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ABSTRACT

This dissertation considers several aspects of the structure and dynamics
of electromagnetic fields around black holes. The four-dimensional, covariant
laws of electrodynamics are reformulated in a 3 + 1 (space+time) language in
which the key quantities are three-dimensional vectors lying in hypersurfaces of
a constant global time f. This formulation is applied to the Blandford-Znajek
model of power generation in quasars, which consists of a supermassive black
hole surrounded by an accretion disk that holds a magnetic field on the hole,
with the rotational energy and angular momentum of the hole and disk being
extracted by electromagnetic torques. The 3 + 1 formalism allows the theory of
stationary, axisymmetric black holes and their magnetospheres to be couched
in an "absolute-space/universal-time" language very similar to the flat-
spacetime theory of pulsar electrodynamics; and this similarity allows flat-space
pulsar concepts to be extended to curved-space black holes. The Blandford-
Znajek quasar model is reformulated in terms of a DC circuit-theory analysis,
and action principles describing the overall structure of the magnetosphere and
the field distribution on the horizon are developed. A general prescription for
constructing global models of force-free magnetospheres is developed and this
prescription is used to generate numerical models of black-hole magneto-
spheres for a variety of field configurations and black-hole angular velocities.
The electromagnetic boundary conditions at the horizon of a black hole are
described in terms of a recently developed "membrane viewpoint”. The neces-
sity and efficacy of using a "stretched horizon" in the membrane viewpoint is
discussed, and is illustrated by two simple dynamical problems involving elec-

tromagnetic fields near black-hole horizons.
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INTRODUCTION AND SUMMARY

3 + 1 Formulation of Electrodynamics

One of the most important results to emerge from the theory of relativity in
the past two decades is the striking simplicity of the black-hole solutions of
Einstein's equations. If a black hole is isolated, that is, if there is no matter sur-
rounding it, then the spacetime will be completely characterized by just three
quantities: the mass of the black hole, its angular momentum and its charge.
This is true regardlesé. of the physical complexities of the situation which led to
the formation of the black hole. Even if the hole is formed by a highly asym-
metric collapse, the higher-order multipoles of both the gravitational and elec-
tromagnetic fields will be radiated off on a timescale of the order of the light-
travel time across the hole, until they attain the values characterizing the Kerr-
Newman geometry and the spacetime is described by just the three above-
mentioned quantities. This simplicity of form has been aptly characterized by

John A. Wheeler in his statement A black hole has no hair."

A black hole in isolation, therefore, is not a very good candidate for detec-
tion by earth-based observations. Its external gravitational field is the same as
that of a star of similar mass, but it emits no radiation by which it might be
observed. The deflection of starlight by its gravitational field (the lens effect)
might be observable, but a distant observer could not distinguish the effect from
that due to a dim star of the same mass. Nor is a charged black hole likely to be
observable by the effects of its electromagnetic field. The electromagnetic field
is stationary and is not likely to be strong enough either to affect the geometry
or to be astrophysically important, since the charge on a black hole is known to

be limited by selective accretion and quantum effects {Damour & Ruffini 1975,



Blandford & Znajek 1977).

Thus, if one is interested in the possibility of detecting a real astrophysical
black hole, one must consider situations of non-isolated black holes. If a black
hole is surrounded by matter, it can have as much hair as the matter wishes to
hold on it. There are several scenarios which might lead to non-isolated black
holes. If a black hole of stellar mass is part of a binary system, it may drag
mass off its companion to form an accretion disk which is slowly dragged into
the hole, radiating its gravitational energy as it falls in. Similarly, the super-
massive black holes which are invoked to explain the enormous power output of
quasars and active galactic nuclei would be expected to be continuously accret-
ing interstellar gas as well as gas from stars which have come too close and been

disrupted.

Matter in the vicinity of a black hole can serve to anchor electromagnetic
fields near the hole which may be far stronger than any fields due to a charge on
the hole. This raises interesting possibilities. Models have been proposed
(Ruffini & Wilson 1975, Blandford & Znajek 1977, Phinney 1983) for the extraction
of the rotational energy of a black hole by electromagnetic fields. Similar
models also exist for energy extraction by infalling particles, but such models
involve sornewhat strained assumptions and are unlikely to be realistic as astro-
physical power sources. On the other hand, the electromagnetic processes, par-
ticularly the Blandford-Znajek process, are considered by many investigators to
be realistic candidates for the power source of quasars. The study of elec-
tromagnetic fields in the neighborhood of black holes is therefore of crucial

importance in answering the question of their detectability.

Much work has been done in this area. Only a few completely self-
consistent, analytic solutions of the Einstein-Maxwell equations are known

(Wheeler 1955, Melvin 1964), and fewer still of these represent black holes in
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electromagnetic fields (Ernst 1976, Ernst & Wild 1978); but there is a plethora of
analytic solutions in which the electromagnetic field is treated as a test field too
weak to perturb the spacetime geometry. These range from simple idealized
physical models involving specified configurations of charge and current (Petter-
son 1975, Hanni & Ruffini 1973, Znajek 1978a, Linet 1976, 1979) or asymptotic
fields (Hanni & Ruffini 1976, Wald 1974) to detailed studies of realistic magne-
tohydrodynamic configurations around black holes (Lovelace 1978, Blandford &

Znajek 1977, Phinney 1983; see Coroniti 1983 for a recent brief review).

The study of electromagnetic fields around black holes is made more
difficult by the inescapably relativistic nature of the problem. Even for as con-
densed an object as a neutron star, relativity does not play a critical role in
determining the structure of the magnetosphere; the theory of pulsar electro-
dynamics can be couched entirely in the language of flat-space electrodynamics
(Goldreich & Julian 1969, Mestel, Phillips & Wang 1979, Michel 1982), making only
minor errors. Any attempt to ignore relativity when dealing with the magneto-

spheres of black holes, however, is doomed to failure.

But the necessity of a fully relativistic treatment does not mean that the
equations of black-hole electrodynamics have to be explicitly four-dimensional;
they can perfectly well be made three-dimensional to facilitate contact with
laboratory and neutron-star intuition. Even the equations of flat-space electro-
dynamics, after all, are four-dimensional when expressed in their most elegant
form: they are couched in terms of such quantities as the electromagnetic field
tensor F,, and the 4-current density J,. It is only when one chooses a time
coordinate and an associated family of fiducial three-dimensional spacelike
hypersurfaces of constant timg ("3 + 1 split”) and projects the four-dimensional
field quantities into them that one obtains the familiar equations of flat-space

electrodynamics, couched in terms of such quantities as the electric fleld E, the
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magnetic field B, the 3-current density j and the charge density pe.

One can do the same thing in a general curved spacetime. In fact, one
effectively has a great deal more freedom in the choice of the splitting in a
curved spacetime than one has in flat spacetime. There is a "natural” set of
choices of the family of spatial 3-hypersurfaces in flat spacetime, i.e. any set
associated with a congruence of inertial observers all moving with the same
velocity throughout spacetime. There will generally be no such natural choice in
a curved spacetime. The fiducial 3-hypersurfaces may be chosen with as many
hills and valleys as desired, so long as they are everywhere spacelike; in fact, in
a generic spacetime, the curvature makes it impossible to choose the spatial

sections without such hills and valleys.

In any problem with a degree of symmetry, however, there will often be
natural choices of splitting singled out. For a stationary problem, for instance,
it would be foolish not to choose all of the 3-hypersurfaces to have the same
geometry, independent of the "ignorable" time coordinate. Similarly, if the
problem is axisymmetric, the 3-hypersurfaces should obviously be chosen to
share this axisymmetry. All of the problems considered in this thesis will have

such natural choices of splitting.

The 3 + 1 formulation of curved-space electrodynamics can be simply
integrated with a recently developed paradigmatic view of black-hole horizons

which will be described below.

Paradigmatic View of Black-Hole Physics

General relativity is unique among the branches of physics in the wide lati-
tude of possible viewpoints it allows of its subject matter. This is due to the fact
that it was originally created with the intent of writing the laws of physics in a

form invariant with respect to all coordinate transformations, and it thus
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expresses these laws in an extremely general form which is valid in the refer-

ence frame of any arbitrarily chosen family of fiducial observers.

Although the invariance of physical law as described by general relativity
has always been recognized intellectually, it has often been a source of confu-
sion, usually due to the fact that the large freedom in choice of reference
frames allows one all too easily to choose sets of fiducial observers whose coordi-
nate systems become degenerate in particular regions of spacetime. These
degeneracies can cause certain quantities measured by the fiducial observers
(e.g. components of vectors and tensors) to be infinite even though all physical
quantities (e.g. scalars and physical components of vectors and tensors) are
finite.

This confusion over coordinate systems has nowhere been more marked
than in the study of black holes. Schwarzschild discovered the spherically sym-
metric black-hole solution bearing his name in 1916, only a few weeks after the
general theory of relativity was published. This solution had an apparent singu-
larity at radial coordinate r = 2M, where M is the mass of the black hole.
Eddington, in 1924, constructed a coordinate system based on infalling
observers which was explicitly nonsingular at r = 24, but it was not until 1933
that the singularity was recognized by Lemaitre to be wholly fictitious, a man-
ifestation of a pathology in the coordinate system rather than in the structure of
spacetime. The nature of the apparent singularities at the horizons of black-
hole spacetimes is now well understood, but a good choice of fiducial reference
frame is still important in investigating any problem as an aid to physical intui-

tion and to avoid obscuring the physics with coordinate problems.

Several distinct viewpoints for the study of black holes will be described
below. Although the differences between these viewpoints will actually amount

to nothing more than differing choices of fiducial reference frames and different



-7 -

interpretations of physical quantities measured in these frames, the relation-
ships between these viewpoints and the resolution of apparent contradictions
between them are subtle enough that we will, with an appropriate recognition of
the inherent hubris, refer to these viewpoints as paradigms (Kuhn 1962, Thorne

et al. 1984).

A particularly instructive way of illustrating the relationship between the
various paradigms for black holes is to consider a particle falling into a black
hole. If one looks at events from the viewpoint of an observer stationary outside
the black hole, then since the event horizon is a surface of infinite redshift, the
infalling particle and any fields it may carry will never be seen to cross the hor-
izon, but rather will hover just outside it and asymptotically approach it. For a
black hole formed by stellar collapse, in fact, the stationary observer could in
principle see the original material of the collapsed star if he or she could look
close enough to the horizon. This viewpoint is the basis for the Russian name
"2acT bB WL UM 3BE}g " for a black hole, which means "frozen star”, and it will

therefore be called the frozen-star paradigm.

The star is anything but frozen from the viewpoint of an observer riding on
an infalling particle. This observer passes through the horizon and hits the
singularity at 7 = 0 (which is a true spacetime singularity) in a finite amount of
his own proper time. This viewpoint is the basis of what will be called the black-
hole paradigm. The resolution of the apparent contradiction between the two
viewpoints lies in the fact the coordinate system of the external stationary
observer becomes degenerate at the horizon, while that of the infalling observer

is well-behaved there.

In the spherically symmetric Schwarzschild black-hole spacetime, the
natural choice of the stationary observers for the frozen-star paradigm is that

set of observers moving along trajectories of constant Schwarzschild time £,
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while two (of many) possible choices of the infalling observers for the black-hole
paradigm are the infalling observers of Novikov coordinates and the infalling

observers of ingoing Eddington-Finkelstein coordinates.

If an infalling particle has a charge and generates electromagnetic fields,
one may ask which of these paradigms is most useful in studying the behavior of
the fields during and after the infall. The answer is that neither is ideal for the
purpose. The black-hole paradigm is a poor choice because its fiducial
observers do not stay outside the horizon, and also because they are non-
stationary, which will introduce unnecessary complications if the background
spacetime is stationary. The frozen-star paradigm does not suffer from either of
these problems, but it has the disadvantage that it emphasizes a part of the field
geometry which quickly becomes irrelevant as the particle falls into the hole. As
mentioned above, and as discussed qualitatively in chapter II, not only does the
infalling particle appear to hover, "frozen", just above the horizon, but so also do
its fields. The fields form a layered structure, lying just above the horizon and
asymptotically approaching it, which contains relic fields reflecting the entire
past evolution of the field, including the infall of the particle. These layered
fields not only make it difficult to define boundary conditions on fields at the
horizon, but at times large compared to the infall timescale of the particle, they
turn out to be completely irrelevant to the overall structure of the field farther
out. Thus, although one can use the frozen-star paradigm in treating problems
of electromagnetic fields outside horizons, it does not give much intuitive insight
into the behavior of the fields associated with the particle long after the particle

has fallen into the hole.

A viewpoint which has been developed over the last few years by Znajek
(1978b), Damour (1978, 1982) and Carter (1979) is much more conducive to

understanding the behavior of electromagnetic fields outside the horizon than is
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the frozen-star paradigm. This point of view regards the horizon as a bubble or
membrane endowed with familiar physical properties such as shear and bulk
viscosity, surface pressure and electrical conductivity; this new viewpoint is

therefore known as the membrane paradigm.

The membrane paradigm is particularly useful as an aid to physical intui-
tion when combined with a 3 + 1 split of spacetime as described in chapter 1II
and in Thorne ef al. (1984). In this formulation, the boundary conditions on elec-
tromagnetic fields at the horizon are applied not on the actual horizon, but
rather on a stretfched horizon displaced outward slightly from the true horizon.
This obviates the necessity of considering the irrelevant relic horizon fields
described above, since they are hidden beneath the stretched horizon. The sur-
face electrical resistivity of the true horizon in the membrane paradigm is
R = 4n/ ¢ = 377 ohms, which is equal to the impedance of the vacuum at the
end of an open waveguide, so the boundary conditions at the horizon amount to
a prohibition of outgoing waves there. This prohibition can equally well be
applied at a stretched horizon as long it is near enough to the true horizon that
reflection of waves from the part of the wave-equation effective potential
between the stretched and true horizons is negligible. Another condition
affecting the choice of the stretched horizon is the requirement that its proper
distance from the true horizon be smaller than the distance light travels in the
timescale of evolution of the field, so that important features of the field are not
neglected beneath the stretched horizon. As long as these criteria are met, the
amount by which the horizon is stretched does not greatly affect the solution for

the external field structure.

As an example of how the predictions of the various paradigms may be
reconciled, consider the solutions and field line diagrams given by Hanni &

Ruffini (1973) for a charged particle at rest outside a Schwarzschild black hole
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(See Fig. 1). If these solutions are regarded as successive stages in the quasis-.
tatic descent of the particle into the black hole, they show that as the particle
approaches the horizon, the field ceases to depend on the position of the parti-
cle, and the electric field lines begin to look to an external observer as if they
were emerging uniformly and radially from the hole's horizon. Since the elec-
tric field lines must be continuous, however, there is a layer near the horizon
where the field lines bend away from the radial direction and run approximately
parallel to the horizon in order to attach themselves to the charge. As the
charge approaches the horizon, this layer plasters itself closer and closer to the
horizon. If the horizon is stretched to just above this layer, the field lines
emerging from it have just the pattern which would be expected of a uniformly
charged conducting sphere, and the charged particle can be regarded as having
descended into the hole’s interior. In chapter V, two truly dynamical problems

which show this same type of behavior will be solved.

The membrane paradigm and the associated 3 + 1 formalism have been
under development in the Caltech relativity group for the past several years,
most recently under the aegis of an informal group known as the Paradigm
Society, including Kip Thorne, Richard Price, Ronald Crowley, Wojciech Zurek,
lan Redmount, Wai-mo Suen, L. Sam Finn, Xiao-He Zhang, and the present
author. This group has worked to develop a self-consistent framework for the
study of the electromagnetic and gravitational interactions of black holes from
the viewpoint of the membrane paradigm, and to devise model problems clarify-
ing its applications. This thesis comprises a substantial part of the work done by

the Society on electromagnetic interactions.
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This thesis is presented in five chapters. In chapter II, the general curved-
spacetime 3 + 1 formulation of the laws of electrodynamics is developed. The
four-dimensional equations of curved-spacetime electrodynamics are reex-
pressed in a language in which the key quantities are three-dimensional vectors
such as the electric field E and the magnetic field B lying in hypersurfaces of a
constant universal time £. In this language, Maxwell's equations, the Lorentz
force law and the laws of energy and momentum conservation have forms closely
resembling the analogous relations in flat spacetime. The general 3 + 1 equa-
tions are then specialized to the spacetime outside a stationary, axisymmetric
black hole and the horizon boundary conditions ("membrane viewpoint")
developed by Znajek (1978b) and Damour (1978, 1982) are reexpressed in 3 + 1
language. Chapter II also discusses in a qualitative way the necessity of stretch-
ing the horizon in order to define unequivocally the concept of a boundary condi-

tion on the horizon.

Chapter IIl applies the formalism derived in chapter II to the analytic study
of a stationary, axisymmetric magnetosphere surrounding a black hole and held
on it by the electrical conductivity of an accretion disk. The theory of elec-
tromagnetic extraction of the hole's rotational energy, developed by Blandford &
Znajek (1977), is reformulated in 3 + 1 language and extended. The equations
governing the field outside the black hole are written down under three succes-
sively more restricted assumptions: (i) Stationary, axisymmetric fields; (ii)
Stationary, axisymmetric and degenerate (IiB = 0) fields; and (iii) Stationary,
axisymmetric and force-free (o, E + (j/c)XB = 0) fields. The energy extraction
process is analyzed from a torque-balance point of view and from a DC circuit-
theory point of view, with the conclusion that the magnetic field lines threading
the black hole should attain roughly half the angular velocity of the hole, result-

ing in optimum energy extraction. In the last section of chapter III, a general
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method for constructing global models of force-free magnetospheres is outlined.
The electromagnetic field structure is determined by a single scalar sireom
Sfunction ¥(r,0) satisfying a second-order partial differential equation (originally
derived by Blandford & Znajek). The boundary conditions to be imposed on 9 at
the horizon and at the other boundaries of the force-free region are discussed,
and it is proved that the field distributes itself over the horizon in such a way as

to minimize the horizon's ohmic dissipation.

Chapter IV applies the equations and prescription derived in chapter 1II to
the construction of numerical models of stationary black-hole magnetospheres.
These models are constructed by spinning up static, vacuum magnetic field solu-
tions in Schwarzschild spacetime, and they illustrate, for several different field
configurations, the dependence of the magﬁetospheric flelds on the angular velo-

city of the black hole.

Because chapters III and IV deal with stationary magnetospheres, there is
no complex field structure near the true horizon and consequently no necessity
to hide such structure by stretching the horizon. Chapter V turns attention to
dynamical situations where stretching is needed. The concept of a stretched
horizon is briefly explained and two simple time-dependent problemé illustrating
the concept are solved in detail. These problems are meant to elucidate the
behavior of electromagnetic fields near the horizon and clarify the connections
between the frozen-star and membrane paradigms. Both problems involve the
relaxation of a specified initial field toward a stationary final state, and both

show explicitly the near-horizon field behavior described qualitatively in chapter

1I.
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FIGURE CAPTION

Figure 1. Electric field lines of a charge stationary outside a Schwarzschild
black hole (cf. Hanni & Ruffini 1973) at various radii. These plots were obtained
by using the analytic field expressions given by Linet (1976) rather than the mul-
tipole expansion given by Hanni & Ruffini. If these solutions are regarded as suc-
cessive stages in the quasistatic descent of the charge into the black hole, they
illustrate the layered near-horizon field structure described in chapter II and
the lack of dependence of the rest of the field structure on this layered field.
This behavior forms a heuristic justification for the introduction of the concept
of a stretched horizon. In chapter V, two truly dynamical problems further illus-

trating this type of behavior will be discussed.
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ABSTRACT

This paper develops the mathematical foundations for a
companion paper on ''Black-Hole Electrodynamics.'" More specific-
ally, it reexpresses the equations of curved-spacetime electro-
dynamics in terms of a 3 + 1 (space + time) split, in which the
key quantities are 3-dimensional vectors (electric field E, mag-
netic field B, etc.) that lie in hypersurfaces of constant time t.
Three-dimensional vector analysis is used to express Maxwell's
equations, the Gauss, Faraday, and Ampere laws, the Lorentz force
law, and the laws of energy and momentum conservation in forms
closely resembling their flat-spacetime counterparts.

After developing the 3 + 1 formalism for general spacetimes,
this paper specializes to the spacetime outside a stationary but
rotating black hole. The Znajek-Damour boundary conditions at the
hole's horizon are reexpressed in 3 + 1 language. Because the
black hole's hypersurfaces of constant time all have identical 3-
dimensional geometries, one can abandon entirely Einstein's view
of spacetime and return to Galileo's: The electric and magnetic
fields E and B can be regarded as living in an absolute (but curved)
3-dimensional space, and as evolving in this space with the passage
of universal time t. This viewpoint and associated mathematics are

the foundation for a companion paper.

*
Supported in part by the National Science Foundation [AST79-22012].

ONE OF THE ORANGE AID PREPRINT SERIES
IN NUCLEAR, ATOMIC & THEORETICAL ASTROPHYSICS

March 1981



=< G

1 Introduction

There is a close relationship between the theory of axisymmetric pulsar
magnetospheres (e.g., Goldreich and Julian 1969; Mestel, Phillips, and Wang
1979), and the theory of black-hole and accretion-disk magnetospheres
(Blandford and Znajek 1977). For this reason it is curious that astrophysi-
cists have spent enormous effort on the axisymmetric pulsar problem, an
idealized problem somewhat far from the structure of real (nonaxisymmetric)
pulsars, but have put little effort into the theory of black-hole magneto-
spheres, for which the assumption of axisymmetry is probably justified in
Nature.

We think that this may be due to the fact that general relativity plays
crucial roles in the black-hole problem, but not in the pulsar problem, and
that the language and mathematical formalism of black-hole electrodynamic
theory (Blandford and Znajek 1977) are therefore somewhat different from those
of pulsar electrodynamics, and somewhat alien to pulsar theorists. For
example, the black-hole theory of Blandford and Znajek uses as its fundamental

0 .r .6

electrodynamic variables the components A., A d°s 35 d J(p of the

0’ A Froo
4-vector potential 24, the electromagnetic field tensor F, and the charge-
current 4-vector § —and those components are taken in the Boyer-Lindquist
coordinate basis of Kerr spacetime. It is not easy for an astrophysicist to
get an intuitive, physical feeling for these variables or for their relation-
ship to the electric vector §, magnetic vector E, current vector i, and charge
density pe of his flat-space pulsar theory.

Fortunately, it is possible— indeed straightforward— to rewrite
curved-spacetime black-hole electrodynamic theory in terms of the physically

measured E, B, j, and pe and thereby to obtain a formalism that is very similar

to the theory of pulsar electrodynamics and that therefore might be a powerful
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tool in future black-hole research. The prescription for this rewrite of the
curved-spacetime theory is as follows: (i) Choose at each event in spacetime
a fiducial reference frame; i.e., split spacetime up into three space direc-
tions and one uniquely chosen time direction ("3+1 split"). (ii) In this
fiducial reference frame, split the electromagnetic field temsor F into
electric and magnetic fields g and § in the usual manner of flat spacetime

(E is the time-space part of F ; § is the space-space part). (iii) Similarly,
in the fiducial frame, split the 4-current vector J into a time part

JO = De = (charge density) and a 3-space part = (current density).

(iv) Rewrite in terms of E, B, pe, and j the curved-spacetime Maxwell equa-

tions, the Lorentz force law, and the law of charge conservation.

Many relativity theorists dislike such a 3+1 split because of the arbi-
trariness of the choice of fiducial reference frame. However, in the case of
stationary black-hole electrodynamics there is one set of fiducial frames pre-
ferred over all others: the frames of observers who are at rest in the hole's
stationary gravitational field, and who see neighboring fiducial observers
inertially fixed with respect to the gyroscopes of their inertial guidance sys-
tems ("ZAMO'" or "zero angular momentum observers"). When one uses these ZAMO
frames one finds that the "3+1" equations of black-hole electrodynamics are
nearly identical to the flat-space equations of pulsar electrodynamics. More-
over, when using these frames one can mentally adopt a new viewpoint on the
3+1 formalism: one can regard electrodynamics and all other physics as occur-
ring in a fixed, unchanging, absolute 3-dimensional space and one can regard
time as merely a parameter which demarks the evolution of the matter and fields.
In other words, one can return to the absolute-space and universal-time view-

point of Galileo, which underlies most modern-day astrophysical intuition.
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Previous research on black-hole electrodynamics has not used either the
3+1 viewpoint, or the absolute-space/universal-time viewpoint. The purpose
of this paper and its companion is to introduce those viewpoints and thereby,
we hope, to make it easier for astrophysicists to carry their pulsar-based
intuition over to the black-hole problem.

We have split our presentation into two papers, so as to make the 3+1
formalism more accessible to astrophysicists. Paper I (this paper) derives
3+1 electrodynamics from the relativist's more usual 4-dimensional formalism—
and in doing so it makes free use of the mathematical tools of general
relativity theory. Paper II (Macdonald and Thorne 1981) reformulates the
Blandford-Znajek theory of black-hole magnetospheres in 3+1 language, using
the absolute-space/universal-time viewpoint— and in doing so it avoids the
mathematics of general relativity.

Paper II can be read separately from Paper I if one is willing to accept
the equations of 341 electrodynamics on faith.

This paper is organized as follows. Section 2 introduces the mathe-
matics of the 3+1 split, including: a brief historical survey of the subject
(82.1); the fiducial observers and their hypersurfaces of simultaneity St
with respect to which the 3+1 split is made (82.2); the dot product, cross
product, gradient, divergence, and curl of spatial vectors (3-vectors) lying
in the fiducial hypersurfaces (§2.3); three different types of time deriva-
tive (82.4); and identities for transforming volume, surface, and line inte-
grals and their time derivatives into each other (§2.5).

Section 3 presents the 3+1 formulation of electrodynamics in terms of
differential equations, including: the relationship between 3+1 electrodynamic
quantities and 4-dimensional quantities (§3.1); the Maxwell equations (§3.2);

expressions for E and B in terms of the scalar potential ¢ and vector
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potential é (83.3); the law of charge conservation (§3.4); the Lorentz force
law and equation of motion of a charged test particle (§3.5); and the dif-
ferential laws of energy and momentum conservation for the electromagnetic
field and a continuous medium (83.6).

Section 4 presents the integral formulation of 3+1 electrodynamics:
Gauss's law, Ampere's law, Faraday's law, and the law of charge conservation.

Section 5 specializes the 3+1 formalism to the spacetime of a stationary,
axisymmetric black hole, including: the selection of the ZAMO observers as
our fiducial observers and the resulting simplifications of various 3+1
kinematic equations (85.1); the 3+l electrodynamic equations specialized to
our black-hole spacetime (85.2); the pathological behavior of the hypersur-
faces gt near the hole's horizon, and the resulting delicate definition of
"the limit of a physical quantity as one approaches the horizon" (§5.3); and
the Znajek-Damour theory of electromagnetic boundary conditions at the horizon,
rewritten in 3+1 language (§85.4).

Section 6 illustrates the 3+1 formalism by rewriting in 3+1 language two
known solutions to the vacuum Maxwell equations: the electric field of a
point charge outside a Schwarzschild hole (§6.1), and a uniform magnetic field
surrounding and deformed by a Kerr hole (8§6.2).

Throughout this paper we use the mathematical notation and conventions
of Misner, Thorne, and Wheeler (1973; cited henceforth as MIW), including
units in which the speed of light c is unity. (Nowhere, except in the examples
of §5.3 and §6, do we need to set Newton's gravitation constant G to unity.)
Electromagnetic quantities are expressed in Gaussian units (electric fields
in statvolts per centimeter, magnetic fields in Gauss). We denote 4-vectors
and 4-tensors by bold-face letters, e.g., U and F, and their components by

Greek indices, e.g., Ua and FGB' We denote spatial vectors (3-vectors) and
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spatial tensors (3-tensors) by underscored letters, e.g., E and Yy, and their

components by Latin indices, e.g., Ej and ij.

2 3+1 Mathematical Formalism

2.1 HISTORICAL REMARKS

There are two rather different ways to make a 3+1 split of the laws of
physics in curved spacetime. The first way selects a fiducial congruence of
timelike world lines, and at each event identifies "time'" as the direction
along the fiducial world line and "space' as the three directions orthogonal to it.
In this congruence approach the space directions at neighboring events will not
mesh to form global spacelike hypersurfaces (3-spaces of constant time), unless
the congruence is constrained to be "rotation-free',

The second approach selects a foliation of fiducial 3-dimensional hypersur-
faces (3-spaces of constant time), and at each event identifies '"space" as the
directions lying in the hypersurface. 1In this hypersurface approach one can
identify as "time'" the direction orthogonal to the hypersurface—in which case
the formalism is identical to the rotation-free limit of the congruence
approach. Alternatively, one can identify as '"time" a nonorthogonal direction
(nonzero "shift vector").

The congruence approach to 3+1 splits was developed in brief form by Landau
and Lifshitz (1941) and in greater detail by Zel'manov (1956, 1959), who refers
to spatial vectors and tensors as "chronometric invariants'. Today this congru-
ence approach is much used by Russian relativistic astrophysicists, in no small
measure because of the influence of Igor Novikov, who was a student of Zel'manov
(see,e.g., §81.6 of Zel'dovich and Novikov, 1971). In the West the congruence
approach was developed in brief form by Cattaneo (1959) and in great detail by

Estabrook and Wahlquist (1964), who called it the "dyadic formalism". None of
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these workers, Russian or Western, wrote down Maxwell's equations in 3+1 con-
gruence language; that was done later, by Ellis (1973). And as far as we know,
nobody has ever used the Ellis equations in astrophysics or relativity
research, except for our present study of black-hole electrodynamics.

The hypersurface approach to 3+1 splits was developed by Lichnerowicz (194k)
in his pioneering studies of the dynamical evolution of spacetime geometry; and
it was further developed in the 1950's by Bergmann, Dirac, Wheeler, Arnowitt,
Deser, Misner, and others as part of their efforts to create a Hamiltonian
formulation of general relativity and thereby to lay the foundations for
canonical quantization of the gravitational field; see Arnowitt, Deser, and
Misner (1962) ("ADM"). As part of this program, Misner and Wheeler (1957)
wrote down the curved-space, vacuum Maxwell equations in 3+1 hypersurface form,
but using the language of exterior calculus rather than vector analysis; Arnowitt,
Deser, and Misner (1960a,b) wrote down the 3+1 Maxwell equations with point
charges, but using the language of vector densities rather than vectors; and
Stachel (1969) wrote down those portions of the 3+1 Maxwell equations which
are metric-independent, using the language of vectors and tensors. These "3+l
Maxwell equations' have been much used since 1960 as a guide to formal mathe-
matical studies of the dynamics of geometry (see, e.g., chapter 21 of MIW). However,
they seem never to have been used in astrophysics research. In recent years the
full ADM 3+1 hypersurface formalism has been adopted as the canonical foundation
for numerical solutions of the Einstein field equations and of hydrodynamical
equations in curved spacetime ("numerical relativity"); see Smarr and York (1978),
York (1979), Smarr, Taubes, and Wilson (1980). In the Soviet Union the hyper-
surface approach to 3+1 splits has been formulated by Zel'manov (1973); he refers
to spatial vectors and tensors in this formalism as "kinematic invariants”.

In the present work we shall use the ADM hypersurface approach to 3+1

splits. 1Initially we shall choose our time direction orthogonal to the hyper-

surfaces, thereby making our formalism identical to the rotation-free limit of
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the congruence approach. This will permit us to use Ellis's beautiful 3+1
formulation of Maxwell's equations. Later, when spécializing to black-hole
spacetimes, we shall introduce a "shift" into our time direction, so that
instead of being orthogonal to the fiducial hypersurfaces, it is along the

Killing direction k = 3/3t of the stationary spacetime geometry.

2.2 FIDUCIAL HYPERSURFACES AND CONGRUENCE

Our mathematical formalism for the fiducial hypersurfaces and congruence
and for the 3+1 split is essentially the same as that used in current research
on numerical relativity (e.g., York 1979), with these exceptions: (i) Our nota-
tion is slightly different; for example, we use index-free expressions A'B, VXE,
etc. and we "think" in coordinate-free language, whereas numerical relativists
always have a coordinate mesh and use index notation AjBk7jk with components
taken on that mesh. (ii) In the early part of this paper we use different kinds
of time derivatives than they— our DT and ST. (iii) We develop and make exten-
sive use of 3+1 integral identities, which are not part of present-day numerical
relativity.

Consider a region £ of L-dimensional spacetime in which electrodynamic
phenomena are to be studied. Introduce into £ a family of spacetime-filling,
3-dimensional spacelike hypersurfaces; and introduce a parameter t which (i)
labels the hypersurfaces, and (ii) increases smoothly as one moves forward in
time from hypersurface to hypersurface, but (iii) is otherwise arbitrary.

Denote by St the hypersurface which has label t. Give t the name 'global
time parameter" or simply "global time", See Figure 1.

There will exist a congruence of timelike curves which are orthogonal to

the hypersurfaces. These curves can be regarded as the world lines of a family

of "fiducial observers" [numerical relativists call them "Eulerian observers']
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who think of the hypersurfaces st as "slices of simultaneity', Parametrize

each fiducial world line by the proper time T of its observer. Then the obser-
ver's 4-velocity (unit tangent to the fiducial world line) is U = d/dt. [In
numerical relativity (e.g., York 1979) the notation m is used rather than U .
In this paper m 1is reserved for the normal to the horizon of a black hole

(Eq. 5.23 below).] Proper time T and global time t typically will not march

forward at the same rate along a fiducial world line; the ratio of their rates

1

is called the "lapse function' «

a = (dt/dt) s (2.1a)

along fiducial world line

Since the fiducial 4-velocity U is orthogonal to hypersurfaces of constant t,

it must be parallel to the 4-gradient of t with a proportionality constant

determined by U2= -1 and by U-(A)Vt = dt/dt = 01_1:

1/2

U= o« Pge a=1-(Pygny?) - (2.1b)

Here and below we use a prefix (4) on the spacetime gradient (4%7 to distin-

guish it clearly from the spatial gradient V.

2.3 THREE-DIMENSIONAL VECTOR ANALYSIS

Any 4-vector M or 4-tensor T which is orthogonal to the fiducial
B

4-velocity, MaUa =0 or UaTa =0 = TaBUe, can be regarded as a purely spa-

tial vector M or temsor T—i.e., it can be regarded as living in a fiducial
hypersurface St. When adopting the 3+1 viewpoint we shall denote it M or T

and its components Mj or T, When adopting the 4-dimensional spacetime

ik’
viewpoint we shall use the notation M, T, Ma’ TaB'

The most important spatial tensor we shall deal with is the metric Yy of

o
the fiducial hypersurfaces gt . In 4-dimensional notation, Y 8 is the tensor
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aB af

Y =g <+ UQUB

(2.2)

B

which projects 4-vectors into the fiducial hypersurfaces. Here ga is the
metric of 4-dimensional spacetime.

The 3+1 equations of physics will involve the kinematic properties of the
fiducial world lines— their expansion 6, 4-acceleration a, and shear . (Their

rotation w vanishes because the fiducial world lines are hypersurface orthog-

a .
onal.) Viewed as 4-dimensional quantities, 6, a , and cuB are defined by

6 =10 ” 5 a =1 ;BU 5
(2.3a)
1. -1
O(IB . 2 YC! YB (Uu;\) + U\);U) 3 e YQB ’
which can be inverted to give
= - + = 2.:3b
Yas8 = "% * %ag * 3 ® Yag ko300

(cf. Exercise 22.6 of MIW). Here the semicolon denotes the covariant deriva-
tive (QNV with respect to the spacetime geometry. One can easily verify that
aa and OaB are orthogonal to i and are therefore a spatial vector and spatial
tensor, respectively. A fiducial observer interprets 6 as the fractional time
rate of change V-ldV/dT of the volume V of a "fluid element" whose walls are
attached to the world lines of nearby fiducial observers—i.e., 6= 3x (Hubble
expansion rate of fiducial observers averaged over all directions in space).
If a fiducial observer carries an accelerometer, he interprets a as the vector
acceleration which it reads. If a fiducial observer studies the motions of

other nearby fiducial observers, he interprets 0 as the rate. of shear of those

motions, as defined in nonrelativistic fluid mechanics. For further detail
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see, e.g., Ellis (1971,1973). One can show, using equation (2.1b) and the
definition of the spatial gradient given below, that the acceleration and the

lapse function are related by

2.4
a=Vilna ( )

and one can show using equations (2.3a) and (2.2), that the shear ¢ is sym-

metric and trace-free

o, =0,. , o ik _ g YGB =0 . (2.5)

The "extrinsic curvature" K of the hypersurface St is related to the shear

and expansion of the fiducial congruence by

K=-( +% 0 ) . (2.6)

Spatial vectors and tensors living in gt can be manipulated in much the
same manner as in flat space: If L and M are spatial vectors, their inner

product and cross product are

oM = jk 3o Kt 2.7
L-M=LMy ; @LxM)® = e LM (2.7)
Shere €Jk2 is the spatial Levi-Civita tensor [equal to (detl]Yij”)-l/Q (anti-

symmetric symbol)]. The spatial gradient operator (denoted V in abstract

and in component notation) can be defined in either of two equivalent ways:

I3
as the 4-dimensional covariant derivative projected into St , or as the
spatial covariant derivative associated with the spatial metric ij. From the

former viewpoint, if M is a spatial vector then VM is a spatial tensor with

spacetime components
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M IB=Y YB M ‘ (2.8a)

Mjl =+ u (2.8b)

where rJZk are connection coefficients computed in the usual way from the

spatial metric ij. The divergence and curl are defined in terms of V by

jk& M

vem=w . @xml - (2.9)

3 2|k ?

Note that because the geometry of St is not flat, spatial gradients of vec-

tors do not commute:

= MJ| = g M (2.10)

where RJi is the Riemann tensor of 3t ; cf. Exercise 16.3 of MIW. Despite

2k
this noncommutation, the following identities are valid for any vector field

M and scalar field Y

VeVxM =0 . VxVy =0 . (2.11)

2.4 TIME DERIVATIVES OF SPATIAL VECTORS

Three different time derivatives are useful in studying the evolutionof
spatial vectors and tensors.

When focussing attention on physical measurements made by a fiducial ob-
server, one may prefer a time derivative defined by Fermi transport (''gyro-

scope transport") along the fiducial world lines:
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-U M . .
aU (2.12)

Here Ma and DTMG are the spacetime components of a spatial vector g and its
time derivative Dry. This is the type of time derivative used in the congru-
ence version of the 3+1 formalism (e.g., Estabrook and Wahlquist 1964).

In deriving integral identities (82.5 below) we shall find it easiest to
make geometric constructions involving the Lie derivative of M along fiducial
world lines

B _ -1 B8
891 za £va

= a-l[MB.u ot - (aUB).u 1] . (2.13)

Note that all of the 4-vectors a U whose tails sit on the same hypersurface

St have their tips on the same hypersurface 8 This together with

t+l second *
the pictorial interpretation of the Lie derivative (Box 9.2 of MTW) guarantees
that, just as g is a 4-vector lying in St s, SO sTg is a 4-vector lying in
St———i.e., it is a spatial vector. This type of time derivative is occa-
sionally used in the numerical relativity 3+1 formalism (e.g., York 1979,
where OLST is denoted £N).

One can also define a third kind of time derivative: the Lie derivative
along a "shifting congruence' with tangent vector at”+ g¥. Here §’ the
"shift vector", is a spatial vector field lying in St. As measured by fiducial
observers [called "Eulerian observers" by numerical relativists], the shifting
congruence [called "Lagrangian congruence' by numerical relativists] has

ordinary velocity
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B/a = d(proper distance)/dT . (2.148)

The shift vector field g could be specified arbitrarily, but when we consider
the case of stationary, axially symmetric spacetimes, a natural choice of §
presents itself, namely the one for which a‘[+§ is equal to the Killing vec-
tor kK associated with the time isometry of the spacetime. The time derivative

along the shifting congruence will be defined by

Ho_
it o= £0D+p

Mu_\)(aU\)+ 8Y) - (auM+8Y) N VA (2.15)

3

Just as g is a spatial vector, so i&g is a spatial vector. The mixed Eulerian-
Lagrangian equations of numerical relativity are formulated in terms of this
shifting time derivacive:{t (York 1979; Smarr and York 1978; Smarr, Taubes,
and Wilson 1980).

Physically the Fermi time derivative DTg describes the rate of change of
g with respect to proper time T along a fiducial world line—- the change being
measured relative to an inertial guidance system of physical rods and gyro-
scopes carried by the fiducial observer; see 813.6 of MIW and Figure 2 of this
paper. The Lie time derivative @Tg also describes the rate of change of g with
respect to proper time T along a fiducial world line— but now the change is
measured relative to the (changing) spatial locations of other fiducial obser-
vers; see Schild (1967) and Figure 2 of this paper. The Lie time derivative i&g
describes the rate of change of g with respect to global time t along a trajec-—
tory of the sﬂifting congruence— the change being measured relative to the

spatial locations of other trajectories in the shifting congruence; see Figure 2.

The derivatives DT, 8 _, and ic can act on scalar fields and 3-tensor fields

T

as well as on vector fields. The action of DT is always defined by parallel
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transport il (4)\70‘, followed by projection with YU\) on all indices; 8'{ and it

. - -1 - . S
are always defined by ST = - £OLV and :ﬁt _£av+pwhere £ is the Lie deriva

tive which acts on scalars and tensors in the usual fashion (Schild 1967). When

acting on a scalar field these three derivatives are related by

-1
DTw = )S)Tw =0 (itw—g Yu;) 2 (2.16a)
When acting on a vector field they are related by

(2.16b)

[
@

134
w

M e DM~ G"H -~

M
£t

o QT}j +£,8r~4 (2.16c)

where £BM is the Lie derivative of the spatial vector M along the spatial vector B

£BI:I = (g « V)M ~ (1:1- y)@ . (2.17)

The 3-metric Y is unchanging as measured by the Fermi time derivative DT’ but

it changes as measured by the Lie derivatives

Dy=20 (2.18a)

s'ryjk 2(o

1
e * F Vg (2.18b)

3
&Ny, = 2 L=
Vyk = 220 +3 @ Y t Biln® Bk]j . (2.18¢)

Because of this, one must be careful about scalar products when using QT and

£t; for example,

£ (E+B) = §'£tB+B°;£tE+ E* &) "B . (2.19)
[Relations (2.16) and (2.18) are derived from the 4-dimensional definitions

1
2.12), (2.13), (2. . 1 -
( Y5 il ), (2.15) of DT’ &T, and it' In (2.18b,c) note that °jk+3 5 ij
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_Kjk (extrinsic curvature; equation 2.6).]
Time derivatives do not commute with spatial gradients. From definitions

(2.12) and (2.8a) one can show that for any scalar field Y and spatial vector

field M
DV =L V(D y) -~6 W - 0.V (2.20a)
T~ A = T 3" = . 2 :
=2 21 - i
D Gy, =5 @O, - oM —ot U, R
b W0, + 2 8. = K lo, L 428w (2.20b)
= 5 jk 3 jk ij 7k 3 k * *

b : : : . .
Here R 1k is a spatial tensor related to the Riemann curvature of 4-dimensional

spacetime by

a o v o (4) u p

= R U . 2,21
Ry =Yy Yg Yy — ( a)
Using the Gauss-Codazzi equations along with (2.6), one can rewrite lek in

terms of the kinematic quantities of the fiducial congruence:

1
= = = - . 2.21b
Rijk °jk|i °ik|j 5 (ij e,i Yik e,j) ( )

2.5 THREE-DIMENSIONAL INTEGRAL THEOREMS

In passing from the differential formulation of Maxwell's equations to the
integral formulation, we shall use various integral identities. If ¥ is a
region of 3-dimensional space lying in St and 3% is its closed 2-dimensional

boundary, then Gauss's theorem says that for any vector field M

J VeMav = J M- dZ . €2.22)
a oY
Here dV is an element of spatial proper volume in %, and dI is an element of area

in 9% (dI points orthogonally out of ¥, and IdZI = (ij dEj de)l/z is proper
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area). If Jis a 2-dimensional region lying in the 3-space St and 9 Ais its

closed l-dimensional boundary, then Stokes's theorem says that for any vector

field g
J(Y"E’) - dI = Ju-dg . (2.23)
A 3 A

Here d§ is an element of proper area in U, d% is an element of proper length
along 9.4, and the directions of d% and dg must be chosen in accord with the
standard right-hand rule.

Gauss's theorem and Stokes's theorem involve spatial vector analysis in
a single hypersurface St, chosen once-and-for-all. We shall also need iden-
tities which relate integrals on one hypersurface St to integrals on an adja-

cent hypersurface 8 In these identities we must pay attention to the

t+At”
motion, relative to fiducial observers, of the regions of integration. For

this purpose we give each point on a region of integration a label, and we

define by

v = d(proper spatial distance)/dT (2.24)

the velocity of that labeled point as measured by a fiducial observer who sits
beside it; see Figure 3.

Let ¢ be a smoothly varying scalar field in spacetime; let ¥(t) be a
spatial volume in St which changes in some arbitrary but smooth manner as
time passes; and let 3 (t) be the 2-dimensional closed boundary of ¥(t) in gt'

Then between global time t and time t+At the integral of ¢ over ¥ changes by

A J ¢ dv = J (DT¢)aAt dv + J ¢(BoAt) dV + J ¢ (vaAt) « dI 5
i
The first term accounts for the change (DT¢)AT = (DT¢)aAt in ¢. The second
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term accounts for the change AdV = (6dV)AT in a physical volume element dV
which is attached to fiducial observers. The third term accounts for the
opening up of new volume (or closing off of o0ld volume) at the moving bound-
ary of V7, AdV = (YAT) . dg. Dividing this equation by At and taking the limit

At > 0 we obtain the integral identity

d = -
T J ¢ dv = J a(DT¢+8¢)dV+ J agv + dI . (2.25)

r(t) r(t) aU(t)

Let M be a smoothly varying vector field in spacetime; let A(t) be a
2-dimensional surface in gt which changes in some arbitrary but smooth manner
as time passes; and let JA(t) be the l-dimensional closed boundary of A(t)
with line element di'related to the area element dg of 4 by the right-hand
rule. Then between global time t and t+At the integral of ! over JA(t) changes
by
A J M-dl = J (aAt) (AQTE&) + dL +[ (aAt)M - dX

A(t) A(t) (L)
+ J (Y . E’I) (YaAt) +dl+ J M- (YaAt) x d2
A(t) SA(t)
The first term accounts for changes Ag = (3T§)AT of g relative to Lie trans-
port by fiducial observers; cf. Figure 2. If @ and A were both attached to
(i.e., Lie transported by) fiducial observers, then g' dg would be a 3-volume
attached to them, and 6!- d§ would be the time rate of change of this 3-volume
due to the fiducial expansion 8; the second term accounts for this change.
The third term accounts for the displacement YAT of points on the interior of
A relative to fiducial observers— the integral of Y 'g ovef (YAT). d§ =
(volume through which A was displaced) can be converted by Gauss's theorem

(2.22) to the difference in surface integrals between the displaced /4 and the
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fiducially transported A. The fourth term accounts for the displacement YAT
of the boundary of A relative to fiducial observers, which opens up a new
area element (YAT)X dg. Dividing the above equation by At, taking the limit
At +0, expressing the Lie derivative in terms of the Fermi time derivative
by (2.16b), and using the vector identity é' B x 9 = é><§' E, we obtain the

integral identity

%E J M-dI = J<ﬂ%§+§eg-g-y+(y-@ﬂ-d§
A(t) A(t)
+ aMxvedl . (2.26)
3 A(L)

Let M be a smoothly varying vector field in spacetime; and let C(t) be a

closed curve in St which changes in some arbitrary but smooth manner as time

passes. Then between time t and t+At the integral of M over C(t) changes by

A J M- dl = J (aAt)(er) * dL
C(t)~ c(t)

+ J 2aAt 1:1-(%6!+9)°d%+ J (Yxlid)-(aAt de%)
c(t) c(t)

The first term accounts for changes of ! relative to Lie transport by fidu-
cial observers;cf. Figure 2. If g and d% were both Lie transported by
fiducial observers, then in time At y' d% would change by
BOE-dR) = M- (AT 8 Y)+ dl = 204t M- (g+%e y) - d% (Eq. 2.18b); the second
term accounts for this. The third term accounts for the displacement of C(t)
relative to fiducial observers, i.e., for the failure of d% to be Lie trans-
ported; the integral of Y><§ over the area (YAT)X dg can be transformed by

Stokes's theorem (2.23) into the integral of M along the displaced C(t) minus
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the integral along the fiducially transported C(t). Dividing the above
equation by At, taking the limit At -+ O, expressing the Lie derivative in
terms of the Fermi time derivative by (2.16b), and using A* BxC = AXB+C,

we obtain the integral identity

g—t J Mede = J a[DTM+%8M+O°M+(VXM)Xv]~dR ) (2.27)
clt) clt)
3 3+1 Electrodynamics in Differential Form

3.1 ELECTROMAGNETIC QUANTITIES

The 3+1 formulation of electrodynamics involves the following quantities,
which are measured by the fiducial observers in the usual manner of flat

spacetime, and which therefore have the usual physical interpretation:

pe = charge density (esu/cm3)

j = current density (esu/cm3)

E = electric field (statvolts/cm)

- (3..1)
B = magnetic field (gauss)

¢ = scalar potential (statvolts)

A = vector potential (gauss cm, or statvolts)

One can reconstruct the charge-current 4-vector Ja, the electromagnetic field
tensor FQB, and the 4-vector potential %% from these 3+1 quantities, the
fiducial 4-velocity Ua, and the 4-dimensional Levi-Civita tensor EGBYS by

regarding j, E, B, and A as 4-vectors orthogonal to Ua and then computing

o a, .o
J° = pe {5 A o | 5
8 = yog® o B + OBYS UBs (3.2)
u* = gu® + A% .
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One can invert these relations to get

- - o _ af

P, = JOLUa , i* =" g, ,

Y = FO‘BUB , 8% =-%— OBYS Ug Fig (3.3)
- o _ _aB

¢ = QIOLUG , At =y ;

3.2 MAXWELL'S EQUATIONS

Ellis (1973) has derived Maxwell's equations in the 3+1 congruence for-

8 = éﬂJa and F =0. We

;B [aBsY]

can take his 3+1 equations over into our hypersurface formalism by simply

malism from their 4-dimensional formulations Fa

setting the fiducial rotation w to zero. The result is

V.E = 4ﬂpe y (3.4a)

Y.§ - 0 5 (3.4b)
2 ~1. .

DE+30E-0+E=a " Vx(aB) - 4mj |, (3.40)
2 -1

DB+36B-0+B=-a" Vx(aE) : (3.4d)

Equations (3.la,b) have the form familiar from flat-spacetime, Lorentz-
frame electrodynamics. They permit one (following Hanni and Ruffini 1973;
Christodoulou and Ruffini 1973; and King et al. 1975) to characterize E and B
by electric and magnetic field lines which lie in the hypersurfaces St. The
magnetic field lines never end (z *B = 0); the electric field lines terminate
on electric charge (Z ‘E = hnpe).

Equations (3.hc,d) have a slightly different form from the corresponding
flat-spacetime, Lorentz-frame equations. The differences are due to the peculiar

motion of the fiducial observers (expansion ©, shear g, and acceleration a =
2 =

Vlna)-

Consider first equation (3.4d). 1If the fiducial observers were to carry a

perfectly conducting medium with them, then they would never see an electric
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field, and equation (3.4d) would become DT§ +~%6 g-g' § = 0. This is pre-
cisely the equation for the evolution of a magnetic field that is "frozen
into" the conducting medium (cf. Cowling 1957 or Lichnerowicz 1967). The
expansion 6 of the fiducial observers moves the field lines apart with a
"Hubble-type expansion rate' /% = %—6, thereby reducing the field strength
(conservation of flux), DT§ =-%9 §. The shear O rotates the frozen-in field
lines relative to parallel transport (relative to directions defined by gyro-
scopes), DT§==9 '§; this shearing also changes the distance between field
lines and thereby changes the field strength, DT|§] = OjkBjBk/lgl'

If the fiducial observers do not carry a perfectly conducting medium,
then they can see an electric field whose curl produces a time-changing mag-
netic field D B = "1 Ux (aE) = -VXE - axE (right side of equation 3.4d).
The lapse function a gives rise to the unfamiliar term DT§= -ax E, which has
the following physical interpretation: Because the fiducial observers ac-
celerate, they acquire in time AT a velocity v & gAT relative to their initial
inertial frame. This motion, together with the electric field E in the
initial inertial frame, causes the fiducial observers to see a changed mag-
netic field, A§=-—YX E = "(fx E)AT.

The unfamiliar terms in equation (3.4c) have the same origin as those in

equation (3.4d).

3.3 E AND B IN TERMS OF POTENTIALS

From the 4-vector relationship FGB = mB;a'.ma;B and from equations (3.2)
and (3.3) one can derive the following expressions for E and B in terms of the

scalar and vector potentials:

o}
n

" (og) - (A +%eé+g © A) , (3.5a)

B =VxA 4 (3.5b)
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When E and B are expressed in this manner, the two Maxwell equations (3.4b)
and (3.4d) are automatically satisfied. [To verify (3.4b) is trivial; to
verify (3.4d) is a somewhat lengthy calculation, making use of the identities

(2.11), (2.20b), and (2.21b).]

3.4 CHARGE CONSERVATION

The 3+1 equation of charge conservation

=1 i
DTpe + pee + a Y (ag) =0 (3.6)

can be derived by a nontrivial calculation from the Maxwell equations (3.4a,c).
The DeB term is the rate of decrease of oe due to expansion of the fiducial
congruence (volume element carried by observers gets bigger, so charge density
decreases). The lapse function o gives rise to an unfamiliar term (a_IYa) 'i =
a- i, which is the rate at which current density j gets Lorentz transformed

into charge density pe by the changing velocity of the fiducial observer.

3.5 EQUATION OF MOTION OF A CHARGED PARTICLE

Consider a particle with rest mass p and charge q. Denote by v its ordin-
ary velocity, as measured in the local rest frame of the fiducial observer

whom the particle is passing. Then v and the particle's 3-momentum

-1/2

pEuly rsa-vh (3.7

are 3-vectors lying in St. The 4-dimensional equation of motion for a charged

particle, when rewritten in 3+1 form, says
(0, + v+Vp = ~(ula + g+p +%e p) + q(E+v*B) ) (3.8)

Here (DT + v+V)p is the "convective derivative'" of p along the particle's world
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line— it is the rate of change of p with respect to (i) Fermi transport from
the particle's initial position in St, along the observer's world line to

s [the D_ part of (3.8)], followed by (ii) spatial parallel transport,

t+At/a

in 8 , along VAT to the particle's new position.

t+AT/a
The term -(ula + o'p + % OB) on the right-hand side of equation (3.8)

is an "inertial force" to compensate for the fact that the fiducial observers
at the old and new positions of the particle have a relative velocity

sy = (a+0-v + % 8 v) AT as seen by inertial observers. The term q(E+vXB) is

the usual Lorentz force in 3+1 notation.

3.6 CONSERVATION OF ENERGY AND MOMENTUM FOR ELECTROMAGNETIC FIELD AND A

CONTINUOUS MEDIUM

Let TOﬁ

be the stress-energy tensor of the electromagnetic field and/or
of a continuous medium with which it interacts. Denote by € the mass-energy

density, by S the energy flux, and by W the stress tensor—all as measured in

the fiducial reference frame:
vy, s¥e o gy, P VLB (3.9)

For the electromagnetic field

L2 P ok
feg @ er) L s=gExE,
(3.10)
. 1.2 2
e [-Eereren @y

For a perfect fluid with rest-frame density of mass-energy p and pressure p

and with velocity v as measured by fiducial observers

2 2 2
e=T"(p+pv) , S=(p+ )y ,

(3.11)

W= (p+ p)PZX ®v+py, r=(1- 32)-1/2
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been worked out and applied in a variety of contexts by workers in numerical

The 3+1 split of the law of energy-momentum conservation T = 0 has
relativity; see, e.g., York (1979); Smarr, Taubes, and Wilson (1980); Wilson

(1977). We record here in our notation York's (1979) general form of the law

uv

of energy conservation UUT o 0:
-2 2 k 1
D e+ Be + o yr(a8) + W (o +38 V) = © (3.12)

and his general form of the law of momentum conservation (force balance)

DS + % BS + 0+ S+ €a+a Ve (@W) =0 (3.13)

cf., York's equations (40) and (41). Here €, S, and W contain all forms of
energy, momentum, and stress.

The analogous equations describing the energy and momentum transfer from

: : uwo UV o LMV
matter to electromagnetic fields, Uu TEM;\)_ U]J F Jv and Y . TEM;v
—YGU FUV Jv’ have the 3+1 form
-2 2 jk 1

D e (@4 . — = Wy ¢

L€+ 8+ ve(a78) + W (cjk £ @ 7jk) R (3.14)

S L =1 .
DT~+39§+S°§+EE+Q Z-(QE)=-(QE+AXE) - (3.15)

Here €, S, and W are the electromagnetic energy density, momentum density and

stress (equations 3.10).

4 3+1 Electrodynamics in Integral Form

As in flat spacetime, so also in curved spacetime, one can use integral
identities to rewrite in integral form the differential Maxwell equations
(3.4) and the law of charge conservation (3.6).

Gauss's law for electric flux follows from Y- E = 4ﬂpe and Gauss's inte-

gral identity (2.22). It says that the total electric flux through a closed
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2-surface 37 lying in a fiducial hypersurface $ is equal to 47 times the

total charge enclosed

J B« d§ = 4w J P dv . (4.1)

ks r

Similarly, Gauss's law for magnetic flux, which is equivalent to V+*B = 0,

says that the total flux through any closed 2-surface in § must vanish,

J B dE =0 % (4.2)

v
Faraday's law of magnetic induction can be derived by applying the integral

identity (2.26) to the Maxwell equation (3.4d), and by then replacing Y '§ by
zero and using Stokes's law (2.23) to rewrite the surface integral of VX (uE) F

The result is

a(E+vxB) - dL = -—g-g J B-dI . (4.3)
9A(t) JA(t)

Here (t) is a 2-surface lying in 8, JA(t) is the closed boundary curve of
JA(t), and v is the velocity of a point on the boundary curve as measured by
the fiducial observer whom it is passing. As in flat spacetime, so also here,
Faraday's law says that the time changing magnetic flux through a curve 34
generates on EMF around the curve. The derivative of the flux in this case is
with respect to global time t (the only universally defined time parameter,
and therefore the only kind of time with respect to which one can differentiate
outside the flux integral). The EMF is the integral around the curve 3. of
the electromagnetic force E + v X B acting on a unit charge which moves with
the curve, multiplied by o = dT/dt to convert the force into a "rate of change
of momentum P with respect to global time t" instead of "with respect to fidu-
cial proper time T'.

Ampere's law can be derived by applying the integral identity (2.26) to the

Maxwell equation (3.l4c), and by then replacing v *E with hﬂpe and using Stokes's
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law (2.23) to rewrite the surface integral of VX (aB). The result is

a@-yxp-a -k [ paew [ agoom-a @)

3A(t) A(t) A(t)

The left side and the first term on the right are identical to Faraday's law

(4.3) plus a "duality transformation" §->§, §-*—§. The last term is 4w times

the rate per unit global time that charge crosses the moving area J(t).

[Note: v is the velocity of a point on A(t) as measured by fiducial observers.]
The integral law of charge conservation can be derived by integrating

the differential comservation law (3.6) over ¥ (t) and by then using the inte-

gral identities (2.25) and (2.22). The result is

—_— J pedv =~ J a(g‘-pey)-dg . (4.5)
r(t) 3V (t)

Here ¥(t) is a 3-volume lying in St; 9%(t) is the closed 2-surface boundary

of ¥(t), and v is the velocity‘gf a point on the boundary 2-surface as meas-
ured by the fiducial observer whom it is passing. The left side of this con-
servation law is the rate of increase, per unit global time t, of the charge

in ¥(t). The right side is the rate, per unit global time t, at which charge

flows in through the moving boundary of ¥(t).

5 3+1 Electrodynamics Outside a Stationary Black Hole

5.1 THE ZAMO REFERENCE FRAMES AND THE CHOICE OF GLOBAL TIME

We now specialize to the spacetime region € outside a stationary, axisym-
metric black hole: € extends from the hole's absolute event horizon ¥ out to
spatial and null infinity. We require that the spacetime geometry of € be
stationary and axisymmetric. It will be the Kerr geometry if the hole's gravi-

ty is far stronger than the gravity due to external matter. Otherwise, the
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external matter will deform the geometry away from that of Kerr.

The theory of stationary, axisymmetric black holes is reviewed by Carter
(1979). We adopt his notation k and m for the mutually commuting Killing
vector fields which generate invariant '"time translations'" and invariant
"rotations about the axis of symmetry'". Far from the hole kz > -1 and
VF + (distance from axis of symmetry)z. Inside the hole's ergosphere k is

spacelike, but the Killing vector
2:=k+e'm (5.1)

(where QH is the hole's angular veloc;ty) is timelike. As one approaches the
horizon,ﬂ becomes tangent to the horizon's null-geodesic generators.

We shall require that our fiducial congruence, hypersurfaces, and global
time parameter mesh with the hole's stationary exterior geometry in the fol-
lowing senses: (i) The fiducial congruence completely covers the exterior
region €. (ii) Each fiducial observer moves along a Killing direction, so
that he sees a forever unchanging spacetime geometry in his neighborhood.
(iii) The hypersurfaces of simultaneity all have identical spatial geometries.
(iv) Far from the hole the global time parameter t becomes equal to proper
time T as measured by the fiducial observers.

These four demands fix the fiducial congruence, hypersurfaces, and
global time parameter uniquely (up to the addition of a constant to t): The
fiducial observers are the ''zero-angular-momentum observers' (ZAMOs) of

Bardeen, Press, and Teukolsky (1973). Their 4-velocities can be expressed in

terms of the Killing vectors k and m as

U= o Lk + wm) , (5.2)
where w is the ZAMO angular velocity

w = —kem/m> . (5.3)
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and where o, the lapse function, can be expressed as

a = [-k2+ (kom)Z/miyt/2 . (5.4)

The rotational Killing vector m is orthogonal toU and thus lies in the fidu-
cial hypersurfaces St and can be regarded as a spatial vector m .

For the Schwarzschild geometry of a nonrotating black hole the global
time parameter t is equal to the standard Schwarzschild time coordinate t
(MIW chapter 31). For the Kerr geometry, t is the Boyer-Lindquist time coor-
dinate (MTW chapter 33).

The congruence of Killing trajectories generated by k threads its way
from one hypersurface gt to the next and the next in a non-orthogonal manner.
The equations of black-hole electrodynamics will take on a particularly simple
form if we express them in terms of the time derivative i% along this 'shifting
Killing congruence', rather than in terms of the Fermi time derivative D,
along the fiducial world lines. To make i% differentiate along k =dU-wm we

must choose as our shift vector
B =-wm . (5.5)

The magnitude, |B|/a, of the ordinary velocity associated with this shift vec-
tor will be greater than the speed of light near the black hole, and less far
from the hole. With this choice of shift vector, the 3+1 splits of the Killing
equations k =0 and m = 0 alo ith the tual commutivity of

e (o3 8) (@38) g W W ¥ o Iy

and m, imply the following
La==Lw=0 5 (5.6a)
meVa=m+*Vw =0 » (5.6b)

i%T =0 > (5.6¢)
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B+ I = O , (5.6d)
2, Yy = 0 , (5.6
8 =0 ) (5.65)
0=2c' m® (W) + ) ®u] . {5.6g)

Equations (5.5) and (5.6b,f,g), together with (2.16b,c), imply the following
relationship between the fiducial observers' Fermi time derivative and the

Lie time derivative it along k :
DM=o t M+ wE M+ L (mx V) x M) (5.7)
T~ t~ m~ 2 W~ ~ : .

Because our hypersurfaces st all have the same spatial geometry, and
because our time derivatives £t act along Killing trajectories, we can now
abandon the spacetime viewpoint of relativity and return to the Galilean-
Newtonian viewpoint that physics occurs in an absolute 3-dimensional space 8.
As in Galilean-Newtonian physics there is a universal time parameter t which
marks the evolution of fields and particles in 8; but t is no longer united
with 8 in a 4-dimensional spacetime structure. We shall adopt this Galilean-
Newtonian viewpoint in Paper II; but for the remainder of Paper I we shall
retain the spacetime viewpoint, using it as a tool in deriving further fea-

tures of the 3+1 formalism.
5.2 ELECTRODYNAMIC EQUATIONS

The Maxwell equations (3.4) can be brought into the following form by

use of equations (5.6f,g) and (5.7)
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Y~ E = 4npe " (5.8a)
Y' B = 0 s (5.8b)
£t§ +w£m§-— (§° YU))HJ = Yx (ag) - Aﬂai 5 (5.8¢)
£t1~3 + w£m§— (B* Vw)m = -V x (aE) . (5.84d)

Expressions (3.5) for E and B in terms of the scalar and vector poten-

tials similarly can be brought into the form

T =1, )
lE =q (YAO+wYAq)) -a C—&té + w£mé) 3 (5.9a)
B=VUxA . (5.9b)
where
A(PE é.? - (5.10a)
A, = -0d - wAQ = (4-vector potentiald]) -k . (5.10b)

(The notation A® and AO is motivated by the fact that one will often use co-
ordinate systems in which m = 3/39 and k = 5/3t.)

The law of charge conservation (3.6) can be rewritten, using expressions

(2.16a), (5.5), and (5.6f), as
£t Pq + wm - Ype + Y (ot_;j) =0 5 5 11)

Equations (5.8) - (5.11) will simplify considerably if the electromagnetic
field is stationary and axisymmetric. Then all terms involving £t,§3m, and
m*V will vanish.

The equation of motion (3.8) for a test particle acted on by the electro-

magnetic field becomes, upon using expressions (2.4), (5.6f,g), and (5.7),
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[£t+ (ay+wx3) . Y]E = w(g . Y)E‘l— (E . T)Yw—urya+aq(§+y>< ?) & (5.12)

Here U and q are the particle's rest mass and charge; v is its velocity as
measured by the ZAMOs; av+wm is its velocity, on a per unit global time
basis d/dt, with respect to the Killing trajectories of k; and

L% is its momentum as measured by the ZAMOs.

2
p=ulv = w(l-v")
The differential laws of energy conservation (3.12) and (3.14) for an

electromagnetic field and/or a continuous medium become, upon using expres-

sions (2.16a), (5.5), and (5.6f,g),

£ e+wm* V€+a—lV . (aZS) +me*W*Vw =0 if all stress-energy is in-
t ~ o~ ~ ~ ~ o~ o~ :
cluded in g, S, W
-7 (5.13)
= -aj * E if only electromagnetic

~ ~

stress-energy is included;

and the laws of momentum conservation (3.13) and (3.15) become, upon using
(2.4), (5.6f,g), and (5.7),
=£ts + w£ms+ (S*m)Vw + eV + V+ (aW) = 0 all included

only electromagnetism (14

=G EE I%B)  cluded ,

These differential equations cannot be converted into integral conservation
laws. However, there do exist integral conservation laws associated with
two special combinations of these equations— combinations associated with
the two Killing vector fields k and m. Associated with k is a conserved
"redshifted energy' or "energy at infinity'" with energy density €= Tuvkqu,

i.e. [cf. equations (5.2), (3.9), (3.10)]

™
]

cae+wS*m in general
(5.15a)

—g—“ (E2+Bz) +—Z)—TT (EXB) *m for electromagnetism ,
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and with energy flux Sg = —Ya Tuvk

u » i.e.

|
R
1%5]
e
>
=
=]

in general
(5.15b)
1 1 2 2 .
- [0ExB-w(E* m)E-w(B*m)B +-2— w(E"+ B )m] for electromagnetism.

Associated withw is a conserved "angular momentum about the hole's symmetry

axis" with density EL = -7V muU\), i.e. [cf. equations (3.9) and (3.10)]
EL =S°m in general
- (5.16a)
= -4% (ExB) *m for electromagnetism,
. (C R R VO] 2
and with flux SL = +y 1JT o, i.e.
SL =W-*n in general
(5.16b)
1 1 2 2 ’
m [-(E*m)E- (B*m)B +3 (E"+B7)m] for electromagnetism.

The differential and integral conservation laws for redshifted energy and for
angular momentum have the same form as those for electric charge [equations

(5.11) and (4.5)]:

£e. +wmevVe, + Ve (@S.) =0 if all stress-energy is
E ~ ~E 2
included in €_,S
il (5.17a)
=-a"j*E-oauw(pE + jxg) *m if only electromagnetic
e = stress-energy is included,

Le +wmeve + Ve (xS )=0 all included
= L ~L (5.17b)
= —a(peE+ i XB)'m only electromagnetism included;
d
- e_dvV + \r a(S_, - e, v)+dz = 0 all included
o) B () BB (5.18a)

= = ‘I‘ [Ct2j «E + aw(p E + j X B) *m]dV only electromag-
r(e) T7 e~~~ netism included,
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d [\ - :
== e dv + | als. - e, v)+df = 0 all included
= 1, i~
k w(e) F .

4t o (x) (5.18b)

= - J alp E + j X B) + mdV only electromag-
7(t) e netism included .
The integral formulations of Maxwell's equations [Gauss's laws (4.1)
and (4.2), Faraday's law (4.3), Ampere's law (4.4), and charge conservation
(4.5)] do not simplify when we specialize to stationary, axially symmetric

spacetimes.

5.3 SPACETIME STRUCTURE NEAR THE HORIZON

Our foliation of hypersurfaces becomes pathological near the horizon of
the black hole. The pathology can be understood most clearly in the simple
case of a nonrotating Schwarzschild black hole with gravitational radius 2M
(MTW chapter 31). Figure 4 is a spacetime diagram for the hole's exterior
€ (r/2M > 1) and interior (r/2M < 1) in ingoing Eddington-Finkelstein coor-
dinates E and r (Box 31.2 of MIW). The key feature of this coordinate system,
for our purposes, is the fact that it is well behaved everywhere except at

the r =0 singularity; all the metric coefficients in the line element

ds? = -at2+ dr’+ (M/r) (i +dr) 2 + r2(d8% + sin%0 dd) (5.19)

are of order unity outside, on, and near the horizon ¥ (r = 2M). The light cones
tilt near the horizon (light trapping), but donot squash down to slivers.
Our global time parameter t in Eddington-Finkelstein coordinates is

given by
t =t~ 21In (z/21-1) . (5.20)

Curves of constant t (our hypersurfaces of simultaneity St) are plotted in

Figure 4. Note that our hypersurfaces sink deep into the past as they
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approach the horizon ¥ (r=2M). This is a manifestation of the very slow

rate at which our fiducial proper time T marches forward near the horizon

1/2

dt/dt = a = (1-2M/r) 0 at ¥ 5 (5.21)

and it is characteristic of all black-hole spacetimes, not just Schwarzschild.
Suppose that one (mathematically) approaches the horizon r = 2M by moving
inward along a fixed hypersurface of simultaneity St s In principle, one will
then explore the entire past history of the spacetime region just above the
horizon. For a 108 solar mass hole (2M = 3 X 108km) one will see, plastered
into the region between r - 2M = 100 microns and r - 2M = 2 microns, the near-
horizon electromagnetic field structure laid down there At = 10 to 11 hours

18 e to b x 107 cm, one will see

ago. Far beneath this, at r - 2M = 2 x 10~
the structure characteristic of AT = 20 to 21 hours ago. These structures will
be layered down one after another like ancient sediment deposits on the bottom
of the sea.

In view of this multilayered structure, how can we define the "limits of
E and B as one approaches the horizon"? 1In principle, we can choose any layer
we wish as the horizon limit. We need only note which part of the horizon
(which T) is near the layer chosen, and announce our results as the limiting
horizon fields at that specific moment of T time.

In practice, the 3+1 formalism of this paper will probably be useful only

when the external electromagnetic field evolves very slowly compared to

2M = (17 minutes) - (M/lOBﬂD) ["quasi-stationary'" evolution]. In this case the
horizon structure being laid down now (in t time) will extend so deep [to
r-2M < 10-18cm if the evolution timescale is At > (20 hours) -(M/lOsP&)]
that previous structures can be totally ignored. One can pretend that the

present structure extends all the way in to r = 2M.
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Although the above discussion is couched in the language, formulae, and
numbers of the Schwarzschild geometry, its qualitative features will be the
same for any stationary, axially symmetric hole.

In the generic case, as one approaches the horizon ¥, one sees the lapse

function go to zero and the fiducial (ZAMO) congruence become null

55 |

& = (dr/dt)along congruence
w > QH = (angular velocity of hole) at ¥ . (5.22a)

_ H_ _  (tangent to null
oU> R= k+0'm= (generator of ¥ )

One can show, using the formulas on pages 251 and 252 of Bardeen (1973), that
near the horizon the magnitude a = |a| of the acceleration of the fiducial ZAMO

congruence behaves as
aa = alal = »<+o(a2) + Kk at ¥ . (5.22b)

Here K is the "surface gravity" of the hole. Since a + 0, a must become infin-
ite on ¥: the ZAMO observers near the horizon must accelerate like hell to

avoid falling into the hole. The unit spatial vector along a
n = a/a 5 (5.23)

when viewed as a 4-vector n, collapses into the 4-velocity U as one approaches

the horizon:
an and oV both +§ at ¥ . (5.24)

One can take, as a pair of well-behaved basis vectors in the mal 2-flats,

aV and any vector of the form
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E=(1/a)(V-n) + (const) aU . (5.25)

[That € is finite at ¥ follows from (i) the finiteness of aU=48 at ¥,

(ii) the fact that (1/0)(V-n) is null, and (iii) the fact that
(1/a)(U-n) *£ = -1 at ¥.] At the horizon cU={ is tangent to ¥, while §
points inward through ¥ (cf. Figure 4). It is convenient to fix the constant

in the definition (5.25) of § so that

t =0 (5.26)

tZt+k ln o . (5.27)

One can verify that the scalar field t has finite derivatives along  and along
E at #, and thus is well behaved there. This t is the generic analog of the
Eddington-Finkelstein t (equation 5.20). For generic black holes, as for
Schwarzschild black holes, all physical quantities must approach well-behaved

limits as one approaches the horizon along E . Formally, we define

">!" means '"becomes equal to, as one approaches the horizon

along a curve to which § is tangent—i.e., along (528

a curve of constant t in the MAU plane".

Near the horizon one can introduce spacetime coordinates t, ¢, a, and A
with these properties: 9/3t= k; 9/3¢ =m; o is the lapse function and is
therefore equal to zero everywhere on the horizon; and A measures proper dis-
tance along the horizon from the rotation axis down towards the equator. In

an immediate neighborhood of the horizon the spacetime line element will read

2

ds® = = dt2 +-w2(d¢ - QHdt)2 P daz

% @F (5.29a)
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where

& =0 at horizon , K = (surface gravity) = constant , (5.29b)

=
n

|m| is a function of A , QH = (angular velocity of hole) = constant .

The spatial geometry of the fiducial hypersurface St near ¥ is

d58 s dgt + B F 45l 4 AP & (5.30)

and the 2-geometry of ¥ is

de® sa® dgt + @i ) (5.31)

H
The fiducial observers (ZAMOs) near ¥ move with angular velocity w = Q :

QHt R A = const , o = const dis a fiducial world line near ¥. (5.32)

RS
]

5.4 BOUNDARY CONDITIONS ON THE ELECTRIC AND MAGNETIC FIELDS AT THE HORIZON

Znajek (1976,1978b) and Damour (1978,1979,1980) have constructed a beautiful
theory of electromagnetic boundary conditions at horizons of black holes; see
Carter (1979) for an excellent review. In this section we translate that theory
into our 3+1 language.

Znajek and Damour define electric and magnetic fields that live in the

horizon by

H _ B H_ B
E, =Fug® s B, = -*F o2 . (5.33)

Here Fa is the electromagnetic field tensor and *FaB is its dual. For com-

B8
parison, the electric and magnetic fields of our 3+1 formalism are §1= FaBUB’

Ba = —*FGBUB. Equation (5.22a) reveals the relationship between the two types

of fields:
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aE > EH
- - on ¥ . (5.34)
aB - BH

Here E, B, EH, and BH are viewed as spatial vectors lying in the hypersurfaces
of simultaneity SE; as one approaches the horizon, these hypersurfaces become
null and coincide with ¥ itself, which is why oE and 0B become vectors (EH and
H .
B") lying in ¥.

Fiducial observers near the horizon can split their electric and magnetic
fields into parts E“ and B” parallel to the horizon, and parts ‘E_L and BL per-

pendicular to the horizon (i.e., along their acceleration direction n):

E=E +En , B=B +B . (5.35)

~ 1l lE

H H . .
Similarly, the horizon fields can be split into components E“ and B which lie
2 = H
in surfaces of constant t = t+K . 1n a, and components ET and B, which are

orthogonal to these surfaces (i.e., which point along the null generator £):

M =Bl +B g . (5.36)

Equations (5.34) and (5.24) reveal the relationship between these decomposi-

tions:
H 5

o - - ﬁ ? e
H H

E, ~ E| , B, > B . (5.37b)

Notice that the tangential fields gﬂ and gl‘diverge as one approaches the
horizon (o + 0), but the radial fields remain finite. Physically this comes
about because the ZAMOs near the horizon are moving outward at nearly the speed
of light relative to physically more reasonable infalling observers, who see

finite fields at the horizon. This motion converts the tangential fields,
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whatever they may be in physically reasonable frames, into inward propagat-
ing plane waves as seen by the ZAMOs. By pursuing this line of reasoning one

can derive the following plane-wave relationship between E and B“ :

|E" - nX B"| goes to zero proportionally to a at ¥ . (5.38)

Hajicek (1973, 1974) and Hanni and Ruffini (1973) have introduced the con-

cept of surface density of electric charge on the horizon

gt = (1/4n)Ef i (5.39)

This charge does not really exist physically on the horizon; rather, it is the
charge per unit area which would precisely terminate the perpendicular electric
field lines ELP at the horizon. If one pretends that this charge really
exists, then one can ignore the actual fate of the electric field lines inside
the horizon.

Damour (1978) has pursued this viewpoint further: He introduces a (fic-
titious) surface current density ﬂH (charge per unit time t crossing a unit
length perpendicular to QH), which is perfectly contrived to ''complete the cir-
cuit" of all currents 2 entering and leaving the horizon. Damour goes on to

show that the hole behaves as though it had a surface resistivity

R® 2 by = 377 obms (5.40)

(first inferred by Znajek (1976,1978b) in a different manner), in the sense that

ﬂH - EH /RH . (5.41)

Damour's properties of the surface charge and current, reexpressed in our 3+1

language, are the following:
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E -~ 4ot ar w (5.42)

[Gauss's law: normal component of electric field is 47 times horizon's sur-

face charge density; derivable from (5.37b) and (5.39).]

aB »B = brglixn at wx , (5.43)

[Ampere's law: tangential magnetic field aB” is produced by surface current;
derivable from (5.38), (5.37a), (5.40), and (5.41).]
ajons =Py f_dH oy, (5.44)
- * e dt
[Charge conservation: o j*n is the charge emerging from the horizon per unit
= B

area of horizon and per unit of global time t (or 0); (d/dE)oH =9 i ¥ is
>

the rate of change of the surface charge density with respect to global time;
and (2)Y° QH is the divergence of the surface current— the divergence (Z)Y
being taken with respect to the intrinsic 2-geometry of a t = constant slice
through #. This law of charge conservation can be derived by projecting the
Maxwell equation (3.4c) along n, and by invoking D{B = -0*n together with

the horizon's Gauss and Ampere laws (5.42) and (5.43).]

Equations (5.42) - (5.4L4) allow one to regard the horizon as a thin sur-
face with finite electrical conductivity, surrounding a rather peculiar in-
terior: The interior cannot support any charges P OF currents j or perpen-
dicular electric fields E; or tangential magnetic fields By, but it can support
tangential electric fields E, and perpendicular magnetic fields By. As a con-
sequence, the horizon is forced to acquire just the right surface charge den-
sity g #nd eurrent densitygH to (i) satisfy Ohm's law (equation 5.41), (ii)
complete the circuit of external currents (equation 5.44), (iii) annul E,
(equation 5.42), and (iv) annul Ell(equation 5.43); but the horizon permits

E| and By to extend into the hole's interior. This description of a black hole

is due to Damour (1978) and Carter (1979).
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Znajek (1978b) describes the horizon in a somewhat different manner from
this: He endows it with magnetic charge as well as electric charge, and with
very high volume conductivities for both magnetic current and electric current.
The resulting charges and currents annul all external quantities <§"’ E,, E”’
B, Per é) in a thin skin just below the horizon. Znajek's description has the
beauty and advantage of treating E and B on equal footings and of not attrib-
uting peculiar properties to the hole's interior. Nevertheless, we have adopted
the Damour-Carter description instead of Znajek's because we want a formalism
which so far as possible meshes with one's flat-spacetime, laboratory experi-

ence, where magnetic monopoles are nonexistent.

Since the hypersurfaces St do not extend inside the horizon, Gauss's law
J B+dl = O [which relies on ¥ lying entirely in St] cannot be applied to
Y/
2-surfaces 37 that enclose the horizon. On the other hand, Faraday's law (4.3)

can be applied to such 2-surfaces [with A(t) =037, 3.4(t) = 0]. It says that

d
dc J N (5.45)
U (t)

for any 2-surface 9%(t) enclosing the horizon —i.e., the total magnetic flux
down the hole can never change. If the hole was created in the big bang, it
conceivably could have been born with nonzero total magnetic flux; but if it
was created by the collapse of a star, its total flux would have to be zero.
Because Damour's fictitious surface current and charge densities satisfy
Maxwell's equations in the way described above, we are guaranteed that they
will also lead, in the usual manner, to an electromagnetic torque on the horizon,
(ngﬁ + gH X QEE) * m, which precisely equals the flux of electromagnetic angular
momentum down the hole, and a Joule heating gﬁ- gH of the horizon which precisely
equals the hole's temperature times its rate of increase of entropy [Znajek
(1978b), Damour (1978), Carter (1979)]. Specifically, the inward flux of angular

momentum -SL - n (equation 5.16b), when multiplied by o = dT/dt to convert to a
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"per unit global time'" basis, and when combined with Gauss's law (5.42) and

Ampere's law (5.43), becomes

d(angular momentum of hole) _ dLH
= §L. o= d(area of horizon) dt = H
dr dt
(5.46)
= (oH Eﬁ + ng Bﬁ n) *m v

Similarly, the inward flux of redshifted energy, -SE' n (equation 5.15b),
when multiplied by & to convert to '"per unit global time", and when combined

with Gauss's law (5.42) and Ampere's law (5.43), and with w ~> QH, becomes

oy B W d(mass of hole) = dMH
B = d(area of horizon) dt ~ dZHdt
= Eﬁ- gH + ol R+ ng Bz n) *m ’ (5.47)
~ Z = 2 ~ ~

Finally, combining expressions (5.46) and (5.47) with the first law of thermo-

dynamics dMH = QHdLH + C)HdSH where @F

(¥/2mk)x is the black-hole temperature

and SH is its entropy (Hawking 1976) we
as? _
dZHdt

a

ar at

H
o’ _ oH

dZHdt

®H

=£H-E7[I

See Znajek (1978b), Damour (1978, 1979,
original derivations and discussions of

language.

6

obtain the Joule-heating relation

(5.48)

1980), and Carter (1979) for the

these relations in the 4-dimensional

Explicit Solutions of the Maxwell Equations

Since 1972 relativity theorists have put much effort into analytic solu-

tions of Maxwell's equations for stationary, axially symmetric electromagnetic

fields in black-hole spacetimes; and Wi

dies of nonstationary fields in the magnetohydrodynamic approximation.

lson (1977) has initiated numerical stu-

This
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work has been motivated in large measure by Ruffini's (1973) early recognition
that electrodynamic phenomena around black holes will have important astro-
physical consequences. Ruffini (1979) reviews many of the studies that have
been made.

The published analytic solutions include: the electric field of a point
charge at rest in the Schwarzschild geometry [solution in closed form by Copson
(1928) and Linet (1976); solution as a multipole expansion by Cohen and Wald
(1971); field lines plotted by Hanni and Ruffini (1973); force of hole on par-
ticle studied by Smith and Will (1980)]; the electric and magnetic fields of
a point charge at rest on the symmetry axis of a Kerr black hole [Misra (1977),
Léauté (1977), Linet (1979)]; the electric and magnetic fields of charged cur-
rent loops around Kerr black holes [Petterson (1975), Chitre and Vishveshwara
(1975), and Linet (1979) for loop in equatorial plane; Znajek (1978a) for loop
out of equatorial plane]; the distortion of a uniform magnetic field by the
gravity of a black hole [Ginzburg (1964) for formulas, and Hanni and Ruffini
(1976) for pictures in the Schwarzschild case; Wald (1974) for Kerr hole;
Znajek (1977) for Kerr hole with external magnetic field in a state of slow
rotation; King and Lasota (1977) for Kerr hole with the field oblique to the
axis of rotation]; and a magnetohydrodynamic solution, in the limit of very weak
magnetic field, for the magnetic field dragged onto a Kerr hole by a geodesically
moving, charged fluid (Ruffini and Wilson 1975).

Though none of these analytic solutions were written in 3+1 language,
they can all be translated easily into that language. We give two examples.

In these examples we use units in which the speed of light ¢ and Newton's gravi-

tational constant G are both equal to unity.
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6.1 POINT CHARGE AT REST OUTSIDE A SCHWARZSCHILD HOLE

For a Schwarzschild hole the spatial geometry, lapse, and fiducial angular

velocity are

2
2 dr 2 2 2 2
ds™ = ].——ZM/I‘ + r (d6” + sin 0 do ) 5 (6.1a)
@ = (1- M2 | w=0 . (6.1b)

For a point charge q at rest at r=b, 6=0 Copson (1928) as corrected by Linet

(1976) gives the potentials

A = =t (x-M) (b-M) - Mzcos S M
° o [(r’M)Z*'(b‘M)Z"MZ- 2(xr-M) (b-M) cos® +-M2cosze]1/2 ke
(6.2)
A = A= 0

The electric field E = a-1V AO (equation 5.9a), in terms of physical basis vec-

1/2 9/3r and ey = r_l 9/36, is

tors e~ = (1-2M/r) 8

o

E = ——q—{M[l _ b-M+Mcos 6}+ r[(r—M)(b—M)-—M2cose] [r-M- (b-M) cos 6]}eA

er D D3 T
q(b-24) (1 - /)2 sin g (6383
- e 3
3 b
D
where
D= [(x=M)2 + (b-M)2 =M%= 2(z-M) (b-M) cos 6 + Micos28]1/2 . (6.3b)

The electric field lines intersect the horizon r = 2M orthogonally, producing a
surface charge density

H _ g[M(1+cos?8) - 2(b-M) cos 6]

o 2
8Tb [b-M(1+ cos 6)]

(6.4)

but no surface current. The total induced surface charge is zero. Hanni and
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Ruffini (1973) plot the field lines.

6.2 KERR HOLE IMMERSED IN A UNIFORM MAGNETIC FIELD

For a Kerr hole the spatial geometry, lapse, fiducial angular velocity,

and angular Killing vector are

ae® = {pP/5)a® + oPa8t ¢ (Rste 0/ )dg" .53
p2 = 1% 4 a2 cos2® s = = S A s, A= (r2 + a2)2 - Kasin’® 5
@ = (Pam? (6.50)
w = 2aMr/A ; (6.5c)
m o= 3/ . (6.5d)

Here a is the angular momentum per unit mass of the black hole, and should

not be confused with the acceleration of the fiducial congruence. Wald (1974)

derives the 4-vector potential QF = %-Bo(ma+»23ka) for a source-free magnetic

field which is asymptotically uniform with strength Bo far from the hole. From

equations (3.3) and (5.10a,b) we compute the corresponding 3+1 potentials

Ay = -Bo{aOLZ +on’(1/2-aw)] v (6.6a)
hy= Bo<1/z-am)92 , (6.6b)
é = Bo(l/Z— aw)m % (6.6c)

From equations (5.9a,b) we derive the magnetic and electric fields, which reside

in the Kerr spatial geometry (6.5a)



s - Bo (A>1/2 % 3 3)_(__3— -
2 20sin 6 \A 36 9t ar 26 L
where X = (sinze/pz) (A - AaZMr) 5

1/2 )
e s JAI/Z 2(c%) , Msin’s S T 1(5 &
3 or 2 or \A) | or
P L P

2 2 - (6.7b)
-1/2]3(a”) , Mrsin@ 2 9 (1\| B
+ A [ 56 + pz (A - 4a"Mr) 36 A)J 30
The electric field is induced by the hole's dragging of inertial frames:
note that E = 0 if a = 0. The 2-geometry of the horizon (A=0) is
2 2 . 2 2. 2 (r+2 + a%)%sin" >
ds” = (r,” + a"cos“6)d6” + do 5 (6.8)
+ 2 2 2
r + a“cos 0

+

where r, = M+(M2--:-_12)l/2

+ is the radius of the horizon. The magnetic and

electric fields and the charge and current densities on this horizon are

H H

S R SR , (6.9a)
~ ~ e
4B Mr °(r, - M)cos B
H oM, (ry, cos :
By = —3 2 2.9 : (6.55)
(r+ + a“cos B)
B a(r, - M)
B 4WOH e (1+-cosze)
L 2 2
2 +a“ cos™®

In this example the absence of tangential fields and currents at the horizon
implies that no torque acts to slow the horizon's rotation. If the external
magnetic field were inclined obliquely to the rotation axis instead of aligned

with it, a slowing torque would act; cf. King and Lasota (1977).
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FIGURE CAPTIONS

Figure 1. The world lines of fiducial observers with 4-velocities U, and
the spacelike hypersurfaces of simultaneity §, which are orthogonal to the
fiducial world lines.

Figure 2. The Fermi-Walker time derivative DT£5 Lie time derivative 8125
and shifting time derivative i%g of aspatial vector !. The two hypersurfaces are
separated by global time At, and fiducial observer A sees them separated by
proper time AT = QAt.

In the upper diagram observer A carries with himself a gyroscope, applying
an acceleration a at its center of mass to keep it moving with him. He orients
the gyroscope along the direction of E at time t, and he attaches a rod to the
gyroscope with precisely the same length as g. After proper time lapse AT = QAt
the rod is located along the dashed arrow. The difference between M and this
dashed arrow is (DTg)AT.

At time t in the upper diagram the tail of E sits on fiducial observer A
and the tip on fiducial observer B. After proper time lapse AT = QAt the tail
is still on A but the tip has been displaced away from B. Its vector displace-
ment is <S¢§)AT‘

The lower diagram shows trajectories a and b of the shifting congruence. The
velocity of a trajectory relative to fiducial observer Ais d(gzgggg g}§§§pgg)/dT =
E/a. At time t the tail of E sits on trajectory a and the tip on trajectory b.
After global time lapse At the tail is still on a but the tip has been displaced
away from b. Its vector displacement is G{Jﬂ)At.

Figure 3. A curve C(t), lying in the hypersurface 8., changes in some
arbitrary manner as time t passes. A point labeled 1 moves with velocity v as
measured by a fiducial observer near it. During proper time AT = QAt point 1

gets displaced by vAT relative to the fiducial observer.



-70-

Figure 4. The hypersurfaces of simultaneity St around a Schwarzschild
black hole, as viewed in Eddington-Finkelstein coordinates (MTW Box 31.2).
Plotted upward is the Eddington-Finkelstein time coordinate E, which is related
to the Schwarzschild time and radial coordinates by t = t+2M In(x/24-1).
Plotted horizontally is the Eddington-Finkelstein radial coordinate r, which
is identical to the Schwarzschild radial coordinate. The curves shown are
our fiducial hypersurfaces St’ and the cones are the radial light cones as

given by the metric (5.19).
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BLACK-HOLE ELECTRODYNAMICS: o
AN ABSOLUTE-SPACE/UNIVERSAL-TIME FORMULATION

DOUGLAS MACDONALD and KIP S. THORNE
W. K. Kellogg Radiation Laboratory
California Institute of Technology, Pasadena, California 91125

ABSTRACT

This paper reformulates and extends the Blandford-Znajek theory
of a stationary, axisymmetric magnetosphere anchored in a black hole
and in its accretion disk. Such a magnetosphere should transfer much
of the rotational energy of the hole and orbital energy of the disk
into an intense flux of electromagnetic energy—which in turn might
be the energizer for quasars and active galactic nuclei.

Our reformulation of the theory attempts to make it accessible
to plasma astrophysicists who have little experience with general
relativity. This is done by replacing the relativist's "unified
spacetime'" viewpoint with an equivalent Galilean-type "absolute-space-
plus-universal-time' viewpoint, and by replacing the electromagnetic
field tensor F,y with electric and magnetic fields E and B that reside
in the absolute space outside the black hole. The resulting formalism
resembles the theory of axisymmetric pulsar magnetospheres; and it
will, we hope, permit a fairly easy transfer of physical intuition
and results from the pulsar problem to the black-hole problem.

The Blandford-Znajek theory focussed primarily on force-free
regions of the magnetosphere. This paper, in addition to recasting
the force-free theory in new language, extends it to encompass regions
that are degenerate (E - B = O) but not force-free, and regions that
are neither degenerate nor force-free. Blandford and Znajek showed
that the magnetospheric structure in the force-free region is deter-
mined by a general relativistic "stream differential equation'. This
paper presents an action principle for the stream equation, it eluci-
dates the boundary conditions that one must pose on the stream func-
tion Y, and it shows that y and the poloidal magnetic field distribute
themselves over the hole's horizon in such a manner as to extremize
the horizon's electromagnetic surface energy.

This paper also constructs a general relativistic version of DC
electronic circuit theory and uses it to elucidate the flows of elec-
tric current and of electromagnetic power in the magnetosphere. The
circuit-theory analysis, and independently a torque-balance analysis,
suggests that those magnetic field lines which thread the hole will
be dragged into rotation with roughly half the angular velocity of
the hole—and, consequently, that the hole will deliver to the mag-
netosphere the maximum electromagnetic power permitted by the horizon
strengths of the magnetic fields.
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i Introduction

Within one year after the discovery of pulsars (Hewish et al. 1968) it
became evident that they are rotating neutron stars, and that the rotational
energy is transmitted to radiating particles by a strong magnetic field em-
bedded in the star (Gold 1968, Pacini 1968). During the subsequent year
Goldreich & Julian (1969) laid the foundations for the theory of this
""pulsar electrodynamics'"; and during the decade since then scores of out-
standing researchers have explored many different variants of the theory
(see, e.g. the review by Arons 1979).

Quasars were discovered four years before pulsars (Schmidt 1963), and
almost immediately a number of astrophysicists proposed that they might be
energized by black holes (Robinson et al. 1965). However, a fully viable
and compelling mechanism by which black holes can energize quasars was not
found until 1976, thirteen years after the quasar discovery (Blandford 1976,
Lovelace 1976, Harrison 1976). The long delay in finding this mechanism is
surprising, since the mechanism is essentially the same as in the pulsar case:
Magnetic fields, embedded in a rotating black hole and a surrounding accretion
disk, transmit rotational and orbital energy to distant, radiating particles.
Equally surprising is the fact that scores cof theorists have not, since 1976,
explored many different variants of the theory of "black-hole and accretion-
disk electrodynamics." (For the modest amount of work that has been done,
see Blandford & Znajek 1977; Znajek 1977, 1978b; Lovelace et al. 1979).

Why has the theory of black-hole and accretion-disk electrodynaﬁics
developed so slowly? We think a significant factor is the arena of curved 4-
dimensional spacetime in which crucial parts of the theory must reside. - Many

astrophysicists feel uncomfortable in curved spacetime, even when the subject
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they are exploring, electrodynamics, is totally familiar.

Relativity theorists are largely responsible for the astrophysicists'
discomfort. The relativist prefers to think about physics in a geometric,
frame-independent way, representing the electromagnetic field by the tensor
F, a 4-dimensional geometric object. The astrophysicist, on the other hand,
would prefer to split this tensor into a 3-dimensional electric field § and
magnetic field g, sacrificing the general covariance of the theory for the
insight to be gained from a comparison with the well-developed flat-spacetime
theory of pulsar electrodynamics.

Moreover, the relativist likes to regard spacetime as a global, 4-
dimensional manifold, free of any global reference frames. In calculating,
he may introduce a local reference frame here, a different local frame
there, a third one elsewhere, and flit back and forth from frame to frame
as suits his convenience. The astrophysicist is apt to be uncomfortable with
this slippery mode of study. His intuition is based largely on the Galilean-
Newtonian viewpoint, in which physics occurs in a fixed, absolute 3-dimen-
sional space with an associated universal reference frame, and events are
demarked by the passage of a universal time. This absolute—space/universal—
time viewpoint has given the astrophysicist a firm foundation on which to
develop a vast lore of insights into pulsar electrodynamics and other astro-
physical problems.

The relativist's slippery viewpoint is essential when spacetime is
highly dynamical; and it has been enormously powerful in studies of cosmolog-
ical singularities and of dynamically evolving black holes. However, its
track record in treating black-hole electrodynamics had not been good.

Fortunately, in stationary, curved spacetimes such as those outside most

astrophysical black holes, one can reformulate electrodynamics in terms of an
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absolute but curved 3-dimensional space and a universal time. The variables

in this reformulation are those familiar from flat-space electrodynamics: elec-
tric and magnetic fields E and P, charge density pe, and current density i. We
present and utilize that reformulation in this paper, with the hope that it may
catalyze pulsar-experienced astrophysicists to begin research on black-hole
electrodynamics and to bring to bear on this topic their lore about the
"axisymmetric pulsar problem" (e.g. Mestel, Phillips & Wang 1979).

Our absolute-space/universal-time formulation of stationary general rela-
tivity has deep roots in the "3+l hypersurface formulations'" of dynamical
relativity, which are used nowadays by numerical relativists; and those 3+1
formulations in turn have deep roots in the Hamiltonian formulation of
geometrodynamics, which was introduced in the 1950's as a tool for quantizing
general relativity. We describe those roots in an accompanying paper (Thorne &
Macdonald 1980, cited henceforth as Paper I); and, more important, we there use
the 3+1 formulations of general relativity tc derive the absolute-space/
universal-time formalism of this paper.

In this paper we present without derivation the absolute-space/universal-
time formalism, restricted to the space outside a rotating, axially symmetric
black hole. We then use that formalism to derive the basic equations govern-
ing black-hole accretion disks and their magnetospheres.

More specifically, the remainder of this paper does the following: Sec-
tion 2 presents without derivation the absolute-space/universal-time formula-
tion of general relativity outside stationary black holes. Subsection 2.1
focusses on the mathematical structureof the formalism and its physical inter-
pretation. Subsection 2.2 focusses (i) on the equations of electrodynamics;

(ii) on the local laws of energy balance and force balance (first law of thermo-

dynamics, and Euler or Navier-Stokes equations for an arbitrary continuous medium and
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for the electromagnetic field); and (iii) on the global laws of conservation
of angular momentum and 'redshifted energy." Subsection 2.3 presents the
Znajek (1978)-Damour (1978) theory of boundary conditions at the black hole's
horizon, reformulated in our language of absolute space. Derivations of
these results are to be found in Paper I.

Section 3 uses the absolute-space formalism of Section 2 to give an
overview of black-hole and accretion-disk electrodynamics. More specifically,
Faraday's law is used to describe the manner in which an accretion disk
dynamically squeezes magnetic field lines onto a black hole and holds them
there (Fig. 1). The discussion is fully dynamical; it does not require sta-
tionarity or axial symmetry of the accretion disk or its magnetic field.

The remainder of the paper, Sections 4-7, develops the theory of a
stationary, axially symmetric magnetosphere. Sections 4, 5, and 6 develop
the fundamental magnetosphere equations with successively increasing degrees
of specialization; and then Section 7 shows how to put together a coherent
magnetosphere model based on those equations.

The general equations for a stationary, axisymmetric magnetosphere are
developed in Section 4. Section 5 imposes the constraint that the electro-
magnetic field be degenerate, E- § = 0, and derives the consequences of
degeneracy for the magnetosphere equations. Section 6 imposes, in addition
to degeneracy, the constraint that the fields and currents be force-free,
De§+'(é/c)x B=0, and derives the consequences of force-freeness. Subsections
4.1, 5.1, and 6.1 focus on regions of the magnetosphere outside the black
hole's horizon; subsections 4.2, 5.2, and 6.2 present the boundary conditions
at the horizon for the unspecialized case, the degenerate case, and the .degen-
erate force-free case, respectively. Subsection 6.3 presents action principles
for the magnetosphere structure in force-free regions and for the distribution

of the magnetic field on the horizon.
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The magnetosphere theory for force-free regions has been
developed previously by Blandford & 2Znajek (1977) using the usual 4-dimen-
sional spacetime formulation of general relativity; and the general 4-dimen-
sional theory of boundary conditions has been developed by Znajek (1977, 1978b)
and Damour (1978). Our versions of these theories are isomorphic to theirs;
we merely rewrite them in our absolute-space language, and extend them to
include non-force-free regions of the magnetosphere.

Our general magnetosphere equations can act as a foundation for a
plethora of different magnetosphere models. The details of a model will
depend on the detailed assumptions made about the behavior of the plasma and
charged particles in the non-force-free regions; and those details are left
unspecified in our equations. Section 7 sketches various aspects of global
magnetosphere models which are independent of the detailed assumptions about
the non-force-free regions. Section 7 makes only the mild constraining assump-
tions that the fields in the disk are degenerate, that just outside the disk
and hole there is a force-free region, and that beyond the force-free region
is a non-degenerate, non-force-free region, the acceleration region, where
the magnetosphere's rotation-induced power output is deposited into charged
particles (cf. Fig. 2). Subsection 7.1 presents an overview of this assumed
global magnetosphere structure.

Subsection 7.2 analyzes the balance that must exist between the torques
exerted at one end of a magnetic flux tube by the hole or disk, and at the
other end by charged particles in the acceleration region. This torque
balance determines the angular velocity QF of the flux tube; and, in the case
of tubes threading the disk (but not those threading the hole), it also deter-
mines the current flowing in the force-free region of the magnetosphere.

Subsection 7.2 also describes the rotation-induced power flow from disk and
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hole to acceleration region, and presents an argument (generalized from
pulsar theory) which suggests that torque balance on flux tubes threading
the hole will lead to a flux-tube angular velocity roughly half that of
the hole QF = QH/Z —and will thereby lead to optimal power output.

Subsection 7.3 develops a quantitative version of a DC circuit analy-
sis of power flow through the force-free region, which was proposed quali-
tatively by Znajek (1978) and Blandford (1979). This analysis shows that
the angular velocity QF of a flux tube threading the horizon is determined
by the ratio of impedances across the tube in the horizon, AZH, and in the
acceleration region, AZA: QF/(QH-QF) = AZA/AZH where QH is the hole's
angular velocity. The standard circuit-theory condition for optimal power
flow, (load impedance) = AZA = (source impedance) = AZH, agrees with the
torque-balance condition for optimal power flow, QF = QH/Z. Estimates of
the impedance of the acceleration region (e.g. Lovelace et al. 1979) suggest
that this impedance matching may be roughly achieved in Nature.

Subsection 7.4 discusses the mathematical structure of the problem of
constructing a precise model for the force-free region. Roughly speaking,
one must specify at the interface with the disk and acceleration regions the
normal components of the magnetic field and electric current, and the angular
velocity of the field lines. One does not specify any boundary conditions at
all on the black-hole horizon. One then solves a single nonlinear partial
differential equatiom—the relativistic stream equation of Blandford &
Znajek (1977)—subject to these boundary conditions; and from the resulting
stream function Y, one computes the electric and magnetic fields and the
current and charge densities throughout the force-free region and on the
horizon. The resulting fields and currents will automatically satisfy the

Znajek-Damour boundary conditions at the horizon.

Subsection 7.5 proves that a magnetic field loop cannot exist in the sta-

tionary, force-free region with both its feet anchored in the horizon. Presum-
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ably such a loop, if formed, will annihilate itself on a timescale At of the
order of the light travel time across the loop.

Because the mathematical details of Sections 2, 4, 5, and 6 may seem
formidable at first sight (actually they are not because they closely mirror
flat-space axisymmetric pulsar theory), readers may find it helpful to peruse
the astrophysical sections of the paper (Sections 3 and 7) before going on
to a more detailed reading.

Throughout this paper we use cgs and gaussian units (§ measured in
Gauss, E in statvolts per centimeter); and we use the terminology '"equation

(1,2.4)" to denote "equation (2.4) of Paper I (Thorne & Macdonald 1981)".

2 The Absolute-Space Formulation of Black-Hole Physics

2.1 THE MATHEMATICS OF ABSOLUTE SPACE

In the standard 4-dimensional spacetime formalism of general relativity,
a stationary axisymmetric black hole is characterized by the spacetime
geometry

2u 2u

ds® = <alclut’ Hlaf ~dt) fe T at+a © 4ot (2.1)
(see, e.g. Carter 1979, Bardeen 1973). Here the metric coefficients o,w,
w, Hys and u, are functions of r and 6, and c is the speed of light.

In our absolute-space formalism, the hole is characterized instead by

an absolute 3-dimensional space with curved geometry

2 3j k
ds” = ij dx” dx

2u 2u
=632d¢2 + e ldr2 +e dez in above coordinates. (2.2)

We denote by VA (components Aj]k) the gradient (covariant derivative) of a

vector A in this absolute space. The axial symmetry of the space is embodied
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in the fact thatw, ul, and u, are independent of ¢ — or, more abstractly,

in the fact that m ='m2V¢ is a Killing vector field

m=ﬁ%¢ W,y F . =0 2 2.3
2ol ’ 3he ™ Pl 2
Note that T is the length of this Killing vector

wz]?l; (2.4)

i.e., 2TWis the circumference of the circle of constant radius and lati-
tude, (r,8) = constant, to which m is tangent. We shall call such circles
"T—loops," and we shall callw the "cylindrical radius" of an m-loop.

- Going hand in hand with our absolute space is an absolute global time
t [equal to the time coordinate t of the 4-dimensional spacetime metric
(2.1)]. A vector field A in absolute space can evolve with time:
é = é(§,t). Its time derivative at fixed absolute-space location will be

denoted
A = BAIBE & A = aadsee (2.5)

[In the '"3+1" formalism of paper I this derivative is denoted:£té (equa-
tions I1,2.15 and I,5.5); it is the '"Lie derivative" of é along the spacetime
Killing vector field k = 3/3t.]

Living in our absolute space is a family of fiducial observers called
""zero—angular-momentum observers'", or ZAMOs (Bardeen, Press & Teukolsky
1973). 1In our absolute-space formalism all the laws of physics are for-
mulated in terms of physical quantities (observables) measured by the
ZAMOs. For example, a particle with charge q and velocity v as
measured by the ZAMOs, moving through electric and magnetic fields g and §
as measured by the ZAMOs, experiences a Lorentz force q[§+(y/c)X §]; see

Section 2.2.
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If the black hole is nonrotating, then the ZAMOs are at rest relative
to absolute space. However, rotation of the hole drags the ZAMOs into
toroidal motion along m-loops; their angular velocity relative to absolute

space is

(d¢/dt)of ZAMO rest frame S (2.6)

This ZAMO angular velocity w is the same quantity that appears in the space-
time metric (2.1). When one adopts the 4-dimensional spacetime viewpoint
(which we do not), one discovers that, despite the toroidal ZAMO motion
d¢/dt = w, the ZAMO world lines are orthogonal to the 3-dimensional hyper-
surfaces of constant time t — i.e., orthogonal to our absolute space; cf.
equation (2.1). Thus, our absolute space at time t is regarded by the ZAMOs
as a space of constant time in their local Lorentz frames.

If the black hole did not gravitate, the clock carried by a ZAMO would
read absolute global time t. However, the gravity of the hole produces a
gravitational redshift of ZAMO clocks; their lapse of proper time dt is

related to the lapse of global time dt by:

(dt/dt) o . 2.7)

of ZAMO clock

Here o, the "lapse function', is the same quantity that appears in the space-
time metric (2.1). The gravitational acceleration g measured by a gravimeter
carried by a ZAMO (which is the negative of the acceleration a

measured by his accelerometers) is (equation I,2.4)

—— T (2.8)

Because absolute space is axially symmetric, the ZAMO angular velocity

w, the lapse function a, and the cylindrical radius function ™ are all
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constant on m-loops

13-w=dw/d¢>=0, m-Vo = da/dp =0, wm-Vw=dw/d$ = 0. (2.9)

The horizon ¥ of the black hole is the two-dimensional surface of
infinite gravitational redshift, a = 0. Everywhere on 4 the ZAMOs
are dragged into motion with the uniform angular velocity QH of the black

hole (equations I,5.22a):

oa-=+0, w > QH at horizon 4 . (2.10)

ZAMOs at the horizon feel an infinitely strong gravitational accel-
eration g. However, if one multiplies g by a = dt/dt to convert the acceler-
ation from a '"per unit ZAMO proper time'" basis to a '"per unit global time"

basis, one obtains a finite result (equation I,5.22b or page 252 of Bardeen 1973):
ag ~+ -Kn at A . ' (2.11)

Here n is a unit vector pointing orthogonally out of %, and kK is the "surface
gravity" of the hole. (x and QH are both constant over 4, see e.g. Carter
1979). 1In calculations very near 4 it is useful to introduce a coordinate
system (a,A,$) where A = (proper distance along I from the north pole toward
the equator). 1In this coordinate system the metric of absolute space reads

(equation I,5.30)
d32 = (cz/K)zda2+ dk2+?32 dd)z near 4 , (2.12a)

and unit vectors along the '"toroidal" (i.e., ¢) direction, the '"poloidal"
(i.e., A) direction, and the 'mormal" (i.e., o) direction are—in the

notation of modern differential geometers—
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Observers freely falling into the hole move at the speed of light c

relative to the infinitely accelerated ZAMOs at the horizon:

consequently, they move along trajectories
0 = const. X exp(-kt/c) mnear 4 . (2.13)

Because the infalling observers are physically nonpathological, all physical
quantities which they measure must approach well-behaved limits along their

trajectories. These limits are defined mathematically by

" —> " means "approaches, as one approaches the horizon along a time-

evolving trajectory a = const. X exp(-kt/c)." (2.14)

(For further discussion see Section 5.3 of Paper I.)
For the special case of a nonrotating Schwarzschild black hole of mass
M and a Schwarzschild spatial coordinate system, the quantities appearing in

the above discussion are:

ds2 = (l--ZGM/t:Zr)“1 dr2+—r2d824-rzsin29 d¢2 3
o = (l--ZGM/czr)l/2 , w=0, W=r sin 6;
oM/x? 26M)1/2 3
Sy w8 with ey {1 - ™ (unit radial vector);
~ (1-26M/c“r) =L ~% c'r &
(2.15)
. 2 4 H
S is at r = 2GM/c”; therek =c /4GM, @ =0, p= &
2
A= (26M/c”)6 near y

o = const. x exp(-kt/c) <= r-2M = const. X exp(—c3t/ZGM)

for freely falling observers near -
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Here G is Newton's gravitational constant.
For the special case of a rotating Kerr black hole of mass M and angular

. = < H : . .
momentum per unit mass a = L /Mc, and a Boyer-Lindquist spatial coordinate system:

ds? = WEF + Pa® + b sl Wt
pz = t2+-a2cosze 5 o= rz--ZGMr/cz-i-a2 5 A= (rzd-az)z- azA sinze :
o« = fphmye = 2aMr/cA w= oS %me
2 2 2
ca [,1/2 9 (p A) 5 <LA ]
g === tA =il == ) e a2 e
2 2p3A [ or A ~r 30 A ) =0
; & sxdfi2 - .
with es = (A /p) 3/3r and e3 = (1/p) 3/36 unit vectors ;
Y is at EeE, = GM/c2+ [(GM/CZ)Z—aZ]l/2 5
At U, k= ca(r -GM/CZ)/ZGMr QH = c3a/2GMr n=ea g (2.16)
Ll + & +’ 4 ’ o ~T > .
4]
A= ( (ri + a2c0528)1/2d6 = (rii—az)l/z E[6, a/(rf + a2)1/2] near I ,
0

with E = (elliptic integral of the second kind) ;

R
[

const. X exp(-Kt/c) < r-r = const.X exp[—c3t(r+-GM/cz)/GMr+]

+

for freely falling observers near 4 .

Our absolute-space formalism is also applicable to stationary, axially
symmetric black holes whose spatial metric ij, lapse function o, and ZAMO
angular velocity w are modified away from Kerr by the gravitational effects of

surrounding matter.

2.2 ELECTRODYNAMICS IN ABSOLUTE SPACE

When studying electrodynamic phenomena around black holes we deal with

the electric field E, the magnetic field B, the electric charge density pe,
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and the current density j, all as measured by the ZAMOs. In terms of

these quantities, Maxwell's equations are (equations I,5.8)

V-E=d4np, , (2.17a)
V.B=0 s (2.17b)
V x (aB) = 4m0j/c + (1/c)[E +w£ E - (E- Vw)n] , (2.17¢)
Vx (@E) = -(1/c)[B+w£B - (B Vw)m] . (2.174)

Here:£mE is the "Lie derivative'" of E along the toroidal Killing vector m

iﬁE =S (m-V)E - (E-V)m . (2.18)
Notice that the unfamiliar expression in square brackets

g +w€ E- (E-Vo)m = 3E/3t+£_E (2.19)

is just the "Lie-type" time derivative, moving with the ZAMOs (dx/dt = wm), of
the electric field. When the electric and magnetic fields are stationary and
axisymmetric, the terms %, i; E, %, and i; E will vanish. Notice also that the
lapse function Q is introduced to comvert the curl and current terms in (2.17)
over to the same "per unit global time t' basis as the time derivative terms.
The fields @E and B, which we shall meet extensively below, are the electric
and magnetic fields measured by ZAMOs, if the ZAMOs use global time t rather
than ZAMO proper time T in computing the rate of change of momenta:

(dp/dt) a (dE/dT) = q(aE + ang) :

Lorentz force

The four Maxwell equations (2.17) can be reexpressed in integral form

(equations I,4.1-1,4.4)

J E-dL = 47 J Pe dv (Gauss's law for E) , (2.20a)
A r
J B-dEl =0 (Gauss's law for B) 3 (2.20b)
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a@-fyrpa-1 [aed [agopym-a
3A(t) A(t) A(t)
(Ampere's law) , (2.20c)
1 _ 1d
J Q(E*UEY)(P) 'dg el -5 J B dg (Faraday's law) - (2.204d)
JA(L) A(t)

Here ¥ is any 3-dimensional volume entirely outside the horizon and 37 is
its 2-dimensional boundary; dV = d(proper volume) and
dZ = (outward pointing unit normal to 3% )d(proper area). Also A(t) is any

curve; df = d(proper distance along boundary curve); and the orientations

of df and df must be chosen in accordance with the right-hand rule. Finally,

v is the physical velocity

v

[d(proper distance) 2. 20
£ .21a

dt } relative to ZAMOs

of a point on A(t) or 9A4(t), relative to and as measured by the ZAMOs. (Thu§

dt

Qv

d(proper distance)
+wm = (2.21b)

J relative to absolute space

is the velocity, per unit global time, relative to absolute space.)
The Maxwell equations (2.17) imply the differential law of charge

conservation (equation I,5.11)

Boe/at +wm - Ype + Y- (ai) =0 . (2.22)

Note that 9/dt+wm -V is the global time derivative along the ZAMO
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trajectories (where pe and 2 are measured), and the factor o converts i
over from '"charge per unit area per unit proper time t" to '"charge per unit
area per unit global time t." The integral formulation of this law of
charge conservation is (equation I,4.5)

d - - .
ac f P dv = [ a(g pe{) d§ 3 (2.23)

r(t) 3 U(t)

The electric and magnetic fields can be derived from a scalar poten-

tial Ay and a vector potential z} (equations I,5.9)

2]
L}

=1 =]
o [V A+ W/e)VA,] - (ac) T(A+w£ A)
= & =0 ~7 ~ m~ (2.24a)

where A, = A-m 3

¢

VxA s (2.24b)

o~}
]

When these expressions are used, the source-free Maxwell equations (2.17b,d)
are automatically satisfied.
A test particle of charge q and rest mass U, moving through absolute

space, obeys the equation of motion (equation I,5.12)

o [3/3t+ (v + wm) - Vp =

= WTg+ o Ml - Vm - (- mTw] +qlE+ (v/c) xB] . (2.25)

Here v is the particle's physical velocity relative to the ZAMOs (Eq. 2.21);

pul' is its mass-energy, and p its momentum as measured by the ZAMOs

v2\-1/2
IF = <l - —1‘—2-> 5 p = u'v 2 (2.26)
2 4 ~

a_l[3/3t4-(av4-wm) - V] is the zAMO proper time derivative moving with the
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particle; ul'g is the '"gravitational acceleration' of the hole on the particle;

u—l[w(p-V)m - (p'm)Vw] is the ""frame-dragging

the

ous

m
n

wn
"

=
1

In terms of these we can also define densities and fluxes of ''redshifted

n

particle; and q[E + (v/c) XB] is the Lorentz force.

force of the hole's rotation on

The ZAMOs will characterize the electromagnetic field and/or any continu-

medium present by

= (total flux of energy, erg/cmzsec, as measured by ZAMOs)

= (stress tensor, dyne/cmz, as measured by ZAMOs).

= (total mass-energy density, erg/cm3, as measured by ZAMOs) ,

J

(2.27)

energy' (also often called "energy-at-infinity'), and of "angular momentum

about the hole's symmetry axis'" (equations I,5.15 and 1,5.16)

For

™
]

=
]

ae+w§-13/c2 5 §Esa§+wvj-rf 5
S - m/c2 S. ZW-'m
= = 2 ) T

the electromagnetic field
2 2
(1/8m (E°+3%) , S = (c/4m(EXB)
1.2 2
(1/4m) [-(EQE + B®B) + 5(E"+B)Y] ;
2, 2
(a/8m) (E"+ B") + (w/4mc)(EXB) *m )
1 2 2
(1/4m) [0c EXB - w(E'm)E- w(B'm)B -5 w(E"+B)m] ;

(1/4mc) (EXB) + m s

QM -EmE - BmB + 3"+ 3]

(2.28a)

(2.28b)

(2.29a)

(2.29b)

(2.30a)

(2.30b)

(2.31a)

(2.31b)
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For a perfect fluid with density of mass-energy p (erg/cm3) and pressure
P (dyne/cmz) as measured in its own rest frame, and with velocity v as

measured by the ZAMOs,

& = Tofprsu Tty g = (Gp)l oy , (2.32a)
-1/2
W= W e+pr? v@®v+py , Tz a-vied) X (2.32b)
The law of local energy balance as formulated by the ZAMOs is (equation
1,5.13)

o a8 eum « Fle + 0"V » (e?S) +0 tnWs Vi

=0 if all forms of energy and stress are included in €, S, W

e . : . . . (2.33a)

= -j+-E if only electromagnetic contributions are included
in €, S, W.

(The third term on the left side of the equation is caused by the shear of the

ZAMO trajectories relative to each other.) The law of local momentum balance

(force balance) as formulated by the ZAMOs is (equation I,5.14)

o Ma/3t+ug 15 + aTH(S - mTVw- eg + eV - (i)

=0 if all stress and energy are included in S and W

(2.33b)

= -Cz[peE+'(j/c)x B] if only electromagnetism is included.

(The test-particle equation of motion (2.25) can be derived in the usual way
from this general force-balance equation.) From the laws of energy balance
and force balance one can derive differential and integral conservation laws

for redshifted energy and for angular momentum (equations I,5.17 and I,5.18)



~ 9=

a~1(a/3t + wm - Ve + o lv- (@gy) = 0 $¥ a7l dmeluded
(2.34a)
= -0j*E - w[peEi-(j/c)X Bl °m if only electromagnetism,
& 103/ 0t +am » V)€L+a—1V' (as;) =0 if all included
(2.34b)
= ‘[0854'(j/c)x B] - m if only electromagnetism;
d B ) .
Fr J EE dv + J a(§E-EEY) dg =0 if all included
r(t) 3 (t)
(2.3548)
=- J {azj- E%—Gm[peE4—(j/c)x B]-m}dv if only electromagnetism,
r(t)
d ; §
T €L av + J a(gL-ELY) -dg =0 if all included
r(t) (t)
(2.35b)
=- J a[peE+-(j/c)X B] *m dV if only electromagnetism.
7(E)

Far from the black hole space becomes flat, the lapse function O become;
unity, the ZAMO angular velocity w goes to zero; and, consequently, our formal-
ism reduces to standard flat-space physics in a global Lorentz frame—the rest
frame of the hole. In the asymptotically flat region redshifted energy

reduces to ordinary, every-day energy.

2.3 BOUNDARY CONDITIONS AT THE HORIZON

Znajek (1978b) and Damour (1978) have developed an elegant formalism for
studying the boundary conditions at the horizon by defining surface charge and

current densities lying in the horizon. (For a beautiful review of this work
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see Carter 1979.) This formalism can be expressed naturally in the language
of absolute space and universal time, where the horizon is just the two-dimen-

sional surface a=0 (see Section 5.4 of Paper I). The horizon's charge density

oH = (charge per unit area on 4() (2.36)

and current density

g H _ (charge crossing a unit length perpendicular ) (2.37)

to gH on ¢, per unit global time t

i H . . .
have these properties: (i) 0 terminates all electric flux that intersects

the horizon (equation I,5.42)

E-n = Ei—é AHOH (Gauss's law at 4), (2.38)

(where n is the unit outward normal to the horizon and "—>' means "approaches

P .. H
as one approaches the horizon in the manner of equation 2.14"); (ii) 4§ com-
pletes the circuit of all electric currents that intersect the horizon (equa-
tion I,5.L4L)

aj*n — - aoH/at - (z)v . g“

(charge conservation at %) , (2.39)

(where (Z)V -jH is the two-dimensional divergence of the surface current in

the 2-dimensional geometry of the horizon); (iii) 5“ terminates all tangential

magnetic fields at the horizon (equation I,5.43)

aB” —-4'§H = (QF/C)JHX n (Ampere's law at ) (2.40)

(where B" is the component of the magnetic field tangential to the horizon,

and aBH is this tangential field converted over to a "per unit global time"

basis); (iv) the horizon has a surface resistivity

RH = 4m/c = 377 ohms (2.41)
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in the sense that (equations I,5.41 and I,5.37a)

GE“-—+ EH = RH JH (Ohm's law in %) (2.42)

(where E" is the component of the electric field tangential to the horizon
and aE“ is this tangential field converted to a "per unit global time"

basis). [Note that the "horizon fields" EH and BH of this paper are the same
as the E? and BT of Paper I —i.e., in passing from Paper I to this paper

we have deleted the null components Eil and Bﬁz from EH and BH (equation
1,5.36)..]
EH H et i
Because and B must be finite and because @ + 0 at 4, the tangential
fields E” and B” can diverge at 4 as 1l/a. By contrast, the normal fields

B = B'n and E

s = E-n must be finite (Section 5.4 of Paper I). The fact that

1
RH is an impedance equal to that of free space at the end of an open waveguide,
together with Ohm's law (2.42) and Ampere's law (2.40), guarantees that the

electromagnetic field looks to ZAMOs near the horizon like an infinitely blue

shifted, ingoing electromagnetic plane wave:

E, and B, finite at ¥ s (2.43a)
EH and §H diverge as 1l/o at ¥ . (2.435)
]E” = p X §ul goes to zero as a at A . (2.43¢c)
[A derivation of the rate at which lg" - PX §"| goes to zero is sketched in

the paragraph preceding equation (I,5.38).]
The electromagnetic field produces a torque per unit area on the hole's
horizon given by (cf. equations 2.31b, 2.38, 2.40, 2.42; also I,5.46)

H

BB w9 d(angular mome?tum of hole) = dL
i) (s d(area of horizon) dt dZHdt

= 0" + @) xB ) v m ; (2.44)



s

Here BL = BLE is the component of B perpendicular to.#. The fields also

increase the hole's entropy by Joule heating (equation I,5.48)

H dst

of S5 - g gf , (2.45)
dr'de  ~~

H
where © = (h/27kc)k is the hole's temperature and
H 3
S = (c"k/4hG) x (area of horizon) is its entropy (Hawking 1976). Here k is
Boltzmann's constant and h is Planck's constant. Finally, the fields increase

the hole's mass at a rate given by the thermodynamic law dMHc2==QHdLH+OHdSH

—and given equally well by the relation dMch = d(redshifted energy entering

the hole)
H 2 H. _H H,_H
o8 - _>dMHcS_dP=QdLH+OdS
- . drdt daz dr dt

H gH

- e"E + () xB ) m+E (2.46)

(cf. equations 2.10, 2.30b, 2.38, 2.40, 2.42; also 2.44, 2.45; also 1,5.47).
Here dP/dZH is the redshifted energy per unit time t per unit area (i.e., the

redshifted power per unit area) flowing out of the hole.

3 Overview of Black-Hole and Accretion-Disk Electrodyggmicg

Consider a black hole surrounded by an accretion disk inwhich a magnetic
field is embedded (Fig. 1). Initially make no simplifying assumptions about the
disk and its magnetosphere: Let them evolve dynamically; let them have no axial
symmetry; admit the possibility that the fields near the hole may be so strong
that classical electromagnetic theory must be replaced by quantum electrodynamics,
and so tangled that the field lines slip through the disk's plasma and recon-

nect. On the other hand, insist that far from the hole the field beweak enough to
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be described classically, and that in the equatorial plane far from the
hole the field be frozen into the disk's plasma (perfect magnetohydrodynamic
approximation).

We can get insight into the structure and evolution of the magnetic
field by applying our curved-space Faraday law (2.20d) to the 2-dimensional
surface A shown in Figure 1. The boundary 94 of
this surface is an ?—loop (circle of constant r and 6) in the equatorial
plane, at a sufficiently large radius for the field to be frozen in and
classical. The surface 4 stretches upward from this anchoring curve and
over the hole's north pole like a circus tent — remaining always at a suffi-
ciently large radius for classical theory to apply, and remaining everywhere
axially symmetric. Require that /4 be fixed in space — or, equivalently since
A is axially symmetric, that it be attached to and move toroidally with the
ZAMOs.

Faraday's law (2.20d), applied to  and 34, says

d?l/dt = -c J QE - d% 5 (3.1)
oA

where ?A is the magnetic flux crossing 4. The EMF on the right-hand side
can be reexpressed in terms of the magnetic field B by invoking the freezing-in

condition

E + (v/c) x B =0 in the disk at 3.4 , (3:2)

where v is the velocity of the disk's plasma as measured by the ZAMOs:

d?d/dt = J avXxB . d% ¢ (3.3)
oA

The right-hand side has an obvious physical interpretation as the rate (per

unit global time t) at which the plasma carries magnetic flux inward across
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dA. Thus, magnetic flux is conserved in time; the flux across .{ can

increase or decrease only as a result of field lines being physically trans-

ported inward or outward across 9.

Consider, now, the fate of the magnetic field lines being transported
in toward the hole by the accretion disk's plasma: As the plasma reaches the
inner edge of the disk and then spirals down the hole, it becomes causally
disconnected from the field lines it was transporting. This does not liberate
the transported field, however. Our flux conservation law guarantees that the
field lines, though disconnected from their sources, cannot escape. They are
squeezed inward and are forced to thread the hole by the Maxwell pressure of
surrounding field lines, which in turn are anchored in the disk. (An exception
is a field line such as b in Fig. 1, which will annihilate itself once the disk
has deposited both its feet onto the hole; see Section 7.5.) If thedisk's conductivity
were suddenly turned off, the field anchored in it would suddenly fly away, releas-
ing its Maxwell pressure from the field lines threading the hole. The hole's
gravity has little power to hold the threading field; with the Maxwell pres-
sures gone it would quickly disperse as well ["Price's theorem'; Price (1972)].

In the remainder of this paper we shall assume that an accretion-disk-
plus-magnetic-field structure like that in Figure 1 has been set up, and that
the electric and magnetic fields are weak enough for classical electrodynamics
to be a good approximation. We shall assume, further, that the disk and its
fields have settled down into a stationary, axisymmetric state. In the next
three sections, we shall consider the electrodynamic equations for successively
more specialized field configurations. Section 4 considers situations where
the electromagnetic field is stationary and axisymmetric, but not otherwise
special; section 5 specializes to the case where the field is degenerate; and

section 6 specializes still further to the case where the field is force-free.
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In section 7 these three cases are put together into a coherent model

of the fields in the disk and its magnetosphere.

4 Stationary, Axisymmetric Electrodynamics

4.1 OUTSIDE THE HORIZON

We now specialize the electrodynamic equations of section 2 to fields

and charge-current distributions that are stationary and axisymmetric:

9F/3t = F =0 " ;ng =0 for all vector fields, F ,
- (4.1)
3f/3t = £ =0 5 m-Vf = 0 for all scalar fields, f .

This specialization simplifies the theory so much that the electric field E,
the magnetic field g, the charge density pe, and the current density i can
all be derived from three freely-specifiable scalar potentials. (Put differ-
ently: given stationary, axisymmetric distributions of pe and j satisfying
charge conservation Y-(aj) = 0, the 3 independent functions in pe and 2
determine via Maxwell's equations 3 independent potentials, from which E
and B can be computed by differentiation.)

We shall choose as our potentials A the electrical potential of equa-

O’
tion (2.24a); I, the total current passing downward through an m-loop; and
Y, the total magnetic flux passing upward through an m-loop. To define I
and ¥ more precisely, let x be a location in absolute space at which they are

to be evaluated, let 0 be the m-loop passing through x, and let ./ be any

surface bounded by 94 and not intersecting the horizon. Then

I(x) = - J aj + dT =~ (current through 3.A) , (4.2a)
= = =

Y(x) = - dz = (magnetic flux through 3A4) , (4.2b)

"
LS
-]

!
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where the orientation of dg is chosen '"upward" rather than "downward"

(i.e., along the direction of the hole's angular momentum vector rather than
opposed to it). The integrals in equations (4.2) do not depend on the choice
made for 4, as long as it is outside the horizonm. Charge conservation
(2.23), together with stationarity (including stationarity of the total

charge on the horizon ¢) guarantees that I(x) is independent of our choice

of the integration area A (including whether it passes over the hole or
under the hole). The magnetic Gauss law (2.20b) similarly guarantees that
W(f) is independent of our choice of A. (If the total magnetic flux enter-—
ing the hole were nonzero, w(f) would be different depending on whether 4
passed over the hole or under it. However, the only way that any hole's
total flux can be nonzero is by the hole having been so created in the big
bang; see equation (I,5.45). We exclude this by fiat, and thereby
deal with a w(f) which is uniquely defined everywhere outside the horizon.)

The magnetic flux Y(x) is simply related to the component A, = A-m of

¢

the vector potential A: By integrating B = VX A over the surface 4 and

then using Stokes's theorem (I,2.23) to convert to an integral around 3.4 we find

W(X)=JB-dZ=J(VXA)-dZ= J A . dy
< = L

SpT dA

= ZTTA¢ . (4.3)

In contrast to other authors (Scharlemann & Wagoner 1973, Blandford &
Znajek 1977), we prefer to use Y as our potential rather than A¢ because
of its simple physical interpretation.

When expressing E and B in terms of A I, ¥, we shall break them

0’
into their "toroidal" parts (parts along the toroidal direction 9) and

their "poloidal" parts (parts orthogonal to m):
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E=E + gP , el = 2(E - m)m ; (4.4a)
BE BT 4B 5 BT sw’z(s - m)m . (4.4b)

Because the magnetic flux Y through an m-loop is constant in time (station-
arity), the EMF around the loop must be zero (Faraday's law 2.20d), and

consequently the toroidal electric field must vanish

g = g . E is pure poloidal. (4.5)

Axisymmetry of B (£5B = 0, equation 2.18) guarantees thatV . BT= 0; this,

together with V+B = 0, guarantees that

V-BT=0=V-BP; (4.6)

i.e., the toroidal magnetic field and the poloidal magnetic field can be
characterized separately by field lines that never end.

The general expression (2.24a) for E in terms of A, and A, together

0
with stationarity, axisymmetry, and A¢ = Y/2n, implies the following expres-
sion for the electric field in terms of AO and Y
Emd (VA P, (4.7)
~ o '~ 0  2mc ~

Ampere's law (2.20c) applied to an m-loop 34 gives us the following expres-

sion for the toroidal magnetic field in terms of the current I through 34

B e g, (4.8)

owrc ”

If we move our field point x by dx and thereby also move the m-loop passing
through it, we change the flux Y(x) by dy = VY - dx = (dx % 2ﬂg)- B =

(2rm x B) *dx. This fact permits us to write BP (the part of B orthogonal
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to ?) as
_ P p B
T ZDEB” - Sateiions Sl (4.3
21w

This expression can also be derived from B = VXA, together with w/2H==A¢==A’m

P
and T><§ = EX § . (Note that the same argument enables us to write similar
expressions
P mXx VI
VI = -2mm % (oag' ) o = -— . (4.10a)

- 2nﬁ3

for the poloidal part of the current density jP in terms of its flux, the cur-

rent I.) Using equations (2.17a,c), (4.7), (4.8), (4.9), and (2.3) we can express

the toroidal part of i and the charge density Pe in the forms

AN} wVy
_ ,..T & cw X ] (
4miT = 4myT - == - —V_. +— Vw- |VA_ + — . (4.10b)
~ ‘@ (o ZTT'DZ 0.2 ~ &0 2mc
1 wVy
lrrrpe =Y d b (YAO + —ch) 5 (4.10c)

One can regard equations (4.10) either as formulae for computing Py and i from
specified potentials Y, I, AO’ or as differential equations for vy, I, A0 in
terms of their sources, pe, jT, and a divergence-free aip.

[Petterson (1975), as corrected and extended by Znajek (19783), gives a
general multipole expansion for vacuum, stationary, axisymmetric solutions of
Maxwell's equations in Kerr spacetime. The absence of sources means that there
are only two independent scalar potentials in his formalism, which he calls At

and A0 (equal to our A_ and ¢/2ﬂ, respectively). The vacuum solutions found by

0
Petterson and Znajek may be used to construct the Green's function of any prob-
lem containing no poloidal sources, e.g. a toroidal current loop, but they may
not be used in situations where jP and I are nonzero. Linet (1979) presents

a procedure by which the field of any stationary,
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axisymmetric charge and current distribution in Kerr spacetime can be con-
structed using Debye potentials. His procedure is consistent with ours,

although expressed in very different language.]

The flow of electromagnetic angular momentum and redshifted energy in the
magnetosphere is described by the poloidal parts of the flux vectors SL and S
& ~E
Equation (2.31b) for the flux of angular momentum, together with ET = 0, implies

st = - @/4m) [BT|BY = (1/2mac) BY ) (4.11)
Thus, angular momentum flows poloidally along magnetic field lines; there

is no angular momentum flow unless currents also flow; and the angular momen-
tum will flow outward (away from disk and hole) only if the current I through
an m-loop flows in a direction opposite to that of the poloidal field

(H.e, I >0 AF BP points upward; I < 0 if BP points downward). The torque

per unit volume of the electric and magnetic fields on the matter (equation

2.34b) is
Torque per ) N By o g .
unit volume a Y (a§L) (g/c)x § m . (4.12)

Equation (2.30b) for the flux of redshifted energy, together with the

facts ET = 0 and EPX BP = (a purely toroidal vector), implies

w
]

(ac/4m) (Ex §T) + 0 g{

EXm
d w P ~ -
2n <a_c§ e ) . (4.13)
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Thus, the poloidal flow of redshifted energy is in part orthogonal to E and
in part along BP; and there is no flow at all unless poloidal currents are
present (I # 0). The rate at which electromagnetic fields transfer red-

shifted energy to matter (equation 2.34a) is

redshifted energy is fed

(rate, per unit T time, that>
into a unit volume of matter

1 P
a7 (esp)

oj - E + (w/c) j*B'm . (4.14)

4.2 BOUNDARY CONDITIONS AT THE HORIZON

In the black hole's horizon the vanishing of the toroidal electric field,
together with Ohm's law (2.42), Ampere's law (2.40), and expression (4.8) for
BT, implies

H T H 21 H 21
f-mey - Fray o Yooz o 419

Here we have used the horizon basis vectors of equation (2.12b). Note that
the horizon current and electric field are purely poloidal, while the horizon
magnetic field is purely toroidal. Note also that 4H = (I/chﬂg; , at some
"observation point" on the horizon,is precisely the surface current required
to sink the total current I flowing into .4 north of the observation point.
The precise vanishing of the toroidal electric field, together with the

horizon boundary condition IE“ - nX BHI = 0(a) at 4, implies that the poloidal

magnetic field as measured by the ZAMOs intersects the horizon orthogonally
BP — B.L + (a parallel component that dies out as @) . (4.16a)

The toroidal magnetic field, of course, diverges as l/a (equations 2.40 and

(4.15):
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s’ — B = -(21/m) e ) (4.16b)

Boundary condition (4.16b) is automatically satisfied by our expression (4.8)
for BT in terms of the potential I, but condition (4.16a) is satisfied only
if the potential ¥ of equation (4.9) has the limiting form, in the coordinates

of equation (2.12a),
Y = WO(A) o O(az) near ¢ 5 4.17)

The tangential component of the (purely poloidal) electric field measured
by the ZAMOs diverges at the horizon as l/a (equations 2.42 and 4.15)
H :
GE — E = (21/3c) ea . (4.18a)
~ ~A

~l

while the perpendicular component remains finite (Gauss's law 2.38)
H
EL-—; 410 n . (4.18b)

These boundary conditions are compatible with expression (4.7) for E in terms

of the potentials A
A

H
S V2 AL 2
By ==~ o +Uwc dA]OL:O +0() . (4.19)

and ¢ only if A has the limiting form near the horizon,

0 0

The hole's surface charge OH and El= 4HOH are determined by the O(az) part
of A0 and Y, whereas B_L is determined by wo(k).

The torque of stationary, axisymmetric electromagnetic fields on a unit
area of the horizon (equation 2.L4L4) is

H IB
L

H
@ xB)m=-22 3

dL
astae

_a§L . B—»

(4.20)

0=

the Joule heating rate per unit area (equation 2.45) is
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ot ast H H 1 (1)2 ; (4.21)

and the rate per unit area that redshifted energy flows into the hole, in-

creasing its mass (equation 2.46), is

H 2 H H
s on— e oI L gixpy gt
B v P ar € T TRL TR &
H
olls
L1 (1Y
el (u) ) (4.22)

In equation (4.20) we see that the hole loses angular momentum when I and

BL have the same sign, which is consistent with equation (4.11).

5 Degenerate, Stationary, Axisymmetric Electrodynamics

5.1 OUTSIDE THE HORIZON
In regions of space where

|E-B| << |B%-E?| (5.1a)

it is reasonable to make the simplifying approximation that the fields are

"degenerate"

(o]
(-]
]
o
.

(5.1b)

The degeneracy approximation is justified in a wide range of physical situa-
tions, most notably in the presence of a plasma with electrical conductivity
so high that the electric field vanishes in the plasma rest frame and the
magnetic field is thereby frozen into the plasma. See, e.g. Carter (1979) for
a thorough relativistic discussion. For our stationary axisymmetric magneto-
sphere, degeneracy, together with the fact that E is purely poloidal, gﬁaran—

tees the existence of a toroidal vector
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@ -wm (5.2)

<
n

such that

PL_@ -0

E=-(/e)xp=-0 =gy (5.3)

(cf. equation 4.9). One can interpret YF as the physical velocity of the magnetic
field lines relative to the ZAMOs; note that nothing constrains XF to be less
than the speed of light. Any observer who moves with the magnetic field

lines, i.e., with velocity XF, sees a vanishing electric field

E' = [1- (L/F)Z/cz]_l/2 [E*—(YF/C)X §] = 0 . The nonzero electric field E seen
by the ZAMOs is entirely induced by the motion of the magnetic field. Note

that just as w is the angular velocity dd¢/dt of the ZAMOs relative to absolute
space, so the QF in equation (5.2) is the angular velocity d¢/dt of the magnetic
field lines relative to absolute space.

Each magnetic field line must rotate with constant angular velocity--i.e.,

QF must be constant along field lines
B -VQ =0 3 (5.4)

otherwise the magnetic field would "wind itself up" in violation of station-
arity. The mathematical proof of this "isorotation law" is carried out by
setting g = 0 in Maxwell's evolution law (2.17d) for §, imposing in addition
axisymmetry and expression (5.3) for E in terms of ¥, invoking YX Yw = 0, and
then reexpressing Yw in terms of §P by equation (4.9). The original, non-
relativistic version of the isorotation law (5.4) is due to Ferraro (1937);
and the relativistic version is due to Blandford and Znajek (1977) for force-

free magnetospheres, and due to Carter (1979) for degenerate magnetospheres.
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In studying the electromagnetic field structure, it is useful to think
not only in terms of poloidal magnetic field lines, but also in terms of the
axially symmetric field surfaces obtained by moving the poloiaal field lines
around the axis of symmetry along T-loops. These axially symmetric field
surfaces can be labeled by the flux ¥, since Y is obviously constant on them.
Since EP -YQF = 0 (isorotation) and m- YQF = 0 (axial symmetry), QF is also
constant on the magnetic surfaces—which means that we can regard QF as a
function of VY, QF(w). From equations (5.3) and (4.7) we see that in the
(equation 4.3):

degenerate region A, is also a function of Y, as is A

0 ¢

day/dy = fjome ahy/dy = 1/2m i (5.5)

In the general stationary axisymmetric case a full solution of Maxwell's
equations (E,B,pe,j) was generated by three independent and freely specifiable

scalar fields, I, ¥, and A When degeneracy is also imposed, a full solu-

0
tion is generated by two freely specifiable scalar fields I and Y, plus one
function, QF(w). The electric field E is computed from expression (5.3),
the toroidal and poloidal magnetic fields §T and §P from (4.8) and (4.9),
and the charge and current densities pe and é from the Maxwell equations

(2.17a,c). The resulting expressions for pe and j are equations (4.10),

specialized to the case VAO = -(QF/ZHC)VUJ:

p mx VI
aj = —= . (5.6a)
- 2wc¥
gr2iT = - %‘—’v-(i vw) + 2 @ - vy 7@ -w
v \gg2 =~ A i
. (QF_w) d_QF (W))z (5.6b)
azc : &P ’

F
2 AR -—w
8m Ps = —Y [( ac )YU}] * (5.6¢)
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Notice that the divergence-free Ol:]:P is still determined by I alone, while jT
and pe are both determined by Y and QF(UJ). Thus pe and jT are not indepen-
dent. The charge density and toroidal current must carefully adjust
themselves in degenerate regions (e.g. in regions where there is a highly
conducting plasma) so as to keep E-B = 0.

Degeneracy simplifies expression (4.13) for the poloidal flux of red-

shifted energy. Using equations (5.2), (5.3), and (4.11), we make it read

wn
]
Q
%]
n

- @ @/amy |B7]B°

o (1/2mac) B° . (5.7)

Similarly, the rate at which the fields deposit redshifted energy in matter

(equation 4.14) simplifies to

rate, per unit T time, that 1 P
=-s Vv (aSp)

redshifted energy is fed
into a unit volume of matter

torque per unit QF P
QF volume of electromag—) Sl v. (O.SL) (5.8)
netic fields on matter - -

(@/e)(3 xB) -2 .

Thus, angular momentum and redshifted energy both flow along poloidal mag-
netic field lines, and their ratio everywhere satisfies the '"energy-angular

momentum relation" dE = QFdL.

5.2 BOUNDARY CONDITIONS AT THE HORIZON
Degeneracy tightens up and simplifies the boundary conditions at the
horizon. All the boundary conditions of Section 4.2 remain valid, but they are

now augmented by the new constraint (equations 5.2, 5.3, 2.10, 2.42, and 4.16a)

B - L@ ofaxn, . (5.9)
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This constraint, together with our old expression (4.18a) for EH, implies
that

I =% (QH-QF)'Z:!ZB_L at &, (5.10)

and combined with expression (4.9) for BL = BP, it says that the potentials
Y and I cannot be specified freely at the horizon; they must in fact be re-

lated by
H .F
I=(@Q -Q)@/ 4m) dwo/dA on 4, (5.11)

where wo(k) is the horizon value of Y (equation 4.17).
Condition (5.9) simplifies expressions (4.20) - (4.22) for the torque,

dissipation, and mass increase on the horizon:

H F H
as, on— L - B8 g2 (5.12)
s dride &
ofas® _ @ oo’ 2
= = e @B) . (5.13)
dzl dt
H 2 H P H
-aS; +n — dMHC = - % - (SZH'Q (mB_L)z (5.14)
= arde az e
F dLH
- -
dz dt

Notice that in the horizon, as outside it, degeneracy enforces the energy-
angular-momentum relation dMch = QFdLH.

The above boundary conditions at the horizon for a degenerate magneto-
sphere are identical to those for a force-free magnetosphere (see Section 6.2
below). They were first derived for the force-free case by Znajek (1977) and

Blandford & Znajek (1977).
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6 Force-Free, Stationary, Axisymmetric Electrodynamics

6.1 OUTSIDE THE HORIZON

Consider a region of the magnetosphere where large amounts of plasma
are freely available, and where the plasma has adjusted its charge and cur-
rent densities to make IE- B| << |32 - E2 . If the inertial and gravita-
tional forces on the plasma are small enough compared to the inertia of

the electromagnetic field, the plasma will be unable to exert significant

force on the field, i.e. it will further adjust itself so that
l§§| << |§2 _ 52[, |peE + (j/c)x B| << Ij/c||~B| . (6.1a)

In such regions we shall approximate the fields as precisely degenerate and

force-free
E-B =0, PE + (j/c)xB =0 . (6.1b)

Note that precise force-freeness implies precise degeneracy. The rela-
tivistic theory of degenerate, force-free, stationary, axisymmetric electro-
dynamics has been developed previously by Blandford & Znajek (1977). The
formulas which follow are simply a rewrite of their formalism in our 'abso-
lute space/universal time'" language.

When the constraint of force-freeness is added to the constraint of
degeneracy, the formalism of Section 5 is thereby tightened: No longer are
the "potentials" I and § independent scalar fields; now I, like OF, must be
constant on magnetic field surfaces and therefore must be a function of Y.
To see this, note that because E is pure poloidal, force-freeness (6.1b)

implies that (jX B)T = jP><BP must vanish, which means that the poloidal
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part of the current jP is everywhere parallel to the poloidal part of the
N P
magnetic field BP, which in turn means that Vi = 2m X B~ (equation 4.9)

and VI = -2m X (ajP) (equation 4.10a) are parallel, which in turn means

that surfaces of constant I and ¢ coincide; I is a function of Y. More-
P ;
over, from VI = -2mm X (ajP) and VY = 27m X B we can read off the propor-
) : P P
tionality constant relating j to E 2

3P = (- lar/ay) 13? ) (6.2)

Combining this with force-freeness er + (j/c) xB = 0 and the expression

E = —(vF/c) X B we see that the full current density (poloidal plus toroidal)
is
j=p, v - @Tlar/apy B . (6.3)

In general, stationary, axisymmetric regions there were three freely
specifiable scalar fields in the most general solution of Maxwell's equations:
Y, I, and AO —or, alternatively, Py jT, and the divergence-free aip. When
degeneracy was imposed, the charges were forced to distribute themselves in
a special manner so as to keep E- § = 0 —and this reduced the number of
freely specifiable scalar fields from 3 to 2: ¢ and I, or jT and the diver-
gence-free aip. Now, as we impose force-freeness, we suddenly reduce the
number of freely specifiable scalar fields from 2 to 0: The degeneracy
relationship (5.6b,c) between Pe and jT is compatible with their force-free
relationship j'r = pe(QF—w)‘D/a + (a‘ldI/dw)(ZI/aUc) [equation (6.3) with B’r
replaced by (4.8)] if and only if the potential | satisfies the partial dif-

ferential equation

P02 F F 2
74 i[l_(ﬂ - w) mz]w L@ -w a0 16’ L dr _ .

awzcz b

2
— v 3 S
e ac
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The general force-free solution of Maxwell's equations is obtained by
selecting a solution VY, QF(w), I(Y) of this equation, then computing E from
(543)5 § from (4.8) and (4.9), and pe and i from (5.6).

Following Newtonian practice, we call y the "stream function" and equa-
tion (6.4) the "stream equation'", because the poloidal current and the
poloidal magnetic field both point along "'stream lines" of Y, i.e., along
poloidal lines of constant Y. Our general relativistic stream equation (6.4)
agrees with that derived, in very different notation, in the pioneering paper
of Blandford & Znajek (1977).

In the force-free region the fluxes of angular momentum and redshifted

energy carried by the electromagnetic field are conserved

v. (a?é) =v- (agi) = 0 (6.5)

(equations 5.8). The angular momentum and redshifted energy flow without

loss along the poloidal magnetic field lines.

6.2 BOUNDARY CONDITIONS AT THE HORIZON

Because the horizon fields are degenerate, EH- §H = 0, but not force-
free, OHEH + QgH/c)x §L # 0, the boundary conditions at the horizon are un-
changed when we constrain the degenerate exterior fields (§ -§ = 0) to be
force-free [pe§+-(2/c)x § = 0]. The boundary conditions remain as described
in Section 5.2.

However, it is important to examine the relationship between the stream

equation (6.4) and the unchanged boundary conditions on Y, I(Yy), and QF(w)

Y= wo(l) + O(GZ) near 4, (6.6a)

4m1 = (QH—QF)‘D'dwO/d)\ at A (6.6b)
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(equations 4.17 and 5.11). In the neighborhood of the horizon, and in the coor-

dinate system of equation (2.12a), the stream equation (6.4) can be put in the

form
2 2
Kk F oH2 93 [13y 1 d FH, 3y 2
QR -2) a— (——-}+(—-——)———{(Q -0NHw - (lml)}
:E 3a lo da 252ou/on] O [ ax]
+ [coefficients of 0(a)] x [derivatives of Y] (6.7)
+ [coefficients of order unity] x [3y/da] = O .

Notice that if Y is finite at the horizon, then this stream equation requires
that ¢==w0(k) + O(GZJJIG) + 0(a2) at 4. If, moreover, Y and I are well be-
haved on the axis of symmetry (Y “152 and I = UZ), then this stream equation
says that the absence of O(azlna) terms from Y is equivalent to the demand that
4l = i(QH-QF)szwo/dl. Roman Znajek points out to us that the choice of sign
(+ versus -) corresponds to a choice of the direction of the Poynting flux at
the horizon (in versus out) and thence to a choice of whether the horizon is a
future horizon (black hole) or a past horizon (white hole).

Thus, physically well-behaved solutions of the stream

equation [solutions with Y finite and no O(azlxla) terms at.¥ ] automatically

satisfy the boundary conditions (6.6)—-except for a possible sign error in

6.6b). In Section 7.4 we shall use this fact to elucidate the global structure of

the force-free region of a magnetosphere, and to formulate the problem of con-

structing solutions for the force-free region.

6.3 ACTION PRINCIPLES FOR STREAM FUNCTION
In the force-free region we can regard the stream function ¥ as governed

either by the stream equation (6.4) or (equivalently) by an action principle.

The action to be extremized is

P
9= ]‘ wenieH? - H? - ®%e v . (6.8a)
r
Here ¥ is the region of integration (which must be force-free); and BP, BT, E

are to be expressed in terms of ¥, I, and af via equations (4.9), (4.8), and

(5.3), yielding
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F_ooy2g? ] W\2 2
S N P O N ) B~ S 0 R
I J &w {[1 22 ](mx) (ocwc) }adv . (6.8b)
r a c

k” )1/2 dxldxzdx3 is the proper volume element of

In this action dV = (det ||y.
J
absolute space; 0, w, and W are known functions of xl,xz,x3 describing the

black hole; and I and QF are to be specified as explicit functions of Y before

the variation. The variation of ¥ in this action leads to

84 = - 13 f SY[left-hand side of stream equation (6.4)] dv
16m
F 2 2
+ 1 J&p% [1-ﬁ'2—“’;i]vw-dz . (6.8¢)
167 w a‘c i &

o
Thus, so long as the region of integration is bounded away from the horizon

(@ > 0 throughout ¥ and 3%), the appropriate boundary conditions on ¥ are:

At each point on 37
either specify an arbitrary but smoothly changing value of ¥ (§¢ =0) }(5.8d)
or specify that Vi be parallel to o¥% (VY - dI = 0).

If Y and Yw are thus specified on 3%, the functions Y which extremize J (89=0)
will be precisely the solutions of the stream equation.

If the region of integration ¥ is bounded in part by the black hole's hori—
zon X (¢ =0), then the action (6.8a,b) is infinite [(§T)2 and (E)2 both diverge
as l/G% so J diverges as 1In a] . This defect can be repaired by a renormaliza-

tion of the action:

g = Lmﬁ aentehH? - ¢H? - ®%1aav
i
~ Gl feyin o J a/smyeH? + (EH)Z]dE} )
ansr -

(6.9a)

Here and below "LIM" means '"take the limit as the boundary 3% approaches the
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horizon Y, i.e. as a > 0 on KN 33" also, BH = LIM(aBT) and EH= LIM(OE”)

’

are the horizon fields (cf. equations 4.16b and 4.18a). When BP, BT and E

are expressed in terms of Y, I, and QF via equations (4.9), (4.8), and (5.3),

this renormalized action becomes

F 227/ \2 2
"o 1 & -o)m” (7)) _ 2T
R J{ [l o2c2 ](Zm:!) (awc) }a %
1lna [ © - dy 212
- { d)\) + (E—) }llfd(:)d)\ o

Here we have used the coordinates of equation (2.12a) for the horizon surface

(6.9b)

integral. The variation of Y in this action, with I and QF taken to be fixed

functions of ¥ as before, yields

89' = LIM | - 13 J SU[left-hand side of stream equation (6.4)] dV
167 v
F 2 .2
" 13 del l_w W - dT
16m w2 T - -
¥4

Ina 8y d 2 F_H.dv]2
- f wdw/dx) il Rt "[“(Q =4 )dx] g

K g
—— sulo@f - o2 d"’] o . (6.9¢)
16T s @inar)

Thus, the appropriate boundary conditions on Y are:

At each point on (N

specify y as a fixed solution of the differential equation

trr= (0 <G5 ardb/di [equation (6.6b)] (so 8=0).

5 (6.9d)
At each point of 3% that is not part of 4

either specify an arbitrarily but smoothly changing value of

¥ (8Y=0), or specify that Vy be parallelto dV (VY -dI=0). /

The functions ¥ which extremize J' subject to these constraints are precisely
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the solutions of the stream equation.

The two action principles (6.8) and (6.9) are generalizations to black
holes of the flat-space, pulsar-magnetosphere action principle of Scharlemann &
Wagoner (1973). A third action principle, one without a pulsar analog, governs
the distribution of magnetic field on the horizon:

Suppose that just outside the horizon the magnetosphere 1s force free. Let
the total magnetic flux through the horizon, between the poles and equator, be

specified [i.e. let ¥, =0 at the north and south poles, and ¢0=IbE at the

0

equator be fixed]. Specify, moreover, for each poloidal field line, its angu-

lar velocity QF and the current I inside it [i.e., let the functions QF(WO) and

I(wo) be fixed]. Then the poloidal magnetic field lines will distribute them-

selves over the horizon in such a manner as to extremize the horizon's total

surface energyv of tangential electromagnetic field

e - f /emi@Eh? + EH% e

2 2
21

= A - 6.10

+ ( ) ]‘&qu)d ( )

S
=J 1 [ @f-ofy? (fi'”g
P 8ﬂc2 L 4“2 dA

In fact, the Euler-Lagrange equation for the action principle 8€= 0 is identi-

cal to the near-horizon form (6.7) of the stream equation

dv, 72
1 d F_H,_"0 -] P
RN dx{[(ﬂ =5 )”dT] - = 0 g (6.11)
and this equation is satisfied by the "true'" magnetic field distribution
[411 = (QH-QF)twaO/dA; equation (6.6b)]. In Section 7.4 we shall discuss

further the manner in which this action principle and equation (6.6b) govern

the horizon's field.
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Roman Znajek (private communication) points out to us that the action &
is not merely extremized by the horizon's poloidal field configuration; it is
actually minimized: the second variation of expression (6.10), evaluated at

the extremal configuration (6.11), is

F 2 4 2
s = J}I‘L:.e—n:‘?’ilﬂe_) [‘&xd‘ 8y, - oY, = In (tz%)]tvdodx , (6.12)
which is positive semidefinite. Znajek goes on to point out that, after the
action £ has been extremized and one has found that gH = EH, then € = (1/c) X
(rate of Joule heating of the horizon). 1In an alternative description of the
horizon (Section 5.4 of Paper I), Znajek (1978b) has attributed the horizon's
Joule heating to a combination of electric current and magnetic current. In
this description £ is (1/c) X (rate of Joule heating) even before minimization—

which means that the horizon's rate of entropy production is minimized by its

equilibrium distribution of poloidal flux, a result reminiscent of "Prigogine's

Principle'" (cf. Kittel 1958).
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T Global Model of Stationary Magnetosphere

7.1 OVERVIEW

We now use the results of Sections 4, 5, and 6 to elucidate features of
the Blandford-Znajek (1977) model for the power sources of quasars and active
galactic nuclei.

We assume that the black hole, the accretion disk, and their magnetosphere
have settled down into a stationary state that is axisymmetric about the hole's
rotation axis and reflection symmetric in the hole's equatorial plane, and that
has the qualitative character of Fig. 1. We assume, further, that the plasma
in the disk is a sufficiently good conductor that, although the field lines
might slip through it a bit, nevertheless the fields are degenerate
(]E' E] << |§2- §2|). We shall idealize them as perfectly degenerate, §~ §= 0,
but not as force-free: The inertia of the disk's plasma is absolutely crucial
for containing the magnetic field. Without it the field would fly away. This
degenerate, non-force-free region (which also includes the horizon) is marked

"D" in Fig. 2.

Following Blandford (1976) and Blandford & Znajek (1977), we assume further
that just outside the disk and hole the plasma becomes sufficiently rarified that
it no longer exerts significant force on the magnetic field—but it is still
sufficiently dense to provide the charged particles needed for degeneracy and
force-freeness:

’E' B| < §2 . gg , lo,E + (i/e)x B] << [3/c|[s].

As discussed by Blandford (1976), on field lines threading the disk the neces-
sary charged particles are likely extracted from the disk by the Goldreich-
Julian (1969) mechanism: a component of E along B, which is so weak as to con-
stitute a negligible violation of our force-free, degenerate assumption, pulls
the charges out of the disk. However, magnetic field lines that thread the hole

must get their charges and currents in some other manner. Blandford & Znajek

(1977) argue that they come from the Ruderman-Sutherland (1975)
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"spark-gap' process, a cascade productionof electron-positron pairs in the force-
free regiom—a production induced indirectly by a component of E along B, which
again is so weak as to constitute a negligible violation of force -freeness and
degeneracy. We shall assume that by these processes, or some others, the necessary
charged particles are supplied and the region marked "FF" in Fig. 2 becomes force-
free. This region might extend through the annulus between the disk and the horizon,

if the plasma there is tenuous enough for force -freeness to be established. We
shall idealize the FF region as being precisely degenerate and force-free

(E-B=0, o E + (g/c)x§=o].

~Outside t;e FF region, where the magnetic field becomes weak and where it
may be dragging charges into rotation at nearly the speed of light, the inertia
of the charged particles begins to make itself felt. In this region, marked "A"
in Fig. 2, the field loses both its degeneracy and force-freeness, and it pre-
sumably uses its energy to accelerate charged particles and (hopefully) to form
charged-particle beams. Blandford (1976), Lovelace (1976), and Lovelace et al.
(1979) have speculated extensively about the physics which occurs in this accel-

eration region. For our purposes the only important point (assumption) is that

all the power being transported outward through the FF region by DC electro-

magnetic fields somehow gets transferred to charged particles—and subsequently

perhaps into radiatiom—in the A region.

7.2 GLOBAL ENERGY AND ANGULAR MOMENTUM BALANCE

Each magnetic field line in the D and FF regions rotates rigidly, dragged
around by the hole's rotation and the disk's orbital motion. In the A region,
where particle inertia is strong, degeneracy breaks down and the concept of
field-line angular velocity QF ceases to be a useful one. [If one defines QF
so as to account, by E—field motion, for the component of E orthogonal to §
(analogue of equation5.3), one finds that in the A region QFis no longer constant
along field lines.] Nevertheless, the fields in the A region continue to

transport energy and angular momentum.
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Consider an annular tube of magnetic flux Ay intersecting the hole (flux

tube "a" in Fig. 3). The horizon exerts a net torque

_ant
dt

H F
%(5};XEAW)‘9=(Q—_Q)‘

2
g e DB, Ay (7.1)

on this flux tube (equations 4.20and 5.12); and with this torque it transmits a

redshifted power (equation 5.14)

Fanct _ oF o of)
dt 4T

2
[~] BJ_Alb (7.2)

up the flux tube and into the FF region. The torque (7.1) and power (7.2) are
transmitted loss-free along the flux tube (equations 5.7 and 6.5) through the
entire thickness of the FF region and into the A region. In the A region the
angular momentum continues to flow along the flux tube (equation 4.11), where it

gradually gets deposited into charged particles (equation 4.12)

A
daL _ 1 J p
dt ¢ J alx}} r~ndV
flux tube inA
(7.3)
__amt
dt

The power, by contrast, flows away from the flux tube into adjoining regions
of space (equation 4.13), where it presumably also gets deposited in charged
particles (equation 4.14). -
The total power output from the flux tube, expression (7.2) (which was
derived by Blandford & Znajek), depends critically on the tube's angular
velocity QF. That angular velocity is determined by torque balance along the
flux tube between the hole and the A region (equations 7.1and 7.3). If the par-
ticles in the A region of the tube have enormous inertia, they will drag the

tube down to of <« QH, and the power transmitted will be very small (equation

7.2). If the particles have very little inertia, the tube will be dragged up
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to QF = QH, and once again the power transmitted will be very small. From
this viewpoint it might appear to be a miracle if the charged particles con-
spired with the hole so as to have just the right amount of inertia to make
QF v QH/Z and thereby produce large power output. Nevertheless, such a miracle
may well occur, according to the following variant of a classic Goldreich-Julian
(1969) argument for pulsars. -

Near the black hole, magnetic field lines rotate backward relative to
ZAMOs with velocities YF = —(QH-QF)E/Q which greatly exceed the speed of
light (o > Oat 4). Far from the hole and away from the symmetry axis
(o > 1, w~+ 0, T large), field lines rotate forward relative to ZAMOs with
velocities XF= QF? which also greatly exceed the speed of light. A charged
particle that is constrained to move along a magnetic field line can move,
relative to ZAMOs, more slowly than the field line. ©Near the hole it does
this by sliding down the field line toward the horizon; far from the hole it
does it by sliding out the field line. However, there is a minimum possible
speed with which the particle can slide if it is to stay on the field line:

F
— v
Vmin [1+ (BT)Z/(BP)ZJI/Z . . (7.4)

The boundary condition I = % (QH— QF)tzzBL(equationS.lO) at the horizon is

perfectly designed to make this minimum sliding velocity equal to the speed
of light (cf. equations 4.8, 4.16a, 5.2): charged particles slide along field
lines into the horizon at precisely the speed of light relative to ZAMOs. Far
from the hole, Vit will be of order c if and only if QF > QH/Z:

P20, 87 = 2w (wo) (@ -%,] = @ -2Dy/mew,
at |

R

v

BP

- 2 TS N, | N, ..
|y /2ng = Ve, v e /@ -0

" E H :
Thus, if Q" <<Q/2, particles can easily slide along the field lines more slowly
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than light near the boundary of the FF and A regions; and perhaps thiswill lead
to small particle inertia in the A region and thereby to a spinning up of the field
F _ H H F H ' .

toward @ = Q /2. On the other hand, if (@ -Q°) << Q/2, charged particles will
be unable to achieve L >> ¢ at large radii; they will be thrown off the field
lines, and they may well exert a back-reaction torque on the field lines suf-
ficient to drive QF back down near QHIZ.

Of course, this argument is speculative. The analogous argument in the

)

case of pulsars (where QF is fixed but I is adjustable and determines Vg
is highly controversial even today, a dozen years after the Goldreich-Julian
work (see, e.g. Mestel, Phillips & Wang 1979, Arons 1979).

Turn attention now to field lines which thread the disk. For simplicity,
assume that the disk is reflection symmetric, and restrict attention to the
region above the equatorial plane. As in the case of the hole, consider an
annular tube of magnetic flux which threads the disk (flux tube '"b" in Fig. 3).
Let o be the angular velocity of the disk's plasma inside this tube (appropri-
ately averaged vertically if necessary). The field lines in the tube will
rotate slightly more slowly than QD, due to drag on the tube in the A region;
this velocity difference will induce in the rest frame of the disk plasma a
radial electric field proportional to (QD-QF)BP, which in turn will drive a
radial current j « (QD-QF)BPKresistivity)that will interaﬁt with EP to pro-

duce a torque on the flux tube

a® _ (P-of\ ay

“Tee "\, zz ), 0% ¢ il
4nc AZ

Here AZD is the total electrical resistance (impedance) in the disk,north of the

equator, between the inner surface of the flux tube and the outer surface. (For fur-

ther details about AZDsee the next section.) This net torque will be transmitted,
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loss-free, through the FF region where it is described by equation (5.7)

_aat’?
dt

= (I/2mc) MY 5 (7.6)

and into the A region where it will act on charged particles in the flux

tube (equation 4.12)

D A
dAL
il o BB o J @jXB+m dv ) (7.7)

flux tube inA

Associated with this torque is the redshifted power (equation 5.8)

A
_ JFdalt  F( I
bp = Q" S =g (EEE) by, (7.8)

which the magnetic flux tube extracts from the disk and transfers to charged

particles in the A region.

Torque balance, i.e. equality of expressions (7.5), (7.6), (7.7), deter-
mines both QF (the tube's angular velocity) and I (the current flowing in
the disk across the tube) in terms of Ay (the magnetic flux in the tube),
QD (the disk's angular velocity at the foot of the tube), AZD (the disk's
impedance across the tube), and -dALA/dt (the torque of the acceleration-region
plasma on the tube). Typically, the disk impedance AZD will be very small
(high conductivity), and the field lines will therefore be locked into the

diske, 0F = b,

Our variant of the Goldreich-Julian argument suggests that the torque in
the A region might regulate itself so as to make Vo e = ¢, and thereby

(equations 4.8 and 5.2)

I=xI . =QUy/2n v (7.9)
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These conditions of self regulation (QF > QH/Z and thence I==9Fw/2n
for lines threading the hole; I = QFw/Zn for lines threading the disk) lead
to astrophysically interesting power outputs from both disk and hole
(Blandford 1976, Blandford & Znajek 1977, Blandford 1979): For a black
hole of mass M = 108M® rotating at ot =1 radian/ 1000 sec ("a/M" near
unity), onto which an accretion disk has deposited a 104 Gauss magnetic
field, the power outputs from the hole and the disk will both be roughly

1044erg/sec.

7.3 CIRCUIT ANALYSIS OF POWER FLOW

Znajek(l978b) and Blandford (1979) have described the above model, semi-
quantitatively, in terms of a circuit analogy. Blandford says: '"'The massive
black hole behaves like a battery with an EMF of up to 1021 Volts and an
internal resistance of about 30 ohms. When a current flows, the power dis-
sipated within the horizon, manifest as an increase in the irreducible mass
[i.e., entropy], is comparable with that dissipated in particle acceleration
etc. in the far field." 1In this section we shall give a mathematically pre-
cise version of this description.

We begin by defining the potential drop AVC’along any curve segment
C in absolute space:

avl= J oF - 4L ) (7.10)
c

The factor o converts the forces produced by the electric field E from a
"per unit proper time d/dT" basis to a "per unit global time d/dt" basis.
Without the &, we would be unable to use Faraday's law (2.20d) to deduce the
potential drop around a circuit; and without it the total current

I' = J aj + dZ = (charge per unit global time t), flowing in a thin magnetic-
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free wire at rest relative to the ZAMOs, could not be expressed simply as
I' = AV/R with R the resistance of the wire as measured in flat space. The
o in expression (7.10) is required to balance the a in I' and to thereby make
standard circuit theory valid in the presence of gravity. (We use a prime on
I' merely to distinguish it from the potential I of our magnetosphere theory.)
We can compute the total potential drop around any closed curve C from
Faraday's law (2.20d). Obviously, the total drop must be independent of the
state of motion of the curve—and, in fact, the two magnetic terms in Faraday's
law conspire to make this so (see Section 2.5 of Paper I). For purposes of computa-
tion, assume that the curve is at rest in invariant space, so its shape and
size are unchanging; and for application to our magnetosphere assume that the
magnetic field is time independent, g = 0. Then the time derivative of the
flux through the curve vanishes, the velocity of the curve relative to the ZAMOs

is v = -wm/a, and Faraday's law becomes

wb = (1/c) § (umxB) - df . (7.11)
¢

Thus, the interaction of a stationary magnetic field, B = O, with the hole's
dragging of inertial frames (i.e., with its "gravitomagnetic field") produces
an EMF around closed curves. Using our stationary, axisymmetric magnetosphere

equation (4.9), we can rewrite this EMF in terms of the flux potential
w = (1/e) § W/2mvy-de . (7.12)

[Note: This could have been derived more quickly, but berhaps with less
physical clarity, from equations (7.10) and (4.7).]

Figure 4 shows several electric equipotential surfaces (surfaces
orthogonal to OE, i.e., surfaces made up of curves along which AV = 0).

Consider the neighboring equipotentials labeled 1 and 2, which intersect the
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horizon. In the D and FF regions these equipotentials coincide with the
walls of the inner magnetic flux tube of Fig. 3 (E is orthogonal to the flux
tube walls due to degeneracy, so there is no potential drop AV along any
curve lying entirely in a flux tube wall). However, the equipotentials
separate from the flux tube walls in region A, where degeneracy breaks down.
In fact, the equipotentials must eventually close upon themselves, as shown,
in order for spatial infinity to remain at zero potential. Everywhere in the
FF region currents are constrained to flow in the equipotential surfaces
(é' g = 0); no current can cross them. However, in the horizon (a D region)
current flows from the north polar region, across equipotentials, toward the
equator. The total current crossing our two equipotential surfaces 1 and 2
in the horizon is I, where I is the current '"potential" of previous sections
evaluated at the feet of the equipotential surfaces. By stationarity, this
same total current I must flow back across surfaces 2 and 1 in the A region.
(We assume that 2 and 1 are close enough together that the poloidal current
between them in the FF region is negligible.)

In the horizon, with its surface resistivity RH = 4m/c = 377 ohms, the

current crossing from surface 1 to surface 2 encounters a total resistance

AZH _ H (distance from 1 to 2) - H AX
(circumference across which I flows) Ak~
- A (7.13)
4T B;

Here Ay, as in the last section, is the total magnetic flux in the tube
between 1 and 2. The potential drop in the horizon between 1 and 2 is, of
course,

vt = 1t , (7.14a)
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and it can be expressed equally well from equation (5.3) and QE -+ EH, as

2
avt - J - ag = @-aF) ay/one . (7.14b)

1

We assume for pedagogical purposes (and because it is likely true) that
the entire A region is far enough from the hole that w << QH there; and we
therefore approximate w as zero in A. Then equation (7.11) guarantees that
in the A region the potential drop AVA between surfaces 2 and 1 is indepen-
dent of where one computes it—mear the symmetry axis, or at 15° latitude,
or.... . This unique potential drop can be thought of as produced by a resis-

tance AZA to the flow of the current I:
v = 1azh ) (7.15a)

An alternative expression for the potential drop, derivable by integration
at the interface between the A and FF regions where expression (5.3) for E

is valid, is
1

= J OF - d = 9F Ap/2me . (7.15b)
2

The sum of the potential drops in the horizon 4 (equations 7.14) and in
region A (equations 7.15) is equal to the total EMF around a closed curve
that passes along 4 from 1 to 2, then up 2 poloidally into region A, then
from 2 to 1, then poloidally down 1 to its starting pointat 4 . This total
closed -loop EMF can be evaluated from equation (7.12), where the only nonzero
contribution comes from .4 (because w = 0 in A and Yw- d%= 0 in the FF por-

tions of 1 and 2). The result is

a4+ 4t - mE = o apsome (7.16)
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Equations (7.14)-(7.16) for the potential drops and equation (7.13)
for the horizon resistance are the foundations for our circuit-theory analy-
sis of power flow.

The ratio of the potential drops in the acceleration region and hori-

zon, as computed from equations (7.14) and (7.15), is

v Az of

e (7.17)

AV Az Q-0

the total current as computed from (7.16), (7.17), and (7.13) is

1- B - 2al-ohels (7.18)
AZ+ AZ

the total power transmitted to the A region as computed from (7.18), (7.17),

and (7.13) is

a2 _ gr@t-ah) 2

AP = AZ'I yrre B_L AY (7.19)

and the power dissipated in the horizon is

H H F,2
HdAS® _ H2 (R -Q)

2
0 - I T‘m’ B.L Ay . (7.20)

(The right-hand sides of equations (7.18)-(7.20) are all evaluated at the
feet of the equipotentials in the horizon.)

Note that our circuit analysis produces the same result for the power
output as was obtained from the torque-balance analysis of the
last section (cf. equations 7.2 and 7.19). It also reproduces
the standard horizon boundary condition on I (cf. equations 7.18 and 5.10).

In addition, it gives new insight into the determination of the field line
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angular velocity: QF is determined by the ratio of the resistance of the
acceleration region to the resistance of the horizon (equation 7.17). And
the condition of maximum power output, g - QH/Z, corresponds precisely to
the standard circuit-theory condition: the impedance AZA of the load
should equal the impedance AZH of the power source. Moreover, as in our
torque-balance discussion so also here, there is reason to suspect that

the optimal power output will be approximately achieved in nature: Lovelace
et al. (1979) argue that the complex processes occurring in region A are
likely to produce a total impedance between widely separated equipotentials
of ™25 ohms. Between our neighboring surfaces the impedance will be
smaller than this by v (thickness of flux tube)/(distance to symmetry axis) "

AN/t3. Comparison with (7.13) shows
H H
AZ7 = (R/2m) (AXf5) v (60 ohms) (AN /=)
pz% v (25 ohms) MNV®) (7.21)

i.e., rough impedance matching. This conclusion, that the impedances will
roughly match and therefore the power output will be roughly optimal, is due to
Blandford (1979). |

A circuit analysis can also be developed for a neighboring pair of equipo-
tentials threading the upper half of the disk. A current I flows, in the upper
half disk, between the equipotential surfaces 3 and 4 of Fig. 4. This current

produces a potential drop between surfaces 3 and 4 given by

4
TAZY = J olE+ (YD/c) xB] - dg = AP+ @P-o®) apsome . (7.22)
3

(One can regard this as defining the disk impedance AZD between surfacés 3 and
D D
4.) Here vD= (" -w)m/o is the disk's orbital velocity relative to ZAMOs, and

the integral is performed in the equatorial plane where the ZAMO angular
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. : = .D
velocity is w = w . The current I flows back from equipotential 4 to equi-

potential 3 in region A, where it produces a potential drop

avh = 187 = of ap/ome (7.23)
(equation 7.15). The total EMF around the loop is

AP + av* = mvr = o Ap/2me (7.24)

(equation 7.12). Combining equations (7.22)-(7.24) we obtain

A F
Az _ DQ - , ’ (7:25)
2z Pog
P = QFLA =@y A, (7.26)
2me AZ 2me AZ
- 12A (L
i = tPartep (m) Y i (7.27)

As for field lines threading the hole, so also here, the field line angular
velocity QF is determined by the ratio of acceleration-region impedance to disk
impedance. If the disk impedance is very low, the disk will lock the

field lines to itself, of = QD. Once QF is fixed, the current I is deter-

mined by the A-region impedance.

7.4 CONSTRUCTION OF A MODEL FOR THE FORCE-FREE REGION

The details of the disk and of the acceleration region are highly depen-
dent on ill-understood plasma physics. Not so the force-free region and the
horizon. They can be modeled with considerable confidence (as Blandford &
Znajek emphasize)—except for uncertain boundary conditions at the interface

with the disk and the A-region. In this section we summarize the
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mathematical structure of the problem of modeling the force-free (FF) region.

A poloidal slice through the FF region is shown in Fig. 5. It is bounded
by the horizon (labeled ), the symmetry axis (labeled §), and the boundaries
with the disk and accelération region (both labeled ). Except at the end of
this section, we shall regard the disk as extending all the way in to the
horizon's equator. A solution for all details of the FF region and the horizon
is generated by the stream function Y and the two subsidiary functions I(Y)
and QF(w). Once I(Y), QF(w), and suitable boundary conditions are specified,
Y is computed by solving the partial differential stream equation (6.4) or,
equivalently, by extremizing the action (6.9).

The boundary conditions on { are determined by the poloidal magnetic
field distribution at the boundary. (Recall: ¢ is the flux through m-loops;
§P = —T><yw/2nt;{) To avoid unphysical singularities on the symmetry axis S ,

2 ’
one must set Y = 0 there and Yy «=W"~ on B near §; but otherwise there are no

constraints of principle on Y:

=0 ondS, w«wzasw+0 on B 5

Y otherwise arbitrary on@ . (7.28a)

As one moves away from the symmetry axis along @, one is free to make Y in-
crease for a while, then decrease and even go negative, then increase again
and oscillate. Such complicated behavior will lead, when solving the stream
equation, to magnetic field loops going out through § and then returning in
various places, and to neutral points of field reversal. But, of course, one
would prefer to choose Y on$B to match as closely as possible boundary fields

from realistic models of the disk and acceleration regions.
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One must also specify I(y) and QF(w) on the boundary, subject to one

non-obvious constraint
d1/dy = (QH-QF)/ZH at the intersection of @ and S (7.28b)
(see below), and several obvious ones
2
I =0 on¢§ , I o asw~>0 on @ §
F
8 = constant on § , (7.28¢)

I and QF otherwise arbitrary on 4, except that they must be functions
of ¥ in the sense not that every point with the same Y has
F
the same I and QF, but rather that points with the same (Y,I,2)
come in pairs so distributed that one can topologically draw
non-crossing lines of force connecting them.
: ; : P .
Of course, in practice one will try to choose I and & in accord with
H
the physical conditions of the last two sections: QF determined by @ or
D d
" and by the relative A-region and D-region impedances; I determined by QF
and the A-region impedance, I = QFAw/(Enc AZA) (equation 7.26).
One need not be concerned about any boundary conditions on the horizon.

The stream differential equation, when it is solved, will automatically en-

force the two horizon boundary conditions
b=y, + 0(a2) near A , (7.29a)

4m1 = (QH—QF)'CwaO/d)\ on A , (7.29b)

except for a possible sign error in (7.29b) (cf. Section6.2). The boundary condi-
tion (7.28b) is designed in part to ensure that, at least near the symmetry
axis, the sign starts out correct. If a solution of the stream equation pro-

duces an incorrect sign reversal at a null point of the magnetic field
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(dwo/dk = 0) further along the horizom—an unlikely occurrence—then one
must discard the solution as unphysical.

It is instructive to see how the stream equation distributes the
poloidal magnetic field B_L = (2ﬂt0_1 dwo/dk over the horizon. It distri-
butes the field in such a manner as to extremize the horizon's electromag-

netic surface energy (6.10), or equivalently in accordance with the ordinary

differential equation (7.29b). Rewrite this equation as

Wy/CWy) = A/ () (7.30)

wherezy(A) is a known function determined by the surface geometry of the

horizon, and

4mT (%)
Gl B
07 " H_ QF(%)

is a known function determined by the choice of boundary conditions moving

(7.31)

outward from the symmetry axis § along $. In the limit as one approaches
the symmetry axis, smoothness of the horizon requires ™= A, and our (pre-
viously unexplained) constraint (7.28b) on the boundary data guarantees

G = 2y, which in turn guarantees that the solution of the differential equa-

tion (7.30) has the well-behaved form
Y = AZB as A > 0 (7.32)
T 0 - .

The integration constant B_L is the poloidal magnetic field strength on the

0

symmetry axis of the horizon. Imagine integrating the differential equa-
tion (7.29b) along the horizon from pole toward equator, beginning with some

trial value of B_L Unless that trial value is chosen very carefully, upon

0
reaching the intersection of # with 8 , one will have a value of Y which

does not match the chosen boundary value there. Obtaining the right match
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can be regarded as an eigenvalue problem for BLO' Presumably, by solving
the stream differential equation (6.4) subject to the boundary conditions
(7.28) on S and B, one automatically also solves the eigenvalue problem for
B_10 and obtains a unique physically well-behaved solution on all of the
horizon and throughout the force-free region.

However, we do not claim to have proved rigorously that there will
always exist a solution to the stream equation with boundary conditions of
the specified type, nor that when such a solution exists it will be unique.

The above formulation of the boundary-value problem is appropriate to
situations where the magnetic field is firmly anchored in the disk all the
way in to the horizon, so that it is appropriate to specify ¥ on @ all the
way in to @'s intersection with 4. When, instead, there is a force-free gap
between the disk and the horizon, one must modify the boundary-value problem.
The boundaries then have the form of Fig. 6, which is the same as Fig. 5
except for the presence of a force-free equatorial boundary segment .

Since field lines passing through ¥ are force free everywhere except in the
distant acceleration region A, they presumably will be anchored in A and
will thus have zero angular velocity QF= 0 and will carry zero torque,

§i= (I/Zﬂac)§P= 0 (equation 5.7). This means that the.boundary values {,

QF(w), and I(¥) must be chosen such that
Q =1=0 everywhere on ¥ . (7.33a)

By contrast with the boundaries § and #, one should not explicitly specify
the distribution of { on &; rather, reflection symmetry dictates that one

specify

VY  parallel to & everywhere on F . (7.33b)
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However, the values of Y will be fixed at the inner and outer edges of ¥, i.e.,
at the intersections with .4 and @ :
Y fixed at #NF and BNGF as those values for which QF(IIJ)
(7.33c)
and I(Y) start departing from zero.
Boundary values ¥, I({), QF(w) chosen in accord with equations (7.28) and
(7.33) lead to a well-posed action principle (6.9) for the stream function Y in
the FF regiom—an action principle whose Euler-Lagrange equation is the stream

differential equation (6.4).
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7.5 ABSENCE OF MAGNETIC LOOPS THREADING THE HORIZON

In Section 3 we mentioned that a looped field line such as b in Figure 1,
with one foot on the horizon 4 and the other anchored in the disk, will annihi-
late itself once the disk has deposited the loop's second foot onto 9. Presum-
ably the annihilation will occur on a timescale At roughly equal to the light
travel time across the loop. (This is what one would compute from the flat-
space theory of the diffusion of magnetic field lines through a medium with
surface resistivity RH = 377 ohms.) However, we shall not attempt here a rela-
tivistic derivation of this timescale. Rather, we shall content ourselves with
a formal proof that the annihilation must occur—i.e. that a poloidal magnetic
field loop lb of the form shown in Figure 7 cannot exist in the force-free
region of a stationary axisymmetric magnetosphere. For simplicity of proof we
presume that the topology of the poloidal field inside 1; is as shown in Fig-
ure 7: a series of simple nested loops with the magnetic field in the same
direction on each loop (no neutral points). The reader can generalize the
proof.

The first step in our proof is to show that on each loop inside ib
QF = CF and I = 0. This follows from torque balance. Conserved angular
momentum travels along each loop, outward from. 4 at one foot and back into %
at the other. But because QF is constant along a loop, the direction of the
angular momentum flow must be the same at both feet (outward if QF < QH; inward
if QF > QH; equation 7.1). This is possible only if there is no flow of angu-
lar momentum at all, i.e. only if QF = CP (equation 7.1), which means in turn
that I = O (equation 5.11).

Because QF = QH and I = O throughout the interior of J;, the stream equa-
tion (6.4) is there a perfect divergence. Integrating it over the interior of
i; and converting to a surface integral by Gauss's theorem, and noting that the
contribution from 4 vanishes because QF - w = QH - w= 0(a2) and @ > 0 at 4 (see

pp. 251-252 of Bardeen 1973), we obtain
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2 F, \2
L:(a/m)[l-ez/c)]w-dz = 0, (7.34)
% ~ ~
vF = (QH - w)‘m/a = (linear velocity of field line relative to ZAMOs).

Note that because L, is a surface of constant flux, Y¢ is parallel to d§; and
because of our assumed simple loop topology (Fig. 7), V¥ -+ dZ has a constant
sign (positive or negative) everywhere on L - Shown dashed in Figure 7 is the
"velocity of light'" surface on which vF = c. If 15 lies entirely inside that
surface, then oF < ¢ everywhere on [, and (7.34) then demands that vy -+ df =

0 everywhere on Lb, which in turn means that Y¢ = 0 and hence EP = 0 everywhere
on 16. Thus, there is no field at all, much less any field line, on.i;——and the
same holds true for all loops inside J%.

If_[‘o pierces through the velocity-of-light surface (the case shown in
Figure 7), then integrate the stream equation separately over the shaded and
unshaded parts of the interior of 1%, convert to surface integrals, note that
the integrals over 4 and over the velocity-of-light surface vanish, and thereby
conclude that (7.34) holds separately for the shaded (vF < ¢) and unshaded
(VF > c) parts of l;. This means, again, that Z¢ . d§ = 0 everywhere on 1%{
which means that there is no poloidal magnetic field at all, much less any
field line, on 1;——and the same holds true for all loops inside J%.

Thus, a loop of the form l; cannot exist in the force-free regionm—though

it can exist if part of the loop exits from the force-free region, e.g. into

the disk.
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8. Conclusion

In this paper we have tried to focus exclusively on those aspects of black-
hole electrodynamics which are independent of the complexities and uncertainties
of realistic plasma physics. As a result, we have ignored the most important
features of the theory: the processes by which the flowing electromagnetic
power gets deposited into charged particles in the acceleration region, and
the details of the resulting particle motions. However, we think and hope that
our formalism can serve as a foundation for detailed studies of these phenomena

and of other aspects of black-hole magnetospheres.

We thank Roger Blandford for several very helpful discussions, and Roman

Znajek and Chris McKee for helpful critiques of our manuscript.
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Fig. 2
Fig. 3
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FIGURE CAPTIONS

Accretion disk around a black hole, with magnetic field lines threading
it. Although the disk is shown thin, nothing anywhere in our analysis
constrains it to be so. The surface 4 and its boundary 9. are used in

the mathematical discussion of magnetic flux conservation in section 3.

Cross section through space at constant azimuth ¢ showing three types

of regions where we make three different assumptions about the structure
of the electromagnetic field. In region FF the field is force free; in
region D (which includes the disk and the horizon) it is degenerate but
not force free; in region A ("acceleration region'") it is neither degen-
erate nor force free. The boundaries between the FF, D, and A regions
are shown as dashed lines. Although the disk is drawn fairly thin, it
might well be so thick as to reach up and intersect the acceleration

region A.

Annular magnetic flux tubes (dashed lines) wused in

the text's discussion of torque balance and power flow. Two annular
flux tubes are shown. The inner tube (labeled "a'") intersects the hole.
The outer tube (labeled "b") intersects the disk. Magnetic field lines
on the inner face of each tube are characterized by some value y of the
flux parameter; those on the outer face are characterized by Y+ Ay,

where Ay is the total magnetic flux in the annular tube.

Cross section showing several electric equipotential surfaces (solid
lines, labeled 1, 2, 3, and 4) and several curves along which poloidal
current flows (dotted curves labeled i). The degenerate, force free,
and acceleration regions are marked D, FF, and A as in Fig. 2. 1In the

D and FF regions the equipotential surfaces coincide with the walls of



Fig. 5

Fig. 6

Fig. 7
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the magnetic flux tubes of Fig. 3, but in the A region they deviate
from the flux tubes and close up on themselves. In the FF region the
current flows along equipotential surfaces, but in the D and A regions

it can flow across them.

Poloidal diagram of the force-free region FF and its boundaries S, 8,
and 4 as used in Section 7.4 in formulating initial value data for solu-

tions of the stream equation.

Poloidal diagram of the force-free region FF and its boundaries for
situations where there is a force-free equatorial gap g between disk

and horizon.

Diagram used in the proof that poloidal magnetic field loops such as
i; cannot exist in the force-free region of a stationary, axisymmetric

magnetosphere.
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NUMERICAL MODELS OF BLACK-HOLE MAGNETCSPHERES*

Douglas A. Macdonald

W. K. Kellogg Radiation Laboratory

California Institute of Technology, Pasadena, California 91185

ABSTRACT

This paper develops numerical models of stationary, axisymmetric,
force-iree black-hole magnetospheres, based on the theory origi-
nally developed by Blandford & Znajek and reformulated and
extended by Macdonald & Thorne. The- structure of such a magne-
tosphere is determined by a single scalar "stream function” satis-
fying a nonlinear, second-order partial differential "stream equa-
tion" on a region bounded by the black-hole horizon, the accretion
disk, and an outer boundary beyond which the force-free condition
breaks down. The stream equation is solved numerically, using an
iterative relaxation method, for three different poloidal magnetic
field configurations: (1) (roughly) radial magnetic field; (2)
(roughly) uniform magnetic field; and (3) (roughly) paraboloidal
magnetic field. The second and third cases also include a force-
free gap between the inner edge of the disk and the horizon, with
which the horizon may exchange magnetic flux. For the chosen

boundary conditions, it is found that the poloidal field structure

* Supported in part by the National Science Foundation [AST82-14128]
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does not change greatly as the field is spun up.
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1 Intreduction

The mechanism behind the enormous power outputs of quasars and active
galactic nuclei has been a subject of lively speculation since their discovery
twenty years ago. The idea that black holes may play a role was recognized
within months of the discovery of the first quasar, but it was not until relatively
recently that realistic models were proposed for the direct extraction of energy
from black holes (Blandford 1976, Lovelace 1976, Harrison 1978, Blandford &
Znajek 1977). These models have in common the assumption of a supermassive
(~ 108Hy), stationary, axisymmetric black hole, surrounded by an accretion disk
that holds a strong (~ 10* Gauss) magnetic field on the hole. A toroidal com-
ponent of the field extracts the rotational energy of the hole and disk and
transfers it to accelerated charged particles, which form a jet carrying the
energy to the observed double lobed structures. In some variants of these
models, the direction of the jet is determined by the spin axis of the black hole,
whose large inertia is responsible for the long-term stability of the linear struc-

ture of the jet.

In the Blandford-Zriajek model, it is assumed that there exists a region near
the horizon where the magnetic field is sufficiently strong, and the plasma
sufficiently tenuous, that the plasma exerts no force on the magnetic field. The
only role of the plasma in the magnetosphere is to provide the charge and
current sources for the field. The field entirely dominates the dynamics, drag-
ging the plasma whither it will. The mathematical expression of this force-free
approximation is the vanishing of the Lorentz force density: p, 5+ j*xB=0. On
the other hand, in the non-force-free disk the plasma has so much inertia that it
determines the dynamics of the field lines which thread it and are locked into it
by its very high electrical conductivity. This point is crucial to the entire model,

since it is the disk, not the hole's gravity, that holds the magnetic field on the
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hole.

Znajek (1978) and Damour (1978) have shown that, in its interactions with
the electromagnetic field, the horizon behaves as if it were an ordinary body
with a surface conductivity of R¥ = 47 = 377 ohms. The field lines thus may slip
through the horizon; but as they do, it exerts a torque on them. The angular
momentum and mechanical energy thereby extracted from the hole are
transmitted along the field lines without loss until they reach a region where the
force-free approximation breaks down. In this non-force-free "acceleration”
region, the energy and angular momentum presumably are transferred to
charged particles. The possible mechanisms operating in this acceleration
region have been investigated by Blandford (1976), Lovelace (1976), Lovelace et

al. (1979) and Phinney (1983).

The Blandford-Znajek theory of black-hole magnetospheres was recast in a
3 + 1 language by Macdonald & Thorne (1982) (Paper 11 in this series) using a for-
malism developed by Thorne & Macdonald (1982) (Paper I). This paper (Paper
IIT) extends that work by constructing numerical models of stationary, axisym-
metric, force-free black-hole magnetospheres. Section 2.1 presents without
proof the equations of black-hole magnetospheres derived in Macdonald &
Thorne (1982) and describes the prescription to be used in generating the
numerical models. The procedure used consists of taking known, static, vacuum
solutions of Maxwell’'s equations in Schwarzschild spacetime and "spinning up"
both the hole and the field to obtain the desired force-free solutions in Kerr
spacetime. Section 2.2 briefly describes the numerical methods used in con-

structing the models.

Section 3 describes the details of three specific models. Section 3.1
presents a problem in which the magnetic field lines all thread the horizon and

in which the initial fleld, before spinup, is precisely radial. Section 3.2 considers
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a model in which the initial field structure is that of a uniform magnetic field; it
also allows the possibility of a force-free gap between the inner edge of the disk
and the horizon, with which the horizon may exchange magnetic flux. Section
3.3 describes a model in which the initial fleld structure is paraboloidal, and also

includes a force-free gap.

Throughout this paper, units are used in which the speed of light ¢ and
Newton's gravitational constant G are equal to unity. Electromagnetic quanti-

ties are expressed in cgs units.

2 Equations of magnetosphere models

2.1 THEORY OF FORCE-FREE BLACK-HOLE MAGNETOSPHERES

This paper treats the topic of black-hole magnetospheres from the
viewpoint of the absolute-space/universal-time formalism derived in Macdonald
& Thorne (1982) (Paper II). The 3 + 1 notation used there and in this paper is
derived and discussed in detail in Thorne & Macdonald (1982) (Paper I); only the

fundamentals of it will be reviewed here.

In the absolute-space formalism, a stationary, axisymmetric black-hole
spacetime is characterized not by the usual four-dimensional spacetime metric,

but rather by an absolute three-geometry
ds? = e™dr? + e¥2d 6% + wPd? | (2.1)

and an associated universal time £, Stationarity means that all quantities are

independent of time £; axisymmetry means that they are independent of ¢.

The laws of electromagnetism in the absolute-space formalism are couched
in terms of the fields measured by a particular family of fiducial observers: the
zero-angular-momentum-observers, or ZAMOs, of Bardeen, Press & Teukolsky

(1973). Two scalar functions characterize this congruence of observers: their
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angular velocity w defined by

w= (dQ/ dt)of ZAMO rest frame (2.2)

and their "gravitational redshift factor” (also called 'lapse function") « defined

by

d (proper time of ZAMO)
di

o= (R.3)
The functions a and w together can be thought of as making up the "time-time"
and "time-space" parts of the four-dimensional metric of which equation (2.1) is
the "space-space” part. The stationarity and axisymmetry of the spacetime
require that the functions «, w, &, u; and i, be independent of £ and ¢, i.e. be

functions of 7 and & only.

The structure of a force-free black-hole magnetosphere is determined by a
single scalar stream function ¥(r,8) and two functions of ¢: QF (¥) and 7(¢). In
terms of these functions, the poloidal and toroidal components of the electric

and magnetic fields seen by the ZAMOs are

EPZ*MVQP,ET:O _
(R.4)

where V is the gradient (covariant derivative) operator in absolute three-
dimensional space and e; is the unit vector in the ¢ direction. Mathematically,
the stream function 9 is equal to 27 times the toroidal component A, of the vec-
tor potential. Physically, ¥ at a point (7,, 8,) is equal (by Faraday's law) to the
total magnetic flux upward through the azimuthal loop (r =7,, 8 = 8,). Simi-
larly, I(r,, 8,) may be shown to be the total current downward through the

same loop. The quantity 0¥ (¢) may be interpreted as the angular velocity of the
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magnetic fleld lines relative to absolute space since an observer moving with
angular velocity de/dt = QF relative to absolute space, i.e. with physical velo-
city v¥' = a7 }(QF — w)we, as measured by ZAMOs, will see a vanishing electric

field B' = 9[E + v'xB] = 0.

The stream function satisfies a nonlinear, second-order partial differential
stream equation which was first derived in four-dimensional spacetime language
by Blandford & Znajek (1977). In 3 + 1 form it is

V.{g_l_iﬂ—_wfi
mz

o

dy ocf Ay

v¢]+ (QFO(“ ) dO7 gyey 16m p dl _ o (o

In order to construct a force-free magnetosphere model, one solves equation
(R.5) subject to boundary conditions at the borders of the force-free region to be

described below.

All of the solutions to be described in this paper will be carried out on a
region of the Kerr black-hole spacetime. The lapse function a, ZAMO angular

velocity w, and three-metric of this spacetime in Boyer-Lindquist coordinates

(t,r.8,¢) are
-~ /2B
A A )
= ——z‘lf" : (2.6)

2

2
ds® = pA—drg + p?d 6% + de? |

where M is the mass of the black hole and a is its angular momentum per unit
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mass, and where
p% =72+ alcos?o

A=7? —RMr +a? |,

A = (% + ¢®)? — oPAsin?6 (R.7)
Asin®8
RS
p

The horizon is located at 7 =7, = M + VHM? —a? where A= a = 0.

A poloidal slice of the force-free region is shown in Fig. 1. Its inner boun-
dary is at the horizon & (r = r,), and its outer boundary & is at some radius
7 = K. Beyond this outer boundary, the force-free condition is presumed to
break down, and the electromagnetic field energy is transferred to charged par-
ticles; the region beyond the outer boundary is therefore called the acceleration
region. In a realistic physical model, the acceleration region would likely be far
enough from the hole that both its Keplerian orbital angular velocity and the
ZAMO angular velocity w would be negligible. The models considered here will
not all satisfy the condition R > r, (generally R will be taken to Ee about 57,),
but for the sake of simplicity and since the phenomena of greatest interest
occur near the horizon and the disk, the angular velocity of the acceleration
region will be assumed to be zero. The boundary & is the axis of symmetry
6 = 0. The boundary in the equatorial plane at 8 = 90° is made up of two dis-
joint regions: a '"disk" region % where the magnetic fields are assumed
anchored into the highly conducting plasma of an accretion disk, and a "gap"
region ¥ between the horizon and the inner edge of the disk, through which the
force-free magnetic fields extend unimpeded. In some of the models discussed

in this paper, ¥ will be assumed to be nonexistent and the disk will be taken to
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extend all the way in to the horizon. In numerical integrations of equation (2.5),
it is sufficient to consider just the region shown, thanks to axial symmetry and

reflection symmetry about the equatorial plane.

The boundary conditions to be applied on the various regions of the boun-
dary in solving equation (2.5) will now be described: The requirements on the

stream function ¢ are
F =0 (R.8a)

B . 9 afixed function of position, which is arbitrary (R.8b)
except that ¥ « w® asw > Oon &R

9 : v afixed but arbitrary function of position (R.8c)
G . Wxe; (2.8d)
s SY _ _anl(y) 7%+ afoos®s (2.8¢)

dé  QF —QOF(y) (r% + o®)sind

Here 0, the angular velocity of the horizon, is the limit of the ZAMO angular
velocity w at the horizon. The restrictions on ¢ at & and & are enforced to
prevent unphysical singularities in the poloidal magnetic field on the symmetry
axis; and the condition at ¢ guarantees that the magnetic fleld lines will be
vertical in the force-free gap. The boundary condition on # was first derived
by Znajek (1977), and was shown by Macdonald & Thorne (1982) to be the condi-
tion of minimal ohmic dissipation in the horizon. The meaning of "arbitrary” in
the above context is somewhat restricted; in order for equation (2.5) to have a
solution in the interior of the force-free region, the assumed boundary values on

&B and P must be consistent in the sense that points of equal ¥ on the
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boundary can be joined through the interior by non-crossing lines of force.

The boundary conditions on the functions QF () and I (%) are
F: OF =constant; I =0 (2.9a)

B . OF and I arbitrary except (1) ] x o as & - 0 on B (2.9b)
(2)dI/dy =(QF - QF)/2mat PNB

@ : OF and I arbitrary (2.9¢)
@Z: O =0; I=0 (2.9d)
;. QF and I arbitrary . (2.9¢)

Here again the conditions on & and @B are required to prevent unphysical
singularities on the symmetry axis. The conditions on % arise because field
lines passing through the gap are anchored at both ends in the acceleration
region and will thus share its angular velocity (zero) and will have no toroidal

componeht (I < BT by equation 2.4).

The wide arbitrariness in the choice of boundary conditions on % allows a
wide variety of solutions in the interior of the force-free region. One may choose
boundary conditions to yield arbitrarily complex structures such as magnetic
field loops embedded in the disk or in the boundary of the acceleration region.
There is no basis for ruling out these complex structures on physical grounds; a
magnetic fleld being dragged in toward a black hole by an accretion disk might
be expected to have a tangled and chaotic structure since the high conductivity
of the disk will not allow the field loops to slip through the plasma and annihilate
themselves. On the other hand, the horizon has a relatively high surface resis-

tivity: R¥ = 4m = 377 ohms, as shown by Znajek (1978) and Damour (1978); any
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field loop embedded in it will annihilate itself on a timescale of the order of the
light-travel time across the loop. The structure of the horizon field determined
by equation (2.8e) will thus generally be simpler and more uniform than the
structure of the field threading the disk; the horizon can therefore be thought of
as "cleaning’ the field carried onto it by the disk (cf. section 7.5 of Paper 1I; also

Thorne et al. 1984).

Notwithstanding the allowed freedom in the choice of boundary conditions,
it is not desirable for the purposes of the present paper to assume boundary
conditions which lead to complex field structures. The phenomenon of greatest
interest is the behavior of the magnetic field as the black hole is spun up, i.e. as
Q¥ is increased from zero. To isolate this behavior from the effects of variations
in other parameters of the problem and peculiarities in their form, it is con-
venient to fix the boundary conditions in as simple a manner as possible while
the hole is spun up. Another consideration favoring simplicity is that the
numerical solutions derived here will all be derived by spinning up static,
vacuum magnetic field solutions in the Schwarzschild metric, so the assumed
forms of Qf(3y) and 7(¥) must satisfy the horizon boundary condition (2.8€) in
the limit that 7, QF and 0¥ approach zero; that is, the boundary functions must
be chosen so that the ratio I(3)/[Q¥ — QF(¥)] approaches sind(d¥y/d8) as

a - 0in order for equation (2.8e) to be satisfied.

One may obtain some guidance in choosing the functional forms of QF (%)
and /() by considering the arguments contained in section 7 of Paper 1I. There
a precise analogy is drawn between the force-free magnetosphere and a DC cir-
cuit, and it is shown that the angular velocity (O of a magnetic flux tube is
determined by the ratio of the impedances across the tube at its two ends. In
order to make this idea quantitative, one defines a function Z4, considered as a

function of 4, as the total resistance of the acceleration region between field
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lines which intersect it at some fixed latitude 8,, and field lines labelled by 2.
(The constant 8, is introduced to avoid the infinite values which would appear if
the impedance were defined from the axis, but it will not enter into physical
equations since Z2 will always appear as a differentiated quantity.) Similar func-
tions Z¥(v) and Z? (/) may be defined for the horizon and the disk, respectively.
The horizon impedance Z¥ has a fairly simple functional form; for a
Schwarzschild hole, it is calculated by multiplying the horizon's surface resis-
tivity R¥ = 4 by the meridional distance rd8 and dividing by the cross sec-

tional length 2mes = 2nrsing, then integrating over &:

6 '
ZH’_"f 2d8' _ tan6/2

sing’  ~ ™ tang,/2 (2.10)

%

The disk and acceleration-region impedances in general will have a more compli-
cated form than this since their resistivities will depend on the characteristics

of the matter of which they are composed.

The field-line angular velocity is determined on lines threading the horizon

by

0F(y) _ dz(y)
OF —0F(y)  dzf(y) (2-112)
and on lines threading the disk by

0°(y) _ dz%(y) (2.11b)

QP -0f(y)  dz”(y)

Blandford & Znajek (1977), Lovelace ef al. (1979), Macdonald & Thorne (1982)
and Phinney (1983) give models and arguments suggesting that the ratio
dZA(y)/ dZH () should be roughly unity, which implies that QF ~ 0 /2; i.e. the

angular velocities of field lines threading the hele are half that of the hole.
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Blandford & Znajek show that this is the condition for extraction of maximum
power by a given magnetic-field distribution on the hole. On the other hand, the
ratio dZ4(y)/ dZP () should be very large because of the large conductivity of
the plasma making up the disk; equation (2.10b) then implies that Q0P de.

the field lines are frozen into the disk.

The current potential /() is determined by the equations

H — QH_QF D QF

T en(dzH/dy) T en(dzA/dy) (812}

for field lines threading the hole and the disk, respectively.

In accordance with the above guidelines, the field-line angular velocity QF
for field lines threading the hole will be chosen to equal 0¥ /2 in all models con-
structed here. The currents will be taken to have the functional form defined by
the slow-rotation limit of equations (2.12), i.e. the derivatives dZ¥/dy and
dZ4/d+y will be figured using the % of the pre-spinup, Schwarzschild-spacetime
solution. Since the ratio dZ4(y)/ dZ¥ (v) is assumed to be approximately unity,
the acceleration region will be taken to have an effective surface resistivity of
order unity; the impedance Z4 used in equation (2.12) to determine the current
on field lines threading the disk will therefore be defined by an equation of the
form dZ4 « d@/sinf. The disk will be taken to have infinite conductivity so that
the magnetic field lines are rigidly frozen into the disk and must rotate with its

angular velocity.

2.2 METHODS OF NUMERICAL SOLUTION

As a first step in constructing a numerical magnetosphere model, it is con-
venient to rescale all quantities of interest so that they are dimensionless. This

may be done using the only scale factor inherent in the problem: the mass # of
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the black hole.
r*=r/M , a*=a/HM , wr=w/ M, t*=t/H, wt=0M , O =0"N ,
QI*=Qfy =a*/2Mr* , v} =r, /M =1+ (1 -a®¥)/? (2.13)
B*=BM , B*=EHM , Yy*=y/M , I*=1]

For a black hole of mass M ~ 1084, surrounded by a magnetic field of strength
B ~ 10*G, and with magnetospheric currents of order 10'® amperes, the dimen-
sionless quantities B*, ¢* and I'* will all have magnitudes of order 1078 If one
reformulates all of the equations in section 2.1 in terms of the rescaled quanti-
ties (including expressing the V operator in terms of 7*-derivatives), all equa-
tions precisely retain their original forms except for the replacement of non-
starred by starred quantities. Thus, in the interest of notational simplicity, the
stars will be dropped and all quantities will henceforth be understood to be

dimensionless.

Equation (2.5) is elliptic everywhere except on the locus (vF)?=1 or
(OF — w)?e?/ o = 1 ("velocity-of-light surface"), where it becomes a first-order
equation. It is thus amenable to solution by finite-difference, ;Soint—iterative
relaxation methods on a grid (see e.g. Ames 1977). The grid chosen was an r—8
coordinate grid with constant stepsizes k. and hy in the respective directions.

The computational molecule is shown in Fig. 2.

The gradient operators in equation (2.5) are covariant derivatives in abso-
lute three-dimensional space. The first term in (2.5) may be expressed in terms

of ordinary derivatives as

Vv = =) (2.14)
o M1

v (CRSE 7S PR Cile N I
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where e = p/ VA, " =p [cf. equations (2.1) and (2.8)], X = a(1 — (vF)?)/ &,

+
and where Vg = we’t ™ #2

is the square root of the determinant of the three-
dimensional metric (2.1). The differential equation (2.5) may thus be written as

a difference equation on the grid of Fig. 2 in the following form:

TRz
e lo —py s Y1—RY%ot+¥s Kyt Y1—Ys3
= [ (e ™ X))o T*‘ (e "RXw) 4 o o

_ -2 ~ 2
+ (eMH2xw), il h@;o“/’z + (e"7%Xw) 6o '¢___g;:z :| (R.15)
[ 2 =
(QF -w), dQF| e “1]0 !J'zlo ‘ )
+ 0 AN (¥1—¥s)? + ahg —— ) wz I(%0) d’r/' =0

where the subscripts 0—4 refer to the points labeled in Fig. 2.

Solving this equation for 7 yields a prescription for an iterative relaxation
scheme; in updating the array, the new value of ¢ at the point 0 is calculated as
a function of the old values of ¥ at the surrounding points. The particular
method used was a technique known as successive over-relaxation (SOR) with
Gauss-Seidel iteration (see e.g. Ames 1977). In this method, the prospective
correction Yopmew) — Yooiq) is multiplied by a factor g (1 =8 < 2) before being
added to Yg(uq). The relaxation parameter § may be chosen to optimize the con-
vergence rate: if A is the asymptotic ratio of maximum corrections on succes-
sive iterations when 8 = 1, then the optimal value of g is 8sop = 2/ (1 + VI — X);
this value of § produces a convergence ratio (ratio of successive maximum

corrections) of Bsor — 1.

One point of difficulty with the solution is that, as mentioned previously,
equation (2.5) becomes a first-order equation on the velocity-of-light surface

(v)2=1. If 0=<0F < Q¥ (which is the condition for energy extraction), there
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are actually two distinct velocity-of-light surfaces: an inner one near the hor-
izon, within which any particle attached to the field lines must slide inward in
order to avoid superluminal motion; and an outer surface, corresponding to the
familiar pulsar light cylinder, beyond which particles locked to the field lines
must slide outward. For a nonrotating hole and fleld, the inner light surface is

coincident with the horizon and the outer one is at infinity.

At the light surfaces, equation (2.5) just becomes a Neumann-type boundary

condition
8y . (OF —w) d0F o, 16m% . dI _
VX | -+ a7 (Ve + =~ 71 el (2.16)

where 07/ 6n denotes the normal derivative of ¢ at the light surface.

Considerable difficulty was encountered in finding a difference equation
which was stable at the light surface. Several schemes which were tried before
equation (R.15) was selected were found to produce divergences if the outer light
cylinder was within the region of integration. Explicit attempts to model the
Neumann boundary condition (R.18) produced more success, but the best
results Were obtained using the differencing scheme embodied in equation
(R.15). Even this method exhibited noticeable oscillations in the solution values
at lattice points which happened to lie very near the light surface (much nearer
than the stepsizes h, and hy); this is due to the fact that, in solving equation
(2.15) for 7, the quantity X, which vanishes on the the light surface, occurs in
the denominator. Oscillations may occur if a particular iteration moves the
light surface across a lattice point lying near it; the next iteration will then
apply a correction of the opposite sign which will tend to move the light surface
back across the lattice point. But the oscillations were usually small enough
that equation (R.15) converged to a solution for the rotation parameter o less

than about 0.75, where the criterion for successful convergence was defined by
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requiring the maximum correction to decline to a value 0.001 times its value at

the first iteration.

In situations where a force-free gap was assumed to exist between the hor-
izon and the inner edge of the disk, the boundary condition (2.8d) was enforced
by resetting the boundary values of ¥ on the gap after each iteration in such a
way as to require the field to pass through the gap vertically. After each itera-
tion, the magnetic field would generally come out with a small but nonzero
radial component at the gap; condition (2.8d) was applied by changing the values
of 7 on the gap so that it once more represented a vertical field at the boundary.
In general, this required adding or removing some flux from the horizon; this
was accomplished by refiguring the horizon field using (2.8e) and the newly cal-

culated value of the total flux threading the horizon.

3 Specific models

3.1 RADIAL MAGNETIC FIELD

Since the interaction of the magnetic field with the horizon is one of the
major phenomena of interest, it is instructive to consider a problem in which all
of the magnetic flux threads the horizon and is held on the hole by a disk
extending all the way up to the horizon. This is not physically realistic; it
presupposes that the disk, which carried the magnetic field onto the hole, has
run out of flux threading it, and it further requires part of the disk to be inside
the innermost stable circular orbit. However, this idealization allows the effects
of the spinup of the horizon on the field to be seen free from the interference of
effects of the disk. This model is similar to an analytic, perturbative solution for

small a/ M derived by Blandford & Znajek (1977).

The solutions described in this section are derived by spinning up the solu-

tion
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'Sb = 1//0(1 - COSG) ' (31)

which satisfies the vacuum stream equation V-(aVy/ &) = 0 for zero rotation
and consists of precisely radial field lines, all of which thread the horizon. (The

field points into the horizon below the equator, and out of it above the equator;

otherwise Gauss's magnetic law SﬁB-d.Z = 0 could not be satisfied.)

If all of the field lines are taken to rotate with angular velocity Q" = 0fse,

then the horizon boundary condition (2.8e) implies that the current / depends

on ¥ as
0F %, OFy, | 2
Fi %sinzﬁ ik ioL— 3&—} (3.2)

in the zero-rotation limit. For simplicity, it will be assumed that this functional
form is retained throughout the spinup of the hole. For nonzero rotation, the

horizon boundary condition (2.8e) may be separated

OF dy _ % +afcos®s

= ag 3.
4m I(¥)  (r% + a®)sing ' 8.5)
and integrated to get the horizon field ¥ (8)
_Y,
vH(8) = — : - . (3.4)
1+ sin®8 exp| - Ra*cosf
(1 — cos@)? r2 + a?

This function reduces to the form (3.1) in the limit of zero rotation; it is
plotted in Fig. 3 for several different values of the rotation parameter a. It may
be seen that, as the hole is spun up, the field threading the hole concentrates
itself toward the pole. The effect is not dramatic however; for a nonrotating hole

(@ = 0), half the flux threads the hole north of latitude 30°, while for an extreme
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Kerr hole (@ = 1), roughly 71% of the flux threads the hole north of this latitude.

In solving this problem, the zero-rotation solution (3.1) was used as a start-
ing solution for spinning the hole up to @ = 0.1. After this solution converged, it
was used as the initial solution for spinning the hole up to @ = 0.2, and so on.
This procedure ensured that the initial solution in the iteration was always a
fairly good approximation to the desired solution; this had the advantage of
guaranteeing rapid convergence as well as avoiding unwanted divergences. For
a magnetosphere with radius F ~ 10, the hole could be spun up to about

a = 0.75 with good convergence.

Fig. 4 shows the poloidal field structure for several representative choices
of the rotation parameter ¢ and the total magnetospheric radius ¥. The spinup
of the hole has little effect on the poloidal field structure; the field lines for
R =10, a = 0.5 are barely distinguishable from the precisely radial field lines
which exist for @ = 0. The diagrams for the cases £ = 10, ¢ = 0.66 and F = 100,
a = 0.1 are included to show the effects of the light surface, which in this case is
a cylinder of approximate radius 8/ a. The effects of the oscillations mentioned
in section R.2 are discernible as slight kinks in the field lines, but it is clear that
these are just numerical difficulties and that there is no physical impediment to
integrating the solutions across the light surface. The solution for F =4,

a = 0.9 shows a slight focussing of the field lines toward the rotation axis.

3.2 UNIFORM MAGNETIC FIELD

The stream function for an asymptotically uniform magnetic field threading

a Schwarzschild black hole in vacuum is (cf. Wald 1974, Hanni & Ruffini 1976)

W= 1'%"—'rzsinze : (3.5)
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where 7/, is the magnetic flux threading the hole. The asymptotic strength of
the magnetic fileld is 9,/ 4m The solutions described in this section are derived
by spinning up this solution.

Assuming as before that all of the field lines threading the horizon rotate
with angular velocity QF = 0¥/ 2, the horizon boundary condition (2.8e) implies

that the current potential /¥ on these field lines depends on % as

JH = “:jf sl w gf;—qp\/ﬁ — VT (3.6)

in the zero-rotation limit. This form of / implies that current flows into the hor-
izon north of the latitude where ¥ = 2¢,/ 3, and out of the horizon south of this
latitude. As before, it will be assumed that the functional form (3.8) holds
throughout the spinup of the hole. For nonzero rotation, the horizon boundary

condition (2.8e) may be separated and integrated to obtain

_ 4(1 — cos8)?exp[Ra?cos8/ (r* + a®)] . B
g) = sin*8 . 3.7
vi©) =, {sin®@ + (1 — cosB)?exp[Ra’cosd/ (7% + a®)|}? (6.%)

Here, unlike in the radial-field-line problem, the quantity %, is not be taken
as fixed; rather, a gap region ¥ is assumed to exist between the inner edge of
the disk and the horizon, with which the horizon may exchange magnetic flux.
The current (3.8) goes to zero at the equator of the hole so that it matches con-
tinuously to the gap boundary condition (2.9d). The function ¥#(8)/ %, is plot-
ted in Fig. 5 for several different values of the rotation parameter a. As in the
radial-field problem, the field concentrates itself toward the pole as the hole is

spun up, but the effect is not dramatic.

The plasma of the disk is assumed to be moving in circular geodesic orbits;
the angular velocity of these orbits is the relativistic generalization of the

Keplerian angular velocity:
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P =1/0%2+a) (3.8)

(see e.g. Bardeen 1973). The field lines embedded in it are assumed to rotate
with it: QF = QP. The inner edge of the disk is assumed to be at a fixed value of
7. Although it might have made more physical sense to choose it at the radius
of the marginally stable orbit, it was deemed unnecessary to introduce this addi-
tional complication to the problem. That choice would have led to the -
coordinate radius of the gap going to zero as @ - 1 (which could not be accom-
modated by the chosen integration scheme), while its proper radius approached
infinity.

The current on field lines threading the disk is determined solely by the
impedance of the acceleration region according to equation (2.12). This
impedance is assumed to be determined by an equation of the form
dZ4 = d 8/sin@ at the boundary of the acceleration region, i.e. surface resis-
tivity equals unity. Equation (2.12) then implies

_ 0f'y, R?

D
5 4

i
sin®@cos8 = Qﬂ—?ﬂ\/ 1 — 49/ YoR* (3.9)

where F is the radius of the boundary of the acceleration region.

As a first step in solving this problem, the force-free gap was introduced,
and the zero-rotation solution (3.5) was allowed to relax into it in accord with
the boundary condition (2.8d). This caused almost no change in the field since it
already passed vertically through the equatorial plane. (The small change which
did occur was due to the fact that, although a precisely vertical magnetic field is
an exact solution of the differential equation (2.5) with the given boundary con-
ditions, it may differ from the exact solution of the difference equation (2.15) by
terms of order h? or h.) The disk was then spun up, and the frozen-in field with

it, using the step-by-step procedure described in the last section. Lastly the
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hole was spun up using the same procedure.

Fig. 6 shows the poloidal fleld structure for several different values of the
rotation parameter a. The boundary of the acceleration region has been taken
to lie at = 10, and the edge of the disk has been taken to be at 7 = 8. Asin the
radial-field problem, the poloidal field structure is not greatly affected by the
spinup of the hole. The amount of magnetic flux threading the hole was found to
stay roughly constant as the hole was spun up, even though the cross sectional

area of the horizon is decreasing.

3.3 PARABOLOIDAL MAGNETIC FIELD

The stream function

Yo

Y= e (r —2)(1 —cos8) + RRInR — (1 + cosd)In(1 + cos@)]] (3.10)

satisfies the vacuum Maxwell equations in Schwarzschild spacetime and
describes an asymptotically paraboloidal magnetic field which threads both the
black hole and the disk. The total flux threading the hole is 9¥,. The models

described in this section are derived by spinning up this solution.

This model is of particular interest because, in contrast to the uniform-field
model, the flux is concentrated on the hole, and also because the electromag-
netic energy is focussed along the rotation axis, as is observed in astrophysical
jets. It is also consistent with a nonrelativistic argument given by Blandford
(1976) to the effect that, if the only torques acting on the disk and the hole are
electromagnetic, then stationarity requires that the poloidal field strength at

the disk vary inversely with radius, and thus that ¥ vary directly with radius.

Unfortunately, the specialization of equation (3.10) to the horizon yields a

form for ¥ (8) which cannot be inverted and solved analytically for &, thus not
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allowing the prescription used in the preceding two sections to be carried out.
To make the problem computationally tractable, the horizon field for ¢ = 0 will
be chosen to be ¥7(8) = ¥,(1 — cos8). This form is close to that derived by res-
tricting equation (3.10) to the horizon, differing from it by at most 22%. Diagram
(a) of Fig. 7 shows the field lines for the solution (3.10), while diagram (b) shows
the field lines with the new choice of horizon field; it may be seen that the new
choice retains the overall paraboloidal form of the field while greatly simplifying

the numerical computations.

A similar approximation must be made, for the same reason, in figuring the
current on field lines threading the disk. If the flux at the surface r = R of the

acceleration region is approximated as ¥4(8) = (3, R/ 4In2)(1 — cos8), the

current is
OFy, R OFfy, R | ain2
D oo M Voi¥ ooup . X Volb 1 |, 49009
I Brinz S 6 Bl [1 Vo R : (3.11)

As in the two previous models, it is assumed that all field lines threading the
horizon rotate with angular velocity O = 0¥/ 2, so the current on field lines
threading the horizon is just given by equation (3.2) and the horizon field for the
spun-up hole is given by equation (3.4) and Fig. 3. The current does not go to
zero at the equator as in the uniform-field case, so a poloidal current sheet is
required in the magnetosphere to support the discontinuity in the toroidal mag-
netic field. A force-free gap is again assumed to lie between the horizon and the

inner edge of the disk. The disk is assumed to be Keplerian (equation 3.8).

The sequence of steps followed in solving this problem was the same as that
used in the uniform-field case. First the force-free gap was introduced and the
field was allowed to relax into it. In contrast to the uniform field case, this relax-

ation had a large effect on the field since the original field had kinks in it at the
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disk due to the toroidal currents there. This problem therefore serves as a good
test of the algorithm used for exchanging flux between the gap and the horizon.
Diagram (c) of Fig. 7 shows the configuration of the field lines after the field has
relaxed into the gap. The gap field is roughly vertical, but is modified somewhat

from verticality by the Maxwell pressure of the surrounding field.

Next, the disk was spun up to Keplerian orbital velocity; the result of this is

shown in diagram (d) of Fig. 7. Finally, the hole was spun up.

Fig B8 shows the poloidal field structure for several different values of a.
Again the boundary of the acceleration region has been taken to lie at v = 10
and the outer edge of the force-free gap at r = 6. Once more it is seen that the
poloidal fileld structure is only slightly affected by the spinup of the hole. As in
the uniform-field case, the amount of flux threading the hole was found to stay

roughly constant as the hole was spun up.

Acknowledgements

I thank Kip Thorne for suggesting this problem and for many helpful sugges-

tions, and Roger Blandford for several useful discussions.



= 177 =

REFERENCES

Ames, W. F., 1977. Numerical Methods for PFartiel Differeniial FEguations,

Academic Press, New York.

Bardeen, J. M., 1973. In Black Holes, p. 215, eds. Dewitt, C. & Dewitt, B. S., Gor-

don & Breach, New York.
Bardeen, J. M., Press, W. H., & Teukolsky, S. A., 1973. Astrophys. J., 178, 347.
Blandford, R. D., 1976. Mon. Not. R. astr. Soc., 178, 465.
Blandford, R. D. & Znajek, R. L., 1977. Mon. Not. K. astr. Soc., 179, 433.
Damour, T., 1978. Phys. Rev. D, 18, 3598.
Hanni, R. S. & Ruﬁini, R., 1976. Lettere al Nuovo Cimento, 15, 189.
Harrison, E. R., 1978. Nature, 264, 525.
Lovelace, R. V. E., 1978. Noture, 282, 849,

Lovelace, R. V. E., MacAuslan, J., & Burns, M., 1979. In Proceedings of La Jolla
Institute Workshop on Particle Acceleration Mechanisms in Aslrophysics,

American Institute of Physics, New York.
Macdonald, D. A. & Thorne, K. 3., 1982. Mon. Not. K. asir. Soc., 198, 345.

Phinney, E. 8., 1983. In Proceedings of the Torino Workshop on Astrophysical
Jets, p. R01, eds. Ferrari, A. & Pacholczyk, A. G., D. Reidel, Dordrecht, Hol-

land.

Thorne, K. S. & Macdonald, D. A., 1982. Mon. Not. E. astr. Soc., 1€8, 339 and

Microfiche MN 198/1.

Thorne, Kip S., Price, Richard H., Crowley, Ronald J., Zurek, Wojciech, Suen, Wai-

Mo, Redmount, Ian H., Macdonald, Douglas A, Finn, L. Sam, & Zhang, Xiao-



- 178 -
He, 1984. In preparation, to be submitted to Fev. Mod. Phys.
Wald, R. M., 1974. Phys. Rev. D, 10, 1680.
Znajek, R. L., 1977. Mon. Not. R. astr. Soc., 179, 457.

Znajek, R. L., 1978. Mon. Not. R. astr. Soc., 185, B33.



- 179 =

FIGURE CAPTIONS

Figure 1. Poloidal diagram of the force-free region, showing its boundary seg-
ments. The inner radial boundary is the horizon & and the outer boundary &
is at radius 7 = K. The boundary & is the axis of symmetry 8 = 0. The bound-
ary in the equatorial plane at 8 = 90° is made up of a ""disk” region & where the
magnetic fields are assumed anchored into the highly conducting plasma of an
accretion disk, and a "gap" region ¢ between the horizon and the inner edge of

the disk, through which the force-free magnetic flelds extend unimpeded.

Figure 2. The computational molecule used in the numerical solution of the
stream equation. The grid has constant stepsizes h, and hy in the » and 8
directions, respectively. The labels 0—4 on the grid points are used in the

finite-difference equation (2.15).

Figure 3. The horizon magnetic flux distribution %%/, for the radial-field-line
problem, shown for various different values of the rotation parameter a. The

same diagram applies for the paraboloidal-field problem.

Figure 4. Poloidal field diagrams for the radial-magnetic-field problem for

representative choices of rotation parameter a and total magnetospheric radius

E.

Figure 5. The horizon magnetic flux distribution ¥ /%, for the uniform-field

problem, shown for various different values of the rotation parameter a.

Figure 6. Poloidal field diagrams for the uniform-magnetic-field problem for
representative choices of the rotation parameter a. The outer boundary of the

magnetosphere is at 7 = 10 and the outer edge of the force-free gap isat r = 6.

Figure 7. Stages in the relaxation of the paraboloidal field before spinup of the
hole. Diagram (a) shows the solution (3.10); diagram (b) shows the solution with

numerically simpler horizon boundary conditions. Diagram (c) shows the field
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after the force-free gap is introduced and the fileld is allowed to relax into it.
Diagram (d) shows the field after the spinup of the disk to Keplerian angular
velocity.

Figure B. Poloidal field diagrams for the paraboloidal-magnetic-field problem for

representative choices of the rotation parameter a. The outer boundary of the

magnetosphere is at 7 = 10 and the outer edge of the force-free gap is at r = 6.
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CHAPTERV
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DYNAMICAL ELECTROMAGNETIC FIELDS NEAR BLACK-HOLE HORIZONS

Introeduction

The 3 + 1 equations of electrodynamics developed in the first part of
Chapter II were completely general. In the latter half of chapter II and in
chapters IIl and IV, however, these laws were applied only to the study of station-
ary processes. This chapter will study in detail two simple dynamical problems
meant to elucidate the behavior of electromagnetic fields in the neighborhood of
the horizon and illustrate the connections between the frozen-star and mem-
brane paradigms mentioned in the Introduction. Both of these problems involve
the relaxation of a specified initial field toward a stationary final state and show
explicitly the near-horizon field behavior described qualitatively in chapters 1

and II.

In section 5.3 of chapter II, a qualitative description of the structure of a
general electromagnetic field near the horizon of a black hole was given. There
it was pointed out that, due to the pathology of the constant-time hypersurfaces
used in making the 3 + 1 split, i.e. the fact that they fall deep into the past as
they approach the horizon (see Fig. 4 of chapter II), there is a problem in
defining the boundary conditions on electromagnetic fields at the horizon.
Because of this pathology, the fiducial observers of the 3 + 1 split never see any
particle or part of the electromagnetic field actually cross the horizon. If the
fleld is dynamical, they will see a layered field structure at the horizon reflecting

the entire past history of the near-horizon field.

A method of circumventing this difficulty was suggested in chapter II: First
one chooses a new time coordinate £ (see Fig. 4 of Chapter II), which, unlike the

global time £, is well behaved at the horizon. One then defines the horizon value
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of a field at global time ¢ = £, to be its value at the intersection of the hypersur-
face £ = t; with some t = constant hypersurface near the point of interest on
the two-dimensional horizon cross section. From the point of view of the fiducial
observers, the effect of this prescription is to apply the boundary conditions on
electromagnetic fields not at the true horizon, but at a siretched horizon dis-

placed outward slightly from the true horizon.

The precise value of ? time to be chosen or, equivalently, the amount by
which the horizon is to be stretched, was not specified in chapter I1I. There it
was merely noted that the 3 + 1 formalism was likely to be most useful for cases
of quasistatic field evolution, i.e. cases where the timescale of evolution of the
field is much less than the mass M of the black hole. In such cases the stretch-
ing is trivially easy. This chapter will study two examples dynamical on time-
scales § M and will show that even in these cases the electromagnetic solutions
obtained are not sensitively dependent on the position of the stretched horizon,
so long as certain criteria are met. In effect, this means that the layered fields
at the horizon have no discernible influence on the fields external to the
stretched horizon, so long as its location is chosen reasonably. This lack of sen-
sitivity to the structure of the layered relic fleld is in accord with intuitive
expectations from the membrane paradigm, which predicts the horizon to act

like a body of finite conductivity in its interactions with electromagnetic fields.

Section 1 of this chapter treats the dynamical relaxation of the electric
field of a charged particle falling into the horizon of Rindler spacetime. As will
be explained, Rindler spacetime is a good approximation to the Schwarzschild
and Kerr black-hole spacetimes in the near-horizon limit or, equivalently, in the
limit as the horizon size becomes arbitrarily large. Rindler combines the
kinematic properties of horizons predicted by the membrane paradigm (such as

electrical conductivity) with an algebraic simplicity lacking in the black-hole
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spacetimes. Thus, many of the conclusions drawn from this model may be

expected also to hold for black-hole spacetimes.

Section 2 investigates the dynamical relaxation of an initially stationary but
nonequilibrium magnetic field threading a Schwarzschild black hole. The mag-
netic field lines oscillate in a manner qualitatively similar to vibrating strings,
with damping occurring only through the inner (horizon) boundary condition.
The layered field structure described above manifests itself as disconnected
loops of magnetic flux falling toward the horizon. The transfer of energy through
the horizon is studied in detail using concepts developed in chapter II, and the
dependence of the damping timescale on the parameters of the problem is

investigated.

1. Dynamical Fields in Rindler Spacetime
Consider a particle in flat spacetime which is undergoing constant accelera-
tion of magnitude g in a particular direction. By picking cylindrical Minkowski
coordinates (f,t,¢,2) so that the motion of the particle is along the z axis, the
spacetime trajectory of the particle can easily be shown, with a proper choice of
origin, to be a hyperbola
1
2% — 2% = e (1.1)
(see e.g. chapter 8 of Misner, Thorne & Wheeler 1973). One may define the local
coordinates of a family of accelerated observers moving with the particle; these

are called Rindler coordinates (7,t3,¢,Z), and are related to the Minkowski coor-

dinates by

t =(Z + g~!) sinhgT Z=Vz?—tf—g!
= (1.2)

z =(Z +g7!) coshgT TF=gltanli it z)
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The coordinates & and ¢ are the same in both systems. The trajectory (1.1) of
the accelerated particle in Rindler coordinates is just Z = 0. The spacetime line

element in terms of Rindler coordinates is expressed as
ds® = —(1 + g2Z)%dT? + de® + ePd® + dZ° . {1.3)

Fig. 1 shows the surfaces of constant 7 and Z associated with the Rindler coordi-
nate system. InFig. 2, the trajectory Z = 0 of the accelerated particle is plotted

as a dashed line in both the Minkowski and Rindler coordinate systems.

The Rindler cobrdinate patch covers only one quarter of Minkowski space-
time. Since the Rindler coordinate system is accelerated, it cannot cover all of
spacetime, but must break down at a distance of order 1/g from the particle.
The locus of this breakdown, the horizon of Rindler spacetime, is the surface
Z =—1/g9 orz =t. This horizon possesses all of the kinematic properties of the
more familiar black-hole horizons; and most importantly for the present prob-

lem, its surface resistivity is #¥ = 47 = 377 ohms.

The consideration of fields in Rindler spacetime is of interest for more than
just its own sake. The near-horizon metric form for a stationary, spherically

symmetric black hole may be written as (cf. equation 5.29a of chapter II)

ds? = —o®dT? + k*d o® + T2[d 6% + sin®Odp?] . (1.4)

where 7, is the coordinate radius of the horizon and « is the surface gravity. If
one looks just at locations near the north pole so that sinf ~ 8 and makes the
identifications @ » 1 + gZ, 7,8 » &, & - g, this takes the form of equation (1.3).
Therefore, the Rindler field can be considered as an approximation to the field of
a spherically symmetric black hole in the limit as one approaches the horizon.
[Fairly obviously, it can also be considered as an approximation to the field of a

nonspherical, axisymmetric, rotating (e.g. Kerr) black hole in the near-horizon
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limit at the north pole; furthermore, it is a valid approximation to Kerr away
from the pole to lowest order in Z, i.e. neglecting radial variations in frame
dragging.] In the Rindler approximation, Z + 1/g is the proper distance from
the horizon: for a Schwarzschild hole of mass M, where Te= RM, the relationship

between the usual Schwarzschild radial coordinate 7 and the Rindler coordinate

Z is
= ~AMNT=BH/T - 7+ = . (1.5)
T = 2H/ T g

If the particle moving along the accelerated trajectory Z = 0 has a charge
@, it will generate an electromagnetic field. The field at an observation point O
(see Fig. 1) will be generated entirely by a single point of the particle's trajec-
tory, the retarded point &£ which lies at the intersection of the particle’s trajec-

tory with the past null cone of the observer point:

—(t ~t P +{z -2 f+eP=0 where z2p=VgF+ts , (t,<t) . (18)

Here the coordinates of the retarded point are denoted by the subscript £,
while those of the observation point are not subscripted; and the formulas use

Minkowski coordinates (£,83,¢,2). Solving for the retarded coordinates yields

tn — 2 zn —1
£t = = :
R p(22 — t7) Zp 2(z2 — %) (1.7)
where ¢ = VETEZ P/ = VPR T F g P T 75 end

n=-t?+22+ 2+ g2

The vector potential produced by the charge may be calculated from the
standard Liénard-Wiechert potentials (see e.g. Soffel, Miller and Greiner 1980)
to be

At= nglz_t§2 A% = et —25)

£(z?2 —t?3) - £(z2 —t8) (1.8)
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so the physical components of the electromagnetic field are:

g = 04 _ BQwz
8 o gred
__ 04t 047 _ 4Q(zF -t —t2 —g7®)
Bz = 8z ot g2 : (1.9)
z
p. = 04" _ BQwt

] oy - gZSS

If the flelds are transformed to Rindler coordinates, the only nonvanishing

physical components are

. BQw(Z + g7}
g = Qw(gzgsg L
Eg = 942(;78 [(Z+g7)2-ef-g7"] | (1.10)

where ¢ = V[(Z + g7)? + & — g *|? + 45/ g® in terms of Rindler coordinates.
As might be expected, this field is stationary in the sense that it does not
depend on the Rindler time 7. It should also be noted that it is normal to the
horizon at Z = —g~!. The electric field lines are plotted in Fig. 3. As explained
in section 5.4 of chapter II, the field lines may be considered to be terminated at

the horizon by a surface charge density

E5 -Q
= —Z— = : 1.1
& A |z=-179 Tg¥eR + g R S

and by integrating ¢/ over the horizon, one may verify that the total charge
induced on the horizon is equal to —@. The horizon surface current density
defined in chapter II vanishes, and there is no dissipation of energy in the hor-

izon.
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The solution (1.10) might alternatively have been derived from the solution
of Linet (1976) for a point charge at rest outside a Schwarzschild black hole by
applying the change of variables and the limiting process described in equation
(1.5) and the preceding paragraph. Linet's solution is summmarized in 3 + 1 form

in section 6.1 of chapter II.

In order to consider a dynamical problem, introduce another particle of
charge —& which is stationary in Minkowski coordinates at position 2z = 1/2g, so

that its trajectory in Rindler coordinates is

= 1 1
" 29 coshg? g ey

As seen in Rindler coordinates, this particle emerges from the past horizon aﬁ
T = —=, reaches a maximum distance 1/2g from it, and then falls into the
future horizon at 7 = +«. In Fig. 2, the trajectory of this charge is shown as a
dotted line in the two different coordinate systems. Only the infalling part of the
trajectory will be considered here. The physical components of the particle's
field in Minkowski coordinates are

L |
EB:_Qw E§=—Q(z g /R)

. = , (1.13)

where 7 = Vor* + (z — g1/ R)®. In Rindler coordinates the physical components

are
Eg =— 2? coshg? ,
Ey = ——Qs—- (Z + g7') coshgT — i : (1.14)
T 2g
B = 8y sinhgT ,

¢ 73
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where 7 = Vei® + [(Z + g7 !) coshgT — g1/ 2]° in terms of Rindler coordinates.

The definition of horizon charge and current densities in this case is trick-
ier than in the case of the Rindler-stationary charge. In attempting to calculate
them, one evaluates Eg' and £’ at the horizon (Z =-1/g, T = =), which leads
to indeterminate results. The reason for this is the infinite gravitational redshift
at the horizon. Unlike the fleld of the Rindler-stationary charge, which has
existed since 7 = —» and therefore extends all the way down to the horizon, the
field of the infalling charge has not had time (and never will) to propagate down
to the horizon. To get meaningful results, it is necessary to define the charge
and current densities on a "stretched” horizon at Z = —g ™! + ¢, where ¢ < g~
By using the results of chapter II, the charge and current densities produced by

the infalling charge on the stretched horizon may be shown to be

o = i = e (1.15a)
AT |z=—g-14r 4m[t® + (scoshgT — g1/ 2)°F]%
E —@gwecoshgT e
H _ I - 8
ad ko - . (1.15b
* gy R |zo_g-14,  4m[eR + (ecoshgT — g~/ R)%]%/? ( )

respectively, where Ej is the component of £ parallel to the horizon. As the par-
ticle descends toward the stretched horizon, the charge density (1.15a)
becomes more and more sharply peaked at the position & = 0 directly under the
particle; the integral of o¥ over the horizon, however, remains constant at the
value /2 during the descent. In the limit as the particle approaches the
stretched horizon, the charge density approaches the functional form

o » 20(®) (1.186)

47t

The surface current density (1.15b) feeds the growing concentration of charge

at = = 0.
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In section 5.4 of chapter 1I, it was shown that the energy flux density
through the stretched horizon is just F F¥, where E¥, the horizon electric
field, is the horizon limit of the quantity (1 + gZ)E”. The energy flux may be
obtained by integrating this quantity over the stretched horizon:

g R 2
f XH-EHdZ= Qgecosh_g;T .
4 B(ecoshgT —g~1/2)

(1.17)

The integral of this function over time, which should give the total energy
absorbed by the horizon, diverges due to an infinite contribution at the point at
which the particle crosses the stretched horizon. This is not unexpected, how-
ever, since the particle is assumed to be pointlike and thus has an infinite

amount of energy in its near field.

In contrast to the case of the Rindler-stationary charge, only half of the
field lines of the infalling charge intersect the stretched horizon; the rest escape
to spatial infinity. But as the particle falls in, its field lines (even the ones that
eventually escape to spatial infinity), are flattened down near the stretched hor-
izon within an ever-widening circle of radius Aw ~ gcoshg7 on the horizon.
Thereforé, if only the infalling pérticle existed, its entire field out to any chosen
radius & would ultimately seem to disappear beneath the stretched horizon; so
the oppositely charged particle, stationary outside the horizon, with field given
by equation (1.10), is added to "hold the field lines up" and to illustrate the

approach of the field toward stationarity.

Fig. 4 shows the electric field lines resulting from the superposition of the
fields (1.10) and (1.14) at several representative times. It may be seen that the
effects of the field of the infalling particle rapidly vanish, and that by about
T =6/g, the field has very nearly settled down to the stationary form which
would be produced by the Rindler charge alone. All of the effects of the infalling

particle's field become flattened into a thin layer just above the horizon, the
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thickness of which decreases at a rate proportional to 1/ coshgT ~ e ™97, If the
horizon is stretched slightly, i.e. moved up to Z = —g ! + ¢, all effects of the

infalling charge disappear beneath it in a time of order —g ~In{g &).

2. Relaxation of a Magnetic Iield in Schwarzschild Spacetime

Consider the problem of a Schwarzschild black hole of mass M, surrounded
by a perfectly conducting concentric sphere of radius £ > 2¥ into which an axi-
ally symmetric magnetic field is frozen. At time { = 0, the magnetic field lines
are momentarily static and purely radial, pointing into the hole below the equa-
tor and out of the hole above it, as shown in Fig. 5. Immediately after time
t =0, this initial configuration is released and allowed to evolve dynamically in
accord with the vacuum Maxwell equations — except that the field lines con-
tinue to be held fixed in the conducting sphere at radius £. We shall study the

dynamical evolution of this field.

In solving this problem, we shall use the 3 + 1 formulation of electrodynam-
ics developed in chapter II. In this formulation, the split of spacetime is charac-
terized by fwo scalar fields: the lapse function « which is equal to [—((4Vt)2]~1/2,
where £ is the universal time coordinate of the 3 + 1 split; and @, which is the
magnitude of the Killing vector corresponding to the azimuthal spatial isometry

of the spacetime.

In Schwarzschild coordinates (¢£,7,8,9¢), where the lapse function is
a=V1—-2M/r and the cylindrical radius is & = 7 sin8, the initial electric and

magnetic flelds are
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and the corresponding initial vector potential is a purely azimuthal one-form:

2 2

_— BOR .2 - BOR .
A= 5 sin®8 dy = o sind e; (B.2)

where B, is the magnetic field strength on axis at the outer sphere.

The field lines are fixed at their outer ends because they are frozen into the
perfectly conducting outer sphere, but they are free to slip through the
stretched horizon since it has a finite conductivity. Qualitatively, one would
expect the field lines to pull themselves into a more vertical orientation due to

their tension.

The subsequent evolution of the field is governed by the inhomogeneous

Maxwell equations
FEv,=anjb =0 = ., A =0 , (2.3)

where square brackets denote antisymmetrization on indices and where the fact
was used that J* = 0 since the region of interest is vacuum. The divergence of
the antisymmetric tensor A¥"] may be written in terms of ordinary derivatives
using the theorem expressed in equation (8.51c) of Misner, Thorne & Wheeler

(1973):

T V994 hap ~ Ap )]s =0 (2.4)

The symmetries of the problem allow a gauge to be chosen in which the only
nonzero component of the vector potential is Ay(t,7,8). The properties of
axisymmetry and the diagonality of the Schwarzschild metric then together
imply that the only non-vacuous component of equation (2.4) is the p = ¢ com-
ponent. This component may be written in terms of the "magnetic flux function”

Y(t,r.8) = 2nA,(t,r,8) which, as shown in chapter III, is equal to the total
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magnetic flux through the circle of constant radius and latitude

(r,6) = constant; the result is

w,tt

_ cotd
1-2M/T

+ |1 =¥%o=0 . (25)

oM oM Vo
- _7._] '5(’.77' + "7_2_11{’1' + 'rge = »

By introducing the "tortoise coordinate" r* of Regge & Wheeler (1957)

defined by

dr* = T_—‘;—Tm , r*=7 +2HIn 57;5—1—1] . (2.6)
equation (2.5) can be put into the form

~Yat Y e T—lz—[l = ?Ti’-’—]{w,% —cot8y,|=0 . (2.7)

In this equation, 7 is to be thought of as an implicitly defined function of = *,

The boundary condition of "no outgoing waves at the horizon” (see chapter

1) requires
[Bj—nxBjlrsex » 0 , (2.8)

where n is the unit normal vector e; to the horizon and E; and B are the field
components tangential to the horizon. The tangential fields may be expressed in

terms of the potential ¥ as

'S.be,; _ 1 L4 B = (VY x es]) & Y

By = T 2naw | 2noarsind 8t P 27rey T " 2mrsin@ or

es , (2.9)

where the overhead dot denotes time differentiation; so the horizon boundary

condition (2.8) becomes

oy

5 oo - 0 (2.10)

r—2M
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The initial field %(0,7,8) dgp = 1B, (R?/ r)sinf e; has the angular depen-
dence of the I =1,m =0 vector spherical harmonic (Jackson 1975)
X,0(8.¢) = iV3/Br sind e;; and since neither the differential equation (2.7) nor
the boundary conditions mix different multipoles, the field will remain propor-
tional to this harmonic as it evolves. It is thus convenient to separate variables

by defining a new field variable u (¢,7):

Y(t,r,8) dp = nBol?zﬂi—"r-LsinG e; = Y(t.7.0)=nB,R*u(t,r)sin?8 . (2.11)
Then the wave equation (2.7) for ¢ takes the form

2 M —
U 4 +u.'r'r‘_7.T[ ——;——-]u =0 . (212)
This equation describes a one-dimensional wave subject to a potential
V(r*) =2(1 —RM/7)/7? This potential goes to zerc at the horizon proportion-
ally to o?, goes to zero as 1/ 72 at large 7, and has a global maximum at 7 = 3M:
Vmex = 2/ (27M?). The inner boundary condition (2.10) written in terms of w(¢,7)

is just

a0 (2.13)

| ou _ ou
l r=2M

ot or*

which has the form of a "perfectly absorbing” boundary condition for the one-
dimensional wave equation (2.12). The outer boundary condition is w(t,R) = 1,

and the initial conditions are «(0,7) = 1 and © ;(0,7) = 0.

The wave equation (2.12) was integrated numerically subject to these initial
and boundary conditions, and the structure of the magnetic field lines was then
reconstructed from wu(f,7) using the relation (2.11) and the definition of

Y(t,r,0) as the magnetic flux function (equation 2.9). The inner boundary
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condition (2.13) was applied not at the actual horizon 7* = —«, but at a slightly
stretched horizon 7* = —20M, which corresponds to the Schwarzschild radius
T = (2 + 3.3 x 107°)M. (Although this horizon stretching is motivated by numeri-
cal considerations, it is the same stretching as occurs in the membrane para-
digm.) Representative plots of the magnetic field line structure are shown in

Figs. 68 and 7 for the cases # = 3M and ¥ = 10M, respectively.

The qualitative behavior of the solutions, as depicted in 7—8 coordinates, is
that the field oscillates for a time before settling down to a final static
configuration consisting of precisely vertical field lines. This static configuration
could be derived directly by setting the time derivatives in equation (2.1R) to
Zzero, and solving subject to the same boundary conditions; it is the solution
Y(r,8) = nB,r%sin?8 found by Wald (1974) and by Hanni & Ruffini (1978).

As the field lines oscillate, they leave disconnected field-line loops such as
those shown in the diagram for £/ # = 28 in Fig. 7. These loops drop toward the
horizon at the locally measured speed of light, dr*/dt ~ 1 or dr/dt ~ o®. Thus,
as described qualitatively in chapter II, the field has a layered structure at the
horizon which reflects the entire past history of its evolution. However, these
layered horizon fields do not affect the overall large-scale structure of the field
outside the horizon; the position of the stretched horizon in the numerical
integration could be moved outward considerably without changing the diagrams

in Figs. 6 and 7 in any noticeable way.

The complex, multilayered nature of the near-horizon fields is illustrated
graphically in Fig. B. In the top part of this figure, the magnetic field lines are
plotted on an embedding diagram for Schwarzschild spacetime, which consists
of a paraboloid of revolution (see e.g. section 23.8 of Misner, Thorne & Wheeler
1973). In this part of the diagram, the Schwarzschild radial coordinate 7 is

identified with the cylindrical coordinate measured radially outward from the
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axis of symmetry of the embedding diagram, and the angular coordinate @ is
identifled with the cylindrical angular coordinate measured arcund this axis.
The ignorable coordinates { and ¢ are suppressed. The diagrams in Figs. 6 and 7
are what one would see if one were looking down into the paraboloid along the
axis of symmetry. The paraboloid of the embedding diagram is cut off at a
stretched horizon which is taken to be at a radius 7 =2.15#. (As will be
explained later, this would be a poor choice of stretched horizon at which to
apply the boundary condition (2.13), but it is chosen here for illustrative pur-
poses.) In order to make the near-horizon fields visible, they are plotted on a
cylinder matched to the paraboloid at the stretched horizon. In this part of the
diagram, the distance along the axis, i.e. the cylindrical 'z-coordinate'", is
identified with the tortoise coordinate ¥ and the previous identification of 8
with the cylindrical angular coordinate is maintained. Plotting the near-horizon
fields in this way as functions of * has the eﬁtlect of expanding the radial scale so

that the field structure is visible.

The data plotted in Fig. 8 show the field-line structure at the time £ = 92M
for the case /£ = 10M. At this time, the field lines have sprung outward and
snapped back inward four times and are beginning to spring outwérd for a fifth
time. The relic field line loops left by each of these oscillations are visible run-
ning down the cylinder, and the partially formed loops at the top of the cylinder
may be seen to connect to field lines outside the stretched horizon. The field
lines are vertical in the lowermost region of the diagram due to the fact that the
fileld was held stationary until its release at £ = 0. As one proceeds up the
cylinder, one finds successively fewer concentric loops in each set of field lines
since the oscillations are dying out and fewer field lines snap back to the

stretched horizon with each oscillation.
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Two criteria need to be considered in choosing the position of the stretched
horizon in a problem of this sort. The potential V(7 *) in equation (2.12) acts as a
barrier to incoming waves, partially transmitting them and partially reflecting
them. Application of the "perfectly absorbing” boundary condition at the
stretched horizon rather than at the true horizon is equivalent to neglecting
waves reflected from the part of the potential barrier between the two horizons.
Since V(r*) goes to zero proportionally to o® at the horizon, this approximation
becomes better and better as the stretched horizon is moved inward toward the
true horizon. In the problem at hand, it was found that moving the stretched
horizon out to 7*=-10M or 7 =(R+4.9%x103M made no noticeable
difference in the solutions obtained. On the other hand, putting the stretched
horizon at » = 2.15M, as was done above for illustrative purposes, should not be
done in the numerical solution of the problem since V(r*) still has 41% of its
maximum value there. The other condition a&ecting the choice of the stretched
horizon is the requirement that its proper distance from the true horizon be
smaller than the (global) timescale of evolution of the field, so that important
features of the field are not neglected below the stretched horizon. This is cer-
tainly satisfied in the present problem for either of the choices of the stretched
horizon mentioned above, since the timescale of variation of the field is of order

M.

The only dissipation in this problem comes from the horizon boundary con-
dition. If the stretched horizon had a surface resistivity of either zero or
infinity, rather than presenting incoining waves with the vacuum impedance
RH = 47 = 377 ohms, the field lines would oscillate forever. The damping times-
cale of the oscillations is determined by the size of the horizon relative to the
perfectly conducting outer sphere: for the case K = 3M, the field lines almost

settle down to the static configuration after springing outward just once, while
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for the case F = 10M, they oscillate many times.

The magnetohydrodynamical decay time of a field slipping through a con-
ducting medium with surface resistivity R¥ may be shown (see e.g. Cowling
1957) to be roughly equal to 4mwL/ R¥, where L is a length comparable with the
dimensions of the region where current flows. For the present problem, where
L ~2HM, this timescale is just 24, the light-travel time across the hole (which, as
shown in section 7.5 of chapter III, is the approximate annihilation time for a
field loop with both feet in the hole). Not all of the field lines are dissipating
their vibrational energy in the hole at a particular time, however. One would
therefore expect the timescale 7 of the relaxation of the field lines to be roughly
equal to 2M divided by the time-averaged fraction of field lines which thread the

horizon, which is approximately 4#?%/ R?; that is

(2.14)

The time 7 is the timescale of the loss of magnetic field energy into the hole, so
it will be instructive to elaborate further on the nature of the transfer of elec-

tromagnetic energy into the hole.

Following chapter IIl, one may define a density £z and flux density Sz of

"redshifted energy":

ep = (a/8m) (R + B) = :—32—:8;’—2—[ g+ (V¢)21 . (2.15a)
sgz(a/érn)ExB:—l—é%sz . (2.15b)

These satisfy the conservation law

;t—VfSEdV+ V[onSE-dE=O , (2.16)
) av(t)
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for any three-dimensional region V(¢) lying entirely exterior to the horizon and
having the boundary surface 8V(¢). By taking the region V to be the spherical
shell between a stretched horizon r = M + ¢ and the outer radius » = R, and

integrating this relation over time, one obtains
Epinas = Bt = A [z av=—[ | [ osp-az|at 2.17)
final initial ‘{; E [ fJf’ (

where the boundary integral is taken only over the stretched horizon since there
is no energy flux through the perfectly conducting sphere at + = K. Here the
area element vector d¥ points along the outward normal to the region V and

hence along the inward normal to the horizon.
The quantities Eyyiq and Epy,g may be obtained explicitly by integrating
the energy density ez over the region V using the initial and final fields:

Y; = B, R*sin®0 and ¥, = nB,r?in?g, respectively. The results are

R p4 ZHS
BER P_BM], B P_BM] i, 12

Eitiar = 120 Erna = 6 %3
The rate of energy flow through the stretched horizon can be calculated from
equations (2.11) and (.15b) to be

BrRr*
6

J oSg-du= (2.19)
A

ou ?
o e
This quantity is non-negative as expected since d¥ points along the inward nor-

mal to the horizon.

One may also derive equation (2.19) by considering the energy dissipation
to be the result of ohmic losses due to the (fictitious) surface current flowing in
the stretched horizon. As derived in section 5.4 of chapter II, one may define a

horizon surface current density jH which "closes the circuit” of external
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currents entering the horizon. It satisfies an Ohm's law of the form

ve;

Brley

H =

g giH= - (2.20)

where R¥ = 47 is the horizon surface resistivity and E¥, the horizon electric
field, is defined as the horizon limit of the quantity oy The horizon current
density is thus purely toroidal, and from equation (2.11) one may see that it
varies with latitude proportionally to sind. Then from equation (5.47) of chapter

11, the energy flux through the stretched horizon is just the ochmic heating rate
aSg - d% = H.EHdy . 221
fpse a2 L, g (2.20)

Using equations (2.9), (2.11) and (R.18), this may be reduced to the same form

as equation (2.19).

The quantity (du/ 67‘*2;(,, which by equation (2.19) is proportional to the
energy flux through the stretched horizon, is plotted in Fig. 9 for the cases
R =3M and £ = 10M and in Fig. 10 for the cases K = 30M and R = 100#. The
displacement of the first peak from the origin in these diagrams is due to the
finite time required for the waves to propagate down to the stretched horizon. It
has been verified numerically that the area under these curves satisfies the

energy balance condition, equation (2.17), i.e.

BzR* [ em )P BER* [ [ ou )
Erina — Einitiat = — 1- = — dt
1M R 6 0 or* %

ou (1 —BM/}?F
== t = ; 28
[ [67‘* (2 )

eM

2
a
H
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The curves in Fig. 10 each seem to be a superposition of two oscillations of
distinct periods, a fact which may be confirmed by Fourier transforming them.
The period of the longer-term oscillation in each case is approximately twice the
radius K of the outer shell, i.e. roughly the light-travel time across the shell.
This just corresponds to the time necessary for a particular field line to spring

outward and then back inward.

The period of the shorter-term oscillation in both cases is roughly equal to
10M. This value may be justified by an argument similar to that used by Price
(1971) for gravitational waves. Since the initial-value function «(0,7) assumed in
equation (R.1R) is a constant independent of r* the second term in equation
(2.1R) is negligible for small £. The behavior of w(f,r*) for small time £ will thus
not be a propagating wave, but rather an oscillation characterized at each point
r* by the approximate angular frequency \/W*) Since this frequency varies
with 7, the oscillations soon become out of phase from point to point, and the
initially smooth waveform builds up Fourier components of ever shortening
wavelength. Only when wavelengths of order Ar*~ Zﬁ/\/m have developed,

so that the second term in equation (2.12) is of the same order of magnitude as

the third, do traveling waves form. These have the approximate period

Tn 20 _=3mVB M ~23H . (2.23)

1/2
Vmax

This is the approximate period of w(f,r); the energy flux curves in Figs. @ and 10
are proportional to the squares of du/ 8r* and so should have roughly half this
period, or about 104 as observed. This argument could also be couched in
terms of the gradual decay of a packet of electromagnetic waves in spiral orbits
close to the unstable photon orbit at 7 = 3M, as Goebel (1972) does for gravita-

tional waves.
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Thus, the short period might be characterized as the "sticking time', dur-
ing which the oscillating field lines are caught and held by the effective poten-

tial, while the long period is the natural vibration time of the field lines.

The double periodicity noticeable in Fig. 10 is not evident in the cases
shown in Fig. 9 since the two periods are too close together in the £ = 10/ case

and the oscillations die out too soon in the R = 3M case.

This double periodicity somewhat complicates the task of finding an "exper-
imental" relationship between the damping timescale T and the cavity radius ¥
to compare with the "theoretical" relationship (2.14). The curves consist of
periods of oscillation interspersed with periods of quiescence, so a good fit to an
exponential decay is impossible. However, rough fits to the envelopes of the
curves yield decay times which conform approximately to a power law relation-
ship of the form 7/ M = g(RE/ M)?. The values of 7 given by a least squares log-
log fit ranged from 1.6 to 1.8 depending on the assumptions made in the fits to
the envelopes, and the values obtained for B ranged from 0.4 to 0.6. The

theoretical relationship (2.14) would predict the values § = 0.5 and 7 = 2.

CONCLUSION

This chapter has presented in great detail the solutions to two simple prob-
lems involving dynamical electromagnetic fields in the neighborhood of horizons.
The objective in this was not so much the problems per se, but rather the eluci-
dation of the relationship between the frozen-star and membrane paradigms

described in the Introduction.

In both problems, it was found that part of the field assumes a flattened
structure near the horizon. In the Rindler-spacetime problem (particle falling
through horizon), these flattened field lines are just the field necessary to con-

nect the infalling charge to the external field lines which are approaching
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stationarity. In this sense, it is similar to the flattened field in the Hanni and
Ruffini (1973) solutions described at the end of the Introduction to this thesis.
The flattened field in the Schwarzschild problem (vibrating field lines) is more
complex in structure, consisting of disconnected infalling magnetic fleld loops
reflecting the entire oscillatory history of the near-horizon field. But it also
shows the feature, common to both problems, that the external fields are very
insensitive to the form of the layered horizon fields, and thus to the precise loca-

tion of the stretched horizon.

For the Schwarzschild problem, the transfer of energy through the horizon
and the damping timescale were investigated, and the criteria governing the
choice of the stretched horizon were discussed in detail. These criteria,
although they were derived from consideration of a very specific problem, do not
depend on the precise details of that model. This of course is to be desired if
the concept of the stretched horizon is to have applicability beyond this limited

problem.

This chapter has tried to motivate the adoption of the membrane paradigm
not only as a calculational tool in solving problems, but as an aid to intuition in
thinking about these problems. As was emphasized in the Introduction, there is
no difference in the physical predictions of the frozen-star and membrane para-
digms; they are both consequences of General Relativity and are thus
mathematically equivalent. They differ solely in the aspects of the physics which
they emphasize and in the array of mental pictures they present as aids to intui-
tive understanding of physical problems. This chapter has attempted to show
that, for problems involving dynamical electromagnetic fields around black
holes, the mental pictures conjured up by the membrane paradigm are much
more apt for a physical description of the problem than are those conjured up

by the frozen-star paradigm.
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FIGURE CAPTIONS

Figure 1. Comparison of Rindler and Minkowski coordinate systems. Minkowski
coordinates are (f,z). The Rindler coordinate surfaces Z = constant are
represented by hyperbolas and the surfaces T = constant by straight lines
through the origin. The geometry of source and observation points for calcula-
tion of the field of a uniformly accelerated particle is shown. The electromag-
netic field at the observation point O is dependent only on the single point ® of

the source particle’'s motion, where R lies on the past null cone of O.

Figure 2. The world lines of the Minkowski-stationary (dotted line) and Rindler-
stationary (dashed line) charges, as seen in Minkowski (a) and Rindler (b) coor-
dinates. The Minkowski-stationary charge is fixed at z = 1/2g, while the
Rindler-stationary charge is fixed at Z = 0. In diagram (a), the lower and upper
45° lines represent the past and future event horizons, respectively. In diagram
(b), both horizons are represented by the solid vertical line Z = -1/ g, to which

the dotted line asymptotes.

Figure 3. Electric field lines of Rindler-stationary charge plotted in Rindler
coordinates. In these coordinates the charge is stationary at Z = 0 and there is

a horizon at Z = —1/g, where g is the acceleration relative to Minkowski space.

Figure 4. Electric field lines for two opposite charges: one stationary in Rindler
coordinates, and the other stationary in Minkowski coordinates and thus falling
into the horizon as described in the text. The field line diagrams are shown at
Rindler-time intervals of 1/g. By T = 6/ g, the field geometry has become very
similar to the field of the stationary charge alone, which is shown in the lower

right-hand diagram:.

Figure 5. Initial geometry of magnetic fileld lines in Schwarzschild background,

shown for the case R = 10M. The arrows show the direction of the field. The
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field lines are frozen into the outer sphere, but are free to slip through the hor-
izon since its conductivity is finite. The tension of the field lines will tend to

straighten them out.

Figure 6. Representative magnetic-field-line diagrams in the evolution of the
case F = 3M. Since most of the field lines thread the horizon, the field settles

down quickly to its final static configuration.

Figure 7. Representative magnetic-fleld-line diagrams in the evolution of the
case Y = 10M. Since the horizon is small relative to the outer sphere, the field
lines oscillate for a long time before reaching the final static configuration. The
diagrams shown cover only the first oscillation in detail, and the beginning of the
second oscillation at £/ # = 28. The last two diagrams are much further in the
future and show that the oscillations have died out substantially by £/ # = 155
and almost completely by £/ # = 500. The l{inks in the field lines for the case

t/ M = 12 are due to the grid used in the numerical integration.

Figure B. Embedding-diagram view of the magnetic field at time { = 92¥ for the
case K = 10M, with the near-horizon fields expanded for visibility. In the top
part of the figure, the magnetic fleld lines are plotted on the paraboloidal
embedding diagram of Schwarzschild spacetime. The paraboloid is cut off at a
stretched horizon which is taken to be at a radius r = 2.15/, and a cylinder is
matched onto it there. In order to make the near-horizon fields visible, the dis-
tance along this cylinder is measured by the tortoise coordinate 7* The eleva-

tion angle is 18° and the rotation angle is 45°.

At the time shown, the field lines have sprung outward and snapped back
inward four times and are beginning to spring outward for a fifth time. The relic
field-line loops left by each of these oscillations are visible running down the
cylinder, and the partially formed loops at the top of the cylinder may be seen

to connect to field lines outside the stretched horizon. In the lowermost region
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of the diagram, the field lines are vertical due to the fact that the field was held
stationary until its release at £ = 0. As one proceeds up the cylinder, one finds
successively fewer concentric loops in each set of field lines, since the oscilla-
tions are dying out and fewer field lines snap back to the stretched horizon with

each oscillation.

Figure 9. (8u/dr *2% as a function of time for the cases ¥ = 3# and F = 104.
As shown in equation (2.19), this quantity is proportional to the energy flux

through the horizon.

Figure 10. (8u/ 67'*);( as a function of time for the cases F = 30M and
R = 100M. These curves show a clear double periodicity corresponding to the

two different length scales in the problem: K and #.
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