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ABSTRACT 

This dissertation contains two works; one on the behavior of dynamical 

electromagnetic fields in the stationary spacetime generated by a black 

hole, and the other on the structure of a general stationary vacuum space

time itself. 

The study of electromagnetic field is carried out in terms of the "mem

brane formalism" for black holes ; and it is part of a series of papers vvith the 

aim of developing that formalism into a complete , self-consistent descrip

tion of electromagnetic and gravitational fields in a black hole background. 

Various model problems are presented as aids in understanding the interac

tions of electromagnetic fields with a black hole, and special attention is 

paid to the concept of the "stretched horizon" which is vital for the mem

brane formalism . 

The second work develops a multipole moment formalism for a general 

stationary system in general relativity. The multipole moments are defined 

in terms of a general formal series solution of the stationary Einstein equa

tion, in analogy to multipole moments in the Newtonian theory of gravity. 

These relativistic moments exhibit many de sirable properties and are shown 

to be useful in studying the interactions between a gravitating body and an 

external gravitational field. A model calculation applying the formalism to a 

black hole interacting with an external multipole field shows that the 

interaction can be understood in terms of "elastic moduli" of the black-hole 

horizon. 
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INTRODUCTION AND OVERVIEW 

The general theory of relativity satisfies one of the requirements to be a 

great physical theory1 -it is so simple in form that it can be printed on a 

T-shirt: 

C?-= 8117, ( 1) 

i.e., the Einstein tensor describing the structure of the spacetime is set 

equal to 811 times the energy momentum tensor. However in many ways 

general relativity is one of the hardest, if not the hardest physical theory to 

work with. It is a 10-component-tensor theory; it is badly nonlinear; it con

tains a lot of coordinate (gauge) freedom; and, most importantly, it 

describes at the same time a dynamical field, and the background on which 

the field exists. Other physical field theories are usually written do-wn in a 

fixed background, namely a fiat 3 dimensional space 'With a uniformly flowing 

time ; and the physical effects of such theories are described in terms of a 

preferred set of observers residing in this fixed background, namely the 

inertial observers . By contrast, in general relativity, the metric tensor g µv 

plays both the role of the field and of the background. In general relativity 

there may not even be a set of background-preferred-observers. This mix

ing up of dynamical field and background and this losing of a preferred set 

of observers hinders us a lot in getting a physical feeling for the theory and 

in borrowing the physical intuition obtained in other theories to understand 

r e lativity . This is particularly unfortunate since the mathematic al complex

ity of the theory gives us great need for physical feeling and intuition. 

However, in not all physically inte r esting situations in relati'vity must we 

deal with the full problem of dynamical spacetime. There are often situa

tions where the structure of the spacetime separates naturally into a 
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background plus a dynamical field living in it. This background is often 

non-fiat, and along with it the preferred set of observers to describe the 

physics is often non-inertial. In these cases, it is possible to reformulate the 

generally covariant four-dimensional Einstein theory so as to make this 

separation of background and field explicit. Of course, this reformulation, 

at the same time, will destroy the explicit four-dimensional covariance of 

the theory - a price worth paying in return for physical understanding and 

intuition. 

By far the most important case where such a separation comes up is 

·when we have a nearly-stationary spacetime, ie. , a stationary spacetime 

vvith either weak or slow changes in "time" . In fact, all "everyday physics" 

which is written d0Vv11 in a background of fixed space and time falls into this 

category, including the Newtonian theory of gravity, which can be regarded, 

in the language of general relativity , as a first order, quasi-stationary (both 

weak and slow) perturbation of a fiat background spacetime. In other cases, 

when gravity cannot be taken as weak but is still nearly stationary, the 

background appropriate for the study of physical phenomena will no longer 

be fiat, but rather 'Nill be curved and may even be topologically non-trivial. 

This dissertation will discuss two works, both based on such a separa

tion of a stationary spacetime . The first work is on the membrane formal

ism for black holes, which studies dynamical fields in a stationary black-hole 

spacetime; and the second work is on a multipole moment formalism which 

studies the structure a statiunary spacetime itself. 
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A The Membrane Formalism for Black Holes 

The effects of general relativity have their full strength in the environ

ment of a black hole . A black hole is so clean that it can be fully character

ized by only three parameters, its mass, angular momentum and charge . 

Yet the phenomena associated with it are so rich and exotic (Hawking radia

tion, superradiance .. ., and even a pathway to another world) that it is surely 

the most interesting of all playgrounds for relativists. However, there is an 

even more important reason to study black holes: They are nowadays 

thought to be rather common objects existing in the real universe. Indeed, 

a wide variety of exotic phenomena are now postulated to be associated with 

black holes : quasars, jets, Seyfert galaxies, strong X-ray sources .... There is 

probably even one in the center of our own galaxf. Hence it is important to 

unde rstand the physics of black holes in astrophysical environments. 

The postulated black holes in astrophysical environments share one 

common property: The strong gravitational field of the hole produces enor

mous effects on the surrounding material, producing sometimes spectacular 

phenomena, e.g , the extremely high luminosities (up to 1046erg/ sec!) of 

quasars . However, the surrounding material infiuences the hole only 

slightly: the 1046erg/ sec luminosity corresponds to an accretion rate of 

about 0. l Mcl yr whereas the central black hole has a mass of order 108 M0 

(M0 denotes the mass of the sun) . As a result of this accretion and interac

tion with the surrounding material, the hole will evolve only quasi

stationarily; and changes in the hole's mass and angular momentum will 

become significant only after an astronomically long time . In other words, 

the astrophysically interesting phenomena are taking place on an essential 

fixed background generated by a stationary black hole. 
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AB was discussed above, it would be advantageous to analyse such situa

tions in terms of a separation of the spacetime physics into a background 

plus dynamical fields. This separation can be carried out in terms of a 3+ 1 

formulation of general relativity specialized to a stationary black-hole 

geometry. 

Vr'hen a 4-dimensional spacetime is stationary, it is clear that in some 

sense we can regard it as a stack of 3-dimensional "space-slices", each with 

the same geometry and labeled by the parameter "time". However there is 

more than one way (indeed an infinite number of ways) to choose such ident

ical slices. Arbitrarily picking one way of slicing is not desirable ; the result

ing description of physics would be entangled ·with features coming from this 

artificial choice . Hence it is important to notice that we do require some

thing more for the slicing to produce a good physical picture: the observers 

who are moving orthogonal (in a 4-dimensional sense) to the spatial slices 

have to see unchanging geometry. For a general stationary spacetime, it 

may not be possible to fulfill this requirement. However, due to the addi

tional axial symmetry in a black-hole spacetime, such a choice is possible . 

Mter the slicing up of the spacetime, the spaceslices take on a role analo

gous to that of Galilean absolute space. At each point in the absolute space 

there resides a fiducial observer (FlDO), Vvith respect to whom the laws of 

physics are me asure d and formulat ed. The only difier ence between this 

absolute space and Galilean absolute space is that this one is not fiat; and its 

curvature give s rise to a variety of physical phe nomena such as the gravita

tional deflection of light and a precession of gyroscopes that orbit the hole . 

Tne curvature of absolute space is not the only gravitational efiect that 

FIDOs will experience . The other effects have to do with the way the space 

slices are stacked up. The slices are labeled with a parameter t, and 
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naturally this t plays the role of the universal time of the Galilean picture . 

That is, events occurring at the same value of t, i.e., on the same slice, will 

be perceive d by the FIDOs as simultaneous. However this universal time is 

not and cannot be the time that the FIDOs' clocks measure . Gravity changes 

the way the clocks tick; and as the strength of gravity for different FIDOs is 

different, their clocks tick at different rates and there is no way to match 

them up to a universal time. This effect is described by a lapse function o:, 

whic h is the ratio of the ticking rate of universal time t to that of FIDO

measured time 1 (cx.=d1/ dt ), and is a function of position in absolute space. 

Similarly the FIDOs cannot be fixed in position with respect to each other. 

Rather, they are forced by the hole's "dragging of inertial frames" to shift 

position vvith respect to each other as time passes. The effect is described 

by a shift function ~. which is a 3-vector in absolute space. 

The full metric describing the geometry of the 4-dimensional spacetime 

can be expressed in a way which shows these effects explicitly: 

( 1.2) 

where Latin indices runs from 1 to 3 and repeated indices are to be 

summed. Stationarity of the spacetime amounts to the requirement that ex., 

{3i and 9ii are functions of x1c only . The absolute space is at =constant slice; 

hence the curvature of it is determined by the line element 

( 1. 3) 

where 9if is a 3-tensor (3-metric) living in the absolute space . 

Therefore, for a stationary space time, after the 3+ 1 split, gravity is 

described in terms of cx.(xk), (3i(xk) and 9ii(xk). [Of course these o:, (3i and 

9if are not independent of each other. They are interrelated by the Einstein 
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equations]. Now this universal time and absolute space form a background 

for the evolution of dynamical fields . On this background there may be 

material flowing around; electromagnetic radiation and even gravitational 

radiation pouring out. However all such physical processes are presumed to 

have only negligible effects on the properties of the background -unless 

one integrates over very long time, e .g., M ~ 108 years. 

From the vieVv-point of the FIDOs, the dynamical fields and material fl.ow 

can be described in a language similar to that of everyday fiat-space phy

sics. For example, in an electromagnetic field, a FJDO will measure by his 

instruments an electric field E1- and a magnetic field Bi, both of which are 3 

vectors in absolute space. These measurements of Ei and Bi are of course 

affected by the state of motion of the FIDOs; and the differential equations 

relating E'- and Bi at different points in the absolute space, i.e., the 

"Maxwell equations", will be affected by the motion of the FIDOs with respect 

to each other and by the curvature of the absolute space. As a result, the 

Maxwell equations will take up forms analogous to the fiat-space equations 

but will have contributions from the lapse function, shift function and curva

ture of the background. [For more discussion see Thorne and Mac donald, 3 

and chapter 1l of this dissertation.] Likewise, a weak, dynamical gravitational 

field evolving on the background is described by an electric type curvature 

tensor Eii and a magnetic type curvature tensor Bij, both of which are 3-

tensors living in the absolute space, which are treated in detail in Refs. 4, 5,6. 

For the situation of a stationary black hole , our requirements for the 

choice of the absolute space restrict us to use the "Boyer-Lindquist space 

slices", i.e., the t =constant slices in the Boyer-Linquist coordinate system 

(see e.g., MTIY 7 Sec. 32.3); and the FJDOs become the zero-angular

momentum observers ("ZAMOs") of Bardeen (1970)8 (see e.g., MDV Sec. 
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33.4). In this case, the lapse function, shift function and absolute space line 

element are given by: 

O'. = f---.Jt; ; {31" = (3 6 = Q r P = -(..), 

with 

~=(L:! p)sine , 
2aMr 

2:;2 

(1.4) 

( l. 5) 

( 1. 6) 

( l. 7) 

( l. 8) 

where m is the mass and ma is the angular momentum of the black hole. 

The horizon of the hole is located at r =r +· Immediately we noticed that our 

absolute-space/universal-time formulation is good only for r >r +· When 

r <r +• 6 is negative, a becomes imaginary, and the absolute space line ele-

ment is no longer positive definite [cf. Eq. ( 1. 5)]. The ref ore the region inside 

the black-hole horizon is not included in the formalism, and we have to sup-

ply boundary conditions on the horizon for the dynamical fields in our abso-

lute space before a complete picture is obtained. 

It has been knovv-n for some time that the physical laws on the black-

hole horizon can be cast into a form closely analogous to everyday physics 

[Damour (1978) ,9 Znajek (1978) 1t], i.e., in a form where various terms can be 

identified as representing the effects of an electric conductivity, shear and 

bulk viscosity, surface pressure , entropy and temperature . Hence in order 

to obtain a complete Galilean-like picture we must reformulate these hor-

izon equations as boundary conditions for physical fields and matter in 
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absolute space. 

The situation is not as straightforward as one may think at first sight. 

From Eq. (1.4), we see that when one is far away from the black hole in the 

absolute space ( r »r + ) the ZAMO-measured-time and the universal time 

march forward together at the same pace . But as one approaches the hor

izon, a.. goes to zero causing universal time to tick slower and slower. Such a 

situation is illustrated in fig. ( 1.1) in terms of a space time diagram in 

Eddington-Finkelstein coordinates, (a coordinate system in which the time 

coordinate is well behaved at the horizon; cf . MT\11-' Box 31 .2). [For simplicity 

the angular momentum of the hole has been set to zero in the figure.] It is 

seen that the absolute space represented by a t = constant line dips more 

and more into the past as one approaches the horizon, so that the line and 

the horizon never intersect. 

To properly impose the boundary condition as one approaches the hor

izon, the concept of a "stretched horizon" is introduced. [See Ref.3 and Sec. 

1 of chapter II.] As illustrated by the dotted line in fig. (1.1), we consider the 

boundary of the absolute space to be located at a radius slightly larger than 

r +• i.e ., at a stretched horizon so chosen that everywhere on the stretched 

horizon the lapse function a.. has a constant value a..H, which is small but 

non-zero. Then it is easy to show that the horizon equations of Damour and 

Znajek 9·10 can be translated to this stretched horizon with fractional errors 

of order cx.H«l. 

This picking-the-boundary-at-finite-cx.H throws away the information on 

the piece of the t =constant slice below the stretched horizon. Indeed, what 

is recorded in this part of the slice is the past history of the material and 

field that have fallen into the black hole long ago in the Eddington

Finkelstein time; past history that has no infiuenc e on the future evolution 
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of the dynamical field in the absolute space. The entropy of a black hole can 

be understood in terms of this throwing away of information. 11 

Now we have a complete picture: In the absolute space there are 

matter and fields evolving forward in universal time according to field equa

tions closely analogous to their flat space counterparts. The effect of the 

background gravity is described in terms of a scalar ex., a 3-vector (3i and a 

3-metric tensor gi;" This background gravity is produced by the central 

black hole which is a 2-dimensional membrane (the stretched horizon) 

endowed with everyday physical properties. ·when perturbed by external 

fields and matter, this membrane will respond by deformation, vibration, 

expansion, electric current fl.ow etc .. Hence we call this the "membrane for

malism for black holes". Of course, this picture is not expected to be very 

useful whe n the external perturbations are large and the whole spacetime 

becomes dynamical. as then there vvill be no preferred choice for splitting 

up the spacetime into background and fields. However, such a picture is 

useful in actual calculation, and more importantly in providing physical 

intuition and understanding in physical situations where the black hole is 

essentially in an equilibrium state , i.e., in nearly all astrophysical situations. 

The idea that a black hole behaves in close analogy with an everyday 

object is not new. In various ways of analysis, a black hole has previously 

been shown to have a temperature and entropy12 , to spin down due to the 

tidal effects of an external moon13 , to be torqued by Eddy currents induced 

by an external magnetic field 14 , and to behave in an static external electric 

field in essentially the same way as a conducting sphere 15 . It was these pre

vious calculations that motivated our Caltech group, led by Kip Thorne, to 

develop the membrane formalism as a consistent and unified treatment for 

the description and understanding of black holes in astrophysical 
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environments. 

The foundations of the electromagnetic aspects of the membrane for

malism were laid in a paper by Thorne and Macdonald; 3 and Macdonald and 

Thorne 16 used the resulting formalism to analyse stationary black-hole mag

netospheres. Chapter II of this dissertation is a paper by Douglas Macdonald 

and the present author, in which the membrane formalism is used to study 

the evolution of dynamical electromagnetic fields in a black hole back

ground. In the first two sections of this chapter, we review the electromag

netic membrane formalism and develop the concept of the stretched hor

izon introduced in Ref. 3. In Sec. 3, we study in detail the evolution of elec

tromagnetic fields generated by mo\i.ng charges in the vicinity of a black 

hole horizon and the effects of these electromagnetic fields on the black 

hole. In Sec. 4 we study a vibrating magnetic field in the vicinity of a a black 

hole; this study illustrates the process of settling dovvn of an electromag

netic field to its equilibrium configuration in a black-hole environment. In 

all these dynamical processes, the concept of stretched horizon is impor

tant, and special attention is paid to this concept and the requirements on 

choosing its location. In the last section of this chapter we discuss how the 

intuitions gained from our model problems can be used to understand other 

situations of electromagnetic fields in a stationary background of a black 

hole . 

The gravitational aspect of the membrane formalism are in a series of 

papers now being written, but are not yet finished, by Price and Thorne4 , 

Suen, Price and Redmount, 5 and Thorne et al. 6 
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B. A Multipole Moment Formalism for Stationary, Asymptotically-Non-Flat 

Systems 

Chapter III of this thesis presents a multipole formalism for stationary, 

nonasymptotically fiat systems in general relativity, developed by the 

author. Here again we consider a stationary spacetime. But now instead of 

studying dynamical fields in it, we want to study the structure of the space

time itself, using the idea of a multipole analysis which is so fruitful in stu

dies of NeV\1.onian gravitational field and the structure of other fields in 

everyday physics. 

Here again in the stationary spacetime we can choose a time coordi

nate t, such that all the t =constant slices have the same geometry. How

ever for a general stationary spacetime there does not exist the preferred 

set of observers of the type that we used in the black hole case, who are 

moving perpendicular ( in a 4-dimensional sense) to the t =constant slices 

and also see unchanged geometry as time goes on. Without this require

ment of "preferred-observers" in choosing the 3-dimensional spaceslices, 

there is ambiguity in the definition of the coordinate t (i.e., we require that 

81 at be the time-like Killing vector of the spacetime, but the zero point of t 

can be a function of the spatial coordinates). We will leave this freedom 

unfixed until later. 

As before, in our absolute space the effect of gravity is given by the 

lapse function ex, the shift function [3i and the 3-tensor gij. However they 

are not the most convenient variables to be used for multipole analysis; 

instead, we wUl use a different combination of them. To illustrate this we 

first briefiy review the multipole moment formalism in Newtonian theory. 

In Newtonian theory the gravitational field is characterized by a scalar 

function rf, which satisfies the Laplace equation 
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v2rp = 0 ( 1. 9) 

in free space. The general solution of this equation is expressible in terms 

of an expansion in spherical harmonic with appropriate powers of r . The 

coefficients of the terms in the expansion are the multipole moments. Any rp 

satisfying (1.9) uniquely determines a set of multipole moments. And given 

any set of multipole moments, as long as the corri::sponding series expansion 

converges, it gives a rp satisfying (1.9). Hence any rp can be considered as a 

collection of multipole fields, and each piece of it represents a well knovm 

structure. Surely a good part of our understanding of the structures of 

Newtonian gravitational fields (and also of electric and magnetic fields) 

comes from this multipole analysis. 

How can we generalize this analysis to general relativity? Immediately 

we see many obstacles: (i) The Einstein field equations for a,(3i and gii are 

nonlinear and do not satisfy the Laplace equation. (ii) Even when we regard 

the effects of gravity to be small, i.e., regard a-1, (3i and gii -oii as small 

and keep them only to linear order, they still do not satisfy in general the 

Laplace equation. (iii) The identification of the multipole moments in the 

Nevvi.onian potential depends on an expansion in the spatial coordinates, but 

now we have complete freedom in choosing our coordinates on the spa

ceslices. It is absolutely unclear that the multipole expansion resulting 

from any one choice vvill be superior a priori to that from other choice. (iv) 

As was discussed above, there is even freedom in the way to slice up space

time . (v) The Lapse function a, shift function (3 and 3-metric tensor gij are 

interrelated with each other. Therefore if we expand them individually and 

define separately for each of them a set of multipole moments, those 

moments ·will be interrelated and cannot be specified arbitrarily . 
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Fortunately, all these problems are in fact related to each other, and 

can be made to disappear all together when we employ the deDonder coordi

nate formulation of the Einstein equations [see e.g., Landau and Llfshitz 17 

and Sec. 2 of Chapter Ill]. In this formulation the field variables, denoted 

h.00 , fl.Ci and fl.ii. are the deviations of the metric density Y:::g g o.f3 from the 

Minkowskian metric: h_o.f3=r;o.f3_-v-:::ggo.f3. These quantities are regarded as 

fields living in a fiat Galilean 3 space.and correspondingly their indices are 

raised and lOivered by oii. When the h's are small, i.e., gravity is weak, to 

the linear order they satisfy the Laplace equation. At higher orders, the self 

interactions of the fields produce source terms, and the field equations 

become Poisson equations. However, multipole moments enter always as 

the homogeneous parts of the solutions of the Poisson equations . Moreover, 

by making use of the residual coordinate freedom (still staying -within a 

deDonder coordinate system), we can make the multipole moments appear 

only in the expansions of h00 and fl.Di; with fl.ii carrying no e>..i.ra degrees of 

freedom. 

Such a program for multipole analysis in general relativity was 

developed by Thorne 18
, for the special case of asymptotically fiat systems. 

He showed that the expansion of fl.
00 determines a set of mass multipole 

moments characterizing the mass distribution of the central gravitating 

body, whereas the expansion of fl.OJ determines a set of current multipole 

moments characterizing the distribution of material flow of the central 

body. Subse quently Gursel 19 showed that Thorne's definitions of mass and 

current moments are identical to those of Geroch and Hansen21
, who 

developed a multipole formalism using geometric considerations in terms of 

a compactified conformal space associated -with the 3 dimensional family of 

time-like Killing trajectories of the physical spacetime. For a brief review of 
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these and other multipole moment formalisms for asymptotically fiat sys

tems, see Ref. 20. 

What about a general stationary spacetime without the asymptotic fiat 

assumption, i.e., when the central body is subjected to an externally applied 

gravitational field? Can the interaction between the central body and the 

applied field be discussed in terms of multipole moments? Indeed, in the 

Newtonian theory, such interactions give rise to the acceleration, torque, 

and deformation of the central body -phenomena described elegantly in 

terms of multipole moments. Chapter III is devoted to a study of these ques

tions in general relativity - a study whose central feature is the develop

ment of a Thorne-type multipole formalism for a general. stationary system. 

Section 1 of chapter III introduces and briefly reviews multipole 

moment formalisms in general relativity. Sec. 2 begins by making precise 

the systems that the new, nonasymptotically fiat multipole formalism will be 

useful for . As in Newtonian theory, the multipole formalism is a useful tool 

for calculation only when we are not in the immediate vicinity of the central 

or distant gravitating bodies; where the multipole expansion may not con

verge fast ; i.e., it is useful as a tool for calculation only in a vacuum "buffer 

zone". Sec . 2A provides an algorithm for constructing the formal general 

series solution of the stationary vacuum Einstein equations in a deDonder 

coordinate system in terms of four sets of multipole moments . These 

moments characterize the mass distribution and material flow of the central 

body and of the external universe (whic h generates the external gravita

tional field). Sec. 2B discusses some general properties of the mult ipole 

expansion. Sec. 2C shows that in the present formalism, the spatial coordi

nates have been restricted to translations of origin and rotations of coordi

nate axes whe reas the time coordinate is fixed up to an overall constant. 
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In Sec. 3 and Sec. 4 we study the properties of the multipole moments. 

1t is shovm that they do have many properties that we expect multipole 

moments tc have . In Sec. 5 and Sec. 6, we turn to the question of using the 

multipole moments to describe the gravitational interaction between the 

central body and the external field it resides in. Sec 5 shows that the force 

law and torque law in terms of the multipole moments are in exact analogy 

with their Newtonian counterparts, but now they are valid even for strongly 

gravitating objects. This result generalizes analogous results of Thorne and 

Hartle 22 and of Zhang23 . In Sec. 6 we turn to the third kind of effect, namely, 

deformation of the central body by external gravity. In the NeVri.onian 

theory the change in multipole moments, i.e., the "induced moments", of a 

body in an external field, are determined not only by the field equations but 

also by the equation of state of the material making up the body. The same 

is true in general relativity, except for a black hole, whose mechanical pro

perties must solely be determined by the Einstein equations. Therefore we 

ask What is the induced multipole moment when a black hole is put in an 

external multipole field? In Sec. 6, the model problem of a Schwarzschild 

black hole in an external quadrupolar gravitational field is studied. It is 

shown that the response of the black hole to the external field is the same as 

that of an elastic shell with a surface bulk modulus 'iC= 00 , (i.e., the black hole 

is incompressible) ; and a surface shear modulus 'ji.= - 63/ (2011m), where m 

is the hole's mass, (i.e., a smaller hole is stiffer). 

The cal culations of Sec. 5 and Sec . 6 reveal tha t the new multipole 

mom ent formalism is a powerful tool for probing the properties of a station

ary gravitational field and for understanding the interactions of a body with 

an external field . Further discussion of the multipole formalism is given in 

Sec. 7 of the chapter. 
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FIGURE CAPTION 

Fig. 1.1: The surfaces of constant universal time t around a black hole with 

zero angular momentum (a=O), as viewed in Eddington-Finkelstein coordi

nates. The Eddington-Finkelstein time coordinate t is related to universal 

time by t=t+2mln(r/2m-1), and the Eddington-Finkelstein radial coordi

nate r is identical to the Boyer-Lindquist or Schwarzschild r. The cones are 

the radial light cones . A "stretched horizon" Hs located at a small distance 

outside the true horizon H is denoted by the dotted line . 
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CHAPTER II 
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THE MEMBRANE VIEWPOINT ON BLACK HOLES: 
DYNAMJCAL ELECTROIJAG:NETIC FIELDS NEfu-q THE 

HORIZON 

Douglas A. Macdonald and Wai-lifo Suen 

Theoretical Astrophysics and Gravitation 
California Ins titute of Technology 

Pasadena, California 81125 
(received XX Decern_ber 188~) 

/i..BSTP---A.CT 

This pc.per i2 pc.ct of a series of ps.pers vritl1 tb.e aim of developir1g a 
complete self-consistent formalism for the treatment of electromagnetic 
ar1d gra-\'~te. tiorL:::.l field :; i11 tl1e neigb.borl1ood of a black-b.ole horizorL Ir1 tb.is 
rrie ?nbnrrce fonnalism, the horizon is treated as a closed t\·,'o-dimsnsional 
membrane lying in a C\.:i..tved three-dimensional space, and endo1xed v:ith 
fa m iliss phy:: ic al p rope rties such as entropy and temperatme, surf ace pres
s: .. :.x·e 2.r.:.d \7i~cos:tyt c~1d electrical cor1ductivityt ct.:.e.tget c.~~.:.d C:ill"re:1t. This 
p aper develops the concept of the "stretched horizon" -,\'11ich v:ill be -v-Eal for 
b oth the electromagrcetic o.nd gravitationa.l aspects of the formalism, and it 
p r;: sents several model problems illustrating the interaction of dynamical 
elec:. trc·rf10.gr1~: t~c fi.e ld. ~ ·v-.:-itl~L sts.tior1ar-y black-1~1ole 11orizor1s: The field of a 
t e,,-t cha;-ge in varlcus stc.tes of motion outside the Sc hv.-c_rzschi!d hcrizo;_1 is 
c.n:;.lyz ::: d Li the r,ec._1 -h orizon limit, Y.'here the spatial cur-v-c_ture mc_y be 
ignored c.nd the metric may be approximated by that of Rindler. This 
ane:.ly:::i~ eluciclc..tes tlis ir:ulue11ce of tl1e f1orizor1 on tb.s sb.c.pes ar1d r11otiorts of 
electric and rnagneti c field lines when external agents move the field lines in 
arbitrary manners . It also illustrates hovv the field lines interact l'1ith the 
horizon's charge and current to produce an exchange of energy and momen
tun1 b~t\\~ee r1 lhe extern.al agent and the b.orizo1i. _!\ fll2.rnerical co.lc iJ.latiorl of 
tl-1 e dyn.2.rnic0.l r2lc.xati :, ~-i of a rr1e.gr1etic field tttrea.di r1g a Scl11.1-e..rzs ch.ild 
b l2.. c ~-= 1 . .:. :..; s i ~ :~_:_ :::u prssc::~~2d.l illustro.ti:-J.g tb.e ··e: l sai1~ng cif o. cc 1:·1p~icat e. d 

fi e ld structu re by a black-hole horizon, and elucidating the constraints on 
t he losc,tion o[ the ::trelcbed horizon. 
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I. INTRODUCTION 

During the 1970's theoretical studies of the physics of black holes 

showed that black-hole horizons behave as though they were endowed with 

various physical properties , including entropy and temperature, 1- 5 surface 

pressure and viscosity, 6·7 and electric conductivity, charge, and current .8 - 10 

Motivated by these studies, in 1978 Damour10 reformulated the standard 

theory of black-hole horizons in terms of precise boundary conditions which 

involve these horizon properties and others. (See also the independent, par

tial reformulation by Znajek. 8 ) 

Damour's formalism is a powerful foundation on which to build a physi

cally intuitive picture of black-hole physics. But it is only a partial founda

tion. An intuitive picture of black holes needs, in addition, an intuitively 

familiar formulation of the laws of physics for the surrounding spacetime, 

which may contain accretion disks. electromagnetic fields, orbiting stars, 

etc . The standard generally covariant laws of general r e lativity do not do 

the job; but if one performs on them a "3+1 split" (a split of spacetime into 

space plus time), they acquire an adequately intuitive form. 

These considerations have led the authors and their Caltech colleagues 

to combine Damour's horizon formalism with a 3+ 1 split of the space time 

around a black hole, thereby obtaining a reformulation of the laws of physics 

which has intuitive appeal and power. Because this reformulation regards 

the horizon as a two-dimensional, membrane-like surface residing in a 

three-dimensional space (and evolving as time passes), we call it the "mem

brane formalism'' for black holes. 

Our membrane formalism is completely equivalent, mathematically, to 

the standard general relativistic black-hole formalism (see, for example, 

chapters 33 and 3? of MTW 11 and the theoretical sections of Dev.itt and 
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Dewitt12
); but the mental and verbal pictures associated with the two formal

isms are rather different. Our membrane studies (mostly not yet published) 

suggest that the standard formalism and pictures are the more powerful for 

studying highly dynamical black holes, but that the membrane formalism 

and pictures vv'ill be more powerful for studying complicated physics around 

slowly evolving holes . Thus , we regard the membrane formalism as a poten

tially powerful tool for theoretical astrophysics. 

This is the third paper in our research group's series on the membrane 

formalism. Paper I. by Thorne and Macdonald, 13 constructed the 3+ 1 split of 

electromagnetic theory in an arbitrary curved spacetime; then it special

ized the 3+ 1 electromagnetism to the spacetime outside a rotating black 

hole and there married it to Damour's horizon equations to give the elec

tromagnetic portion of our membrane formalism. Paper 11 , by Macdonald 

and Thorne 14 used this membrane formalism to analyze the structure of sta

tionary, axisyrnmetric black-hole magnetospheres and to study the 

Blandford-Znajek 15 process, by which such magnetospheres may power qua

sars and active galactic nuclei. 

In this third paper we turn from stationary electromagnetic fields out

side black holes to dynamical electromagnetic fields. Our objective is to 

build up physical intuition by studying a number of idealized thought experi

ments in ¥.-hich dynamical fields interact with the horizon of a stationary 

black hole. 

In future papers in this series. we and other members of our Caltech 

group will develop the membrane formulation of gravitational perturbations 

of a stationary black hole, 16 we will study idealized thought experiments 

which give physical insight into gravitational perturbations and their effects 

on the evolution of the hole, 17 and we will present a pedagogical review of the 
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formalism and its insights. 16 

For the sake of brevity, we assume in this paper that the reader is fully 

familiar with general relativity theory, at least at the level of track 1 of MTW. 

However, our future review paper16 will be written in a form understandable 

to people who have had only vague contacts with relativity theory. 

The structure of this paper is as follows: 

In Sec. II, we review the electromagnetic features of the membrane 

viewpoint and introduce the concept of the stretched horizon, which is fun

damental to both the electromagnetic and the gravitational aspects of the 

membrane viewpoint. 

In Sec. III, we study electromagnetic fields very near the horizon of a 

Schwarzschild black hoie . We focus attention on a region close enough to 

the horizon that the curvature of space can be ignored . In this region, the 

Schwarzschild geometry may be approximated by the algebraically simpler 

Rindler 19 geometry. We derive the general solution of the electromagnetic 

field equations in Rindler spacetime and apply it to obtain the fields of 

charges in various states of motion near the hole's stretched horizon. Those 

fields (Figs. 3-11) give insight into the electromagnetic properties of the 

stretched horizon. 

Section N presents a numerical calculation modeling the fully dynami

cal evolution of a magnetic field in a Schwarzschild background (Figs. 12-15). 

This example illustrates the "cleaning" of a complicated electromagnetic 

field by a hole 's stretched horizon and also elucidates the constraints on the 

amount of stretching one should do when passing from the true horizon to 

the stretched horizon. 

Section V describes how the intuition gained from the model problems 

of Secs . III and IV can be used to understand heuristically other interactions 
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of black holes with electromagnetic fields. 

II. THE 3+ 1 FORMAI.JSM AND THE STRETCHED HORIZON 

In this section. we will briefly review the electromagnetic aspects of the 

membrane viewpoint. mainly in order to define terms and notation for later 

use. For further details and derivations, see Thorne and Macdonald13 (hen-

ceforth denoted TM) and Macdonald and Thorne 14 (henceforth denoted MT). 

In the 3+ 1 formalism. we choose a space-filling, rotation-free family of 

timelike fiducial observers (FIDO's). whose world lines cover the entire 

spacetime outside the black hole ; and we regard the hypersurfaces orthogo-

nal to their world lines as a curved, "absolute" three-dimensional space 

viewed at different moments of time. (The fact that the congruence is 

rotation-free guarantees the existence of these hypersurfaces .) ·we label the 

hypersurfaces \\ith a parameter t. which we call "universal time." The re la-

tion between the proper time T of the FIDO's and the universal time t is 

given by the lapse fllllction 

!X = dT 

dt along FIDO world line 
(2.1) 

The negative four-acceleration of a FIDO§ = -Vlncx lies in the absolute space 

and plays the role of the "gravitational acceleration measured by the FIDO." 

(He re and throughout, all vectors and vector operators. e.g .. § and V, are 

three-dimensional and live in the absolute space.) The magnitude of § 

diverge s at the horizon. but the "renormalized" quantity o:. J §I has a finite 

limit at the horizon; this limit is the " surface gravity" gH of the hole. 

The electric and magnetic fields and the charge and current densities 

are defined physically by measurements made by the FIDO 's. 
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Mathematically this corresponds to the definition 

(2.2) 

where u°' is the F1DO four-velocity, F°'fJ is the Maxwell field tensor, and J°' is 

the four-current density. These E°', B°', Pe , and j°' are tangent to the hyper-

surfaces t = constant and thus live as three-vectors and scalars in absolute 

space. Using these electric and magnetic fields, the curved-space Maxwell 

equations take a form very similar to their fiat-space analogues [see TM Eq. 

(3.4)]. 

The 3+ 1 formalism developed here will be most useful when a particular 

choice of fiducial observers is singled out by the geometry. For the prob-

lems we will study in this paper, namely, Schwarzschild black holes with 

dynamical electromagnetic "test" fields whose gravitational effects are 

ignored, such a preferred set of FIDO's is the set of "zero-angular-

momentum observers", or ZAMO's .20 With this choice, the global time 

parameter t is equal to the standard Schwarzschild time coordinate; the 

lapse function and the three-metric of absolute space have the form 

a= (1 - 2M/r) 112 , 

the horizon's surf ace gravity is 

and Maxwell's equations read 

V· E = 4 1TPe , 

v·B = o. 
BE I at = Vx(cxB) - 4rrcx]' 
BB 1 at = -vx(o..E) , 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 
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where M is the mass of the black hole. 

Since our absolute three-dimensional space covers only the exterior of 

the black hole, Maxwell's equations have to be supplemented by a set of 

boundary conditions on the horizon, a= 0, namely the Znajek8-Damour10 

horizon equations (TM Sec. 5.4). In attempting to apply these boundary con

ditions , however, we come up against a pathology of the family of spacetime 

hypersurfaces t = constant in terms of which the 3+ 1 split is made. 

Because the ZAMO world lines become null at the horizon, their orthogonal 

hypersurfaces also become null there; i.e., they coincide with the horizon as 

a -4 0. They achieve this by extending deep into the past as they approach 

the horizon. This may be seen from Fig. l , which shows the t =constant 

hypersurfaces plotted in spacetime as functions of the Eddington

Finkelstein time coordinate 

t = t + 2Mln(r/2IJ - 1), (2.4) 

which is well-behaved at the horizon (cf. Box 31.2 of MTW). This ill behavior 

of the spatial hypersurfaces means that the ZAMO 's will never see any infal

ling particle or any part of the electromagnetic field actually cross the hor

izon, but rather the ZAMO's will observe them asymptotically approach and 

hover just above the horizon. If the electromagnetic field is dynamical, the 

near-horizon fields ·will form a layered structure reflec ting their entire past 

evolutionary history. 

If one (mathematically) approaches the horizon along a particular 

t = constant hypersurface in order to try to define a horizon boundary con

dition at that moment of universal time t , one will not see the field settle 

down to a 1vell-defined value ·which may be used as a boundary value . 

Rather. the field will point first one way, and then another, as one examines 
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the relic fields reflecting more and more ancient eras of the near-horizon 

region. 

A way of avoiding this difficulty in defining boundary conditions at the 

horizon was suggested briefly in TM, Sec. 5.3, but was not developed there. 

This method consists of choosing a closed two-dimensional surface just out

side the horizon, and applying boundary conditions on this surface rather 

than on the true horizon. We will call this surface the stretched horizon, and 

for mathematical convenience 16 we will take it to have a fixed (time

independent and angle-independent) location o: = o:H « 1. 

By defining boundary conditions on the stretched horizon, we ignore the 

layered fossil field structure between the stretched horizon and the true 

horizon. Field boundary values defined at the stretched horizon differ from 

the values on the true horizon at the same moment of t time by terms of 

order o:H, so boundar y conditions posed on the stretched horizon become 

increasingly accurate as the stretched horizon is moved closer to the true 

horizon. Jn solving a particular problem, the stretched horizon must be 

chosen so that fractional errors of order o:H are small enough to be 

tolerated. Jt also of course must be chosen so that no interesting physics 

takes place between the stretched horizon and the true horizon. 

One purpose of the model problems in this paper is to demonstrate the 

effic acy of the procedure of stretching the horizon and to determine what 

constraints exist on the choice of its position. 

The "m embrane" version of the true horizon's electromagnetic boun

dary condit ions, without an external 3+ 1 split, has been derived in elegant 

form by Znajeke and Damour9·w Carter21 reviews that formalism, and TM 

h ave translated it into 3+ l language. Althoug h the TM ve r sion is not 

expr es sed spe cific ally in terms of a stretched hori zon, it is trivial to show 
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that when so expressed it takes the form described below. 

The ZAMO-measured field components E11 and B11 parallel to the horizon 

diverge as cx.-1 when ex.« l. This is due to the fact that the ZAMO's are 

accelerating outward to keep from falling into the horizon; they are boosted 

to almost the speed of light v ~ 1 relative to physically reasonable infalling 

observers, who see finite fields at the horizon. The horizon-parallel field 

seen by the ZAMO's thus diverges proportionally to the "gamma factor" 

r =( 1 - v 2)- 112 
0( cx.- 1 of this boost , while the horizon-normal fields 

En = (E·n)sH and Bn = (B ·n)sH remain finite. (He re n is the unit outward 

normal vector at the stretched horizon and the subscript SH denotes 

evaluation at the stretched horizon.) It is therefore convenient to define 

" renormalized" parallel fields on the stretched horizon 

EH = (cx.E11)sH , 
EH = (cx.B11)sH . 

(2.5) 

These renormalized fields have the advantage that they are nearly indepen-

dent of the location chosen for the stretched horizon. They are equal, to 

within fractional errors of order cx.H, to the true-horizon fields defined by 

Znajek, Damour, Carter and MT. Since we Viill often have need of this con-

cept, we will define the notation to mean "equal, to within fractional 

terms of order cx.H". 

In terms of the horizon fields, one may define (imaginary) surface 

charge and current densities on the stretched horizon: 

(2.6a) 

(2.6b) 
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These definitions link the horizon charges and currents to the external fields 

in the way which would be expected from Gauss's and Ampere's laws. An 

observer failing through the horizon would not see a charge layer or current 

sheet on the horizon, of course; but the fields seen by observers who remain 

outside the hole (e.g .. ZAMO's) are accounted for by imagining that the sur-

face charge and current exist on the stretched horizon and ignoring all 

charge and current, as well as the normal electric field En and tangential 

magnetic field ..8 11 . inside the stretched horizon. For example, the stretched 

horizon of a Reissner-Nordstr;5rn black hole with charge Q wi.11 have a uni-

form surface charge density QI (surface area of stretched horizon) in the 

absence of external sources. 

Znajek, Damour, Carter and MT show that one of the standard black-

hole-horizon boundary conditions translates into an Ohm's law: 

(2.7) 

where RH = 411.:::;377 ohms is the surface resistivity of the stretched horizon. 

Moreover, another of the standard boundary conditions translates into the 

statement that the horizon charge and current densities "close the circuit" 

of external currents entering the stretched horizon: 

(2.8) 

This equation says, more precisely, that whenever electric charge falls into 

the stretched horizon, it can be regarded as stopping its fall and thereafter 

moving around on the stretched horizon in a conserved manner, until such a 

time as it reemerges into the external universe (in the form of opposite 

charges moving inward, of course). The factor of a in Eq. (2.8) serves to 
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renormalize J. the current density measured by ZAMO's, from a "per-unit-

ZAMO-proper-time T" basis to a "per-unit-global-time t" basis-the same 

kind of time as is used in aaHI at and in }H· 

Eqs. (2.6b) and (2.7) imply that 

(2.9) 

i.e., the fields at the stretched horizon have the form of ingoing plane waves. 

This might have been expected from the fact that the horizon's surface 

resistivity RH = 41T is just the impedance of free space at the end of an open 

waveguide. 

The horizon surface charges and currents enter into dynamical equa-

tions in the same way as do ordinary charges and currents. The rate of 

change of the horizon's momentum density (momentum per unit area) fi.'1 

vvith respect to global time t, produced by an electromagnetic field , is given 

by the expected Lorentz-force law: lO.l6 

(2.10) 

[If the hole begins precisely nonrotating at t = 0, then ITH = 0 at t = 0 and a 

subsequent growth of fiH corresponds to a gradual spinup of the hole. For 

very slow rotation about the polar ( e = 0) axis , the total angular momentum 

is1c·21 J = f (TIH·B/ B;o)dA ::: !HOH, where IH = 4M3 is a Schwarzschild 
SH . 

hole's moment of inertia22 and OH « 1/ !J is the angular velocity .] The fields 

also increase t he black hole's entropy (area) in accord with the Joule-

heatina relation8·9 

"' 

r2 1 • ) \ .• 1 
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where TH is the black hole's temperature and SH is its entropy; and they 

increase its mass in accord with the first law of black-hole thermodynam

ics23 dM = THdSH + OHdJ (~ THdSH for very slow rotation). 

The use of "renormalized quantities" on the stretched horizon may 

generate some initial uneasiness . We have defined all physical quantities liv

ing in the absolute space in terms of ZAMO measurements, and we could 

equally well have used these ZAMO-defined fields (ff:, B, a, and f) in defining 

the boundary conditions on the stretched horizon, without the renormaliza

tion factor o.B. The advantage of such an approach would be the simplicity 

of using a single set of fields in our absolute space and on the stretched hor

izon; the disadvantage would be that the unrenormalized stretched-horizon 

fields would depend very sensitively on o..H, i.e., on the location chosen for 

the stretched horizon, and in general they would diverge as the stretched 

horizon approached the true horizon. Clearly, since a.H is chosen to be a 

constant throughout this work. all equations we write down describing the 

physical properties of the stretched horizon and the relations between its 

various fields would be valid regardless of which convention was adopte d. 

However, we will choose to present the horizon boundary conditions in terms 

of the renormalized field quantities in order to maintain notational con

sistency '\\ith Papers I and II and also to enable the formalism to be general

ized in our future papers to gravitational interactions with horizons. 

The model problems in the following sections will illustrate the utility of 

the concept of the stretched horizon and -will elucidate the constraints 

which exist on whe re it may be chosen (i.e., on the value of o..H), and will help 

the reader develop an intuitive feeling for the membrane view of black holes. 
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ill. ELECTROMAGNETIC FIELDS OF POINT CHARGES NEAR A SCHWARZSCHILD 

BLACK HOLE 

A The Rindler approximation 

In this section we focus our attention on the interaction of a black-hole 

horizon "With the electromagnetic fields of point charges . In order to get 

maximum insight from a minimum of computational labor, we shall restrict 

attention to charges that are very close to the horizon and to the near

horizon fields that they produce . This permits us to approximate the 

Schwarzschild spatial geometry and lapse function by those of Rindler, 

which cover only the near-horizon region r - 2lrl « 2M and ignore the spa

tial curvature there . 

In the region near the horizon, the Schwarzschild spatial metric (2 .3b) 

may be written in the form [cf. TM, Eq. (5.29)] 

where a. is the lapse function and gH is the surf ace gravity of the hole . If one 

restricts attention to a region of dimensions « M centered on the location 

(6 0 •Yo) on the horizon, and then defines the variables x = 2Msine 0 (y - Yo), 

y = 2M(6 - 6 0 ), and z=a.lgH, the lapse function and the metric take the 

Rindler 19 form 

0. = 'JI-rZ , ds 2 = dx 2 + dy 2 + dz 2
. (3. l ) 

The coordinates (t ,x ,y ,z) Vvill be called Rindler coordinates; in these coordi

nates the horizon is at a. = z = 0. Therefore, the Rindler geometry can be 

considered as an approxim ation to the metric of a spher ically symmetric 

black hole in the limit as one approaches the horizon. In the Rindler 
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approximation, z is the proper distance from the horizon, and it is related 

to the usual Schwarzschild radial coordinate r by 

f
r dr 

2M --v-=1=-=2::;;:M:;:::/=r=-~4Mvl - 2M/r = o..lgH = z (3 .2) 

Of course, in approximating Schwarzschild space by Rindler space, a 

certain amount of information is lost. The Rindler approximation neglects 

the spatial curvature near the horizon; it approximates the lapse function o.. 

as linear in the distance z from the horizon; and consequently it character-

izes the black hole's gravitational field entirely by the gravitational 

acceleration § = -Vino: = -(gHI o:)ez felt by the ZA.1\~o·s. As a result, the 

Rindler approximation loses sight of the physics associated with spacetime 

curvature, such as the reflection of electromagnetic waves by the gravita-

tional field, the "tails " of electromagnetic waves, 24 and the Smith-Will elec-

tros t atic self-force .25 on a charge in a curved background. Also, as we res-

trict ourselves to a region of space of dimensions much less than M, the glo-

bal structure of the external electromagnetic field is lost. 

But the Rindler approximation is nonetheless a valuable tool in studying 

electromagnetic fields near a black-hole horizon, since the gravitational 

acceleration§ is the major influence on the near-horizon field structure of a 

Schwarzschild black hole. The Rindler approximation combines the 

kinematic properties of horizons predicted by the membrane formalism 

(such as electric al conduc tivit y) with an algebraic simplicity lacking in full 

Schwarzschild. This simplicity permits us to obtain the general analytic 

solution of the electromagnetic field equations, and thus allows us to develop 

a detailed understanding of the physics associated IAiith the presence of the 

hor izon. In fa ct, this consideration is not restricted to electromagne t ism; in 

a future paper , Suen, Price, and Redmount17 will also use the Rindler 
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approximation to study the gravitational aspects of the membrane 

viewpoint. It is also well known that Hawking radiation near a black-hole 

horizon may be understood in terms of the Rindler approximation's 

acceleration radiation.26 

B. Solution of field equations in the Rindler approximation 

In order to solve the curved-space Maxwell equations (2.3d) in the 

Rindler approximation, we note that, since Rindler spacetime is fiat, it may 

be transformed to Minkowski-type coordinates (T,X, Y,Z): 

T = z sinhgHt Z = z coshgHt 

X=x , Y=y (3.3) 

These coordinates are associated -with a family of observers ¥.rho are falling 

freely in the z direction, and who ultimately fall into the horizon . In terms 

of Minkowski coordinates, the four-metric associated -with Eq. (3.1) is 

To solve for the general electromagnetic field, we will transform the 

Minkowski-spacetime Lienard-.Wiechert potential27 into Rindler coordinates. 

We consider a charge Q moving Vvith four-velocity ua'(x) which is a func-

tion of spacetime position x . (Here primed letters will be taken to denote 

four-vector indices in Minkowski coordinates, while unprimed ones vvill 

denote four-indices in Rindler coordinates.) The electromagnetic four-

potential Aa'(x) at a particular spacetime observation point x will be gen-

erated entirely by a single point of the charge 's trajectory: the retarded 

point xR which lies at the intersection of the particle's trajectory with the 

past null cone of the observation point. The Lienard-Wiechert potential is 
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(3 .4) 

where and where 

'rJo.·p· = diag[- 1. 1.1. 1] are the Minkowski metric coefficients . 

Transforming this expression to Rindler coordinates yields 

(3.5) 

where L°' o.' = ax°'/ ax°'' and LfJ'fJ = axP'; axf3 are the transformation matrices 

between Rindler and Minkowski coordinates, the subscripts 0 and R denote 

evaluation at the observation point and retarded point, respectively, and 

x8'(xf3) is given by Eq. (3.3) . The factors of LR appear in Eq. (3.5) because uft 

is a vector at t h e retarded point xR, not at the observation point . 

Jn the numerator of Eq. (3.5) , Lftpu}. gives the Minkowski components 

uf{ of the r etarded four-velocity. We parallel-transport it to the observation 

point by fixing its Minkowski components and then transform to Rindler 

coordinates using L~o.·. The factor L~.Lfp is the bivector of geodetic paral-

lel displacement defined by Dewitt and Brehme.24 The potential (3.5) agrees 

with the Lie nard-Wiechert potential given by Dewitt and Brehme as special-

ized to Rindler spac e. 

Wri t ing out Eq. (3.5) explicitly in te rms of Rindler coor dinat es yields 

Z o 

i!z-smhgH(t-tR) r [At ~oshgH( t - tR ) 0 0 

Ax Q_ 0 1 0 0 ft. 
= (3. 6a) AY N 0 0 1 0 u~ 

AZ - gHZR sinhgH (t - (<?) 0 0 coshgH(t - tP.) u fi. 
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where 

(3.6b) 

The coordinates tR, xR, YR· zR of the retarded point are given in terms 

of those t, x, y, z of the field point by the intersection of the field point's 

past null cone 

-with the world line of the charge. Together, Eqs. (3.6), (3.7), and the 

particle's world line give the complete solution for the field of an arbitrarily 

moving charge in Rindler space. By linear superposition, we thereby know 

the general vector potential for an arbitrary distribution of charge and 

current. 

In terms of the four-vector potential, the ZAMO-measured electric and 

magnetic fields (2.2) are [cf. MT Eq. (2.24)] 

(3.8) 

where i,j ,k run over x ,y ,z and f:ijk is the three-dimensional alternating ten-

sor. 

In the follo1Ning subsections, we will discuss the electromagnetic field 

structure generated by various source motions. 
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C. "Static" charge in Rindler 

For arbitrary motion of the source particle, it is generally not possible 

to solve Eq. (3. 7) explicitly for the retarded coordinates as a function of the 

coordinates of the observation point. However, when the charged source 

particle is static in Rindler space, i.e., fixed at a position (x ,y ,z) = (O,O,z 0 ), 

analytic expressions for the retarded coordinates may be derived and Eq. 

(3.6) may be used to write Aa solely in terms of the observer-point coordi-

nates. ln Fig. 2, the trajectory of the accelerated particle is plotted as a 

dashed line in both the Minkowski and Rindler spacetime coordinate sys-

terns. 

Substituting xR = 0, YR = 0, and zR = z0 in Eq. (3.7) and adopting the 

cylindrical coordinatesp = (x2 + y 2)112 and cp = tan- 1(y/x), we find 

1 -1[z2+p2+zo2] tR = t - -cosh . YH 2z~ 

Eq. (3.6) then yields28 

= _!}__ 
z 

(3.9) 

(3.10) 

From Eq. (3.8), the only nonvanishing physical components of the elec-

tromagnetic field are 

E = p 

(3.11) 

As might be expected, this field is stationary in the sense that it does not 

depend on the Rindler time t and it is purely electric. It should also be 
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noted that it is normal to the horizon at z = 0. The electric field lines are 

plotted in the lower right corner of Fig. 3. It is a major advantage of the 3+ 1 

viewpoint that field lines may be used to describe the field. The Gaussian 

Maxwell equations V· B = 0 and V· E = 4rrp6 say, just as they do in fiat-space 

electrodynamics, that magnetic field lines never end and that electric field 

lines end only on electric charge. 

The horizon charge density Eq. (2.6a), which terminates the normal 

electric field of Eq. (3.11) at the horizon, is 

(3.12) 

and by integrating aH over the horizon, one can verify that the total charge 

induced on the horizon is equal to -Q. The horizon surface current density 

defined in Eq. (2.6b) vanishes, so there is no dissipation of energy in the hor-

izon. The stretching of the horizon described in Sec. II is not necessary in 

this example since the field is stationary and therefore has none of the lay-

ered horizon-field structure described there. 

It is important to note that, although the horizon surface charge den-

sity (3. 12) was not explicitly included as a source in deriving the electric 

field (3.11) from Eqs. (3.6) and (3.B), its inclusion would not change the exte-

rior field in any way. The reason for this is the defined role of the horizon 

surface charge: it terminates the normal electric field in the region exte-

rior to the horizon, and annuls it in the interior region. Indeed, by substitut-

ing zero for z 0 in Eqs. (3.11), it may be seen that a hypothetical charge on 

the horizon z = 0 produces no field in the exterior region. For the more 

general case (considered in the following sections) where the horizon must 

be stretched, the exterior fields produced by the induced charge and 

current densities on the stretched horizon may be shown to be of order cxH, 
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the lapse-function value at the stretched horizon, and thus will vanish in the 

limit as the stretched horizon approaches the true horizon. 

The same conclusion holds for a Schwarzschild black hole, which has 

zero net charge. As shown by Hanni and Ruftini29 , a hypothetical charge on 

the horizon produces a radial electric field centered on the center of the 

hole. If the total charge on the horizon is zero, then no matter what its dis-

tribution, it will produce no external electric field. For a Reissner-

Nordstr,imi black hole with total charge Q, the surface charge density aH 

consists of a total charge Q distributed over the horizon. Although this 

charge distribution may be distorted away from uniformity by the fields of 

external sources, the field generated by the horizon charge Vlill remain the 

same as that of the Reissner-Nordstr,imi hole, i.e., J!; = QI r 2 , B = 0. 

The solution (3.11) might alternatively have been derived from the 

Copson-Linet30 solution for a point charge at rest outside a Schwarzschild 

black hole by applying the change of variables and the limiting process 

(Rindler approximation) described in Eq. (3.2) and the preceding paragraph. 

The Copson-Linet solution is summarized in 3+ 1 form in TM, Sec. 6.1. The 

field lines were first plotted by Hanni and Ruftini29 and an example is shown 

in Fig. 4-. For a point charge Q at rest above the north pole of the hole at 

r = b, e = 0, the horizon surface charge density for the Copson-Linet solu-

tio n is [cf. TM Eq. (6.4)] 

0
H = Qf JJ(l + cos26) - 2 (b - M)cos6] 

8nb [b - M(l + cos6)]2 
(3 . 13) 

This charge density yields a total induced surface charge of zero. As shown 

in Fig. 6 of Ref. 29, the horizon is polarized, 'i'iith a total charge 

-2 Q[b - M --Jb (b -2M )]/ b north of the critic al colatitude 

6=6 crit =cos- 1 a b -M --Jb ( b -2M)]/ Ml. and a like charge of the opposite sign 
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distributed south of this latitude. When one applies the Rindler approxima

tion to Eq. (3.13), the critical radius where the sign of the polarization 

charge changes is moved out top = °", so the charge density (3.12) is of the 

opposite sign to Q over the entire Rindler horizon. 

Thus, we have verified that Eq. (3.6) gives the previously-knovm field of a 

Rindler-static charge; and we have shown explicitly that this field is a valid 

approximation to the field of a charge static outside Schwarzschild in the 

near-horizon limit. We now turn to the study of the fields of charges in 

motion above the Rindler horizon. 

D. Infalling charge 

Another simple source configuration which yields an explicit analytic 

solution for the fields is that of a charge -Q stationary in Minkowski coordi-

nates at position Z = Z0 , so that its trajectory in Rindler coordinates is 

z = (3.14) 

As seen in Rindler coordinates, this particle emerges from the past horizon 

at t = - 00 , reaches a maximum distance Z0 from it, and then falls into the 

future horizon at t = +00 • In Fig. 2, the trajectory of this charge is shown as 

a dotted line in the two different coordinate systems. The physical com-

ponents of the particle's field as seen by Minkowski observers (who are fal-

ling into the hole vvith the particle) are 

E = _g_p_ 
p' rs , (3.15) 

where r = -J p2 + (Z - Z0 )
2 . In Rindler coordinates the nonvanishing physi-

cal components are 
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EP = - Q~ coshgnt , 
r 

E2 = -~[z coshgnt - Z0 ] , 
r 

B -.LB _g_p_ 'nh t ?- p rp- rs s1 9H ' 

(3.16) 

where r = -Jp2 + [zcoshgnt - Z0 ]
2 in terms of Rindler coordinates. These 

are the fields seen by static observers (ZAMO's) outside the horizon, i.e ., the 

fields which are used in our membrane viewpoint of black holes. 

The definition of the horizon charge and current densities in this case is 

trickier than in the case of the Rindler-stationary charge. In attempting to 

calculate them, one evaluates EP and E2 at the horizon (z = 0, t = 00), which 

leads to indeterminate results . The reason for this is the infinite gravita-

tional redshift at the horizon. As described in Sec. JI, the field structure 

associated with the infalling charge only asymptotically approaches the hor-

izon, and the tangential field strength at z = 0 diverges exponentially -with 

universal time t . To get meaningful results, it is necessary to define the 

charge and current densities on a stretched horizon as discussed in Sec. JI . 

We choose it at the location a= an« 1, or z = zn =an/ YH· where 

0 < zH « Z0 . The charge and current densities on the stretched horizon 

produced by the infalling charge are 

(3.17) 

resp ectively, where En is the component of E parallel to the horizon. As the 

particle descends toward the stretched horizon, the charge density becomes 

more and more sharply peaked at the position p = 0 directly under the par-

ticle; the integral of aH over the stretched horizon, however, remains 
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constant at the value QI 2 during the descent. In the limit as the particle 

approaches the stretched horizon, the charge density approaches the func-

tional form 

Qo(p) 
4rrp 

(3.18) 

The surface current density feeds the growing concentration of charge at 

p = 0. 

i'i5o in the case of the Rindler-stationary charge treated in Sec. III.C, the 

present problem is the near-horizon limit of a Schwarzschild problem: that 

of a charge which emerges from the horizon and falls back into it. As 

before, the charge simply polarizes the surface of the Schwarzschild hole, 

leaving it Vvith zero net charge; but the Rindler approximation moves the 

neutral point where the polarization charge changes sign out to p = oo, so 

that the charge density on the entire stretched Rindler horizon has the 

opposite sign to Q. 

According to Eq. (2.11), the rate that energy is dissipated in a unit area 

of the stretched horizon is just JH· EH, and the rate of increase of the hole's 

mass-energy may be obtained by integrating this quantity over the 

stretched horizon: 

(3.19) 

The integral of this function over time, which should give the total mass-

energy absorbed by the horizon, diverges due to an infinite contribution at 

the point at which the particle crosses the stretched horizon. This is not 

unexpected, however , since the particle is assumed to be pointlike and thus 

has an infinite amount of energy in its near field . 
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In contrast to the case of the Rindler-stationary charge, only half of the 

field lines of the in.falling charge intersect the stretched horizon; the rest 

extend to spatial infinity. It may be seen by comparing Eqs. (3.14) and 

(3.16) that the electric field lines in Rindler coordinates emanate radially 

from the charge, just as they do in Minkowski coordinates. But unlike in 

Minkowski space, the field lines in Rindler space do not emerge from the 

charge isotropically. As the particle falls in, its field lines (even the ones 

that eventually extend to spatial infinity), are flattened down near the hor

izon within an ever-·widening circle of radius /:,.p ~ zHcoshgHt on the 

stretched horizon. If its electric field lines were plotted, the entire field out 

to any chosen radius p would ultimately seem to disappear beneath the 

stretched horizon. Therefore, in plotting the field, it is convenient to add an 

oppositely charged particle, stationary outside the horizon, with field given 

by Eq. (3.11), to "hold the field lines up" and to illustrate the approach of 

the field toward stationarity . 

Since we are considering Rindler space as an approximation to 

Schwarzschild, it is not physically realistic to consider the full trajectory of 

the Minkowski-stationary particle. Although the full analytic continuation of 

the Schwarzschild geometry has a past horizon, an astrophysical black hole 

does not. Therefore, we choose to consider the example of a neutral particle 

which splits into two parts at t = 0, z = z 0 : a charge + Q which continues 

along the uniformly accelerated trajectory z = z 0 , and a charge -Q which 

falls freely into the hole along the trajectory Z = z0 . Thus, we set Z0 = z0 in 

Eqs. (3.16) and then superpose the fields (3.11) and (3.16). The electromag

netic field will be given by this superposition inside the future light cone of 

the spacetime point (t ,x ,y ,z) = (O,O,O,z0 ), and will vanish outside it. Like

wise, the surface currents and charges (3.12) and (3.17) are valid at points 
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on the stretched horizon within the future light cone of the splitting point, 

and vanish outside it. That is, currents flow only within the ever-·widening 

circle p = V2ZHZo coshgHt - zn - Zo2 on the stretched horizon. If the 

charge densities corresponding to the static and infalling particles are 

summed and integrated over this circle on the stretched horizon, it may be 

verified explicitly that the resulting total charge has the expected behavior: 

it vanishes for time t < gI11cosh-1(z0 /zH) when the infalling charge is still 

above the stretched horizon, and is equal to -Q after the charge falls 

through the stretched horizon. 

Figure 3 shows the electric field lines resulting from this superposition 

at several representative times. 1t may be seen that the effects of the field 

of the infalling particle rapidly vanish, and that by about t = 6/ 'JH· the field 

has very nearly settled down to the stationary form which would be pro

duced by the static charge alone. All of the effects of the infalling particle's 

field become flattened into a thin layer just above the true horizon, the 

thickness of which decreases at a rate proportional to 1/ coshgHt "'e -gHt; 

thus all effects of the infalling charge disappear beneath the stretched hor

izon in a time of order gI1 1ln(z0 / zH)· 

E. Charge in uniform motion parallel to the horizon 

In this subsection, we shall study the case of a charge sliding at con

stant height and with constant velocity above the Rindler horizon. We will 

analyze in detail the electric and magnetic fields, the work done on the 

charge, and the horizon heating. 

We consider a charge Q which is located at (x ,y ,z) = (O,O,z0 ) at t = 0 

and which moves in the +x direction vvith constant velocity 

dX/d1 = v = f3ex, as seen by the ZAMO's, for all time -::x:i < t < 00 . Thus, its 
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velocity with respect to universal time t is di I dt = a:v = g Hzo f3ex. If we set 

0.0 = gHzo and 

xfi = (tR.o:.0 f3tR,O,z 0 ), 

ufi = ()'/ 0.0 , )'{3, 0, 0) , 

where I'= ( 1 - {32)-112, then Eqs . (3.6) and (3.8) yield 

Ex= 
Q[SZo 

[D(a + {3SD - {32 C) + {3S({32 - aC)]' 
NS 

E - Qrzo 
fj(?5. + {3SD - f C) , y - Ns 

E = Q[SZo 
[a{3SD - ( 1 + {32)0'.C + 0:2 + {32 ] , z Ns 

Q[3Zo 
Bx= 

NS 
{3fj( CD - {3S) , 

(3.20) 

(3.21) 

B -
Qrzo 

{3 [{3SD - CD 2 - C(a'.2 + (32
) + a( C2 + (32

)] , y - Ns 

B = Q/'3Zo 
f3fJ (a c - {32) • z NS 

Where We have USed Coordinates normalized by Z 0 : fj=::y/ Z 0 , a=::o:./ 0:.0 =z/ Z 0 , 

and a "lagging-comoving" x-coordinate: x=x/z 0 -gH{3t-{3ln(z/z0 ). We also 

define where 

The quantity N of Eq. (3.6b) can be expressed as 

N=1z 0 /a'.S-{3[x+{31n(a(C+S))]l. Note that 'ff is defined implicitly in terms 

of the observer-point coordinates through C and S: only in the limit f3 ~ 0 

can it be expressed explicitly as p2=.X2 +y2
, and thus only in this limit can 

the electric and magnetic fields be expressed completely explicitly in terms 

of the observer-point coordinates. 

Figure 5a shows the electric field lines in the x -z plane for a charge 

moving with {3 = 0.5. Figure 5b is a 3-dimensional plot, as viewed from the 

side, for the same situation. The solid field lines are those which emerge 
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from the charge at the polar angle e = 90°, measured from the vertical z 

axis; the dotted lines are those field lines coming out at e = 120°. All of the 

field lines curve down toward the horizon. Figures 5c and 5d show the same 

plots for the case {3 = 0.1. 

In the region close to the charge, the electric field lines go out radially 

with an excess concentration factor ; in directions perpendicular to the 

motion, just as for a uniformly moving charge in Minkowski space. For 

{3 = 0.1, the field structure resembles that of the Rindler-static charge (last 

diagram of Fig. 3) in a large region around the charge. 

In the region close to the horizon, both the (3 = 0.1 and (3 = 0.5 cases 

show a similar tangential structure -with diverging tangential field strength, 

although the (3 = 0.1 case shows this structure much closer to the horizon, 

so close that it cannot be resolved in the figure. The field in the tangential 

structure is complicated, varying rapidly in strength and direction as a 

function of ex near the horizon. But any field line followed far enough toward 

the horizon -will eventually point in the +x direction, essentially because this 

part of the field was generated by the charge at early times when it was far 

to the left in the figure. Near the horizon, the tangential field structure is 

sinking slowly down toward the horizon at a rate dz I dt = ex, i.e.. it is 

approaching the horizon asymptotically along the trajectory 

z = const.xe -gHt. (Note that the descent is slow relative to universal time t, 

but at the speed of light as measured locally by the ZAMO's.) The separation 

between neig hboring field lines goes as ex and the field-line density as meas

ured by the ZAMO's thus diverges as ex- 1• indicating a diverging tangential 

field strength near the horizon. However, the details of this near-horizon 

tangential field have no effect on the structure of the external field and thus 

may be conveniently ignored by stretching the horizon. A possible choice of 
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the stretched horizon is shovm as a dotted line in Fig. 5a. 

It may be seen from Fig . 5 that the largest normal field at the stretched 

horizon, and thus the largest concentration of horizon surface charge (2.6a), 

occurs at a position lagging behind the charge. The tangential fields drive a 

surface current (2.6b), which moves the surface charge concentration along 

the stretched horizon at a constant distance behind the charge. By evaluat-

ing Ez from (3.21), taking cxH to be small, and using Eq. (2.6a), we find the 

induced charge density on the stretched horizon to be 

a = Ez I = _ _!}_ '§2· + 1 +Cf - 1),82 
- ({52 + l)@D 

H 4-11 SH 1TZ 0
2 (p2 + 1 - 2(3D) 3 ' 

(3.22) 

where p is given implicitly by p2 = D 2 + f/2
, D = x + (3ln(p2 + 1). ·when (3 = 0, 

this is easily seen to reduce to the static form Eq. (3.12). The variation of 

the charge density (3.22) along the x axis is shovvn in Fig. 6 for two different 

choices of stretched-horizon location: cx.~) = 10-20:.0 and o:.12) = 10-40:.0 . It 

may be seen that in each case the charge is concentrated around x = 0, i.e., 

The quantity 

o:.0 (3t-x*=(o:. 0 (3lgH)ln(o:. 0 !0:.H) is the amount by which the induced charge 

distribution lags behind the source: it is given by the velocity of the source 

multiplied by the time required for the field to propagate from the position 

of the charge dovm to the stretched horizon. The size of the lag increases as 

o:.H is made smaller, i.e., as the stretched horizon is moved closer to the true 

hori zon. The qualitative featw·es on the stretched horizon are independent 

of the value of °'H we choose (see also Fig . 7). They are just shifted in the x 

d irec tion by an amount ((31 gH )ln(o:J,n I o:12l), since the field at cx,~2) is laid 

down a t ime ( l/ gH )ln( o:Jll I o:._~2)) earlier than the corresponding field on cxJJl 

As was s ~ressed in Sec. II, we look at earlier epochs in the history of the field 

evolution as we look closer to the true horizon. We can understand the lag 
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physically either by saying that there are strong retardation effects near 

the stretched horizon, or by noting that the stretched horizon has a finite 

resistivity which gives rise to a frictional force on the moving induced 

charges. This behavior is qualitatively the same as for the fiat-space case of 

an external charge moving past a conducting surface with Dnite resistivity 

and dragging its induced charge behind itself . 

Substituting the tangential electric field given by Eq. (3.21) into the 

definition (2.6b), we obtain the induced surface current density 

... = _ 0 -HBy I = Qao {3('/f + 1) r2D2 
- 2{3D + 2(32 

- (p2 + 1)] Jz 2 ~~~~~~~~'---~---'-~---''---~-'-~ 
411' SH 2rrz0 (p + 1 - 2{3D)3 

°'HBz I = Q<Xo {3f/(p2 + l)(D - {3) 
411' SH 1TZ0

2 ('ff + 1 - 2{3D) 3 . 

(3.23) 
;; -y -

Eqs . (3.22) and (3 .23) can be combined to verify that 

(2)....... BaH _ v J + at - o. 

which is the charge conservation equation, as there is no external charge 

entering the stretched horizon. This current distribution is shown in Fig. 7 

The distribution of induced charge and current gives us immediate 

information on the energy and momentum transfer between the hole and 

the charge . The direction of the momentum transfer is evident from the 

fact that the induc ed charges on the stretched h or izon suffer an Ohmic 

resistance as they move in the +x direction; t hus , momentwn in the +x 

direction will be transferred to the hole . Also, from Eq. (2. 11 ), Joule heating 

of the horizon dissipates the Maxwell field energy at the rate 

(3.24) 
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Using the definitions (2.5) and (2.6) along with Ohm's law (2.7) and the zero-

reflection boundary condition (2.9), this may be written as 

dM f. - ~ o: 2 F = a. s rtz dxdy 
dt H E H SH ' (3.25) 

where FE is the ZAMO-measured energy fiux into the stretched horizon and 

where one factor of o:H multiplying it comes from converting d/ dT to d/ dt 

on the stretched horizon, and the other comes from redshifting the energy. 

The Max-well energy fiux density in the z direction measured by ZAMO's on 

the stretched horizon is given by O:H rtz = O:H (EyBx - Ex By)/ 4rr. The heat-

ing rate dM I dt could be found explicitly by substituting the fields from Eq. 

(3.21) into Eq. (3.25) and performing the integral. However, it may be found 

much more easily by the following consideration. 

The field energy dissipated in the horizon must be provided by the 

agent which keeps the charge in uniform motion. By considering the power 

supplied to the charge as measured by the local ZAMO at the position of the 

charge, the power fio-wing into the horizon can be easily evaluated (see 

Appendix) to be 

dM=2Q22 {32 
dt S gH (1 - {32)2 (3.26) 

Next we look at the momentum transfer between the charge and the 

horizon. In the membrane language, the momentum transfer is produced 

by a frictional force on the fl.owing induced charge in the stretched horizon; 

from Eq. (2.10) the x component of this force is 

(3.27) 

Thus, from Eqs. (2.5) and (2.6), the torque on a Schwarzschild hole due to a 
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charge moving in the rp direction at polar angle e = e0 , very close to the hor-

izon, is 

dJ "" 2M . d:pfl 2M . f. rzz dxd dt - sme0 ~= - O'.Hsme 0 SH y , (3.28) 

where 2Msine0 is the "lever arm" for converting force to torque, and where 

in the z direction, as measured by ZAMO's on the stretched horizon. The 

torque dJ I dt can be evaluated either by computing rzz from Eqs. (3.21) for 

E and B and then performing the surface integral (3.28), or by the following 

consideration. 

The momentum imparted to the horizon must be supplied by the agent 

which keeps the charge in uniform motion: in the Appendix, by computing 

the force on the charge, we obtain 

(3.29) 

Note that since (power supply)={3(momentum supply), as measured by the 

ZAMO's at the position of the charge, then dJ I dt and dM I dt are very sim-

ply related: dM I dt = a.0 {3(2Msine 0 )-
1dJ I dt. 

It is also informative to look at the actual distribution of energy and 

momentum inflow on the stretched horizon, as given by rtz and rxz [cf. Eqs. 

(3.25) and (3 .28)]. Figure 8 shows these distributions along the x a.xis, after 

integration over ally values . As may be readily seen by comparing Fig. 8 to 

Figs. 6 and 7, the region of greatest energy and momentum inflow coincides 

with the region of strongest induced charge and current. 

Figure B shows that, from the viewpoint of our membrane formalism, 

the region of maximum inflow of energy and momentum lags behind the 
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motion of the charge above the horizon. The question of whether this region 

lags or leads the charge is not completely unambiguous, however. It has 

been pointed out by Hartle 7 that an alternative, natural way to compare the 

transverse positions of points at different values of a (different distances 

from the horizon) is by means of a zero-angular-momentum light ray. This 

corresponds to a slicing of spacetime different from our choice: A coordi

nate change t = t + (1/gH)lna brings the spacetime metric into the form 

ds 2 = -a2itz + Zadtdz + d.x 2 + dy 2 . (3.30) 

~ 

(The coordinate t and the Minkowski time coordinate T are the Rindler-

approximation limits of the infalling Eddington-Finkelstein time coordinate, 

Eq. (2. 4), and the Kruskal-type time coordinate 

4M(r/2M - 1) 112sinh(t/4M), respectively.) In the metric (3.30), a zero-

angular-momentum null ray has the trajectory t = const.. x = const .. 

y = const., and hence, in a constant-t slice, a zero-angular-momentwn null 

ray starting from the charge Vvill strike the stretched horizon directly 

underneath it. Such a position, after transforming back to the membrane 

vievrpoint's t-slicing, is marked as x* in Fig. 8. We can clearly see that, from 

the "zero-angular-momentum-light-ray viewpoint," the location of maximum 

input of energy and momentwn occurs at a position on the stretched hor-

izon where the charge is not yet "overhead." The same kind of phase-lead 

phenomenon was observed by Hartle7 when he studied the tidal bulge on the 

horizon due to an orbiting moon. Ho-wever, when observed in a slice of con-

slant t (the absolute space of our membrane viewpoint), the position of 

maximwn energy and momentum input (or tidal bulge) will lag behind the 

source on the stretched horizon, which is much more suggestive to physical 

intuition. 
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F. Charge in nonuniform motion near the horizon 

To obtain a better feeling for the evolution of field lines near the hor

izon, we consider charges that move only for a finite period of time . 

We first consider a charge which stays at (x ,y ,z) = (O,O,z0 ) for all t < 0, 

then moves with constant velocity dx/dT = a..0- 1dx/dt = {3 in the ex direc

tion until t = llgH=z 0 /o:. 0 , and then stops again for all t > llgH at 

x = {3z0 . (We again set 0:0 = gHzo .) For t > 1/ gH, the structure of the elec

tric field lines is divided into three regions. Figure 9a shows the field lines 

for t = 2/ gH, {3 = 0.5. Near the charge there is a region centered at 

x = {3z 0 , y = 0 where the field configuration has settled dO'lrn to the static 

Coulomb field. In the region far away from the charge , we also have a static 

Coulomb field. This is the region where the charge's "start-to-move" signal 

has not yet arrived, i.e .. the region where the spacetime separation from the 

point t = 0, x = 0, y = 0, z = z0 is spacelike. Sandvviched between the near 

and far zones is the transition region, where the field is given by Eq. (3.21). 

(We idealize the charge's acceleration as being instantaneous and ignore the 

field generated at these instants. If this assumption were not made, there 

would be two shells of radiative field corresponding to retarded times during 

which the particle was accelerated. But the same conclusions would apply 

to these shells as to the transition region, so we will not consider them 

here.) As time progresses (Fig. 9b), those parts of the transition region pro

pagating towards the horizon approach it asymptotically along a trajectory 

z = const.xe -g1:1t. Hence the transition region gets thinner and the field 

lines become more and more tangential. The field-line density increases as 

1/ ex and hence the tangential electric field grows. This tangential structure 

fin ally sinks down to the stretched horizon and drives a current which tran

sports the surface charge from the region near x = 0 to the region under 
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the source's new position. There is also some surface charge attracted in 

from the region x » 0 to settle under the charge, while some excess charge 

near x = 0 fiows off in the -x direction. The current fiow produces Joule 

heating and a Lorentz force in the horizon, which dissipate the energy and 

momentum carried by the field in the transition region. For times 

t » 1/ 9H, the field on and above the stretched horizon returns to a fully 

static configuration (last diagram of Fig. 3). 

The qualitative features of the tangential field structure observed in the 

above problem are not special to it, but rather they are a general feature of 

any field lines that move in the vicinity of a horizon. 

For example, consider a problem where we move an initially static 

charge perpendicular to the horizon with constant ZAMO-measured velocity 

(3 during the time interval 0 < t < 1/ 9H · In this interval, the charge has a 

trajectory (upward motion) and a four-velocity 

u°' = (1/ cx ,0 ,0:y{3) where I= (1 - {32)-112. Putting this into Eqs . (3.6) and 

(3. B), we have the electric field: 

(3.31) 

C = coshgH(t - ("! ), and the retarded time tR is defined implicitly by 

"-~ "-? "-2 2g ;;B IR ~ gH8tR ( ) x"' + y' + ex + e ·· - 2o:e · · coshgH t - tR = 0. 

Figures ~Oa and 10b show the field lines a t t = 2.5/ 9H and t = 3.5/ 9H· 

respectively. The qualitative features ar e clearly the same as in the case of 

the charge moved parallel to the horizon, and again 1.ve see a tangential 

structure traveling down to the stretched horizon. In this case, the current 
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fiows radially outward and distributes the induced charge over a larger 

region in the new static situation. 

For further insight into the evolution of the electric field , we show in 

Fig. 1 l a the evolution of the direction of a particle's electric field as the field 

" propagates" near the horizon. More specifically, we consider the particle 

of Figs . 5a, 5b, 6, 7, and 8, which is moving parallel to the horizon (x

direction) with a locally measured velocity {3 = 0.5. The particle's field, as 

described by the Lienard-Wiechert potential (3.5), propagates away from the 

particle with the speed of light. (Of course, this is strictly true only close to 

the horizon where the spacetime curvature and its scattering effects are 

negligible.) In Fig. lla, we study the propagation in the x-z plane of that 

piece of the electric field which is emitted by the particle at time t = 0, 

when the particle is at the point from which the curved lines diverge. The se 

curved lines are the spatial tracks of the null geodesics along which that bit 

of field propagates. Each short segment, or arrow, depicts the direction 

that the field points when it has reached the location, on its propagation 

geodesic, where the arrow's tail sits. Thus, the first set of arrows in Fig. 1 la 

(those nearest the particle's position) constitute a snapshot of the field at a 

time t = 0.3/ 'JH after the emission event-Jtvhen the particle has moved to 

the location of the fir st cross. The second set of arrows is a snapshot of the 

field at t = 0 6/ 'JH, when the particle has reached the cross marked 0.6. 

Each suc cessive snapshot and particle location is at a subsequent time 

interval t::,t = 0 3/ 'JH . ·when the fields generated are still in the region close 

to the charge, they behave essentially in a Minkowskian way, except that 

those parts that travel upward move faster as o: gets larger and those parts 

traveling downward toward the horizon move more slowly as o: get smaller. 

Recall that in fiat -space electrodynamics, the electric field · lines of a 
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uniformly moving charge always point toward the present position of the 

charge. For the case of a particle near the Schwarzschild or Rindler hor

izon, however, the parts of the field traveling away from the horizon point in 

front of the present position of the charge, while those parts traveling down

ward toward the horizon point to the rear of it and eventually become 

tangential to the horizon. 

Had we chosen to take snapshots at constant intervals oft [Eq. (3 .30)], 

the field propagating on the null trajectories would march through the hor

izon -without hesitation; but since we use constant intervals of universal time 

t, we take an infinite number of snapshots of the field in the region just out

side the horizon. Therefore, we see an unchanging field structure as t 

progresses: the fossil field structure described in Sec. II . The introduction 

of the stretched horizon simply cuts off the redundant taking of snapshots 

at a convenient surface outside the horizon. 

All of the above figures and conclusions have pertained to the electric 

field of a moving charge. It is of interest also to investigate the evolution of 

a magnetic field near a black-hole horizon. From the curved-space Maxw·ell 

equations (2.3d), it is seen that, in regions of space ·with no sources, the 

duality transformation i: ~ B and B ~ -E preserves the form of the equa

tions and hence their solutions, just as in fiat-space electrodynamics . 

Therefore all of the qualitative conclusions reached above for an electric 

field wi.11 hold also for a magnetic field. 

More specifically, for a static magnetic field, as for a static electric 

field, the field lines will intersect the stretched horizon orthogonally, so that 

by Eq. (2.6b) there is no surface current to produce dissipation. If the mag

netic field is disturbed, the disturbance will propagate down toward the hor

izon and form a tangential structure. This assertion is supported by Fig. 
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11 b, which shows the magnetic field generated by the uniformly moving par

ticle of Fig. 1 la propagated along null trajectories in the y-z plane, in the 

same manner as was done for the electric field in Fig. 1 la. Note here, as for 

the electric field, that the field structure becomes tangential near the hor

izon. When this structure sinks through the stretched horizon, a current is 

induced which dissipates the Maxwell field energy and momentum. The 

effect of this process is to "clean" the magnetic field by removing compli

cated tangential structure near the horizon. This process might be impor

tant in models of quasars which involve large magnetic fields in the neigh

borhoods of black-hole horizons. 15 A model problem relevant to this process 

will be considered in the next section. 

IV. Relaxation of a Magnetic Field in Schwarzscbild Spacetime 

The previous section considered electromagnetic model problems in 

Schwarzschild spacetime in a region close enough to the horizon that the 

Rindler approximation could be adopted. If the Rindler approximation is 

dropped, the mathematics of these problems generally becomes more 

difficult. The spatial curvature which was ignored in the transition from 

Schwarzschild to Rindler makes the three-space vector operators, and thus 

Maxwell's equations, considerably more complicated in the full 

Schvvarzschild spacetime. However, it is instructive to investigate a model 

problem in the full Schwarzschild black-hole background to verify that the 

models vv·e have made using the Rindler approximation have not omitted any 

important features of the interaction of electric and magnetic fields with a 

horizon and also to develop intuition concerning the effect of spatial curva

ture on those fields. 
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We consider the problem of a Schwarzschild black hole of mass M, sur-

rounded by a perfectly conducting concentric sphere of radius R > 2M into 

which an axially symmetric magnetic field is frozen. At time t = 0, the mag-

netic field lines are momentarily static and purely radial, pointing into the 

hole below the equator and out of the hole above it, as shown in Fig . 12. 

Immediately after time t = 0, this initial configuration is released and 

allowed to evolve dynamically in accord with the vacuum Maxwell equations, 

except that the field lines continue to be held fixed in the conducting sphere 

at radius R . We shall study the dynamical evolution of this field. 

In Schwarzschild coordinates (t ,r,e,rp), where the lapse function is 

ex = v 1 - 2M Ir , the initial electric and magnetic fields are 

f = o. 

[~ 2 [~2 ... R a R ... 
B=B0 cxr cose

8
r=B0 r coseef, 

(~.1) 

and the corresponding initial vector potential is purely toroidal : 

(4.2) 

where B0 is the magnetic field strength on axis at the outer sphere and 

e~ = (1/rsine)8/ 8rp . [Throughout this section, carats will be used to denote 

The field lines are fixed at their outer ends because they are frozen into 

the perfectly conducting outer sphere, but they are free to slip through the 

stretched horizon since it has a finite conductivity . Qualitatively, one would 

expect the field lines to pull themselves into a more vertical orientation due 

to their tension. 



- 60 -

The symmetries of the problem, along with Maxwell's equations, ensure 

that all components of the four-vector potential except Al"(t ,r, e) will remain 

zero. This component may be written in terms of the "magnetic flux func-

tion" 1/l(t ,r ,e) = 2rrAl"(t ,r ,e) which, as shown in MT, is equal to the total mag-

netic flux through the circle of constant radius and latitude 

(r ,e) =constant. The expressions for the electric and magnetic fields in 

terms of 1/1 are 

... i .,. 1fie-
E =--A= - 'I' 

ex 2rrcxr sine ' 

... ... ... V1f;xe:;. 
B = 'V'xA = ---"''---

2rrr sine ' 

(4 .3) 

where the overhead dot denotes time differentiation. The only nonvacuous 

Maxwell equation is Ampere's law [MT Eq. (2. l 7c)], which, specialized to 

vacuum Schwarzschild spacetime and expressed in terms of 1/1. may be writ-

ten as 

(4. 4) 

The covariant three-space derivatives in the vector operators in this equa-

tion may be expanded in terms of ordinary derivatives, with the result 

_ 1/1. tt + [l _ 2M l 1 + 2M 01, + 'if! .1Hf _ cotG 01, = O . 
1 - 2M. Ir r '!jl ,rr r 2 'l'.r r 2 r 2 'l'.lf 

(4 .5) 

By int roducing the " tortoise coordinate" r* of Regge and \Vheeler31 

defined by 

dr* = 
1 - 2M/ r ' 

r* = r + 2Mln[ 2~J - 1], 

dr 

(4 .6) 
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Eq. (4.5) can be put into the form 

1 [ 2JJ. Jr ] _ -1/J.tt + 1/J.rtr• + :;:z 1 - --:;:- t1f'.e-f' - cotei/J.e- - 0 . (4.7) 

In this equation, r is to be thought of as an implicitly defined function of r*. 

The boundary condition of "no outgoing waves at the horizon" [Eq. 

(2.9)] requires 

(4.8) 

where ii is the unit normal vector ef to the horizon and E11 and .8 11 are the 

field components tangential to the horizon. The tangential fields may be 

expressed in terms of the potential 1/J as 

-+ 1 ao/1 -+ £
1
, = - :::...:r:_e~ 
I 21TO::T Sine at 'f ' 

.8 = [V'lf'xe ~Ji! = _ o:: 
II 2rrr sine 21TT sine 

01!__, 
ar e ~' 

(4.9) 

so the horizon boundary condition ( 4.8) becomes 

r a1V - _Ei_] _,, o . 
lat ar* r-+2M 

(4. 10) 

The initial field A = ( 2rrr sine )-11/'( 0 'r 'G )e ~ = Bo ( R 2 / 2r) sinG e ~ has the 

ang ular dependence of the l = 1, m = 0 vector spherical harmonic27 

Xi.0 (e,i;o) = i-J3/ 811sinee~; and since neither the differential equation (4. 7) 

nor the boundary conditions mix different multipoles, the field will remain 

proportional to this harmonic as it evolves. It is thus convenient to sep arate 

variables by defining a new field variable u(t ,r): 

(4.11) 
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Then the wave equation ( 4. 7) for 'if; takes the form 

-u .tt + u • - _g__ [1 -
2

M Ju = 0. 
,r'T r2 r (4.1 2) 

This equation describes a one-dimensional wave subject to a potential 

V(r *) = 2( 1 - 2M Ir )I r 2 . This potential goes to zero at the horizon propor-

2 2g r• 
tionally to a ~ e H , goes to zero as r-2 ~ (r*)-2 at large r, and has a glo-

bal maximum at r = 3M (r * ~ l.61M): Vmax = 2/ (27 M2
). The inner boundary 

condition (4.1 0) written in terms of u(t ,r) is just 

rt~- au I ~ 0 . 
at ar* r-+ 2M 

( 4.13) 

which i-~as the form of a "perfectly absorbing" boundary condition for the 

one-dimensional wave equation (4.12). The outer boundary condition is 

u(t.R) = 1, and the initial conditions are u(O,r) = 1 andu t(O,r) = 0. 

The wave equation ( 4.12) was integrated numerically subject to these 

initial and boundary conditions, and the structure of the magnetic field lines 

was then reconstructed from u(t,r) using the relation (4.11) and the 

definition of -if(t ,r ,e) as the m agnetic fiux function (Eq. 4. 9) . The inner boun-

dary condition ( 4.13) was applied not at the actual horizon r * = -oo, but at a 

slightly stretched horizon r * = -20M, which corresponds to the 

Schwarzschild radius r = (2 + 3. 3x 1 o-5)M and cx.H = 4. lx io-3. (Although this 

horizon stretching is motivated by numerical considerations, it is the same 

stretching as occurs in the m embrane vieY.rpoint.) Representative plots of 

the magnetic field line structure are shoVv-n in Figs . 13a and 13b for the 

cases R = 3/d and R = lOM, respectively . 

The qualitative behavior of the solutions, as depicted in r -e coordi-

nates, is that the field oscillates for a time before settling down to a final 
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static configuration consisting of precisely vertical field lines. The final 

static configuration could be derived directly by setting the time derivatives 

in Eq. ( 4.12) to zero, and solving it subject to the boundary conditions 

u(r=R) = 1 and ur.(r=2M) = 0; it is the solution 'if;(r,e) = rrB0 r 2sin2 e foWld 

by Wald32 and by Hanni and Ruffini. 33 

AB the field lines oscillate, they leave behind disconnected field-line 

loops near the horizon, such as those shown in the diagram for t IM = 28 in 

Fig. 13b. These loops drop toward the horizon at the locally measured speed 

of light, dr*/dt ~ 1 or dr/dt ~ a.2. Thus, as described qualitatively in Sec. 

II. the field has a layered structure at the horizon which refiects the entire 

past history of its evolution. However, these layered horizon fields do not 

affect the overall large-scale structure of the field outside the horizon; the 

position of the stretched horizon in the numerical integration could be 

moved outward considerably without changing the diagrams in Fig. 13 in any 

noticeable way. 

The complex, multilayered nature of the near-horizon fields is illus

trated graphically in Fig. 14. In the top part of this figure, the magnetic 

field lines are plotted on an embedding diagram for Schwarzschild space

time, which consists of a paraboloid of revolution. 11 In this part of the 

diagram, the Schwarzschild radial coordinate r is measured radially out

ward from the axis of cylindrical symmetry of the embedding diagram, and 

the angular coordinate 6 is measured aroWld this axis. The ignorable coor

dinates t and rp are suppressed. The diagrams in Fig. :3 are what one would 

see if one were looking down into the paraboloid along the axis of symmetry. 

The paraboloid of the embedding diagram is cut off at a stretched horizon 

which is taken to be at a radius r = 2.15M. (As will be explained later, this 

would be a poor choice of stretched horizon at which to apply the boundary 
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condition (4.13), but it is chosen here for illustrative purposes.) In order to 

make the fields between the stretched horizon and the true horizon visible, 

they are plotted on a cylinder matched to the paraboloid at the stretched 

horizon. In this part of the diagram, the vertical distance, i.e ., the cylindri

cal "z-coordinate," is equal to the tortoise coordinate r*; and the previous 

identification of e with the cylindrical angular coordinate is maintained. 

Plotting the near-horizon fields in this way as functions of r * has the effect 

of expanding the radial scale so that the field structure is visible. 

The data plotted in Fig . 14 show the field-line structure at the time 

t = 92M for the case R = 1 OM. At this time, the field lines have sprung out

ward and snapped back inward four times and are beginning to spring out

ward for a fifth time . The relic field line loops left by each of these oscilla

tions are visible running down the cylinder, and the partially formed loops at 

the top of the cylinder may be seen to connect to field lines outside the 

stretched horizon. The field lines are vertical in the lowermost region of the 

diagram due to the fact that the field was held stationary until its release at 

t = 0. As one proceeds up the cylinder, one finds successively fewer concen

tric loops in each set of field lines since the oscillations are dying out and 

fewer field lines snap back to the stretched horizon Vvith each oscillation. 

Two criteria need to be considered in choosing the position of the 

stretched horizon in a problem of this sort. The potential V( r *) in Eq. ( 4.1 2) 

acts as a barrier to incoming waves, partially transmitting them and par

tially refiecting them. Application of the "perfectly absorbing" boundary 

condition at the stretched horizon rather than at the true horizon is 

equivalent to neglecting waves refiected from the part of the potential bar

r ier (spacetime curvature) between the two horizons . Since V(r *) goes to 

zero proportionally to a.2 near the true horizon, this approximation becomes 
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better and better as the stretched horizon is moved inward toward the true 

horizon. In the problem at hand, it was found that moving the stretched 

horizon from its original location r* = -20M out to r* = -lOM or 

r = (2 + 4. 9x 10-3)M made no noticeable difference in the numerical solu

tions obtained. On the other hand, putting the stretched horizon at 

r = 2.15M, as was done in Fig . 14 for illustrative purposes, should not be 

done in the numerical solution of the problem since V(r*) still has 41% of its 

maximum value there. 

The other criterion affecting the choice of the stretched horizon is the 

requirement that it be close enough to the true horizon that important 

features of the field are not neglected below the stretched horizon. More 

specifically, we demand that a..H be small enough that the field does not 

evolve substantially along any null ray between a.. = a..H and o: = 0. In terms 

of the Eddington-Finkelstein time coordinate t of Eq. (2.4), the equation of 

such a null ray is dr I dt = -1. If M is the (universal) timescale of evolution 

of the field, the above criterion translates into the requirement that 

a..H ~ -J2gHM . This condition is certainly satisfied in the present problem 

for either of the choices of the stretched horizon mentioned above, since the 

timescale of variation of the field is M ~ M. 

The only dissipation in this problem comes from the horizon boundary 

condition. If the stretched horizon had a surface resistivity of either zero or 

infinity, rather than presenting incoming waves with the vacuum impedance 

RH = 41T = 377 ohms, the field lines would oscillate forever . The damping 

timescale of the oscillations is determined by the size of the horizon relative 

to the perfectly conducting outer sphere: for the case R = 3M, the field 

lines almost settle down to the static configuration after springing outward 

just once, while for the case R = l OM, they oscillate many times. 
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The magnetohydrodynamical decay time of a field slipping through a 

conducting medium with surface resistivity RH may be shown34 to be 

roughly equal to 4rrL/ RH, where L is a length comparable Vl'i.th the dimen-

sions of the region where current flows. For the present problem, where 

L "" 2M, this timescale is just 2M, the light-travel time across the hole 

(which, as claimed in Sec. 7.5 of MT, is the approximate annihilation time for 

a field loop with both feet in the hole). Not all of the field lines are dissipat-

ing their vibrational energy in the hole at a particular time, however. One 

would therefore expect the timescale t * of the relaxation of the field lines to 

be roughly equal to 2M divided by the time-averaged fraction of field lines 

which thread the horizon, which is approximately 4M2 
/ R 2

; that is 

(4.14) 

The time t * is the timescale of the loss of magnetic field energy into the 

hole, so it will be instructive to elaborate further on the nature of the 

transfer of electromagnetic energy into the hole. 

Following MT, one may defl.ne a density C.£ and flux density SE of ''red-

shifted energy" or "energy-at-infl.nity:" 

(4. 15a) 

' ... 
Sv = (o:l 4rr)ExB = - __ 'lf_,_Y_V._' --
~ 161i3r 2sin2 9 

( 4 . 15b) 

These sa tisfy the conservation law 

( 4. 16) 

for any time-independent three-dimensional region V lying entirely exterior 
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to the horizon and having the two-dimensional boundary surface a V. Here 

ct.A is the outward-pointing normal area element vector. 

One may also write down the charge and current densities on the 

stretched horizon as defined in Sec. II. If we take the stretched horizon to 

be at rH, the charge density vanishes and the current density (2 .6b) is 

( 4.1 7) 

where EH, the stretched-horizon magnetic field, is defined by Eq. (2.5). The 

stretched-horizon current density is thus purely toroidal, and from Eq. 

( 4.11) one may see that it varies -with latitude proportionally to sine. 

If we take the region V in Eq. ( 4.16) to be the spherical shell between 

the stretched horizon and the outer radius r = R, then the only contribu-

tion to the surface integral in Eq. (4.16) comes from the stretched horizon, 

since there is no energy fiux through the perfectly conducting sphere at 

r = R. The rate of mass increase of the hole per unit universal time is equal 

("~'', in the sense of Sec. II) to the rate of energy fiow, per unit universal 

time t, through the stretched horizon. Using Eqs. (4.6), (4.9), (4.15b), and 

( 4.17), this may be expressed as 

( 4.1 B) 

in agreement with Eq. (2.11). Here the area element vector dA points along 

the outward normal to the region V and hence along the inward normal to 

the horizon. By integrating Eq. ( 4.16) over time, one may obtain the 

difference between the total energies of the field in the initial (EJ and final 

(E1 ) configurations: 
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where Mi and M1 are the initial and final masses, respectively, of the hole. 

The quantities Ei and E1 may be obtained explicitly by integrating the 

energy density tE over the region V using the initial and final fields: 

1/Ji. = rrB0 R2sin2e and 1f;1 = rrB0 r 2sin2e, respectively. The results are 

(4.20) 

The rate of energy flow through the stretched horizon can be calculated 

fromEqs. (4. 11 ), (4. 13), (4. 17), and(4. 1B)tobe 

dM ::: f ) ·E dA::: _B_o2R_4-[ au ]2 
dt SH H H 6 Br* SH 

(4.21) 

The quantity (au; Br*)'§H, which by Eq. (4.21) is proportional to the 

energy flux through the stretched horizon, is plotted in Fig. 15 for the cases 

R =3M, R = l OM, and R = lOOM. The displacement of the first peak from 

the origin in these diagrams is due to the finite time required for the waves 

to propagate down to the stretched horizon. It has been verified nurneri-

cally that the area under these curves satisfies the energy balance condi-

tion, Eq. (4.1 9), i.e .. 

E E r ~ au dt ""- _ o 1 _ 2M s 02R4 [ ]
2 

B2R4 [ ]
2 

,- i=- 6 Jr 
o Br* SH 12M R 

(1 - 2M I R) 2 

2M 
( 4. 22) 

The curve for R = l OOM in Fig. 15 seems to be a superposition of two 

os cillat ions of distinct periods, a fact which may b e confirmed 'by Fourier 
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transforming it. The period of the longer-term oscillation is approximately 

twice the radius R of the outer shell, i.e., roughly the light-travel time 

across the shell. This just corresponds to the time necessary for a particu-

lar field line to spring outward and then back inward. 

The period of the shorter-term oscillation is roughly equal to 1 OM. This 

value may be justified by an argument similar to that used by Press35 for 

gravitational waves. An argument precisely analogous to that given by Press 

predicts that u (t ,r) should have a peak in its frequency spectrum 

corresponding to a period 

2rr _ r;; 
T "' --= 3rr-v 6M ,..., 23M . 

v112 
max 

(4.23) 

Since the energy flux curves in Fig . 15 are proportional to the squares of 

ou/ or*, they should have roughly half this period, or about l OM as 

observed. This argument could also be couched in terms of the gradual 

decay of a packet of electromagnetic waves in spiral orbits close to the 

unstable photon orbit at r = 3M, as Goebel36 does for gravitational waves. 

Thus, the short period might be characterized as the "sticking time", 

during which the oscillating field lines are caught and held by the effective 

potential. while the long period is the natural vibration time of the field 

lines. 

The double periodicity noticeable in the R = 100!J curve of Fig . 15 is 

n ot evident in the R = 3M and R = 10/J case s sin ce the two periods are t oo 

close together in the R = 1 OM case and the oscillations die out too soon in 

the R = 3M case. 

This double periodicity somewhat complicates the task of finding an 

' 'experimenta l" relationship between the damping timescale t * and the 
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cavity radius R to compare with the "theoretical" relationship ( 4.14). The 

curves consist of periods of oscillation interspersed Vvith periods of quies

cence, so a good fit to an exponential decay is impossible. However, rough 

fits to the envelopes of the curves yield decay times which conform approxi

mately to a power law relationship of the form t .; M = (3(R I M)'Y. The values 

of /given by a least squares log-log fit ranged from 1.6 to 1.B depending on 

the assumptions made in the fits to the envelopes, and the values obtained 

for (3 ranged from 0.4 to 0.6. The theoretical relationship (4.14) would 

predict the values (3 = 0.5 and/ = 2. 

The results of this model problem and those considered in Sec. III sug

gest some very general conclusions concerning the nature of a stationary 

electromagnetic field outside a black hole. In paper II of this series (MT Sec. 

7.5), an analysis of the equations of structure for a stationary, force-free 

black-hole magnetosphere showed that no magnetic field loops can extend 

out of the horizon and then back in. King, Lasota, and Kundt37 showed that a 

stationary magnetic field in a vacuum cavity between a black hole and a SU1'

rounding plasma shell must be "nearly uniform," i.e., similar to the final 

configuration of the field in this section. These results all suggest that, in 

stationary situations, regardless of the complexity of the electromagnetic 

fields produced by external (accretion disk) currents in the vicinity of a 

black hole, the field which actually threads the horizon will be "clean;" it 

\'\rill have no loops or complicated tangential structure near the horizon, and 

no localized concentrations of magnetic field will exist on any region of the 

horizon. 

Insight gained from the above model problems suggests the mechanism 

by which a black hole gets rid of such structures (i.e., cleans its field) if they 

try to form. Fig. 16 shows two examples based on the scenario of a magnetic 
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field threading a black hole and held on it by an accretion disk. 15 The 

material of the disk is slowly spiraling into the hole and dragging its imbed

ded field, which may be chaotic, onto the hole. Jn Fig. 16a (top), a localized 

concentration of magnetic flux has formed at a particular point on the hor

izon. As was observed in the model problem of this section, the field lines 

will spring outward, driving toroidal currents (shown by arrows on middle 

diagram) in the stretched horizon which dissipate the electromagnetic field 

energy. The field lines may oscillate several times, but -within a timescale of 

order M, the complex, dynamical tangential field will disappear beneath the 

stretched horizon, leaving just the uniform field shown in the bottom illus

tration. Jn Fig 16b (top), a loop of magnetic field (labeled "L") has been car

ried onto the horizon. Tension along the field lines -will cause the loop to 

shorten, bringing itself close to and parallel to the stretched horizon (mid

dle diagram) . The loop -will then sink into the stretched horizon, driving 

currents as shown in the middle diagram to dissipate its field energy, until it 

is completely gone (bottom). 

V. DISCUSSION AND CONCLUSION 

One of the main strengths of the membrane view of black-hole horizons 

is the cogent and self-consistent mental picture it provides of the interac

tions of a horizon with an electromagnetic field . As demonstrated by the 

model problems in this paper, the membrane vie-wpoint often allows the 

qualitative results of calculations to be guessed before they are done . It is 

important to emphasize, though, that the membrane viewpoint is completely 

consistent with other vievv-points of black holes, the ' 'black-hole viewpoint'' 

based on Penrose and Eddington-Finkelstein spacetime diagrams , for exam

ple. But the membrane viewpoint emphasizes those phenomena which are 
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important in the electromagnetic interaction of a horizon with the exterior 

universe, and deemphasizes those phenomena, such as the relic tangential 

horizon field, which are not. 

Since the membrane viewpoint is based on a 3+1 split of spacetime, it is 

particularly well suited to calculations in static or stationary spacetimes. If 

the spacetime is highly dynamical. however , it loses much of its power since 

there is then no preferred family of spacelike hypersurfaces with respect to 

which to make the 3+ 1 split. In this case, it is more efficacious to view phy

sics in terms of the spacetime diagrams of the black-hole vie¥tpoint. The 

class of problems for which the membrane formalism is most useful, how

ever, includes most problems of real astrophysical interest . Astrophysical 

models involving black holes usually assume a nearly stationary and axisym

metric hole interacting electromagnetically, gravitationally, and materially 

with a complex astrophysical environment (accretion disks , magnetized 

plasmas, stellar companions, etc.): and for these types of situations the 

membrane vievl"point is ideally suited. See Ref. 18 for a fuller comparison of 

the membrane viewpoint with other viewpoints. 

In Sec. lII, we studied the interaction of external electromagnetic fields 

with a Schwarzschild horizon in the Rindler approximation. In Sec. IV, a 

dynamical magnetic field problem in the full Schwarzschild geometry was 

solved and studied in detail. In both cases, we have illustrated the evolution 

of the electric and magnetic fields Vvith field-line diagrams . It is the 3+1 for

mulation in terms of which the membrane formulation is couched which 

enables such field line diagrams to be drawn, and this feature contributes 

greatly to an intuitive understanding of the fields. It was also emphasized in 

both problems that the concepts of the stretched horizon and its surface 

charge and current were very helpful in understanding how the presence of 
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the black-hole horizon affects the electromagnetic fields in its vicinity, and 

in understanding the entropy, energy, and momentum transfer between the 

field and the hole. In the model problem done in Sec. IV, the criteria govern

ing the choice of the stretched horizon were elucidated: the desire to ignore 

the relic, near-horizon tangential electromagnetic field, the necessity of 

making reflection from the electromagnetic potential barrier negligible, and 

the requirement that the evolution of the field during its propagation from 

the stretched horizon to the true horizon be negligible. These criteria, 

although they were derived from consideration of a very specific problem, 

do not depend on the precise details of that model. This of course is to be 

desired if the concept of the stretched horizon is to have applicability 

beyond this limited problem. 

The stretched-horizon charges and currents, even though they are 

entirely imaginary, enter as source terms into Maxwell's equations in 

exactly the same way as do ordinary charges and currents (although, in the 

model problems of Secs. II1 and IV, they turned out to give no contribution 

to the external field since the black holes under consideration were 

uncharged). We have seen from the model problems that these concepts 

facilitate an intuitive understanding of the interactions of a black-hole hor

izon with external electromagnetic fields . By use of the membrane formal

ism, both the distortion of an electromagnetic field by the presence of a hor

izon and the field's effect on the dynamics of the black hole can be under

stood in close analogy with fiat-space electrodynamics. 

To elucidate these points more explicitly, we 1Nill briefly discuss several 

black-hole electromagnetic problems in terms of the surface charges and 

currents. (For further detail on these problems see Ref. 18.) First, we con

sider the question of how the electric field of a charge very close to, and 
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stationary outside, the Schwarzschild horizon will be distorted by the gravi

tational field of the hole. This problem was considered in mathematical 

detail in Sec. III.C, but here we are interested in the qualitative features of 

the solution which can be derived intuitively. Immediately we see that. 

since the stretched horizon behaves like a conductor, the horizon will be 

polarized so that charges of the opposite sign are induced in the region 

under the charge, and the electric field lines will bend to strike the 

stretched horizon normally. 

It is as an aid to intuition rather than as an explicit calculational tool 

that the membrane viewpoint may find its greatest utility. Although this 

paper has done no calculations in Kerr spacetime, it is possible to guess the 

qualitative features of some results which have been derived in the past: 

Consider a Kerr hole immersed in a uniform magnetic field aligned ·with 

its spin axis. It is natural to regard the stretched horizon of a Kerr black 

hole as behaving essentially like a rotating conducting surface. A spinning 

conducting sphere in a magnetic field will develop a charge separation, as 

shown in Fig. 17a, which by Eq. (2.6a) tells us that there -will be a normal 

electric field coming out of the equatorial region and going into the polar 

regions. Hence we see that the rotation of the Kerr hole couples Yvith the 

magnetic field to produce a quadrupolar electric field structure as shown in 

Fig. 17a. This is verified by the field explicitly calculated by Wald32 ; and the 

analogy is discussed further by Phinney38 and in Ref. 18. 

As another example, one which enables us to examine the effect of an 

electromagnetic field on the dynamics of a black hole, we consider a Kerr 

hole immersed in a magnetic field inclined obliquely to its spin axis (Fig. 

l 7b). For a rotating conducting sphere in an oblique magnetic field, we 

know that the electromagnetic torque on eddy currents in the sphere would 
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tend to slow the spin of the sphere and also to align the spin with the field. 

Hence we would expect the spinning hole to line up gradually with the mag

netic field and the entropy of the black hole to be increased by the Joule 

heating due to the stretched-horizon currents . This result was conjectured 

by Press39 and proven by King and Lasota40 and interpreted in terms of hor

izon currents by Damour. 9 

The interaction of rotating holes with electromagnetic fields is treated 

in considerable detail in other papers of our series: Paper II (MT) and the 

review paper18 which our group is now writing . 

This paper has tried to motivate the adoption of the membrane 

viewpoint not only as a calculational tool in solving problems , but also as an 

aid to intuition in thinking about these problems . As was emphasized above, 

there is no difference in the physical predictions of the membrane viewpoint 

and other view-points ; they are both consequences of General Relativity and 

are thus mathematically equivalent . They di..t'ler solely in the aspects of the 

physics which they emphasize and in the array of mental pictures they 

present as aids to intuitive understanding of physical problems . This paper 

has attempted to show that, for problems involving dynamical electromag

netic fields around black holes, the mental pictures conjured up by the 

membrane viewpoint are much more apt for a physical description of the 

problem than a re th ose conjured up by older vie >\-points of black-hole hor

izons. 
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APPENDIX 

For a point particle of charge Q and mass m moving in fiat space with 

four-velocity uJJ., the equations of motion including radiation reaction are41 

(Al) 

where Ftxi. is the external four-force, pJJ. is the total four-momentum of the 

particle and its electromagnetic field aJJ. = DuP/ ds is the four-acceleration, 

and the overhead dot indicates differentiation with respect to the charge's 

proper time s. Since Eq. (Al) is generally covariant, it must be valid in 

Rindler coordinates. We choose kinematic quantities appropriate to a 

charge moving with constant ZAMO-measured velocity dX/ dT = f3ez: 

uµ = (/I l'.X0 ,/{3,0,0) , 

aµ= (0,0,0,gH'f I l'.Xo), 

. µ - ( 2 ~ 3 0 0 0) a - g HY I CXo , , , , 

where I= (1 - {32)-112, and where a 0 is the value of the lapse function at the 

position of the particle. When converted to a per-unit-universal-time basis, 

di dt = (a0 I /)di ds, the rate of change of the x-momentum of particle plus 

field as computed from Eq. (Al) is 

d71-Z - "'o dTI-Z - a 2 -v4R =- ->.A-=-- _0_p = -Q2g 2.L!:_. 
dt - ')' ds / 3 H CX

0 
' 

(A2) 

and the rate of change of "energy-at-infinity" -Pt of particle plus field is 

2 Q2 2 4{32 3 gH/ . (A3) 

By conservation of momentum, Eq. (A2) gives the rate of fiow of x-

momentum into the horizon; and the corresponding rate of fiow of angular 
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momentum into the horizon is 

dJ - (2M. )!!E.___- (27; . )2 QzgR ~A(3 
dt - sme 0 dt - lYI sme0 3 a;- 1 (A4) 

[Eq. (3.29)]. By conservation of energy-at-infinity, -dp, I dt is the rate of 

fl.ow of energy-at-i.nfmity into the horizon, i.e., the rate of increase dM I dt of 

the hole's mass [Eq. (3.26)]. The results derived here agree with the results 

obtained from explicit evaluation of the surface integrals (3.25) and (3.28). 
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F1GURE CAPTIONS 

FIG. 1. The surfaces of constant universal time t around a Schwarzschild 

black hole, as viewed in Eddington-Finkelstein coordinates. The Eddington

Finkelstein time coordinate t is related to universal time by 

t = t + 2Mln(r I 2M - 1), and the Eddington-Finkelstein coordinate r is 

identical to the Schwarzschild r. The cones are the radial light cones as 

given by the metric in Eddington-Finkelstein coordinates: 

ds 2 =-d't2+dr 2+ (2M Ir )(dt +dr )2+r 2 (d e 2 +sin2ed~2). 

FIG. 2. The world lines of the Minkowski-stationary (dotted line) and 

Rindler-s tat ionary (dashe d line) charges, as seen in Minkowski (a) and 

Rindler (b) coordinates. The Minkowski-stationary charge is fixed at Z = z 0 , 

while the Rindler-stationary charge is fixed at z = 2 0 . ln diagram (a), the 

lower and upper 45° lines represent the past and future event horizons, 

respectively. In diagram (b), the intersection of the horizons is represented 

by the solid vertical line z = 0, to which the dotted line asymptotes. 

FIG. 3. Electric field lines for two opposite charges which split at t = 0, 

z = 2 0 : one remaining stationary in Rindler coordinates, and the other sta

tionary in Minkows~i coordinates and thus falling into the horizon. The field 

line diagrams are shoVYn at different values of Rindler-time t. By t = 6/ g H, 

the field geometry has become almost indistinguishable from the field of the 

stationary charge alone, which is sho1vn in the lower right-hand diagram. 

FIG. 4. Electric field lines of a charge at rest outside a Schwarzschild black 

hole (" Copson-Llnet" solution29) . 

FIG. 5. Electric field lines for a charge moving with uniform velocity in the 

+x dir ect ion in Rindler space at a distance 2 0 above the horizon. Part (a) 

shows the fi eld lines in the x -z plane for (3 = 0.5. A possible choice of the 
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stretched horizon is shown as a dotted line. Part (b) is a three-dimensional 

plot as viewed from the side, showing the field lines which emerge from the 

charge at polar angles of e = 90° (solid lines) and e = 120° (dotted lines), 

with respect to the vertical z axis. Parts (c) and (d) are similar plots for the 

case {3 = 0.1. 

FIG. 6. The stretched-horizon surface charge density aH(x ,0,0) along the x 

axis (directly below the track of the particle), as induced by a charged parti

cle in uniform motion parallel to the horizon at a height z0 above it (same 

particle as in Figs. 5a and 5b). The charge density is plotted in units of 

QI z0
2 and is shown for two different choices of stretched horizon location: 

ex.JP = 10-2cx.0 and cx.J[l = 10-4 cx.0 . Both are shown at time t = 0 for {3 = 0.5. 

The points marked x* are defined by x* = (cx. 0 (3/gH)ln(cx.Hlcx. 0 ). Both plots 

go slightly positive in the region to the right of their large negative peaks. 

FIG. 7. The stretched-horizon surface current density induced by the mov

ing charged particle of Figs. 5a, 5b, and 6 for {3 = 0.5, t = 0. Part (a) shows 

the distribution on a stretched horizon at ex.JP= 10-2cx.0 , and part (b) for 

aJll = 10-4 cx.0 . Values of x I z 0 are indicated by the scale next to each figure, 

shovving that the lag of the current distribution increases as cx.0 is made 

smaller. 

FIG. 8. The fiu...x of energy and angular momentum carried into the stretched 

horizon by the electromagnetic field of the charged particle of Figs. 5a, 5b, 

6, and 7. The solid line (scale on left) shows the energy fiux per unit x

length (1/ Q2gh) (dU / dtdx) into the stretched horizon as a function of x, 

obtained by integrating the energy fiux density over y. The dotted line 

(scale on right) shows the fiux of x-momentum per unit x-length 

(112M sin s 0 ) (cx. 0 / Q2g,q )(dJ /dtdx) into the stretched horizon. Both are 

shown at time t = 0 for the choice of parameters {3 = 0.5 and cx.H = 10-4 cx.0 
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and both are plotted in units of z 0-
1 . The point labeled x* is the location 

where a zero-angular-momentum light ray from the charge' s retarded posi

tion strikes the stretched horizon: x* = {3z0 ln(cxHI a.0 ) = -4.6z0 • The 

momentum plot goes slightly negative in the region to the left of the peak. 

FIG. 9. Electric field lines of the temporarily moving charge which moves 

with constant velocity parallel to the horizon, dX Id T = f3ex, from t = 0 to 

t = 1/ g H and is static before and after this motion. Jn both diagrams, 

{3 = 0.5; diagram (a) shows the field at t = 2/ gH , and diagram (b) shows it at 

t = 3.5/ gH. 

FIG. 10. Electric field lines of the temporarily moving charge which moves 

with constant velocity perpendicular to the horizon, dX I d T = f3ez, from 

t = 0 to t = 1/ gH and is static before and after this motion. In both 

diagrams, {3 = 0.5; diagram (a) shows the field at t = 2.5/ gH, and diagram 

(b) shows it at t = 3.5/ gH . 

FIG. 11. Constant-time-interval snapshots of the field of a charge moving 

with {3 = 0.5 in the x direction, parallel to the horizon (charge of Figs . 5a, 5b, 

6, 7, and B) . The figure shows the directions of those bits of field (indicated 

by the short segments, or arrows) that we re "emitted" by the particle when 

it was at the point to which the curved lines converge . The curved lines are 

the spatial tracks of the null geodesics along which the field propagates, and 

the direction of the field is indicated by the arrows on them . Part (a) shows 

the electric field in the x -z plane with a snapshot interval M = 0.3/ gH. 

Also shown are the positions of the particle (crosses) at the times of the suc

cessive snapshots , labeled by the time t in units of 1/ gH Part (b) shows the 

magnetic field in the y-z plane vvith a snapshot interval M = 0.3/ gH . 

FIG . 12. Initial geometry of magnetic field lines in Schwarzschild space, 

shown in r -e coordinates with rp = constant. The outer boundary, at which a 
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perfectly conducting sphere resides, is at radius r = R = lOM; the inner 

sphere is the horizon. The arrows show the direction of the field. This is the 

view which would be seen by looking down into the paraboloidal embedding 

diagram of Schwarzschild space. The field lines are frozen into the outer 

sphere, but are free to slip through the horizon since its conductivity is 

finite. The tension of the field lines will tend to straighten them out. 

FIG. 13. The vibratory time evolution of the field whose initial conditions (for 

R = 10M) are shown in Fig. 12. Part (a) shows representative magnetic

field-line diagrams in the evolution of the case R = 3M. Since most of the 

field lines thread the horizon at all times, the field settles down quickly to its 

final static configuration. Part (b) shows representative magnetic-field-line 

diagrams in the evolution of the case R = lOM. Since the horizon is small 

relative to the outer sphere, the field lines oscillate for a long time before 

reaching their final static configuration. The diagrams shown cover only the 

first oscillation in detail, and the beginning of the second oscillation at 

t / M = 28. The last two diagrams are much further in the future and show 

that the oscillations have died out substantially by t IM = 155 and almost 

completely by t IM = 500. The kinks in the field lines for the case t IM = 12 

are due to the finite grid used in the numerical integration. 

FIG . 14. Embedding-diagram view of the vibrating magnetic field of Figs. 12 

and 13 at time t = 92!J for the case R = 10M, with the near-horizon fields 

expanded for visibility. In the top part of the figure, the magnetic field lines 

are plotted on the paraboloidal embedding diagram of Schwarzschild space. 

The paraboloid is cut off at a stretched horizon which is taken to be at a 

radius r = 2. 15M, and a cylinder is matched onto it there. In order to make 

the near-horizon fields visible, the distance along this cylinder is measured 

by the tortoise coordinate r *. We view the diagram from an elevation angle 
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of 18° and a rotation angle of 45°. At the time shown, the field lines have 

sprung outward and snapped back inward four times and are beginning to 

spring outward for a filth time. The relic field-line loops left by each of these 

oscillations are visible running down the cylinder, and the partially formed 

loops at the top of the cylinder may be seen to connect to field lines outside 

the stretched horizon. In the lowermost region of the diagram, the field 

lines are vertical due to the fact that the field was held stationary until its 

release at t = 0. As one proceeds up the cylinder, one finds successively 

fewer concentric loops in each set of field lines, since the oscillations are 

dying out and fewer field lines snap back to the stretched horizon with each 

oscillation. 

FIG. 15. The rate of flow of magnetic energy through the horizon as a func

tion of time for the vibrating magnetic field of Fig s . 12, 13, and 14. Plot s are 

shown for three different values of the radius of the outer conducting 

sphere: R =3M, R = l OM, and R = l OOM. Plotted vertically is the dimen

sionless quantity M2(Bu/ Br*)§.lf which, as shown in Eq. (4.21) , is propor

tional to the energy flux through the horizon. The curve for R = l OOM shows 

a clear double periodicity corresponding to the two different length sc ales in 

the problem: R and M . 

FIG. 16. Qualitative illustrations of the "cleaning" of a complex electromag

netic field by a black-hole horizon. Part (a ) shows the dispe r sal of a local

ized conc entration of magnetic flux threading the horizon. Par t (b) shows. 

the annihilation of a fiel d-line lo op, m arked ''L' ', with both fee t embedded in 

the horizon . In both cases, the horizon currents , which dissipa t e excess 

field energy , are indicated by arrows on the horizon . 

FIG. 17. Part (a) shows a Kerr bla ck hole immer sed in a uniform m agnetic 

field aligned with its spin axis . The polarization of surface charge produced 
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by the field leads to a quadrupolar electric field structure . Part (b) shows a 

Kerr black hole in a magnetic field inclined obliquely to its spin axis. Elec

tromagnetic forces on the hole 's surface currents will tend to align the 

hole's spin with the magnetic field and to increase its entropy. 
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Multipole moments for stationary, non-asymptotically
ftat systems in general relativity 

Wai-Mo Suen 

Theoretical Astrophysics 130-33, California Institute of Technology, 
Pasadena, CA 91125 

(Received XX May 1985) 

A formulation of multipole moments generalizing that of Thorne is pro
posed for the stationary, vacuum region of spacetime surrounding a source 
of gravity, ·i'."ithout assum.i.n.g asyrnptotic flatness. In this formalism , such a 
region of spacetime is characterized by four sets of moments, the internal 
mass and current moments (those of the internal source) and the e:x"ternal 
mass and current moments (those of the external universe), which are read 
out frorn a deDondec coo:cdinate expa..rision of the metric densily. These 
momEnts uniquely determine the vacuum region of spacetime and exhibit 
many desirable properties . 

The interactions between a gravitating body and an external gravita
tional field can be C:.escri'oed in terms of these moments, in close analogy 
with J\'ewtonian theory. A derivation is given of the laws of force and lorque 
for an isolated body acted on by an external field, generalizing the results of 
Thorne and Hartle and of Zhang. 

As a model problem, the metric of a Schwarzschi!d black hole in EJl 

exte rnal quadrupolar gravitational field is studied. A.mong other results, we 
find that the black hole develops an induced quadrupole moment, which in 
tur n get1erates a tid_al field opposing the applied 6eld. This effect, plus the 
fa.ct that the horizon calli'l.ot expand when a quasistatic tidal force is applied, 
can be described in terms of effective 2-dimensional elastic moduli for the 
black bole horizon. The bulk modulus is 'iC= 00 , and the shear modulus is 
/l=-63/ (201iLI), where M is the hole's mass. 
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I. INTRODUCTION 

The concept of multipole moments for curved spacetime is significant 

in many ways: Through analogy with Newtonian systems, multipole moments 

can provide important physical insights into solutions of the Einstein equa

tions. Also, they provide a way to extract the information carried in a 

metric . Indeed, in the stationary spacetimes we are studying, we will show 

that the multipole moments contain all the information about the vacuum 

region of spacetime; the entire metric can be constructed from the mul

tipole moments: in the words of Beig, 1 the multipole moments act as a "com

plete set of variables for the state space." In view of the success of solution

generating methods for the stationary axisyrnmetric vacuum Einstein equa

tions, 2 a scheme using the multipole moments to classify and understand 

these solutions is clearly desirable. Besides their use in analyzing given 

metrics, multipole moments are also useful in constructing model space

times: we will give explicit examples of this in this paper. Multipole 

moments are also valuable in studying the structure of spatial infinity; 

indeed, the Geroch-Hansen definition of multipole moments for stationary 

asymptotically-fiat spacetimes is intimately tied to the structure of spatial 

infinity. 

Many efforts have been made to define the multipole moments of sta

tionary asymptotically-fiat spacetimes. 3- 9 The recent ·works essentially con

centrate on two approaches. The first approach works in the conformal 

completion of the 3-manifold of time-like Killing trajectories and defines the 

multipole moments as symmetric trace-free tensors at the point 

corresponding to spatial infinity. This approach was initiated by Geroch and 

Hansen4 and continued by many others. 5 ·6 The beauty of the resulting 

definition is that it is completely geometric. The only possible arbitrariness 
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in determining the moments comes from the choice of the conformal factor. 

But Geroch4 (see also Beig1) has shown that by introducing into the 

definition terms involving the Ricci tensor of the conformal space, an arbi

trary change of the conformal factor affects the multipole moments in 

exactly the same way as translation affects the Newtonian moments. More 

importantly, it has been shown that the moments so defined have many of 

the properties which we would like multipole moments to have.6 

By contrast, the second approach defines multipole moments as the 

coefficients of certain coordinate expansions of certain metric functions in 

physical spacetime using specially chosen coordinates; 7·e this generalizes 

the usual procedure of reading the mass and angular momentum from the 

metric. Thorne 's formalism7 expands the metric in asymptotically Carte

sian and mass centered (ACMC) coordinates, whereas Beig and Simone 

expand the Hansen potentials4 in similar coordinates. At first sight it 

appears that these formalisms have the unpleasant feature of depending 

crucially on the choice of coordinates. Both the Thorne formalism and the 

Beig-Simon formalism have solved this problem by shovving that the 

moments so defined are independent of the coordinate system so long as 

one stays within the chosen class of coordinates, that they have a number of 

desirable properties, and that, in fact, they coincide with the geometrically 

defined Geroch-Hansen moments.e.9 Compared with the Ger och-Hansen 

approach, these formalisms are closely tied to physical spacetime, in the 

sense that ( 1) one can read the moments directly from the metric of physi

ca l spacetime as the coefficients of a coordinate expansion, and (2) the for

malisms are fortified with algorithms which in a straightforward manner 

reconstruct the metric from the multipole moments in terms of a series 

expansion. Hence they are rather convenient for application to physical 
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problems. Thorne's formalism is also tied to gravitational wave generation, 

and has been used in a number of astrophysical studies. 10 On the other 

hand, the development of the metric into series expansions creates prob

lems: (1) Given a metric that is a solution to the Einstein equation, is the 

expansion in those specially chosen coordinates always convergent? (2) 

Given a set of multipoles, under what conditions will the expansions of the 

constructed metric converge? These questions have not been thoroughly 

investigated in either the Thorne formalism or the Beig-Simon formalism. 

All of the formalisms discussed above deal only Vvith bodies in asymptot

ically fiat spacetime. Can one also analyze a system consisting of an isolated 

body in an externally imposed gravitational field in terms of multipole 

moments? This is the question that we want to answer in this paper. Surely 

in Newtonian gravitation such a system is well described in terms of mul

tipole moments: from the expansion of the potential cii (v2cii=O) in positive 

and negative powers of the radial coordinate r, one can read off a set of 

internal multipole moments characterizing the structure of the central 

body (and its gravitational field) and a set of external multipole moments 

characterizing the imposed external field (and its sources). Then the gravi

tational interaction can be described as follows: (i) The external l-pole field 

Vvill distort the central body, and hence induce a change in the internal l

moment. (ii) The external l-pole field -will couple to the internal l-moment 

(both intrinsic and induced) to produce a torque on the body, if their princi

pal axes are not aligned. (iii) The external (l + 1)-pole field coupled to the 

internal l-moment ¥till produce an acceleration of the body. 

What we wish to show in this paper is that the external and internal mul

tipole moments of a stationary vacuum spacetime can be defined by a 

natural extension of Thorne's formalism, and that the gravitational 
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interaction of an isolated body with an external universe can be put in 

exactly the same language in general relativity as in NeVvi.onian theory. In 

the case of an asymptotically-fiat, empty external universe (vanishing exter

nal moments), the internal moments of the analysis reduce to those of 

Thorne; 7 and in the case of no internal body (vanishing internal moments), 

the external moments reduce to those of Zhang. 11 

The spirit of our analysis is rather different from that of the recent 

work by Thorne and Hartle 12 and Zhang 13 on the gravitational fields of iso

lated bodies interacting with an external universe. Briefly, they permit the 

gravitational field to be slowly varying Vl'ith time, whereas we insist that it be 

stationary (except in Sec. V and Appendix B below where we generalize to 

slow time variations); they restrict attention to the lowest few multipole 

moments, whereas we consider all moments; and they regard the moments 

as defined only up to an uncertainty determined by the effects of coupling of 

the body to the external universe, whereas our moments are defined pre

cisely. We vvill discuss these issues at greater length in the body of this 

paper. 

In Sec . 2 we make precise the kind of system that we want to study and 

propose a definition of the multipole moments for such systems; and we 

describe an algorithm which enables us to construct the metric from a given 

set of multipole moments (basically a repetition of Thorne ' s algorithm for 

the asymptotically fiat case). In Secs. 3 and 4 we explore some of the pro

perties of the moments as defined in Sec. 2. In Sec. 5 vve relax the exact sta

tionary condition, and obtain the force and torque laws for the central body 

in terms of the multipole moments . In Sec. 6, as a model problem we 

employ our multipole moments to study the distortion of a Schwarzschild 

black hole under the influence of an external quadrupolar gravitational field; 
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and in Sec. 7 we summarize and discuss our results. 

II. MULTIPOLE MOMENTS FOR STATIONARY SYSTEMS 

We begin with a brief discussion of the systems to which our formalism 

applies and the situation where this formalism is most useful. We consider a 

stationary system with a gravitating body located in an external universe. 

Surrounding the world tube of the body (the region of spacetime which 

either has T µ,vr'c-0 or is inside a horizon) there is a region of spacetime satis

fying the vacuum Einstein equations. Call this region D. We shall define our 

multipole moments in terms of coordinate expansions of the metric density, 

which is a solution of the vacuum equations in D. It does not matter 

whether D extends to spatial infinity or not; in particular, no asymptotic 

flatness is assumed. Indeed, if we assume the spacetime to be asymptoti

cally fiat, then our e>..'ternal multipole moments will vanish, and our internal 

moments will trivially reduce to those of Thorne. 7 Where there are gravita

tional fields generated by external sources, we will have an additional set of 

moments, the external moments, to characterize the structure of the 

vacuum spacetime. Also, we need not make explicitly the assumption that 

the gravitational field. is weak in D. However, in general the concept of a 

multipole expansion of a field is useful only when the field is smooth enough 

that it can be characterized by the first few terms of the expansion and the 

higher multipole moments can be neglected. In the same sense, the mul

tipole expansion that we shall construct v-.ill be useful mainly for an "iso

lated" body in an external universe, for which the multipole expansion con

verges rapidly. We use the word "isolated" in the sense of Thorne and Har

tle 12 : the external material is distant enough that it generates a Riemann 

curvature tensor near the central body having length scales R,E » L,M 
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where 

R = radius of curvature of external Riemann tensor, 

.t = inhomogeneity scale of external Riemann tensor, 

M = mass of the central body 

L = length scale (size) of the central body . 

[The separation into external and internal quantities Vvill be made precise in 

Sec. 3B. For the discussion here precise separation is not necessary.] For 

such a body there exists a "bufier" zone in the vacuum region D, at a typical 

radius r with (M ,L) « r « (.t,R). In this bufier region, the multipole expan

sion typically is dominated by the fust few moments, and the multipole for

malism is most useful here. 

A The construction of the stationary vacuum metric in terms of multipole 

moments 

FolloVving Thorne,7 our formalism is built on a deDonder coordinate sys

tem. We assume that there is a single coordinate system which satisfies the 

deDonder gauge condition in the vacuum D (though the origin of the coordi

nate may lies outside D). The structure of the spacetime in this vacuum 

region is given by a tensor field hµ,v, which is related to the metric density by 

go.fl= v::::g go.fl= 770.fl -f1o.f3, 770.fl = diag(-1,1,1,1), g = det(gµ,v). (2.1) 

From g µ,v it is straightforward to determine hµ,v, and vice versa, provided the 

metric is nondegenerate. We assume that the metric satisfies this require

ment throughout the paper. In the folloVving discussion we sometimes make 

no differentiation between g µ,v and f1w and refer to both of them loosely as 
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the metric. The Einstein equation in deDonder coordinates reads: 

(2.2) 

and the deDonder coordinate condition is 

hoo.o = ho1.; , h10.o = h;1e .k . (2.3) 

Here a,(3 = 0,1,2,3; i,j = 1.2,3: commas denote partial derivatives: and 

indices on all quantities except g!W and g µv are raised and lowered with the 

fiat metric 7/af3 (which permits us to interchange upper and lower spatial 

indices according to convenience). The summation convention is used not 

only when one index is up and the other down, but also for Latin (spatial) 

indices when both are doYvn. The Waf3 in (2.2) is given by 

W - (- )tL-L ___l___th- h v,µ - h- h-µy) 
af3 - g a{J + ~ aµv'"{J aBµv · 1611 . . . (2.4) 

Here t}j1 is the Landau-Lifshitz pseudotensor. 

161l(-g) t af31-L = g"'afJ , '(1¥ _ g"'M , '(Tf3J.L + lL~ af3g . 0»v g"'PJ.L 
.N:J ,µ .N:J .,u R;j t..,,., ,p .v 

- (g af..g g"'f3V g"'W + gfl"g g"'O.V g~µp ) + g .. n VPg"'O.A g"'flµ µv ,p .» µv .p ,/.. »,,,.,, ,v ,p 

The integrability condition for Eqs . (2.2) and (2.3) Yvill be particularly impor-

tant in later discussion: it is the Bianchi identity, which in deDonder coordi-

nates reads: 

wo.fJ a= 0 . (2. 6) 

'Ne shall now describe a systematic way of constructing the solution hµv 
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of the Einstein and gauge equations (2.2) and (2.3), in terms of expansions. 

This is essentially a repetition of the analysis in Ref. 7, except for the contri-

butions coming from the "external field." We present this construction in 

detail here since the formulas will be referred to frequently in later sec-

tions. 

We start by writing 

ho.f3 = t GP !C13 · (2.7) 
p=l 

where G is a "nonlinearity" book-keeping parameter, whose numerical value 

can be set to one. Then for each order in p, we have from Eqs. (2.2) and 

(2.3) 

180.0 = 181 .J • !fo.o = !f1c .1c · (2.8) 

(2.9) 

where Wt13 is a polynomial in 1;1 (q < p) and its first two derivatives. These 

can be regarded as the defining equations for /~v· Throughout this paper we 

consider only the solutions of the Einstein equation which admit such "post-

Minkowskian" expansions. 7· 14 This assumption amounts to requiring the 

metric to be obtainable to arbitrary accuracy by iterating the linearized 

solution. 1t is physically reasonable to expect that in the weak field buffer 

region, all solutions admit such an expansion. 

Next we specialize to the stationary situation. 1t is clear that we can 

always choose deDonder coordinates such that 

a 
ax 0 = :t = time-like Killing vector . 

Hence all 8/ at give zero. Yor p = 1 we have from (2.8), (2.9) 

(2. 10) 
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fJ,B,kk = 0 I (2.11) 

(2.12) 

The general solution to Eq. (2.11) is, in symmetric trace-free ("STF") tensor 

form, 

(2.13) 

(2.15) 

We here adopt the conventions of Refs. 14, 15 that: (i) all indices between 

< ) are to be symmetrized and made trace-free, and (ii) a ~ over a tensor 

indicates that all its indices are to be symmetrized and made trace-free. All 

other conventions follow Thorne, 7 namely: (iii) a sequence of l indices is 

denoted by 
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(iv) r = (xixi) 112 , 74 =xi/ r , XAi = r 1 NAi = Xa 1Xa2 · · • xa
1 

, (v) capital script 

letters denote symmetric trace-free tensors: .B~ = BA
1 
= B<a

1
a

2 
. .. ai> , and 

(vi) ~ijk is the alternating (fiat-space Levi-Civita) symbol. One can easily see 

that the V's given in the form of Eqs. (2.13)-(2.15) satisfy the Laplace equa

tion. [A thorough discussion of the properties of the 1/ r 1 part of these solu-

tions and their relationship to various kinds of spherical harmonics is given 

in Ref. 7, part 1; the r 1 part follows trivially. See also Pirani 16 for STF ten-

sors.] Note that BAi(l!r) = aA
1
(l/r), and that there is no need to put a~ on 

those XAi that are contracted into an STF tensor. The structure of the terms 

in Eqs. (2.13)-(2.15) should be clear. 

To obtain r~v· we substitute the V's into the stationary deDonder gauge 

condition (2.12) and arrive at 

(2.16) 

(2.1 7) 

(2.18) 

The forms of these terms VYill be important both in building the metric from 
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multipole moments and in identifying multipole moments from a given 

metric, as we shall see. 

Next we make use of the "residual" gauge freedom to make what is 

remaining in 1}w assume a form close to that of the Newtonian potential. 

Under a gauge transformation, 1}w transforms as: 

1 new - 1 + t + t to. 
/µv - /µ,v r;µ,,v r;v,µ - 'rJµvr:, .o. · (2.19) 

With a ~µsatisfying 

D~µ, = 0, (2.20) 

i.e .. Yvithout leaving deDonder coordinates, we can gauge /~v into the form 

(the superscript "new" has been dropped and we have renamed the 

coefficients): 

(2.21) 

1 _ ~ ( )I 4l [~ 
/Oj - - ~ -1 (l+l)! GjpqSpA1-1 r A 

1-1 .q 1-1 

(2.22) 

(2.23) 

We call JA
1 

and $A
1 

the internal mass and current l-pole moments, and 

@A
1 

and e:41 the external mass and current l-pole moments. The choice of 

normalization factors -will be obvious later. Note that we have put in a res-

caling of the spacetime coordinates to remove the constant parts from /'oo. 

i e., to make the coordinate-independent part of g 00 equal -1; and, as a 
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result, the summation for the external moments begins at l = 1. 

For this definition of multipole moments to make sense, we want to 

make sure that there is no more gauge freedom left. This is guaranteed by 

the follo-wing theorem: 

Theorem 1: For any stationary second rank tensorial solution of the fiat

spacetime wave equation (i.e., 0/µv = 0 .at?'µv = 0), if Bj/µ,j = 0, then there 

exists a unique ?'newµv with the form given by (2.21)-(2.23) which is related to 

?'µ,v by the gauge transformation (2.19) with a,~µ,= 0 . 

We consider only the case 81 ~µ, = 0 as we require both t and tnew (time coor

dinates before and after the gauge change) to be tied to the time-like Killing 

vector. The proof of the theorem is trivial. The existence can be shown 

straightforwardly by explicit construction of the required f µ,· To prove the 

uniqueness, we assume that ?'µ,v is of the form given by Eqs. (2.21)-(2.23), 

and try to construct, by a gauge change fµ,· another ?'f);w with the same form 

but different coefficients. Then it is easy to see that the requirements of the 

theorem restrict ~µ,to 

But this freedom cannot affect ?'µ,v· Hence the uniqueness. 

Eqs. (2.21)-(2.23) define the multipole moments to G1 order. What 

about the general nonlinear situation where we include in hµv the terms of 

order (?, l\ith n > 1? With the 1tv given by Eqs. (2.21)-(2.23), we can gen

erate ?'~v by the following algorithm: 

Algorithm A (i) From ?'~v of Eqs. (2.21)-(2.23), calculate W~v as the O(G2
) 

part of Eq. (2.4). (ii) Invert the p =2 case of Eq. (2. 9) (-with vanishing time 

derivatives) to obtain 
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2 - 16 .a.-1w2 u2 r o.{3 - - m.l a.{3 + o.P , (2.24) 

where 6-1 W~ denotes a special solution and U~ satisfies \72 U~ = 0. [See 

Appendix A for the construction of a special solution; however the algorithm 

does not depend on how the special solution is constructed.] (iii) Next make 

use of the freedom of U~ to require r~ to satisfy the stationary gauge con

dition OJ/~J = 0 , i.e., 

(2.25) 

[Sometimes this equation will have no solution. We Vt'ill discuss this point in 

detail in Secs. 3 and 5.] This requirement determines Uµ.v partially; the 

undetermined parts of U µ.v have the forms of (2.16)-(2.18). (iv) Now use the 

gauge freedom of Eq. (2.19) to guarantee that there be no such Laplace-free 

and divergence-free terms in /Ii}, and that the only such terms in r61 have 

the form given by Eq. (2.22). Then the freedom in U µ.v amounts to a free 

choice of the G2-order multipole moments. That this can always be done is 

guaranteed by theorem 1. Therefore if we are given the G2 order moments, 

the /~ is uniquely determined. (v) In the same way, we can obtain hµ.v to 

arbitrary order in G; and the structure at arbitrary order will be such that 

the mass and current moments to that order are given by the Laplace-free 

terms in h00 and h01 , i.e., by terms of the form of Eqs. (2.21) and (2.22). All 

terms having different structure, i .e., different combinat ions of NA
1 

and rm 

in h 00 , hOi, and fl 01 come from the nonlinear coupling of these multipole 

moments. 

The mathematical formulae needed in algorithm A ar e given in appen-

dix A. Examples of the construction are given in appendix B. 
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B. The general structure of the metric generated 

What kind of structure will the metric generated by the algorithm A 

have? We make the following observations: 

(i) Logarithmic terms: It is well known that in deDonder coordinates the 

metric often contains logarithmic terms, cf. Refs. 7, 14. In algorithm A, a 

logarithm will be produced in inverting the Laplacian operator for a source 

with the structure (Laplacian-free function) /r2 . Further iterations of such a 

logarithmic term give logarithms raised to integer powers. In general the 

power of ln(r) can be p [cf. Eq. (2.9)] after p iterations. However, all the 

logarithmic terms in deDonder coordinates in previous studies, 7 ·14 are con-

nected Vvith dynamical effects, e.g., tail phenomena, phase shifts, propaga-

ti on on wrong characteristics, etc.. This make us suspect that there may be 

no logarithmic terms generated in the present stationary case. Indeed, 

Blanchet and Damour 14 (see also Ref. 7) have shown that there will be no log-

arithmic terms generated in the case of a stationary vacuwn spacetime 

which is asymptotic fiat, i.e., without the external universe. On the other 

hand, when there is only the external universe and no internal body, it is 

also easy to see that there ·will also be no logarithmic terms: In the region 

of consideration (vacuum, stationary spacetime with non-degenerate 

metric), hµv satisfies an elliptical equation. Rearranging Eq. (2.2) gives: 

gMj8 B·h- - -16rr(-g)tL-L - h- ~ v,{3 
i ) J.LV - I J.LV o.µ,v' 0 f3 · (2.26) 

On the left hand side 'ffj is positive definite. The right hand side is an ana-

lytic function of ho.f3 and its derivatives. [We see this by re1VTiting gJ.Lvg pc in 

tkj1 as gµ 11 (gPc)- 1, which is analytic in hµ,v since det(gJ.W)=det(gµ,v)i:O.] 

Thus, by ~~orrey's theorem, 17 the solution of Eq. (2.26) is analytic in the 

coordinates. Hence hµv is a real analytic function of the coordinates and 
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contains no logarithmic terms. Next we ask, in the case where there are 

both an internal body and an external universe, will the coupling of the 

internal moments and the external moments produce logarithmic terms? 

We have checked explicitly that in W~ (cf. Sec. 5) all dangerous terms of 

the form (Laplacian-free function) /r 2 cancel exactly -with each other. More

over, in all the G3 to G6 cases we have spot checked, we also find miraculous 

cancellation. Therefore we make the following conjecture: 

Conjecture 1: Any metric generated as a post-Minkowskian expansion [cf. 

Eq. (2. 7)] by algorithm A will contain no logarithmic terms. 

The absence of logarithmic terms is not necessary for the algorithm to work, 

but it certainly makes the formulae cleaner and the formalism nicer to work 

with. 

(ii) General form of the metric: The hµ,v generated by algorithm A has 

the following form: 

+ lL (~.A'AiJVAi)rml' (2.27) 
m l 

+ ~L (~ E:ijkBjAi-NkA1)rm l , (2.28) 
m l 

~=)LI; (Dij.41NA1 + EA,<JYj)A1 + FA/:JijA, + @.41N.4i6ii)rml · (2.29) 
ml 

The terms in square brackets are the multipole-moment terms ("multipole 

terms") which we use to generate the metric, whereas the terms in curly 
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brackets are those generated from the coupling of the moments ("coupling 

terms"). [In this paper we will always break any functions of the coordinates 

into sums of the form constant xNA,.rm or constant xNA,.rmx(Polynomial in 

ln( r)) if there is any ln( r)]. By "Laplacian-free term" , we shall mean terms 

having the structure N11ir 1 or N11il rCL+i). Note that the "multipole terms" are 

"Laplacian-free". In the coupling terms, A'A
1

, EA
1

, DA
1

, EA
1

, J?Az· @Ai• are either 

STF constant tensors or STF constant tensors times a polynomial in ln(r). In 

the coupling terms the summations on m and l run over all integers which 

do not produce a term that is both Laplacian-free and divergence-free; i.e ., 

the coupling-term sums contain no terms with the forms (2.1 6) and (2 .1 7). 

[We have gauged the Laplacian-free and divergence-free terms away in step 

(iv) (and its higher order counter part) of algorithm A. except for terms of 

the form (2 .22) , which are multipole terms rather than coupling terms.] 

Next we note that in (2.27) - (2.29) the occurrences of f:ijk in hµ,v are deter

mined by time reversal symmetry -i.e ., a; at .... - (al at), hoo .... hoo. 

hoi .... -hoi, and f4J .... f4J - which implies 

and W 00 .... f1l 00 , Tf Oi .... - W Oj , Wij .... Wii 

Note that there are no time-symmetry changing operations in forming W µ,v 

from hµ,v [cf . Eq. (2.4)]. We let n = (the number of h 0i or its derivatives in 

a term in W µ,v) = (the number of SA
1

) x (the number of CBJ· Then clearly n 

is even in W 00 and Wij , and odd in W oj. Since there is an f: ijk associated vvith 

each current moment and since the product of two f:ijk can be reduced to a 

set of Kronecker deltas, we conclude that there is exactly one f:ijlc in Wo5 and 
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hence in hoj, and no E:ijk in W00 and Wii and hence in h 00 and 14;. 

(iii) The choice of G: Here we note that the choice of the expansion 

parameter G in Eq. (2. 7) is of no significance for our definition of multipole 

moments. G can have any numerical value and the metric generated by 

algorithm A will still satisfy the Einstein equation. Besides the requirement 

that to G0 order the metric should be Minkowskian, we are free to choose G 

to be any small parameter arising in the specific problem we are dealing 

with. In most cases a convenient choice for our multipole study is to choose 

all multipole terms to be of order G . This makes all higher order terms in G 

come only from the nonlinear coupling of the multipoles (coupling terms) . 

We will make this choice throughout the rest of this paper unless we specify 

otherwise. 

(iv) The reading out of moments from a given metric : From the general 

form given by Eqs . (2.27) -(2.29) we can read out the multipole moments for 

a given metric without first going through the generation process. Assume 

that a suitable metric (stationary, vacuum, admitting "post-Minkowskian 

expansion") has been given in arbitrary coordinates. Pick a deDonder coor

dinate system. and transform the given metric to tbis system. [In general it 

is a very hard task to transform a metric into a deDonder coordinate system 

exactly . However, in most cases we need only the first few moments and do 

not need an exact transformation. See the example in Sec. 6. J In general 

the hµ,l.l thereby obtained vvill contain Laplacian-free and divergence-free 

terms in the "wrong" places. In this case. use the remaining gauge freedoms 

to get rid of the offending terms and bring the metric into the canonical 

deDonder form Eqs. (2.27) - (2.29); and from this metric read out the mul

tipole moments . In the next subsection we will show that the multipole 

moments so obtained are unique (ie., independent of the chosen deDonder 
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coordinate system), up to Newtonian-like transformations among themselves 

induced by Euclidean-like translations and rotations of the coordinates. 

C. The residual coordinate freedom 

It is obvious that with the requirement that the hµv takes the form 

(2.27)-(2.29), our coordinate system is much more restricted than simply 

being stationary and deDonder [Eq. (2.3)]. Indeed we can easily show that 

the coordinate freedom has been restricted to Euclidean motions, i.e., to 

the freedom of choosing the origin of the coordinates and the orientation of 

the axes: 

Suppose we have two metric densities g'µv(x') = 'rJµv - h.'µv(x') and 

g·=(x) = 'rJµ,v - hµv(x ). Both fl.'µv(x') and hµ,v(x) are in the required form of 

expansions Eqs. (2.27)-(2.29). We choose, for convenience, the parameter G 

in such a way that all the multipole terms in gµ,>.J are linear in G and all non-

linear terms are coupling terms [see the discussion in point (iii) of Sec. 2B]. 

Suppose the coordinates are related by 

(2.30) 

[We only have to consider inflnitesimal transformations, ie., keep the calcu-

lation to A. 1 order and drop all terms with 11.n (n 2 2) since finite transforma-

ti ons can be built by e-folding infini t esimal ones. Since both t' and t are 

tied to the Killing vector, we have f µ, independent of t.] Ne:xi. we e:x-pand 

f µ,( xi) in G, and obtain 

f µ, = f if + G f f + G2 f f + (2 .31) 

The metric densi t ies ar e rel at ed to each other by 

[17µ,v - h,'µ,v( x 'i)] = ~ -Lua.L ..,/ 17 °'~ - h °'·B(x i )]. 
1_, 

(2.32) 
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where Lµ,a. = (ax'µ,)/ (axa) and L = J det(Lµ,a.) J . From (2.30)-(2.32) we obtain 

to cfJ order 

(2.33) 

and to G1 order 

Fi.'µ,V(X) = Fi.µ,v(X) + >Jla.f3(J-µ, 6V + f V 6µ, - 6µ, 6V f le ) o ,ex {3 O .{3 a. ex {3 0 ,le 

(2.34) 

and likev.rise to higher order in G. From Eq. (2.33) we immediately know that 

f o0 = constant , 

f oi =Killing vector fields of Euclidean 3-space 

(2.35) 

where d and di are constant vectors. Next we look at the case of G1 order. 

Having already studied and understand the G0 order freedom, we set 

f 0µ, = 0. Then (2. 34) just represents a gauge transformation. However 

theorem 1 tells us that our choice of the forms of ... /.i,v and -/µ,v leaves no 

gauge freedom and hence we have: 

f µ,.v + J v.µ, - riµ,vf le = 0 . 
1 l 'I 1 ,le ' (2.36) 

which gives again the Euclidean motion as in (2.35). Using this argument 

repeatedly, we see that to arbitrary order in G, the freedom is no more than 

choosing the origin of the coordinates and the orientation of the axes. 

Hence the following theorem: 

Theorem 2: If Fi.µ,i , is in the form (2.27)-(2.29), the most general coordinate 

freedoms are Euclidean motions (2.35). 
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We well know from Newtonian theory that under a Euclidean motion the 

multipole moments of a body mix among themselves (e .g., a displacement ti 

couples to the mass Y to produce a change in the mass dipole moment 

6Jj =Iti ). In an analogous manner the Euclidean motions described above 

will cause a mixing of our multipole moments among themselves . Aside 

from this mixing, our moments are uniquely determined for any given 

vacuum stationary region of spacetime D. 

Now, with the multipole moments defined, we must ask why we should 

choose such a definition. What is the physical significance of these multipole 

moments? The next two sections -will be devoted to this question. 

ill. SOME PROPEIITIES OF TIIE MULTIPOL.E MOMENTS 

A. Relationship of the multipole moments to their sources 

Any definition that we might adopt to extend the concept of multipole 

moments for fields in fiat space to fields in curved space, or to the curved 

spacetime itself, can only be justified by the properties of the resulting mul

tipole moments. Here we try to show that the multipole moments defined in 

Sec . 2 have many properties that we would expect multipole moments to 

have. 

In Newtonian t heory the mult ipole moments read off fr om cp are related 

intimately to the internal structures of their sources . But in general rela

t ivity integration ove r the source may not always be meaningful (e .g ., for a 

black hole). In the case of our present analysis , our deDonder coor dinates 

m ight not always be extendible into the interior of the source (even if there 

is no sp acetime sing ularit y) , unle ss the mat erial sourc e is gr avitat ing weakly 

enough. Therefore, we do not in general have something which corresponds 
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to a Newtonian integral over the source. However, if gravity is weak enough 

that we can use linearized theory (approximation of order G1), we easily 

obtain [by including the material stress-energy tensor in Eq. (2.4)] 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where T}Jl, and T~~ are the material stress energy tensor for the interior 

body and the external universe respectively . Notice that we have chosen the 

normalization factor in Eqs . (2.21), (2 .22) or Eqs . (2.27), (2.28), so that Eqs. 

(3.1)-(3 .4) have the "expected" form. The physical meaning of the mul-

tipoles is clear in these formulas. 

These desirable relations between the multipole moments and their 

sources are exact only for the linearized theory, i.e., when nonlinear 

interaction of the gravitational field is negligible. However, in view of these 

relations we would like to define exactly an "internal spacetime" and an 

"e)...1.ernal spacetime" corresponding to a given physical spacetime Vvith a 

given set of internal and external moments. Suppose that from the station-

ary vacuum m etric of a given physical spacetime we have read out the 

moments (Sec. 2B) . We then pick out the external moments and use algo-

rithm A to construct from them a stationary metric. This we call the "exter-

nal spacetime" or "external universe" . LikeVvise we define the "internal 

universe" corresponding to the physical spacetime; and we can then use our 

formalism to discuss in an exact fashion the gravitational interactions 
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between the internal and external spacetimes . This exact procedure is 

analogous to the approximate procedure that Thorne and Hartle 12 used to 

separate out the internal body metric and external universe metric in their 

study of a body interacting with an external universal . Carried out in terms 

of asymptotic expansions, their separation and subsequent analysis is exact 

only in the limiting case of vanishing internal body or external universe . We 

will discuss this point further in Sec. 5 . 

B. Relationship of multipole moments to curvature 

lt is easy to work out the Riemann curvature tensor in terms of the 

multipole moments to order G1: 

= _fl (-l)l f/,A [~ _ fl (2l-1)!! 
Rcioj L; L' l L; (l 2)' '?iJA1-2XA1-2, 

t =O · r ,ijAl l =2 - · 
(3.5) 

(3.6) 

(3. 7) 

The structure of the curvature tensor in terms of the multipole 

moments is clear in these formulas. To order G1 the "electric part" 12
·
18 

RciCJ of the curvature is determined by the mass moments, whereas the 

"magnetic part" RijkC is determined by current moments. Jn any vacuum 

spacetime these electric and magne tic parts contain all the information in 

the curvature tensor. To higher order of coupling, using the time reversal 
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symmetry considerations of Sec.2B, we know that there is an even number 

of current moments in each term of ROioJ (and Ripjq ), whereas there is an 

odd number of current moments in each term of Roijk. An immediate 

consequence of this is that if a stationary spacetime has no current 

moments, the "magnetic part" of its Riemann curvature will vanish to all 

orders in G. [In Sec. 4 we will show that such a stationary spacetime is in 

fact static.] 

C. Constraints on the multipole moments for a stationary spacetime 

Here we ask the question: if we specify a set of moments, does it always 

generate a stationary spacetime? It is easy to see that there are two prob

lems that may arise. The first problem is that the expansion of flpv gen

erated by algorithm A may not converge. In general relativity, this problem 

is much more serious than in the corresponding Newtonian e:x'Pansion due to 

the non-linear coupling. We Vvill not try to solve the question of what the 

requirement is on the multipole moments such that the algorithm gives a 

convergent series, but will merely restrict attention to sets of multipole 

moments which do so. 

The second problem is also well known. Given a set of moments, the 

algorithm can generate a solution to Eqs. (2.2). However, this solution may 

or may not satisfy the time-independent gauge condition [Eq. (2.3) plus Eq. 

(2.10)], so that it may or may not be a solution of the stationary Einstein 

equations. We will now examine this question. 

We look at step (iii) of the algorithm for the generation of fl_µv. The 

question is: what are the constraints, if any, on the multipole moments such 

that we can find a homogeneous solution Uµv to Eq. (2.25), thereby making 

hµ,v satisfy the gauge condition? Suppose we have generated hµv to order 
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p -1 and are now trying to carry the algorithm to order p . Since hµv is to all 

orders explicitly time-independent, we have to find U"Ei and Ulj such that 

[Eq. (2.25)] 

ai U"Ei + 4rr8j J W£i 
d 3x = 0, 

lx-x'I ]') 
(3.8) 

Bi Ulj + 4rr8i f w~ 
d 3x = 0, 

lx-x'I D 
(3.9) 

·with 

V'2 ~j = ~i .kk = 0 ; V'2 Ulj = Ulj .kk = 0 ' (3.10) 

where D is a t = constant hypersurface in D, the vacuum spacetime 

sandVviched between the internal and external sources. First we notice that 

the second terms of Eqs. (3.8) and (3.9) are V'2 free, i.e., they are scalar and 

vector harmonics respectively, as guaranteed by the integrability condition 

[Eq. (2.6)]. Therefore they can always be expanded as in Eqs. (2.13) and 

(2.14). It is easy to show that all terms of the form (2.13) can be obtained 

from the divergence of the vector harmonic Uoj except for a term of the 

form (i) Air. Like-vvise any term of the form (2.14) can be obtained from 

the divergence of the tensor harmonic Uii, except for terms having the form 

(ii) Ci/rand (iii) c:ipqBp(llr).q . Therefore, for possible failure of the con

struction of rCv (the pth order part of hµv). we have only to search for terms 

with these forms (i)-(iii) in the differentiated integrals of Eqs. (3.8) and 

(3 9). 

Consider, fust, dangerous Al r terms in the differentiated integral of 

(3.8), which can be written as: 

J fi%(x') ~ , ~ Ti%(x') d 2 , a. dvx = - j x 
) D Ix -x, I J) Ix -x, I 
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(3.11) 

Here we have expanded 11 lx-x' I in terms of symmetric trace-free tensors. 

(The YJ'; are defined in Thorne 7; see also appendix A). Immediately we 

notice an interesting feature : if there is only an external universe and no 

internal body, then T) is always r' and no 1/r term can appear [i.e., there 

are no dangerous terms of types (i) above]. It is also easy to see that if 

there is no external universe (i.e., all external moments are zero), the 

integral is also zero. We hence look at the case where both a central body 

and an external unive rse exist. The coefficient of the 1/ r term is given by 

the following integral over the "inner" surface a)5 of JJ (the intersection of a 

t =constant surface and a 2-surface bounding the central body's world tube): 

J ( -W~j)d/x' = J (-W~j)n/r 12 d0'. 
a;D aiD 

(3.12) 

Notice that despite the appearance of r' 2 , the integral is independent of r'. 

as guaranteed by ai Pt'fli = 0. Next we notice that the vector field T1% can 

always be expanded as 

where EA
1

, BA
1

, and RA
1 

are STF tensors depending onJy on the radius r . T 

indicates taking the transverse part [cf. Ref. 7, Eq. (2.25b)]. But on the 

other hand, from the time-reversal symmetry considerations of Sec. 2B, we 

know that W Cj has exactly one E:czbc in each of its terms . Therefore in Eq. 

(3. 13) only the last terms inside the curly brackets ~ l are non-zero . Insert-

ing this result into Eq. (3. 12) gives zero. Hence we have no constraints aris-
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The search for dangerous Ci/r and tipq.Bp(1/r).q terms in (3.9) 

proceeds similarly. Again, if there is either no internal body or no external 

universe , there is no constraint. Otherwise the constraint requires 

and 

J (-W{j)njr'2d0' = 0 , 
aJ5 

(3.14) 

(3.15) 

This time we can find no symmetry requirement to force the surface 

integrals to vanish. Indeed, it is straightforward to show that to the first 

nonlinear coupling of the multipole moments, i.e ., p=2 the integrals (3.14) 

and (3.15) are given respectively by 

(3.16) 

( 3.1 7) 

That is, if we let our multipole moments be of order G, then to order G2 no 

choice of the homogeneous part Ui] can make /i} satisfy the gauge condition 

[Eq. (2.3)] vvith vanishing time derivations, unless expressions (3. 16) and 

(3.17) both vanish. If these constraints are violated, the internal and exter-

nal moments must couple with each other in such a way as to prevent us 

from generating a metric which satisfies the stationary vacuum Einstein 

equations. It is easy to convince oneself that this is not an artifact of the 

algorithm. Indeed, in the Newtonian theory it is precisely a coupling of the 

form (3. 16) that creates the gravitational force exerte d on the internal body 

by the external universe, and it is (3. 17) which gives the torque. We will 
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discuss these points further in Sec. 5. 

It is clear that once the stationary gauge conditions [(2.8) plus (2.10)] 

are satisfied there will be no further complication in the construction of the 

metric from the multipole moments, so we conclude this section with the 

following theorem: 

Theorem 3: Given any set of multipole moments, assuming that algorithm A 

generates a convergent series, the metric generated as a post-Minkowskian 

expansion (2.7) will satisfy the stationary vacuum Einstein equations (2.8), 

(2. 9) and (2.10) to order p in the region D if and only if Eqs. (3.14) and (3.15) 

are satisfied up to that order. [These correspond, at leading order in the 

coupling, to the vanishing of expressions (3.16) and (3.17)]. 

N. FURI'HER PROPERTIES OF TIIE MULTIPOLE MOMENTS 

In this section we go on to investigate some other properties of the mul

tipole moments. 

Two essential properties that we would like our multipole moments to 

have are captured in the "Geroch conjectures ." These conjectures were ori

ginally posed for the Geroch-Hansen multipoles3 of a stationary 

asymptotically-fl.at spacetime, and were proved in that context in Ref. 6. 

They are, as stated by Beig and Simon8 , 

(1) Geroch's first requirement: A given (stationary) spacetime is uniquely 

characterized by its moments. 

(2) Geroch's second requirement: Given a set of moments, there always 

exists, modulo convergence problems, a spacetime corresponding to 

the moments . 

These can be regarded as two important requirements for any definition 
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of multipole moments, including our own. 

We have studied the second requirement in Sec. 3C. One can see that 

our moments do not quite meet this requirement, as theorem 3 shows. How

ever, as Newtonian theory would suggest, additional constraints on the 

moments for a stationary spacetime are expected when both internal and 

external material are present. The problem is, do the constraints implied 

by theorem 3 have the correct physical origin? We give a positive answer to 

this question in the next section. 

Next we look at the fust requirement. As in other parts of the paper, 

we will consider only metrics in a region D of stationary vacuum spacetime 

that can be covered by a single deDonder coordinate system and that admit 

a Post-Minkowskian expansion. As discussed in Sec . 2, we identify a unique 

set of moments, up to Euclidean motions of the coordinates, from the 

expansion of hµv· From these moments and the algorithm A for generating 

the non-linear coupling terms, all other parts of hµ,v are determined. Hence 

we have: 

Theorem 4: The moments that we have defined satisfy Geroch's first require

ment. 

Next we go on to some other properties which are also exhibited by the 

Geroch-Hansen multipoles (or the Thorne multipoles) in a stationary 

asymptotically-fiat space time. 6·9 

Theorem 5 A stationary spacetime is static if and only if all its current 

moments vanish. 6 

Proof: If the current moments vanish, then clearly algorithm A gives 

hoi = 0. Therefore g Oi = 0. Together with (a; at )g µv = 0, this implies that 

the spacetime is static. On the other hand, if the spacetime is static, it is 

always possible to find a deDonder coordinate system in which (i) a; at is 
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the time-like Killing vector and (ii) a; at is orthogonal to the t = constant 

hypersurface .19 Hence we have hOi. = 0 in the required form (2.31)-(2 .33). 

The current moments in this coordinate system are therefore zero. That 

coordinate changes cannot affect this result is guaranteed by theorem 2, as 

Euclidean motions cannot affect (i),(ii) . 

Theorem 6 : A static spacetime is fiat if and only if all its mass moments van

ish.8 

Proof: Since we are considering static spacetimes, the current moments 

vanish (theorem 5) . Now if the mass moments vanish, we immediately have. 

from the algorithm, hµv = 0. Hence g µ,v = rJµv and the space time is fiat. On 

the other hand, if space time is fiat then there are coordinates Vvith g µv = rJµv 

(hµv = 0) . These coordinates trivially satisfy our coordinate requirements 

and the moments are read out to be zero . Again coordinate changes cannot 

affect the result. 

Theorem 7: Spacetime is axisymmetric if and only if the multipole 

moments . in coordinate systems tied to the rotational Killing vector, are 

axisymmetric. 9 

[Jn an axisymmetric situation it is more convenient to use spherical coordi

nates (r ,6,rp) and spherical harmonics than Cartesian coordinates and STF 

tensors. For relations between STF tensor notation and spherical harmonic 

notation see Ref. 7. Here by "a coordinate system tied to an axisymmetric 

spacetime" we mean that a; arp is the rotational Killing vector, and by 

"axisymmetric multipole moments" we mean that the multipole moments in 

spherical harmonic form are proportional to r5'[f >vith m being the azimuthal 

quantum number .] 

Proof: If the multipole moments in spherical harmonic form have com

ponents with m :tO then the metric will not be rp independent. since 
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contributions from different moments cannot cancel with each other. On 

the other hand, if the moments are axisymmetric, then since the construc

tion of W µ.v from hµ.v and the inversion of the Laplacian-operator preserve 

this symmetry, the metric generated by algorithm A is axisymmetric. 

There are two points worth noting from the above discussions: the first 

is that essentially all the desirable properties of the Geroch-Hansen 

moments and Thorne moments for a stationary asymptotically-fiat space

tirne are preserved in our present definition. This strongly suggests that we 

have a reasonable choice for extending the deftnition of the moments into an 

arbitrary stationary spacetime. 

The second point is that with our explicit algorithm for generating the 

full metric from the multipole moments, all the above theorems are proved 

trivially. This gives us confidence in believing that this entire construction 

is a powerful way both to describe and to investigate the structure of a sta

tionary, vacuum region of spacetime. 

V. THE LAWS OF FORCE AND TORQUE 

In Sec. 3, we showed that the multipole moments must satisfy the con

straints (3.14) and (3.15) before they can generate a stationary vacuum 

spacetime. The question that we want to study in detail in this section is 

what would happen if the constraints [Eqs. (3.14) and (3. 15)] were not 

observed. Indeed, we would expect these violations of the gauge condition to 

produce a time-evolving momentum and angular momentum, i.e., to gen

erate laws of motion and precession (force and torque laws) for the central 

body. 

Let us consider the case where we are given a certain set of moments, 

f/A
1

, C~\. SA,· and e.4
1

, each of order G. Let G be small, so that we "''ill keep 
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terms only up to G2
. To construct a metric satisfying the Einstein equations 

to order G2
, we proceed according to algorithm A. To order G2, W µ,v is given 

by 

2-_31 1 _11 1 71 1 
-167TWoo - 27oj,kf0k ,j zroj ,kfOj,k + 8'00,kfOO ,k • (5. 1) 

16 W2 - 1 1 1 1 
- 1i Oi - rOO,k fio ,k - rOO.k fOk ,i ' (5.2) 

-16 W2 - _.l_r 1 1 _ 4-o 1 1 J [ 1 1 _ 4-o 1 1 J 
1T ij - 4 LfOO,ifOO,j 2 ijfOO,lfOO.l + fOm,ifOm,j 2 ijfOm,ltOm ,l 

+[ 1 1 1 1 J [ 1 1 ~ 1 1 J fOi,kfOj,k - fOi.kfOk.j - fOj,ktOk,i - 2 ijfOl,kfOk,l · (5.3) 

After inserting 1}w of (2.21)-(2.23) into Eqs. (5. 1)-(5.3), we can carry 

out the Poisson integral and determine the homogeneous term Uif that 

makes /'if.j zero, as described in the algorithm A. [In appendix B we carry 

out this process explicitly.] Then, as discussed in Sec. 3, when we come to 

terms of the form ei;r and E:ipqBp(l/r).q. we are stuck. We have 

2 4 · · nk /'" · = -..:.....P· - 2r "k $ · -•J .J r ' •J J r2 , 

Vii th 

Pi = (formula 3. 16) , (5.4) 

$j = (formula 3. 17) . (5.5) 

[The reason for this notation will be clear shortly.] No choice of time-

independent homogeneous term can annul this. Therefore to satisfy the 

gauge conditions Eqs. (2.3) we are forced to include terms in 700 and /of 

which are explicitly dependent on time, and the resulting hµv read, up to 

order G2 : 
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h = 4 .f + 4[Y,, + p ~2 Ttq + ~ (-l)t .!_y, [~ + ~ 4(2Z-l)!! o. X 
00 a a 2 2 L; l I A1 L; l I ~Ai Ai r r t::::2 • r .Az z::::1 · 

+ coupling terms , (5.8) 

+ coupling terms , (5.9) 

hti = coupling terms . (5.10) 

[The coupling terms are time-independent terms of order G2 , contributed by 

the coupling of moments through W~ as discussed in algorithm A. In addi

tion, in h 00 there is an extra coupling term -2na.Pa. so that h00 will still 

satisfy Eq. (2.2) after the inclusion of the t 2 term. All these coupling terms 

have a combination of NA
1 

and rm different from the explicitly given "mul-

tipole terms." Their general structure is shown in Sec. 2B, and they are 

completely determined by the multipole terms. Thus, they carry no extra 

information and are not interesting in the present study.] The hµv of Eqs. 

( 5. 6)-( 5. 10) gives us a metric satisfying the Einstein equations to order G2
. 

We note that this metric is accurate only for a finite duration of time; i.e., t 

can be at most be so large that Pa. t 2 or $Pt become of order G1
; othenvise 

the higher-order iterations can no longer be considered small. From Eqs. 

(5.8) and (5.9), we clearly would identify the multipole moments of the inter-

nal body at time t to be 

. t2 
Mass dipole = Ya + Pa. 2, 



- 139 -

Current dipole = Sp + Sp t , 

where Pa and Sp are the "given" values of the moments at time t = 0. Or, in 

other words, since 

(momentum) = (rate of change of mass dipole moment), 

we have 

and 

(rate of change of momentum of the internal body) 

= d: (dipole moment)i = Pi [given by Eq. ( 5.4)] , 
dt 

(rate of change of current moment)i = Si [given by Eq. (5 .5)]. 

. . 
This is why the symbols Pi and Si, with the dot denoting the time derivative, 

are used. [For some relevant discussions, see Sec. 8 of Ref. 7. J 

Some comments on the laws of motion and precession as given by Eqs. 

(5.4) and (5.5) are in order now. Although the calculation of the G2-order 

terms does not require the assumption of a weak field, Eqs. (5.4) and (5.5) 

are good approximations to the laws of force and torque only when the con-

tributions of G3(and higher)-order terms are negligible. That is, we require 

that there exist a weak-field region (buffer zone, cf . Ref. 12) in the space-

time under consideration, vvith typical radius r so that the G1-order quanti-

tion to be carried out there. Notice also that we have placed no constraints 

on the central body; i.e., it can have a strong field, or even be a black hole. 

As long as it is isolated enough, the force and torque laws are given accu-

rately by Eqs. (5.4) and (5.5). Notice that this is exactly the same situation 
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as is treated by Thorne and Hartle 12 and Zhang. 13 Thorne and Hartle 12 have 

considered only the case Ya = t1a = ea = 0 (i.e., mass-centered and inertial 

coordinates). They derive the leading term (Z = 2) in Eqs. (5.4) and (5 .5). 

Zhang derives the next corrections (l = 3), as well as terms that entail time 

derivatives of the multipole moments and thus vanish for our quasi-

stationary situation. If we denote the timescale of variation of the moments 

by T, in our analysis we have thrown away contributions to the force and 

torque laws which are of order (11 T)xG . [If the time rate of change of the 

multipole moments results solely from the gravitational interaction, 1/ T is 

at most of order G2 and the contribution to the Zhang's lime-derivative laws 

to Pi and $i will be at most of order G3 which is beyond the accuracy of 

(5.4),(5.5)]. 

Equations (5.4), (5 .5) determine the force and torque to first order in 

the moment-moment coupling for an arbitrary central body in an arbitrary 

external gravitational field; arbitrary in the sense that both the central body 

and the external gravitational field can have arbitrary multipole moments. 

With our present formulation, it is straightforward, though tedious, to carry 

the calculation to higher order in G (but zero order in 1/ T). 

lt has been argued by Thorne and Hartle that the force and torque laws 

for strongly relativistic bodies, in terms of multipole moments. should be 

the same as for a nearly Nevrt.onian body with negligible self-gravity (cf . Ref . 

12, Sec. JC) . lndeed, when SA
1 
= 0 and eA1 = 0, Eqs. (5 .4) and (5.5) reduce 

exac tly to the formulae we would obtain from l\'ewtonian theory: 

( 5.11) 

(5. 12) 
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where cIJ is the external universe's Newtonian potential (g 00 = -1-2cIJ+ · · · ). 

The results of Thorne and Hartle12 and Zhang 13 are expressed not in 

terms of the external multipole moments @Ai and eA1, but in terms of the 

curvature produced by the "external universe," which they define in terms 

of an asymptotic expansion (cf. Ref. 12). In their way of separating out an 

external universe, there are uncertainties in the definitions of the mass, 

momentum, and angular momentum for the central body, which become 

precise only in the limit of vanishing external universe. In the present 

analysis, all the moments, including the mass as the monopole moment, the 

momentum as the time-derivative of the mass dipole and the angular 

momentum as the current dipole, are uniquely and unambiguously defined. 

Of course, one can always question whether this specific choice of definition 

is desirable. To this end the formulas (5.4) and (5.5) which agree exactly 

'Nith the Nevrtonian expressions again support a positive answer . 

We can easily write down the force and torque laws to order G2 (i.e .. to 

the leading order in moment-moment coupling) in a geometrical form in a 

way analogous to Eq. ( l.11 ) of Ref .1 2. We refer to the coordinate system 

·where hµv takes the form (5.B)-(5.10) as the "instantaneous rest frame" of 

the central body at t = 0. As in Sec . 3, we can separate out from the exact 

spacetime metric at t = 0 a metric of the central body (built Vvith fiA.
1 

and 

$A1 ) and a metric of the external universe (built with @~ and eA1 ). The 

force and torque laws vvill be VvTitten down in terms of a set of 4-vectors and 

4-tensors. living at the origin of the external universe and defined as follows: 

(i) The 4--velocity of the central body is defined as the unit vector D in the 

direction of a; at. (ii) F- =PUµ. is the 4-momentum of the central body, Y 

being the body 's mass, i.e .. its internal mass monopole moment. (iii) 

Jfi
1
,$ 01 , ~n 1 and e01 are 4-tensors orthogonal to a; at and Vvith nonzero 
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components in the body's instantaneous rest frame given by f/Ai.,$Ai.,@Ai.,eAi. 

where ~ = 1.2,3; c.>1 = 0, 1,2,3. Then to order G2 , we have: 

p Uf:J = ~ [(2l-1)!! /;;!" .01-1 _ 4(2l-1)!! e" s°i-1] 
Cl.;{:J L.J (l-1)' lq:'Cl."l-1y l(l-2)! Cl."l-1 ' 

!=1 . 
(5.16) 

$ Uf:J--~[(2l-1)!! rfJ01_ 117 
o.;{:J - 1':1 (l-1)! c;jUJ.{J-yvt l" 01-1 

(5.17) 

where c:µa.f:J-r is the Levi-Civita tensor and semicolons ";" denote covariant 

derivatives, in the external universe. 

To be able to integrate Eqs. (5.16) and (5.17), we have to provide infor-

mation on how the moments change (except the monopole and dipole 

moments). This requires the specification of the equation of state of the 

material making up the body and the external universe, as in general they 

are distorting each other and changing each other 's multipole moments 

through gravitational interaction. (For more discussion of this point see 

Ref. 12.) 

The present formulation suggests a way to define a rigid body in general 

relativity. If the body evolving forward in time in a quasi-stationary external 

universe changes only its mass dipole moment and current dipole moment, 

and all the other moments have values that can be related to those at t = 0 

by a rotation and translation, clearly we would like to say that the body is 

rigid. That is, a rigid body does not develop induced multipole moments. 

Note that the force and torque laws for such a rigid body can be obtained to 

arbitrary accuracy by the quasi-stationary calculation carried to higher 

order in G. It would be interesting to study how this notion of rigid body 
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relates to the usual definition of constant proper distance between adjacent 

matter elements. 

Although the present derivations of the force and torque laws are 

presented in terms of the secular changes in ?'oo and /'oj which are forced 

into existence by the gauge condition, this actually amounts to a calculation 

of the integrals 

(5 .1 8) 

(5.19) 

as discussed in Sec. 3. Since we have identified Pi and Si as the change in 

momentum and angular momentum of the central body, Wij clearly has the 

physical meaning of a stress 3-tensor. By BµWµv = 0, w0i is the energy tl.ux 

and w00 is the energy density of the gravitational field. Indeed, repeating 

the same line of argument as that which leads to (5.18) and (5.19), we arrive 

at 

JJ = - di woj d/x ' 
(JJ 

(5.20) 

where JJ is the time rate of change of mass M=f/of the central body. In our 

quasi-stationary approximation, (3.13) gives M = 0. Therefore, our 

identification of multipole moments has led us also to the identification of 

wµv as given by Eq. (2.4) as the gravitational stress-energy tensor in our spe-

cial deDonder coordinate system (deDonder coordinate condition plus cer-

tain choice for fixing the residual gauge freedom). Note that this wµv differs 

from the Landau-Lifshit z pseudotensor by two additional terms. 
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To summarize, our present treatment of a stationary or quasi

stationary spacetime produces a very Newtonian-like picture: the gravita

tional field is characterized by a scalar potential h00 and a vector potential 

hoj, determined by the mass moments and current moments respectively, 

evolving in a fiat background with a nonlinear interaction between them: the 

gravitational interaction between gravitating bodies can be described in 

terms of the coupling of the multipole moments of h00 and hoj: and associ

ated Vvith this interaction there is a stress-energy tensor constructed from 

the gravitational field at quadratic order and higher. 

Of course, we would not expect this picture to be useful in a highly 

dynamical situation, where no time-like Killing vector or nearly-Killing vec

tor exists. 

VI. AN EXAMPLE: A SCHWARZSCHILD BLACK HOLE IN AN EXTERNAL GRAVITA

TIONAL FIELD 

In this section we study, by our multipole formalism, a Weyl solution 

which can be interpreted as a Schwarzschild black hole residing in an exter

nal universe. One purpose of this study is to illustrate the process of identi

fying the multipole moments of a spacetime as proposed in earlier sections. 

Another reason is for the interest of such a spacetime itself. We mentioned 

in the introduction that in Newtonian theory the gr avitational interaction 

between bodies can be separated into three aspects in the language of mul

tipole moments : the force (coupling of the form Qi.41 f4i), the torque (cou-

pling of the form Cijk QiA/fA
1
), and the distortion (changes of the multipole 

moments due to interaction). In general relativity the first two effects are 

governed by the field equations alone, and we have shown that they can be 

discussed in exactly the same manner as in Nev.-tonian theory . For the 
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distortion effect, we generally require more information than just the field 

equations, namely the equation of state of the material making up the gravi-

tating bodies. However, there is one exception: a black hole, which requires 

no additional equation of state to describe it fully. Therefore we should be 

able to determine the distortion of a black hole by an external gravitational 

field using only the Einstein equations. Indeed, in the recently introduced 

viewpoint of the horizon as a membrane (for review, see Thorne et al. 20), we 

would expect a black hole under external gravitational perturbations to be 

deformed like an elastic sphere, and thereby acquire an "induced multipole 

moment." It is precisely this interesting possibility which originally induced 

the author to look into the present subject of studying the multipole struc-

ture of a stationary space which is not asymptotically fiat. 

There have been many studies of Schwarzschild black holes under the 

influence of static external gravitational tields. 2 1.22 ·28 Using the Weyl con-

struction, it has been shown that such perturbations produce no drastic 

change in the hole. The existence of a horizon, and the topology of the 

external spacetime and the horizon remain unchanged.21
·
22 Hence it is 

appropriate to regard the spacetime as consisting of a distorted 

Schwarzschild black hole residing in an external universe. Such a space time 

is described by: 24 

where Us and 1~ are the Schwarzschild solution24 and the U and V are func-

tions of p and z satisfying 

92 u = lr .L a f a I + 
p ~BPJ 

1 a2 

---+ 
p2 ay2 

82 1 
~U=O, (6.2) 

(6 .3) 
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(6 .4) 

This metric is valid for the region of vacuum spacetime between the horizon 

and the external distribution of material, i.e., the region D . 

Now as the simplest possible model problem, we consider a 

"quadrupolar-like" perturbation, i.e., 

u = ~2z2 - p 2
) . (6.5) 

Clearly this satisfies Eq. (6.2) and can be regarded as representing the gravi

tational field generated by a material ring on the equatorial plane (z = 0) at 

a large distance (p --> oo ) . [A is essentially (mass of the ring) I (radius of the 

ring)3 . J We regard A as a small parameter and carry out our calculations 

only to order A 1. We then substitute Eq. (6.5) into Eqs . (6.3) and (6.4) to 

solve for V. The solution can be expressed in a particularly simple way in 

terms of the "Schwarzschild coordinates," (rs ,6) , which are related top and 

z by 

z =(rs -m)cos6 . 

In the coordinates rs, 6, and rp , the line element for the perturbed 

sp acetime to first order in A is given by 

+ (1 - 2 U)r}sin2e d rp 2 , (6.6) 

where 
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(6, 7) 

(6 .8) 

Now the question is: Vinat are the multipole moments for this spacetime 

according to our scheme? The only difficult step in answering this question 

is to rewrite the line element (6.6) in terms of deDonder coordinates . After 

this step, it will be straightforward to read out the multipole moments. In 

principle we can solve the second-order equation 

(6.9) 

to obtain a deDonder coordinate system x' in terms of the old coordinates . 

But in most cases this is an extraordinarily difficult task. As our present 

step-by-step method of working out the required coordinate change can be 

used for a wide class of problems in reading out multipole moments, we will 

describe it in detail here . 

We first note that if A = 0 in Eq. (6.6), the transformation to deDonder 

coordinates is easy, as the metric is now spherical symmetric. A solution of 

(6.9) is given by 

x 3 = z =(rs -m)cose , (6. 10) 

·with no change in the time coordinate . If we perform this transformation to 

Eq. (6.6) for this A = 0 case, we obtain the well kno-w-n deDonder coordinate 

expression fo r the Schwarzschild metric [see e.g., Eq. (B.2. 15) of Wein

berg25]. 
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Of course, for finite A, the coordinate transformation (6 .10) will not 

bring us to deDonder coordinates. But nevertheless, we perform this 

transformation for the metric of Eq. (6 .6) and 1«1Tite down the resulting 

metric density g1w = ~ gµ,v in terms of these coordinates. From these gµ,v 

we find 

"-'zµ, = 2A £ + o[JJ g .µ, m r r4 J ' ( 6.11) 

( 6. 12) 

( 6.13) 

here r = (x 2 + y 2 + z 2l112
. We have dropped terms with 0(1/r4) as we are 

interested only in the first few moments . [In fact, it is intuitively clear that 

there -will only be an induced quadrupole moment (if there are any induced 

moments at all) generated by the external quadrupolar field . As internal 

quadrupole moments arise at l/ r 3 , we can drop all 1/ r 4 terms and still 

expect to have lost no information. We will discuss this point in more detail 

later.] 

Again we put these ftµ,.µ, into Eq. (6.9) and solve for new coordinates: 

x'i =xi - AJ!i ; t' = t , (6.14) 

with Hi satisfying 

HZ /ck - m2 ~Xj HZ .. -2m£= o[iJ 
. r4 .ii r 4' (6.15) 

2 xixj 11 [~ JIY kk - m --}[Y · · - 2m..:L= 0 . r4 .ii r rB , 
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HZ= 0. (6 .16) 

Now it again is easy to solve this set of equations and obtain the deDonder 

coordinates to A 1 order: 

[ 
Amr3 

x' = x 1 - 2(m2+r2) (6.17) 

[ 
Amr 3 

y' = y 1 - ------l 

2(m2+r2) ' 
( 6.1 B) 

I 

z = z ( 6.19) 

It is now straightforward to transform the metric density into the new coor-

dinates, and perform the required gauge change to cast it into the required 

form [Eqs. (2.27)-(2.29)]. The resulting expression for h/l'v(= 7]µ,v - g·uv) is 

(wi th the primes on x ,y ,z and r dropped): 

- I y p 
htt = 4 -+ 7-2-+ 8-3-

r r r 

N . 
+ l"a,o ~+ O( J:_) , 

r3 r4 
(6.20) 

!__; B J: .. 171 \T -(}) ~\. ) + 0( 1 \ + rs \ ~iJ <tab j ab + 'O<tab j ' ijab -:;;;-; ' (6.2 1) 

wh ere 
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(6.22) 

1 
Y= m(l - '224m2

), (6 .23) 

[

1 0 0 
K = - ~ .. m 5 = - ~Am 5 0 1 0 i; 7 "ti; 21 . 

0 0 -2 
(6.24) 

Now hµ,v is in the required form of (2.27)-(2.29) and it is easy to read out the 

multipole moments from the Laplacian-free terms of f4t . They are the mass 

monopole Y. external quadrupole @ii and internal quadrupole l{i given by 

(2.22)-(2.24) and there are no other multipole moments. It is clear that 

there cannot be any higher-polar-induced moment as there is no way to con-

struct a STF tensor with more than two indices with ~ii and 6iJ. Therefore 

terms with order in 1/ r higher than 4 will contain only "the coupling terms" 

solely determined by the coupling of the moments Y,@ij and IiJ. 

Next we discuss the meaning of the identified moments. 

(i) The quadrupole-like term in the perturbation (6 .5) generates an external 

quadrupole moment QiJ as expected. 

(ii) We can understand the value of the hole's monopole moment Yin the fol-

loVl'i.ng way: As Geroch and Hartle22 have shown, the horizon 2-geometry is 

de t ermined by the line element: 

dS1/ = 4m 2exp( -2 U I p=O )x 
z=m 

where p and z a re the Weyl coordinates as in Eq. (6.1 ). U lp=O becomes a 

function of e by writing z = mcose. From this and the present choice of U 
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[Eq. (6.5)], the horizon area is given by 

to first order in A. But this is just 16rrl2! That is, the monopole moment we 

defined through our scheme turns out to be the same as the irreducible 

mass of the black hole. In other words, if we let the mass of a hole in an 

asymptotically-fiat space time defined in the usual way be M, and then bring 

the hole into the external field in a quasi-stationary way (i.e., adiabatically), 

we will have Y= M. 

Again we can make use of the argument of Thorne and Hartle 12 that as 

analyzed in the buffer zone where our moments are defined, a black hole is 

nothing special. This make us expect (but certainly not prove in any 

rigorous sense) that regardless of what the central body is, the mass Ythat 

we define for it has the same value as it would have if the body were brought 

into the external field in a quasi-stationary way. This is surely a support for 

our scheme of defining multipole moments. Starting from a somewhat arbi

trary choice of coordinate conditions, we have ended up ·with a physically 

preferred definition of mass. Of course, the calcuiation presented is only 

correct to first order in the perturbation treatment and only for quadrupole 

perturbations. It would be interesting to show that we can attach the same 

physical meaning to Ywhen the perturbation is "exponentiated." 

(iii) Now we look at the internal quadrupole moment (6.25). Through Eq. 

(3.6) we see that the "applied" tidal field is weakened by the effect of the 

induced moment, as we might have expected from the analogy of a conduct

ing sphere in an external electric field. The existence of such an induced 

quadrupole moment is very suggestive, and surely represents a not yet 

investigated property of black holes. In order to better understand this 
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induced quadrupole moment, we shall compare it with the induced quadru-

pole moment of an elastic spherical shell of matter. 

Consider a spherical shell with radius r 0 , uniform thickness s «r0 and 

surface mass density a = MI 4rrr;f. We put this shell in a quadrupolar gravi-

tational field. The Newtonian gravitational force on the shell per unit area is 

(6.26) 

For a thin shell, to first order in s, it can be shovm that the 3-dimensional 

displacement of a matter element, ~i = x~ew - X~Jd, is determined by: (i) 

Force balance: 

(6.27) 

where T 00 is the shell's 2-dimensional stress tensor, K 60 is its extrinsic curva-

ture (equals to g 0,/ r 0 for our spherical shell with 2-dimensional metric g 6c 

and radius r 0 ), 11-£ is its unit normal, and "I" is a 2-dimensional covariant 

derivative in the shell. (ii) Two-dimensional stress-strain relation: 

(6.28) 

where µ and K, are the shell's 2-dimensional shear and bulk moduli, and 2:: 0" 

and e are its 2-dimensional shear and expansion, which can be expressed in 

terms of the 3-dimensional displacement by 

(6.29) 

(6.30) 

1t can be shown that the 2-dimensional shear and bulk moduli µ and K, are 

related to the 3-dimensional moduli µ and K and the shell's thickness s by 
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'fJ.,=µs and IC=2µs (6JC+2µ)/ (3JC+4µ). 

This set of equations can be solved easily for a spherical shell. For the 

applied force of (6.26) with @ii given by (6 .22), we find 

3 r6aA 
~e- = 4 µ osesine , ~'fl = 0. (6 .31) 

1 r& a A 2"' -3/C 
~r = ( sin2e - 2cos2e) . 

2 µ 4('11-'it) 
(6.32) 

From this we obtain the induced quadrupole moment : 

(6.33) 

From this formula and the relations between 'f1,IC and µ,K we immediately see 

that for ordinary material having positive elastic moduli (i.e ., positive µ,JC), 

the induced moment has the same sign as that of the moment of the applied 

field. Hence the tidal field vvill be strengthened [cf . Eq.( 3.5)] instead of 

weakened as in the case of a black hole. [Clearly, this v.ill also be true for a 

solid body made of ordinary material.] This is surely a surprising result. The 

static response of a black hole to an external gravitational field is qualita-

tively different from that of an ordinary body. 

Next we would like to compare the induced moment of (6.33) to that of 

the black hole [Eq. (6 .24)] to determine the "effective" elastic moduli of the 

black hole horizon. Since a black hole under a quasi-stationary external 

field will not under go expansion at any location on its horizon, it must have 

8=0 everywher e. By comparison vvith Eq. (6.28) we see that the hole must 

have infinite 2-dimensional bulk modulus 

(6.34) 
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[In terms of the 3-dimensional moduli. this correspond to K = -4µ/ 3, i.e., 

Poisson ratio equals to one. Of course a negative elastic modulus is impossi-

ble for a shell made up of ordinary material. But this need not trouble us as 

a black hole horizon is no ordinary material]. With this choice of IC and the 

requirement r 0=2JJ, equating the H.J of (6.24) and (6.33) gives 

"' 63 1 
µ = - 20rr M ' (6.35) 

for the effective surface shear modulus of a Schwarzschild black hole. 

Surely a black hole is very different from ordinary material in that it has a 

negative shear modulus. It is also different from ordinary material in a 

related aspect: A shell of ordinary material with H.J given by Eq. (6 .24) is 

prolate; but our distorted horizon as given by Eq. (6.25) is actually oblate 

since its equatorial circumference is 4rrm, whereas its polar circumference 

is 4rrm - 3rrAm 3 . However, for a black hole there is no clear reason to 

expect that the shape of the horizon should bear the same relationship to 

the asymptotic field structure as for ordinary matter. (Nevertheless, a Kerr 

hole has an oblate horizon and an "oblate" asymptotic field structure. 26) 

AB given by Eq. (6.35), the shear modulus is inversely proportional to M, 

i.e., a smaller hole is stiffer, as we might have expected. Indeed, if the shear 

modulus is to be an intrinsic property of the black hole, by dimensional 

analysis it must be proportional to 1/ M (and not, say, AU). But is it truly 

an intrinsic property of the black hole, in other words, independent of the 

kind of perturbation considered? This can be determined by considering 

perturbations of higher order l. Surely we would hope that the coefficients 

in front of 1/ .M in (6.35) would assume the same value under different per-

turbations. Hov·..-ever it will still be very interesting even if it turns out that 

for an arbitrary l-pole perturbation the coefficient is not exactly constant 
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but is a smoothly increasing (or decreasing) function of l, in addition to the 

11 M behavior, so that the ability of a black hole to oppose an applied l-pole 

tidal field can be nicely described. Such a calculation is currently being 

carried out. 

VII. DISCUSSION AND CONCLUSION 

In this section we will first summarize the results of the preceding sec

tions and then discuss some of the remaining issues . 

We have studied the structures of stationary vacuum spacetimes, 

without assuming asymptotic flatness, in terms of deDonder coordinate 

expansions in a way that can be regarded as a natural extension of Thorne' s 

formalism.7 We have succeeded in identifying some parts of the metric that 

carry all the information about the vacuum spacetime, namely, the mul

tipole terms . Out of these we can read the multipole moments characteriz

ing the spacetime . There are four sets of moments: internal mass mul

tipoles YAi, internal current multipoles $Ai, external mass multipoles ~Ai, and 

external current multipoles eA
1 

characterizing respectively the central body 

and the external universe. In particular, the mass, the momentum and the 

angular momentum of a body in an external universe are defined precisely 

in terms of the internal monopole and dipole moments. We have sho-wn that 

these moments have the usual properties that one desires in a multipole 

(Secs. 3 and 4). We have constructed an algorithm so that all other parts of 

the metric can be determined in terms of the multipole moments (algo

rithm A). We have given e:x'})licit examples of this construction for the first 

few lowest moments (appendix B). We have discussed the general structure 

of the metric obtained from the algorithm and we have given a prescription 

to read out the multipole moments for given stationary vacuum spacetimes. 
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We have obtained the force and torque laws in terms of the multipole 

moments in quasi-stationary situations, thereby generalizing the results of 

Thorne and Hartle 12 and Zhang 13 to arbitrary l-poles. These laws are com

pletely analogous to the Newtonian case even though the central body can 

be strongly gravitating. Related to these laws of motion and precession is an 

expression for the gravitational stress-energy tensor in our deDonder coor

dinate system. 

We have shown that it is also possible to discuss the distortion of gravi

tating bodies under their mutual interaction in terms of the multipole 

moments. For a black hole this distortion is solely determined by the Ein

stein equations. We have shovvn explicitly that a Schwarzschild hole sub

jected to an external quadrupolar field -will develop an induced quadrupole 

moment which in turn produces a tidal field opposing that of the applied 

field. This response is qualitatively different from that of a body made up of 

ordinary matter. This behavior can be described by effective surface elastic 

moduli (with a negative shear modulus inversely proportional to the mass of 

the black bole and an inth"lite bulk modulus). However, as the calculation is 

performed only for a quadrupolar external field , it is not yet clear how 

intrinsic the shear modulus is for black holes, i.e., how sensitive it is to 

different kinds of perturbation. Also in this model problem we have shown 

that our mass monopole has a good physical meaning; it is the body's 

remaining mass, if the external field is svvi.tched off quasi-stationarily. 

Let us now turn to the remaining issues of the development. An impor

tant problem is to establish a criterion for the convergence of the series in 

our algorithm for building the metric from the coupling of the multipole 

moments. This is a generic problem common to all studies using series 

expansions. 7·8 However, it is also intuitively clear that in the buffer region (if 
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it exists, cf. Sec. 2) and for physically reasonable choices of the moments, 

the algorithm will generate convergent series. It is only of academic 

interest to prove it rigorously for the weak-field case. 

Throughout the paper we have considered only metrics which are 

expandable in post-Minkowskian expansions in deDonder coordinates7·14 . It 

is almost certain that there are stationary vacuum metrics which lie outside 

this class . It would be illuminating to find out explicitly what kind of solution 

is not expandable . However it is again intuitively clear that in a weak field 

buffer region, for which our formalism is intented, the linearized theory Vvill 

produce the leading order result and the metric can be obtained to arbi-

trary accuracy by iterating the linearized solution. 

We have seen miraculous cancellations of logarithmic terms in the 

iteration process of algorithm A. Although the algorithm does not depend on 

the vanishing of the logarithmic terms, the metric generated will have a 

cleaner structure without them. It would be interesting if the conjecture in 

Sec. 2B could be proved. 

We have chosen some very specific coordinate conditions to study the 

geometric structure of the spacetime. How much of our study just reflects 

the choice of the coordinate conditions? How geometric are the multipole 

moments we have defined? This question will best be answered if we can find 

a coordinate-independent approach leading to the same set of moments. 

Indeed, when the spacetime is asymptotic fl.at, the external moments 

( °'A eA) vanish and the internal moments ,r.J;;.41 ,$A
1
) reduce to those of 

"t l' l 

Thorne7 , ie ., they are the same moments as defined by the Geroch-Hansen 

geometric approach. It would be desirable to have a study along the lines of 

Geroch and Hanson for spacetimes which are not asymptotic fl.at, i.e., space-

times with both internal and external moments . Is it possible to invent 



- 158 -

some treatment that "folds up" the buffer zone to one point A analogous to 

the "point-at-infinity" A in Geroch's approach? 

Imagine that we are given a certain set of multipole moments and are 

asked whether the metric generated as a post-Minkowskian expansion from 

these moments is stationary or not. In Sec . 3, we have shown that for the 

metric to be exactly stationary to all orders of coupling, the given multipole 

moments have to satisfy the constraints (3.14), (3.15) for all p. For p =2, 

these constraints require the expressions (3.16), (3.17) to vanish. What will 

the higher-order constraints look like? How will they restrict the "state 

space" of the stationary spacetime? Through the analysis of Sec. 5, these 

higher-order couplings -will give contributions to the laws of force and torque 

which are solely general relativistic in the sense that they do not have 

Newtonian analogs. 

lt is very inconvenient to use our formalism in its present form to read 

out the multipole moments for a metric given in arbitrary coordinates, since 

we must first transform it into a very specific coordinate system. The situa

tion can possible be improved by relaxing the coordinate requirements for 

the read-out to something generalizing the "ACMC" requirement of the 

asymptotically fiat case. 7 Of course it would be even better to get rid of all 

the coordinate requirements entirely and do the read-out by means of a 

geometric approach. 

The last remark we "\\ish to make is that in Sec. 5 we have relaxed the 

requirement of stationarity to allow for a little bit of time evolution. It 

would be interesting to investigate the possibility of developing this into a 

truly 3·d algorithm (when augmented by the equation of state of the 

material) for integrating forward in time (for systems behaving not too 

violently), so that the physics in any time slice will be fully described by the 
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multipole moments at that time. 
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APPENDJXA 

In this appendix, we write down some useful formulas for symmetric 

trace-free ("STF") tensors which are required to carry out algorithm A. As 

in other parts of this paper, we adopt the notation of Ref. 7. We will not 

repeat any formula which has already appeared in that article. Blanchet14 

also gives a collection of useful formulas for STF tensors . 

1. Expansion formulas 

One useful expansion formula is 

(Al) 

summed unless otherwise stated. The YJ~ with -l ~ m ~ l form a basis for 

the (2l + 1) dimensional vector space of STF tensors; for their definition see 

Ref.7, Sec . JI.C. 

A useful formula for the contraction of STF tensors is: 

(A2) 

The proof is trivial. 

For breaking up the STF combination of NA
1

, we use 

· as-las+! .. · a a · .. a1) 
s' s'+l 
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2. Difl'erentiation formulas 

The following formula is often used: 

a.,[~~ (-1)'(21-1)11 :,;, . 

3. Angular integration formulas 

It can be shown that 

(A3a) 

mi$;i.n) 1 
Io(K,,.Am.Bn) = Li (l l)" C(m,s)C(n,s)s!l! 

s +m+n+ .. 

where 

Similarly, 

(A5a) 

X [6(Am .Am-s Cs )6(Bn ,Bn-s, Cs )6(K,, .Am-sBn-sJ) 
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(A5b) 

Also, 

(A6a) 

min~.n) 1 
f2(J<t,Am,Bn,i,j) = ~ (l 

3
) 11 l!C(m,s)C(n,s)s! 

s +m+n+ .. 

+ (m-s )c5(Am ,jAm-s-1 Cs )o(Bn ,Bn-s Cs )o(K,, ,iAm-1-s Bn-s )+(exchange i,j) 

+ (n-s )(n -s -l)o(Am .Am-s Cs )o(Bn ,iJBn-s-2Cs )o(K,, .AmBn-s-2) 

(A6b) 

These complicated formulas can be easily understood: In J dO, the 

integral is zero unless aU na are contracted. In Eq. (A3), this means that the 

largest l is given by m +n, so that N (I<i,) can be contracted with N (A,,.)N (En>· 
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Smaller l are possible: some ~ can dot with bi. Hence we have the sum over 

s. In Eqs. (A4) and (A5) more terms arise since the indices i and j can dot 

freely with K,,, Am, En and among themselves. 

4. Solution of Poisson's equation 

The three formulas (A3)-(A5) take care of all the angular integrations 

that may ever be needed to carry out the algorithm for calculations up to G2 

order. Indeed the calculation of t,- 1 W~ is straightforward -vvith these formu

las. Here by 6-1 W µ,v we mean a special solution to the Poisson equation 

(A7) 

Solving this equation is the most involved part of the algorithm. 

The Poisson equation appears in the algorithm in the following forms, 

and only in these forms to G2 order. (For higher-order calculations, the 

reductions to these forms are sometimes tedious.) The specific solutions 

given are precisely the Poisson integral. except in the cases of lnr terms 

where we have chosen simpler expressions. 

"' = - I; Ir (l ,p )I o(J<t .Am ,En )N <Ki> Q(Jm)f <En> , (AB) 
l=O 

00 

= - I; Ir(l,p)f1(Ki.Am,En,nj)N(Ki)Q<Jm)f(Bn), (A9) 
1=0 

"' =-I; Ir(l,p)h (J<t.Am,En,'n-(nj)N(Ki)Q(Am)f<Br) · (Al O) 
l=O 
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Here QA,,, and !En are arbitrary constant tensors, and 

f (l ) (2l -1)!! r2+p x 
r ,p = l 

lnr 
-lnr 

[ l +~+p - 2+~ -l l 
if l +p+3=0 
if 2+p-l=O 

otherwise . 

(Al 1) 

With the foregoing formulas, each step of the algorithm is straightforward, 

though sometimes tedious. 

APPENDIXB 

In this appendix we give hµv to first order in the coupling of multipoles, 

for the lowest few multi poles. With the formulas in appendix A and W µv as 

given in Sec. 5 [Eqs. (5.1)-(5.3)], the calculation is straightforward. It is 

also clear that to first order in the coupling we can separate the discussion 

into two moments at one time. Since only the coupling of external moments 

Vlith internal moments gives rise to interesting results, we Vvill not list the 

terms that arise from internal-internal or external-external coupling . Some 

expressions for internal-internal coupling can be found in Ref. 9 and Ref. 15. 

The requirement tha~ hµv take up the forms (2.27)-(2.29) has greatly 

restricted the coordinate freedom. After these restrictions, we have left 

only the freedom of choosing the origin of the coordinates and the orienta-

tion of the axis (i.e., a Euclidean motion, see Sec. 2C). We could have used 

this freedom to make our coordinates be mass centered, i.e., Ji=O. However 

this results in no substantial simplification in our treatment. In fact 11 

behave just like other multipoles but Vvith a simpler structure . Hence it 

serves as a good example for studying the general behavior of multipole 

moments. This point will be clarified by the follovving examples. 
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(a) For @a with Y. 

(Bla) 

(Blb) 

(Blc) 

The terms with t are forced into hµ,v by the gauge condition (see the discus-

sion in Secs. 3C and 5). From these terms we can read out the force on the 

central body, which arises from the failure of our coordinates to be locally 

inertial ·with respect to the external universe (Qi ;r. 0). The term in i l in J'6o 

is forced into existence by Eq. (2 .9) and the presence of the t 2 term. In 

later expressions, terms in i l have the same origin. 

(b) For @a Vvith Ji: 

-vi -o -vi-o. 
I Oj - • I ij - • (B2a) 

(B2b) 

(B2c) 

2 nanb 1/1(' n;)na r Ra o,a .. = 2 6·.JI I/I --- L f/ "t' • " + . -26;; _T"t'_]. Ii; i; a "t'b r - a r - .,, J (B2d) 

From the /'oi term we can read out the torque on the central body, i.e., the 

increase of the body's orbital angular momentum ;,.vith respect to the coordi-

nate system, which results from the acceleration of our coordinates Vvith 

respe ct to the external universe (@i r'- 0) together with the fallure of our 

coordinates to be mass-centered in the body U< r'- 0) . The term in square 



- 166 -

brackets is a homogeneous term, i.e, 'Y2 free, which is forced into existence 

by the gauge requirement [step (iii) of algorithm A]. In later expressions, 

terms in square brackets have the same origin. 

(c) For @a with Ya.tJ: 

l -
nanb I l 

-v 6 T/ + 4 f1l n r -v - 0 -v - 0 · I 00 - Ya.tJ --3- iq'a, a • I Oj - • I ij - ' r 
(B3a) 

(B3b) 

(B3c) 

In this case we have no time-dependent term. Indeed, only when the 

external moment has the same number or one more number of indices than 

the internal moment, do we obtain secular evolution. 

( d) For @ah with JI 

1 
1- y..L 6f1l 2 roo - 4 -+ iq'a,bnanbr ' r 

(e) For @ab with I~: 

-yl -o -vi -o· 
I Oj - • I ij - • (B4a) 

(B4b) 

(B4c) 

(B5a) 

(B5b) 



2 t 
fOi = -12@i:aYa -, r 

(f) For (?ab with Yca 

2- 'Tl.pt( ) f Ci - -6 f:ipq -2- f: qab @ac Ycb • 
r 
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(B5c) 

(B5d) 

(B6a) 

(B6b) 

(B6c) 

(B6d) 

The time-dependent term in r6i is due to the torque produced by coupling 

the body's quadrupole moment, Yab, to the quadrupole mass moment (elec-

tric part of Riemann curvature) of the external universe, @ac. 

(g) For (Y,$i) with ei: 

1 
160 = 4p-=--' r 

(B7a) 

We again will write doVvn only those terms which arise from the coupling of 

internal and external moments (fl with ~, $i with e;·): 
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(B7b) 

(B7c) 

(B7d) 

The time-dependent term arises because our coordinates are rotating rela-

tive to the local inertial frames of the external universe Vvith angular velo-

city em. and the body's angular momentum Sn refuses to rotate Vvith them 

(it insists on remaining inertial) . 

(h) For (Y.SJ with eab: 

(BB a) 

(BBb) 

(BBc) 

(BBd) 

The time-dependent terms are due to the force on the body caused by cou-

piing of its spin angular momentum Sa to the external universe's curvature. 

With these examples, it is clear that the algorithm A can be used easily 

to construct model spacetirnes. The metric in the weak-field region can be 

written down in a straightforward manner once the multipoles of the chosen 



- 169 -

spacetime have been specified. For example, for a Kerr black hole in an 

external universe (say, a quadrupolar external gravitational field), the 

metric can easily be written down showing explicitly the precession of the 

angular momentum of the hole .12 'Ibis is the subject of an accompanying 

paper. 
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