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ABSTRACT 

We use Feynman perturbation techniques to analyze some aspects 

of electromagnetic wave generation and propagation in weak gravita­

tional fields. 

In the first part of this report we calculate differential 

cross sections da/dn for the scattering of plane electromagnetic 

waves by weakly gravitating and .rotating bodies in the long-wavelength 

limit (wavelength of incident radiation >> radius of scatterer >> mass 

of scatterer). We find that the polarization of right (or left) 

circularly polarized electromagnetic waves is unaffected by the 

scattering process (i.e .• helicity is conserved), and that the two 

helicity states of the photon are scattered differently by a rotating 

body. This coupling between the photon helicity and the angular 

momentum of the scatterer also leads to a partial polarization of 

unpolarized incident light. 

For the sake of comparison, we also compute the differential 

cross sections for the gravitational scattering of scalar and gravi­

tational waves. For the latter there is neither helicity conservation 

nor helicity-dependent scattering; and the angular momentum has no 

polarizing effect on incident, unpolarized gravitational waves. 

In the second part of this report, we analyze the conversion 

of gravitational waves into electromagnetic waves (and vice versa) 

under the "catalytic" action of a static electromagnetic background 

field. Closed-form differential cross sections are presented for 

conversion in the Coulomb field of a point charge, electric and 
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magnetic dipole fields, and uniform electrostatic and magnetostatic 

fields. Using the model calculation of conversion in a Coulomb field, 

we discuss the problems that we must face when calculating non-gauge­

invariant transition amplitudes, as is frequently done in the litera­

ture. 

We conclude this report by pointing out how charged-particle 

beams may be used (in principle) as direction-sensitive gravitational­

wave detectors. 
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I. INTROflliCTIQN 

Ever since Einstein•s celebrated derivation of lightbending 

by a spherical mass,1 wave propagation in curved spacetime has been 

the subject of study by physicists, mathematicians and an occasional 

engineer. Einstein•s calculations are based on the conventional 

methods of ray optics and completely forego the wave nature of light . 

A more acceptable approach is to start from field-theoretic considera­

tions, i.e., from the Maxwell equations in a Riemannian space: 2 

Fll" = J·ll 
;\) (1) 

(2) 

Here Fll" is the antisymmetric electromagnetic-field tensor and jll 

* is the 4-current in Lorentz-Heaviside (rationalized) units . 

In the 11 E:-ll formalism .. of Volkov et a1. 3 Eqs. (1) and (2) 

are recast into the form of Maxwell equations in an inhomogeneous , 

bi-anisotropic medium embedded in flat spacetime. A gravitational 

* In the following we shall use natural units (G = ~ = c = 1) and a 
metric gaS with signature +2. The determinant of gae is denoted 
by g. Minkowski spacetime is described by the metric naa = 
diag (-1,1,1,1). Covariant derivatives relative to gaS are 
denoted by semicolons and partial derivatives by commas or the 
symbol a. Greek indices run from 0 to 3, Latin indices from 1 to 
3. ~e.shall also use the abbreviations~·~ = naaaabB and ~ · ~ ~ 
nija1bJ. Symmetrization of indices is denoted by round brackets , 
i .e., a( b) = ~(a b +a b) . ll \) ll \) \) ll 



-2-

field thus endows the vacuum with permittivity and permeability prop­

erties. In complete analogy with the theory of electrodynamics in 

continuous media, we may then solve the problem of electromagnetic 

wave propagation (and generation) in a gravitational field, by identi­

fying the fictitious polarization currents and computing the electro­

magnetic fields which they generate. This we shall do in a system­

atic way with the help of Feynman diagrams. 

A convenient starting point is the source-free Maxwell equation 

F~v = 0, which can also be written as ;v 

(3) 

The effects of gravity are most easily ·seen if we expand the gravita­

tional background about Minkowski spacetime. For this we put 

where A = /Srr(G} is the gravitational coupling constant. The indices 

of the trace-reversed metric perturbation ~B are lowered, by defini­

tion, with the Minkowski metric naB · From (4) we obtain 

gaB = naB -2A(r;aB - ~naSJiJ + O(A2) ' (6) 

where n = l)1.l • 
lJ 
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With the aid of {3). {4). {6) we find 

This equation now is a flat-space equation and the gravitational field 

~S is just another field, like Fas• propagating in Minkowski space­

time. 

From {7) it follows that to the lowest order in A1 the effect 

of the gravitational field on the dynamics of the electromagnetic 

field can be embodied in a fictitious polarization current density 

This polarization current is distributed throughout space. It is 

present even in the absence of physical charges and may be looked 

upon as a vacuum polarization stemming from the interaction of two 

neutral fields nas and FaS' Note that the polarization current is 

linear both in the gravitational field and the electromagnetic field. 

Through Eq. {7) this polarization current acts as the source of an 

electromagnetic field. which {in a perturbation calculation) must be 

considered as a correction to the flat-space electromagnetic field, 

satisfying F~v.v = 0. In diagram language: an F-line {dashed line) 

joins an h-line {wavy line) in a vertex and gives rise to another 

F-1 i ne {Fig. 1) • 
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t 

Fig. 1 The 2-photon-graviton vertex. The interaction between the 

electromagnetic field FaB and the gravitational field haB 

generates a fictitious polarization current. This current 

t 

acts as the source of an additional electromagnetic field F . lJ\) 

Fig. 2 The 2-photon-graviton vertex revisited. The electromagnetic 

field tensors FaB and FlJ\) beat against one another to produce 

a stress-energy distribution, which then acts as the source of 

a gravitational field. 
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This interaction is described by the Lagrangian density 

.fl = j l-1 A po 1 l-1 , 
(9} 

where All is the electromagnetic 4-vector potential and j~01 is given 

by (8}. After an integration by parts, dropping a pure divergence 

and some index gymnastics, we obtain 

( 10} 

where 

( 11) 

In (10) FaB is the electromagnetic field which by its interaction with 

~a ·generates the polarization current, and F is the electromagnetic 
lJ\) 

field stemming from this current. In the following we shall not make 

any distinction between the F-fields and hence for the interaction 

Lagrangian density we must take. half of (10}. To the lowest order in 

A then, the dynamics of a source-free electromagnetic field in a 

gravitational background is described by 

( 12} 

with F =A -A . The first termf.EM is the familiar 
lJ\> V,l-1 l-1 1 \> 

Lagrangian density for a free electromagnetic field in flat spacet1me. 

The second term£1 accounts for the interaction between the electro-
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magnetic field and the induced polarization current. 

It is easily checked that an infinitesimal variation of the 

actionS= J.cd4x with respect to A~ results in the Maxwell equation 

(7). 

There is another way of arriving at the interaction Lagrangian 

density £1• In Einstein's linearized theory. ~v couples to the 

stress-energy tensor T~v of the electromagnetic field. This T~v is 

quadratic in the fields F . In diagram language: 2 F-lines join in 
~v 

a vertex to produce an h-line (Fig. 2). 

with 

The interaction Lagrangian density is4•5 

£
1 

= ~ h~v T 
~, 

T F F a ~ F FaB . 
~v = ~a v - ~··~v aB 

Substituting (14) and (15) into (13) results in the interaction 

Lagrangian density£1• obtained above. 

(13) 

(14) 

(15) 

Now we turn Fig. 2 around and obtain Fig. 1: an h-line joins 

an F-line to produce another F-line. But the source of an F-line can 

be called a current and so we conclude again that a polarizati on 

current is induced. which is bilinear in h and F. 

The 2-photon-graviton vertex will play a central role in this 

report. E.g .• Fig. 1 may describe 
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i) Scattering of electromagnetic waves by a stationary gravitational 

field-light ray bending by a massive body, gravitational focusi ng, 

coupling of photon helicity to the angular momentum of a ro-

tating massive body, may all be deduced from a careful analys i s 

of diagram 1. 

ii) Or the ingoing F-line may stem from a static charge and the 

h-line may be a gravitational wave. Fig . 1 then describes how a 

gravitational wave 11 Shakes loose 11 the Coulomb field of a charge 

and causes it to radiate electromagnetically, very much in the 

same way as a dielectric wave incident on a static electro­

magnetic field generates electromagnetic waves. (This process 

is called transition scattering.) 

iii) Or the F-lines may represent electromagnetic cavity modes and 

h an incident gravitational wave. Fig. 1 then describes how a 

gravitational disturbance feeds photons from one cavity mode 

into another. 

iiii) Or the ingoing F-line may stem from a charge moving through the 

h-field of a massive body. This is gravitationally induced 

electromagnetic bremsstrahlung, 

Similarly Fig. 2 describes: 

i) How an electromagnetic wave propagati ng in a static electro­

magnetic background is gradually transformed into a gravita­

tional wave; 

ii) How two electromagnetic cavity modes beat against one another 
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to generate a gravitational wave; 

iii) How two charges moving in each other's electromagnetic field 

generate gravitational waves: electromagnetically induced gravi­

tational bremsstrahlung. 

To calculate all these effects we may of course work with the 

Maxwell (and Einstein) field equations. E.g., one may solve the prob­

lem of electromagnetic wave scattering by a weak gravitational field 

in the following way: 6 compute the induced current density from (8), 

identify the electric and magnetic dipole moments per unit volume 

that generate this polarization current, and calculate the radiation 

field of these dipole distributions with the standard techniques of 

flat-space electrodynamics. 

We shall find it much easier to start directly from the 

Lagrangian and to use Feynman perturbation techniques. It must be 

stressed, however, that all of the processes described in this report 

are classical processes. Only for reasons of ease and straightforward­

ness shall we borrow from the techniques of relativistic quantum 

mechanics. 

This report is divided in three parts . Chapter II discusses 

the scattering of long-wavelength, zero-restmass plane waves by weak 

gravitational fields. Though we are mainly interested in electromag­

netic waves, we shall also investigate scalar and gravitational wave 

scattering. This can be done with little additional effort and tha 

results exhibit some interesting dissimilarities with electromagnetic 
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wave scattering. 

While Chapter II discusses the behaviour ofan electromagnetic 

wave in a stationary gravitational field, Chapter III investigates the 

behaviourof a static electromagnetic field in a gravitational wave 

background. We shall see that the gravitational wave is gradually 

converted into an electromagnetic wave. The inv~rse process is also 

discussed: the generation of gravitational waves, due to electro­

magnetic wave propagation in a static electromagnetic background. 

Finally, in Chapter IV we show how the conversion mechanism 

allows in principle the use of charged particle-beams as gravitational­

wave detectors. 
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II • . GRAVITATIONAL SCATTERING ' OF ' ZERO~RESTMASS PLANE WAVES 

1. The Raison d·~tre of thi s Chapter 

With the advent of black-hole physics, wave prop~gation on 

Riemannian manifolds has become a fashionable topic, as gravitational 

scattering of electromagnetic and gravitational radiation provides 

possible means (though not very promising at present) to detect col­

lapsed objects. Recently, a number of papers have used general rela­

tivity theory to analyze the scattering and absorption of scalar, 

electromagnetic and gravitational waves by a fully nonlinear 

Schwarzschild black hole. Hildreth7 and Matzner8 have studied the 

scattering and absorption of scalar waves, using a partial-wave 

analysis. Vishveshwara9 has used the Regge-Wheeler formalism and a 

partial-wave expansion to study the interaction with gravitational 

waves. Mashhoon10 and Fabbri 11 have studied the electromagnetic 

wave problem using partial-wave expansions and the £-~ formalism 

of Volkov et a1. 3 

The mathematically more tractable problem of scattering by 

weakly gravitating, nonrotating spherically symmetric bodies has been 

studied also. Einstein1 discussed the deflection of electromagnetic 

waves by a spherical, nonrotating body in the geometric optics limit 

and for large impact parameters. Mo and Papas12 used a combination of 

Debye and e-~ formalisms to restudy the same problem as Einstein and 

discover an increase in electromagnetic wave intensity due to gravita­

tional focusing. Westervelt6 used flat-space wave equations to 
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calculate the scattering of plane electromagnetic and gravitational 

waves by the Newtonian field of a point mass. 

We take special note of a paper by Peters,13 who calculated 

cross sections for the scattering of long-wavelength, plane scalar, 

electromagnetic and gravitational waves by a weak Schwarzschild 

scatterer. His method utilized Green functions in a weakly curved 

spacetime. Peters' paper was motivated by a question raised in a 

conversation with J. A. Wheeler: 11 IS the scattered radiation sensitive 

as to whether the scatterer is a black hole or some other spherical 

body with the same mass?" In the high-frequency limit, the impinging 

waves are certainly able to probe the internal structure of the 

scatterer,and hence the scattering cross sections for black holes 

and condensed bodies should not agree. However, one did not expect 

a differentbehaviourfor the two kinds of scatterers in the long­

wavelength limit. Peters' results shattered this belief. A compari­

son of his weak-field results with the corresponding black-hole re­

sults explicitly shows that even when the wavelength is much larger 

than the radius of the black hole or the condensed body, there is a 

disagreement between their cross sections. 

Motivated by a talk on these problems by Peters at Caltech in 

the spring of 1976, we set out to check whether the lowest-order 

quantum perturbation calculations agreed with his classical results. 

As our calculations were so much simpler than his, we were able to add 

angular momentum to the scatterer and to investigate its influence on 



-12-

the scattering cross sections. This bonus is especially exciting as 

recent observations by Harwit et a1. 14 have placed an upper limit on 

the difference of deflection between left and right circularly polar­

ized radio-beams passing near the limb of the sun. Whereas previous 

electromagnetic tests of general relativity (light bending and quasar 

radio-wave bending near the sun, Shapiro time-delay of radar signals, 

gravitational redshift in the earth's gravitational fieldfprobe only 

the geometric optics limit of electromagnetic-gravitational coupling, 

this experiment goes beyond geometric optics. The deflection is 

independent of polarization in the geometric optics limit (the ray 

follows a null geodesic regardless of its polarization state); but 

for "full-blooded" waves the helicity of the wave should couple to 

the angular momentum of the deflecting object ("magnetic-type" gravi­

tational effect) to produce helicity-dependent deflection--helicity 

dependence which, for the sun, is below the accuracy of Harwit et al., 

but which should exist nevertheless. 

A number of recent papers have used general relativity theory 

to investigate this helicity dependence and other aspects of the inter-

t . b t . . d t t. . t t. b d lS-17 ac 1on e ween 1ncom1ng waves an a ro a 1ng, grav1 a 1ng o y. 

Gradually, the full picture of such interactions is emerging; but 

there remain as yet a number of gaps in the picture. The purpose of 

this part of the report is to fill in one of those gaps: the full 

details of the long-wavelength limit for rotating and weakly gravi~ 

tating bodies 
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(wavelength) = 2n/w >> (size of body)= L 

>> (gravitational radius) = M (1.1} 

for scalar and gravitational waves as well as electromagnetic. 

In the regime 2n/w >> L >> M it is better to speak of a 
11 Scattering 11 of the \"laves than a 11 deflection 11

; and it is most useful 

to calculate the amplitude Tfi for scattering of an incoming plane 

wave li) into an outgoing (final) plane wave If). From this scat­

tering amplitude one can derive everything of interest--the explicit 

form of the scattered wave; the differential scattering cross section 

do/dn; the amount of focusing; the deflection angle in the regime 

where it has meaning, i.e. (wavelength) << (impact parameter); etc. 

~Je, 1 ike some others before us , 18- 19 have found the Feynman­

diagram technique to be extremely powerful for studying long-wavelength 

scattering. In section 2 we give the Lagrangians and the Feynman 

vertex rules needed for each type of \'lave (scalar, electromagnetic, 

and gravitational}, as well as the formula for the differential 

scattering cross section in terms of the transition amplitude. In 

sections 3, 4, and 5 we treat the scattering of scalar, electromag­

netic and gravitational waves, respectively . ~ection 6 discusses 

and contrasts our results with those of other authors. 
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·2; Feynman Diagrams ·for Scattering 

The classical problem of the scattering of a massless field 

propagating in a slightly curved spacetime may be treated by quan­

tizing both the linearized gravitational background and the scattered 

field. In this scenario both fields evolve in a Minkowski spacetime 

and couple according to the Feynman vertex rules. This approach may 

be contrasted to the work of Peters, 13 in which the gravitational 

background is considered to be a passive nondynamical entity, whose 

influence on the propagating field is embodied in a curved-spacetime 

Green function. In this section we summarize the relevant Feynman 

rules. For this we need the interaction parts of the Lagrangian den­

sities. To obtain these interaction parts, we could of course follow 

the line of argument developed in the introduction. We choose to 

follow a more elegant route. We shall start from manifestly covari­

ant Lagrangians in curved spacetime (which contain the interaction 

parts of all orders in the gravitational coupling constant A) and 

shall expand them about flat spacetime. 

The wave equation for source-free scalar waves 

[]~ - uR~ = 0 (2.1) 

may be obtained from the Lagrangian density 

(2.2) 

where u is a constant, R the curvature scalar and[] ; (-g)-~ 

a (gaB;:g a ) For u. l/6, ~ represents conformally invariant waves. a B ' 

Following Feynman4-5 and Gupta, 20 and since we require that 
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lhae, << 1 everywhere, we expand the gravitational field about the 

* flat Minkowski background: 

(2.3) 

where the gravitational coupling constant A = ~and ~S is the trace ­

reversed metric perturbation. 

The determinant factor ;:g, gas and R now become infinite 

series in A : 

1=9 = .; - det II gael I = /- de~ II tJ~.s ll = 1 Ah + o (A 2) , ( 2. 4) 

gaS= naB- 2A(naS- ~ hnaS) + 0(A2), (2.5) 

(2.6) . 

where the trace of the metric perturbation is denoted by h = n~~· 

Expanding (2.2) in powers of A we find that 
00 

where 
.rs = L An.fn , 

n=O 
(2. 7) 

.£ = _ Jr. n aS ':!' ':!' , 
0 ~ ,a ,S (2.8) 

(2.9) 

The free (i.e., noninteraction) Lagrangian .r0 describes the free 

propagation of the scalar field ':!' in Minkowski space, whereas the 

* The expansion procedure, based on (2.3) may seem rather arbitrary. 
We have, however, ver!fied that a sli~htly different 'xpansion pro­
cedure, based on g Q = n Q + 2~h B Wlth h Q = n Q - -2 n oh, leads ajJ ajJ a , ajJ ajJ ajJ · 
to the same results. 
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terms proportional to A, A2, etc. represent the interaction parts of 

L, i.e., they determine how the gravitational field ~S couples to the 

scalar field 'l'. 

From£1 we may derive the amplitude r 21 for a transition of the 

scalar field .from an initial plane-wave state with wave-vector 

("momentum") lka to a final state with "momentum11 21<a while absorbing 

a graviton with 11 momentum" qa and polarization ~S (Fig. 3): 

(2.10) 

Here the superscript 1(2) denotes the initial (final) state. Conserva-

tion of 4-momentum requires that 

2k = 1 ~ + .9. • (2.11) 

In this calculation we shall limit ourselves to interactions 

proportional to A2, (single-graviton exchange); in other words, we 

shall calculate the scattering cross sections in the first Born approx­

imation. In the classical limit for the scattering of waves with 

angular frequency w by a mass M with angular momentum J, this corre-

sponds to calculating at first order in the dimensionless quantities 

Mw and Jw2. Since our interest is restricted to a gravitational back-

ground geometry generated by classical energy-momentum distributions 

which are not affected appreciably by the scattering process, we may 

replace the virtual graviton by an external field. 21 In particular 

we consider only static fields; hence in the vertex rule (2.10) eas 
stands for the 3-dimensional Fourier transform of ~S and the gravi­

ton 4-momentum is pure spacelike (q0 = 0). 
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Fig. 3 The graviton-zero restmass field-zero restmass field vertex. 

The wavy line represents a graviton. The solid lines repre­

sent either scalar, electromagnetic, or gravitational quanta . 
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The transition amplitude T21 above has been normalized 

according to the definition 

(2.12) 

where s21 is the S-matrix connecting the initial to the final state. 

With this normalization for T21 , the differential cross section for 

the scattering of a zero-restmass wave with frequency w into a solid 

angle dn is 

(2. 13) 

where D denotes the density of final states, 

2 
D = w dn . 

(2'1T)3 
(2.14) 

Turn now to the scattering of electromagnetic waves off a 

slightly curved background. The manifestly covariant photon 

Lagrangian density, obtained by minimal coupling to gravity, is 

where F~v is the electromagnetic-field tensor computed from the 

Maxwell vector potential A~ by 

F = A - A . 
~v v,~ ~.v 

(2.15) 

(2. 16) 

From (2.15) and (2.16) one ohtains the field equations for the source-

free electromagnetic field: 
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F + F + F = 0 , 
~v;A VA ;~ A~ ;v 

(2.17) 

F ;v = 0 • 
~v 

(2.18) 

We expand the photon Lagrangian density in powers of A according to 

(2.7) and obtain 

r 1 ~a. vSF F 
~0 = - 4 n n ~v a.B ' (2.19) 

.£ = (~a. vB _ 1 h- ~a. vS)F F . 
1 n 4 n n ~v a.B (2.20) 

Note that.£1 agrees with the interaction Lagrangian density that was 

derived in Chapter I in a different, more intuitive way. After proper 

permutation of the photon labels, 1'1 provides the graviton-photon­

photon vertex rule (see Fig. 3) 

-:-a.S{l 2 1 2 * 1 2 * 1 2 1 2 * ( 2 1 T 21 = 2Ae k(a. kS} ( _£• f. } + e: (a. e: S} ( ~ • ~} - k(a. e: B) ~· f.} 

2 1 1 2* 1 1 2 1 2* 
- k(a. e:S}( ~· ~ }- 2 na.S[ ( ~. ~)( f. . f. } 

- ( l!i. 2f.*){2)i. lf.l]} . (2.21) 

Here lka. and 1e:a. are the 4-momentum and polarization vector of the 

ingoing photon, whereas 2ka. and 2e:a. denote the respective properties 

of the outgoing photon. In accordance with t he external-field approxi ­

mation ;as denotes the Fourier transform of na~ . Note that the transi­

tion amplitude (2.21} is invariant under a gauge transformation of the 

form 

(i = 1,2}, (2 . 22) 
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where y is an arbitrary scalar. 

Finally, turn to the scattering of gravitational waves by a 

gravitational background. One arrives at the matter-free Einstein 

field equations 

R = 0 
~\) 

by varyin9 the Lagrangian density 

(2.23) 

(2.24) 

~Je take now for our basic fields ,gllV = f-:9 gllv and ~~v = g~v/1=9 

rather than the metric itself. After performing some integrations 

by parts and dropping a pure divergence, we can express the Einstein 

gravitational Lagrangian density (2 .24) in the particularly convenient 

Goldberg22 form, which contains no derivatives of g higher than the . llV 
first: 

After \'le expand ( 2. 25) in powers of X, the components of ..CG become 

..C = - l (2t;a8•llj1 - h'llil - 4 ~B,ll'fi ) , 
0 4 aB, ll , ~ ~B , a (2.26) 

.£
1 

= _}11lv(h naB + 2 h ,Bfi ,a - 2 h h B,a 
aB ,ll ,v ~a vB ~R,a v 

( 2. 27) 

The interaction part£1, appropriately symmetrized with respect to the 

graviton labels, provides the expression for the three-graviton vertex 

(see Fig. 3): 
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T21 = A~v{_2[,e:2e*lk 2k _ ,e 2-:aeq 1k + 2e* 1eaeq 2k J 
= = ll V l..IV a 8 llV a 8 

+ 4.[ 1k·2k ,e 2-e* e _ _q·,k ,e 2e* e + .9.·2k 2-: ,e eJ 
- - llB v - Bv ll - Bv ll 

- [ \. 2k ( le 2e* + 2e* ,e) - .9." 1 k 1 e2e* + .9." 2k 2e* le 
- - llV llV - llV - lJV 

+ nll).9.. 2 k - .9... 1.!5.) 1 e : 2e* J 

+ [1 k \ l~e* + (q 2k 2-e*leaB _ q \ 1 e2e*aB) ]} 
ll v llllV a e a B ' (2.28) 

where lka , 1eaB; 2ka, 2eaB~ and qa . eaB refer to the momentq and 

polarizations of the gravitons and 1e: 2e denotes the tensor inner 

product. Unlike the graviton-photon-photon transition amplitude 

(2.21), the three-graviton transition amplitude is not invariant 

under the analogous gauge transformation, which in this instance is 

of the form 

where xa represents an arbitrary vector. In general, the gauge in­

variance of the amplitudes is guaranteed by the Feynman-diagram for­

malism as long as all the diagram5 of the same order in the coupling 

constant are included. Owing to our ignorance of the propagator for 

an object of mass M and very high quantum-mechanical spin. we omit all 

diagrams but the graviton-pole diagram. (This difficulty in formu­

lating the quantum problem could probably be avoided by a classical 

analysis .) In the external-field approximation (no recoil of scat­

terer) the amplitude correspondinq to this diagram is given by (2.28) 
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where ~v stands for the 3-dimensional Fourier transform of ~v. The 

external-field approximation serves to simplify the algebra but the 

effect of the omitted diagrams is to yield an amplitude (2.28) that 

is not gauge invariant, and is valid only for small scattering angles. 

3. Scalar Waves 

Since the waves have wavelengths much larger than the scatterer, 

they cannot probe (at first order) either the scatterer's internal 

structure or the quadrupole and higher-order moments of its gravita­

tional field. For this reason, and because we calculate only to 

lowest order in ~' we can approximate the scatterer's gravitational 

field by the linearized metric for the exterior of a spherical body 

endowed with angular momentum: 

g = -(l _ 2M) 
oo r ' 

2M( ) goj = gjo =- ~ ~ x ~ j' 
r 

2t•1) ( ) g j k = ( 1 + r nj k • 3 • 1 

Here M is the mass of the body and M~ = ~ is its angular momentum. 

The Fourier transforms of the haB are given by 

~M e =-
00 q2 

e
0

J. = e . = .1M1 (a x q). 
JO 2q2 - - J 

ejk = 0 (3.2) 

where g is the (pure spacelike) momentum transfer q = 2~ - 1 ~ (q0= 0). 

Permitting the angular momentum per unit mass a to vanish in (3. 1) or 

(3.2), we recover the linearized Schwarzschild geometry. Using Eqs. 

(2.10), (2.13), (2.14), and (3.2), the differential scattering cross 

• 
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section becomes 

1 " 2" In the above w is the angular frequency of the scalar wave, ~ and ~ 

are unit 3-vectors along the propagation directions of the incident and 
1" 2" scattered fields respectively, and e is the angle between ~ and ~· 

Allowing a to vanish (linearized Schwarzschild geometry) one recovers 

the result previously obtained by Peters13 through a classical first-

order Born analysis: 

(3. 4) 

Due to the r -l dependence of the tlewtoni an potentia 1 , Eq. ( 3. 4) re ... 

duces to the usual l/sin4 ~/2)Rutherford-type cross section for the 

case of minimal coupling (u = 0). For non-minimal couplinq (u r 0), 

the cross section still exhibits the Rutherford-type angular depen­

dence, but only for e<< 1. This is not surprising. since it is the 

scal ar curvature R which gives ri se to u-dependent terms in the cross 

section. Considering that R is nonzero only along the worldline of 

the scatterer, we see that for large impact parameters (i.e •• small 

scattering angles) the scalar curvature cannot significantly contrib­

ute to the differential cross section. 

That the lowest-order class ical perturbation result of Peters 

agrees with our lowest-order quantum-mechanical perturbation result 

does not come as a surprise in the light of past experience with 

scattering of charged particles in a Coulomb potential (although the 
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gravitational scattering problem is somewhat more complicated owing to 

the presence of a tensor potential). This is not the end of the story 

however. For (nonrelativistic) Coulomb scattering it is a well known 

fact that the quantum-mechanical first-order Oorn approximation repro­

duces the classically derived Rutherford formula. And this Rutherford 

formula is exact in the nonrelativistic limit, both in classical and 

quantum mechanics. Does this mean that the highe~order corrections 

in the Coulomb scattering problem do not give any contribution? 

Dalitz23 has analyzed the problem and has found that (in the nonrela­

tivistic limit) the higher-order corrections do not affect the first­

order Born approximation apart from endowing the scattering amplitude 

with an overall phase factor. It follows that the first-order Born 

approximation gives the exact cross section. 

If we wish to make similar higher-order calculations in the 

gravitational case. we must take the nonlinear corrections to the 

Newtonian potential into account. And these nonlinearities do affect 

the first-order Born scattering amplitude in a nontrivial way, as is 

evident from a comparison between our weak-field result and the black­

hole result. 

The most obvious disagreement, as noted by Peters, is the 

appearance of au-dependent term in (3.4). For scattering off a 

black hole the cross section cannot depend on u , as R = 0 everywhere. 

And even when we set u = 0, we do not achieve agreement as the cross 

section for scattering low-frequency scalar waves off black holes 

shows ·a logarithmic dependence on the frequency.8 Moreover, for black­

hole scattering there is a nonzero absorption cross section, 24 unlike 
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Fig. 4 The spatial orientation of the angular momentum a and the -
scattered direction 2k relative to the incident direction 1k. 

- -
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the result for weak-field scattering. 

One may rewrite the scattering cross section for rotating 

bodies (3.3) in the suggestive form 

do (do) ~12a2w2 . 2 . 2 2 dn = dn SCHW + . 4 s1n a s1n e sin ¢ , 
s1n 8/2 

'(3. 5) 

with a, e, and ¢ as shmA~n in Fig. 4. Equnt ion (3.5) shows that the 

effect of angular momentum is to add a positive semi-definite term to 

(do/dn)SCHW' For small scattering angles this angular-momentum 

term is neglibible with respect to (do/dn)SCHW' This can be easily 
-1 

understood by noticing that for large impact parameters the r de-

pendence of the Newtonian potential h dominates the r-2 dependence . 
00 . 

of the magnetic-type gravitational field n ., which is the source of OJ 

the angular-momentum term. 

Another interesting feature of (3.5) is that the scattering in 

the backward direction is finite and independent of the angular 

momentum a: -
(3.6) 

4. Electromagnetic Waves 

Theoretically more interesting and of possible observational 

importance is the gravitational scattering of electromagnetic waves. 

We choose the polarizations of the photons to be purely spacelike 
1 1 2 2 

[f..= (0, ~ ), .£ = (0, ~)]and use Eqs. (2.13}, (2.14), and (2.21). 

The result for the scatterinq of electromagnetic waves with initial 

polarization 1
£ into some pol arization 2

£ is 
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do _ M2 I 1 2 * 1" 2 * 2" 1 ern - ( 1 + cos 8 ) ( ~ • ~ ) - ( ~ • ~ ) ( ~ • e:) 
n 4 sin4 8/2 

1" 2" 1 2* 2" 1" 2*) 2" 1 + i w[ 2 ( ~ X ~ ) • ~ ( ~ • ~ ) + ( ( k - k ) X E: • ~ ( ~ • ~) 

2" 1" 1 1 " 2 * 1
2 

+ (( ~ - ~) X ~) • ~( ~ • ~ )] • ( 4.1) 

For linear polarizations( 1 ~ and 2~ real) the contribution of the 

angular momentum a to the cross section (4.1) will be proportional to 

a2 w2• whereas for circular polarizations ( 1 ~ and 2~ complex) the con­

tribution will include an aw-term. We first consider circular polar­

izations (i.e., pure-helicity states) and we choose for the photon 

basis states 

2 R 1 " . " e:L = - ( e8 ± , e .J , 
- 12 - -'1' 

(4.2) 

,... ,.. A. ,.. 

where :x• :y• : 8, :¢ are unit vectors in the x, y, 8, and ¢ direc-

tions. After some algebraic manipulations (4.1) yields 

(~)RR = M2 [cotg28/2 ± 2aw cos 8/2(cos a cos 8/2 
LL 

(4.3) 

+ sin a sin 8/2 cos ¢)]2 + 4 a2w2 sin2 a cotg2 ~in2¢ 

(4.4) 

where the first (second) subscript denotes the initial (final) 

polarization and the upper (lower) sign in (4.4) refers to the RR (~L) 

case. For the linearized Sch\'tarzschild geometry (4.4) reduces to 
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recent results obtained by Peters: 13 

dcr SCHW 
{-an) 

RR 
{4.5) 

In the circular polarization basis the scattering matrix is diagonal • 

\t~hich explicitly shows that helicity is conserved by the scattering 

process. This is not restricted only to our situation, but rather is 

a general property of electromagnetic wave propagation in any orient­

able spacetime manifo·ld. 16 •25 In particular, it holds also for the 

fully nonlinear Schwarzschild and Kerr geometries. Moreover, for a 

nonrotating scatterer the scattering cross section is helicity inde­

pendent \'Jhereas for a rotating scatterer it is helicity dependent. 

This results in a differential gravitational deflection of right and 

left circularly polarized electroMaqnetic wave-packets by a rotating 

object. For a given impact parameter b of the incident beam, we de-

fine the angular splitting as 

0 _ (angle by which R helicity photon is deflected) minus (4.6) 
- (angle by which L helicity photon is deflected) 

We then solve the inverse scattering problem 26 and find, to lowest 

order in aw, 

· 4M 3 b 3 o = 2 a W COSet (0 ) (R.n(~) - 4J (4.7) 

To obtain this result we have used the constraint that o << 
4~ << 1. 

Note that to the first order in a, there is no differential deflection 

when the direction of incidence i s orthogonal to the angular momentum. 

It must be stressed that so far we have only discussed pure­

helicity states. For any linearly polarize~ or unpolar~zed incident 
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wave the scattering cross section summed over final polarization 

states becomes 

I 
cotg48/2 + 

dcr M2 ern= 
+ sin a sin 

4 a2 w2[cos2 8/2{cos a cos 8/2 

6/2 cos $) 2 + (sin a cotg 6/2 sin $ ) 2]~(~.8) 
~le therefore conclude that all linea rly pol arized incident 

beams are deflected through the same angle so that a null-test is 

possible in this case. 14 However, since the diagonal elements of 

the scattering matrix in the circular polarization basis are unequal 

when ~ ; 0, linearly polarized incident waves become elliptically 

polarized when incident on a rotating mass. For an unpolarized wave­

packet. on the other hand, the paths of different-helicity photons 

are split by an amount given by {4 . 7). In addition, the angular 

momentum a induces a partial polarization of the scattered waves. We 

define the degree of polarization by 

{4.9) 

and we find to lowest order in aw . 

p = 4 a w{cos a cos 8/2 +sin a sin 8/2 cos ¢)sin 8/2 tg 8/2 . {4.10) 

In concluding this section we note that independent of a, the 

initial polarization and the direction of incidence, the cross section 

for scattering in the backward direction vanishes. This property has 

been noticed before by Mashhoon10 for a nonrotating scatterer and for 



-30-

a rotating scatterer when the waves are incident along the rotation 

axis. Indeed, a theorem 26 in electromagnetic theory states that if a 

scatterer is axially symmetric about the axis of incidence of a plane 

wave, then the off-diagonal scattering-matrix elements (in the circu­

lar polarization basis) vanish in the forward direction, while the 

diagonal elements vanish in the backward direction. This theorem is 

immediately applicable to gravitational scatterinq of electromaqnetic 

waves, as in the £-~ formalism the qravitational field may be replaced 

by an equivalent bi-anisotropic medium, embedded in flat space. 

Hence the backscattered photon--if present--must have the opposite 

helicity of the incident circularly polarized photon. This contradicts 

helicity conservation (see Eq. (4.3)) and hence backscatter is absent.* 

The above argument is valid also for black-hole scattering 

and seems to be at variance with the 11 glory effect11
•
2 However, this 

effect has been shown to be absent when interference between the 

backscattered waves is taken into account. 10 

5. Gravitational Waves 

Using (2 . 13), (2.14), and (2 .28) we compute the differential 

cross section for the scattering of gravitational waves from an 

initial polarization 1e into some final polarization 2e: 

'* Note that these arguments hold irrespective of the wavelength of the 
electroma~tic waves and that they contradict the result by 
Nordtvedt· , that vector waves are backscattered in the Newtonian 
field of a point mass. ---
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This result was derived in the transverse-traceless {TT} gauge.2 

Although the transition amplitude {2.28} is not gauge invariant by 

itself, {5.1} yields reliable results for small momentum-transfers, 

i.e., for small scattering angles. By analogy with the photon case, 

we choose for the graviton basis states the circular polarizations 

given by 

{5.2) 

Substitution of the initial and final states into {5.1) yields 

(5.3a) 

{5.3b) 

The nonvanishing of {5.3a) clearly i llustrates that here, unlike t he 

electromagnetic case, helicity i s not conserved. rr1oreover, there is 

neither different scattering of opposite .helicity states nor partial 

polarization of unpolarized incident gravitational radiation. This 

is easily seen by noting that the scattering cross section for ei t her 

helicity state is given by [adding (5 .3a} and {5.3b)] 

2 
{--dd~}R = {ddcr )L = ~ {cos2e+a2w2s in 2asi n 2esin2~ ){cos2e+ 8

1 sin4e). 
~ ~ n sin 8/2 

(5 :4) 

Similarly, for the scattering of orthogonal linear polariza­

tions denoted by 
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1- 1 e =-
;;x /2 

A A A A 

(~x~y + ~y~x), (5.5) 

one finds, after summing over the final polarizations and use of (5.1), 

For unpolarized incident gravitational waves the differential scat­

tering cross section is given by (5.4) . Allowing a~ 0, we recover 
. -

Peters• results apart from a factor of cos2e: 
da SCHW 2 da SCHH 

(CJIT}THISreport= cos e ((ffi')PETERS • (5. 7} 

For small-angle scattering there is good agreement. One may 

recover Peters' result exactly by calculating the scattering of 

gravitational waves off a massive spin-0 meson. 18 Inclusion· of all 

the relevant Feynman diagrams then leads to a gauge invariant transi­

tion amplitude. Actually, for the choice of the TT gauge only the 

t-channel graviton-pole diagram and the seagull diagram survive, and 

one obtains Peters' results exactly, i.e., 

11- 2-*12 e: e . (5.8) 
"" ~ 

As a concluding remark, we note that independent of the polarizat1qn 

of the incident gravitational wave and the angular momentum ~' the 
-··-
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cross section for backscatter is nonzero. Whereas the exact depen­

dence of (do/dn)e=~ on the angular momentum ~ cannot be inferred from 

the cross sections derived above (they are valid only for small scat­

tering angles), one finds from (5.8) that the gravitational back­

scatter in a linearized Schwarzschild geometry is given by 

(~)SCHW = M2 
dQ 8=~ • (5.9) 

In addition, if the incident radiation is in a pure-helicity 

~~a~~' the backscattered radiation must have the opposite helicity. 

6. Summary and Conclusions 

The differential cross sections for the weak-field gravitational 

scattering of long-wavelength scalar, electromagnetic and gravitational 

waves have been calculated using Feynman perturbation methods. 

For the linearized Schwarzschild geometry, we have recovered 

the results obtained by Peters,13 although he used a classical Green 

function formalism. In particular, for electromagnetic waves . ~elicity 

is conserved, whereas for gravitational waves it is not. Endowing the 

scatterer with an angular momentum ~· leads to helicity-dependent ef­

fects in electromagnetic wave scattering. Although the photon helicity 

is still conserved, the coupling between this helicity and the angular 

momentum of the scatterer results in i) different scattering of right 

and left circularly polarized photons and ii) partial polarization of 

unpolarized incident electromagnetic radiation. The high-frequency 



-34-

. 10 16 limits of these effects have been d1scussed before by Mashhoon. ' 

Whereas in the high-frequency limit (wM >> 1), the angular split 6 

[defined by (4.6)]. and polarization p [defined by (4.9)] are propor­

tional to aw-1• in the low-frequency limit (wM << 1) they are propor­

tional to aw. This confirms the belief that the magnetic-type gravi­

tational field of a rotating body clearly distinguishes between the 

helicity states of a photon only in the diffraction limit. i.e., when 

the wavelength of the incident photon is of the same order as the 

Schwarzschild radius of the scatterer. 

Gravitational waves do not exhibit any of these angular­

momentum-induced effects. 

As a final comment. we note that this method may easily be 

* applied to the gravitational scattering of non-integer spin or 

massive fields. 

* In formulating the scattering problem for neutrinos and electrons 
one should use the vierbein formalism. 
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III. ELECTROGRAVITATIONAL CONVERSION 

IN STATIC ELECTROMAGNETIC FIELDS 

1. Introduction 

Recent work in general relativity theory indicates that in any 

spacetime permeated by an electromagnetic background, a nontrivial 

coupling exists between electromagnetic and gravitational perturba­

tions . Whereas the total energy in these perturbations is conserved, 

photon and graviton numbers individually are not. This implies the 

existence of conversion cross sections, expressing the fact that a 

static electromagnetic field may serve as a 11 catalyst 11 for converting 

electromagnetic waves into gravitational waves and vice versa. 

The machinery for these conversion processes is easily dis­

cussed in terms of the picture deve 1 oped in Chapter I. ~le have seen 

that the interaction of a gravitational field with an electromagnetic 

field induces a polarization current, which acts as the source of an 

additional electromagnetic field. I.e .• a gravitational field acts 

on an electromagnetic field by changing the dielectric permittivity £ 

and magnetic permeability~ of the vacuum. Thus, when a gravita­

tional wave propagates through a static electromagnetic background. 

the electromagnetic fieldlines will be alternately stretched and com­

pressed owing to the changes in £ and ll; and this .. alternating field­

configuration will then act as a source of electromagnetic waves. 

Somewhat picturesquely it can be said that the virtual photons of 

the static electromagnetic field are 11 Shaken loose11 by the bumps of 

spacetime and as a result become real electromagnetic quanta. 
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This process is well-known in conventional electromagnetic theory and 

is called transition radiation. 1 Fig. 1 gives a diagram describing 

this process. 

The reverse process is also possible. Just as a nonstationary 

state of matter can generate gravitational waves. an alternating 

electromagnetic field can (under certain conditions) generate gravi-

tational waves. Consider, e.g .• an electromagnetic wave F, which 

propagates through a magnetostatic field F
0

• The stress-energy 

tensor of the total electromagnetic field is the sum of three terms: 

a term proportional to F
0
2• a term proportional to F2 and an inter­

ference term proportional to F
0
F. The first two terms do not act as 

a source of gravitational waves. but the interference term does. This 

process is represented in Fig. 2. 

Electrogravitational conversion was known to Whittaker2 as 

early as 1947. Gertsenshtein,3 however, was the first to actually 

calculate a conversion efficiency. In 1961 he used Einstein's 

linearized theory to consider the resonance of electromagnetic waves 

and gravitational waves in a strong uniform magnetostatic field. 

Weber and Hinds4 investigated similar conversion processes by employ­

ing the Hamiltonian formulation of general relativity theory. The 

problem of the electromagnetic response of a capacitor to an incident 

gravitational wave has been investigated by Lupanov. 5 ~le take special 

note of a series of papers by an Italian research group,6-10 in which 

various conversion mechanisms are studied. Both a Lagrangian-based 

quantum theory of gravity and classical general relativity theory are 

used. Their conclusions include possible astrophysical consequences 
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and suggestions for gravitational-wave experiments. Papini and 

Valluri 11 used a Lagrangian-based quantum theory of gravity as well 

to study the role of conversion scattering in pulsars. Ginzburg 

and Tsytovich12 recently calculated conversion cross sections by 

using the formal analogy between conversion scattering and dielectric 

wave-induced transition radiation. 

It was hoped that electrogravitational resonance near a 

Reissner-Nordstr~m (charged, nonrotating) black hole would have 

observationally detectable consequences. Insight into the details of 

electrogravitational resonance in the neighbourhood of a charged black 

hole has been provided by Gerlach,13 who oriqinally found the coupled 

electromagnetic-gravitational perturbation equations in the JHKB limit. 

The Newman-Penrose formalism was used by Chitre et a1. 14 to obtain the 

wave equations for mixed gravitational and electromagnetic perturba­

tions in the neighbourhood of a slightly charged black hole (Q/M ~< 1), 

However, numerical studies15- 16 have shown that the electrogravita­

tional interconversion can become efficient only when the charge-to­

mass ratio Q/M of the black hole is near unity. Black holes with such 

an extreme Q/M ratio are unlikely to exist. Nevertheless, the problem 

of coupled electromagnetic and gravitational perturbations in the 

vicinity of a Reissner-Nordstr~m black hole remains interesting in 

principle, and Matzner17 has recently calculated the conversion cross 

sections in the long-wavelength limit for quadrupole waves. 

We shall not address ourselves to the strong-field (black hol~) 

problem, which requires the use of the full mathematical apparatus of 

general relativity theory. Rather we undertake this study with 
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conversion processes in a hot magnetic universe, pulsars, interstellar 

magnetic fields, etc. in mind. Therefore, we study the simplified 

case of Minkowski spacetime, permeated by various static electromag­

netic backgrounds. The conversion efficiencies are extremely small, of 

course, but one may not do away ! ·priori with these conversion pro­

cesses if they are allowed to act on astrophysical distance and time 

scales. 

In the following we shall use Feynman perturbation techniques 

to derive conversion cross sections in closed form and to analyze i n 

detail their dependence on the polarization of the incident wave . 

Many of our results have been obtained before by the use of some 

other method. The reader is invited to compare the ease with which 

results can be obtained by the Feynman perturbation technique as 

opposed to the calculations hitherto used. 

This chapter is in eight sections. Section 2 summarizes the 

relevant Feynman rules. Section 3 treats interactions with a non­

spinning test charge. In sections 4 and 5 we calculate conversion 

cross sections in electric and magnetic dipole fields. Sections 6 and 

7 are devoted to conversion in uniform magnetostatic and electrostati c 

fields. Finally, in section 8 we discuss our results in the light of 

previous investigations and make remarks about some inaccuracies in 

the literature. 

2. The Feynman Rules 

We review here the Feynman rules which wi ll be relevant for our 

purposes. The Lagrangian density describing the interaction of a 
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charged massive scalar field (a pion say) and a photon field in a 

Minkowski background is 

( 2.1) 

Here~ is the scalar field, M is the scalar field's mass and e is its 

charge in Lorentz-Heaviside (rationalized) units (for an electronic 
2 

charge : 1T = 117 ) . All is the Maxwel 1 4- potentia 1 and F lJ\! is the 

electromagnetic-field tensor computed from A by 
ll 

F = A -A . 
lJ\! \!tll lJ,\! 

(2.2) 

Through minimal substitution we obtain from (2.1) the corresponding 

manifestly covariant Lagrangian density in a curved background: 

(2.3) 

An infinitesimal variation of ~* in the action S= J Ld4x, yields the 

field equation for ~ 

....L [( a -ieA) f-:9 gll\!(a -ieA )]~ - ~12~ = o. (2.4) 
~ ll ll \) \) 

Similarly, varying the actionS with respect to A provides a set of 
ll 

Maxwell equations 

FIJ\! = eJ·IJ 
;v 

where the current jll is defined as 
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~ w * * j = i g [~(a +ieA )~ -~ (a -ieA )~] 
0 v v v v (2.6) 

By invoking the field equation (2.4) one can show that j~ satiosfies 

the conservation law 

J·~ = 0 
;~ 

(2.7) 

The other t~axwell equations 

F + F + F = 0 
~V;A VA;~ A~;v 

{2.8) 

follow from (2.2). 

As in Chapter II we define the gravitational field as the devi-

ation from Minkowski spacetime: 

and expand the Lagrangian density ( 2. 3) in powers of A. ~Ie find 

with 

( 2.1 Oa) 

( 2. 1 Ob) 

1..' • ~v * 0 * 
I = -1en (A( ~ )~ -A( ~ )~) 

~ .v ~ ,v 

~v * * + 2ieAh (A( ~ )~ -A( ~ )~) 
~ ,v p ,v 
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L5 andLEM describe the propagation in Minkowski space of the 

free massive scalar and photon fields and allow us to deduce their 

propagators (in momentum space): 

(2.ll a) 

DEM (k) = ~ . 
ll\! 'k 2- -:. . 

-1 £ 
(2 . llb) 

Here c is a small real positive number. 

The Lagrangian density L1 describes the mutual interaction of the sca­

lar, photon and graviton fields and yields the Feynman vertex func­

tions (see Fig. 5): 

(a) The scalar particle.-scalar particle-photon vertex: 

(?..12a) 

(b) The scalar particle-scalar particle-graviton vertex : 

(2.12b) 

(c) The scalar particle-scalar particle-graviton-photon vertex: 

(2.12c) 



___ ..,. 
'l' ~ 

( 0 ) ( b) 
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( c ) ( d) 

Fig. 5. The Feynman vertices. The solid lines represent scalar 

quanta, the dashed lines represent photons, the wavy lines 

represent gravitons. 

yk yk yk - / _/ 
yk' ,, _/ /" / 

" -I / 
/ / I 

I 

I 

---~ 

( 0 ) ( b) ( c ) 

Fig . 6. Feynrnan graphs for exchange Compton scattering 

(graviton + photon) by a charged spin-0 meson 

( d ) 
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{d) The graviton-photon-photon vertex: 

T = 2AI Ylk Y2k Yl£~2£* + Yl£ Y2£* Ylk.Y2k I ')J v) - - ={p \)) - -

_ Ylk Y2£* Y2k• yl£ _ y2k yl£ ylk.Y2£* 
(JJ v) - - (JJ v) - -

- ~ n~" r ( Y\_. Y2t)( Y\. y2£*) - ( Yl t· Y2!'0.* )( Y2t·. y10 J I~" . 
(2.12d) 

3. Exchange Compton Scattering 

We are now in a position to work out the cross sections for the 

conversion of gravitational waves into electromagnetic waves in the 

electrostatic field of a charqed scalar particle. 

Let the initial and final 4-momenta of the scalar particle be 

1~ = (1E,1e) and 2£ = (2E,2E) and those of the incident graviton and 

scattered photon gk = (9w,g~) and Yk = (Yw,Y~) respectively. The 

polarizations of the graviton and photon are denoted by ~v and EJJ. 

The lowest-order diagrams for exchange Compton scattering are shown 

in Fig. 6 . Figures (6-a) and (6-b) are the pion-pole terms and 

Fig. (6-c) is the seagull term familiar from meson theory. The t-pole 

term exhibited in Fig. (6-d) is a unique feature of gravitation. It 

arises from the fact that the gravitational wave interacts not only 

with the mass of particle, but also with the energy associated with 

its long-range electrostatic field. 

A straightforward application of the Feynman rules summarized 

in Sec. 2 yields for the individual contributions of the separate 

graphs 
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1 -;j.l\) 1 2- 2 * 1 g ) - 1 Ta = 2Ae( p~e pv+yM e)£·~ ( Q· k • 

Tc = -2Ae evv( 1 p+2p)(~ E~) • 

Td = -Ae{Yk~euv Ykv( 1Q+2£)· £*-euv( 1 p+2p)(~ E~)gk·Yk 

-evv Yk(~ £~)Y~.( 1£+2Q)+~v Yk(~( 1 p+2p)v) 9k·E* 

To obtain the above, we have used 

(3.la) 

(3.lb) 

(3.lc) 

(3.2) 

(3.3a-c) 

To investigate the gauge invariance of the scattering amplitude, 

we consider the transformations 

(3.4a-b) 

where f and X~ are arbitrary functions. It can readily be shown 

that the individual terms of the scattering amplitude are not 
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qauge invariant thouqh their sum is. Indeed, the fact that the sum 

turns out to be invariant under qauge transformations (which in this 

instance takesthe form that the scattering amplitude vanishes under 

the substitutions ~v ~ gk{~Xv ) - ~ n~v q~·X , £~ ~ Yk~). is a strong 

test which assures us that no algebraic errors have entered into the 

calculation. 

In our expressions for the cross sections we shall use the 

laboratory frame, in which 

(3.5) 

We remove the gauge freedom for the electromagnetic field by choosing 

the photon polarization £~ to be purely spacelike (£0 = 0). The 

gravitational gauge freedom is specified by choosing the transverse­

traceless (TT) gauge (ev0 =eo~= 0; e = 0). 

We then see that the contributions of the diagrams (a) and (b) 

vanish and the remaining terms take a much simpler form: 

(3.6a) 

(3.6b) 

where we have used 
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--iJ' 2 .. 
e P ,.. - -:4e ·1 Yk (i "'j)-- (i £,;) ' 

-eij Yk 2p - eij Yk Yk 
(i j) - - (i j) ' (3.7a-e) 

The above relations follow from conservation of energy-momentum and from 

the transverse nature of the photon and graviton. 

The frequency of the outgoing photon is related to the fre­

quency of the incident graviton through the Compton relation 

Yw = gw 

1+2? sin2 ~ 
. ' (3.8) 

where e is the angle between 9~ and Y~. 

The differential cross section for converting a graviton with 

frequency gw and polarization ~v into a photon with frequency Yw and 

polarization c~ is 

(3.9) 

where D denotes the density of final states 

(3.10) 

Substitution of (3.6) and (3.10) and in (3.9) and use of (3.8) yields 
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. ~ ~ . e ~ 4 e .( g 1 ) 2 !"ei j Y k ( i e:;) I 2 • 
87T s1n ~ 1+ 2 w sin2 ~ 

M 2 

(3.11) 

( 1 a bora tory frame; va 1 i d for a 11 gw/~1) 

Here Yk is a unit vector in the direction of the outgoing photon. - . 
In the nonrelativistic region, i.e., for gw « r1, there is 

neqligible recoil of the scatterer and (3.11) reduces to 

d 2 'j A * 2 o e l_e, Yk . I dn = e:J.) · • 87T sin4 ~ (l 
2 

(3.12) 

* (nonrelativistic limit, in laboratory frame) 

It is easily seen that the cross section (3.12) is solely due 

to the contribution of the t-pole diagram. We therefore conclude that 

although the t-pole diagram is not invariant by itself with respect to 

gravitational gauge transformations, it yields the correct nonrelati­

vistic scattering amplitude in the laboratory frame, but only if one 

chooses the TT gauge for the graviton. One is free to choose the 

photon gauge, as the t-pole term is invariant with respect to photon 

gauge transformations. 

When gw << M, the source of the electromagnetic background 

field is not appreciably affected by the incident graviton. This 

justifies the use of the external-field approximation18 in the non­

relativistic limit. In this approximation the differential conversion 

cross section is given by 

* This formula is also valid for small scattering angles 
(sin2 e/2 << M/2gw) for any 9w· 
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do= 2n · ITI 2 D • 
29w 2Yw 
y 2 

9w = Yw and D = w dn . 
(2n) 3 

(3.13) 

(3.14) 

The transition amplitude to be used in (3.13) is given by (2.12d), 

where one of the photon polarizations that appear in it stands for 

the 3-dimensional Fourier transform of the Coulomb potential 

A - e n 
ll - 4nr l.lO 

(3.15) 

i . e. , 

Y \ : = j {A } = e 
2 

Tl
11 0 

( 3 • 1 6 ) 
ll ll q ~ 

Here~ is pure spacelike (no recoil of the scatterer). It is readily 

checked that the external-field approximation leads to the nonrelati­

vistic cross section (3.12). 

From now on we shall restrict our attention to this more real­

istic case of nonrelativistic scatterinq (unless otherwise stated). 

The relativistic (R) cross sections can be obtained from the nonrela­

tivi sti c (NR) cross sections by multiplication by the .approori ate 

factor: 

(3.17) 

Choose now for the basis states of the incident graviton and 

the outgoing photon the circular polarizations 
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;~ = ~ [~x~x-~y~y ± i{~x~y+~Y~x~] ' 

£R = -l {@8±i@~) • 
-L II - - lj' 

{3.18a) 

{ 3. 18h) 

where ~x• ~y• ~e and ~<t> are the unit vectors in the x, y, e and <t> 

directions {the z axis is the polar axis; ~ is measured in the x-y 

plane from the x axis) and where the +(-) signs refer to the R{l) 

circularly polarized waves. Substituting (3.18) into (3.12), we find 

{3.19a) 

(dcr) {dcr) e
2 

2 e { )2 dn = dn = 16 cot 2 l+cos e , 
RR LL rr 

(3.lqb) 

where the first {second) subscript denotes the graviton {photon) 

polarization. The cross section for converting circularly polarized 

gravitons into photons (of any polarization)is then 

2 
(~) = (~~} = k ·cot2 ~ {l+cos2 

e ) . 
R l 

(3.20) 

For any angle e 1 0 the outgoing electromagnetic radiation is not 

circularly polarized anymore. but elliptically polarized. In the 

forward direction. however, the outgoing photon is circularly polar­

ized and. moreover. has the same helicity as the incident graviton. 

We also note that there is no backscatter: 

{ 3. 21) 

It is worthwhile to compare these conversion cross sections with 
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the Compton-scattering cross sections for photons and gravitons. The 

photon Compton-scattering cross section (in the nonrelativistic limit) 

is the familiar Thomson cross section 

(3.22) 

where M is the mass of the scatterer. Unlike Thomson scattering, the 

conversion cross sections (3 . 19b) and (3.20) exhibit a Rutherford peak 

in the forward direction.* This feature is entirely due to the t -pole 

term and is also present in the cross section for graviton scattering 

(3.23) 

Turn now to linear polarizations. We choose for the graviton 

basis states 

e = _l (@ @ - @ @ ) 
::+ /2 - X- X -Y- Y 

(3.24a) 

- 1 e - -- (~x@y + @y@x) - '2- - --.... x y(. 

(3.24b) 

Substituting (3.24) into (3. 12) and summing over the polarizations of 

the outgoing photon we find 

- * It must be remarked that the Rutherford peak is suppressed if the 
charge is embedded in a dielectric medium. In this case the for­
ward travelling electromagnetic wave is slower than the gravita­
tional wave and eventually will get out of phase with it, i.e., a 
medium-reduces the coherence length of the process. This results 
in a finite value for the differential cross section in the forward 
direction.l,l2 
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. (~) ~ ~ cot2 ~ (sin2 2~+cos2e cos2 2~) , 
+ 

{~~)x= · :~ cot2 ~ {cos2 2$+cos2e sin2 2$) 

(3.25a) 

(3.25b) 

From (3.19) it follows that the outgoing photon is also linearly . 

polarized. For unpolarized incident waves we must average over the 

incident polarization states and we recover (3.20). 

The relativistic differential cross sections can also be ex­

pressed in terms of the frequency Yw of the outgoing photon instead 

of in terms of the scattering angle e. Using (3.8) and (3.11), we 

find, after integration over <1>, 

(3.26) 

where the range of Yw is 

(3.27) 

The total conversion cross section obtained by integrating 

(3.20) diverges because of the long-range character of the Coulomb 

field. This divergence may he avoided by ~ebye shielding if the 

scattering takes place in a plasma. In the nonrelativistic limit 

the interaction of the gravitational wave with the fixed charge is 

now assumed to take place ·through a ·sc-fleefled .GolJloMb potential 
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. exp(~r/lD) 
Afl = e -4'1Tr . nf.IO (3.28) 

Here the Oebye screening length An is given in terms of the electron 

thermal velocity 

(3.29) 

and the plasma frequency 

(3.30) 

as 

VT 
e 

AD=---
/?. wpe 

( 3. 31) 

In the above, k, Te• Me and N are respectively the Boltzmann constant, 

the electron temperature, the electron mass, and the electron number 

density. The screened Coulomb potential has a spatial Fourier trans­

form 

(3.32) 

where g is the momentum of the spacelike photon mediating the Coulomb 

intera¢tion and qsc = l/A0. 

Using (3.32) and (2.12d) we find that when shielding occurs, 

(3.20) must be replaced by 

(3.33) 
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For linearly polarized incident gravitational waves the ~(l+cos2e) 

must be replaced by (sin2 2¢ + cos 2ecos2 2¢) or (cos2 2¢ + cos2e 

sin2 2¢) for the + and x polarizations respectively. 

The total cross section now becomes finite and is given by 

iT 2iT 

a = J J ~ sineded<J> = 2e2 [tn(2wAD) - t'J . 
0 0 

(3.34) 

Note that this result is only valid for tenuous plasmas, i.e., for 

wAD>> 1. For dense plasmas the electromagnetic index of refraction 

L 2 ."""2 
n ( w) = v'l - wpe I w (3.35) 

will not allow the electromagnetic wave to travel with the same phase 

velocity as the gravitational wave and therefore the conversion cross 

section will be reduced to a value which is considerably smaller 

than (3.34). (See also footnote on p.52.) 

If the scattering does not take place in a plasma but the inci­

dent gravitational wave-front has a width D, the Rutherford forward­

scattering peak is again suppressed and (3.34) applies approximately 

with the Oebye screening length AD being replaced by the width D. 

Finally, note that the formulas derived above for a point 

charge are also valid (to the lowest order in w) for a charge distri­

bution confined to the coherency volume 

3 
v << (f!) c w . (3.36) 

All of the previous formulas applied to conversion of gravita~ 

tional waves into electromagnetic waves. The inverse process 
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' - \ 

' yk ' 
- ' 

( a) ( b) ( c ) 

Fig. 7. Feynman graphs for exchange Compton scattering 
(photon~ graviton) by a charged spin-0 meson. 

\ 
\ 

yk ~ 
- \ 

\ 

( d) 
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(electromagnetic wave to gravitational wave conversion) is also pos- · 

sible and is described by the Feynman diagrams in Fig. 7. Straight­

forward calculations similar to the ones above,lead to the differen­

tial cross section for converting an electromagnetic wave with 

frequency Yw, polarization £ and propagation direction Yk into a - -
gravitational wave with frequency gw and polarization e 

:::: 

d 2 ( 1 ) 2 . '* 2 o - e 1-'~J Yk I 
d'IT - 8'1Ts in 4 ~ 2 Y w • 2 e e ( i 

8 
j ) · 

c. 1+ M s1n 2 

(3 .37) 

(laboratory frame; valid for all Yw/M) 

The cross sections for circularly polarized or unpolarized 

incident electromagnetic waves are the same as those for the correspond­

ing inverse conversion process. Owing to the different spin nature 

of the incident quanta, the cross sections for linearly polarized in­

cident electromagnetic waves,however,show a different~ dependence 

than the corresponding inverse-process results. Specifically, for 

electromagnetic wave polarizations along the x and y axes we find 

(in the nonrelativistic approximation) 

do e2 2 e . 2 2 2 
(diT)~ =liT cot 2 (s1n ~+cos ecos ~), 

- X 
(3.38a) 

(3.38b) 

The conversion cross sections derived above, are exceedingly 

small. Discarding the slowly varying logarithmic function we can 

write (3.34) as 
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G 2 2 
cr 'V 2 ( Lf) e = 8Tilp a 

c 
( 3. 39) 

where R.P = /GY!;c3 = 1.6 x 10-33cm is the Planck distance and (in the 

case of an electronic charge) a = e2 /(4~c) = l/137 is the fine struc­

ture constant. We find cr 'V lo-67cm2. 

Papini and Valluri 11 have estimated the gravitational radiation 

that is generated by the interaction of photons with the space-charge in 

the magnetosphere of a pulsar. For NP0532 (the Crab pulsar) and in the 

radio-frequency range 108 to 109Hz they find that gravitational radiation 

due to this process is emitted at the rate 'V lo-21 erg/sec! 
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4. Conversion in an Electric Dipole Field 

Turn now to electrogravitational conversion with an electric di ­

pole field acting as a catalyst, and utilize the external field approx­

imation. The electric dipole field19 ,* 

[
3r(p·r)- p(r·r)]' 1 3 E = - - - - - - - - p o ( r) 

- 4 5 3 - -Tir 
( 4. 1) 

is obtained by applying (2.2) to the Maxwell 4-potential 

A. = 0 (4.2b) 
J 

Here p is the electric dipole moment. The Fourier transfonns of the\ 

are given by** 
p·q 

0 o = i· - q2 

cr.= 0 
J 

( 4. 3a) 

( 4 . 3b) 

where q is the pure spacelike momentum-transfer (no recoil of the dipole). 

The prime []' in (4.1) indicates the following prescription: When []' 
occurs 1n any integral over position space, replace []' by zero for 
r< e: , evaluate the integral and then take the limit e: -+-0. With this 
prescription and with the help of a convergence factor e-Ar (A is an 
arbitrarily small positive number) one can, for example, show that 
( 3 ' 

1 ~d x = -1 1 3 e . 
** The Fourier transform(4.3a) is valid only when lgl 1 0. Indeed, from 

(4.3a) one deduces the Fourier transform of (4.1): 
J{E} = J{-~A0} = -igJ{A0

} = -g(e·g)/q2. This expression is a function 
of the direction but not the magnitude of g and has no unique limit for 
g -+- 0. This strongly hints that one cannot use (4.3a) to calculate 
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We choose a pure spacelike photon polarization and the TT gauge for 

the graviton and use equations (2. 12d), (3.13), (3.14) and (4.3). The 

result for converting a graviton with polarization e, frequency w ' and 
. ::; 

propagation direction gk ·into a photon with polarization e:, frequency w - -
and propagation direction Yg is 

cb _ w2p2 2 Cf2 ~ 1 • 4 e . [sin as in e cos <t> - cos a ( 1 - cos e)] 
8n s 1 n 2 

I ":""i j Y(' * I 2 
X e K(i e: j) · (4.4) 

The angles e, <t> and a are defined in Fig. 8 . It must be stressed 
that (4.4) is not valid for e= 0. 

Consider now circular polarizations. After some algebraic mani-

pulations we find 

2 2 
(~) = (~) = T&- [sin a (1 +cos e)cos <t> -cos a sin ei 

RR LL 

X (1 + cos e)2 (4.5a) 

2 2 
(~\L = (~\R = ~6~ [sin a (l+cos e)cos <t> - cos a sin e]

2 

X ( 1 - cos e )2 (4.5b) 

(continued)]{~) at g =0. A careful evaluation of the Fourier trans­
form of (4.1) (taking the prescriptions of the above footnote into 
account) reveals that l 

~ _ -1 I 3Q for I g I = 0 
; {~}- Q·q 

-~ --f otherwise 
q ~,g 

Note that -1 /3p is the angular average of -g - 2 . 
- q 
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Fig. 8. The spatial orientation of the electric dipole E and 
the direction Y~ of the outgoing photon relative to the 
direction gk of the incident graviton. 
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where the first (second) subscript denotes the graviton (photon) 

polarization. Summing over final polarizations, we obtain the conver­

sion cross sections for circularly polarized (or unpolarized) waves 

do w~2 
2 2 (en) = [sin cx(l+cos a)cos<t>- coscxsin a] (l+cos a). 

L 
( 4. 6) 

Note that the outgoing wave is elliptically polarized and that the cross 

section vanishes in the backward direction. 

For line~rly polarized incident gravitational waves, one finds 

from (4.4), after summing over final polarization states, 

2 2 
(~)+ =~[sincx(l+cos a)cos<t>- coscxsin a]2 (sin22<t>+cos2a cos22<t>), 

(4.7a) 

2 2 
= w4~ [sincx(l+cos a)cos<t>- coscxsin a]2 

x (cos22<t>+ cos2a sin2 2<t>). ( 4. 7b) 

As can be seen from (4.5), the outgoing electromagnetic wave is also line­

arly polarized. 

An obvious feature of the above cross sections is the absence of a 

Rutherford peak in the forward direction, a manifestation of the fact that 

the dipole field falls off faster than r-l. Th~s yields a finite total 

cross section* 

* The total cross section (4.8) is obtained by integrating the above differ-
ential cross sections, which are valid for all scattering angles a but 
the forward direction (a = 0). This tot a 1. cross section is correct as the -
differential crosssection does not have a delta function-like singularity 
for a = o. In fact, using r{E} =. -l/3 p for q = 0, one easily shows: 

(dcr/dn)a=O = [(w2p2 )j9n]sin2 cx~ regardle;s of the incident polarization 
state. 



-63-

7 2 2 1 2 a= Trw p (1 - 7 cos a), for any incident polarization (4.8) 

Maximal conversion occurs when the direction of incidence is orthogonal 

to the dipole moment. 

Electromagnetic-to-gravitational wave conversion i s also described 

by (4.4) with the following substitutions: e + e*, £* + £. For circu~ 
-::::. :::: - -

larly polarized or unpolarized incident electromagnetic waves the conver-

sian cross sections are the same as the cross sections for the correspond-

ing inverse process. For linearly polarized incident electromagnetic 

waves, on the other hand, the cross sections exhibit a different <P 

dependence when compared with ( 4. 7): 

(4.9a) 

(4.9b) 

The corresponding total cross sections are 

0 " 2 2 2 1 . 2 
~x = 5 w p ( 1 - T2 s 1 n a) (4.10a) 

a"' _ 1
30
7 .w2p2(l 5 2 ) ~y - - IT cos a ( 4. 1 Ob) 
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5. Conversion in a Magnetic Dipole Field 

The magnetic dipole .field19 

B = [3!(T·:) - T(:·:)J. + £ m o3{r) 
4Tir5 3 - -

may be obtained by applying (2.2) to the Maxwell 4-potential 

A = 0 
0 

m x r 
A. = C {) 

J 4Tir j 

( 5 .1) 

(5.2a) 

(5.2b) 

Here ~ is the magnetic dipole moment. 

are gi ven by* 

The Fourier transfonns of the A 
l.l 

(J = 0 
0 

m x q 
'(- · -) (J • = _,. 2 . 

·J . q J 

(5.3a) 

( 5. 3b) 

Again we choose a pure spacelike polarization for t~e photon and 

the TT gauge for the graviton. With the aid of (5.3), (2.12d), (3.13) 

and (3.14) we find the differential cross secti~n for converting a gravi­

ton with polarization f, frequency wand propagation direction gg into 

a photon with polarization £ , frequency w and propagation direction Yk -· . -
Again the Fourier transform (5.3b) is only valid as long as lql "I 0. 
Invoking (5.3b) one finqs r{~ } = ]={~x~} ~ ig x:r{~} = gx (!!lxl) 

= -g ~+ T, for lgl "I 0. Taking the footnotes ~n p.59 in~o account, 
q 

one finds that T{B} = 2/3 m, for lg l = 0. 
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+ Yi(( . £*.) Yi(.(mx 9k) + yk(.[m x(Yk-gk)].) gE· ~ *) 2 
• 

1 J - -- 1 - . - -J --

(5. 4) 

" In the above m is a unit vector along the direction of m . 

Using the notations. of t~e previous sections, we find 

cb 2 2 
e)cos ¢]2 

( ct1) RR = ( *) LL = l 6~ { [cos a sin e + s i n a ( 1 - cos 

+ [2 sinasin <Pi} (1 + cos e)2 
' (5.5a) 

da 2 2 
e)cos <Pi Can) = ( ~ \ R = l 6~ {[cos a s i n e + s i n a ( 1 - cos 

RL 

+ [ 2 s i n a s i n <P] 2} ( 1 - cos e )2 , (5.5b) 

2 2 
(~)R = (~\ = w8~ {[cos a sin e+ sin a (l -cos e)cos ¢]

2 

+ [2 sin a sin <Pi} (1 + cos2e) (5.6) 

2 2 
(~)+= w4~ {[(cosasin e + sina(l-cos e)cos ¢)sin 2¢ 

- 2 sinasin¢ cos 2<j>]2 

+ cos 2e[(cosasin e+ sin a(l-cos e )cos ¢)cos 2¢ 

+ 2 sin a s in <P sin 2¢ ]2} (5.7a) 
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2 2 
( ~~ = w 4~ {[ (cos as in a + sin a ( 1 - cos a) cos cp) cos 2<1> 

+ 2 sinasincp sin 2cp]2 

+ cos2a[(cos a sin a+ sin a(l- cos a)cos cp)sin 2cp 

(5. 7b) 

Unlike conversion in an electric dipole field, these cross sections do 

not vanish in the backward direction: 

(5.8) 

The total cross section is finite and is given by* 

9 2 2 7 2 cr ·= ~w m (1 - g cos a) , for any polarization . (5.9) 

As before, electromagnetic-in~o-gravitational wave conversion is 

described by (5.4}, modulo the substitutions e ~ e*, £* ~ £. Formulas 
::::::. ~ - -

(5.5)-(5.6) remain the same, but (5.7) must be replaced by 

2 2 
( 00d~"'~) " = w4m {[cosasina+ sina(l -cos a )cos ¢] 2 + [2 sinasin ¢]2} 

~' ~X 7T 

(5.10a) 

Using 1{B} = 2/3 m for q = 0, one shows that (dcr/dn) a=O = 
2 2 - - -

4w m 2 
9n sin a, and hence the footnote on p. 62 is applicable. 
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2 2 
(~)" = w4~ {[cos a sine+ sin a (1- cos e)cos cp] 2+ [2 sin a sin cp]2} 

~y 

( 5. 1 Ob) 

The corresponding total cross sections are 

(5.lla) 

47 2 2 35 2 ae = 30 w m (1 - li cos a) 
-Y 

(5.llb) 

The above results were derived for a pointlike dipole, but they 

yield estimates of the proper order of magnitude for any magnetic scat-

terer whose characteristic dimensions are considerably less than the 

wavelength of the incident radiation. For a uniformly magnetized sphere 

with radius a and internal magnetic induction B. we have m = 2Tia3B. -1n - - 1n 
and we obtain from (5.9) 

(5. 12) 

where A = 2TI/w. The quantity between square brackets must be included 

if one expresses B. in Gaussian units instead of Heaviside-Lorentz units. 1n 
The parameters for the pulsar NP0532 are: a 'V 106 em, B. 'V 1012 

1n 
gauss. F?r A= lOa, (5.12) yields a 'V .2 cm2. There is no observable 

conversion of long-wavelength radiation by magnetic stars. 10 , 12 
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6. Conversion in a Uniform Magnetostatic Field 

We first study the inverse GertsenshteYn process, 3' 8 i.e., con­

version of a gravitational wave into an electromagnetic wave in a 

homogeneous magnetostatic background. Consider a plane gravitational 

wave 

( 6. 1) 

propagating along the z axis and incident on a uniform magnetostatic 

field~ (see Fig. 9). This magnetic background is confined to there­

gion between the planes .z = -i/2 and z = i/2 and makes an angle a with 

gk: 

B = B rect( ~)(sin a e + cos a e ) 
- ~ - X -Z 

(6.2) 

where the rectangle function is defined by 

rect(x) = t : lxl ~ 1/2 

otherwise ( 6. 3) 

In the TT gauge the conversion process is described by the 2-photon­

graviton interaction functional (cf. eq. (2.10c)) 

(6. 4) 

where Fiv and FjS stand both for the outgoing electromagnetic wave 

Y Y -iYk·x 
F, ," = -i( k £* - k £*) e - -'"'v ~ V V ~ 

(6.5} 
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-.i/2 

Fig. 9. The spatial orientation of the uniform magnetic background 
B relative to the direction gk of the incident graviton. 
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and the magnetic background 

F = -F = 0 
0\1 \10 

3 J q3R. in·x ~ = (2'TT) BR- cos a j 0(-y-)c(q1 )c (q2}o(q
0

)e . .:1. - ·;~ , 

(2'TT) 

F23 = -F32 = (2n) 3Bt sin "J j
0

( qi\s(q1 )6(q2)6(q
0

)eig_·.>5_ (::~4 . 

(6.6) 

In the above j
0

(x) is the zeroth-order spherical Bessel function 

(6. 7) 

For · the electromagnetic wave we choose the· pure spacelike gauge (£
0 

= 0). 

From (6.4) we deduce the transition-matrix element 

The presence of c-functions in (6.8) means, among other things, that the 

electromagnetic wave is constrained to travel along the ±z directions . 

To obtain the transitio~ probability per second we must square 

(6.8) and substitute into the 11 golden rule 11 
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transition probability = J 2n 1rf,·l2 D 
second 2yko 2gko (6.9) 

where D is the density of final states 

(6 . 10) 

This transition probability exhibits quadratic dependence on o(Yk
1
- gk

1
) 

Following the usual procedure, we put 
I 

(6.1la) 

with L an arbitrarily large but finite length. Ill-defined mathematical 

expressions containing squares of a-functions can be avoided if one uses 

wave packets to represent the ingoing and outgoing waves. The infini­

ties in IT fi 12 arise as a consequence of the i nfi ni te extent of the 

interaction region (infinitely wide wavefronts propagating in a magnetic 

background, which itself is infinitely extended in the transverse direc-

tions) . 

Therefore we calculate the transition rate per unit area 

( 6 . 12) 

and we obtain, after using (6.8), (6. 10) and (6. 11), 
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r = 8rrB2t 2 \ I (Y"'_k x B) forward t.. 
-. e . 

- c-*12 . e . "-

Here I denotes summation over the final photon polarizations and 
e: 

(6. 13a) 

( 6. 13b) 

-
w ·= gko = yko. Evaluating p = I (Yg X~) • e. e:*l 2 for different choices 

:::: -
of initial and final polarizations, we arrive at 

p "' = p "' = 0 ++e x+ e 
- x -Y 

(6.14a) 

p "' = p "' = l s in2a x+e ++e 2 ' 
- X -Y 

(6.14b) 

(6.14c) 

(6.14d) 

i.e., linearly polarized gravitons generate linearly polarized photons, 

whereas circularly polarized gravitons generate circular~y polarized 

photons with the same helicity. 

Note that these transition probabilities have been computed for an 

incident number flux= 1 p~rticle 
em second 

T~~w = (. ±) r rg~ = ( + 

1 

) 

-j~ ~R, ) 

It foll~s that 

(6.15) 

where r03 and r03 are the power flux of the electromagnetic wave and EMW GW 
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gravitational wave respectively and where the upper (lower) sign refers 

to forward (backward) outgoing electromagnetic radiation. The electro­

magnetic power flux in the backward direction is smaller by a factor 

j
0
2 (wt) as compared with the flux in the forward direction and vanishes 

if the condition t = n ~ (n= 1,2,···;A.= 27T) is met. The fact that the . ~ w 

conversion efficiency r is quadratic in t depends critically on the equal ­

ity of the propagation velocities of the electromagnetic and gravitational 

waves. If we introduce a medium with a dielectric constant F 1, we 

destroy the coherence between the gravitational and electromagnetic per­

turbations and thereby put a limit on the u.seful length t. Note also that 

for propagation along the field lines of B resonant conversion does not 

occur. 

A magnetic field with finite transverse directions rv L (L » 2TI) . w 

has a conversion cross section of the order 

(6.16) 

where V is the volume of the magnetic field region, and tis the travel 

time of the gravitational perturbation through the magnetostatic back­

ground. The propagation direction of the outgoing electromagnetic wave 

is not confined to only (±) the direction of the incident gravitational 

wave, but can be within a cone (with half-angle rv 1/wl) centered about 

this direction of incidence. 

For the GertsenshteYn process (conversion of electromagnetic 

waves into gravitational waves) all of the formulas above apply,allowing 
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the substitution£*-+£, e-+e* in (6.8), (6.13}. - - ~ ~ 

"' There is an extensive literature on the Gertsenshtein emission 

of very-high-frequenc1 gravitational waves in astrophysical situations. 

The following list {which is by no means exhaustive) serves as an il­

lustration of the near-impossibility of imagining astrophysical 

"" scenarios in which the Gertsenshtein process is of practi ca 1 interest. 

a) Laboratory 

B = 105 gauss, ~ = 103 em, ,r = lo-33 

b) ' Interstellar magnetic fields 

If the magnetic background is chaotic with an ordered structure 

on some scale ~c >> 2n/w (~c stands for correlation length), the gravi­

tational waves generated in different cells are incoherent. One must 

therefore add their energies and one obtains for the conversion effi ci-

ency, 

(6.17} 

where t is the time of passage of the electromagnetic wave through the 

magnetic background. With B ~ 10-5 gauss, ~ ~ 10 lt-yr, t ~ 107 yr, c 
one finds r ~ 10-15 (Ref. 3). 

c) Cosmological field 

Zel 'dovich20 has pointed out that an observable effect could 

exist in a universe with a homogeneous magnetic field that varies accord­

ing to the "freezing-in" law B = B
0

(1 + z)2, where B is the magnetic . 0 

field at the present moment and z is the reds hi ft. For B0~ 10-6 gauss, 

z ~ 103 (time of recombination of the primordial plasma) he finds 
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r ~ 0. 1. This would lead to a reduction by 10% of the cosmic microwave 

background in a wide belt perpendicular to the cosmological field. No 

such effect has been observed. Zel 'dovich attributes this to the pres­

ence of atoms and free charges which scatter the photons and thereby 

reduce the coherence length of the process. The conversion process can 

only be important in an .empty hot magnetic universe. 

d) Quasars 

Estimates of the gravitational power emitted by 3C273 through the 

Gertsenshtein process have been given by Papini' and Va 11 uri 11 for 

various spectral regions. The graviton yield peaks at infra-red fre­

quencies with an upper limit~ lo30erg/sec. The corresponding flux at 

Earth, assuming the distance to 3C273 to be 500 ~pc, is ~ lo-25 erg/cm2 

sec.* This is negligible compared with the fluxes~ lo-12erg/cm2 sec 

of the broad-band bursts that originate in huge explosions in distant 

quasars, as conjectured by Ozemoi 21 and Press and Thome. 22 

e) Pulsars 

Papini and Valluri 11 have estimated the graviton emission in 

various frequency regions due to the Gertsenshtein process in NP0532. 

They find a gravitational luminosity~ l030erg/sec, with a peak in the 

soft x-ray ~ange. The cor~esponding flux at Earth ·is ~ lo-14erg/cm2sec.* 

A comparable flux (in an entirely different frequency range!} would be 

generated through the quadrupole-moment radiation mechanism for a value 

of the ellipticity £ ~ 10-7 (Ref. 22,23}. 

* Note that Papini and Valluri have based their calculations on a cross 
section which is too large by a factor ~600. The numerical results that 
we cite take the correction to the cross section into account. 
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7. Conversion in a Uniform Electrostatic Field 

Fin~lly, tum to the Lupanov process 5•8 (and its inverse), i.e., 

gravitational-to-electromagnetic wave conversion (an9 vice versa) in a 

homogeneous electrostatic field. Choose the same geometrical configura­

tion as in Fig. 9, with ~being replaced by~: 

E = E rect(z/i){sin a e + cos a e ) - -x - z ( 7 .1) 

The conversion processes are again described by (6.4) where the electro­

static background is now 

= (2n) 3 Ei sin a I j 0(q~i)o(q 1 )o(q2 )o(q0 ) ei~·~ ~, 
{2n) 

F30 = -F03 = (2n) 3 Ei cos a I j 0{q~i)o{q 1 )o{q2 )o(q0 ) ei~·~~, 
{2n) 

All other F = 0 
~\) 

{ 7. 2) 

The transition amplitude is given by (6.8) ·with B being replaced by E. 

The conversion efficiencies and cross sections of Sec. 6 are applicable 

tutti suanti, if we substitute B by E. 
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8. Conclusions and Comparisons with Previous Results 

We have computed electrogravitational conversion cross sections 

using Feynman perturbation methoqs for various electromagnetic back­

grounds. For reasons of ease and straightforwardness, . a quantum approach 

has been used to calculate a process which is classical~~ (the con­

version efficiencies do not depend on 1'\). 

For the exchange Compton scattering various authors have obtained 

conflicting results. Papini and Valluri 11 and Matzner17obtqined errQneously 

finite total cross sections. Our results confirm the findings of Ginzburg 

and Tsytovich, 12 who exploited the formal analogy with electromagnetic 

transition radiation and obtained exactly the nonrelativistic limit of 

our (non-integrable) differential cross section. The divergence is 

avoided only after either introducing Debye screening or by limiting the 

spatial extent of the incident wavefronts. Boughn24 also arrived at a 

divergent cross section in the form of a multipole series. The quadru­

pole term in this series is the most important one, but the higher mul­

tipole terms do not fall off fast enough to ensure convergence of the 

series. For this reason one may not limit oneself to quadrupole waves 

in computing the total cross section for unscreened charges, as Matzner 

does. Screening, however, imposes a cut-off on the multipole series at 

some maximum value of the angular-momentum eigenvalue, and in this situa-

tion Matzner•s result is essentially correct. 

It must be stressed that we have calculated a gauge invariant . 

transition-matrix element. We have also shown that in the nonrelativis-

tic regime (w << M) one can still obtain the correct transition-matrix 
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element by limiting one's attention to the t-pole diagram if one chooses 

the TT gauge for the gravitational wave. This is what Ginzburg and 

Tsytovich, and Baughn have done. If one were to choose a non-TT gauge 

for the gravitational wave, the t-pole term becomes (in the nonnelativis­

ti c limit) 

( 8. 1 ) 

For notations see Sec. 3. The transition-matrix element (8.1) was calcu­

lated for a pune spacelike photon gauge. (The t-pole tennis independent 

of the photon 9auge.) In then gauge only the first tenn in (8.1) sur­

vives. Note that for a non-TI gauge the backscatter is nonzero: 

(8.2) 

If we choose to calculate in the TT gauge, however, we find T g = 0. 
(yk=- k) 

This glaringly illustrates the ambiguities we must face if we calculate a 

transition-matrix element which is not gauge invariant. The best we can 

hope for is that for an appropriate choice of gauge, the effect of the 

omitted diagrams is negligible. The gauge to choose for this problem is 

the TT gauge. 

Finally, note that we have studied exchange Compton scattering 

only for spinless particles. For spin-1/2 fermions the calculations are 



-79-

similar but more complicated, due to the extra spin degrees of freedom.* 

In the nonrelativistic limit, however, the results for scalar particles 

are valid for spin-l/2 fermions as well. 

Conversion scattering in the field of dipoles has received atten­

tion from Ginzburg and Tsytovich, and Papini and Valluri. Ginzburg and 

Tsytovich give differential cross sections that are integrated over ~ . 

Our differential cross sections for an electric dipole, when integrated 

over~' agree with the results of Ginzburg and Tsytovich.** For mag-

netic dipoles, however, Ginzburg and Tsytovich find the same results as 

for electric dipoles, whereas ours are different (unless a = 0). This 

is because they do not use the correct field for a magnetic dipole.*** 
"' The Gertsenshtein and Lupanov resonant processes (and their in-

verses) have been analyzed rigorously by Boccaletti et ~. 8 For electro-

One should actually use the vierbein formalism in formulating this 

** 
problem. · 
Ginzburg and Tsytovich omitted a term in their equation (29): The ex-
pression }sin2e

0
(l+cos2e) should be replaced by }sin2e

0
(1 +cos e)2 

The term sin2e
0
cos e was left out, as it does not contribute to the 

total cross section (Ginzburg and Tsytovich, private communication). 
*** Ginzburg and Tsytovich start from the magnetic scalar potential 

a0 = -i ~ • m, from which they find '{B} = -q 9 "2~ . This is not the 
q2 - - q 

Fourier transform of the exgression (5. 1) for the magnetic dipole 
. 3r(m.r) - m(r·r) 1 3 

f1eld, but rather of B = --- 5 --- - ~m o (r). As the current 
- 4Tir ~ - -

density does not vanish everywhere, one should really use the magnetic 
vector potential a = -i ~ x g • From this one finds t {B} = -q 9 • m + m, 

- q2 ~ - q2 -
which is the Fourier transform of (5.1 ). The term m (which was ne­
glected by Ginzburg and Tsytovich) is responsible for the different 

behaviour of magnetic · and electric dipoles. If one uses the magnetic 
vector potential, the method employed by Ginzburg and Tsytovich leads 
to our results (Ginzburg and Tsytovich, private communication). 
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magnetic-to-gravitational wave conversion our results are identical 

with theirs; only the transverse components of the background field 

contribute to conversion, the converted wave propagates orly in the 

same or in the opposite direction of the incident wave, the converted 

wave propagating in the backward direction is weaker than the converted 

wave propagating forward; and may be absent completely, and the conver­

sion efficiency depends quadratically on the travel time of the pertur­

bation through the background. We also confirm their numerical 

correction to Gertsenshte1n's original results. 

There is some disagreement with the results of Boccaletti et ~· 

for gra vi tati ona·l-i nto-el ectromagneti c wave conversion in a homogeneous 

background. These authors find a backwa~d travelling electromagnetic 

wave if the incident gravitational wave propagates along the field lines 

of the background. This erroneous feature (which destroys the symmetry 

between gravitational-into-electromagnetic wave conversion and the cor­

responding inverse process) is due to their choice of a gravitational 

gauge which is not TT. If one chooses to use the TT gauge, the method 

used by Boccaletti et ~ reproduces our results. 

The conversion efficiencies are forbiddingly small. Even in 

astrophysical objects with strong magnetic fields and large photon fluxes, 

the very-high-frequency gravitational luminosities are meager. The pros­

pects for detection with current or foreseeable technology are bleak. 

Certainly mechanical detectors would hardly be suitable. 

Conversion scattering may, however, play a role in the laboratory 

generation25 and detection26 ,27 of very-high-frequency gravitational 
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radiation ("Hertz-type" experiroont). In the laboratory one may compen­

sate for the smallness of the effects by exploiting resonance and 

coherence. This would be achieved by using an electromagnetic resonator 

to generate coherently highly monochromatic gravitational waves with a 

known phase. These gravitational waves would subsequently be detected 

by a second electromagnetic resonator with a set of eigenfrequencies 

which are tuned to the wave. Resonant reception occurs when the frequency 

of the gravitational wave is equal to the difference (or sum) of two 

resonator ei genfrequenci es . 
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IV. CHARGED-PARTICLE BEAMS AS GRAVITOELECTRIC ANTENNAS 

1. Overview 

"My Jtea.6on. 6oJt now a.tta.c./Un.g tlU..6 qu.u.Uon. 

[ .t.6 ] : Be c.a.t.L6 e 1 c.a.n. • " 
s. wun.be.Jtg 

When gravitational waves propagate through matter they induce dis­

placements and motions in it. Mechanical gravitational-wave antennas 

exploit these 'interactions. But gravitational waves do not only interact 

with matter. They couple to the stress-energy tensor of all fields, 

including the electromagnetic field, and this forms the operating basis 

of gravitoelectric antennas. Many different types of gravitoelectric 

antennas have been devised. For a quick entry into the literature see 

the review articles by Press and Thorne1, and by Pisarev2. Of particu­

lar relevance to this chapter is the work of Pargamanik and Dimanshtein 3, 

and Dimanshtein4. They point out that the electromagnetic radiation 

field of an accelerated charge is altered by a passing gravitational 

wave, and that monitoring the synchrotron radiation in electron acceler­

ators constitutes a possible scheme (at least in principle) to detect 

gravitational waves. From Chapter III it must be clear however that a 

charge need not be accelerated in order to serve as a gravitoelectric 

antenna. (Even a charge at rest radiates photons in a characteristic 

way when interacting with a gravitational wave.) 

In the following we shall show that a uniformly moving charged-

particle beam acts as a direction-sensitive gravitoelectric antenna; 

i.e., a beam moving along the propagation direction of a gravitational 
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wave has a different radiation pattern and a different radiation inten-

sity from a beam moving orthogonal to the propagation direction of the 

gravitational wave or colliding head-on with it. In section 2 we give 

the differential conversion cross sections that are valid for any velo­

city of the charge and for any incident direction of the gravitational 

wave. We discuss also the salient features of the radiation patterns. 

In section 3 we calculate the total electromagnetic power that is 

radiated. Section 4 contains our conclusions. 

2. The Differential Cross Sections 

In Chapter III we have computed the gauge invariant transition 

amplitude for the conversion of gravitational waves into electroma9netic 

waves in the Coulomb field of a charged scalar particle. In calculating 

the differential cross section we have subsequently used the restframe 

of the charge. This part of the report is concerned with the electro­

magnetic radiation that is emitted by a uniformly moving charge in a 

gravitational wave background. 

Let the initial 4-momentum of the particle be 1Q = (1E,1e), where 
1E = yM, 1e = yM~ with y = (l-v2)-l/2. The final 4-momentum of the 

particle is denoted by 2Q = (2E,2e). The 4-momenta of the incident 

graviton and outgoing photon are denoted by g~ = (9w,9~) andY~= (Yw ,Y~ ) 

respectively. The differentia 1 cross section for converting a graviton 

with angular frequency gw and polarization~ into a photon with angular 

frequency Yw, polarization ~ and propagation direction lying within the 

solid angle dO is then 
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where Dis the density of final states5 

and Tis the transition amplitude [Chapter Ill, Eqs. (3.la-d)] . 

In the above e1 is the angle between~ and g~ (see Fig. 10). 

The angular frequency of the outgoing photon is given by 

1 - v cos e1 Y w = ----------'------ gw 
gw 

cos a2 + yM ( 1 1 - v - cos a) 

( 2. 1) 

(2 .2) 

(2. 3) 

where e2 and a are the angles between ~ and Y~, and between g~ and Y~ 

respectively. The angle a may be expressed as cos 8 = cos 81 cos 82+ 

sin e1sin e2 cos cf>, where cf> is the angle between the planes formed by 

9k, v, and Yk,v . In the nonrelativistic limit, i.e., for 

g -1( )-1 w « y 1-v cos 81 M, {2. 3) reduces to 

1-v cos 81 9 
1 8 w -v cos 2 

(2.4) 

and there is no recoil of the scatterer (2E = 1E = YM). 

As the transition amplitude T is a Lorentz scalar, it may be evalu­

ated in any Lorentz frame at our convenience. In the charge•s restframe 

and for the purely spacelike photon gauge and the TT graviton gauge, the 
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' I '.J 

Fig. 10 Exchange Compton scattering of a graviton (momentum g~) into a 
photon (momentum Y~) by a moving scalar charge (momentum yM~). 
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transition amplitude is given by Eqs. (3.6a,b) of Chapter III. With the 

aid of (2. 1)-(2.3) we then find 

00 _ e2 ____ 1_-_v_c_o_s _e_;1'-----
1
_ i j' Y~. •* 12 dn- . 4 e' g e K(iE j) , 8n s 1 n T y2 [ 1 - v cos e2 + y~ ( 1 - cos e) J2 

(2.5) 

where a prime labels quantities that are measured in the charqe•s rest­

frame.* In the nonrelativistic regime we may omit the term 
g 
Y~ (1 - cos e) in the denominator, which we shall do from now on. 

Choose now circular polarization basis states for the incident 

gravitons and the outgoing photons and find 

oo - dcr e2 1 - v cos el 2 e• 2 
(-) - (-) = - .....,..------'---=- cotg -2 ( 1 + cos e • ) , 

dO RR dO ll 16n y2(l _ v cos e )2 
2 

( 00 ) = ( dcr ) = i__ 1 - v cos e 1 
dO Rl dO LR 16n y2(l _ v cos e )2 

2 

cotl 9
2• ( 1 - cos e • )2 . 

Using cos e• = cos el cos e2 + sin el sin e2 cos ~·, where 

~· = ~ 
cos e. - v 

cos a! = --....:..1--
1 1 - v cos e. 

1 

sin a! = l . 
1 y 

1 - v cos ei 

(i = 1,2) 

(i = 1,2) 

(2.6a) 

(2.6b) 

(2.7a) 

(2. 7b) 

(2 .7c) 

we put the differential cross sections (2.6a,b) into their final form 

*The cross section (2.5) is easily put into the form~= y-2(1-v cose2)-2 

x (1-v cose 1 )(~)•. This [and hence also (2.5)] could have been derived 

at once from~ dO= (1-v cos e 1 )(~)· do• ,with do• = y-2(1-v cose2)-2 dO. 
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00 00 e2 1 - v cos e1 
(dn\R = (dn\L = 16rr · 2 2 

y ( 1 - v cos e2) 

[ 
(cos el- v)(cos e2- v) + y -

2sin elsin e2cos cp ]3 
. 1+ ------~-------------=--------------------~-----=------

( 1 - v cos e1 )( 1 - v cos e2) 

• [ 1 - (cos el- v)(cos 92- v) +y-
2
sin elsin e2cos ~] -1' 

(1 - v cos e1)(1 - v cos e2) 

[ 
(cos el- v)(cos e2- v) +y-

2sin elsin e2cos cpl 
• 1+--------~-------------=--------------------~-----=-----

( 1 - v cos e1 )( 1 - v cos e2) 

[ 
(cos el- v)(cos e2- v) + y -

2
sin elsin e2cos cp l 

• 1 -----~-------=------------~---=----
( 1 - v cos e1 )( 1 - v cos e2) 

The differential cross sections simplify considerably for 

e - 0 1T 1T . 1 - ' 2' . 

(2.8a ) 

(2.8b) 

( 1 + cos e2) 3 

----- , (2.9a) 
1 - cos e2 

(2.9b) 
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b) 

(2.9c) 

• (1 + i- 2v cos a2+ y-
2sin a2 cos <t>)(l- sin a2 cos <P) , (2.9d) 

c) a1 = 7T 

(1 - cos 
(2.9e) 

(1 + v) sin2a2 
y 
4 ( 1 - v cos a2) 4 ( 2. 9 f) 

In Fig. 11 we have plotted the differential cross sections (2.8a,b) 

for various values of the angle of incidence a1. A quick glance reveals 

at once that the radiation patterns are sensitive to the direction of 

incidence of the gravitational wave: a relativistic beam colliding head­

on with or moving across the gravitational wave radiates more easily than 

a beam chasing the gravitational wave from behind. A few structural 

features are worth mentioning: 

i) Rutherford peak 

The photon radiation patterns have a Rutherford peak in the di ­

rection of the incident gravitational wave (a2= a1); and in this direc-
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Fig. lla Differential conversion cross sections in the · p1ane ~ = 0 for 
e1 = n/2. The + sign refers to the RR(LL) case; the - sign 
to the RL(LR) case. 
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Fi9. llb Differential conversion cross sections in the plane ¢ = 0 for 
e1 = TT/4. 
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Fig. llc Differential conversion cross sections for e1 = TI. 
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Fig. lld Di fferent i al convers i on cross sections for e1 = 0. 
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tion the outgoing photons have the same circular polarization and the 

same wavelength as the incident gravitons. In reality the radiation pat­

tern will turn over at scattering angles 8 = 182-811 ~ (gw A
0
)-l, where 

AD is the distance (in the charge's restframe) beyond which the Coulomb 

field is screened. 

ii) Relativistic beaming 

The first plot in Fig. lla shows the radiation pattern in the 

charge's restframe. If the charge is moving relativistically (y » 1), 

the observer will see a large part of this radiation being emitted within 
-1 a narrow cone of half-angle 82 ~ y about the direction of motion and 

with a frequency Yw~ y2 gw (unless 81 ~o). Figure 11 shows the gradual 

build-up of this "head-light" effect. The sharp dip within the forward 

beam is a manifestation of the absence of backscatter in the charge's res t­

frame and occurs at angles sin 8
2 

= y-2(1+ i- 2v cos 8
1
)-l sin 8

1
. From 

(2.8a,b) we can easily derive expressions valid for the regime 

y >> 1 >> 82 ; we state here the results for 81 = 0, ~/2, ~= 

~1 = 0 

(~)RR = (*)LL = { (ye
2

)2 (~ +le~)4 
2 

dcr dcr e2 ( Y82) 
(drl )RL = (dn\R = 2~. (l + y2 8~)4 

(2.10a) 

(2. 1 Ob) 
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(2. lOc) 

(2.10d) 

(2 . 1 Oe ) 

(2.10f) 

3. Total Radiated Electromagneti c Power 

To obtain the total radiated power we must integrate the di fferen­

tial .cross sections while taking the angular distribution of the trans­

fanned frequency into account. It is simpler, h<Mever (and more elucidat­

ing!), to pattern the computation of the radiated power after the 

classic Feenberg-Primakoff6 treatment of inverse Compton scatterinq. 

Consider a charged particle passing with velocity v through a 

swarm of gravitons with a number flux density n(gw, e1). These gravitons 

all have the same angular frequency gw and their propagation direction 

g~ makes an ·angle e1 with~· Labelling with a prime the quantities that 

are measured in the charge•s restframe, we finrl for the rate at which 

gravitons are converted into plutons 
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(3.1) 

where cr•(gw•) is the total cross section for converting a graviton with 

angular frequency gw• = ygw(l-v cos e1) by a charge at rest. When the 

inequality gw. <<M is satisfied (nonrelativistic limit) and when many wave­

lengths (2TI ) are contained within the screening radius AD' one may use the 
gw• 

cross section (3.34) of Chapter III. Invoke now the relativistic trans-

formation formula n• (gw• , ep = yn(gw,e1 )(1 -v cos e1 ), and write (3.1) as 

{3.2) 

In the charge•s restframe the conversion photons have the same fre­

quency as the incident gravitons and are emitted at angles e2 with respect 

to the direction of motion of the charge. According to the observer 

these photons have frequencies 

and the electromagnetic power radiated by the charge is 

(3 .4) 

Here(.~)· is the differential conversion cross section evaluated in the 

restframe of the charge and ctn• is the solid angle element corresponding 

to the scattering angle e•. By virtue of (3.3) we may reduce (3.4) to 

the form 
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The term in square brackets is just the graviton power flux in the obser-

ver's restframe. Hence we conclude that the total radiation cross 

section for a moving charge is 

(3.6) 

The factor y2(1-v cos 81)2 is a consequence of i) the transformation of 

the graviton number flux density, which introduces a factor (1-v cos e1); 

ii) the frequency shift of Yw with respect to gw, which introduces a fac­

tor y2 ( 1 -v cos 81 ) . 

Use now 

( 3. 7) 

and 
cos 8' =cos 8' cos 8' +sin 8' sin 8' cos a' 2 1 1 (3.8) 

where a' is the angle between the (gk' ,v} plane and the (gk' ,Yk') plane, - - - -
and where sin 81 and cos 8l are given by (2.7b,c}, and find 

(3.9) 

The cross section (3.9) is valid for any angle of incidence 81 and any 

velocity v. The only assumptions made in its derivation are i) weak 

screening, i.e., gw'A.o = y(l-v cos 81)gw A.0 » 1; ii) nonrelativistic 

scattering (no recoil), i.e., gw' = y(l-v cos 81)gw « M. If either of 

these conditions is not fulfilled, the resulting radiation cross section 

is even smaller than (3.9). Note that the logarithmic term is multiplied 
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only by the graviton number flux transformation factor (1-v cos e1), and 

not by the frequency shift factor y
2(1-v cos e1), as the Rutherford­

peak photons have the same frequency as the incident gravitons. For a 

highly relativistic charge (v ~ 1, y » 1) and for e1 1 0, the forward 

beam gains in relative importance as compared to the Rutherford peak and 

the radiation cross section becomes insensitive to the cut-off: 

2 2 2 2 x = 3 e y (1 -cos e1) for el 'fo 0 (3.10) 

On the other hand, if the relativistic charge is chasing the gravitational 

wave from behind, the Rutherford peak is the whole story and the radiation 

cross section is even smaller than for a charge at rest: 

2 g AD 3 
X ~ ~ [ tn ( w ) - -2 ] , 

y2 y 
for el = 0 (3.11) 

In the limit y ~ oo there is no conversion at all. The charge is trying 

to keep up with the gravitational wave and in doing so it does not ex­

perience a time-varying permittivity and permeability, which is the 

conditio sine qua non for conversion scattering. 

4. Conclusion 

Charged-particle beams act as direction-sensitive gravitoelectric 

antennas for very-high-frequency gravitational waves. (Many wavelengths 

of the gravitational wave should fit within the screening radius AD.) A 

relativistic charge may radiate either more (e1 ~ 0) or less (e1 = 0) 

than a charge at rest, but even in the best case the convP.rsion cross 
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sections are discouragingly small. However fascinating these processes 

may be, they are probably Qf no practical interest. The importance of 

these calculations is that they provide yet another clue that there is 

no radiationless trajectory for a charge in a gravitational field 

region, 7 in contrast with the situation in flat-space electrodynamics. 

All of the above formulas also apply to the generation of gravi­

tational waves due to the uniform motion (both relativistic and non­

relativistic)of a charged particle in an electromagnetic wave background. 



-101-

REFERENCES FOR CHAPTER IV 

1. W. H. Press and K. S. Thorne, Ann. Rev. Astron. Astroph. ~' 335 
(1972). 

2. A. F. Pisarev, Fiz. Elem. Chastits At. Yadra §_, 244 (1975)[Sov. J. 

Part. Nucl. §_, 98 (1976)]. 

3. L. E. Pargamanik and F. A. Dimanshtein, Ukr. Fiz. Zh. ~' 2081 (1970) ; 
JL, 1375 (1972). 

4. F. A. Dimanshtein, Ukr. Fiz. Zh . .!.§_, 1877 (1971). 

5. R. P. Feynman, Theory of Fundamental Proc~sses (W. A. Benjamin, New 
York, 1962), p. 73. 

6. E. Feenberg and H. Primakoff, Phys. Rev. 11, 449 (1948). 

7. P. C. Peters, Phys. Rev. D ]_, 368 (1973). 



-102-

So [~aid :the doc.toJL]. Now vee may pvrita.p6 

~o beght Yu? 

PfUUp Roth .in "PoJLmoy '~ CompR.tU~". 


