distributed randomly in phase, where phase is here
defined relative to frequency Q.

The key property of a nwo-photon device is that its output
consists of independently excited pairs of modes with TSQP
noise. This property is the reason that two-photon optics
is formulated more conveniently in terms of the quadra-
ture phases and their Fourier components than in terms of
the electric field and its Fourier components. The conse-
quences of this property, and the cornerstones of two-
photon optics, are the following: (i) one can deal with one
pair of modes, i.e., one modulation frequency, at a time,
building a continuum multimode description by integrat-
ing over independently excited pairs of modes; (ii) the
natural variables for each pair of modes are the Fourier
components E(e) and E,(e).

We can now identify the fundamental building blocks
for two-photon optics. Specialize to a pair of modes at
frequencies Q+e. The natural quantum-mechanical
operators for the modes are the quadrature-phase ampli-
tudes a,(¢) and a;(e),'?! defined by
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ale)= ;;("1 E\(e)
a+e|” a-c|”
50 a(Q+e€)+ 0 a'(QQ—e),
(1.13a)
12
ae)= ;:;1 el
[ave]” Ja=e|”,
—i 0 a(Q+e€)+i >0 a'(Q—e)
(1.13b)

[Egs. (1.5) and (1.9)]. The quadrature-phase amplitudes
are simply rescaled versions of E(¢) and E,(e)—rescaled
to be in units of square root of the number of quanta, re-
ferred to the carrier frequency Q, per root Hz. The natur-
al quantum states are the two-mode squeezed
states¥!32\—the states generated from (two-mode)
coherent states by an ideal two-photon device (e.g., an
ideal paramp, with undepleted classical pump and no
losses). The two-mode squeezed states have TSQP noise,
and they have, in general, unequal amounts of noise in the
two quadratures (5% ;). The present paper (paper I)
focuses on the properties and the significance of the
quadrature-phase amplitudes and the two-mode squeszed
states; the goal is to achieve a good physical understand-
ing of these fundamental entities. The accompanying pa-
per (paper II) develops a mathematical formalism suited
to manipulating the quadrature-phase amplitudes and the
two-mode squeezed states, and it uses the formalism to
write their properties in a compact form. With its em-
phasis on physical interpretation, this first paper omits
many mathematical details, which are filled in by paper
II.

These building blocks of two-photon optics have been
used to construct new two-photon quasiprobability distri-
butions.'’ More than one two-photon QPD is associated
with a given (two-mode) quantum state, each QPD corre-
sponding to a different way of ordering the quadrature-
phase amplitudes and their Hermitian conjugates. Since
the two-photon QPD’s are written in a language tailored
to the description of two-photon processes, we think they
will be valuable tools for analyzing nonideal behavior of
two-photon devices. A future paper (paper III) will
describe in detail the new operator orderings and the two-
photon QPD's.

In this paper Sec. II deals with a couple of minor nota-
tional issues; Sec. III reviews briefly the building blocks of
one-photon optics; Sec. IV introduces the quadrature-
phase amplitudes and the two-mode squeezed states, with
emphasis on the physical signiftcance of the quadrature-
phase amplitudes; Sec. V considers in detail TSQP noise
for the case of Gaussian noise; Sec. V1 discusses uncer-
tainty principles for the quadrature-phase amplitudes; Sec.
VII lists important properties of the two-mode squeezed
states; finally, Sec. VIII specializes our work to the previ-
ously explored degenerate limit (¢é=0). An appendix

treats uncertainty principles for non-Hermitian operators.
Throughout the remainder of this paper we use units with
fi=c=1.

II. NOTATIONAL ISSUES

For convenience we have adopted a notation that some-
times sacrifices precision for ease in use. To minimize
confusion that might arise from our preference for con-
venience, we consider here a couple of notational issues.

Throughout our discussion of two-photon optics, we
find that each physical quantity is most conveniently
represented by its operator in a particular picture. For ex-
ample, the creation and annihilation operators are most
conveniently written in the Schrédinger picture (SP); field
quantities, such as the electric field and the quadrarure
phases, are most conveniently written in the usual interac-
tion picture (IP), in which all the free time dependence is
incorporated in the operators; and the quadrature-phase
amplitudes are most conveniently written in an interaction
picture that we call the modulation picture (MP), which
we define and discuss in Sec. IV. As a result, we have ac-
quired the habit of mixing in the same equation various
operators written in different pictures. This habit has the
potential to cause confusion, which we seek to avoid by
adhering strictly to the following procedure. For each
physical quantity, the corresponding operators in different
pictures are denoted differently. As each physical quanti-
ty is introduced in Secs. III and IV, we define its operator
in a particular picture by a picture-consistent equation,
i.e., an equation in which all operators are written in the

‘same picture. The operators corresponding to the same

physical quantity in other pictures are then defined as
they are needed. The appropriate picture for a picture-
consistent equation is indicated by writing SP, MP, or IP
in parentheses next to the equation; of course, a picture-
consistent equation retains the same form when all opera-
tors are transformed to another picture.

As an illustration of this procedure, consider a plane
electromagnetic wave with a particular linear polarization,
which propagates in the x direction. In the SP the
creation and annihilation operators for the plane-wave
mode at frequency w are denoted by a'(w) and a(w); they
satisfy the continuum commutation relations

[a(w),ar(w')]=27r5(w-—w’) . (2.1)
The electric field operator in the SP is given by
Ex)=E' (x)+E(x) (SP), (2.2a)
E(*”(x)-‘——‘fom%(bw/ZAq)l”a(m)ei“‘
=[E-"x)] (sp), (2.2b)

where E'*)x) and E'~)(x) are the SP positive- and
negative-frequency parts of the field, 4, is a suitable
quantization area, and b is the units-dependent constant
introduced in Egs. (1.3). In the IP the electric field opera-
tor is given by
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—iHct

Elx,n=eExe s EF )+ E k0, (2.3a)
E(+)(X,I)EeiHC‘E(+’(X)e-‘Hcl

_f S (bw/24y) Palwle =i =¥

=[E‘-’<x,z)]' (2.3b)
[cf. Egs. (1.1), (1.2), and (1.5)], where

f S-wa'@late) (2.4)

is the free Hamiltonian for the continuum of modes, and
where we use the fact that the IP form of the annihilation
operator for a particular mode has the harmonic time
dependence of the mode, ie, e aw)e e
=a(w)e "1

A second notational issue concerns the way we use the
symbol A. In general, we use A to designate the differ-
ence between a quantity and its mean value. Thus, for a
quantum-mechanical operator R, AR is defined to be the
operator

AR=R—(R) . (2.5)

For a Hermitian operator B this notation allows the vari-
ance (squared uncertainty) of B to be written as ((AB)*)
=(B?)—(B)?); we always write the variance in this
form. For a general, possibly non-Hermitian operator R,
a fundamental quantity in our analysis is the mean-square
uncertainty in R, by which we mean the sum of the van-
ances of the He'mman real and 1magmary parts of R
[Re(R)=+(R+R"); Im(R)=—=+i(R—R"]. To define
and write the mean-square uncertainty compactly, we use
three shorthand notations: (i) for two operators R and S,
the subscript “sym” denotes a symmetrically ordered
product, i.e.,

(RS)ym=+(RS+SR) ; (2.6)

(ii) the expectation value of a symmetrically ordered prod-
uct is written

((RS)gym? = (RS Vgym ; 2.7
(iii) | AR |?* denotes the operator
|AR |?=(AR AR Nym=+(AR ART+aRTAR).  (2.9)
Thestlz shorthands allow us to write the mean-square un-
certainty as
(|AR|?)=(AR AR} m=(RRNym—(R)|?. 29

For a Hermitian operator the mean-square uncertainty lS
the variance; our notation is consistent because |AB |’
=(AB)*if B=B"

III. REVIEW OF ONE-PHOTON OPTICS

We turn now to a brief review of one-photon optics,
briefer even than the review in Sec. I, but rigorous
quantum-mechanically. Consider the light produced by a
one-photon device such as a laser. As is discussed in Sec.
I, one can specialize to a single (discrete) plane-wave mode

with frequency w; a continuum multimode description is
built by integrating over independently excited smgle
modes. The mode’s creation and annihilation operators in
the SP are denoted by a' and a, which satisfy the usual
(discrete) commutation relation

(a,af]=1. 3.1)

We introduce an “electric field operator” for the mode,
which is denoted in the SP by

Ex)=E™*(x)+E'"x) (SP),
Ex)=(0/2) e =[EYx)]" (SP)

[cf. Egs. (2.2)].
operator becomes

(3.2a)
(3.2b)
In the IP the single-mode electric field

Ex,n=e"Exe ™' s B (2,0 +E"x,t),  (B.3a)
E'*x,n)=(w/2)2ae = = = [E'=)(x,1)]" (3.3b)
[cf. Egs. (2.3)], where

Hs=wa'a (SP) (3.4)

is the free Hamiltonian for a single mode.

Our motivation for introducing the single-mode electric
field operators of Egs. (3.2) and (3.3) is that we want to be
able to calculate the statistics of fieldlike quantities associ-
ated with a single (discrete) plane-wave mode. The nor-
malization of the electric field for a single plane-wave
mode is somewhat arbitrary, so we have simply made a
convenient choice that leaves our results uncluttered by ir-
relevant constants. The w'/? in Egs. (3.2b) and (3.3b) is
the obligatory factor of root frequency that accompanies
the annihilation operator [cf. Egs. (2.2b) and (2.3b)]; it
gives the single-mode electric field units of square root of
energy. The 2~'/2 in Eqgs. (3.2b) and (3.3b) is chosen for
convenience.

The natural states for describing the output of a one-
photon device can be identified by considering the Hamil-
tonian for an ideal one-photon process:

H=Hg—ig"(thae’® +ig(tia'e =" (SP). (3.5)

Here g(r)=g is an arbitrary complex function of time.
The interaction part of this Hamiltonian creates and de-
stroys photons one at a time; the process is ideal because it
is characterized by a c-number function g(t)e =™, which
can be regarded as a classical generalized force acting on
the mode. The Hamiltonian (3.5) describes a classical
current distribution radiating into the mode of in-
terest.'*!18 The SP unitary evolution og:erator U(t,0) cor-
responding to the Hamiltonian (3.5) is

Ult,0)=e =g =Hs'D(g )
=e=hnD(g,ye=ivne THs" (3.62)
y=p(n= [ g, (3.60)
ho=ti [ (y'g—yg*idr’ (3.6¢)
=1i [ (r'g—vg*idr . :

In Eq. (3.6a)
D(a,u)=explpa’—p*a) (3.1
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is the (unitary) single-mode displacement operator,'* so
named because of the important property'*

D'a,plaDla,u)=a+u . (3.8)

The natural states for one-photon optics are those generat-
ed from the vacuum state |0) by an ideal one-photon
process. These states, which are called (single-mode)
coherent states,'* are defined by

|g)eon=Dla,u)|0) . (3.9)

A coherent state is an eigenstate of the annihilation opera-
tor with compiex eigenvalue p:

a () eon=t{H)con (3.10)

[Eq. (3.8)]. The coherent states lie at the very core of
one-photon optics; their properties have been extensively
investigated.'* !¢

The natural variable for one-photon optics is the an-
nihilation operator a, which is simply a complex-
amplitude operator for the mode, written in units of
square root of the number of quanta. The reason the an-
nihilation operator is natural is that the states of interest
in one-photon optics have time-stationary (TS) noise. To
see what TS noise means, let the initial state of the mode
be the density operator p. The noise associated with an
arbitrary state p is completely characterized by the “noise
moments” of @ and a ", where by noise moments we mean
moments of Aa =a —{a) and Aa' [Eq. (2.9)]. In this pa-
per we consider only the lowest-order noise, which is
described by the second-order noise moments

((Aa ) =tufp(Aa)?)=(a?) —(a)?, (3.11a)
(1aa|?) =ulp(aada’)yy) '
=(aa")m—|(a)|?. (3.11b)
The state p has (second-moment) TS noise if
((Aa)?) =0 (3.12)

[cf. Egs. (1.3a) and (1.5)]; hence, for TS noise the lowest-
order noise is described completely by the mean-square
uncertainty ( | Aa |*) [Eq. (2.9); cf. Egs. (1.3b) and (1.5)].
The physical content of Eq. (3.12) is that the noise in the
single mode is distributed randomly in phase; thus TS
noise can be characterized as random-phase noise or
phase-insensitive noise. An immediate consequence of
Eq. (3.12) is that the electric field has TS noise; i.e., if the
mode undergoes free evolution (Hamiltonian Hjs), the
variance of the electric field (3.3a) is constant:

([AE(x,0)]}) =w( | Aa|?)

[cf. Eq. (1.4)].

It is useful to emphasize here why the annihilation
operator is the natural variable for describing TS noise.
Under free evolution (evolution operator e ~i#s ), the noise
moment ((Aa)?) acquires a harmonic time dependence
e~U¥ whereas the mean-square uncertainty ( |Aa |2)
remains constant. The essence of TS noise is that the
time-dependent noise moment ((Aa)?) vanishes, so that
the lowest-order noise is described by the time-

(3.13)

independent moment ( | Aa |?). These considerations are
the key to generalizing the notion of TS noise to noise mo-
ments of arbitrarily high order. The definition (3.12) con-
siders only the lowest-order noise moments, the justifica-
tion being an implicit assumption of Gaussian noise. The
general definition of TS noise, which will be given expli-
citly and discussed in paper III, requires that all the time-
dependent noise moments of a and al vanish, so that the
noise is completely characterized by the time-independent
noise moments. This, then, is the reason the annihilation
operator is the natural variable for one-photon optics: the
TS noise produced by one-photon devices is completely
characterized by the time-independent noise moments of a
and a'.

The commutator [a,a’]=1 enforces an uncertainty
principle,

(jaa(H21i(a.a'D|=%. (3.14)
[This and other uncertainty principles for non-Hermitian
operators are derived and discussed in the Appendix; see
Eq. (A9).] The lower limit in Eq. (3.14) is the half-
quantum of zero-point noise. A coherent state |4 ), has
mean complex amplitude {(a)=p and has TS noise with
(|Aa|?*)=7; it can be thought of as a classical excita-
tion of the mode contaminated by zero-point noise.

The fundamental building blocks for one-photon optics
are the annihilation operator and the coherent states. Al-
though the coherent states arise from a consideration of
ideal one-photon devices, they and the annihilation opera-
tor have been used to define quasiprobability distribu-
tions,"*='7%% which are powerful tools for analyzing the
nonideal behavior of real one-photon devices. Quasi-
probability distributions will be considered in detail in a
future paper (paper III).

IV. BUILDING BLOCKS OF TWO-PHOTON OPTICS

Attention shifts now to a discussion of the natural vari-
ables and natural quantum states for two-photon optics.
As is made clear in Sec. [, one can analyze the light pro-
duced by a two-photon device by specializing to a pair of
(discrete) plane-wave modes with frequencies Q2 +¢, where
Q is a carrier frequency and € < () is a modulation fre-
quency; a continuum multimode description is built by in-
tegrating over independently excited pairs of modes (i.e.,
integrating over €). In optical applications it is always
true that € << Q. The annihilation operators for the two
modes in the SP are denoted by a, and a _; they satisfy
the usual (discrete) commutation relations

[a+,a_]=[a+,ar_]=0, (4.1a)
[a+,a':.]=[a_,ar_]=l. (4.1b)
The free Hamiltonian for the two modes is given by
Hy=(Q+€lata, +(Q—eala_
=Hg+Hy (SP), (4.2a)
Hp=0ala, +ala_) (sP), (4.2b)
H,,Ee(a:,a.,, —a"_a_) (SP) . (4.2¢)
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We find it useful to split H, into two commuting
pieces, Hg and Ay ((Hg,Hy]=0), which are the key to
defining the pictures we use in our new formalism. In the
usual interaction picture (IP), all the free time dependence
is transferred from the states to the operators; the relation
between operators (inciuding density operators) in the IP
and the SP is

—iHyt

Rp(n=e™"Rep(n)e 4.3)

The modulation picture’> (MP) is an interaction picture in
which the free time dependence at the carrier frequency
is transferred from the states to the operators, the states
retaining the remaining free time dependence at modula-
tion frequency €; operators in ail three pictures are related
by

iHot —iH
R =

iH .- iA
Ryplti=e XRgplrle WRpe M (49

There is no reason why the two modes we consider need
be plane-wave modes with the same polarization propaga-
ting in the same direction. Nonetheless, we assume they
are so that we can introduce a “two-mode electric field
operator,” which in the IP is given by

Elx,n=E'Tx,0+E " xn (IP), (4.52)

E‘*’(x.t):Z“”[(ﬂ-i-e)”"'a Le —ilQ+eNt—x)
+(Q—e)flg_e~0=li=x1] = (4.5p)

ENx,n=[EFx0]" (4.5¢)

[cf. Egs. (3.3) and subsequent discussion].

A. Two-mode squeezed states

Consider now the Hamiltonian for an ideal two-photon
process:

H=Ho+ix(t)a a_e~2e=0_g' gt p2le-00] (gp)
(4.6)

Here «(1) is an arbitrary real function of time. The in-
teraction part of this Hamiltonian creates or destroys a
pair of photons in the two modes simultaneously; the pro-
cess is ideal because it is characterized by a c-number
function «(t)e*¢=% For convenience we choose this
function to have a harmonic time dependence at frequen-
cy 2Q), with fixed phase but time-varying amplitude. The
Hamiltonian (4.6) describes, for example, an ideal
parametric amplifier>~% with an undepleted classical
pump, which has stable frequency 2Q but whose ampli-
tude varies in time. The unitary evolution operator for
the Hamiltonian (4.6) is given by-%?

—iHgt

Utt,0=e 'S¢, p) =518 0—Qe T, @

¢zg(:)sfo'x(:')d:' , (4.8)
where

S(r.p)=exp(ria,a_e~¥?—a'al e¥e)] 4.9

is the (unitary) rwo-mode squeeze operator.'’?' The real
number r is called the squeeze factor. The most important

property of the two-mode squeeze operator is that

S(r,q))a:S'(r,qa):atcoshr+a;ewsinhr ; (4.10)

a result which follows from Eg. (8.105) of Ref. 27.
To construct the natural states for two-photon optics,
one begins with the two-mode coherent states™

[t oot Yeon=Dla . )Dla_,u_)]0) @10

[cf. Eq. (3.9)], which are eigenstates of @, and a_ with

eigenvalues . and p_, respectively. Formally, a two-

mode coherent state is obtained by applying the rwo-mode

displacement operator'*

Dla _,u+)D(a_.y_)=exp(,u,,a', —pla,
+p_al—ptal) (412

to the vacuum state [cf. Eq. (3.7)]; physically, it could be
created from the vacuum by an ideal one-photon process
for each of the two modes. The natural states for two-
photon optics are those generated from two-mode
coherent states by the ideal two-photon process (4.6). Be-
fore defining these states, it is useful to define operators
that we call squeezed annihilation operators. In the SP
these operators have explicit time dependence and are de-
fined by

a.lr,pt)=e _iHR'S(r,zp)a :Sf(r,qa)e'ﬂ“
=a,e'Mcoshr +a e~ Me¥¥sinhr (SP) (4.13)

[Eq. (4.10)]; in the MP [Eg. (4.4)] the squeezed annihila-
tion operators are constant and are given by

a.lr,p)=a.lr,g;0)=S(r,pla :S'(r,tp)
=a.coshr +a ze*%sinhr . 4.14)

The natural states for two-photon optics are the rwo-mode
squeezed states,®'**! which are defined by

i/-‘a+v/“a_>(r.w)ES(’-‘P) I#a+r“a_)coh
=S(r,@)D(a . ,pq 1Dla_,pq )] 0) .
(4.15)

We label these states by the complex eigenvalues of
a«lr,p):

a.(r,@) |/J'cx*_w“a_ >(r.w)=,“a: I.“a,_r/"'a_ >(r,¢u (4.16)

[Egs. (4.14) and (3.10)]. Using Eq. (4.10), one can write
the two-mode squeezed states in the form

|#a+,ua_ Yrgr=Dla ., )Dl@_,u_)S(r,@)|0),
(4.17)
where

Ha, =pscoshr +p%e ®sinhr : (4.18)
TWO-moc!e squeezed states were introduced independently
by Caves®! in an analysis of quantum limits on the perfor-
mance of linear amplifiers (see also Ref. 13) and by Un-
ruh® in a quantum-mechanical analysis of an interferome-
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er; they have also been considered formally by Barut and
Sirardello,”® Perelomov,”® and Milburn.® Properties of
two-mode squeezed states are considered in Sec. VII.

Almost all previous work on squeezed states has dealt
with the degenerate limit, in which the two modes we con-
sider coalesce into one (€=0, a, =a_). Our attitude is
that the degenerate limit is not very important in describ-
ing real two-photon devices, because it is merely the e=0
boundary for a more realistic and more general mul-
timode description. The degenerate limit can, however,
play a useful heuristic role, so we consider it in some de-
tail in Sec. VIIIL

B. Quadrature-phase amplitudes

It is useful to decompose the electric field into its (Her-
mitian) quadrarure phases defined with respect to the car-
der frequency Q.'**! In the IP the quadrature phases are
defined by

Ej(x,)=E H (x,0)e =5 L E{=)(x 1) ~iE—-2) (TP)

(4.19a)
Eslx,t)= —iE'*(x,0)e 0= L {E(=)x,1)e ~iB¢=2 (1),
(4.19b)
E®Nx,0)=+[E (x,0)2iE(x,0)]e Y= (IP)  (4.20)

[cf. Eq. (1.6)]. In terms of the quadrature phases the [P
electric field operator (4.5a) becomes

E(x,t)=E (x,?)cos[ Q(z —x)]
+E,(x,t)sin[ Qe —=x)] (IP) (4.21)

[cf. Eq. (1.7)]; thus E,(x,t) and E.(x,?) describé modula-
tion of waves “cos[Q(r—x)]" and “sin[Q(¢ —x)].” The
quadrature phases (4.19) or their multimode analogs (Eq.
(1.8)] have been used in multimode analyses of optical
homodyning,” resonance fluorescence,’!~*} parametric
amplification,™~** and four-wave mixing.**

For two modes the concept of (second-moment) TS
noise means that each mode has (second-moment) TS
noise [Eq. (3.12)] and that the two modes have zero
second-order correlation [cf. Eqgs. (1.3)]; these conditions
imply that the electric field has constant variance. One
says that, for TS noise, the noise in the electric field is dis-
tributed randomly in phase, where phase is defined rela-
tive to frequency Q; equivalently, one can say that TS
noise means that the noise in the electric field is divided
equally between the quadrature phases.

A two-mode squeezed state does not, in general, have
TS noise. The two modes have correlated noise, and the
quadrature phases carry different amounts of noise.
Thus, in two-photon optics it is convenient to describe the
noise in terms of the quadrature phases. In particular, the
natural variables are the (two-mode) quadrature-phase am-
plitudes,'>* which are simply the Fourier components of
the quadrature phases, normalized to be in units of square
root of the number of quanta referred to the carrier fre-
quency Q. In the SP the quadrature-phase amplitudes are
explicitly time-dependent operators defined by

a 172
+€ i
a'(f)E —25— a.e a
12
+ 0256 ale= (sP), (4.22a)
Q 172
+€ i
ay(t)=—i 5q a,e'™
Q 12
+i 2(‘16 ale-i® (sp). (4.22b)

Notice that the quadrature-phase amplitudes are not Her-
mitian. In the MP the quadrature-phase amplitudes are
constant and are denoted by

alsew“al(t)e—iH"‘t=a;(0)
\n (Ve
Q+e¢ Q—e| .t

= { 0 S T Qv (4.23a)

azse'ﬂ“‘az(t)e—mk':az(O)
12 2
s |BEE | g i |t o (4.23b)
2Q 2Q

(cf. Eqs. (1.13)]. We find it convenient to introduce the
symbols

Ao=[(Q2e)/Q)V2, (4.24)

so that Egs. (4.23) and their inverse can be written in the
compact forms

a=2""YA,a, +A_al), (4.2%2)
a,=2""2(=ik a_+ir_al), (4.25b)
Apa,=2""a +ia,y), (4.26a)
A_a_=2""a|=ia}) . (4.26b)

In the IP the quadrature-phase amplitudes acquire a har-
monic time dependence at the modulation frequency:
H\ 0 —iH H —iHgt i
e‘.wae‘s«:e'o‘ ‘°=a,,,e e

- aml(te

m=1[2. (427

Using Egs. (4.5), (4.19), and (4.26), one can write the
quadrature phases in the form

—-iett — t ier—
Em(x,”=al/2[ame ietr xl+amexm n],

m=12 (428
which shows explicitly that a,, is a complex-amplitude
operator at modulation frequency € for E,(x,t) [i.e, it is
the Fourier component of E,(x,t) at positive frequency
€]. In our notation the MP is the most convenient picture
for writing a picture-consistent equation relating the
quadrature phases to their amplitudes; the MP quadrature

phases are denoted by
Enx)=e "E (xpe™ m=1, (4.29)

so that
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En(x)=0"Xane'®+ale=®), m=1,2 (MP). (4.30)

The two-mode quadrature-phase amplitudes have the
following (discrete) commutator algebra:

layal]=[ayai]l=e/0, (4.31a)
[apa:]=0, (4.31b)
(a,al]=[ala;]=i . 4.31¢c)

These commutators enforce a set of uncertainty principles
which we discuss in detail in Sec. VI.

All of our two-mode results thus far can easily be ex-
tended to a continuum description by using “continuum’”
quadrature-phase amplitudes and integrating over the pos-
itive modulation frequencies of interest (cf. Egs. (1.8) and
(1.13)]. The MP continuum quadrature-phase ampli-
tudes®! a@,(€) and a.(€) are related to the continuum
creation and annihilation operators [Eq. (2.1)] by Egs.
(1.13) [cf. Egs. (4.23)]; they obey the commutation rela-
tions

[a(e),ae)]=[a(e),ae)]=[ay(e),aye')]=0,

(4.32a)
[a.(e),a{(e')]=[a:(e),a§(e')]=%2.—.&5—@) . (4.32b)
[ay(e),as(e) ] =[al(e),axe)]=i2mble—¢") . (4.32¢)

The fundamental building blocks of two-photon optics
are the quadrature-phase amplitudes and the two-mode
squeezed states. In paper III these building blocks will be
used to define new two-photon quasiprobability distribu-
tions.

C. Pictorial convention

As is made clear by Egs. (4.199—4.21), E(x,2)
+iEy(x,t) is a complex-amplitude operator for the two-
mode electric field, defined with respect to frequency Q.
The choice of phase for this complex amplitude is arbi-
trary, so one can ask what happens under a change of
phase. The unitary operator

R(B)=exp[—iba’a, +a"a_)] (4.33)
generates just such a phase change, i.e.,
RUONE (x,0)+iEy(x,0)]R(6)
=E\(x,1)+iE5(x,1)
=[E(x,0)+iEy(x,0)]e~"?. (4.34)

We call R(0) the roration operator because the transfor-
mation (4.34) is a rotation of the complex amplitude.
This rotation corresponds to a common phase change for
the annihilation operators,

R'(6)a.R(6)=a". =ase~, (4.35)
and to a rotation of the quadrature-phase amplitudes

RY(6)a,R(8)=a)| =a,cos8 +aysind , (4.36a)

RY(0)a,R(8)=a} = —a,sind+a,cosé . (4.36b)

Notice that e ~Z*=R(Qt) [Egs. (4.2b) and (4.33)]; thus
the time dependence at the carrier frequency is simply a
rotation of the complex amplitude.

One is now in a position to appreciate the importance
of the MP. In two-photon optics one deals with the quad-
rature phases and their amplitudes as the fundamental
quantities. The time dependence at frequency  is trivial
and uninteresting; the important free time dependence is
at the modulation frequency. One would like to formu-
late the theory in such a way that the trivial time depen-
dence at ) is suppressed. This goal is achieved in two
steps: (i) one works in the MP, thereby transferring the
time dependence at ( from the states to the operators; (ii)
one defines the fundamental operators—the quadrature
phases and their amplitudes—so that they are constant in
the MP. The second step requires defining the quadrature
phases and the quadrature-phase amplitudes with explicit
time dependences in the SP [Egs. (4.19) and (4.22)], which
then disappear in the MP (Egs. (4.23) and (4.30)]. The ef-
fect of the above two steps is to transform frequency Q to
zero frequency, thereby removing it from the problem. In
two-photon optics the MP in essence replaces the SP: in
the MP the states carry the important time dependence,
and the fundamental operators are constant.

With these remarks in mind, we introduce a set of con-
ventions that we adhere to throughout the remainder of
this paper and subsequent papers in this series. The
creation and annihilation operators are always written in
the SP (operators a:,a.); expectation values of the
creation and annihilation operators are evaluated using
the SP density operator psp(t). The electric field and the
quadrature phases are always written in the [P [operators
E(x,0), E'¥Xx,1), E|(x,t), and E,(x,t); Egs. (4.5) and
(4.19)]; expectation values of these field quantities are
evaluated using the IP density operator pp(t). Finally, the
quadrature-phase amplitudes and the squeezed annihila-
tion operators are always written in the MP [operators a;,
a,, and a+(r,@); Egs. (4.23) and (4:14)]; expectation values
of these quantities are evaluated using the MP density
operator pyplt). The MP free evolution operator we digni-
fy by a special notation,

—iH

Uylt)=e ‘“'=exp[—ist(a:a+—ar_a_)] (4.37)

[Eq. (4.2¢)], because of the importance of the MP in our
fom}}alism. In the SP the free evolution operator is
e "< R(Q1)Uy(r), and in the IP the free evolution
operator is the identity operator.

D. Physical éigniﬁcance of quadrature-phase amplitudes

Throughout this subsection we are interested in expec-
tation values of field quantities (the electric field and the
quadrature phases) which are undergoing free evolution.
Thus, in accordance with the conventions just described in
Sec. IV C, all expectation values are evaluated with respect
to the initial (¢ =0) state.

We turn now to a detailed discussion of the meaning of
the quadrature-phase amplitudes. To understand their
close connection to experiment, it is useful first to look
closely at how the expectation values of @, and a, deter-
mine the classical behavior of the electromagnetic field.
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By classical behavior we mean simply the free time evolu-
tion of the expectation value of the electric field at a par-
ticular point in space, say x =0. Equivalent information,
but with the rapid time dependence at frequency Q re-
moved, is contained in the expectation value of the field’s
complex amplitude:

(E(0,8)) =Re[{E (0,0) +iE,(0,¢))e =" (4.38)

For present purposes it is more convenient to deal with a
dimensionless complex amplitude, which is defined in the
IP by

& \(x,0)+iFx,0)=2Q) "V E | (x,0)+iE,(x,1)]

=(2/Q)V2E Fx, e =x) | (439)

This dimensionless complex amplitude is related to the
annihilation operators by

Fx,0)+iF,x,0)=A a e id-%

+A_a gl =% (4.40)

[Egs. (4.5b) and (4.24)], and its components, dimensionless
(Hermitian) quadrature phases, can be written as

& n(x,0)=(2Q)" ' 2E, (x,1)
=2'V7'(a,,,e —im—x)+a;eim—x:) ,

m=12 (4.41)

(Eq. (4.28)].
For the simple case of a two-frequency field, the classi-
cal behavior is specified by

(810,00 +i&(0,0))=A (g e " "+A_(a_)e
=Re(2'%(a,)e ") ;

+iRe(2"*(ay)e ') (4.42)
Equation (4.42) says that the mean complex amplitude ro-
tates about the origin, its tip tracing out an ellipse, the
“signal ellipse,” during each modulation period 2m/e.
The classical behavior of the field can be pictured on a
complex-amplitude diagram (Fig. 1). On a complex-
amplitude plane one draws the signal ellipse, indicates the
initial (¢ =0) complex amplitude by a vector whose tip lies
on the signal ellipse, and shows the direction of rotation
of the complex amplitude by arrows on the signal ellipse.
Four pieces of information are required to specify the
classical behavior: the two radii and the orientation of the
signal ellipse, and the direction of the initial complex am-
plitude. Notice that the phase change (4.34) corresponds
to rotating the axes of the complex-amplitude plane coun-
terclockwise by an angle 8. Notice also that in the degen-
erate limit (e=0, a, =a _) the mean complex amplitude
never changes; the signal ellipse collapses to a single point,
which is just the unchanging complex amplitude of a sin-
gle mode.

Simple though the representation in Fig. | may be, it is
instructive to decompose the elliptical motion of the com-
plex amplitude into even simpler parts. The obvious
decomposition is in terms of the two Fourier components
of the field, i.e., in terms of the mean complex amplitudes

(€2)

Y ' @)

s

FIG. . Complex-amplitude diagram for the classical
behavior of the electric field. The dotted ellipse is the signal el-
lipse traced out by the mean complex amplitude
(&(0,¢)+i&0,0)) during each modulation period 27/¢. Ar-
rows on the signal ellipse show the direction of rotation of the
complex amplitude. A vector indicates the initial (1 =0) com-
plex amplitude.

(as) of the two modes. In this decomposition (Eg.
(4.42)], the mean complex amplitude is a sum of two vec-
tors, A,.(a,)e™', which rotates clockwise. and
A_{a_)e'® which rotates counterclockwise (see Fig. 2).
The four classical pieces of information are given by the
complex numbers (g, ) and {a_), each of which speci-
fies the (real) amplitude and phase of one of the modes.

The other useful decomposition is in terms of the
quadrature-phase amplitudes:

(&,00,0))=Re(2""ay)e~'), m=1,2. (4.43)

In this decomposition the four required pieces of informa-
tion are given by the compiex numbers (a;) and (a,),
each of which is a complex amplitude for one of the quad-
rature phases. To represent this decomposition graphical-
ly, one draws separate complex planes for the vectors
22(a,) e~ and 2'*(a;) e ~'¥. In each of these planes
the vector 2'*(a,, )e =/ rotates clockwise, and its pro-
jection on the real axis gives (&,(0,t)) [Eq. (4.43); see
Fig. 2]. These separate planes are phase planes for the
quadrature phases; they show vividly how (a,, ) specifies
the (real) amplitude and phase of (& ,(0,¢)).

Figure 2 shows, at four separate times, the complex-
amplitude plane for (&,(0,¢)+i&,(0,7)), together with
the two decompositions discussed above. Such a diagram
at any particular time (usually chosen to be ¢ =0) contains
all the information about the classical behavior of the
field. In the next section we show how to include infor-
mation about TSQP noise on such a diagram.

The physical significance of the quadrature-phase am-
plitudes can be demonstrated compellingly in two ways.
The first is to consider their relation to amplitude and
phase modulation. Superpose on the two-mode electric
field (4.5) a strong, classical carrier wave at frequency Q;
let the carrier wave be given by (20)'/2B cos(Q(r —x)],
where B is real. The two modes at frequencies Qte
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FIG. 2. Complex-amplitude diagrams at four times: (a) t =0, (b) t =7/4¢, (c) t=7/2¢, (d) ¢t =3m/4¢. At each time the central
complex-amplitude diagram is the same as in Fig. |, except that the vector indicates the mean complex amplitude at the appropriate
ume. To the right of the central diagram is a complex-amplitude plane which shows the decomposition of the mean complex ampli-
tude into contributions from the two modes (Eq. (4.42)). Above and to the left of the central diagram are phase planes for the quad-
rature phases. In the phase plane above the central diagram, a vector indicates the value of 2'/2(a,) e ~'®; its real part is ( #,(0,7))
(Eq. (4.43)]. In the phase plane to the left a vector indicates the value of 2'/*(a,) e =" its real part is ( #,(0,¢)).

represent sidebands of the carrier. The positive-'frequcncy
part of the total field is given by

E'FAx,1)=(0/2)2Be ~ M=) L pl+)(x 1)
=1[(2Q)' 2B + E|(x,0) +iE,(x,1)]e ~'O ==

(4.44)
[Eq. (4.20)], corresponding to an electric field
Elx,t)=E'"*x,00+[E Fx,n]t
=((20)'2B +E,(x,t)]cos[ Q¢ —x)]
+E,(x,t)sin[Q(t—x)] . (4.45)

In Egs. (4.44) and (4.45) an overbar designates the total
field, including both the carrier and the sidebands. Equa-
tion (4.45) shows that E(x,?) modulates a wave that is in
phase with the carrier—amplitude modulation of the
carrier—and E,(x,t) modulates a wave that is 90° out of
phase with the carrier—phase modulation of the carrier.
Thus the quadrature-phase amplitudes are complex-
amplitude operators for the amplitude and phase modula-
tion. The expectation value of the total field’s dimension-
less complex amplitude is the sum of the constant ampli-
tude B of the carrier and the modulated complex ampli-
tude (4.42):

(B1(0,0) +iB4(0,0)) =(2/Q)V2(E+(0,1))e'™
=B+ (&,(0,0)+i&,(0,1))  (4.46)

(Eas. (4.39) and (4.44)]. Thus the effect of the carrier on
the complex-amplitude diagrams of Figs. | and 2 is to dis-
place the signal ellipse a distance B along the real axis.
The resulting complex-amplitude diagram makes clear
that the oscillation of (#,(0,¢)) is the amplitude-
modulation signal and the oscillation of {( &,(0,¢)) is the
phase-modulation signal. The separate planes for
21/2(a,)e =" and 2'/%(a@,) e ~'“ are phase planes for the
amplitude and phase modulation.

The second way to demonstrate the significance of the
quadrature-phase amplitudes is to note their relation to
ideal heterodyning. In heterodyne detection the two-mode
field (4.21) is mixed with (multiplied by) a strong local-
oscillator field at frequency Q, and the result is filtered to
pick out the Fourier component at frequency €. If the
local-oscillator field is proportional to cos(Q(t—x)]
(sin{Q(t —x)]) and if the mixing and filtering are ideal,
then the output of the heterodyne detector is proportional
to E\(x,t) [E,(x,t)], and its complex amplitude is propor-
tional to a, (a;).** In terms of the complex-amplitude di-
agrams of Fig. 2, heterodyning picks out the oscillation of
(#,00,0) [(#&,0,0)]; the separate plane for
2'%(a,)e~ie (21/2(q,)e =) is a phase plane for the
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heterodyned output.

At optical frequencies heterodyning is performed by
combining the two-mode field (4.21) with a local-
oscillator field at a beam splitter and then directing the
combined field onto a photodetector; the mixing is a result
of the Photodetector’s square-law response. Yuen and
Shapiro’ have analyzed optical heterodyning in detail.
They assume € << {) so they can neglect € relative to Q in
factors like A+ =[(Q%€)/Q]'/? [cf. Egs. (4.25)]. In this
approximation they find that ideal optical heterodyning
does indeed produce an output whose complex amplitude
is proportional to a;.

The physical significance of the quadrature-phase ampli-
tudes lies in their ciose connection to experimental tech-
nigues; they are the compiex-ampiitude operators for
fields—<he quadrature phcses—that are directly accessible
1o measurement and experimental manipulation. The
quadrature phases are accessible because they describe the
physicai process of putting amplitude and phase modula-
tion on a carrier signal and because they are the quantities
detected by phase-sensitive detection techniques such as
heterodyning.

In place of the quadrature-phase amplitudes, one might
be tempted to use operators®’ defined in the MP by

(4.47a)
(4.470)

Bi=2~"a, +a'),
Pam2~" Y —io , ~ia'.)

[cf. Eqgs. (4.25)]. These operators have a simpler commu-
tator algebra than a; and a,:

[B.81)=[8:B1=[B1.B:]=0,
(8,,831=18],B:]=i

[cf. Egs. (4.31)]; and under a unitary transformation gen-
erated by S(7,0), they transform very simply:

(4.48a)
(4.48b)

(4.49a)
(4.49b)

5'(r,008,S(r,0)=6e~",
S'(r,008,5(r,0)=Be”

(Eqgs. (4.10) and (4.47)]. Despite these simple properties,
By dnd B, are not the natural variables for two-photon op-
tics because they have no close connection to experimental
techniques; they are not complex-amplitude operators for
fields that can be measured. Shapiro and Wagner®’ have
argued that B, or B, is the quantity detected by optical
heterodyning. Their contention is based on Cook’s
claim®® that photodetectors respond to “photon flux.”
The detailed analysis of Kimble and Mandel® does not
support Cook’s claim. Recent work by Yurke* indicates
that a, or a,, more nearly than B, or 5,, is the quantity
detected by ideal optical heterodyning.

One can understand why 3 and 3, are not the natural
variables—and at the same time understand the factors
A+ which appear in the definition of a, and a, [Egs.
(4.25)]—by a simple units argument. The operators a
and a'_ should not be added directly, as in Eqs. (4.47), be-
cause they have incompatible units; each has units of
square root of the number of quanta, referred to its own
frequency. Multiplication of a, by (Q+€)'/Zand a'_ by

(Q—¢)"/2 converts the two quantities to common units of
square root of energy; after this multiplication the two
quantities may be added, as is done in the definitions of
a; and a; [Egs. (4.23)]. Division by (20)'/? then leaves
a, and a, with dimensionless units of square root of the
number of quanta, referred to the carrer frequency Q2.
That a, and @, have these units is confirmed by writing
the free Hamiltonian (4.2a) as

Ho=0((1a})ym +(@:83)ym— 1] . (4.50)

Thus (a.a{),,m«}-(aga;),,m=(H0+Q)/Q is the total ener-
gy, including the one quantum of zero-point energy, mea-
sured in units of the quantum at frequency .

V. TIME-STATIONARY QUADRATURE-PHASE
NOISE

A. Definition and discussion

The states encountered in two-photon optics—in partic-
ular, two-mode squeezed states—can have electric field
noise that is not distributed randomly in phase, where
phase is defined relative to . This phase-sensitive noise
is of a special sort, however, which we call time-stationary
quadrature-phase (TSQP) noise.'>?' The reason for the
name is that the quadrature phases have time-stationary
noise; this means that the natural variables to describe
TSQP noise are the Fourier components of the quadrature
phases, the quadrature-phase amplitudes.

To see what TSQP noise means, let p be the initial den-
sity operator for the pair of modes considered in Sec. IV.
The noise associated with p can be characterized by the
noise moments of a,, @i, @;, and a,. Just as we did for
TS noise, we consider only the second-order noise
moments—a specialization justified by the assumption
that the noise is Gaussian; a complete description of
TSQP and TS noise, based on all noise moments, will be
presented in paper III. The state p is said to have
(second-moment) TSQP noise if the quadrature-phase am-
plitudes have random-phase noise, i.e., if
(Aa, Aa,) =trlp da, Aa,)

=(ana,)~(an)(a,)=0. (5.1)

where m,n=1,2 and Aa, =a, —(a, ) [cf. Egs. (1.10a)
and (1.13)]. In general, ten real numbers are required to
specify all the second-order noise information, but the
TSQP condition (5.1) eliminates six of those numbers.

The remaining four numbers are contained in the “re-
duced” spectral-density matrix

Son =( Ay Ac) Yo
=t(p(Adp A} lym] = (@man dym— (@m) (ab)
(5.2)

[cf. Egs. (1.10b) and (1.13)], which is dimensionless (units

of number of quanta at frequency Q) and Hermitian:
PR (5.3

The spectral-density matrix, which has units of energy, is
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defined by
Sin =0Z 0w ¢ (5.4)

The diagonal elements of 2, are simply the mean-square
uncertainties in &; and a;:

B =4 | 8w | 2) m=125 (5.5)

the off-diagonal element ;=23 is a complex correla-
tion coefficient between the quadratures.

Under free evolution [MP evolution operator Uy(t);
Eq. (4.37)] the noise moments (Aa,, Aa,) acquire a har-
monic time dependence e =€, whereas the noise moments
(Aa, Aa) )sym are constant [Eq. (4.27)]. Just as for TS
noise, the vanishing of the time-dependent noise moments
is the key to generalizing the notion of TSQP noise to mo-
ments of arbitrary order and also to understanding why
the quadrature-phase amplitudes are suited to two-photon
optics The general definition of TSQP noise, which will
be given explicitly in paper III, rcquxr&s that all time-
dependent noise moments of a,, a,, al, and a, vanish.
The quadrature-phase amplitudes are the natural variables
for two-photon optics because the TSQP noise produced by

two-photon devices is completely characten zed by the time-
independent noise moments of ay, as, a,, and a,.

It is often useful to have the TSQP condition. (5.1) and
the reduced spectral-density matrix (5.2) written in terms
of creation and annihilation operators. The (second-
moment) TSQP condition is equivalent to the following
conditions on the second-order noise moments of the
creation and annihilation operators:

(5.6a)
(5.6b)

<(Aa-)2)—o

(aa, aa")=0
(Egs. (4.26); Eq. {5.6a) means that for TSQP 'noise each
mode by itself has random-phase noise]. The remaining
second-order noise moments of the creation and annihila-
tion operators are related to 2 ,,,:

AA_(Aa, Ad_ ) =1(Z, = Zy)++ilZ 3+ 32y)
=+(Z,;—Zn)+iRe(Z), (5.7a)
AL(]Ags | D =1E+20)FTi(Z =2y
=1, +32)2Im(Z,y) (5.70)

[Egs. (4.26)]. Equations (5.7) can be recast in the form

LS S =1L Aa, | D +AL(|Aa_|®)
(5.8a)
T2 —~Zp)=A A_Re({Aa, Aa_)), (5.8b)
T(Zp+2y)=Re(Z)=A, A_Im({Aa, Aa_)), (5.8c)
=42~ =Im(Z ) =TA% (| Aa, | )
—AL{laa_|Y). (5.8d)

Notice that for TSQP noise the time-dependent noise mo-
ment (Aa, Aa_) (free time dependence e ~¥%) need not
vanish. Since it must vanish for TS noise, Egs. (5.7) im-

ply that (second-moment) TSQP noise is (second-moment)
TS noise if and only if

Snu=Sp=1A4{|Aa, | +A1(|aa_|®)),
Zp=—3Zy=T1iAk([Aa, | =AL(|Aa_|*)

(5.9a)

(5.9b)

The reduced spectral-density matrix 2, describes how
the noise is distributed in phase, where phase is defined
with respect to frequency Q2. There are two good ways of
seeing this—ways that make clear the meaning of the four
pieces of information in Z,,. The first way looks at the
two-point correlation matrix of the dimensionless quadra-
ture phases &(x,t) and &,(x,1) [Eq. (4.41)],

H o (TV=(AE (2,0 +7IAE 4 (x,0)) gymy mun=1,2
(5.10

which is a dimensionless, real matrix. If the two modes
evolve freely, then

K ()= Zpne T4+ Z e’ =Re(Z,,e 7' (5.11)

(Egs. (4.41), (5.1), and (5.2)]. The two-point correlation
matrix also satisfies

K o =T)=X

(Eq. (5.3)]). That the two-point correlation matrix depends
on the time delay 7, but not on the retarded time ¢ —x, is
the essence of TSQP noise, and it is a direct consequence
of the TSQP condition (5.1). Note, however, that TSQP
noise does not mean that the two-point correlation matrix
for the two-mode electric field depends only on the time
delay ; that condition is met only for TS noise [Egs.
(5.9)].

Consider now the zero time-delay (r=0) correlation
matrix

Hrn ZH i 0)= A 1 (x,)AF 1 (%,0) )y =Re&(Z,, ),
(5.13)

s VT (5.12)

which is just the symmetric covariance matrix of the di-
mensionless quadrature phases (cf. Eq. (1.11)]. If the
noise is distributed randomly in phase, then ¥, is a
multiple of the unit matrix. The covariance matrix & ma
contains three of the pieces of information in Z,,. Two
pieces of information are contained in the diagonal ele-
ments

Hmm={[AE p(x,0)]) =2 =] Aapn |2, m=12
(5.14)

which give the (constant) variances of &(x,t) and
&,(x,1), and the third piece is contained in the off-
dlagonal element

Ha=H y=(AF (x,0)A8, xt)),,m—Re(}Zu) (5.15)

which is a correlation coefficient for #(x,7) and &,(x,?).
These three pieces of information characterize the noise in
tlhe following way: the overall scale of the noise is set by
7{Z\1+22,), which is the average noise in the quadra-
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tures [Eq. (5.14)] or the average noise in the two modes
[Eq. (5.8a)]; the extent to which the noise is not distribut-
ed randomly in phase is specified by %(2“—222) and
Re(Z);). The roles of these quantities are immediately ap-
parent in the variance of the electric field

([AE(x,)]}) =Q[Z) 4+ 29+ (2 — Sa3)cos[ 20t —x)]
+2 Re(Z),)sin(2Q(¢t —x)]} (5.16)

[Egs. (4.21), (4.39), and (5.13); cf. Egs. (1.12) and (3.13)].
A nonrandom distribution of noise in phase corresponds
to a time-dependent electric field variance. The quantities
that describe a nonrandom distribution, $(Z;—Z4,) and
Re(Z,,), are related to (Aa. Aa_) (Egs. (5.8b) and
(5.8¢)}; if the electric field noise is not distributed random-
ly in phase, the two modes must be correlated.

The fourth piece of information in £, shows up in the
time-delayed (r==0) correlation between the dimensionless
quadrature phases. Specifically, for r=w/2¢, the two-
point correlation matrix becomes an antisymmetric matrix

F o EH mn(T/2€)
= (AB (X0 +7/2008 1 (%,0)) gy

=Im(Z,,) . (5.17

The diagonal elements of ¥ ,, vanish. This result one
expects for TSQP noise; it says that for each quadrature
phase the noise at a particular time is uncorrelated with
the noise a quarter cycle later. In contrast, the off-
diagonal element of ¥, need not vanish. It gives the
fourth piece of information in = ,,,:

K== 3y =(A& (x,t +7/26)A€5x,0)) 3y

=Im(Z,) . ! (5.18)

This result is a bit mysterious; it says that the noise in one
quadrature at a particular time is correlated with the noise
in the other quadrature a quarter cycle later. The ex-
planation lies in the definitions of @ and a, [Egs. (4.25)].
A fluctuation in the upper mode a . corresponds to iden-
tical fluctuations in a; and a,, but the fluctuation in a,
lags that in a, by a quarter cycle; this produces a positive
contribution to ¥ ;. Similarly, a fluctuation in the lower
mode a _ corresponds to a tluctuation in a, that leads the
fluctuation in a, by a quarter cycle; this produces a nega-
tive contribution t0 % ;. Thus &, should be related to
the difference in noise in the two modes, an inference con-
firmed by Eqs. (5.8d) and (5.18), which show that

Fp=Im(Zy)=+(AL(|da, |} =21(]Aa_|?)).

The second way of investigating the meaning of 2, is
to look at how it transforms under a rotation (phase
change) of the complex amplitude of the electric field [ro-
tation produced by R(6); Egs. (4.33)—(4.36)]. Recalling
that a rotation produces a common phase change of the
annihilation operators [Eq. (4.35)], one sees from Eq.
(5.70) that +(2,,+2y) and — +i(Z;— 2y)=Im(Z,) are
invariant under rotations; these quantities have nothing to
do with the differential distribution of noise in phase.
Similarly, one sees from Eq. (5.7a) that 7(Z,;—2,,) and

(2)3+2,;)=Re(Z;) transform as

ok
7

L
2

(i —Zp)+ Ti(Z+2h)

=e Y L2 —Zp)+ Ti(Ep+ 3]s (519

these quantities characterize precisely the extent to which
the noise is not distributed randomly in phase.

B. Complex-amplitude diagrams

One can add information about TSQP noise to the
complex-amplitude diagrams in Figs. | and 2. Start with
the complex-amplitude diagram (¢ =0) in Fig. |, which
describes the classical behavior of the electric field. To
add information about TSQP noise, draw an ‘“error el-
lipse” centered at the tip of the initial complex-amplitude
vector (Fig. 3). The error ellipse displays the information
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FIG. 3. Standard complex-amplitude diagram for TSQP
noise. The behavior of the mean complex amplitude
(#,(0,1)+i#&,(0,2)) is shown, as in Fig. 1, by a dotted signal
ellipse and an initial (1 =0) complex-amplitude vector. The
quadrature-phase noise is depicted by a shaded error ellipse.
The principal axes of the error ellipse are the eigendirections of
the covariance matrix ¥ m, [Eq. (5.13)], and the principal radii
are the square roots of the eigenvalues of ¥ ,,. The complex-
amplitude diagram shows rotated (primed) axes that lie along
the principal axes of the error ellipse. With respect to the rotat-
ed axes the covariance matrix ¥7,, is diagonal, its diagonal ele-
ments ¥ mm =([A&n(x,0)]?) =Zim=(]|Aan |?) giving the
squares of the principal radii. Separate phase planes are drawn
for the rotated quadrature phases (cf. Fig. 2). In each a vector
indicates the initial (r =0) value of 2'/*(a}, ), and a shaded er-
ror circle, with radius ( | Aap, |?)'7?, depicts the noise in the
quadrature phase.
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contained in the covariance matrix ¥ ,, =Re(Z,,,) [Eq.
(5.13)): its principle axes are the eigendirections of ¥ ,,,,
and its principle radii are the square roots of the eigen-
values of ¥ ,,. It is convenient to rotate the axes of the
complex-amplitude plane counterclockwise by an angle 6
[rotation defined by Eq. (4.34)] so that the new (primed)
axes are parallel to the principal axes of the error ellipse
(see Fig. J), i.e., so that the covariance matrix is diagonal
with respect to the new axes. The angle 6 is obtained
from

T(Zn=20)+ 7il(23+ 2y
=—T((Z) =T +(Zp+ 3,1 248,

where 0 <8 <« (Eq. (5.19)]. The diagonal elements of the
rotated covariance matrix are given by
Honm = [AF (x,01) =2, =(| Aa}, | }); their square
roots—the uncertainties in the rotated quadrature
phases—are the principal radii of the error ellipse. The
error ellipse is a convenient way to show graphically the
nonrandom distribution of noise in phase.

Figure 3 also shows separate phase planes for the rotat-
ed quadrature phases (cf. Fig. 2). In each phase plane a
vector indicates the inirial expectation value of 2'/%a,.
The noise in each quadrature phase is depicted by an “‘er-
ror circle,” which is centered at the tip of the vector
2'*(aj, ) and whose radius is the root-mean-square un-
certainty in ap,. That one uses a circle expresses the fact
that the quadrature phases have time-stationary (random-
phase) noise; i.e., the uncertainties in the Hermitian real
and imaginary parts of 2!'/’a,, are the same, and they are
equal to the root-mean-square uncertainty ¢ | Aa, | 2)!/2
Just as the projection of 2'/%(a,, ) onto its real axis gives
the associated component (#/,(0,¢)) of the mean com-
plex amplitude, so the projection of the error circle on the
real axis gives the associated principal diameter of the er-
ror ellipse (Fig. 3).

We refer to Fig. 3 as the standard complex-amplitude
diagram. The vectors in it are drawn at ¢ =0, but a simi-
lar diagram could be constructed at any time. As time
passes, the vector in each separate phase plane rotates
clockwise with angular velocity €, dragging its error circle
with it; the projection of the vector and its error circle on
the real axis describes the oscillation of the associated
quadrature phase with constant variance. These projec-
tions can also be used to construct the mean complex am-
plitude (&,(0,0) + (&,(0,r)) and its error ellipse. The
mean complex-amplitude vector rotates in the direction
shown by the arrows. The error ellipse is dragged along
as the mean complex-amplitude vector rotates, but it re-
tains the same size, shape, and orientation—a consequence
of TSQP noise. '

The axes in Fig. 3 are somewhat loosely labeled by
operators because the diagrams are supposed to indicate
both the mean behavior and the fluctuations about the
mean. The axes of the separate phase planes are labeled
by the Hermitian real and imaginary parts of 2'/%a,.
Notice that the free time dependence e =€ is not indicated
explicitly as in Fig. 2. The reason is that this time depen-
dence is implicit; the expectation values of a| and a3 are
evaluated in the MP (Sec. IV C), where they have the free

time dependence e ~‘¢’. The standard complex-amplitude
diagram can be put on a more rigorous footing after the
two-photon quasiprobability distributions are introduced
in a future paper (paper III). Then the axes can be labeled
by variables of an appropriate quasiprobability distribu-
tion, and the error ellipse and the error circles become
particular contours of the quasiprobability distribution.

TS noise is distributed randomly in phase (¥ ., is a
multiple of the unit matrix). In the complex-amplitude
diagram in Fig. 3 this means that the error ellipse is a cir-
cle (2 =2, Re(2;)=0; Egs. (5.9)] and the error circles
in the separate phase planes have the same size. To go
from TS noise to TSQP noise, one imagines “squeezing”
the error circle of TS noise into the error ellipse that
characterizes TSQP noise; noise is squeezed from one
quadrature phase into the other so that the error circles in
the separate phase planes have different sizes. The use of
the term squeezed to describe a nonrandom distribution of
noise in phase arose from this simple picture of a circle
being squeezed into an ellipse. The term* was originally
applied to the degenerate limit (€=0, a, =a_), where
one draws complex-amplitude diagrams very much like
the central diagram in Fig. 3. In the degenerate limit the
noise is depicted by an error ellipse just as in Fig. 3, but
the signal ellipse collapses to a point, which is the un-
changing complex amplitude of a single mode (see, for ex-
ample, Fig. 1 of Ref. 1). It should be emphasized that
squeezing is a consequence of correlation between the two
modes [Eags. (5.8b) and (5.8¢)]; each mode by itself has
random-phase noise (Eq. (5.6a)].

The standard complex-amplitude diagram (Fig. 3) does
not display all the information about the second-order
noise. It shows graphically the three pieces of informa-
tion in the covariance matrix X ,, =Re(Z,,,) (Eq. (5.13)],
but it does not include any information about Im(Z,,)
{Eq. (5.18)]. This omission is really not very serious. The
purpose of the standard complex-amplitude diagram is to
depict the nonrandom distribution of noise in phase,
which does not depend on Im(Z),).

The relation of the standard complex-amplitude dia-
gram to the behavior of the electric field and the quadra-
ture phases is made clearer by the graphs in Fig. 4. Each
part of Fig. 4 shows two complex-amplitude diagrams for
a particular state of the field which has TSQP noise; one
diagram is drawn at ¢ =0 and the other at t=m/2¢. The
states depicted in Fig. 4 are special in two ways: (i) All
the signal is carried by & (x,), i.e., (&,(x,r))=0. Thus
the signal ellipse collapses to a line along the &, axis, and
the mean electric field at x =0 is given by

(E(0,0)) =(E,(0,r))cos(2t)

[Eq. (4.21)]. (il) The quadrature phases have zero second-
order correlation, i.e., ¥ ;;=Re(2};)=0. Thus the prin-
cipal axes of the error ellipse are parallel to the &, and &,
axes, and the uncertainty in the electric field at x =0 is
given by

([AE0,)]})' 2 =(20) /Y[ 2, cos¥( Q)
+ Zpsin¥(Qe)]'7?

[Eq. (5.16)]. Figure 4(a) depicts a state with TS noise

(5.20)

(5.21)
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(2,;=2), Fig. 4(b) depicts a state with less noise in
& \(x,1) than in &4(x,1) (2, < 2y,), and Fig. 4(c) depicts a
state with less noise in &,(x,¢) than in &(x,t) (25, < Z))).
Below the complex-amplitude diagrams in each part of
Fig. 4 are graphs for the electric field £(0,z) and the
quadrature phases £,(0,¢) and E,(0,t). The dark central
line in each graph is the expectation value of the appropri-
ate field, and the width of the shaded region is twice the
uncertainty in the same quantity. The graph for £,(0,z)
shows a sinusoidal oscillation at frequency € with constant
uncertainty ([A£,(0,0)]*)'2=(2Q2,,)"/% this behavior
is described by the projection on the real axis of the rotat-
ing vector 2!/*(a,) and its associated error circle. The
graph for E,{0,s) shows a zero expectation value with
constant uncertainty ([A£,i0,0)]%)*=(203,.)!%; this
behavior is described by the unchanging projection on the
real axis of the error circiz in the phase plane for 2'/3a,.
In the graph for E(0,:), the mean electric fieid is modu-
lated at frequency € (Eq. (5.20)], and the uncertainty oscil-
lates as given by Eg. (5.21). Similar graphs for the
behavior of the electric fieid have been drawn in the de-
generate limit (see, for example, Fig. 2 of Ref. 1); the un-
certainty oscillates just as in Eq. (5.21), but the mean elec-
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tric field is unmodulated.

The graphs for £,(0,¢) and £,(0,¢) in Fig. 4 are closely
related to the output of an ideal heterodyne detector and
to amplitude and phase modulation of a carrier wave (see
discussion in Sec. [V D). If the electric field in Fig. 4 is
mixed with a local-oscillator wave proportional to
cos[Q(t —x)], then the graph for E,(0,¢) characterizes the
heterodyned output at frequency €, which has constant
noise. If a strong classical carrier wave proportional to
cos[Q(t —x)] is added to the electric field in Fig. 4, then
the graph for £,(0,2) describes an amplitude-modulation
signal with constant amplitude-modulation noise, and the
graph for E,(0,z) describes a zero phase-modulation sig-
nal with constant phase-modulation noise. The differ-
ences amorng the three parts of Fig. 4 lie in the different
ratios of amplitude-modulation noise to phase-modulation
noise.

VI. UNCERTAINTY PRINCIPLES
FOR QUADRATURE-PHASE AMPLITUDES

In this section we consider uncertainty principles that
apply to the mean-square uncertainties in the quadrature-
phase amplitudes. The analogous uncertainty principles
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FIG. 4. Graphs of the electric field E.(0,¢) and the quadrature phases £,(0,¢) and £,(0,¢) for three states with TSQP noise: (a) a
state with TS noise; (b) a state with less noise in &,(x,r) than in &,(x,1); (c) a state with less noise in &,(x,¢) than in &(x,1). Above
the graphs in each part are two complex-amplitude diagrams for the same state, one at ¢ =0 and one at ¢ =w/2¢. In each graph the
dark central line is the expectation value of the appropriate field quantity, and the width of Lhe shaded region at any time is twice the
uncertainty in the same quantity. See the text for further discussion.
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for more general non-Hermitian operators are derived and
discussed in the Appendix; here we simply apply the more
general results to the particular case of @, and a,.

The most important uncertainty principle'>?! places a
lower limit on the product of the root-mean-square uncer-
tainties in @; and a,:

(1A DY (| aay | D' >+ (lapai]) | =+ (6.

(Egs. (A16) and (4.31c)]. In terms of the spectral-density
matrix S,,, [Eq. (5.4)], the uncertainty principle (6.1) be-
comes §;; Sy >+ 0% It should be noted that Eq. (6.1)
does not require an assumption of TSQP noise, but it does
rely on the fact that @, and a, commute [Eq. (4.31b)].
Yurke and Denker**! have considered an uncertainty
principle similar to Eq. (6.1), but in terms of the mul-
timode quadrature phases (Eq. (1.6)].

What is the meaning of the uncertainty principle (6.1)?
The zero-point noise in each mode corresponds to half a
quantum at the mode’s frequency. In units of energy the
combined zero-point noise in the two modes s
Q46+ +(Q—€)=Q, which amounts to one quantum
at the carrier frequency. If

(1aa D =(laa,|Y=1+ (6.2)

(Sy;=S3=1Q), then each quadrature carries half of the
one quantum of zero-point noise. The uncertainty princi-
ple (6.1) allows the uncertainty in one quadrature to be re-
duced below the level set by zero-point noise, but only at
the expense of increasing the noise in the other quadrature
above the zero-point level. Thus the uncertainty principle
describes the squeezing referred to in Sec. V B: noise can
be reduced below the zero-point level only by squeezing
noise from one quadrature phase into the other.

Equation (6.1) is the two-mode analog of an uncertainty
principle’ that applies in the degenerate limit—e=0,
a,=a_=a. This uncertainty principle, which is
equivalent to the position-momentum uncertainty princi-
ple, is usually written in terms of a, and a,, the Hermi-
tian real and imaginary parts of a =a, +ia,:

(Aa )Y(Aa ) 25 + | {{ag,a,]) =5 . (6.3)

Further discussion of the degenerate limit can be found in
Sec. VIIIL.

Equality in Eq. (6.1) imposes very restrictive conditions
on the state vector | \V); indeed, Eqs. (A27), specialized to
the case R =a, and S=a,, show that equality holds in
Eq. (6.1) if and only if

(Aa;+iAay) | W) =0, (6.4a)
(Aal+ida)) | W) =0 (6.4b)

(Egs. (4.31), (A27c), and (A29)]. Plugging in the defini-
tions (4.25) of @, and a,, one finds that Egs. (6.4) reduce
to

Aay [W)=0. (6.5)

Thus the only states that yield equality in Eq. (6.1) are the
simultaneous eigenstates of a, and a_, i.e., the two-
mode coherent states (4.11).

In addition to the uncertainty principle (6.1), there is a

separate uncertainty priaciple for each quadrature-phase
amplitude:'>?!

(|dam | D2+ ([amah]) | =€/2Q, m=1,2  (6.6)

[Egs. (A9) and (4.31a)]. Equation (6.6) does not rely on an
assumption of TSQP noise. Equality holds in Eq. (6.6) if
and only if the state vector |W) is an eigenstate of a,,,
iieys

da, [¥)=0 (6.7)

(Eq. (Al2a)]. Since €<Q, it is immediately apparent
from Eq. (6.1) that it is impossible to find a state | ¥) for
which both ( | Aay|?) and (| Aa,|?) have the minimum
value €/2Q. This means that there are no simultanecus
eigenstates of a; and a,.

What can one learn from the uncertainty principie
(6.6)? For each quadrature it says that the minimum
noise is a factor €/Q) smaller than the level set by zero-
point noise [Eq. (6.2)]. If one writes Eq. (6.6) in units of
energy—3S,, > Lle—one sees that the minimum noise cor-
responds to half a quantum ar the modulation frequency €.
This suggests interpreting the minimum noise +¢ as a sort
of zero-point noise for the quadrature phases; we call it
the quadrature-phase zero-point noise. This interpretation
is strengthened by noting that the quadrature phase
En(x,t) is a “field operator” at frequency ¢ [Eq. (4.28)].
The variance of 2~'/2E,(x,1) for a state with TSQP
noise,

T{AER (%, =0( | dan | }) > T€, (6.3)
should be compared with the single-mode electric-field
variance (3.13) for a state with TS noise, where the single
mode has frequency w=e. In terms of energy the lower
limit in Eq. (6.8), which is enforced by the quadrature-
phase zero-point noise, is the same as the lower limit in
Eq. (3.13), which is enforced by the ordinary zero-point
noise at frequency w=e [Eq. (3.14)]. Physically the
quadrature-phase zero-point noise means the following: if
one chooses to work at modulation frequency € about a
high carrier frequency Q, then the noise in one quadrature
phase can be made as small as, but no smaller than, the
minimum noise that one would encounter if working
directly at the low frequency €.

The relation between the quadrature-phase amplitudes
and the quadrature-phase zero-point noise is analogous to
the relation between the creation and annihijlation opera-
tors and the ordinary zero-point noise. The analogy be-
comes apparent if one writes the free Hamiltonian H
[Eq. (4.22)] in terms of various operator orderings. Order-
ings of the creation and annihilation operators give ex-
pressions that involve the ordinary zero-point energy (:

(Q+€)(d+a1_),ym+(ﬂ—-€)(a_aT_),Ym=H0+Q , (6.9a)
(Q+elaa, +(Q—eata_=H,, (6.9b)
(Q+ela,al, +(N—ela_al =Hy+20. (6.9¢)

Symmetric ordering [Eq. (6.9a)] yields the total energy, in-
cluding the one quantum of zero-point energy, normal or-
dering [Eq. (6.9b)] yields the total energy minus the zero-
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point energy, and antinormal ordering [Eq. (6.9¢)] yields
the total energy plus the zero-point energy. Analogous or-
derings of the quadrature-phase amplitudes and their Her-
mitian conjugates involve the quadrature-phase zero-point
energy € (+€ from each quadrature):

Q@ 1a]ym+(@:ad)yml =Ho+ Q. , (6.10a)
Qata, +ala))=Hy+0—¢, (6.10b)
Q(a,a{+aaa:)=Ho+Q+e. (6.10c)

Symmetric ordering [?.q (6. IOa)] again yields the total en-
ergy. If one places a; and aa to the left of @, and a, (Eq.
(6.10b)], an ordering which is analogous to ordinary nor-
mal ordering and which we call quadrature-phase normal
ordering, then one obtains the total energy minus the
quadrature-phase zero-point energy. Sxmllarh if one
places a, and as to the left of @ and a; [Eq. (6.10c]], an
ordering which we call quadrature-phase antinormal or-
dering, then one obtains the total energy plus the
quadrature-phase zero-point energy. These and other
more general orderings for the quadrature-phase ampli-
tudes will be considered in paper III.

One can also write an uncertainty principle for the
operators 3, and 3, [Egs. (4.47) and (4.48)]. Analogous to
Eq. (6.1) is an uncertainty principle

(1AB D A(1AB DV 1 1 {(BLBI) | =1,

but there is no analog of Eq. (6.6); i.e., ( | AB,, | >) can be
made arbitrarily small.

(6.11)

VII. TWO-MODE SQUEEZED STATES

Two-mode squeezed states are the natural states for
two-photon optics because they are the output states of an
ideal two-photon device (see Sec. IV A). Here we discuss
briefly the most important properties of two-mode
squeezed states; our purpose is to show how they fit into
the general framework developed in Secs. IV—-VI. .A
more thorough investigation of their properties is under-
taken in paper II.

A useful preliminary to the properties of two-mode
squeezed states is a review of the most basic properties of
two-mode coherent states [Eq. (4.11)]:

|4t _deon=Dla,,p.)Dla_,u_)|0). (7.1)

Using the fact that |um.,u_)ep is an eigenstate of a
and a_, one can show, first, that the expectation values of
the annihilation operators and the quadrature-phase am-
plitudes are given by

(as)=ps, (7.2a)
(a)=&=2""Y YA pp+A_pl), (7.2b)
(ay) =& =27 =ik u +ik_pt) (7.2¢)

[Egs. (4.25)] and, second, that | 4ot~ deon has TS
noise—((Aa4)?) =(Aa Aal)=(Aa,da_)=0 [(Egs.
(5.6) and (5.9)]—with ( [Aa+ [D=(]|Aa_ | =1—ie,

Som={lda, =1, m=1.2 (7.3a)
Sip=—3y=1ile/Q) (7.3b)

(Eq. (5.2)]. A two-mode coherent state can be regarded as
a classical excitation of the two modes, contaminated by
zero-point noise. The covariance matrix of the dimen-
sionless quadrature phases (Eq. (5.13)] is a multiple of the
unit matrix,

‘z/mn =RC(2mn)=%8mu ) (7.4)

which shows that the noise associated with a coherent
state is distributed randomly in phase. In the standard
complex-amplitude diagram (see Sec. VB and Fig. 3),
these properties of a two-mode coherent state show up in
the following ways: the error ellipse in the central
complex -amplitude plane is a circle, the two error circles
in the separate phase planes have the same size, and all
three circles have radius 27'/2,  Notice that
Im(Z,,)=€/2Q does not vanish for a coherent state—a
consequence of the fact that the energy associated with
the zero-point noise is different for the two modes [see
discussion surrounding Eq. (5.18)].

Turn now to the two-mode squeezed states defined by
Egs. (4.15), (4.17), and (4.18):

l.ua+'ua_ )(r.¢;-=-5("‘P) |#a'v“a_>coh
=S(r,@)D(a ,,pq DM@ _\piq )] 0)

=Dl(a,,p,)Dla_,p_)S(re)|0), (1.5

lta. =u-coshr +u%e®sinhr (7.6)

When =0 a two-mode squeezed state reduces to a two-
mode coherent state. The unitary equivalence between the
squeezed annihilation operators and the annihilation
operators (Eq. (4.14)] provides an easy way to calculate
first and second moments for a two-mode squeezed state;
the moments of a.(r,p) with respect to |,u¢+,u,_)(,yw
are the same as the moments of a. with respect to
ly,‘,ua_)cch. Using this approach, one can calculate the

following expectation values for the two-mode squeezed
state (7.5):

(as)=ps, (7.7a)
(am)=£n (7.70)
[cf. Egs. (7.2)]. In addition, one can show that

|a, #a_dirg has TSQP noise (Eq. (5.1) or Egs. (5.6)]
with

(Jaay D) =(laa_|)=
(Aa, Aa_)=—+e¥®sinh(2r) ;

(7.8a)
(7.8b)

-;-cosh( 25 ;

translated into the language of the reduced spectral-
density matrix (5.2), Egs. (7.8) become

2|1=< IA‘ZIIZ)
=teosh(2r)— $(1—¢€*/Q?)%sinh(2r )cos(29) |
(7.9a)
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Zp={(]day|?)
= tcosh(2r) + 1(1—€ /08" %sinh(2r )cos(2¢) ,
(7.9b)
Sh=33=—+(1—€/0%"%inh(2r )sin(2p)
+ ti(€/Q)cosh(2r) (7.9¢)

[Egs. (5.8)]. For rs0 a two-mode squeezed state does
indeed display the nonrandom distribution of noise in
phase which entitles it to be called squeezed. The stan-
dard complex-amplitude diagram looks like Fig. 3 with
8=@; the error ellipse has principal radii
2= }cosh(2r)F (1 —€/0Q%) %sinh(27)]'/?, which aiso are
the radii of the error circles in the separate phase planes.

An important subset of the two-mode squeezed states
consists of those with @=0. For this subset the reduced
spectral-density matrix (7.9) becomes

Su={lae|?

=te ¥+ 1[l=(1=€/Q%)"]sinh(2r) , (7.102)
Ip=(]4a|?)

=+te¥—+[1-(1-€/Q%"Jsinh(2r) , (7.10b)
S13=—3y=+ile/Q)cosh(2r) . (7.10c)

Letting @=0 yields a diagonal covariance matrix
KX mn =Re(2,,), which means that the squeezing of the
error ellipse in Fig. 3 occurs along the &, and &, axes or,
equivalently, that the quadrature phases E(x,t) and
E,(x,t) have zero second-order correlation. The reduced
spectral-density matrix for any squeezed state can be put
in the form (7.10) by using rotated quadrature-phase am-
plitudes @} =a,cos@+a,sin@ and aj = —a,sing +a,cos@
(Egs. (4.36) and (5.19)]. Thus the subset defined by =0
is not so much a special case as it is a convenient choice
of phase for defining the quadrature phases—a choice
that puts the information about squeezing wholly into the
diagonal elements of ¥ ,,,. For =0 the product of the
root-mean-square uncertainties in a, and a; is given by

(1aa |22 | Aay | )12 =11 +(€/Q%)sinh?r]' 2
(7.11)

In accordance with the proof in Sec. VI and the Appendix
[Eq. (6.5)], the uncertainty product (7.11) achieves the
minimum value of + if and only if 7 =0 (provided es£0).

Consider now what happens as the squeeze factor 7 in-
creases from r=0; choose =0 for easy interpretation.
For small r [cosh(27) << (1/¢€], the mean-square uncertain-
ties in a, and a, are given approximately by

(|Aa|D=te¥, (|Aay|H=Te¥. (7.12)
These mean-square uncertainties are the two-mode analog
of the variances that apply in the degenerate limit [see Eq.
(8.25)]. They show that ( | Aa, |?) is squeezed below the
zero-point level; in accordance with the uncertainty prin-
ciple (6.1), (| Aa,|?) increases above the zero-point level.
As long as cosh(2r) <Q/¢, (|Aa,|?) continues to de-

crease as r increases, but it departs more and more from
Te Y. When r=ry>0, where

(7.13a)
(7.13b)

cosh(2rg)=Q/e,
coshro=(Q/2¢)'?A,, sinhro=(Q/2¢)'*A_

(Eq. (4.24)], (|Aa,|?) achieves the minimum possible
value €/2Q [Eq. (6.6)]; thus the state |pq ta_)ir,o
yields a classical excitation of the quadrature phase
E\(x,1), contaminated only by quadrature-phase zero-
point  noise. Equation (6.7)  guarantess that
|a, #a_Dir0 is an eigenstate of a,=(e/Q)%a_(ry,0)

(Egs. (4.14), (4.25a), and (7.13b)]:

a) “‘a‘uua_>(ro.0)=§l I#G‘_'#a_ )(rO,O) ) (7.142)

£1=(e/Q)" , (7.14b)

[cf. Eq. (4.16)]. For r>rg, {|Aa;|?) increases as r in-
creases.

The state |pq 4a_)ir,0 belongs to a special class of
two-mode squeezed states which we call squashed stares."?
The set of squashed states consists of the states
[Ha,#a_dirye for all values of . The squashed state

],uh,,u,,_)(,w, is an eigenstate of the rotated quadra-
ture-phase amplitude

a) =a,cosp+asing=(e/0) % ~®a_(r,@)

with eigenvalue (e/Q)muhe =% [Egs. (4.14), (4.25), and
(4.16)]; hence @) has the minimum mean-square
uncertainty (|Aa) |?)=€/2Q. In particular,
| ba, da_dirgem is an cigenstate of ay=—ile/Q)'?
Xa.,(ro, 77) with eigenvalue §=—i(e/Q)' "y, . Lni-
tially we hoped that the squashed states, as eigenstates of
the quadrature-phase amplitudes, might play a fundamen-
tal role in two-photon optics, analogous to the role played
by the eigenstates of the annihilation operator—the
coherent states—in one-photon optics. Our initial hopes
were quashed, however, by our inability to find any spe-
cial role for the squashed states. In the formalism
presented in this series of papers, therefore, the squashed
states are on the same footing as all the other two-mode
squeezed states.

The mean-square uncertainties in 3, and B, [Egs.
(4.47)] for a two-mode squeezed state can be obtained
from Egs. (7.9) and (7.10) by setting €=0. In particular,
for =0 one finds that

(1AB |} =1e~¥, (|ABy|¥)=1e*. (7.15)

VIII. DEGENERATE LIMIT

A. Definition and discussion

We shift attention now to the degenerate limit of our
two-mode formalism. By the degenerate limit we mean
that the two modes we have dealt with coalesce into a sin-
gle mode at frequency Q. Taking this limit is not an en-
tirely trivial task. An obvious first step is to set €=0, so
we assume €=0 throughout the remainder of this subsec-
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tion. This step alone, however, is not sufficient, because it
leaves two degenerate, but distinct modes at frequency Q,
which have distinct annihilation operators a, and a_.
[Simply setting €=0 would describe, for example, the case
where the two modes are plane waves of the same fre-
quency traveling in different directions; see discussion
preceding Egs. (4.5).] To take the desired degenerate lim-
it, one must somehow reduce the number of modes from
the two original modes to one mode that corresponds to
the coalescence of the two original modes; out of the four
original degrees of freedom, one must pick two relevant
degrees of freedom and discard the other two.

The key to picking the relevant degrees of freedom is to
define new annihilation operators a and b, which are uni-
tarily related to a . and a_:

(8.1a)
(8.1b)

a=2""Ha_+a_), b=2"""—ia +ia_),
a.=2""Ya=*ib).

The importance of these new operators becomes apparent
when one writes the positive-frequency part of the two-
mode electric field [Eq. (4.5b) with €=0] in terms of a
and b:

E')x,0)=Q!Pge —iB=x) (8.2)

One sees that a is the annihilation operator for a plane-
wave mode at frequency (2; it contains the relevant de-
grees of freedom. In contrast, b does not appear in the
electric field; it contains the irrelevant degrees of freedom.
One can write the operators introduced in Sec. IV in terms

of a and b. For example, the quadrature-phase ampli- .

tudes (4.25) become
A =0y +ibp, m=1,2 (8.3)

where @, a,, by, and b, are the Hermitian real and imag-
inary parts of a and b, i.e.,

a=a,+ia,, b=by+ib,. (8.4)

Thus, another way to characterize the relevant degrees of
freedom at degeneracy is that they are the real parts of a,
and a,, whereas the irrelevant degrees of freedom are the
imaginary parts. In terms of a and b the fundamental un-
itary operators become

U0 emo=1, (8.5a)

R(6) | mo=exp( —ifa'a)exp(—i6b'b), (8.5b)

Dla . ,u.)Dla_,u_)| mo=Dla,u)D(b,y), (8.5c)

S(r,@) | emo=exp[ +r(a’e 29 _q 2 29)]
Xexp(+rible =4 _p'ee)]  (3.5d)

[Egs. (4.37), (4.33), (4.12), and (4.9)], where
p=2""u +pl), (8.6a)
y=2""—ip, +ip_). (8.6b)

Notice that Eq. (8.5a) implies that when €=0 the MP and
IP are the same.

The two-mode Hilbert space factors into a tensor
(direct) product of Hilbert spaces for the @ mode and the

b mode. The a-mode Hilbert space is the Hilbert space
for the relevant mode at degeneracy. We let tr, denote a
trace over the irrelevant b-mode Hilbert space. We use a
subscript a to denote a state vector that lies in the a-mode
space or an operator that operates in the a-mode space; a
subscript b performs the same role for the b-mode space.

One is now in a position to define the degenerate limit:
one reduces the Hilbert space from the two-mode space to
the a-mode space; for a state vector or an operator, one
extracts a piece that lies in or operates in the a-mode
space. To make these notions precise, consider a two-
mode density operator p. We say that p has a degenerate
limit if the a mode is independent of the irrelevant b
mode, so that no matter what operation is performed on
the b mode, the a-mode is unaffected. Hence, a densiry
operator p has a (unique) degenerate limit p, =try(p) if
P=pqpPy; We denote this limit by

pP—Pa - (8.7)
4

Similarly, a state vector |y) has a degenerate limit |y, ),
denoted by

(W) — ¥, (8.8)
?

if |)=|1,)® | ¥y ); requiring that | ¥,) be normalized
makes this limit unique up to an arbitrary phase factor.
The limits (8.7) and (8.8) have an obvious extension to un-
itary operators. A4 unitary operator U has a degenerate
limit U,, denoted by

Gsll, 5 (8.9)
4

iff U= U, U,; requiring that U, be unitary makes this lim-
it unique up to an arbitrary phase factor. In Egs.
(8.7)—(8.9), the p under the arrow signifies that these are
product degenerate limits; i.e., each requires that the
relevant quantity factor into a product of an a-mode
quantity times a b-mode quantity. The limits (8.7) and
(8.9) could easily be extended to a product degenerate lim-
it for arbitrary operators, but we have no need for such a
generalization here. For present purposes the important
properties of the product degenerate limit are that

U—U,, p—ps = UpU'— U,p, U}, (8.10a)
P P 4

U-p. U,, |¢>—P»lwa> =U|¢)—;~U,Iw¢). (8.10b)

For observable quantities or for non-Hermitian opera-
tors like the quadrature-phase amplitudes, a different de-
generate limit is appropriate. Consider an arbitrary
operator R. We say that R has a sum degenerate limit
R,, denoted by

R—R,, 8.11
$
if R=R,+R,. The motivation for this definition is that
for a state p with a degenerate limit, R, and R, are un-
correlated. The sum degenerate limit (8.11) is defined
only up to an arbitrary additive constant.
Having specified how to take degenerate limits, we now
consider the limits of the two-mode quantities introduced
in Sec. I[V. We adopt the sensible convention that the lim-
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it of an SP operator is an SP operator, and the limit of an
IP or a MP operator is an [P operator. For normalization
purposes we define the sum degenerate limits of the IP
two-mode electric field operator [Egs. (4.5)] and the [P
quadrature phases [Egs. (4.19)] to be 2'/? times a quantity
denoted by the same symbol [eg., E'*)x,1)
—2172(0/2) 2ge — M =2 =2+ )« 1): of. Eq. (8.2)];

s

with this choice the degenerate limit of the [P two-mode
electric field operator yields the IP single-mode electric
field operator defined by Egs. (3.3) with w =, and the re-
lations between the electric field and the quadrature
phases [Egs. (4.19)—(4.21)] retain the same form in the de-
generate limit. The sum degenerate limit of the SP an-
nihilation operators (Eq. (8.1b)],

3.—2"7,
s

(8.12)

suggests defining the sum degenerate limit of the MP
squeezed annihilation operators (4.14) in the following
way:

a-(r,@)—2"""%a coshr +a'e¥®sinhr) =2-"2a(r,p) .
s
(8.13)

The MP quadrature-phase amplitudes (4.25) have a Her-
mitian sum degenerate limit

Ay =0 =271
s
(Eq. (8.3)].

The loss of two degrees of freedom at degeneracy erases
the distinction berween the quadrature phases and the
quadrature-phase amplitudes: the IP quadrature phases,
which are initially Hermitian operators with harmonic
time dependence at frequency €, become constant in the
degenerate limit; the MP quadrature-phase amplitudes,
which are initially (constant) complex-amplitude opera-
tors, become Hermitian in the degenerate limit. As a re-
sult, at degeneracy there are three Hermitian IP operators,

Xmy m=1,2 (8.14)

En(x,0)=020)"%,, =0'%,, , (8.15)
all of which are constant and any of which could be called
a quadrature phase or a quadrature-phase amplitude.> We
prefer to give x, and x, the distinction of being the (de-
generate) quadrature-phase amplitudes, because their rela-
tion to the annihilation operator has the same form as
Egs. (4.25) with €=0, i.e.,

x=2""a+a", (8.16a)

xy=2""Y¥—ia+ia"), (8.16b)
and because their commutator

[xy,x;]=i (8.17)

enforces the same uncertainty principle as Eq. (6.1), i.e.,
((Ax )12 ((Axy)?) V25 £ (8.18)

[cf. Eq. (6.3)].
The fundamental unitary operators introduced in Sec.

IV (Egs. (8.5)] have the following (unitary) product degen-
erate limits:

Uylt)—1, (8.19a)
I

R(8)—exp(—ifa’a), (8.19b)
4

Dla,,p,)Dla_,u_)—Dlap), p=2""u, +pu_),
P)

(8.19¢)
S(r,p)—exp[ +r(a’e 4% —g"%e¥9)] =5 (r,p) . (8.19d)
14

The MP free evolution operator Uy, (t) becomes the iden-
tity operator, the rotation operator R() becomes a
single-mode rotation operator, the two-mode displacement
operator D(a . u.)D(a_,u_) becomes the single-mode
displacement operator (3.7), and the two-mode squeeze
operator S(r,p) becomes the degenerate squeeze opera-
t0r***¥ S\(r,p). Under a unitary transformation generat-
ed by S\(r,p) the annihilation operator a becomes the
squeezed annihilation operator a(r,p) [Eq. (8.13)]:

a(r,qJ)=S,(r,<p)aSI(r,¢7)=a.coshr +a'e¥%sinhr  (8.20)

[cf. Eq. (4.14)]. For =0 the degenerate squeeze operator
transforms the quadrature-phase amplitudes according to
S1r,0x,S,(r,0)=x,e ", (8.21a)
S1(r,002:8,(r,0)=x,e" . (8.21b)
The degenerate limits (8.19) can be applied to obtain the
degenerate limits of the special states defined in Sec. IV.
The product degenerate limit of a two-mode coherent

state [Eq. (4.11)] is a single-mode coherent state [Eq.
(3.9]:

’#+'”—)wh7|#>wh: p=2""u, ). (822)
The product degenerate limit of a two-mode squeezed

state [Eq. (4.15)] is a degenerate squeezed state’®*?

|.u'a (r,;p): -

|.ua_l.u:z_)(r.m;’sl(r’@)D(a'“a) f O>
=D(a,u)S\(r,@)|0) = |padirgp » (8.232)

Pa=2""ug +pq_)=pcoshr +u"e®sinhr (8.23b)

[Egs. (4.17) and (4.18)]. A degenerate squeezed state is la-
beled by the eigenvalue of a(r,p) (Eq. (8.20)]:

a(r,@) |/-‘a)(r.w)=,ua]l-‘a>(r.¢) (8.24)

[cf. Eq. (4.16)]. The quadrature-phase amplitudes have
the following variances in a degenerate squeezed state
with g=0:

((Ax ) =Fe~¥, ((Ax;))=7e¥
[cf. Egs. (7.12)].

(8.25)

B. Review of previous work

Degenerate squeezed states were introduced indepen-
dently by Stoler*”** (“minimum-uncertainty packets”)
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and Lu*** (“new coherent states”), both of whom used
the degenerate squeeze operator to generate squeezed
states from coherent states. The first comprehensive
treatment of squeezed states is due to Yuen,? who called
them “two-photon coherent states” because of their gen-
eration by ideal two-photon processes. Yuen explored in
detail the properties of degenerate squeezed states, and he
discussed several physical mechanisms for generating
them. In this series of papers we adopt Yuen's notational
convention, which labels a degenerate squeezed state by
the eigenvalue of the squeezed annihilation operator. Not
long after Yuen's paper, Yuen, Shapiro,”’ and Machado
Mata® developed the theory of optical communications us-
ing squeezed states. At about the same time Hollenhorst*
introduced squeezed states into the theory of “quantum
nondemolition measurements.”*® Hollenhorst coined the
term squeezed and applied it to the degenerate squeeze
operator (in Ref. | the term was extended in an obvious
way to apply to the states themselves). Hollenhorst’s
work led to the realization' that squeezed states could be
used to improve the sensitivity of laser interferometers
used to detect gravitational waves. In the last few years
there has been an explosion of interest in squeezed
states.™*  Optical communications and high-precision
measurements remain their primary potential applica-
tions, but interest is also fueled by a desire to investigate
their nonclassical behavior.’

In unpublished work Yuen*’ has considered general
multimode squeezed states. Yuen and Shapiro’ and Mil-
burn®® have defined two-mode or multimode squeezed
states, but the states they define are simply tensor (direct)
products of degenerate squeezed states for each mode.
There is a formal sense, realized by Lu** and pointed out
explicitly by Milburn,® in which the two-mode squeezed
states defined here can be regarded as a tensor product of
two degenerate squeezed states. For any value of € one
can define the operators a and b of Egs. (8.1), and one can
write the two-mode displacement operator and the two-
mode squeeze operator in terms of a@ and b as in Egs.
(8.5¢c) and (8.5d). Thus a two-mode squeezed state (4.17)
factors into a tensor product of degenerate squeezed states
for the *a mode” and the “b mode.”

The difficulty with this description is that unless €=0
the operators @ and b are not modal annihilation opera-
tors because they do not have a harmonic time depen-
dence in the IP. The operators a, and @ _—not a and
b—appear in a modal decomposition of the electromag-
netic field. Formally, it is correct to describe a two-mode
squeezed state as a product of degenerate squeezed states
for the “a mode” and the “b mode,” and this description
does permit one to obtain properties of two-mode
squeezed states directly from properties of degenerate
squeezed states. Physically, however, this description is
very misleading, because it can easily lead one to believe
that the way to produce nondegenerate (wide-band)
squeezing is to squeeze separately two different modes. In
reality, wide-band squeezing does not result from
separately squeezing different modes [see Eq. (5.6a)]; rath-
er, it is a consequence of a special sort of correlation be-
tween two modes symmetrically placed about a carrier
frequency [Eqgs. (5.8b) and (5.8c)]. Such correlation is

produced by ideal two-photon devices, and it is the feature
that characterizes two-photon optics.
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APPENDIX: UNCERTAINTY PRINCIPLES
FOR NON-HERMITIAN OPERATORS

In this Appendix we derive and discuss uncertainty
principles that apply to the mean-square uncertainties of
non-Hermitian operators. Our immediate objective is to
derive the uncertainty principles for @, and a; which are
given in Sec. VI. The derivations are more general,*®
however, than the special case of @; and a,, because we do
not restrict ourselves to operators with c-number commu-
tators. Since the uncertainty principles for non-Hermitian
operators are based on the uncertainty principles for their
Hermitian real and imaginary parts, we begin by review-
ing the standard uncertainty principle for two Hermitian
operators. The notation we use here is introduced in Sec.
1L

1. Two Hermitian operators

Consider two Hermitian operators B and C. They
satisfy the ordinary uncertainty principle for the product
of their uncertainties:

((AB\2((AC) 2> +|([B,.CD | . (A1)

The derivation of Eq. (Al) can be found in most
quantum-mechanics textbooks (see, e.g., Chap. 8.6 of Ref.
27). Equality holds in Eq. (A1) if and only if the state
vector | W) is an eigenstate of a particular linear com-
bination of B and C:

(AB+iBAC)|¥)=0, (A2a)
g=_S[B.CD  (aph)\7
O BCD | (a2
ey o {[B.C]
=HB.en =T o A

Notice that B is real because ([B,C]) is pure imaginary.
Equality in Eq. (Al) implies that B and C have zero
second-order correlation, i.e.,

(ABAC)yym=(BC)yn—(B){C)=0. (A3)

2. One non-Hermitian operator

Let R be a general, possibly non-Hermitian operator.
We want to derive a lower limit for its mean-square
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uncertainty (| AR |?) [Eq. (2.9)]. An instructive ap-

proach is to consider its Hermman real and imag-

mary parts R,_Re(R)——(R-+-R) and R;=Im(R)
—1iR—RM), ie,

R=R,+iR, . (Ad)

It is useful to note the following relations among opera-
tors:

(ARP=(AR (AR +2i{AR | ARy )y, (AD)
| AR |*=(AR )} +(AR,)?, (A6)
(R,R"]==2i[R,R:]. (A7)

Notice that ([R,R']) is real.
By noting that

CTAR 1) =((AR ) + ((AR,)?)
> 20(AR)F((AR, 2, (A8)

one can use the ordinary uncertainty principle (A1), ap-
plied to Ry and R,, to establish a lower limit for
(JAR|):

(AR 2 +I{R,RD | = ([RLRD | . (A9
This derivation makes clear that equality in Eq. (A9) is
equivalent to each of the following: (i) R, and R, have
equal uncertainties, which have the minimum- uncenmnty
product, i.e.,

(AR =((AR) =1 [{[R\,R. ] ; (A10)
(ii) the state vector | W) satisfies
i M—AR, |¥) =0 (AlD)

[ ((R,RT]) | .
(Egs. (A2) and (A7)]; (iii) the state vector | V) satisfies

AR |W)=0 if ([R,R"])>0, (Al2a)

AR WY=0 if ([R,RT])<O. (A12b)
Equality in Eq. (A9) implies

((AR)*)=0. (A13)

The uncertainty principle (A9) can also be obtained
directly without introducing R, and R,. One writes the
mean-square uncertainty in two ways which imply two
lower limits:

(JAR [ =(ARTAR) + +([R,R]) > +([R,R'])
(A l4a)
HIRR > =1 ((RRT]D) .
(A14b)

(|AR|H)=(ARAR") —

Equations (A14) imply the uncertainty principle (A9). If
((R, ]>>0 then equality holds in Eq. (Al4a) if and
only if (AR"AR) =0, which is equivalent to Eq. (Al2a);
similarly, if ([R, Rr])gO then equality holds in Eq.
(A14b) if and only if (AR AR')=0, which is equivalent
to Eq. (A 12b).

3. Two commuting non-Hermitian operators

Consider now two general,*® possibly non-Hermitian
operators R and S which commute:

(R,S]=0 (A15)

thus the important commutator is [R,SN==[R"5]".
In analogy with the ordinary uncertainty principle (Al),
one might expect | ([R,S'])| to set a lower limit on the
product of the root-mean-square uncertainties in R and S.
Indeed, the main result of this subsection is that

<|AR[2)I/2( IASIZ)I/IZ%I ([R,S'])I ,

an uncertainty principle that bears a striking resemblance
to the ordinary uncertainty principle (A 1).

The uncertainty principle (A16) is a consequence of the
ordinary uncertainty principles for the real and imaginary
parts of R and S. We therefore begin a proof of Eq.
(A16) by introducing the Hermitian real and imaginary
parts of R as in Eq (A4) and by 1ntroducmg the Hermi-
tian real and imaginary parts of ¢S,

(A16)

SIE%( g a =Y, S Lilehs—g-tsY
(AlTa)
S=e'”‘(S|+i33) ’ (Al7b)

where e is an arbitrary phase factor. For different
values of A the operators S; and S, are different linear
combinations of the real and imaginary parts of S, but the

mean-square uncertainty in S is still given by
(1AS ) =((AS)?) +((ASy)?)

(cf. Eq. (AR)]. In what follows we derive lower limits on
(| AR |2)Y2( | AS |*)!/* which depend on A, and we
then choose A to enforce the most stringent limit. Using
Eq. (A15), one can derive the following commutators:

(A18)

(e ~*[R,S"+e*R"SD

(R,S1]=[Ry,S]=7
+ilm(e ~*[R,S"])

= (A19a)
[R},S:]=—(R1,S]=+ile ~*R,S"]—e*R",5])
=+iRele"R,S']). (AI9b)

The notation is made less cumbersome by introducing the
symbols

C=ARD 20, s;=((aS)) 20, j=1,2.

(A20)

The commutators (A19) enforce four uncertainty princi-
ples [Eq. (A 1)],

rlslz%c[sin(é—l)l , (A2la)
rasy> te|sin(6—1)| (A21b)
risy> e |cos(8—A)| , (A2lc)
ras > 1c|cos(6—A)| , (A21d)

where we define
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([R.STY=ce®®, c=|([R,S)] . (A22)
Hence, the problem is to minimize
CJAR [ D AS D) =(ri+ridsi+sD)
= |(ry+iry)(s, +isy) |2, (A23)

subject to the constraints (A21). An easy way to do this is
to write Eq. (A23) in two ways, which lead to two dif-
ferent lower limits:

(JAR [ (| AS |3 =(rys) —rasy ) +(risa+ry5, )

> -}czcosl(é—k) s (A24a)
( | AR ;:>( IAS|2>=(f|Sy +f152)2+(f153—!251)2
> tesin6—A) . (A24b)

If one chooses A=6 (A=8—7/2), then Eq. (A24a) [Eq.
(A24b)] implies the uncertainty principle (A16).

The operators S| and S, defined by Egs. (A17) with
A=8—r/2 (or, equivalently, the operators S, and —3S§,
defined by A =3§) bear a special relationship to R and R,.
For A=58—m/2, Eq. (A24b) shows that equality in Eq.
(A16) is equivalent to each of the following two state-
ments: (i) R, R,, S}, and S, satisfy

((AR ) =((ARy)?), ((AS|)?)=((AS:)?),
(AR DIVI((AS ) 2= ((AR,)FA((AS,))12

(A25a)

=5 [{(RS'D]; (A25b)

(i) the state vector | W) satisfies
(AR, +iy AS)|¥) =0, (A26a)
(AR, +i7 AS;) | W) =0, (A26b)
y=(|aR|)2/(|as|)'2 ' (A260)

[Egs. (A2)]. By taking appropriate linear combinations of
Egs. (A26a) and (A26b), one can show that equality holds
in Eq. (A16) if and only if

(AR +ye'®AS) | W) =0, (A27a)
(ART—ye~AST) | W) =0, (A27b)
s ([R.ST]) (laRi})A
ye =
‘ (RS (|as )2
| 2 t
g 8B LY L ARSI (A27¢)

(RS T2 (1as )

[Egs. (A22) and (A26c); cf. Egs. (A2)]. Equations (A27)
do not depend on any special choice for A. They can be
used to show that equality in Eq. (A16) implies the fol-

lowing:
((AR)?)=((AS)?)=(AR AS) =0, (A28a)
(AR AS") ym=17e([S.5'])
=37~ "e([R,R"]) . (A28b)

A simple, but important consequence of Egs. (A27¢) and
(A28b) is that equality in the uncertainty principle (A16)
implies
= SLAR 13 ([R.R)
(1as|y - «(s.s
provided that ([R,R])50=((S,5").

Equation (A28a) shows that equality in Eq. (A16) im-
plies ((AR;*)=((AR,)*) and ((AS,)?) =((AS,)?), re-
gardless of the choice of A. This tells one immediately
that Egs. (A25) are a consequence of equality in Eq.
(A 16), regardless of the choice of A. Equally true is that
Egs. (A25) imply equality in Eq. (A16), regardless of the
choice of A. On the other hand, only for the special
choices A=8—m/2 and A=§ (or their equivalents) are
Egs. (A25) equivalent to eigenvalue equations like Egs.
(A26), because only for these special choices is Eq. (A25b)
a minimum-uncertainty product [cf. Eqs. (A21)]. Thus it
is the eigenvalue equations (A26) that pick out the opera-
tors S| and S, defined by A=8—7/2.

An alternative method of proving the uncertainty prin-
ciple ‘(A16) goes as follows. Choose for illustration
A=8—m/2; the problem is then to minimize
flrurnsnsy)=(ri+riisi+s3) [Eq. (A23)], subject to
the constraints r;s; > +¢ and 7,5, > +c [Eqs. (A21a) and
(A21b)]. As a first step, minimize f on the hypersurface
riras;s;=K%>c¢*/16, where K is a constant. The
minimum value f=4X? can be found by using a
Lagrange multiplier to enforce the hypersurface con-
straint; the minimum occurs when ry=r;, s;=95;,
risy=rys;=K. Now vary K to find the absolute
minimum consistent with the constraints; the obvious
answer is K =+c, which yields an absolute minimum
value f=+tc2

It should be remembered that the uncertainty principle
(A16) is not the whole story, since it is based only on the
commutator (R,S']. It is quite possible that the con-
straint

(JARIH(C1AS D) 2 (R RDINS.SD T,
(A30)

(A29)

which follows from the separate uncertainty principles for
R and S (Eq. (A9)], provides a more stringent lower limit
than Eq. (A 16).
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This paper provides the mathematical foundation for the two-mode formalism introduced in the
preceding paper. A vector notation is introduced; it allows two-mode properties to be written as
compactly as the comparable properties for a single mode. The fundamental unitary operators of
the formalism are described and their properties are examined; particular attention is paid to the
two-mode squeeze operator. Special quantum states associated with the formalism are considered,

with emphasis on the two-mode squeezed states.

[. INTRODUCTION

The present series of papers introduces a new formal-
ism for two-photon quantum optics. The goal is to
develop a formalism suited to analyzing two-photon de-
vices, such as parametric amplifiers and phase-conjugate
mirrors, in which photons are created or destroyed in the
output modes two at a time. In the preceding paper’?
(henceforth referred to as I) we introduced the basic build-
ing blocks of our two-mode formalism: (i) new operators,
the quadrature phases and the quadrature-phase ampli-
tudes, and (ii) new quantum states, the two-mode squeezed
states. The emphasis in [ was on developing a sound
physical interpretation of these fundamental entities. A
conversational style invited the reader to become familiar
with the elementary, but most important properties of the
quadrature-phase amplitudes and the two-mode squeezed
states. In the present paper the emphasis shifts—from
physical interpretation to mathematical details. We intro-
duce a compact vector notation which simplifies the
mathematical description and at the same time highlights
the important physics underlying our two-mode formal-
ism. With the help of this notation we examine in detail
the components of the formalism. The reward for the
persistent reader is to proceed to a future paper (paper
III), where the notation and results of this paper are used
to construct the working tools of the new formalism—a
set of “two-photon” quasiprobability distributions.

The present paper is largely independent of I, but a
complete understanding does require familiarity with
some of the material in I. (Equations in I are referred to
here by affixing I to the equation number.) Since we
make no attempt in this paper to motivate the definitions
of the quadrature-phase amplitudes and the two-mode
squeezed states, the reader might find it helpful to be fam-
iliar with the physical interpretation developed in I. The
reader should also be comfortable with our potentially
confusing habit of writing equations which contain opera-
tors defined in different pictures (see Sec. II of I); in par-
ticular, he should be familiar with the relations among the
Schrodinger picture (SP), the modulation picture (MP),
and the interaction picture (IP) [Egs. (I.4.3) and (1.4.4)]

3

and with the convention introduced in Sec. IV C of [ by
which we specify for each physical quantity the picture in
which the operator corresponding to that quantity is al-
ways written.

Given this minimal familiarity with the material in I,
we can cast aside the interpretative superstructure used in
I and extract only the essentials needed in this paper. We
deal with two electromagnetic field modes whose frequen-
cies are +¢, where () is a carrier frequency and € < Q) is
a modulation frequency. The SP creation and annihila-
tion operators for the two modes are denoted by a - and
a+; they satisfy the standard commutation relations

+

[ap,a_]=[a,,a_]=0, (1.1a)

la,,ah]=la_,a ]=1. (1.1b)
The free Hamultonian for the two modes is

Ho=Hz+Hy , (1.2)
where:

Hp EQ(G:_G,-,-%—G:G_), (1.3a)

Hy=elala, —a"a_), (1.3b)

[Hg,Hy]=0. (1.4)
The MP quadrature-phase amplitudes are defined by

aIEZ“m(k+a++/\_at_), (1.5a)

ay= Y < 8, +ikoal], (1.5b) -

ro=[(Qze)/Q)'? (1.6)

[Egs. (1.4.25)]; they obey the following commutation rela-
tions:

[a,,a;]=[a2,a;]=e/ﬂ ; (1.7a)
(apa]}=0, (1.7b)
lanal]=[ala]=i . (1.7¢)

The important new unitary operator in our formalism is
the two-mode squeeze operator

3093 © 1985 The American Physical Society
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S(rp)=explria,a_e 4% —g' al e%?)] (1.8)

(Eq. (1.4.9)], where r is a real number called the squeeze
factor and @ is a (real) phase angle. The two-mode
squeeze operator satisfies

S~Ur,@)=S"re)=S(—r,@)=Slr,p+7/2), (1.9)

and it generates the squeezed annihilation operators, which
in the MP are defined by

a-(lr,p)=S(r,pla :St(r@):a +coshr +a ;eli"sinhr
(1.10)

[Eq. (I.4.14)]. The squeezed annihilation operators are un-
itarily equivalent to the annihilation operators, so they
have the same commutator algebra [Egs. (1.1)].

This paper is built on Egs. (1.1)—=(1.10). Section II in-
troduces the compact vector notation which is used
throughout this and subsequent papers. The components
of our formalism are a set of fundamental unitary opera-
tors and a set of special quantum states. Section III ex-
amines in detail the fundamental unitary operators, and
Sec. IV does the same for the special quantum states, with
emphasis on the two-mode squeezed states. A concluding
section meditates on the formalism developed here and
hints at the results to come in subsequent papers. Some of
the important results are developed in appendices: Ap-
pendix A lists properties of various-transformation ma-
trices associated with the vector notation; Appendix B
derives useful factored forms for the degenerate and two-
mode squeeze operators and an expression for the product
of two different squeeze operators; Appendix C considers
the inner product of two squeezed states. Throughout this
paper we use units with A=c =1.

II. VECTOR NOTATION

The most important feature of the two-mode squeeze
operator S(r,p) [Eq. (1.8)] is that under a unitary
transformation generated by S(r,@), a. is transformed
into a linear combination of a. and az. This association
of a, with a" (and a_ with a'.) is evident in the defini-
tions of the squeezed annihilation operators [Eq. (1.10)]
and the quadrature-phase amplitudes [Egs. (1.5)]. We
have found it natural and useful to introduce an operator
column vector®
a4

t

(2.1

a=
~" |a
which recognizes explicitly this association. This vector
notation has been used by Collett and Gardiner® in an
analysis of parametric amplification. Mollow* and Yuen
and Shapiro® have also used a two-component vector no-
tation, but they use a column vector formed from o, and
a _. The adjoint of the vector (2.1) is the row vector

at=@’, a_). (2.2)

Products of the vectors (2.1) and (2.2) are calculated using
the usual rules for matrix multiplication, i.e.,

3"3=af+a++a_ar_ " (2.3a)

+
a,a, a,a_

tot

t (2.3b)
alal a_a_

aa =

Also useful is an operator column vector for the
quadrature-phase amplitudes,

a;
&Z=| |=dAa, (2.4
g= |, i=dhs
where
11
4=2"'7| . =04, (2.5)
A, 0
A= (g 5 |=AT 2.6)

[Egs. (1.5) and (1.6)]. A list of useful properties of 4 and
A appears in Appendix A; many of the properties are most
conveniently written in terms of the unit matrix | and the
Pauli matrices

01
10

0 —i
i 0

10

g —i| @D

o= y D= y 3=

The matrix A’=1+(e/Q)g; plays an important role
because it appears in the vector expression for the free
Hamiltonian (1.2),

Hy+Q-e=0a"\a=(Q+elala, +(Q—cla_al
=0« & =Qlala,+ala;) (2.8)

[cf. Eq. (I.6.10b)]. Other matrices that turn up repeatedly
in the following are

m 1 ie/Q) ' 5
A=sdAMA4AT=1-(e/Q)g ;= _iesq. 1 |8 (2.9)
[Egs. (A17) and (A6)] and

O=4ig,dd'=-g,a=(e/Q)l~¢q,
e/ i N
i om0 10

(Egs. (A20) and (A6)]. The matrix [ is the matrix of
commutators for the quadrature-phase amplitudes:

Mon ={am,ah] 2.1

[cf. Egs. (1.7)].
The naturalness of this vector notation is revealed most
clearly by examining the operator matrix

(Aa, Aa:),ym (AalAag)sym

(Aa;Aa{),,m (AazAa;),ym y Bl

(At A Nyym=

where A = — (&), A2, =a,-(a,), and “sym”
denotes a symmetrized product (see Sec. II of I). The ex-
pectation value of the matrix (2.12) is the (Hermitian) re-
duced spectral-density matrix

S=(Ad Ay (2.13)
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(Eq. (L5, ")] the components of 23
=(Aa,, Aa,, ),,m—Z,,,,,, are the second-order noise mo-
ments that characterize time-stationary quadrature-phase
(TSQP) noise (see Sec. V of I). Thus the vector notation is
tailored to describing TSQP noise—the kind of noise pro-
duced by two-photon devices—because it generates natur-
ally the second-order noise moments that characterize
TSQP noise. In contrast, the noise moments {Aa,,Aa, ),
which vanish for TSQP noise [Eq. (I.5.1)], are not gen-
erated naturally by the vector notation.

Corresponding to the matrix (2.12) is a matrix involving
the creation and annihilation operators,

[da,|? Aa, Aa_

(Aa.\a )sym = aat Aaﬁ, laa_|? |’ (2.14)
where |Aa- |'=(Aa- A~ Jya [cf. Eq. (12.8)]. Its ex-
pectation value is the Hermitian matrix )

T=(22d2)ym, 2.13)

which gives the second-order noise moments that charac-
terize TSQP noise in terms of the creation and annihila-
tion operators instead of in terms of the quadrature-phase
amplitudes. The relation between the two kinds of noise
moments can be written in the compact matrix form

=4A324',

which is equivalent to Eqs. (L5.8).
Natural decompositions of £ and 3 are afforded by the
unit matrix | and the Pauli matrices ¢, g, and ¢ 5:

I=Zol+3e;,
§=§-ol+§,<z,» ,

where repeated indices are summed over j=1,2,3. The
coefficients Z¢,2; and b 2,, which are guarantesd to be
real by the Hermmcxty of T and I, are related to the noise
moments as follows:

To=1(Z+Zn) I,=Re(Z;y),

(2.16)

(2.17)
(2.18)

Sy=—Im(Z), Z3=+(Z,—-31), (2.19)
So=+({]Aa, | +(]aa_]?)
3 =Re({da. Aa_)),
3,=-Im({da.da_)), (2.20)
Sy=7((Jaa (D =(laa_|*));
they are related to each other by

=39+(e/Q)F;, I =—(1-/0)'?F,,

(2.21)

= =3, (e/Q)3Z, Z;=(1-/aH73F,

(Eq. (2.16); cf. Egs. (1.5.8)]. The differential distribution
of noise in phase is specified by Z, and Z; or, equivalent-
ly, by £, and Z,. TSQP noise that is distributed random-
ly in phase is called time-stationary (TS) noise. For TS
noise Re(Z ) is a multiple of the unit matrix (2, =2;=0),
and ¥ is diagonal (2, =3,=0; cf. Egs. (1.5.9)].

The final important operator column vector is a vector

for the squeezed annihilation operators (1.10),

a.(r,@) ;
(o N - =S(r,plaS'(rp)=C,oa, (222)
where
coshr  e*®sinhr ;
Cro= e ~¥%%sinhr coshr =Cro- (2.23)

Notice that a=aq, [n the expression S(r, :p)aS (r,@)
the operators s S(r, @) and st ,@) act scparatcly on each
component of a. Hence the adjoint of @, , is given by

ar,=Sirenalsre)=a'c},. (2.24)
The inverse of Eq. (2.22) takes the form
a=5"(rpa,,Srnp)=C la,,. (2.25)

The matrix C, , describes the matrix transformation of
a that is induced by a unitary transformation of a gen-
erated by S(r,@). Useful properties of C,, are listed in
Appendix A. Any unitary transformation U which gen-
erates a matrix transformation of a (linear transformation
of a, and a') is a canonical transformation, described
by a matrix M:

UVaU'=Ma.

Since a canonical transformation preserves commutators,
M must satisfy

(2.26)

Mg M'=g,, 227
which is equivalent to
Mo M=g;. (2.28)

If M has unity determinant, then it is an element of the
group SU(1,1).® The most general element of SU(L,1)
(generated by U=S(, @R'(6); see Eq. (3.12)] is M
=e ”’Q,w The matrices C,, generated by
U=S(r,p), are the Hermitian elements of SU(1,1). They
must satisfy Eq. (2.28):

Q,_;,U Cro=a3. (2.29)

Equation (2.29) is the key property of C, .. It says that
C o preserves the scalar product with respect to the
“metric” g ;; it is an expression of the fact that a unitary
transformation generated by S(r,) preserves the differ-
ence in the number of quanta in the two modes.” In terms
of the vector notation this fact is most easily written as
prescrvauon of the scalar product 572 1a=a .0,
—a_a_,ie.,

S(r,pla g,aST(r pl=a ¢q;a,¢

=a'Cl eg:C a=2'g:a.

In addition to the above operator vectors [Egs. (2.1),
(2.4), and (2.22)}, it is useful to have available the c-
number vectors defined in Table I. The components of
each c-number vector are complex numbers. With each
operator vector we associate two c-number vectors, an
“active-role” vector and a “passive-role” vector. The

(2.30
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TABLE [. Two-mode vector notation.

Associated c-number vectors

Operator vector Active role Passive role
a, H+ Ve
= £2 e e
a,. Ha Va
arp=a= |t |=Croa Ba= 0 SCrop Ya= | |Shney
o a . & m .
g= |, |=dda é= &, =du 1= |, =447

active-role vectors are used in contexts where the c-
numbers act as surrogates for the corresponding opera-
tors, e.g., as eigenvalues or expectation values of the
operators or as variables of a quasiprobability distribution.
The passive-role vectors are used when the c-numbers ap-
pear as variables of a characteristic function. (Charac-
teristic functions and quasiprobability distributions will be
discussed in paper III.) Notice that there is no real differ-
ence betwesn the active-role and passive-role vectors in
the first two rows of Table [; nonetheless, we maintain the
distinction because of the difference encountered in the
third row. The second row of Table I introduces a further
notational convenience: for the squeezed annihilation
operators and their vectors we drop explicit reference to a
particular 7 and @ unless this leads to confusion. When
we need additional c-number vectors for either role, we
denote them by attaching primes to all vectors in the ap-
propriate column of Table L.

The crucial properties of the vectors in Table I are the
following invariants: i

2312
pLve—pvi=p'ey=p g ya=£=£n +éimn
(2.31b)

In Egs. (2.31) the second equality follows from Eq.
(2.29)—that C,, preserves the scalar product with
respect to ¢ j; it is the analog of Eq. (2.30). The desire to
have the third equality in Egs. (2.31) is responsible for the
peculiar definition of 7 in Table I. In addition to the
invariants (2.31) it is useful to note the relations

gre =phaty (2.32)
vy =q'A7, (2.33)
Vo =q'ly (2.34)

which reveal the significance of the matrices A?, A, and [1
(Eqs. (2.8)—(2.10)].

The vector notation introduced in this section allows us
to manipulate easily the components of our formalism.
Good examples are provided by the relations

S( r,q:)g’g;_gsf(r,tp)=gfg31=v+a"+—v'_a_ ,  (2.35a)

s'rpia'esySine)=a'esya=va sl -vi _a_,
2.350)

the first of which follow directly from Eq. (2.24) and the
second of which requires the invariant (2.31a) and Eq.
(2.25). Another example is the commutator

va (2.36)

(Egs. (1.1)], which the invariants (2.31) and Eq. (2.34) al-
low us to write immediately in the equivalent forms

(2.37)
(2.38)

' + '
(vig,aa'gvil=vagsvs,
(n'e " 1=n"ln" -

The space on which quasiprobability distributions are
defined is a complex phase space, and the space on which
characteristic functions are defined is the corresponding
complex Fourier space. An active-role vector and the cor-
responding passive-role vector form a pair of vectors
under a complex Fourier transform. It is useful to note
here the relations among integration measures for the c-
number vectors in each column of Table I. Begin by de-
fining, for a complex integration variable §, an integration
measure d26=d(Reé)d(Imé).} For a pair of complex
numbers £, and &,, which form the c-number vector ¢, de-
fine an integration measure -

d*¢=d*, d*%,=d(Ref,)d(Im¢ ) d(Resy) d(Imé,) .
(2.39)

The relations among integration measures are then given
by

dlu=diu.=(1-/a4)""'d%,
div=d*v,=(1-€/0%d"y .

(2.40a)
(2.40b)

There are analogous relations among the § functions of
the c-number vectors in each column of Table I. For a
complex number £, let §%(&)=8(Re£)8(Im¢), and for a c-
number vector £, let

84£)=8%&))6%(&,)

=8(Re£|)8(Imé&)8(Reé,)8(ImE;) . (2.41)
Then one finds that
8 p)=8%p ) =(1-€/018%¢) , (2.42a)
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Sy =8"ya)=(1-€/01)""8%q) . (2.42b)
Equations (2.39)—(2.42) find application in Sec. IIIC2,
where we define the complex Fourier transform, and they
will be used extensively in paper III.

We take the remainder of this section to consider the
degenerate limit of our two-mode formalism, because
most of the current work on two-photon devices deals
with the degenerate limit. By the degenerate limit we
mean the limit in which the two modes at frequencies
Qzte coalesce into a single mode at frequency
Q (e=0,a,.=a_). The formal method for taking this
limit is described in Sec. VIIIA of I. Here we list the
quantities—analogs of the corresponding two-mode
quantities—that are used in the degenerate limit. The SP
creation and annihilation operators for the single mode
are denoted by a and ¢. The (Hermitian) [P degenerate
quadrature-phase amplitudes are defined by

PRyl P R (2.43a)
x, =2 —ig+ia", (2.43b)
a=2""%x, +ix,) (2.44)
(Egs. (1.8.16); cf. Eqs. (1.5)]; their commutator is
[xy,x2]=i (2.45)

[cf. Egs. (1.7)]. Analogous to the two-mode squeeze
operator (1.8) is the degenerate squeeze operator’'°

Sy(r,@)=exp( +r{a’e ~H?—(a")%e¥?]) (2.46)
(Eq. (1.8.19d)], which satisfies
STUne) =Sl (rne)=S\(=r@)=S\(r,p+=772)  (2.47)

[cf. Eq. (1.9)]. The IP squeezed annihilation operator is
defined by

alr,@)=S,(r.p)aS|(r,0)=a coshr +ate @sinhy  (2.48)

[Eq. (1.8.20); cf. Eq. (1.10)].

The degenerate quadrature-phase amplitudes (2.43) look
deceptively like a dimensionless coordinate and momen-
tum. To avoid confusion, we remind the reader that Egs.
(2.43) and (2.44) are written in mixed pictures: a and @’
are (constant) SP operators, whereas x,; and x, are (con-
stant) [P operators. In the SP the degenerate quadrature-
phase amplitudes are explicitly time-dependent operators,
which we denote by

x(t)=e "'n"’?"xlem“”“

=2=2(geiM 4 gte =iy (2.49a)
Xt =e —ima'ax:cmm 'a

=2 _ige'™ 4 igte -0l (2.49b)

[cf. Egs. (1.4.22)]. In contrast, the dimensionless coordi-
nate and momentum are constant operators in the SP, de-

fined by
x=2""%q 1.qa%, (2.50a)

(2.50b)

p=2""%—ia +ia",

a=2""x +ip) . (2.51)

Thus, although x;=x and x,=p, a picture-consistent
equation relating the degenerate quadrature-phase ampli-
tudes to the coordinate and momentum takes the form

(2.52a)
(2.52b)

X (t)=x cos(Qt)—p sin(Qe) ,
X,(t)=xsin(Q¢t)+p cos(Qe) .

Table II summarizes the operators and associated c-
number quantities which are used in the degenerate limit.
In Table II we introduce a vector notation for a single
mode analogous to the two-mode vector notation summa-
rized in Table I. It is hoped that use of nearly the same
symbols for the two cases will not lead to confusion, be-
cause we never deal with the two cases simultaneously,
Similar single-mode vector notations have been used by
Yuen,'' Milburn,'? and Collett and Gardiner.” The single
mode that exists in the degenerate limit has two degrees of
freedom—two fewer than in the original two modes. In
the first two rows of Table II this reduction shows up in
that the components of the vectors are not independent
quantities; in the third row it shows up in that the com-
ponents of the vectors are, reading across the table from
left to right, Hermitian operators, real numbers, and pure
imaginary numbers. In the degenerate limit it is some-
times convenient to use a different passive-role vector

¢ —Im(v)
=y

Re(v)
whose components are real.
In the degenerate limit the reduced spectral-density ma-
trix (2.13) becomes an ordinary (real, symmetric) covari-
ance matrix

=in=idg;y=2""* =, (2.53)

ZE(AE,AE,?)sym
((AXl)l) (AXIAXZ)sym
= laxsardon  ((Rea) (2.54)

The corresponding (Hermitian) matrix that gives the
second-order noise moments in terms of the creation and
annihilation operators is

(1Aa]®) ((Ag)?)

- oy

2=(224a )yn= ((Aah?) (|Aai:)] (2.55)

(cf. Eq. (2.15)]. These two matrices are related by
Z=43d' (2.56)

[cf. Eq. (2.16)]. Just as in the two-mode case, one can
decompose the matrices £ and T in terms of the unit ma-
trix and the Pauli matrices. Equations (2.17)—(2.20) re-
tain their forms in the degenerate limit, but note that
$,=0 [Eq. (2.19)] and 3,=0 [Eq. (2.20)]. Equations
(2.21) reduce to the simple equations )

20=—2-0, 2|=—22, 23=_2‘l,

For TS noise the matrices T and 3 are identical and equal
to a multiple of the unit matrix (Z=Z = Zql).
The invariants in the degenerate limit are very much

(2.57)
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TABLE II. Single-mode vector notation.

Associated c-number vectors

Operator vector Active role Passive role
a v
EE ag I.‘,E Y= «
a Ha Va
@re=a=| +|=C,02 Ba=| ¢ |=C,op Ya= | o [SC,01
_ Xy & T
i £= |, |=de=f 1= |n, |SdOx=-1"
like the invariants (2.31) Ug(=e ™% —exp(—ietta’a, ~a"a_)]
a'v—av'=a'g;y=g'g;v.=x'n=—ix"¢ =e~ifexp( —iera’g ;a) 3.0
=—ilx;{1+x36), (Eq. (1.4.37)], which satisfies
(2.58) U (0=Ul=Uyl—=1). (3.2)
t fo I3
B VESRY =&’Q W=HELE s!,a=§*z_l= —"g*g The MP free evolution operator is used to evolve states in
(e e the MP when the two modes are evolving freely. It uni-
= —i(51c1+¢262) .
tarily transforms a .+ as
(2.58b) =
Uy(tias Uyl =ase ™, (3.3)
In the degenerate limit the relations (2.32)—(2.34) become . .
A . which in vector notation becomes
e =uty (2.59)
2’5 £ ’i Uy (DaUy (1) =ge =i 3.4
viv =q'n =t (2.60) .
cTos= FF . Multiplying Eq. (3.4) first by C,, and then by 44, one
Yew=-n'ey ==, (2.61)  finds that

because when e=0 (A=]), A’=A=] and [=-¢.
Equations (2.35)—(2.38) retain their forms in the degen-
erate limit, with the two-mode vectors replaced by the
corresponding single-mode vectors. !

The integration measures corresponding to the c-
number vectors in Table II deserve special comment; they
do not have the form of Egs. (2.40) with e=0 because of
the reduction in the number of degrees of freedom at de-
generacy. Defining d i =d(Reu)d(Imyu), one finds that

(2.62a)
(2.62b)

dlu=d’u.=+d$idé,
dv=divg=tdgidt, .

Notice that d’u/==d& d&,/2 is the usual phase-space
volume element. Corresponding to Egs. (2.62) are the fol-
lowing relations among § functions:

83 p) =83 pq) =28(£)8(EY)

8Hv) =8%(vy) =28(£38(5,)
[8%u) =5(Rew) 8(1mu)).

[II.. FUNDAMENTAL UNITARY OPERATORS

(2.63a)
(2.63b)

A. Modulation-picture free evolution operator

The basic picture in our formalism is the modulation
picture (see discussion in Sec. IV C of 1), so the fundamen-
tal free evolution operator is the modulation-picture free
evolution operator

et 3.9
{3.6)

U‘I,(t)gUM(t)=ge
Uslt)a Upg(t) = e =1

[cf. Eq. (1.4.27)]. An important property of Uy (?) is that
it commutes with S(7,@):

Un(OS (@) Ul()=S(r,0) . 3.7

In the degenerate limit U, (1) becomes the identity opera-
tor, e,

Uylt)—1 (3.8)
p

(Eq. (1.8.192)], which means that the MP and the IP coin-
cide.
B. Rotation operator

An important feature of our formalism is the phase
freedom in the definition of the quadrature-phase ampli-
tudes (see discussion in Sec. [V C of I). The operator that
describes this phase freedom is the rotation operator

R(B)=exp[ —ifla'a, +ata )]

=e'%xp(—ifa'a) 3.9
(Eq. (1.4.33)], which satisfies
R-Y46)=R"(6)=R(—8). (3.10)

A unitary transformation generated by R(8) produces a
common phase change of the annihilation operators,
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R'(0)a.R(6)=a e~ (3.11)
(Eq. (1.4.35)], which in vector notation becomes
R'(0)1aR(B)=¢ ", (3.12)
-6
el e 0
e w’:lcosﬂ—ig,siw: 0 el (3.13)

and it produces a rotation of the quadrature-phase ampli-
tudes,

RO Z RO ="

o, (3.14)

cosf sin@

—sin@ cosf (3.15)

equ=_l_cos£9-:—ig;sin8=

(Eq. (A6); cf. Egs. (1.4.36)].

Important properties of the rotation operator include
the following: (i) R(€) “rotates” the squeeze operator,
ie.,

R (0)S(r,p)R(6)=5(r, p+8) (3.16)

[Eq. (3.11)], a property which is the operator analog of
Eq. (A27); (ii) R(Qny=e 7% is the unitary transforma-
tion that connects the SP and the MP [Eq. (L.4.4)]; (iii)
R (8) commutes with Uy () [cf. Eq. (1.4)]; and (iv) the SP
free evolution operator is e"H°’=R(.Ql)UM(r). Equation
(3.16) implies immediately that

—ibg,

RYOa, RO=e"a, 4. (3.17

In the degenerate limit R (6) becomes a single-mode ro-
tation operator, i.e.,

" R(B)—exp( —iBa'a) (3.18)
4

(Eq. (1.8.19b)].

C. Two-mode displacement operator

At the heart of one-photon optics lies the displacement
operator,® which generates coherent states from the vacu-
um. [t continues to occupy an important place in two-
photon optics. Here we begin by reviewing some well-
known properties of the displacement operator for a single
mode. We then proceed to the displacement operator for
two modes and write its properties in terms of the vector
notation.

1. Single-mode displacement operator
The s{ngle-mode displacement operator® is defined by
D(au)=explua’—pu*a) (3.19)
(Eq. (L.3.7)]. It satisfies the following string of equalities:
D~Yau)=D"au)=D(a, —u)=D(—a,u) . (3.20)

The key property of the displacement operator is that it
displaces the annihilation operator,® i.e.,
DYa,u)aD(a,p)=a+u . (3.21)

One can write Eq. (3.21) in an equivalent form involving

the degenerate quadrature-phase amplitudes (2.43):

D'a,u)xDia,p)=x+§ (3.22)

(see Table II).

We use a two-slot notation for the displacement opera-
tor: D(a,u) can be regarded as an operator-valued func-
tion of an operator a (first slot) and a complex number u
(second slot). The most important reason for this two-slot
notation is that one can replace a with another operator
that has the same commutator with its adjoint and the re-
sulting “displacement operator” has the same properties
as the original. In practice, it is sometimes useful to re-
place a with the squeezed annihilation operator atr,p)
(Eg. (2.48)]. The resulting operator

¥ v
Dla,ug)=e"® 4% 3.23)
which we conventionally write with u, as the label for the
complex variable, displaces a:

D’(a,,u.a)aD(a.;ia)=a+u, 2 {3.24)
Notice that D (a,u) is unitarily equivalent to D(a,u):

S\(r@)D(a,u)S (r@)=Dla,u) . (3.25)
Further, the invariant (2.58a) implies

D(a,u)=Dla,u,) . (3.26)

Equations (3.25) and (3.26) can be used to obrtain the result

Si(r,@)D(a,u)S (r@)=Dla,ug) . (3.27)
One can also define the operator
Q(E,Q)Eexp(fﬂ):exp( —x'_x_?£)=e_“c"‘+"x:) ,
(3.28)

which is the displacement operator written in terms of x
and x,, i.e.,

Dia,v)=Dl(a,vs)=2(x.7) 3.29)

(Eq. (2.58a))].

A second reason for the two-slot notation is that one
can repiace the operator a with a complex number u to
obtain a complex-valued function of two complex vari-
ables,

Dig,v)=et v=""5 (3.30)
which satisfies
D~Yu,v)=D*(u,v)=D(vu)=D(u,—=v)=D(—p,v),

(3.31a)
D(p,v)D(p,v)=D(u,v=+v). (3.31b)

The importance of D(u,v) lies in its role as the expansion
factor for complex Fourier transforms." . A function f(u)
is related to its complex Fourier transform F(v) by

2
f(p)=fd—1_th')D(v,u) (3.32)

(d*v=d(Rev)d(Imv)]. Employing the property
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2. 2
[ 2L D= [ LL Dy =msiv) (3.33)
m m

(8*v)=38(Rev) 8(Imv)), one can invert Eq. (3.32) to give

dZ
=f—ﬂ_ﬁf(u)D(u,v). (3.34)
Equations (3.32) and (3.34) are a neat, symmetric way to
write the relations between a function and its complex
Fourier transform. The invariant (2.58b) implies

t
D(p,v)=D g ve)=e2 1= D(£,7) (3.39)

(cf. Eq. (3.29)].
We end this review of the single-mode displacement
operator by listing a few other important properties:

D' (au)D(a,v)D(a,u)=D(a +u,v)=D(u,v)D(a,v),

(3.36)
D(a,u'\Dia,u)=D(+u',pu)D(au—u), (337
Diag)me=#1 1gha’ g =sa_ o ui*2p—uagua’ (3 3g)

2. Two-mode displacement operator

We tm now to the displacement operator for two
modes, our objective being to generalize (trivially) the
properties of the single-mode displacement operator and
to write the resulting two-mode properties in terms of the
vector notation. Use of the vector notation gives the
two-mode properties an appearance as compact and
elegant as the single-mode properties.

We begin by writing the rwo-mode displacement opera-
tor® [Eq. (1.4.12)] in the form

D(E.E)Eexp(g Ip—p q;g) t
=D(ay,u.)D(a_,p_) 3.39
[cf. Eq. (3.19)], which satisfies
D~'ap)=D'(au)=D(a,—g)=D(-a.u) (3.40)

[cf. Eq. (3.20)].
places a, i.e.,

The two-mode displacement operator dis-

D'(g_./.t)_gD(g.p):_g-L- (3.41)

[cf. Eq. (3.21)], and it generates two-mode coherent states
from the vacuum (sez Sec. IV A 2). Multiplying Eq. (3.41)
by 4 A yields

D'(a.u)Dlap)=of +£

[see Table [; cf. Eq. (3.22)].

We use a two-slot notation for the two-mode displace-
ment operator: D(a,u) can be regarded as an operator-
valued function of an operator vector a and a c-number
vector 4. Just as in the single-mode case, the main reason
for this two-slot notation is that we can also consider the
operator

(3.42)

t t
—-p . Zqa
D(az,y‘,)—--eg Z3£a=Lal 8

=Dla,,puq Dla_p, ) (3.43)

[cf. Eq. (3.23)]. An important connection between D(a,u)
and D(a,u o) is that properties of D(g, K o) can be ob-
tained directly from those of D(a, u) because the squeezed
annihilation operators have the same commutation alge-
bra as the annihilation operators. For exampie, one can
say immediately that D(a,u ,) displaces a:

DY(g.4 o)aDlg,pa)=a+pq. (3.44)

An equivalent way of stating this connection is that
D(a,u) is unitarily equivalent to D(a,u), i.e.,

S(r,@)D(a,u)S'(r,9)=Dlg,u) (3.45)

[cf. Egs. (2.35a) and (3.25)]. Thus Eq. (3.44) could be ob-
tained by unitarily transforming Eq. (3.41) with S(r,@)
and replacing 4 with p g A different and crucial connec-
tion between D(a y) and D(a,y o) is that they are

the same operator, a consequence of the invariant (2.31a):
D(a,u)=D(a,uq) (3.46)

[cf. Eq. (3.26)]. Equation (3.46) means that Eq. (3.44) re-
sults from multiplying Eq. (3.41) by C,,. A further im-
portant relation is a consequence of Egs. (3.46) and (2.25):

S'(r,p)D(a,u)S (r,@)=D(a.u o) (3.47)

[cf. Eqgs. (2.35b) and (3.27)].

We find it useful to write the two-mode displacem=nt
operator in terms of the quadrature-phase amplitudes a,
and a,. Therefore, we define the operator
@) rmay=nfa -nja,

D, q=expld —n')=e

(3.48)

[cf. Eq. (3.28)], which satisfies
2 =P n)=D L, -)=D(-,7)
(3.49)

and which can be regarded as an operator-valued function
of an operator vector & and a c-number vector 7. Since
it is not the same function as D(a,v), we distinguish it
by using a script letter. Nonetheless, the invariant (2.31a)
guarantees that D, 7) and D(a,v) are the same opera-
tor:

D(g.g)-—:D(g_.Za)=.@ ,7) (3.50)

[cf. Eq. (3.29)].

The introduction of Z(«,n) provides a good op-
portunity to elucidate the distinCtion between the active-
role and passive-role vectors introduced in Table [. As
noted in Sec. II, an active-role vector is used as a surro-
gate for the corresponding operator vector, e.g., as an
eigenvalue or an expectation value of the operator vector
or as the vector variable of a quasiprobability distribution.
Thus the active-role vectors u and p, are used in
the second slot of the two-mode displacement operator
when it is used in its active role, i.e., as a unitary operator
that transforms states and operators. A passive-role vec-
tor is used as the vector variable of a characteristic func-
tion. Thus the passive-role vectors ¥ and v, are used in
the second slot of the two-mode displacement operator
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when it is used in its passive role, i.e.,, when one takes its
expectation value to obtain a characteristic function.

In the first two rows of Table I there is no real differ-
ence between the active-role and passive-role vectors, since
¥4 is related to v in the same way that p , is related to
u; the difference is merely a matter of choosing different
fabels for vectors in the two roles. To find a real differ-
ence, one must proceed to the third row. The definition
of the active-role vector £=4 Ap is determined by the
fact that £ and p can stand for tfie expectation values of
2« and a, rspecuvely, thus §' must be related to p in the
same way that & is related to a. This natural definition
of & is to be contrasted with the definition of the passive-
role vector n=4 A~'g,y, which at first appears very
peculiar indeed. The explanation for this peculiar defini-
tion lies in the form of the operator & (&, 7), which is
the displacement operator written in terms” of quadra-
ture-phase amplitudes. The simple form of (., 7)is a
consequence of the invariant (2.31a) and, hence, of the
definition of 7. More illuminating is to put things the
other way around: the peculiar definition of 7 is dictated
by the desire to have a simple form for the two-mode dis-
placement operator when it is written in terms of the
quadrature-phase amplitudes; thus this desire is ultimately
responsible for the distinction we make between the active
role and the passive role. This discussion also makes clear
why v is related to v in the same way that p , is reiated
to p. The definition of K a=C ) is determined by the
relation @=C, ;a: the same transformation v o=C, . is
appropriate for the passive-role vector because of the
property (2.29) of C , ..

The operator P (&/,n) is defined in terms of the
passive-role vector 7, and it is used exclusively in the pas-
sive role. We could write the two-mode displace-
ment operator in terms of &« and thet active-role

vector 5 simply by substituting a=A~ 4! « and p
—A-‘dfg into D(a, p) The result does not have a sxmple
form, nor do we find it useful, so we do without it.

A particularly important form of Eq. (3.41) can be ob-
tained by using the passive-role vector vy and then writing
Eq. (3.41) as the commurator

[a.D(a.y)]=vD(a,y) . (3.51)
Multiplying Eq. (3.51) by 4A and substituting
v=0,Ad "7, one finds

(3:52)

(&, 2, n)]=UnD(L,7)

[Egs. (2.10) and (3.50)]. Equations (3.51) and (3.52) will
play a crucial role in the operator-ordering formalism of
paper III. Equation (3.52) expresses the same relation that
Eq. (3.42) does; the apparent difference is due to the use
of the passive-role vector 7 in Eq. (3.52), in contrast to
the use of the active-role vector £ in Eq. (3.42).

A second reason for the two-slot notation is that
one can replace the operator vector in the first slot of
D(a,v) or 2(&,7) with a c-number vector. Hence, one
can define the following complex-valued functions of two
c-number vectors:

f V—V'
Diu,y)=e2 ¥ 8D v D(u_v),  (3.53)

Dgn)=e £1-1% 2 (g, D £y my) (3.54)
[cf. Eq. (3.30)]. These functions satisfy
D"(E,Z)=D'(E,z)=D(z,;:):D(;i,—g)=D(—/i.g) )
(3.55a)
Dig,y)Di, ¥ )=Dlg,y+¥ ), (3.55b)
9"(_{,2)=9‘(5,2)=9(2,§)=9(§_,-Q)
=9(—§,z]_) 5 (3.56a)
.9(5',2)9(5,2')=9(§,_11+11') (3.56b)
[cf. Egs. (3.3D]. The invariant (2.31b) implies
D(E,g)=D(Ea,z,)=.@(§_,2) (3.57)
[cf. Egs. (3.35) and (3.50)). Either D(u.y) or

D(£,m) can serve as the expansion factor for complex
Fourier transforms. For example, a function f(g) is re-
lated to its complex Fourier transform F(v) by

4
) =fd—,vi-‘(ng(g.E) , (3.58a)

F(v)—f—‘-—f §)D(g,y) (3.58b)
(Eq. (2.39); cf. Egs. (3.32) and (3.34)]. The orthonormali-
ty and completeness relations for D([.l v) and .@(5 ) are
subsumed in the equations

I%D(g.g)=f—___‘fiD(x.p)=1r:5‘(! (3.59)
4e ie

fi‘—,;g(g,n)=fi’—=-.@(n,g)=n—’a‘(n> (3.59b)
=l A g

(Eq. (2.41); cf. Eq. (3.33)].

Further properties of the two-mode displacement opera-
ter include the way it is transformed by the MP free evo-
lution operator,

(3.60b)
Wyh=D(Le™'%)=D (&, e’
(3.60¢)

[Egs. (3.4)—(3.6)], and the way it is transformed by the ro-
tation operator,

U1 D (L7

R'(6)D(a,vIR(6)=Dle "*’a,y)=Dla,e "y,
(3.61a)
t —ifg,
R(0)D(a,qyq)R(6)=Dle @y prti¥a)
=D(g’.w+g'e"9€)r'-a)
=D(gr.weih)gr,¢,_gx), (3.61b)
RUOD (L DRO=D (et 1) =D (L 0™ )
(3.61c)
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[Egs. (3.12), (3.14), (3.17), and (A27)]. The two-mode ver-
sions of Eq. (3.36) are

D'(a,u)D(a,v)D(a,u)=D(a+p,y)=D(s,¥)D(a,v) ,
(3.62a)

D'(a,u) D (o, 7)D(a,p)=D (L +£7)
-7 =DEND (L) B6w)

[Egs. (3.41) and (3.42)]. The product of two displacement
operators can be written in two useful forms:

(3.63a)
(3.63b)

D(a.u’ )D(a,p)=D"(74',p)D(a.p+p'),
Df(g./.t’ )D(a,p)=D( L/:t_ u)D(a.p—p')

[cf. Eq. (3.37)].

In the degenerate limit the two-mode displacement
operator reduces to the single-mode displacement opera-
tor:

Dla,u)—Dla,u), p=2""p, +u_) (3.64)

J

b
S{(r,p)=(coshr)™'e

[Eq. (B9b)]. In Appendix B we derive Eq. (3.66) and oth-
er factored forms in which the exponentials appear in dif-
ferent orders. Also in Appendix B we use the factored
forms to write the product of two squeeze operators as a
rotation operator times a squeeze operator:

str,@)S(r,p)=e ~®R(®)S (R, D)
=95 (R,6—0)R (©) (3.67)

[Eq. 1B16)]; here R, ®, and © are defined by the matrix
equation

gR.QeIGQ)‘_‘Cr.ng r—'.lw"_"gr.?g—r’.p' (3.68)

]

Sy(r,@)=(coshr)

[cf. Eq. (3.66); for the derivation of this and other fac-
tored forms see Appendix B]. The product of two degen-
erate squeeze Operators is given by

S, @8, (r,@) =e ~1®/% =1®a"ag (R o)
=¢ 1925 (R, ®—@)e ~i0"s (3.71)

[Eq. (B16); cf. Eq. (3.67)], where R, ®, and © are again
defined by Eq. (3.68).

IV. SPECIAL QUANTUM STATES
Any discussion of special quantum states begins with

the two-mode vacuum state |0), the state annihilated by
a, and a_ (a4 |Q)=0). A useful associated state is the

| —a+a_z:‘¢tanhre —(aLa,,, +a£a_)ln(cosW)ea+a_e‘u’mnhf

—l/2e -(n')zly’(lanhr)/Ze —a"aln(coshr)euzc =U(tanhr)/2

[Eq. (I1.8.19¢c)].
D. Two-mode squeeze operator

The last important unitary operator in our formalism is
the two-mode squeeze operator

S(r,p)=exp[rla,a_e —Ue_gt gt o2e))

=exp| —ir_af[a. sin(2@) + 0, cos(2¢)]a} (3.65)

[Eq. (1.8)]. It squeezes the annihilation operators to give
the squeezed annihilation operators (1.10), and it generates
two-mode squeezed states from coherent states (see Sec.
IVB1).

Almost all the important properties of S(7,¢) have
been listed elsewhere in Secs. I-IIL. Little is left to note
here, except two properties—factorization of the squeeze
operator and the product of two different squeeze opera-
tors. The two-mode squeeze operator can be factored into
a product of exponentials of a, a_, a,a_, and a.a
+a"a_. The most useful factored form is**!

(3.66)

f

[Eq. (B14)]. Notice that if p=¢’, then ®=0, ®=g¢, and
R=r—r', ie., S'(r’,q)’)S(r,(p)=S(r-r',cpJ [ef. Eq.
(A26)].

In the degenerate limit the two-mode squeeze operator
becomes the degenerate squeeze operator S,(r,p) [Eq.
(2.46)]:

e(r/Z)[azc ~Up_(gt)2e 2]

S(r,@)—S,(rp)= (3.69)
?

[Eq. (I.8.19d)]. The degenerate squeeze operator can be

factored in the same way as the two-mode squeeze opera-
tor. In particular, its most useful factored form is'*~"’

(3.70)

[

(two-mode) squeezed vacuum state

[0) (=S (r,@)|0), 4.1)

‘which is the two-mode squeezed state (see Sec. IV B) with

(a+)=0. A convenient basis is provided by the (two-
mode) number eigenstates

[nen_d=[n Dn_0]""a")" @)= ]0), ©2)
aft“t|'l+,n_)=n._t[n+,n_). (4.3)

Another basis, unitarily equivalent to the number-
eigenstate basis under the two-mode squeeze operator,
consists of the (two-mode) squeezed number cigenstates
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Nt o =Slre)|n,,n_)

n

=[(n N _D]""2al)"*

X(@")" = 10) 0 (4.4)

aha|na,n Vpp=ne|n o n_die - 4.5)

A. Coherent states

If the displacement operator is the heart of one-photon
optics, then the soul is the set of states it generates—the
coherent states. Here we review briefly some well-known
properties® ¥ of coherent states for a single mode, general-
ize (trivially) those properties to two-mode coherent states,
and write the two-mode properties in our vector notation.

1. Single-mode coherent states

The singie-mode coherent states’ are generated from the
single-mode vacuum state |0) by the displacement opera-
tor:

|4 )eon=Dla,u)|0) (4.6)
[Eq. (1.3.9)]. Their most important property is that they
are eigenstates of the annihilation operator:

alpdeon=H 1) coh “.n

[Eq. (3.21)]. Equation (3.38) can be used to obtain an ex-
pansion of |x)cp in terms, of the single-mode number
eigenstates |n)=(n!)"""*a")*!0):

l“)coh=e_”‘|z/zeu IO)

=e ﬂquz W”’ i (4.8)
(n

A coherent state |[u)., has time-stationary noise
[{(Aa)?)=0; Eq. (L3.12)]; its important nonzero first-
and second-order moments are

(a)=p, (|aa|H=1, (4.92)
(alr@)) =tq, (4.9b)
()=¢ ((ax))=(dx))=1 (4.9¢)

(see Table II). The expectation value and variance of the
number of quanta are

((Ala'a) )}y =|u|?. (4.10)

The symmetrically ordered characteristic function for a
coherent state | )con is the expectation value of the dis-
placement operator,

(a'a)=|p|%

a1 D@ | ) on=e""""2D(u,v)
\ .
=e 2D (u,v) 4.11)
(Eq. (3.38)]. A Taylor expansion of Eq. (4.11) with

respect to v and v* yields the symmetrically ordered mo-
ments'? of @ and a'. Using Egs. (3.29) and (3.35), one can
write the characteristic function (4.11) in terms of the
variables 17, and 7, (see Table II):

coh<1u' l g(ivﬂ) |,u')coh=e(“+“)/‘g(é,z)

=e—1’3/‘9(§',n).

A Taylor expansion of Eq. (4.12) with respect to 1, and
7, yields the symmetrically ordered moments of x, and
x,. Characteristic functions will be considered in detail
in paper III.

The coherent states are not orthonormal,

con{B' | 1) eon="(0] D'(a,")D(a,p) | 0)
-win

(4.12)

=D(+u'\pe~# 4.13)

[Egs. (3.37) and (4.11)], but they are complczc in the fol-
lowing sense, pointed out by Klauder:'?

l=f_h_&llu)ooheo‘n<#l .

The completeness relation (4.14) is the starting point for
developing expansions in terms of the coherent states. It
can also be used to demonstrate that the trace of an opera-
tor f is given by

(4.14)

2
tef = [ e 1 1 @.15)
T
which in turn shows that
2
tr[D(a,v)]=e"|"‘1”fd—TTED(p,v)=1r51(v) (4.16)

[Egs. (4.11) and (3.33)].

2. Two-mode coherent states

A rwo-mode coherent state® [Eq. (1.4.11)] is generated
from the vacuum state by the two-mode displacement
operator:

[ )eon= | f 41k = )eon=D(2,)|0)
[cf. Eq. (4.6)]. Itis an eigenstate of both @ . and a _, i.e,,
a:“_‘_)coh=l“:ll_f)coh (4.18)

[cf. Eq. (4.7)], and its number-eigenstate expansion is
given by

(4.17)

3 t
|8 enme f°+e“-‘-|o>
n ( Hpo)'-
_ -slun t“'*- H-
=e~HY E s Tn TR ]l/2|n+,n ) (4.19)
[cf. Eq. (4.8)]. A coherent state |p)epn has time-

stationary noise (Egs. (1.5.6) and (1.5.9)]; its nonzero first-
and second-order moments are

(2)=p, Zeon=(d282"ym=71, (4.20a)

(@ro)=pa (82,0085 gm=1Crrq, (4.200)

(d) gr coh—(A‘g A-gr)qym
=1A=7[1—(e/Q)a,] (4.20¢)

(Egs. (2.9), (2.13), (2.15), and (2.16); cf. Egs. (4.9), (1.7.2),
and (1.7.3)].
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For a coherent state |[p).y, the expectation
value and variance of the free Hamiltonian (1.2) are

(Ho)=Qu'\u=0¢'¢, (4.212)

(0H?) =Q%u "' =Q%'A¢ (4.21b)
[Egs. (2.32) and (2.9)]. Equations (4.21) follow easily
from the single-mode expectation value and variance of
the number of quanta [Eq. (4.10)], but they can also be ob-
tained from the following rules. Let M be any two-
dimensional matrix
M” ;"{u l

U= My Mn -

(4.22)

One wants to evaluate the expectation value and variance
of the quadratic form

+ | ¥ - v
aMa=Mjya.a. +Mna_a_+Mpa_a_

+Mpya,a_+M, . (4.23)
It is an easy task to show that
conp 12" Ma W eon=p"Yu + M2 , (4.24)
con (i | (AR MR | p)eon=p"M B+ M ) My . (4.24b)

By using Eq. (2.8), one can obtain Egs. (4.21) directly
from Egs. (4.24).

The symmetrically ordered characteristic function for a
two-mode coherent state |u ).y is Obtained easily from
the analogous single-mode quantity [Eq. (4.11)]:

con( [ D@,¥) | ) con=2 ¥ **Digs,y)

=e'!‘51n91§,n)

=B | DA ) | p)an  (4.29)

[Egs. (2.33), (3.50), and (3.57)]. In Eq. (4.25) we write the
characteristic function first in terms of the vector variable
v and then in terms of the vector variable 7.

The two-mode coherent states are not orthonormal:
_{g-g' I.IE-—E‘ 2

con (8" | 1 )con =D %/i’ He (4.26)

[Egs. (3.63b) and (4.25); cf. Eq. (4.13)]. They do, however,
satisfy a completeness relation which follows trivially
from the single-mode completeness relation (4.14):

dl
1= [ 5 ) eneanti] @27
Hence the trace of an operator f is given by
d-‘
uf=[ -;‘coh(y_ 118 con s (4.28)

and the trace of D(a,v) is
t 3 :
e[ Dlaw)]=e ¥ [ LLD( ) =rit'ly) (429
e

(Egs. (4.25) and (3.59al].
In the MP a two-mode coherent state evolves freely in

the following way:
..iu’l_l —ei">coh

(4.30)

Uy(t) “-:>coh= “_‘_e _m>coh= [u e

(Eq. (3.60a)]. A rotation transforms a coherent state ac-
cording to

io’# _e —iO)mh
4.31)

[Eq. (3.61a)]. Combining Eqs. (4.30) and (4.31) yields the
SP free evolution

RO ideon= e ") con= | poe~

~iQg el

—iHal
e O’E)coh=."ﬂ l_{)coh

= !‘u‘e —im+m,#_e —i(t’)—m)mh . (4.32)

In the degenerate limit a two-mode coherent state
reduces to a single-mode coherent state:

)eon— (1) com p=2" " +p ) (4.33)

(Eq. (1.3.21)].
B. Squeezed states

I. Two-mode squeezed states

The most important states in two-photon optics—the
states produced by an ideal two-photon device {see Sec.
IV A of I)—are the rwo-mode squeezed states, which can
be defined by

ilf_ a)(r.w'——" “‘a,_r/“a_ )(mpl

ED(E.EJS(r.cp)IO) (4.34)
(Eq. I.4.17)]. Using Egs. (3.46) and (4.1), one can write
I”i“>”-°” in the form

B a),,,.,,:D(g,;_n | 0)(,,4,,=D(z_z_./._t 1o (4.35)

hence, a two-mode squeezed state can be obtained by ap-
plying  the  ‘*squeezed”  displacement  operator
D(g.pa)=S(r,<p)D(_a_.ya)S'(r.¢7) to the squeezed vacu-
um. Using Eq. (3.47) in the definition of | )4 One
shows that a two-mode squeezed state can be generated by
applying S{r,p) to a two-mode coherent state:

iy a>(r.¢)=3(’v¢)D(_a_'/-_"a) | 0)

=S(r,@) | p 2coh (4.36)
[Eq. (1.4.15)]. Notice that | 4)0,0)= | 4 a)con- The uni-
tary equivalence between squeezed statés and coherent
states is a powerful tool for generating properties of the
two-mode squeezed states. For example, using Eqs. (4.18)
and (4.36), one can tell immediately that | g 4) e is an
eigenstate of the squeezed annihilation operators (1.10):

at(r"P)[&a>(r.¢)=#at[&a>lr,w) : (4.37)
As qnother example, one can use Egs. (4.19) and (4.36) to
obtain an expansion of |4 o)) in terms of the squeezed
number eigenstates (4.4):
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+ 14 i3
—pghg/2 Ha B4 Ha T
‘/f_z:)(r,wl:e =H=fTe T e |0>(ro)

(,ua i

(ua )"
|)]l/2] +2 - >(r¢:)

e Hakal?
a +z,. [(n,!

(4.38)

The expansion of | 4)(,.,) in terms of the number
eigenstates |7 ,n_) is, in general, quite complicated, yet
neither interesting nor enlightening. It does, however,
have a simple form for the squeezed vacuum |0),,—a
form obtained by using the factorization (3.66):

B e
—a _a _e-®uanhr

S(r,@)}0)=(coshr)~ 10

=(coshri~! 3 (—e¥®anhr) {n,n) . (4.39)
2 =0

Thus the squeezed vacuum is a superposition of number

eigenstates which have equal numbers of quanta in the

a . mode and the a _ mode.

The two-mode squeezed state |4 o), has TSQP noise
[Egs. (1.5.1)] and (I.5.6)]. Its nonzero first- and second-
order moments are most easily obtained by noting that
Egs. (4.20a) and (4.36) imply

<Er,¢)=/-_i:zi (Agr,.pig:,p)sym':%l . (4.40)

One can obtain the moments of the creation and annihila-
tion operators and the quadrature-phase amplitudes sim-
ply by making matrix transformations of Egs. (4.40):

(4.41a)

+

(a)=p, I,

()= Z,.=(adagM)ym

= (Aa '-\a*><ym= I_g—ZI.w ’

=T4AC 5 0Ad
I
(4.41b)

[c f Eqs (4.200]. Using Egs. (A25), (Al7)—(Al9), and
(A4)—(A6), one can expand X, ,and X, as
Z,o= 1lcosh(2r)
— +({g cos(2¢) —g sin(29) ]sinh(27) (4.42a)
3, = tlcosh(2r)— +(1 —€/0Y)! g ;sinh(2r)cos(2¢)
—+(1=€/0%2g sinh(2r)sin(2¢)
— +(e/Q)g scosh(2r) (4.42b)

[cf. Egs. (1.7.8) and (L.7.9)].

The rules (4.24), which give the e\(pectanon value and
variance of an arbitrary quadratic form a 'Ma with
respect to a coherent state, can easily be generahzed to
squeezed states, once again by using Eq. (4.36):

f—' — —
rBala'Malp o) =p adp o+ M =p'Mp+ My,

(4.43a)
(r.;p)(EGI[A(ETME)]ZIﬁa>(I,zp)
=p LM Y o+ MMy,
=p'MC_y o Mp+M 2 My (4.43b)

M=C_,,MC_,,. (4.44)

Applying Egs. (4.43) to Eq. (2.8) yields the expectation
value and variance of the free Hamiltonian with respect to

| L a>(r.¢):

(Ho) =0pu'A\u +2Qsinhr = Q46 +20sinh* |, (4.452)

((AH)?) =Q¥"\C _y, oA + Qsinh*(2r)
=20%'3, & + Q'sinh’(2r)

[Eq. (4.41b); cf. Egs. (4.21)]. The reader should note the
appearance of %, in Eq. (4.45b). Its presence there is no
accident: for any state the highest-order term in the ex-
pression for ((AHq)?) is quadratic in the mean
quadrature-phase ampLitudes: for any state with TSQP
noise (Eq. (I.5.1)], it is easy to demonstrate that the
highest-order term is given by 202" 3£, where E=(a).

The symmetricaily ordered charactéristic function for a
two-mode squeezed state can be obtained immediately
from Egs. (3.47), (4.25), and (4.36):

(4.45b)

(l.w)</ia]D(E'!)|&a>tr.¢n=mh(#a!D(aV )Il"a>cob
""“/ID(;LR,V, .

This result can be transformed so that the characteristic

function is written in terms of y=C;avg or
=

=417 g

(4.46)

—V'C /2.
re{tal D@y pa)rg=e ~ ¥ Dip,y)
te
=€—! "-629(5,7’)

=1r.¢)(/;"a I 9(-9_/v2J “‘ia)(r.w
(4.47)

[Eqs 3.50), (3.57), and (A24)]. Notice the presence of
3, [Eq. (4.41b)] in the expression for the characteristic
function. Its presence signals the fact that a two-mode
squeszed state has Gaussian TSQP noise: the noise mo-
ments of arbitrary order are determined by the second-
order noise moments contained in £, ;.

The two-mode squeszed states are not orthonormal.
The inner product of two squeezed states with the same
and @ is given by

(r.w;(.‘iz'z“_fa)(r.;x=mh<#':i.‘ia>coh

—D(~ e e mua)2

/-‘g,# ale

ot .
~lp—-u') (u—p'1/2
=D(1p' ple BB SR

(4.48)

[Eq. (4.26)]. For squeezed states with different » and/or
@, the inner product is considerably more complicated
than Eq. (4.48); it is derived in Appendix. C. The set of
two-mode squeezed states with a particular r and @ does
satisfy a completeness relation

1=

o )(I.w)(r.w)(ﬁal ’ (4.49)

which is just a unitary transformation of the completeness
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relation (4.27) for coherent states. Equation (4.49) allows
us to write the trace of an operator f as an integral over
squeezed states with the same 7 and ¢:

tef = f —re(Bal/ B ading - (4.50)
The MP free evolution of 'L‘_a>(f-w) is given by
Uy (1) l&a)(r,w: “_‘ae —‘")(r.w
= “Ja’_e-'.“,ﬂa_e[“)(,"p) (4.51)
[Egs. (3.7) and (4.30)]; under a rotation | 4)q)
transforms according to -
- 8«5
R(e)“ia>(r.¢‘= 3 /ic>‘r.p-9)
= ?F’:._e —l.g'#a_e —m>(l, p—=03) (452)

[Egs. (3.16) and (4.531)]. Equations (4.51) and (4.52) to-
gether give the SP free evolution

—ilQg y+eln
/ia)(r,p—nlr
-i(n—eu)

(r, p=0)

(4.53)

—iH g
e |Ea>(r.;pl==e

—ilQ+en

= o e Oy

[cf. Eq. (4.32)].

In a separate paper one of us (BLS) considers the wave
functions for two-mode squeezed states in the usual coor-
dinate and momentum representations.™

2. Degenerate squeezed states

In the degenerate limit a two-mode squeezed state
2
|1 a)irp) becomes a degenerate squeezed 1stare® i

I.u'u)(rw)

Iﬂa%p, (4.54a)

|tadirp=D(a,p)S (r,@)]0),

yaEZ""z(#a++#g_)=#coshr +pu*e¥%sinhr (4.54b)
(Egs. (I.8.23)]. Equation (3.27) can be used to show that
S\ (r,p) transforms a single-mode coherent state into a de-
generate squeezed state:

| a1 =S1(r,@)D(a,uq) | 0) =S,(r,@) | ) con -
(4.55)

A degenerate squeezed state is an eigenstate of the
squeezed annihilation operator (2.48):

a(’»¢’)|/ua>1r.4p)=.ua|.u'a)(r.w (4.56)

[cf. Eq. (4.37)].

The properties of degenerate squeezed states can be de-
rived in the same way as the properties of two-mode
squeezed states. Here we content ourselves with providing
a list of properties of the state |pg)(,p. Above each
equation in the list we give the equation number of the
analogous two-mode property. All the results in the list,
except Eqgs. (4.62)—(4.65), can be found in Yuen’s
comprehensive paper!' on “two-photon coherent states;”
some of the results are also given in Refs. 9, 21, and 16.

Many of the properties are most conveniently stated in
terms of the single-mode vector notation introduced in
Table II. The list of properties is as follows:

Eq. (4.39):
S\(r,@) | 0) =(coshr) =112 =a e anh/2 | o)
=(coshr)~'"?
2 ML/—( te¥®tanhr)"|2n) ,
n =0
(4.57)
Eq. (4.40);
(alrp) =t (A, d@ro)em=Tl, 4.58)
Eq. (4.41a):
(aY=p, Z,.=(dada)ym=1C_sy,  (4.59)
Eq. (4.41b):
(x)= g I,;,-(_\x Ax Y m=F4C 24", (4.59b)
Egs. (I.7.8
(jaa| 7)=:-cosh(2r) ;
; (4.60)
((Ad)*) = — +e¥%sinh(2r) ,
Eq. (4.42b):
Z.9= -}Lcosh(Zr)— %g ssinh(2r)cos(2¢p)
— +¢ sinh(2r)sin(2¢) , (4.61)
Eq. (4.22):
My My,
= lMu M } My =Mn, (4.62)
Eq. (4.44):
M=C_, MC_,., ¥, =My (4.63)
Eq. (4.23):
ta'Ma=Ma'a ++ M@V s tMaai+ 1M,
(4.64)
Eq. (4.43a):
plal Ta' M n) o=t M p+ 1M, , (465
Eq. (4.43b):
(ror{tal [MT2'M ) | o) = TR'M C 2o M s
+ 1M My, (4.65b)
Eq. (4.45a):
(a'a)=|p| +sinh’ = $£'€ +sinhr , (4.66a)
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Eq. (4.45b):
([A(a"a)]")=-;-/i C 2o 4+ 7sinh*(2r)
=£'2, o6+ $sinh¥(2r) (4.66b)
Eq. (4.46):
(nwl</“a]D(a'V)I“a>(r,¢)
=con{a | D(@,Va) | 1ta)con
=e_iv“=an(ya,va) e tete Dlpgvy),  (4.67)

Eq. (4.47):
—ﬁ_r‘(: .,;x/l
\r.w)(#aiD(arV)l/"a)(r.o)=e o D(,UyV)
=e 151 g )

=(r.¢;<ua ; g(,{vz) '/"(z)(r.;p) ’

(4.68)
Eq. (4.48):
(r.wl(l‘z'z I.ua>4r,wl=coh<y"c | Ha? con
=D(ppuale” P
S D(Lpy e~ g8
o= TH )
(4.69)
Eq. (4.49):
l= )(r.c)(r.m<l“a: ¢ (4‘70)

Y. CONCLUSION

This concluding section is a good place to recapitulate
the key ideas behind papers [ and II and to hint at what
lies ahead. The goal of this series of papers is to develop a
formalism suited to the analysis of two-photon devices.
The crucial feature of a two-photon device is that its out-
put consists of pairs of simultaneously emitted photons.
Hence the starting point for our formalism is a pair of
electromagnetic-field modes which are excited by emission
of a pair of photons. The natural variables for describing
the excitation of these two modes are the quadrature-
phase amplitudes, and the natural quantum states are the
two-mode squeezed states—the states generated by an
ideal two-photon device. These basic building blocks were
the focus of paper I, where our objective was to develop a
physical understanding of the quadrature-phase ampli-
tudes and the two-mode squeezed states. In the present
paper we have described the mathematical structure of the
formalism and developed techniques for manipulating its
fundamental components. We introduced a vector nota-
tion which simplifies the mathematical description and
makes it easy to learn and use the language of the
quadrature-phase amplitudes. The vector notation also
provides quick translation into the conventional language
of creation and annihilation operators.

An important feature of the vector notation—built into

it right at the start—is that it recognizes the quadrature-
phase amplitudes as the fundamental variables and, hence,
it naturally associates a . with a _. This feature has pro-
found consequences for the operator orderings that are
preferred in two-photon optics. One natural ordering for
the quadrature-phase amglltuds and their Hermitian con-
jugates places al and a; to the left of a; and a, (re-
call that [a@;,a,]=0); this kind of ordering, which we call
quadrature-phase normal ordering, is equivalent to normal
ordering of the a, mode and antinormal ordering of the
a_ mode. Another natural ordering, which we call
quadrature-phase antinormal ordering, places a, and a, to
the left of @ and ay; it is equivalent to antinormal order-
ing of the a . mode and normai ordering of the g _ mode.
Using the commutators (2.36) and (2.38), one can write
the two-mode displacement operator in terms of these two
orderings:

D(a.y)=e e e
v t +
=112, 1Y _g(a,q), G.la)
D(a.y)= rews, -regdan
' ita 2
=101 14, 1_g (o q) (5.1b)

[cf. Eq. (3.38)]. The lesson is that the natural orderings
for two-photon optics, which are based on the
quadrature-phase amplitudes, require opposite ordering of
the two modes.

These operator orderings will play a prominent role in
paper III, where the focus will be on characteristic func-
tions and their complex Fourier transforms, quasi-
probability  distributions. = The expectation value
(9(«, 17))_ (n) is a characteristic function whose
Taylor ¢Xpansion yxc!ds the svmmemcallv ordered mo-
ments of ay, ay a,, and aq, its compiex Fourer
transform is a two-mode version of the well-known
Wigner distribution function.”* The expectation values
(e“!le'"'{) "u'mfb(n) and

=e T u"ndb('q) are characteristic funcnons whose Tay-
lor expansions yield moments of ay, as, a,, and aa that
are, respectively, quadrature-phase normally ordered and
quadrature-phase antinormally ordered. The complex
Fourier transforms of these characteristic functicns are
new two-photon quasiprobability distributions, whose def-
initions build into them the association of a _ with a _
which is responsible for the squeezing of the output of
two-photon  devices.  Paper III  will generalize
quadrature-phase normal and antinormal orderings to a
continuum of intermediate orderings and will explore the
characteristic functions and quasiprobability distributions
that arise from these general operator orderings.
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APPENDIX A: PROPERTIES
OF TRANSFORMATION MATRICES

11
—i i

I, A=2—17

detd =i, (A2)

Ad=+e'"l—ilg,~g +a})]

=2_|/Zei(r/4)(1—ql?4z:—q3) . (A3)
dagd'=qgy, (A4)
dgd'=-ay, (AS)
dg;d'=-ga,, (A6)
dlgid=-q,, (A7)
d'gid=—-q;, (A8)
A'g:d=4Td=g, (A9)
(superscript T denotes a transpose).
A, O
2. A= [ 0 k_]
at=a, (A10)
detA=A A_=(l—e/Q)'?, (AlD
(A_ 0
A = —/ay= 2 . (AL

Equation (A12) allows one to obtain properties of A~!
from properties of A by multiplying by factors of
(1—€*/0%)~!/* and reversing the sign of €.

A=t AL +A )L+ A —Al)g;, (A13)
[k ]=ilh.=A_)g,, (Al4)
[haga]=—iA,=A_)g,, (A15)
(Ag;]=0, (A16)
Al=1+(e/Qlay, (A1)
Ao A=(1=-€/0Y"g,, (A18)
LoA=(1-€/0)"g,, (A19)
Aah=gAl=(e/Q)l+g;. (A20)
i G _(i?:l?r e¥%sinhr
e sinhr  coshr
Cle=Cro. (A21)
detC,,=1, (A22)

C:.wa Jcr,¢=gr.<palcr¢=(_7] , (A23)

g;,-q:l =QJ§I,¢Q)=g—r,p=gr,w+w/2 o (A24)

The last two equalities in Eq. (A24) are the analogs of the
last two equalities in Eq. (1.9).

C ,o=1coshr +[g |cos(2¢) — g ,sin(2¢)]sinhr

=er(¢lcosl2¢l—qzun(2<p)] , (A25)
Cr.:pg r‘,¢=gr+r’,¢ ’ (A26)
e"GQJg rnef —wq’=gr,¢+9 . (A27)

APPENDIX B: FACTORIZATION AND PRODUCTS
OF SQUEEZE OPERATORS

In this appendix we first factor the degenerate and the
two-mode squeeze operators, S,(7,¢) and S(r,@) [Egs.
(2.46) and (1.8)], into products of exponentials; we then
use these factored expressions to show explicitly that the
product of two or more different squeeze operators
(differing both in their magnitudes and directions of
squeezing) is equal to the product of a rotation operator
and a squeeze operator.

Factoring the two-mode squesze operator turns out to
be the same task as factoring the degenerate squeeze
operator. In either case the problem reduces to factoring
the expression

Mir,p)=explr(de 42— 4'e¥®)], (B1)

. .. +
where the operator 4 and its adjoint 4 obey the commu-
tation relations

(A4,4"1=B=B', [4.B]=24, [4'.B]=-24".
(B2)

For the two-mode squeeze operator M =S(r,p), one sets
A=a,a_and B=1+a.a, +a_a_; for the degenerate
squeeze operator M =S(r,@), one sets A=+ta’ and

=< +a'a. The commutation relations (B2) immediate-
ly imply the following useful relations (and their Hermi-
tian conjugates):

ehdte M= B+t (B3a)
e“Be~"A=B 24, (B3b)
ePge~B=p~24 (B3c)

where ¢ is any complex number. The relations (B3) follow
from the general relation

g E) rll n
elRSe {R=n§0_!-[R Sl,

(B4)
(R"S}=[R,[R""'S}], [R°S}=S

[for a derivation see, for example, Eq. (8.105) of Ref. 23].
There are many approaches one can take to factor the
operator M (r,p) into products of exponentials involving
the operators A, A, and B; here we briefly describe two
approaches. In the “differential equation” approachz‘ one
multiplies the exponent of M (r,p) by a parameter ¢ and
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sets the resulting expression equal to the desired product
of exponentials involving the operators 4, A, and B,
with coefficients in the exponents which are functions (to
be determined) of the parameter . One then takes the
derivative with respect to t of both expressions, equates
the two expressions by using the relations (B3) to put
them in the same form, and solves the resulting coupled
first-order differential equations (subject to boundary con-
ditions at ¢ =0) to find the coefficients as functions of
the task is completed by setting the parameter ¢ equal to
one. This procedure is straightforward and, for this par-
ticular problem, not difficult.

A more elegant and more versatile approach,®!'%!
however, makes use of the fact that the factored forms for
M (r,p) are consequences only of the commutauon rela-
tions (B2); this means that the operators 4, 41, and B can
be replaced by matrices which obey the commutation rela-
tions (B2), and the problem of factoring M (7,@) can be
reduced to factoring an exponential of a sum of matrices.
The problem becomes particularly simple if one uses for
this purpose the Pauli spin matrices (2.7), which have the
following properties:

10
gig;j=8;l+ieuay, L= 01 (B5a)
Yi€i__ e
e =lcoshy +g vy~ sinhy ,
r=ri+ri+y)'?  (BsH

where i,j,k=1,2, or 3, 7, are arbitrary complex numbers,
and a summation over repeated indices is implied. For
the matrices ¢ .. and g _ defined by

1 01
+=7lg+igy)= 00

(B6a)
00

10

o

Q’-E%(Ql—fgz)= g4+

the properties (BS) have the following important conse-
quences:

lgwe-l=gy [gr.a3]=F2¢:, (B6b)
gi=¢g =0 g.z:=1(ltg;),

C:03=—g32+=%FC+, (Béc)
e t=1+1g, (B6d)

1

-4t - ] —1rat 24 -
l"Ae gﬁer A—pg T4 eI“c Ae 38=e

M(r,p)=e

~reitqt
=er‘Ae Ce Ae,gB

—r4l 24 4l
=e["AexEE rd =egﬂel“a Ag rd’

The commutation relations (B2) and (B6b) admit the for-
mal correspondence

A——g_, A'—g,, B—g;. (B7)

This correspondence implies that

—rlg +¢y’+¢ _e—Ue)

M(r,p)—e
=1coshr —(g ¥ +g _e " ¥®)sinhr=C, (B8

[Egs. (BSb) and (B6); cf. Eq. (A25)]. The correspondence
(B7) is not unique; we choose it because it leads to the
correspondence (B8), which is the correspondence induced
naturally by the definition (2.22) of C ,, o Note that while
the operator M (r, <p) is unitary, the matrix C 7} » is not.
The matrix Q,,, is easily factored into exponentials of
¢ +» C -, and g ;. For example, one such factorization is

-1_ -Te, —gay =g _
e =€ e e .

I'=e¥®tanhr,

[Eqs. (BSb), (B6), and (B8)].
correspondence (B7), that'!"

(B%a)
g =In(coshr)

This implies, through the

Mir,p)=e=T4le=88,T"4 (B9b)

The five other factored forms for M (r,p), which corre-
spond to all other orderings of the operators 4, A', and
B, are easily derived from Eq. (B9b) with the help of the
following rules:

' gy uTYg
e T T2, s (B10a)
s tg_ w~Y% _ g, wg
e ¥’ -=e e Tte P
wgy te¥g _ =%
=e"U% e *, w=In(l+s1)
(B10b)

[Egs. (BSb) and (B6)]. Equation (B10a) follows from the
matrix version of Eq. (B3c), and Eq. (B10b) corresponds
to the rule for interchanging the order of exponentials of
Aand A"

t -0 wyt
exA e—tA—p—te Ae:t A ewB

gt -wyt
=ew8e te Aen A .

(B1D)

The final result is that the operator M (r,p) defined by
Egs. (B1) and (B2), i.e., the squeeze operator, has the fol-
lowing six equivalent factored forms:

t
-38, —Tel4 G o |

(B12)

The above rules and factored forms for the degenerate and two-mode squeeze operators allow us to prove what one
would expect intuitively: the product of two different squeeze operators is equal to the product of a rotation operator
and a squeeze operator. Equation (B8) implies the correspondence

MUr WM (r,@)—=C v gCrp=(C,oC7L)" .

. & i ©
The product g,wg, & can be written as the product of another C matrix, C g ¢, and e

(B13)

g ..
), giving
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G T n e ™ i | s e o
where R, ®, and © are defined explicitly by

e/®coshR =coshr coshr’ —e¥'®=%sinhr sinhr’ , (Bl5a)

e!@®=8%inhR =e¥%sinhr coshr’ —e ¥¥'sinhr’ coshr . (B15b)
The correspondences (B7) and (B8) then imply that

MU, @ M (r,p)=e ="M (R,®)=M (R, D —@)e ~® (B16)

By using the fact that g,}::q_ 3C 1,02 3 (Eq. (A24)] and noting that C, ,g1C » o is the matrix of commutators defined
by a,,and @, ., one can write the defining relation for R, , and © [Eq. (B14)] in terms of the nonvanishing commu-
tators of the squeezed annihilation operators:

‘ is [a+(r,zp),al(r’,¢7’)] —[ai(rp)a_(r,@)]
¢)= + + '
(la~(r,@)a (r,@)] —=la_ln@)a_(r,@)]]"

CRree Cre23Crpgs= (B17

APPENDIX C: INNER PRODUCTS
OF SQUEEZED STATES

In this appendix we derive the inner product of arbi-
trary squeezed states. The derivation is sketched for two-
mode squeezed states. The same derivation works for de-
generate squeezed states, so for them we merely list the
main result. )

One way to derive the general inner product is to begin
with the matrix element (0| o)(,p. This matrix ele-
ment is easily obtained by using the number-eigenstate ex-

—

—
pansions of a two-mode coherent state [Eq. (4.19)] and the
squeezed vacuum state [Eq. (4.39)]:

(Oli_{a)(w);‘mlD(Evli)S("@)lO)

+ s 8 g,
—1.=u p/2 —p p_e¢Panhr
=(coshr)~le TEE e .

(CH

It is instructive to write the exponents in Eq. (Cl) in terms
of the vector notation:

(0] & o) (r.pr="{coshr) ™ exp] — %(coshr)“&’(g,',«}—@ o]

=(coshr)~'exp[ — +(coshr)~'p L C 7y +iD o) a] - (C2)

r
The matrix D 4 is defined by where
0 —ie¥?sinhr Ba=C ot Ba=Croh . (C6)
Qr¢E o —UPes h 0 : 2 1
L ) Equations (3.63b), (3.47), and (3.67) imply
e ( y ) ’
=Q:.¢=—Q—r,zp; (€3) (r' 9" Eallia (r,@)

aC
D,o=— % —gq:’—w ={g 5in(2¢) +g ;cos(2@)]sinhr ,
. (C4a)
D, =", (C4b)
-Q r.g‘_‘g r’,q:Q r,gg e (C4C)

Equation (C2) decompases (0|4 o), neatly into 2 mag-
nitude times a phase factor.
Consider now the general inner product

(r’.:p‘)(/-_‘_:x '/_fa)(r.w)

=(0[S"r,¢)D"(a,u D(a,uIS(r@) [0), (CS)

=e ®D(gp p N0 C ool —p Digers (€D

where R, ®, and O are defined by Eq. (3.68) [see also Egs.
(B1S)]:

i9gy -1
QR.Qe =g r,q:g re

The Hermitian conjugate of Eq. (C8a) is the useful rela-
tion

-i®g =i
e )C R.®=C r',p'g ne

Note that

(CBa)

(C8b)

D R'oei6¢’=e ey ’D ro=D ,c08hr' =D, scoshr
(C9)

[Eq. (B15b)]. The matrix element (C2) can now be used in
Eq. (C7) to give the desired result,
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(,’,g')<li:z I lia)(r.w)

=ND( ?llj' :E)CXP[—‘;‘(E—E’ (E+iG N p —u'l],

(C10)
where
N =(e’®coshR)~!
=(coshr coshr’ —e%'?=®)sinhr sinhr’)~'  (Clla)
(Eq. (B15a)], and
EcoshR=C, CihCro=Crot  00C
£ COs. X e ROxrpT = r’.w'e =re
=, NC,y, (ClID)

(9t al B a)(r.y=N =(coshr coshr’—e*'®=#sinhr sinhr') =" (p=p');

(i) if p=¢’, then ©=0, =@, and R=r —r’, s0

(r'.w'(‘.‘.‘,’ 'EG)(W!: [cosh(r —7")]~'D( -z'-;i.’ ,E)exp[ — +[cosh(r —r’)]"'(/._:—-/_z-' )'(§,+,¢¢,+iD,_,:,‘,)(;.z_—;i‘ )}

Q coshR Egl,q:Q R.Og ne
; -i0g,
=C , o(D ,gc0shr’—D . coshr)e Ciip

i0g
=C (D rgcoshr' =D ,. ycoshrle 'C, o

(Cllc)
[E:E*, G=¢Gh Egs. (C8) and (C9)]. Note the relation
e —i0g; N O
eoshR |0 w® (Cl1d)

Equations (Cl1) allow one to write the inner product
(C10) in terms of the primary variables r, 7', @, and @'.
Three special cases deserve attention: (i) if u=p’, then
Eq. (C10) reduces to -

(C12)

(C13)

[cf. Eq. (4.48)]; (iii) if r'=0, then ®=0, ®=¢, and R =r, and Eq. (C10) gives the inner product of the two-mode
coherent state [p')copn With the two-mode squeezed state |4 o) (o0

con{B’ | B a)ir.g=(coshr)~'D( %E’ 4 )exp( — %(coshr)"(-&-g’ NC . p+iD relp—p')]

(cf. Eq. (C2)]. .

(C14)

For degenerate squeezed states the general inner product is given by'!

o | Badig=N"2D(p" wexpl — (g —p WE+iG)Np —p')]

(C15)

where we use the single-mode vector notation introduced in Table II, with g ,=C roit and g = Crop'
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A simple but rigorous analysis of the important sources of noise in homodyne detection is presented. Output noise
and signal-to-noise ratios are compared for direct detection, conventional (one-port) homodyning, and two-port
homodyning, in which one monitors both output ports of a 50-50 beam splitter. It is shown that two-port homo-
dyning is insensitive to local-oscillator quadrature-phase noise and hence provides (1) a means of detecting reduced
quadrature-phase fluctuations (squeezing) that is perhaps more practical than one-port homodyning and (2) an
output signal-to-noise ratio that can be a modest to significant improvement over that of one-port homodyning and

direct detection.

It has been known for some time that phase-sensi-
tive detection schemes, such as homodyning and het-
erodyning, provide a means of measuring one of a sig-
nal’s two quadratures.!=3 Recently a clever scheme,
referred to in this Letter as two-port homodyning, was
propased by Yuen and Chan (see Fig. 1)45; this scheme
permits direct observation of one of the input signal’s
quadratures without placing such rigorous demands on
local-oscillator (1.O) performance as does conventional
one-port homodyning. Hence the two-port scheme
might provide a more practical means of observing the
phenomenon of squeezing,®8 in which the noise in one
quadrature phase of a signal is reduced below the level
required by quantum mechanics of a coherent state.
This noise can be observed because the output noise in
two-port homodyning can be made insensitive to all LO
quadrature-phase noise, provided the LO power is much
larger than the input-signal power. In this Letter I
compare output noise and signal-to noise ratios for three
different detection schemes—one-port homodyning,
two-port homodyning, and direct detection.

A single plane-wave mode of the electromagnetic field
at frequency @, (the input-signal frequency) has an
electric-field operator described by

E(t, x) « Yola exp[=iQ(t — x)] + at exp[iQs(t = x)]}
=a; cos Q,(t — x) + agsin Q (¢t — x). (1)

Here a = ay + ias is the annihilation operator for the
mode and a; and ag are its Hermitian quadrature-phase
amplitudes. Homodyne schemes use a beam splitter
to combine an input-signal field with a LO field of large
power compared with the input-signal field (Fig. 1).
The dominant signal-carrying term in the intensities
from each of the two beam-splitter output ports is
proportional to the mean field of that quadrature of the
input-signal field (a,, say) that is in phase with the LO
mean field after the beam splitter. One-port homodyne
schemes use a photodetector to monitor the intensity
from one output port of the beam splitter. Two-port
homodyne schemes monitor the intensities from both
output ports of a 50-50 beam splitter and then subtract
the two photodetector outputs.

0146-9592/84/050183-03$2.00/0

Each quadrature of the input-signal field and the [.O
field has associated with it a certain amount of noise
(fluctuations), characterized by the variance of its
quadrature-phase amplitude, i.e., Aa 2 = ((a; — (a}))?)
and Aas? for the input-signal field. Quantum me-
chanics requires that Aa;2Aa52 = 1/16. Coherent states
and the vacuum state have Aa;2 = Aaz2 = 1/4 (ran-
dom-phase noise). Single-mode squeezed states®-8
satisfy Aa’12Aa’;? = 1/16 but have Aa’,2 < 1/4, where
a’y+ia’'a=e"iv(a; +ia),0 S ¢ <.

Aside from that added by nonideal photodetectors,
the dominant output noise in homodyning comes from
interference between the (large) LO mean field and the
noise in the in-phase quadratures of the input-signal
and LO fields (a; and by, say). Indirect detection the
output noise reflects only intensity fluctuations in the
input signal [AN, 2= ((N, — (N,))?)], but in homo-
dyning it reflects the variances Aa;? and Aby2. In
one-port homodyning with a lossless beam splitter of
power transmissivity T’ the dominant output noise is
proportional to the sum TAa2 + (1 — T')Ab,2; in two-
port homodyning it can be made proportional to Aa 2
alone. The two-port scheme can yield a better output
signal-to-noise ratio (SNR) than both direct detection
and one-port homodyning, the improvement over the
latter being most significant when Aa ;2 « Ab;2

The two-port scheme owes its success to the law of
energy conservation, which dictates that the interfer-
ence terms between the LO field and the input-signal
field contribute with opposite signs to the two outputs
of the (lossless) beam splitter and that the noninter-
ference terms contribute with the same sign. The
two-port scheme, by using a 50-50 beam splitter and
subtracting the two outputs, retains only the interfer-
ence terms. Its output signal (intensity) is therefore a
product of the LO and input-signal mean fields, and its
dominant output noise (intensity fluctuations) is due
to interference between the input-signal noise Aa,2? and
the LO power and between the LO noise Ab,2 and the
input-signal power. Thus, for large enough LO power,
the output noise in the two-port scheme can be made
proportional to Aa,2. g

‘The analysis begins with the beam splitter, assumed
linear and lossless with power transmissivity T and re-

© 1984, Optical Society of America
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Fig. 1. Yuen-Chan! two-port homodyne detection

scheme.

flectivity 1 — T. The law of energy conservation, to-
gether with the invariance of a (linear) lossless beam
splitter under the combined operations of time reversal
and reflection about the y = —x axis, leads to the fol-
lowing matrix transformation between the two in-mode
annihilation operators, denoted by a for the signal mode
and b for the LO mode, and the two out-mode annihi-
lation operators, denoted by ¢ and d (see Fig. 1):

el _ ., [a
o= vl
[J = gid VI\-}T’I:ew_\/\/%e_g, = (UH-1. (2)

For present purposes, the overall phase A and the rel-
ative phase u—both inherent properties of the beam
splitter—need not be known; in fact, the relative phase
can effectively be made to take on any desired value by
putting phase delays in the path to one or both detectors
or by adjusting the relative path lengths.

In order to understand physically the roles played by
the various noises as distinct from the mean fields that
they accompany, it is useful to separate each annihila-
tion operator into a signal-carrying part and a noise-
carrying part. To use the input-signal field as an ex-
ample, the signal-carrying part is the mean field (a) =
A, a complex number; the noise-carrying part is the
annihilation operator minus its mean: a — (a) = Aa.
Thus

a=A+Aa=A,4+iAz+ Aa, +ila,. 3)

For simplicity, choose the phase of the LO field so that
the quantity e ~##(b) is equal to the real number B; then
define the operator

e~inb =B+ Ab =B+ Aby + i Abo. (4)

With this LO phase, homodyning will see only that part
of the input signal whose mean is equal to A}, so we can
consider A» to be zero; thus A4, is the signal to be de-
tected, and its inherent noise is characterized by the
variance Aa ;2

Any single-mode state of a radiation field has a noise
intensity, a total intensity, and intensity fluctuations
(to second order) proportional to these expressions:

(N3) = (AatAa) = Aa2 + Aax2 —1/2; (5a)
(Ny) = (ata) = |A|2+ (Nz); (5b)
ANG? = ANz? + 4((AAa; + AsAas)?)

+ 4(ANz(AAa; + AsAas))sym,  (5¢)

wnere the subscript sym means symmetrized. All states
of interest have (N34a))gym = (Nglag)sym = 0. Co-
herent light with Gaussian excess noise has

Aap? = Aa?=Y(2r+ 1), (Aa,Aa2)eym =0, (6a)

ANz2=R(7A + 1), (6b)
AN,2 = |A|227 + 1) + A + 1)

= (Na) + 77 +2|A2). (6c)

When i = 0, the above expressions describe a coherent

state or the vacuum state (J4| = 0). A single-mode
squeezed state®® (with ¢ = 0) has

AaMZ = l/4ei:2r' (AalAa2)sym = 0, (751)

(Ngz) =sinh?r,
ANz? = Y sinh? 2r = (N3) (1 + cosh 2r), (7b)

AN,2 =Y 8inh? 2r + A;2e~% + A 2%
= (N,) + cosh 2r sinh?r
— 2sinh r(A%e=" — Aj2%e’). (7¢)

The beam-splitter outputs are described by the

photon-number operators N, = c¢'c and Ny = d'd,
where

Ne=(1~=T)N,+ TNy +T(1 -T)P, (8a).
Ny=TN,+ (1 -T)Ny -+/T(1 -T)P, (8b)
P =2 Re(e~i#bat) :
=2(A; + Aa;)(B + Aby) +2AaAb, (8c)

[Eqs. (2)-(4)]. For the usual situation of a strong L.O
these expressions reduce to

N.=TB?+2y/T(1 -T)A:B
+ 2/TB(VTAb, + /1 = TAay), (9a)
Ng=(1-T)B2-2/T(1 -T)AB
+ 21 = TB(V1=TAb; —/TAay), (9b)
where here and below = means in the strong-LO limit,
(1 = T)B%>» TA;2 In all the following equations [
assume that the power contributed by the fluctuations
in the LO and input-signal fields is negligible compared
with the power contributed by the mean fields.

One-port homodyne schemes look only at the output
signal (Nq):

(Ng) = (v/1=TB —/TA,)?
= (1 -T)B2-2yT(1 - T)A,B; (10a)

the part of this output that contains input-signal in-
formation is
(Na)sig = =24/ T(1 = T)A1B. (10b)

The output noise in one-port homodyning is given by

ANg?2 =4(v/1 = TB = VTAD)(1 — T)Aby2

+ TAa,?] +4(V1-TB - VTAD[(1 - T)*?

(ANBAbl)sym b TS/Z(ANﬁAal)lym]

+ (1= T)2AN52+ T?2ANz2+ 4T(1 - T)(X),

(11a)

(X) = Aa 2062 + Aaa?Aby%2 —1/8 .

4 2(A51A02>sym(Ab1Ab2>sym- (11b)
Neglecting pure noise terms and taking the usual
strong-LO limit gives
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ANd", = 4(\/ 1- TB = \/TAl)'-’[TAa{-’
+ (1 = T)Ab,?
= 4(1 - T)B2[TAa\ >+ (1 - T)AbALc)
The SNR for one-port homodyning is defined as the
ratio of (Ng)sig to (ANg32)1/2:

(SNR)l = I(Nd) lsig

(ANg2)1/2

= ﬁ[malz + (1= T)Ab 22’ (12)
Equations (11¢) and (12) suggest that the output noise
and SNR for one-port homodyning might be made in-
sensitive to LO quadrature-phase noise if T = 1 with (1
— T)B? finite; however, under these conditions other
noise sources (those independent of LO power) may
become important, so in practice it may not be possible
to let T be close to 1.+ Regardless of LO and input-
signal power, one-port homodyning is insensitive to LO
quadrature-phase noise only if (1 — T)Ab? «
TAa 12.
The two-port scheme suggested by Yuen and Chan*
uses a 50-50 beam splitter and looks at the quantity N,
— Ny = P, for which [Egs. (8c) and (11b)]

(P) = 2BA,,
AP2 = 4BZA012 + 4A12Ab12 + 4(X)
= 4B?Aa,?, (13a)
(SNR); = 2 A (13b)

(APHI2 = (Ag 212’
By adjusting 6 (phase shifter in Fig. 1) in the combina-
tion P(#) = N, cos § + Ny sin 8 of the two photodetector
outputs, one can observe Aa;2 and Ab,2 individuaily (8
= F1/4) or in any linear combination.

By contrast, direct detection of the same input signal
(A2 = 0) would give the following output signal, noise,
and SNR [Egs. (5)]:

(Na) = A%, AN,? = 44,2002, (14a)

<Na) Al

(SNR)p = (AN, 2)1/2 = 2(Aa,?)1/2

= 1,(SNR)2.
(14b)

For a weak, highly squeezed input signal, in which the
power associated with the increased fluctuations of the
unsqueezed (conjugate) quadrature rivals the mean-
field power, the approximate expressions (14a) must be
replaced by the exact expressions [Egs. (5) and (7)].

The other important source of noise in homodyning
is nonideal photodetectors. A photodetector with
quantum efficiency 1 can be modeled as a lossless beam
splitter with power transmissivity T' = n followed by an
ideal photodetector. The two inputs to the beam
splitter are the signal and the vacuum state, described
by annihilation operators d and do, respectively. The
output of a nonideal photodetector is described by the
annihilation operator d’, where [Eq. (2)]

d’ =e'*(v/nd = e~"/T = 1do) (15)

and the phases A and v are inconsequential here.
One-port homodyning with a nonideal photodetector
gives the following output signal, noise, and SNR:

(N(l'):dx‘: ’7(1\/(1)si1(g - 2nv T(l‘"T)AlB; (16a)

ANg-2 = 1?ANg? + 7(1 = 7)(Ng)
= (1 = T)n%B?[4TAa,2

+4(1 = T)Ab2 + (1 = n)/n); (16b)
= 2v/TA,
NR), = .
ISP [4TAa)2 + 4(1 = T)Ab 2 + (1 — n)/n)V2
(16¢)

Two-port homodyning with identical nonideal photo-
detectors gives this output signal, noise, and SNR:

(P’) = n(P) = 2nBA,, {17a)
AP? = n2AP% + (1 = n)[(N.) + (Ng)]

= n2B%[4Aa;? + (1~ n)/n); (17b)

(SNR)y E (17¢)

*[@al+ 1= mm
Direct detection of the same input signal would give the
following output signal, noise, and SNR:
(Na') =n(Ng) = A%
AN,y-? = n?A%[48a,% + (1 = n)/n); (18a)
A,
[44a,2 + (1 = n)/n]V/2

(SNR)p = %(SNR)y. (18b)

Equations (16) and (17) show that the absence of any
contribution from LO quadrature-phase noise in the
output noise of two-port homodyning can be a distinct
advantage when one wants to detect squeezing in the
input signal. For example, for two-port homodyning
with efficient photodetectors (7 = 0.9) the ratio between
the output noise produced by a coherent-state input
signal (4Aa,% = 1) and that produced by an input signal
that has been squeezed by a factor of 10 (4Ag\2= e~
= 0.1) is about 5:1. The same ratio for one-port ho-
modyning with an ideal (coherent-state) LO (4Ab,2 =
1) and a 90/10 beam splitter is about 3.5:1. For the
same squeezed input signal, two-port homodyning offers
an improvement in output SNR over one-port homo-
dyning by a factor of roughly 1.3, and it has the addi-
tional advantage of not requiring a quiet local oscillator.
More-efficient photodetectors and/or a more highly
squeezed input signal would make this comparison more
dramatic.

This research was supported in part by National
Science Foundation Grant AST82-14126.
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ABSTRACT

The validity of the standard quantum limit (SQL) for meas-
urements which monitor the position of a free mass is examined.
A necessary condition for such a measurement scheme to sur-
pass the SQL is derived. This condition is then used to show
that, at least for typical situations, measurements of position
alone cannot beat the SQL, and simultaneous measurements of z

and p might enable one to reach the SQL but not tc surpass it.
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The standard quantum limit'? (SQL) for monitoring the position of a free
mass m says that in two successive, identical measurements of position z
spaced a time 7 apart, the result of the second measurement cannot be
predicted with an accuracy better than (A7/m)% In this Letter I derive the
SQL and discuss the conditions under which it limits any measurement scheme
designed to monitor the position of a free mass. I then show that for measure-
ments described by linear couplings to the position z or to both z and the
momentum p, and at least for cases where the wave functions of the measuring
apparatus(es) are Gaussian, the SQL cannot be surpassed.

The origin of the SQL will be shown to lie ultimately in the fact that under
free evolution the Heisenberg operators z(0) =z and z(7) =z + (Ar/m)p do

not commute:

[2(0).z(T)] =ihT/m . (1a)
From this fact it follows that

0:%(0) + g *(T) = hr/m | (1b)

where ¢.%(7) = {(Az)®(7) and Ax =z —<{z);, the equality holds only when
0:%(0) = 0,%(1) = At/ 2m. [Henceforth 1 set A=1] In the following para-
graphs [ examine first measurements of z alone and then simultaneous
measurements of z and p, using as illustrations for each the simple cases of
linear coupling.

Consider first a measurement of z alone, in which a single measuring
apparatus ("meter") is coupled, through a constant interaction Hamiltonian
V. to the position z of the free mass. I assume that at time 7 =0 V is turned
on, and it is turned off a short time later at T =7* by “short time” (or

"strong coupling') | mean that during the measurement the free evolution of
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the system and the meter may be ignored ("impulse approximation"). After
the first measurement, the system is allowed to evolve freely until a time
7> 7* at which time the second measurement begins. The task is to find
with what certainty one can predict the outcome of the second measurement,
using the information one has about the state of the system after the result of

the first measurement has been recorded.

Denote by X; an observable of the meter whose measured value provides
direct information about the position z of the free mass. The first measured
value for X; -- X', say -- is our best indicator for the value z4 of the position of
the free mass just before the measurement. The uncertainty in X;' - i.e., the
.amount by which it might differ from zq - is equal to the sum of the intrinsic
"width" of the free mass wave function before the measurement, ¢.%0) (in

general unknown), and the finite resolution of our meter, denoted by ¢,
ox*(T*) = 0;%(0) + 0, (2)

The important quantity to calculate, however, is the intrinsic uncertainty of
the free mass position after we have completed and recorded our measure-
ment; this involves a collapse of the joint wave function for meter-plus-free
mass, whereby the X,-dependence becomes an X,-dependence. Suppose the
wave functions for the free mass and the meter before the first measurement
are F(z;0) and M(X,.0), respectively. The joint wave function before the meas-

urement is the product {meter and free mass initially uncoupled)
¥(z,X;,0) = F(z:0) M(X,;0) ; (3)

After the measurement the joint wave function is given by ¥(z,X;;7*). The
(renormalized) wave function for the system, just after we have obtained

the value X' from the first measurement, is given by
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‘I’(r ,XII;T‘)
F z,7*) = ——————, 4
@ = ety i
where the probability distribution for the measured value X' is
P(X,:7) = fdz [ ¥z X 7*) 2. (4b)

The average position and its variance for the free mass after we have obtained

the value X' are given by
(z)(m*) = [dz z|F(z:7)|2, (5a)
0:2(r*) = [dz | F(z:m)|? (z - (=)' (7*))? . (5b)

Other relevant post-measurement quantities for the free mass which are simi-
larly calculated are the mean momentum {p)'(t*). the variance of the momen-
tum 0,%(7*), and the correlation 0,'(7T*). where oz'(T*) = (Az'ApDgm(T*).
Az' =z —{z)'(r*), and "sym" means "symmetrized.” In terms of these quan-
tities the position and variance of the free mass at time T, just before the

second measurement, are given by:
(z>(1) =)' (%) + (1/ m)p>'(77) . (62)
0:() = 057 (%) + (1/m)Pa,? (T%) + 2(r/ m)azy' (17 (6b)

The result of our second measurement, X;', will be our best indicator for
{z)'(T); the uncertainty in X' -- i.e., the amount by which it may differ from
the predicted {z)'(7) -- is equal to the sum of the intrinsic "width" of the free
l‘mass just before the second measurement and the resolution of our meter,

denoted now (allowing for a new meter) by gz [cf. Eq.(R)]:

O’Xlz'(‘r + T') = 0‘32'(7‘) + 0’22 ' (7)
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The primes present in Egs. (5)-(7) are reminders that these quantities depend
on one's having obtained the result X' in the first measurement -- i.e. that they

have been calculated using the renormalized wave function of Eq.(4a).

If it is the case that 0,® = 0,%(7*), then the SQL is obeyed, by Eqs.(1b), (7)
and the impulse approximation. Suppose now that the meter used in the
second measurement has the same resolution as that used in the first: g5 = 7,°
(this is the situation to which the SQL always refers). Through Eq. (5b)
one has a definite relation between ¢,% and ¢,%(7*), and that relation dictates
whether or not the SQL can be surpassed. In particular, if ¢,%(7*) < g,% the

SQL cannot be surpassed.

In general, one does not know the free mass wave function F(z;0), but the
meter wave function M(z,;0) is under one's control. Let us assume that the
meter is a one-dimensional system with two degrees of freedom described by
the conjugate observables X, and P,, and consider the case where the meas-
urement process is described by the linear interaction Hamiltonian V = KzP;. In
units with K7* = 1, measurement of X, then corresponds to a measurement of

z. The intrinsic resolution of the meter [¢,? in Eq.(2)] is equal to 0x%(0). In

this context the simplest case to analyze is when both F(z;0), and M(X;;0) are

Gaussian:
F(z:0) = N,(0) @00/ Hg"e720™20) (82)
4 2/
_ s e i, A B _ 40z Q)
Nz(o) = [27702 (O)] e ! b(O) l‘f"LE(O)
go = —tan2dy = —R0,5(0) ; (8b)

analogous relations hold for M(X;;0) [quantities Ny (0), 5,(0), and £,(0)]. A

Gaussian "contractive” stated is one for which gy > 0. Under free evolution,
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&(7) = g9 — 2(1/m)0,%0), 6,%(7) = 6,%(0). and 0,%(7) = [1+e¥(7)]/ 40,%(0); hence
e(r) always decreases during free evolution (correlation of Az and Ap
always increases), and when it passes through =zero, [z(1,)=0],
0:%(Tm) = 1/40,%(0) is equal to its minimum possible value. These and other
special states are not discussed further here, since they are relevant to the
SQL only through Egs. (5) and, at least for Gaussian states, the contractive

quality does not help one beat the SQL.

For a measurement described by the linear coupling V = KzP,, the joint

wave function after the measurement is given by
¥(z,X;;1*) = F(z,0) (X, - z;0) ; (9a)

For Gaussian wave functions F(z;0) and M(X;;0) [Egs.(8)], Eq.(9a), together with
Egs.(4), tells one that the variance of the free mass position at time 7* just
after the first measurement is equal to

0‘12(0) 0'12 < 2

Br¥) = —————- < : 9b
Ua: ( ) 0',2(0) + O_lz U’. ( )

Hence, i.f 02® = 0,* (meters with identical resolutions), the SQL is obeyed [Egs
(9b), (7) and (1b)]. Eq. (9b) also says that the best one can do in this
type of measurement is to reach the SQL, which is accomplished when one has
essentially no information about the position of the free mass before the first
measurement [0;2(0) » ¢,%]. The result 0,%(7*) < 0,® agrees with our intui-
tion, and it is typical of measurements of z alone, due to the fact that the
free-mass wave function F(z;0) (typically of finite width) contributes to
the post-measurement renormalized wave function F'(z;7*) [Eqgs.(4) and (9a)].
However, a more thorough examination of the restrictions on meter wavefunc-

tions M (z;0) necessary to ensure that 0, (7*) < ¢,> may be in order.
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Yuen® has implied that a simultaneous measurement of z and 2% might
enable one to beat the SQL. At this point the discussion is in some sense
academic, for most experiments which attempt to monitor z do so for the
purpose of detecting a classical force F(z,t);® this task would be much easier
if we simply coupled to p alone, but we don't know how to do that.
Nevertheless, the idea of simultaneous measurements of noncommuting observ-
ables is an important one, and such measurements do play an important role
in quantumn optics, for example.®? In the following paragraphs I show that, at
least for the case of alinear coupling to z and p and for Gaussian meter wave
functions, the use of an optimally-arranged simultaneous measurement of =z

"and p might enable one to reach the SQL, but not to surpass it.

1 will assume that the simultaneous measurement is accomplished by using
two one-dimensional "meters"”, described by the conjugate observables X, P, and
X2 Py, respectively. The prototype for such a measurement is again one in which
the coupling is linear, with V = K(zP, + pP;). In units with K7* = 1 and in the
impulse approximation, measurement of X; [Xz] corresponds to a measurement
of z [p].  The values X' and X,' obtained in the first measurement are our best
indicators for the position zg and momentum pg of the free mass just before the
measurement. The uncertainties in X, and X;' (most easily calculated in the

Heisenberg picture) are
lez(’r*) = U:cz(O) + 012 '

axzz('r*) = g,%(0) + A2, (10a)

2 and A\;® describe the position and momentum resolu-

where the quantities g
tion, respectively, of the two-meter measuring apparatus. In particular, for the

linear coupling just mentioned,
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0% = 0x,2(0) + ¥0p,}(0) ,

AE = 0x,%(0) + Kop 2(0) . (10b)

Let the initial wave functions for the free mass and the two meters be
F(z;0), M(X,;0) and N(X5:0). Straightforward calculation of the evolution opera-

tor gives for the joint wave function after the first measurement
dpy —
Ple X, Xor%) = _Z%Q_N(pg;O) F(z —pg0) M(X,—z + ¥%p,0) | (11)

where N(p3z:0) is the Fourier transform of N(X50). Earlier discussion [Egs.(9)]
indicated that in order to make 0,%(7*) = 0,° (and hence have a chance of beat-
ing the SQL) one needs to find a way of making the wave function of the free
mass just after the measurement be independent of its wave function just before
the measurement. Arthurs and Kelly * have given a prescription for accomplish-
ing this: one chooses the two meters to have suitably "balanced”, Gaussian wave
functions, and finds that just after the measurement the free mass wave func-
tion is also a Gaussian, with mean position and momentum equal to the meas-

ured values
(D) =Xxy . () =X . (12a)
and position and momentum variances equal to the measurement resolutions
Uzz'(T*) =a,% O'pel("*) = N2 (12b)

. Specifically, require that #(X;;0) and N(X»:0) have the general Gaussian form

defined by Egs. (8), and balance them by making b,(0) b2(0) = 1, so that

£1(0) + £2(0) =0 and 40;,%(0) = 0p,%(0) . (13)



-212~

The joint wave function after the first measurement then has a simple z-

dependence:

¥z, X1, X T*) g "R e . (14a)
which tells one immediately that

0% (7*) = 20y *(0) = 0® (14b)

[cf. Egs. (9)]. It is also clear from Eq. (14a) that the system will be left in a
contractive state if the X,-meter was in one, since ¢'(7*) = £,(0). However, this
fact does not help us beat the SQL, for if our second measurement uses the
‘same meter set-up as the first measurement (022 = 0,%), then Egs. (14b), (7) and
(1b) tell us that a simultaneous measurement of z and p can at best allow us to

reach the SQL:
ox 2 (T + ) = 0% + 0. ¥(1) = @ F(r*) + 0B (1) = (1/m) . (15)

From Eq. (14a) it is clear that this result is true regardless of whether we look at
the second meter (X,'). Again, however, a more thorough examination of the res-
trictions on the meter wave functions necessary to ensure that ¢,%(7*) < ¢,?

may be in order.

I have stated in this letter the criterion which must be satisfied if there is to
be any chance of beating the SQL. In the context of measurements described by
linear couplings to z or z and p, | have shown that for measuring apparatuses
described by Gaussian wave functions {which includes the Gaussian contractive
étates proposed recently by Yuen® as a means of surpassing the SQL) the SQL
cannot be surpassed, though it might be approached by performing a balanced
simultaneous measurement of z and p. A more detailed examination of the

general requirements on the meter wave function(s) necessary to enforce (or
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not enforce) the SQL would be interesting and useful.

The author would like to remark that some of these results were
obtained independently by C.M. Caves. She also thanks W. Zurek for some
enjoyable discussions and Zonta International for their generous fellowship.

This work was supported in part by NSF Grant AST82-14126.
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Summary. Motivated by the possibility that torsional oscillations of neutron
stars may be observable in the timing of pulsar subpulses and/or in future
gravitational-wave detectors, this paper develops the detailed mathematical
theory of such torsional oscillations and of the gravitational waves they emit.
The oscillations are analysed using the formulation of first-order perturba-
tions of a fully general relativistic spherical stellar model. All sources of
damping are ignored except gravitational radiation reaction. The perturba-
tions are resolved into spherical harmonics, which decouple from each other.
For each hammonic this paper presents equations of motion, an action
principle, an energy conservation law and a Liapunov-type proof that the
oscillations are always stable. Each harmonic is then resolved into nommal
modes with outgoing gravitational waves (time dependence &“‘ with w
complex) and an eigenvalue problem is posed for the eigenfunctions and the
eigenfrequencies w. Five methods of solving the eigenvalue problem are
presented; three methods are valid in general (the method of resonances, the
variational method and the method of energy conservation); one is valid in
the slow-motion approximation (wavelength of waves large compared to star)
and one is valid in the weak-gravity approximation. For stellar models with
weak gravity and with radially constant density and shear modulus the
eigenvalue problem is solved analytically.

An appendix develops a general theory of action principles for systems
with radiative boundary conditions — a theory which is then used to derive
the action principles in the body of the paper and which could be useful for a
varety of other problems involving physical systems coupled to radiation.

1 Introduction

If torsional oscillations of neutron stars could be observed, then comparisons of their
measured periods and Qs with theoretical models would give valuable information not only

* Supported in part by the National Science Foundation (AST 79-22012 and PHY 77-27084).
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about neutron star structure, but also about the physics of matter at subnuclear and supra-
nuclear densities. There are two hopes for such observations: pulsar timing data and gravita-
tional radiation. Van Horn (1980) has pointed out that the ‘marching subpulses’ observed in
some pulsars have the same range of periods, 10—50 ms, as low-order torsional oscillations of
neutron star crusts; and on this basis he has argued that such oscillations may be the clock
which regulates the marching subpulses. And Dyson (1972) has pointed out that, if neutron
stars have solid cores, then quakes in those cores should generate torsional oscillations which
might produce gravitational waves strong enough to detect on Earth.

With these two applications in mind, and with hope that they or others will materialize,
we construct in this paper the detailed mathematical theory of torsional oscillations of
non-rotating, general relativistic stellar models with isotropic shear moduli u.

The analogous general relativistic theory of non-spherical compressional oscillations
of non-rotating perfect-fluid stars was laid out a number of years ago by Thome &
Campolattaro (1967), Price & Thorme (1969), Thorne (1969a, b), Campolattaro & Thorne
(1970), Ipser & Thorne (1973), Detweiler & Ipser (1973), Thome (1983, in preparation).
Those eight papers developed many facets of the theory. This paper is rather long because it
attempts to develop, all at once, all of those same facets for the theory of torsional
oscillations, and several more facets besides.

To set the stage for our analysis, we shall review briefly the structures of neutron stars
and the characteristic magnitudes of various quantities associated with them; for further
detail see, e.g., Baym & Pethick (1975, 1979) and references therein.

Observation and theory agree that typical neutron stars have masses M ~ 1M, and radii
R ~10km. Theory predicts with great confidence that within minutes after the star is born,
its crust will cool enough to solidify into a crystal governed by Coulomb forces between
atomic nuclei. This crystalline crust should extend from the star’s atmosphere inward to a
depth of order 1 km, where the density is within a factor 2 of nuclear, p~ (1.5-3) x 10'%g
cm 3. Throughout the crust the shear modulus u is computed to be nearly proportional to
density p, with

(u/p)?=vg=1x108cms™!. 6))

Here vs is the speed of non-relativistic shear waves (Ruderman 1968; Pandharipande, Pines &
Smith 1976 ; Hansen & Cioffe 1980) (see equation 20 for a relativistic correction).

It is now widely believed that below the solid crust resides a superfluid mantle, which
extends inward through a thickness of roughly Skm and through a density range of
(1.5-3)x 10" to (5—10)x 10" gecm™, until it meets the star’s ~ 4 km core. The physical
state of the core is highly uncertain. Possibilities include a pion-condensed state, which
might or might not be a solid governed by nuclear forces; an ‘abnormal state’ in which the
nucleons become practically massless; a degenerate Fermi liquid of quarks, etc. The possi-
bility of a solid core was viewed with much favour between 1971 and 1974, both on grounds
of nuclear many-body calculations and on grounds of a reasonable fit between the theory of
core quakes and observations of glitches in the timing of the Vela pulsar (Pines, Shaham &
Ruderman 1974, see Hansen 1974, p. 189). However, by 1975 improved many-body calcula-
tions had cast doubt on the likelihood that supranuclear matter will solidify. The doubt
remains today, but the calculations are far from convincing either way; see Baym & Pethick
(1975, 1979) for details and references. If the core is a solid, then its shear modulus u could
be as large as its pressure P, or it might be somewhat smaller:

(r/p)?=vs S (P/p)?~1x 10 cms™!, (2

Hansen & Cioffe (1980) have used Newtonian theory to compute the torsional oscillation



-218-

Torsional oscillations of neutron stars 459

periods of neutron star crusts. As one might expect, they obtain for modes with no radial
nodes (so transverse wavenumber dominates)

Period = 2m/w = 2n [[(l + 1)) V2 R/ug~ 20ms  for [=2, (32)

where /=1, 2. 3,...1is the spherical-harmonic index. Relativistic effects (especially gravita-
tional redshitts and the dragging of inertial frames) are likely to change these periods by
~ 10-50 per cent. These periods are a factor ~ 10 longer than would be compressional—
oscillation periods for the crust, because the electrostatic forces which govern the crystal and
its torsional oscillations are ~ 100 times weaker than the degeneracy forces and nucleon—
nucleon forces which govern compressional oscillations. Because the crust’s torsional oscilla-
tions are so slow, ugfc <1, they can be described very accurately by the ‘slow-motion
approximation’ to general relativity (Thorne 1980; Section 4.5 of this paper) which predicts
gravitational waves so weak that it is hopeless to ever detect them:

GMy\ [vs)? 0k
h~6( 2")(5) 5~1o-28(1——5)(6) for I=2. (3b)

re C! r 1_6:5

Here 4 is the dimensionless gravity-wave amplitude, 7 is the distance from the Earth to the
star, B is the dimensionless amplitude of the star’s shearing oscillations, M~ 0.1 M, is the
mass of the crust, and we have specialized to quadrupole modes which are the strongest
emitters. Gravitational radiation reaction will damp the crustal oscillations with an e-folding
time

7~ 0.3 (GM/Re?) ! (v/e) P w™t ~ 10%yr; (3¢)

cf. equations (76).
If the core is solid and has u~ P (as was widely believed in the early 1970s), then the

periods of its torsional oscillations would be roughly the same as those of its compressional
oscillations:

Period = 2m/w = 2r R y/vg ~ 03 ms  for [=2. (42)

where R.,~ 4 km is the core radius. Because the torsional oscillations emit ‘current quad-
rupole’ gravitational waves (gravitational analogue of magnetic quadrupole), whereas the
compressional oscillations emit ‘mass quadrupole’ waves (analogue of electric quadrupole),
the waves from torsional oscillations will be weaker by (vs/c) ~ 1/3 and will be damped more
slowly by (vs/c)™? ~ 10 than those from compressional oscillations:

'GMCO) 05)3 (10 kpc) ( B8 )
~03\— (=) 8~3x102|{— ) {—=) (4b)
e ( re? . (c\ A X r 102
GM 5\ j0)™*
r~30( “;) (—s) w~1s. (4c)
RoC c

(The coefficients used here are extrapolated from strong-gravity, fast-motion calculations
of compressional oscillations by Thorne (1969a); the coefficients used in equations (3) for
crustal oscillations are based on the weak-gravity, slow-motion calculations of equations (76)
of this paper.) Assuming that the Vela pulsar has a solid core, and that the glitches observed
every 2 or 4 yr in the Vela pulse arrival times are due to core quakes, Pines ez al. (1974) have
estimated that the total strain energy released in each quake is ~ 10* erg corresponding to
B~ 107%, which at a distance » ~ 500 pc would produce 4 ~ 6 x 1072, Other, younger neutron
stars might be stronger emitters. For comparison, the best currently operating gravitational-
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wave detector (Stanford’s bar; Boughn e¢ al. 1982) has a burst sensitivity /z ~ 5 x 1078 (rms
noise /1 ~ 1 x 107'®) at a period P ~ 107%s; the design sensitivity of a multikilometre laser-
interferometer gravity-wave detector being planned for the late 1980s (Drever e al. 1982)
for 10 kHz waves that last 1s, would be 4 ~ 3 < 107%. Thus. it is not inconceivable that
corequakes in neutron stars could be detected and studied routinely in the 1990s.

We turn now to the detailed analysis of torsional oscillations of spherical, non-rotating,
relativistic stellar models. The spherical symmetry of the unperturbed star guarantees that
the oscillations can be decoupled into modes of definite spherical-harmonic indices (/, m)
and definite parity. In the language of previous analyses (e.g. Regge & Wheeler 1957) pure
torsional oscillations are the normal modes of odd-type or magnetic-type parity.m = (— 1)/*1,
Such modes do not exist for /=0 (monopole). They exist for /=1 (dipole) but cannot
generate gravitational waves. For /> 2 they do generate waves. The differences between / =1
and /> 2 are so fundamental that they are best analysed in different gauges and with
different mathematical techniques. Sections 2—4 of this paper are devoted to modes with
/> 2; Section 5 treats / = 1. Section 2 lays the foundation for the analysis with /> 2, includ-
ing the description of the unperturbed star (Section 2.1). the coordinates, metric and Ricci
tensor for the perturbed star (Section 2.2) and the description of the material motion — i.e.
the displacement function, four-velocity and stress-energy tensor (Section 2.3). Section 3
presents the details of the analysis, including the equations of motion for the matter and the
gravitational field (Section 3.1), the boundary conditions on the matter and field variables
(Section 3.2), the form of the gravitational waves emitted and their energy loss rate (Section
3.3), an action principle and local law of energy conservation for the pulsations and their
waves (Section 3.4), and a Liapunov-type proof that so long as the shear modulus is positive
the star is stable against arbitrary (but first-order) torsional perturbations (Section 3.5).
Section 4 analyses the star’s outgoing wave modes (pulsations with sinusoidal time depen-
dences and complex frequencies), including a formulation of the eigenvalue problem for the
normal modes (Section 4.1) and various methods of solving the eigenvalue problem: the
method of resonances (Section 4.2), a variational principle method (Section 4.3), an energy
conservation method (Section 4.4), a method valid in the slow-motion approximation
(Section 4.5), and a method for stars with weak internal gravity (Section 4.6, which also
includes an analytic solution of the eigenvalue problem for weak-gravity stars with constant
density and shear modulus). The analysis of dipole oscillations in Section 5 follows a similar
outline — but with all issues of gravitational radiation absent. Some mathematical details are
relegated to appendices. Of special interest may be Appendix B which elaborates and
extends an elegant formulation (by Friedman & Schutz 1975) of the general theory of
action principles for systems that can radiate waves — any kind of waves — to infinity.

Throughout this paper we use the mathematical conventions of Misner, Thome & Wheeler
(1973, cited henceforth as MTW), including setting the speed of light and Newton’s gravi-
tation constant to unity and denoting covariant derivatives by semicolons and partial
derivatives by commas.

2 Foundations for the analysis: / > 2
21 THF UNPFRTURBED STAR

The unperturbed spherical star is dzscribed in the standard manner (see, e.g. MTW). The
metric, in Schwarzschild coordinates, is

ds? = (ds?)o=—e*®dr* + " dr* + 72 (d9* +sin? 9 d¢?)

= Yyl dx”, (5a)
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where &(r) and A(r) are functions of the radial coordinate. ». The ‘mass inside radius #’,
m(r). is defined by
e 2N =1 - 2mfr, (5b)

L
The density of total mass-energy and the (isotropic) pressure are denoted by p and P, respec-
tively. The standard equations of structure for the equilibrium star are (i) the mass equation

m= | 4nrtp(r)dr (5¢)
Jo

(ii) The Oppenheimer—Volkov equation of hydrostatic equilibrium

3
‘ZI—I:=—(—”—%)'—Q, PR)=0 (5d)
where R = (value of r at surface of star), and (iii) the source equation for ¢ (r)
dd m+4nrPP
dr =rz(l —2m/r)’

d () =0. (Se)

From equations (5b) to (Se) the following useful relations are easily derived:

AN =121 =e*M +4nrpe*?, (s
@ =—1/2r"(1 —e*) +4nrPe, (58)
' +A=dar(p+P)e*N or (p+P)=—(4mr)y (e ® Ny e® A, (5h)
e?®=¢2A=1-2M/r outside the star, (51)

where primes denote radial derivatives, 3/dr, and where A =m (R) is the star’s total mass
and R is its radius. The complete unperturbed model is specified by giving the radial distri-
butions of p, P, ®, A (or m) and the shear modulus u(r). We assume in this paper that u is
isotropic (‘scalar field’).

2.2 COORDINATES, METRIC AND RICCI TENSOR FOR PERTURBED STAR

For the perturbed star we introduce coordinates (¢, r, 8, ¢) which reduce to those of the
unperturbed star when the oscillations vanish. We linearize our entire analysis about the
unperturbed configuration and resolve the oscillations into spherical harmonics of definite
indices /, m and parity m. The spherical symmetry of the unperturbed configuration guaran-
tees that modes of different /, m, m superpose linearly (i.e. no mixing). Therefore, we can
restrict attention to modes with fixed /, m, m (pure modes). In this paper we do not consider
‘even-parity’ modes [m =(—1)/] because they represent compressional oscillations rather
than pure torsional oscillations; see Thorme & Campolattaro (1967) for discussion. The odd-
parity torsional modes with fixed / but different m can be obtained from each other by
linear combinations of rotations about the star’s centre. Thus. without loss of generality, we
can specialize to an odd-parity mode with definite / and with 'z = 0; and we hencetorth use
m exclusively to denote the mass inside radius » (equation 3b) and not a spherical harmonic
index.

The metrc g, for our oscillating star consists of the unperturbed metric vy,, plus

components 4, which describe our odd-parity perturbation:

ds? = (ds?)g + hy, dx* dx?. (6a)

M ¢
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Clearly, hy4, hy, and h,, are scalars under rotation and thus have even parity, which means
they must vanish. Further (¢f. appendix A of Thorne & Campolattaro 1967) we are free to
specialize our coordinates (choose our gauge) so as to make all other components of /,,
vanish except the following:

hio=hs==1r*y(t. r)by = - r*y sin 834 P; (cos 9),
hyo=hy,=—re*=®Q(z, r)bs. (6b)

Here b is equal to [47/(2/+1)]"? times the Regge—Wheeler (1957) odd-parity vector
spherical harmonic d)é? ;in future equations we shall raise and lower the index on b with the
metric of the unit sphere:

by =sin? 95® = sin 93P (cos ¥); (6¢)

the indices of the metric perturbation functions 4, are raised and lowered with the unper-
turbed metric, v, (equation 5a). In equations (6b,c), P; (cos §) is the Legendre polynomial
of order /, and the dot over y denotes a time-derivative 3/d¢ = 3,. The perturbation function
yb® is equal to the angular velocity of a zero-angular momentum observer (ZAMO; ¢f,, e.g.,
Bardeen, Press & Teukolsky 1972); thus yb? is the angular displacement of a ZAMO and is
dimensionless. Outside the star the perturbation function Q is equal to the Regge—Wheeler
(1957) gravitational-wave variable, aside from a multiplicative constant.

The metric perturbation (6b) produces a perturbation of the Ricci tensor with the follow-
ing non-vanishing components (Thorne & Campolattaro 1967, equation B3 as corrected in
the erratum — but note the different notation and signature used there):

ghek 1(+1) .
e

8Rp=08Ryp; = > [Pe ¥ — e O] +e P -Are® XYy~ y
(72)
- I PR SR Wit 1t ey A1) A g
5R,¢—5R¢,,—ll/2re ' —-e Q/r)+rte*®re YO - - e Qi by,
(7b)
5Rop=08Rpy= {1/2r7¢2%) — 1/2e= = (rQ)'} sin? 5% . (70)

Here and below primes denote radial derivatives and dots denote time derivatives, Q'=03Q/or
=, and Q =3Q/at =Q ,. Note that sin?95° , =sin? 9945 is equal to [16m/(2/ + 1)] 2
times the Regge—Wheeler odd-parity tensor spherical harmonic x'§¢,.

We now go on to consider the motion of the star and the interaction of its matter with
the surrounding spacetime geometry.

2.3 DISPLACEMENT FUNCTION, FOUR-VELOCITY ANDSTRESS-ENERGY TENSOR
FOR PERTURBED STAR

In the perturbed star, the coordinate location of a specific particle of stellar matter oscillates.
We describe its osciliating location by a displacement vector & whose components £, 2‘9 and
£ are functions of the particle’s original location (. &, ¢) and of time ¢:

Toet SFHE (L1 9, 0);  Open=0+E2(6 1 0, 8),  Gpen =0 +E°(L 1. 8.0). (8a)

Because ¢” is a scalar under rotations about the centre of the star and thus has even parity, it
must vanish. The angular displacements form a vector field on the unit sphere, §= £99 +
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£°0,, and must therefore have the angular dependence of a yector spherical harmonic of
definite /, of m =0 and of parity 7 = (— 1)'* 1

=0, £%=0; £°=Y(, r) (sind) ' dsP(cosd) =Y (r, r)b°. (8b)

Note that just as yb® is the angular displacement of a ZAMO, so Y4® is the angular
displacement of the stellar matter.

~The four-velocit){ u* of a particle with world line (8a,b) is obtained from the relations
Wiu' = dxleq/dt = ¢ ; ubu’g,,=—1. The result, linearized in the perturbation functions

y,0 7, is
w=e¢® u=0, u®=0 w=e®YH® (9)

The radial and angular variations of the azimuthal displacement £® produce deformations
(shears) of the star’s crystal lattice. These deformations are described by a shear tensor S, 4.
When viewed in the orthonormal comoving frame of a particle of the stellar material S4; is
purely spatial (So0 = Soj = S0 = 0), and its spatial components Sjx = Si; are precisely those
of the non-relativistic theory of a stressed medium (see, e.g. Landau & Lifshitz 1970).
Hence, in this proper reference frame of the particle, the shearing motion produces a restor-
ing stress given by the standard non-relativistic formula T},’}e" = — 2uSjx, where u is the
shear modulus. By general covariance (c¢f. MTW, chapter 16) this equation can be rewritten
in the coordinate-independent form

THE¥ = — 2uSqp. (10)

To calculate the components S,4 of the shear tensor in our Regge—Wheeler coordinate
system we proceed as follows: First, we calculate the rate of shear 0,5 from standard
formulae (see, e.g., MTW, exercise 22.6):

g = 12 (g P ity PP) — 1B Eyo® s (11)
where
PaﬂE g"ﬁ * uau[j.

The result is

o,¢=o¢,,=1/2r2e'¢(Y’-eA‘¢Q/r)b¢,; (122)
096=0s9=1/2r2¢® Ysin295% ; (12b)
all other components vanish. (12¢)

(Notice thateven for a fluid at rest in the (r, 3, ¢) coordinate system (Y =0) there is a chang-
ing radial shear 0,4 associated with the changing metric (0 # 0; ‘deformation of coordinates’).
It is only because we are in the Regge—Wheeler gauge where kg5 =0 that the non-radial
shear o, vanishes when Y =0.) Next, we write in explicit form the relationship

o=4yS, ‘ (13)

that the rate of shear is the Lie derivative of the shear along the world lines — a relationship
“which is best derived in the proper reference frame of a fiducial material particle; cf. Carter
& Quintana (1972). The result, to first order in the oscillations, is

Oaﬁze—d)saﬁ, I (14)
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Finally, we combine equations (12) and (14) and integrate with respect to time, using the
initial condition that the shear S,g is equal to zero in the unperturbed star (i.e. when ¥ and
hyy vanish). The result is

Si0=Ser=112P2(Y' = M~ QIR by =y + 1/211,5: (15a)
S.9¢=S¢\9=1/2r2YSin20b°"9=£(9;¢,). (15b)

Note that the shear S,; is generated both by the deformation of the crystal relative to the
coordinate system (non-zero Y) and by the deformation of the coordinate system itself
(non-zero h,y).

The shear stress of equations (10) and (15) is only one contributor to the stress-energy
tensor of the stellar material. The other contributors are the total density of mass-energy p
and the isotropic pressure P, both of which maintain their unperturbed values because they
are scalar fields and therefore cannot undergo odd-parity perturbations. The stress-energy
tensor associated with p and P (the bulk part of the stress-energy tensor) has the standard
perfect fluid form

T84% = (o + P)ugug + Pgqg. (16)

Using equations (5), (6), (9), (10), (15) and (16), we obtain for the total stress-energy
tensor Tz = To§™ + T of the oscillating star

T =pe*®, T, =Pe? Toe=Pr Tue=Prisin®9: (172)
Tio=Tor=—1[(2+P)Y - py] by; (17b)
Trp=Tp,=—r[uwrY —(u—-P)er=®Q]by; . (17¢)
Too=Tps=—r’uYsin?96%, 4; (17d)
all other components vanish. (17e)

For evaluation of the Einstein field equations, Ry, = 87 (T, — 1/2 Tg,,). we shall need
the first-order perturbations of (7T, —1/2 Tgy,). These are easily found from equations
(5),(6) and (17):

8(Tep — 1/2T20) =r*[1/2(p +3P)y —(p + P) Y] by; (18)
8(Tyo— 1/2Tg) =r[—urY +(u—1/2p +1/2P)e*~®Q]b,; (18b)
§(T9p— 1/2Tg9e) = —ur*Ysin?06°, o (18c¢)

where we have used the fact that T= T§ =3P - p-

3 Details of the analysis: / > 2
3.1 EQUATIONS OF MOTION

Because our stellar oscillations are described by three functions of z and r — Y, y, Q — our
analysis will require three equations of motion. Our chosen versions of these equations are
obtained from the perturbed Einstein field equations §R,, =878 (T, — 1/2Tgu) by
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manipulations described in Appendix A.
Our first equation is an initial-value equation for the ZAMO angular displacement
function y:

e® A [+2)(1 -1
- r4 (rde—®—Ayl)/+eZA [1611'(;) +P) +( )E )}y
R
e¢+A
~ 167(p + P)e* Y + (Pt oy=o. (192)

This equation can be solved at any moment of time to give y in terms of Y and Q.
Our second equation is a wave equation for the angular displacement Y of the stellar
material:

—d-A
SLTRSEE y W”e°“AY7+{mn@+f5+g:3¥519}#Y
N r
e—P-A e—®-A
=(p+ P) —— Q) + —— (ur'Qy=o. (195)

The characteristics of this equation (the world lines of high-frequency, radially propagating
wave packets) have a propagation speed, as measured by an observer at rest in the star, given

by

el\dr u )1/2 70
U = = . &
> e®ar (p +P (O

When one recalls that (p + P) is inertial mass per unit volume in relativity (see, e.g.. exercise
5.4 of MTW), one recognizes this as the standard expression for the speed of propagation of
shear waves in an isotropic solid; ¢f Carter (1973a).

Our third equation is a wave equation for the Regge—Wheeler gravitational-wave-
function, Q:

DA
e_2¢Q _ e'°‘A(e°"‘\ Q')"*' [l6ﬂ#+(1+ 2)51-—- U—re“”“‘\ (e )J 0

r

+16mre~ =M (uer®yv=0. (19¢)

In the vacuum outside the star this reduces to the Regge—Wheeler (1957) equation for gravi-
tational waves propagating in Schwarzschild spacetime. Both inside the star and out the
characteristics of this equation are radial null lines (propagation speed equal to speed of
light). Note that the ZAMO displacement function y has been completely decoupled from
the wave equations (19b, ¢); they are coupled wave equations for ¥ and Q alone.

One can show (see Appendix A) that our equations of motion (19) are ‘complete’ in the
sense that the set of all physically acceptable solutions of (19) is identical to the set of all
physically acceptable solutions of the perturbed Einstein field equations — physical accept-
ability being detined as satisfaction of the boundary conditions as given in the next section
of this paper.

One can also show from our equations of motion (19) plus boundary conditions (or,
more easily, from equations 19¢, 19b and €g4 =0 in A.3) that in any region of the star
where the shear modulus vanishes, u = 0, the perturbed gravitational field is decoupled from

16
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the steliar mutter, and the matter cannot support torsional oscillations. More specifically
equation (19¢) then becomes a homogeneous wave equation for the decoupled gravitational-
wava variable 0; equation (19a) or (A.3) determines the ZAMO displacement y in terms of
:and (A3 together with (19b) guarantees that the fluid is at rest relative to the ZAMOs,
Y = v. This decoupling has been noted previously by Thome & Campolattaro (1967).

5.2 BOUNDARY CONDITIONS

The equations of motion (19) must be solved subject to suitable boundary conditions at
the star’s centre and surface, and at infinity. .

At the star’s centre the fiuid motions and the spacetime geometry must be suitably
smooth. Roughly speaking, smoothness means that the more rapid are the angular varidtions
of Y, ». O — ie. the larger the value of / — the more rapidly must ¥, y and Q approach
zero at #=0. To make this quantitative we introduce local Cartesian coordinates {x?}
near r =0:

x'=rsindcosp, x*=rsindsing, x>=rcos?. 21

Because .\~ pr? near r=0 the components of the unperturbed spatial metric (5a) are
Cartesian at » = 0 in this coordinate system: y,, =845 + O(r?).
Consider the three-dimensional vector and tensor fields

£E=£93,, . a=hPd, PB=h""(3,80,+3,23,); (22)

¢is the material displacement vector, « is the time—space part of the metric perturbation,
Bis the sparial part of the metric perturbation, indices on i,z have been raised with the
unperturbed metric ¥*® and ¢, « and B can all be regarded as solutions of the perturbed
Einstein field equations. The ‘smoothness’ of the Einstein equations at r = 0 implies that
the Cartesian components of £, a and f will have power series expansions near 7 = 0 whose
leading terms are infinitely differentiable — or, equivalently, whose leading terms are
expressible as products of non-negative powers of x!, x2 x3; e.g.

= (xhH?(x*)P (x*)* (1 + terms which vanish as r—~0).
Using equations (6) and (8) we can write ¢, aand Bas

E=rYA. a=-pA, P=-e ®"NQ[3,2A+A2]]; (23a)
A=rxV P(cos 9). (23b)
By writing P; (cos®) in terms of Cartesian coordinates (cf equation 33 below; Section

[I.C of Thome 1980) we can bring the Cartesian components of equations (23) near r =0
into the following form:

Sb _ Yr-lﬂ P?l ...aq ebcdxc (a/axd)(xm, .. xal), (248)
o = _).')A_g & IP,a‘ ...a,ebchC(a/axd)(x“‘- LLLxe), (24b)
5bc _ Qe‘q’ e IP;“ gy (b ec)dfxd(a/axf) (xG. .. x4, (24c¢)

Here €%¢ is the Levi—Civita tensor, P/ "% is a constant, symmetric, trace-free tensor
(¢f. equation 33 below), and the parentheses in the superscript indicate symmetrization.
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These Cartesian components will be non-negative products of x! x? and x> near r =0 if
and only if

Y(t, ¥) =+ ~ ! [constant + terms which vanish as 7 > 0] , (23a)
y(t, r)=r' = [constant + terms which vanish as » > 0] . (25b)
Q(t, r) = r'*! [constant + terms which vanish as » = 0]. (25¢)

Thus, our boundary conditions near r = 0 are
-1 =
Y~r'"h  yeri-l. gl 0y, (26a)

[t is straightforward to show that, so long as the unperturbed star is smooth at r =0 (p, p,
u and y' finite there), these asymptotic forms satisfy the equations of motion (19). How-
ever, there also exist solutions to (19) which violate these boundary conditions (Y ~ ™2
and/ory ~ r"** and/or Q ~ r") and which thus are physically unacceptable.

At the star’s surface, r =R, the normal (radial) components of the stress tensor must
vanish (there is no matter outside r=R to support a stress): Tp—>0 as r—>R_ = inner
edge of stellar surface. Inspection of the stress-energy tensor (equation 17) shows that
this condition is satisfied if and only if (i) the unperturbed pressure P approaches O as
r = R_. and (ii) the material motions and shear modulus u satisfy the ‘zero-torque-at-surface’
condition

To=—re? u(Y' - er=®Q/nbs>9 as r-R.. (26b)

For a star with a solid surface (e.g. iron), u is finite at = R, so Y’ must equal A ? /R
there.

At the star’s surface the gravitational potentials y and Q must be sufficiently continuous
that (i) the intrinsic geometry of the star’s surface
ds?=—-e*®dr? +r*(d9* +sin*9 d¢?) — 2r2pby dt do
is continuous, and (ii) the extrinsic curvature,
K, p=e"T4g (A, B ranging overt, 9, 9),
is continuous (see, e.g. section 21.13 of MTW). Straightforward calculation shows that
K=(2® " d)dr* +e N [(r3y) - re®~® Q] bydt do

— re® 0 sin? 9b®, 5dOdp — re N (d9? +sin® 9 do?). (27)

Therefore, continuity of the intrinsic and extrinsic geometries is satisfied if and only
if — in addition to the familiar equilibrium conditions of continuous ®, &' and A —

v, y"and Q are continuous across r = R. (26¢)

At the interfaces of solid regions (crust and/or core) with fluid regions (mantle) the
shear modulus g may go to zero discontinuously. There one must be sure that the zero-
torque condition and the continuous intrinsic and extrinsic curvature conditions are
satisfied:

Th=—re2d u(Y' - e =®Q/r)by >0 atsolid—fluid interfaces, (26d)

y,y and Q are continuous across solid—fluid interfaces. (26e)
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Far from the star, h,4 and h,, must describe outgoing gravitational waves. [n this region
our equations of motion [(19¢c) for Q; (A3), which follows from (19a, b, c). for y]
become

Q=0,+08,+Q — (1 = 2M/r) [I(I + 1)/P* — 6M/r*] Q, (28a)
¥ =r3,.(rQ), (28b)
where

re=r+2Min(r/2M - 1) (28¢)

is Wheeler’s ‘tortoise coordinate’, and where no approximations have yet been made.
Note that equation (28a) is the Regge—Wheeler (1957) equation for odd-parity gravita-
tional waves. The general outgoing-wave solution to these equations has the asymptotic
form at large radii

Q:F(1+1)(ll)+1(12+1) F(l)(u)+0(r'2) as r—oo (26f)
r
) -
_ Fu) B (+ 2)(: 1) FO-D)+0(?) as r—oo, (26g)
r 2r

where u =t — r,. Here, F(u) is an arbitrary function of # to be determined by integrating
the equations of motion, and F") (u) =d'F/du’ denotes the /th derivative of F(u). We shall
see later that F(u), aside from a multiplicative constant, is the star’s current /-pole moment.
One can show that, in addition to the physically acceptable outgoing-wave solutions (26f, g),
the equations of motion (19) possess unacceptable incoming-wave solutions of the form
(26f, g) with u replaced by v =t +r, and with the signs of the second term of Q and first
term of y reversed, and also unacceptable solutions with mixtures of outgoing and incoming
waves.

3.3 RADIATION FIELD AND ENERGY LOSS RATE

The radiation field far from the star is described by the metric perturbations (obtained by
combining equations 6b and 26f, g)

Beg=ho,= [PFO D)+ 172 +2)(1 = 1) FO )]y + O ('), (29a)
Hpo=hop=[= (r + 2 FU D @) — 1/21( + DFD )] b + O (7Y); (29b)
all other components vanish. (29¢)

The physical components of these perturbations,
hig=€®(rsin 9 hy, hig= e (rsin 9) ' Ay,

have amplitudes which are independent of », rather than amplitudes which die out like 1/r.
This is because the Regge—Wheeler gauge is badly behaved in the radiation zone (cf. Price &
Thorne 1969). A more reasonabie behaviour is obtained by making a gauge change
(infinitesimal coordinate transformation; Box 18.2 of MTW) with the generating vector

ne=rF®Ou)by;  all other n, vanish. (30)
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The metric perturbation in the new gauge,
HS5Y = h2F — naig - Npias

where the bar | denotes covariant derivative with respect to the flat metric, has components

RS =12 (1+2) (L= 1) FD (w)bg + O (1) (1a)
RN = =112 +2)( = D) FD )by + O (r"); (31b)
hy = — rF® (1) sin? 0b"" 54 (31¢)
all other components vanish. (31d)

To leading order the new metric perturbation is in Lorentz gauge A"V ", =0), and its
physical components die off like 1/7 in the radiation zone.

Any gravitational wave can be characterized in a gauge-invariant way by the transverse-
traceless (TT) part of its metric perturbation (see chapter 35 of MTW). Only 4 33" contributes
to the TT part of our wave (31). By combining equation (6c) for b, with (31c) for A%, and
by converting to covariant notation in the three-dimensional Euclidean space far from the

star, we obtain
(YT T= [— 2rF D (¢ — 1 )P €pg; P i P (32)

Here n =1/r is the unit radial vector, €p,; is the Levi—Civita tensor, P, = P;(cos 9) is regarded
as a scalar tield in tlat space, | denotes covariant derivative, S means symmetrize on indices
j and k. and TT means take the transverse-traceless part using the techniques of Box 35.1 of
MTW.

One of the authors has attempted to introduce a standardized formalism for multipole
expansions of gravitational radiation fields (Thorne 1980). In that formalism the mass and
current multipoles are represented by completely symmetric, trace-free tensors. To make the
connection between equation (32) and that formalism we introduce into equation (32) the
symmetric, trace-free representation of the Legendre polynomial

Py(cos 9)= P %n, .. iy (33)

(cf. Section II.C of Thorne 1980, where P,% -4 is denoted by Q?/f,"l ...q/C'®)and we then
perform the differentiations denoted by P;'?, . The result is

(i =, 210 - DEDO@E - T )€pqiPu P ind ”a,--~’7a,]s- (G4

Direct comparison with equation (4.8) of Thorne (1980) shows that the radiation field is
that of a current /-pole with /-pole moment

=1+
B 4

S8 (r — 1) F(t—r )Pt (35)

This radiation field carries off energy at a rate given by (cf Thorme 1980, equation 4.16)

dE gt _ 411 +2) (#81--q(+ 1) oga, ..a (1 + 1)y
dt =D+ Q2+ DN
[-DI+D(I+2) . ‘ ,
__U=DICEDEED g ey, (36)
4(20+1)

where ( ) means averaged over several characteristic periods of the radiation and where
equation (2.26a) or (2.5) of Thorne (1980) has been used to obtain the second line.
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3.4 ACTION PRINCIPLE AND ENERGY CONSERVATION LAWS

Our star’s torsional oscillations are governed by an action principle. The action’s Lagrangian
density can be derived either by second variation of the Einstein Lagrangian density
(= 8)'* R+ Praer (method of Taub 1969) or by multiplying the star’s equations of
motion by carefully selected functions and removing a divergence (method of Chandrasekhar
1964a, b; see also Detweiler & Ipser 1973 and Appendix B of this paper). The Lagrangian
density is

2l +1 . .
= (NZI(:I)) [(o + P)fe=2(Y - p) +(1/16m)r*e =P~ (' — e~ ® Q/r)?
+(1/16mY (L + )1 = 1) e =P P2 — urte® =2 (Y — e =P /r)?

—u+2)( =1)rre® MY _(1/16m) (1 + 2) U - 1)er 202, 37

and the action principle is

5 f Pdrdr=0, (38)
Q

o

where §2 is any compact region of spacetime, and where the functions to be varied (Y, y and
Q) must be held fixed on the boundary 9Q2 (i.e. §Y =8y =80 =0 there). If Q includes the
star’s centre or surface or a solid—fluid interface, then Y, y and Q must satisfy the smooth-
ness and continuity equations (26a,b,c, d, ) there. By varying Y, y and Q in this action we
obtain, respectively, the perturbed Einstein field equations er=0 (equation A.S), é,,=0
(equation A.2) and €,4 = 0 (equation A.4). Our equations of motion (19) are linear combina-
tions of these equations and their derivatives and time integrals; c¢f. equations (A.7)—(A.9).

Because our Lagrangian density (37) is time-independent, (3 £/3¢)y, ), o fixed = 0, there is
a conserved quantity associated with it:

S*=0, (39)
where

2ml(l +1) | . . HEth i
e +PY e NPy )+ '_ N2 /)2

Gy 1D (V=Y 4O ol

I1+2)( -1

+( )( )rZe/\—Q}')2+“r4e®-/\(Y'_eA—@Q/r)Z

167
1+2)( -1
+u(+2)( = 1)r2e®rAy? +(—I)-6~—()e‘\‘° sz, (40a)
T

and

rie=

4nl(l + 1)[r“e”“"A

st A—D 4, P-AV( Yy _ A-D
@+ | ter Y F U +urem TH (- "m0 (400)
(For a derivation, and for a discussion of how we have selected this specitic S* from among
an infinity of such divergence-free quantities, see Appendix B.) Note that the cnergy density,
S, is just the Lagrangian density .# with the signs of the potential energy terms converted
from minus to plus.

If we regard Q and y as gravitational fields which reside in the unperturbed spacetime and
which couple to the matter displacement Y, then we can associate with the perturbations a
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stress-energy tensor which resides in the unperturbed spacetime. The law ol energy-
momentum conservation 7#,, =0 (where the semicolon denotes covariant derivative with
respect to the unperturbed metric vy,,), together with Killing’s equation for the generator
d/dt of time translations, guarantees that T .9/t has vanishing covarant derivative — i.e. in
component notation and in the (¢, 7, 9, ¢) coordinate system of equation (5a)

[(=%"* 7] ,a =D (41)

Here v is the determinant of the unperturbed metric components y,,,, and (—v)"? is equal to
r*e® " Nsin 9. After integrating this equation over angles 9 and ¢ we obtain the conservation
law (39), with

§%= — [ TS (-y)"2d9dg. (42)

The perturbation stress-energy tensor 7’ can be computed in the canonical manner from
the Lagrangian for the perturbations (albeit a Lagrangian in which, unlike (37), the angular
dependences have not yet been integrated out). There is an infinity of resulting TH»s
depending on the gauge in which the Lagrangian is written (i.e. depending on one’s choice of
infinitesimal ripples in the perturbed star’s coordinate system). If one only wants to know
the components T‘," one can evaluate them by undoing the angular integrations in equation
(42), a process which contains some arbitrariness corresponding to part of the gauge-
dependent arbitrariness in 7", With a choice for this arbitrariness which we regard as
optimal, the equations (40a), (42) and

Nt , 20 +1)
sin 9 [, P;(cos 9)]*d9 = :
Jo (271+1)
m 99 Py (cos 9)\]? 211 +1)
f sin® 9 [ao (L(—))} do=(+2)(-1) ! . (43)
o sin ¢ 21 +1
give the result
= = P NCTR. 2
TH==T"=1/2(p +P) ¥+ u(S;g)* +— (6°}i)* + — (Bji)’, (442)
167 l6m
i ~ £ 1
T7==eh=OT) =~ 2uS;jule — Aiji ik, (44b)

where there is an implied summation over j and k. These equations make use of the ortho-

normal basis of an observer at rest in the unperturbed star:

e;=e~®3,. e;=e"N3,, ey3=rlay, e;=(rsin9)'dy,. (452)
The quantity Ti (equation 44a) is the energy density measured by this static observer.

The term 1/2(p + P)v*in T*' is the kinetic energy density of the matter; v is the velocity of

the matter relative to the ZAMO's (see discussion following equations 6¢ and 8b),

v=re~?® (Y—j/)bé,eé,; be= (sind) by =0yP; (cos V). (45b)
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The term u(S;;)* is the standard expression for the potential energy density of a deformed.
elastic solid: Sz is the shear

§ix = 8mp= UZpe N~ 2" 0lr)bg,

5547845 = 112 Ysin Gbc’_a (45c¢)
(equations 15) and by virtue of the stress—strain relation (10)

w(Sii)=—1/2 TH> sk, (45d)
The term (16#)"‘(02;,;)2 is the kinetic energy density of the gravitational field; o” j; is the
rate of shear of the congruence of ZAMO observers (equations 12 with the matter displace-
ment Y replaced by the ZAMO displacement y)

=l = 12 re= =5y — et Q/r)bé,.

Z36=0%5=1/2e"ysindb® 5. (45¢)

The term (167) ' (Bj%)? is the potential energy density of the gravitational field; Bj; is
defined to have as its only non-zero components
Béé=3¢‘,35—1/2r"e“¢Qsin 0b¢,8, 456
We have not found a simple, physical description of the quantity Bj; whose square is the
gravitational potential energy, analogous to the description oz;,;. (= ZAMO rate of shear) of
the quantity whose square is the gravitational kinetic energy.

The quantity 7o (equation 44b) is the energy flux measured by a static observer. The
term  2uS; il = '1‘:-}}“‘ u’ is the standard expression for the radial energy flux carried by
the matter’s shear stress;u’ is the matter velocity relative to the static observer

u=ud eg=re~®Ybéey. (45¢)

The term A/ oz,’,; is the radial energy flux carded by the gravitational waves; 4;j; is

defined to have as its only non-zero components

r2e~2¢—,\

S+ -1)

and as with Bj; we have not found a simple physical description ofAl:/:é.

A3 =Aips = ' - er=®Q/r)sind b2 95 (45h)

In the radiation zone the energy density 7 * and energy flux 7 !” are carried entirely by
the gravitational waves (which we assume to be outgoing):

Tit = TH = (39 21 (/mewyTT (jnew TT
TH=T"=(32n) (h,_k.) (R22)
= (16772 [FUTD@)]? (sin 902 5)*. (46)

Here (4 FEW)TT is the transverse traceless gravitational-wave field of equations (31) and (32):
equation (46) can be derived by combining equations (44), (45), (A.4) with €, =0, (26) and
(31c). When averaged over several wavelengths, expression (46) reduces to the standard
[saacson stress-energy tensor for the waves (see, e.g. Sections 35.7 and 35.15 of MTW).

The differential law of energy conservation %, =0 or [(— )" T°] o =0, when spatially
integrated over the star’s interior and on out to some radius R, in the wave zone, becomes a
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law of global energy conservation:

B T = o 57 = Y= [ ’f*"rﬁdadgﬁ]

r= o

__ =Dy

) a@r+l) SR ks i)
R C R
Evw=| Stdr= ' || = THe®avol, (47b)
) Jdwo

where dvol = e risin 8d9do dr is the spatial volume element and e® is the gravitational
redshift factor.

3.5 STABILITY OF THE OSCILLATING STAR

The law of global energy conservation (47) is a foundation for proving that our oscillating
star is stable: So long as the shear modulus u is non-negative, the energy density Tiis every-
where positive (equation 44a), and therefore £, (equation 47b) is a positive definite
functional of Y, y and Q. Since dE,./dr < 0 (equation 47a), no choice of initial conditions
Y(t=0s), v(r=0,r), Q(t=0.r) can produce Y, y, Q which grow arbitrarily large at later
times. Therefore our star with outgoing-wave boundary conditions is stable against arbitrary
initial perturbations (Liapunov stability; cf. LaSalle & Lefschetz 1961).

4 The outgoing-wave normal modes: /> 2
4.1 THE EIGENVALUE PROBLEM

For most applications of the theory developed in this paper one will want to resolve the
torsional oscillations into normal modes with complex vibrational frequencies

w=g*iy. (48)
In a normal mode the perturbation functions have the forms
Y(,NEY, (e, y(e.nN=y,(0)eY; Q=0 (e (49)

The real part of the frequency, o, describes sinusoidal oscillations: the imaginary part, 1/27,
describes damping due to radiation reaction. (The factor 2 appears in w = ¢ + i/27 so that 7
will be the e-tolding time of the star’s oscillation energy, not of its amplitude.)

For a normal mode the two dynamical equations (19b,¢) form a fourth-order system of
linear ordinary differential equations for the eigenfunctions Y, (r) and Q,, (r) (hereafter we
omit the subscript w):

(ur*e® =YY —Pe® M l6n(p+ P+ (1 +2)(I - D rtluY

—(urPQ) +(p + P)F(rQ) = —w?(p + P)rtet =Y, (502)
(€70 — [leme™ M ur (1 r U= DN - r( 2”710
~16 rr(ue”)' Y& =gteh P 0. (50b)

These equations must be solved subject to the boundary conditions (26a,b, f):
Y~r'=t o~r*Y as r-0, (S1a)
u(Y' —er=%®0/=>0 as r->R_, (51b)
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and for the physically realistic case of outgoing waves at infinity (outgoing-wave normal mode)
Q =(iw)* " F e ¥ a5  rooo, (51¢)

where F, is the amplitude of the oscillatory /-pole moment at £ =0, F(r) = F,e'“! Equa-
tions (30) and (51) together form an eigenvalue problem for the oscillation frequency w and
eigenfunctions ¥, Q. Once the eigenvalue problem has been solved, the remaining metric
perturbation function y can be computed most easily from the initial-value equation €9 =0
(equation A.3), which gives

D -A

y=°7 rQ) + 167”182@ Y]; (52)

r2
alternatively (and equivalently) y can be computed from the initial value equation (19a).

In posing the eigenvalue problem (50)—(52) we have omitted some of the boundary
conditions (26). It is straightforward to show (cf. discussion of equations 26) that, so long as

the unperturbed star is well behaved at its centre and surface (p, P, u and u’ finite at r = 0;
p, u finite but perhaps non-zero and P — 0 as r > R_), the omitted boundary conditions

y~ri=t as  r-0, (53a)
u(Y' —e*=®Q/r) > 0 at solid—fluid interfaces, (53b)
¥. ¥, Q continuous across = R and across interfaces, (53¢)
Y~ —(w)riF ei®s a5 rooo (53d)

are automatically satisfied by any solution of equations (50)—(52).

In order to understand the spectrum of eigenfrequencies of our torsionally oscillating
star, we must first understand the asymptotic behaviours of the solutions of the eigen-
equations (50) just below the star’s surface. Those behaviours depend on the asymptotic
forms of the star’s density p and shear modulus u. If the star’s surface is solid, p will be
finite; otherwise it may go to zero as a power law. In general u will go to zero at least as fast
as p. Hence, it is reasonable to suppose that

p~R-1Y, P~R-N*L, u~(R-nV*S; N30, S§>0. (54)

where the form of P follows from the equation of hydrostatic equilibrium. One can show .
that, so long as § < 2 [i.e. so long as the speed of shear waves (u/p)"? goes to zero no faster
than (R —r)], one solution of the eigenequations (50) will have u(Y' — e‘\“’Q/r) finite
and non-zero at R_ and will thus be physically unacceptable. All other solutions will be
acceptable. For § > 2 all solutions have u(Y' — e ~® Q/r) zero at R_, but they also all have
Y divergent, which would lead to a breaking of the crystal — a complication we are not pre-
pared to face in this paper. Thus, we shall restrict ourselves henceforth to the case § < 2; and
we shall impose a similar restriction at interfaces of solid rezions with the fluid mantle. In
this case the spectrum of eigenfrequencies will be discrete, as the following argument shows.

Imagine a trial integration of the eigenequations (50). One szlects a complex tral fre-
quency w and complex starting values 4 and B for Y/r'=! and Q/r'*! near r=0. (The
eigenequations (50) have the general solution Y =4r'~1+Dr='=2 Q0 =Br'*' + Er~'near
r=0; one makes sure that D and £ vanish.) One then integrates the eigenequations (50)
outward from r=0 to the star’s surface » =R and examines the value of the complex
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number u(Y' - eN=PQ/r) there: it will tum out to be non-zero, unless the starting ratio

A/B has been chosen to have some special value (or one of a discrete set of special values).
That choice must be made. One then continues the integration on outward into the radiation
zone, where one finds for Q (general solution of 50b)

Q:C(O)e—iwr, + CDprivwr, (55)

To get an outgoing-wave normal mode one must ensure that the complex ingoing-wave
amplitude C?) vanishes. One cannot do so by adjusting the starting product AB; that
product merely fixes the overall amplitude and phase of the oscillations. Instead, to make
CD vanish one must carefully adjust the complex eigenfrequency w to one of a discrete set
of values. Thus, the spectrum is discrete.

The Liapunov proof of stability in Section 3.5 guarantees that the outgoing-wave normal
modes are all damped, i.e. all have positive values of Im(w) = 1/27.

We now describe five methods for solving the eigenvalue problem (S0) and (51): the
method of resonances (Section 4.2), the variational method (Section 4.3), the energy
method (Section 4.4), the method of the slow-motion approximation (Section 4.5) and the
method of the weak-field approximation (Section 4.6).

4.2 METHOD OF RESONANCES

In the method of resonances (Thorne 1969a) one studies the unrealistic problem of an
oscillating star inside a large spherical cavity whose walls reflect gravitational waves perfectly.
This requires replacing the outgoing-wave boundary condition (51c) by a standing-wave
boundary condition. The star and standing wave can oscillate with any desired real frequency
w = 0. For each value of the frequency w one can calculate (on a computer) the ratio

(amplitude of star’s oscillating motions)

R (56)

(amplitude of waves far from the star) ‘

As w varies, Z will go through a sequence of sharp resonances. These resonances, on the real
frequency axis, are induced by nearby complex eigenfrequencies of the discrete, outgoing-
wave normal modes; i.e. when w nears the oscillation frequency w, of an outgoing-wave
normal mode, the standing gravitational waves will excite the star’s fluid into large-amplitude
motions. From the locations, half-widths and phase-shifts of the resonances one can
compute the complex frequencies w, =0, +i/27, of the outgoing-wave normal modes.
Thorme (1969a) has discussed these calculations in detail for compressional oscillations;
calculations for our case of torsional oscillations would be the same in concept and method.

43 VARIATIONAL METHOD

The normal-mode eigenfunctions and eigenfrequencies can be evaluated using a Detweiler—
Ipser (1973) type action principle, which is closely related to the Lagrangian density % of
equation (37). The relationship to % and a derivation of the action principle are sketched in
Appendix B. The action principle utilizes integrals from the centre of the starr=0to a
“sphere r = R.. far out in the radiation zone, and it utilizes complex trial functions Y, Q
which are constrained to satisfy the smoothness and continuity conditions (S1a,b) and
(53b,c) at r =0, on the star’s surface r = R, and across solid—fluid interfaces. For any choice
of such trial functions Y, Q a corresponding complex function y is to be computed by
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solving the initial-value equation (19a) subject to the smoothness boundary condition (53a)
at r =0, and subject to the demand that

x/y =some fixed value, (x/¥)w, at r=R.: (57a)
here
X=-r2e=®-Ny A% o). (57b)
(Recall that outside the star A = — ®.) The quantity
Q?=B/4 ‘ (58a)
must then be computed, where
Ros R =Pk
a= [T[@eprer-or e - er-ogpy
Jo 16m
# W%(;_U r’e"“’yz] dr+ 1%” [P yxlr= R, (58b)

R oo
BEJ- [Hr“e¢—/\(Y’_ eA—“’Q/r)2+/.1(1+ D =1)rre®tiy?
0

+(1+2)(1_1)e’\‘°
167

The quantity Q2 = B/A is an action for the normal modes. Those trial functions Q and Y,
which make Q? stationary (8 22 = 0) with respect to all variations §Q and 8 ¥ that satisfy
our smoothness and continuity conditions, are normal-mode eigenfunctions: and the
stationary value of Q is their complex eigenfrequency w. (The Euler—Lagrange equations
associated with this action principle are our eigenequations 50 with w?= Q2.)

The specific normal modes obtained from this action principle depend on the chosen
boundary value (X/¥)w. To obtain standing-wave normal modes, one chooses (x/V)= real and
all tral functions real. For a given real (x/y). there will be a discrete set of standing-wave
modes (analogue of discrete normal modes of a violin string with ends clamped). To obtain
the full continuous set of standing-wave modes (one mode for each real w), the action
principle must be used time and again, with various values of (x/¥). and fixed R.: or with
fixed (x/V)= and various R. (analogue of changing the clamping location of the violin
string).

If one chooses (X/y)~ complex rather than real and uses complex trial functions. then the
action principle (57) and (58) will produce a discrete set of normal modes, each with a
different mixture of ingoing and outgoing waves — a mixture that cannot be predicted in
advance. Only by an iterative application of the action principle (procedure devised by
Detweiler (1975) for compressional oscillations of stars) can one be sure of obtaining a pure
outgoing-wave mode. For an outgoing-wave mode, if one knew the complex frequency w in
advance, one could solve the eigenequations (50) and initial-value equation (19a) far from
the star to find the asymptotic forms of O, ¥ and x:

Q? ] dr. (58¢)

e (0 +1 5| . ' i
0=(iw) " Fg, 1‘-":)-1_2‘\; +O(;£) € = (59a)
iw)! [+2)(1 -1 g '
y= __(i) Fo, [1 +()_(—)+0(_):l e=fwrs (59b)
» 2iwr r?
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077%) At I(1+1) Y -
x=—-(+2)({-1) Fo |1+— +0(_:) e W, (59¢)
r Qiwr r

where the complex number £, is the (arbitrary) Fourer amplitude of the /-pole moment;
cf. equations (26f, g). The corresponding boundary value of x/y is

_U+2)(-1) 1 1
Vel iw [l "R O (R—a,)] , RE]

Detweiler’s procedure is to guess a value of w; choose the boundary value (x/¥)~ equal to
(59d); apply the action principle using trial functions with the asymptotic forms (59a, b, ¢),
thereby obtaining a stationary £;if § is equal to w, stop with joy; if not, reiterate using a
new trial value of w. (One can show that if © and w differ by a small amount, the normal
modes of frequency  with boundary condition 39d contain a mixture of ingoing and
outgoing waves of relative amplitude

cD/cO) =(Q - W(Q + w). (60)

This is a measure of the error in an unconverged iteration by Detweiler’s procedure.)

As cumbersome as this procedure may seem, it is the best method now known for com-
puting outgoing-wave normal modes from an action principle; and it actually has been made
to give reasonably accurate results for compressional oscillations of neutron stars (Detweiler
1975).

44 ENERGY METHOD

If one has obtained reasonable approximations to the eigenfunctions Q, Y, y and to the real
part o of the eigenfrequency of a complex normal mode, one can then compute the imagin-
ary part of the eigenfrequency, i/27, using the law of energy conservation (39), (40). In
integral form, and averaged over time, that law says (cf equations 47 and B.19—B.23):

_ Estar
T r=Rr) -
where
- nl(l+1) fRe ( e T
e | + 2 soh- y_ 2.0 € 1y _e 2
star (21+1)J0 {(0 1/41)[(p+p)re [¥ = P el Q/rl
1+2)(I-1
+(¢—)r2e’\""|y|2]+ur“ed>"\[Y'—e/‘_q’Q/rlz
16m
1+2)(1 -1
ru+ - DR v D nseop) g e
_ 11 +1) [< Py {5 . _ ,
S"(r=Ra)=— Im +—) 0% +— *] 62b
Fiatal 8(21+1) 7 27,) i 4,-2)” e —
for R anywhere outside star,
[-=DI(+1D)({+2
=( PECLE ¢ ) | Q| for R far out in wave zone. (62b)

8(21+1)

Here y* is the complex conjugate of y.
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In applying this energy method one can place R.. anywhere one wishes outside the star,
even in the near zone, if one uses the first line of equation (62b) for the energy flux.

4.5 SLOW-MOTION METHOD

A generator of gravitational waves is said to be a slow-motion source if and only if the
characteristic reduced wavelength of the waves, X =\/27 = /o, is much larger than both the
source itself and the source’s strong-field region:

X » R, X» 2M = (gravitational radius). (63)

Thome (1980) has given a detailed formalism for calculating the gravitational waves from
slow-motion sources. Here we specialize that formalism to the case of torsional oscillations
of a neutron star. (A forthcoming paper by Thorne will specialize it to g-mode compressional
oscillations of a neutron star.)

The discussion in the Introduction of this paper gave reduced wavelengths of X ~ 10°km
for crustal oscillations of neutron stars and X ~ 10 km for core oscillations. Thus the slow-
motion approximation is accurate for crustal oscillations but probably not very accurate for
core oscillations.

If the slow-motion condition (63) is satisfied, we can neglect retardation of the gravita-
tional fields across the source, i.e. we can neglect ¥ = — w?x compared to x", x'/r or x/r?
(x = Q or p) throughout the interior of the near-zone region

Fe X2, (64)
(We cannot, of course, neglect retardation of the shear waves; i.e. we cannot neglect
%= — w?x compared to [u/(p + P)] x".) By neglecting gravitational retardation we convert

our gravitational variables Q and y into action-at-a-distance potentials analogous to that of
Newton; their wave equations become Poisson-like equations.
From (u/p) ~ (speed of shear waves)? < (oR)? we learn that

s (R/X)?p S (R/X)? P (652)

and from equation (19a) for y and (50b) for Q we learn the relative magnitudes of y, Q and
Y in the slow-motion approximation:

y~(M/R)Y, Q~(R/X)Yy<y. (65b)

Taking account of the extreme smallness of u compared to p and r"% and of the extreme
smallness of Q. compared to y and Y and neglecting gravitational retardation, we can bring
the equations governing normal-mode oscillations into the form

(rte® =AYy (1 +2)(I —1)rPe® A uY = — W (p + P)rtet (Y - y), (66a)
(e~ 7y —(I+2)(I =1)Per =Py =—16m(p + P)r*e (Y -y). (66b)
E®7QY - [([+2)(I =1)r2e®*A — r(r2e®-7)] Q= 16nr(ue?®)'Y. (66¢)

Equation (66a) is (50a) with (52) used to replace a term involving Q by one involving y.
equation (66b) is (19a): and equation (66¢) is (50b).

Outside the star, and at radii M < r< X where =— A =0 and wbere the slow-motion
approximation is valid, Q and y have power-law fall-offs:
1" - 11— D!
=uinw, y= —(_—)(———)~ F, for M<r<Xx and r>R. (67a3)

r icort*?
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Here £, is the same /-pole moment used elsewhere in this paper. and (2/ - D! =(2/ - 1)
(27 = 3)---1. These power-law fall-offs are the asymptotic solutions of equations (66b.c).
They can also be derived, including the precise coefficients involving /, w and £,. by solving
the non-slow-motion, Fourer-decomposed Regge—Wheeler equation (equation 30b with
p =p=0andr>» 2M), matching to (51c) and (52) to obtain

Q=F w2 (wr), y=-F_w'r?3,[rhP(wn) (68)

for all 7> M and r > R, where h}? is the spherical Hankel function, and by then expanding
these solutions in powers of wr in the near zone wr< 1.

By virtue of the smallness of Q in the slow-motion approximation, the no-torque-at-
surface boundary condition (51b) reduces to

uY' -0 a r—-R_; (67b)

but the smootheness boundary conditions (51a) and (53a) at the star’s centre remain
unchanged.

Y~rt=t  y~pl-l g~ r*t g p>0, (67¢)

The eigenvalue problem in the slow-motion approximation consists of the coupled
equations (66a, b) for Y and y (not Y and Q as previously!), which must be solved subject to
. the boundary conditions (67a, b, c). The resulting eigenfunctions and eigenfrequencies will
be real (no damping in slow-motion approximation!) and discrete. They can be derived from
(664, b), (67) by standard techniques, including the following action principle:

Define Q2=B/A where B and 4 are the integrals (58b,c) with R. =<0 and with the
surface term removed and with Q set to zero. Choose a trial function Y which satisfies the
boundary conditions (67), and from it compute y by integrating (66b) subject to the
boundary conditions (67). Then insert Y and y into Q2= B/A and ask whether § 2? =0 for
arbitrary variations §Y. If § Q2= 0, then the trial function Y and the computed function y
are eigenfunctions, and their value of  is the corresponding eigenfrequency w.

After the slow-motion eigenvalue problem has been solved, one can use the energy
method to compute the tiny imaginary part i/27 of w, which the slow-motion approximation
ignores. Specifically, 7 will be given by equation (6 1), where the star’s pulsation energy F,, is
(62a) with R.. =o and Q =0; and where the energy flux S” is given by the second line of
(62b), with |Q|? replaced by its wave-zone value |w'*! F,|? (equation Slc) and F,
evaluated from the near-zone expression (67a) for the eigenfunction y.

46 WEAK-FIELD METHOD
For a torsionally oscillating star with weak internal gravity,

up<Plp~A~d~MR<1 (69)

(e.g. a white dwarf), the slow-motion approximation is automatically valid, and the slow-
motion equations simplify. Most importantly, the fact that y ~ (M/R)Y < Y (equation 63b)
enables the equation of motion of the matter, (66a), to decouple from all gravitational fields

(Y'Y —(I+ 2l - 1DPuY = -w?pi*Y, (70)
This equation, together with the boundary conditions (67b, c)
uY'-0 as r->R_, Y~ri-' a r-0, (71)
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forms a Sturm—Liouville eigenvalue problem, which is well known and widely studied in the
geophysics literature (e.g. Alterman, Jarosch & Pekeris 1959), and which can be solved by
standard techniques. Once it has been solved, the Fourier amplitude of the /-pole moment
can be computed from

B, e D J * i3,y (72)

(=D )

(This equation can be derived by setting ® = A = 0 in (66¢), multiplying by ' * !, integrating
from r =0 to r =<, using the asymptotic form (67a) of Q to evaluate the surface terms, and
using the equation of motion (70) to rewrite the integral.) The imaginary part i/27 of the
eigenfrequency can then be evaluated using the energy method (equations 61, 62, 51c)

= Esta.r/s:ra (733)

AL ik R[wz I+t T (T2 250 - D ¥l (73b)

star Qi+1) Jy p M M )

. (=DI+1)(+2 ‘

s’=(— M +1)(1+ )wz’”mwﬁ. (730
8(21+1)

Notice that, aside from an angular factor, pic Yr is the density of momentum, i.e. of mass
current; consequently F, (equation 72) is proportional to f r/x (mass current density)x
(angular factor) dvol; i.e. in the language of Thome (1980, especially equation 5.27b) F, is
the Fourier amplitude of the star’s current /-pole moment.

For the special case of a star with uniform density p and radially constant shear modulus
u the eigenequation (70) reduces to the spherical Bessel equation for 7Y; and consequently

Y rikr), k=(p/w)w, (74)

where j; is the spherical Bessel function. The eigenfrequencies are fixed by the no-torque-at-
surface boundary condition Y'(R)=0 (equation 71). Straightforward calculations using
standard Bessel-function identities then yield the following formulas for the star’s oscilla-
tions and gravitational waves, in terms of the star’s radius R, mass M = 47pR>/3, shear-wave
velocity vy = (u/p)"?, and amplitude of oscillations

8 = (maximum value of angular displacement function Y inside star). (79)

The nth normal mode (of given angular quantum number /) has eigenfrequency and wave-
number

wp = (s/R)xn, kp=xn/R. (762)
The angular displacement of the star’s crystal is
8¢ =£% = Yb® cos wpt

_ g ar) 3P (05 9)

0s Wyt
ok, r sin ¢
i(k,r
= —3Bi" )cosﬁcosw,,t if I1=2. (76b)
ak,r

The star’s energy of oscillation is

E-star F EnMUszﬁz- (760)
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Table 1. Constants governing quadrupole (/ = 2) torsional oscillations of a star with unitorm
p and x and with weak gravity.

n Xn Ey Gp L D,

1 2.5011 2.030 2.001 15.03 0.3379
2 7.1360 1.461 -1.062 34.45 0.3026
3 10.515 0.7171 0.7274 35.09 0.2148
4 13.792 0.4267 —0.5568 35.28 0.1666
S 16.983 0.2833 0.4519 35.35 0.1361
a=0.10403

The gravitational wave field has as its only non-zero components in an orthonormal, spherical
basis
IT .
h56=Gu(M/ryvl* 18 sin 6 5% 5 cos [wp (t — r4) + (1 +1)m/2]
=3G, (M/r)viBsin® 9sin [w,(t — re)] if [=2. (764d)

The power carried off by the waves is

2]l

dE,
(== L, (MR

=L,(M/R)*v36* if I=2. (76e)
This power loss causes the energy to decay by 1/e in a number of oscillations given by
WnTn = D (M/RY o @+ 1)
=D, (M/RY'W;° if [=2. (761)
Here the constants a, x,,, £, G,, L,,, D, are given by
a =j(x)/xy,

X, = nth root of 9, [/;(x)/x]=0,

£ = 31(1+1) [j,(x,,)]2 [1 _(1 +2)(I - 1)],
4+l « X2
— 12 g
Cn= g D@D S i1
_ 181(1 +1)(1+2) L ,
Ln_a2(1_1)(21+1)[(21+1)”]2 [X" ]I+[(xn)],
DnEEnxn/Ln- (76g)

and are tabulated in Table | for /= 2.

5 Dipole torsional oscillations

"We now turn attention to dipole torsional oscillations, i.e. oscillations with =1 (and,
with only trivial loss of generality, m = 0). For /> 2 we used our gauge freedom to annul
hge. For 1=1 hgy vanishes identically in all gauges because its angular dependence is
sinzﬂb‘”,a =0. Thus, we can use our gauge freedom instead to annul 4, (i.e.to set @ =0),
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thereby leaving us with only one non-zero metric perturbation

Moo =hor == r*¥be=r1sin’ 8 (77)
(¢f. equation 6b). The displacement function is defined as for /> 2

g=¢%=0. £=v=-Y (78)

(¢f. equation 8b); and the Ricci tensor and stress-energy tensor then also have the same
forms as for /> 2 (equations 7 and 17 with specialization to/ =1 and Q = 0).

Our equations of motion (19) for /> 2 were derived using the Einstein field equation
[6Rop — 878 (Top — 1/2 Tgos))/[sin?9b% 5] (ie. €gs=0; equation A3). Because this
equation is invalid for /=1 (it involves dividing by sin® 19b‘”,0 =0), we cannot obtain the
correct / = 1 equations by simply setting @ =0 and / = 1 in (19). Rather, we must derive our
equations of motion directly from the Einstein equations (A.1)—(A.5), with the omission of
the €94 equation. The result is

(p+ P)e™ (Y = j)=rem PN (e Y'Y, (792)
(P+P)e ™ (Y = y)=—(16ny " rte= PN te= P2y, (79b)
A third Einstein equation, which is related to these two by the Bianchi identities, is

y'=—16mue®yY’. (80)

The equations of motion (79) are derivable from the action principle (37), (38) in which
the Lagrangian density & is specialized to /=1 and Q =0. The corresponding /> 2 con-
servation law S* ,=0 is also valid for / =1, with the S* of equations (40) specialized to /=1
and Q =0; and the proof in Section 3.5 that if x> O then the star is stable, which is based
on the conservation law S* , = 0, remains valid for /= 1.

Equation (80) implies that y is time-independent outside the star; and equation (79b)
says that its radial dependence there is y = A + B/r® (recall that ® + A = 0 in vacuum). The
constant A is physically unacceptable, while the term B/r® describes the dragging of inertial
frames by the star’s constant angular momentum (see, e.g. Hartle 1967). With only trivial
loss of generality we shall set the star’s angular momentum to zero (i.e. we shall refuse to
consider purely stationary, rotational perturbations), thereby enforcing y =0 everywhere
outside the star. As a result, our oscillating star not only will produce no gravitational waves
(a consequence of the dipole angular dependence of our perturbations); it will not have any
gravitational perturbations whatsoever outside itself.

The eigenvalue problem for normal-mode oscillations with /=1 consists of the coupled
differential equations

(urte® =AY’y = —wirter =% (0 + P) (Y-y), (81a)
(e~ PNy Yy =—16nr*e P (p +P)(Y - y) (81b)
(equations 79 with Y «eff and y = e'“’), together with the boundary conditions of

smoothness and zero torque at the origin, the surface, and solid—fluid interfaces
Y ~ constant + O(r*), y ~ constant + O(r*)nearr =0, (82a)

y,y' and uY' >0 a r-R_, (82b)

uY' =0 at solid—fluid interfaces. (82¢)
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[Equation (82a) rules out the divergent solutions ¥ ~ y™>and 1 ~ r™: equation (82b) follows
from vy =0 outside the star and integrations of (79b) through the star’s surface. and from
(80) or (51b): equation (82c) follows from (53b) or from integrations of (80) through the
interfaces.] The oscillation frequencies w and eigenfunctions Y, v will be real since there is
no gravitational radiation and no energy loss.

Note that the eigenequations (79) for / =1 are identical to those of the /> 2 slow-motion
approximation (equations 66a, b). Here the absence of retardation of the gravitational field
y is due to its /=1 angular dependence, which forbids gravitational radiation. There the
absence of retardation and of waves was due to the slow-motion assumption. Here, as there,
an action principle for the eigenvalue problem is given by §Q2 =0, where Q*= A/B with A
and B given by expressions (58b,c) with R. = R_, the surface term removed, Q set to zero,
and / set to one. For /=1 this action principle does not require slow motion, and a slow-
motion assumption produces no simplifications.

For a star with weak internal gravity the dipole eigenvalue problem (81), (82) simplifies
to (70), (71) specialized to ) =1. When the star is homogeneous with p and 4 constant, that
eigenvalue problem has the analytic solution (74), (75). (76a. b, c. g) specialized to /= 1.
[For/=1 the gravitational-wave related equations (72), (73a, ¢), (76d, e, f) are irrelevant and
incorrect.]

6 Concluding remarks

[t should be straightforward to use the formalisms of this paper to evaluate numerically the
characterstics of normal-mode torsional oscillations of neutron star models. Such calcula-
tions should be performed both to improve the approximate formulas given in the introduction
of this paper (equations 3 and 4) and to discover quantitatively how the physical properties
of neutron star matter influence a star's normal-mode frequencies, damping times and
gravity-wave strengths.
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Appendix A: Equations of motion
In deriving the equations of motion (19a, b, ¢) we shall denote by

€ap= [0Rap— 818 (Tap— 1/2 Tgap)l/fap(r. §),  €r =Tg/fr(r, 9) (AL

the expressions obtained by combining equations (5), (7), (18), (6) and (17) and dividing by
the functions

fro==1/2r%€" by, fos=1/2r22®sin?96% 5,
fro=—1/2re""3%by, fr=r’e*®p,

These expressions are:

—e®tA 1+2)(1-1
€0 =0, L‘,——(r"’e“’ “Ay'y +e2h [lén(p +P)+()+)]y
r
D+A \
—16m(p +P)e* Y + = (r3e'2¢Q)'I; (A2)
r
P
Egp=F = — (rQ) +16mpe*®Y; (A3)
r
p [+2)(1 -1 )
€0 =0 +e*® [l6nu+(———)r§—)] 0 —re®=2y _16muel®~Ary’; (A.4)

er =(p+P)Y —rte® A (urte®AY'Y + (1+2)(I - 1)r2e?®uy
—(p+P)y+re®=2(urQy. (A.5)
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Note that €7 can be expressed as the following combination of the €, 5 (Bianchi identity):
er=(10m) " [U+ ([ - Driegy —e 76+ e e Wy | (A.6)

The perturbed Einstein tield equations are €,3=0: the law of conservation of energy -
momentum for the perturbed system, § TQS:B =0, reduces to the single equation e = 0.

The equations of motion (19a,b,c) used in the text are the following combinations of
field equations:

equation (19a), initial-value equation for y:
f €r0dt =0; (A7)

equation (19b), wave-equation for Y
e?® [er+(p+ Pegs] = 0; (A8)
equation (19c¢), wave-equation for Q:
e 2% e,y +re®Negs'] =0, (A.9)

We must show that our equations of motion (19) are complete, i.e. that all physically
acceptable solutions of (19) also satisfy the full set of perturbed Einstein equations €,45 =0
and the equation of energy—momentum conservation e = 0. To prove this, we combine the
equations of motion (19) with the Bianchi identity (A.6) to obtain the Sturm—Liouville
equation

rhet T A (e N ey ) — M [167 (p + P)+ (1 + 2) (1~ 1) 2less = 0 (A.10)

for €94. This equation, together with (19), leads to perturbation functions Y, Q, y which
satisfy the physical boundary conditions (26a,d,e) only if €gq~ #'=1 near r=0 and
€90 ~ r~'7? near r = . However, the signs of the terms in (A.10) make it impossible for
these two asymptotic formulae to join on to each other except in the case g4 = 0. From this
we conclude that our equations of motion and boundary conditions imply €gq = 0; this,
together with the equations of motion themselves, implies trivially that all the €45 and er
vanish (¢f. equations A.6—A.9). QED.

Appendix B: Foundations for action principles

Friedman & Schutz (1975: their section II) have given an elegant formulation of the general
theory of action principles for systems which can radiate waves to infinity. Unfortunately,
their analysis was not carried far enough to embrace the Detweiler—Ipser (1973) type of
action principle for normal-mode pulsations, which we use in Sections 3.4 and 4.3. [n this
appendix we extend the Friedman—Schutz analysis to encompass such action principles, and
we use it to derive various results presented in the text of the paper. The general theory is
presented with full-left margins; the application to torsionally oscillating stars is presented
indented. :

Consider a system described by functions Z(A=1, 2..... n) in a spacetime with
coordinates x*(a@=0, 1, 2,..., m). Assume that the equations of motion for Z, are

derivable from an action principle

-

6J Ldx°...dx™ =0, (B.1)
9]
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where 6Z 4 =0 on 302. Assume that the Lagrangian density % is quadratic and symmetric.
ie. ¥ =L(Z Z)with
t = ABa ...oxf,...8

L(ZY,Z)= kgg A ZI‘-&|~~-°‘kZB,-ﬁl...E1° (B.2)
where A48 @B, b1 is 3 function of the coordinates x* which is completely symmetric
in the indices «; ...y, completely symmetric in the §; .. .0; and also symmetric under inter-
change of Aa;...q, with BB,...8,(so L(ZT,Z)=L(Z ZT)). The Z7, are a set of functions
which have no special relationship to the Z,, and Z);'a‘ o =03FZY {3x% -+ 9x%k The

quantity p is the maximum number of derivatives that appear in the Lagrangian, and there is
an implied summation over repeated function indices A, B as well as coordinate indices

ay,..., %,By,..., B Define
3L (Zt,2)

A _1Ys
14 Ei= Z( 1'a a,a7

(B.3)

el Qy

Then the Euler—Lagrange equations are L“(Z) =0, and the integration-by-parts identity
used in deriving these Euler—Lagrange equations from the action principle (B.1) is

ZiL*(2)=L(z%, 2)-3,0" (2, 2). (B.4)

The Q* are determined only up to a divergence-free vector. Two versions of Q¥ which differ
from each other by a divergence-free vector, are

RV AN
04(24.2)= T (- Zhsi.oc s, 2 o L (8.5
! laZ pee QB .. Bk
and
p b ] jtk oL (-1
QO(ZT Zy= 1)1—1( ' )ZT’(I‘:’I.) (———-——) ) (BSb)
; Z()12'1 ] e azjt,(al‘)...ak
D p k . 7 .k oL ;
D=y ¥ Z(—w*"—’( = . (————Z* = )“) .
j=0k=11=1 / 2 ag_1b/iap gy
(B.5¢)

The second version (equations B5b,c) has the virtue that the time component Q° 2% 2)
contains the lowest possible number of spatial derivatives of the Z 4 it is the version which
we use in our analysis of torsional oscillations of stars. In the second version the Latin letters
b and a, . ap,denote spatial tensorial indices and run from 1 to m;

)

is the binomial coefficient; and superscripts in parentheses denote time derivatives asin the text:
ZA ; ZA y..ag0...0 With [/ — [ zeros. [t is imperative when using equations (B.3),
(B. Sa— c) zmd others below that L(ZT, Z) be properly symmetrized (including making a
careful distinction, e.g., between Z4 o and Z4 o, and symmetrizing L in them), ¢f. dis-
cussion following equation (B.2). Failure to symmetrize will produce in (B.3), (B.5 a—c)
multiple counting of second and higher-order derivative terms.

For our torsionally oscillating star the coordinates are x° =, x! =r; the functions Z 4 are
Y, y, Q; the Lagrangian density % is equation (37). From the Lagrangian density we can
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read off
; 2nl(l+1) . ..
LZﬁa=~————P +p)rteN =P (vt i) (Y - i
( It ptp) ( ¥ V)
rre=®-A ) . [+2)( -
$ e e gt (7 - et g D e
16w 16w

—urte® A (Y NPT (Y - NP Q) —u(1+2)(I = D) Pe® A Yty

—(1/16m)(+2) ( — )e*~®Q%0]. (B.6)

The Euler—Lagrange expressions L4 (Z), obtained from expression (B.3) (in which one
must take careful account of the symmetry properties of L) or by varying the action,are
the following:

—2nl(l +1
LY(Z)=———"( )r“eA—“’er,
27 +1)
—I(l+1
LY(Z)=(—)r4e-‘°-"é,¢_
8(21+1)
—I(1+1)
L2Z)=——"r2eN-3% (B.7)
A= 5ar+n e’”

where €7, € and €, are the Einstein field-equation expressions given in Appendix A.
One of us (BLS) originally derived the Lagrangian density % by constructing the
expression Z }; L# (Z), by adding a perfect divergence (equation B.4) and by then setting
Z 1, =Z 4 (method of Chandrasekhar 1964a, b; Detweiler & Ipser 1973). Jor the quantities
O* which appear in the divergence, we shall use expressions (B.5b. c) because they lead to
a 0° (and subsequently S°) which contain only first derivatives of Y, y and Q:

2ml(l +1 T
0°(z%, z)= it} [(p +p)rter (YT -y (Y - 3)
(21 +1)
Pre—®-A
+———— OV e =0T ()~ er = Q)r) (B.8a)
16w
[+2)(1 -1 |
+(——-——)( )rze""q’yfy}
167
—2ml{l+1) [rre=®—A .
0zt z)= [ y o - er=?0/n
( ) Q[+1) 16m o
+urte® =AYty - eA“°Q/r]. (B.8b)
Whenever the Lagrangian is stationary in the sense that
[L(Z", 2)/2x"] 47, 2 netd tixea = O, ' (B.92)
the Euler—Langrange equations enforce a law of energy conservation:
L#(Z)= 0and (B.9a) imply that 3, 5" =0, (B.10a)
where

Sk=208(Z2,2) -84 L(Z 2). (B.10b)
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The arbitrariness in Q" (freedom to add any divergence-free vector) produces a correspond-
ing arbitrariness in S*.

Our Lagrangian (B.6) is stationary. From our chosen form (B.8) for Q* and expression
(B.6) for L we derive expressions (40a.b) for our energy density, S° and energy flux, S”.
Had we chosen any other Q¥ the resulting energy density, S® would not have been equal
to the Lagrangian with sign reversal of the potential energy terms.

We now turn attention to functions Z, with exponential and sinusoidal time dependence
Zy(x*) =z, (e (j=1, 2, ..., m; w acomplex frequency) and we decompose L, L*,
and Q" into powers of w:

L (Zfe—iw{’ zeiwr)= O.)nLn(ZT, Z), LA (:eiu[) =Q)"Lﬁ (Z) e[wt’
QH(z¥e 1w 2/ = " QY (2, 2), (B.11)
where there is an implied summation over the integer n. In our discussion we shall require

that L be stationary (equation B.9a); this guarantees the existence of solutions with e’’’
time dependence. We shall also require that L,, contain only even powers of w

L,z",z)=0 for nodd; (B.9b)

this, together with symmetry of L [L(ZT, Z)=L(Z, Z%)] and definition (B.11) of L,
implies that L,, is symmetric

L, 2)=L,(z, z"). (B.12)
Note that the fundamental identity (B.4) implies that

zhLli @)=L, (", 2) - 9; 0L, 2). (B.13)

For Z =ze'“? our equations of motion L*# (Z) = 0 reduce to the eigenequation

W"LA(z) =0 if and only if z is an eigenfunction and w is its eigenvalue;

i.e. if and only if ze'“* is a normal mode. (B.14)

We shall be interested in normal modes which are defined on a compact region ¥ of space
(not spacetime). Then the identity (B.13) together with the symmetry condition (B.12)
implies the following action principle: Define w(z) by 1(w, z) = 0 where

[}

1(w, 2) w"f L.z 2)d"x = w® Qh(z.2)d™ ' Z;
»

v

0}

j L(ze‘“‘”, Zeiwt) dMx — f Q/ (ze—iwtzeiwt)dm-l ZI
> 3

b4
=w"f:,1 LE Gia™x, (B.1S)
"

In general there will be several roots w(z). Consider each root in turn. The eigenfunctions
24 are those for which w(z) is stationary under small perturbations 8z, with

o f (0 2. 82) — Ol (62, )] d™ ' 2, =0, (B.16)
¥
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Note that constraint (B.16) corresponds to certain combinations of the z ¢ and their deriva-
tives being held fixed on @ ¥ . This constraint ensures that the Euler—[Lagrange equations
associated with the action principle are w" Lj}(z) = 0 (equation B.14).

Forour torsionally oscillating star we choose ¥~ to be the interior of a sphere,» < R,
with boundary R. far out in the radiation zone. Then the function /(w, z) is easily
evaluated from equations (B.6) and (B.8b) for L and Q"

rl(l+1)y
I, 2)=————(w"4 = B), (B.17)
(2/+1)
where 4 and B are expressions (58b,¢); and the constraint (B.16) on Q, y, Y is easily
evaluated from (B.8b)

L+ 1) rP 25 0
G+ l6n v 8(x/y) at r=R.. (B.18)
Here x = ~r2e™®~A ' -er=%0/r (equation 57b). The action principle thus consists
of extremizing w? = B/A with respect to variations of Q, ¥, Y, with x/y held fixed at Ra..
The initial-value equation (19a) for y is one of the Euler—Lagrange equations of this
action principle. Because it is independent of «w, (19a) can be imposed as a constraint on
all trial functions before the action is varied. The normal modes obviously will still give
stationary w, and one can verify that this procedure does not introduce any spurious
solutions — only the normal modes give stationary . This is the version of the action
principle presented in the text (Section 4.3).

Assume that L(Z* Z) is ‘real’ in the sense that L(ZT* Z")=[L(ZT Z)]", where ~
denotes complex conjugation. Then if Z=ze'“’ is a solution of the Euler—Lagrange
equations, Z" =z ¢~ ‘“" will also be a solution; and from the complex solution ze'“?
we can build a real solution

Z =12 rp*eg ™y w=g ¥ if2r. (B.19)

[f we insert this real solution into expression (B.10b) for S* we obtain

S¥=Fke=tr+ S* cos (20t + O*) e tiT, (B.20)
where

59 = {Im [w*Q%z*e~ V", ze/“N)] - 1/2 Re [L(z*e‘¥™ ze' )]} elm, (B.21a)
§7 = Im [w*Q! (F e 9™, ze/@M)] e"r, (B.21b)

and where S* is not of interest to us. In the law of energy conservation a“s“ =0, the pure
exponential terms and the sinusoidal terms must be conserved separately. It is the pure
exponential terms that interest us; for them, energy conservation says

(I/T)S_O.__S:/./_: (B.22)
integration over the sputial region ¥ imolies
. (I/T) j S"Odmx = J g/d/n—l z/.. (823)
¥y a*

For our torsional oscillations §° and S”, as computed from equations (B.21), (B.6) and
(B.8), are the expressions given in equations (62), where £y, = fS%dr.





