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Nature reveals herself willingly, I believe, but in proportion to our attentive­

ness . For a theoretical physicist, this attentiveness takes the form of a careful 

questioning of what he sees, or of what he thinks he sees, in nature . Often his 

discoveries, great or small, are a result of a persistent, demanding examination 

or issues previously neglected or assumed understood. It is in this spirit that 

this collection of papers is presented. While none of them represents a break­

through in our understanding of how nature works, it is hoped that they offer a 

useful contribution to the description of a ¥iide variety of physical systems, par­

ticularly those that can be modeled as harmonic oscillators. 
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ABSTRACT 

This thesis is a collection of six papers. The first four constitute the 

heart of the thesis; they are concerned with quantum mechanical properties 

of certain harmonic-oscillator states. The first paper is a discourse on 

single-mode and two-mode Gaussian pure states (GPS), states produced 

when harmonic oscillators in their ground states are exposed to potentials 

that are linear or quadratic in oscillator position and momentum variables 

(creation and annihilation operators) . The second and third papers develop 

a formalism for analyzing two-photon devices (e.g .. parametric amplifiers 

and phase-conjugate mirrors) . in which photons in the ouput modes arise 

from two-photon transitions, Le., are created or destroyed two at a time. 

The states produced by such devices are single-mode and two-mode 

"squeezed states", special kinds of GPS whose low-noise properties make 

them attractive for applications in such fields as optical communications 

and gravitational wave detection. The fourth paper is an analysis of the 

noise in homodyne detection, a phase-sensitive detection scheme in which 

the special properties of (single-mode) squeezed states are revealed as an 

improved signal-to-noise ratio relative to that obtained with coherent states 

(the states produced, e.g., by a laser) . 

The filth and sixth papers deal with problems of a different nature from 

that of the previous papers . The fifth paper considers the validity of the 

"standard quantum limit" (SQL) for measurements which monitor the posi­

tion of a free mass . It shows specifically that when the pre-measurement 

wave functions of the free mass and the measuring apparatus(es) are Gaus­

sian (in the general sense, which includes so-called "contractive states"), 

measurements described by linear couplings to the position or to both the 

position and momentum are limited by the SQL. The sixth paper develops 
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the mathematical theory of torsional (toroidal) oscillations in fully general 

relativistic, nonrotating, spherical stellar models, and of the gravitational 

waves they emit. 
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INTRODUCTION 

The advent of the laser in the 1960's brought with it a host of new 

observable phenomena. The intense light from a laser operating far above 

threshold results from the coherent excitation of a single mode of the elec­

tric field; the fluctuations (noise) associated with the light reflect only 

quantum-mechanical zero-point fluctuations, and nothing more . Nonlinear 

effects, unobservable with ordinary light because they arise from couplings 

between matter and radiation that are second order and higher in the field 

strength, are observable with laser light. These effects give rise to a wide 

variety of phenomena, such as harmonic generation, 1 optical phase conjuga­

tion,2 and squeezed-state light. 3 Squeezed-state light is the motivation for 

the first four papers of this thesis. 

Quantum mechanics describes the output of a laser as a collection of 

modes (harmonic oscillators) of the electromagnetic field, each of which is 

in a "coherent state. "4 ·5 A (single-mode) coherent state is an eigenstate of 

the annihilation operator a for the mode ([a, at]= 1) . It therefore has the 

sharpest complex amplitude (a) allowed by quantum mechanics . The "total 

noise" 

( I l:ia 1
2 ) = ( l:ia l:ia t) sym = ~ ( ( l:ia t:ia t) + ( t:ia t l:ia ) ) , 

t:ia =a - (a), ( 1) 

of a coherent state, equal to the sum of the variances of the real and ima­

ginary parts of a , is the minimum allowed by quantum mechanics (the half­

quantum of "zero-point noise") . The vanishing of ( (t:ia)2) implies that the 

variances (squared uncertainties) of the real and imaginary parts of ei6 a for 

any t5 ("rotated" dimensionless position and momentum variables), are 

identical. The coordinate- and momentum-space wave functions of a 
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coherent state are therefore Gaussians, whose widths (in dimensionless 

units) are identical. 

In the Fourier decomposition of an electric field (or other quantized 

field composed of bosonic modes), the annihilation operators appear as the 

Fourier components of the positive-frequency part of the field . Just as it is 

useful when discussing a single mode to distinguish between the real and 

imaginary parts of the annihilation operator, it is useful when discussing a 

collection of modes , i.e., an (electric) field, to distinguish between two 

(time-dependent) linear combinations of the positive- and negative­

frequency parts of the field; these combinations are called quadrature-phase 

operators (or simply quadrature phases) . They are the operators which 

appear when one decomposes the field into parts that vary as cosO (t -x) 

and sinO (t x ), where the frequencies associated with the field are regarded 

as symmetric around a carrier frequency 0. For a field composed of modes 

in coherent states, the (time-averaged) variance of the field, or the sum of 

the variances of the quadrature phases , is the minimum allowed by quantum 

mechanics; this is because it is proportional to the sum of the total noises of 

each mode, each of which is equal to its minimum allowed value. Further, 

the vanishing of of the complex number < (t.£C+l)2 ), where £C +) is the 

positive-frequency part of the coherent-state field, implies that the vari­

ances of the quadrature phases (and all "rotated" quadrature phases) are 

identical. 

Clearly coherent states do not describe all (pure) states with Gaussian 

wave functions ("Gaussian pure states", or "GPS"). Likewise, fields com­

posed of modes in coherent states do not describe all fields with Gaussian 

quantum fluctuations. Gaussian pure states are produced when harmonic 

oscillators in their ground states are exposed to potentials (interaction 
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Hamiltonians) that are linear or quadratic in creation and annihilation 

operators . Hence, although they may affect N oscillators (N ~ 1), thus pro­

ducing an N-mode GPS, the interaction Hamiltonians that produce GPS are 

sums of Hamiltonians that either involve a single oscillator or couple two 

oscillators . This means that the properties of fields with Gaussian quantum 

fluctuations reflect the properties of single-mode and two-mode GPS . Paper 

1 in this collection, entitled "Quantum mechanical pure states with Gaussian 

wave functions ," is a treatise on single-mode and two-mode GPS. Many com­

ments which would naturally appear in this Introduction have been omitted, 

in favor of referring the reader to the Introduction of that paper. That 

Introduction will also serve to familiarize the uninitiated reader with the 

material contained in Papers 2, 3, and 4 of this thesis . 

Coherent states are produced from the vacuum state by interaction 

Hamiltonians that are linear in creation and annihilation operators ("one­

photon" processes). Physically, this says that coherent states are produced 

when an oscillator in its ground state is subjected to a classical force (e .g ., 

an electrical current) . Gaussian pure states that are not coherent states 

are produced from coherent states by interaction Hamiltonians that are 

quadratic in creation and annihilation operators, i.e ., by processes which 

involve two-photon transitions. The changes in the wave functions and noise 

properties of the field from those of coherent states and fields composed of 

modes in coherent states are a r esult of correlations between the photons in 

each pair. Single-mode GPS that are not coherent states are produced by 

degenerate two-photon interactions, in which two photons from the same 

mode are created or annihilated simultaneously. They are known in quan­

tum optics as "single-mode squeezed states." The adjective "squeezed" 

alludes to the fact that the variance of the real or imaginary part of e i.5 a, 



- 4 -

for some 6, is smaller than it would be in a coherent state . Two-mode GPS 

that are not coherent states are produced by all combinations of (i) degen­

erate two-photon interactions (one for each mode), (ii) frequency-converting 

interactions, in which a photon from one mode is annihilated while a photon 

from the other mode is created, and (iii) nondegenerate two-photon interac­

tions , in which two photons from different modes are simultaneously created 

or annihilated. The frequency-converting interaction by itself cannot pro­

duce a state with noise properties that are different from those of a 

coherent state . The two-mode GPS that are produced from (two) coherent 

states by nondegenerate two-photon interactions are called "two-mode 

squeezed states ." They (as distinguished from states that are products of 

two single-mode squeezed states) are the natural analog, both formally and 

physically, of single-mode squeezed states . For further discussion, please 

see the Introduction to Paper l (especially Section I.g). A thorough discus­

sion of two-mode squeezed states and their significance for the noise proper­

ties of (multirnode) electric fields is contained in Papers 2 and 3 of this 

thesis. 

A brief summary of each of the papers in this collection follows . 

Paper l, entitled "Quantum mechanical pure states with Gaussian wave 

functions ," is a comprehensive discussion of single-mode and two-mode 

Gaussian pure states (GPS). In it I investigate the physical and group 

theoretical significances of the Hamiltonians and unitary operators associ­

ated with GPS . These are used to develop a natural classification of all GPS. 

The properties of single-mode and two-mode GPS are discussed . Efficient 

vector notations are introduced, for both single-mode and two-mode GPS, 

which provide a powerful way to derive and describe properties of GPS and 

the unitary operators associated with them. 
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Papers 2 and 3 are the first two papers in a series that describes a new 

formalism for two-photon quantum optics; they appear in the May, 1985 

issue of Physical Review A The objective in this series of papers is to 

develop a formalism that can successfully describe real "two-photon" dev­

ices (e.g., parametric amplifiers and phase conjugate mirrors), which are of 

increasing theoretical and experimental interest because of their ability to 

produce squeezed states. The fundamental operators of the formalism are 

the (Fourier components of the) quadrature-phase operators described 

above, and the fundamental states are the two-mode squeezed states . Paper 

2 (Paper I in the series) lays a foundation for the formalism; it defines the 

fundamental operators and states and describes the noise properties of 

fields produced by two-photon devices . These fields have a special kind of 

noise, called "time-stationary quadrature phase" (TSQP) noise, so named 

because for them all noise moments (moments with the mean excitations 

removed) of the quadrature-phase operators are time-independent . By 

comparison, the fields produced by one-photon devices such as the laser, 

i.e., coherent-state fields, have an even more special kind of noise, "time­

stationary" (TS) noise, so named because all noise moments of the electric 

field, as well as of the quadrature phases, are time-independent . Paper 3 in 

this thesis (Paper II in the series) provides the mathematical foundation for 

the formalism. It introduces a two-component vector notation that natur­

ally describes the properties of states (or fields) that have TSQP noise . This 

vector notation is a special case of the more general vector notation 

developed in Paper 1 of this thesis for describing all two-mode GPS . Proper­

ties of two-mode squeezed states and various unitary operators associated 

with them are investigated thoroughly. I am currently writing Paper III of 

this series (it does not appear in this thesis) . That paper will define 



quasiprobability distributions (QPDs) for fields with TSQP noise, based on the 

quadrature-phase operators. The use of QPDs is equivalent to a density 

operator description of the fields; it enables one to describe real devices, 

which exhibit losses and other nonideal effects . 

Paper 4 of this collection is a short paper , published in Optics Letters in 

May, 1984, entitled "Noise in homodyne detection." It is a simple but 

rigorous analysis of the important sources of noise in homodyne detection. 

Homodyne detection is a phase-sensitive detection scheme, which works by 

combining at a beam splitter a monochromatic input field with a strong 

local-oscillator field, and monitoring one or both output ports. The relative 

strength of the local-oscillator field guarantees that (i) the dominant contri­

bution to the output-field intensities is proportional to the mean field of that 

input-field quadrature phase which was in phase with the local oscillator 

(i.e., to the real or imaginary part of ei6 (a ) , since the input field is mono­

chromatic), and (ii) the dominant noise in the output fields is proportional 

to the variance of that quadrature phase . A reduction in the noise in one 

quadrature phase relative to its coherent-state value , i.e ., squeezing, is thus 

manifested as an improved signal-to-noise ratio over that obtained when the 

input field is a coherent state . This paper shows that "two-port" homodyn­

ing , in which one monitors both output ports of a 50-50 beam splitter with 

photodetectors and then subtracts the photodetector outputs , is insensitive 

to local-oscillator quadrature-phase noise; hence it provides (i) a means of 

detecting reduced quadrature-phase fluctuations (squeezing) that is more 

sensitive than conventional (one-port) homodyning, and (ii) an output 

signal-to-noise ratio that can be a modest to significant improvement over 

that of one-port homodyning and direct detection. The magnitude of the 

improvement is a function of how "squeezed" the input field is and how 
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efficient the photodetectors are. 

Paper 5 is a short paper I wrote between January and March, 1984, but 

chose not to submit for publication. It examines the validity of the "stan­

dard quantum limit" (SQL) for certain kinds of measurements of the position 

of a free mass . The SQL says that one cannot predict the outcome of the 

second of two successive, identical measurements of the position of a free 

mass with an accuracy better than (1i.T/ m )*. where T is the time interval 

between the measurements. My active interest in this subject was sparked 

by an article by Horace Yuen 6 that appeared in Physical Review Letters in 

August, 1983. In it he argued that the use of "contractive states" enables one 

to beat the SQL. Contractive states are free-mass states with the most gen­

eral kind of Gaussian wave function (the wave function of a single-mode 

squeezed state) ; i.e ., they are states in which the position and momentum 

variables are correlated with each other in a way that is independent of 

the ir mean values . The kinds of measurements that Yuen proposes are not 

measurements which we know how to realize (he has made this clear in pub­

lished comments since his original Letter). There is no proof available , and 

perhaps no reason to believe, that the kinds of measurements of which he 

speaks could not beat the SQL. However, his article and others since his 

have revealed confusion regarding the precise statement of the SQL and the 

measurements to which it applies . In this paper I consider the validity of 

the SQL for measurements described by linear couplings to the position or 

to both the position and momentum of the mass. 7 It is shown that whenever 

the pre-measurement wave functions of the free mass and the measuring 

apparatus (es) are Gaussian (which includes Yuen's "contractive states") , 

such measurements are subject to the SQL. 
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Paper 6, written in collaboration with Kip S. Thorne, presents the 

mathematical theory of torsional oscillations in fully relativistic, nonrotat­

ing, spherical stellar models; and it examines the gravitational waves emit­

ted as a consequence of these oscillations . The motivation for this analysis 

lies with neutron stars, which have crusts and perhaps also solid cores that 

could undergo such oscillations . These oscillations might be observed in 

pulsar timing data, as subpulses or in "post-glitch" data, or by gravitational 

wave detectors available ten or twenty years from now. The analysis uses 

ftrst-order perturbation theory and ignores all damping except that due to 

gravitational radiation reaction. For each harmonic, the paper presents 

equations of motion, an action principle, and a proof that the oscillations are 

stable. An eigenvalue problem is posed for the eigenfunctions and eigenfre­

quencies of the normal modes with outgoing gravitational waves . Five 

methods of solving the eigenvalue problem are presented. An appendix 

develops a general theory of action principles for systems with radiative 

boundary conditions . 
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ABSTRACT 

This paper examines single-mode and two-mode Gaussian pure 

states (GPS), quantum mechanical pure states with Gaussian wave 

functions . These states are produced when harmonic oscillators in 

their ground states are exposed to potentials (interaction Hamil-

tonians) that are linear or quadratic in the position and momen-

tum variables (annihilation and creation operators) of the oscilla-

tors . The physical and group theoretical properties of these Ham-

iltonians and the unitary operators they generate are investigated. 

They are used to develop a natural classification of all GPS. Pro-

perties of single-mode and two-mode GPS are discussed. An 

efficient vector notation is introduced and used to derive many of 

the important properties of GPS and the Hamiltonians and unitary 

operators associated with them. 

May 1985 
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I. INTRODUCTION AND OVERVIEW 

Th.is paper considers Gaussian pure states (GPS), quantum mechanical 

pure states that have Gaussian wave functions . These states are particularly 

relevant to the description of a harmonic oscillator with a nearly classical, 

coherent excitation whose intrinsic quantum mechanical fluctuations are 

important. Such a description arises, for example , in connection with the 

transmission or detection of coherent optical signals , 1. 2 or high-precision 

measurements of a macroscopic oscillator's displacement, as in the detec­

tion of gravitational waves .3·4 Gaussian pure states are familiar in quantum 

optics, where they describe the coherent output from a laser and the 

predicted "squeezed-state" light 5·6 from an optical parametric amplifier. 

For the theorist , these states have the satisfying feature that the Hamiltoni­

ans for the physical processes that produce them are known and have sim­

ple , easily interpreted forms . 

Gaussian pure states are produced when harmonic oscillators in their 

ground states are subjected to particular kinds of time-dependent poten­

tials, or interaction Hamiltonians . The oscillators might be mechanical or 

electrical. or they might be the normal (bosonic) modes of a quantized field 

such as the electromagnetic field ; for purpose of illustration, I shall have the 

last of these examples in mind throughout this paper. The interaction Ham­

iltonians that produce GPS are polynomials that are linear and / or quadratic 

in the oscillators' position and momentum variables. Hence, although they 

may affect N oscillators (N ~ 1), thus producing an N-mode GPS , the 

interaction Hamiltonians are sums of Hamiltonians that either involve a sin­

gle oscillator or couple two oscillators . This has the important consequence 

that one need look only at single-mode and two-mode GPS in order to under­

stand the fundamental features of all N-mode GPS. Single-mode GPS and 



- 12 -

their subsets have been studied by many people during the last six 

decades.7- 16 The goal of this paper is to help make the less widely !mown and 

understood two-mode GPS as familiar as their single-mode counterparts. 

Associated with any oscillator is a real, positive, constant frequency 0. 

The quantum mechanical free Hamiltonian for the oscillator is 

( l. 1 a) 

where a and at are annihilation and creation operators for the mode 

([a., a.t] = 1). (Here and throughout this paper I use units with~= c = l.) 

The expectation value of a.ta., the photon-number operator for the mode, is 

the number of photons in the mode. The free Hamiltonian for N oscillators 

is the sum of N single-mode free Hamiltonians: 

H 0(N) = ~ 01 a.1 ta.1 , 
j = 1 

(l.lb) 

The stationary states for each oscillator (eigenstates of H 0(
1
)) are the 

number states In). 

( l. 2a) 

Ho(l) In) = n 0 In) , ( l. 2b) 

where the state vector I 0) represents the ground state . Throughout this 

paper the state vector I 0) , or the term "vacuum state", means the tensor 

product of the ground states of N oscillators, for any N ~ 1. The vacuum 

state, unlike the other number states, is also an eigenstate of the annihila-

tion operators for all the modes . Its wave function is Gaussian, whereas the 

wave functions for the other number states In). n ~ 1. are not. 17 
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The forms of the interaction Hamiltonians that produce (or preserve) 

Gaussian pure states are derived in this paper by considering the most gen-

eral single-mode and two-mode Gaussian wave functions, in which all param­

eters are arbitrary, subject to normalization. The wave functions imply that 

Gaussian pure states are eigenstates of certain kinds of linear combinations 

of creation and annihilation operators. These linear combinations in turn 

determine the general form of the unitary operators that relate Gaussian 

pure states to the vacuum state, in the following way. Let the most general 

(normalized) N-mode GPS be expressed formally as the state vector 

Uc(N) I 0), where Uc(N) = e -1.HG<N) is a unitary operator with Hermitian gen­

erator Hc(N) . Since the vacuum state is an eigenstate (with zero eigenvalue) 

of the annihilation operators ai, j = 1, 2, ... ,N, an N-mode GPS is an eigen­

state (with zero eigenvalue) of the transformed annihilation operators 

gi = Uc(N) a1 Uc(N)t . The (Gaussian) wave functions imply that the operators 

gi are linear combinations of annihilation and creation operators plus a con­

stant, which in turn implies that the Hermitian generator Hc(N) consists only 

of linear and bilinear combinations of annihilation and creation operators. 

There are no further restrictions on the generator Hc(N), so Hc(N) consists, 

in general, of all possible linear and bilinear combinations of annihilation 

and creation operators. 

-iH (N) 
The unitary operators Uc(N) = e G that relate N-rnode GPS to the 

vacuum state factor naturally into unitary operators whose generators are 

(Hermitian) linear combinations of creation and annihilation operators, and 

unitary operators whose generators are (Hermitian) bilinear combinations 

of creation and annihilation operators. There are N unitary operators whose 

generators are linear in creation and annihilation operators, one for each 

mode, and they are identical to each other in form. They are called 
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"displacement operators" .10 In contrast, the unitary operators whose gen­

erators are bilinear combinations of creation and annihilation operators 

divide into four basic types, which differ fundamentally from each other in 

both their physical and group theoretical significance. In this paper they 

are referred to as rotation, mixing, single-mode squeeze, and two-mode 

squeeze operators. This division reflects the underlying structure of the 

N(2N + 1)-parameter Lie algebra consisting of all bilinear combinations of N 

creation and annihilation operators. These unitary operators and their gen­

erators are described below. 

The proof (for N = 1 and N = 2) that the uili.tary operator Uc(N) whose 

generator Hc(N) is a sum of all linear and bilinear combinations of creation 

and annihilation operators factors into a product of displacement, rotation, 

mixing , and squeeze operators is subsLUTied by more general proofs given in 

Sections IIC, IIIC, and Appendix A. There each term in the generators Hc(l) 

and Hc(2l is allowed to have an arbitrary time dependence (subject to overall 

Hermiticity), and the unitary evolution operator u(Nl(t), the solution to the 

Schrodinger equation io, u(Nl(t) = Hc(N)(t) u(Nl(t ), u(N)(O) = 1. (N = 1. 2), is 

shown to factor into a product of these unitary operators . The Hermitian 

forms associated with the displacement, rotation, mixing and squeeze opera­

tors thus take on a physical meaning, in addition to their group theoretical 

roles. When allowed to take on time dependences, they represent the 

interaction Hamiltonians that produce (or preserve) Gaussian pure states. 

Their properties are now described. 
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a. Interaction Hamiltonians 

The interaction Hamiltonians that produce Gaussian pure states divide 

naturally into two broad categories: those that conserve the (total) number 

of photons in the mode(s) , and those that do not . Those that conserve total 

photon number leave the vacuum state unchanged, and their effect on other 

GPS is merely to redistribute the photons among the different modes . Of 

greater interest here are those interactions that do not conserve the total 

photon number, but that do preserve the Gaussian nature of a state. As 

stated above, all interaction Hamiltonians that produce (or preserve) GPS 

are polynomials that are linear and/or quadratic in creation and annihila-

tion operators (i.e ., in position and momentum variables) . Conversely, all 

such interaction Hamiltonians describe physical processes that produce (or 

preserve) Gaussian states . Those that conserve the total photon number 

must consist of products of equal numbers of creation and annihilation 

operators . The requirement that they also preserve Gaussians implies that 

they have the (normally-ordered) forms 

HR(N)(t) = t Ilii ( t)~ta;, ( 1. 3) 
\ ,j = 1 

where the Tii; (t) are arbitrary complex-valued functions of time t . In con­

trast , the Hamiltonians that produce (or preserve) GPS but do not conserve 

the total number of photons have the forms 

N 
H 1(N)(t) = I; if .. -;*(t)a; -i'f.,; (t)a/, ( 1.4a) 

j = 1 

( 1. 4b) 

where A.; (t) and ?:ii (t) are arbitrary complex-valued func tions of time . 
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The photon number-conserving interactions defined in Eq. ( 1.3) divide 

naturally into two types. The first is made up of the terms for which i = j; 

for each mode i these Hamiltonians have the form 

( 1.5) 

which looks like the free Hamiltonian for the mode but with a time­

dependent real function (not restricted to positive values) in place of the 

frequency. These Hamiltonians conserve the number of photons in each 

mode; hence they conserve the total energy, as well as the total number of 

photons. They are referred to in this paper as rotation Hamiltonians. Like 

the free Hamiltonian, they cause a time-dependent exchange of kinetic and 

potential energy within each mode, but unlike the free Hamiltonian, the 

time dependence need not be harmonic . 

The second type of photon number-conserving interaction is made up of 

the terms in Eq. ( 1. 3) for which i ;t. j. For each pair of modes i and j, these 

Hamiltonians have the form 

i ;t. j . ( l. 6) 

These interactions conserve the total number of photons in each pair of 

modes, but not the number in each mode separately; i.e., the Hamiltonian 

HRi.i ( t) commutes with the sum, but not the difference, of the photon­

number operators for the two modes. Physically, they describe "ideal" 

frequency-converting interactions, in which a photon of frequency oi ~ °' 
and a "pump" photon of (or photons of total) frequency (Oi: - Oi) are des­

troyed simultaneously to produce a photon of frequency Oi: (and vice-versa). 

The interaction is "ideal" if the pump(s) can be assumed to have an unlim­

ited supply of photons , and so be described by a classical function Tii:j (t ). 
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The interactions defined in Eq. (1.4), which do not conserve photon 

number, are of three types . The first consists of the linear Hamiltonians 

H 1 (Il (t ), each of which describes the interaction of an oscillator with a clas­

sical force characterized by a function ~(t) (e .g ., a classical current) .10 ·11 

These will be seen to conserve quantities related to the noise (uncertainties) 

of a GPS. The second type of interaction consists of those quadratic Hamil­

tonians H 2(2>(t) that couple two different modes (i ~ j) . For a pair of modes 

i , j these Hamiltonians have the form 

i #- j . ( 1. 7) 

These interactions conserve the difference in the number of photons in the 

two modes, but not the total number; i.e ., the Hamiltonian H?:i.; (t) com­

mutes with the difference, but not the sum, of the photon-number operators 

for the two modes . 18 Physically, these describe "ideal" nondegenerate two­

photon interactions, in which two photons of frequencies (4 and O; are des­

troyed simultaneously to produce a pump photon of (or photons of total) 

frequency ((4 + O;) (and vice-versa) . The simplest example of a device that 

operates on such an interaction is a nondegenerate parametric 

amplifier, ia-2o which uses a single pump at frequency (°' + O; ): the two 

modes are called the signal and the idler . Another example is a four-wave 

mixer ,2 1.22 which uses two pumps, the sum of whose frequencies is (°' + 01 ) ; 

here the two modes are the transmitted and reflected waves . The interac­

tion is "ideal" if the pump(s) can be described by a classical function ~(t). 

The third type of interaction that does not conserve photon number 

consists of the quadratic Hamiltonians H 2( 1l( t) that involve single modes 

(i = j). For each mode these Hamiltonians have the form 

( 1. 8) 
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Physically, these interactions describe ideal degenerate two-photon interac­

tions in which two photons of frequency 0 from the same mode are des­

troyed simultaneously to produce a pump photon of (or photons of total) 

frequency 20 (and vice-versa) . Such an interaction is used, for example, in a 

degenerate parametric amplifier. For specificity throughout the remainder 

of this paper, whenever I need an example of a device that operates on a 

two-photon interaction (degenerate or nondegenerate), I shall have in mind 

the simplest example -- an ideal parametric amplifier. 

b. Unitary operators 

The unitary operators that relate one GPS to other GPS with the same 

total number of photons are generated by the photon number-conserving 

Hermitian forms HR(NJ . They are of two types: rotation operators, which act 

on one mode at a time, and "mixing" operators, which couple two modes . 

For each mode a rotation operator R ( e) is defined by 

( 1. 9) 

[Eq. ( 1.5)]. Formally, R(e) rotates the real and imaginary parts of a (i.e., 

position and momentum) into each other. For each pair of modes i, j a 

mixing operator T(q, x) is defined by 

i "T:- j ( l. lOa) 

[Eq. (1.6)], where q and x are real numbers defined on the intervals 

(l.l Ob) 

Formally, T(q .x) unitarily transforms 0-t and ai into linear combinations of 

each other. 
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The unitary operators that relate one GPS to other GPS with different 

total photon number are generated by the (non-photon-number-conserving) 

Hermitian forms H 1(N) and H 2(N) . Again, they are of two types: those that 

act on one mode at a time, and those that couple two modes . For each 

mode a displacement operator 10·11 and a single-mode squeeze opera­

tor 12·13 ·23 are defined by 

D(a.,µ) = exp[µa.t-µ•a.], ( 1.11) 

(1 .12a) 

[Eqs. (l.4a), (1.8)]. Hereµ is a complex number, and r and rp, known as the 

squeeze factor and squeeze angle, are real numbers defined on the intervals 

(1.12b) 

Formally, the displacement operator adds a constant (µ) to a. , thus chang­

ing the mean values of the position and momentum variables . The single­

mode squeeze operator mixes a. with a.t. Consequently, it induces a correla­

tion between the position and momentum variables that is independent of 

their mean values . This correlation can result in a narrowing of the 

coordinate-space wave function, with a corresponding broadening of the 

momentum-space wave function. 

For each pair of modes a two-mode squeeze operator 24 - 27 S (r, 9') is 

defined by 

i ~ j ( 1. 13) 

[Eq. (1.7)], where r and rp are defined as above [Eq. (l.12b)]. The two-mode 

squeeze operator mixes ~ with a; t (and a.i with ~ t) . Consequently, it 

induces correlations between the positions and momenta of the two modes 
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(but not of each mode, as the single-mode squeeze operator would do); i.e., 

it causes ~ and a.i to become correlated. 

c. Gaussian pure states 

Turn now from discussion of the interaction Hamiltonians and unitary 

operators associated with GPS to the states themselves. Although it is use­

ful to classify the interaction Hamiltonians and unitary operators according 

to whether they conserve the total number of photons , it is not so useful to 

classify the states according to their total number of photons. More useful 

for classifying GPS is a quantity that ignores the mean excitation ( ( a.i), 

j = 1. 2, · · · , N) and focuses exclusively on the total (second-moment) noise 

associated with the state. The total noise of a single-mode GPS is defined as 

the sum (hence the adjective "total") of the squared uncertainties (vari­

ances) in the real and imaginary parts of a . The minimum total noise 

allowed by quantum mechanics (i.e., by the commutator [a., at]= 1) for 

each mode is therefore one half quantum ("zero-point noise") . This 

minimum is realized if and only if the state is an eigenstate of the annihila­

tion operator for that mode. Note that although the total noise of a mode 

includes in its definition the half quantum of zero-point noise, this is not the 

significance of the adjective "total." The total noise of an N-mode GPS is 

defined as the sum of the contributions from ("total noises" of) each mode . 

The total noise of a GPS can be thought of as the noise content of the state 

in units of photon number; it is the number of photons, including the half 

quantum from each mode due to zero-point noise, that would be left in the 

state if the mean excitation were removed. The total noise of a state is a 

more fundamental quantity than the total number of photons. It is con­

served if the total number of photons is conserved, but the converse is not 
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true. [For example , a classical force interacting with an oscillator(s) 

changes the total number of photons, but not the total noise; see Section 

IIA.3.] 

When considering two or more modes one should note the distinction 

between the total noise and another quantity, the total noise energy. The 

total noise energy of a GPS is the noise content of the state in units of 

energy; it is the energy (including zero-point energy) that would be left in 

the state if the mean excitation were removed. For a single mode the the 

distinction is not important, since the total noise energy is equal to the pro­

duct of the total noise and the mode's frequency. But for two or more 

modes with different frequencies , the total noise and the total noise energy 

are not proportional to each other. They are proportional to each other only 

when the total noises of all the modes are identical. Just as photon number 

is a more convenient quantity than energy for classifying the potentials that 

produce GPS , so total noise is a more convenient quantity than total noise 

energy for classifying GPS. 

It is shown below that all linear interaction Hamiltonians H 1 (Nl(t ) . as 

well as all photon number-conserving interaction Hamiltonians HR(Nl(t), 

conserve the total noise of an N-mode state. Further, these are the only 

interaction Hamiltonians that conserve both the total noise and the Gaus­

sian nature of a state . This means that states unitarily related to each other 

by products of rotation. mixing, or displacement operators all have the 

same total noise . Conversely, all GPS with the same total noise are related 

to each other by (products of) rotation, mixing , and displacement operators . 

Only the quadratic, non-photon-number-conserving potentials H 2(Nl(t) can 

change the total noise of a state . There are, therefore , two broad classes of 

GPS . The first class consists of all states unitarily related to the vacuum 
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state by products of displacement, rotation, and mixing operators. These 

states have a total noise equal to that of the vacuum state, the minimum 

allowed by quantum mechanics (~N. for an N-mode state). Put another 

way, the first class consists of all (normalized) eigenstates of annihilation 

operators. The second class consists of all states unitarily related to states 

in the first class by products of single-mode and/or two-mode squeeze 

operators. The total noise of these states is necessarily greater than that of 

the vacuum state . 

d Coherent states 

The single-mode GPS produced when an oscillator in its ground state is 

acted on by a classical force, i.e., subjected to the linear interaction Hamil­

tonian H 1C1l(t), is called a single-mode coherent state. 10 ·11 Formally, a 

single-mode coherent state, symbolized by the state vector \ µ)coh· is 

defined as that state unitarily related to the vacuum state by the single-

mode displacement operator, 

lµ)coh = D(a,µ) IO). (1 .14) 

It is an eigenstate of the annihilation operator a with eigenvalue µ . An N-

mode coherent state is simply a tensor product of N single-mode coherent 

states. For example, a two-mode coherent state, symbolized by the state 

vector \µ)coh (or lµ+.µ_)coh), is defined by 
~ 

(1.15) 

It is an eigenstate of the annihilation operators a+ and a _ for each mode, 
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with eigenvalues µ+ andµ_, respectively . All normalized N-mode states that 

are eigenstates of the annihilation operators for their modes can be 

described as N-mode coherent states. That is, all states unitarily related to 

a coherent state by products of rotation, displacement, and mixing opera­

tors can be described as another coherent state, with different eigenvalues. 

Glauber 10·11 and others 18·28 - 32 beginning in the early 1960's have used 

coherent states to build a powerful description of the electromagnetic field. 

Today these states are at the heart of quantum optics, providing the basis 

for a sophisticated theory of the laser, for example. 

e. Single-mode squeezed states 

For a single mode, there is only one interaction Hamiltonian, H 2(1l(t), 

that can produce a GPS whose total noise differs from (i .e ., is greater than) 

that of a coherent state . The state produced when an oscillator in a 

coherent state is subjected to an interaction described by H 2(1l (t) is called 

a "single-mode squeezed state" 12·13·16 ·23 (SMSS) . Formally, a SMSS, symbol­

ized by the state vector lµa)(r,rp)• is defined as that state unitarily related to 

the single-mode coherent state I µa)coh by the single-mode squeeze opera­

tor, 

( 1. 16) 

The SMSS I µa ) (r. rp) is an eigenstate of the "single-mode squeezed annihila­

tion operator"24- 26 

a(r , cp) = S 1(r ,cp)aS/(r,cp), ( 1.1 7) 

with complex eigenvalue µa . Any state unitarily related to the SMSS lµa )(r .I") 

by products of single-mode rotation, displacement, and squeeze operators 
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can be expressed as another SMSS jµ '(l)(r '. r,11 ') (multiplied by an unobservable 

overall phase factor), with different squeeze factor , squeeze angle, and 

eigenvalue. As stated earlier, the unitary operator generated by any combi­

nation Hc(l) of the Hermitian forms HR(l), H 1(1l, and H 2(l) (i.e., the solution 

to the Schrodinger equation ia, U(t) = Hc(l) U(t), U(O) = 1) can always be 

written as the product of a single-mode rotation, displacement and squeeze 

operator. and an overall phase factor (Section IIC and Appendix A). Since 

these Hermitian forms are the only ones associated with single-mode GPS 

(proved in Section IIB, by considering the most general single-mode Gaus­

sian wave functions), the SMSS jµ(l)(r . r,11) of Eq. (l.16), with r and rp defined 

over the ranges ( 1.12b), represents the most general (normalized) single­

mode GPS. 

Single-mode squeezed states were introduced independently by Stoler 12 

("minimum-uncertainty packets") and Lu 13 ("new coherent states"). They 

have been discussed in detail by Yuen 16 in the context of quantum optics 

under the name "two-photon coherent states" or "TCS". Their properties 

and possible application to back-action evading techniques4 for 

gravitational-wave detection were first considered by Hollenhorst, 23 who 

coined the adjective "squeezed". For more recent discussions see , e .g., 

Refs. 5 and 6. "Generalizations" of coherent states, which include single­

mode squeezed states, have been described from a group theoretical 

approach by Barut and Girardello, 14 Perelornov, 15 and others .33 ·34 The pro­

perties of single-mode squeezed states are summarized briefly here and 

below in Sections IIA.5 and IIB. 

Recall that the total noise of a single-mode GPS is the sum of the vari­

ances of the real and imaginary parts of the annihilation operator a, or, 

equivalently , of ei6 a , where o is any real number . The total noise of a 
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single-mode coherent state is equal to ~, the smallest value allowed by 

quantum mechanics (the half quantum of zero-point noise) . This implies 

that, for all choices of 6, the two variances are equal to each other and equal 

to the minimum value allowed by quantum mechanics for the square root of 

their product. Contrast this with single-mode squeezed states. For certain 

ranges of the squeeze angle rp (or, equivalently, for those conjugate observ­

ables defined by certain ranges of o) , one of the variances is smaller than it 

would be in a coherent state. The other variance is greater than it would be 

in a coherent state, since the total noise of a SMSS is greater, but this does 

not alter the potential practical advantages offered by the reduced uncer­

tainty in the one observable . These advantages are the impetus for the 

current experimental effort to produce squeezed states;SB-37 applications 

have been proposed in low-noise optical communications i.2 and high­

precision interferometric experiments, 38- 40 for example. For a particular 

value of the squeeze angle rp (rp = -6) the variance of one observable (the 

real part of e -i 91 CI) is minimized and is a factor e -2r smaller than its 

coherent-state value , while the variance of other (the imaginary part of 

e -i 91 CI) is maximized and is a factor e 2r larger than its coherent-state value. 

Only for this value of rp is the product of the variances equal to its minimum 

allowed value , as in a coherent state . 

The important parameter of a squeezed state is its squeeze factor r, 

not its squeeze angle rp . There are a number of ways to understand this . 

First, the conjugate observables denned as the real and imaginary parts of CI 

deserve no special status relative to the real and imaginary parts of e i~ CI . 

In actual experiments one would tune the apparatus to respond to whichever 

observable has the smallest uncertainty. Second, as the SMSS lµa )(r .91 ) 

evolves freely , its squeeze angle changes, but its squeeze factor r does not. 
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The uncertainties oscillate between the conjugate observables (as does the 

energy between potential and kinetic), but the total noise, which depends 

only on r, is constant . Even if an oscillator in a SMSS is acted on by a classi­

cal force (i.e., multiplied by a product of rotation and displacement opera­

tors), its squeeze factor remains constant, and only its squeeze angle and 

eigenvalue (hence its complex amplitude (a)) change . If, however, an oscil­

lator in a SMSS is subjected to a new degenerate two-photon interaction 

[H2(1l(t)] -- i.e., multiplied by another single-mode squeeze operator - it will 

go into another SMSS, with different squeeze factor, squeeze angle, and 

eigenvalue. 

f. Two-mode Gaussian pure states 

For two modes , there are three interaction Hamiltonians in H 2(2l(t) that 

can produce a GPS whose total noise is greater than that of a coherent 

state. Two of these are the degenerate two-photon interaction Hamiltonians 

H 2(1l(t) of Eq. ( 1. 8), one for each mode . The third is the nondegenerate 

(two-mode) two-photon interaction Hamiltonian H 2+_(t) denned in Eq. (1. 7). 

The most general kind of (normalized) two-mode GPS is produced when two 

oscillators , each in a coherent state, are exposed to all three of these qua­

dratic interaction Hamiltonians. Formally, this state, symbolized by the 

state vector l ~g) (or lµg+ • ,LLg-> ), is related to a two-mode coherent state by 

a product of the three squeeze operators: 

( 1.1 8) 

It is an eigenstate of the transformed annihilation operators g ± = Ug a± Ug t, 

with complex eigenvalues ,LLg±· The order of the three squeeze operators in 

Eq. ( 1. 18) has been chosen for convenience only. All states unitarily related 
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to the GPS I ~ ) defined by Eq. ( 1.1 8) by any product of rotation, displace­

ment, mixing, and squeeze operators can be expressed as another two-mode 

GPS I ,iz'g) with the same form as Eq. ( 1.18) , but with different parameters 

r ±• r, rp±, rp, µg+• and µg-· Further, the unitary operator generated by any 

combination Hc(2) of the Hermitian forms HR (2l, H 1(2l, and H 2(2) (i.e ., the 

solution to the Schrodinger equation iBt U(t) = Hc(2) U(t), U(O) = 1) can 

always be written as the product of two single-mode rotation and displace­

ment operators , a mixing operator, an operator like Ug, and an overall 

phase factor (see Appendix A) . It is for these reasons that the state I ~g) 

defined by Eq. ( 1. 18) is said to represent the most general normalized two­

mode GPS. 

If two oscillators , each in a coherent state , are subjected only to degen­

erate two-photon interactions [H2 (
1l(t)] , the resulting (two-mode) state is 

simply a tensor product of two single-mode squeezed states. If. however, 

they are subjected only to a nondegenerate two-photon interaction 

[H2+-( t ) ] , the resulting state is called a "two-mode squeezed state"24 - 26 

(TMSS) . Formally, a TMSS, symbolized by the state vector l ~a >(r, ,)• is 

defined as that state unitarily related to the two-mode coherent state 

I ~a>coh by the two-mode squeeze operator . 

(1.1 9) 

The TMSS l ~a>(r , ,) is an eigenstate of the "two-mode squeezed annihilation 

operators"24- 26 

( 1. 20) 

with complex eigenvalues µa ±· The properties and importance of two-mode 
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squeezed states in the context of quantum optics are the subject of a recent 

series of papers by Caves and me.25·
26 They are motivated briefly here and 

discussed further in Section III. 

g. Two-mode squeezed states 

The two-mode squeezed states ( 1.19) are the natural two-mode analogs 

of single-mode squeezed states [Eq. (1.16)]. Formally, this is because they 

are unitarily related to two-mode coherent states in the same functional way 

that single-mode squeezed states are related to single-mode coherent 

states. More precisely, the operators a.;, a;, a; ta.;, t, and (a.;, ta.;, + ai t ai + 1) 

generate the same (noncompact, pseudo-unitary) group SU(l, 1) as the 

operators J2a. 2 , }2a.t2 , and (at a + ]2) (see Sections IIC, IIIA, and IIIC 

below) .15
·
41 Physically, a two-mode squeezed state can be produced in a 

parametric amplifier by using a single pump whose photons have energy 

O+ + (L, just as a single-mode squeezed state can be produced in the degen­

erate limit of a parametric amplifier by using a single pump with photons of 

energy 2 0 . In contrast, production of the general two-mode GPS ( 1.18) 

would require three separate parametric amplifiers -- i.e ., three different 

pumps, with photon energies 2 O+ . 2 fL, and O+ + Q_. 

Like a single-mode squeezed state. a two-mode squeezed state is a state 

in which the variance of one of two conjugate observables is smaller than it 

would be in a coherent state. For a single-mode squeezed state the natural 

conjugate observables are the real and imaginary parts of a. (or rotated ver­

sions thereof). But what are they for two-mode squeezed states? Analyses 

of optical heterodyning, 1. 42 together with the properties of two-mode 

squeezed states, indicate that natural choices for these observables are the 

quadrature-phase operators E 1 and E 2 of the electric (or magnetic) field E 



- 29 -

(or similarly defined quantities if the oscillators are not modes of the elec­

tromagnetic field) . The following qualitative remarks give a general idea of 

the nature and significance of the quadrature phases. For further discus­

sion, the reader is referred to Refs . 1. 2, 24-27, 43, and 44. 

In optical heterodyning an input field EC( E 1 cosO(t-x) + 

E2 sinO(t -x), composed of upper and lower sidebands of a carrier fre­

quency 0, is combined at a beam splitter with a strong local-oscillator field 

at the carrier frequency. One or both of the beam-splitter output ports is 

then monitored with a photodetector(s) .45·46 The relative strength of the 

local-oscillator field guarantees that (i) the dominant contribution to the 

output-field intensities is proportional to the mean field of that quadrature 

phase which was in phase with the local oscillator, e.g., < E 1), and (ii) the 

dominant noise in the output fields is proportional to the noise in (variance 

of) that quadrature . A reduction in the noise in one quadrature phase rela­

tive to its coherent-state value is therefore manifested in heterodyning as 

an improved signal-to-noise ratio. 

The upper and lower sidebands of the input field consist of modes with 

frequencies 0 + e and 0 - e, respectively, where the "modulation frequen­

cies" e take on all (positive) values in some bandwidth b.e (0 ~ b.e « 0) . The 

quadrature phases have no time dependence at the carrier frequency O; 

they carry only the time dependences at frequencies e. The signal observed 

in heterodyning, e .g .. <E1), is an amplitude or phase modulation of the car­

rier wave at frequency 0, with modulation frequencies e. One can filter the 

output of the photod.etector(s) to pick out the contribution from a single 

modulation frequency e. i.e .. from one pair of modes. with frequencies 0 ± e. 

The noise properties of this filtered output thus reflect the noise properties 

of a two-mode state . 
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When measured in units of energy, the minimum contribution that two 

modes with frequencies 0 ± e can make to the total noise (variance) of the 

electric field is * ( n + e) + * ( n - e) = n. This minimum is realized only if both 

modes are in coherent states; they then contribute a zero-point noise of *O 

to each quadrature phase . The relations between the quadrature phases 

and the creation and annihilation operators [Eqs. (1.21) below, or Refs . 24-

27] reveal that the minimum contribution that two modes of frequencies 

O±e can make to the noise in either quadrature phase is *e, much smaller 

than that realized by a (two-mode) coherent state . Note that while a 

reduced noise in one quadrature phase relative to its coherent-state value 

implies that the noise in the other quadrature phase and the total noise of 

the electric field must both be larger than their respective coherent-state 

values, the latter do not degrade the output signal-to-noise ratio obtained in 

heterodyning . For the noise in one quadrature phase to be smaller than its 

coherent-state value of *O, the two modes must be correlated with each 

other, in the way that would be produced by a nondegenerate two-photon 

interaction like ( 1.7) ; that is, the two modes must be in a state whose uni­

tary relation to a (two-mode) coherent state includes a two-mode squeeze 

operator S (r , rp) . For a specific value of the squeeze factor r, this reduction 

may or may not be enhanced if, in addition, the two modes are also 

separately squeezed [by adding degenerate two-photon interactions Like 

(1.8)]: in general. however, the reduction is greatest when the modes are 

correlated but not separately squeezed, i.e ., when the two modes are in a 

two-mode squeezed state [Eq. ( 1.1 9)]. 

The obvious advantage heterodyning offers is that one can transmit a 

signal at frequenc ies 0 ± e as amplitude or phase modulation of a carrier 

wave at frequency 0 (modulation frequency e « O), and have a noise 
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associated with that signal that is much smaller than the zero-point noises 

~(O ± e) that would accompany the same signal if it were sent directly at the 

frequencies 0 ± e. The "quadrature-phase zero-point noise" * e is very small, 

and with real photodetectors essentially unobservable. That it is in principle 

nonzero, however, is consistent with what one might expect physically; it 

says that the zero-point noise of ~e associated with any signal transmitted 

directly at frequency e cannot be made to vanish by "disguising" the signal 

as amplitude or phase modulation of a carrier wave at frequency 0 » e. 

The properties of two-mode GPS can be described in terms of the 

annihilation and creation operators (a± and a± t) of the two modes; this is 

the approach taken in Section III of this paper. However, more useful opera­

tors, at least for two-mode GPS that are not coherent states, are ones that 

reflect directly the statistics of the quadrature phases E 1 and E2, the 

natural conjugate observables associated with two-mode states. Such (non­

Hermitian) operators have been defined, 24- 27 and they are called 

"quadrature-phase amplitudes." Just as the annihilation operators a± are 

proportional to the positive-frequency Fourier components at frequencies 

Q ± e of the electric-field operator E, the quadrature-phase amplitudes a. 1 

and a.2 are proportional to the positive-frequency Fourier components at fre­

quency e of the quadrature-phase operators E 1 and E2 . They are defined as 

the following linear combinations of CI+ and cz_t: 

a. 1 = (20)""*[(0 + e)*a+ + (0 - e)*a_t]. 

a.2 = (20)""*[ -i (0 + e)*a+ + i (0 - e)*a_t] . 

( l. 21a) 

( l. 21b) 

The factors (0 ± e )* arise from the requirement that the square of the elec­

tric field be proportional to the total energy of the field (see also the discus­

sion of conjugate variables for two-mode GPS in Section IIIA. la) . The factor 
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o-* is included so that a} 0'.1 and 0'.2t 0'.2 are dimensionless operators whose 

units are number of quanta at the carrier frequency 0. The factor 2-* is a 

convenient choice for the overall normalization. 

The total noise of a 1 or a 2, i.e .. the sum of the variances of its real and 

imaginary parts, is a number proportional to the noise in (variance of) E 1 or 

E2 (at frequency e), in units of number of quanta at the carrier frequency 0. 

The minimum contribution }2e which a pair of modes with frequencies Q ± e 

must make to the total noise of each quadrature phase is a consequence of 

the commutation relations of the quadrature-phase amplitudes : 

( 1.22) 

These imply that the minimum total noise of a 1 or a 2 is }2 e/ 0 , or, 

equivalently, that the minimum total noise energy of a 1 or a 2 is }2e . They 

also imply that the minimum value for the product of the total noises in a 1 

and a 2 is !4'; this minimum is realized only by two-mode coherent states (see 

Refs. 25 and 26) . 

The correlations between the modes in a two-mode squeezed state are 

such that the only nonvanishing noise moments of a 1 and a 2 (moments with 

the mean excitations ( a 1) and ( a 2 ) removed) are those with equal numbers 

of quadrature-phase amplitudes and their Hermitian conjugates, e .g., 

(a1a 2t), (a1ta1 ). etc. This implies that all time-dependent noise moments 

of the quadrature phases E 1 and E 2 vanish. Fields with this property are 

said to have "time-stationary quadrature-phase" (TSQP) noise .24 - 27 The van­

ishing of certain noise moments of the quadrature-phase amplitudes or, 
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equivalently, of certain noise moments of the annihilation and creation 

operators at and att for each pair of modes, allows the properties of two­

mode squeezed states to be described with the same techniques (i.e ., the 

same number of parameters, and the same group theoretical construction) 

used to describe single-mode squeezed states (see the discussions in Sec­

tions IIIA.5 and IIIC) . 

h. Outline of this paper 

Section II of this paper is a review of single-mode Gaussian pure states. 

Section IIA looks at the unitary operators associated with single-mode GPS 

and reviews some of the properties of coherent states and single-mode 

squeezed states. Section IIB considers the most general single-mode Gaus­

sian wave function and from it shows that the most general single-mode GPS 

is a single-mode squeezed state . Section IIC uses a two-component vector 

notation to provide a compact and powerful way to express the properties of 

single-mode GPS and their associated unitary operators . Section III is a 

detailed discussion of two-mode Gaussian pure states which parallels closely 

in structure but is necessarily more complicated than that of Section II. 

Some useful details are relegated to appendices . Appendix A outlines 

the procedure and gives supporting details for writing the unitary evolution 

operator associated with the most general (time-dependent) linear combina­

tion of interaction Hamiltonians that can produce single-mode and two­

mode GPS as a product of squeeze, rotation, mixing, and displacement 

operators . Appendix B derives the phase factors for the general single-mode 

and two-mode GPS coordinate-space wave functions. Appendix C elaborates 

on a point made in Section IIIB concerning the criterion for two arbitrary 

complex operators to have a complete (or overcomplete) set of 
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simultaneous, normalizable eigenstates . 
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II. SINGLE-MODE GAU~ PURE STATES 

A. Introduction and Review 

1. Notation and Definitions 

The quantum mechanical operators naturally associated with a har-

monic oscillator are the Schrodinger-picture (SP) annihilation operator a 

and its adjoint at, the creation operator. Equivalent operators are the 

dimensionless position and momentum x and ft; these are Hermitian opera-

tors, constant in the SP and related to a and at by 

(2A.la) 

(2A. l b) 

The position and momentum are equal to 2* times the real and imaginary 

parts of a, respectively. The creation and annihilation operators and the 

dimensionless position and momentum obey the standard commutation 

relations: 

[a, at] = 1 , [ ~ ~] . x,p =,,,. (2A.2) 

The complex amplitude of a single-mode state, always denoted in this 

paper by the symbol µ, is the expectation value of a ; it is related to the 

mean position and momentum x 0 and Po by 

(2A.3) 

The noise moments of the operators a and at or x andp provide a use-

ful way to characterize states associated with harmonic oscillators. Noise 

moments of any operator B are moments of !:::.B = B - ( B), the operator 
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minus its mean. Note that an operator t:J3 is defined only with reference to 

a particular state, which defines (B) . All noise moments of a and at (or x 

and ft) for Gaussian states are expressible in terms of the second-order 

noise moments . There are two second-order noise moments of the annihila­

tion operator a . These are the complex number 

(2A.4a) 

and the positive real number 

(2A.4b) 

(the subscript "sym" denotes a symmetrized product) . These second-order 

noise moments of a are related to the three (real) second-order noise 

moments of x and ft by 

((6a)2) = }2(((Af)2) - ((6ft)2)) + i(Af6ft)sym, 

( l6a 1
2) = }2(((Af)2) + ((6ft)2)) 

(2A.5a) 

(2A.5b) 

[Eqs. (2A. l )]. The total (second-moment) noise of a single-mode GPS is 

( I 6a 1
2 ). the sum of the variances (squared uncertainties) of the real and 

imaginary parts of a . 

The commutation relations (2A.2) enforce the following lower limits on 

the product and sum of the variances of x and ft :47 

( (Af)2) ( (6ft)2) ~ )\' + (Af 6p)~m ~ )\' • 

)\'(((Af)2) + ((6p)2))2 = ( l6a 12>2 ~ )\' + 1((6a)2) 12 ~ )\' . 

(2A.6a) 

(2A.6b) 

Equalities hold in the tirst of each of these inequalities if and only if the 

state is an eigenstate of certain linear combinations of x and ft (or a and at) 
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-- i.e .. if and only if the state is a Gaussian pure state (see Section IIB). 

2. Single-mode rotation operator 

Consider now the single-mode rotation operator R(e), defined by 

(2A. 7a) 

[Eq. (1.9)]. It satisfies 

R-1(e) = Rt(e) = R(-e) . (2A.7b) 

For an oscillator characterized by frequency 0, R (Ot) is the evolution opera­

tor associated with the free Hamiltonian H 0(1), 

(2A.Ba) 

(2A.8b) 

The rotation operator acting on any number eigenstate In) simply multi­

plies it by the phase factor e-in,,. [Eqs. (1.2)]; in particular, it leaves the 

vacuum state unchanged: 

R(e) ID)= ID) . (2A. 9) 

The rotation operator unitarily transforms the annihilation operator a 

into eie-a -- i.e., it rotates£ andp into each other: 

R(e)x Rt(e) = x cose -p sine= x(e), 

R(e)p Rt(e) = x sine+ p cose = p(e) . 

(2A.10a) 

(2A.10b) 

(2A.10c) 
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The unitarity of R(B) ensures that x(B) and f.i(B) are conjugate observables, 

[x(B),f.i(B)] = i. The transformation (2A.10a) shows that an eigenstate of a 

remains an eigenstate of a when operated on by a rotation operator, i.e ., as 

it evolves freely . The rotation operator clearly preserves the total number 

of photons in the mode. 

(2A.11) 

(hence also the total energy) . The effect of the rotation operator is merely 

to transfer energy between kinetic (j.3 2) and potential (.£2) . It therefore also 

preserves the total noise, 

(Rt(B) l ~a 12 R(B)) = ( l ~a 12 ). (2A. 12a) 

its effect on a state being merely to redistribute the noise between the posi­

tion and momentum variables, 

(2A.12b) 

Note in Eqs . (2.12) that the operator ~a on the left-hand side of the equa­

tions is ~a = a - (Rt(B) a R(B)), whereas on the right-hand side it is 

~a = a - (a) . A similar remark holds throughout this paper wherever the 

moments or noise moments of operators in a state It) are compared with 

those in a state U It ). 

Finally, note that the simple form of R ( B) implies that the product of an 

arbitrary number of rotation operators can be expressed trivially as a single 

rotation operator, using the rule 

R(B) R(B') = R(B + B') . (2A.13) 
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3. Single-mode displacement operator 

The single-mode displacement operator10·11 is defined by 

(2A.14) 

[Eq. ( 1.11)]. It satisfies the following equalities: 

o-1(a,µ) = ot(a,µ) = D(a, -µ) = D(-a,µ). (2A.15) 

Properties of D(a.,µ) are discussed in Refs. 10, 11, 31. and 21. Most impor­

tant is the way it unitarily transforms the annihilation operator: 

D(a. , µ)a. ot(a, µ) = a - µ,. (2A.16) 

This shows that an eigenstate of a remains an eigenstate of a when operated 

on by a displacement operator. In particular, the single-mode coherent 

state Jµ)coh· defined as D(a ,µ) acting on the vacuum state [Eq. (1 .1 4)], is an 

eigenstate of a with eigenvalue µ. The additive nature of this transforma­

tion implies that when the displacement operator acts on a state it changes 

all moments of a and czt (e .g., the complex amplitude (a), and the photon 

number (at a)). However, since the transformation merely adds a complex 

number to a, the noise moments of a and at are left unchanged. Thus, when 

the displacement operator acts on a state, it displaces the wave function, 

but does not modify its shape. 

Two other properties of the displacement operator are useful here . 

First, it is unitarily transformed by the rotation operator in the following 

way: 

R(e)D(a,µ)Rt(e) = D [a(e),µ] = D [a,µ(-e)], (2A. l 7a) 

(2A. l 7b) 
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[Eqs. (2A.10), (2A.14)]. That D(a, µ) doesn't commute with the rotation 

operator reveals why it doesn't preserve photon number . It also shows that 

the form of the displacement operator is invariant under a unitary transfor­

mation of a generated by the rotation operator : 

D(a, µ) = D[ a (e), µ(e)] . (2A.1 8) 

Second, the transformation (2A.16) implies that the product of two displace­

ment operators is another displacement operator, multiplied by a phase fac­

tor: 

D(a , µ') D(a, µ) = ei.Im~'•) D(a, µ+µ') . (2A. 19) 

These properties, like the transformations (2A.10a) and (2A.16), show that 

any eigenstate of a remains an eigenstate of a when displaced and / or 

allowed to evolve freely . For example, as a coherent state [Eq. (1.14)) 

evolves freely, it changes in the following way: 

R(Ot) !µ ) coh = lµ(-Ot))coh = l e--iOt µ)coh · (2A.20) 

All single-mode states that are eigenstates of a are unitarily related to 

the vacuum state by products of rotation and displacement operators. Con­

versely, all such states are eigenstates of a . These states comprise the 

entire class of single-mode states whose total noise is equal to that of the 

vacuum state . The special properties of the rotation operator -- that it 

preserves the total number of photons, that it preserves the total noise, and 

that it preserves coherent states -- are a consequence of one essential pro­

perty: the unitary transformation it induces on a merely multiplies a by a 

phase factor: i.e ., it never mixes a with at . To find unitary operators that do 

not conserve the total noise and that generate new states from coherent 
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states (states with a total noise greater than that of the vacuum state), one 

must consider operators -- single-mode squeeze operators -- that mix a with 

at. 

4. Single-mode squeeze operator 

The single-mode squeeze operator12·13·23 is defined by 

[Eqs. (l.12)]. It satisfies the following equalities: 

(2A.21a) 

(2A.21b) 

(2A.22) 

Properties of S 1(r,rp) are discussed in Refs. 23, 25, and 26. Most important 

is the way it unitarily transforms the annihilation operator: 

(2A.23a) 

[Eq. ( 1. 17)]. Inverting this relation gives a in terms of a and at: 

(2A.23b) 

A state unitarily related to an eigenstate of a by a single-mode squeeze 

operator is an eigenstate of the single-mode squeezed annihilation operator 

a(r,rp) (sometimes denoted simply by a) . The unitarity of S 1(r,rp) ensures 

that [a(r,rp),at(r,rp)] = [a,at] = l. 

The transformation (2A.23) implies that when the squeeze operator acts 

on a state it changes the noise moments of a and at. That is, it modifies the 

shape of the wave function (and, if the mean position or momentum is 

nonzero, displaces it as well). In particular, it preserves neither the total 
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number of photons nor the total noise of a state, 

(s1t(r.\l')ataS 1(r.\I')) = sinh2r + cosh2r(ata) -sinh2rRe(e-21"(a~~~ .. 24a) 

( S it(r, SI') I 6a 1
2 S i(r, SI')) = cosh2r ( I 6a 1

2 ) - sinh2r Re(e -2i., ( (6a ) 2 X~A.24b) 

Equation (2A.24b) shows explicitly that any state whose unitary relation to 

the vacuum state (or to any eigenstate of a) includes a single-mode squeeze 

operator has a total noise greater than that of the vacuum state . 

A few other properties of the single-mode squeeze operator are useful 

here. First, it is unitarily transformed by the rotation operator in the fol­

lowing way: 

R(e)S 1(r.\l')Rt(e) = S 1(r.\l'-e) (2A.25) 

[Eqs. (2A.10), (2A.21)]. That S 1(r, SI') doesn't commute with the rotation 

operator reveals why it doesn't preserve photon number [Eq. (2A.24a)]. 

Second, it unitarily transforms the displacement operator in the follow­

ing way: 

(2A.26) 

(2A.27) 

[Eqs. (2A.14). (2A.23a)]. This relation reflects the fact that the form of the 

displacement operator is invariant under unitary transformations of a that 

are linear in a and at (and that do not add to a a constant) . Such unitary 

transformations are generated only by (products of) rotation and single­

mode squeeze operators. The invariance under rotations was noted in Eq. 

(2A.1 8) . The invariance under transformations generated by the single­

mode squeeze operator says that 
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D(a, µ) = D(cx., µa) . (2A.28) 

This equality implies that the SMSS J µa)(r.~)· defined by Eq. (1 .1 6) as the 

squeeze operator S1(r, rp) acting on the coherent state lµa)coh • can as well 

be defined as the displacement operator D(a,µ) acting on the squeezed 

vacuum: 

(2A.29) 

The complex numberµ is equal to (a), the state's complex amplitude . It is 

related to the eigenvalue µa by 

(2A.30) 

[ Eq. (2A.23b)]. With this definition one can easily verify the statement made 

in the Introduction: any state unitarily related to the SMSS I µa) (r . ~) by a 

product of rotation and displacement operators is equal to another SMSS 

(multiplied by an unobservable overall phase factor) with the same squeeze 

factor r, but with different squeeze angle and eigenvalue. For example , 

(2A.3 1) 

[Eqs. (2A.17), (2A.19) , (2A.25)]. 

Finally, the product of two different single-mode squeeze operators is 

another single-mode squeeze operator , multiplied by a phase factor and a 

rotation operator [see Eqs . (2C.18) below]. For the case rp = rp ' the relation 

simplifies to 
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(2A.32) 

It is proved in the next section, by considering the most general single­

mode Gaussian wave function, that the generator Hc(t) of the unitary opera­

-1.H (l) 
tor Uc(t) = e 0 that relates any single-mode GPS to the vacuum state is a 

sum of linear and bilinear combinations of a and at. In Section IIC and 

Appendix A it is shown that this unitary operator factors into a product of 

single-mode displacement, squeeze, and rotation operators . The properties 

described in this section ensure that any product of single-mode rotation, 

displacement, and squeeze operators can be expressed as the product of a 

displacement operator and a squeeze operator, multiplied on the right by a 

rotation operator (and an overall phase factor) . Since the rotation operator 

has no effect on the vacuum state, one finds that the most general single-

mode GPS is equal to a single-mode squeezed state, defined by Eq. (2A.29). 

It is produced when a harmonic oscillator in its ground state is exposed to 

the interaction Hamiltonians HR(l)(t), H 1( 1l(t), and H 2l1l(t) described in the 

Introduction [Eqs . ( 1.3) and ( 1.4)]. 

5. Single-mode GPS 

Much of the interest in single-mode GPS has centered around the so-

called "minimum-uncertainty states" 12 (MUS) -- states that minimize the 

product of the uncertainties in x and p: 

(MUS) (2A.33) 

[Eq. (2A.6a)]. These are (single-mode) GPS that satisfy 

Im((6a)2 ) = (M/>.p)zym = 0 (2A.34) 

[Eqs. (2A.5)]. It is shown below [see Eqs . (2B.5) or (2B.6)] that a single-mode 
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state is a MUS if and only if it is an eigenstate of the linear combination 

x + i 111 ft, )'1 = 1t > 0. Another set of single-mode states consists of those 

that have "random-phase noise", i.e. , whose noise moments are invariant 

under rotations. Such states satisfy the condition 

([Af(e)]2
) = ([6ft(e)]2

) for all e (2A.35a) 

or, equivalently, 

( (6a) 2 ) = 0 . (2A.35b) 

The intersection between these two sets of states is the set of single-mode 

coherent states; i.e., coherent states are MUS that have random-phase 

noise. Coherent states therefore satisfy 

(Af6p)gym = ((6a)2
) = 0, 

((Af)2
) = ((D.p) 2

) = ( l6a 1
2

) = ~. 

(2A.36a) 

(2A.36b) 

The last equality in Eq. (2A.36b) tells one that a coherent state is an eigen­

state of the annihilation operator a; it has the minimum total noise allowed . 

by quantum mechanics [Eqs. (2A.6)]. 

By extending the definition (2A.33) of a MUS to include all states related 

to MUS by the rotation operator R ( e) one obtains all single-mode GPS. This 

is because the condition (2A.34) can always be met for some rotated annihi­

lation operator ei 9 a = R(e)a Rt(e) [Eq. (2A. 10a)], withe chosen to make 

Im(e 2i 9 (6a)2 ) = 0. The second-order noise moments for the most general 

normalized single-mode GPS, a single-mode squeezed state, follow directly 

from the transformation (2A.23) and those for a coherent state . 

Equivalently, they can be found by noting that the noise moments of the 

squeezed annihilation and creation operators a.(r , rp) and a.t(r,rp) for the 
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SMSS l.ua>(r.\P) are identical to those of a and at for a coherent state, since 

I .ua>(r .rp) is an eigenstate of a(r , rp) . They are 

(I tia 12
) = *cosh2r . 

(2A.37a) 

(2A.37b) 

Thus, the SMSS l.ua>(r.rp) is a MUS for the conjugate variables .f(-rp) and 

fi(-rp): 

(2A.38a) 

(2A.38b) 
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B. Single-mode Gaussian wave functions 

Consider now the coordinate-space wave function for an arbitrary 

single-mode Gaussian pure state, symbolized here for generality by the 

state vector J~) . The GPS I ~) is an eigenstate of operators g whose gen­

eral form is discussed below, with eigenvalue J.l,g . [Although g will be seen to 

have the form of single-mode squeezed annihilation operators a(r , rp) , the 

symbol g is used here to refer to all operators of which single-mode GPS are 

eigenstates -- i.e., all multiples of single-mode squeeze annihilation opera­

tors , for all r and rp .] The wave function is written in terms of the dimension­

less position variable x, the eigenvalue of the Hermitian operator x. The 

most general (normalized) single-mode Gaussian coordinate-space wave 

function has the form 

(2B. 1) 

Here 

(2B.2a) 

(2B.2b) 

are the mean values of the position and momentum, 7 is a complex number 

related to the second-order noise moments of x and ft, Oz is an unobserv­

able phase angle (separated out for reasons discussed below), and Ng is a 

(real) normalization constant determined by the condition ( µg Jµ,g) = 1. 

The subscript "x " on the phase angle Oz serves only to distinguish Oz from 

the phase angle op which appears in the momentum-space wave function 

[Eqs . (2B. 40)-(2B.43) below]; Oz has no dependence on x . Normalizability 

dictates that 
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Re(1) = /1 > 0 , (28.3) 

and tiie normalization constant Ng is equal to 

(28.4) 

The most important parameter in the wave function (28.1) is the com-

plex number /. The form of the wave function tells one that the state I ~) 

is an eigenstate of the linear combination x + i ,-1 p, and hence that I is 

related to the second-order noise moments of x and p by 

-i ((Af 6p)sym + J2i) I= /1 + i/2 = ____ ___,_ __ _ 
< (6£)2) 

(2B.5a) 

The real and imaginary parts of I are therefore equal to 

1 
/1 = Re(1) = Z( (6£)2) (28.5b) 

and the absolute square is 

(2B.5c) 

Inverting these expressions gives the second-order noise moments of x and 

p in terms of r 

(2B.6) 

The normalization constant Ng can thus be rewritten as 

(2B. 7) 
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That the state 1µ1 ) is an eigenstate of x + i-y- 1p means that it is also 

an eigenstate of the operator a + (-y + 1)-1 (-y-1) at. The second-order noise 

moments of a and at are therefore more naturally expressed in terms of the 

complex number 

r = :r..=....L= -((tia)2) 
1 + 1 < I tia 12 > + 72 

= < I tia 12 > - 72 
-( (tiat)2) · 

(2B.8) 

Inverting these expressions gives the variance and symmetric variance of a 

in terms of both r and r 

(2B.9a) 

(2B.9b) 

Note also that 

1 - Ir 12 = 411 1-r + 11-2 
: (2B.10) 

hence normalizability dictates that Ir I < 1. 

From the above relations one can see how the three real pieces of infor-

mation in the second-order noise moments for a single-mode GPS reduce to 

two independent pieces, since 

(2B.lla) 

(2B.llb) 

[cf. Eqs. (2A.6)]. These relations are made more obvious below [Eqs. 

(2B.31), (2B.32)]. 

The remaining parameter in the wave function (2B. l) is the phase angle 

Oz: in general it can be any real number. The phase angle Oz is unobserv-

able, but for a state defined as a particular unitary operator acting on the 
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vacuum state it has a well-defined value, provided one assigns a phase angle 

*' 8 to the vacuum-state wave function. The reason that the phase factor e :i 

separates naturally from the rest of the overall phase factor in the wave 

function lies with the definition (2A.1 4) of the single-mode displacement 

operator. That definition, together with the correspondence p-+-iB~ [Eq. 

(2A.2) ], implies that if one "displaces" any single-mode pure state I¥), by 

operating on it with the single-mode displacement operator D (a.,µ), the 

resulting wave function is related to the original wave function ( x It) in the 

following way: 

(2B.1 2) 

Formally, therefore , one way to obtain an arbitrary single-mode pure state 

I tµ.) with complex amplitude µ is to operate with the displacement operator 

D (a.,µ) on a state I ¥0 ) = U 0 I 0) that has the desired noise properties but 

has zero complex amplitude ( ( 0 I u0t a. U0 I 0) = 0) : 

1¥,u.) = D(a,µ) Uo JO). (2B.1 3) 

The property (2A.16) of the displacement operator then ensures that I¥µ.) 

has complex amplitudeµ, 

(2B.14) 

Any normalized single-mode pure state with complex amplitude µ can 

be defined by an expression like (2B.13) . The advantage of this definition is 

that the state's mean values x 0 and p 0 (or the complex amplitude µ) are 

determined solely by the displacement operator D (a,µ), and its noise 

moments of a and at are determined solely by the unitary operator U0. Any 

normalized single-mode GPS I µg) with complex amplitude µ can therefore 
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be formally defined by 

J,ug) = D(a ,µ) Ug i O) . (2B.1 5) 

Note the following three properties of Ug : First, it is uniquely defined only 

up to (right-hand) multiplication by a rotation operator R(e) and an overall 

phase factor. Second, since it defines the noise moments of a and at (or x 

and p) for the GPS I µg), it has associated with it two independent real 

parameters (over and above that of a rotation operator and phase factor) . 

Third, since the state l,Ug) has complex amplitude µ , the expectation value 

( 0 I Ug ta Ug I 0) must vanish. 

The phase factor e *' 4
:i in the wave function ( x I µg) is given, from Eqs . 

(2B. l ) and (2B. 12) , by 

( x = 0 I Ug I 0) 

l( x=O IUg JO) J 
(2B.16) 

The phase angle Oz has no dependence on the complex amplitude µ , pro-

vided Ug does not ; any dependence of Ug onµ is art ificial. howe ver, in the 

sense that it does not affect the state 's complex amplitude ( a) . Consider, 

for illustration, the coherent state Jµ)coh = D(a , µ) I 0) [Eq. ( 1.14)], for 

which the operator Ug is the identity operator. Equation (2B.1 2) says that 

the wave function for the coherent state Jµ ) coh is related to the vacuum-

state wave function ( x I 0) by 

(2B. l 7) 

so the phase angle Oz for a coherent-state wave function is just equal to the 

phase angle o0 assigned to the vacuum-state coordinate-space wave func-

tion; conventionally, o0 is set equal to zero. 



- 52 -

The form of its wave function shows that a single-mode GPS I J.Lg ) is an 

eigenstate of operators g which are proportional to the linear combinations 

x + i '7-1 fi or a + r at, The label J.Lg for the GPS I J.Lg) is chosen to be the 

eigenvalue of g. Thus one can write the following relations : 

(2B.18a) 

(2B.18b) 

(2B.1 Bc) 

It is instructive to consider the general form for the operators g of which 

the single-mode GPS IJ.Lr;) is an eigenstate: 

g =Pc a + Ps at= Pc (a +fat) 

(2B. 19a) 

Here Pp , Pz, Pc , and Ps are complex numbers, related to each other by 

(2B.20) 

The eigenvalue µg is related to the complex amplitude µand the mean posi-

tion and momentum by similar relations, 

(2B.1 9b) 

Inverting Eqs . (2B.1 9a,b) leads to the following expressions for a and the 

complex amplitude µin terms of g and the eigenvalue µg : 

(2B.21a) 

(2B.21b) 
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These relations imply the important equality 

(28.22) 

The equality (28.22) enables one to see explicitly how the form of the 

unitary operator Ug, which defines a single-mode GPS I µg) through Eq. 

(28.15), is determined by the form of the operators g. To see this, begin 

with an alternative definition for the GPS lµg) [the equality (28.22) will be 

seen to ensure that this definition is equivalent to the definition (2B. l 5)]. 

First, assume that Jµg) is related to the vacuum state by some unitary 

operator V: 

l,ug> = V Io> . (28.23a) 

It is convenient to define another unitary operator Ug by 

V = Ug D(a ,µg), (2B.23b) 

so that the state Jµg) is equal to the operator Ug acting on the coherent 

state Jµg)coh· 

I µg) = Ug D (a, µg) I 0) = Ug I ,ug) coh · (28.24) 

It is then consistent with the eigenvalue equation (28. l Ba) that the opera­

tors g be unitarily related to the annihilation operator a through the opera­

tor Ug: 

(2B.25) 

The form of Ug is thus determined by the form of the operators g . The 

equivalence of the definitions (2B. 15) and (28.24) for lµg) is a result of the 

Unitarity of Ug, which ensures that [g, gt] = [a, at] = 1, and the forms 
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(2B . l 9) of g ; these imply the equality 

IJ(a. µ) = D(g. J.lg) (2B.26) 

[Eq. (2B.22)]. Thus, any single-mode GPS IJ.Lg) has the following two 

equivalent definitions : 

(2B.27) 

Return now to the general forms (2B. 19) for the operators g of which 

single-mode GPS are eigenstates. Two of the four degrees of freedom in the 

expressions (2B. 19a) for g are removed by the wave function (x lµ.g>. which 

specifies the ratios 

Pp/ Pz = r. Psi Pc = r. (2B.28) 

The third degree of freedom in g has already been partially removed by the 

requirement that g have a complete (or overcomplete) set of normalizable 

eigenstates, i.e ., that the commutator [g . gt] be a positive real number (see 

Appendix C) . It is removed completely if one specifies that g be unitarily 

related to the annihilation operator a [Eq. (2B.25)]. which implies that 

[g, gt] = [a, at] = 1 . (2B.29) 

The commutator [g. gt] can be written in the following different ways, using 

Eqs. (2B.5) and (2B.8) : 

[g ,g t ]= 2Re (pz*Pp) = 2 lpz 12 71 = IPz 12/ ((ti.X)'?) 

= 2 IPp l2 Re(1- 1
) = IPp l2/ ( (i:lp)2

) 

= IPc 12 
- IPs 12 = IPc 12 ( 1 - l fl 2

) = IPc [2
(( li:la l 2

) + Y.D- 1 
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= I Ps 1
2 

( I r I -
2 

- 1) = I Ps 1
2 

( < I D.a 1
2

) - ~)- l . 

(2B.30) 

These expressions show that the operators 9 have normalizable eigenstates 

if and only if the wave function ( x I µg ) is normalizable -- i.e., if and only if 

1 1 > 0, or Ir I < 1 [Eqs. (2B.3) and (2B.10)]. Note also that normalizability 

requires that the numbers Pp, Pz, and Pc be nonzero. The requirement that 

g be unitarily related to a -- i.e., that [g, gt] = 1 - implies that 

(2B.31) 

The only remaining degree of freedom in g is its overall phase. Multiplying g 

by a phase factor eilf is equivalent to multiplying Ug (on the right) by a rota­

tion operator R(e) . The definition (2B.27) of /µg) shows that this freedom 

reflects the fact that a coherent state remains a coherent state when multi­

plied by a rotation operator [Eq. (2A.20)]. 

The expressions (2B.30) for the commutator [g, gt] reveal the following 

simple relations between the second-order noise moments of a, at, x, and fi 

and the numbers Pp, Pz, Pc , and Ps for operators g that are unitarily 

related to a: 

< (D.fi)2) = /pp 12' 

(D.£ D.p)gym = -Im(pz:*Pp); 

((D.a)2) = -pc*Ps, 

( ID.a 1
2) = ~ ( I Pc 1

2 + I Ps 1
2) = I Pc 1

2 - ~ = I Ps 1
2 + ~ 

(2B.32a) 

(2B.32b) 

(2B.32c) 

[cf. Eqs. (2B.6) and (2B.9)]. These expressions make obvious the relations 

(2B. l 1) between the different second-order noise moments. 
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The. form of the unitary operator Ug in the definition (2B.27) of the 

single-mode GPS J ,ug) is determined by the unitary transformation (2B.25) 

and the form of g [Eqs. (2B.1 9a), (2B.31)]. The linearity and absence of any 

additive constants in the transformation imply that U1 = e -ill11 (
1
), where H1 (l) 

is a (Hermitian) linear combination of the three operators ata, a 2, and at2. 

That is, the generator H1 (l) of U1 has the general form [H0(l) + H2(i)] 

defined in the Introduction [Eqs. ( 1. 1)-( 1.4)]. It is shown in Section IIC and 

Appendix A that this operator U9 can always be written as a product of a 

single-mode squeeze operator and a single-mode rotation operator (and an 

unobservable overall phase factor). That the rotation operator can be 

neglected in the general form for Ug can be seen in a couple of ways. First, 

the rotation operator can be placed either to the right or left of the squeeze 

operator, without changing the general form of Ug [Eq. (2A.25)]; when placed 

to the right of the squeeze operator the rotation operator acts like the iden­

tity operator on the vacuum state and hence is inconsequential. Second, 

note that the parameter e in the rotation operator is related to the overall 

phase of the operator g, which can be chosen arbitrarily: it is zero if 

Pc = Pc•. Hence the operator U9 is equal to a single-mode squeeze operator, 

and the state defined byEq. (2B.27) with Ug = S 1(r.\O) is the SMSS 

(2B.33) 

[Eq. (1.16)]. Thus, any (and all) single-mode GPS can be described as a 

SMSS, for some values of r and I" and some complex amplitudeµ . 

The SMSS Jµcx)(r .9') is an eigenstate of the squeezed annihilation opera-

tor 

(2B.34a) 
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= 2-?S. (cos hr + e 2 i 91 sinhr) x + i 2-?S. ( c oshr - e 2i 91 sinhr) fi ( 2B. 34b) 

[Eq. (2A.24) ; cf. Eq. (2B.19a)]. The complex numbers Pc· Ps· rand Pp· P:e· -y, 

which define the noise moments of a, at, x, and fi, are therefore related tor 

and rp by 

- coshr Ps = e 2i 91 sinhr ·, Pc = · Pp= 2-*(coshr ± e 2i 91 sinhr); (2B.35a) 
:& 

r =Psi Pc = e2i'tanhr , (2B.35b) 

The complex amplitudeµ and the eigenvalue µa are related to each other by 

(2B.36a) 

(2B.36b) 

[Eqs. (2B.19b) and (2B.21b)]. The second-order noise moments of a SMSS in 

terms of r and rp can be obtained by inserting the expressions (2B.35) into 

the relations (2B.32): 

( (6.£) 2
) = IP:e I 2 = * ( cosh2r - sinh2r cos2rp) , (2B.37a) 

((6fi) 2
) = IPp 1

2 = *(cosh2r + sinh2rcos2rp) , (2B.37b) 

(2B.37c) 

(2B.38a) 

(2B.38b) 

The phase angle O: in the coordinate-space wave function for the SMSS 

I µa) (r. 91 ) is obtained from Eq. (2B.16) . The calculation is described in Appen-

dix B. The result is 
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( coshr - e - 2i 90 sinhr )* _ (pz •)* 

icoshr - e-2i"'sinhr I* IP: I* 
(2B.39) 

To conclude this discussion of single-mode Gaussian wave functions, 

consider briefly the momentum-space wave function for a single-mode Gaus-

sian pure state, (p lµy) , obtained by Fourier transforming ( x lµy) [Eq. 

(2B.l )] : here the dimensionless momentum variable p is the eigenvalue of 

the Hermitian operator p. The momentum-space wave function has the fol-

lowing form: 

where the (real) normalization constant Ng is 

Ng= ( 2rr((D.p)2))~, (2B.40b) 

and the phase angle 6P is related to the coordinate-space phase angle 6: by 

i6 -i6 -y -i6 ~ (<!:ii Dip ) gym + *1:) e P = e z ~ = e z --------'----
! r I I < t.X tip> sym + *1: I 

(2B.41) 

~6 
For the single-mode squeezed state I µa) (q) the phase factor e P is 

e ~6P _ cos hr + e - 2i"' sinhr )* _ (p;)* 
- lcoshr + e-2i 90 sinhr I* - IPp I* · 

(2B.42) 

The position and momentum probabilities have the usual Gaussian forms : 

(2B.43a) 

(2B.43b) 
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C. Two-component vector notation for single-mode GPS 

The previous discussion has shown that the unitary operators that 

relate single-mode GPS to the vacuum state and to other single-mode GPS 

are rotation operators, displacement operators, and single-mode squeeze 

operators . Since these operators induce linear transformations on a and at 

(or x and fi) , it is useful to define the two-component operator column vec-

tors 29.16.33.26 

x=[~J=Aa, 
- p -

(2C. la) 

(2C . lb) 

The expectation values of these operator column vectors are column vectors 

whose components are complex numbers (for~), or real numbers (for~): 

µ=(a)=[µ.]. 
- - µ 

~ = (x) = [xo] =A~" 
- - Po ·-

(2C .2) 

The adjoints of the operator column vectors are the row vectors 

at= (at a) , (2C .3) -
where a superscript "T" means transpose. The transpose of the adjoint of 

an operator column vector is denoted by a superscript "-" : 

(at)T =a•= [at] . 
N - a 

(2C .4) 

Similar definitions hold for column vectors of complex numbers . Note that 

the product of a column vector and a row vector, e .g .. ~~t, is a tensor pro-

duct (i.e., a matrix), whereas the product of a row vector and a column 
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vector, e .g'. , ~t ~· is a scalar product (i.e., an operator or number) . 

The two-dimensional matrices that arise naturally with this vector nota-

tion are the Pauli matrices a1, a2, a 3 and the identity matrix 1. defined by 

[01] [0-il [1 OJ a1 = 1 0 , a2 = i 0 , as= 0 -1 , (2C.5a) 

These satisfy 

i,j,k=l,2,3. (2C.5b) 

It is also useful to define rotated versions of a1 and a2, 

(2C.6a) 

(2C.6b) 

The commutation relations for a., a.t and £, f5 are conveniently 

expressed by the Hermitian commutator matrices 

(2C.7a) 

[.X, :xr] = .x:xr - (x.XT)T =A a3 At = -a2 . (2C .7b) - - -- --
The (single-mode) rotation, displacement, and squeeze operators are 

expressed in vector notation by 

(2C.8a) 

D(a., µ.) = exp[µ.a.t - µ.•a.] = exp [ ~t a3~] , (2C.8b) 
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A unitary transformation of the column vectors a or x generated by the - -
displacement operator results in the addition of a constant column vector: 

D(a, µ) ~Dt(a, µ) = ~ - I!;, (2C . 9) 

[Eq. (2A.16)]. Unitary transformations generated by rotation operators and 

squeeze operators result in matrix transformations of ~ and ~· An easy way 

to obtain these transformation matrices is to note the following general 

relation, for arbitrary two-dimensional matrix K, which follows from the fact 

that the commutator matrix [a, at] = a3 : - -

(2C.10a) 

This implies that 

(2C.1 0b) 

The matrix transformations on a and x generated by the rotation operator - -
R(e) are therefore 

R(e) aRt(e) = e'i~u3 a , (2C.ll a) - -
(2C. l 1b) 

-i11>a2 = ( cose -sine) 
e sme cose (2C .1 lc) 
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[cf. Eqs. (2A.10)]. 

The matrix transformations on ~ and ~ generated by the single-mode 

squeeze operator S 1 ( r, i;o) are 

(2C.12a) 

(2C.12b) 

where 

c;. _ [ coshr e 2
i<P sinhr] ra = coshr 1 + sinhr a = e ' 

·' = s - 2i, sinhr cos hr ' ' (2C. 13a) 

Ac;. At = [cos hr.+ sinhr cos2)1' sinhr sin2)1' ) 
·'I' s1nhr sm2i;o coshr - sinhr cos2)1' 

(2C.13b) 

[Eq. (2C. lb)]. The Hermitian matrix c;.,, has the following important proper-

ties: 

(2C.14a) 

_ r111 _ ( coshr sinhr ) . 
Cr .o - e - sinhr coshr · 

-ra2 ( coshr isinhr) . 
Cr.l(1T = e = -isinhr coshr · (2C.14b) 

(2C.14c) 

(2C.14d) 

(see also Appendix A of Ref. 26). 

The transformation matrices (2C. l 1) and (2C.13) arise naturally, 

without specific reference to the single-mode rotation and squeeze opera-

tors, from the requirement that a unitary transformation on a (or x and fi) 
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preserve the commutators (2C. 7) . This is most easily seen by considering 

the real, two-dimensional matrices M that describe unitary transformations 

on the (real) column vector x: M £ = U a ut . The unitarity of U implies that 
N N N 

these matrices preserve the (antisymmetric) commutator matrix 

[ ~. ~T J = -a2 [Eq. (2C .6b)], i.e ., 

(2C. 15a) 

The real matrices M that satisfy this condition have unity determinant . 

They comprise the three-parameter symplectic group Sp(2,R). 41 The com-

plex two-dimensional matrices M that describe unitary transformations on 

the column vector a = At£, Ma = U a [;t , are unitarily related to the real 
..... - - -

matrices M by the matrix A [Eq. (2C. l b)]: 

M = AtlJ. A . (2C .15b) 

These matrices M comprise the three-parameter, noncompact group 

SU( 1. 1) ,41 isomorphic to Sp(2,R) ; it consists of all comple x, two-dimensional 

matrices that have unitary determinant and that preserve the metric a3 

(i.e ., the commutator matrix [ ~ , ~t ] = a3 ), 

(2C .15c) 

The three free (real) parameters associated with the transformation 

matrices M and M can be identified with the parameters of the unitary 

operators that induce the matrix transformations . The generators of these 

unitary operators are bilinear combinations of the annihilation and creation 

operator; i.e ., the unitary operators are the single-mode rotation and 

squeeze operators. The underlying Lie algebra for these groups is that of 

(combinations of) the three operators a 2, at2 , and at a . The preceding 
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discussion. of the single-mode rotation and squeeze operators shows that the 

transformation matrix M has the general form 

_ il1'u3 _ -i11u3 -[ ei11-coshr ei(2~+11-)sinhr] 
M - e c;.,11' - Cr.~+9 e - e -i(21P + 9) sinhr e -i9 coshr '(2C. 15d) 

where(}, r, and tf' are real, continuous parameters [Eq. (2A.2 1b)]. 

The general forms for the transformation matrices M (hence also Xi) 

can also be obtained in other ways. For example, one might first note that 

any two-dimensional matrix M that describes a unitary transformation on ~ 

must satisfy 

(2C. 16a) 

since a= a 1 a*. This means that the matrix M has the general form - -

(2C. 16b) 

where a and {3 are arbitrary complex numbers. It also implies that 

(2C. 16c) 

The last equality in (2C. 16c) is satisfied by all two-dimensional matrices M; 

the first is satisfied by only (and all) those matrices M that satisfy (2C. 16a). 

The unitarity of the transformation ensures that the Hermitian commutator 

matrix [a, at]= a3 is preserved [Eq. (2C. 15c)] and that the antisymmetric - -
commutator matrix [a, aT] = i a2 is preserved, i.e., 

(2C. 16d) 

Either of these conditions, together with (2C. 16a) or (2C. 16c), implies that 
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detM = 1. Hence the matrices M have the general form (2C.15d) , and the 

real matrices Xi are given by M = AM At. 

Many properties of the single-mode squeeze operator S 1 ( r , rp ) t hat 

would otherwise be difficult to see can be found from properties of the 

transformation matrix Cr . ~ · For example , one can factor S 1(r, rp) into a pro­

duct of exponentials of ata , a 2
, and at2 simply by factoring the matrix C,.,~ 

into exponentials of other matrices (linear combinations of the Pauli 

matrices) which have a commutator algebra that is identical to that of 

(a ta )sym• *a2
, and *ai2 (see , e .g .. Refs . 15, 48, or 26) . These factored forms 

are useful. for example, for expressing a SMSS as a sum over number states , 

a technique useful for calculating the phase factor e~6"' in the wave function 

for a SMSS (see Appendix B) These factored forms are listed in Appendix B 

[Eq. (B.1 2)] of Ref .26 ; one of the most useful is 

r = e 2i~ tanhr . (2C. 1 7) 

Also, the product of two differ ent squeeze operators can be found from the 

product of two different matrices C,. , ~ · In this way one finds that any pro-

duct of single-mode squeeze operators can always be expressed as the pro-

duct of one single-mode squeeze operator and one rotation operator, by vir-

tue of the following rule: 

The real numbers 0. R, and <Ii are related to r ', rp', r, and rp by the matrix 

equality 

(2C .1 8b) 

[Eq. (B.14) of Ref. 26]. For the special case rp = rp ' this gives the simple 
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relation 

(2C .18c) 

[Eq. (2C.14d)]. 

The vector notation simplifies the task of ordering noncommuting uni-

tary operators . For example , using the matrix transformations given above 

one finds that 

(2C.19a) 

(2C .1 9c) 

[cf . Eqs . (2A. l 7), (2A.25), (2A.26)-(2A.28)]. 

The vector notation is particularly useful for calculating second-order 

noise moments of a , at, x, and fi . The matrix of second-order noise 

moments of a and at is the Hermitian matrix 

(2C.20) 
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The matrix of second-order noise moments of x and f5 is the (real. sym-

metric) covariance matrix 

= [ ( (D.X)2) ( D.X D.f5)1'Yffi l = A i?IAt = o• = oT 
( D.X D.p)gym ( (D.j5)2) ~ '° '° . (2C.21) 

The relations (2B. l 1) imply that for single-mode GPS these matrices satisfy 

(2C.22a) 

(2C.22b) 

Hence their determinants are equal to !4 . For a coherent state, both are 

proportional to the identity matrix: 

(2C.23) 

[Eqs . (2A.36)]. 

The noise matrices ~ and $ for a state J t) are related to those of a 

rotated state R ( e) J t) by 

(2C .24a) 

(2C .24b) 

They are related to those of a state S 1 (r, r.p) It ) by 
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(2C .25a) 

(2C .25b) 

This immediately tells one, for example, that the noise matrices for a 

single-mode squeezed state 1.ua>r., are 

(2C.26a) 

(2C.26b) 

[Eqs . (2C. 13c), (2C.23)]. The squeezing effect is clearly visible in the 

transformation of the noise matrix S [Eq. (2C.25b)]. When rp = 0, this 

transformation says that 

= [ e -2r ( ( M) 2) ( & !:!.fi) eym l 
(&b.fi) gym e2r ( (b.fi)2 ) . (2C.27) 

Finally , the vector notation enables one to show with relative ease how 

the unitary operator whose generator is a linear combination of the Hermi­

tian forms HR ( i), H 1(1l, and H 2(l) factors into the product of a single-mode 

squeeze, rotation and displacement operator (and an overall phase factor) . 

More generally, by giving these generators arbitrary time dependences one 

can calculate the evolution operator associated with the most general com-

bination of Hamiltonians that can produce single-mode GPS. This result is 

given here briefly; details that are important for the calculation are 

presented in Appendix A. Equivalent results have been obtained by Yuen. 16 

The single-mode rotation Hamiltonian HR (1l (t) is expressed in vector 

notation by 
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(2C .2Ba) 

where c.>(t) is an arbitrary real-valued function of time t [Eqs . (1.3)]. The 

linear and quadratic Hamiltonians H 1 (ll(t) and H 2( 1l(t) are expressed by 

[
,\(t) ] 

~= >..•(t) ; (2C .2Bb) 

(2C.2Bc) 

where ,\ is a complex-valued function of time, and " and rp" are real-valued 

functions of time [Eqs . (1.4), (2C.6b)]. 

The evolution operator U(t) is the solution to the equation 

U(O) = 1 . (2C.29) 

lt can be written as the product 

(2C .30a) 

(2C.30b) 

where o, r;, r, and rp are real-valued function of time, and µ, is a complex-

valued function of time [ cf. Eq. (2B.27)]. For notational convenience here I 

often drop explicit reference to the time dependence of these functions, 

e .g., r = r(t), etc. The state 117) = U(t) IO) is an eigenstate of an operator 

g = U(t)a Ui(t) (with eigenvalue /-Lg), whose relation to a is described by 

the vector relation 

(2C.31a) 
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[Eqs. (2C .1 0)]. The eigenvalue /.lg is therefore related to the complex ampli-

tude µ = (a) by 

_ [ /.lg ] - i e a3 
/.lg = • = e c;. ,rp µ . 
- /.lg -

(2C.31b) 

The calculations in Appendix A show that the functions r, rp, g, µg (or µ), and 

6 are related to the Hamiltonian functions "· rp", c.>, and A by the following 

matrix, vector, and scalar equalities : 

(2C.32a) 

(2C .32b) 

(2C .32c) 

(Dots denote derivatives with respect to time.) The initial conditions, die-

tated by U(O) = 1. are 

6(0) = r(O) = e(O) = f.J,g(O) = µ(O) = 0 . (2C.33) 

t 

For illustration, consider the case rp" = rp"o - J (..)(t )di, rp"o = constant . Then 
0 

Eq. (2C.32a) gives 

t 

r(t) = J JC(t)dt, 
0 

t 

rp(t) = rp" = rp"o - J (..)(t)dt, 
0 

(2C .34a) 

t 

e(t) = J (..)(t) dt . (2C.34b) 
0 

If no driving is present in this case [>..(t) = O], then /.lg = 6 = 0, and 

U(t) = S 1(r,rp")R(e) = R(e)S 1(r,rp"
0

) . Now consider the case where both" 

I 

-i.f r.i(t)dl 

and rp"o are constant, and >..(t) = Ao e 0 ~ = constant [when 
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CJ( t) = CJ = constant, this corresponds to driving the oscillator on re so-

nance]. Then r(t)=1d, the angles i;o(t) and e(t) are still given by Eq. 

(2C.34b), and the function~ is given by the vector relation 

(2C.35) 

The phase angle o(t) is 

(2C.36) 

Note that the solution to the problem of factoring the unitary operator 

whose generator is any linear combination of the Hermitian forms HR(i), 

H 1( 1), and H 2(i) can be obtained from the above equations , by setting all the 

Hamiltonian functions (IC, ip", CJ, A.) equal to constants, solving the coupled 

differential equations (2C.32), and then setting the dummy parameter t to 

unity. Thus, 

can be put in the factored forms (2C.30) , with o, r, ip, e, and~ (orµ) the 

solutions to Eqs . (2C.32) when t = l. One immediately ftnds that 

T =IC, If' = \01: ' (2C.38) 

The parameters ~ and o are the solutions, at t = 1. to the vector and scalar 

equations 
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(2C .39a) 

6 = Im(µg • µg ) = Im(µ• A.) . (2C.39b) 
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ID. Tiro-M:ODE GAU~ PURE STATES 

A. Introduction 

1. Notation and Definitions 

a Dimensionless Position and Momentum Variables 

Consider now two oscillators, with characteristic frequencies c.>+ and c.>_ 

(c.>+ ~ c.>_). Each oscillator can be described by its own set of annihilation 

and creation operators -- a+. a+t and a_, a_t -- or, equivalently, by the 

dimensionless coordinate and momentum operators x+. fi+ and x_, fi- · 

These operators are related to each other by 

~ - 2-* ( . . t) p ± = -'La ± + ia ± , (3A.l a) 

(3A. lb) 

[Eqs. (2A. 1)]. They obey the commutation relations 

(3A.2a) 

[ ] -[ t]- [ ~ ~ ]- [ ~ ~ ]- '~ ~ ]-o a..., a_ - a+, a_ - x±,p'f - X+,X- - 'J'+·P- - . (3A.2b) 

While the operators x + and x _ (fi + and fi-) are both dimensionless, they 

do not have the same "units'', since the natural units of length (momentum) 

for the two oscillators differ. Dimensionless position and momentum opera-

tors that have compatible units for the two oscillators can be obtained by 

dividing the usual dimensional position and momentum operators by new 

units of length L 0 and momentum P 0 . In general, L 0 and P 0 can be chosen 

quite arbitrarily, subject to the dimensional restriction L 0 P 0 = 1 ( = h), but 
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there is a natural choice for them. To see this, let the two oscillators be 

modeled as masses m:1: on springs (the result will also hold, however, for the 

normal modes of a quantized field) . Their natural units of length and 

momentum are (m:1: c..i:1:)-* and (m:1: c..i:1:)*, respectively. Now choose quantities 

m and 0, with dimensions of mass and (time)-1 , respectively, and define 

Lo= (m O)""*. Po = (m O)*. The dimensionless position and momentum 

operators Q:1: and P :1: for this choice are 

(3A.3a) 

(3A.3b) 

Thus, for equal masses with m+ = m_ = m, or for normal modes of a quan­

tized field, the natural choice for A.±: is (c..itl O)*. For modes of the elec­

tromagnetic field, these conjugate variables Qt and Pt are the Fourier com­

ponents of the vector potential and its conjugate momentum, the electric 

field . The free Hamiltonian for the two modes, written in terms of Q± and 

P :1:• has the canonical form 

(3A.4) 

In most of this discussion of two-mode Gaussian pure states I use the vari­

ables x t and Pt· rather than Qt and P ±• because they provide an easy com­

parison with the previous discussion of single-mode states . The field vari­

ables Q:1: and Pt or, equivalently, the quadrature-phase amplitudes a 1 and a 2 

[Eqs. (1.21) and (1.22)], are useful for describing the special noise proper­

ties of two-mode squeezed states. The field variables Q± and P = are related 

to the quadrature-phase amplitudes defined in Eqs. ( 1.21) by 



- 75 -

(3A.5a) 

(3A.5b) 

b. Two-component Vector Notation 

An obvious way to generalize one's mathematics from a single mode to 

two modes is to replace the single-mode annihilation and creation operators 

a and at by the two-component operator column vectors29·1 

a=[a+] . a•=[a+;] . _ a_ - a_ (3A.6) 

These column vectors should not be confused with the two-component 

column vectors denned in Section IIC for a single mode . The same symbol is 

used here because it is natural and because the risk of confusion is low; the 

single-mode column vector never appears in conjunction with two-mode 

column vectors (i.e ., it never appears in this section) . The column vectors 

for the dimensionless position and momentum variables x ±: and Pt are 

related to ~ and ~t by 

x = [ ~ + ] = 2--* (a + a•) , ..... x_ ..... ..... p = [~+] = 2--* (-ia + ia*) ; 
- P- - -

(3A.7a) 

(3A. 7b) 

[cf . Eqs . (2A. 1)]. The adjoints and transposes of these column vectors are 

defined in the usual way (see Section II.C) . Similar definitions hold for 
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column .vectors of complex numbers: e .g ., the column vector for the com-

plex amplitudes µ+ andµ_ is 

(3A.8a) 

where ;:o and ,eo are the column vectors for the mean positions x 0± and 

momentums PO±• respectively, 

x0 = (x) = [zo+] = 2--*(µ + µ•). 
- - Xo- - -

(3A.8b) 

Po= (ft) = [Po+] = 2--*(-iµ + iµ*) 
- - Po- - -

(3A.8c) 

[cf . Eq. 2A.3)]. Th.is two-component vector notation is used throughout this 

section in order to present the two-mode results in a simple form that 

resembles as closely as possible the single-mode results . For example , the 

commutation relations (3A.2) take on the matrix form 

[ a, at)= aat - (a•aT)T = l, - - -- - -
(3A. 9a) 

[ ~· ~T ) = [ r• rT ) = Q . (3A.9b) 
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c. Second-order Noise Moments 

For a single mode there are only two relevant Hermitian operators , x 

andfi (or one complex operator , a), and hence only three real second-order 

noise moments to consider -- ( (D.£)2 ), ((Llfi) 2 ) , and ( D.£ frfj)'i>Jm• or, 

equivalently, ( (l:la)2 ) and ( !!:la 1
2 ). For two modes , there are four relevant 

Hermitian operators, x t and Pt• and hence ten real second-order noise 

moments to consider; six of these are associated with each of the modes 

separately, and four describe correlations between the modes . The four 

correlated noise moments are (D.X+D.£_). ( Llfi+/:lfi_), and (D.Xtl:lfi'f') , or, 

equivalently, the complex noise moments (Lla+/:la_) and (Lla+/:la_t) . The 

two-mode analog of ( (!:la )2 ) is the complex, symmetric matrix T: 

(3A. 10a) 

The two-mode analog of ( I tia 1
2 ) is the Hermitian matrix Q: 

(3A.10b) 

[cf . Eqs. (2A. 4)]. 

The two-mode analogs of the three real second-order noise moments of 

x and p are the three real , two-dimens ional covariance matrices Sz: , Sp, 

and S;cp : 

(3A. ll a) 

(3A. l l b) 
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(3A.1 l c) 

The matrices Sz and SP are positive semi-defuli.te -- i.e., their traces and 

determinants are nonnegative; 47 they are positive-defuli.te, if one excludes 

eigenstates of x+- and x_ or fi+- and ft_. Such states are excluded here, for 

although they can be viewed in a formal sense as limiting cases of GPS, they 

are not normalizable, since their wave functions are delta functions . 

Throughout this paper, therefore. Sz and SP are positive-definite (i.e ., 

nonzero) . 

The noise matrices T and Q are related to the covariance matrices Sa:, 

Sp, and S:r;p by 

(3A.12a) 

(3A. 12b) 

[Eqs. (3A. 1); cf. Eqs. (2A.5)]. These matrix equalities are a compact way of 

writing the following relations between the second-order noise moments : 

(3A.1 3a) 

(3A. 13b) 

The total noise of a two-mode GPS is 

(3A. 14) 
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The analog for two-mode states of the uncertainty principles (2A.6) is a 

matrix relation between the noise matrices S:r:, Sp, and Szp, or, equivalently, 

between Q and T. 49 This relation says that the real matrix 

(3A.15a) 

and the Hermitian matrix 

(3A. 15b) 

are both positive semi-definite (psd), and they vanish identically if and only 

if the state is an eigenstate of two independent linear combinations of x +• 

fi _, fi+. and fi- (or a+. a_, a+i, and a_i) -- i.e., if and only if the state is a 

two-mode Gaussian pure state (see Section IIIB). Note that the diagonal ele­

ments of the matrices (3A. 15a) and (3A.1 5b) are identical. A psd two-

dimensional Hermitian matrix must have both diagonal elements nonnega-

tive, and it is equal to the null matrix if and only if both diagonal elements 

vanish. This implies the following two (equivalent) sets of uncertainty princi-

ples: 

.. 
( l tia tl 2 )~)\+ 1( (6at)2 ) 12 + l( 6a+6a_) l 2

- l (6a+6a_t) l2
. (3A.1 6a) 

(3A. 16b) 

Equations (3A. 16a) and (3A. 16b) each represent a pair of uncertainty princi-

ples, one for the upper (" +") sign, and one for the lower (" -") sign; the two 

sets (not the members of each pair) are equivalent. Equalities hold in these 

expressions if and only if the matrices (3A. 15) vanish, i.e., if and only if the 

state is a two-mode Gaussian pure state . If the two modes are uncorrelated 
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with each other , these expressions reduce to the single-mode uncertainty 

principles (2A.6) for each mode . 

2. Rotation Operators 

Associated with each of the two modes is a single-mode rotation opera-

tor, 

(3A. l 7) 

whose properties were discussed in Section IIA.2. It is useful to define 

another pair of commuting unitary operators, Un(e) and U11 (G), equivalent 

to R+(9) and R_(e) , as follows : 

-i11-atci 
UR (e) = R +(e) R_ (e) = e (3A.1 Ba) 

-\9'cita3 a 
Uu (e) = R +(e) R _t(e) = e N N . (3A.1 Bb) 

For notational convenience denote the general product of two single-mode 

rotation operators (angles B+. e_) by the symbol R(~), and define angles es 

and ea by 

R(e) = R+(e+) R_(e_) = UR(es) Uu(ea) = exp[-i a.t..aa] , (3A.1 9a) - - -

(3A.1 9b) 

(3A.1 9c) 

For two oscillators characterized by frequencies 0 ± E: , UR(Ot) Uu(E:t) is the 

evolution operator associated with the free Hamiltonian H 0(2l ,50 

H 0(2) = 0 at a + E: at a3 a , (3A.20a) - -
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(3A.20b) 

The operators Un(e) and Un(e) acting on any (two-mode) number eigenstate 

/ n+. n_) multiply it by the phase factors e -i(n++n_) e and e -i(n+-n_) e. respec-

lively; in particular, they leave the vacuum state unchanged: 

Un(e) f O) = /0) . (3A.21) 

A unitary transformation generated by Un (9) produces a common 

phase change of the annihilation operators -- i.e ., it transforms ~ into ei11- ~" 

and rotates ~and E into each other: 

U (9) a U t(9) = eie a= [ a+(e)] R _ R _ a_(G) ' (3A.22a) 

(3A.22b) 

(3A.22c) 

[Eqs . (2A.1 0)]. The notation here means that each component of the column 

vector undergoes the (same) unitary transformation. A unitary transforma-

lion generated by UM(e) produces an opposite phase change of the annihila-

lion operators : 

(3A.23a) 

(3A.23b) 

(3A.23c) 
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The product of two single-mode rotation operators therefore unitarily 

transforms ~ in the following way: 

(3A.24a) 

R( e) x R( e) t = [ ~ + ( 
8 

+) ] = x( e) : _ _ - x_(e_) - - (3A.24b) 

R(e) p W(e) = r~+(e+) l = p(e) 
- - ,., p_(e_) - -

(3A.24c) 

[cf. Eqs . (2A.10)]. 

Both UR(B) and Ug(B) preserve the total number of photons in each 

mode separately, i.e., they preserve both the sum and the difference of the 

number of photons : 

(URt(e)ataUR(e)) = (ata), ( U1/(e) at a UM(e)) = (at a) : (3A.25a) - - -- -- --

(3A.25b) 

They therefore also preserve the total noise of each mode separately. 1bis 

is seen by replacing at a in Eq. (3A.25a) by the operator for the sum of the 

total noises, 

(3A.26) 

and replacing ~t a3 ~in Eq. (3A.25b) by the operator for the difference in the 

total noises of the two modes, 

D.ata3t::.a = t::.aT ast::.a• = J!::.a+ l2 - J!::.a- 12 . (3A.27) - - - -
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[Recall that the operators D.a± are defined only with reference to a particu­

lar state, which defines (a±); see comment after Eq. (2A.1 2b) .] The noise 

matrices T and Q for a state I 'fr) are related to those of the rotated state 

R(~) Jt) in the following ways : 

(3A.28a) 

[Eq. (3A.24a) ; cf . Eqs . (2A.1 2)]. 

3. Two-mode Displacement Operator 

The two-mode displacement operator 10·11 is simply a product of two 

single-mode displacement operators , 

[cf. Eq. (2A.14)]. It satisfies the following equalities: 

n-1(a ,µ) = Dt(a,µ) = D(a, -µ) = D(-a,µ) . (3A.30) 
-- -N N""" --

The properties of D ( ~, J!;) follow directly from those of the single-mode dis-
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placement operator D(a, µ) (Section IIA.3) . Most important is the way it uni-

tarily transforms the annihilation operators for the two modes: 

(3A.31) 

This implies that when the displacement operator acts on a (two-mode) 

state)t preserves all noise moments of a± and a±t· 

Two other properties of the two-mode displacement operator are useful 

here. They are the two-mode analogs of the properties (2A.17)-(2A.20). 

First, it is unitarily transformed by the product of two single-mode rotation 

operators in the following way: 

(3A.32a) 

(3A.32b) 

[Eqs. (3A.24a), (3A.29)]. This transformation shows the invariance of the 

form of the displacement operator under unitary transformations generated 

by the rotation operator: 

D(a,µ) = D[a(e),µ(e)]. (3A.33) - """' - -
Second, the product of two two-mode displacement operators is another dis-

placement operator, multiplied by a phase factor: 

iim(µ:t µ,) 
D(a,µ')D(a,µ) = e ~ ~ D(a,µ+µ') (3A.34) -- -- -- -

[cf. Eq. (2A.19)]. These properties, like the transformations (3A.24a) and 
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(3A.31), show that any eigenstate of a.+ or a._ remains an eigenstate of a.+ or 

a,_ when displaced and/or allowed to evolve freely. A two-mode coherent 

state [Eq. ( 1.15)], for example, changes in the following way as it evolves 

freely: 

( ) I > I ( )> I -i 9 + -i 9 > R ~ J!; coh = I:!; -~ coh = e µ+, e - µ_ coh , (3A.35) 

where et= (O ± i) t [cf . Eq. (2A.20]. 

4. Vi'xing Operator 

The two-mode mixing operator T( q, x) is defined by 

(3A.36a) 

0 ~ q ~ }2rr, -72 rr < X ~ 72 rr (3A.36b) 

[Eqs. (1.10) , (2C.10b)]. It satisfies the following equalities: 

r- 1(q.x) = rt(q .x) = T(-q.x) = T(q.x+J2rr) . (3A.37) 

It is called a mixing operator because it unitarily transforms the annihila-

tion operators for the two modes into each other: 

(3A.3Ba) 

F. = [ co sq e 2ix sinq] = co sq 1 + isinq a = e iq ux~" . (3A.3Bb) q.x -e-2iXsmq cosq X~1T 

[Note that the matrix aX~1T appears in both T(q, x) and the transformation 

matrix Fq.x because the matrix of commutators [::. ~.t] = 1 is the identity 

matrix, i.e ., because [;:tKr:;. r::J = -K;:; cf . Eqs . (2C.1 0) .] The unitary matrix 

Fq .x has the following important properties : 
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(3A. 39a) 

F. = "1112 = [ cosq sinq ) 
q.o e -smq cosq ' F. = e'iqu1 = [ ~osq isinq) 

q .l{TT -i smq c osq ' (3A.39b) 

ix'u -ix' a 
Fq.x=e sFq.x-x'e s (3A.39c) 

(3A.39d) 

The transformation (3A.38a) ensures that states unitarily related to eigen-

states of a., and ci_ by mixing operators are themselves eigenstates of a., 

and a_ . This shows, for example, that the mixing operator, like the rotation 

operators, leave the vacuum state unchanged: 

T(q. x) Io> = Io) . (3A.40) 

This can also be seen from the factored forms for T(q, x) given below [Eq. 

(3A.45)]. 

The unitarity of Fq.x ensures that the mixing operator preserves the 

total number of photons in the two modes: 

(3A.4la) 

It therefore also preserves the total noise of the two modes: 

The noise matrices T and Q for a state It) are related to those of the 

transformed state T(q 'x) It) in the following ways: 

(3A.42a) 

(3A.42b) 
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[Eqs . (3A.38)]. Equation (3A.42b) shows that for states whose noise matrix Q 

is proportional to the identity matrix 1. the mixing operator also preserves 

the difference in the noises of the two modes, i.e., it preserves the total 

noise of each mode separately. Such states include all eigenstates of a+ and 

a_, all two-mode squeezed states , and all products of two single-mode 

squeezed states with identical squeeze factors. For the general two-mode 

GPS (l. 18), the total noise of each mode will be separately preserved under 

a mixing transformation only for a specific q and x. determined by the con-

di ti on 

(( l6a+ l2 ) - ( l6a- 12 )) sinq - 2Re(e-21X(6a+~a_t))cosq = 0. (3A.43) 

The mixing operator and the two rotation operators represent all the 

unitary operators that induce matrix transformations on the column vector 

~· The transformation matrices associated with them comprise the group 

U(2) of two-dimensional, unitary matrices that preserve the identity matrix, 

i.e ., that preserve the commutator matrix [ ~, ~t] = 1. The most general e le-

ment of this group has the form 

(3A.44a) 

for some real numbers es, ea., q, and X· It is the transformation matrix that 

results from a unitary transformation of ~ by a product of the two rotation 

operator s and a mixing operator, i. e., 

(3A.44b) 
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The unitary matrices associated with the unitary operators Uu(ea) and 

T(q, x) form the three-parameter group SU(2) , i.e., they are the elements of 

U(2) with unity determinant. The underlying Lie algebra for these operators 

is that of the operators a._ta+. a+ta_, and (a_ta._ - a/a+) . 

Properties of the mixing operator can be obtained directly from pro-

perties of the matrix Fq .x , just as properties of the single-mode squeeze 

operator are obtained from properties of the transformation matrix c;. ,
111

• 

For example, the mixing operator can be factored into a product of 

exponentials of the operators a_ta.+. a+ta_, and (a._ta_ - a+ta+ ), simply by 

factoring the matrix Fq.x into exponentials of matrices (linear combinations 

of the Pauli matrices) that have the same commutator algebra as those 

operators . These matrices are a_, a+. and -a3, respectively, where 

a± = ~(a1 ± i a2) . The mixing operator T(q, x) thus has the following 

equivalent factored forms : 

T( ) -Mt t,ta21A /B MA -Aa21At - /B q.x =e e e =e e e 

A= e2iX tang , f = ln(cosq), 

A=a_ta+ . (3A.45) 

These factored forms show explicitly that the mixing operator leaves the 

vacuum state unchanged [Eq. (3A.40)]. The matrix equality 

(3A.46a) 

shows that the product of two different mixing operators is another mixing 
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operator, multiplied by a rotation operator: 

rt(q" x') T(q, x) = Uu(e) T(I;, 71) = T((, rJ -e) Uu(e) : 

here the real numbers (. rJ, and e are related to q. q ', x. and x' by 

ei8 cos( = cosq cosq' + e 2i(x-x') sinq sinq' , 

e-i(e-271)sin( = e 2iXsinq cosq ' - e2ix'sinq'cosq. 

For the special case x = x' this gives the simple relation 

T(q.x) T(q'.x) = T(q +q'.x) 

[Eq. (3A. 39d)]. 

(3A.46b) 

(3A.46c) 

(3A.46d) 

(3A.46e) 

The property (3A.39c) of the transformation matrix Fq.x shows that the 

mixing operator T(q, x) is unitarily transformed by the rotation operators in 

the following way: 

(3A.47) 

That T(q, x) commutes with UR(e) but not with Uu(e) reveals why it 

preserves the total number of photons (hence the total noise), but not the 

difference in the number of photons in the two modes . The mixing operator 

unitarily transforms the two-mode displacement operator in the following 

way: 

(3A.4Ba) 

This shows that the form of the (two-mode) displacement operator is invari­

ant under unitary transformations of ~generated by a mixing operator: 

(3A.48b) 
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These transformations. together with the properties described above, enable 

one to verify the statement made in the Introduction: a state unitarily 

related to a two-mode coherent state by any product of rotation, displace-

ment, and mixing operators is equal to another coherent state (multiplied 

by an unobservable phase factor). For example , 

(3A.49) 

All states that are eigenstates of both a+ and a._ are unitarily related to 

the vacuum state by products of rotation, displacement, and mixing opera-

tors. Conversely. all such states are eigenstates of a+ and a_. These states 

comprise the entire class of (two-mode) states whose total noise is equal to 

that of the vacuum state . The special properties of the rotation and mixing 

operators -- that they preserve the total number of photons , that they 

preserve the total noise, and that they preserve coherent states -- are a 

consequence of one essential property: these operators generate the most 

general unitary matrix transformation of the annihilation operators and 

nothing more ; i.e ., they never mix creation operators with annihilation 

operators . To find unitary operators that do not conserve the total noise 

and that generate new states from coherent states (states with a total noise 

greater than that of the vacuum state), one must consider operators -- the 

single-mode and two-mode squeeze operators -- that mix creation and 

annihilation operators . 
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5. Squeeze operators for two modes 

The single-mode squeeze operators 

(3A.50) 

were discussed in Section IIA.4. Each single-mode squeeze operator uni-

tarily transforms the annihilation operator for its mode into a linear combi-

nation of the annihilation and creation operator for that mode: 

(3A.51) 

[Eqs. (2A.21)-(2A.23)]. In vector notation these transformations are 

S i+(r +• \O+) S i-(r -· \0-) a.S i-t(r -· \0-) S i+t(r +• \O+) = Pie a+ Pis a•, (3A.52a) - - -

[
coshr+ Q l 

Pie = 0 coshr _ ' 

e 2i~+ sinhr + Q 

2i~- 'nhr e Sl -
(3A.52b) 

Recall that a single-mode squeeze operator preserves neither the total 

number of photons nor the total noise of a mode [Eqs. (2A.24)]. 

The two-mode squeeze operator S(r, i;o) is defined by 

= exp [Mr(e-2i~a.Ta 1 a.-e 2i~a.ta 1 a.•)], (3A.53a) - - - -
(3A.53b) 

[Eq. ( 1.1 3)]. It satisfies the following equalities: 

s-i(r,i;o) = st(r,i;o) = S(-r , i;o) = S(r,i;o+}Zrr). (3A.54) 

Properties of S (r, i;o) are discussed in Refs. 25 and 26. Most important is 
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that it unitarily transforms a± into a linear combination of a± and a:i:t: 

(3A.55) 

[Eq. ( 1.20)). In vector notation, these transformations take the form 

S(r.\O)ast(r.\O) = acoshr + a1 a•e2i'sinhr = a(r.\O). - - - - (3A.56a) 

Inverting this relation gives the vector expression for ~ in terms of i;:(r, \0) 

a= st(r .\0) a(r .\0) S(r .\0) = a(r.\O) coshr + a1 a•(r .\0) e2i' sinhr . (3A.56b) - - - "' 

A state unitarily related to an eigenstate of a+ and a_ by a two-mode 

squeeze operator is an eigenstate of two "two-mode squeezed annihilation 

operators"24- 26 a±(r, \0) (sometimes denoted simply by a±, or by the column 

vector a) . The unitarity of S(r, So) ensures that the commutator algebra of 

(3A.57a) 

I 

[ ~(r,)O), ~T(r.\O)] = [a+. a_]ia2 = [ ~, ~r] = 0 (3A.57b) 

[cf. Eqs . (3A.8)]. 

The transformations (3A.55)or (3A.56) imply that the two-mode squeeze 

operator preserves neither the total number of photons nor the total noise 

of a (two-mode) state : 

(3A.58a) 
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( 5t(r, rp) (6at 6a)symS(r, rp)) = cosh2r (f1at 6a)sym - 2sinh2r Re(e -2t 90 (6a+D.a_)) 
"""' - - -

(3A.58b) 

[cf. Eqs. (2A.24)]. Equation (3A.58b) shows explicitly that any (two-mode) 

state whose unitary relation to the vacuum state (or to any eigenstate of a+ 

and a_) involves a two-mode squeeze operator has a total noise greater than 

that of the vacuum state. The two-mode squeeze operator does, however, 

preserve the difference in the number of photons, and therefore also the 

difference in the total noises, of the two modes: 

(St(r,)O)ata3 a5(r,)O)) = (ata3 a), (3A.59a) - - - -
(St(r,rp)D.ata3 6a5(r,rp)) = (D.ata3 6a) . (3A.59b) - - - -

The relations between the noise matrices T and Q for a state J t) and for the 

state S(r,rp) 1¥) follow from the transformation (3A.56) . The matrices T 

and Q for a TMSS are given explicitly below (see part 7 of this section). 

The two-mode squeeze operator and the two rotation operators 

represent all the unitary operators that induce matrix transformations on 

another two-component column vector, 

a' = [a\]. 
- a_ 

(3A.60) 

The transformation matrices associated with them comprise the group 

U( 1, 1) of two-dimensional, complex matrices that preserve the metric a 3, 

i.e., that preserve the commutator matrix [ ~', ~·t] = a3. The elements of this 

group have the general form 
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i(211' +If,) 'nh l e Sl r 
-itr I 

e • coshr 
(3A.6 1a) 

for some real numbers ea, es, r, and rp [cf. Eq. (2C. 15g)]. It is the transfor-

mation matrix that results from a unitary transformation of the column vec-

tor;:' by a product of two rotation operators and a two-mode squeeze opera-

tor, i.e., 

(3A.61b) 

[Eqs. (3A.24) and (3A.55)]. The transformation matrices associated with uni-

tary transformations on ~· by the rotation operator UR ( 83 ) and the two-

mode squeeze operator S ( r, rp) form the three-parameter group SU( 1, 1), the 

elements of U( 1, 1) with unity determinant . They are the same transforma-

tion matrices that arise in connection with the single-mode two-component 

column vector defined in Section IIC; there they describe unitary transfor-

mations induced by the single-mode rotation and squeeze operators. This 

similarity is the formal reason that two-mode squeezed states are the 

natural analog of single-mode squeezed states. The underlying group struc-

ture of the unitary operators associated with the most general two-mode 

GPS is considerably more complicated than the three-parameter group 

SU( l,l ) (see Section IIIC) . The group structure of the unitary operators 

associated with two-mode squeezed states , however, is SU( 1. 1) . This is a 

consequence of the fact that two-mode squeezed states have special noise 

properties (TSQP noise ; see the discussion in Section I.g) . 

The underlying Lie algebra associated with the unitary operators UR(9 s) 

and S(r , rp) is that of the operators a+a-, a_t a+t. and a/ a++ a_t a _ + 1. It 

is the same Lie algebra as that associated with the single-mode rotation 

operator R(e) and squeeze operator S 1(r, rp), i.e., it is that of the operators 
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~a 2 , ~a t2, and at a + ~. Hence all the results for single-mode GPS can be 

converted to analogous results for two-mode squeezed states simply by 

replacing these single-mode operators with the corresponding two-mode 

operators . This immediately enables one, for example, to write factored 

expressions for the two-mode squeeze operator [Eq. (2C. l 7)], and to write 

the product of two different two-mode squeeze operators as the product of a 

two-mode squeeze operator and a rotation operator UR(e) [Eqs. (2C.18)]. 

States with TSQP noise can be described completely by a two-component 

vector notation, in which the fundamental operator column vector is ~: [Eq. 

(3A.60)] or, equivalently, the column vector formed from the quadrature-

phase amplitudes a. 1 and a.2 : 

(3A.62a) 

A = 2-* ( 1. 1] 
-'!, i ' 

~=[A.+ o] {\ - 0 A._ ' (3A.62b) 

[cf. Eqs . (l.21)]. Such a description is motivated and developed in Refs . 24-

26 . In contrast, more general two-mode GPS require a four-component vec-

tor notation, described in Section IIIC of this paper. 

The property (2C.14c) of the transformation matrix Cr.~· or the relation 

(3A.24a) together with the definition (3A.53), shows that the two-mode 

squeeze operator is unitarily transformed by the rotation operators in the 

following way: 

(3A.63) 

[cf. Eqs. (2A.25) or (2C.19b)]. That S(r,:p) commutes with UM(e) but not 

with UR(e) reveals why it preserves the difference in the number of photons 
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(hence the difference in the total noises), but not the total number of pho­

tons in the two modes [contrast this with the mixing operator, Eq. (3A.47)]. 

It unitarily transforms the two-mode displacement operator in the following 

way: 

st(r,rp)D(a.,µ)S(r,rp) = D(a.,µa), 
~ - -- (3A.64) 

JJ-a = µcoshr + a 1 µ•e2i 111 sinhr (3A.65) 
... - -

[Eqs. (3A.29) , (3A.56a)]. This shows that the form of the displacement opera-

tor is invariant under unitary transformations of a generated by the two--
mode squeeze operator: 

(3A.66) 

This equality implies that the TMSS l ~a >(r. 111 ). defined by Eq. (1.19) as S (r, rp) 

acting on the two-mode coherent state l ~a>coh• can as well be defined as the 

displacement operator D(~, ~) acting on the (two-mode) squeezed vacuum: 

(3A.67) 

The complex numbers JJ-+• µ_are the complex amplitudes ( a.+) . (a._), i.e. , 

µ = <a.). They are related to the eigenvalues JJ-a+ • JJ-a- by - -
~ =~a coshr - a 1 l;!;a•e 2

i 111 sinhr (3A.68) 

[Eq. (3A.56b) ; cf . Eqs. (2A.36)-(2A.30]. These transformations , together with 

the properties described above , enable one to verify the statement made in 

the Introduction: a state unitarily related to the TMSS l ~a> (r . 111 ) by a product 

of rotation and displacement operators is equal to another TMSS (multiplied 
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by an unobservable phase factor) with the same squeeze factor r . but with 

different squeeze angle and eigenvalues . For example, 

ilm(µ:t~) 
R(e)D(a.,µ,') lµ,a>(r.'I') = e N N D(a,'jl)S(r,</)-93 ) I O) - -- - --

(3A.69) 

[Eqs. (3A.32), (3A.34), (3A.65)]. 

Finally, one should note the formal relation between a product of two 

single-mode squeeze operators and a two-mode squeeze operator. Physi-

cally, these represent very different processes. The product of two single-

mode squeeze operators is, roughly speaking, the evolution operator for a 

process in which two harmonic oscillators, each in a coherent state, are 

separately squeezed [i.e ., each is subjected to a degenerate two-photon 

interaction Hamiltonian (l.8)]. In contrast.a two-mode squeeze operator is 

the evolution operator for a process in which two harmonic oscillators, each 

in a coherent state, are made to become correlated, through the nondegen-

erate two-photon interaction Hamiltonian ( 1. 7) . Although these operators 

differ profoundly from each other in a physical sense. in a purely formal 

sense they are (unitarily) equivalent . The unitary operator that transforms 

them into each other is a mixing operator. That is, by defining certain 

linear combinations of a+ and a_, call them b + and b _, one can write the 

two-mode squeeze operator S(r, V') as a product of two single-mode squeeze 

operators, one for the "b +-mode" and one for the "b _-mode" .13 ·33·25 This for-

mal equivalence is described by the following general relation: 
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(3A.70a) 

For the special case rs = 0 (r +- = -r _) , this can be rewritten as 

These relations provide another way to see why the natural nondegenerate 

(two-mode) analog of degenerate (single-mode) squeezing is the squeezing 

produced by the nondegenerate two-photon interaction Hamiltonian ( 1. 7) -­

i.e., by the two-mode squeeze operator S(r, rp) ; it is not the separate squeez-

ing of two single modes by degenerate two-photon interaction Hamiltonians 

like ( 1. 8) . A physical explanation was given in the Introduction: both single-

mode and two-mode squeezing can be accomplished in a parametric 

amplifier by using a single pump; one simply moves away from degeneracy, 

and the resulting state is a two-mode squeezed state . These relations show 

in another way why a two-mode squeezed state is not equivalent physically 

to two single-mode squeezed states . They tell one that in order to produce a 

two-mode squeezed state by separately squeezing two single modes (or 

vice-versa), one would have to first turn on a mixing interaction (frequency 

converter) , then separately squeeze the two modes , and then turn on 

another mixing interaction. Separately squeezing two single modes does not 

produce a state with the reduced noise properties of a two-mode squeezed 

state . 

6. Product of three squeeze operators 

Consider now the unitary operator Ug that relates the most general 

normalized two-mode GPS to a two-mode coherent state : 

(3A. 7 1) 
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[Eq. ( 1.1 8)]. Note that the inverse of U9 is obtained by changing the signs of 

r +· r _, and r and reversing the order of the squeeze operators: 

(3A. 72) 

The operator U9 transforms the operator column vector ~ into a linear com-

bination of a and a•: - -

(3A.73a) 

the complex matrices Pc and Ps are equal to 

(3A.73b) 

(3A.73c) 

[Eqs . (3A.52) and (3A.56); see also Eq. (3B.35) below]. States unitarily 

related to eigenstates of a+ and a_ by U9 are eigenstates of the transformed 

annihilation operators g + and 9-· The unitarity of U9 ensures that the com-

mutator algebra of g ±and g ±tis identical to that of a± and a±i : 

[g, gt J = [a, at J = 1 , (3A. 74a) - ""' - ""' 

(3A.74b) 

[cf. Eqs. (3A. 9)]. Because of the presence of both single-mode squeeze 

operators, U9 does not, in general. preserve any of the noise moments of a± 

or a± t. The components of the noise matrices T and Q for a coherent state 

and for a general two-mode GPS I f.!g) = U9 I f.!g) coh are given below [Eqs . 

(3A.84)]. 
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Many properties of Ug follow trivially from the corresponding properties 

of the three squeeze operators (e .g .. the way it is unitarily transformed by 

rotation operators); these are left to the reader. Two properties, however, 

deserve special attention. First, Ug unitarily transforms the two-mode dis-

placement operator in the following way: 

(3A. 75) 

(3A. 76) 

[Eqs. (3A.29), (3A.73)]. This relation reflects the fact the form of the two-

mode displacement operator is invariant under unitary transformations of a -
that are Linear in:: and ~· (and that do not add to ~a constant column vec-

tor) . Such unitary transformations are generated only by (products of) 

rotation, mixing , and squeeze operators. The invariance under transforma-

tions generated by rotation, mixing, and two-mode squeeze operators has 

already been noted [Eqs . (3A.33), (3A. 48) , (3A.66)]. The invariance under 

transformations generated by Ug says that 

(3A.77) 

This equality implies that the general two-mode GPS I f.;!;g >, defined by Eq. 

(1. 18) as the operator Ug acting on the two-mode coherent state l f.;!;g > coh· 

can as well be defined as the product of the displacement operator D(a,µ) 

and Ug acting on the vacuum state : 

(3A.78) 

The complex numbersµ+ . µ_ are the complex amplitudes (a+) . (a_), i.e ., 
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µ = (a) . They are related to the eigenvalues /.lg+ . f.Lg- by - -
(3A.79) 

The second important property to note is that the product of two 

different operators Ug and Ug' can always be expressed as another operator 

Vg (i.e ., another product of the three squeeze operators), multiplied (on the 

right) by rotation operators and a mixing operator. This property is not 

necessarily obvious, since it requires knowing that when single-mode and 

two-mode squeeze operators are commuted through each other, the result 

can always be expressed as a product of three squeeze operators (i.e ., an 

operator like Ug ), multiplied (on the right) by rotation and mixing opera-

tors. This fact follows as a special case of the general proof, given in Section 

me and Appendix A, that the evolution operator associated with any two-

mode GPS can always be expressed in this form. 

It is proved in the next section, by considering the most general two­

mode Gaussian wave function, that the generator Hc<2l of the unitary opera­

-iH (2) 
tor Uc(2) = e G that relates a two-mode GPS to the vacuum state is a sum 

of linear and bilinear combinations of a+, a_, a+t. and aJ In Section me 

and Appendix A it is shown that this unitary operator factors into a product 

of displacement , squeeze, mixing, and rotation operators. The properties 

described in this and the previous sections ensure that any product of rota-

tion, mixing, squeeze and displacement operators can be expressed as the 

product of a displacement operator and an operator like Ug , multiplied on 

the right by rotation operators and a mixing operator (and an overall phase 

factor) . Since the rotation and mixing operators have no effect on the 

vacuum state, one finds that the most general two-mode GPS is the state 

I ~g) defined by Eqs . (3A.71) and (3A.78). It is produced when two harmonic 
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oscillators in their ground states are exposed to the interactions HR(2l(t), 

H 1(2l(t), and H 2(2l(t) described in the Introduction [Eqs. (1.3) and (1.4)]. 

7. Two-mode GPS 

The noise matrices T and Q (or Sz, Sp, and S;i:p) for two-mode coherent 

states and products of two single-mode squeezed states can be obtained 

directly from the noise moments of single-mode coherent and squeezed 

states, given in Section II [Eqs. (2A.37) or (2B.39)]. For a product of two 

single-mode squeezed states, S 1+(r +.it'+) S 1_(r -· <P-) I .ua>coh· the noise ... 

matrices are 

[ 

2ill'+ 'nh2 
T = _* e s~ r + 0 

2it;11 'nh2 e -s1 r _ 

_ [cosh2r+ o l 
Q - * 0 cosh2r _ · (3A.80) 

For a two-mode squeezed state the noise matrices T and Q are not 

diagonal, but they have particularly simple forms . This is a consequence of 

TSQP noise, which says that the noise moments ((6a+)2). ((t.a_)2), and 

(6a+6a_t) vanish, or, equivalently, that the noise moments ((t.a. 1)
2), 

((t.a.2)2), and (6a. 16a.2) of the quadrature-phase amplitudes vanish (see Sec-

tion I.g). The noise matrices for a two-mode squeezed state can be obtained 

from the transformation (3A.56) and the noise matrices for a coherent state. 

For the TMSS l ~a>(r.t;11) [Eq. (3A.67)] they are 

Q = *cosh2r 1 . (3A. 81) 

The second-order noise moments of the quadrature-phase amplitudes for a 

two-mode squeezed state are 
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(3A.82) 

[Eqs. ( 1.21) or (3A.62); cf . Eqs. (2B.37)]. The noise matrices S:c, Sp , and S~ 

for a two-mode squeezed state also have simple forms : 

S _ ~ [ cosh2r -sinh2r cos2i;o ) 
:c - -sinh2r cos2i;o cosh2r · 

s - a s a - ~ ( cosh2r -sinh2r cos2i;o) 
P - s :c s - -sinh2r cos2i;o cosh2r · 

(3A.83) 

The noise matrices T and Q for the general two-mode GPS l ~g) [Eqs . 

(3A.71), (3A.78)] can be obtained from the transformation (3A.73) and the 

noise matrices for a coherent state, or from Eqs . (3B .32) and (3B.35) below. 

Their components, the noise moments of a ±: and a ±:t, are 

(3A.84) 

The choice for the order of the three squeeze operators in Ug [Eq. (3A.7 1)] 

was made so that the noise moments ((t.a±:)2 ) and< Jt.a±: J2 ) would have this 

simple form. 
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By analog y with single-mode MUS, the natural definition for "minimum 

uncertainty states" (MUS) is those states for which 

(3A.85a) 

[Eq. (3A.15a) ; cf . Eq. (2A.33)]. These are (two-mode) GPS that satisfy 

ImT = ImQ = S:tJJ = O (3A.85b) 

[Eqs . (3A. 12)]. Thus, the states that satisfy Eqs . (3A.85) have Gaussian wave 

functions, and their second-order noise moments of a± and a±t satisfy the 

following four conditions : 

Im(6a+6a_t) = 0, (3A.86a) 

(3A.86b) 

(3A.86c) 

It is shown below [Eqs . (3B.5) or (3B.6)] that a two-mode state satisfies Eqs . 

(3A.85) if and only if it is an eigenstate of the (components of the) linear 

combination ~ + i M 11 .e. where M 1 is a real, symmetric, positive-definite 

matrix. The set of MUS consists of all two-mode coherent states, two-mode 

squeezed states with rp = 0, and products of single-mode squeezed states 

with rp+ = rp_ = 0. Milburn 33 has proposed a more restrictive definition of 

two-mode MUS; his definition does not include the two-mode squeezed states 

among the MUS. 

Similarly, one could define the two-mode analogs of single-mode states 

with random-phase noise to be states whose noise moments are invariant 

under rotations by R(~) = UR (Bs) Uu(Ba) · Such states must have T = 0 and 

Q diagonal [Eqs . (3A.28)] . Note that the condition 
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(3A.87a) 

where 

(3A.87b) 

is equivalent to the condition T = 0, but is not adequate to ensure invariance 

under rotations produced by UM(g<i), and hence does not define random­

phase noise for two-mode states [Eqs. (3A.12), (3A.24b,c); cf. Eqs. (2A.35)]. 

The intersection between these two sets of states, i.e., MUS that have 

random-phase noise, is the set of two-mode coherent states, which have 

[cf. Eqs. (2A.36)]. 

(3A.88a) 

(3A.88b) 

By extending the definition (3A.85) of MUS to include all states related 

to MUS by the rotation operator UR(9s), one obtains all two-mode squeezed 

states. This is because TSQP noise , i.e., the vanishing of the noise moments 

(6a+6a_t), ((6a+)2 ), and ((6a_)2 ), means that the noise moments of a 

two-mode squeezed state are invariant under rotations by UM(e<i), but not 

by UR(e 5 ) [Eqs. (3A.2B)]. For a two-mode squeezed state to be a MUS, the 

noise moment (6a+6a_) must be real. This means that two-mode squeezed 

states are MUS for an inilnite set of rotated variables x ±(e±) and fi±(e±), 

defined by the condition that ]2(e+ + e_) =es = -rp; i.e., a two-mode 

squeezed state satisfies 

Sz ( 85 = -rp) Sp ( 8 5 = -rp) = ~ 1 , 

Szp ( 89 = -rp) = 0 . (3A.89) 
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This fact is yet another indication that the noise in a two-mode squeezed 

state is the natural analog of the noise in a single-mode squeezed state, i.e .. 

of the noise in all single-mode GPS . Invariance under rotations by UM (ea) 

has no meaning at degeneracy, where UM(ea) becomes the identity o~era­

tor. 

By extending the definition (3A.85) of MUS to include all states related 

to MUS by both rotation operators, UR(es) and UM(ea). one obtains, in addi­

tion to all two-mode squeezed states, all states that are products of two 

single-mode squeezed states. States that are products of two single-mode 

squeezed states are MUS for a particular set of rotated variables, x ±(-r,o±) 

and fi±(-rp±). Thus , products of single-mode squeezed states satisfy 

Sz ( -~) Sp ( -~) = !4 1 , 

Sz:p(-~) = 0 . (3A. 90) 

Finally, by extending the definition (3A.85) of MUS to include all states 

related to two-mode MUS by products of rotation and mixing operators , one 

obtains all two-mode GPS. This is so because the four conditions (3A.86) can 

always be met for some operators defined as linear combinations of a+ and 

a_ by a transformation like (3A.44b) , with appropriate choices for the four 

parameters q , x. e+. and e_. 
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B. Two-mode Gaussian wave functions 

Consider now the coordinate-space wave function for an arbitrary two-

mode Gaussian pure state symbolized by the state vector lµg+.µg-> or, for 

compactness, I~) . The wave function is written in terms of the dimension-

less position variables x ±• the eigenvalues of the Hermitian operators £ ±· 

The most general (normalized) two-mode Gaussian coordinate-space wave 

function has the form 

ui6 -~hPoTZo iplz --¥1.t.zTJlt.z = Ngen. "e N Ne N Ne N N 
N 

(3B. l ) 

[ cf . Eq. (2B. l )]. Here :a and Ea are the column vectors for the mean position 

and momentum [Eqs . (3A.7)], with components defined by 

x0± = ( £±) = J dx+f dx_x± l<x+x- 1.:::-g> 1
2

, (3B.2a) 
-oo -oo 

(3B.2b) 

M is a two-dimensional, complex matrix whose components MiJ are related 

to the second-order noise moments of £ ± and p ±• 6z is an unobservable 

phase angle (separated out for reasons discussed below), and Ng is a (real) 

normalization constant determined by the condition <.:::-g l ~g ) = l. The sub-
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script "x" on the phase angle Oz serves only to distinguish Oz from the phase 

angle Op which appears in the momentum-space wave function [Eqs. 

(3B.38)-(3B.41) below]; Oz has no dependence on x± . For convenience it is 

assumed henceforth that the matrix M is symmetric, M =MT (M12 = M21 ); 

this assumption can be lifted if all statements about M that follow are inter-

preted as statements about >2 (M +MT). Normalizability dictates that the 

real part of M be positive-definite -- i.e., that 

TrM 1 >0, detM 1 > 0, 

(3B.3) 

and the normalization constant Ng is equal to 
N 

(3B.4) 

[cf. Eqs. (2B.2)-(2B.4)]. 

The most important parameters in the wave function (3.B.1) are the 

three complex numbers that make up the (symmetric) matrix M. The form 

of the wave function tells one that the state Jeg> is a simultaneous eigen-

state of the components of the linear combination ~ + iM-1 ?_. and hence 

that the matrix M is related to the noise matrices Sz, Sp, and SZ'fJ by 

(3B.5a) 

The real and imaginary parts of M are therefore equal to 

(3B.5b) 

and the absolute square of its determinant is 



detSP 
jdetM l2 = -~ 

detS.z 
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(3B.5c) 

[cf. Eqs . (2B.5)]. Equation (3B.5c) shows that for normalizable two-mode 

GPS the matrix M must be nonsingular [if detM = 0, the wave function in the 

momentum representation is a delta function; see discussion below Eqs . 

(3A. 11)]. Inverting these expressions gives the covariance matrices S.z, SP, 

and S;;p in terms of the matrix M: 

(3B.6) 

[cf. Eq. (2B.6)]. The normalization constant Ng can thus be rewritten as 

(3B.7) 

[cf. Eq. (2B. 7)]. 

Th.at the state l ~g) is an eigenstate of the components of ~ + iM-1 f!. 

means that it is also an eigenstate of the components of 

a+ (M + 1)-1 (M - 1) a* . The noise matrices T and Q are therefore more 
N 

naturally expressed in terms of the symmetric complex matrix 

r = rr = (M + 1)-1 (M - 1) = -(Q + ]21)- 1 r = -(Q - 721) T*- 1 (3B.8) 

[cf . Eq. (2B.8)]. Inverting these expressions gives the noise matrices T and 

Qin terms of the matrices rand M: 

r = - r (1 - r•n- 1 = -(1 - rr•)- 1 r 

(3B.9a) 
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(3B.9b) 

[cf. Eqs. (2B. 9)]. Note also that 

(3B.1 0) 

hence normalizability requires that the (Hermitian) matrix ( 1 - r r•) be 

positive-definite. The above expressions reveal, though not in a transparent 

way, how the ten real pieces of information in the second-order noise 

moments for a two-mode GPS reduce to six independent pieces, since 

(3B. lla) 

(3B.llb) 

[cf. Eqs. (3A.13) and (2B.11)]. They also reveal that the following matrix pro-

ducts are symmetric: 

(3B.llc) 

These relations are made more obvious below [Eqs . (3B.30)-(3B.32)]. 

The remaining parameter in the wave function (3B.1) is the phase angle 

Oz; in general it can be any real number. The phase angle Oz is unobserv-

able, but for a state defined as a particular unitary operator acting on the 

(two-mode) vacuum state it has a well-defined value, provided one assigns a 

phase angle to the vacuum-state wave function. The properties of the dis­

M '6 placement operator reveal why the phase factor e i z separates naturally 

from the overall phase factor in the wave function (:;I~). The definition 

(3A.29) of the two-mode displacement operator implies that the wave func­

tion for a "displaced" two-mode state D (~, ;:) I+) is related to the wave func-

lion of the original state I+) in the following way: 
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(3B.1 2) 

[cf . Eq. (2B.1 2)]. A natural way, therefore , to obtain an arbitrary two-mode 

pure state I t~> with complex amplitudes µ+ and µ_ is to operate with the 

two-mode displacement operator D(:!;, !:!;) on a state I t~) = U0 I 0) that has 

the desired noise properties but has zero complex amplitudes 

Itµ.)= D(a, µ)Uc IO) . 
N - -

(3B.1 3) 

The property (3A.3 1) of the displacement operator then ensures that Jtµ.) 

has complex amplitudesµ+ andµ_, 

(3B.14) 

Any normalized two-mode pure state with complex amplitudes µ+ and 

µ_ can be defined by an expression like (3B .1 3). The advantage of this 

definition is that the state's mean values x 0± and Po± (or complex ampli-

tudes µ±) are determined solely by the displacement operator D(a, µ) , and 

its noise moments of a ± and a ±t are determined solely by the unitary opera-

tor U0 . The (normalized) two-mode GPS I ~ ) with complex amplitudes µ+ . 

µ_can therefore be formally denned by 

(3B.1 5) 

Note the following three properties of Ug: First, it is uniquely defined only 

up to (right-hand) multiplication by rotation operators R ±( e ±) , a mixing 

operator T(q, x). and an overall phase factor . Second, since it defines the 
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noise moments of a± and a± t (or x ± and p ±) for the GPS I ~), it has associ-

ated with it no more than six independent real parameters (over and above 

those of the rotation and mixing operators and phase factor). Third, since 

the state I~) has complex amplitudes µ+. µ_, the expectation value 

< 0 I Ug t ~ Ug I 0) must vanish. 

W6 The phase factor e i : in the wave function <x I '¥,u.) is given, from Eqs. 
- N 

(3B.1) and (3B.12), by 

< x + = x - = 0 I Ug I 0) 
I <x + = x_ = 0 I Ug I 0) I (3B.16) 

[cf. Eq. (2B. 15)]. The phase angle Oz has no dependence on the complex 

amplitudes µ±, provided Ug does not; any dependence of Ug on µ± is 

artificial, however, since it does nol affect the state's complex amplitudes 

Consider, for illustration, the two-mode coherent state 

l ~)coh = D(~·I:!) IO) [Eq. (1.15)], for which the operator Ug is the identity 

operator. Equation (3B. 12) says that the wave function for Iµ) coh is related 

to the vacuum-state wave function< x I 0) by 

(3B. 17) 

so the phase angle Oz for a two-mode coherent-state wave function is equal 

to the phase angle assigned to the two-mode vacuum-state wave function. 

The form of its wave function shows that a two-mode GPS I ~g) is a 

simultaneous eigenstate of linearly independent operators g + and g _, which 

are linear combinations of the two operators defined by the components of 

~ + i M- 1 'f!. or ~ + r ~·· The label ~g (µg +• µg_) for the GPS I ~g > is chosen to 
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be the eigenvalues of g (g +-- g _). Thus, one can write the following relations: 

(3B. 18a) 

(3B. 18b) 

(3B. 18c) 

where K and K are two-dimensional nonsingular matrices . It is useful to 

consider the general form for all independent operators g +• g _ of which the 

two-mode GPS I ~) is an eigenstate : 

(3B.1 9a) 

Here PP, Pz, Pc ,and P5 are two-dimensional complex matrices, related to 

each other by 

(3B.20) 

The eigenvalues µ,g +· /.kg- are related to the complex amplitudes µ+. µ_ and 

the mean positions and momentums x 0±, Po± by similar relations, 

(3B.1 9b) 

Inverting Eqs. (3B.1 9) leads to the following expressions for~ and I!; in terms 

of g and f.!;g: 

(3B.21a) 
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(3B. 21 b) 

where Yg = [g. gt] is the Hermitian com.mutator matrix 

(3B.21c) 

[cf. Eqs . (2B.21)]. These relations imply the important equality 

(3B.22) 

[cf . Eq. (2B.22)] . 

The equality (3B.22) enables one to see explicitly how the form of the 

unitary operator Ug, which defines a two-mode GPS through Eq. (3B.15), is 

determined by the forms of the operators g +- and g - · To see this , begin with 

an alternative definition for the GPS I ~) [the equality (3B.22) will be seen 

to ensure that this definition is equivalent to the definition (3b .1 5)]. First , 

assume that I 1-f;g) is related to the vacuum state by some unitary operator 

(3B.23a) 

It is convenient to define another unitary operator Ug by 

U = Ug D ( ~· 1-f;g ) , (3B.23b) 

so that the state I ~) is equal to the operator Ug acting on the two-mode 

coherent state I /.f;g ) coh• 

(3B.24) 
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It is then consistent with the eigenvalue equations (3B. l Ba) that the opera­

tors g + and g _ be unitarily related to the annihilation operators a+ and a_ , 

respectively, through the operator Ug : 

(3B.25) 

The form of Ug is thus determined by the forms of the operators g + and g - · 

Note that this relation says that both a+ and a_ are transformed by the 

same unitary operator, Ug. The equivalence of the definitions (3B. 15) and 

(3B .24) for I ~) is a result of the unitarity of Ug and the fact that both a+ 

and a_ are transformed by the same unitary operator, which ensure that 

[g. gt]= [ ~. ~t] = 1, and the forms (3B.19) of 9+ and g_; these imply the 

equality 

(3B.26) 

[Eq. (3B.22)]. Thus, any two-mode GPS i ~ ) has the following two equivalent 

definitions : 

l ~g) = UD(~·~g) jO) = U ! ~g >coh = D ( ~ . ~) U jO) 

[cf. Eq. (2B.27)]. 

(3B.27) 

Return now to the general forms (3B. 19) for the operators g + and g _ of 

which two-mode GPS are eigenstates . Six of the sixteen degrees of freedom 

in the expression (3B. l 9a) for g are removed by the wave function <: I ry). 

which specifies the (symmetric) matrix products 

(3B.28) 

Six more degrees of freedom have already been partially removed by the 
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requirement that g +- and g _ have a complete (overcomplete) set of simul­

taneous , normalizable eigenstates, i.e ., that the commutator [g +-• g _] = 0 

and the Hermitian commutator matrix [g. gr] be positive-definite (for 

further discussion of this requirement see Appendix C) . These degrees of 

freedom are removed completely if one specifies that the operators g +- and 

g _ be unitarily related to a+- and a_, respectively, by the same unitary 

operator [Eq. (3B.25)], which implies that 

[g,gt]= [a,at]= 1 . (3B.29) 
..., - - -

The commutator [g +-• g _] is related to the matrices in the expression 

(3B.24a) for g in the following way: 

(3B.30a) 

Thus. the requirement that [g +-• g _] = 0 is satisfied if and only if the matrix 

M in the wave function < : I ~) is symmetric . (Recall that I originally st ipu-

lated that M was symmetric . This condition merely reminds one that the 

two-mode state I f;!;g ) with wave function (3B. l ) is an eigenstate of 

commutator matrix [g. gt] can be written in the following different ways, 

using Eqs . (3B.5) and (3B.B) : 
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- 2P Re(M-1) P t - P S -1 p t - p p-pp p 

(3B.30b) 

[cf. Eq. (2B. 30)]. These expressions show that the operators g + and g _ have 

simultaneous normalizable eigenstates if and only if the wave function 

(: I f.::g ) is normalizable -- i.e.. the (symmetric) real matrix M 1 [or 

(1 - rr•)J is positive-definite [Eqs. (3B.3) and (3B.10)]. Note also that g + 

and g _ can have simultaneous normalizable eigenstates only if the matrices 

PP, P;z; , and Pc are nonsingular. The requirement that g + and g _ be unitarily 

related to a+ and a_ through the same unitary operator -- i.e., that 

[g, gt] = 1 -- implies that 

(3B.3 1a) 

Two other useful properties of these matrices are revealed by using the 

expression (3B.21a) for:: in terms of g and g• and setting [::. ;:t] = 1. For the 

matrices Pp and Pz these properties are 

(3B.31b) 

(3B.31c) 

For the matrices Pc and Ps they are 

p t'V'-lp - (P. t'V'-lp )T 
c lg s - c lg s ' (3B.31d) 

(3B.31e) 
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From now on I restrict attention to operators g +> g _ that satisfy [g, gt] = l, 

i.e., to operators g + and g _ that are unitarily related to a+ and a_ by the 

same unitary transformation. This entails no loss of generality, since by 

taking appropriate linear combinations of other operators g +'· g _' for which 

[g'. g-t] is positive-definite but not proportional to the identity matrix, one 

can always define operators g +• g _ that satisfy [g, gt] = 1. Henceforth, 

therefore, the operators g + and g _ are assumed to be related to a+ and a_ 

by an expression like Eq. (3B.25) . 

The four remaining degrees of freedom in the expression (3B. l 9a) for g -
represent the freedom to multiply g by an arbitrary unitary matrix and an -
overall phase factor, acts which do not change the commutator matrix 

[g. gt] = l. Multiplying g in this way is equivalent to (right-hand) multiplying 

the operator Ug of Eq. (3B.25) by a mixing operator T(q, x) and two rotation 

operators R±(e±) [Eqs. (3A.44)]. The definition (3B.27) of I ~> shows that 

this freedom reflects the fact noted in Section 3A. 4 that a (two-mode) 

coherent state remains a coherent state when multiplied by rotation and 

mixing operators [Eq. (3A.49)]. 

The expressions (3B.30b) for the commutator matrix [g. gt], together 

with the matrix properties described above, reveal the following simple rela-

tions between the noise matrices for a two-mode GPS and the complex 

matrices Pp, Pz, Pc, and Ps for operators g +. g _ unitarily related to a+. a_ 

by the same unitary operator : 

(3B.32a) 

T =-Pct Ps , (3B.32b) 
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(3B.32c) 

[cf. Eqs . (3B.6), (3B.9), and (2B.32)]. These expressions, together with with 

Eqs . (3B.30) and (3B.31) , make apparent the relations (3B . l 1) between the 

noise matrices. 

The form of the unitary operator Ug in the definition (3B.27) of the two­

mode GPS I ~ ) is dictated by the transformation ( 3B. 25) and the form of g + 

and g _ [Eqs . (3B.1 9a), (3B.31)]. The linearity and absence of any additive 

-ili (2) 
constants in the transformation imply that Ug = e g , where Hg (2) is a 

(Hermitian) linear combination of the ten bilinear products of a± and a.±t 

(a.±t a.±, a+a - . a± 2 , a.+a._t, and their adjoints) . That is, the generator Hg (2) of 

Ug has the general form [ H 0(2) + HR(2 ) + H 2(2l] defined in the Introduction 

[Eqs. (1.1 )-(1.4)]. It is shown in Section IlIC and Appendix A that this opera-

tor Ug can always be written as a product of two single-mode squeeze opera-

tors, a two-mode squeeze operator , two rotation operators, and a mixing 

operator (and an unobservable overall phase factor). That the rotation and 

mixing operators can be neglected in the general form for Ug can be seen in 

a couple of ways . First , the rotation and mixing operators can be placed in 

any position relative to the squeeze operators. without changing the form of 

Ug [Eqs . (2A.25), (3A.47), (3A.63), (3A.70)]; when placed to the right of the 

squeeze operators, the y act like the identity operator on the vacuum state 

and hence are inconsequential. Second, the parameters e ±• q , and x in the 

rotation and mixing operators are related to multiplication of e by a unitary 

matrix. which can be chosen arbitrarily [Eqs . (3A.44)] ; they are made zero 

if the diagonal elements of the transformation matrix Pc are chosen to be 

real. Hence the operator Ug is equal to the product of two single-mode 

squeeze operators and a two-mode squeeze operator -- i.e ., to the operator 
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Ug d.efined in the preceding section [Eq. (3A.71)]. 

The two-mode GPS defined by Eq. (3B.27) with Ug equal to a product of 

three squeeze operators [Eq. (3A.71)] is an eigenstate of the operators g 

defined by Eqs . (3A. 73) . The matrices Pc and Ps are therefore given by Eqs. 

(3A.73) : 

P. = [ . coshr coshr + 
c -2\(91+ -91) 'nh 'nh e s1 r s1 r + 

e 2'(91 - 91 -l sinhr sinhr _ 
coshr coshr _ 

P 
_ [ e2i 91

+ coshr sinhr + e 2'111 sinhr coshr _ 
s - 2ilP "nh hr 2ilP . e s1 rcos + e -coshr sinhr _ 

(3B.35) 

The matrices Pp and P:z: follow from these according to the relations (3B.25). 

The complex amplitudesµ+.µ_ and eigenvalues µg+· µg- are related to each 

other by 

(3B.36) 

[Eqs . (3B. 19b) and(3B.2 1b)]. The noise matrices Sz, Sp. Srp, T and Q for the 

two-mode GPS I ~) are obtained by inserting these expressions (3B.35) for 

Pc, Ps, Pp, and Pz into Eqs . (3B.32) . The components of the noise matrices 

T and Q were given explicitly in the preceding section [Eq. (3A.84)]. 

The phase angle 6z in the coordinate-space wave function ( ~ I J.};g) for 

the GPS IJ.!;g) = Ug IJ.!;g)coh is obtained from Eq. (3B. 16) . The calculation is 

described in Appendix B. The result is 

JU 6 
ell' '" = 

(detPz *)* 

I detPz I* 
(3B.37) 
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[cf. Eq. (2B.39)]. 

To conclude this discussion of two-mode Gaussian wave functions , con-

sider briefly the momentum-space wave function for a two-mode Gaussian 

pure state, <,e l ~g). obtained by Fourier transforming <~ l ~g> [Eq. (3B.l )] ; 

here the dimensionless momentum variables P r. are the eigenvalues of the 

Hermitian operators Pr.· The momentum-space wave function has the follow-

ing form: 

(3B.38a) 

where the (real) normalization constant frig is 

(3B.38b) 

[cf . Eqs. (3B. l ) , (3B.7), and (2B.40)]. The phase angle 6p is related to the 

coordinate-space phase angle 6z by 

i6p -i 6. 
e = e • 

detM 
ldetM I 

-i6. = e • 
det(Szp + ~ 1) 

I det(szp + ~ 1) I 

--?ti 6 
For the state l ~g > = Ug leg >coh the phase factor e Pis 

e~6P = (detPp*)* 
I detPp i* 

[cf . Eq. (2B. 42)]. 

(3B. 39) 

(3B.40) 

The position and momentum probabilities have the usual Gaussian 

forms : 
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(3B.41a) 

(3B.41b) 

[cf. Eqs. (2B.43)]. 
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C. Fo~omponent vector notation for two-mode GPS 

The previous discussion has shown that the unitary operators that 

relate two-mode GPS to the vacuum state and to other two-mode GPS are 

rotation, mixing, displacement, and squeeze operators. Since these opera-

tors induce linear transformations on a± and a±t (or x± and P ±), it is useful 

to define the four-component operator column vectors 

a~ [ ~. x 
' x= p = Aa, 

"' a ... ... -
(3C. la) 

(3C. lb) 

[cf. Eqs. (2C.l)]. Here and throughout this section the components of four-

component vectors are grouped into two two-component vectors, and the 

components of four-dimensional matrices are grouped into four two-

dimensional block matrices. The symbol 1 is used to denote both the two-

and four-dimensional identity matrices . The expectation values of these 

operator column vectors are column vectors of complex numbers (for a) or ... 

real numbers (for£): ... 

~ = (x) = =Aµ . ... "' Po ... 
(3C.2) 

-
The adjoints of the operator column vectors are the row vectors 

at = ( at aT ) ' xt = ( XT PT) = XT ' 
Jld - 111:1 - - -

(3C .3) 

where a superscript " T" means transpose . The transpose of the adjoint of 

an operator column vector is denoted by a superscript"•" : 



(atf =a•= [~·1. 
"' "' a 
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x 
(xt)r=x•= ~ =x . 
.. "' p "' 

N 

(3C.4) 

Similar definitions hold for column vectors of complex numbers . Note that 

the product of a column vector and a row vector, e .g., a.a.t. is a tensor pro-.., .. 
duct (i. e., a four-dimens ional matrix), whereas the product of a row vector 

and a column vector, e.g ., a.ta, is a scalar product (i.e., an operator or 
"' "' 

number). 

There are six (Hermitian) four-dimensional matrices , in addition to the 

identity matrix, that arise naturally with this vector notation. They are 

"-(01) "-(0-il)" (10) 
Li[ = 1 0 ' L.; 2 = i 1 0 ' L.; 3 = 0 -1 ; (3C.5a) 

(3C .5b) 

Different, but equivalent, matrices have been used by Milburn 33 to discuss a 

subset of two-mode GPS. Each of these two sets of matrices satisfies proper-

ties analogous to those of the two-dimensional Pauli matrices. For example, 

(3C.5c) 

It is useful to define rotated versions of ~ 1 • ~2 and r 1• r 2: 

(3C.6a) 

(3C .6b) 

(3C.6c) 
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. r . r [ a ,-~rr 0 ] r,~rr = 1sm2r,o + 2cos2r,o = 0 - • 
a,~rr 

(3C.6d) 

[cf. Eqs. (2C.6)]. Note that p::;,, ~,-~rrJ = ~3 • and [r,, r,~rrJ = f 3. The follow-

ing projection matrices are also useful: 

(3C.6e) 

Some of the most useful properties of these matrices follow: 

(3C.7a) 

(3C.7b) 

(3C.7c) 

(3C.7d) 

(3C.7e) 

P r 2i,E3 P r -2i,E3 _ . " r 
+ 1 e - - 1 e - i L..3 , - ~rr · (3C. 7f) 

The commutation relations for a±, a±t and x±, P± are expressed by the 

Hermitian commutator matrices 

(3C.Ba) 

(3C.Bb) 

[Eqs. (3A. 9); cf. Eqs. (2C. 7)]. 

The rotation, mixing, displacement, and squeeze operators for two 

modes are expressed in this vector notation in the following ways: 
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N ~ = et- Pt- + e _ P _ = es 1 + ea 2:3 r 3 = 111 (3C 9a) 

[cf. Eqs. (3A.19)]; 

(3C.9b) 

[Eqs. (3A.36)]; 

(3C.9c) 

[Eq. (3A.29) ]; 

(3C.9d) 

[Eq. (3A.50)]; 

(3C.9e) 

[Eqs. (3A.53)]. 

A unitary transformation of a or !i generated by the (two-mode) dis-.. .. 
placement operator results in the addition of a constant column vector: 

D(a,µ) aDt(a,µ) =a-µ, D(a,µ)xDt(a,µ) = !i- ~ 
--lltf -- - "=I --lltf -- - -

(3C.10) 

[Eq. (3A.3 1)]. Unitary transformations generated by rotation, mixing, and 

squeeze operators result in matrix transformations of a (and£). One way to .. "' 

obtain these transformation matrices is to note the following general rela-

tion, valid for an arbitrary four-dimensional symmetric matrix K, which 



- 127 -

follows from the fact that the commutator matrix [a, at] = 2:3 : ...... 

(3C .11 a) 

_ " ( T ) _ [-(Ka. + Ka T) -(Kb + Kb T) ] 
Ko - -L.3 K + ~1 K 2:1 - (J<c +Kc T) (Ka. T + Ka) · (3C.llb) 

where the matrix K is defined to be 

(3C. l l c) 

with Ka., Kb, Kc, and Ka arbitrary two-dimensional matrices . Note that if Ka., 

Kb , Kc, and Ka are all symmetric, 

(3C . ll d) 

Equation (3C. l l a) implies that 

... ... (3C . l l e) 

This relation, together with the expressions (3C .9), implies that the matrix 

transformation induced on a by the rotation operators is ... 

. N ~ 
R(e)aW(e) = ei £J 3 a 

- lltf - lltf 

(3C.1 2) 

[Eqs. (3A.23)]. The matrix transformation on a induced by the mixing opera-
"' 

tor is 

. r 
T(q.x)art(q.x) = eiq x~"'a ... ... (3C. 13) 

[Eqs . (3A.39)]. A product of two single-mode squeeze operators induces the 

matrix transformation 
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(3C.14) 

[Eqs. (3A.52)]. Finally, the matrix transformation induced on a by a two-.. 
mode squeeze operator is 

(3C.15) 

[Eqs. (3A.56)]. The simple form of the transformation matrix P 2 associated 

with the two-mode squeeze operator S(r. rp) or, equivalently, the simple 

form of the matrix N2 that defines S(r. rp) [Eq. (3C.9e)]. shows why the pro-

perties of two-mode squeezed states can be described using only a two-

component vector notation. This two-component vector notation is one 

which naturally groups a+ with a_t and a_ with a+t [see Eq. (3A.60) and sur-

rounding discussion]. 

The product of the transformation matrices (3C. 14) and (3C .15), i.e .. 

the transformation matrix that results from unitarily transforming a with .. 
the product S 1+S 1_S = Ug of three squeeze operators, is denoted by the 

symbol P. 

(3C. 16) 

[Eqs . (3A. 73)]. The transformation matrices for x are unitarily related to .. 
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those for a by the unitary operator A [Eq. (3C.lb)]. .. 
The transformation matrices (3C.1 2)-(3C.1 6) arise naturally, without 

specific reference to the rotation, mixing, or squeeze operators, from the 

requirement that a unitary transformation on a+- and a_ (or x+-, x_, fi+, and 

fi_) preserve the commutators (3C .9) . Consider first the real, four-

dimensional matrices M that describe unitary transformations on the (real) 

column vector x: M x = U x ut . The unitarity of U implies that these .. ... .. 
matrices preserve the (antisymmetric) commutator matrix [ .i, .xr] = -l:2 .... 
[Eq. (3C.8b)], i.e ., 

(3C .1 7a) 

The real matrices M that satisfy this condition have unity determinant. 

They comprise the ten-parameter symplectic group Sp(4,R). 41 Milburn 33 has 

used the properties of Sp( 4,R) to describe a subset of two-mode GPS which 

he calls "minimum-uncertainty states" (a more restrictive subset that that 

described in Section IIIA.7 of this paper) . The complex, four-dimensional 

matrices M that describe unitary transformations on the column vector 

a = At£, Ma = U a ut, are unitarily related to the real matrices M by the 
,_, illltf -- .. 

matrixA [Eq. (3C. l b)]: 

M=AtMA . (3C.17b) 

These matrices M comprise a ten-parameter subgroup of the fifteen-

parameter, noncompact group SU(2,2) . The latter consists of all complex, 

four-dimensional matrices that have unitary determinant and that preserve 

the metric l:3 (i.e ., the commutator matrix [a, at] = l:s), 
"' .. 

(3C. l 7c) 
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The ten free (real) parameters associated with the transformation matrices 

M and M can be identified with the parameters of the unitary operators U 

that induce the matrix transformations. The generators of these unitary 

operators are bilinear combinations of the annihilation and creation opera-

tors for the two modes; ie ., these unitary operators are the rotation, mix-

ing, and squeeze operators for the two modes . The underlying Lie algebra 

for these groups is that of (combinations of) the ten bilinear products of a+-· 

ci_, a+-t• and a_t , The preceding discussion of the rotation, mixing, and 

squeeze operators shows that the matrices M have the general form 

(3C. l 7d) 

where e±, r ±• r, CfJ ±, rp , q, and x are real, continuous parameters [Eqs. 

(3C . i 2)-(3C. 16)]. 

The general forms for the transformation matrices M and M can also be 

obtained in other ways . For example, note that any four-dimensional matrix 

M that describes a unitary transformation on~ must satisfy 

(3C. 18a) 

since a= L: 1 a*. This means that the matrix M has the general form .. .. 

(3C. 18b) 

where Ma and Mb are arbitrary two-dimensional (complex) matrices. It also 

implies that 

(3C .1 8c) 

[cf. Eq. (2C .1 6c)]. The unitarity of the transformation ensures that the 
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Hermitian commutator matrix [ ~, ~t] = 2:3 is preserved [Eq. (3C. l7c) J and 

that the antisymmetric commutator matrix [a, aT J = i 2: 2 is preserved, 
"' "' 

(3C.1 Bd) 

i.e ., both products in (3C.1 Bc) are equal to the identity matrix. These condi-

tions remove six of the sixteen degrees of freedom associated with the 

matrix M of Eq. (3C .1 Bb), by imposing the following equivalent sets of condi-

tions on the two-dimensional matrices Ma and Mb: 

M M T - (M M T)T - 0 
(J b (J b - (3C.1 Be) 

[imposed by the first equality in Eq. (3C. l 7c) or ( 3C. l Bd) J, or 

(3C.1Bf) 

[imposed by the second equality in Eq. (3C . ~ 7c) or (3C .1Bd)]. These condi-

tions also ensure that detM = 1. Hence the matrices M have the general 

form (3C. 17d), with ten free real parameters . 

The four-component vector notation is a powerful aid in calculating the 

(second-order) noise matrices Q, T, Sz, Sp , and Srp for two-mode Gaussian 

(pure or mixed) states . The four-dimensional matrix that contains all 

second-order noise moments of a ± and a±t is the Hermitian matrix 

(3C. 19a) 

The four-dimensional matrix that contains all second-order noise moments 
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of x :t and p :t is the (real, symmetric) covariance matrix 

= [ s"r ~*P ) = A@At = $* = :gT . 
S:r:p P 

(3C. 19b) 

The relations (3B. l 1) imply that for two-mode GPS these matrices satisfy 

(3C.20a) 

(3C.20b) 

[cf. Eqs. (2C.22)]. Hence their determinants are both equal to~ . For a two-

mode coherent state both are proportional to the identity matrix: 

@coh = Scoh = Y,, 1 (3C.21) 

[Eqs. (3A.89)] 

The noise matrix @ for a (two-mode) state It) is related to that of a 

rotated state R( e) j t) by 

-iN l: iN l: < W (6atiat)symR) = e ,,. 3 ~e ,,. 3 
, ...... (3C.22) 

in agreement with Eqs. (3A.28) . It is related to that of a state T(q, x) It) by 

· r · r < rt(q .x) (tiatiat)sym T(q .x)) = e -iq x~11" @eiq x~". ...... (3C.23) 

Finally, the noise matrix @ for a state It) is related to that of a state 

(3C.24) 

This immediately tells one, for example, that the noise matrix @ for the 
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(most general) two-mode GPS I ~) defined by Eq. (3B.23) is 

(3C.25) 

These are precisely the noise moments derived in the preceding sections 

[Eqs. (3B.32) or (3A.84)]. 

Finally, the four-component vector notation is a useful aid for seeing 

how the unitary operator whose generator is an arbitrary combination of the 

Hermitian forms HR(2l, H 1(2l, and H 2 (2) factors into a product of three 

squeeze operators, a mixing operator, a (two-mode) rotation operator, and a 

(two-mode) displacement operator (and an overall phase factor). By giving 

these generators arbitrary time dependences, one can calculate the evolu-

tion operator associated with the most general combination of Hamiltonians 

that can produce two-mode GPS . This result is given here, with some sup-

porting details presented in Appendix A. 

The rotation Hamiltonians associated with two-mode GPS are expressed 

in vector notation by 

(3C.26a) 

(3C.26b) 

where c.>± (or c.>s, c.>ct). p, and Xp are real-valued function of time t [Eqs. (1. 3), 

(3A.20), (3A.36); cf. Eqs. (3C.9a,b)]. The linear and quadratic Hamiltonians 

associated with two-mode GPS have the forms 
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~ = [ ~:] . (3C.26c) 

where At are complex-valued function of time t; 

(3C.26d) 

[Eqs. (l.4); cf. Eqs. (3C.9c,d)], where IC± and rp" are real-valued functions of 
± 

t; and 

(3C.26e) 

[cf. Eq. (3C.9e)], where IC and rp are real-valued functions of time t. 

The evolution operator U(t) is the solution to the equation 

iBt U(t) = Hc(2l(t) U(t) , U(O) = 1 , 

(3C.27) 

It can be written as the product 

U(t) = ei 6 S 1+(r +•Cf'+) S 1_(r -· rp_) S(r, rp) T(q, x) R(e+.e-) D(C:, ~g) (3C.28a) 

= ei6D(a,µ)S 1+(r+,Cf'+)S 1_(r_,rp_)S(r,rp) T(q.x)R(e+.e-), (3C.28b) - -
where r±, r, 'Pt· rp, q, x. and e± are real-valued functions of time, andµg± (or 

µ±) are complex-valued functions of time [cf. Eqs. (3B.27)]. [For notational 

convenience here, I often drop explicit reference both to the time 
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dependence of these functions and to the dependence on these functions of 

the unitary operators, e.g ., r± = r ±(t), and SI±= Su(r ±.r,o ;; ) .] The state 

[~) = U(t) [D) is an eigenstate of operators g± = U(t)a ± ut(t) (with eigen-

values /.lg±), whose relations to a ± are described by the vector relation 

= e iN 11L3 e iq rX~" pa .. (3C .29a) 

[Eqs. (3C.12)-(3C. 16)]. The eigenvalues /.lg ± are therefore related to the 

complex amplitudes f..l± =<a±) by 

i.NL: ·r = e 9 3 e iq x~" p f..l . (3C .29b) .. 

The relations of the functions r, r ±• rp, Cf'±· e± (or es , ea) . f..lg ± (or f..l±) , and 6 to 

the Hamiltonian functions IC, IC±, r,o", r,o"±' CJ::: (or CJs , CJa), and /\.± take the form 

of matrix, vector, and scalar equalities . The vector and scalar equalities are 

(3C .30a) 

(3C.30b) 

(Dots denote derivatives with respect to time .) The matrix equality is given 

in its full generality in Appendix A [Eqs . (A.1 3)-(A. 15)]. The initial condi­

tions, dictated by U(O) = l , are 

(3C.31) 
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For illustration, consider the case 

t 

fPc± = rp"±o - Jc.>± dt = fPc ± Xp . 
0 

t 

fPc = fPc0 - J c.>s dt , 
0 

t 

Xp = XJ>o - J c.>ct dt , 
0 

(3C.32) 

where rp"±o' rp"o' and Xp0 are constants. The matrix equality then implies that 

t 

fP± = rp"± ' rp = fPc' x = Xp ' e± = Jc.>± dt ; (3C.33a) 
0 

p = q cosh2r cosh2r a - r sinh2r a , 

1e± = r ± + q sinh2r . 

IC= r cosh2ra - q cosh2r sinh2ra , (3C.33b) 

(3C .33c) 

If the mixing interaction is absent (p = 0) , and if IC+ = ic_ =IC'. the four cou-

pled equations (3C .33b) have the following simple solutions : 

t 

r + = T _ = J IC' dt 
0 

q = 0 . (3C.34) 

The phase angle 6 and complex numbers µg± (orµ±) are obtained by using 

these solutions to solve the vector and scalar equalities (3C .30a,b) . 
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Appendix A:. Evolution operators for GPS 

In this appendix I derive certain properties of the unitary operators 

associated with single-mode and two-mode GPS which are useful for calculat-

ing the general evolution operators described in Sections IIC and IIIC [Eqs. 

(2C .28)-(2C.39), Eqs . (3C .26)- (3C .33)]. 

1. Single-mode GPS 

One way to find the single-mode evolution operator U(t) defined by Eqs . 

(2C.28)-(2C.30) is to take the derivative with respect to time of either of the 

factored expressions (2C .30) for U(t), and match terms with the Hamil-

tonian. This is the approach described here . An alternative approach, which 

permits calculation of everything except the phase factor ei 6 in the expres-

sions (2C.30) for U( t ), is to solve in the Heisenberg picture the matrix equa-

tion ~( t) = M(t) ~( O), and identify the unitary operator Ug that generates M; 

then ;:(t) = Ugt;:(O) Ug.29 The product of Uganda displacement operator is 

the evolution operator U( t ), up to an overall phase factor . 

The first (and hardest) task involved with computing the time derivative 

of the expressions (2C .30) for U(t) is to compute the (first-order) deriva-

tives of each of the unitary operators S 1(r , rp ) , R(e), and D(a , µ) ; the se cond 

task is to commute these operators through each other. The time derivative 

of the expres sion (2C .30a) for U (t) is 

where Dg = D(a,µ1 ) , and a superposed dot denotes a single derivative with 

respect to time. These time derivatives can be found using the general rule 

[ Btef (tl]e-f (t)= f; !fnil
1 
=i + ~[J ,j]+ 1i-[t. [/ , j]J+ ... (A.2) 

n=O (n + 1). 2. 3. 
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(derived in Part 3 of this appendix). The time derivative of S 1(r, <,0) can be 

calculated with the help of the following facts : 

(A.3a) 

(A.3b) 

(A.3c) 

The result is 

(A.4) 

The time derivatives of R(e) and D(a.Ji"]) are 

(A.5) 

(A.6) 

Note that /.lg = Ot (µg) 7:- (/.l)g. 

Commuting the operators through each other to find the last two terms 

in Eq. (A. l ) is accomplished using the transformations in Eqs . (2C.10) and 

(2C .11 ) . Equating i U ut to the sum of the Hamiltonians on the right-hand 

side of Eq. (2C.29) then results in the relations (2C .32), which define the 

functions r, rp, e, Ji"] (orµ), and 6 uniquely in terms of the Hamiltonian func­

tions IC, rp", 0, and 'A. 
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2. Two-mode GPS 

AB in the single-mode case , the first task is to calculate the (first-order) 

derivatives of the various unitary operators, and the second is to commute 

the operators through each other. The time derivative of the expression 

(3C.28a) for U(t) is 

(A.7) 

where Dg = D(a.,µ
9 

), Ug = S 1+S 1_S, and a superposed dot denotes a single 
N - -

derivative with respect to time. Using the relation (A.2) one finds the follow-

ing expressions for the derivatives of these operators : 

Ng = t; + P + + e - P - = t; s 1 + ()a l:s r s ; (A.8) 

T rt = -~i a.t Mr a. , 
"' "' 

(A. 9) 

(A.1 0) 

(A.11) 
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(A. 12) 

Commuting the operators through each other to find the last three 

terms in Eq. (A. 7) can be accomplished with the help of the transformations 

described in Eqs . (3C. 12)-(3C. 16) . Equating iU ut to the sum of the Hamil-

tonians on the right-hand side of Eq. (3C .27) then results in matrix, vector. 

and scalar equalities, which define the functions r, r ±• cp, cp±, q, x. e±, µg± (or 

µ±), and 6 uniquely in terms of the Hamiltonian functions JC, JC±, cp", cp"±' p, Xp· 

0±, and\.± . The vector and scalar equalities were given in Eqs . (3C.30) . The 

matrix equality is 

(A. 13) 

[Eqs . (3C. 12)-(3C . 16) and (A.8)-(A. 12)]. The matrix transformations required 

in order to put the right-hand side of Eq. (A. 13) into a form that is easily 

compared with the left-hand side (the Hamiltonian) can be accomplished 

fairly easily by making use of the properties of the matrices l:i and ri noted 

in Eqs . (3C.5)-(3C.7). The terms that comprise the right-hand side of Eq. 

(A. 13) are listed below, with the four-dimensional matrix that multiplies it 

listed at the left of each term. The following shorthand notations are used: 

(A. 14) 
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The terms are as follows: 

P + : - (p + + cosh2r +[ 6+ + 'Ys cosh2r + la cos2q] 

+ sinh2r sinh2r +['Ya sin2q cos2o+ - q sin2o+], (A.15a) 

p _ : -rp_ + cosh2r _[ 6_ + 'Ys cosh2r - -Ya cos2q] 

+ sinh2r sinh2r _ [7a sin2q cos26- + q sin2o_] , (A.15b) 

~3 fx~1T : q cosh2r cos hr+ coshr _ , 

~3 r c5+ -6_ +x~1T : -q cosh2r sinhr + sinhr - ' 

~3 r c5+ +x-l(1T : -r sinhr + c oshr - ' 

(A.15c) 

P + ~ 91 + +6+ ~1T : -q sinh2r sinh2r + , 

P + ~ 91+ -6+ ~1T : q sinh2r cosh2r + ; (A. 15d) 

(A.15e) 

B 91 ~1T : r coshr + coshr _ , 

B 91 +6+ ~!T : -q cosh2r sinhr + coshr _ , 
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B,+6_...JJ.rr: q cosh2r sinhr _ coshr + ; (A.1 5f) 

B, )'Sots sinh2r coshr + coshr _ , 

B,+6++6- : 'ls sinh2r sinhr +sin.hr_, 

B,+6+ : 'la sin2q cosh2r sin.hr+ coshr _, 

B,+6_: la sin2q cosh2r sin.hr_ coshr + ; (A.15g) 

~3 rx : 'la sin2q cosh2r coshr +cos hr_ , 

}.;3 rx+6++6- : 'Ya sin2q cosh2r sinhr +sin.hr_ , 

}.;3 rx+6+ : "rs sinh2r sinhr + coshr - ' 

}.;3 f x-6_ : ls sinh2r sinhr _ coshr + ; (A.15h) 

P + }.;'P+ +6+ : 'la sin2q sinh2r sinh2r + , 

P + ~,+ -6+ : la sin2q sinh2r cosh2r + ; (A. 15i) 

P _ ~,_ : sinh2r _ [ 6 _ + "rs cosh2r - 'la cos2q J , 

P - ~'-+6_ : 'la sin2q sinh2r sinh2r _ , 

P - ~'- -6_ : la sin2q sinh2r cosh2r _ . (A.1 5j) 

The obvious simplifying case is that considered in Section IIIC [Eq. (3C .32)], 

i.e ., the case with 

6+ = 6_ = O. (A.1 6) 
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The results for this case and further simplifying cases are given in Section 

me. 

3. Derivation of Equation (A.2) 

The formula (A.2) for a, el(t) can be found as follows : First, use the stan-

dard definition for derivatives, and keep only terms of lowest order in 6t : 

l(t) - lim [ el(t +ot) - el(t) ] - lim [ el(t)+oti(t) - el(t) l 
a, e - 6t __. 0 M - 6t __. 0 6t . (A. 1 7) 

Next, use the definition of ez to write 

As n __. oo, let 1/ n __. dx , where the variable x ( = j In) runs from 0 to 1. 

Then 

l 

el +6tj - el = 6t J dx ezl j e -zl el + O(M)2 . 
0 

The relation (A.2) is then proved by noting that 

(A.19) 

- xn . . . x2 . 
ezf j e -z1 = I; -, Un fl = f + x [! . f] + -

2
, [/. [/. ! ]] + .. .. (A.20) 

o n. . 
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Appendix B: Phase factors for wave functions 

~6 }ti6 The phase factors e '" and e ,, in the single-mode and two-mode 

coordinate- and momentum-space wave functions can be found using Eqs. 

(2B.16) and (3B. 16), respectively . The method described here for single-

mode GPS (i.e ., single-mode squeezed states) makes use of a factored form 

for the single-mode squeeze operator [Eq. (2C . l 7)]. Another method, not 

described here but straightforward, uses a differential equation approach.51 

For the most general two-mode GPS the calculation is more challenging. 

One could try to use the same method described here for single-mode GPS, 

which would require computing a factored forms(s) for the product of the 

three squeeze operators . These factored forms are not as convenient as 

their single-mode counterparts, however, because they involve many opera-

tors that do not leave the vacuum state unchanged. The differential equa-

tion approach, while possibly more promising, still involves a painful process 

of commuting operators through each other. Although no simple derivation 

is given here , the phase factor for a general two-mode GPS can be guessed 

with reasonable certainty. Of course, for two-mode squeezed states the cal-

culation is no more difficult than for a single-mode squeezed state, since the 

two-mode squeeze operator factors just as easily . Similarly , for states that 

are a product of two single-mode squeezed states the phase factor is just 

the product of the single-mode phase factors . 

~6 The coordinate-space phase factor e '" for a single-mode squeezed 

state is found , from Eq. (2B.16), by calculating 

(B. 1) 

The factored form for Ss (r, ~)given in Eq. (2C. l 7) implies that 

.. ( ~ e2i~ tanhr )n 
S 1 (r.~) J O)= ( coshr)--*L::-

1 
~J 2n). (B.2) 

n=O n . 
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The wave function for a munber state In ) = (n) 1--1i (at)n I 0) is 17 

(B .3a) 

where 

(B.3b) 

and Hn (x) is a Hermite polynomial with the property that 

H 211 (O) = (- l )Ti zn (2n -1)' ! . (B.3c) 

These relations then imply that 

> _JJ _u f-. (2n - 1) 11 2 · (x =O IS1(r,r,o) IO = rr~(coshr)--n L,, , .. (~e \ 91 tanhr)n 
n=O n . 

= rr-¥(coshr - e 2i"'sinhr)--?i. (B.4) 

The phase factor in the coordinate-space wave function of a single-mode 

squeezed state I .Ua ) (r .11>) is therefore 

u..· 6 
en· z = ( coshr - e - 2i91 sinhr )* 

I coshr - e -Zi 91 sinhr I* 

as given in Eq. (2B.39). 

(B.5) 

The phase factors in the wave functions of two-mode squeezed states 

can be calculated in this same way, since factored forms for the two-mode 

squeezed operator are known and result in no more complication than 

encountered above. Using the factored form analogous to that in Eq. 

(2C .17) , i.e ., with the relevant two-mode operators replacing the single-mode 

operators (see the discussion in Section IIIA.5), one obtains the following 

phase factor for the wave function of a two-mode squeezed state \.~.~·a> (r . \JI) : 
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( cosh2r - e -4i I" sinh2r )* 
I cosh2r - e - 4i I" sinh2r I* (B.6) 

For a product of two single-mode squeezed states the phase factor is simply 

the product of the phase factors for two single-mode squeeze states, as 

given by Eq. (B.5). These results, and the form of the single-mode phase fac-

tor (B.5), suggest strongly that the phase factor for the coordinate-space 

wave function for the general two-mode GPS I~) = S 1+- S 1-S I ~) coh is given 

by the following expression: 

u.. 6 en· :z; = (detPz •)* 
I detP:: I* 

(B.7) 
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Appendix: C: Simultaneous eigenstates of complex operators 

The complex (non-Hermitian) operators relevant for Gaussian states 

are linear combinations of creation and annihilation operators. The commu-

tators of such operators with their Hermitian conjugates are (real) 

nwnbers. The discussion in Sections IIB and IIIB showed that a single opera-

tor g of this type has a complete set of normalizable eigenstates if and only 

if the commutator [g, gt] is a positive real nwnber, since the latter is 

equivalent to the condition that the wave function be normalizable (if 

[g, gt] = 0, the wave function is a delta function) . 

Two-mode Gaussian pure states are eigenstates of two linearly indepen-

dent complex operators g + and g _, each of which is a linear combination of 

the creation and annihilation operators for the two modes. The discussion in 

Section IIIB showed that two such operators have a common, complete 

(overcomplete) set of normalizable eigenstates if and only if (i) the commu­

tator [g +• g _] = 0, and (ii) the commutator matrix Tg is positive-definite; 

these conditions followed from requiring that the (two-mode) wave function 

be normalizable. The commutator matrix Tg is defined as 

(C.1) 

The requirement that g + and g _ commute with each other if they are to 

have a complete set of simultaneous eigenstates is obvious, without recourse 

to a wave function. The further requirement that Yg be positive-definite, but 

not necessarily diagonal, is not so obvious; one might expect at first that the 

two operators must commute completely, i.e., that the commutator 
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[g +· g _t] must also vanish. Following is a simple argument that shows why 

Tg must be positive-definite, and why it need not be diagonal. 

Let g + and g _ be two complex operators (with c -number commutators) 

that corn.mute with each other completely, 

(C.2) 

Suppose also that each has a complete (or overcomplete) set of normaliz-

able eigenstates, i.e .. [g ±• g ±t] > 0. Clearly there exist normalizable states 

that are eigenstates of both g + and g _, and hence also of all linear combina-

tions of g + and g -· Consider two such (independent) linear combinations, 

g +' and g _•, defined by 

g' = [ g +; ) = Kg , 
- g_ -

(C.3) 

where K is any two-dimensional nonsingular matrix (detK -;t. 0). The opera-

tors g +' and g _, will certainly commute with each other, [g +', g _•] = 0, but 

the commutator [g +', g _,t] will not, in general, be zero. It will vanish if. for 

example, the operators g +' and g _, are obtained by unitarily transforming 

g + and g _ by the same unitary operator U, gt' = U g ± ut, since then all 

commutators are preserved. If, however, the operators g ~ and g _• are 

obtained by unitarily transforming g + and g _ by different unitary operators , 

(C .4) 

then only the commutators [g ±• g ± t] must be preserved, and the commuta­

tor [g +', g ~ t] need not vanish. The commutator matrix for the operators 

g +' and g _• is 

(C.5) 
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In general. all elements of Tg · can differ from those of Tg . The property of 

the commutator matrix that is preserved in the transformation (C.5) is 

positive-definiteness . A Hermitian matrix is positive-definite if and only if its 

eigenvalues are positive ; i.e., if I! is a vector of complex numbers with com-

ponents f.4. , i = 1. 2, .. ., N and M is an N-dimensional matrix with com­

ponents Mij , then M is positive-definite if and only if 

(C.6) 

for all vectors I!;· This shows clearly that Tg· is positive-definite if and only if 

Tg is positive-definite , since 

(C .7) 
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New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states 

Carlton M. Caves• 
Institute fo r Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106 

Bonny L. Schumaker 
Theoretical Astrophysics 130-33, California Institute a/Technology, Pasadena, California 91125 

(R~ived 21September1984) 

This paper introduces a new formalism for analyzing two-photon devices (e.g., parametric ampli· 
ficrs and phase-conjugate mirrors), in which photons in the output modes arc created or destroyed 
two at a time. The key propeny of a two-photon device is that it excites pairs of output modes in· 
dependently. Thus our new formalism deals with two modes at a time; a continuum multimode 
description can be built by integrating over independently excited pain of modes. For a pair of 
modes at frequencies !l±E, we define (i) quadrature·phas1 amp/i1udes, which arc complcx-amplirudc 
operators for modulation at frequency E of waves ''cos( !}(t -x /c)j" and "sin( fl( t -x /cl]" and (ii) 

cu:o-mode squeezed states, which arc the output states of an ideal two-photon device. The 
quadrature-phase amplitudes and the two-mode squeezed states serve as the building blocks for our 
formalism; their properties and their physical interpretation arc extensively investigated. 

I. INTRODUCTION AND OVER VIEW 

In this and the accompanying paper we introduce a new 
formalism for analyzing a particular class of nonlinear 
optical devices--Oevices that we call two-photon devices. 
The light produced by any optical system is an excitation 
of various modes of the electromagnetic field; the defining 
feature of a two-photon device is that its output light is 
generated by the simultaneous emission of two photons 
into two of the output modes. Examples of two-photon 
devices include parametric amplifiers, where the simul· 
taneously excited output modes are called the signal and 
the idler, and phase-conjugate mirrors (four-v.lave mixers), 
where the ouq:1ut modes are the transmitted and reflected 
waves. 

Two-photon devices can produce, in principle, special 
states of the electromagnetic field called squeezed states 1 

or two-photon coherent states.2 Squeezed states3•
4 have 

manifestly nonclassical properties; they might find appli· 
cation in low-noise optical communicationsi- 7 and in 
high-precision interferometric measurements. 1

•
8
•
9 Experi· 

ments to generate squeezed states and to investigate their 
properties are now underway in several laboratories. 10-

12 

Two-photon devices are to be contrasted with one· 
photon devices, such as the laser, in which photons are 
emitted into the output modes one at a time. The analyti· 
cal tools of quantum optics were developed to describe 
and analyze one-photon processes; thus they are designed 
to analyze situations in which the modes of the elec· 
tromagnetic field are excited independently. These tools 
are, in general, not adequate for analyzing two-photon de· 
vices, because a two-photon device excites modes in pairs, 
instead of singly. This series of papers develops a new set 
of analytical tools , which are suited to the description and 
analysis of two-photon devices. A brief, preliminary ac· 
count of our work can be found in Ref. 13. 

To motivate our approach, we start by reviewing briefly 
the formalism of one-photon optics. This review is 
heuristic, with emphasis on the features that tailor the 
formalism to the descripcion of one·phocon processes; in 
particular, we creat the electromagnetic field classically, 
ignoring its quantum-mechanical commutation relations . 
Consider a beam of light produced by a one-photon de· 
vice, and idealize the beam as a plane wave with a particu­
lar linear polarization. The electric field can ~ written as 
the sum of positive- and negative-frequency parts: 

£(x,tl=£1+ 1(x,tl+£1- '(x,tl, 

where 

( I.I) 

El+ l(x tl= J dUJ £(UJ)e-1o1.1-z/<1 
, ./ 21T , 

(!.2) 
£ (-)=(£(+ ))• . 

Here £ (u1l i~ the complex amplitude of che plane-wave 
mode at (positive) frequency UJ, and the integration runs 
over the bandwidth f of interest. That the photons in the 
beam are created one at a time means that the fluctuations 
in the electric field are due to random emission of single 
photons which have various frequencies and phases. As a 
result, the fluctuations at different frequencies are in· 
dependent, and the fluctuations at each frequency are dis­
tributed randomly in phase. The mathematical embodi· 
ment of these two statements is 

(li.E(UJ)A£(UJ')) =0, (!.Jal 

( A£(UJ)li.£.(UJ ' )) = ..!!._y(UJ)2m5(UJ-UJ') , (l.3bl 
2c . 

where li.E(UJ):;£(wl-(£(UJ)), .J"(w) is the flux spectral 
density of the electric field fluctuations (dimensions of en· 
ergy per areal, and b is a units-dependent constant (e.g., 

3068 ©1985 The American Physical Society 
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b ::41T in cgs Gaussian units). In Eqs. (1.3) and 
throughout this first section, brackets denote a classical 
statistical average. The noise produced by a one-photon 
device is conveniently characterized by a single function 
of frequency Y(w ), derived from the second moments of 
the complex amplitudes. Equivalent to Eqs. ( 1.3) is the 
more compact statement that the electric field has time­
stationary (TSl noise; i.e., the variance of the electric field 
is constant: 

.£.((a..£(x,r)j 2)= J dw .9'(w) (l.4) 
b f 21T 

(M(x,t):=£(x,t)- (E(x,t)) ]. 
Implicit in this discussion of TS noise is the assump­

tion, made throughout this paper, that the noise is Gauss­
ian, so that second moments are sufficient to characterize 
it. An important consequence of Gaussian TS noise, 
which does not hold for TS noise in general, is that the 
modes at different frequencies are statistically indepen­
dent [Eqs. ( I.J)j. The restriction to Gaussian noise will be 
lifted in a future paper (paper III of this series), where the 
relations among Gaussian noise, TS noise, and ·statistically 
independent modes will be considered. 

The key properry of a one-phocon device is that its output 
consisis of independently excited modes with TS noise. In 
terms of constructing a formalism, this property has two 
crucial consequences, which can be thought of as the 
cornerstones of one-photon optics: (i) one can deal with 
one plane-wave mode at a time, building a continuum 
multimode description by integrating over independently 
excited single modes; (ii) the natural variable to charac­
terize the excitation of each mode is its complex ampli­
tude £(w). 

One is now in a position to identify the fundamental 
"building blocks" of one-photon optics. Specialize to a 
single mode at frequency w. The natural quantum­
mechanical operator for the mode is its annihilation 
operator 

a(w):=(2cAqlbliwl 112E(w), (1.5) 

which is just the mode's complex amplitude rewritten in 
"units" of square root of the number of quanta per root 
Hz. ( Aq is an appropriate "quantization area" transverse 
to the propagation direction.) The natural quantum states 
for the mode are the coherent states 14-the states generat­
ed from the vacuum by an ideal one-photon process (e.g., 
a classical current distribution radiating into the vacuum). 
The coherent states are eigenstates of the annihilation 
operaior; thus they have the sharpest complex amplitude 
permitted by quantum mechanics. The formalism of 
one-photon optics is founded firmly on the annihilation 
operator as the fundamental operator and on the coherent 
states as the fundamental quantum states. 

Real one-photon devices do not exhibit ideal behavior. 
Describing their nonideal behavior requires consideration 
of the complicated interaction of the light with atomic 
systems and of the effects of losses and their associated 
fluctuations . One approach to analyzing the light pro­
duced by a real one-photon device is to derive an equation 
for the evolution of the reduced density operator (quan­
tum state) of the electromagnetic field. This equation, 

which is called the master equation, is generally a compli­
cated operator equation not directly amenable to analysis. 
A powerful technique for rendering the master equation 
more tractable is to convert it into an equivalent c-number 
partial differential equation-a Fokker-Planck equa­
tion-for the evolution of a quasiprobability distribution 
(QPDl. A QPD is a rigorous and complete representation 
of a density operator (i.e., it contains all the quantum 
statistics associated with the density operator), but it re­
tains the appearance and some of the interpretation of a 
classical probability distribution. 

The definition and interpretation of the QPD's used in 
one-photon optics ("one-photon QPD's") are intimately 
related to the use of the annihilation operator and the 
coherent states as the fundamental building blocks. 1i- 17 

More than one QPD is associated with a given quantum 
state, each QPD corresponding to a different way of or­
dering the creation and annihilation operators. For a sin­
gle mode of the electromagnetic field, each one-photon 
QPD is a function of a comple.~ numberµ, which is a c­
number analog of the mode's annihilation operator. The 
expectation value of a suitably ordered product of creation 
and annihilation operators is calculated using the ap­
propriate QPD as though it were a classical probability 
distribution. The one-photon QPD's a.re powerful tools 
for analyzing real one-photon devices, but based as they 
are on the annihilation operator and the coherent states, 
they are tools designed specifically for one-photon pro­
cesses and are not necessarily suited to the analysis of 
two-photon devices. For example, one of the most useful 
and most used one-photon QPD's is the Glauber­
Sudarshan P function, 18• 19• t4 which reproduces the nor­
mally ordered statistics of a and a 1; this QPD does not 
exist as a well-behaved distribution for the squeez.ed states 
that can be produced by two-photon devices.20 

Our philosophy has been that a new task requires new 
tools. The first step is to identify new operators and new 
quantum states, which are suited to the description of 
two-photon processes; this task is carried out exhaustively 
in papers I and II of this series. The second step is to use 
these operators and states to define "two-photon QPD's" 
that can be used to analyze real two- photon devices; this 
task will be tackled in paper III. 

To simplify the introduction of our formalism, consider 
as an example a parametric amplifier, the prototype for 
all two-photon devices. In a paramp an intense laser 
beam ac frequency 2!1-che pump beam-illuminates a 
suitable nonlinear medium. The nonlinearity couples the 
pump beam to other modes of the electromagnetic field in 
such a way that a pump photon at frequency 2!1 can be 
annihilated to create "signal" and "idler" photons at fre­
quencies n ±€ and, conversely, signal and idler photons 
can be annihilated to create a pump photon. Thus the 
light produced by a paramp consists of pairs of simul­
taneously emitted photons which excite pairs of modes 
at frequencies !1 ±€. fn general, the modes in each 
pair have correlated complex amplitudes [i.e., 
(Ll.EW+c)a..£{!1-€)),;eO; cf. Eq. (l.3al]. This fact cells 
one immediately that the formalism of one-photon optics 
must be abandoned; the correlations produced by two­
photon processes cannot be described in terms of indepcn-
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dently excited single modes. 
The electric field at the output of a param p has the 

same form as Eq. (I. I); the difference lies in the correla­
tion between the modes in each pair. It is useful to 
rewrite the field by factoring out the time dependence at 
frequency n. Define (real) quadrature phases EI (.~ , I) and 
£ 2(x,1Jby 

(1.6) 

E 1 + i£2 is the complex amplitude of the electric field, de· 
fined with respect to the carrier frequency n. In terms of 
the quadrature phases, the electric field is given by 

E(x ,t J =£ 1 (x , I lcos[!1{1-:c le ) J 

+£2(x,1)sin(!1(1-.tlcl]; ( 1.7) 

thus, £ 1 and £ 2 describe modulation of waves 
"cos(!l(r-x l c )]" and "sin[nt1-:c l c)]. " The quadra· 
ture phases can be written in terms of their Fourier com· 
ponents: 

E (x I)= J f!!.(E (c )e-1111-x1< 1 
'" • JI 21T '" 

( 1.8) 

Here the integral runs over a suitable set f!J( of (positive) 
modulation frequencies c, and 

E1 (€)=EW+c l+E·w-€ ) . 

£ 2(c )= -i£W+cl+i£. (!1-c) . 

( l.9a) 

( l.9b) 

The Fourier component £ 1(£) (£2(c)] is a complex am· 
plitude for modulation at frequency c 

1 
of a wave 

cbs(!l{t-x l c )] (sin[!1U -x l c )j) . Now consider the 
emission of a pair of photons at frequencies n ±c. The 
conventional view is that these photons excite a pair of 
modes that are sidebands of the carrier frequency n; an 
equally good alternative view is that they excite directly a 
modulation at frequency E of a wave at frequency n. 
Roughly speaking, if the phases of the two photons are 
such that £(!1+~-J=£. ( !1-o), then they excite £ 1(o ); if 
the phases are such that £ (!1+cl= -E·m-cl, then 
they excite £ 2(€). Our message is that two-photon optics 
should be formulated in a different language from one· 
photon optics. In one-photon optics attention focuses on 
the electric field E(x,t) and its Fourier components £(cu); 

emission of a pho•on excites a mode at a particular fre· 
quency. In two-photon optics attention shifts to the 
quadrature phases £ 1(x,t) and £ 2(x ,t) and their Fourier 
components £ 1(1: ) and £ 2(i:); emission of a pair of pho­
tons excites one of the quadrature phases at a particular 
modulation frequency . 

With this new language in hand, the discussion of 
natural variables for two-pooton optics is just a transla· 
tion of the preceding review of one-photon optics. The 
fluctuations in the quadrature phases are due to random 
emission of pairs of photons, which excite the quadrature 
phases at various modulation frequencies with various 
phases [phase in this context is the phase of the (complex) 

Fourier component £ 1(€) or £ 2(cl] . As a result, the fluc­
tuations at different modulation frequencies are indepen­
dent, and the fluctuations at each modulation frequency 
are distributed randomly in phase. This means that the 
quadrature phases have time-stationary noise-a kind of 
noise that we call time-stationary quadrature-phase 
(TSQPJ noise. 13•21 For Gaussian noise the conditions for 
TSQP noise are 

( ~'" ( i: l AE.(c' ))=O , · ( l.!Oal 

( ~'" (c lilE;(i:' )) = !!. y '"" (i: )2iro(i:-c') , 
c 

( l.!Obl 

where m,n = 1,2, AEm (i:l=E ... (c)- ( £'"(€)). and 
.Y '""(el=.Y:,,,(i:) is the flux spectral-density matru for 
the quadrature-phase fluctuations (dimensions oi ~nergy 
per area; cf. Eqs. ( l.Jl] . Equivalent to Eqs. ( l. lOl is the 
time independence of the covariance matrix of the quad­
rature p bases: 

( I.I !) 

[m ,n = 1.2; AE ... (x,t)=:E ... (x,t)-(E,.. (x,t)); "Re" 
denotes "the real part or' ]. Unlike TS noise, TSQP noise 
allows the quadratures to carry different amounts of noise 
(.Y' 11 ,,:.Y 22 l, and it allows them to have a nonvanishing 
time-stationary correlation (Re<.? 12 )?0]. This me:LOS 

that the variance of the electric field is not, in general, 
constant: 

f ([AE(x ,t)j 2
) 

= J;r ~; !Y11+ Y iz+(J"11- Y n lcos(2!1(r -x l e l] 

+ 2Re<Y 12 )sin(2!1( t -x l e lJ l ( l. 12) 

[cf. Eq. (1.4)]. Equations ( 1.11) and (l.!2 ) can be inter­
preted as saying that the fluctuations in the electric field 
are not distributed randomly in phase, where phase is here 
defined relative to frequency n. 

The key properry of a rwo-photon device is thar irs ourpur 
consists of independently excited pairs of modes wirh TSQP 
noise. This property is the reason that two-photon optics 
is formulated more conveniently in terms of the quadra­
ture phases and their Fourier 'components than in terms of 
the electric field and its Fourier components. The conse· 
quences of this property, and the cornerstones of two­
photon optics, are the following: (i) one can deal with one 
pair of modes, i.e., one modulation frequency, at a time, 
building a continuum multimode description by integrat· 
ing over independently excited pairs of modes; (ii) the 
natural variables for each pair of modes are the Fourier 
components E 1 ( i;) and £2 (€). 

We can now identify the fundamental building blocks 
for two-photon optics. Specialize to a pair of modes at 
frequencies !l±e. The natural quantum-mechanical 
operators for the modes are the quadrature-phase ampli· 
tudes a 1(e ) and a,(i: J, 13•21 defined by 
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al(<)= [ ::; r2

E1(€) 

= [ ~~· r/2a(!l+e)+ [ ~~· r2at{!l-€)' 

( l.l 3a) 

az(<)= [ ::; J1
12 

Ez(€) 

=-i [ 
02~• J1

12

am+<l+i [ ~~e J1
12

atm-el 

(1.13b) 

[Eqs. (1.5) and (1.9)]. The quadrature-phase amplitudes 
are simply rescaled versions of E 1 ( €) and E 2 ( e )-rescaled 
to be in units of square root of the number of quanta, re· 
ferred to the carrier frequency n, per root Hz. The natur· 
al quantum states are the two-mode squeezed 
staces 3•13•21-the states generated from (two-model 
coherent states by an ideal two-photon device (e.g., an 
ideal paramp, with undepleted classical pump and no 
losses). The ewe-mode squeezed states have TSQP noise, 
and they have, in general, unequal amounts of noise in the 
two quadratures (..9' 11 ,,:..9' 22 ). The present paper (paper ll 
focuses on the properties and the significance of the 
quadrature-phase amplitudes and the two-mode squC"..zed 
states; the goal is to achieve a good physical understand· 
ing of these fundamental entities. The accompanying pa· 
per (paper Ill develops a mathematical formalism suited 
to manipulating the quadrature-phase amplitudes and the 
two-mode squeezed states, and it uses the formalism to 
write their properties in a compact form. With its em· 
phasis on physical interpretation, this first paper omits 
many mathematical details, which are filled in by paper 
II. 

These building blocks of two-photon optics have been 
used to construct new two-photon quasiprobability distri· 
bucions. 13 More than one two-photon QPD is associated 
with a given (two-model quantum state, each QPD corre· 
spending to a different way of ordering the quadrature· 
phase amplitudes and their Hermitian conjugates. Since 
the two-photon QPD's are written in a language tailored 
to the description of two-photon processes, we think they 
will be valuable tools for analyzing nonideal behavior of 
two-photon devices. A future paper (paper !Ill will 
describe in detail the new operator orderings and the cwo· 
photon QPD's. 

In this paper Sec. II deals with a couple of minor nota· 
tional issues; Sec. III reviews briefly the building blocks of 
one-photon optics; Sec. IV introduces the quadrature· 
phase amplitudes and the two-mode squeezed states, with 
emphasis on the physical signifrcanc~ of the quadrature· 
phase amplitudes; Sec. V considers in detail TSQP noise 
for the ca.se of Gaussi11n noise; Sec. VI discusses uncer· 
tainty principles for the quadrature-phase amplitudes; Sec. 
VII lists important properties of the two-mode squeezed 
states; finally, Sec. VIII specializes our work to the previ­
ously e~plored degenerate limit (E=O). An appendix 

treats uncertainty principles for non-Hermitian operators. 
Throughout the remainder of this paper we use units with 
n=c= !. 

II. NOTATIONAL ISSUES 

For convenience we have adopted a notation that some­
times sacrifices precision for ease in use. To minimize 
confusion that might arise from our preference for con· 
venience, we consider here a couple of notational issues. 

Throughout our discussion of two-photon optics, we 
find that each physical quantity is most convenienclv 
represented by its operator in a particular picture. Fore.~­
ample, the creation and annihilation operators are most 
conveniently written in the Schriidinger picture (SP); field 
quantities, such as the electric field and the quadrature 
phases, are most conveniently written in the usual incerac· 
tion picture (IP), in which all the free time dependence is 
incorporated in the operators; and the quadrature-phase 
amplitudes are most conveniently written in an interaction 
picture chat we call the modulation picture (MP), which 
we define and discuss in Sec. IV. As a result, we have ac­
quired the habit of mixing in the same equation various 
operators written in different pictures. This habit has the 
potential to cause confusion, which we seek co avoid by 
adhering strictly co the following procedure. For each 
physical quantity, the corresponding operators in different 
pictures are denoted differently. As each physical quanti· 
cy is introduced in Secs. III and IV, we define its operator 
in a particular picture by a picture-consistent equation, 
i.e., an equation in which all operators are written in the 

·same picture. The operators corresponding to the same 
physical quantity in ocher pictures are then defined as 
they are needed. The appropriate picture for a picrure­
consistent equation is indicated by writing SP, MP, or IP 
in parentheses next to the equation; of course. a picture­
consiscent equation retains the same form when all opera­
tors are transformed to another picture. 

As an illustration of this procedure, consider a plane 
electromagnetic wave with a particular linear polarization, 
which propagates in the x direction. In the SP the 
creation and annihilation operators for the plane-wave 
mode at frequency ware denoted by a t(w) and a(w); they 
satisfy the continuum commutation relations 

[a(w), a t(w')]=2m5(w-w'l. (2.1) 

The electric field operator in the SP is given by 

£(x):£1+ 1(x)+£1- 1(x) (SPl, (2.2al 

£ 1+ 1(x)s r"' dw (bw/2A )112a(w)e;..., 
J a 211' q 

(2.2bJ 

where £ 1+l(x) and £ 1-l(x) are the SP positive· and 
negative-frequency parts of the field, Aq is a suitable 
quantization area, and b is the units-dependent constant 
introduced in Eqs. ( 1.3). In the IP the electric field opera· 
tor is given by 
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E(x,1l=e ;8 c'E(x )e -;Hc'= £ 1+ 1(x,1l+£1- 1(x, 1), 

E<+>(x,1l=e ;Hc'E1+1(x)e -;He' 

= J,'" dw (bw / 2A J112a(w)e_;,.,(l-xJ 
o 2rr q 

=[£<- 1(x,1J)t 

[cf. Eqs. (I.I), (1.2), and (1.5J], where 

Hc=J,'" dw wat(w)a{w) 
0 21T 

(2.3aJ 

{2.3bl 

(2.4) 

is the free Hamiltonian for the continuum of modes, and 
where we use the fact that the IP form of the annihilation 
operator for a particular mode has the harmonic time 
deoendence of the mode, i.e., e;Hc'a (w) e -;He' 
=~(w)e-;"''. 

A second notational issue concerns the way we use the 
symbol 6.. In general, we use ~ to designate the differ­
ence between a quantity and its mean value. Thus, for a 
quantum-mechanical operator R, C.R is defined to be the 
operator 

6.R=R-(R) (2.5) 

For a Hermitian operator B this notation allows the vari­
ance (squared uncertainty) of B to be written as ( ( tlB )2) 

(=(B 2)-(B) 2J; we always write the variance in this 
form. For a general, possibly non-Hermitian operator R, 
a fundamental quantity in our analysis is the mean-square 
unccnainty in R, by which we mean tlie sum of the vari­
ances of the Hermitian real and imaginary parts of R 
(Re{Rl=f<R+R rl; lm(RJ=-+i{R-R'JJ . To define 
and write the mean-square uncertainty compactly, we use 
three shorthand notations: (j) for two operators R and S, 
the subscript "sym" denotes l symmetrically ordered 
product, i.e., 

(2 .6) 

(ii) the expectation value of l symmetrically ordered prod­
uct is written 

((RSl,rm)=(RS),ym; (2.7) 

(iii) I 6.R I 2 denotes the operaror 

I 6.R 1 2=:(6.R .iR \ym = T( .iR .lR I +.iR I .iR l · (2.8 ) 

These shorthands allow us to write the mean-square un­
certainty as 

(I 6.R 12 ) = ( t..R 6.R 
1
)sym= ( RR 1),rm- 1( R )1 2

• (2 .9l 

For a Hermitian operator the mean-square uncertainty is 
the variance; our notation is consistent because I tlB 1

2 

=(tlBJ2 if B=B 1. 

III. REVIEW OF ONE-PHOTON OPTICS 

We tum now to a brief review of one-photon optics, 
briefer even than the review in Sec. I, but rigorous 
quantum-mechanically. Consider the light produced by a 
one-photon device such as a laser. As is discussed in Sec. 
I, one can specialize to a single (discrete) plane-wave mode 

with frequency w; a continuum multimode description is 
built by integrating over independently excited single 
modes. The mode's creation and annihilation operators in 
the SP are denoted by a 1 and a, which satisfy the usual 
( di~cretel commutation relation 

(3. ll 

We introduce an "electric field operator" for the mode, 
which is denoted in the SP by 

£(x)=:£1+1(xl+£1- 1(x) (SP), 

£ 1+ 1(x )=:(w/2J 112ae 1'""=(£1- 1(xJ]t (SP) 

(3.2a) 

(3.2bJ 

[cf. Eqs. (2 .2J]. In the IP the single-mode electric field 
operator becomes 

£(x,1 l=e ;Hs'E(x )e - ;Hs' =£1 + 1(x,1J+E<- 1(x,tl , (3.3ai 

E' + 1(x,I) = (w/2J 112ae _;.,.i -xi= (£1- 1(x ,1 )]
1 (3 .3bi 

[cf. Eqs. (2.3 )), where 

(3 .4) 

is the free Hamiltonian for a single mode. 
Our motivation for introducing the single-mode dectric 

field operators of Eqs. (3.2) and (3.3) is that we want to be 
able ro calculate the statistics of ficldlike quantities associ­
ated with a single (discrete) plane-wave mode. The nor­
malization of the electric field for a single plane-wave 
mode is somewhat arbitrary, so we have simply made a 
convenient choice that leaves our results uncluttered by ir­
relevant constants. The w112 in Eqs. (3.2b) and (3.Jb) is 
the obligatory factor of root frequency that accompanies 
the annihilation operator [cf. Eqs. (2.2bl and (2.3bl); it 
gives the single-mode electric field units of square root of 
energy. The i- 112 in Eqs. (3 .2bl and (3.Jb) is chosen for 
convenience. 

The natural states for describing the output of a one­
photon device can be identified by considering the Hamil­
tonian for m ideal one-photon process: 

H =H5 -ig'(t)ae;"''+ig(tla 1e _;.,, (SPJ. (3.5) 

Here g{ 1) =:g is an arbicrary complex function of time. 
The interaction part of this Hamiltonian creates· and de­
stroys photons one at a time; the process is ideal because it 
is characterized by a c:number function g( tle _,.,,, which 
can be regarded as a classical generalized force acting on 
the mode. The Hamiltonian <J.5) describes a classical 
current distribution radiating into che mode of in­
terest.1~· 16 The SP unitary evolution or.erator U(1,0l cor­
responding to the Hamiltonian (3 .5) is 1 

•
22 

U(r,O)=e-;•we -;Hs'D(a,y) 

=e -ihlllD(a, ye-i"'')e -ms' ' 

r=r(tJ= J;g<r'Jdr'. 

h(tl=+i J
0

1
(y"g-yg")d1'. 

In Eq. {3.6al 

D(a,µl=:exp(µa 1-µ"a) 

(3.6a) 

(3.6b) 

(3.6cl 

(3.7) 
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is the (unitary) single-mode displacemenr operator, 14 so 
named because of the important property 14 

D 1(a,µ. )aD(a,µ.)=a +µ.. (3.8) 

The natural states for one-photon optics are those generat­
ed from the vacuum state I 0) by an ideal one-photon 
process. These states, which are called (single-mode) 
coherent states, 14 are defined by 

(3 .9) 

A coherent state is an eigenstate of the annihilation opera­
tor with complex eigenvalueµ.: 

(3.10) 

[Eq. 13.3)]. The coherent states lie at the very core of 
one-photon optics; their properties have been extensively 
investigated.14' 16 

The natural variable for one-photon optics is the an­
nihilation operator a, which is simply a complex­
amplitude operator for the mode, written in units of 
square root of the number of quanta. The reason the an­
nihilation operator is natural is that the states of interest 
in one-photon optics have time-stationary (TS) noise. To 
see what TS noise means, let the initial state of the mode 
be the density operator p. The noise associated with an 
arbitrary state p is completely characterized by the "noise 
moments" of a and a', where by noise moments we mean 
moments of Aa :a - (a) and Aa 1 [Eq. (2.5)]. In this pa­
per we consider only the lowest-order noise, which is 
described by the second-order noise moments 

( ( ila )2 ) = tr(p( ila )2] = (a 2 ) - (a ) 2 , 

( I Aa 1
2

) Etr[p( D.a D.a \ym] 

= ( aa r ) sym - I (a ) I 2 • 

The state p has (second-moment) TS noise if 

( (~a J 2 ) =0 

(3.1 la) 

(3.1 ib) 

(3.12) 

[cf. Eqs. ( !.3a) and ( l.5J]; hence, for TS noise the lowest­
order noise is described completely by the mean-square 
uncertainty ( l D.a 1 2

) [Eq. (2.9); cf. Eqs. (1.3b) and (UJ] . 
The physical content of Eq. 0:12J is that the noise in the 
single mode is distributed randomly in phase; thus TS 
noise can be characterized as random-phase noise or 
phase-insensitive noise. An immediate consequence of 
Eq . (3.12) is that the electric field has TS noise; i.e., if the 
mode undergoes free evolution (Hamiltonian H5 ), the 
variance of the electric field (3 .3al is constant: 

(3.13) 

[cf. Eq . (1.4)]. 
It is useful to emphasize here why the annihilation 

operator is the natural variable for describ.ing TS noise. 
Under free evolution (evolution operator e -•Hs'), the noise 
moment ( ( Aa )2 ) acquires a harmonic time dependence 
e -U"'', whereas the mean-square uncertainty ( I ila 1 2 ) 

remains constant. The essence of TS noise is that the 
time-dependent noise moment ( ( Aa )2

) vanishes, so that 
the lowest-order noise is described by the time-

independent moment ( I D.a I 2). These considerations are 
the key to generalizing the notion of TS noise to noise mo­
ments of arbitrarily high order. The definition (3 . 12) con­
siders only the lowest-order noise moments, the justifica­
tion being an implicit assumption of Gaussian noise. The 
general definition of TS noise, which will be given expli­
citly and discussed in paper III, requires that all the time­
dependent noise moments of a and at vanish, so that the 
noise is completely characterized by the time-independent 
noise moments. This, then, is the reason the annihilation 
operator is the natural variable for one-photon optics: the 
TS noise produced by one-photon devices is completely 
charac;erized by the time-independent noise moments of a 
and a " 

The commutator (a ,a •1 = l enforces an uncertainty 
principle, 

( i ila I 2) :d i ( (a ,a']) I = + . (3.14) 

[This and other uncertainty principles for non-Hermitian 
operacors are derived and discussed in the Appendix; see 
Eq . (A9L] The lower limit in Eq. (3.14) is the half­
quantum of zero-point noise. A coherent state Iµ. ) cob has 
mean complex amplitude (a)=µ. and has TS noise with 
( I ila I 2) = +; it can be thought of as a classical excita­
tion of the mode contaminated by zero-point noise. 

The fundamental building blocks for one-photon optics 
are the annihilation operator and the coherent states. Al­
though the coherent states arise from a consideration of 
ideal one-photon devices, they and the annihilation opera­
tor have been used to define quasiprobability distribu­
tions, 1'- 17•20 which are powerful tools for analyzing the 
nonideal behavior of real one-photon devices. Quasi­
probability distributions will be considered in detail in a 
future paper (paper rm. 

IV. BUILDING BLOCKS OF TWO-PHOTON OPTICS 

Attention shifts now to a discussion of the natural vari­
ables and natural quantum states for two-photon optics. 
As is made clear in Sec. I, one can analyze the light pro­
duced by a two-photon device by specializing to a pair of 
(discrete) plane-wave modes with frequencies O±E, where 
n is a carrier frequency and € < n is a modulation fre­
quency; a continuum multimode description is built by in­
tegrating over independently excited pairs of modes (i .e., 
integrating over eL In optical applications it is always 
true that E << n. The annihilation operators for the two 
modes in the SP are denoted by a+ and a_; they satisfy 
the usual (discrete) commutation relations 

[a+,a_]=[a+,a~]=O, (4. la) 

(a+,a:)=[a_,a~]=l . (4.lb) 

The free Hamiltonian for the two modes is given by 

Ho=W. +<)a :a+ +W-e)a ~a_ 

=HR +HM (SP) , (4.2a) 

HR :!1(a :a+ +a ~a_) (SP), (4.2b) 

H.\l'=E<a:a+-a~a_) (SP). (4.2c) 
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We find it useful to split H 0 into two commuting 
pieces, HR and HM ((HR,H.11 ]=0), which are the key to 
defining the pictures we.use in our new formalism. In the 
usual interaction picture (IP), all the free time dependence 
is transferred from the states to the operators; the relation 
between operators (including density operators) in the IP 
and the SP is 

(4.3) 

The modulation picture 13 (MPJ is an interaction picture in 
which the free time dependence at the carrier frequency n 
is transferred from the states to the operators, the sta:es 
retaining the remaining free time dependence at modula­
tion frequency i:; operators in all three pictures are related 
by 

iH .. 1 . -iH.,r -iHut iH t 
RMp { tJ=:e "Rsp (ne ·' =e ·" R 1p(t)e ·" . (4.4) 

There is no re:ison why the two modes we consider need 
be plane-wave modes with the same polarization propaga­
ting in the same direction. Nonetheless, we assume they 
are so that we can introduce a "two-mode electric field 
operator," which in the IP is given by 

£(x,tl=£'+'(x,tl+£1- 1(x,t) (IP), (4.5al 

£ ' .,. '{x,t) = z-1/:?[(n +i:)l/:?Q +e -icn+fllt-zl 

-rin-i:J 112a _e -icn-1111-"l, (4.Sb) 

£ 1-'(x,1) = (£1 +'(x,tJ] 1 (4.5ci 

(cf. Eqs. (3 .3) and subsequent discussion]. 

A. Two-mode squeezed states 

Consider now the Hamiltonian for an ideal two-photon 
process: 

H=Ho+iK(t)(a+a_e-Ulq>-Oll_a~a~eUlq>-Oti] (SP). 

(4.6) 

Here 1dt) is an arbitrary real function of time. The in­
teraction part of this H:imiltonian creates or destroys a 
pair of photons in the two modes simultaneously; the pro­
cess is ideal because it is characterized by a c-number 
function K(t)eu1

"'-
011

. For convenience we choose this 
function to have a harmonic time dependence at frequen· 
cy 2n, with fixed phase but time-varying amplitude. The 
Hamiltonian (4.6) describes, for example, an ideal 
parametric amplifier3 - 26 with an undepicted classical 
pump, which has stable frequency 2n but whose ampli· 
tude varies in time. The unitary evolution operator for 
the Hamiltonian (4.6) is given by;6·22 

-iH01 -iH01 
U(t,O)=e S(s,cpl=S(~.cp-f1t)e • (4.7) 

s=s(il= f :K(1')d1', (4.8) 

where 

S(r,cp)=:exp[r(a +a_ e - 21'1'-a ~a ~e 11 '1')] (4.9) 

is the (unitary) two-mode squeeze operator. 13 •21 The real 
number r is called the squeeze factor. The most important 

property of the two-mode squeeze operator is that 

S(r,cpla:=St(r,cpl=a:!:coshr+a ~e 21"'sinhr, (4.101 

a result which follows from Eq. (8.105) of Ref. 27. 
To construct the natural states for two-photon optics, 

one begins wich the two-mode coherent siates 14 

lµ+,µ_)°"h=:D(a +•µ+)D(a_,µ_) I 0) (4. 1 ll 

(cf. Eq. (3.9)), which are eigenstates of a+ and a_ with 
eigenvaluesµ+ andµ_, respectively. Formally, a two­
mode coherent state is obtained by applying the two-mode 
displacement operator14 

Dra _ ,µ+)D(a _ ,µ_)=exp(µ+a ~-µ~a+ 

-;-µ_a~ -µ'_a_) (4.121 

to the vacuum state [cf. Eq. (3.7)); physically, it could be 
created from the vacuum by an ideal one-photon process 
for each of the two modes. The natural states for two­
photon optics are those generated from two-mode 
coherent states by the ideal two-photon process (4.6). Be­
fore defining these states, it is useful to define operators 
that we call squeezed annihilation operacors. In the SP 
these operators have explicit time dependence and are de· 
fined by 

-iHRt t iHAt 
a:;(r,cp;tl=:e S(r,cp)a :;S (r,cple 

=a :te'°'coshr +a ~e -iOreu"'sinhr (SP) (4.13) 

[Eq . (4. lOl]; in the MP [Eq. (4.4l] the squ~zed annihila­
tion operators are constant and are given by 

a:;(r,cp) =:a:;(r,cp;Ol=S(r,cp)a :St(r,cp) 

=a::coshr+a~e"<Psinhr. (4.141 

The natural states for two-photon optics are the cwo-mode 
squeezed states, 1· 13

•
21 which are defined by 

I µa••µa_ )lr.q>l=:S(r,cp) I µa+•µa_ )c<>h 

(4.15) 

We label these states by the complex eigenvalues of 
a::,(r,cpl : 

a=(' ,cpl I µa.•µa_ >1, . .,,=µa:: I µa.•µa_ )1,,.p1 (4 .16l 

(Eqs. (4.14) and (3. lOl]. Using Eq. (4. 10), one can write 
the two-mode squeezed states in the form 

I µa+•µaJ1r.q>1=D(a + ,µ + JD(a _ ,µ_ )S(r ,cpl I 0) , 

(4.17) 

where 

(4.18) 

Two-mode squeezed states were introduced independently 
by Caves21 in an analysis of quantum limits on the perfor­
mance of linear amplifiers (see also Ref. 13) and by Un­
ruh1 in a quantum-mechanical analysis of an interferome-
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er; they have also been considered formally by Barut and 
Jirardello, 28 Perelomov, 19 and Milburn. JO Properties of 
two-mode squeezed >tates are considered in S<!C. VII. 

Almost all previous work on squeezed states has dealt 
with the degenerate limit, in which the two modes we con· 
sider coalesce into one {E =0, a+ =a_). Our attitude is 
that the degenerate limit is not very important in describ· 
ing real two-photon devices, b<!Cause it is merely the E=O 
boundary for a more realistic and more general mul· 
cimode description. The degenerate limit can, however, 
play a useful heuristic role, so we consider it in some de· 
tail in Sec. VIII. 

B. Qu.:idr:nure-ph:ue amplitudes 

It is useful to decompose the electric field into its (Her· 
mitianl quadrature phases defined with respect co the car· 
rier frequency !1. 13

•
11 In the IP the quadrature phases are 

defined by 

E 1(.:c ,I )=:£1 + 1(.:c ,1 )e ;nci-•l +£1- 1(.:c,rle -in!i-.i ( IP ) , 

(4.!9a) 

(4.!9b) 

£ 1±1(.:c,1) = TlE I (x ,/ l±i£2(X,/) Je ;:;nci-•I (IP) (4.20) 

[cf. Eq. ( 1.6)]. In terms of the quadrature phases the IP 
electric field operator (4.5al becomes 

E(x,t)=E 1(.:c ,! lcos(n!r -x l J 

+E:(.:c,1 Jsin(nU-.tl] (IP) (4.21) 

(cf. Eq. (l.7l]; thus £ 1 L~ .tl and £ 1(.:c,rl describe modula· 
tion of waves "cos[l1(1-x l]" and "sin[D(c -x l)." The 
quadrature phases (4.19) or their multimode analogs [Eq. 
(i.8l] have been used in multimode analyses of optical 
homodyning, 7 resonance fluorescence,3 1 -n parametric 
amplification,"-·'6 and four-wave mi:ting. 3• 

For two modes the concept of (second-moment) TS 
noise means chat each mode has (second-moment) TS 
noise [Eq. D. l2l] and that the two modes have zero 
second-order correlation [cf. Eqs. ( 1.3)]; these conditions 
imply that the electric field has constant variance. One 
says that, for TS noise, the noise in the electric field is dis· 
tributed randomly in phase, where phase is defined rela· 
tive to frequency fl; equivalently, one can say that TS 
noise means chat the noise in the electric field is divided 
equally between the quadrature phases. 

A two-mode squeezed state does not, in general, have 
TS noise. The two modes have correlated noise, and the 
quadrature phases carry different amounts of noise. 
Thus, in two-photon optics it is convenient to describe the 
noise in terms of che quadrature phases. !n particular, the 
natural variables are the (two-model quadrature-phase am· 
plitudes, ll,ll which are simply the Fourier components of 
the quadrature phases, normalized to be in units of square 
root of the number of quanta referred to the carrier fre· 
quency n. In the SP the quadrature-phase amplitudes are 
explicitly time-dependent operators defined by 

(4.22al 

(4.22b) 

Notice that the quadrature-phase amplitudes are not Her· 
mitian. In the MP che quadrature-phase amplitudes are 
constant and are denoted by 

(4.23a) 

iHR.1 - iHR.1 
a1ae a 2(t)e =a2W> 

n-"-c n-< 1 [ l 1/2 [ l 1/2 
= -i -2n a - +i 2fl a - (4.2Jb) 

(cf. Eqs. (l.13J]. We find it convenient to introduce the 
symbols 

A.::,=:((D::;f)/0) 112 , (4.24) 

so chat Eqs. (4.23) and their inverse can be written in the 
compact forms 

a 1 =2- 112(A.+a ~ -c-A._a ~), (4.25a) 

2-1111 ., ., t l a 2= -lATa+-+11\._a_ , 

A.+a+=2- 111(a 1+ia2), 

A._a_ =2- 1r.(a;.;.-ia;). 

(4.25b) 

(4.26al 

(4 .26b) 

In the IP the quadrature-phase amplitudes acquire a har· 
monic time dependence at the modulation frequency: 

e iH_wta,,.e -iH_..,, =e iH'J'am {t)e -iHot =ame -in J 

m = l,2 . (4.27) 

Using Eqs. (4.5), (4.19), and (4.26), one can write the 
quadratu.re phases in th.: form 

m = 1,2 (4.28) 

which shows explicitly that a,,, is a complex-amplitude 
operator at modulation frequency E for E,,,(x,t) [i.e., it is 
the Fourier component of E,,,(x,1) at positive frequency 
E]. In our notation the MP is the most convenient picture 
for writing a picture-consistent equation relating the 
quadrature phases to their amplitudes; the MP quadrature 
phases are denoted by 

E,,,(x)=:e - iH·"
1
E,,,tx,1)eill." 1

, m = 1,2 (4.29) 

so that 
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E,,. ( x)=!l 1 12 ( a,,.e ;"'+a~e -ia ), m = 1,2 (MP ). (4.30) 

The two-mode quadrature-phase amplitudes have the 
following (discrete) commutator algebra: 

[a,,a fJ=[a2,aiJ=E/ !l, (4.Jlal 

(a1,a2J=O , (4.3lb) 

[a ,,aiJ=[af,a2J= i (4.3lc) 

These commutators enforce a set of uncertainty principles 
which we discuss in detail in Sec. VI. 

All of our two-mode results thus far can easily be ex· 
tended to a continuum description by using "continuum" 
quadrature-phase amplitudes and integrating over the pos· 
itive modulation frequencies of interest [cf. Eqs. (1.8) and 
(1.13)]. The MP continuum quadrature-phase llllpli· 
tudes21 a 1(€) and a 2(E) are related to the continuum 
creation and annihilation operators [Eq. (2.1)] by Eqs. 
(1.13) (cf. Eqs. (4.23)]; they obey the commutation rela­
tions 

(4.J2al 

• • € 
[a ,( €),a, (€') ] =[a2(€J, a2(€') j = n2;;1i(€-€' ) ' (4.32b) 

(a,(€ ), a;(€' ) J = [a i( <J, a 2(E' )] = i2;;1i(E-€' l . (4.32c) 

The fundamental building blocks of two-photon optics 
are the quadrature-phase amplitudes and the two-mode 
squeezed states. In paper III these building blocks will be 
used to define new two-photon quasiprobability distribu­
tions. 

C. Pictorial convention 

As is made clear by Eqs. (4.19)-(4.21), £ 1(x,t) 
+i£2(x, t) is a compie.'t-amplitude operator for the two­
mode electric field , defined with respect to frequency n. 
The choice of phase for this complex amplitude is arbi· 
trary , so one can ask what happens under a change of 
phase. The unitary operator 

R te) :=exp(- i e( a :a++a~a_)] (4.33) 

generates just such a phase change, i.e., 

R '( e l[£, (X,l )+iE2(x,t)]R(e) 

= £ '1 (x ,r)+ iE i (x,t) 

=(E 1(x ,t)+i£2(x ,t)]e- i9 • (4.34) 

We call R(e) the rotation operator because the transfor· 
mation (4.34) is a rotation of the complex amplitude. 
This rotation corresponds to a common phase change for 
the annihilation operators, 

R t( e)a±R(e)=:a ':: =a=e-;9 , (4.3 5) 

and to a rotation of the quadrature-phase amplitudes 

R 1tela 1R(e)=:a'1 =a 1cose+a2sine , 

R 1(eJa2R (eJ=ai = -a1sine+a2cose . 

(4.36a) 

(4.36b) 

Notice that e - iHR' =R (01) [Eqs. (4.2b) and (4.3J l]; thus 
the time dependence at the carrier frequency is simply a 
rotation of the complex amplitude. 

One is now in a position to appreciate the importance 
of the MP. In two-photon optics one deals with the quad­
rature phases and their amplitudes as the fundamental 
quantities. The time dependence at frequency n is trivial 
and uninteresting; the important free time dependence is 
at the modulation frequency. One would like to formu· 
late the theory in such a way that the trivial time depen­
dence at n is suppressed. This goal is achieved in two 
steps: (i) one works in the MP, thereby transferring the 
time dependence at n from the states to the operators; (ii) 
one defines the fundamental operators-the quadrature 
phases and their amplitudes-so that they are constant in 
the MP. The second step requires defining the quadrature 
phases and the quadrature-phase amplitudes with explicit 
time dependences in the SP (Eqs. (4.19) and (4.22l], which 
then disappear in the MP [Eqs. (4-.23) and (4 . .30)] . The ef­
fect of the above two steps is to transform frequency n to 
zero frequency, thereby removing it from the problem. In 
two-photon optics the MP in essence replaces the SP: in 
the MP the states carry the important time dependence, 
and the fundamental operators are constant. 

With these remarks in mind, we introduce a set of con­
ventions that we adhere to throughout the remainder of 
this paper and subsequent papers in this series. The 
creation and annihilat~on operators ue always written in 
the SP (operators a ::.a=); expectation values of the 
creation and annihilation operators are evaluated using 
the SP density operator p5p( t). The electric field and the 
quadrature phases are always written in the IP [operators 
£(x,1 ), E1±>(x,t), E1(x,t), and £ 2(x,t) ; Eqs. (4.5) and 
(4.19)]; expectation values of these field quantities are 
evaluated using the IP density operator prp(t). Finally, the 
quadrature-phase amplitudes and the squeezed annihila­
tion operators are always written in the MP (operators a 1, 

a 2, and a~(r,<p) ; Eqs. (4.23) and (4d4)]; expectation values 
of these quantities are evaluated using the MP density 
operator PMP(t) . The MP free eoolution operator we digni­
fy by a special notation, 

U.\f(t )=:e - iH,._,i =exp(- i€1(a ~a+ -a ~a_ ) ] (4.37) 

[Eq. (4.2c)], because of the importance of the MP in our 
formalism. In the SP the free evolution operator is 
e- iHo' =R (ntlU.w(t) , and in the IP the free evolution 
operator is the identity operator. 

D. Physical ~ignificance of quadrature-phase amplitudes 

Throughout this subsection we are interested in expec· 
tation values of field quantities (the electric field and the 
quadrature phases) which are undergoing free evolution. 
Thus, in accordance with the conventions just described in 
Sec. IV C, all expectation values are evaluated with respect 
to the initial (l =0) state. 

We turn now to a detailed discussion of the meaning of 
the quadrature-phase amplitudes. To understand their 
close connection to experiment, it is useful first to look 
closely at how the expectation values of a 1 and a 2 deter­
mine the classical behavior of the electromagnetic field. 
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By classical behavior we mean simply the free time evolu­
tion of the expectation value of the electric field at a par· 
ticular point in space, say x =0. Equivalent information, 
but with the rapid time dependence at frequency 11 re­
moved, is contained in the expectation value of the field's 
complex amplitude: 

(£(0,t))=Re((£ 1(0,tl+i£2(0,t))e-i0']. (4 .38) 

For present purposes it is more convenient to deal with a 
dimensionless complex amplitude, which is defined in the 
IP by 

w 1L>:,I) +ii' z(X ,I) =!2rn- 112[£ I (x ,I) +iEz(X ,I l) 

= (2/!1) 112£ 1+1(x,l)ei0{1-x). (4.39) 

This dimensionless complex amplitude is related to the 
annihilation operators by 

if 1(x ,1)+iif2(x,1) =i-+a +e -int-xi 

(4.4()) 

[Eqs. (4.5b) and (4.24)), and itS componentS, dimensionless 
(Hermitian) quadrature phases, can be written as 

~ m(x,1l=(211l- 112£m(X,I) 

=2-112(ame-i111-x1+a~ei<11-xi), 

m = 1,2 (4.41) 

[Eq . (4.28l). 
For the simple case of a two-frequency field, the classi· 

cal behavior is specified by 

(if 1!0,l)+i3'2(0,1)) = A.+(a + )e -i"+.l.._ (a _ )e i" 

=Re( 2112( a I )e -i11) 

+iRe(2 112 (a2)e-in) . (4.42) 

Equation (4.42) says that the mean complex amplitude ro­
tates about the origin, its tip tracing out an ellipse, the 
"signal ellipse," during each modulation period 2rr / £. 
The classical behavior of the field can be pictured on a 
complex-amplitude diagram (Fig. ll. On a comple.i:­
amplitude plane one draws the signal ellipse, indicates the 
initial (I =0) complex amplitude by a vector whose tip lies 
on the signal ellipse, and shows the direction of rotation 
of the complex amplitude by arrows on the signal ellipse. 
Four pieces of information are required to specify the 
classical behavior: the two radii and the orientation of the 
signal ellipse, and the direction of the initial complex am· 
plitude. Notice that the phase change (4.34) corresponds 
to rotating the a.i;es of the complex-amplitude plane coun­
terclockwise by an angle 8. Notice also that in the degen· 
erate limit (£ =0, a+ =a_) the mean complex amplitude 
never changes; the signal ellipse collapses to a single point, 
which is just the unchanging complex amplitude of a sin· 
gle mode. 

Simple though the representation in Fig. l may be, it is 
instructive to decompose the elliptical motion of the com­
plex amplitude into even simpler parts. The obvious 
decomposition is in terms of the two Fourier components 
of the field, i.e., in terms of the mean complex amplitudes 
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FIG. !. Complex-amplitude diagram for the classical 
behavior of the electric field. The dotted ellipse is the signal el­
lipse traced out by the mean complex amplirnde 
(8' 1(0,1)+ia' 2(0,1J} during each modulation period 2rr/e. AI· 
rows on the signal ellipse show the direction of rotation of the 
complex amplitude. A vector indicates the initial (I =OJ com· 
plex amplitude. 

(a±) of the two modes. In this decomposition [Eq. 
(4.42)], the mean complex amplitude is a sum of two vec­
tors, >--+ (a+) e -i11

, which rotates clockwise. and 
.l.._ (a_.) ei", which rotates counterclockwise (see Fig. 2). 
The four classical pieces of information are given by the 
complex numbers (a+ ) and (a_), each of which speci­
fies the (real) amplitude and phase of one of the modes. 

The other useful decomposition is in terms of the 
quadrature-phase amplitudes: 

(g''"(Q,t))=Re(2 112 (am)e-1"l, m=l,2. (4.43) 

In this decomposition the four required pieces of informa­
tion are given by the complex numbers ( a 1) and ( a 2), 
each of which is a complex amplitude for one of the quad­
rature phases. To represent this decomposition graphical­
ly, one draws separate complex planes for the vectors 
2112 (a 1)e-i" and 2111 (a2)e- 1" . In each of these planes 
the vector 2112 (am) e- 111 rotates clockwise, and itS pro­
jection on the real axis gives ( 3' m (Q,1)) [Eq. (4.43); sec 
Fig. 2]. These separate planes are phase planes for the 
quadrature phases; they show vividly how (a,.,) specifies 
the (real) amplitude and phase of ( '6' m (0, 1)). 

Figure 2 shows, at four separate times, the complex­
amplitude plane for ( W 1 (0 , 1)+i~2(0,1)), together with 
the two decompositions discussed above. Such a diagram 
at any particular time (usually chosen to be r =0) contains 
all the infonnation about the classical behavior of the 
field. In the next section we show how to include infor­
mation about TSQP noise on such a diagram. 

The physical significance of the quadrature-phase am­
plitudes can be demonstrated compellingly in two ways. 
The first is to consider their relation to amplitude and 
phase modulation. Superpose on the two-mode electric 
field (4.5) a strong, classical carrier wave at frequency 11; 
let the carrier wave be given by (211) 1128 cos[11(1 -x)j, 
where B is real. The two modes at frequencies n±E 
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FIG. 2. Complex-amplitude diagrams at four times: (a) r =0, (b) t =-:r / 4€, (c) r =-:rl2E, (d) t =- 31T/ 4f. At each time the central 
complex-amplitude diagram is the same as in Fig. 1, e:tcept that the vector indicates the mean complex amplitude at the lppropriate 
time. Ta the right of the central diagram is a complex-amplitude plane which shows the decomposition of the me:\n complex ampli· 
tude into contributiaos from the two modes (Eq. (4.42)]. Above and ta the left of the central diagram arc phase planes for the quad· 
rature phases. In the phase plane above the central diagram, a vector indicates the value of 2111 ( a 1} t - 1"; iu real part is ( if 1(0, ()) 
[Eq. (4.431]. In the pilase plane ta the left a vector indicates the value of 2112 (a1} e -•11

; its real part is (if 2(0,1)} . 

represent sidebands of the carrier. The positive-frequency 
part of the total field is given by 

EI + 1( x ,1)= ( n/2)1 11Be -mll-• l +£1 +'(x,cl 

= +((2nl 111B +£, (x,1)+i£2(X,I l]e-1011-• 1 

(4.44) 

[Eq. (4.20)]. corresponding to an electric field 

E(x,c ) =E 1 +1(x,t)+ [E <+ 1(x,1)]1 

=( (2nl 111B +E 1 (x,tl]cos[n(l-x l] 

+£ 2(x,c )sin(n(l-x)] . (4.45) 

In Eqs. (4.44) and (4.45) an overbar designates the total 
field, including both the carrier and the sidebands. Equa· 
tion (4.45) shows that E 1 (x,tl modulates a wave that is in 
phase with the carrier-amplitude modulation of the 
carrier-and £ 2(x,t) modulates a wave that is 90' out of 
phase with the carrier-phase modulation of the carrier. 
Thus the quadrature-phase amplitudes are complex· 
amplitude operators for the amplitude and phase modula· 
tion. The expectation value of the total field's dimension· 
less complex amplitude is the sum of the constant ampli· 
tude B of the carrier and the modulated complex ampli· 
tude (4.42): 

( W ,w,1l+(ff2(0,1l):(2 / n! 112 (E 1+ 1(0,tl )ein' 

=B + (if 1(0,1l+i 8' 2(0,1) ) (4.46) 

[Eqs. (4.39) and (4.44)]. Thus the effect of the carrier on 
the comple:t·amplitudc diagrams of Figs. 1 and 2 is to dis· 
place the signal ellipse a distance B along the real axis. 
The resulting complex-amplitude diagram makes clear 
that the oscillation of ( 8' 1(0,1 l) is the amplitude· 
modulation signal and the oscillation of ( 8' 2(0, I l) is the 
phase-modulation signal. The separate planes for 
2112 ( a 1) e- 1" and 2112 (a2)e-'" are phase planes for the 
amplitude and phase modulation. 

The second way to demonstrate the significance of the 
quadrature-phase amplitudes is to note their relation to 
ideal heterodyning. In heterodyne detection the two-mode 
field (4.21) is mixed with (multiplied by) a strong local· 
oscillator field at frequency n, and the result is filtered to 
pick out the Fourier component at frequency f. If the 
local-oscillator field is proportional to cos[ n(l -x) l 
(sin[n{t-xl]) and if the mixing and filtering arc ideal, 
then the output of the heterodyne detector is proportional 
to £,(x,1) (£2(x,t)] , and its complex amplitude is proper· 
tional to a 1 (a2). 34 In terms of the complex-amplitude di· 
agrams of Fig. 2, heterodyning picks out the oscillation of 
( ~ ,(0,1)) [( if2(0, 1J ) ]; the separate plane for 
2112(a 1)e-111 (2 112(a2)e-1") is a phase plane for the 
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heterodyned output. 
At optical frequencies heterodyning is performed by 

combining the two-mode field (4.2 ll with a local­
oscillator field at a beam splitter and then directing the 
combined field onto a photodetector; the mixing is a result 
of the fhotodetector's square-law response. Yuen and 
Shapiro have analyzed optical heterodyning in detail. 
They assume" <<D. so they can neglect" relative ton in 
factors like "'-:=(U1±1:J/D.] 1

/ 2 (cf. Eqs. (4.25)]. ln this 
approximation they find that ideal optical heterodyning 
docs indeed produce an output whose complex amplitude 
is proportional to a 1. 

The physical significance of the quadrature-phase ampli­
tudes lies in their close connection to e:cperimentai tech­
niques; :hey are the compiex-ampiitude operators for 
jields~·he quadrature phc..res-that are directly accessible 
to measurement and e:cperimencal manipulacion. The 
quadrature phases are accessible because they describe the 
physic:U process of putting amplitude and phase modula­
tion on a carrier signal and because they are the quantities 
detected by phase-sensitive de:ection techniques such as 
heterodyning. 

In place of the quadrature-phase amplicudes. one might 
be tempted to use oper:uorsJ7 defined in the MP by 

(4.47al 

(4.47b) 

[cf. Eqs. (4.25l]. These operators have a simpler commu­
tator algebra than a 1 and a 2: 

[,B,,.BiJ = [.82 • .BiJ =[.Bu.Bi] =0 , 

r.si..Bil =1.Bt..Bil =i 

(4.48al 

(4.48b) 

(cf. Eqs. (4.3 ll]; and under a unitary transformation gen­
erated by S(r,0), they transform very simply: 

St(r,Ol{31S(r,0l=f31e-', 

S 1(r ,Ol{32S( r ,0) = Bie' 

(4 .49a) 

(4.49b) 

(Eqs. (4.10) and (4.47l]. Despite these simple properties, 
/31 and ,82 are not the natural variables for two-photon op­
tics because they have no close connection to experimental 
techniques; they are not complex-amplitude operators for 
fields that can be measured. Shapiro and Wagner-37 have 
argued that {31 or {32 is the quantity detected by optical 
he:erodyning. Their contention is based on Cook's 
claiml8 that phocodi:cecton respond co "photon flux." 
The detailed analysis of Kimble and Mandel39 does not 
support Cook's claim. Recent work by Yurke~9 indicates 
that a 1 or a 2, more nearly than {31 or {32, is the quantity 
detected by ideal optical heterodyning. 

One can understand why {3 1 and {32 are not the natural 
variables-and at the same time understand the factors 
A;: which appear in the definition of a 1 and a 2 [Eqs. 
(4.25l]-by a simple units argument. The operators a+ 
and a~ should not be added directly, as in Eqs. (4.47), be­
cause they have incompatible units; each has units of 
square root of the number of quanta, referred to its own 
frequency. Multiplication of a+ by <D.+1:) 112 and a~ by 

<D.-€) 112 converts the two quantities to common units of 
square root of energy; after this multiplication the two 
quantities may be added, as is done in the definitions of 
a 1 and a 2 [Eqs. (4.23)]. Division by (2D.l 112 then leaves 
a 1 and a 2 with dimensionless units of square root of the 
number of quanta, referred to the carrier frequency n. 
That a 1 and a2 have these units is confinned by writing 
the free Hamiltonian (4.2al as 

(4.50) 

Thus (a 1ail,ym+(aiallsym=(Ha+D.l/D. is the total ener­
gy, including the one quantum of zero-point energy, mea­
sured in units of the quantum at frequency n. 

Y. TIME-STATIONARY QUADRATURE-PHASE 
NOISE 

A. Definition and discussion 

The states encountered in two-photon optics-in partic­
ular, two-mode squeezed states-<an have electric field 
noise that is not distributed randomly in phase, where 
phase is defined relative co n. This phase-sensitive noise 
is of a special sort, however, which we call 1ime-s1arionary 
quadrature-phase (TSQPl noise. 13·21 The reason for the 
name is that the quadrature phases have time·stationary 
noise; this means that the natural variables to describe 
TSQP noise are the Fourier components of the quadrature 
phases, the quadrature-phase amplitudes. 

To see what TSQP noise means, let p be the initial den­
sity operator for the pair of modes considered in Sec. IV. 
The noise associated with P. can be characterized by the 
noise moments of a 1, a 2, ai, and ai. Just as we did for 
TS noise, we consider only the second-order noise 
moments-a specialization justified by the assumption 
that the noise is Gaussian; a complete description of 
TSQP and TS noise, based on all noise moments , will be 
presented in paper !II. The state p is said to have 
(second-moment) TSQP noise if the quadrature·phase am­
plitudes have random·phase noise, i.e., if 

(a.a,. Aa. ) = tr<p a.a,. a.a. ) 

(5. l) 

where m,n= 1,2 and j.a,. =a,. - (a,.) [cf. Eqs. (l.!Oa) 
and ( 1.l3l]. In general, ten real numbers are required to 
specify all the second·order noise infonnation, but the 
TSQP condition (5.ll eliminates six of those numbers. 
The remaining four numbers are contained in the "re­
duced" spectral-density matrix 

!.,.. = ( Aa,. Aa! ) sym 

- ( t ( t> ( )( t> =tr p(Aa,. Aa.l,ym]= a,.a. sym- a,. a. 

(5 .2) 

[cf. Eqs. (l.!Obl and (l.13l], which is dimensionless (units 
of number of quanta at frequency D.l and Hermitian: 

(5 .3) 

The spectral·density matrix, which has units of energy, is 
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defined by 

(5.4) 

The diagonal elements of Im• are simply the mean-square 
uncertainties in a 1 and a 2: 

!mm=(l6.aml 2), m=l,2; (5.5) 

the off-diagonal element ! 12 = Ii 1 is a complex correla­
tion coefficient between the quadratures. 

Under free evolution (MP evolution operator U-"'(t); 

Eq. (4.37)] the noise moments ( 6.a'" 6.a.) acquire a har· 
monic time dependence e -li<t, whereas the noise moments 
( 6.am C.a~ >sym are constant [Eq. (4.27)). Just as for TS 
noise, the vanishing of the time-dependent noise moments 
is the key co generalizing the notion of TSQP noise to mo­
ments oi arbitrary order and also to understanding why 
the quadrature-phase amplitudes are suited to two-photon 
optics. The general definition of TSQP noise, which will 
be given explicitly in paper III, requires that all time­
dependenc noise moments of a1o a2, af, and a; vanish. 
The quadrature-phase amplitudes are the natural variables 
for rwo-photon oprics because the TSQP noise produced by 
rwo-phoron deuices is completely characterized bv the time­
independent noise momenr.s of a1, a1, af, and af. 

It is often useful to have the TSQP condition. (5.1) and 
the reduced spectral-density matrix (5 .2) written in terms 
of creation and annihilation operators. The (second­
moment) TSQP condition is equivalent to the following 
conditions on the second-order noise moments of the 
creation and annihilation operators: 

( ( Aa = )2 ) =0 , 

( 6.a + 6.a ~) =0 

(5.6a) 

(5.6b) 

[Eqs. (4.26l; Eq. (5.6a) means that for TSQP 
1 

noise each 
mode by itself has random-phase noise). The remaining 
second-order noise moments of the creation and annihila­
tion operators are related to !'"": 

A+A- ( C.a + C..a _) = +( !11-!22l + Ti(!12 +!21 l 

= +(I11-!22l+i Re<!12l, (5.7al 

/.~( I 'k: 1
2) =+(!11+!22l=t=TH!12-!21l 

=+(!11 +!22l±lm(!12l (5.7bl 

[Eqs. (4.26l). Equations (5.7) can be recast in the form 

T(!11+!22l=+(t.~( I C.a+ l 2)+t.:.( IAa_ 1
2)), 

(5.8al 

T(!1 1-!22l=l.+l._Re((C..a+ Aa_ )l, (5.8bl 

+(!12+!21l=Re(! 12l=A+A_lm((Aa+ Aa_ )) , (5.8c) 

-+i(!12-!21l=lm(!12l=+(t.~( I Aa+ 1
2) 

-/.:_( IAa_ 1 2)). (5.Sdl 

Notice that for TSQP noise the time-dependent noise mo­
ment ( Aa + 6.a _) (free time dependence e - 2i01

) need not 
vanish. Since it must vanish for TS noise, Eqs. (5.7) im-

ply that (second-moment) TSQP noise is (second-moment) 
TS noise if and only if 

!11=!22=+(/.~( IAa+ 1
2 )+1.1:..( IAa_ 1

2)), (5.9a) 

!12=-!21=+i(/.~( IAa+ 1
2)-1.:_( IAa_ 1

2)). 

(5.9b) 

The reduced spectral-density matrix !m• describes how 
the noise is distributed in phase, where phase is defined 
with respect to frequency n. There are two good ways of 
seeing this-ways that make clear the meaning of the four 
pieces of information in !mn· The first way looks at the 
two-point correlation matrix of the dimensionless quadra­
ture phases ;f1(.:c,t) and a'2(.:c,t) [Eq. (4.41)], 

Y mn( r) = (A~ '"(.:c,1 +r)O.i!' • (.:c,f) ),ym, m,n = l,2 

(5.10) 

which is a dimensionless, real matrix. If the two modes 
evolve freely, then 

Y '"" ( r) = +( !'""e -in+!.,,, ei") =Re( !'".e -t•~i (5.1 ll 

[Eqs. (4.41), (5.1), and (5.2)]. The two-point correlation 
matrix also satisfies 

(5.12) 

(Eq. (5.3)]. That the two-point correlation matrix depends 
on the time delay r, but not on the retarded time t -.:c, is 
the essence of TSQP noise, and it is a direct consequence 
of the TSQP condition (~ . !). Note, however, that TSQP 
noise does not mean that the two-point correlation matrix 
for the two-mode electric field depends only on the time 
delay ;; that condition is met only for TS noise [Eqs. 
(5.9l]. 

Consider now the zero time-delay (r=Ol correlation 
matrix 

% m• =:% mn(Ol = ( Aif '"(.t,tlAlf • (.:c,t) ),rm= Re(!'"" l , 

(5 . l 3) 

which is just the symmetric covariance matrix of the di­
mensionless quadrature phases (cf. Eq. ( 1.1 ll]. If the 
noise is distributed randomly in phase, then JY '"" is a 
multiple of the unit matrix. The covariance matrix % mn 

contains three of the pieces of information in !.,. . Two 
pieces of information are contained in the diagonal ele­
ments 

% mm= ((A6' ,.,(x,1)]2> =!mm= (IC.a'" 1
2), m = l,2 

(5.14) 

which give the (constant) variances of if 1(.:c,I) and 
if 2(.:c,1), and the third piece is contained in the off­
diagonal element 

Y12=Y21=(A$'1(.:c,1lA:!S'2(.:c,1l),ym=Re(!12l, (5.15) 

which is a correlation coefficient for ff 1(.:c,1) and ff 2(.:c,tl. 
These three pieces of information characterize the noise in 
the foll0wing way: the overall scale of the noise is set by 
+(!11+!22), which is the average noise in the quadra-
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tures (Eq. (5 . l4l] or the average noise in the two modes 
[Eq . (5.8al]; the extent to which the noise is not distribut­
ed randomly in phase is specified by +(! 11 -! 22 ) and 
Re(! 12 l. The roles of these quantities are immediately ap­
parent in the variance of the electric field 

( (t...E(x, t l]2) =!l! !11 + I22+<I11-!22lcos[2!l(t-x l) 

+2Re(! 12 )sin[2!l(t-xJ]J (5 .16) 

[Eqs. (4.21), (4.39), and (5.!Jl; cf. Eqs. (1.12) and (3 .13)) . 
A nonrandom distribution of noise in phase corresponds 
to a time-dependent electric field variance. The quantities 
that describe a nonrandom distribution, +(! 11 -!22 ) and 
Re(!, 2), are related to ( Aa + Aa _ ) [Eqs. (5.8b) and 
(5 .8cl]; if the electric field noise is not distributed random· 
ly in phase, the two modes must be correlated. 

The fourth piece of information in !,,,. shows up in the 
time-delayed (T,:Ol correlation between the dimensionless 
quadrature phases. Specifically, for ;=r:-/2i:, the two­
point correlation matrix becomes an antisymmetric matrix 

.;Y '"" =:% '""(1T/2t:J 

= (Alf '"(x ,I+ r; / 2t:)A5' . (x ,t) ) 1ym 

=lm(!'". J. (5.17) 

The diagonal elements of % '"" vanish. This result one 
expects for TSQP noise; it says that for each quadrature 
phase the noise at a particular time is uncorrelated with 
the noise a quarter cycle later. In contrast, the off. 
diagonal element of % '"" need not vanish. It gives the 
fourth piece of information in !'"" : 

%12= -%21 = ( Alf 1(x,t +-:r/2t:)Alf 2(x,tl),ym 

(5 .18) 

This result is a bit mysterious; it says that the noise in one 
quadrature at a particular time is correlated with the noise 
in the other quadrature a quarter cycle later. The ex­
planation lies in the definitions of a 1 and a 2 [Eqs. (4.25J] . 
A fluctuation in the upper mode a+ corresponds to iden­
tical fluctuations in a 1 and az, but the fluctuation in a 1 
lags that in a 2 by a quarter cycle; this produces a positive 
contribution to % 12. Similarly, a fluctuation in the lower 
mode a_ corresponds to a fluctuation in a 1 that leads the 
fluctuation in a 2 by a quarter cycle; this produces a nega­
tive contribution to % 12. Thus % 12 should be related to 
the difference in noise in the two modes, an inference con· 
firmed by Eqs. (5.8dl and (5 .18), which show that 

X12=lm(!12l=+()..~( I Aa+ J 2)-A.'.._( J Aa_ J 2)) . 

The second way of investigating the meaning of !'"" is 
to look at how it transforms under a rotation (phase 
change) of the complex amplitude of the electric field [ro­
tation produced by R(8); Eqs. (4.33)-(4.36)]. Recalling 
that a rotation produces a common phase change of the 
annihilation operators [Eq. (4.35)], one sees from Eq. 
(5 .7bl that +(! 11 +!. 22 ) and -+i(!.12-!.21l=Im(!. 12l are 
invariant under rotations; these quantities have nothing to 
do with the differential distribution of noise in phase. 
Similarly, one sees from Eq. (5.7al that +<! 11 -!22 ) and 

+ (!.12+!.21l=Re(! 12l transform as 

T (!'11-Ii2l+ Ti(!'12+!i1l 

=e-u8[r<I11-!22l+ri<I12+!21ll; <5.19l 

these quantities characterize precisely the extent to which 
the noise is not distributed randomly in phase. 

B. Complex-amplitude diagrams 

One can add information about TSQP noise to the 
comple.~·amplitude diagrams in Figs. 1 and 2. Start with 
the complex-amplitude diagram ( 1 =Ol in Fig. l, which 
describes the classical behavior of the electric field. To 
add information about TSQP noise, draw an "error el· 
lipse" centered at the tip of the initial complex-amplitude 
vector (Fig. 3). The error ellipse displays the information 

FIG. 3. Standard complex-amplitude diagram for TSQP 
noise. The behavior of the mean complex amplitude 
( g' 1 ( 0, I)+ ii' 2( 0, 1 ) } is shown, as in Fig. 1, by a dotted signal 
ellipse and an initial (I =0) complex-amplitude vector. The 
quadrature-phase noise is depicted by a shaded error ellipse. 
The principal axes of the error ellipse are the cigendirections of 
the covariance matrix Y .,. [Eq. (5.1 Jl] , and the principal radii 
are the square roots of tbe eigenvalues of Y .... The complex· 
amplitude diagram shows rotated (primed) axes that lie along 
the principal axes of the error ellipse. With respect to the rotat· 
ed axes the covariance matrix %'.,. is diagonal, its diagonal ele­
ments Y~ .. = ( [C.lr~(.:c , 1)] 2 ) = ~~ .. = ( IC.a~ f 2} giving the 
squares of the principal radii. Separate phase planes arc drawn 
for the rotated quadrature phases (cf. Fig. 2). In each a vector 
indicates the initial ( t =0) value of 2111 ( a~}, and a shaded er­
ror circle, with radius ( I C.a~ I 2 } 111 , depicu the noise in the 
quadrature phase. 
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contained in the covariance matrix % '"" =Re( I,,..) [Eq. 
(5. l 3l]: its principle axes are the eigendirections of% mn, 

and its principle radii are the square roots of the eigen­
values of % '"" . It is convenient to rotate the axes of the 
complex-amplitude plane counterclockwise by an angle 8 
[rotation defined by Eq . (4.34)] so that the new (primed) 
axes are parallel to the principal axes of the error ellipse 
(see Fig. 3), i.e., so that the covariance matrix is diagonal 
with respect to the new axes. The angle B is obtained 
from 

+c~:11- 222>+ +il ~12 + 221 > 

= - +ro:.,, - 222 )2 +( I12 + i.21 l2J112eu8 , 

where 0 ~ 8 < 7. (Eq. (5.19)]. The diagonal elements of the 
rotated covariance matrix are given by 
%;,,,,. = ((a.if;,,( x,r)j 2 ) = 2;,,,,. = ( IO.a;,, 12 ); their square 
roots-the uncertainties in the rotated quadrature 
phases-are the principal radii of the error elliose. The 
error ellipse is a convenient way to show graphically the 
nonrandom distribution of noise in phase. 

Figure 3 also shows separate phase planes for the rotat­
ed quadrature phases (cf. Fig. 2). In each phase plane a 
vector indicates the initial expectation value of 2112a;,,. 
The noise in each quadrature phase is depicted by an "er­
ror circle." which is centered at the tip of the vector 
2112 (a;,, ) and whose radius is the root-mean-square un­
certainty in a;,,. That one uses a circle expresses the fact 
that the quadrature phases have time-stationary (random­
phaseJ noise; i.e., the uncertainties in the Hermitian real 
and imaginary parts of 2112a;,, are the same, and they are 
equal to the root-mean-square uncertainty ( \ a.a;,, i 2 ) 112 • 

Just as the projection of 2112(a;,,) onto its real axis gives 
the associated component ( lf;,,!o, r)) of the mean com­
ple.\ amplitude, so the projection of the error circle on the 
real axis gives the associated principal diameter of the er­
ror ellipse (Fig. J). 

We refer to Fig. J as the standard complex-amplitude 
diagram . The vectors in it are drawn at t =0, but a simi­
lar diagram could be constructed at any time. As time 
passes, the vector in each separate phase plane rotates 
clockwise with angular velocity €, dragging its error circle 
with it; the projection of the vector and its error circle on 
the real axis describes the oscillation of the associated 
quadrature phase with constant variance. These projec­
tions can also be used ta construct the mean complex am­
plitude ( 3' 1(0,rJ + i If' 2(0,r)) and its error ellipse. The 
mean comple:t-amplitude vector rotates in the direction 
shown by the arrows. The error ellipse is dragged along 
as the mean complex-amplitude vector rotates, but it re­
tains the same size, shape, and orientation-a consequence 
of TSQP noise. · 

The axes in Fig. 3 are somewhat loosely labeled by 
operators because the diagrams are supposed to indicate 
both the mean behavior and the fluctuations about the 
mean. The axes of the separate phase planes are labeled 
by the Hermitian real and imaginary parts of 2112a;,,. 
Notice that the free time dependence e -i<t is not indicated 
explicitly as in Fig. 2. The reason is that this time depen· 
dence is implicit; the expectation values of a '1 and ai are 
evaluated in the MP (Sec. IV Cl, where they have the free 

time dependence e -i<t. The standard complex-amplitude 
diagram can be put on a more rigorous footing after the 
two-photon quasiprobability distributions are introduced 
in a future paper (paper Illl. Then the axes can be labeled 
by variables of an appropriate quasiprobability distribu­
tion, and the error ellipse and the error circles become 
particular contours of the quasiprobability distribution. 

TS noise is distributed randomly in phase (% '"" is a 
multiple of the unit matrix). In the complex-amplitude 
diagram in Fig. 3 this means that the error ellipse is a cir­
cle (!11=!22, Re<!12l=O; Eqs. (5 .9)] and the error circles 
in the separate phase planes have the same size. To go 
from TS noise to TSQP noise, one imagines "squeezing" 
the error circle of TS noise into the error ellipse that 
characterizes TSQP noise; noise is squeezed from one 
quadrature phase into the other so that the error circles in 
the separate phase planes have different sizes. The use of 
the term squeezed to describe a nonrandom distribution of 
noise in phase arose from this simple picture of a circle 
being squeezed into an ellipse. The tenn40 was originally 
applied to the degenerate limit (e=O, a+ =a_), where 
one draws complex-amplitude diagrams very much like 
the central diagram in Fig. 3. In the degenerate limit the 
noise is depicted by an error ellipse just as in Fig. 3, but 
the signal ellipse collapses to a point, which is the un­
changing complex amplitude of a single mode (see, for ex­
ample, Fig. 1 of Ref. 1). It should be emphasized that 
squeezing is a consequence of correlation between the cwo 
modes [Eqs. (5.Sb) and (5.8cl]; each mode by itself has 
random-phase noise [Eq. (5.6a~]. 

The standard complex-amplitude diagram (Fig. 3) does 
not display all the information about the second-order 
noise. It shows graphically the three pieces of informa­
tion in the covariance matrix%,,..= Re<!.'"") [Eq. (~.13ll, 
but it does not include any information about Im!!ll) 
[Eq. (5.181]. This omission is really not very serious. The 
purpose of the standard complex-amplitude diagram is to 
depict the nonrandom distribution of noise in phase, 
which does not depend on Im(! 12). 

The relation of the standard complex-amplitude dia­
gram to the behavior of the electric field and the quadra­
ture phases is made clearer by the graphs in Fig. 4. Each 
part of Fig. 4 shows two complex-amplitude diagrams for 
a particular state of the field which has TSQP noise; one 
diagram is drawn at t =0 and the other at t = rr /2€. The 
states depicted in Fig. 4 are special in two ways: (i) All 
the signal is carried by if 1(x,t), i.e., ( 3'2(x,t)) =0. Thus 
the signal e!li pse collapses to a line along the if 1 axis, and 
the mean electric field at x =0 is given by 

( E(O,t)) = ( £ 1 (O, rl ) cos(!1r) (5.20) 

(Eq. (4.2 ll]. (ii) The quadrature phases have zero second­
order correlation, i.e., % 12 =Re(!j 2)=0. Thus the prin­
cipal a.~es of the error ellipse are parallel to the 11 1 and i 2 
axes, and the uncertainty in the electric field at x =0 is 
given by 

( [ t.E!O,t J ]2 ) 112 =(2!1) 112[ ! 11cos2Wr J 

+!22sin2(!1tJ] 112 (5.21) 

[Eq. (5 .16)]. Figure 4(a) depicts a state with TS noise 
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(k 11 =1 22 ), Fig. ·Hbl depicts a state with less noise in 
3' 1(x,rl than in 6' :(x ,r l (k 11 <1: 22 ), and Fig. 4(c) depicts a 
state with less noise in if 2(x,rl than in if 1(x,I l (2: 22 < 2: 11 ). 

Below the complex-amplitude diagrams in each part of 
Fig. 4 are graphs for the electric field £(0,rl and the 
quadrature phases £ 1(0,r) and £ 2(0,rJ. The dark central 
line in each graph is the expectation value of the appropri­
ate field, and the width of the shaded region is twice the 
uncertainty in the same quantity. The graph for E 1 (0,1) 
shows a sinusoidal oscillation at frequency e with constant 

uncertainty ((ii£ 1(0, rlj 2
)

112 =(202: 11 l112; this behavior 
is described by the projection on the real axis of the rotat­
ing vector 2112 ( a 1 ) and its associated error circle. The 
graph for £ 2\0,r) shows a zero expectation value with 
constant uncertainty ((l.£2i0,1lj 2

)
1"= i 2Q:l.! J112; this 

behavior is described by t!le unchanging projection on the 
rd axis oi the error circk in the phase plane for 2112a 2• 

In the graph for £(0,;), the mean electric field is modu­
lated at frequency e [Eq. 15.20l], and the uncertainty oscil­
lates as given by Eq. 15.21). Similar graphs for the 
behavior of the electric fieid have been drawn in the de­
generate limit (see, for example, Fig. 2 of Rei. 1 l; the un­
certainty oscillates just as in Eq. (5.21 ), but the mean e!ec-

!lml./!~11 

_k:! 
l "•l../'%1211 

IA1l...'!:z J I'' 
lmt.,'t:i~ 

I -r--z 

tric field is unmodulated. 
The graphs for £ 1(0,1) and £ 2(0,1) in Fig. 4 are closely 

related to the output of an ideal heterodyne detector and 
to amplitude and phase modulation of a 'carrier wave (see 
discussion in Sec. IV DJ. If the electric field in Fig. 4 is 
mixed with a local-oscillator wave proportional to 
cos(O(l -x J], then the graph for E 1 (0,1) characterizes the 
heterodyned output at frequency e, which has constant 
noise. If a strong classical carrier wave proportional to 
cos[ 0(1 -x l ] is added to the electric field in Fig. 4, then 
the graph for E 1 (0,1) describes an amplitude-modulation 
signal with constant amplitude-modulation noise, and the 
graph for £ 2(0,1) describes a zero phase-modulation sig­
nal with constant phase-modulation noise. The differ­
ences among the tl:ree pam of Fig. 4 lie in the different 
ratios of amplitude-modulation noise to phase-modulation 
noise. 

VI. UNCERTAINTY PRINCIPLES 
FOR QUADRATURE-PHASE AMPLITUDES 

In this section we consider uncertainty principles that 
apply t0 the mean-square uncertainties in the quadrature­
phase amplitudes. The analogous uncertainty principles 
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FIG. 4. Graphs of the electric field £.(0,1) and the quadrature phases £ 1(0,1) and £ 2(0, 1) for three states with TSQP noise: (a) a 
state with TS noise; (bl a slate with l~ss noise in 3' 1(x,tl than in 6'1(x,tl; (c) a state with less noise in 6',(x,r) than in 6',(x,I). Above 
the graphs in each part arc two complex-amplitude diagrams for the same state, one at t =0 and one at t =rr/2E. In each graph the 
dark central line is the expectation value of the appropriate field quantity, and the width of the shaded region at any time is twice the 
uncertainty in the same quantity. See the text for further discussion. 
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for more general non-Hermitian operators are derived and 
discussed in the Appendix; here we simply apply the more 
general results to the particular case of a 1 and a 2• 

The most important uncertainty principle!J· 21 places a 
lower limit on the product of the root-mean-square uncer­
tainties in a 1 and a 2: 

(I ~a1I2) 1 1'1( I ~az) 2) 1 n~ T I ([ai.aiJ> I=+ (6.ll 

[Eqs. (A!6l and (4.3 lcl]. In terms of the spectral-density 
'matrix S,.,. [Eq. (5.4)], the uncertainty principle (6.1) be­
comes S 11 S 22 ~ +n2

. It should be noted that Eq. (6. ll 
does not require an assumption of TSQP noise, but it does 
rely on the fact that a 1 and a 2 commute [Eq. (4.3 lbl]. 
Yurke and Denker-14

·
41 have considered an unc:rtaintv 

principle similar to Eq. (6. ll, but in terms of the mui­
timode quadrature phases [Eq. ( 1.6l]. 

What is the meaning of the uncertainty principle (6.ll? 
The zero-point noise in each mode corresponds to half a 
quantum at the mode's frequency. In units of energy the 
combined zero-point noise in the two modes is 
+(n+i:>++tn-cl=n, which amounts to one quantum 
at the carrier frequency. If 

(6.2) 

(S 11 =S 22 = + n l, then each quadrature carries half of the 
one quantum of zero-point noise. The uncertainty princi­
ple (6. ll allows the uncertainty in one quadrature to be re­
duced below the level set by zero-point noise, but only at 
the expense of increasing the noise in the other quadrature 
above the zero-point level. Thus the uncertainty principle 
describes the squeezing referred to in Sec. VB: noise can 
be reduced below the zero-point level only by squeezing 
noise from one quadrature phase into the other. 

Equation (6. 1) is the two-mode analog of an uncertainty 
principle2 that applies in the degenerate limit~ =0, 
a+ =a_ =a. This uncertainty principle, which is 
equivalent to the position-momentum uncertainty princi­
ple, is usually written in terms of a 1 and a 2, the Hermi­
tian real and imaginary parts of a =a 1 +ia 2: 

((~a 1 ) 1 ) 112 ((.6.a2l 1 ) 1 n~ +I ((a,,a2]) I=+. (6.3) 

Further discussion of the degenerate limit can be found in 
Sec. VIII. 

Equality in Eq. (6.1) imposes very restrictive conditions 
on the state vector j '!'); indeed, Eqs. (A27), specialized to 
the case R =a 1 and S =a2, show that equality holds in 
Eq. (6. 1) if and only if 

(.6.a1+i~a2 lj'!')=O, (6.4al 

(6.4b) 

[Eqs. (4.J ll, (A27c), and (A29l]. Plugging in the defini­
tions (4.25) of a 1 and a 2, one finds that Eqs. (6.4) reduce 
to 

(6.5) 

Thus the only sttites that yield equality in Eq. (6.1} arc the 
simultaneous eigenstates of a+ and a_, i.e., the two­
mode coherent states (4.1 ll. 

In addition to the uncertainty principle (6 . !l, there is a 

separate uncertainty pri;iciple for each quadrature-phase 
amplitude:13· 21 

( j 6.a,.,j 2 )~+ ! ([a,.,,a~J))=c/2!1, m=l,2 (6.6) 

[Eqs. (A9l and (4.3 laJ]. Equation (6.6) does not rely on an 
assumption of TSQP noise. Equality holds in Eq. (6.6) if 
and only if the state vector I '{I) is an eigenstate of a,.,, 
i.e., 

(6.7) 

(Eq. (Al2a)] . Since i: < !1, it is immediately apparent 
from Eq. (6.1) that it is impossible to find a state J '!') for 
which both ( I C.a 1 j 2) and ( ! ~a: i 2) have the minimum 
value € /2!1. This means that there are no simultaneous 
eigenstates of a 1 and a 2. 

What can one learn from the uncertainty principie 
(6 .6)? For each quadrature it says that the minimum 
noise is a factor i:/n smaller than the level set by :ero­
point noise [Eq. (6.2)]. If one writes Eq. (6.6) in units of 
energy-S,.,,., ~ +<--0ne secs that the minimum noise cor­
responds 10 half a quanrum ar rhe modulation frequency €. 

This suggests interpreting the minimum noise +i: as a sort 
of zero-point noise for the quadrature phases; we call it 
the quadrature-phase zero-point noise. This interpretation 
is strengthened by noting that the quadrature phase 
Em(x,I) is a "field of,erator" at frequency€ [Eq. 14.18l]. 
The variance of i- 12 £,..(x,r) for a state with TSQP 
noise, 

should be compared with the single-mode electric-field 
variance (3.13) for a state with TS noise, where the single 
mode has frequency w=€. In terms of energy the lower 
limit in Eq. (6.8), which is enforced by the quadrature­
phase zero-point noise, is the same as the lower limit in 
Eq. (J.13), which is enforced by the ordinary zero-point 
noise at frequency w=i: [Eq. (J.14l]. PhysicaJJy the 
quadrature-phase zero-point noise means the following: if 
one chooses to work at modulation frequency e about a 
high carrier frequency !1, rhen the noise in one quadrature 
phase can be made as small as, bur no smaller rhan, the 
minimum noise rhar one would encounrer if working 
directly at the low frequency i:. 

The relation between the quadrature-phase amplitudes 
and the quadrature-phase zero-point noise is analogous to 
the relation between the creation and annihilation opera­
tors and the ordinary zero-point noise. The analogy be­
comes apparent if one writes the free Hamiltonian H 0 

[Eq. (4.2al] in terms of various operator orderings. Order­
ings of the creation and annihilation operators give ex­
pressions that involve the ordinary zero-point energy !1: 

W+cHa+a ~ l,ym+W-cHa_a ~ l,rm=H0 +n, (6.9al 
- ' 

W+<)a~a++(D-i:)a~a-=Ho, (6.9b} 

W+cla +a~ +W-i:la _a~ =H0 +2D.. (6.9cl 

Symmetric ordering [Eq. (6.9aJ] yields the total energy, in­
cluding the one quantum of zero-point energy, normal or­
dering [Eq. (6.9bJ] yields the total energy minus the zero-
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point energy, and antinormal ordering [Eq. (6.9c)] yields 
the total energy plus the zero-point energy. Analogous or­
derings of the quadrature-phase amplitudes and their Her­
mitian conjugates involve the quadrature-phase zero-point 
energy€ (TE from each quadrature): 

!1((a,arl,ym+(azail,ym]=Ho+n, 

rnafa, +aia2l=Ho+l1-E, 

(6.lOa) 

(6.10b) 

(6.10c) 

Symmetric ordering (/:'.q . (6.1,0al] again yields the total en­
ergy. If one places a 1 and a1 to the left of a 1 and a1 [Eq. 
(6. !0bl], an ordering which is analogous to ordinary nor­
mal ordering and which we call quadrature-phase normal 
ordering, then one obtains the total energy minus the 
quadrature-phase zero-point en;rgy. ~imilarly, if one 
places a 1 and a 2 to the left of a 1 and a 1 [Eq. (6. lOci], an 
ordering which we call quadrature-phase antinormal or­
dering, then one obtains the total energy plus the 
quadrature-phase zero-point energy. These and other 
more general orderings for the quadrature-phase ampli­
tudes will be considered in paper III. 

One can also write an uncerrninty principle for the 
operators /31 and /32 [Eqs. (4..+7) and (4.48)]. Analogous to 
Eq. (6.1) is an uncertainty principle 

( I AS, i 2) 
112 < I A82l2) 112 ~ + I ( (81>BiJ) I = + ' (6.11) 

but there is no analog of Eq. (6.6); i.e., ( I A8m 1
2) can be 

made arbitrarily small. 

VII. TWO-MODE SQUEEZED STATES 

Two-mode squeezed states are the natural states for 
two-photon optics because they are the output states of an 
ideal two-photon device (see Sec. IV A). Here we discuss 
briefly the most important properties of two-mode 
squeezed states; our purpose is to show how they fit into 
the general framework developed in Secs. IV-VI. .A 
more thorough investigation of their properties is under­
taken in paper II. 

A useful preliminary to the properties of two-mode 
squeezed states is a review of the most basic properties of 
two-mode coherent states (Eq. (4.1 ll): 

(7.1) 

Using the fact that lµ.,µ_)coh is an eigenstate of a+ 
and a_, one can show, first, that the expectation values of 
the annihilation operators and the quadrature-phase am­
plitudes are given by 

(7.2a) 

(a1)=$1=2- 112(),+µ++A._µ:), (7.2b) 

(a2) =s2=r 112(-iA.+µ++iLµ:l (7.2c) 

[Eqs. (4.25)) and, second, that Iµ+,µ_ )coh has TS 
noise-( ( Aa :t )2 ) = ( Aa + Aa ~ ) = ( Aa + Aa _ ) = 0 [Eqs. 
(5.6) and (5.9)]-with ( I Aa + 1 2) = ( I Aa _ 1

2) =+-i.e., 

Imm=( IAam 1
2)=+, m=l,2 

k12 = -!11 = Ti(E/!1) 

(7.Ja) 

(7.Jb) 

[Eq. (5.2l]. A two-mode coherent state can be regarded as 
a classical excitation of the two modes, contaminated by 
zero-point noise. The covariance matrix of the dimen­
sionless quadrature phases [Eq. (5. 13)] is a multiple of the 
unit matrix, 

(7.4) 

which shows that the noise associated with a coherent 
state is distributed randomly in phase. In the standard 
complex-amplitude diagram (see Sec. VB and Fig. 3), 
these properties of a two-mode coherent state show up in 
the following ways: the error ellipse in the central 
complex-amplitude plane is a circle, the two error circles 
in the separate phase planes have the same size, and all 
three circles have radius 2- 112. Notice that 
lm(! 12 )=E/2!1 does not vanish for a coherent state-a 
consequence of the fact that the energy associated with 
the zero-point noise is different for the two modes [see 
discussion surrounding Eq. (5.18!]. 

Turn now to the two-mode squeezed states defined by 
Eqs. (4.15), (4.17), and (4.18): 

I µa+•µa_ ),,,,.,::S(r,ip) I µa.•µa_ )coh 

=S(r,rpJD(a _..,µa+)D(a _,µa_l I 0) 

=D(a+,µ+lD(a_,µ_)S(r,rp)jO), (7 .5) 

When r =0 a two-mode squeezed state reduces to a two­
mode coherent state. The unitary equivalence between the 
squeezed annihilation operators and the annihilation 
operators (Eq. (4.14)] provides an easy way to calculate 
first and second moments for a two-mode squeezed state; 
the moments of a±(r,qi) with respect to I µa+,µ.a_ )<,.1>1 

are the same as the moments of a+ with respect to 
I µa ,µa ) coh· Using this approach, ori"e can calculate the .. -
following expectation values for the two-mode squeezed 
state (7 .5): 

(a=)=µ=, 

(am) =s'" 

(7.7a) 

(7.7b) 

[cf. Eqs. (7 .2)]. In addition, one can show that 
I µa+•µaJ1,,1>1 has TSQP noise [Eq. (5.1) or Eqs. (5 .6)] 

with 

( I Aa + I 2) = ( I 6.a _ I 2 ) = +cosh( 2r) , 

( C..a + I.la_ ) = - +e 21"sinh( 2r) ; 

(7.8a) 

(7.8b) 

translated into the language of the reduced spectral· 
density matrix (5.2), Eqs. (7.8) become 

!11=( IAail 2) 

= +cosh(2r }- +( 1-e' /D.2)112sinh(2r }cos(2rp} , 

(7.9a) 
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I22= (I Aa2 I 2> 

= +cosh(2r) + +( l -c ;n2J112sinh( 2r )cos(2cpJ , 

(7.9b) 

I12 =Iii=-+( l -c' 1n 2J112sinh(2r lsin(2cpJ 

++i(e / nlcosh(2r) (7.9c) 

[Eqs. (5.8)]. For r?O a two-mode squeezed state does 
indeed display che nonrandom distribution of noise in 
phase which entitles it to be called squeezed. The stan­
dard complex-amplitude diagram looks like Fig. J with 
8=cp; the error ellipse has principal radii 
r 112[cosh(2r)+( l-c/ n'l 112sinh(2r)j 112, which a;so are 
the rad.ii of the error circles in the separate phase planes. 

An important subset of the two-mode squeezed states 
consists of those with <p=O. For this subse~ the reduced 
spectral-density matrix (7 .9) becomes 

k 11 = ( I Aail 2 ) 

=+e- 2'+Tll- (l -c/ n 2l112 Jsinh\2r l , 

I22=(!Aa21 2) 

=+ev-Trl-(!-c' / n 2l112 ]sinh(2rl, 

I12=-I21=+i(e/ nlcosh(2r). 

(i.!Oal 

(7. lObl 

(7.!0cl 

Letting cp =0 yields a diagonal covariance matrix 
X '""=Re(!'""), which means that the squeezing of the 
error ellipse in Fig. J occurs along the if 1 and If 2 illtCS or, 
equivalently, that the quadrature phases £ 1L"C,t) and 
£ 2(x,t) have zero second-order correlation. The reduced 
spectral-density matrix for any squeezed state can be put 
in the form (7. !0l by using rotated quadrature-phase am­
plitudes a '1 =a1coscp+a2sincp and a?= -a1sincp+a2coscp 
[Eqs. (4.36) and (5.19)]. Thus the subset defined by <p=O 
is not so much a special case as it is a convenient choice 
of phase for defining the quadrature phases-a choice 
that puts the information about squeezing wholly into the 
diagonal elements of X '""" For <p=O the product of the 
root-mean-square uncertainties in a 1 and a 2 is given by 

( iAa11 2) 112 ( IAa21 2) 112 =Trl+!c'/n2)sinh2r] 112 . 

(7.11) 

In accordance with the proof in Sec. VI and the Appendix 
[Eq. (6.5)], the uncertainty product (7. l l) achieves the 
minimum value of + if and only if r =0 (provided e?Ol. 

Consider now what happens as the squeeze factor r in­
creases from r =0; choose <p=O for easy interpretation. 
For small r (cosh(2r) << n / e], the mean-square uncertain· 
ties in a 1 and a 2 are given approximately by 

(7.12) 

These mean-square uncertainties are the two-mode analog 
of the variances that apply in the degenerate limit [see Eq. 
(8.25)] . They show chat (I Aa 1 12) is squeezed below the 
zero-point level ; in accordance with the uncertainty prin· 
ciple (6.1 ), ( I Aa2 I 2 ) increases above the zero-point level. 
As long as cosh(2rl<n / e, ( I Aa iJ 2) continues co de-

crease as r increases, but it departs more and more from 
+e- 2'. When r=ro>O, where 

cosh(2r0 J=n/e, (7.!Ja) 

coshr0 =W/2eJ 112A.+, sinhr0 =!n /2d 12A._ (7. !Jb) 

[Eq. (4.24)], ( I Aa 1 I 2) achieves the minimum possible 
value e/ 2!1 (Eq. (6.6l]; thus the state I µa.,µa _) 1,

0
.o1 

yields a classical excitation of the quadrature phase 
E 1 (x,1), contaminated only by quadrature-phase zero­
poinc noise. Equation (6. 7) guaranc~ chat 
lµa+•µa_> 1,

0
,01 is an eigenstate of a 1= (E/ !1) 112a+ (r0 ,0) 

[Eqs. (4.14), (4.25a), and (7.13bl]: 

(7. !4a) 

(7.l·fo) 

[cf. Eq. (4.161]. For r > r0 , ( I Aa 1 1
2 ) increases as r in­

creases. 
The state lµa+,µa_ ), ,

0
,o 1 belongs to a special class of 

two-mode squeezed states which we call squashed states.11 

The set of squashed states consists of the states 
I µa +•µaJ1,

0
,91 1 for all values of cp. The squashed state 

I µ"+ 'µaJ 1,0,911 is an eigenstate of the rotated quadra· 

cure-phase amplitude 

a'1 =a1coscp+a2sincp=(E/!1l 112e -i 91a+(r0,cpl 

with eigenvalue {e/nJ 112µa ... e -/91 (Eqs. (4.14), (4.25), and 

(4.16)]; hence a'1 has the minimum mean-square 
uncertainty ( I Aa'1 1

2) =t: / 2!1. In particular, 
lµa+,µa_> 1,0,r121 is an eigenstate of a 2=-i(£/nl 112 

Xa+(ro, Tr.) with eigenvalue s2= -i(e/ !1)112µa+· Ini· 
tially we hoped that the squashed states, as eigensutes of 
the quadrature-phase amplitudes , might play a fundamen­
tal role in two-photon optics, analogous to the role played 
by the eigenstates of the annihilation operator-the 
coherent states-in one-photon optics. Our initial hopes 
were quashed, however, by our inability to find any spe· 
cial role for the squashed states. In the formalism 
presented in this series of papers, therefore, the squashed 
states are on the same footing as all the other two-mode 
squeezed states. 

The mean-square uncertainties in {3 1 and /32 [Eqs. 
(4.4 7)] for a two-mode squeezed state can be obtained 
from Eqs. (7.9) and (7.10) by setting E=O. In particular, 
for cp = 0 one finds that 

(I Af31 I 2) =+e- 2', (I Af32 I 2) = +e'' . (7.15) 

VIII. DEGENERATE LIMIT 

A. Definition and discussion 

We shift attention now to the degenerate limit of our 
two-mode formalism. By the degenerate limit we mean 
that the two modes we have dealt with coalesce into a sin­
gle mode at frequency !1. Taking this limit is not an en· 
tirely trivial task. An obvious first step is to set <=0, so 
we assume E=O 1hroughou1 rhe remainder of this subsec-
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uon. This step alone, however, is not sufficient, because it 
leaves two degenerate, but distinct modes at frequency n, 
which have distinct annihilation operators a+ and a_. 
(Simply setting <=0 would describe, for example, the case 
where the two modes are plane waves of the same fre­
quency traveling in different directions; see discussion 
preceding Eqs. (4.5).] To take the desired degenerate lim­
it, one must somehow reduce the number of modes from 
the two original modes to one mode that corresponds to 
the coalescence of the two original modes; out of the four 
original degrees of freedom, one must pick two relevant 
degrees of freedom and discard the other two. 

The key to picking the relevant degrees of freedom is to 
define new annihilation operators a and b, which are uni­
tari!y related to a + and a_: 

a=2- 112(a++a_ ), b=l- 112(-ia++ia_), (8.l al 

a. =Z- 112(a±ib). 18.l bl 

The importance of these new operators becomes apparent 
when one writes the positive-frequency part of the two­
mode electric field [Eq. (4.5bl with <=0] in terms of a 
and b: 

(8.2) 

One sees that a is the annihilation operator for a plane· 
wave mode at frequency n; it contains the relevant de­
grees of freedom . In contrast, b does not appear in the 
electric field; it contains the irrelevant degrees of freedom. 
One can write the operators introduced in Sec. IV in terms 
of a and b. For example, the quadrature-phase ampli­
tudes (4.25) become 

(8.3) 

where a 1, a 2, b 1, and b2 are the Hermitian real and imag­
inary pans of a and b, i.e., 

(8.4) 

Thus, another way to characterize the relevant degrees of 
freedom at degeneracy is that they are the real parts of a 1 
and a 2, whereas the irrelevant degrees of freedom are the 
imaginary pans. In terms of a and b the fundamental un· 
itary operators become 

U.w l tl ! ,.0 =1, 

R (8 J f ,.a=exp(-i8atalexp(-i8btbl, 

D(a +•µ+lD(a _,µ_)I ,.0=D(a,µJD(b,y), 

S( r ,cp) I ,.a=exp[ +r(a 2e -li~ -a tie li~)] 

X exp[ +r(b 2e -li~ -b tie !i~l] 

(Eqs. (4.37), (4.33), (4.12), and (4.9)], where 

µ::z-112(µ++µ_)' 

r=z-1 12( -iµ++iµ_J. 

(8.5a) 

(8.5b) 

(8.5c) 

(8.5d) 

(8.6al 

(8 .6b) 

Notice that Eq. (8 .Sal implies that when E=O the MP and 
IP are the same. 

The two-mode Hilbert space factors into a tensor 
(direct) product of Hilbert spaces for the a mode and the 

b mode. The a-mode Hilbert space is the Hilbert space 
for the relevant mode at degeneracy. We let trb denote a 
trace over the irrelevant b-mode Hilbert space. We use a 
subscript a to denote a state vector that lies in the a-mode 
space or an operator that operates in the a-mode space; a 
subscript b performs the same role for the b-mode space. 

One is now in a position to define the degenerate limit: 
one reduces the Hilbert space from the two-mode space to 
the a-mode space; for a state vector or an operator, one 
extracts a piece that lies in or operates in the a-mode 
space. To make these notions precise, consider a two­
mode density operator p. We say that p has a degenerate 
limit if the a mode is independent of the irrelevant b 
mode, so that no matter what operation is performed on 
the b mode, the a-mode is unaffected. Hence, a densiry 
operaror p has a (unique) degenerare limir Pa= trb(p) if 
p=p.pb; we denote this limir by 

p-p •. 
p 

(8 .7) 

Similarly, a state vector I .p) has a degenerare limit f 1"a), 
denoted by 

i w >- I w. > . (8 .8J 
? 

if i 1") = I iba )® I Wb ); requiring that f 1".) be normalized 
makes this limit unique up to an arbitrary phase factor. 
The limits (8.7) and (8 .8) have an obvious extension to un­
itary operators. A unitary operator U has a degenerare 
fimir u., denoted by 

u-u.' (8 .9) 
p 

if u = u. ub; requiring that u. be unitary makes this lim­
it unique up to an arbitrary phase factor. In Eqs. 
(8. 7)-(8 .9), the p under the arrow signifies that these are 
product degenerate limits; i.e., each requires that the 
relevant quantity factor into a product of an a-mode 
quantity times a b-mode quantity. The limits (8.7) and 
(3.9) could easily be extended to a product degenerate lim· 
it for arbitrary operators, but we have no need for such a 
generalization here. For present purposes the important 
properties of the product degenerate limit are that 

u-u •. p-p. ==;> Uput- u.p.uJ, (8 . !0aJ 
p ? p 

U-U., fi/1)--fi/J.) ==;.Ufl/1 ) -U.fw.) . (8.!0bl 
p p p 

For observable quantities or for non-Hermitian opera­
tors like the quadrature-phase amplitudes, a different de­
generate limit is appropriate. Consider an arbitrary 
operator R. We say that R has a sum degenerate limit 
R., denoted by 

R-R., 
I 

(8 .11) 

1f R =Ra +Rb. The motivation for this definition is that 
for a state p with a degenerate limit, Ra and Rb are un­
correlated. The sum degenerate limit (8. 11) is defined 
only up to an arbitrary additive constant. 

Having specified how to take degenerate limits, we now 
consider the limits of the two-mode quantities introduced 
in Sec. IV. We adopt the sensible convention that the lim-
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it of an SP operator is an SP operator, and the limit of an 
IP or a MP operator is an IP operator. For normalization 
purposes we define the sum degenerate limits of the IP 
two-mode electric field operator [Eqs. (4.5)] and the IP 
quadrature phases [Eqs. (4.19)] to be 2112 times a quantity 
denoted by the same symbol (e.g., £ 1 + 1( x , 1) 
_ 2112(!1/2)1/lae -iOCt -z l = 2112 £' + ' L~,I); cf. Eq. (8.2J] ; 

I 

with this choice the degenerate limit of the IP two-mode 
electric field operator yields the IP single-mode ele!:tric 
field operator defined by Eqs. (3.3) with lLl = n, and the re­
lations between the electric field and the quadrature 
phases [Eqs. (4.19)-(4.21 l] retain the same form in the de­
generate limit. The sum degenerate limit of the SP an­
nihilation operators [Eq. (8. lbl], 

a ... -2-112' 
- I 

(8.12) 

suggests defining the sum degenerate limit of the MP 
squeezed annihilation operators (4.14) in the following 
way: 

a=(r ,<p)-2- 112(a coshr + a 'e !l"'sinhr)a2- 112a(r,<p ). 
I 

(8.13) 

The YIP quadrature-phase amplitudes (4.25) have a Her­
mitian sum degenerate limit 

a'"-a'"=2- 111xm, m=l,2 
I 

[Eq. (8.Jl]. 

(8.14) 

The loss of two degrees of freedom at degeneracy erases 
the distinction between the quadrature phases and the 
quadrature-phase ampli tudes : the IP quadrature phases, 
which are initially Hermitian operators with harmonic 
time dependence at frequency c, become constant in the 
degenerate limit; the MP quadrature-phase amplitudes, 
which are initially (constant) complex-amplitude opera­
tors, become Hermit ian in the degenerate limit . As a re­
sult, at degeneracy there are three Hermitian IP operators, 

(8.15) 

all of which are constant and any of which could be called 
a quadrature phase or a quadrature-phase amplitude.2 We 
prefer to give .~ 1 and x 2 the distinction of being the (de­
genera te) quadrature-phase amplitudes, because their rela­
tion to the annihilation operator has the same form as 
Eqs. (4.25) with c= O, i.e., 

x 1 = 2- 112( a +a 1) , 

x 2 =2- 112( - ia + ia t) , 

and because their commutator 

(8.16a) 

(8.16b) 

(8 .17) 

enforces the same uncertainty principle as Eq. (6. 1 ), i.e., 

( (IU1)l ) lll((IU2l2 ) 112?: + (8 .18J 

[cf. Eq . (6.3)] . 
The fundamental unitary operators introduced in Sec. 

IV [Eqs. (8.5 )] have the following (unitary) product degen­
erate limits: 

u.\{(tl-1. 
p 

R (13J-exp( -i ea 'a l , 
p 

(8. 19a) 

(8.19b) 

D(a + ,µ+lD<a _ ,µ _J-D(a ,µ) , µ::2- 112(µ+ +µ_), 
p 

S(r,<p)- exp[ r r (a 2e - 21"'-a 12eii"'l] aS1 (r ,ip) . 
p 

(8.19c) 

(8. 19d) 

The MP free evolution operator U.11 ( 1) becomes the iden­
tity operator, the rotation operator R ( 8) becomes a 
single-mode rotation operator, the two-mode displacement 
operator D(a + ,µ. + )D(a _ ,µ_ ) becomes the single-mode 
displacement operator U.i), and the two-mode squeeze 
operator S( r ,<p ) becomes the degenerate squeeze opera ­
tor42·43 S 1(r,ip). Under a unitary transformation generat­
ed by S 1(r ,<p) the annihilation operator a becomes the 
squeezed annihilation operator a(r ,<p) [Eq. (8.13l]: 

a (r ,<p) =S 1 (r ,ip )aS i ( r ,<p ) =a.coshr +a' e21"'sinhr (8.20l 

[cf. Eq. (4. l*l]. For ip=O the degenerate squeeze operator 
transforms the quadrature-phase amplitudes according to 

Si(r,Olx1S1(r,O)=x1e-', 

Si(r,Olx2S1(r,Ol=x2e' . 

(8.2!a) 

(8.2!b) 

The degenerate limits (8.19) can be applied to obtain the 
degenerate limits of the special states defined in Sec. IV. 
The product degenerate limit of a two-mode coherent 
state [Eq. (4.1 ll] is a single-mode coherent state [Eq. 
(3.9l} : 

lµ+ ,µ_ )coti- Jµ ).:oli• µ=2- 112(µ++µ_). (8.22) 
p 

The product degenerate limit of a two-mode squeezed 
state (Eq. (4.15)] is a degenerate squeezed stare'1•

44
·2 

l µa )l r,~ J : 

l µa ,µa )1,,~,-S 1( r,ipJD(a,µa ) I 0) 
- - p 

=D(a,µ lS 1( r,ipl JO) a l µa >c""'', (8.23a) 

(8.23b) 

[Eqs. (4. 17) and (4.18)). A degenerate squeezed state is la­
beled by the eigenvalue of a <r ,<p ) (Eq. (8.20)] : 

a ( r,<p) l µa >1 r. <1>1=µa !µa )lr. 'l'I (8.24) 

[cf. Eq. (4.16)]. The quadrature-phase amplitudes have 
the following variances in a degenerate squeezed state 
with ip=O: 

((LU: 1)2)=+e- 2', ( (ilx 2 l2)=+e2r. (8 .25) 

[cf. Eqs. (7 .12)]. 

B. Review of previous work 

Degenerate squeezed states were introduced indepen­
dently by Stoler42•4l ("minimum-uncertainty packets") 
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and Lu43
•
44 ("new coherent states"), both of whom used 

the degenerate squeeze operator to generate squeezed 
states from coherent states. The first comprehensive 
treatment of squeezed states is due to Yuen, 2 who called 
them "two-photon coherent states" because of their gen­
eration by ideal two-photon processes. Yuen explored in 
detail the properties of degenerate squeezed states, and he 
discussed several physical mechanisms for generating 
them. In this series of papers we adopt Yuen's notational 
convention, which labels a degenerate squeezed state by 
the eigenvalue of the squeezed annihilation operator. Not 
long after Yuen's paper, Yuen, Shapiro,i. 7 and Machado 
Mata6 developed the theory of optical communications us­
ing squeezed states. At about the same time Hollenhorst 40 

introduced squeezed states into the theory of "quantum 
nondemolition measurements.""° Hollenhorst coined the 
term squeezed and applied it to the degenerate squeeze 
operator (in Ref. 1 the term was extended in an obvious 
way to apply to the states themselves). Hollenhorst's 
work led to the realization 1 that squeezed states could be 
used to improve the sensitivity of laser interferometers 
used to detect gravitational waves. In the last few vears 
there has been an explosion of interest in squ~zed 
states.3•

4 Optical communications and high-precision 
measurements remain their primary potential applica­
tions, but interest is also fueled by a desire to investigate 
their nonclassical behavior. 3 

In unpublished work Yuen47 has considered aeneral 
multimode squeezed states. Yuen and Shapiro7 an°d Mil­
burn30 have defined two-mode or multimode squeezed 
states, but the states they define are simply tensor (direct) 
products of degenerate squeezed states for each mode. 
There is a formal sense, realized by Lu43 and pointed out 
explicitly by Milburn,30 in which the two-mode squeezed 
states defined here can be regarded as a tensor product of 
two degenerate squeezed states. For any val~e of e one 
can define the operators a and b of Eqs. (8.1 ), and one can 
write the two-mode displacement operator and the two­
mode squeeze operator in terms of a and b as in Eqs. 
(8.5ci and (8.5d). Thus a two-mode squeezed state (4.17) 
factors into a tensor product of degenerate squeezed states 
for the "a mode" and the "b mode." 

The difficulty with this description is that unless e=O 
the operators a and b are not modal annihilation opera­
tors because they do not have a harmonic time depen· 
dence in the IP. The operators a+ and a _-not a and 
b-appear in a modal decomposition of the electromag· 
netic field . Formally, it is correct to describe a two-mode 
squeezed state as a product of degenerate squeezed states 
for the "a mode" and the "b mode," and this description 
does permit one to obtain properties of two-mode 
squeezed states directly from properties of degenerate 
squeezed states. Physically, however, this description is 
very misleading, because it can easily lead one to believe 
that the way to produce nondegenerate (wide-band) 
squeezing is to squeeze separately two different modes. In 
reality , wide-band squeezing does not result from 
separately squeezing different modes (see Eq. (5.6a)); rath­
er, it is a consequence of a special sort of correlation be· 
tween two modes symmetrically placed about a carrier 
frequency [Eqs. (5.8bl and (5 .Scl]. Such correlation is 

produced by ideal two-photon devices, and it is the feature 
that characterizes two-photon optics. 
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APPEND!X: UNCERTAINTY PRINCIPLES 
FOR NON-HER.'viITIAN OPERATORS 

In this Appendix we derive and discuss uncertainty 
principles that apply to the mean-square uncertainties of 
non-Hermitian operators. Our immediate objective is to 
derive the uncertainty principles for a 1 and a 2 which are 
given in Sec. VI. The derivations are more general:8 

however, than the special case of a 1 and a2, because we do 
not restrict ourselves to operators with c-number commu­
tators. Since the uncertainty principles for non-Hermitian 
operators are based on the uncertainty principles for their 
Hermitian real and imaginai'Y parts, we begin by review­
ing the standard uncertainty principle for two Hermitian 
operators. The notation we use here is introduced in Sec. 
IL 

!. Two Hermitian operators 

Consider two Hermitian operators B and C. They 
satisfy the ordinary uncertainty principle for the product 
of their uncertainties: 

((ABJ2)112((t.C)2)1/2~ +I ((B,C]) I . (All 

The derivation of Eq. (Al) can be found in most 
quantum-mechanics textbooks (see, e.g., Chap. 8.6 of Ref. 
27). Equality holds in Eq. (All if and only if the state 
vector J '!') is an eigenstate of a particular linear corn· 
bination of B and C: 

(A.B + i,Bt.C ) J'!' ) =O, (A2al 

_ . ((B,C]) (( A.B J2)1 12 ,B = - l -~-~_...._ ~ ""---"'--'--'---
! ((B,C]) I ((t.Cl2)112 

=2i (( A.Ell ) _.l; ((B,CJ) 
((B ,C]) 2 (( <iC)2) 

(A2b) 

Notice that ,B is real because ( (B, C]) is pure imaginary. 
Equality in Eq. (All implies that B and C have zero 
second-order correlation, i.e., 

(AB t.C)sym= (BC),ym-(B) ( C) =0 . (A3) 

2. One non-Hermitian operator 

Let R be a general, possibly non-Hermitian operator. 
We want to derive a lower limit for its mean-square 
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uncertainty ( I t:i.R I 2) [Eq. !2.9l]. An instructive ap­
proach is to consider its Hermitian real and imag­
inary parts R 1=Re!Rl=+rn+R 1l and R 2::Im(R) 
= -+i(R-R 1J, i.e., 

(A4) 

It is useful to note the following relations among opera­
tors: 

( o.R )1 = ( o.R 1 )
2
-( t::..R2 )2 + 2i( o.R I t::..R2 lsym , (A5) 

Io.RI 2=(t::...R1 l2 +!t::..Ril2
' (A6) 

(R,R
1
]=-2i(R1,R2J · (A7l 

:-lotice that ([R ,R 1]) is real . 
By noting that 

( i ;iR : : ) = ( LlR I )2 ) + ( ( .i.R 2 )2 ) 

<: 2 ( ( ;l_R I )l) 111 ( ( D._R l )2) Ill ' (AS) 

one can use the ordinary uncertainty principle (Al), ap­
plied co R 1 :ind R2, co establish a lower limit for 
< I o.R i 1 ): 

<:.lR i2)<:T l ([R,R 1J)l= l ([R1,Rd) I . (A9l 

This derivation makes clear that equality in Eq. (A9) is 
equivalent to each of the following: (i) R 1 and R 2 have 
equal uncertainties, which have the minimum-uncertainty 
product, i.e., 

!iii the state vector I lj.I) satisfies 

[
AR +i ([R,RtJ) ilR,lllj./)=0 (All) 

I l([R,R 1])1 • . 

[Eqs. !A2l and !A 7l]; !iiil the state vector I lj.I) satisfies 

t::..R11j.1)=0 if ([R,R 1])<:0, !Al2al 

t:i.R 1 : 1j.1)=0 if ([R,R 1])s;O. 

Equality in Eq. !A9l implies 

(!AR l2) =0. 

!Al2bl 

(Al3l 

The uncertainty principle (A9) can also be obtained 
directly without introducing R 1 and R 2. One writes the 
mean-square uncertainty in two ways which imply two 
lower limits: 

( I o.R I 2) = ( .lR t D.R) + + ( [R ,R 1]) <: + ( [R ,R 1]) ' 

(Al4al 

( I o.R 12
) =(2.R O.R 

1
)-t([R,R 1]) <: -+([R,R 1]). 

(Al4b) 

Equations (A 14) imply the uncertainty principle (A9). If 
([R,R 1])<:0, then equality holds in Eq. (Al4a) if and 
only if ( t:i.R 1 AR ) =0, which is equivalent to Eq. (A 12a); 
similarly, if ( [R,R 1]) ::;O, then equality holds in Eq. 
!Al4b) if and only if (t:i.R t::..R 1)=0, which is equivalent 
to Eq. (Al2b). 

3. Two commuting non-Hermitian operators 

Consider now two general,'8 possibly non-Hermitian 
operators R and S which commute: 

[R,5]=0; (Al5) 

thus the important commutator is [R,S 1]=-[R 1,s] 1. 

In analogy with the ordinary uncertainty principle (A!), 
one might expect I ([R,S 1]) I to set a lower limit on the 
product of the root-mean-square uncertainties in R and S. 
Indeed, the main result of this subsection is that 

(I AR 12>112( I t:i.S I 2)112<: t I ([R,stp I ' (Al6l 

an uncertainty principle that bears a striking resemblance 
to the ordinary uncertainty principle (A!). 

The uncertainty principle !Al6) is a consequence of the 
ordinary uncertainty principles for the rc:i.1 :ind imaginary 
parts of R and S. We therefore begin a proof of Eq. 
(Al6) by introducing the Hermitian rc:i.1 and imaginary 
pans of R as in Eq. (A4l and by introducing the Hermi­
tian real and imaginary parts of e 0 ·s, 

S1=+<e 0·s+e-•>-s\ S 2=-+i<e'>-s-e-•>-s 1J, 

(Al7al 

(Al7bl 

where e ;1- is an arbitrary phase factor. For different 
values of A. the operators S 1 and S 2 are different linear 
combinations of the real and imaginary parts of S, but the 
mean-square uncertainty in Sis still given by 

(Al8) 

[cf. Eq. !AS)] . In what follows we derive lower limits on 
( I t::..R 12) 112 ( I t:i.S 12) ii2 which depend on A., and we 

then choose 'A. to enforce the most stringent limit. Using 
Eq. (A 15), one can derive the following commutators: 

( R, ,Si] =(R2,S2J = +(e -•>-(R,S 1
] +e 1>-[R 1

,Sj) 

= Tiim!e -il-[R,S 1 ]l , (Al9a) 

[R 1.S2] = -[R 2,S 1] = +i(e -i>-[R ,S 1
]-e'>-[R 

1,S]l 

=+iRe(e-•>-[R,S
1]l . (Al9bl 

The notation is made less cumb.:rsome by introducing the 
symbols 

. rj::((t:i.Rj)2)112<:0, sj::((il51l2)112<:0, }=l,2. 

(A20l 

The commutators (A 19) enforce four uncertainty princi­
ples [Eq. (All], 

r1si<:+clsin(o-'A.ll, 

r2s2 <: +c I sin(o-f...) I 

r1s2 <: +c I cos(/)-A.) I 
r2s1<:+clcos(o-f...ll, 

where we define 

(A2la) 

(A2lb) 

(A2lc) 

(A2ld) 
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(A22) 

Hence, the problem is to minimize 

( lt..R 12>< IC..Sl 2)=(rl+rlHsl+sll 

=I (r1 +ir2Hs1+is2l1 2 , (A23) 

subject to the constraints (A21). An easy way to do this is 
to write Eq. (A23) in two ways, which lead to two dif­
ferent lower limits: 

(I Ci..R i 2) (I C..S 12) =(r1s1 -r2s2l2+ (r1s2 +r2s1 )2 

(A24a) 

(A24b) 

If one c!:tooses J..=o (A=0-;;"/2), then Eq. LA24a) [Eq. 
(A24bl] implies the uncmainty principle (Al6). 

The operators S 1 and S 2 defined by Eqs. (A 17) with 
A.=o-;;"/2 !or, equivalently, the operators 5 2 and -51 
defined by A.=ol bear a special relationship to R 1 and R 2• 

For A=0-11'/ 2, Eq. (A24bi shows that equality in Eq. 
(Al6l is equivalent to each of the foilowing two state­
ments: (i) R 1, R 2, S 1, and S 2 satisfy 

( U.R 1 l
2) = ( ( Ci..R 2 l

2 ), ( (US 1 l
2) = ( L.~.S 2 )

2) , (A25al 

( ( :lR 1)2)112( (,1S 1 )2) l/'l = ( ( CJ..R 2):)112( (US! )2) I/! 

=7 1([R,S
1
]) [ (A25bl 

(iii the state vector I 'l') satisfies 

( ~ 1 +iy US1) I 'l') =0' 

(li.R2+irC..S2ll'l')=O, 

r=( I Ci..R 12>1n; ( I us I ' >112 

(A26a) 

(A26bl 

(A26cl 

(Eqs. !A2l] . By taking appropriate linear combinations of 
Eqs. IA26aJ and (A26b), one can show that equality holds 
in Eq. iA16) if and only if 

U..R + ye;6 .1.Sl I 'l') =0 , (A27al 

(.:l.R.'-ye-;6 US'l i 'l')=0, 

ve 'o= ((R.Stj) ( I t::.R I !)Ill 
' - l ((R ,S'J) ! ( I c..s 12)112 

_, ( l t::.R. : 2
) _ l ([R.5 1

]) 

-~ ( (R,5 1])" - 2 ( l il5 J2) 

(A27bl 

(A27cl 

(Eqs. (A22l and (A26cl; cf. Eqs. (A2l]. Equations (A27l 
do not depend on any special choice for i.. . They can be 
used to show that equality in Eq. (A 16) implies the fol-

0 Permanent address: Theoretical Astrophysics 130-33, Califor-
nia Institute of Technology, Pasadena, CA 91125. 

IC. M. Caves, Phys. Rev. D 23, 1693 (1981). 
2H. P. Yuen, Phys. Rev. A 13, 2226 ( 1976). 
l For a review of squeezed states, see D. F. Walls, Nature 306, 

14( (1983). 

lowing: 

( ( t..R )2) = ( ( C..S )2) = ( Ci..R .1S) = 0 , 

(t..R .1.S 1 ),ym=+re;6 ((S,s 1]) 

= +r-1e1sqR,R tp 

(A28al 

(A28bl 

A simple, but important consequence of Eqs. (A27c) and 
(A28bl is that equality in the uncertainty principle (A 16) 
implies 

2_ (I Ci..R 12) ((R,R 1)) 

r - ( J .1.S J 2) ((S,St]) ' 
(A29l 

provided that ((R,R 1]),=0;6((S,S
1
]). 

Equation (A28al shows that equality in Eq. (Al6) im­
plies ( ( Ci..R 1 l

2) = ( ( t..R 2 l
2) and ( (US 1 l

2) = ( (US 2 l
2 ), re­

gardless of the choice of A. This tells one immediately 
that Eqs. (A25l are a consequence of equality in Eq. 
(Ai6l, regardless of the choice oi A. Equally true is that 
Eqs. (A25) imply equality in Eq. (Al6l, regardless oi the 
choice of A.. On the other hand, only for the special 
choices A.=0-11'/2 and A.=o (or their equivalents) are 
Eqs. (A25l equivalent to eigenvalue equations like Eqs. 
(A26l, because only for these special choices is Eq. (A25b) 
a minimum-uncertainty product [cf. Eqs. (A2ll]. Thus it 
is the eigenvalue equations (A26) that pick out the opera­
tors 5 1 and 5 2 defined by A.=0-11'/2. 

An alternative method of proving the uncertainty prin­
ciple , (A 16) goes as follows. Choose for illustration 
.l=0-11'/2; the problem is then to minimize 
/(r 1,r2,s 1,s 2):(r/+dHsl+sil [Eq. (A23)], subject to 
the constraints r 1st ~ +c and r 2s 2 ~ +c [Eqs. (A2laJ and 
(A2lbl] . As a first step, minimize I on the hypersurface 
r 1r2s 1s 2 = K 2 ~ c2 / 16, where K is a constant. The 
minimum value /=4K 2 can be found by using a 
Lagrange multiplier to enforce the hypersurface con­
straint; the minimum occurs when r1 =r2, s, =Sz, 
r1s 1=r2s2=K. Now vary K to find the absolute 
minimum consistent with the constraints; the obvious 
answer is K = +c. which yields an absolute minimum 

value/= +c 2
• 

It should be remembered that the uncertainty principle 
(Al6l is not the whole story, since it is based only on the 
commutator [R,5 1

]. It is quite possible that the con-
straint 

(I Ci..R 1
2>< ! c..s 1

2> ~ + i ([R ,R 1l>ll([S,S
1
]) I , 

(A30l 

which follows from the separate uncertainty principles for 
R and S [Eq. (A9l], provides a more stringent lower limit 
than Eq. (Al6l. 

4for the flavor of recent work on squeezed states, consult the 
papers in Proceedings of the 5th Rochester Conference on 
Coherence and Quantum Optics ( Cohertnct and Quantum 
Optics V. edited by L. Mandel and E. Wolf (Plenum, New 
York, !984), pp. 609-648 and 737-774, referred to below as 
CQ05] and the abstracts of papers presented at the 13th In-
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This paper provides the mathematical foundation for the two-mode formalism introduced in the 
preceding paper. A vector notation is introduced; it allows two-mode properties to be written as 
compactly as the comparable properties for a single mode. The fundamental unitary operators of 
the formalism arc described and their properties arc e:'\amined; particular attent.ion is paid to the 
two-mode squeeze operator. Special quantum states associated with the formalism are considered, 
with emphasis on the two-mode squeezed states. 

I. INTRODUCTION 

The present series of papers introduces a new formal­
ism for two-photon quantum optics. The goal is to 
develop a formalism suited to analyzing two-photon de­
vices, such as parametric amplifiers and phase-conjugate 
mirrors. in which photons are created or destroyed in the 
output modt!S two at a time. In the preceding paper 1•2 

(henceforth referred to as Il we introduced the basic build· 
ing blocks of our two-mode formalism: (i) new operators, 
the quadrature phases and the quadrature-phase ampli­
tudes, and (iil new quantum states, the two-mode squeezed 
states. The emphasis in I was on developing a sound 
phvsical interpretation of these fundamental entities. A 
co~versational style invited the reader to become familiar 
with the elementary, but most important properties of the 
quadrature-phase amplitudes and the two-mode squeezed 
states. In the present paper the emphasis shifts-from 
physical interpretation to mathematical details. We intro· 
duce a compact vector notation which simplifies the 
mathematical description and at the same time highlights 
the important physics underlying our two-mode formal­
ism. With the help of this notation we examine in detail 
the components of the formalism. The reward for the 
persistent reader is to proceed to a future paper (paper 
IIIJ, where the notation and results of this paper are used 
to construct the working tools of the new formalism-a 
set of "two-photon" quasi probability distributions. 

The present paper is largely independent of I, but a 
complete understanding does require familiarity with 
some of the material in I. (Equations in I are referred to 
here by affixing I to the equation number.) Since we 
make no attempt in this paper to motivate the definitions 
of the quadrature-phase amplitudes and the two-mode 
squeezed states, the reader might find it helpful to be fam­
iliar with the physical interpretation developed in I. The 
reader should also be comfortable with our potentially 
confusing habit of writing equations which contain opera­
tors defined in different pictures (see Sec. II of D; in par­
ticular, he should be familiar with the relations among the 
Schrooinger picture (SP), the modulation picture (MPl, 
and the interaction picture (!Pl [Eqs. (I.4.J) and (l.4 .4)] 

and with the convention introduced in Sec. IV C oi I by 
which we specify for each physical quantity the picture in 
which the operator corresponding to that quantity is al· 
ways written. 

Given this minimal familiarity with the material in I, 
we can cast aside the interpretative superstructure used in 
I and e.~tract only the essentials needed in this paper. We 
de:i.1 with two electromagnetic field modes whose frequen­
cies are n:: •. where n is a carrier frequency and.< n is 
a modulation frequency. The SP creation and annihila­
tion operators for the two modes are denoted by a~ and 
a::; they satisfy the standard commutation relations 

(a+,a_]=(a+,a~]=O, 

(a+,a:]=(a_,a~]=I. 

The free Hamiltonian for the two modes is 

Ho=HR +H.\f, 

where 

HR=rna:a.;-+a~a_), 

H.\f=i:(a~a+-a~a_), 

The MP quadrature-phase amplitudes are defined by 

a 1 =Z- 111(A.+a++A._a~), 

a 2=2- 112(-iA.+a + +iA._a ~), 

(I.la) 

( l.lb) 

(1.2) 

(!.3al 

(l.3bl 

(1.4) 

(l.5a) 

(l.5b) 

( 1.6) 

(Eqs. (I.4.25)]; they obey the following commutation rela­
tions: 

(a 1,a:J=[a2,aiJ=c!n, 

(a1>a2J=O ·, 

(a 1,aiJ=(al,a2)=i. 

(I. 7al 

(l.7b) 

( l.7cl 

The important new unitary operator in our formalism is 
the two-mode squeeze operator 

3093 © 1985 The American Physical Society 
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5( r,cp) =exp[r(a +a_ e -li<P _a :a ~eli<P) J (1.8) 

[Eq. (I.4.9)], where r is a real number called the squeeze 
factor and cp is a (real) phase angle. The two-mode 
squeeze operator satisfies 

s- 1(r ,cp)=St(r,cp)=S(-r,cp)=S(r, cp+7T/2), (1.9) 

and it generates the squeezed annihilarion operators, which 
in the MP are defined by 

a:: ( r,cp) =S (r,cp )a ;:S 1(r,cp) =a ;:cos hr +a ~e li<Psinhr 

( 1.10) 

[Eq. (I.4.1~1]. The squeezed annihilation operators are un­
itarily equivalent to the annihilation operators, so they 
have the same commutator algebra [Eqs. ( l. ll]. 

This paper is built on Eqs. (1.11-(1.lOl. Section II in­
troduces the compact vector notation which is used 
throughout this and subsequent papers. Tne components 
of our formalism are a set of fundamental unitary opera­
tors and a set of special quantum states. Section III ex­
amines in detail the fundamental unitary operators, and 
Sec. IV does the same for the special quantum states, with 
emphasis on the two-mode squeezed states. A concluding 
section meditates on the formalism developed here and 
hints at the results to come in subsequent papers. Some of 
the important results are developed in appendices: Ap· 
pendix A lists properties of various · transformation ma­
trices associated with the vector notation; Appendix B 
derives useful factored forms for the degenerate and rwo­
mode squeeze operators and an expression for the product 
of two different squeeze operators; Appendix C considers 
the inner product of two squeezed states. Throughout chis 
paper we use units with fi=c = l. 

II. VECTOR NOTATION 

The most important feature of the two-mode squeeze 
operacor S(r,cp) [Eq. (1.8)] is that under a unitary 
transformation generated by S ( r ,cp ), a:: is transformed 
into a linear combination of a ... and a~- This association 
of a+ with a~ (and a_ with ; : ) is evident in the: defini­
tions of the squeezed annihilation operators [Eq. (l.lOJ] 
and the quadrature-phase amplitudes [Eqs. (1.5)] . We 
have found it natural and useful to introduce an operator 
column vector 

(2.1) 

which recognizes explicitly this association. This vector 
notation has been used by Collett and GardinerJ in an 
analysis of parametric amplification. Mallow~ and Yuen 
and Shapirol have also used a two-component vector no­
tation, but they use a column vector formed from a+ and 
a_. The adjoint of the vector (2.1) is the row vector 

(2.2) 

Products of the vectors (2.1) and (2.2) are calculated using 
the usual rules for matrix multiplication, i.e., 

(2.Ja) 

(2.Jb) 

Also useful is an operator column vector for the 
quadrature-phase amplitudes, 

a=[:~] =1&!. (2.4) 

where 

d=rl/l r~i: ]=(,11)-1. (2.5) 

~= [~+ Ao_] =~t (2.61 

(Eqs. ( 1.5) and ( 1.6)] . A list of useful properties of A and 
~ appears in Appendix A; many of the properties are :nose 
conveniently written in terms of the unit matrix l and the 
Pauli matrices 

e1= [~ ~]. Q:2= [~ ~i]. ei= [~ ~ 1 ]. (2. 7) 

The matrix ~,2 = l + ( e ;n lQ:i plays an important role 
because it appears in the vector e.lpression for the free 
Hamiltonian (1.2), 

H0 + n-e=D!1&'!=W+e)a ~a+ +rn-e la _a~ 

=n4 
1
4=ntafa1 +aia 2J (2.8) 

[cf. Eq. (l.6.!0bJ]. Other matrices that turn up repeacedly 
in che following are 

' t l 1 ie/D l t C.=dC,·j =1-(</Dlczi= -i<ID 1 =.1 (2.9) 

(Eqs. (Al7) and (A6l] and 

!] = ciC:Q: 3&& 1 = -Q: ,c, =(E/Oll-cz i 

=["~~ <;n]=a' (2.lOl 

[Eqs. (A20l and (A6)]. The matrix [l is the matrix of 
commucacors for the quadrature-phase amplitudes: 

(2.11) 

[cf. Eqs. (1.7)]. 
The naturalness of this vector nocation is revealed most 

clearly by examining the operator matrix 

(2.12) 

where 6.4=4-(4). 6.am=am-(am). and '.'sym" 
denotes a symmetrized product (see Sec. II of I). The ex­
pectation value of the matrix (2.12) is the (Hermitian) re­
duced spectral-densicy matrix 

~=(6.4 i::.4 t ),ym (2.13) 
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(Eq. (I.5.2l]; the components of ~. lmn 
= (Ci.a,. Ci.a: ) 1ym = 1:m, are the second-order noise mo­
ments that characterize time-stationary quadrature-phase 
(TSQPl noise (see Sec. V of Il. Thus the vector notation is 
tailored to describing TSQP noise-the kind of noise pro­
duced by two-photon devices-because it generates natur­
ally the second-order noise moments that characterize 
TSQP noise. In contrast, the noise moments (Ci.a'" ti.a.), 
which vanish for TSQP noise (Eq. (l.5 . ll], are not gen­
erated naturally by the vector notation. 

Corresponding to the matrix (2. l 2) is a matrix involving 
the creation and annihilation operators, 

[ 
I c.a + I 2 c.a + ua -1 

(..'.!u!\ym= Ci.a~ Ci.a: IC.a_ 1 2 ' (2.14) 

where I Ci.a= I 2:(6.a= ua ~ l,ym [cf. Eq. (1.2.Sl]. Its e.~­
pectation value is the Hermitian matrix 

~=: ( il!u!t),ym, (2. 15) 

which gives the second-order noise moments that charac­
terize TSQP noise in tenns of the creation and annihila­
tion operators instead of in tenns of the quadrature-phase 
amplitudes. The relation between the two kinds of noise 
moments can be written in the compact matrix form 

(2. 16) 

which is equivalent to Eqs. (l.5.8l. 
Natural decompositions of~ and ~are afforded by the 

unit matrix l and the Pauli matrices q; i. q; 2, and q; 3: 

~=!o.l+!jQ:j' 

~=Ia.l+Ij !Zj, 

(2. l7) 

(2.1 8) 

where repeated indices are summed over)= 1,2,3. The 
coefficients 20,!i and 10,!i , w~ch are gu~teed to be 
real by the Hermiticity of ~ and ~. are related to the noise 
moments as follows: 

lo=+ (!11+!ul. !1=Re<!12l, 

!,=-Im(!12l. !3=+(!11-!ul, 

Io=+ ' ( ID.a+ 1
2 > + ( I ua _ 1

2 > l, 

! 1 = Re( ( .la + Ci.a _ ) ) , 

°f 1 = - Im( ( ..'.a+ ua _ ) l , 

! 3 = +(( I ti.a+ I 2 > - ( I ua _ I 2 > l ; 

they are related to each other by 

!2= -Ii-(e/nl'f0, ! 3 =( l-e2 / l12l112 l 1 

(2.19) 

(2.20) 

(2.21) 

(Eq. (2.16l; cf. Eqs. (I.5.8)] . The differential distribution 
of noise in phase is specified by ! 1 and ! 3 or, equivalent· 
ly, by ! 1 and !,. TSQP noise that is distributed random­
ly in phase is called time-stationary !TSJ noise. For TS 
noise Re(~) is a multiple of the unit matrix (! 1=!3=0), 
and ~is diagonal [!1 = ! 2=0; cf. Eqs. (1.5.9)]. 

The final important operator column vector is a vector 

for the squeezed annihilation operators ( 1.10), 

[
a+(r,tp) l t 

a,m= t ( l =S(r,iplaS (r,ipl=Cma, (2.22l 
- · ~ a:... r,tp - · ~-

where 

[ 
coshr e 21'Psinhr l 

{;' '·'P= e -u'Psinhr coshr = {;' !.<p • 12·23 l 

Notice that !='!o.<p· In the expression S!r,tpl!S 1!r,tp) 
the operators S(r,ip) and S 1(r ,tp) act separately on each 
component of!· Hence the adjoint of':!,,., is given by 

t t t t t 
':! ,,.,=S(r,tpl! S (r,tpl =! f; r,<p . (2.:4) 

The inverse of Eq. (2.22) takes the form 

(2.25) 

The matrix <;; '·'P describes the matri.'t transformation of 
a that is induced by a unitary transformation of a gcn­
~rated by S(r,ip). Useful properties of<;; '·'P arc lisced in 
Appendix A. Any unitary transformation U which gen­
erates a matrix transformation of a (linear transformation 
of a+ and a~) is a canonical tri'nsformation, described 
by a matrix J:f.: 

u!ut =M!. 12.26J 

Since a canonical transformation preserves commutators, 
M must satisfy 

Jiq; ,.,J{t =Q: J' 

which is equivalent to 

M1q;;J:i=!Zi. 

(2.27) 

(2.28) 

If M has unity determinant, then it is an element of the 
group SU(l,l).6 The most general element of SU(l,l) 
(generated by U=S(r,tp )Rt(8l ; see Eq. (3.121] is J1. 

-19ft:i Th . r ed b =e (;;' r,<p' e matnces ""' ·'P' generat y 
U=S (r,tp), are the Hermitian elements of SU(!,!). They 
must satisfy Eq. (2.23): 

(2.29) 

Equation (2.29) is the key property of {; ,,.,. It says that 
{; ' ·'P preserves the scalar product .,,.;th respect to the 
"metric" q , ; it is an expression of the fact that a unitary 
transformation generated by S ( r,tp) preserves the differ· 
ence in the number of quanta in the two modes.7 In terms 
of the vector notation this fact is most easily written as 
preservation of the scalar product a1Q: 1a=a ~a+ 

t • - --a _a~, t.e., 

S(r,tpl,!1Q: i! S 1(r,tp) =~ :.<p!Z 1'! '·'P 

=,!I(;;' ;,<p!Z if; r,<p!=!t!Z 3!. (2.30) 

In addition to the above operator veciors [Eqs. (2. ll, 
(2.4), and (2.22l], it is useful to have available the c­
number vectors defined in Table I. The components of 
each c-number vector arc complex numbers. With each 
operator vector we associate two c-number vectors, an 
"active-role" vector and a "passive-role" vector. The 
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TABLE[. Two-mode vector notation. 

Associate<! c-numbcr vectors 
Operator vector Active role Passive role 

!= [:~ l 

active-role vectors are used in contexts where the c­
numbers act as surrogates for the corresponding opera­
tors, e.g., as eigenvalues or expectation values of the 
operators or as variables of a quasiprobability distribution. 
The passive-role vectors are used when the c-numbers ap­
pear as variables of a characteristic function. (Charac­
teristic functions and quasiprobability distributions will be 
discussed in paper III.l Notice that there is no real differ­
ence between the active-role and passive-role vectors in 
the first two rows of Table I; nonetheless, we maintain the 
distinction because of the difference encountered in the 
third row. The second row of Table I introduces a further 
notational convenience: for the squeezed annihilation 
operators and their vecwrs we drop explicit reference to a 
particular r and rp unless this leads to confusion. When 
we need additional c-number vectors for either role, we 
denote them by attaching primes co all vectors in the ap· 
propriate e<ilumn of Table I. 

The crucial properties of the vectors in Table I are the 
following invariants: 

t • t t _J" t t t 
a .:.V+-a_v_=~· qJ:!::=<_! ' Q:JYa=~ ::r=a1T)1+ap7z, 

(2.3\a) 

(2.3!b) 

In Eqs. (2.31 l the second equality follows from Eq. 
(2.29)-that [; ,,q> preserves the scalar product with 
respect to qi; it is the analog of Eq. (2.30). The desire to 
have the third equality in Eqs. (2.3 l) is responsible for the 
peculiar definition of 17 in Table I. In addition to the 
invariants (2.3 l) it is usCful to t\ote the relations 

fti' =1:: t!>l1::· ' 
yly• =11tt!17' ' -- - -

(2.32) 

(2.33) 

(2.34) 

which reveal the significance of the matrices ?; 2, 6., and Il 
[Eqs. (2.8)-(2.lOl]. 

The vector notation introduced in this section allows us 
to manipulate easily the components of our formalism. 
Good examples are provided by the relations 

(2.35a) 

(2.35b) 

the first of which follow directly from Eq. (2.24) and the 
second of which requires the invariant (2.3 lal and Eq. 
(2.25). Another example is the commutator 

(yt<Z J! ·!t<Z lf l=:!::t<Zlf !2.36) 

[Eqs. ( l. ll], which the invariants (2.J I) and Eq. (2.34) al­
low us to write immediately in the equivalent forms 

(2.37) 

(2 .38) 

The space on which quasiprobability distributions are 
defined is a complex phase space, and the space on which 
characteristic functions are defined is the corresponding 
comple~ Fourier space. An active-role vector and the cor­
responding passive-role vector form a pair of vectors 
under a complex Fourier transform. It is useful to note 
here the relations among integration measures for the <.:· 
number vectors in each column of Table I. Begin by de­
fining, for a complex integration variable ;, an integration 
measure d 2s=:d(Re4ld(Im5J. a For a pair of complex 
numbers 51 and 52, which form the c·number veccor 5, de· 
fine an integration measure -

d's=d 251 d
252=d(Re;, i d <Ims1 i d<Re42l dOmszl . 

(2.39) 

The relations among integration measures are then given 
by 

d 4µ.=d 4µa=(l-c1 1 n 2 l- 1d's, 

d 4v=d 4 va=(l-e1 / D2 ld 4ry . 

(2.40a) 

(2.40b) 

There are analogous relations among the o functions of 
the c-number vectors in each column of Table I. For a 
complex number 5. let o2(sl=o(Rcs)o(Im5l. and for a C· 

number vector f• let 

o'<fl =02(s1 io2<s2l 

=o(Re4 1lo(Ims1lo<Re42 lo!Ims2l. (2.4ll 

Then one finds that 

(2.42al 
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(2.42b) 

Equations (2 .39)-(2.42) find application in Sec. III C 2, 
where we define the complex Fourier transform, and they 
will be used extensively in paper III. 

We take the remainder of this section to consider the 
degenerate limit of our two-mode formalism, because 
most of the current work on two-photon devices deals 
with the degenerate limit. By the degenerate limit we 
mean the limit in which the two modes at frequencies 
!1±E coalesce into a single mode at frequency 
!1 (E=O, a+ = a _ }. The formal method for taking this 
limit is described in Sec. VIII A of I. Here we list the 
quantities-analogs of the corresponding two-mode 
quantities-that are used in the degener:ite limit. The SP 
creation and annihi lation ooerators for the single mode 
are denoted by a ' and a. The (Hermitian) IP degenerace 
quadrature-phase amplitudes are defined by 

x 1 ::2- 1r-( a -;.a 'l, 
x 2::2- 112( - ia-;.ia t) , 

a =2- 112(X 1 + i:c 2} 

(Eqs. (l.8. 16) ; cf. Eqs. (1.5)]; their commutator is 

(x1.-•2]=i 

(2.43ai 

(2.43b} 

(2.44) 

(2.45) 

(cf. Eqs. ( 1.7)]. Analogous to the two-mode squeeze 
operator ( 1.8) is the degenerace squeeze operaior9· 1° 

S1(r,ip)=:exp[ +r(a ~e-li~ - ( a ' l 2eu~ Jl (2.46) 

(Eq. (l.8 . l 9dl], which satisfies 

(2 .47) 

(cf. Eq. ( 1.9)] . The IP squeezed annihi/acion Oflerator is 
defined by 

a ( r , ip) ::S 1 (r ,<p )aS : ( r ,<p) =a coshr +a 1 e :;'l'sinhr (2.48) 

(Eq. n.8.20l; cf. Eq. ( l.lOl]. 
The degenerate quadracure-phase amplitudes (2.43 ) look 

deceptivel y like a dimensionless coordinate and momen­
tum . To avoid confusion, we remind the reader that Eqs. 
(2.43) and (2.44) are written in mixed pictures: a and a' 
are (constant) SP operators, whereas x 1 and x 2 are (con­
stant) IP operators. In the SP the degenerate quadrature­
phase amplitudes are e.~plic i tl y time-dependent operators, 
which we denote by 

x 
1 
{ t ) ::e - iOta ~ax , eiOta !a 

= 2-1 12(ae;n'+ate-i01}, 

·o ' ·n t x
2
(t):=e-' ta ax

2
e' ta a 

(2.49a} 

(2.49b) 

[cf. Eqs. U.4.22)] . In cont rast, the dimensionless coordi­
nate and momentum are constant operators in the SP, de­
fined by 

·•=2-112(a+at} , 

p =2- 112(-ia + ia 'l, 

(2.50a} 

(2.50b) 

(2.51) 

Thus, although x 1 =x and x2 =p, a picture-consistent 
equation relating the degenerate quadrature-phase ampli· 
tudes to the coordinate and momentum takes the form 

x 1 (I) =x cosWt)-p sinWt) , 

x 2(l )=x sin(!1t)+p cos(!1t) . 

(2.52a) 

(2.52b) 

Table II summarizes the operaton and associated c· 
number quantities which arc used in the degenerate limit. 
In Table II we introduce a vector notation for a single 
mode analogous to the two-mode vector notation summa­
rized in Table !. It is hoped that use of nearly the same 
symbols for the two cases will not lead to confusion, be­
cause we never deal with the two cases simultaneously. 
Similar single-mode vector notations have been used by 
Yueo, 11 Milbum,12 and Collett and Gardincr. 3 The single 
mode that e.usts in the degenerale limit has two degrees of 
freedom-two fewer than in the original two modes. In 
the first two rows oi Table II this reduction shows up in 
that the components of the vectors are not independent 
quantities; in the third row it shows up in that the com: 
ponents of the vectors arc, reading across lhe table from 
left to right, Hermitian operators, real numbers, and pure 
imaginary numbers. In the dcgencrale limit it is some· 
limes convenient to use a different passive-role vector 

f= [~; l = i~ =id~ ;~=2 112 r-R~~~} l =r • (2.53) 

whose components are rca1. 
In the degenerate limit the reduced spectral-density ma· 

trix (2.13) becomes an ordinary (real, symmetric) covari-
ance matrix 

k l9 ( j..! ..l!t >.ym 

[ 

(( ~1 ) 2 ) 

= < ~2 .l.:c: 1 ) ,ym 

( ll.."t I j.;c ! ) sym ] 

(( ~"t2 )l) . 
(2.54) 

The corresoondin2 (Hermitian) matrix that gives lhc 
second-orde.r noise- moments in terms of lhe cre:ilion and 
annihilation operators is 

[cf. Eq. (2.lSl]. These two matrices are related by 

l:=d.~d t (2.56) 

[cf. Eq. (2.16)]. Just :is in the two-mode case, one can 
decompose the matrices ~ and ~ in terms of the unit ma­
trix and the Pauli matrices. Equations (2.17)-(2.20) re· 
tain their forms in the degenerate limit, but note that 
l 2=0 [Eq. (2.19)] and I 3=0 (Eq. (2.20l]. Equations 
(2.21) reduce to the simple equations · 

(2.57) 

For TS noise the matrices k and ~ are identical and equal 
to a multiple of the unit matrix ( ~ = ~ = lal). 

The invariants in the degenerate limit are very much 
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TABLE II. Single-mode vector notation. 

Associated c-number vectors 
Operator vector Active role Passive role 

like the invariants (2.31 l: 
t • t • t . ;. 

av-av =!<Zjy=<;:<IJ~~=!:'.!=-1!f 

=-i(x!;1+x2;2l, 

(2.58aJ 

• .. t t ~+ . ~tr 
µ. v - µ. v = !:: <I iY = /:: :P- ;);'.a=§. :'.! = -1 §. .t 

= -i(s1;1 +s~2i . 
(2 .58b) 

In the degenerate limit the relations (2.32)-(2.34) become 

ff' =J:!. ';:· ' (2.59) 

(2.60) 

(2.61) 

because when <=0 ( ~=l l , t,2=1=1 and II=-'1:2· 
Equations (2 .35)-(2.38) retain their forms in the degen­
erate limit, with the two-mode vectors replaced by the 
corresponding single-mode vectors. 

The integration measures corresponding to the c­
number vectors in Table II deserve special comment; they 
do not have che form of Eqs. (2.40) with c=O because of 
the reduction in the number of degrees of freedom at de­
generacy. Defining d:µ .=d (Reµ)d(!mµ), one finds chat 

d 2µ.=d 2,Ua=+d;,d;2, 

d 2v=d'va=+a; 1 a;1. 

(2 .62al 

(2.62b) 

Notice that d 2,u/::"=d;1d$212r. is the usual phase-space 
volume element. Corresponding co Eqs. (2.62) are the fol· 
lowing relations among o functions: 

o2(µl=o 2(µa J=25(s :J8(s2J, 

82
( v) =02

( Va) =20(~ 1 l&l;2) , 

[o2(µ)::8(Reµ J 8(!mµJ] . 

(2.63aJ 

(2 .63b) 

III .. FUNDAMENTAL UNITARY OPERATORS 

A. Modulation-picture free evolution operator 

The basic picture in our formalism is the modulation 
picture (see discussion in Sec. IV C of!), so the fundamen· 
ta! free evolution operator is the modulation-picture free 
evolution operaror 

-iH t t + 
U.11 (1) =e ·11 =exp( -iEt(a -;.a+ -a _a_) J 

=e - •"exp( -i•t!'g; i!l (3 . ll 

[Eq. (l.4.37)], which satisfies 

U.\f 1(rl= U.~<1l= U.\{(-tl . (3.2) 

The MP free evolution operator is used to evolve states in 
the MP when the two modes are evolving freely. It uni­
tarily transforms a! as 

U.~(t)a:: U.11U)=a :e ;:;., , 

which in vector notation becomes 

U.~(t)_!U.\f(t)=y-i" . 

(3.3) 

()A) 

Multiplying Eq. (3.4) first by {;'·IP and then by .d &. one 
finds that 

U.~(tl'!U.wUl='!e-'" , 

U.~ ( tl4 UM(tl=~e-i" 

(3.5) 

() .6) 

[cf. Eq . (I.4.27)j. An important property of U.11 (t) is that 
it commutes with S(r,cp) : 

U.w(t)S(r,cp)U_~(t)=S(r, cp) . (3.7) 

In the degenerate limit U.11 (t) becomes the identity opera­
tor, i.e., 

U.11 Ul-l 
p 

(3.8) 

(Eq. (l.8.19al]. which means that the MP and the IP coin· 
cide. 

B. Rotation operator 

An important feature of our formalism is the phase 
freedom in the definition of the quadrature-phase ampli· 
tudes (see discussion in Sec. IV C of Il. The operator that 
describes this phase freedom is the rotation operator 

R(l:l):=exp(-il:l(a ~a+ +a ~a_)) 

=e'8exp( -il:l!t.!l 

(Eq. (I.4.33l], which satisfies 

R- 1(8l=R 1(8)=R(-8). 

(3.9) 

(3.10) 

A unitary transformation generated by R (()) produces a 
common phase change of the annihilation operators, 
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Rt(8)a,:R(8)=a;:e- i8 (3.11) 

[Eq. (I.4.35)], which in vector notation becomes 

R t(8)~(8)=e -•B<Zi!, (3. 12) 

-i8.z [e -iB 0 l 
e '=lcos8-i<Zisin8= 

0 
e;s , (3.13) 

and it produces a rotation of the quadrature-phase ampli· 
tudes, 

R 1(8),;f R(8l=e i8.z!.>f, (3 .14) 

i8<[ . . [ cose sine ] 
e l=!cos8..:.1Q;Sln8= -sin8 COS8 (3. 15 ) 

[Eq. (A6) ; cf. Eqs. !U .36l]. 
Important properties of the rotation operator include 

the following: (ii R ! 8l "rotates" the squeeze operator, 
i.e., 

R t(8)S(r.cp lR (lil=S(r, rp+Bl (3.16) 

[Eq. (3.11 )], a property which is the operator analog of 
Eq. (A27); !ii) R (nr l =e -•HR : is the unitary transforma· 
tion that connects the SP and the :VIP [Eq. (!..t..tl]; !ii i) 
R (8) commutes with U,11 (1) (cf. Eq. (!..+)];and (iv) the SP 
free evolution operator is e-•Ho'=R(flrlU.11 ( 1). Equation 
(3.16) implies immediately that 

t - i llq ) 
R (8)~,.;iR(8)=e i:!r,,,..,.8 · (3. 17) 

In the degenerate limit R ( 8) b~omes a single-mode ro­
tation operator, i.e., 

R (8)-e:tp( - i 8a ta) 
p 

[Eq. (I.8. l 9bi]. 

C. Two-mode displacement operator 

(3.18) 

At the he:irt of one-photon optics lies the displacement 
operator,J which generates cohc:rent states from the vacu­
um . It continues to occupy an important place in two­
photon optics. Here we begin by reviewing some well­
known properties of the displacement operator for a single 
mode. We then proceed to the displacement operator for 
two modes and write its properties in terms of the vector 
notation. 

l. Single-mode displacement operator 

The single-mode displacement operaror8 is defined by 

D(o,µl=exp (µo 1 -µ'a) (3 .19) 

[Eq. (I.3 .7)]. It satisfies the following string of equalities: 

D- 1(a,µ)=D 1(a ,µ l =D(a, -µ l =D(-a,µ). (3.20) 

The key property of the displacement operator is that it 
displaces the annihilation operator,8 i.e., 

D 1(a ,µ)aD(a,µ)=a +µ. (3.21) 

One can write Eq. (3.21) in an equivalent form involving 

the degenerate quadrature-phase amplitudes !2.43): 

D 1(a,µlxD(a,µl=x+s (3 .22l - - -
(see Table I!l. 

We use a two-slot notation for the displacement opera· 
tor: D(a,µ) can be regarded as an operator-valued func· 
tion of an operator a (first slot) and a complex numberµ 
(second slot). The most important reason for this two-slot 
notation is that one can replace a with another operator 
that has the same commutator with its adjoint and the re· 
suiting "displacement operator" has the same properties 
as the original. In practice, it is sometimes useful to re­
place a with the squeezed annihilation operator a(r,q:;) 
[Eq . (2..t8l] . The resulting operator 

(J ,:!3} 

which we conventionally write with µa J.S the label for the 
complex variable, displaces a: 

(3.24) 

Notice that Dia,µ) is unitarily equivalent to D(a ,µ): 

Further, the invariant (2.58a) implies 

D(a,µ)=D(a,µal. 

(3.:!5) 

(J.2 6) 

Equations (3.25) and (3 .26) can be used to obtain the result 

Si (r,q:lD(a,µ )S 1(r,<p)=D(a,µal . !3.27) 

One can also define the operator 

, • . , -i<''"'' +'r· l 9°(x,11l=exp1x 11 l =exp(-1x · ~)=e · , -- -- --
(3.28) 

which is the displacement operator written in terms of x 1 
and x 1, i.e., 

D (a,v)=D(a,va)=9°(_!.1) (3.29) 

[Eq. !2.58al]. 
A second reason for the two-slot notation is that one 

can repiace the operator a with a comple.t number µ to 
obtain a complex-valued function of two comple:t vari­
ables, 

(3.30) 

which satisfies 

D- 1(µ, v)=D* (µ, v) =D(v,µ)=D (µ, -v)=D( -µ,v), 

(3.3 la) 

D(µ,vlD(µ,v') =D(µ,v+v'). (3.Jlb) 

The importance of D(µ ,v) lies in its role as the expansion 
factor for complex Fourier transforms.13 . A function f (µ) 

is related to its complex Fourier transform F( v) by 

I d 2v 
/(µ)= -Fh·lD (v,µ) 

rr 
(3.J2) 

[d 2v=d(Rev)d(Imv)j. Employing the property 
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J 
di,, di,, 
.:c_c..D (µ,v)= J .:::..L:..D (v,µ )=m5i(v) (3.3 3) 

rr rr 

(81(v):=.S(Revl o( lmv )). one can invert Eq. (3.32) to give 

F(v)= J !!2._f (µlD(µ,v). (3.34) 
rr 

Equations (3.32) ahd (3.34) are a neat, symmetric way to 
write the relations between a function and its complex 
Fourier transform . The invariant (2.58b) implies 

D(µ.,v)=D (µa,va ) =e~'°2::9 ( f,'.J.l (3.35) 

[cf. Eq. !3.29l] . 
We end this review of the single-mode displacement 

operator by listing a few other important properties: 

Dt(a.µlD(a.vlD(a,µ)=D(a +µ,vl=D(µ,y)D(a,v), 

(3.36) 

D ' (a,µ')Dta,µl=D( +µ ',µ.)D (a,µ-,u ') , (3.37) 

2. Two-mode displacement operator 

We turn now 10 the displacement operator for two 
modes, our objective being to generalize · (trivially) the 
properties of the single-mode displacement operator and 
to write the resulting two-mode properties in terms of the 
vector notation. Use of the vector notation gives the 
two-mode properties an appearance as compact and 
elegant as the single-mode properties. 

We begin by writing the two-mode displacement opera­
tor3 [Eq. (l.4.12l) in the form 

Dt!·f:!.) :=expl!t<Z Ji!. _f:!.t<Z J!l 

=D (a +,µ. +lD (a_,µ._ ) (3.J9l 

[cf. Eq. (3.19)], which satisfies 

o- 1(!·f:!.l=0
1
!!·tl=D(!,-tl=0(-!·f:!.l (3.40) 

[cf. Eq. (3.20l]. The two-mode displacement operatar dis­
places !• i.e .. 

O '(!·f:!. l!Dt!·f:!. l =!+f:!. (J.41) 

[cf. Eq. (J.21 )]. and it generates two-mode coherent states 
from the vacuum (see Sec. IV All. Multiplying Eq . (3.4 1) 
by J ~yields 

0 1 !~t l4rn!·t l =.;£ +f !3.42) 

[see Table I; cf. Eq . (3.22l] . 
We use a two-slot notation fo r the two-mode displace­

ment operator: 0( !·µ. l can be regarded as an operator­
valued function of an-operator vector a and a c-number 
vectorµ . Just as in the single-mode case, the main reason 
for this two-slot notation is that we can also consider the 
operator 

(3.43) 

[cf. Eq. (3.23)]. An important connection between Dt!,µ. l 
and D( ~,µ. al is that properties of 0(~ ,µ al can be ob­
tained direetly from those of 0(_!!,µ.) because the squeezed 
annihilation operators have the sa-me commutation alge­
bra as the annihilation operators. For exampie, one can 
say immediately that D! ~ · !:!.al displaces ~ : 

t 
D (~•f:!.al~O(~,f:!.al=~+f:!.a. (3 .44) 

An equivalent way of stating this connection is that 
D(~·f:!. l is unitarily equivalent to O(!•f:!.l• i.e. , 

S!r,<plDt!·f:!. lS'(r,<pl= D(~ · f:!.l (3 .45l 

[cf. Eqs. (2.35a) and (3.25J]. Thus Eq. (3.44) could be ob­
tained by unitarily transforming Eq. (3.41) with S (r,<pl 
and replacingµ. withµ. a· A different and crucial connec­
tion between -0(!,µ. l and D(~ ,µ al is that they are 

the same operator, a -;;onsequence of the in\'ariant (2.3 la): 

(3.46) 

[cf. Eq. D.26!] . Equation (3.46l means that Eq. (3.44) re­
sults from multiplying Eq. (3.41l by {; ,,.,. A further im­
portant relation is a consequence of Eqs. (J.46) and (2.25): 

t 
S (r ,.pJD(!•f:!. )S(r,<p) = D(!·f:!. al (3.47) 

[cf. Eqs. (2.35b) and (3.27)]. 
We find it useful to write the two-mode displacem~nt 

operator in terms of the quadrature-phase amplitudes a 1 
and a1. Therefore, we define 'he operator 

!!)( .;f ,?J.l=exp(,;f'?J.-'.J.t4l=e ~,a ; ... ~2a;-~r~ 1 -~la: 
(3.48) 

[cf. Eq. (3.28l], which satisfies 

!!)- 1(,;f ,'.J.l=9 1(,;f ,'.J.l=9(,;f, -'.!.)=9(-,;f ,'.J.l 

(3.49l 

and which can be regarded as an operator-valued function 
of an operator vector .Ill and a c-number vector 1/ · Since 
it is not the same fun;;'tion as D(!·~ ), we distinguish it 
by using a script letter. Nonetheless, the invariant (2.3 la) 
guarantees that 9 (.Ill , 17 l and D( a. v) are the same opera-
tor: - - - -

(3.50) 

[cf. Eq. U.29l ]. 
The introduction of 9 ( ,;£ .1/) provides a good op­

portunity to elucidate the distinction between the active­
role and passive-role vectors introduced in Table I. As 
noted in Sec. II. an active-role vector is used as a surro­
gate for the corresponding operator vector, e.g ., as an 
eigenvalue or an expectation value of the operator vector 
or as the vector variable of a quasiprobability distribution. 
Thus the active-role vectors µ. and µ.a are used in 
the second slot of the two-mode displacement operator 
when it is used in its active role, i.e., as a unitary operator 
that transforms states and operators. A passive-role vec· 
tor is used as the vector variable of a characteristic func­
tion. Thus the passive-role vectors ~ and ya are used in 
the second slot of the two-mode displacement operator 
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when it is used in its passive role, i.e., when one takes its 
expectation value to obtain a characteristic function. 

In the first two rows of Table I there is no real differ­
ence between the active-role and passive-role vectors, since 
v a is related to v in the same way that µ a is related to 
µ; the difference is merely a matter of choosing different 
labels for vectors in the two roles. To find a real differ­
ence, one must proceed to the third row. The definition 
of the active-role vector s=d "t:,µ is determined by the 
fact that s and µ can stallii for tlle expectation values of 
.JI( and a:-respec(ively; thus s must be related toµ in the 
s;;.'me way that .I{ is related to ~· This natural dC!'inition 
of s is to be contrasted with the definition of the passive­
role vector 11 = d t,, - 1q: l!'.· which at first appears very 
p.:culiar indeed. The explanation for this peculiar defini­
tion lies in the form of the operator 9 (.I{ .11 ), which is 
the displacement operator written in terms-of quadra· 
ture-phase amplitudes. The simple form of 9 (.If, 11) is a 
consequence of the invariant cu la) and, hence, of the 
definition of 11 · Yfore illuminating is to put things the 
other way around: the peculiar definition of 11 is dictated 
by the desire to have a simple form for the two-mode dis­
placement operator when it is written in terms of the 
quadrature-phase amplitudes; thus this desire is ultimately 
responsible for the distinction we make between the active 
role and the passive role. This discussion also makes clear 
why !'.a is related to!'. in the same way thatµ a is related 
toµ. The definition ofµ a=~'·~µ is determined by the 
relation~=~ r.~: the same transformation !'.a=~ r.;i!'. is 
appropriate for the passive-role vector because of the 
property (2.29) of {; r.rp· 

The operator 9 ( d , 11 ) is defined in ter.ns of the 
passive-role vector 11, ~cf it is used exclusively in the pas­
sive role. We could write the two-mode displace­
ment operator in terms of d and the 1 active-role 
vector s simply by substituting !=&- 1d t.I{ and µ 

=~-I ifs into D(,!.µ). The result does not have a simpk 
form, nor do we find It useful, so we do without it. 

A particularly important form of Eq. (3.41) can be ob­
tained by using the passive-role vector!'. and then writing 
Eq. (3.41) as the commutator 

(3.51) 

Multiplying Eq. (3.51l by J "t:, and substituting 
!:=CZ i"l:,d 1:z . one finds 

(3 .52) 

[Eqs. (2. !0l and (3 .50l] . Equations (3 .51) and (3 .52) will 
play a crucial role in the operator-ordering formalism of 
paper III. Equation (3.52) expresses the same relation that 
Eq. (3.42) does; the apparent difference is due to the use 
of the passive-role vector 11 in Eq. (3 .52), in contrast to 
the use of tht: active-role veetor sin Eq. (3.42l. 

A second reason for the two-slot notation is that 
one can replace the operator vector in the first slot of 
D<a,v) or 9(d.11l with a c-number vector. Hence, one 
can-d°Cfine the following complex-valued functions of two 
c-number vectors: 

(3.53) 

(3 .54) 

[cf. Eq. (3.30)] . These functions satisfy 

0-
1
(!:•!'.)=D· (!:•!'.l=D(!'.,!:)= D(!:, -!'.)= D( -!:·!'.) , 

(3.55a) 

D(!:•!'.lD(!:•!'.' l =D(!:·!'.+!'.' l , 

g- 1
(_i.:zl=9·<_f.:zl=9<:z.fl=9<f. -:z l 

=9<-~:.:zi' 

91f.:z lg<f.:z' )=9<f.:z+?.t) 

(cf. Eqs. (3.31)]. The invariant (2.3 lbl implies 

D(!:•!'.) = DIJ.: a•!'. al= 91 f• :! i 

(3 .55b) 

(3.56a) 

(3 .56b) 

(3.57) 

[cf. Eqs. (3.35) and (3.50l]. Either D<µ.v) or 
9 ( 5.11) can serve as the expansion factor for-complex 
Fourier transforms. For example, a function/(µ) is re­
lated to its complex Fourier transform F<!'.l by -

J d'v 
/( µ) = -, flviD<v.µl, 

- or - --
(3.58al 

J d'u. 
F<!'.i= 7/(J.: lD(J.: ,!'.l (J.58b) 

[Eq. (2.39); cf. Eqs. (3.32) and 13.34)]. The orthonormali­
ty and completeness relations for 01µ,!'.l and 9<s.11l are 
subsumed in the equations - - -

J .rt.lf._ J !D::_ ' • rr D<i:_.yl= ::-" D<!'.·i:_l=iro (!'. l, (3.59al 

d': d't-J ::-"- 9<f.:rl= f ~9<:r.fl=rro'<:r i <3 .s9bl 

(Eq . (2.-1-ll; cf. Eq. (3.33l]. 
Funher properties of the two-mode displacement opera­

tor include the way it is transformed by the MP free evo· 
lution operator, 

u :1(1lD<!·!'.)Uli( I)= D(,!e -in·!'.l= D<!·!'.e;n) , (3.60al 

u.:,(l)D( £ •!'.alU,\{( I)= D( ~e - iff•!'.al = D( £·!'.afi") • 

(3.60b) 

U~ l t ! 9(.If ,1!. lU.li ( t l =9(~e -in• :I )=9(.ef,11.e ;") 

(3 .60c) 

[Eqs. (3.4)-(3 .6i]. and the way it is transformed by the ro­
tation operator, 

t -i8ql ; 11q, 
R (8 lD<,!,!'.iR(8)=D<e ! ·!'.l=D<,!.e !'.), 

(3.61a) 

t -i8q) 
R (8)D(~r.rp•.!:'.alR(8)=D(e ~r. rp+O.!'.al 

i8q J. 
=D(~r . .p+8•e !'.al 

i8q) 
=D(£,.rp,e (;;' r • .p-8,!:'.), (3.6lb) 

R 1(8)9(.Pf,:ziR(8)=9(e'8q 1.f{,?!. )=9<.ef,e -i8q 1'!1) 

(3.61c) 
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[Eqs. (3 .12), (3.14), (3.17), and (A27)]. The two-mode ver­
sions of Eq. (3.36) are 

0\!•/::)0(!,.!'.lO(!,/::l=0(!+/::,!'.)=0(/::,.!'.)0(!,!'.l, 

o\!•/::)3'(.ef,:2)D(!,i::l=lP(.ef +i•:2) 
=fP<i·:2 )lP(~,:2) 

(3.62a) 

(3.62b) 

[Eqs. (3.41) and (3.42)]. The product of two displacement 
operators can be written in two useful forms: 

D<!·!::' )0(!.i;:l=O"( ti;:· .i;:lD'!·!;:+i;:·)' 

D1(!·1::' )D{!•l::)=O( Tl::' .i;: lD(!·i;:-i;:·) 

[cf. Eq. (3 .37J]. 

(3 .63a) 

(3 .63b) 

In the degenerate limit the two-mode displacement 
operator reduces to the single-mode displacement opera-
tor: 

[Eq. (l.8.19cJ]. 

D. Two-mode squeeze operator 

The last important unitary operator in our formalism is 
the two-mode squeeze operator 

S( r,q:>J=exp(r(a +a _e - 21"'-a ~a ~e 21"')] 

=exp[-ir_!t(a1sin(2q:>)+a2 cos(2q:>l].!l (3.65) 

(Eq. ( 1.8l] . It squeezes the annihilation operators to give 
the squeezed annihilation operators (1.10), and it generates 
two-mode squeezed states from coherent states (see Sec. 
IV B ll. 

Almost all the important properties of S(r,q:>) have 
been listed elsewhere in Secs. I-III. Little is left to note 
here, except two properties-factorization of the squeeze 
operator and the product of two different squeeze opera­
tors. The two-mode squeeze operator can be factored into 
a product of exponentials of a :a~. a+ a_, and a :a+ 
+a ~a_. The most useful factored form is 14

• 15 

-at at t;Jqitanht - (at a++o~a_lln<coshl'l a+a_,-ui;itanh, S(r,q:>)=(coshr)- 1e + - e + e (3 .66) 

[Eq. (B9b)]. In Appendix B we derive Eq. (3.66) and oth­
er factored forms in which the exponentials appear in dif­
ferent orders. Also in Appendix B we use the factored 
forms to write the product of two squeeze operators as a 
rotation operator times a squeeze operator: 

S 1(r',q:>' )S(r,q:>)=e - 10R(0JS(R,<l>l 

=e-10S(R,<l>-0)R(0J (3.67) 

[Eq. tB16l]; here R, <P , and 0 are defined by the matrix 
equation 

i0q) -1 ,... 
C R.<l>e =C ,,,,,!;; r'. ;p·=C r,tp'><-r'.tp' (3.68) 

(cf. Eq. (3.661; for the derivation of this and other fac­
tored forms see Appendix B] . The product of two degen­
erate squeeze operators is given by 

st (r',q:>' )S I (r ,q:>)=e -i0/2e·-i0at•s ,(R,<l>) 

=e -1012s I (R,<l>-0)e -10. t• (3.71) 

[Eq. (B 16); cf. Eq. (3 .67)], where R, <P, and 0 are again 
defined by Eq. (3.68). 

IV. SPECIAL QUANTUM STATES 

Any discussion of special quantum states begins with 
the two-mode vacuum state I 0), the state annihilated by 
a+ and a_ (a± 10)=0). A useful associated state is the 

[Eq. (Bl4)] . Notice that if q:>=q/, then 0=0, <t>=q:>, and 
R =r-r', i.e., S 1(r',q:>' )S(r,q:>l=S (r -r' ,q:>) [cf. Eq. 
(A26)] . 

In the degenerate limit the two-mode squeeze operator 
becomes the degenerate squeeze operator S 1 ( r,q:>) (Eq. 
(2.46)]: 

S( ) S ( )- (r/2l(alr-!1<1>_1al12,u.pl r,q:> - 1 r,q:> -e (3.69) 
p 

[Eq. (I.8. l 9d)] . The degenerate squeeze operator can be 
factored in the same way as the two-mode squeeze opera­
tor. In particular, its most useful factored form is 15- 17 

(3.70) 

(two-mode) squeezed vacuum srate 

(4. 1) 

:which is the two-mode squeezed state (see Sec. IV Bl with 
(a± ) = 0. A convenient basis is provided by the (two­
mode) number eigenstates 

ln+,n_)::[(n+!l(n_!))- 112(a~)"+(a~)"-. jo), (4.2) 

t 
a±a± ln+,n_)=n± ln+ ,n_). (4.3) 

Another basis, unitarily equivalent to the number­
eigenstate basis under the two-mode squeeze operator, 
consists of the (two-mode) squeezed number eigenstates 
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I n+,n_)1, • .,1=S(r,rplln+,n_) 

= ((n+!Hn_!l)- 1 12 ( a~)"+ 

X(a~J"-1 O)(r.<PI , 

a~a;: In+ ,n _ ) 1,,.,1=n :!: In+ ,n _ ) 1,,.,1 • 

A. Coherent states 

(4.4) 

(4.5) 

If the displacement operator is the heart of one-photon 
optics, then the soul is the set of states it generates-the 
coherent states. Here we review briefly some well-known 
properties l. 08 of coherent states for a single mode, general­
ize (trivially I those properties ro two-mode coherent states, 
and write the two-mode properties in our vector notation. 

1. Single-mode coherent srares 

The singie-mode coherenr srares3 are generated from the 
single-mode vacuum state I 0 ) by the displacement opera­
tor: 

(4.6) 

[Eq. (l.J .9l] . Their most important property is that they 
are eigenstates of the annihilation operator: 

(4.7) 

[Eq. (3.:! ll). Equation (3 .38) can be used to obtain an ex­
pansion of Iµ ) coh in terms of the single-mode number 
eigenstates / n ) ::(n!)-L'2(a ' i• ! O): 

: µ >coh =e - iµl 2/1eµ•' 1 O) 

=e- i l' l ' 12i~ i n ). 
n •O ( n !) 

(4.8) 

A coherent state Iµ) coh has time-stationary noise 
( ( ( ~,d) =0; Eq. (I.3 .12l]; its important nonzero first­
and second-order moments are 

(a) =µ, ( I D.a 1
2

) = T , 
( a(r,cpl) =µa, 

<E) =f· ( ( U:c 1 J
2

) = (( tu:2l2
) = + 

(4.9al 

(4.9bl 

(4.9cl 

(see Table !Il. The expectation value and variance of the 
number of quanta are 

( a 'a ) = /µ1 2, ([<l(a 1aJJ 2)=lµl 2 . (4. to) 

The symmetrically ordered characteristic function for a 
coherent state / µ ) coh is the expectation value of the dis­
placement operator, 

coh(µ I D(a, v) lµ)coh=e-l•l2/2D(µ,v) 

(4.ll) 

[Eq. (3.38)] . A Taylor expansion of Eq. (4.11) with 
respect to v and v• yields the symmetrically ordered mo­
ments 13 of a and a 1. Using Eqs. (3.29) and (3.35), one can 
write the characteristic function (4.1 IJ in terms of the 
variables T/ 1 and T/i (see Table Ill: 

(4.12) 

A Taylor expansion of Eq. (4.12) with respect to T/t and 
T/i yields the symmetrically ordered moments of x 1 and 
x 2• Characteristic functions will be considered in detail 
in paper III. 

The coherent states are not orthonormal, 

coh(µ' /µ)coh=(O/ D1(a,µ')D(a,µ) IO) 

=D( Tµ ',µ le - lµ-µ ' 11
11 (4.13) 

[Eqs. !J.3il and (4.1 ll], but they are complete in the fol­
lowing sense, pointed out by Klauder:19 

J~ 1 = 1T /µ >c:ohc:oh(µ I · (4.14) 

The completeness relation (4.14) is the starting point for 
developing e.~pansions in terms of the coherent states. It 
can also be used to demonstrate that the trace of an opera­
tor f is given by 

dlu. 
tr/=J.;;......c...con(µ //l µ )cob• (4.15) 

TT 

which in turn shows that 

2 f d
2

11 tr[D(a,vl]=e-1•1 /1 .;;......c...D(µ,vl=TTo 2(vl 
TT 

[Eqs. (4.1 ll and (3.33)). 

]. Two-mode coherent stares 

(4.16) 

A IWO-mode coherent srare1 (Eq. U.4.1 ll] is generated 
from the vacuum state by the two-mode displacement 
operator: 

(4.17) 

(cf. Eq. 14.6)]. It is an eigenstate of both a+ and a_, i.e., 

(4.18) 

[cf. Eq. (4.7)), and its nwnber-eigenstate expansion is 
given by 

(4.19) 

(cf. Eq. (4.8)]. A coherent state Iµ )cob has time­
stationary noise [Eqs. (l.5.6) and (I.5.9l];lts nonzero first­
and second-order moments are 

(4.20a) 

t r ( ~,.<P) =e,a• ( D.~,,<PC.~,.<P),ym=T~ 2r.<P, (4.20b) 

(~)=5, kcoh=(D.~ D.~ 1 )1ym 

= +c. = Hl-(c/!llcz2l (4.20cJ 

[Eqs. (2.9), (2.13), (2.15), and (2.16); cf. Eqs. (4.9), (I.7.2), 
and (I.7.3J). 
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For a coherent state Iµ. ) coh the expectation 
value and variance of the free Hamiltonian ( 1.2) are 

(Ho) =!1(: t~2!::=!1ff • 

< ( illio )2 > = ni!: r,\, '!:: = nif t l'lf 
(4.2 !a) 

(4.2lb) 

[Eqs. (2.32) and (2.9) ). Equations (4.21) follow easily 
from the single-mode expectation value and variance of 
the number of quanta [Eq. (4 . lOl j, but they can also be ob­
tained from the followi:ig rules. Let J:f. be any two­
dimensional matrix 

-[M1 1 M12 j 
,\1 = ,,. ,,. . 
- "'i1 -" n J 

(4.22) 

One wants to evaluate the e:'lpectation value :uid variance 
of the quadratic fonn 

!•Me= .11 11u '...a~ "'-M ,:a ~a_ +.11 1,a ~a~ 

(4.23) 

It is an easy task co show that 

cob( (: I ! 1 Me JI:: >coh =1::
1 
lf!:: +M :: . !4 .. Nal 

cob(!:: I [ .:l(_e1,!f_e)j2 j !:: >coh =!:: !}[!!:: +M1,M:1 (4.24b) 

By using Eq. !2.3), one can obtain Eqs. !4.2 l l directly 
from Eqs. (4.24). 

The symmetrically ordered charactenstic function for a 
two-mode coherent state Iµ.) coh is obtained e:isily from 
the analogous single-mode quantity [Eq. (4. l l l): 

coh(i:: \ D(!,yl Ii:) con=e _!.!
12rni;:.yl 

=e -~~~~ti 9 If•'.!) 

= coh ( l:: l &f~.'.!_) / .C: )coh (4.25) 

[Eqs. (2.33). (3.50l, and (3.57)]. In Eq. (4.25l we write the 
characteristic function first in terms of the vector variable 
y and then in terms of the vector variable rr. 
- The two-mode coherent staci:s are not orthonormal: 

(4.26) 

[Eqs. (J .63 bl and (4.25); cf. Eq. (4.1 JJ]. They do, however, 
satisfy a completeness relation which follows trivially 
from the single-mode completeness relation (4. 14): 

(4 .27) 

Hence the trace of an operator f is given by 

~ tr/= J ,,,J- coh (I:: If 11::) coh ' (4.28) 

and the trace of D(_e,y) is 

l -.tvi i f ~D '~• (4 29) tr[D(_e,y) =e - - r (l!_·!'.l=;n, (yl . 

(Eqs. (4.25 ) and (3.59al]. 
In the MP a two-mode coherent state evolves freely in 

the following way : 

U ()I) I -'"> I _,,, '"> J{ t I:: coh= ee coh= P.+e ,µ_e coh 

(4.30) 

(Eq. (3.60al]. A. rotation transforms a coherent state ac­
cording to 

R (8)) ) I -illq, ) I -18 - 18) J!. coh = e f!:. con= ,µ,.e ,µ_e coh 

(4.3 l l 

[Eq. (3.6lal]. Combining Eqs. (4.30) and (4.31) yields the 
SP free evolution 

-•Ho: I ) , - ilnq i-;.<llt ) 
e l!:_cah= ;e J!.cob 

= /µ,_e-1 10+<",µ_e-iiO-<lt)coh. (4_32) 

b the degenerate limit a two-mode coherent state 
reduces to a single-mode coherent state: 

! µ. >coh- I µ >coi,, µ = r 112(µ + +µ _) 
- ? 

[Eq. IU.l:.l]. 

B. Squeezed states 

I. Two-mode squeeud states 

(4.33) 

The most important states in two-photon optics-the 
states produced by an ideal two-photon device (see Sec. 
IV A of n-are the two-mode squeezed sra1es, which can 
be defined by 

l'!:.a >1r . .p1= /µa+'P.a) 1r,1p1 

(4.34) 

(Eq. lIA.17\] . Using Eqs. (3.46\ and (4.ll, one can write 
11!:, a) 1, • .,, in the fonn 

:1:a >1r . .p1=Dl!·i::lJO),,,.p1=Dlq.1::allO),,,<pl; (4. J5) 

hence, a two-mode squeezed state can be obtained by ap­
plying the "squeezed" displacement operator 
D(i:! .µ al=S(r,<pJD(e.µ alS 1(r,tpl to the squeezed vacu­

um. Using Eq. (3.47) i;i the definition of l µ.a) 1 ,. ~ 1 , one 
shows that a two-mode squeezed state can be generated by 
applying S<r,<p) to a two-mode coherent state: 

i I!:, a >1r.1p1=S (r,tplD(_e,f!:. al I 0) 

=S(r,<p) li:a>coh (4.36) 

[Eq. (1.4.15)] . Notice that Jµ.a )10 , 1p 1= \ µa >coh· The uni­
tary equivalence between squeezed states and coherent 
states is a powerful tool for generating properties of the 
two-mode squeezed states. For example, using Eqs. (4.18) 
and (4.36), one can tell immediately that Iµ. a>1r.<1>I is an 
eigenstate of the squeezed annihilation operaiOrs ( 1.10): 

(4.37) 

As another example, one can use Eqs. (4.19) and (4.J6) to 
obtain an e~pansion of Iµ a>ir.1p• in tenns of the squeezed 
number eigenstates (4.4): -
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(4.38) 

The expansion of Iµ a>l,,:p, in terms of the number 
eigenstates In+ ,n _ ) is:-in general, quite complicated, yet 
neither interesting nor enlightening. It does, however, 
have a simple form for the squeezed vacuum I 0 )1,,:p,-a 
form obtained by using the factorization (3.66): 

S ( r,rp) I 0) = ( coshr l - 1e -• -• -•-'•t>niv i 0) 

= (coshr i - 1 .f ( -2:;"'tanhrl" ; n,n) . (4.39) 
,, -o 

Thus the squeezed vacuum is a superposition of number 
eigenstates which have t!qUal numbers of quanta in the 
a+ mode and the a _ mode. 

The two-mode squeezed state ! µ a >, ,,.,1 has TSQP noise 
[Eqs. (l.5 . ll] and (I.5.6)] . Its nonzero first· and second· 
order moments are most easily obtained by noting that 
Eqs. (4.20a) and (4 .36l imply 

(£,,:p)=t:~• (..\.~, . .p..\.~:. ,.>.ym=Tl · (4 . .W) 

One can obtain the moments of the creation and annihila­
tion operators and the quadrature-phase amplitudes sim­
ply by making matrix transformations of Eqs. t4 . .Wl: 

( a)=µ, L.'f = ( ..\.!..l.~'),ym=T~- ''· ", (4.4la) - -
{.>£ ) =£. ~ ,, ,.= ( ;),..>£ ..1.4 1

),ym = Tdl:~ -ir.:;l:d' 
I 

(4.41bl 

(cf. Eqs. (4 .20l]. using Eg_s. (.-\25), (A17)-(A19l, and 

(A4)-(A6l, one can expand b '·"'and~'·"' as 

~,.:;= tlcosh(2rl 

- +rcz 1 cos(~ J -iz :sin( 2q;l]sinh(2rJ , (4.42al 

i,; '·:P= + lcosh(2r)-+ ( 1-1? /D1 l112cz 3sinh(2rlcos(2rpJ 

-+( 1-1? / 0.2)112q_ 1sinh(2r)sin(2<p) 

-+(c/ Dlcz :cosh(2r) (4.42b) 

(cf. Eqs. (I.7 .3) and (I.7.9J]. 
The rules (4.24), which give the expectation value and 

variance of an arbitrary quadratic form !t M! with 
respect to a coherent state, can easily be generalized to 
squeezed states, once again by using Eq. (4.36): 

t t- - t -
IT,opl(i:: a I! M!! I!: a )1,,.p1=t: aM!: a +M 22 =t: Mt: +M ?2 • 

(4 .43a) 

I T.<pl (!:a I ( 6.(!1 M _!!) ]
2

1 !: a )1,,ipJ 

t-z - -=t::.M t:a+M1:M21 
t - -

=t: Af(_z, .:;Mt:+M12M21. (4.43b) 

(4.44) 

Applying Eqs. (4.43) to Eq. (2 .8) yields the expectation 
value and variance of the free Hamiltonian with respect to 

It: a >1,.:p,: 

(H0 )=nt:tl:2!:+2!lsinh:r=0.ff+20.sinh1r, (4.45al 

( ( Alio )2 ) =0.2t: tt, 2( -2T,:pl:2t: + n 2sinh2(2r) 

=2D2f~; T,:pf + !12sinh2(2f) (4.45b) 

[Eq. (4.41bl; cf. Eqs. (4.21)] . The reader should note the 
appearance of ~ '·:P in Eq. (4.45bl. Its presence there is no 
accident: for any state the highest-order term in the ex­
pression for ( (AH 0 )

2 ) is qlllldratic in the mean 
quadrature-phase amplitudes: for any state with TSQP 
noise [Eq. (l.5.ll], it is ~y to demonstrate that the 
highest-order term is given by 2D2s'l:s. wheres= ( 4 ). 

The symmetrically ordered chariictenstic function for a 
two-mode squeezed state can be obtained immediately 
from Eqs. (3 .47), (4.25), and (4.36) : 

I T,:pl ( i:: a I D(!·::'.) I!: a )1,,., , = =ob(!: a i D(!· ,::'.al I!: a) cob 

(4.46l 

This result can be transformed so that the characteristic 
function is written in terms of :::=( ;::~,:::. or 
'1 = d t. - l ll J,::'.: 

-lcu.~12 
I T,:pl ( 1: a I D(_!,_:::) I!: a).,.~, =e 0(1:,_:::) 

_,, , ~ " 
=e - ·'·•-9(i•'1) 

= •,.:p,(!:a f 9(4,'1J l~a)1,,:p1 

(4.47) 

[Eqs. (3.50), (3 .5il, and (A24l] . Notice the presence of 
'* '·:P [Eq. (4.41 bl] in the expression for the characteristic 
function. Its presence signals the fact thac a two-mode 
squeezed state has Gaussian TSQP noise: the noise mo· 
ments of arbitrary order are determined by the second­
order noise moments contained in ~ ' ·:P' 

The two-mode squ~zed states are not orthonormal. 
The inner product of 1wo squeezed states with the same r 
and <p is given by 

IT,:p1(1: ~ i !: ,,)1,,., , = ,-oh ( 1: ~ i !: a ),oh 

D 
1 , - · µ 0 -µ~ l \u 0 -µ~)/2 

= ( -; !: a•!: a )e - - - -

D( 
t ) - /µ-µ' lt' ,, , Iµ-µ' Ill = -,,-:_· ·1: e - - . ·- - -

(4.48) 

[Eq. (4.26)]. For squeezed states with different r and/or 
rp, the inner product is considerably more complicated 
chan Eq . (4.48); it is derived in Appendix. C. The set of 
two-mode squeezed states with a particular r and <p does 
satisfy a completeness relation 

d4µ. 
1 = J 7 11: a )1,,:pl1T.<j1l(1: a I • (4.49) 

which is just a unitary transformation of the compleceness 
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relation (4.27) for coherent states. Equation (4.49) allows 
us to write the trace of an operator fas an integral over 
squeezed states with the same rand rp: 

d4µa 
tr/= J-,- lr.q>I(µ a I/ Iµ a>lr,q>I · (4.50) 

' tr - -

The MP free evolution of I I! a ) 1, ... 1 is given by 

U.wUl li:a>1r,q>1= li:ae-1">1r,q>J 

= lµa+e-'",µa_e 1") 1r,q>I (4.51) 

[Eqs. (3.7) and (4.30J] ; under a rotation l i:a >1,,q>1 
transforms according to 

RUJJ !1::a>1,,q>,= [ e -•11q;i!a >1,,.,-e1 

= ! µ~~ e -i8,µa_ < -i8 ) :,. q> -a1 (4.52) 

(Eqs. (3.16) and (4.31J]. Equations (4.51) and (·:1.52l to· 
gether give the SP free evolution 

-iH0 : ) - i iOqi+•ll• ) 
e JI! a lr.q>I = J < I! a Ir, .p-n11 

(4.53) 

[cf. Eq. (4.32)] . 
In a separate paper one of us !BLS) considers the wave 

functions for two-mode squeezed states in the usual coor­
dinate and momentum representations. :a 

2. Degenerate squeezed s1a1es 

In the degenerate limit a two-mode squeezed state 
I I! a >1 r,q>I becomes a degenerate squeezed 'state9

·"
1
• 11 

J µa )l r.<PI' 

lµa )1 ,,.,,- lµa )1 ,,., 1=D(a,µ lS1 (r ,<p ll O), (4.54a) 
- p 

µa=2- 112(µa+ +µa_l=µcoshr +µ•eU"'sinhr (4.54bl 

(Eqs. (l.8.23J]. Equation (3.27) can be used to show that 
S 1 ( r,<p) transforms a single-mode coherent state into a de­
generate squeezed state: 

I µa ), ,,q>, =S 1 (r, <p)D (a,µa) I 0 ) =S1 (r,<p) I µa >cob · 
(4.55) 

A. degenerate squeezed state is an eigenstate of the 
squeezed annihilation operator (2.48): 

(4.56) 

(cf. Eq. (4.37)]. 
The properties of degenerate squeezed states can be de· 

rived in the same way as the properties of two-mode 
squeezed states. Here we content ourselves with providing 
a list of properties of the state I µa )1,.<P 1• Above each 
equation in the list we give the equation number of the 
analogous two-mode property. All the results in the list, 
e:tcept Eqs. (4.62)-(4.65), can be found in Yuen's 
comprehensive paper 11 on "two-photon coherent states;" 
some of the results are also given in Refs. 9, 21 , and 16. 

Many of the properties are most conveniently stated 1n 
terms of the single-mode vector notation introduced in 
Table II. The list of properties is as follows : 

Eq. (4.39): 

S1 (r,<p) I 0) = (coshrJ- 1/!e-•• ' 12•:'.,1tonhr1/2 IO) 

= ( coshrJ- 112 

"' ((2 J'] ' /! ~ n ~ ( .L ; 1., h )"I 2 ) X ..t:. 
1 

- , e tan r 1 n , 
11-0 n · · 

Eq. (4 . .;-0l: 

( a(r,q;)) =µa, ( :,~ '·~ :,~ ;,q>>.ym =Tl , 

Eq. 14.+lal: 

(a) =µ , ~'· ~=(-l!~!1 ),ym=+~-2r. ;o • 

Eq . (4.+lb1: 

(! ) =£• ~,,., := (ol!:..z'> srm=+d,_ z,,.,J' • 

Eqs. iI. i.3l: 

( i ~a I 2· ) = +cosh(2rl, 

Eq. (4.42bl: 

L..,= + l cosh(2r)- +Q: 3sinh(2rlcos(2<p) 

-hr 1sinh(2rlsini2q:>), 

Eq. (4.22l: 

[
Jf11 

M= M!1 

Eq. (4.44): 

Eq . (4.23): 

Eq . (4.43al : 

Eq. (4.43bl : 

Eq . (4.45al: 

( a
1
a)= lµ1 2+sinh"r=HJ+sinh2r, 

(4.57) 

(4.58) 

(4.59ai 

(4.5 9bl 

(4.60) 

(4.61) 

(4 .62) 

(4.63) 

(4.64) 

(4.65al 

(4.66al 
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Eq. (4.45bl: 

( [il(a ta l] 2
) = TJ!tC2,,<P i: + +sinh2(2r) 

=r~ '·<Pf+tsinh"(2rl, 

Eq. (4.46): 

lr.<Pl(µa I D(a,v) I µa)lr.<j)I 

= cob(µa I D(a,va) lµa )coh 

Eq. (4.47): 

( ) 
-v'<;. v / 4 

1r.vi1 µalD(a,v )lµa 1r.<P1=e - ·'·,_ D(µ, v) 

=e -!·~ ... ! 129(f•'.r) 

(4.66b) 

(4.67) 

= 1, . .,,(µa I 9(!•'.r) I µa) ,,_.,, • 

(4.68) 

Eq. (4.48): 

I '·<Pl(µ~ I µa)<r,<j>I = coh (µ~ I µa ) coh 

D( 
I , ) - i µ 0 -µ~ : ;/l 

= Tµa,µa e 

I , - 1µ-µ' lt(;lr iµ-µ' )/4 
=D(2µ ,µ)e - - · ~ - -

(4.69) 

Eq. (4.49): 

(4.70) 

V. CONCLUSION 

This concluding section is a good place to recapitulate 
the key ideas behind papers I and II and to hint at what 
lies ahead. The goal of this series of papers is to develop a 
formalism suited to the analysis of two-photon devices. 
The crucial feature of a two-phocon device is that its out­
put consists of pairs of simultaneously emitted photons. 
Hence the starting point for our formalism is a pair of 
electromagnetic-field modes which are excited by emission 
of a pair of photons. The natural variables for describing 
the excitation of these two modes are the quadrature· 
phase amplitudes, and the natural quantum states are the 
two-mode squeezed states-the states generated by an 
ideal two-photon dev ice. These basic building blocks were 
the focus of paper I, where our objective was to develop a 
physical understanding of the quadrature-phase ampli­
tudes and the two-mode squeezed states. In the present 
paper we have described the mathematical structure of the 
formalism and developed techniques for manipulating its 
fundamental components. We introduced a vector nota­
tion which simplifies the mathematical description and 
makes it easy to learn and use the language of the 
quadrature-phase amplitudes. The vector notation also 
provides quick translation into the conventional language 
of creation and annihilation operators. 

An important feature of the vector notation-built into 

it right at the start-is that it recognizes the quadrature­
phase amplitudes as the fundamental variables and, hence, 
it naturally associates a+ with a~ . This feature has pro­
found consequences for the operator orderings that are 
preferred in two-photon optics. One natural ordering for 
the quadrature-phase am~litudes and their Hermitian con­
jugates places a r and ai tO the left of a I and a2 (re· 
call that [a 1,a 2)=0); this kind of ordering, which we c:ill 
quadrarure-phase normal ordering, is equivalent to normal 
ordering of the a+ mode and antinormal ordering of the 
a _ mode. Another natural ordering, which we c:ill 
quadrarure-phase anrinormal ordering, places a 1 and a 2 to 
the left of a; and a;; it is equivalent to antinormal order­
ing of the a+ mode and normal ordering of the a_ mode. 
lJsing the commutators (2.36) and (2.38l, one can write 
the two-mode displacement operator in terms of these two 
orderings : 

. . . 
D( 

_.., q,v/2 I q ,v -v q,a 
!·~ l =e - - e- -e - -

~ [j /2 .:1'· t .:I =e-! ! e - :!.;!-! - =g(-r!,'.rl, (5.la) 

ta n •3 .J' 
=e! ! e-! -e- !=g(.tf,?J.l t5. lb) 

[cf. Eq. (3.3 8)). The lesson is that the natural orderings 
for two-photon optics, which are based on the 
quadrature-phase amplitudes, require opposite ordering of 
the two modes. 

These operator orderings will play a prominent role in 
paper III. where the focus will be on characteristic func­
tions and their complex Fourier transforms, quasi­
probability distributions. The expectation value 
( g (a', T/)) =ct>( T/) is a characteristic function wh~ 
Tay lo; expansion - yields the symmetrically ordered mo· 
ments of a 1, a 2, a;, and ai; its compiex Fourier 
transform is a two-mode version of the well-known 
Wigner distribution function. 22 The expectation valµes 

;f • ·a ~ .. ,;;( 
(e -! ~-!"~)=er !12¢>(TJ ) and (e -! -e - ~) 
=e-~ ~ a! 12 ¢>(TJ) are chara~teristic functions whose Tay­
lor expansions-yield moments of a 1, a 2, a;, and a; that 
are, respectively, quadrature-phase normally ordered and 
quadrature-phase antinormaily ordered. The complex 
Fourier transforms of these characteristic functions are 
new two-photon quasiprobability distributions. whose def­
initions build into them the association of a _ "'ith a~ 
which is responsible for the squeezing of the output oi 
two-photon devices. Paper III will generalize 
quadrature-phase normal and antinormal orderings to a 
continuum of intermediate orderings and .,,;u e.'tplore the 
characteristic functions and quasiprobability distributions 
that arise from these general operator orderings. 
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APPENDIX A: PROPERTIES 
OF TRANSFORMATION MA TRICES 

i .) • 
-I 

detd =i, 

d = +e'"1'[l-i(q 1-<Z 1 +q ill 

=2-1neil .. 14111-<i:1-i-<i:;-<i: 1l ' 

dqiJ'=q3' 

d'l.:dt=-Q'. 1 ' 

d'l.id
1
=-rz.2. 

d 1<Z1d=-rz.2. 

dt'l.:d=-Q:3, 

d'rz. id=d rd='l.1 

(superscript T denotes a transpose). 

[
,\.. 0 l 

2. b= 0 ,\._ 

dett,=,l..+I._ =( l-c= /02J112 , 

[
/.._ O l 

c,-1=( l-e-2/02)-112 0 !..+ 

(Al) 

(A2) 

(A3) 

(A~) 

(A5) 

(A6J 

(Ai) 

(A8l 

(A9) 

lAlOl 

(Al lJ 

(AL!) 

Equation (AJ2) allows one to obtain properties of t, - 1 

from properties of 2: by multiplying by factors of 
( J-c2 /02)- 112 and reversing the sign oi E. 

2:=+(t..++f.._Jl+T(f..+-,l.._)q3, (A13) 

(C,,q il =i(,l..+ -A._ )Q: 2 ' 

(2,,q2J=-i(f..+-f.._)q1' 

(2,,g: 3] =Q ' 

!:: 2=l+(c/ Olq3, 

t,q i !::=( I-c21n2J1nq i, 

C,g::26,=(J-El/01)1/l'l.1 • 

!::'l.i!::=q32,2=(E/0Jl+'l.i · 

[ 
cosbr e 21~sinbr l 

3· !:: '·"= e - 11~sinbr cosbr 

C 1 =C - r,tp - r,rp, 

(AJ4) 

(Al5) 

(A!6) 

(Al7) 

(A!8) 

(Al9) 

(A20) 

(A21) 

(A22) 

C !.<P'l. iC '·<P=C '·<Pq iC '·<P=q i , 

C ;:~=qi~ '·<Pfl.i=~-'·<P=C '·"'+ .. n · 

(A231 

(A24) 

The last two equalities in Eq. (A24) are the analogs of the 
last two equalities in Eq. ( 1.9). 

(;;' '·<P= l cos hr+ ( q 1cos( 2<p) -q isin(2<P) ]sinhr 

lA25) 

(A26) 

(A27) 

APPENDIX B: FACTORIZATION AND PRODUCTS 
OF SQUEEZE OPERATORS 

In this appendix we first factor the degenerate and the 
two-mode squeeze operators, S1(r,<f') and S(r,ipl [Eqs. 
(2.46) and (I.SJ], into products of e:tponentials; we then 
use these factored expressions to show explicitly that the 
product of two or more different squeeze operators 
(differing both in their magnitudes and directions of 
squeezing) is equal to the product of a rotation operator 
and a squeeze operator. 

Factoring the two-mode sque-..ze operator turns out to 
be the same task as factoring the degenerate squeeze 
operator. In either case the problem reducei to factoring 
the expression 

.\1(r,ipl=exp[r (Ae- 11<P-Ate::i<P)], !Bl) 

where the operator A and its adjoint At obey the commu­
tation relations 

(B2) 

For the two-mode squeeze operator M =S(r,<f'), one sets 
A =a +a_ and B = l -"-a ~a + +a ~a_; for the degenerate 
squeeze operator M=S 1lr,<f'), one sets A =+a' and 
B =++a' a. The commutation relations (B2) i=ediate· 
ly imply the following useful relations (and their Hermi· 
tian conjugates): 

e'AA 1e- 1·i=At+1B+r:.4, 

e'ABe-'A=B+2rA' 

e'8 Ae-'8 =e- 11A, 

(B3a) 

(BJb) 

(B3cl 

where tis any complex number. The relations (BJ) follow 
from the general relation 

(B4) 

[R"S) =[R,[R"- 1S)], [R 0S) :;S 

[for a derivation see, for example, Eq. (8.105) of Ref. 23] . 
There are many approaches one can take to factor the 

operator M (r,<P) into products of exponentials involving 
the operators A, A 1, and B; here we briefly describe two 
approaches. In the "differential equation" approach24 one 
multiplies the exponent of M(r,cp) by a parameter t and 



-197-

sets the resulting expression equal to the desired product 
of exponentials involving the operators A, A 1, and B, 
with coefficients in the exponents which are functions (to 
be determined) of the parameter 1. One then takes the 
derivative with respect to I of both expressions, equates 
the two expressions by using the relations (B3) to put 
them in the same form, and solves the resulting coupled 
first-order differential equations (subject to boundary con­
ditions at I =0) to find the coefficients as functions of t; 
the task is completed by setting the parameter I equal to 
one. This procedure is straightforward and, for this par­
ticular problem, not difficult. 

A more elegant and more versatile approach,2'· 1'· 17 

however, makes use of the fact that the factored forms for 
M(r,r:p) are consequences only of the commutation rela­
tions (B2); this means that the operators A, A 1, and B can 
be replaced by matrices which obey the commutation rela­
tions (B2), and the problem of factoring M(r,rp) can be 
reduced to factoring an exponential of a sum of matrices. 
The problem becomes particularly simple if one uses for 
this purpose the Pauli spin matrices (2. 7), which have the 
following properties: 

<l. ; <!. 1=li;1l+i•;1k<l.ko l= [~ ~]. (BSal 

e r'<Z'=lcoshr+tz1r 1r-'sinhy, 

r=(ri+ri+ri> 112 rnsb> 

where i,j,k = 1,2, or 3, r1 are arbitrary complex numbers, 
and a summation over repeated indices is implied. For 
the matrices Q: .;. and 'l _ defined by 

'l+=+(tz1+i<Z2l= [~ ~]. 

'l-=+<tz1-itzz )= [~ ~]=<!.~, 
(B6al 

the properties (BS) have the following important conse-
quences: 

('l+·'l-l=<Zi. ('l±•'lll=+2tz±' 

<!. ~ =tz:. =Q, 'l ±'l '"= f(l±'l 3) ' 

<Z::<Zi=-<Z i<!.t=+<Z±' 

e'<Z±=l+t<Z± . 

(B6b) 

(B6c) 

(B6d) 

The commutation relations (B2l and (B6b) admit the for­
mal correspondence 

A--<z_, A 1-<z+, B-<Zi · 

This correspondence implies that 

- d q +'U•+<l 1 -Ut') 
M(r,r:p)-e -

(B7) 

= l coshr -(<z +e 2191 +<z _e - 2191 Jsinhr =' ;:~ (B8) 

[Eqs. (BSb) and (B6); cf. Eq. (A25l]. The correspondence 
(B7) is not unique; we choose it because it leads to the 
correspondence (B8), which is the correspondence induced 
naturally by the definition (2.22) of s; '·9'· Note that while 
the operator M(r,r:p) is unitary, the matrix{;;:~ is not. 

The matrix s; ;:~ is easily factored into exponentials of 
'l +• 'l _,and <l. J· For example, one such factorization is 

(B9a) 
r = e 219'tanhr' g =in( coshr) 

(Eqs. (B5bl, (B6), and (B8l) . This implies, through the 
correspondence (B7), that1"- 17 

(B9b) 

The five other factored forms for M(r,r:p), which corre­
spond to all other orderings of the operators A, A 1, and 
B, are easily derived from Eq. (B9b) with the help of the 
following rules: 

-u 
e'<Z±/<Z1=e'<Z1e'•'" qt (BlOa) 

(B!Qb) 

[Eqs. (BSb) and (B6l]. Eqaation (B lOal follows from the 
matrix version of Eq. (B3c), and Eq. (B!Ob) corresponds 
to the rule for interchanging the order of exponentials of 
AandA 1: 

es...4 t e -rA = e -11 -1.0Aes'w'°' t e wB 

=ew8e-t1"'Aes1- 1111 At (BJ I) 

The final result is that the operator M(r,r:p) defined by 
Eqs. (B !) and (B2), i.e., the squeeze operator, has the fol­
lowing six equivalent factored forms : 

M (r,r:p) =e -r A 1 e -rBe r• A =e -r Ate r*r 2•Ae -rB =e -rBe -r12rA te r* A 

=er* Ae -r1lrA t era =er* AetBe -r At =e'Be r* •"Ae -r At . 

The above rules and factored forms for the degenerate and two-mode squeeze operators allow us to prove what one 
would expect intuitively: the product of two different squeeze operators is equal to the product of a rotation operator 
and a squeeze operator. Equation (B8) implies the correspondence 

Mt(r',r:p')M(r,r:p)-.<; ,.,9'.<; ;:~=(''·'I'' ;,~. )-I · (B13) 

l be . h f C . r ;eq J • • The product <;'·'I'' ; ,91• can wntten as t e product o another matnx, !.: R.<I>• and e , giving 
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_ 1 ;eq 3 1eq 3 [ e;8 cosh.R e
112

"'.-
0

'sinhR] 
( ,,,,,, ,.,,,,·=( R.<1>e =e ( R.<1>-e= e -112<1>-e>sinhR e-'ecoshR ' (B14) 

where R, <P, and 0 are defined explicitly by 

e16coshR =coshr coshr' -e 211 <P-'l'"sinhr sinhr' , 

e 112"'-81sinhR =e 21<Psinhr coshr' -e 2i<P'sinhr' coshr . 

The correspondences (B7) and (B8) then imply chat 

M 1(r',tp')M(r,tp)=e - 198M(R,<Pl =M(R,<P-0)e - iea. 

(Bl5a) 

(Bl5b) 

(Bl6) 

By using the fact that ~ ;:~ =<!. J' '·'fill. J (Eq. (A24)] and noting that s;; ' ·"''l. J' ,· ,.p· is the matrix of commutators defined 
by~ '·'I' and ~ ,.4 , one can wrice che defining relation for R, <P, and 0 (Eq. (B !4l] in cerms of the non vanishing commu­
tators of the squeezed :mnihilation operacors: 

• 16 [[a+(r,tp),a~(r',tp')] -[a+(r,tp),a_(r',tp')] l 
~ R.<I>'! q

3
=( r,;,Ll J( r',:p'<l. i= [a~(r,tp),a:(r',tp'l] -[a~(r,tp),a_(r',tp')] . (B\7) 

APPENDIX C: INNER PRODUCTS 
OF SQUEEZED ST A TES 

In this appendb: we derive the inner product of arbi­
trary squeezed states. The derivation is sketched for two­
mode squ~zed states. The same derivacion works for de­
generate squeezed states, so for them we merely list the 
main result. 

One way to derive the general inner product is to hegin 
with the matrix element (Olµa) 1,,.p1· This matrix ele· 
ment is easily obtained by using the number-eigenstate e.~-

pansions of a two-mode coherent state (Eq. (4 .19)] and che 
squeezed vacuum state [Eq. (4.39)]: 

( 0 I i:f. a>1r,.p1= ( 0 I D(!,i:_lS(r,ip) I 0) 

(Cll 

It is instructive to write the exponents in Eq. (Cl) in cerms 
of the vector notation: 

( 0 I l:f. a>1r,.p1=(coshr)- 1exp[ - +rcoshr )-ll:!. 1(' r,.p+i.Q r,.pli:f.] 

= (coshr)- 1exp( - + tcoshrl- 11:f. ~(' ;:~ +iQ r,.p li:f. al . (C2l 

The matrix I2 '·<Pis defined by 

(CJ) 

ic has the following easily verified properties: 

.Q,,<P=-+ a;;·<P =(Q;1Sin(2tp)+Q;2COS(2ip))sinhr, 

(C4a) 

illq) -iilq) 
.Q '·<Pe =e l2 '·<P , 

Q r.<P=' r',ip.Q f,<j)C r' ,ip • 

(C4b) 

(C4c) 

Equation (C2) decomposes (0 lµa) 1,,<P1 neatly into a mag-
nitude times a phase factor. -

Consider now the general inner product 

lr'.<P'l(l:f. ~I l:f. a>cr,40) 

where 

i:f.a=( r.<P/!:.• /!:.~=~ 1•41!_' · 

Equations (3.63b), (3.47), and U.67) imply 

lr'.<P' l(l:f. ~I l:f. a ) cr,<PI 

(C6) 

= e-18D( +e· ·l:!.l(O I ( '·'l'(i:.-e· l )u1.<1>1. (C7l 

where R, <1>, and 0 are defined by Eq. (3 .68) [see also Eqs . 
(B!5)): 

(C8al 

The Hennitian conjugate of Eq. (C8a) is the useful rela­
tion 

-iEl<Zi -) 
e !::' R,<1>=!::' r', <P'f; '·<P , (C8b) 

Note that 

i0q) -i6<Z3 hr' Tl h 12 R,<l>e =e i2 R,<l>=Q r,.pCOS -.., ,· . ~·COS r 

(C9) 

[Eq. (B 15bJ]. The matrix element (C2) can now be used in 
Eq. (C7) to give the desired result, 
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lr', <P'>( I:: ~ I I:: a) (r,<Pl 

=ND(Tµ' ,µ)exp(-T(µ-µ' )r(f+iQ )(µ-µ' l], - - - - - -
(C!O) 

where 

N ::(e 19 coshR )- 1 

=(coshr coshr' -eUl<P-<P'>sinhr sinhr')- 1 (Cl la) 

[Eq. (Bt5a)]. and 

(Cl lb) 

Q coshR = ~ '·"'!). R . <i>~ ' ·"' 
I -i0q) =' ' ·'l'(.Q '·'l'COShr -Q ,·4COShr )e ~'·'I' 

, i0q) 
=~ , ·4(./2 r,<Pcoshr -.Q r•4COShr)e 'r', <P' 

(Cite) 

(f=ft, Q=Qt; Eqs. (C8) and (C9l]. Note the relation 

::~:) = [ '~ :. ] (Clld) 

Equations (Cl!) allow one to write the inner product 
(ClOl in terms of the primary variables r, r', rp, and <p'. 
Three special C.1Ses deserve attention: (i) if µ = µ' , then 
Eq. (C 10) reduces to - -

1r· . .,·><t~lta>1r.<P>=N=(coshrcoshr'-eu 1 <P-<P' >sinhrsinhr')-t (t=t'); (C12l 

(ii) ifrp=rp', then 0=0, <P=<p, and R =r-r', so 

(r',<P>(!: ~It a>1r.<P>= [cosh(r -r'W 1D( +t' •!:)exp[ -f[cosh(r -r'W 1(i:-i:• l1(' r+r·.<P+i.Q ,_, .. <P)(!:-!:' )j (CJ3) 

[cf. Eq. (4.48l]; (iii) if r'=O, then 0=0, <P=<p, and R =r, and Eq. (C!Ol gives the inner product of the two-mode 
coherent state J !::' ) coh with the two-mode squeezed state I!: a ) 1,,<P» 

coh(i::' J !: a>1r.<P>=(coshrl- 1D( T!:' ,!:)exp( -+<coshr)- 1(1:: -i:' )1(, '·<P+i.Q '·"')(I:: -i:' l] (C!4) 

[cf. Eq. (C2l]. . 
For degenerate squeezed states the general inner product is given by 11 

lr'.<P'I(µ~ I µa)lr,1>>=N 112D( +µ',µ)exp[ -+(i:-i:· l1(£ +i!J Hi:-i:' )] , (Cl 5) 

where we use the single-mode vector notation introduced in Table II, with I:: a=' '·<Pi:: and I::~= ,,.4 !:'. 
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A simple but rigorous analysis of the important sources of noise in homodyne detection is presented. Output noise 
and signal-to-noise ratios are compared for direct detection, conventional (one-port) homodyning, and two-port 
homodyning, in which one monitors both output ports of a 50-50 beam splitter. It is shown that two-port homo­
dyning is insensitive to local-oscillator quadrature-phase noise and hence provides (1) a means of detecting reduced 
quadrature-phase fluctuations (squeezing) that is perhaps more practical than one-port homodyning and (2) an 
output signal-to-noise ratio that can be a modest to significant improvement over that of one-port homodyning and 
direct detection. 

It has been known for some time that phase-sensi­
tive detection schemes, such as homodyning and het­
erodyning, provide a means of measuring one of a sig­
nal's two quadratures. 1-3 Recently a clever scheme, 
referred to in this Letter as two-port homodyning, was 
proposed by Yuen and Chan (see Fig. 1)4•5; this scheme 
permits direct observation of one of the input signal's 
quadratures without placing such rigorous demands on 
local-oscillator (1.0) performance as does conventional 
one-port homodyning. Hence the two-port scheme 
might provide a more practical means of observing the 
phenomenon ofsqueezing,6-8 in which the noise in one 
quadrature phase of a signal is reduced below the level 
required by quantum mechanics of a coherent state. 
This noise can be observed because the output noise in 
two-port homodyning can be made insensitive to all LO 
quadrature-phase noise, provided the LO power is much 
larger than the input-signal power. In this Letter I 
compare output noise and signal-to noise ratios for three 
different detection schemes-one-port homodyning, 
two-port homodyning, and direct detection. 

A single plane-wave mode of the electromagnetic field 
at frequency n. (the input-signal frequency) has an 
electric-field operator described by 

E(t, x) a: 1hla exp[-iD,(t - x)) +at exp[iD,(t - x)]l 
= a1 cos n,(t - x) + a2 sin n.(t - x) . (1) 

Here a = a 1 + ia 2 is the annihilation operator for the 
mode and at and a2 are its Hermitian quadrature-phase 
amplitudes. Homodyne schemes use a beam splitter 
to combine an input-signal field with a LO field of large 
power compared with the input-signal field (Fig. 1). 
The dominant signal-carrying term in the intensities 
from each of the two beam-splitter output ports is 
proportional to the mean field of that quadrature of the 
input-signal field (a 1, say) that is in phase with the LO 
mean field after the beam splitter. One-port homodyne 
schemes use a photodetector to monitor the intensity 
from one output port of the beam splitter. Two-port 
homodyne schemes monitor the intensities from both 
output ports of a 50-50 beam splitter and then subtract 
the two photodetector outputs. 

0146-9592/84/050189-03$2.00/0 

Each quadrature of the input-signal field and tho LO 
field has associated with it a certain amount of noiso 
(fluctuations), characterized by the variance of its 
quadrature-phase amplitude, i.e., D.a 12 = ((a 1 - {a 1))2) 
and t.a 22 for the input-signal field. Quantum me­
chanics requires that D.a 12D.a22 ~ 1/16. Coherent statos 
and the vacuum state have D.a 12 = t.a 22 = 1/4 (ran­
dom-phase noise). Single-mode squeezed statesS-8 
satisfy t.a'12£1a'22 = 1/16 but have D.a'12 < 1/4, whero 
a'1 + ia 1

2 = e-i.,.(a1+ia2),0.S<P<11'. 
Aside from that added by nonideal photodetectors, 

the dominant output noise in homodyning comes from 
interference between the (large) LO mean field and the 
noise in the in-phase quadratures of the input-signal 
and LO fields (a 1 and bi. say). In direct detection tho 
output noise reflects only intensity fluctuations in the 
input signal [t.N0 

2= ((N4 - (N0 ))2 )), but in homo­
dyning it reflects the variances t.a 1

2 and t.b 1
2• In 

one-port homodyning with a lossless beam splitter of 
power transmissivity T the dominant output noise is 
proportional to the sum Tt.a1 2 + (1 - T)t.b 1

2; in two­
port homodyning it can be made proportional to t.a 12 

alone. The two-port scheme can yield a better output 
signal-to-noise ratio (SNR) than both direct detection 
and one-port homodyning, the improvement over the 
latter being most significant when t.a 12 « t.b 1

2• 

The two-port scheme owes its success to the law of 
energy conservation, which dictates that the interfer­
ence terms between the LO field and the input-signal 
field contribute with opposite signs to the two outputs 
of the (lossless) beam splitter and that the noninter­
ference terms contribute with the same sign. The 
two-port scheme, by using a 50-50 beam splitter and 
subtl'acting the two outputs, retains only the interfer­
ence terms. Its output signal (intensity) is therefore n 
product of the LO and input-signal mean fields, and its 
dominant output noise (intensity fluctuations) is due 
to interference between the input-signal noise D.a 1

2 and 
the LO power and between the LO noise ti.b 12 and the 
input-signal power. Thus, for large enough LO power, 
the output noise in the two-port scheme can be made 
proportional to ti.a 12. 

The analysis begins with the beam splitter, assumed 
linear and lossless with power transmissivity T and re-

il:l 1984, Optical Society of America 
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Fig. 1. Yuen-Chan1 two-port homodyne detection 
scheme. 

flectivity l - T. The law of energy conservation, to­
gether with the invariance of a (linear) lossless beam 
splitter under the combined operations of time reversal 
and reflection about they = -x axis, leads to the fol­
_ lowing matrix transformation between the two in-mode 
annihilation operators, denoted by a for the signal mode 
and b for the LO mode, and the two out-mode annihi­
lation operators, denoted by c and d (see Fig. 1): 

[~] = u [~]. 
U ~ eit. [~ ei,. v'T e-i,.] = (Ut)-1. (2) 

v'T -~ 
For present purposes, the overall phase/::,. and the rel­
ative phase µ-both inherent properties of the beam 
splitter-need not be known; in fact, the relative phase 
can effectively be made to take on any desired value by 
putting phase delays in the path to one or both detectors 
or by adjusting the relative path lengths. 

In order to understand physically the roles played by 
the various noises as distinct from the mean fields that 
they accompany, it is useful to separate each annihila­
tion operator into a signal-carrying part and a noise­
carrying part. To use the input-signal field as an ex­
ample, the signal-carrying part is the mean field (a) = 
A, a complex number; the noise-carrying part is the 
annihilation operator minus its mean: a - (a) = D.a . 
Thus 

a= A+ D.a = A1 + iA2 + D.a1 + iD.az. (3) 

For simplicity, choose the phase of the LO field so that 
the quantity e-i,. (b) is equal to the real number B; then 
define the operator 

e-i,.b = B + t.b = B + 6b1 + i6.b2. (4) 

With this LO phase, homodyning will see only that part 
of the input signal whose mean is equal to A 1. so we can 
consider A2 to be zero; thus A 1 is the signal to be de­
tected, and its inherent noise is characterized by the 
variance 6a 12. 

Any single-mode state of a radiation field has a noise 
intensity, a total intensity, and intensity fluctuations 
(to second order) proportional to these expressions: 

(N0 ) = (t.att.a) = 6a1 2 + 6a22 - 1/2; (5a) 

(Na)= (ata) = JAl 2 + (N0 ); (5b) 

ANa 2 = t:.N0
2 + 4( (A1t:.a, + A26a2)2) 

+ 4(D.Na(A16a, + A26a2)),ym. (Sc) 

wnere the subscript sym means symmetrized. All states 
of interest have (N;;Aa1)sym = (Nat:.a2)1ym = 0. Co­
herent light with Gaussian excess noise has 

Aa 1
2 =t:.a22 = 1/4(2n+l), (Aa1t:.a2)sym=O, (6n) 

<Na> = n, D.Na 2 = n(n + 1), (6b) 

D.N0
2 = jAj 2(2il+ l)+n(il+ 1) 

=(Na >+ n(n + 2JAJ 2). (6c) 

When ii= 0, the above expressions describe a coherent 
state or the vacuum state (!Al = 0). A single-mode 
squeezed stateS-8 (with <P = 0) has 

6a12
2 = 1/4e±2r, (D.a16a2)sym "'0, (7n) 

(N4) = sinh2 r, 
ll!Va2 = 1/z si~h2 2r = (Na) (1 + cosh 2r), (7b) 

ll!Va 2 = 1h sinh2 2r + A12e-2r + Az2e2r 
= (Na) + cosh 2r sinh2 r 

-2sinhr(A 12e-'-A22e'). (7c) 

The beam-splitter outputs are described by the 
photon-number operators N, = etc and Nd = dtd, 
where 

N, = (1 - T)N0 + TNb + v'T(l - T)P, (8a) 

Nd = TNa + (1 - T)Nb - v'T(l - T)P, (8b) 
Pa 2 Re(e-i"bat) 

= 2(A1 + Aa1)(B + t:.b1) +26a26b2 (8c) 

[Eqs. (2)-(4)). For the usual situation of a strong LO 
these expressions reduce to 

N, ;;; TB 2 + 2v'T(l - T)A1B 
+ 2.jTB(.jTD.b1 + yT=TD.a1), (9n) 

Nd ;;; (1 - T)B 2 - 2v'T(l - T)A 1B 
+ 2v'T=TBh!T=Tt:.b1 - V'.f 6a1), (9b) 

where here and below;; means in the strong-LO limit, 
(1 - T)B 2 » TA 1

2• In all the following equations l 
assume that the power contributed by the fluctuations 
in the LO and input-signal fields is negligible compared 
with the power contributed by the mean fields. 

One-port homodyne schemes look only at the output 
signal (Nd): 

(Nd)= (~B -v"f'A 1) 2 

;;, (1 - T)B 2 - 2yT(l - T)A 1B; (lOa) 

the part of this output that contains input-signal in­
formation is 

(Nd)si~;;; -2yT(l - T)A1B. (lOb) 

The output noise in one-port homodyning is given by 

D.Nd 2 = 4(v'T'=TB - VTAi)2[(1 - T)Ab12 

+ 7'6a 1
2) + 4(~B -y'TA1)[(1- T) 312 

( D.Nr, D.b 1) sym - T 312 ( D.Na D.a l) 1ym) 
+ (1 - T)2D.N1i2 + T 2D.N02 + 4T(l - T)(X). 

(lla) 

(X) = t:.a1 2t:.b1 2 + t::.a22Ab22 - 1/8 
+ 2(t:.a1Aa2)sym(Ab16b2)sym· (llb) 

Neglecting pure noise terms and taking the usual 
strong-LO limit gives 
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= 4(1 - T)B 2[Tt:.a 1
2 + (1 - T)M~lc) 

The SNR for one-port homodyning is defined as the 
ratio of (Nd),;~ to (6.Nd2)If2: 

(SNR) =j(Ndllsi~ 
l (t:,,Nd2)1/2 

_ JT A1 ( ) 
- [T6.a12 + (1 - T)"Ll.b12p12 12 

Equations (l lc) and (12) suggest that the output noise 
and SNR for one-port homodyning might be made in­
sensitive to LO quadrature-phase noise if T;;; 1 with (1 
- T)B 2 finite; however, under these conditions other 
noise sources (those independent of LO power) may 
become important, so in practice it may not be possible 
to let T be close to 1.4 Regardless of LO and input­
signal power, one-port homodyning is insensitive to LO 
quadrature-phase noise only if (1 - T)t:.b 12 « 
T6.a12. 

The two-port scheme suggested by Yuen and Chan4 

uses a 50-50 beam splitter and looks at the quantity Ne 
- Nd ':" P, for which [Eqs. (Sc) and (llb)] 

(P) = 2BA1, 

t:.?2 = 48 26.012 + 4A126.b12 + 4(X) 
;;; 48 26.a 12, (13a) 

_ (P) A1 
(SNR)2 = (f::.P2)112 ;;; (6.a i 2)112 (13b) 

By adjusting fJ (phase shifter in Fig. 1) in the combina­
tion P(fJ) =Ne cos fJ +Nd sin fJ of the two photodetector 
outputs, one can observe 6.a 12 and t:.b 12 individually (fJ 
= =Fll'/4) or in any linear combination. 

By contrast, direct detection of the same input signal 
(A2 = 0) would give the following output signal, noise, 
and SNR [Eqs. (5)]: 

(Na);;; A1 2, t:.Na 2 ;;; 4A126.a12, (14a) 

(SNR) = (Na) - Ai - 11 (SN ) 
D - (t:,,N

0
2)1/2 = 2(6.ai2)l/2 - 12 R 2• 

(14b) 

For a weak, highly squeezed input signal, in which the 
power associated with the increased fluctuations of the 
unsqueezed (conjugate) quadrature rivals the mean­
field power, the approximate expressions (14a) must be 
replaced by the exact expressions [Eqs. (5) and (7)]. 

The other important source of noise in homodyning 
is non ideal photodetectors. A photodetector with 
quantum efficiency I) can be modeled as a lossless beam 
splitter with power transmissivity T = lJ followed by an 
ideal photodetector. The two inputs to the beam 
splitter are the signal and the vacuum state, described 
by annihilation operators d and do, respectively. The 
output of a nonideal photodetector is described by the 
annihilation operator d', where [Eq. (2)] 

d' = ei.\(yryd - e-i•·vr=ryd0 ) (15) 

and the phases A and 11 are inconsequential here. 
One-port homodyning with a nonideal photodetector 
!{ives the following output signal, noise, and SNR: 

(N,r),;~ = lJ(Nd>si~:;; - 21)../T(l - T)A1B; (16a) 

:::.N11 · ~ = lJ 26.Nd 2 + 77(1 - 77)(Nd) 
= (1 - T)J)2B2[4T6.a 12 

+ 4(1 - T)M 12 + (1 - 77)/77]; (16b) 

(SNR)1· = 2VTA1 
[4T6.a 12 + 4(1 - T)t:.b 12 + (1 - lJ)/lJJ112 

(16c) 

Two-port homodyning wi th identical non ideal photo­
detectors gives this output signal, noise, and SNR: 

(P') = J)(P) = 2J)BA1, (17a) 

t:.?'2 = 7126.P2 + 71(1- 71)[(Nr) +(Nd)) 
;;; 7)2B2[46.a12 + (1 - 71)/7)]; (17b) 

2A1 
(SNR)2·;;; [46.a12 + (1 - 71)/71]1!2 (17c) 

Direct detection of the same input signal would give the 
following output signal, noise, and SNR: 

(Na-> "'7)(Na>;;; J)A12, 
6.N0 • 2 ;;; J) 2A12[4Ll.a12 + (1 - 7))/71); (18a) 

Ai 
(SNR)o· ;;; (4Ll.ai2 + (l _ 7l)l7IJ112 

1h(SNR)z·. (18b) 

Equations (16) and (17) show that the absence of any 
contribution from LO quadrature-phase noise in the 
output noise of two-port homodyning can be a distinct 
advantage when one wants to detect squeezing in the 
input signal. For example, for two-port homodyning 
with efficient photodetectors (71;; 0.9) the ratio between 
the output noise produced by a coherent-state input 
signal (46.a 12 = 1) and that produced by an input signal 
that has been squeezed by a factor of 10 (46.a12 = e-2r 

;;; 0.1) is about 5:1. The same ratio for one-port ho­
modyning with an ideal (coherent-state) LO (4Ll.b 12 = 
1) and a 90/10 beam splitter is about 3.5:1. For the 
same squeezed input signal, two-port homodyning offers 
an improvement in output SNR over one-port homo­
dyning by a factor of roughly 1.3, and it has the addi­
tional advantage of not requiring a quiet local oscillator. 
More-efficient photodetectors and/or a more highly 
squeezed input signal would make this comparison more 
dramatic. 

This research was supported in part by National 
Science Foundation Grant AST82-14126. 
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The standard quantum limit i.2 (SQL) for monitoring the position of a free 

mass m says that in two successive , identical measurements of position x 

spaced a time T apart, the result of the second measurement cannot be 

predicted with an accuracy better than (n:r/ m )*. In this Letter I derive the 

SQL and discuss the conditions under which it limits any me asurement scheme 

designed to monitor the position of a free mass . I then show that for measure­

ments described by linear couplings to the position x or to both x and the 

momentum p, and at least for cases where the wave functions of the measuring 

apparatus( es) are Gaussian, the SQL cannot be surpassed. 

The origin of the SQL will be shown to lie ultimately in the fact that under 

tree evolution the Heisenberg operators x (0) = x and x ( 1) = x + (1i1/ m )p do 

not commute: 

[x(O) ,x(1)]::: i1tr/m . (la) 

From this fact it follows that 

( 1 b) 

where a:/(1) = ((6..x)2)(1) and 6.x = x - (x); the equality holds only when 

a.i: 2(0) = a.i: 2(1) ::: 11.1/ Zm. [Henceforth I set 7i = 1.] In the following para­

graphs I examine first measurements of x alone and then simultaneous 

measurements of x and p , using as illustrations for each the simple cases of 

linear coupling . 

Consider first a measurement of x alone, in which a s ingle measuring 

apparatus ("meter") is coupled, through a constant interaction Hamiltonian 

V, to the position x of the free mass . I assume that at time 1 ::: 0 Vis turned 

on, and it is turned off a short time later at 1 = 1*; by "short time" (or 

"strong coupling") I mean that during the measurement the free evolution of 
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the system and the meter may be ignored ("impulse approximation") . After 

the first measurement, the system is allowed to evolve freely unW a time 

r » r•. at which time the second measurement begins . The task is to tind 

with what certainty one can predict the outcome of the second measurement, 

using the information one has about the state of the system after the result of 

the first measurement has been recorded. 

Denote by X1 an observable of the meter whose measured value provides 

direct information about the position x of the free mass . The first measured 

value for Xi -- Xi'. say -- is our best indicator for the value x 0 of the position of 

the free mass just before the measurement. The uncertainty in X1' - i.e .. the 

amount by which it might differ from x 0 - is equal to the sum of the intrinsic 

"width" of the free mass wave function before the measurement , IJz 2(0) (in 

general unknown), and the finite resolution of our meter, denoted by ai2: 

(2) 

The important quantity to calculate, however, is the intrinsic uncertainty of 

the free mass position after we have completed and recorded our measure­

ment; this involves a collapse of the joint wave function for meter-plus-free 

mass, whereby the X1-dependence becomes an X1'-dependence. Suppose the 

wave functions for the free mass and the meter before the first measurement 

are F(x ;0) and M(X1;0), respectively. The joint ,.,·ave function before the meas­

urement is the product (meter and free mass initially UI1coupled) 

(3) 

Arter the measurement the joint wave function is given by t(x .X1;r*). The 

(renormalized) wave function for the system, just after we have obtained 

the value X1' from the first measurement, is given by 
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( ) 
'1r(x .X1';r*) 

F' x;r* = -----
[P(X1';r*)]* ' 

(4a) 

where the probability distribution for the measured value X1' is 

(4b) 

The average position and its variance for the free mass after we have obtained 

the value X1' are given by 

(x)'(r•) = J dx x IF'(x;r•) 12 , (5a) 

0':
2'(r•) = J dx IF'(x;r*)l 2 (x - (x)'(r•))2 (5b) 

Other relevant post-measurement quantities for the free mass which are simi-

larly calculated are the mean momentum (p)'(r*) , the variance of the momen­

tum a/'(r*), and the correlation azp'(r*), where azp'(r*) = (t::a't::.p')-qm(r*), 

t::.x' = x - (x)'(-r*), and "syrn" means "symmetrized." In terms of these quan-

tities the position and variance of the free mass at time r, just before the 

second measurement, are given by: 

(x)'(r) = (x)'(r•) + (r/ m)(p)'(r*). (6a) 

(6b) 

The result of our second measurement, X 1'. will be our best indicator for 

(x)'(r); the uncertainty in X 1' -- i.e ., the amount by which it may differ from 

the predicted (x)'(r) -- is equal to the sum of the intrinsic "width" of the free 

mass just before the second measurement and the resolution of our meter, 

denoted now (allowing for a new meter) by a·/ [cf. Eq.(2)]: 

(7) 
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The primes present in Eqs . (5)-(7) are reminders that these quantities depend 

on one's having obtained the result Xi' in the first measurement -- i.e . that they 

have been calculated using the renormalized wave function of Eq. ( 4a) . 

If it is the case that a2
2 ~ az 2'(r•), then the SQL is obeyed, by Eqs.(1b), (7) 

and the impulse approximation. Suppose now that the meter used in the 

second measurement has the same resolution as that used in the first : a2
2 = a1

2 

(this is the situation to which the SQL always refers) . Through Eq. (5b) 

one has a definite relation between a1
2 and az 2'(r•), and that relation dictates 

whether or not the SQL can be surpassed. In particular, if az 2 '( r•) ~ a 1
2 , the 

SQL cannot be surpassed. 

In general, one does not know the free mass wave function F(x ;0), but the 

meter wave function M(x 1;0) is under one's control. Let us assume that the 

meter is a one-dimensional system with two degrees of freedom described by 

the conjugate observables X1 and Pi . and consider the case where the meas­

urement process is described by the linear interaction Hamiltonian V = KzP1. In 

uni.ts with Kr•= 1, measurement of Xi then corresponds to a measurement of 

x. The intrinsic resolution of the meter [ai2 in Eq.(2)] is equal to ax
1
2(0) . In 

this context the simplest case to analyze is when both F(x ;O), and M(X1;0) are 

Gaussian: 

(Ba) 

e0 = -tan2o0 = -2azp (0) (Bb) 

analogous relations hold for M(X1;0) [quantities Nx
1
(0), b 1(0), and e 1(0)]. A 

Gaussian "contractive" state3 is one for which e0 > 0. Under free evolution, 
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t( r) always decreases during free evolution (correlation of t.x and b.p 

always increases) , and when it passes through zero, [t(rm) = O], 

az 2(rm) = 1/ 4ap 2(0) is equal to its minimum possible value . These and other 

special states are not discussed further here, since they are relevant to the 

SQL only through Eqs. (5) and, at least for Gaussian states, the contractive 

quality does not help one beat the SQL. 

For a measurement described by the linear coupling V = KzP1, the joint 

wave function after the measurement is given by 

(9a) 

For Gaussian wave functions F(x;O) and M(X1;0) [Eqs.(8)], Eq.(9a). together wi.th 

Eqs.(4), tells one that the variance of the free mass position at time T* just 

after the first measurement is equal to 

(9b) 

Hence, if al = a 1
2 (meters with identical resolutions). the SQL is obeyed [Eqs 

(9b), (7) and (lb)]. Eq. (9b) also says that the best one can do in this 

type of measurement is to rea.ch the SQL, which is accomplished when one has 

essentially no information about the position of the free mass before the first 

measurement [az 2(0) » a1
2]. The result az 2' (T*) s; a 1

2 agrees with our intui-

tion, and it is typical of measurements of x alone, due to the fact that the 

free-mass wave function F'(x ;0) (typically of fini te \vidth) contributes to 

the post-measurement renormalized wave function F'(x;r•) [Eqs .(4) and (9a)]. 

However. a more thorough examination of the restrictions on meter wavefunc-

tions M(x ;0) necessary to ensure that az 2 '( T*) s; a 1
2 may be in order. 
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Yuen3 has implied that a simultaneous measurement of x and p 4-e might 

enable one to beat the SQL. At this point the discussion is in some sense 

academic, for most experiments which attempt to monitor x do so for the 

purpose of detecting a classical force F(x ,t );2 this task would be much easier 

if we simply coupled to p alone, but we don't know how to do that. 

Nevertheless, the idea of simultaneous measurements of noncom.muting observ-

ables is an important one, and such measurements do play an important role 

in quantum optics, for example.6 ·7 In the following paragraphs I show that, at 

least for the case of a linear coupling to x and p and for Gaussian meter wave 

functions, the use of an optimally-arranged simultaneous measurement or x 

and p might enable one to reach the SQL. but not to surpass it . 

I will assume that the simultaneous measurement is accomplished by using 

two one-dimensional "meters", described by the conjugate observables X 1,P1 and 

X2.P2• respectively. The prototype for such a measurement is again one in which 

the coupling is linear, with V = K(xP1 + pP2) . In units with K-r• = 1 and in the 

impulse approximation, measurement of X 1 [X2 ] corresponds to a measurement 

of x [p]. · The values X 1' and X2' obtained in the first measurement are our best 

indicators for the position x 0 and momentum p 0 of the free mass just before the 

measurement. The uncertainties in X 1' and X 2' (most easily calculated in the 

Heisenberg picture) are 

(lOa) 

where the quantities a 1
2 and >.} describe the position and momentum resolu-

tion, respectively, of the two-meter measuring apparatus. In particular, for the 

linear coupling just mentioned, 
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(lOb) 

Let the initial wave functions for the free mass and the two meters be 

F(x ;O), M(X1;0) and N(X2;0) . Straightforward calculation of the evolution opera-

tor gives for the joint wave function after the first measurement 

where Fi(p 2 ;0) is the Fourier transform of N(X2;0). Earlier discussion [Eqs.(9)] 

indicated that in order to make a:c: 2'(T•) ~ a12 (and hence have a chance of beat­

ing the SQL) one needs to find a way of making the wave function of the free 

mass just after the measurement be independent of its wave function just before 

the measurement. Arthurs and Kelly 4 have given a prescription for accomplish-

ing this: one chooses the two meters to have suitably "balanced", Gaussian wave 

functions, and finds that just after the measurement the free mass wave func-

tion is also a Gaussian, with mean position and momentum equal to the meas-

ured values 

(12a) 

and position and momentum variances equal to the measurement resolutions 

(12b) 

Specifically, require that M(X1;0) and N(X2;0) have the general Gaussian form 

defined by Eqs . (8), and balance them by making b 1(0) b2 (0) = 1. so that 

t 1(0) + t 2 (0) = 0 and 4a:.i:
2
2 (0) = ap

1
2 (0) (13) 

1 2 
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The joint wave function after the first measurement then has a simple x­

dependence: 

(14a) 

which tells one immediately that 

(14b) 

[cf. Eqs. (9)]. It is also clear from Eq. (14a) that the system will be left in a 

contractive state if the X1-meter was in one, since e'(;•) = e1(0). However, this 

fact does not help us beat the SQL, for if our second measurement uses the 

same meter set-up as the first measurement (a2
2 = a12), then Eqs. ( 14b), (7) and 

(lb) tell us that a simultaneous measurement of x and p can at best allow us to 

reach the SQL: 

(15) 

From Eq. ( 14-a) it is clear that this result is true regardless of whether we look at 

the second meter (X2') . Again, however, a more thorough examination of the res­

trictions on the meter wave functions necessary to ensure that az 2' (;-•) ~ o} 

may be in order. 

I have stated in this letter the criterion which must be satisfied i! there is to 

be any chance of beating the SQL. In the context of measurements described by 

linear couplings to x or x and p, I have shown that for measuring apparatuses 

described by Gaussian wave functions (which includes the GaussLa.n contractive 

states proposed recently by Yuen 3 as a means of surpassing the SQL) the SQL 

cannot be surpassed, though it might be approached by performing a balanced 

simultaneous measurement of x and p. A more detailed examination of the 

general requirements on the meter wave function(s) necessary to enforce (or 
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not enforce) the SQL would be interesting and useful. 

The author would like to remark that some of these results were 

obtained independently by C.M. Caves . She also thanks W. Zurek for some 

enjoyable discussions and Zonta International for their generous fellowship . 

This work was supported in part by NSF Grant AST82-1 4126. 
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Summary . Motivated by the possibility that torsional oscillations of neutron 
stars may be observable in the timing of pulsar subpulses and/or in future 
gravitational-wave detectors, this paper develops the detailed mathematical 
theory of such torsional oscillations and of the gravitational waves they emit. 
The oscillations are analysed using the formulation of first-order perturba­
tions of a fully general relativistic spherical stellar model. All sources of 
damping are ignored except gravitational radiation reaction. The perturba­
tions are resolved into spherical harmonics , which decouple from each other. 
For each harmonic this paper presents equations of motion, an action 
principle , an energy conservation law and a Liapunov-type proof that the 
oscillations are always stable. Each harmonic is then resolved into normal 
modes with outgoing gravitational waves (time dependence t!wt with w 
complex) and an eigenvalue problem is posed for the eigenfunctions and the 
eigenfrequencies w. Five methods of solving the eigenvalue problem are 
presented; three methods are valid in general (the method of resonances, the 
variational method and the method of energy conservation) ; one is valid in 
the slow-motion approximation (wavelength of waves large compared to star) 
and one is valid in the weak-gravity approximation . For stellar models with 
weak gravity and with radially constant density and shear modulus the 
eigenvalue problem is solved analytically. 

An appendix develops a general theory of action principles for systems 
with radiative boundary conditions - a theory which is then used to derive 
the <>.ction principles i ~ the body of the paper and which c0uld be useful fo r a 
va riety uf other problem s involvi ng rhysical systems coupled to raJiation. 

Iu troduction 

If torsional oscillations of neutron stars could be observed, then comparisons of their 
measured periods and Qs with theoretical models would give valuable information not only 

*Suppo rted in part by the Natio nal Sc ience Foundation (AST 79-22012 and PHY 77-27084). 
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about neutron star structure, but also about the physics of matter at subnuclear and supra· 
nuclear densities . There are two hopes for such observations: pulsar timing data and gravita· 
tional radiation. Van Horn ( 1980) has pointed out that the 'marching subpulses' observed in 
some pulsars have the same range of periods. 10-50 ms, as low-order torsional oscillations of 
neutron star crusts; and on this basis he has argued that such oscillations may be the clock 
which regulates the marching subpulses. And Dyson (1972) has pointed out that, if neutron 
stars have solid cores, then quakes in those cores should generate torsional oscillations which 
might produce gravitational waves strong enough to detect on Earth. 

With these two applications in mind, and with hope that they or others will materialize, 
we construct in this paper the detailed mathematical theory of torsional oscillations of 
non-rotating, general relativistic stellar models with isotropic shear moduliµ. 

The analogous general relativistic theory of non-spherical compressional oscillations 
of non-rotating perfect-fluid stars was laid out a number of years ago by Thome & 
Carnpolattaro (196 7), Price & Thome ( 1969), Thome (l 969a, b ), Carnpolattaro & Thome 
(1970), Ipser & Thorne ( 1973), Detweiler & Ipser (1973), Thome ( 1983, in preparation). 
Those eight papers developed many facets of the theory. This paper is rather long because it 
attempts to develop, all at once, all of those same facets for the theory of torsional 
oscillations, and several more facets besides. 

To set the stage for our analysis, we shall review briefly the structures of neutron stars 
and the characteristic magnitudes of various quantities associated with them; for further 
detail see, e.g., Baym & Pethick (1975, 1979) and references therein. 

Observation and theory agree that typical neutron stars have masses M - IM 0 and radii 

R - 10 km. Theory predicts with great confidence that within minutes after the star is born, 
its crust will cool enough to solidify into a crystal governed by Coulomb forces between 

atomic nuclei. This crystalline crust should extend from the star's atmosphere inward to a 
depth of order I km, where the density is within a factor 2 of nuclear, p"" ( 1.5-3) x I 0 14 g 
cm-3

. Throughout the crust the shear modulusµ is computed to be nearly proportional to 
density p, with 

(I) 

Here Us is the speed of non-relativistic shear waves (Ruderman 1968; Pandharipande, Pines & 
Smith 1976; Hansen & Cioffe J 980) (see equation 20 for a relativistic correction). 

It is now widely believed that below the solid crust resides a superfluid mantle, which 
extends inward through a thickness of roughly 5 km and through a density range of 
(l.5-3)x 10 14 to (5-IO)x 10 14 gcm- 3, until it meets the star's - 4km core. The physical 

state of the core is highly uncertain. Possibilities include a pion-condensed state, which 
might or might not be a solid governed by nuclear forces; an 'abnormal state' in which the 
nucleons become practically massless; a degenerate Fermi liquid of quarks, etc. The possi­

bility of a solid core was viewed with much favour between 1971 and 1974, both on grounds 
of nuclear many-body calculations and on grounds of a reasonable fit between the theory of 
core quakes and observations of glitches in the timing of the Vela pulsar (Pines, Shaham & 
Ruderman 1974. see H:msen 1974, p. 189). However, by 1975 improved many-body calcula­

tions had cast doubt on the likelihood that supranuclear matter will solidify. The doubt 
remains today, but the calculations are far from convincing either way; see Baym & Pethick 

. ( 1975, 1979) for details and references. If the core is a solid, then its shear moclulus µ could 

be as large as its pressure P, or it might be somewhat smaller: 

(µ/p) 112 =us~ (P/p) 112
"" Ix 1010 cms- 1

• (2) 

Hansen & Cioffe (1980) have used Newtonian theory to compute the torsional oscillation 
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periods of neutron star crusts. As one might expect , they obtain for modes with no radial 
nodes (so transverse wavenumber dominates) 

Period= 2rr /w "' 2rr [/(/ + l)r 1
'
2 R/ v5 - 20 ms for I= 2, (3a) 

where I= 1, 2. 3 . . .. is the spherical-harmonic index. Relativistic effects (especially gravita­
tional redshitts and the dragging of inertial frames) are likely to change these periods by 
- I 0-50 per cent . These periods are a factor - IO longer than would be compressional­
oscillation periods for the crust, because the electrostatic forces which govern the crystal and 
its torsional oscillations are - I 00 times weaker than the degeneracy forces and nucleon­
nucleon forces which govern compressional oscillations. Because the crust's torsional oscilla­
tions are so slow, v5 /c <( l, they can be described very accurately by the 'slow-motion 
approximation· to general relativity (Thorne 1980; Section 4 .5 of this paper) which predicts 
gravitational waves so weak that it is hopeless to ever detect them: 

(GMcr) ('v5)
3 

_ 28 (10kpc) ( {3) lz-6 -- - {3-10 -- --
~2 c , r 1~3 

for I= 2. (3b) 

Here h is the dimensionless gravity-wave amplitude , r is the distance from the Earth to the 
star, {3 is the dimensionless amplitude of the star's shearing oscillations, Mer"' 0.1 M0 is the 
mass of the crust, and we have specialized to quadrupole modes which are the strongest 
emitters. Gravitational radiation reaction will damp the crustal oscillations with an e-folding 
time 

(3c) 

cf equations (76). 
If the core is solid and hasµ - P (as was widely believed in the early 1970s), then the 

periods of its torsional oscillations would be roughly the same as those of its compressional 
oscillations : 

Period= 2rr/w"' 2rr Rc0 fu5 - 0.3 ms for I= 2. (4a) 

where Rco"' 4 km is the core radius. Because the torsional oscillations emit 'current quad­
rupole' gravitational waves (gravitational analogue of magnetic quadrupole), whereas the 
compressional oscillations emit 'mass quadrupole' waves (analogue of electric quadrupole), 
the waves from torsional oscillations will be weaker by (v5/c)- 1/3 and will be damped more 
slowly by (u5 f c r 2 

- 10 than those from compressional oscillations: 

{GMco) (u5)
3 

(10 kpc) ( {3 ) 
}z - 0.3 \~. ; , {3- 3 x 1~23 -r- 10-3 ' (4b) 

(
GM co )-I (·us)-s 1 r - 30 -

2 
- w- - 1 s. 

Rc0 C c 
(4c) 

(The coefficients used here are extrapolated from strong-gravity, fast-motion calculations 
of compressional oscillations by Thorne (1969a) ; the coefficients used in equations (3) for 
crustal oscillations are based on the weak-gravity , slow-motion calculations of equations (76) 
of this paper.) Assuming that the Vela pulsar has a solid core, and that the glitches observed 
every 2 or 4 yr in the Vela pulse arrival times are due to core quakes, Pines et al. (1974) have 
estimated that the total strain energy released in each quake is - l 045 erg corresponding to 
{3- 10-4 , which at a distance r - 500 pc would produce h - 6 x 10-23

. Other, younger neutron 
stars might be stronger emitters. For comparison, the best currently operating gravitational-
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wave de tec tor (Stanford's bar ; Boughn et al. 108 2) has :i burst sensitivity h - 5 x 10- 18 ( rms 
noise Ii - I x 10- 18

) at a period P - 10-3 s; the design sensiti \' it y of a multikilometre laser­
inter fero meter gravit y-wave detector being planned fo r the late 1980s (Drever et al. 198 2) 
for I 0 h.:1-! z waves th;it last I s. wou ld be Ii - 3 , 10- 23

. Thus. it is not inconceivable that 
corequakes in neutron stars could be detected and studie d routinely in the 1990s. 

We turn now to the detailed analysis of to rsional oscillations of spherical, non-rotating, 
relativistic steUar models . The spherical symmetry of the unperturbed star guarantees that 
the oscillations can be decoupled into modes of definite spherical - harmonic indices (/, m) 
and definite parity. In the language of previous analyses (e.g. Regge & Wheeler 195 7) pure 
torsional oscillations are the normal modes of odd-type or magnetic-type parity . rr = (- 1)1+ 1. 

Such modes do not exist for l = 0 (monopole). They exist for l =I (dipole) but cannot 
generate gravitational waves . For l ;;. 2 they do generate waves. The differences between l = I 
and l ;;;. 2 are so fundamental that they are best analysed in different gauges and with 
different mathematical techniques. Sections 2-4 of this paper are devoted to modes with 
l ;;. 2; Section 5 treats I= I . Section 2 lays the foun dation for the analysis with l;;. 2, includ­
ing the description of the unperturbed star (Section 2.1 ). the coordinates, metric and Ricci 
tensor for the perturbed star (Section 2.2) and the description of the material motion - i.e. 
the displacement function , four-velocity and stress-energy tensor (Section 2.3). Section 3 
presents the details of the analysis, including the equations of motion for the matter and the 
gravitational field (Section 3.1), the boundary conditions on the matter and field variables 
(Section 3.2), the form of the gravitational waves emitted and their energy loss rate (Section 
3.3), an action principle and local law of energy conservation for the pulsations and their 
waves (Section 3.4), and a Liapunov-type proof that so long as the shear modulus is positive 
the star is stable against arbitrary (but first -order) torsional perturbations (Section 3.5). 
Section 4 analyses the star's outgoing wave modes (pulsations with sinusoidal time depen­
dences and complex frequencies) , including a formulation of the eigenvalue problem for the 
normal modes (Section 4.1) and various methods of solving the eigenvalue problem : the 
method of resonances (Section 4.2) , a variational principle method (Section 4.3), an energy 
conservation method (Section 4.4), a method valid in the slow-motion approximation 
(Section 4.5), and a method for stars with weak internal gravity (Section 4.6, which also 
includes an analytic solution of the eigenvalue problem for weak-gravity stars with constant 
density and shear modulus). The analysis of dipole oscillations in Section 5 follows a similar 
outline - but with all issues of gravitational radiation absent. Some mathematical details are 
relegated to appendices. Of special interest may be Appendix B which elaborates and 
extends an elegant formulation (by Friedman & Schutz 1975) of the general theory of 
action principles for systems that can radiate waves - any kind of waves - to infinity. 

Throughout this paper we use the mathematical conventions of Misner, Thome & Wheeler 
(1973 , cited henceforth as MTW), including setting the speed of light and Newton's gravi­
tation constant to unity and denoting covariant derivatives by semicolons and partial 
derivatives by commas. 

2 Foundations for the analysis: I ;;. 2 

2. 1 T H I· L'. N P!-. RTL : R. l sE U ST A I{ 

The unpe rturbed sphe ric al star is desc ri bed ii< the stand:J. rc m:mner (see. e.g. \lTW). The 
metric , in Schwarzschild coordinates , is 

ds 2 = (ds 2 ) 0 = - e2 <t> dt 2 + e2 i\ dr2 + r2 (d{) 2 + sin2 
{) d r/>2) 

(Sa) 
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where <!> ( r) and 1\(r) are fun ctions of the radia l coordin ate. r . The 'mass inside radi us r'. 
111 (r). is defined by 

e 2 1
\ = I -- 2m/r. (Sb) 

• 
The density of total mass-energy and the (isotropic) pressure are denoted by p and P, respec-
tively . The standard equations of structure for the equilibrium star are (i) the mass equation 

m = r 4rrr2 p(r)dr. 
• 0 

(ii) The Oppenheimer-Volkov equation of hydrostatic equilibrium 

dP 

dr 

(p + P)(m + 4rrr3 P) 

r 2(1 - 2m/r) 
P(R) = 0 

where R =(value of rat surface of star), and (iii) the source equation for <I> (r) 

d<l> m + 4rrr3 P 
=----

dr r2 (I - 2m/r)' 
<I> (oo) = 0. 

From equations (Sb) to (Se) the following useful relations are easily derived : 

!\ = 1/ 2 ,-i (I - e2 /\) + 4rrrpe2 1\ , 

<I>'= - 1/2 ,-i (1- e2 /\) + 4rrrPe21\ 

<I>' + t\' = 4rrr(p + P) e2 1\ or (p + P) = - (4rrrr 1 (e- <t> - /\y e<t> - A, 

e2 <t> = e- 21\ = 1 - 2M/r outside the star, 

(Sc) 

(Sd) 

(Se) 

(Sf) 

(Sg) 

(Sh) 

(Si) 

where primes denote radial derivatives, afar, and where M = m (R) is the star's total mass 
and R is its radius . The complete unperturbed model is specified by giving the radial distri­
butions of p, P, <I>, t\ (or m) and the shear modulus µ(r) . We assume in this paper thatµ is 
isotropic ('scalar field'). 

2.2 COORDINATES, METRIC AND RICCI TENS O R FOR PERTURBED STAR 

For the perturbed star we introduce coordinates (t. r, -(}, ¢) which reduce to those of the 
unperturbed star when the oscillations vanish . We linearize our entire analysis about the 
unperturbed configuration and resolve the oscillations into spherical hannonics of definite 
indices I. m and parity rr . The spherical symmetry of the unperturbed configuration guaran­
tees that modes of different/, m, rr superpose linearly (i.e. no mixing). Therefore, we can 
restrict attention to modes with fixed/, m, rr (pu re modes). In this paper we do not consider 
'even-parity' modes [rr = (-1)1] because they represent compressional oscillations rather 
than pure torsional oscillations ; see Thome & Campolattaro (I 96 7) for discussion . The odd­
parity torsional modes with fLxed l but different m can be obtained from each other by 
line :.i r wm bin ations of rotations ab out the sta r's centre. Thus . wit ho ut loss of gen er:i lity , we 
can specialize to :in odd-parity mode with definit e I and 1¥ ith •11 = O; an d we hen..:eforth use 
m exclus ive ly to J enote the mass in side r:idius r (e qua tion 5b) :rnd not a sp lle ric:i.l h:i nn onic 
index . 

The metric gµ,, for our oscillating star consists of the unperturbed metric "/µ v plus 
components hµ,, which describe our odd-parity perturbation: 

ds 2 = (ds 2 
) 0 + hµ,1 dxµ dx ,,. (6a) 
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Clearly , hm hrr and hrr are scalars under rotation and thus have even parity, which means 
they must vanish . Further (cf appendix A of Thorne & Campolattaro 1967) we are free to 
specialize our coordinates (choose our gauge) so as to make all other components of hµ,, 
vanish except the following: 

h 10 = h,'Jr = - r 2.i• (t. r) b<P = - r2 y sin iJa\JP1 (cos iJ), 

h,0 =h<Pr=-rel\-ct>Q(t,r)b0 . (6b) 

Here be> is equal to [4rr/(2/ + 1)] 1
' 2 times the Regge-Wheeler (1957) odd-parity vector 

spherical harmonic ct>f1; in future equations we shall raise and lower the index on b<P with the 
metric of the unit sphere: 

(6c) 

the indices of the metric perturbation functions hµv are raised and lowered with the unper­
turbed metric, 'Yµv (equation Sa). In equations (6b, c), P1 (cos iJ) is the Legendre polynomial 
of order I, and the dot over y denotes a time-derivative a/at=. at. The perturbation function 
y b<P is equal to the angular velocity of a zero-angular momentum observer (ZAMO; cf, e .g., 
Bardeen, Press & Teukolsky 1972); thus yb<!> is the angular displacement of a ZAMO and is 
dimensionless. Outside the star the perturbation function Q is equal to the Regge-Wheeler 
( 1957) gravitational-wave variable, aside from a multiplicative constant. 

The metric perturbation (6b) produces a perturbation of the Ricci tensor with the follow­
ing non-vanishing components (Thome & Campolattaro 196 7, equation 83 as corrected in 
the erratum - but note the different notation and signature used there): 

{
ect>-1\. . /(/+!) } 

8Rr<P =oR<Pr = ---:;;.;-[r4 e-ct>-/\.(j;' - e/\.-ct>Q/r)J' +e-<t>-1\.(re<t>-/\.)'y-- -
2
-y b<P, 

(7a) 

I .. /(/+I) } 
oR,¢ = 8R¢r = \ 1/2 r2 e-2 <t> (Y' - e/\.-ct> Q/r) + ,-i e- 2 <11 ~rect>-1\.)' Q -~ e/\.-ct> Q b<P, 

(7b) 

(7c) 

Here and below primes denote radial derivatives and dots denote time derivatives , Q' =. aQ/ ar 
= Q,, and Q = aQ/ar = Q,t· Note that sin 2 iJbC>, IJ = sin2 iJat?bo is equal to [16rr/(2/ + l)] 11

2 

times the Regge-Wheeler odd-parity tensor spherical harmonic x'g0 . 

We now go on to consider the motion of the star and the interaction of its matter with 
the surrounding spacetime geometry. 

2.3 DISPLACEMENT FUNCTION, FOUR-VELOCITY AND STRESS-ENERGY TENSOR 

FOR PERTURBED STAR 

In the perturbed star, the coordinate location of a specific particle of stellar matter oscillates. 
We describe its oscillating location by a di:>pL.i..:ement vector!; whose components r. ~ 1J and 
~ o are fun ctions of the particle's o rig inal location (r. iJ. 9) and of time t: 

'pert = r + ~'(t, r, iJ, ¢) ; (}pert=(}+ ~t? (t, r, iJ, ¢); <!>pert= <f> + ~<P(r. r, {},</>). (8a) 

Because r is a scalar under rotations about the centre of the star and thus has even parity, it 
must vanish. The angular displacements form a vector field on the unit sphere, !; = ~ IJ at? + 
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~ 0 a0 , and must therefore have the angular dependence of a yector spherical harmonic of 
definite/, ofm = 0 and of parity rr = (- !/+ 1: 

(Sb) 

Note that just as yb0 is the angular displacement of a ZAMO, so Yb<i> is the angular 
displacement of the stellar matter. 

The four-velocity uµ of a particle with world line (8a, b) is obtained from the relations 
J;u' = dx'~ert fdt = ~i . , ; uµuv gµv = - 1. The result , linearized in the perturbation functions 
y, Q, Y, is 

u' = 0, u& = 0, (9) 

The radial and angular variations of the azimuthal displacement ~<i> produce deformations 
(shears) of the star's crystal lattice. These deformations are described by a shear tensor Sex(]· 
When viewed in the orthonormal comoving frame of a particle of the stellar material S ex;i is 
purely spatial (500 =Soi= S10 = 0), and its spatial components Sik = Sk; are precisely those 
of the non-relativistic theory of a stressed medium (see , e.g. Landau & Lifshitz 1970). 
Hence, in this proper reference frame of the particle, the shearing motion produces a restor­
ing stress given by the standard non-relativistic formula TJ~ear = - 2µSik> where µ is the 
shear modulus. By general covariance (cf MTW, chapter 16) this equation can be rewritten 
in the coordinate-independent form 

rshear = _ 2µS 
0<{3 °' (3 · ( 10) 

To calculate the components Sa(3 of the shear tensor in our Regge-Wheeler coordinate 
system we proceed as follows : First , we calculate the rate of shear aa(3 from standard 
formulae (see, e.g., MTW, exercise 22.6) : 

aa(3 = 1/2 (lla ;µ Pµ(3 + u(3 ;µ Pµ°') - l/3Pex(3LIµ ;µ• 

where 

p a(3 = gex(3 + UaU(J. 

The result is 

a,q, =a¢,= 1/2 r2 e-<t> (Y' - el\ -<t> Q/r)bip; 

a{J¢=ac:i.J= l /2r2 e-<t> Ysin2 ~bif>,{J; 

all other components vanish. 

( 11) 

(l 2a) 

(12b) 

(l 2c) 

(Notice that even for a fluid at rest in the (r, {},¢)coordinate system (Y = 0) there is a chang­
ing radial shear a,<b associated with the changing metric (Q * O; 'deformation of coordinates'). 
It is only because we are in the Regge-Wheeler gauge where h&o = 0 that the non radial 
shear a,90 vanishes when Y = 0.) Next, we write in explicit form the relationship 

a=.!/' u S, ( 13) 

that the rate of shear is the Lie derivative of the shear along the world lines -- a relationship 
which is best derived in the proper reference frame of a fiducial material particle; cf Carter 
& Quintana ( 1972). The result, to first order in the oscillations, is 

- -<t>s aex(3 - e ex(3, r· (14) 
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Finally , we combine equations (I 2) and (14) and integrate with respect to time , using the 
initial condition that the shear Se:iJ is equal to zero in the unperturbed star (i.e. when Y and 
hµv vanish). The result is 

S,tJ> =StJ>r = 1/ 2 r2 (Y ' - eA-<t> Q/r)br;i = ~(r :tJ> l + 1/2/z,0 : (I Sa) 

S19r;,=S019= l / 2r2 Ysin 2 ~b<P, 19 =~(e;<t>)· (I Sb) 

Note that the shear Se:iJ is generated both by the deformation of the crystal relative to the 
coordinate system (non-zero Y) and by the deformation of the coordin ate system itself 
(non-zero hlfP). 

The shear stress of equations (IO) and (1 S) is only one contributor to the stress-energy 
tensor of the stellar material. The other contributors are the total density of mass-energy p 

and the isotropic pressure P, both of which maintain their unperturbed values because they 
are scalar fields and therefore cannot undergo odd-parity perturbations. The stress-energy 
tensor associated with p and P (the bulk part of the stress-energy tensor) has the standard 
perfect fluid form 

(16) 

Using equations ( S), ( 6), (9), (10), ( 1 S) and (16), we obtain for the total stress-energy 
tensor T0:!3 = T~Nlk + T~ifar of the oscillating star 

Trrp = Trp 1 = - r2 [(,::> + P) Y - PY] brp; 

T,rp =Tep,= - r [µrY' - (µ - P)ei\ -<t> Q] brp; 

all other components vanish. 

(17a) 

( 17b) 

(l 7c) 

(l 7d) 

(l 7e) 

For evaluation of the Einstein field equations, Rµv = 8rr ( Tµv - I /2 T gµv) , we shall need 
the first-order perturbations of (Tµv - 1/2 Tgµv) . These are easily found from equations 
(S), (6) and (17): 

5(T1cp - 1/2 Tg10) = r2 [l/2(p + 3P)y -(p + P) Y] bcp ; 

8(T,r;i-1/2Tg,rp)=r[-µrY'+(µ- I/2p+ l/2P)ei\-<t>Q]brp; 

8(T19rp - 1/2 Tg19 rp) = -µr2 Ysin2 ~b<P,19 

where we have used the fact that T = T~ = 3P - P 

3 Details of the analysis : I ;;;: 2 

3 .1 EQUATIONS OF MOTION 

(l8a) 

( l 8b) 

(18c) 

Because our stellar oscillations are described by three functions oft and r - Y, y , Q - our 
analysis will require three equations of motion . Our chosen versions of these equations are 
obtained from the perturbed Einstein field equations 8 Rµv = 8rr8 ( Tµv - I /2 Tgµv) by 
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manipulations described in Appendix A. 
Our first equation is an initial-value equation for the ZAMO angular displacement 

function y : 

e<t> + ,\ [ (/ + 2)(1- I)] 
---(r4 e-<1>-i\y ' )'+e 2 i\ 16rr(p+P)+ , Y 

'4 r 

e<P+ A 

- 16rr(p + P)e2 i\ Y +-
4
-(r3 e- 2 <1> Q)' = O. , 

This equation can be solved at any moment of time to give y in tenns of Y and Q. 

( l 9a) 

Our second equation is a wave equation for the angular displacement Y of the stellar 
material : 

e-<1>-i\ r (/+2)(/ l)] 
(p+P)e- 2 <1>y_ 

4 
(µr4 e<1>-i\y')'+ 16rr(p+P)+ - µY 

, . ,2 

e-<l>-i\ e-<1>-i\ 
- (p + P) (rQ)' + 

4 
(µr3 Q)' = 0. ,2 , (l 9b) 

The characteristics of this equation (the world lines of high-frequency, radially propagating 
wave packets) have a propagation speed, as measured by an observer at rest in the star, given 
by 

(20) 

When one recalls that (p + P) is inertial mass per unit volume in relativity (see, e.g .. exercise 
5.4 of MTW) , one recognizes this as the standard expression for the speed of propagation of 
shear waves in an isotropic solid; cf Carter ( 1973 a). 

Our third equation is a wave equation for the Regge-Wheeler gravitationa!-wave­
function , Q: 

e- 2 <1> Q - e-<1>- A(e<l>-A Q')' + [16rrµ +(I+ 2),~/ - l) -re - <1>-A (e<l>;t\n Q 

+ 16rrr e-<l>-i\ (µe 2<1>)' Y = 0. (l 9c) 

In the vacuum outside the star this reduces to the Regge-Wheeler (1957) equation for gravi­
tational waves propagating in Schwarzschild spacetirne. Both inside the star and out the 
characteristics of this equation are radial null lines (propagation speed equal to speed of 
light). Note that the ZA..\10 displacement function y has been completely decoupled from 
the wave equations (l 9b, c); they are coupled wave equations for Y and Q alone. 

One can show (see Appendix A) that our equations of motion (19) are 'complete in the 
sense tha t the set o f all physically acceptable solu tions of ( l 9) is identica l. to the set o f all 
physically acceptable solutions of the perturbed Einstein fi eld equations - physical acce pt­
abili ty be iP. g de tined as satisfac tion o f the boundary conditi ons as given in the next ,;ection 
of this paper. 

One can also show from our equations of motion (19) plus boundary conditions (o r, 
more easily, from equations l 9c, 19b and Ct'J<!J = 0 in A.3) that in any region of the star 
where the shear modulus vanishes , µ = 0, the perturbed gravitational field is decoupled fr0m 

16 
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the steli:ir :n ;itter, and the matter cannot support torsional oscillations . l\lore specifically 
equation ( l LJ~·) then becomes a homogeneous wave equation for the decoupled gravitational­
'-''.lv~ va1ia"'ie Q; equation ( \ 9a) or (A.3) detennines the ZAMO displacement yin tenns of 
Q: J1 1C: 1-\.~) together with (19b) guarantees that the tluid is at rest relative to the ZAMOs , 
Y = .i·. This decoupling has been noted previously by Thome & Campolattaro ( 196 7). 

~-2 tJOC>IDA.RY CONDITIONS 

The equations of motion (19) must be solved subject to suitable boundary conditions at 
the star's centre and surface, ancl at infinity . 

At the star's centre the fluid motions and the spacetime geometry must be suitably 
smooth. Roughly speaking, smoothness means that the more rapid are the angular vari<ttions 
of Y, y, Q - i.e. the larger the value of I - the more rapidly must Y, y and Q approach 
zero at r = 0. To make this quantitative we introduce local Cartesian coordinates {x3

} 

near r = 0: 

x 1 = r sin~ cos¢, x 2 = r sin{) sin¢, x 3 =rcos{). (21) 

Because .\- pr2 near r = 0 the components of the unperturbed spatial metric (Sa) are 
Cartesian at r = 0 in this coordinate system: 'Yab = Oab + O(r2

). 

Consider the three-dimensional vector and tensor fields 

(22) 

~is the material displacement vector, c:t is the time-space part of the metric perturbation, 
~is the spatial part of the metric perturbation, indices on h~{J have been raised with the 
unperturbed metric ,,~13 and t c:t and /3 can all be regarded as solutions of the perturbed 
Einstein field equations. The 'smoothness' of the Einstein equations at r = 0 implies that 
the Cartesian components oft c:t and (3 will have power series expansions near r = 0 whose 
leading terms are infinitely differentiable - or, equivalently, whose leading terms are 
expressible as products of non-negative powers of x 1, x 2

• x 3
; e.g. 

Using equations (6) and (8) we can write t c:tand f3 as 

;=rYA , c:t=-r}'A, 13=-e-<P-J\Q[a, @A+A 0 arJ; 

A= r x 'iJ P1 (cos{)). 

(23a) 

(23b) 

By writing P1 (cos{)) in terms of Cartesian coordinates (cf equation 33 below; Section 
lI.C of Thome 1980) we can bring the Cartesian components of equations (23) near r = 0 
into the following form: 

c/' = - -~· , -1 ~ i Pf 1 .. • a1 €bed xc (a /a xd )(x"' ... x u1), 

~be= - Qe-<t> ,-1- lp/1 -- · "12x(b €c)<ifxd(a/axf)(xa, ... xal). 

(24a) 

(24b) 

(24c) 

Here Eatic is t!i.e Levi-Civita tensor, P,a, · · · a1 is a constant, symmetric, trace-free tensor 
(c/ equation 33 below) , and the parentheses in the superscript indicate symmetrization. 



-226-

Torsional oscillations of neutron stars 467 

These Cartesian components will be non-negative products of x 1
, x 2 and x 3 near r = 0 if 

and only if 

Y(t. r) = r' - 1 [constant+ terms which vanish as r __.OJ, 

y(t, r) = r1
- 1 [constant+ terms which vanish as r __.OJ . 

Q(t, r) = r1+ 1 [constant+ terms which vanish as r __.OJ . 

Thus, our boundary conditions near r = 0 are 

as r __. 0. 

( 25a) 

(25b) 

(25c) 

(26a) 

It is straightforward to show that, so long as the unperturbed star is smooth at r = 0 (p. p, 
µ and µ' finite there), these asymptotic fonns satisfy the equations of motion ( 19). How­
ever, there also exist solutions to (19) which violate these boundary conditions (Y - r-1-i 

and/or y - ,-1-2 and/or Q- ,-1) and which thus are physically unacceptable. 
At the star's surface, r = R, the nonnal (radial) components of the stress tensor must 

vanish (there is no matter outside r = R to support a stress): T~ _. 0 as r - R_ = inner 
edge of stellar surface. Inspection of the stress-energy tensor (equation 17) shows that 
this condition is satisfied if and only if (i) the unperturbed pressure P approaches 0 as 
r -- IL and (ii) the material motions and shear modulusµ satisfy the 'zero-torque-at-surface' 
condition 

as r __. R_. (26b) 

For a star with a solid surface (e.g. iron), µ is finite at r = R, so Y' must equal eh - ct> Q/ R 
there. 

At the star's surface the gravitational potentials y and Q must be sufficiently continuous 
that (i) the intrinsic geometry of the star's surface 

ds 2 = - e2 ct> dt2 +r2 (diJ2 + sin2 iJ dq?) - 2r2 yb0 dt d¢ 

is continuous, and (ii) the extrinsic curvature, 

KAB = eA rAB (A. B ranging overt, iJ, </>), 

is continuous (see, e.g. section 21.13 of MDV). Straightforward calculation shows that 

K = (e 2ct>-J\ <I>') dt2 + e-A [(r2y)' - re A-ct> QJ bct>dt d¢ 

- re-ct> Q sin2 iJbcf>, ,.,diJd</> - re-A(diJ2 + sin2 iJd¢2
). (27) 

Therefore, continuity of the intrinsic and extrinsic geometries is satisfied if and only 

if - in addition to the familiar equilibrium conditions of continuous <I>, <I>' and A -

y, y' and Qare continuous across r = R. (26c) 

At the interfaces of solid regions (crust and/or core) with fluid regions (mantle) the 
shear modulusµ may go to zero discontinuously. There one must be sure that the zero­
torque condition and the continuous intrinsic and extrir.sic curvature conditions are 
salisfied: 

T~ = - r2 e- 2 /\ µ(Y' - e A-ct> Q/r)b¢ ..... 0 at solid-fluid interfaces, 

y, y' and Q are continuous across solid-fluid interfaces. 

(26d) 

(26e) 
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Far from the star, hrq, and h,q, must describe outgoing gravitational waves. In this region 
our equations of motion ((19c) for Q; (A3), which follows from (19a, b , c) . for y] 
become 

Q =a,. a,. Q - (I - 2M/r) [!(! + l)/r2 - 6M/r3 J Q, 

ji = ,- 2 a,. (rQ), 

where 

r,.. = r + 2M In (r/2M - I) 

(28a) 

(28b) 

(28c) 

is Wheeler's 'tortoise coordinate', and where no approximations have yet been made. 
Note that equation (28a) is the Regge-Wheeler (1957) equation for odd-parity gravita­
tional waves. The general outgoing-wave solution to these equations has the asymptotic 
form at large radii 

I (I + 1) 
Q=F(l+l)(u)+-- F(l>(u)+OV 2 ) as r-+ 00 , 

2r 

FU>(u) (I+ 2)(/ -1) 
y =- - F<1-1>(u)+OV3) as 

r 2r2 
r -+OO 

' 

(26t) 

(26g) 

where u = t - r,... Here, F(u) is an arbitrary function of u to be determined by integrating 
the equations of motion, and F< 1> (u) = d 1 F/du1 denotes the /th derivative of F(u ). We shall 
see later that F(u), aside from a multiplicative constant, is the star's current /-pole moment. 
One can show that, in addition to the physically acceptable outgoing-wave solutions (26f, g) , 
the equations of motion (19) possess unacceptable incoming-wave solutions of the form 
(26f, g) with u replaced by v = t + r,.. and with the signs of the second tenn of Q and first 
term of y reversed, and also unacceptable solutions with mixtures of outgoing and incoming 
waves. 

3.3 RADIATION FIELD AND ENERGY LOSS RATE 

The radiation field far from the star is described by the metric perturbations (obtained by 
combining equations 6b and 26f, g) 

h r<P = h01 = [rF<1 +I) (u) + 1/2 (I t 2)(/ - l) F(I) (u )]bq, + 0V 1 
); 

h,q, = h0, = [ - (r + 2M) F(I+ 1> (u) - 1/2 /(/ + l) F(l) (u )] b¢ + 0V1); 

all other components vanish. 

The physical components of these perturbations, 

h i9 = e-<t> (r sin tJr 1 he¢ . h r<!i = e-t\ (r sin tJr 1 h,q,, 

(29a) 

(29b) 

(29c) 

hav<:: amplitudes which are independent of r. rather than amplitudes which die out like l /r. 
This is be cause the Regge-Wheeler gauge is badly behaved in the radiation zone (cf Price & 
Tho me 1969) . A more reasonable behaviour is obtained by making a gauge change 
(infinitesimal coordinate transformation ; Box 18.2 ofMTW) with the generating vector 

all other Tlµ vanish. (30) 
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The merri .: perturbation in the new gauge , 

/
n ew _ /01.j 

lo. 13 - lc;, J - T)o. 113- 7)13 10., 

where the bar I denotes covariant derivative with respect to the !lat metric , has comp onents 

h~0" = 1' 2u+2)(1- I)F<n(u)bct> + oer- 1
); 

h~~w = - 1/ 2 (! + 2)(/ - I)F<1\u)b0 + OV 1
) ; 

h~~w = - rF(l)(u)sin 2 Ob<!>. i3 : 

all other components vanish . 

(31 a) 

(31 b) 

(3 lc) 

(31 d) 

To leading order the new metric perturbation is in Lorentz gauge hnew a vi v = 0), and its 
physical components die off like 1/r in the radiation zone. 

Any gravitational wave can be characterized in a gauge-invariant way by the transverse­
traceless (TT) part of its metric perturbation (see chapter 35 of MTW). Only h ~~w contributes 
to the TT part of our wave (31 ). By combining equation (6c) for bet> with (3 lc) for h~et, and 
by converting to covariant notation in the three-dimensional Euclidean space far from the 
star, we obtain 

(1znew)TT=[-2rF(i)(t-r )nPe .plq JS 
1k * pq/ I lk · (32) 

Here n = r/ r is the unit radial vector, epqi is the Levi-Ci vita tensor, P1 = P1 (cos{}) is regarded 
as a scalar tield in tlat space , I denotes covariant derivative, S means symmetrize on indices 
j and k . and TT means take the transverse-traceless part using the techniques of Box 35 .1 of 
MTW. 

One of the authors has attempted to introduce a standardized formalism for multipole 
expansions of gravitational radiation fields (Thome 1980). In that formalism the mass and 
current multipoles are represented by completely symmetric , trace-free tensors. To make the 
connection between equation (32) and that formalism we introduce into equation (32) the 
symmetric , trace-free representation of the Legendre polynomial 

P ( {)) _ pa, ... a1 I COS - I Ila, ·· · fla1 
(33) 

(cf Section Il.C of Thorne 1980, where P1a, .. · a1 is denoted by®'~~ . .. a,/C10) and we then 
perform the differentiations denoted by P1

1q 1 k · The result is 

(34) 

Direct comparison with equation ( 4 .8) of Thome (1980) shows that the radiation field is 
that of a current /-pole with /-pole moment 

(/-1)(1+1)! 
#a, ... a, (t - r*) = F(t - r*)P1a' ... al . 

4 
(35) 

This radiation field carries off energy at a rate given by (cf Thome 1980, equation 4.16) 

dEstar 41(! + 2) 
(# a, . .. a1(/+ I) # a, .. . a1(1 + t» 

cit (l -l)(l+l) 1 (2/ + l)ll 

(/ - 1)/(/+!)(/+ 2) ,I ~ 
= -·. - . . ···- - -- - - -- <[f " l l(r . r,J I'> . 

4(21+1) 
(36) 

where ( ) means averaged over several characteristic periods of the radiation and where 
equation (2.26a) or (2.5) of Thorne (1980) has been used to obtain the second line. 
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3.4 ACTION PRINCIPLE ANO ENERGY CONSERVATION LAWS 

Our star's torsional oscillations are governed by an action principle. The action's Lagrangian 
density can be derived either by second variation of the Einstein Lagrangian density 
(- g) 1 2 R + Ymaner (method of Taub 1969) or by multiplying the star's equations of 
motion by carefully selected functions and removing a divergence (method of Chandrasekhar 
I 964a, b: see also Detweiler & Ipser 1973 and Appendix B of this paper). The Lagrangian 

density is 

2rr/(l +I) . . 
!I'= [(p + P)r4 e/\-¢ (Y -y)2 + (!/16rr)r4e-<l>-A(.Y' - e/\-¢ Q/r)2 

(2/ + 1) 

+ (l/16rr)(l + 2)(/ - l)r2 e/\-¢ j2-µr4 e¢-/\(Y' - e'\-¢Q/r)2 

·- µ(! + 2) (/ - 1) r2 e ¢ + /'\ Y2 - (1 /16rr )(/ + 2) (! - 1 )e1
\ -<I> Q2 ], 

and the action principle is 

8 [ Sf'dtdr=O. 
.n 

(37) 

(38) 

where n is any compact region of spacetime, and where the functions to be varied (Y, y and 
Q) must be held fixed on the boundaiy an (i.e. 8 Y = 8y = 8 Q = 0 there). If D includes the 
star's centre or surface or a solid-fluid interface, then Y. y and Q must satisfy the smooth­
ness and continuity equations (26a, b, c, d, e) there. By vaiying Y, y and Q in this action we 
obtain, respectively , the perturbed Einstein field equations er= 0 (equation A.5), Er<t> = 0 
(equation A.2) and e,<:> = 0 (equation A.4 ). Our equations of motion(! 9) are linear combina­
tions of these equations and their derivatives and time integrals; cf equations (A. 7)-(A.9). 

Because our Lagrangian density (37) is time-independent, (a Y/at)y, y, Q fixed= 0, there is 
a conserved quantity associated with it: 

s0-.,:x = 0, 

where 

2 rr I(! + 1) I . r4 e-"' - /'\ . 
5 1 =- (p+P)r4 e/\-<l>(Y-j)2 + (;i'-e/\-<l>Q/r) 2 

(21 +I) I 16rr 

(/+2)(/-1) . 
+ r2 e/\-<l>y 2 +µr4 e<l>-/\(Y' - e/\-<I> Q/r)2 

16rr 

{/+2)(/-1) I 
+ µ(! + 2)(/ - l)r2e<l>+A Y 2 + ei\-¢ Q2 

· !6rr J' 
and 

(39) 

(40a) 

(40b) 

(For a derivation, and for a discussion of how we have selected this speciiic S"' from among 
ai1 infinity of such divergence-free ql!antities, see Appen dix B.) Note that the energy density. 
sr, is just the Lagrangian density Sf' with the signs of the potential energy terms converted 

from minus to plus. 
If we regard Q and y as gravitational fields which reside in the unperturbed space time and 

which couple to the matter displacement Y, then we can associate with the perturbations a 
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stress-energy tensor Tµv \~hich resides in the unperturbed spacetime. The law 01· energy­
momentum conse rvation yµ v;v = 0 (where the semicolon denotes covariant derivative with 
respect to the unperturbed metric 'Yµv). together with Killing·s equation for the generator 
a/at of time translations, guarantees that r. o/at has vanishing covariant derivative - i.e . in 
component notation and in the (t, r. ,~, <P) coordinate system of equation (Sa) 

((- 1·) 1 2 T~ J ,a= 0. (41) 

Here -y is the determinant of the unperturbed metric components -y µv• and ( - -y )112 is equal to 
r2e<t> + i\ sin r'J. After integrating this equation over angles() and¢ we obtain the conservation 
law (39), with 

(42) 

The perturbation stress-energy tensor fµv can be computed in the canonical manner from 
the Lagrangian for the perturbations (albeit a Lagrangian in which, unlike (37), the angular 
dependences have not yet been integrated out). There is an infinity of resulting fµv's 
depending on the gauge in which the Lagrangian is written (i .e. depending on one's choice of 
infinitesimal ripples in the perturbed star's coordinate system). If one only wants to know 
the components T~ one can evaluate them by undoing the angular integrations in equation 
(42), a process which contains some arbitrariness corresponding to part of the gauge­
dependent arbitrariness in fµv_ With a choice for this arbitrariness which we regard as 
optimal, the equations ( 40a), ( 42) and 

f
11 

[ (a 0 P1 (cos r'J))]
2 

21(! + 1) 
sin3 r'J Ov . dr'J=(/+2)(/-1) , 

0 sin() 21 + 1 

give the result 

--· - l z l 2 
T rt= - T/ = 1/2 (p + P) v2 + µ(Sji) 2 +-(a liY + - (Bfk) , 

l67T l67T 

- · · ,,_ _ ' l z 
T tr= -eA-.., T'= - 2µS· 0u1+ -A.,. a- '· 

t r J 16 7T rJk Jk• 

(43) 

(44a) 

(44b) 

where there is an implied summation over J and k. These equations make use of the ortho­
normal basis of an observer at rest in the unperturbed star: 

- -<!>a e ;- e 1 . e :, =(rsinr'Jr 1 av. ( 45a) 

The quantity f ii (equation 44a) is the energy density measure d by this st:.itic obse r1.:!r. 
The term l /2 (p + P) v2 inf ii is the kinetic energy density of the matter; vis the velocity of 
the matter relative to the ZAM O's (see discussion following equations 6c and 8b ), 

(45b) 
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The term µ(S i i: )~ is the standard expression for the potential energy density of J deformed. 
elastic so lid: Sj i: is the shear 

5. · · = S · · = l ' ' re- .\ ( Y' - e·' - <!> Q/r) b · ro O r I - <P, 

S;; 0 =S0 j= 112 Ysin~b0 ,li ( 45c) 

(equations 15) and by virtue of the stress-strain relation (IO) 

(s .. . )i = _ 1 I ., r~~ear sl ic 
µ jk - /k • (45d) 

The term (I6rrr 1 (a2 /!()2 is the kinetic energy density of the gravitational field: a 2 i!C is the 
rate of shear of the congruence of ZAMO observers (equations 12 with the matter displace­
ment Y replaced by the ZAMO displacement y) 

a2,:0 = a2¢;= 1/ 2 re-<1>-A(/ -ei\-<I> Qjr)bJ, , 

(45e) 

The term (l 6rr r 1 (8 fk )2 is the potential energy density of the gravitational field; Bf!( is 
defined to have as its only non-zero components 

(45 f) 

We have not found a simple, physical description of the quantity B/J( whose square is the 
gravitational potential energy, analogous to the description a2 fk (= ZAMO rate of shear) of 
the quantity whose square is the gravitational kinetic energy. 

The quantity f i; (equation 44b) is the energy flux measured by a static observer. The 
term 2µS,:i ui = i~·~·ear u~ is the standard expression for the radial energy f1ux carried by 
th~ matter 's shear stress; u 1 is the matter velocity relative to the static obsen·er 

(45g) 

The tenn A ;/k a2 jk. is the radial energy flux carried by the gravitational waves; A iii. is 
defined to have as its only non-zero components 

(45h) 

and as with 8 /k we have not found a simple physical description of A jjk. . 

In the radiation zone the energy density f ii and energy flux T (;are carried entirely by 
the gravitational waves (which we assume to be outgoing): 

:p; = i" = (3 2 rrr 1 chpr) TT c1z;r) TT 

= (!6rrr2r 1 [FU+ 1>(u)]2 (sin ~b<P,li)1 . (46) 

H ( , new)TT. h l · · al f; ld ·· · '[) d(3') ere 11 i~ · 1s t e transverse trJce ess grav1t:itton·· -wave •e ut equa11ons l.) an - : 
equation ( 46) can be derived by combining equations ( 44 ), ( 45) , (AA) with EIQ = 0 , \ 26) and 
(31 c ). When ave raged over sever3..l wavelengths , expression \ 46) reduces to the standa rd 
Isaacson stress-energy tensor for the waves (see, e.g. Sections 3 5. 7 and 3 5 .15 of MTW). 

The differential law of energy conservation S'\:. = 0 or [(- -y) 112 f,o.] ,a= 0 , when spatially 
integrated over the star's interior and on out to some radius R~ in the wave zone ? becomes a 
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law of global energy conservation: 

c!F;rn 'dr = -- sr(r = R~) = - [ If ii·r2 d,Jd¢ l _ 
, r- Roe 

(I - I)!(!+ I)(! + 2) 
= - - - [FU+ l)(t - r")f (47a) 

4(21+1) 

•R ~ • • ·R~ 
£St3I=/ srdr= Ill fiie!J>dvol, (47b) 

• 0 ••• 0 

where drnl = e ·\ r 2 sin iJd.Jd¢>Jr is the spatial rnlume element and e<l> is the gravitational 
redshift factor. 

3 .5 STABILITY OF THE OSCILLATING STAR 

The law of global energy conservation ( 4 7) is a foundation for proving that our oscillating 
star is stable: So long as the shear modulusµ is non-negative, the energy density f ii is every­
where positive (equation 44a), and therefore Estar (equation 4 7b) is a positive definite 
functional of Y, y and Q. Since dEstar/dt < 0 (equation 47a), no choice of initial conditions 
Y(r = O,r), y{r = O,r), Q(t = O.r) can produce Y. y. Q which grow arbitrarily large at later 
times. Therefore our star with outgoing-wave boundary conditions is stable against arbitrary 
initial perturbations (Liapunov stability; cf LaSalle & Lefschetz 1961). 

4 The outgoing-wave nonnal modes: I;;. 2 

4.1 THE EIGENVALUE PROBLEM 

For most applications of the theory developed in this paper one will want to resolve the 
torsional oscillations into normal modes with complex vibrational frequencies 

w =a+ i/2•. (48) 

In a normal mode the perturbation functions have the forms 

Y(r.r)= Yw(r)eiwt; y(t.r)=yw(r)eiwt; Q(t. r)= Qw(r)eiwr. (49) 

The real part of the frequency, a, describes sinusoidal oscillations: the imaginary part, l/2r, 
describes damping due to radiation reaction. (The factor 2 appears in w =a+ i/2T so that T 
will be the e-folding time of the star's oscillation energy, not of its amplitude.) 

For a normal mode the two dynamical equations (19b,c) form a fourth-order system of 
linear ordinary differential equations for the eigenfunctions Y w (r) and Qw (r) (hereafter we 
omit the subscript w): 

(µr 4 e¢ - ,\ Y1
)

1 
- r 4 ect> + i\ [ 16 rr (p + P) +(I+ 2) (l - I) r- 2

] µ Y 

-(µr3 Q)' +(p + P)r2 (rQ)'= -w2 (p + P)r4 ei\-<t> Y; 

(e1' - .\ Q')' - [l6;;- e' 1'" \ µ + (l t 2)(1 - l)r- 2 e1> + \ - rV 2 e1>- \)']Q 

- 161.rlµe"'t>) Y = - w 2 c\ - ·I> Q. 

These equations mm,t be solved subject to the boundary conditions (26a, b, f): 

Y-r 1 - 1, Q-r1+ 1 as r-+O, 

µ(Y'-ei\-<l>Q/r)-+O as r-+R_, 

(50a) 

(50b) 

(51 a) 

(51 b) 
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and for the physically realistic case of outgoing waves at infinity ( outgoing-w:ive normal mode) 

as r _. =. (5 lc) 

where F w is the amplitude of the oscillatory !-pole moment at r = 0, F(t) = F w e i wr. Equa­
tions (50) :ind (51) together form an eigenvalue problem for the oscillation frequency w and 
eigenfunctions Y. Q. Once the eigenvalue problem has been solved, the remaining metric 
perturbation function y can be computed most easily from the initial-value equation EiJ<P = 0 
(equation A.3), which gives 

I [ ct> -A 
y=- -e (rQ)'+l6rrµe 2 ct>Y]: 

w2 ,2 (52) 

alternatively (and equivalently) y can be computed from the initial value equation ( l 9a). 
In posing the eigenvalue problem (50)-(52) we have omitted some of the boundary 

conditions (26). It is straightforward to show (cf discussion of equations 26) that, so long as 
the unperturbed star is well behaved at its centre and surface (p , P, µ and .u' finite at r = 0; 
p, µfinite but perhaps non-zero and P _. 0 as r _. R_), the omitted boundary conditions 

y- ,1-1 as r _. 0, 

µ ( Y' - eA. -<t> Q/r)-+ 0 at solid-fluid interfaces, 

y, y', Q continuous across r = R and across interfaces, 

y - - (iw)1 ,-1 F w e-iwr • as ,_.oo 

are automatically satisfied by any solution of equations (50)-(52). 

(53a) 

(53b) 

(53c) 

(53d) 

In order to understand the spectrum of eigenfrequencies of our torsionally oscillating 
star, we must first understand the asymptotic behaviours of the solutions of the eigen­
equations (50) just below the star's surface. Those behaviours depend on the asymptotic 
forms of the star's density p and shear modulus µ. If the star's surface is solid, p will be 
finite; otherwise it may go to zero as a power law. In generalµ will go to zero at least as fast 
asp. Hence, it is reasonable to suppose that 

(54) 

where the form of P follows from the equation of hydrostatic equilibrium. One can show 
that, so long as S < 2 [i.e. so long as the speed of shear waves(µ/ p) 112 goes to zero no faster 
than (R - r)], one solution of the eigenequations (50) will have µ (Y' - e'' - ct> Q/r) finite 
and non-zero at R_ and will thus be physically unacceptable. All other solutions will be 
acceptable. For S > 2 all solutions have µ(Y' -· eA-ct> Q/r) zero at R_ , but they also all have 
Y divergent, which would lead to a breaking of the crystal - a complication we are not pre­
pared to face in this paper. Thus, we shall restrict ourselves henceforth to the case S < 2; and 
we shall impose a similar restriction at interfaces of solid regions with the fluid mantle. In 
this case the spectrum of eigenfrequencies will be discrete, as the foll0wing argument shows. 

lm1gine a trial integration of the eigenequations (50). One s=lec ts J con: pkx trial fre­
quency w and complex starting values A and B for Y/r1 

- 1 and Q/r1 
+ 

1 near r = 0. (The 
eigenequations ( 50) have the general solution y =A r1 - I + n,- 1- 2, Q = Br1 + I + E ,- I near 
r = 0; one makes sure that D and E vanish.) One then integrates the eigenequations (50) 
outward from r = 0 to the star's surface r = R and examines the value of the complex 
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number µ(Y' - e !\- '~Q/r) there: it will turn out to be non-zero, unless the starting ratio 
A/ B has been chosen to have some special value (or one of a disc rete set of special values). 
That choice must be made. One then continues the integration on outward into the radiation 
zone , where one finds for Q (general solution of 50b ) 

(55) 

To get an outgoing-wave nonnal mode one must ensure that the complex ingoing-wave 
amplitude c<n vanishes . One cannot do so by adjusting the starting product AB; that 
product merely fixes the overall amplitude and phase of the oscillations. Instead, to make 
cUl vanish one must carefully adjust the complex eigenfrequency w to one of a discrete set 
of values . Thus, the spectrum is discrete . 

The Liapunov proof of stability in Section 3.5 guarantees that the outgoing-wave normal 
modes are all damped , i.e. all have positive values of Im(w) = l/2r . 

We now describe five methods for solving the eigenvalue problem (50) and (51): the 
method of resonances (Section 4.2), the variational method (Section 4.3), the energy 
method (Section 4.4) , the method of the slow-motion approximation (Section 4 .5) and the 
method of the weak-field approximation (Section 4.6). 

4 .2 METHOD OF RESONANCES 

In the method of resonances (Thorne l 969a) one studies the unrealistic problem of an 
oscillating star inside a large spherical cavity whose walls reflect gravitational waves perfectly. 
This requires replacing the outgoing-wave boundary condition (5 lc) by a standing-wave 
boundary condition. The star and standing wave can oscillate with any desired real frequency 
w =a. For each value of the frequenc y w one can calculate (on a computer) the ratio 

(amplitude of star's oscillating motions) 
~= . 

(amplitude of waves far from the star) 
(56) 

As w varies , ~will go through a sequence of sharp resonances . These resonances, on the real 
frequency axis, are induced by nearby complex eigenfrequencies of the discrete, outgoing­
wave normal m.odes; i.e . when w nears the oscillation frequency wn of an outgoing-wave 
normal mode, the standing gravitational waves will excite the star's fluid into large-amplitude 
motions. From the locations, half-widths and phase-shifts of the resonances one can 
compute the complex frequencies Wn =an +i/2rn of the outgoing-wave normal modes. 
Thome ( 1969a) has discussed these calculations in detail for compressional oscillations; 
calculations for our case of torsional oscillations would be the same in concept and method. 

4.3 VARIATIONAL M ETHOD 

The normal-mode eigenfunctions and eigenfrequencies can be evaluated using a Detweiler­
lpser ( l 973) type ac tion principle , whic h '. .> closely relatet.l to the L:igrangian density Y of 
equation (3 7). The rel ationship to 2' and a derivation of the action principle are sketched in 
Appendix B. The action principle utilizes integrals fr om the centre of the star r = 0 to a 

· sphere r = R"" far out in the radiation zone, and it utilizes complex trial functions Y, Q 
which are constrained to satisfy the smoothness and continuity conditions (51 a, b) and 
(53b, c) at r = 0 , on the star's surfacer= R, and across solid-fluid interfaces. For any choice 
of such trial functions Y, Q a corresponding complex function y is to be computed by 
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solving the initial-value equation ( l 9a) subject to the smoothness boundar; co ndirion (53a) 
at r = 0, and subject to the demand that 

x /Y =some fixed value, (x /Y)oo, at r = R=: 

here 

x = - r 2 e-<t> - A (y' - ei\-<l> Q/ r) . 

(Recall that outside the start\= - ct>.) The quantity 

Q 2 =:B/A 

must then be computed, where 

(/+2)(/-1) I\ <I> ] 
+ e - Q2 dr. 

167T 

(57a) 

(57b) 

(58a) 

(58b) 

(58c) 

The quantity Q 2 = B/A is an action for the normal modes. Those trial functions Q and Y, 
which make Q 2 stationary (5 Q 2 = 0) with respect to all variations 5 Q and 5 Y that satisfy 
our smoothness and continuity conditions, are normal-mode eigenfunctions ; and the 
stationary value of Q is their complex eigenfrequency w. (The Euler-Lagrange equations 
associated wi th this action principle are our eigenequations 50 with w 2 = Q 2

.) 

The specific normal modes obtained from this action principle depend on the chosen 
boundary value (xJY)oo. To obtain standing-wave normal modes, one chooses (x,h),,, real and 
all trial functions real. For a given real (xJy) 00 there will be a discrete set of st anding-wave 
modes (analogue of discrete normal modes of a violin string with ends clamped) . To obtain 
the full continuous set of standing-wave modes (one mode for each real w) , the action 
principle must be used time and again, with various values of (xJY)oo and fixed R,,, : or with 
fixed (xJY)oo and various Roo (analogue of changing the clamping location of the violin 
string). 

If one chooses (x)y)oo complex rather than real and uses complex trial functions . then the 
action principle (57) and (58) will produce a discrete set of normal modes , each with a 
different mixture of ingoing and outgoing waves - a mixture that cannot be predicted in 
advance. Only by an iterative application of the action principle (procedure devised by 
Detweiler (1975) for compressional oscillations of stars) can one be sure of obtaining a pure 
outgoing-wave mode . For an outgoing-wave mode, if one knew the complex frequency win 
advance, one could solve the eigenequations (50) and initial-value equation (I 9a) far from 
the star to find the asymptotic forms of Q, y and x: 

(iw/ 
y= - --Fw 

r 
[ 

(I+ 2) (/ - l) ( I)] . I+ +O - e-1wr. 
2iwr r 2 ' 

(59a) 

(59b) 
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X = - (! + 2)(1 - 1) (iw)l - l Fw [1 +I(/+ I)+ 0 (~ )] e -• wr., (59c) 
r 2iwr r 

where the complex number Fw is the (arbitrary) Fou rie r amplitude of the l-pole moment ; 
cf equations (26f, g). The corresponding boundary value of x/y is 

(! + 2) (I - 1) [ 1 ( 1 )] 
(x}y) 00 = . 1 + .-- + 0 -

2 /W IWRoo R 00 • 

(59d) 

Detweiler·· s procedure is to guess a value of w ; choose the boundary value (x}y )00 equal to 
{59d); apply the action principle using trial functions with the asymptotic forms (59a, b, c), 
thereby Obtaining a stationary Q ; if Q is equal to W , stop with joy ; if not, reiterate using a 
new trial value of w. (One can show that if n and w differ by a small amount, the normal 
modes of frequency n with boundary condition 59d contain a mixture of ingoing and 
outgoing waves of relative amplitude 

c<n;c<O) = (D - w)/(D + w). (60) 

This is a measure of the error in an unconverged iteration by Detweiler's procedure.) 
As cumbersome as this procedure may seem, it is the best method now known for com­

puting outgoing-wave normal modes from an action principle ; and it actually has been made 
to give reasonably accurate results for compressional oscillations of neutron stars (Detweiler 
1975). 

4.4 ENE R GY METHOD 

If one has obtained reasonable approximations to the eigenfunctions Q, Y, y and to the real 
part a of the eigenfrequency of a complex normal mode, one can then compute the imagin­
ary part of the eigenfrequency , i/2r , using the law of energy conservation (39), ( 40) . In 
integral form, and averaged over time, that law says (cf equations 4 7 and B.19-B.23): 

where 

for Roo anywhere outside star, 

(l - l)l(l + 1)(/ + 2) 
= I Ql2 for Roo far out in wave zone . 

8(2/+l) 

Here y '" is the complex conjugate of y. 

(61) 

(62b) 
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In applying this energy method one can place R~ anywhere one wishes outside the star, 
even in the near zone, if one uses the first line of equation (62b) for the energy flux. 

4.5 SLOW-MOTION METHOD 

A generator of gravitational waves is said to be a slow-motion source if and only if the 
characteristic reduced wavelength of the waves. X = 'A / 2rr = l/a , is much larger than both the 
source itself and the source's strong-field region: 

;\ ~ R, X > 2M =(gravitational radius) . (63) 

Thome ( 1980) has given a detailed formalism for calculating the gravitational waves from 
slow-motion sources . Here we specialize that formalism to the case of torsional oscillations 
of a neutron star . (A forthcoming paper by Thorne will specialize it tog-mode compressional 

oscillations of a neutron star.) 

The discussion in the Introduction of this paper gave reduced wavelengths oD. "' 103 km 
for crustal oscillations of neutron stars and X"' 10 km for core oscillations. Thus the slow 
motion approximation is accurate for crustal oscillations but probably not very accurate for 
core oscillations. 

If the slow-motion condition (63) is satisfied, we can neglect retardation of the gravita­
tional fields across the source, i.e. we can neglect x = - w 2 x compared to x". x'/r or x/r2 

(x = Q or y) throughout the interior of the near-zone region 

(64) 

(\Ve cannot, of course, neglect retardation of the shear waves; i.e. we cannot neglect 

x = - w 2 x compared to [µ/(p + P)] x".) By neglecting gravitational retardation we convert 
our gravitational variables Q and y into action-at-a-distance potentials analogous to that of 
Newton; their wave equations become Poisson-like equations. 

From (µ/ p) - (speed of shear waves)2 $ (aR)2 we learn that 

µ :S (R/X.)2 p::; (R/X)2 ,-2; (65a) 

and from equation (19a) for y and (SOb) for Q we learn the relative magnitudes of y, Q and 

Yin the slow-motion approximation: 

y-(M/R)Y. Q-(R/X)2 y<y. (65b) 

Taking account of the extreme smallness ofµ compared top and ,-2 and of the extreme 

smallness of Q. compared to y and Y and neglecting gravitational retardation, we can bring 

the equations governing normal-mode oscillations into the form 

(µr 4 e<t>-i\ Y')' - (I+ 2)(/ - l)r2 e<t> + /\ µ Y = - w 2 (p + P)r4 e/\-<l>( Y - y), (66a) 

(r4 e-<t>- /\ y ')' - (I+ 2)(/ - l)r2 e/\-<t> y = - 16rr (p + P)r4 eJ\-<t> ( Y -y). (66b) 

(e<t>-/\Q')' - [(I+ 2)(/ - l)r-2 e<t>+/\ - rV2 e<t>-/\)'] Q = 16rrr(µe 2 <t>)' Y. (66c) 

Equation (66a) is (SOa) with (52) used to replace a term involving Q by one involving Y . 
equation (66b) is (19a): and equation (66c) is (50b) . 

Outside the star, and at radii /1;£ « r ~ X where <P = - t\"' 0 and where the slow-motion 

approximation is valid, Q and y have power-law fall-offs: 

(2/-1) 1! . F 
Q= IW W• 

,1 
y= 

(l - 1) (2/ - 1) ! ! 
------Fw 

iwr1 + 2 
for and r> R. (67a) 
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Here F w is the same /-pole moment used elsewhere in this paper. and (2/ - I l 1 ' = ( -:'. / - I) 
(2 / - 3) · - ·I. These power-law fall -offs are the asympto tic so lut ions of equati o ns (66b. c ). 
They can also be derived , induding the precise coe ffi cients involving /. wand Fw. by Slllvi ng 
the non-slow-m o tion . Fourier-decomposed Regge-Wheeler equation (equation 50 b with 
p = µ = 0 and r> 2M) , matching to (5 lc) and (5 2) lo obtain 

(6 8) 

for all r > M and r > R, where h f2> is the spherical Hankel function , and by then expanding 
these solutions in powers of wr in the near zone wr <t I . 

By virtue of the smallness of Q in the slow-motion approximation, the no-torque-:.n­
surface boundary condition (51 b) reduces to 

µ Y'...,. 0 as r...,. R _; (6 7b) 

but the smootheness boundary conditions (51 a) and (53a) at the star's centre remain 
unchanged. 

Q- ,1+1 as r...,. 0. (67c) 

The eigenvalue problem in the slow-motion approximation consists of the coupled 
equations (66a, b) for Y and y (not Y and Q as previously') , which must be solved subject to 
the boundary conditions (67a, b, c) . The resulting eigenfunctions and eigenfrequencies will 
be real (no damping in slow-motion approximation!) and discrete . They can be derived from 
(66a, b), (67) by standard techniques , including the following action principle: 

Define i12 = B/A where B and A are the integrals (58b, c) with R"" = 00 and with the 
surface term removed and with Q set to zero . Choose a trial function Y which satisfies the 
boundary conditions (67) , and from it compute y by integrating (66b) subject to the 
boundary conditions (67). Then insert Y and y into i12 = B/A and ask whether o i1 2 = 0 for 
arbitrary variations o Y . If o i12 = 0, then the trial function Y and the computed function y 
are eigenfunctions, and their value of n is the corresponding eigenfrequency w . 

After the slow-motion eigenvalue problem has been solved, one can use the energy 
method to compute the tiny imaginary part i/2r of w , which the slow-motion approximation 
ignores. Specifically, r will be given by equation (61) , where the star' s pulsation energy f.;tar is 
(62a) with R"" = oo and Q = O; and where the energy flux sr is given by the second line of 

(62b), with IQl 2 replaced by its wave-zone value lw 1+ 1 Fw12 (equation Sic) and Fw 
evaluated from the near-zone expression (6 7a) for the eigenfunction y. 

4.6 WEAK-FIELD METHOD 

For a torsionally oscillating star with weak internal gravity, 

µ/p $ P/p - J\. - ct> - M/R < 1 (69) 

(e .g. a white dwarf), the slow-m o tion approximation is automatically valid , and the slow­
m otion eq uatio ns sim!Jli fy . Most importantly. the fac t that y - (MjR) Y < Y (equat io n 65b ) 
enables the equation of motio n of the matter, l66 a) , to decouple from all gravitatio nal fielJ s 

.· (µr 4 Y ' )' -(/ + 2)(1- I)r2 µY = - w 2 pr4 Y . (70) 

This equation, together wi th the boundary conditions (67b, c) 

µY'-• 0 as r...,.R _, y _ ,1-1 as , ..... 0 , (71) 
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fom1 s a Stunn - Liouville eigenvalue problem , which is well known and widely studied in the 
geoph ysi1:s literature (e .g. Alterman, Jarosch & Pekeris 1959) , and which can be solved by 
stand:ud tec hniques. Once it has been solved, the Fourier amplitude of the /-p ole moment 
can be computed from 

F = - ------ r1 3 pYdr. -16rriw J·R + 

w (/ - 1)(2/+ l)!! 0 
(72) 

(This equation can be derived by setting <I> = J\ = 0 in (66c ), multiplying by r 1+ 1, integrating 
from r = 0 tor= 00 , using the asymptotic form (6 7a) of Q to evaluate the su rface terms , and 
using the equation of motion (70) to rewrite the integral .) The imaginary part i/2 r of the 
eigenfrequency can then be evaluated using the energy method (equations 61, 6 2, 5 lc) 

(73a) 

rr/(/ + 1) JR 
Estar = - [w2 pr4 Y 2 + µr4 y'2 + (! + 2)(1- l)µr Y 2 ]dr, 

(2/+l) 0 
(73b) 

- (/-1)/(l+l)(/+2) 21+2 
S'= - w IF 12 . 

8(2/+l) w 
(73c) 

Notice that, aside from an angular factor, piw Yr is the density of m.omentum, i.e . of mass 

current; consequently F w (equation 72) is proportional to f r1 x (mass current density) x 
(angular factor) dvol ; i.e. in the language of Thome (1980, especially equation 5 .27b) F w is 
the Fourier amplitude of the star's current /-pole moment. 

For the special case of a star with uniform density p and radially constant shear modulus 
µ the eigenequation (70) reduces to the spherical Bessel equation for r Y; and consequently 

(74) 

where i1 is the spherical Bessel function . The eigenfrequencies are fixed by the no-torque-at­
surface boundary condition Y' (R) = 0 (equation 71 )_ Straightforward calculations using 
standard Bessel-function identities then y ield the following formulas for the star's oscilla­
tions and gravitational waves, in terms of the star's radius R, mass M = 4rrpR 3 /3, shear-wave 
velocity us= (µ/p )112

, :uid amplitude of oscillations 

{3 =(maximum value of angular displacement function Y inside star). (75) 

The nth normal mode (of given angular quantum number l) has eigenfrequency and wave­
number 

Wn = (us/R)xn , kn =xn/R. 

The angular displacement of the star's crystal is 

5¢>=~</i = Yb<Pcoswnt 

ii(knr) a."JP1 (cos J) 
={3-- cos w t 

cxknr sin J n 

The star's energy of oscillation is 

~tar:= EnMUs 2 (32
• 

if 

(76a) 

I =.., '- - (76b) 

(76c) 
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Table I. Constants gove rning quadrupole (I= 2) torsional oscillat io ns of a star with uniform 
p andµ and with w~ak gravity . 

II x,, E n Cn Ln Dn 
l 2.5011 2.030 2.001 15 .03 0.3379 
2 7. 1360 1.461 - 1.062 34.45 0 .3()26 
3 10.515 0. 7171 0.7 274 35.09 0 .2148 
4 13. 77 2 0.4267 - 0.5568 35.28 0.1666 
5 16 .983 0.2833 0.4519 35 35 0 .136 l 

Q = 0.10403 

The gravitational wave field has as its only non-zero components in an orthonormal, spherical 
basis 

= 3Gn (M/r)v]{3 sin 2 {}sin [wn(t- r,..)] 

The power carried off by the waves is 

sr= - d~;ar =Ln(M/R)2u]1+4{32 

if I= 2. 

if I= 2. 

This power loss causes the energy to decay by 1 /e in a number of oscillations given by 

WnTn =Dn(M/Rr'vs-(21+1) 

=Dn (M/Rr 1 v~ 5 if I= 2. 

Here the constants a:, Xn . En , Gn. Ln. Dn are given by 

a: =. i1(X1) fX1. 

Xn =.nth root Of ax [j,(x )fx) = 0, 

En= 31(1+1) [j,(xn)J 2 [l _(I+ 2)(1 - l)J, 
4(2/+1) a: x,,2 

c== 12 ,_,. () 
n- a:(!- 1)(2/+ l)!! Xn 11+1 Xn, 

_ 181(!+1)(!+2) I. 2 
Ln= a:2(/ - 1)(2/ + 1) [(21+1)!!]2 [xn //+I (xn)J , 

Dn= EnXn / Ln . 

and are tabulated in Table 1 for I= 2. 

5 Dipole torsional oscillations 

(76d) 

(76e) 

(76f) 

(76g) 

We now tum attention to dipole torsional oscillations, i.e. oscillations with I= 1 (and, 
with only trivial loss of generality, m = 0). For/~ 2 we used our gauge freedom to annul 
ha<P· For I= 1 ha<P vanishes identically in all gauges because its angular dependence is 
sin2 {}b<P, a= 0 . Thus, we can use our gauge freedom instead to annul hr¢ (i .e. to set Q = 0), 
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the re by leaving us with only one non-zero metric perturbation 

'1 =h =-r1 i·b = r 2 \' sin1 8 (<) 0 ( . <P . (77 ) 

(cf equation 6b). The displacement function is defined as for l ;;. 2 

~ r = f' = 0. ~<P = Y bo = - Y (78) 

(cf equation Sb) ; and the Ricci tensor and stress-energy tensor then also have the same 
forn1s as for l ;. 2 (equations 7 and 17 with specialization to l = 1 and Q = 0) . 

Our equations of motion (19) for l -;. : were derived using the Einstein field equation 
[5R190 -8m5(T19<1>-l / 2Tg190 )] / [sin2 8b'.'.>_19 J (i.e . €190 =0; equation A3). Because this 
equation is invalid for I= 1 (it invo lves dividing by sin2 iJb<P, 19 = 0), we cannot obtain the 
correct I= 1 equations by simply setting Q = 0 and I= 1 in (19). Rather , we must derive our 
equations of motion directly from the Einstein equations (A.1)-(A.5), with the omission of 
the ft9<t> equation. The result is 

(p + P) e- 2 ct>(Y -ji) = ,-4 e-ct>-t\(µr4 ect> -.\ Y')', 

(p +P) e- 2 '"(Y-y) = - (167Tr 1 ,-4 e-ct>- ,\ (r4 e-ct>- t\y')'. 

A third Einstein equation , which is related to these two by the Bianchi identities, is 

y' = - l61Tµ e2 ct> Y' . 

(79a) 

(79b) 

(80) 

The equations of motion (79) are derivable from the action principle (37) , (38) in which 
the Lagrangian density !I' is specialized to I= 1 and Q = 0. The corresponding l;;. 2 con­
servation law sci. c. = 0 is also valid for I = 1, with the sci of equations ( 40) specialized to l = 1 
and Q = 0; and the proof in Section 3 .5 that if µ;. 0 then the star is stable, which is based 
on the conservation law sci,c. = 0, remains valid for I= 1. 

Equation (80) inlplies that j; is tinle-independent outside the star; and equation (79b) 
says that its radial dependence there is j; =A + B/r3 (recall that <t> + J\ = 0 in vacuum). The 
constant A is physically unacceptable, while the term B/r3 describes the dragging of inertial 
frames by the star's constant angular momentum (see, e .g. Hartle 196 7). With only trivial 
loss of generality we shall set the star's angular momentum to zero (i.e . we shall refuse to 
consider purely stationary, rotational perturbations), thereby enforcing y = 0 everywhere 
outside the star. As a result , our oscillating star not only will produce no gravitational waves 
(a consequence of the dipole angular dependence of our perturbations) : it will not have any 
gravitational perturbations whatsoever outside itself. 

The eigenvalue problem for normal-mode oscillations with l = 1 consists of the coupled 
differential equations 

(81 a) 

(81 b) 

(equat ions 79 with Y a: eiwr and )' :o. e'"-.;' ), rogeth er wi th the boundary condit ions of 

sm oo thness and zero to rque at the origin , the su rface, and solid - fluid interfaces 

Y - constant+ 0 (r2
), y - constant + O(r 2

) near r = 0, 

y , y' and µ Y' -7 0 as r -7 R_ , 

µY ' -7 0 at solid - f1u id interfaces. 

(8 2a) 

(82b) 

(82c) 



-242-

Torsional oscillations uf neutron stars 483 

(Equation (82a) rules out the divergent solutions Y - y- 3 and y - ,- 3
: equation (82b) foUows 

from y = 0 outside the star and integrations of (7%) through the star's surface. and from 
(80) or (Slb): equation (82c) follows from (53b) or from integrations of (80) through the 
interfaces.] The oscillation frequencies w and eigenfunctions Y. y will be real since there is 
no gravitational radiation and no energy loss. 

Note that the eigenequations (79) for l = I are identical to those of the l;;. 2 slow-motion 
approximation (equations 66a, b). Here the absence of retardation of the gravitational field 
y is due to its l =I angular dependence, which forbids gravitational radiation. There the 
absence of retardation and of waves was due to the slow-motion assumption. Here, as there , 
an action principle for the eigenvalue problem is given by 8£1 2 = 0, where S1 2 =A/ B with A 
and B given by expressions (58b,c) with R"" = R_, the surface term removed, Q set to zero, 
and l set to one. For l = I this action principle does not require slow motion, and a slow­
motion assumption produces no simplifications. 

For a star with weak internal gravity the dipole eigenvalue problem (81), (82) simplifies 
to (70), (71) specialized to : = 1. When the star is homogeneous with p andµ. constant, that 
eigenvalue problem has the analytic solution (74), (75). (76a. b, c. g) specialized to l = !. 
[For l = 1 the gravitational-wave related equations (72), (73a, c), (76d, e, f) are irrelevant and 
incorrect.] 

6 Concluding remarks 

It should be straightforward to use the formalisms of this paper to evaluate numerically the 
characteristics of normal-mode torsional oscillations of neutron star models. Such calcula­
tions should be performed both to improve the approximate formulas given in the introduction 
of this paper (equations 3 and 4) and to discover quantitatively how the physical properties 
of neutron star matter influence a star's normal-mode frequencies, damping times and 
gravity-wave strengths. 
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Appendix A: Equations of motion 

In deriving the equations of motion (l 9a, b, c) we shall denote by 

Ea13 = [cSRa13 - 8rrcS(Ta13 - 1/2 Tga13)]!fa13(r, ~). Er= rg-p./fr(r, ~) (A.l) 

the expressions obtained by combining equations (5), (7), ( 18), (6) and (17) and dividing by 
the functions 

fro= - 1/2 r2 e- 2
" b0. f~<t> = 1/2 r2 e-2 <t> sin2 ~b<t>.~, 

f, 0 =- l /2 re"- 3<t>b0 , fr=r2 e-2 <t>b<fJ. 

These expressions are: 

e<t> - " 
EQo= Y- --(rQ)'+l6rrµ e2 ct>Y; ,2 

[ 
(!+2)(!-1)] 

16rr(p + P) + r2 y 

.. [ (/+2)(/-1)] ' ' =Q+e2 <1> 16rrµ+ r2 Q-re<t>-i\y -I6rrµe 3 <t>-A,y; 

Er = (p + P) Y - ,-4 e<t>-i\(µr4 e<t>-i\ Y')' + (! + 2)(l - I)r-2 e2 <t> µY 

(A.2) 

(A.3) 

(A.4) 

(A.5) 



-244-

Torsional oscillarions of 11eurro11 srars 485 

:\ote tlu r Er can be exprc~ssed as the foUowing combi nation of the Eex{J (Bianchi identity) : 

(A.6) 

The perturbed Einstein field equations are Eno == 0: the law of conservation of energy­
momentum for the pert urbed system, o T ex/3;!3 = 0 , reduces to the single equation e7 = 0. 

The equations of motion (l9a, b, c) used in the text are the following combinations of 
field equations: 

equation (l 9a), initial-value equation for y: 

./ e ro dr == O; 

equation ( l 9b), wave-equation for Y : 

e-2<t> kr + (p + P)ei')ol = O; 

equation ( l 9c), wave-equation for Q: 

e- 2 <t>[e,<1> +re<t>-/\€.Jo'l =O . 

(A.7) 

(A.8) 

(A.9) 

We must show that our equations of motion ( 19) are complete , Le. that all physically 
acceptable solutions of ( 19) also satisfy the full set of perturbed Einstein equations Eex{3"' 0 
and the equation of energy-momentum conservation ey = 0. To prove this , we co:nbine the 
equations of motion (l9J with the Bianchi identity (A.6) to obtain the Sturm-Liouville 
equation 

(A.IO) 

for €.J<P· This equation, together with (19), leads to perturbation functions Y, Q, y which 
satisfy the physical boundary conditions (26a, d, e) only if €.J</I - r'- 1 near r = 0 and 
e80 - r- 1- 2 near r= oo . However, the signs of the terms in (A.10) make it impossible for 
these two asymptotic fonnulae to join on to each other except in the case eiXP = 0. From this 
we conclude that our equations of motion and boundary conditions imply ei')q, = O; this, 
together with the equations of motion themselves , implies trivially that all the Eex(3 and er 
vanish (cf equations A.6-A.9)_ QED. 

Appendix B: Foundations for action principles 

Friedman & Schutz ( 197 5: their section II) have given an elegant formulation of the general 
theory of action principles for systems which can radiate waves to infinity. Unfortunately, 
their analysis was not carried far enough to embrace the Detweiler-lpser (I 973) type of 
action principle for nonnal-mode pulsations, which we use in Sections 3.4 and 4.3 . In this 
appendix we extend the Friedman-Schutz analysis to encompass such action principles, and 
we use it to derive various results presented in the text of the paper. The general theory is 
presented with full-le ft margins; the application to torsionally oscillating stars is presented 
in dent.::J . 

Consider a system desc ribed by functions Z,i (A= l , :? ..... n) in a spa<.:etime with 
coordinates x°' (a = 0, I , :?, . . . , m ). Assume that the equations of motion for Z ,1 are 
derivable from an action principle 

o J~ !l'dx
0 

... dx"' = 0 , (B . I) 
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where oZ A = 0 on an. Assume that the Lag rangian density !.f is quadratic and symmetric . 
i.e. Y = L (Z. Z) with 

p p 
L(zt.z)=' L AAB°',· · ·°'kl3, .. l31zt 

/;.:I= I A. °' • .. ·°'k ZB,.iJ, ... i3r 
(B .2) 

where A48°' 1 • • ·°'kil, · · -131 is a function of the coordinates xµ which is completely syrrunetric 
in the indices a 1 ... ak, completely syrrunetric in the 13 1 • • • 131 and also symmetric under inter-
change of Aa 1 ... ak with Bl3 1 ... ·i31 (soL(zt, z)=L(Z.ZT)). TheZ~ areasetoffunctions 
which have no special relationship to the Z,.i , and z1_ °'• ... °'k:::: ak Z1 / ax°'•· · · ax°'k.The 
quantity p is the maximum number of derivatives that appear in the Lagrangian, and there is 
an implied summation over repeated function indices A. B as well as coordinate indices 

a" . .. , etic, 131> •• • , (Ji. Define 

A _, 1 aLczt,z) 
L (Z)= L..(-1) a°', .. . a°', azt 

I ~A,0< 1 .. . 0</ 

(B.3) 

Then the Euler-Lagrange equations are LA (Z) = 0, and the integration-by-parts identity 

used in deriving these Euler-Lagrange equations from the action principle (B. l) is 

Z1L A (Z) = L (zt. Z) - aµ Qu (zt. Z). (B.4) 

The Qµ are determined only up to a divergence-free vector. Two versions of Qµ, which differ 
from each other by a divergence-free vector, are 

µ t Z) - ' ( I)' zt a L ( zt. Z) Q cz . - L - A. 13, ... ilk a°', .. . a°'1 azt ; 
k, I A, °'• .. . °'/13 1 •• • iJkµ 

(B.Sa) 

and 
P P i (i + k) . ( aL )(1-1) Q0 

( zt. Z) = ' ' ' ( - l )1 
- 1 zt <1 -

1> . , ,~ ~ ~ . A , a, . . . ak azt (J) 
, - I k - 0 I - I I A . a , ... ak 

(B.Sb) 

p p k (1· + k ). ( aL · bzt _ 1 ·+k-1 zt <1> 
Q( ,Z)-.~ ~~(-Y . A,a, ... a/-1 azt(j) ) . 

J-Ok-ll-1 I A.a, ... ak-lb .a1 ... ak-I 

(B.Sc) 

The second version (equations BSb, c) has the virtue that the time component Q0 (zt. Z) 
contains the lowest possible number of spatial derivatives of the ZA ; it is the version which 
we use in our analysis of torsional oscillations of stars. In the second version the Latin letters 
b and a 1, ... , .:ip denote spatial tensorial indices and run from l to m; 

is the binomial coefficient; and superscripts in parentheses denote time derivatives as in the text: 
z~v-n a =Z"'", a 0 0 with j - l zeros. It is imperative when using equations (B.3), ,,,a, . . . k ,,,u, ... k . . . . 
(8.Sa-c) and others below that L (ZT. Z) be properly symmetrized (including making a 
careful distinction, e.g., between ZA.lO and ZA,OI and symmetrizing L in them), cf dis­
cussion following equation (B.2). Failure to symmetrize will produce in (B.3), (B .S a-c) 
multiple counting of second and higher-order derivative terms. 

For our torsionally oscillating star the coordinates are x0 = t, x 1 = r; the functions Z A are 
Y, y, Q; the Lagrangian density .st' is equation (37). From the Lagrangian density we can 
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read off 

~ 2rr/(/+l)[ <I> • . ~ •• 
L(Z '. Z)= - ( p +p)r4e\- (Yt -- 1")( Y - 1•) 

(2/+l) . . 

r4 e- <P- i\ (I .,)(! ) 
+ 

16 
(j-t '_e t\ - 'l>Qt/r) (.v' -e'\-<P Q/r)+ +_ - I r2et\-<t>y t y 

TT [6rr 

- µr4e<P- i\ (yt' - e" -<l> Qt/r)(Y ' - e·\ - <1> Q/r) -µ(I+ 2)(1 - l)re<l> +" y t Y 

- (l / 16rr)(l+ 2) (!- l)e ·'-<PQt Q l (B.6) 

The Euler-Lagrange expressiom LA (Z) , obtained from expression (B.3) (in which one 
must take careful account of the symmetry properties of L) or by varying the action ,are 
the following: 

- 2rrl(l +I) 
L Y ( Z) = r4 e" - <t> € , 

(2/+[) T 

-!(! + !) 
LY(Z) = r4e-<t>-t\e . 

8(2 /+!) trf> 

-/(/+!) 
LQ(Z)= r2et\ -J<t>€ 

8(2/+!) rrf> • 
(B.7) 

·.vhere €T, eio and e/T/J are the Einstein field-equation expressions given in Appendix A. 
One of us (B LS) originally derived the Lagrangian density !i' by constructing the 
expression Z 1 LA (Z) , by adding a perfect divergence (equation 8.4) and by then setting 
Z 1 = Z A (method of Chandrasekhar l 964a, b ; Detweiler & lpser 1973). :-or the quantities 
Qµ. which appear in the divergence , we shall use expressions (B .Sb , c) because they lead to 
a Q0 (and subsequently S0

) which contain only first derivatives of Y, y and Q: 

Qo(zt . z)= (p+p)r4e ·'-<P(yt _y t )(Y - y) 2rrl(l +I) [ . . . 

(2/+!) 

4 -<t>-i\ 

+re (yt1 - eA -<t>Qt/ r)(j;'- eA - <P<)jr) 
16rr 

(! + 2)(/ - I) .2 A-<t> t · ] + re yy , 
16rr 

- 2rrl(l + 1) [r4e-<t>-A .. 
Qr(zt . Z) = yt (JI' - et\ -<t> Q/r) 

(2/+l) I6rr 

+ µr4e<t>-A yt (Y' - eA-<t> Q/ r]. 

Whenever the Lagrangian is stationary in the sense that 

[aL (Z'°. Z)/ax0 ] ;:1, z helj fixed= 0, 

th~ Eu ler- Langrange equations enforce a law of ene rgy conservacion: 

LA (Z) = 0 and (B.9a) imply that aµ. sµ = o. 

where 

(B.8a) 

(B .8b) 

( B .9:~) 

(B. !Oa) 

(B. l Ob) 
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The arbitrariness in Qµ (freedom to add any divergence-free vector) produces a correspond­
ing arbi t r:i.riness in S µ. 

Our Lagrangian (B.6) is stationary . From our chosen form (B.8) for Qµ and expression 
(B.6) for L we derive expressions (40a. b) for our energy density , 5° and energy flux , 5•-_ 
Had we chosen any other Qµ, the resulting energy density , 5° would not have been equal 
to the Lagrangian with sign reversal of the potential energy terms. 

We now turn attention to functions ZA with exponential and sinusoidal time dependence 
ZA (x"') =zA (:r:i)eiwr(i = 1, 2, ... , m; w a complex frequency) and we decompose L. LA, 
and Qµ into powers of w: 

L(zte-iwr,zeiwr)=wnLn(zt,z), LA(:ei'""r)=wnL~(z)eiwr, 

Qµ(z t e-iwr, zeiwr) = wn Q~ (zt, z), (B.11) 

where there is an implied summation over the integer n. In our discussion we shall require 
that L be stationary (equation B.9a); this guarantees the existence of solutions with eiwr 
time dependence. We shall also require that Ln contain only even powers of w 

for n odd; (B.9b) 

this , together with symmetry of L [L(zt. Z)=L(Z. zt)] and definition (B.11) of L,,, 
implies that L,, is symmetric 

L,,(zt, z)=L,,(z, zt). 

Note that the fundamental identity (B.4) implies that 

z~ L~ (z) = L,, (zt. z) - ai Q~ (zt. z). 

For Z = z eiwr our equations of motion LA (Z) = 0 reduce to the eigenequation 

w" L~(z) = 0 if and only if z is an eigenfunction and w is its eigenvalue; 

i.e. if and only if zeiwr is a normal mode. 

(B.12) 

(B.13) 

(B .14) 

We shall be interested in normal modes which are defined on a compact region '1rof space 
(not spacetime). Then the identity (B.13) together with the symmetry condition (B.12) 
implies the following action principle: Define w(z) by I(w, z) = 0 where 

= f. L(ze-iwt. zeiwt)dmx _ ( Qi (ze-iwtzeiwr)dm-1r,i 
1· Jar 

= 0;" J ::,1 L~ (:)c!"'x. 
1 · 

(B. l S) 

!11 general there will be several roots w(z). Consider each root in tum. The eigenfunctions 
zA are those for which w(z) is stationary under small perturbations ozA, with 

w" ( [Q~(z. oz)- Q~1 (0z, z)]dm-t L,i = 0. 
Jar 

(B.16) 
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\ore th :H cons traint ( 8 . 16 ) cor responds to certain combinations of the Z ...t and their deriva­
tives bc:ing held fixe d o n a i · This constraint ensures that the Euler - Lagrange eq uations 
assnciateJ with the acti on principle are wn l~(z) = 0 (equation B. l4). 

For o ur to rsionally osc ili:Jting star we choose -r to be the inte rior of a sphere. r .;; R= 
with boundary R"" fa.r out in the radiation zone . Then the function /( w. z) is easily 
evaluated from equations (B.6) and ( 8.8b) for land Qr 

2rr/(/ +I) 
/(w.:)= . (w 2 A - 8), 

(2/ +I) 
(B.17) 

where A and B are expressions (58b , c) ; and the constraint (B.16) on Q. y, Y is easily 
evaluated from (B .8b) 

2rr/(/+I) r2 

w 2 -y2 8(x/y)=O 
(2/+l) !6rr 

at r =Roe . (B.18) 

Here x = - r2 e- <t> - r\ (y 1 
- e'\- rt> Q/r) (equation 5 7b ). The action principle thus consists 

of extremizing w 2 = B/A with respect to variations of Q. y , Y. with x/Y held fixed at Roe. 
The initial-value equation (l 9a) for y is one of the Euler-Lagrange equations of this 

action principle. Because it is independent of w. (19a) can be imposed as a constraint on 
all trial functions before the action is varied. The normal modes obviously will still give 
stationary w. and one can verify that this procedure does not introduce any spurious 
solutions - only the normal modes give stationary w. This is the version of the action 
principle presented in the text (Section 4.3). 

Assume that L(Z+.z) is 'real' in the sense that L(zt•. z·)=[L(Zt.z)]*, where· 
denotes complex conjugation. Then if Z = zeiwr is a solution of the Euler-Lagrange 

equations, z• =z*e-iw*t will also be a solution ; and from the complex solution ::eiwt 
we can build a real solution 

Z = 1/2 (:eiwr + z*e-iw*r), w =a+ i/2T. 

If we insert this real solution into expression (B . !Ob) for Sµ we obtain 

5.u =Sµe-r/r+§µ cos (2at+ {}µ)e-t /r, 

where 

50 = {Im [w*Qo(z*e-iw•r. zeiwr)] - l /2 Re [L (z*e-iw•r. zeiwr)]} e'/r, 

si:..: Im [w*Qi (z*e-iw•r. zeiwr)J e'/r, 

(B.19) 

(B.20) 

(B .2 la) 

(B.2lb) 

and where Sµ is not of interest to us. ln the law of energy conservation aµSµ = 0, the pure 

exponential terms and the sinusoidal terms must be conserved separately. lt is the pure 

exponential terms that interest us; for them, energy conservation says 

(B .22) 

(l /r)j. S0 d"'x=J· 5id1tl-ll:i. 
1 ' 3·r 

(1323) 

For our torsional oscillations s0 and sr, as computed from equations (B.21 ), (B.6) and 

(8.8), are the expressions given in equations(62), where Estar = f S0 dr. 




