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ABSTRACT

Various geometrical properties of the finite dimensional
moment spaces generated by normalized distribution functions
over [0,») and (-w,») are investigated., The moment spaces
are found to be dual to the polynomial spaces. The structure
of the latter is studied by means of this duality and of a
representation theorem for positive polynomials. The extreme
points of the polynomial spaces are associated with poly-
nomials orthogonal with respect to the distributions generating
the moment spaces, This correspondence is used in order to

derive several properties of orthogonal polynomials.
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CHAPTER I

DISTRIBUTION FUNCTIONS AND MOMENT SPACES

Definition 1.1 @ = (t) is a distribution function

over (0,=), symbolically ¢ ¢ 9 [0,w), if @ takes the
real line into itself and

(1.1a) Y < t2 implies (t1) <@ (t2)

(1.1p) t € 0 implies P (t) =0

(1.1¢) lim ¢ (t) =1

to o
(1.14) for all ¢ w(t +0) = @ (t) .

Definition 1.2 Y = (t) is a distribution function

over (-e,«), symbolically QE O(-=,w) if @  takes the real
line into itself and
(1.22) same as (1.1a)

(1.20)  lim ¢ () =0

- =

(1.2¢) same as (1.1¢)
(1.2d) same as (1.1d) .

Definition 1.3 The spectrum @ (@) of the distribution

(f is the set of points t such that



@ (t+8)-pt-8)>0
for every § > 0. 1If the number of points of @ (¢) is

finite, it is denoted by b (¢).

Definition 1,4 A distribution ¢ is said to have a step

at t of weight A > 0if

@ (to)- q(to-o)=7\7 0.
The unique distribution having a step of weight 1 at to is

denoted by Iy e
0

Definition 1.5 A distribution ¢ is called arithmetic

if it has a finite spectrum. The degree of ¢ , denoted by
b( 'f), is then defined as follows:
if we 0 (0,») b(y) = total number of steps, less -12 b o
@ has a step at O.

if @ € B(-=,w) b(Y) =D (@) = total numdber of steps.

Definition 1.6 The n-th moment Mo of @ is

M (f) t" dQ(t) if @€ 9 [(0,m)

/-0
g

M a(g) t7 d@(t) if P € O(-=y).

In both cases )uo(tf) = 1.

Definition 1.7 The n-th moment space D" {0,=), respectively

n " .
D (-w,m), is the set of points x = (xi) = (x.l,...,xn) in E°



whose coordinates are the moments 109 )00,y }Ln(tf) of
at least one distribution function ¢ € 6[0,=), respectively

Definition 1.8 x is an extreme point of a set D& E"

if x 1is not a convex combination of any two other points of D.

Definition 1.9 A pair (eto,et), where & = 1s a number

and ol a set of n numbers not all zero, is a separating
plane between X, and D if o o F & .x 1is non-positive for
X =X and non-negative for all x& D. If x.€ D then (&0,&)

is called a supporting plane to D at X

Definition 1,10 " [0,») will denote the curve in E-

xi = ti O $t< ] (i = 1,2,.--,1‘1)-

C™(~wy») Will denote the curve in E*

i
xi =t "ﬂ‘t( -} (i=1’2,00"n)l
Clearly c° [0,0) €« D* [0,«)
and Cn(-m,w) c Dn(""”‘”):
since }4. n( It) = t%,

p* [0,0) and Dn(—w,m) are convex regions.

Definition 1.11 Let B" [0,») denote the boundary of

D" {0y=), 1.6, x€ B [0,=) if x &D" [0,») and there
exists a supporting plane to o {0,») at =x. Define En(—eo,co)

similarly,



Remark, When clarity permits the notation D% will be
used instead of either D" {o,) or Dn(-«.,m). Similarly for
¢® and B

Theorem 1.12 All extreme points of p® are in "

Proof by contradiction. Let x € D" - ¢® and let Y be

a distribution such that

ﬁzft%$m.

Then the spectrum of L? contains at least two points, say

t1<t . If a 1is chosen so that ty< a <t2 then 0 <¥(a) < 1.

2
Let
iﬁ.@. (t & a)
P =g T
1 (t >2) ,
0 (t ¢ a)

(t)
Te P(t) =P@) (45 a).

1 -¢9(a)
Then Cf 1 and &f o are distributions and

if tag J g =9 (a)rpy(g) + [1 -9 @lep(g)y)

a

is a convex combination of points of Dn, hence it is not an

extreme point of Dn.



Theorem 1,13 If n =2 2 all points of ¢ are extreme

points.

Proof: Let x, =x(t°). The plane

.
nl(} = to

d (“'2 to, 1’ O, O, LR R 0)

contains X, but leaves all other points of c® on the same
side and at a positive distance. Hence X, cannot be a convex
combination of points of c™.

Theorem 1.14 Every point x € gn is representable as a

convex combination of points of ¢ ina unique way, and the
corresponding distribution is arithmetic.

Proof: Given x € En take any ¢ such that

i :
/*i(‘r) EIt d*(t) =xi (l =1’..o,n)c
x 1is then a convex combination of points of ¢". Since x is
in the boundary of Dn, every supporting plane (o o,u ) to Dn
at x must contain every point (t.i) of C% suchthat te &(e).

The polynomial in t
n

o + ok ex(t) = S: L 'bi
i=0

has at most n distinct roots % 3 in the interval under
consideration, But tOGS'(tf) implies o + oL-x(to) = 0,

hence t € {tj} . Hence G (4 ) contains at most n points,



which do not depend on ‘? . Therefore & is an arithmetic
distribution of degree n at most, with weights A , which

J
satisfy

m
xi=Z1 7\3.153' (1 =1y000m5 m=b(¢)< n) .
j:

The determinant of the coefficients is a Vandermonde determinant,
hence it is not zero, hence the system has at most one solution.
However it must have one solution with positive A 3 whose sum
is 1. Hence tf is uniquely determined and x is uniquely

representable by

m
x:jéI ?\j x(tj) (m « n) .

Definition 1.15 Co(Cn) is the set of all points which are

finite convex combinations of points of ™.

Theorem 1.16 Every point x € D" is representable as a

finite convex combination of points of cm.
Proof: By Theorem 1.1} bdD" e Co(c"), hence it is suf-

ficient to show that int D" e co(c™).

It will first be shown that Co(Cn) > Dn, where the bar
denotes closure, In fact if there existed an x' such that
x! € D" and x! * Go(Cn), there would exist a separating plane

(ot i) such that

o .x20 x & Co(C™)
'



and a distribution q?' such that
' i .
xi = [t d lf
For all t,id itl 2 0, hence
fi ot de'z0
i =

But|Z o itl d«f' - zdi x;_ = ol -x' =S< 0. Hence a contra-

diction. To show that int D™ € Co(c") assume this statement

false. Then for some x, x € int Dn, x{: Co(cn). By the

previous result x € Go(cn) hence x €bd Co(cn). But since

xeint D® a full neighborhood of x is in Dn, hence in

Co(Cn), which contradicts x €& bd Co(Cn).

Theorem 1.17 Any set of k distinet points of Cn(ks n)

is linearly independent.

Proof: Let (t:;.') (1 =1,4000yn3 J =1,40.,k) denote the
coordinates of the k points, Any determinant of order k
from the matrix (t?j') is a Vandermonde determinant, hence it
is # 0 and the points are linearly independent.

Theorem 1.18 D" - 3"

is non-empty.

Proof: The moment of any non-arithmetic distribution

defines an interior point of p". For example in the case

[O,m) choose d¢(t) = e-tdt whose moments are M, =1,

Theorem 1,19 If x & B e En then x can be represented

in infinitely many ways as a finite convex combination of

points of ¢,



Proof: let x€ T §?. Choose an arbitrary point
x(t) € ¢ and draw a line through it and x. Since x is
interior there exists a point y e i lying on this line so
that x is between y and x(t). But by Theorem 1.16 y
is a finite combination of points of Cn, hence so is x. By

varying t one obtains infinitely many different representations.



CHAPTER II

COMPONENTS OF THE BOUNDARIES OF THE MOMENT SPACES

Definition 2,1 Let L(x) denote the common intersection

of all separating planes between x and the closure " of

If there are no separating planes define I(x) = B

1
Let a(x) denote the dimension of L(x).

The empty set is defined to have dimension -1; hence
x * D" gives a(x) = -1,

Definition 2,2 1Let c¢(x) denote the dimension of

LN D

Definition 2.3 If x € D 1let b(x), B(x) denote the

minima of b(¢), E(v.r) over all ¢p whose first n moments
are given by x.

By the finite representation theorem these minima are
well defined. Thus b(x) represents the minimum number of
points of c" which are used in a convex representation of x.
Clearly if b 1is an integer B =b, if b is a half integer
P=b +~% .

Theorem 2.l x&_E}_n if and only if b(x) &€ % .

Proof: Assume b(x)g_-rz1 and let x be representable

¥ P® will denote the closure of D", However the upper
bar will not, in general, denote closure (cf. Definition 2.8).
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convexly by means of the points x(t :j) where t j have the
following values:
1. if b is an integer 0 <y < t2<... <tb
2. if b is a half int.egeg 0= t14 t.2 ...<.t.5 »
In case 1 the polynomial R‘I = T—r (t - tj)z, and in case 2
b

31

the polynomial R, =t | (% - tj)z, represents a plane in En,
j=2

2
since each polynomial is of degree £ n. In each case the
polynomial in question contains the points x(tj) but leaves

all other points of c® on the same side. Hence Rk

represents a supporting plane to r containing x, therefore

x € §n. Conversely, if x € §n Theorem 1,1l assures the existence
of a unique convex representation of x by a finite number of
points x(tj). Every supporting plane at x must contain these
points, hence the polynomial corresponding to this plane, which

is of degree < n, must vanish at t, and be positive for all

J
other values of t. Therefore this polynomial has at most g-
roots, the possible root at 0 being counted ;'2. Hence b(x) £ % .
Lema 2,5 If x & B then a(x) = 2b(x) - 1.
Proof: Let x € _I?_n and %et (oLO,eL) be any supporting
plane at x. Then P(t) = z o i’oi is non-negative over [0,=)
and vanishes at the points t;z?j =1,...,b) used in the unique

representation of x, Therefore P(t) has the form



"

P(t) = Q(t) R (t)

where R.k(t) is one of the polynomials of Theorem 2.k, depending
on the values t 5° In each case the degree of H.k(t) is exactly
2b(x), hence the degree of Q(t) is at most n - 2b(x)., By
definition a(x) is the dimension of L(x), the intersection of
all supporting planes at x, hence n - a(x) of these may be
chosen linearly independent. Since the coefficients of the
corresponding polynomials Q(t) must also be independent, at
least one of the Q(t), say Qo(t), must be of degree n-a(x)-1
or higher. Hence

n-a(x)=1 < degree Qo(t) £ n-2b(x)

a(x) = 2b(x)=1,
On the other hand it is possible to choose n=-2b(x) + 1 linearly
independent values for Q(t), for example 1,t,t2,...,tn-2b(x),
such that the corresponding polynomials Q(t)Rk(t) represent
linearly independent supporting planes at x, However, no more
than n-a(x) linearly independent supporting planes can be
chosen through x, Hence n-2b(x) +1 £ n-a(x) or a(x)< 2b(x)-1.
Combining with the previous inequality this gives
a(x) = 2b(x) - 1.

Definition 2.6 Given a non-negative integer a < n, iz

denotes the set of all points x e p® for which a(x) = a.
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Note that a(x) =n if and only if xeint D", Hence
:_\_2 is the interior of D7,

If a ¢« n, by Definition 2,1 there is at least one support-
ing plane at each point of 52 s hence 52 Cc §n « By Theorem
2.1 and Lemma 2.5 every point of B" is in one of the sets g_:

3 i " 1
Each £ is arcwise connected, since any two points x, x of

_&2 are convex combinations of B points of ¢ of the form
b L
x=Z)thi, x = 2 X'jt'.,
3= 3= !
where b =23 3 and, as usual, if b 1is a half integer

ty = t,; = 03 these two points can be joined by varying the Aj
and the t 3 continuously and without leaving Ana. The number
of independent parameters used in the representation of a point
x € :}:2 is %recisely a. In fact the ')\J are connected by the
relation 2_ 2\ 4= 1, hence B = 1 of them are independent. If
a is odd, "g== b is an integer and the number of variable t’j

is b, hence the total number of independent parameters is

2 -1 =a, If a2 iseven b=0b - Jf is a half integer and
only 5 =1 of the t j are variable, hence the total number of
independent parsmeters is 2b -2 =20 -1 =a, Thus a is

the dimension of 52 . These results may be summarized in the

following.
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Theaorem 2,7 _I_B_n is the union of a collection of arcwise
connected and mutually disjoint boundary components &: of
dimension a (a = 0,1,...,n-1).

Besides these proper boundary components, D" has a set of
improper boundary components whose nature will now be
investigated.

Definition 2.8 Let B =17 - D" .

Theorem 2.9 If n>»1 B

is not empty; in fact there
exist simplexes of points x which are not in Dn, but such
that in every neighborhood of x there are points of o

4 %1 distinct values +t..

2 J

As usual, if b 1is an integer this means tj £0, if b is

Proof: Consider a set of b =

a half integer t, =0, td A0 {§ = Besin,b +-12 )e Let X
denote the simplex of all convex combinations of all the points
x(td). By Theorem 2.l; K is interior to D%, Now if all the

t 3 except tE are made to approach finite and distinct values ; 3
and tb' is made to approach infinity, K will approach a
simplex K' which extends to infinity and is parallel to the

X - axis. The polynomial R, defined in Theorem 2,4 is of degree
n + 1 and represents a plane in Em'1 which supports Dm'1 along

a simplex whose projection on E® is K. As t'E" o Rkbecomes

a polynomial of degree n - 1, R;(, hence it represents a support-

ing plane to D" which is parallel to the xn-axi.s and contains K'.
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Therefore the points of K' cannot belong to Dn, since the

only points of R.;{ which belong to D" are convex combinations

of at most the first b -1 = 25-1- point t i.e. the points

j!

. n

of the closure of in-Z’
The simplex K' has dimension one higher than -‘-\-3-2 and

will be denoted by Inn_1. A similar construction can be carried

out by letting several of the t. approach infinity or by

J
letting several of them approach the same values "r'.'j. This
construction yields a set of simplexes Ig (a =1,40.,n=2)
which together with F.'g _1 are contained in B, The number a
denotes the dimension of I:. It will be shown later (Theorem
2.12) that ;n_ is actually the union of the i': (2 =1, 000,n=1).

Theorem 2,10 If (,.A1,...,}4.n_1)61nt Dn"1 and

= (/L1,...,/4n)eDn and if/}.n>};.n, then}). = (/41,...,

' n
Fn_.] ,P.n) € int D .
Proof: Tt is sufficient to show that /4.' has positive

distance from every supporting plane to Dn, for if }4.' were not
interior to D" it would have non-positive distance from at

least one supporting plane, The distance of F.' from the support-
ing plane (80,41,..., un)'is given, up to a positive factor,
by o +d1f‘1 + oo +°‘nf"n’ If o g =W this distance is
the same as that of M, which is positive since (,.L 13040

M1)€ int Dn‘1. If & n £0, o o, Mst be positive, since the
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n

polynomial Z o iti must be positive for t » «. Hence from
j=o
oLO +d”4.1 + oo + un ,;n>, 0 it follows that °"o +d1}41 +

]
& s +oln’.n.n~70.

Theorem 2,11 If x€int D" then x is representable in

a unique way as a convex combination of 9—'2"1 points of c”,

Proof: Let x = (’1.1,...)1. n)‘ int D% Then by Theorem 1.1€

x €Co(C™) and there exists T such that x is a finite convex

combination of x(tj) with t,< T. By (11, there are two

J
representations of x involving _r_x_%‘_l_ points of c" with t j< T.
However in [1] one of the representations involves the point

x(T),I which is given weight % instead of 1 as it would in the

present case, This representation must be ruled out, hence

there is left exactly one representation involving p_%-‘l_ points

of Cn with t’j < T, To prove that it is unique and independent
of T, let it be given by

n+l

b
i
My =:',2—.=1 )\th (b =23, 1i=1,...,n)

and let \p be a distribution having these moments. Setting

b

S— - 1
/“n+1 =2 )“j t31+1 » the point (}A1,...,/An+1) is in éﬁ"'

3=

since its representation involves 3'51— points of Cn+1. If
there existed another representation of x involving -rl;l points

of C", there should exist a distribution W having the same
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first n moments as Y and with (I*1""’f*n’}"n+‘f(\y))
é il_g'ﬂ. For this representation to be different from the
one previously obtained, the condition M 4 (¥) # Mo (@)
must be satisfied, since any point of 52 + has a unique
representation. However, if MPaa (¢)< )“n+1 (¢) it can be

easily seen by considering the supporting plane at (}A,l,...,,.an,

Pn-;-‘l(? )) that U"‘l""’)‘n’f'nﬂ (W )) would lie outside Dn+1,

while if M, (y) >/Ln+1(~r ), by Theorem 2,9 the point

(P1,...,}Ln,,1.n+1(w)) would be interior to Dn+1. Both

assumptions lead to a contradiction, hence the representation
of x in tern of 2'2'“1. points of ¢" is unique,

Theorems 1.14, 1.19, 2.4 and 2,11 show that while a point

of _1_3_n admits only one convex representation in terms of points
of " and this representation involves at most% points of Cn,

a point of int D" admits inf initely many representations, but
only one minimal one, i.e. one involving E? points of C .

Theorem 2,12 B is the union of the simplexes Iral(a =1,

oco,n—1 )o

Proof: Let x € B" be the limit of a sequence x(k)(k=1,2,...)

of points of D" and let

a i
SRR RYCETL

be the minimal convex representations of the points x(k).

Although the numbers N j(k) and t.j(k) need not approach
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unique limits as k » «, there exists a subsequence ks such
that all the Kj(ks) and tJ(ks) approach unique limits 7\3,

tj as s » o, JSome of the tj may have the value «, If all

the t 3 are finite then x€&D", If some have the value o, it

may be seen by Theorem 2,9 that the sequence of simplexes
i

spanned by the tj(ks) approaches one of the simplexes a2

hence the point x 1lies in one of the I:.
Using Theorem 2,11 it is possible to extend Lemma 2,5 to
all points of 0" and state

Theorem 2.13 If x€D" then a(x) = 2b(x) - 1.

Proof: For xé_]én the proof is given in Lemma 2.5. For

x €éint Dn, a(x) = n by Definition 2.1 and b(x) = 9;51 by

Theorem 2.11.

Theorem 2,14 If xe En then c¢(x) =b(x) - 1.

Proof: Given x, the polynomial Rk defined in Theorem

2.1y represents a supporting plane at x which contains exactly
those points of c" which are used in the convex representation
of x, The convex set S(x) in which this plane intersects p"
has dimension ;(x) - 1, since it is spanned by the b(x)
linearly independent points x(tj). But since every supporting
plane at x must contain S(x), c(x) is by definition the
dimension of S(x). Hence c(x) =-l;(x) -1,

The indices b(x), ;(x) have so far been defined only for

x€D"., If x € B there is no distribution having x as its
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moment point, hence it would not make sense to define b(x) as
min b(y). However,the definition could be extended by consider-
ing the points of -BE as convex combinations of some (finite)
points of ¢ and the point at infinity of Cn, and taking for
b(x) the number of points used in this convex representation of
x, counting the origin as well as the point at infinity as -12.
b(x) would simply be defined as the number of points used in

the representation of x, each counted with weight 1. With these
definitions the formulas contained in Theorems 2.13 and 2.1L

can be proved also for points of 8",

Case (~wp=)

The essential difference between the previous case and the
present one is that now there is no point which plays the
special role played by the origin in the case [0,w). In other
words all the points used in a convex representation are given
weight 1, hence b(x) is always an integer and b(x) = S(x).
This involves several modifications in the statements and the
proofs of the theorems which are valid in the previous case.

Theorem 2.4 still holds, but only case 1 may occur, hence
the statement may be sharpened to read: xé En if and only if
b(x) € [‘3] i

If xe¢ __B_n the statement a(x) = 2b(x) - 1 of Lemma 2.5

holds if n is even, the proof being the same as in the case
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[0,2). If n is odd then a(x) = 2b(x), because in this
case Q(t) must be positive over (=e,=), hence it must be of
even degree, hence its degree must be ¢ n - 2b - 1, therefore
it is possible to choose only n - 2b(x) linearly independent
values for Q(t).

The simplexes ﬂz may be defined as in Definition 2,6,
However, for the discussion of the boundary components the cases
when n 1is even or odd must be treated separately.

If n is even and xe_B_n, a(x) must be odd, since
a(x) = 2b(x) - 1, Furthermore since x is represented in terms
of the 2b = 1 independent parameters tj, Rj( gti‘)\j =1), it
follows that 52 is a simplex of dimension a. Hence the
boundary components of gn are odd dimensional, Asfor the
improper boundaries, they can be obtained as in the case [O,n).
Since n 1is even, as some of the tj approach + « the points
x(t j) approach the + o direction of the xn-axls. Hence the
improper boundaries are, as before, ruled surfaces containing
half lines. Since the improper boundary components are pro-
jections, from the point at infinity of Cn, of proper boundaries
of odd dimension which are not parallel to the xn-axis, they are
even dimensional,

If n is odd the final results are the same but the

argument is slightly different. In fact if x&B", a(x) must
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now be even because a(x) = 2b(x). However &: is now a
combination of 2b = 1 = a = 1 independent parameters, hence

&2 has dimension a = 1, Since in this case all the supporting
planes to " are parallel to the xh-axis, the linear manifold
L(x) will contain, in addition to the simplex of convex combi-
nations of the points x(tj) used in representing x, the
entire lines projecting the points of this simplex from the
point at infinity of ¢™, In each of these lines only the
point of intersection with the simplex of the x(tj) belongs

to Dn, in fact to é:; the other points of each line belong
to an improper boundary component which has dimension a. Hence
when n is odd D" has a set of odd dimensional proper
boundary components and a set of even dimensional improper
boundary components.

Theorem 2,10 holds again if n is even, the proof being
the same as for the case [O,»). If n is odd a stronger
result holds, because then for any supporting plane (uo,a 13
voey dn) the coefficient & " must vanish, hence given
(f"1""’/"n-1)‘ int D" and any Mo (#1,...,/4‘_ o) € int D,

Theorem 2.11 holds if n is odd and may be proved by
applying the results of (1] +to an interval [-T,T], since
the representation there given does not involve the end points
of the interval, If n is even Theorem 2,11 does not hold,

because in this case it is possible, given (}&1,...,/An)e int Dn,
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to choose M 04 arbitrarily and, by the statement above, to

determine a unique representation of (/J-1 sevcarn )€ int Dn":|

n+2 +1

in terms of == points of Vi s which gives also a represen-

tation of (,A,I,...,/.Ln) in terms of 5'2*3 points of C", Since

+1

/"‘n A is arbitrary and different points of p" have different

representations, there is a one-parameter family of represen-

tatiom fOI‘ (#1,..0,”11)0
Theorem 2,13 holds, for x int D", only if n is odd,

in which case a(x) = n and b(x) = 251- , hence a=2 -1, If

n is even and x ¢ int Dn, then a(x) = n and b(x) -:5'2@ , hence
a =2 -2, Combining this with the remark about Lemma 2.5, the

following four cases are obtained

n odd n even
n
xf-§ a=2 a=2b -1
x€ int D% a=2 -1 a=2b -2

Theorem 2,14 still holds, with the same proof as in the
case [0,=).

If the index b(x) 1is defined for x in the improper
boundary as the number of points used in its convex represen-
tation, counting also the point at infinity, then the formulas
a(x) = 2b(x) (n odd), a(x) = 2b(x) =1 (n even) and
c(x) =b(x) =1 may be easily verified also for improper

boundary points.
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Examples to Chapters I and IT

Tt is convenient at times to introduce the moment cone D"
which is defined as the set in En+1 of all points whose
coordinates are the moments ()Lo,f*1,...,f£n) of some distri-
bution ¢ (t) satisfying all the conditions of Definitions 1.1
and 1.2 except (1.1¢) or (1.2c) instead of which only M > 0
is required. The moment space p? may then be considered as the
section obtained by cutting the moment cone with the plane M 5 L]
and the moment cone as the projection of the moment space from
the origin of En+1. (The same notation is used for the moment
cone and the moment space; the context will always be such as
to avoid ambiguity.) The advantage of this point of view lies
in the fact that it is possible to impose other normalizing
conditions than M 5 1, which give rise to a simpler graphical
representation of the moment space, In fact while in the plane
}lo =1 the moment space is a region which extends to infinity,
it will be shown later that it is often possible to choose a
normalizing plane such that its section of the moment cone lies
in a bounded region.

Figure 2.1 represents the moment cone D1 (0,») and shows
that while the section M = 1 is a half line, the section
}LO +My = 1 4is a line segment (including one extreme).

Figures 2.2 and 2.3 show the moment space D? [0,=) and the

section obtained by normalizing the moment cone with M e ,U-z =1,
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Figures 2.l and 2,5 show the same sections in the case
(=eye)., In the case [0,) the moment cone is bounded by

the surface

Mo = U uz0
(%) My =ut tz0
My = ut2
and M, =0, in the case (-=,») by the surface
M, =u
() Hq=ut uz 0.
2

}J2=ut

The surfaces (i) and (i%) are the same as
2

Po)"2=/‘41 POBO F1?'0
_ 2
Po P2 o My Z ¢
respectively. Using the transformation
Mo * )‘“2 = 2§

-/‘-o + M 5 = 2n -1
it can be seen that the plane P'o +P2 =1 cuts these

surfaces along the curves

2
“f**ﬂ'%g=% My 0
2 1 1
My i = =g

respectively.

Figure 2.6 represents the space D3 [O,n). According to
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the previous discussion the proper boundary EP, consists of

A, A3, and &3 where A3 1is obtained by joining the

origin with the points of the curve 03, A? is the curve 03

itself and &2 is the origin, The improper boundary o

consists of K3 and K3 where Kj is obtained by joining the
points of C3 with the point at infinity of 03 and K? by
joining the origin with the point at infinity of C°. In the
figure 53 is marked by heavy lines and K%

Figure 2.7 represents D3(-m,a). This space consists of

by dashed lines.
the points which lie "inside" the surface /A.2==}A$, i.e. the
points for which M 2>}L$, plus the points of ¢>. The curve

03 lies on the surface in question, The dashed line denotes

the intersection of this surface with the plane /4-3 = 0,

N
7

» Mo =

My

- — —

Figure 2.1 Figure 2.2
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Figure 2.4

Figure 2.3

Figure 2,5

Figure 207
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CHAPTER TIII

DETERMINANT CRITERTA FOR MOMENT SEQUENCES

Definition 3.1 Let

Po M1 v Mg
Pqa Py svepy
e e
Fia M1 e Pap
and
"‘1 IA1+1' o M
Pia Pree o Fia
EPTRE IS kU ol IR B
Pitapiae » o Pea-ea
Let also H

21-1,1 = 212,14

The latter statement defines Hm 1 when m is odd, It

3

is convenient in particular because it permits to denote the
sequence K, K1’1, Kss K2’1, 1{3,..., by the simpler ex=
pression H_ (m =0,1,...).

Note that given a sequence see " is

; gt q (}"o”“l’ ’f"n) K.L,l

defined for 2i+l< n+2, while Ho is defined for m + 1< n.

|
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Definition 3.2 Let

vi(tll,oua,ti) = .
i-1 ,i-1 i=1
t t2 I Y

1)
s
Theorem 3.3 If pa_ = = 'Xj t’j fe = 01 nanyn)

then for 2i + 1 &€ n + 2

S )‘51"'?‘;] -1—% 1—,;1. [Vi(tj1,...,t i)"j2

i ¥
(31:"-,31) iéE
f,0 7 i
0 i»b
where Z is the sum taken when (j1,...,ji) varies
R

over all combinations of the numbers (1 ,...,—b') taken 1 at a
time.

Proof: By Definition 3.1

1 1+ 1+-1
?_‘_).jtj Z}\jtj . & & 'E_xjtj

K- = [ ] . L] L] L . L] L L] L L L] L] * L] . . . L L
1% 4
14i=1 1+ 142i-2

which is equal to the sum of the 'Bi determinants of the form

A tl y 1_":L-ffl N 1_'l+:i.-‘|
ST AT <N
A tl"'i"" tl+i 5 1_Jl-o~21--2

i Y U %L
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1.1+ 1+i-1
= 1. h- o--A. 't t see %, . Vi(t,j:l’...,tj-)

I Iy 93 Ji i
where the set (31,...,31) is made to vary over all dispositions
with repetition of the numbers (1,...,b) taken i at a time,
If i »b all dispositions (j1""’ji) involve some repetition.
Since any repetition in the set (31,...,ji) would cause the
corresponding Vi(tjf""tji) to vanish, if 1> b all the vy
vanish hence Ki,1= O, If i< b it suffices to extend the
summation to the dispositions without repetition. All these
dispositions may be obtained by first varying (j1,...,ji) over
all combinations of (1,2,...,3) taken 1 at a time and then
taking with each combination all the permutation of its elements.
Let [51,...,51 1 denote a permutation of (Jyseeesdy)s let p
denote its parity and observe that a permutation of the quanti-
ties (tj1,...,tji) affects only the algebraic sign of

V.(t., yeeeyt. ). Then
i( 31! b Ji)

Ki 1 = Z ?_ AS see RS ti t;-+1oooti-+i-1
? (j‘,""’\ji) [31,...,85.1 1 i 1 2 i

Lo (‘t ooyt )
it 78?0 sy

= A oo-h_- tl no-tl V.(‘b. ol t ) -
(j‘[,-no,ji){ J'] Ji j‘l ji 1 31, ’ ji

p .o .1 i-1
z (-1) t31ts --at‘s. }

[.51,...,511 2 1
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The inside summation is nothing but the expansion of Vi(tj ,...,tj )
1 i

hence

2
K = Z X' .-.k tl 'lltlc v (t LN t ) L)
i,l (j1,-oo,ji) ‘]1 ji 31 ji [ i 31’ ] ji }

case [ 0,)
Theorem 3.1 If M & D" and b(p) =b, then
(30’43) IIl> 0 (l = 0’1 e ,2b-1 )
(30}~l-b) sz’m =0 (m = 0,1 ,oo-,n-zb) .
Remarks, By Theorems 2.l and 2,11, if M € D" then
n+1 n+1

()¢ —~ « If b == the second set of conditions is

vacuous,

Proof: Stated in terms of Ki m the conclusion of the
]

theorem reads:

if b is an integer
(3.Le) K 20 G TS [,
(3.Ld) Ki’1>o (L =1 0e0,0)
(3.k4e) Kb+1,m =0 (m = 0y400,n-2b) ,

if b is a half integer
(3.be) K20 (i =1,0..,b)
(3.L£) K5 4 >0 (4 =1 500050=1)
(3.Lg) Kg,ma1 = © (m = 0,e00,n=2b) .,

By Theorem 3.3 K =0 for i E. Hence in particular (3.Le)

1,1
holds. If i< b, then
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Vi(tj1,...,tji) = T—T(tjr - tj )£ O

res =
hence[Vi(tj1,...,tj']2 > 0. All the 7\j are positive, If
i

furthermore b is an integer all the +t, are positive, hence

J
Ki,l’ 0 being a sum of positive terms. In particular (3.lc)
and (3.4d) are true,

If b is a half integer %, =0, tj>0(j;£1). If i€ b
then K

» 0 if 1 =0, hence (3.4ec) is valid. Also K, .2 O

1,3  # 8
if i< b, because then some of the combinations (tj1,...,tji)
do not contain t,l s hence some of the terms in the sum are
positive; hence (3.Lf). However if 1 #0 and i =%, then the
sum giving K'B,l consists of only one term and this term
contains the factor t1 = 0. Hence in this case K‘E,l =0 and
(3.kg) follows.,

Theorem 3.5 (Converse of 3.L). If M= (Fo,...,/an) is
any sequence, if b 1is an integer or a half-integer (-g- £bs 9—}1-)
and if (3.5a) Hy> 0 (1 =0,1,.00,2b-1)

(3.5b) Hop m = 0 (m = 0,100 3n=2b)

then/.LeDn and b().c.) = b,

Proof: The theorem will be proved first for b = 2‘2*1. , then
for b =§ , finally for b arbitrary,

The proof for b = %'1 is by induction on n. By Chapter II,
p-€ int D' if and only if m€D" and b(Mm) =3'2*1- . Hence

it is sufficient to show that H, » 0 (1 = 0,s4.,n)

1
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implies M € int D", Clearly if H = m > 0 and Hy= p, > 0
then (/J-o,}-l..l ) eint D1. Let now s 2 2 and assume

s : s-1
a) H 20 (1 = 0y000y8=1) implies (/40,...,/&3_1)€int D

b) H, 20 (1 =0,...,5)

1
By the induction assumption a) and according to Theorem 2,11

My 2)\3% (1 = 0y0uey8-13 b =3).

Let Mg E ')\ ,j
s
a.nd letv # = (,‘O,...,PS-JI ,#S)o Then b(E) = E and by
Theorem 3.l, Hs(#) =0, Since H Wi 0, H = H (/u) > Hs(/i')
implies pr 7 Pt By Theorem 2,4 and Lemma 2, 5,,4.( _1» hence
by Theorem 2.10 Mg? B implies (}Ao,...,/«s)e int D5,
Proof for b = % « By the previous part, (PO""’Fn--?)

€ int D' : hecnce

JTo 217\jtj (1 = 0,00en-1; b =3) .

The condition H = 0 is a linear equation in Mo the
coefficient of }*n being Hn-2’ which is by assumption # 0
(except if b = -;_-, in which case the truth of the statement to
be proved may be verified directly)., Hence H, =0 admits a

unique solution., But byE‘I'heorem 3.4

=2 n
/“'n 3= )‘j tj
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is a solution., Hence /L'n must have this value, therefore
MeD" and B(M) =73 .
The proof for b< % is by induction. The statement
. M
"Hy >0 _gl = Cyess,2b=-1) and sz,m
My = = A ti (1 = 0ye0s,y2b4k)" has just been proved for
1 j_’l j j

= 0 (m = 0,ouu,k) imply

k = 0, Assune that it holds for a given value of k and that
H170 (l=0,ooo,2b"1)
sz,m= 0 (m = 0,440, k).
It will then be shownsthat

)*i=.2-_- )\j t,ii_j' (i =O,...,2b + k +1)o

Consider in fact the condition H =0, If b is an

2b,k+

integer it reads

Paeeess P

H2b,k+1 E L] - L L] . - . L] -

M bak1**** Mook

while if b 1is a half integer it reads

Mz« o o o +Poaxa

Hop, k1= Hbugkee | | e v v e v vocees | =0
}*’5+k+ oo wr o Mo e

In both cases it is a linear equation in /"'2b+k+‘l in which

the coefficient of this quantity has the value Hz(b-‘l) k+1°
b

The order of the latter determinant is b and b - 1
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respectively hence, by the argument given in the proof of

Theorem 3.4, this determinant is # 0., Thus H = 0 must

2b, k+1
have a solution in M, . 4, but by Theorem 3.4

b
2b+k+1
KR

f‘2b+k+1 = j

is the solution., This completes the induction proof.
Theorems 3.4 and 3.5 give a complete characterization of
the proper boundary components _5: (a = 0y00eyn=1) of Dn,
and of ég'a int D", In fact by Theorem 2,13 b 1is constant
for all the points in the same component and b = 351 .
The classical conditions that an infinite sequence

(}%ﬂf‘1"") be a moment sequence are usually stated in the form

K;z20, K 420 (1=1,2,...)

and do not involve the deteminants Ki,m (m>1)F It will be
shown next that a finite number of these conditions are suf-
ficient to assure that (M ,...,M ) be in D", The conditions
that will be obtained have the disadvantage, over those given
in Theorem 3.5, that when they are written down they seem to
involve moments of order higher than n. It will be apparent
from the proofs, however, that they do not actually involve such
moments, since the corresponding cofactors in the determinants

are always vanishing,

* see [2] p. 6.
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Lemna 3.6 Given a sequence 8y A1geeey B, let
a2 IR

3.18.2 o o ai+1

i+1 ® & & 2 & & & & e o @

it

B S &5 8o
Then if An+1 = An =0 all the minors of order n not con-

taining a must vanish,

2n
This is a well known result (see [k] P«370) which holds
in fact for any symmetric determinant.

Lemma 3.7 Let

3 4 e B
44 a2 R

Ai+1 ’1 m - . . [ ] - L 3 L] * L ] . - L ] Ll L ] L] ¢
4 FHaa oot g

n+l =k

Proof by induction. Lemma 3,6 gives in particular that

A = A = 0., The statement to be proved is clearly true for
n,o n,1

k = 0, (and by Lemma 3.6 also for k = 1), Assume that it holds
for a fixed value of k and that An+1 = An = eee = An"‘k = 0,

By the induction assumption A 0. By Lemma 3.6

H-k,1 =
An+‘l-k,o = G and An-k,c:; w4 Japly An—k,‘l = O Ar1+1-]::,1 =0

and An—k,1 =0 imply An—k,z = 03 etc.} An+1-k,k =0 and
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An—k,k =0 imply Anrk,kqﬂ = 0, Hence the statement holds
for k + 1 and the induction proof is completed.

Lemmna 3.8 If Hm,l =H = 0 then Hm—1,l = Q.

Proof: If m =21 the lemma states that if

517 K ,141

from Lemma 3.6 since Ki 141 is a minor of order i of
]

= 0 then Ki = 0, This follows immediately

Ki+1,1 not containing A*21+1‘ If 1 = 2i-1 the lemma

states that if Ki,l+1 i-1,14

follows also from Lemma 3.6. In fact if K

=K =0 then Ki =0, This

i !

1,141 = 551,14

Lemma 3,6 implies that all the minors of order i = 1 of Ki

=O,

s 14

not containing the last row of Ki must vanish., But these
]

1+
minors are identical with those obtained from the last i - 1

rows of K Since they vanish, K; 14 =0

1 % o

Lemma 3.9 Let p 1= E{ kj tj and let Ly be afy
minor of order i from the mgﬁiix of Ho. Then if 1 > Db,
Li =0, If b is a half integer and if Ly does not contain
Por 15 =0

The proof is similar to part of that of Theorem 3.3 and

is omitted.

Theorem 3,10 If M = (}AO,...,/A n) D% and b(m) =D

then

(3.10a) H, 0 (0 £1< 2b-1)

1

(3.106) H, =0 (b €1 € 2n-2b) .

1
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(If b= 251 the second set of conditions is vacuous.)
Proof: The conditions (3.10a) are the same as (3.La)
which were proved previously. The conditions (3.10b) are
equivalent to the following two statements:
A) The principal minorsof order i (-1; +12i<en-b + 1)

obtained by deleting the last n - b+1 -1 rows and colunns

of the matrix

Mo P1c e Mok
}"1 )'.2""“n—-‘5+1

# n-b M n=b+1 i 2n—2€
are equal to zero,
B) The principal minors of order i (g +1¢€ ien=>»)

obtained by deleting the last n - .1; +1 =i rows and columns

of the matrix

T e R )
B = LI Gt

MHn-b4 My 42 M2n-2b
are equal to zero, and if b is a half integer also the ones
of order b and n-b +1 are equal to zero,

Proof of A), By Lemma 3.9 and the assumption that

5
My = _21 )\jtg' (1 = 0,u..,n)
:J -
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all the minors of order b +1 formed from the first b + 1
rows vanish. Hence the result follows immediately.

Proof of B). The first part of the statement follows by the
same argument, since the minors of order b + 1 formed from
the first b +1 rows of the matrix obtained from (3.10d) by
canceling the last row and column involve only the first n
moments. If b 1is a half integer, by Lemma 3.9 the minors of
order b obtained from the first b rows of (3.10d) vanish,
hence the principal minor of order b and that of order
n->o+1 (i.e. the determinant of the matrix (3.70d)) also
vanish,

Theorem 3,11 If M = (}J.o,...,)-ln) is any sequence of

numbers and if for some integer or half integer b (12- € bsg %"l)
(3.11a) Hy > 0 (01 < 2b=1)
) _ ; n+1
(3.11b) Hy, =0 provided b< —5

and either set of conditions

(3.Me¢) Hy =0 (b<l€2n-2b, 1 odd)

(3.11d) H, =0 (b < 1< 2n-2b, 1even)

1
then M€ Dn, b(m) =Db and the other set also holds. (Note
that if b =§;§1 conditions (3.11b, ¢, d) are vacuous. If

b ::-g then (3.11¢c, d) are vacuous.)

Proof: The third part of the conclusion follows from

Theorem 3,10 once the first two have been established. If b
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is an integer, (3.11b) and (3.11d) become

Hy =0 (1 =2b, 2b+2, 2b4i, eee, 2n=-2b)

and (3.11c) becomes

Hy =0 (1 = 2b41,2b43, ..., 2n-2b-1)
hence, by Lemma 3.8, (3.11b) and (3.11d) imply (3.1%c). It
may be seen similarly that if b is a half integer then (3.11b)
and (3.11¢) imply (3.71d). Hence it suffices to prove the
theorem under assumptions (3.11 a,b,c) if b 1is an integer and
(3.11 a,b,d) if b dis a half integer, In either case if
b=§ or %;'meﬂummtﬁtMtMMmchM%wﬁh
that of Theorem 3.5, If b<w then (3.11a) still coincides
with (3.5a). Ilence it is sufficient to prove the following two
statements for b< % :
I. If b is an integer, (3.171 b,c) imply (3.5b).
II. If b is a half integer (3.11b,d) imply (3.5b).

Proof of I. Restated in terms of the Ki this proposition
3

1
becomes:

K =0
(3.11e) ¥
Kb+1,1 = Kb+2,1 S T, T -
implies

Kb+ﬂ =0

(3.11£) Kol m (M =1,000y 0-2D) .
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By Lemma 3.7 {(3.11e) implies (3.11f).

Proof of II. In this case the proposition becomes:

Ky 1 =0
o = Epy2 T e = Kb = “
implies
k51 =0
Kg’mzo (m =1,¢-n,n-2b+1)c
This follows again from Lemma 3.7.
A simple necessary and sufficient condition may be obtained
if M is assumed to be a moment point:

Theorem 3.12 If M = (/Ao,...,/.a.n)enn then b(M) =D

if and only if
H1>O (1 =0y040,20-1),
Hy =0 (I = 2byeesaf)s
:1'5_9_9_{: The necessity of the condition is proved in
Theorem 3.70. The sufficiency follows from the fact that the

determinant conditions stated are, for different values of b,
mitually exclusive,

Implied in the proof of the above theorems is that of the
following,

Theorem 3.13 If (#’o,- . ."/*n‘-‘l ) € int Dn-1 » then the

minimum value which M, can assume if (}Ao,...,/u n)é % is

obtained by solving Hn =0 for Fn'
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Case (—&m)

Of the two necessary and sufficient conditions that a finite
sequence be a moment sequence (Theorems 3.l and 3.5 and Theorems
3.10 and 3.11) only the latter may be extended by analogy to the
present case,

The following necessary condition, which is the analogue
of Theorem 3.4, is valid and may be easily proved by means of
Theorem 3.3.

If Me D” and b(m) =b then

K, >0 (L = 1,.405b),
K = 0 (m =0,...,n=2b).

This condition however is not sufficient in general (eg n = 3,

b=1, m =1, py =p, =0, M3 #0 1is not a moment point).
Using the methods of the previous proofs it is possible
to prove the following necessary and sufficient conditions:
M€ D% and b(m) =b if and only if

Ki> O (i =1,occ,b)

'uo # 1 ol f"b-ﬂn
1 P2 ot Poadm|=0 (m=0,...,n-20),
Po Poa 7 * M 2o4m

(the second part is vacuous if b = [g] + 1)

The analogue of Theorems 3.10 and 3.11 may be stated thus:
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MeDn and b(M) =b if and only if
K >0 (1 = 1;004,b)
K, =0 (i=b+1,4ss, n=b+l) o
The necessity of these conditions is easy to verify. The
proof of their sufficiency is more complicated and is here
omitted.
The analogue of Theorem 3.12 is:
If Mmé D" then b(f*) =b if and only if
K, >0 (L =V 0a0,0),
K, =0 (1 = bl ,0ae, [-’ﬂ )e

Theorem 3.73 is still valid when n is even. If n is

odd c¢f. remark about Theorem 2.10.
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CHAPTER IV

THE POLYNOMIAL SPACES

It has been pointed out in Chapters I and II that to any
plane in B (or, equivalently, to any plane in En+1 pass-
ing through the origin) there may be associated a polynomial
of degree =< n, This fact has been used in the proofs of
some of the theorems stated in those chapters. To investigate
some of the consequences of this correspondence between planes
and polynomials, the polynomial spaces will now be defined and
studied both in themselves and in their relations to the
moment spaces.

Definition k.1 The set of points (a , a45ee., a ) of

n+l 1 i
E such that S a;t

i=0
is called the n=th polynomial cone over [0,e) (or (-w,«))

Zz0 for 0 €t < o (OFr =wcte =)

and is denoted by P" [0,e) (or P%(-w,=)). If the coordinates

a; are subject to the normalizing condition

i=0
the region obtained is called the n-th polynomial space and
is also denoted by P" [0,=) (or P*(~w,«)).
The n-th polynomial cone is clearly an (n+l)-dimensional
region while the n-th polynomial space is an n-dimensional

region, It is easy to verify that the polynomial space is
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convex and, by comparison with the space P"[0,1] , that it
is bounded.

Extreme points of the polynomial space.

To say that a polynomial of degree n has k roots at e
shall mean that its degree is n-k. To say that it has no
roots at o shall mean that its degree is exactly n.
Theorem 4.2 A point of the space pf (0,) (i.e. a
normalized polynomial positive over [0,»)) is:
A) an extreme point if and only if it has n roots in [0,«]
B) a boundary point if and only if it has some roots in [O,dj
C) an interior point if and only if it has no roots in [0O,«]
A similar result holds for P (—e,«).
Proof of A) Assume P(t) has degree n and allits roots
in [ O,=) « Then either P(t) =&t]? (t - tj)2 Os‘t'.‘_j
2

or P(t):(&];'l(t-tj) 0st, .

Assume. P(t) is not extreme. Then P(t) = AQ(t) + (1 = A)R(t)
(0eXN< 1) and Q FRe Q and R must have as roots all the
roots of P, Hence,
Q(t) = P(t) Q(t) Q(t)z 0 (0t < =)
R(t) = P(t) Ry(t) R(t) 2 0 (0t &) ,
By a theorem of Lukdcs (see [3] p. L)

q(t) = q12 + qg % t(q§ % qﬁ)

2

(Le2a)
ry + rg + t(r§ + rﬁ)

1

—~
ct

~
I



Now the relation >‘Q’l + (1 =W) Ry =1 must hold; but this
is impossible if @, R, have the form (L.2a) unless Q; =1,
Ry = 1, in which case Q = R. The contradiction implies that
P is indeed extreme.

Conversely, if P(t) has a negative root t'o then

P(t)

H

(t - to) P (t) = (t - t, = a) Py(t) +a Py(t)
Py(t) 2 0 0et « =)
and if 0 <a <~ to, P(t) is represented as a convex combi=-
nation of two points of P" [0,=), hence it is not extreme.
If P(t) has a pair of complex roots then
P(t) = (t - a - ib)(-a +1b) Py(t) = (t - a)° By (t) +b% Py (t)
P1(t);O (0 £te =),

Proof of B) and C) If P(t) is strictly positive over

[0,») and of exact degree n, any small perturbation of the
coefficients, in particular any one satisfying the normalization
condition, leads to a small variation of the roots, which are
all complex or negative, hence it leads to a polynomial which

is again strictly positive. If P(t) has some roots in [ 0,«]
and if some of them are finite, a small displacement of one

of them while the others are kept fixed leads to a polynomial
which is negative over the interval of displacement. If some

of the roots are infinite, i.e. if P(t) is of degree < n,

then the addition of a term - et" leads to a polynomial
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which is negative for large values of %, In either case there
are points in the neighborhood of P(t) which are not in
Pt [0,=). Since both the hypotheses and the conclusions of B
and C are mutually exclusive, the proof is complete.

In the case (-e,«) the proofs follow the same arguments,

In part A the representation

(8) =qf +qj

is used,

It is noteworthy that when n is odd, since every poly-
nomial in Pn(-m,n) has at least one infinite root, the space
i

P (~w,») has no interior points.

Representation theorems for positive polynomials.

The polynomials to be studied are assumed positive over
[0,0) and (=w,=) respectively. All these polynomials have
positive leading coefficients which shall be normalized to
have the value 1,

lLemma 4.3 Given PEn(t) > 0 in [0,«) and any number
tn> 0, there exists a unique polynomial Pn2 = ﬁq(t - tj)z
(0 < t1 < t,%,..< tn) and a number a >0 for *?vi:ich
P2n(t); %.- Przl(t) (0t e tn) with equality holding at ¢t =0
and once in each interval (tj, t;j+1)‘

The proof of both existence and uniqueness is exactly the

same as that given in 11 for a polynomial positive over

[0,1), although in this case the extreme t is a double

root, of Pi. Quantities aj can be defined by
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PE(Y)
a.‘_j = max (J = 05000,n=13; t, = 0)
byt g by Py (t)

and it can be shown that there exists a unique set (ty,...,t 4)
such that a; =a () =0y0eeyn-1), This set tj and the
number a obviously satisfy the lemma.

Lemma L.L a is a continuous increasing function of t ,

and for tn sufficiently large a becomes arbitrarily large.

Proof of continuity. The following propositions will

first be proved:
A) If t’n ¢ T, there exists C such that a < C;
B) If tnz T, there exists ¢ such that a= c.
To prove A): let tn ¢ T and let p = min Pzn(t). Then

1 2(t) OeteT
a, &=~ ma% P .
- tjs stj+1 n

By varying the tj over the compact set 06t1£ t.2 eee &t T

each aj assumes a maximum value A;j‘ Take ¢ = mg.x Aj‘
To prove B): let p' = max P, (t). For at least one J,
T O£t T
tj+1 - tj 2 hence
1:‘nz 1 - 2
ay = max g B =y & rgaxt ii:] (t—tj)
t'jétst’j-rfl 2n P j‘ % My
2n 2n
= -1- ’ H_ t':’ 2 L T .
- pl 2 - :6‘1 'fﬂ

2n
1 T
Hence az ;' (5) .
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It will be proved next that ail the tj (5 = 04eeeyn=-1)
of Lemma L4.3 are continuous functions of t o Assume the
contrary. There would then exist a sequence ti.+ tn
(k=1, 2, +o.) such that at least one of the corresponding
sequences tg defined by Lemma 3.3 does not converge to tj‘
Then a subsequence t:i could be selected such that all the
subsequences t?i converge to values té with t3 # tj for
at least one j, and the sequence aki » a'> 0, The poly-

2 n
nomal (P1) =TT (t - tS)z and the number a' would then

3=
satisfy the same conditions as the polynomial Pn2

and the
nunber a of Lemma L.3, which contradicts the uniqueness of Pn2'
Now if tn is changed by a small amount, the tj change also
by a small amount, and so does a which is the common value

of the a,,

J
Proof that a -+ « as tn.+ «, Let C >0 be given and

assume that there exist arbitrarily large values of tn for
which a < C., For these values
2
¢ P2n(t.) > P, (t)
for 0 ¢te t’n' in particular
(Lba) ¢ P, (1) > P A1) (L =1,2,0..,04).

€ at points

But if tn is arbitrarily large, the values of Pn
other than its roots become also arbitrarily large, thus contra-

dicting (L.La).
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Proof of monotonicity. Consider a as a function of L

| 1
and assume a(t ) = a(t)) for t i t . Then the poly-

2
nomials %-Pnz and%- P;l have 2n common roots; and their

difference, which is a polynomial of degree 2n -1 with 2n
roots, must vanish identically.
Theorem 4.5 There exists a unique representation of a
polynomial P2n(t) >0 (0et<w) as asum
n-1

n
P, (8) =TT (t-t)% + dt TT(t-t.)° ®>o0
2n j=1 j j=1 j

(0 <t1< t1<t < oo <En—1 < tn) -

2
By Lemma L.k, since a-» 0 as t - 0, there exists t_  such
that a(tn) = 1. Hence the corresponding unique polynomial
n

p e T (¢t -t )2 is such that the difference P, - P °

n j=1 J 2n 'n

is a polynomial of degree 2n - 1, 3By Lemma 4,3 this difference
polynomial is non-negative for 0 &€ t < tn and vanishes at 0
and at values tj (tj < t., < t’j+‘|)' Hence this polynomial is

J
of the form

n
2
d.t].;' t -t o> 0.

By a similar argument it is possible to obtain the follow-
ing
Theorem 4.6 Given a polynomial P2n+1 (t) there exists

a unique representation
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n n
Py (t) =t g (b - tj)2 +ujT;l'(t - ”ﬁj)z o> 0

(0 <t e <ty < tnctn).
Lemma .7 Given any polynomial PZn(t) > 0 (=w,m) and

any t1, there exists a unique polynomial

n
2 2
P_°(t) =1j'31 (t = ) (t) €ty &= o0 <t)
for which P, (t) z P_°(t) (b <t <t)

with equality holding once in each interval (tj, tj +1).

The proof is similar to that of Lemmas L.3 and L.l and

Theorem L.6, after transferring the origzin to the point 1

the only difference being that the left hand point t1 of

the interval under consideration is also a double root of Pnz.

Lemma L.8 tj (3 =2, essy n) as determined by Lemma
L4.7 are continuous functions of ty. Also tn is a monoton
increasing function of by

Proof of monotonicity. After defining aj as above, it

can be shown like in Lemma L.l that for any fixed 5

a=a (t1,tn) is a continuous increasing function of toe
Similarly for any fixed tn a 1is a continuous decreasing
function of t1. Conversely by the continuity and monotonicity
tn is a continuous increasing function of a. Now assuming
a(ty, t.n) =1, if %, 1is given an increment € >0,

a(t,f + €, tn) =1- & for some §> 0. Hence
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a(*l'”l +€,t +M ) =1 can have a solution only for Y'> 0.
But by the existence theorem such rl does exist.

Proof of continuity. It can be easily seen that if t1

varies in a closed bounded interval, so does t’j‘ If t, were

J

not a contimuous function of t,, there would exist a sequence

t.1k such that the corresponding t jk
k
would then converge to t; with t; Aoty

does not converge to tj.
A subsequence t

J
for at least one j. But then the uniqueness of the poly-

n
nomial Pn2 =TT (¢t - tj) would be contradicted,
j=
Theorem L.9 Given any P, (t) >0 (=wyw) there exists

a unique representation

n n-1 s
(b9a) P, (8) =TT (¢ - £)°2 4+ TT (t-t.)
n j:‘l J 3::1 J

(d" 0; t1<t14t24t2 < o0 C.tn-1 Qtn)-

Proof of unigueness. The polynomial Pnz(t) of Lemma L.7

depends on the choice of t. I for a certain choice of T

Py - Pn2 >0 for all t and (L.9a) holds, then (L.9a) holds
for a unique o » O and a unique set t'j' bE t,; # ty

. 12 . 2 12
could be chosen with P2n - Pn > 0, the polynomial Pn - Pn

would have 2n - 1 zeros. In fact assume for simplicity that
t; «t, , that the ty and the t; are all distinct and that

the tj and t;'j are also all distinct. Then
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Pnz(tj) 0 4?1;2(’03) (3 =1, 2, oeey 1)

Pnz(t.j) = Pp(ty) > Pnz(tj) (5 =1y 2, eeey n-1)

[T .
B, (tn) < P2n(t n) =P, (tn) since by Lemma L,8 t < .

Hence Pn2 - Pn2 would have 2n - 1 sign changes, therefore

2n - 1 zeros. If some of the tj and t' coincided, or if

J

some of the tj and b, coincided, the number of zeros would

J

decrease, but their multiplicity would increase, and it can be

easily seen that the total number of zeros of Pn2 - PAZ ’

counting multiplicity, would still be 2n - 1., Hence the poly-
n- - n-1 .

nomials «x | § (% - 1'.‘].)2 and o "[ I (t - t;)z would
j=1 J=1

also cross 2n - 1 times, But then these polynomials of degree

2n - 2 would be identically equal, and so would Pn2 and sz.

This establishes the uniqueness of the representation.

To prove the existence construct a t1 such that for the
2

corresponding Pn

- P & 2 0 for all t.

P2n n -

If the latter relation did not hold, in addition to the roots
tj of combined multiplicity 2n - 2, the polynomial P2n - Pn2
would have only one simple root, say t*, Either t*;- tn or

2

t* < t1. Since by Lemma L.3 Pn depends continuously on t1,

and since the root t° is simple, the set 1, such that t"

exists is open. Furthermore it can be easily seen that by
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choosing t; sufficiently small t* exists and t*>.tn,
while by choosing t1 large, t*cg t1. Since the set of t1
such that t* > tn and the set of t1 such that t < ty are
disjoint and each is open, there must exist a point T between
them., Choosing t1 =T we have P2n - Pn2 0. In other words
define

T =sup t, such that t*  exists

and "> t

the set is non-void and bounded above, hence T exists.

The representation theorems are susceptible of a simple
geometrical interpretation in terms of the normalized poly-
nomial spaces Pn. By varying the roots of an extremal poly-
nomial of the form 'r;T (t - tj)2 or t T-ET (t - tj)2 and
if necessary by letting some of them approach « it is possible
to connect arcwise any two extremal polynomials by means of
extremal polynomials if and only if they are both of even degree
or both of odd degree., Hence if n 1 the space P° [0,w)
has two disjoint extremal components such that any point of
- [O,w) is a convex combination of one point of each

component,

The space Pn(—w,m) has only one extremal component,



53

CHAPTER V
RELATIONS BETWEEN THE MOMENT SPACES

AND THE POLYNOMTAL SPACES

The notion of conjugate convex cones has been investigated
in [1] . Some of the pertinent definitions and theorems will
be listed here,

The following statements are valid whether C is a closed
set or not:

(5.0a) Define the convex cone C ¢ En+1 as the set of
points x = (xo,...,xn) such that x, x' € C implies
Ax + A'x'ec for all positive A, A

(5.0p) Define the conjugate cone C* to a given C as

the set of points ¥y such that
n
z X ¥ = (x,y)2 0 for all x € C
i=0

(5.0¢) c* is closed and convex.

(5.0d) C* is the set of planes of support to C. A
plane which supports along an element of C other than the
origin is a point in the boundary of C*; (The converse is
not true if € 1is not closed).

(5.0e) Any two non-zero points in the same line through
the origin represent the same plane. If C is proper, i.e.
it does not contain a complete line through the origin, it is

possible to normalize its non-zero points by means of a plane



parallel to an interior point of C*. The resulting cross
section, K, is a bounded convex set.

(5.0f) Let K, K* be bounded cross sections of proper
cones C, c*. Then

interior points of K are planes not meeting K*,

boundary points of K are planes of support to K*,

exterior points of K are planes cutting through K*.

(5.0g) If x is in the boundary of a cone C and if y
is interior to the convex set of points in vhich x meets C*,
then y is said to be conjugate to x.

(5.0h) If x € C is conjugate to yec* and if y is
conjugate to any z € C, then y is conjugate to x.

(5.01) The indices a(x), c(x) of a point lying in a
proper, (n+l)-dimensional cone C are defined in the plane of
any bounded n-dimensional cross section containing x as in
Definitions 2,1 and 2.2, They are independent of the cross
section used.

(5.0j) If y €C 1is conjugate to x & C then

a(x) +c(y) =n-=1.

If C is closed then C is conjugate to C*, hence C
and C* are dual to each other, In this case the following
additional statements hold.

(5.0k) ¢ =¢,

(5.01) The converse of the second statement in (5.0d)
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holds, i.e. a point is in the boundary of ¢' if and only if
it is a supporting plane to C at a non-zero point.

(5.0m) If x€C is conjugate to yeC or if y is
conjugate to x then

a(x) +¢(y) =n-1.

In connection with (5.0j) and (5.0m) it is to be noted
that if x€C, then every supporting plane to C at x is a
supporting plane to E at x and vice versa. Hence if xe(
is conjugate to yeC* with respect to C it is also conjugate
with respect to €, although if x 1is conjugate to y with
respect to C it need not be conjugate with respect to E.

Thus ac(x) = a_(x) although cC(x) and ¢_(x) need not be equal.

C 5 c
The moment cone D

introduced in Chapter II, its closure
i and the polynomial cone P are obviously convex cones.
Theorem 5.1 The cone P is conjugate to the cone D",
The cones P and D" are mutually conjugate.
Proof: Let ( oto,d) denote a plane not intersecting D%,
Then for all M= ()41)
(st,m) 2 0.
In particular for M, :ti (1 =0,1,00.,n)
P(t) =Fa, t' 20,
i=0
hence (o , o ) is an element of .

Conversely let (o(o,ol ) denote a polynomial P" = 0. Then
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since any moment point M. is in Co(c™) and since Zditiz 0y
C p.) 2 0.

The second part of the theorem follows from (5.0k) and the

fact that Bﬁ is closed.

The first part of the theorem together with (5.0c) implies
that P" is closed.

As far as P" (=wy) 1is concerned, the following dis-
cussion will be limited to the case of n even, which is the
most interesting since sz*1(~»,w) = sz(—w,w).

Lemma 5.2 P is conjugate to x = '_2_1 Kjx(tj) if and
only if the only roots of P in [O,m] JZBr {-=,»] ) are

roots of minimal order at t i.e. double roots except for

j’

a simple root at t, if %, =0 in the case L0,=.]
Proof: By the definition of conjugateness P is con-

jugate to x if and only if P 1is a plane interior to the

set of supporting planes to p? at X, The planes of this

set have the form .

p(t) =q(t) T 1 (¢ -1,)2
3= ’

where Q(t) is any polynomial non-negative in the interval
under consideration. For this it is necessary and sufficient
(cf, Theorem L.2¢c) that Q(t) be exactly of degree n - 2b(x)
and strictly positive. DBut this is the case if and only if

the only roots of P are roots of minimal order at +t

j‘
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Theorem 5.3 Let Pé&bd P,

A) If P is conjugate to x€D® then x is conjugate
to P.

B) If P is not conjugate to any x€éD" then P has
roots of order greater than the minimal or roots at .
Proof of A) By Lemma 5.2 the only roots of P are at the

points t. wused in the convex representation of x. Hence

J
the set of points which the supporting plane P has in common
with D" is precisely L(x)N D". Since x is interior to
this set x 1s conjugate to P.
Proof of B) Since Pébd P", by Theorem L4,2B P must have
some real roots (infinity being considered a real root). The
result follows then from Lemma 5.2 by contradiction.

Theorem 5.); If x€D" 1is conjugate to P then just one
of two alternatives holds:

1. P 1is conjugate to x

2. P has multiple roots or roots at .

Proof: By (5.0h) and Theorem 5.3B.

Theorem 5.5 If P€P" is conjugate to x&Dn, or vice
versa, then P(tj) =0 if and only if x(tj) is used in the
unique representation of x.

Proof: By Theorem 5,3B it is sufficient to prove the

statement under the assumption that x is conjugate to P.
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Since x 1is interior to the simplex which P has in common
with Dn and since the representation of x is unique, all
the vertices of the simplex are used. These vertices
correspond precisely to the roots of P(t) in the fundamental
interval,

The results stated so far illustrate the relations between

D* and P°. To study the geometry of P* it is convenient to

investigate the relations between EE and P'. The points of
P - D" are convex combinations of points of ¢ and the
point at infinity of ¢® in the sense explained in Chapter IT.
If x is such a point, any supporting plane P at x is
parallel to the xn-axis, hence it is a polynomial of degree
n-1 at most. Hence the set of roots of minimal order of
Lemma 5.2 must be extended to include a possible simple root
at « 1in the case (Chw) and a possible double root in the
case (~w,e)s If x '"'{tj‘ denotes the fact that x is a
convex combination of the tj (j = 1,...,3), where possibly
% = w, then Lemma 5.2 may be restated as follows: P is
conjugate to X~ {_t;j if and only if the only roots of P in
[O’ml (or [-w,=] ) are roots of minimal order at tj.
Theorem 5.3, 5.4 and 5.5 hold also for x¢ D" with the proviso
that a simple root at » in the case [0,=) and a double root

at « in the case (-e,») are to be considered of minimal order.

The proofs are similar to those given above,
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Definition 5.6 Let b(P) denote the number of distinct

roots of P&P" in (0,01 (or ([-=,=} ) and let b(P) denote
the same except for a half count given to the roots at 0 or
« 1in the case of P" [0,w).

Theorem 5.7 If Pe&P" is conjugate to xisﬁ, or vice
versa, then

(5.7a) b(P) = b(x)

(5.75)  b(P) = b(x)

(5.7¢) 2b(P)=n = ¢(P)

(5.7d) ;(P)

Proof: The first two relations follow ifrom Theorem 5.5.

n - a(p) .

(5.7c) is proved by means of Theorems 2,13, (5.0m) and (5.7a):

2b(P) = 2b(x) = a(x) +1 =n - ¢ (P).
(5.7d) is proved by meams of Theorems 2,14, (5.0m) and (5.7b).

Theorem 5.8 A) For every Pe&bd P" there exists an
x €bd D" which is conjugate to it, (This statement is true
for closed convex cones in general,)

B) Every point x is conjugate to some P.

C) All points conjugate to a given P are in the same
boundary component of g

Proof of A) Given xe€bd D" choose a plane P

interior to the set of planes supporting D" at x. Then P

is conjugate to x.
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Proof of B) It follows from part A and Theorem 5.3A.

Proof of C) If x and x are both conjugate to P,
Theorem 5.5 implies that they are both combinations of the
same points tj » hence the statement follows immediately.

Theorem 5.9 The boundary of P" [0,») may be partitioned
into disjoint, individually connected components a; » Q 2
(¢ = 0,1 ,00syn=1) such that ¢(P) =c¢ if Peaz or gg and
such that the upper bar denotes a root at « and the lower
bar denotes no roots at «. The closures of 6:: and 92 are
the extremal components of P", Moreover a(P) is constant
over each component and satisfies the relation

n +c(P) =2 <« 2a(P) £ n + c(P).
Proof: Let for ¢ =0,1, .o, n =1

Q. ={Pl3x€A nl-c 3 X conjugate P} s

ng ={Pla xe&n‘l ;3 X conjugate P} ‘
— n-1-c

Then Theorems2,7, 2,12 and 5.8 imply that the partition of

the boundary of P? is exhaustive and that the components are
mutually disjoint. That they are individually connected follows
from the connectedness of each '12, A: o That ¢(P) =c¢ if
Png or 92 follows from the definition of 'CI’; and 92 and
from (5.0m). That the upper bar denotes a root of P at o

and the lower bar denotes no roots at « follows from

Theorem 5,5 and from the fact that the representation of x
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involves or not the point at e« according as x lies in

some X 2 or in some &: o According to Chapter IV the
extreme points of Pn are positive polynomials of degrees

n and n-1 having n and n-1 roots respectively in

(O,a] o« These polynomials are limits of polynomials having

n and n-1 roots respectively in LO,»), g of the roots being
distinct, with b = % and Eil respectively, The latter poly=-
nomials have as their conjugates the points of A 2_1 and

A1’1

ol respectively, hence they lie in Q 2 and QZ respective-

ly. The fact that a(P) is constant in each boundary com-
ponent of P follows from (5.0m) and from the fact that c(x)
is constant in each boundary component of ) Finally the
relation

n+c¢(P)=-2 < 2a(P) € n + c¢(P)
is deduced from Theorems 2.13, 2 14 and 5.7 and from the
relation

b(x) < b(x) < b(x) +1.

In the case of P (-w,») it must be noted that the point
at infinity does not play a special part as far as the boundary
components of D" are concerned. In fact if D" is normalized
by setting }*o +p = 1, the curve c® is given para-

metrically by

X =
i (T

which is a closed curve regular at t = ». Hence the improper
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boundary component A, , of D%, which is obtained by joining
all convex combinations of b-1 points of Cn with its point
at « becomes part of the proper boundary component é-leb—1
obtained by taking all convex combinations of b points of g
Thus all boundary components of 7" are odd dimensional. Hence
Theorem 5.9 becomes:

The boundary of Pn(—w,m) may be partitioned into disjoint,
individually connected components QI; (¢ = 0,2,004,yn=2) such
that ¢(P) =c if PeQ’c‘ . The closure of QI;' is the
extremal component of Pn(—w,w). Moreover a(P) is constant
on each component and 2a(P) =n + c¢(P).

The proof is similar to that for the case 0,»), with

Qg ={ PI3 x én ; x conjugate P} -
n=1-c
The fact that the greatest value of ¢ is n-2 means

that the boundary of Pn(—m’m) does not contain any "flat"

pieces, i.e. any linear simplexes of dimension n-1.

Examples of polynomial spaces.

The extreme points of P> [0,) are of the form
P(t) = d(t—u)2 where 0 ¢ u <e and P(t) = pt. The

normalizing condition z il a, =1 gives

1
~= =1.
1—2u+2u72, G

Making the orthogonal transformation
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a, = & =1 4%

a  +ay -a, =1 +y

ao+a1 +2a2

the points of Qg are given, in the normmalizing plane z =1,

by the parametric equations

1}

b/

o 21;11-2
2u” - 2u +1
(0_‘_11(&) ']
y = 2"3
2u° - 2u + 1

Qo consists of the point (2,0).
Similarly the extreme points of P2 (=w,o) are of the
form P(t) = ™ (t—u)2 were =« £ U< o In the plane z =1

Qg is given by the same equations as before with = € u< w,

o

Figure 5.1 shows schematically the three spaces
P2(-m,ao) c P2 (0,») < P2 [0,7]. The polynomials shown in
the figure have been written without the normalizing constants.

Figure 5.2 represents the spaces D . 10,) normalized by
M +p, =1 (cf. Figure 2.3) and P [0,@). The polynomials
1 and t2 are not conjugate to any point of _ﬁz since they have
double roots at e« and 0 respectively. The polynomial t 1is
not conjugate to any point of D2 since it has a root at o

but it is conjugate to the point Ag < 52. The point A~ 1is

0
2

3]

conjugate to t with respect to D~ but not with respect to 1-).2
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Figure 5.3 represents the space P [O,m). Its extreme

points have the form
1) o (teu)?
2 Deunueg o
2) At(t-u)
Set 1) has already been discussed., Set 2) is dealt with by

means of the orthogonal transformation

[ao-a.,! =1 +x
aj +3y -3, =1 +y
ﬁao+a1+232-a3 =1 +12
L&, + 2y +2&2+6a3 =W
which gives
112
B 5 cqpeeemm

u - Lu + 6

-uz- 2u

y:
uz-hu-v-é

.. —u° 4 lu -1
u® - lu + 6
w=1 (normalization) .

The boundary component g is obtained by joining points of

o

A and 9_30 corresponding to the same values of wu.
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The fact that P" is conjugate to D" may be used to
obtain a new proof of Theorem 3,12, In fact the statement
that P° is conjugate to Dn may be reworded as follows:
if mo= (/Lo,...,ftn) is a reduced moment sequence then
i

P(t)= t" 2z 0

a

implies

o EIM:

P

( ,P)E 2_ a 2z 0 ']
P e
The condition "P& P* implies (M,P)2 0" is equivalent to

the same condition applied to a subset of p" containing all

the extreme points of P,

case L 0,=).
The subset chosen in this case is that of the polynomials
of the form
(‘1[ atl)” 1= [5]
4 i
i=o

and

1

= : 2 n-1
oS ath 1 =[]

i=o
this set contains all the extreme points of Pn. The condition
(F.,P) 2 0 applied to these polynomials becomes

)

iy 88y iy B0 . =[%]

i,j=o0
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and

1

2 Mg

i,j=o0

0 Lw)es

respectively and these conditions in turn are equivalent to

KiZO (i =1,.-0,‘_%1)
; -1
and K 120 (1 =1,...,[5])

which may be written together as
H:L?/O (l =O,lco,n)0
If now b( r;) =b 1is an integer, any supporting plane

at ,A- must contain the points t, used in the representation

J
of M s hence it must have degree 2b at least., For any

supporting P of degree < 2b, ( /&,P) > 0, therefore

o-1 b-1
PR A LY e
1,3=o 1,j=o

are positive definite, while

b

e,

2w Moy

i,j=o
is positive semidefinite and there exists aset (a ,...,2),
unique up to a positive multiple, such that
b

Z aia“j f"i+,j = 0,

i,j=0
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Hence
Ki'>0 (i:‘l,cto,b), Ki =0 (i =b+1,oo., ('-g-] ),
. n-1
K 120 (L=T,0b), K =0 (1 =bd,.., (%1 ).

If b 1is a half integer it is found similarly that

b1 b-2
2. 325 M 14 and 2 aja M 1454
i,j=0 i,j=o

are positive definite while
b-1

2 a4 Mg

i,j=o0
is positive semidefinite. Hence

Ki > 0 (1:1,.-.,b), Ki =0 (i=b+1,coo,[%] ),
& = o= n-1
Ki’1 > O (l = 1,‘ll’b-1), Ki,1 =O (i =b,n¢., [TJ )l
These results coincide with Theorem 3.12.

Definition 5,10 Let

Moft v v e Anag
’*1,"2 "'P’n v

FoPust * v+ P

F‘I Moo oo My L
)"‘2 }"3"‘/“‘n+‘l t

and pn(t.) "

. L] L * L] L L] L L] L] L d L . .

P, ()

L}

M Mng2e P'Zn "
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-1
Theorem 5.11 Let (Po""’/u'n-‘l )eint DV ¥

T .-_-min/u.n for (Fo,...,pn) Dn, and#z (ﬂ'o""’
o ’#—n)' Then:

A) If n =2m the unique supporting plane at # is [Pm(t)l .

and the spectrum of the unique distribution _Y_ whose moment
point is # consists of the roots of Pm(t).
B) If n=2n+1 the unique supporting plane at # is
t [pm(t)] 2 and the spectrum of  consists of O and the
roots of pm(t).
Proof: 1In case A since b('&) =m,
Ki >o (i=1,00-,m), }(tn+1 =O

hence the system of equations

n
_%:0 ai}*i-«»j =0 {J =05sss;n)

has a solution. Since Km’ 0 the matrix of the system has
rank m, therefore the roots are proportional to the cofactors
of the last column of Km+1‘ Hence ;‘,Zf'o aiti is proportional
to Pm(t) and the first part of the statement follows. Since
the supporting plane at # vanishes precisely at the points
used in the representation of #,, these points and no others
belong to the spectrum of 4. The proof of B is carried out
similarly,

Theorem 5,12 Given M = (/A.o,...,}l.n) and a distribution
() such that m(¢) = , the polynomials P, (t) (0 < is[gl)

and pi(t) (0£ i< [9-'2'1] ) form orthogonal systems over the
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interval [O,m) with respect to dy(t) and tdey(t)
respectively. The normalization constants of Pi and P;
are\JKiKi+1 andVE.’1 Ki+1,1 respectively.,
Proof: If 0<j e is[%] then
Po M1 o s P Ay
3 o I o BRI R P
t Pi(t)dw(t) = L] L . L * * * * L . L] L] . O= O’

0
Mo PaaeoeocPaaa Maa

since two columns of the determinant are equal. Furthermore

[} 0

{ PY (1) dg(t) =K of t'P, (t)a P (t)

B B e A M
M P R i

i 1 N [kt < 2.
KB Ka oo Poig P

hence the normalizing constant of Pi is I KiKi a° The part
of the theorem concerming Py is proved similarly,

Definition 5.13 A function of bounded variation ¢ (t)

is said to have a sign change at t2 if there exist numbers
t.1 and t2 (t1f_-t2) and a number S1> 0 such that
(5.13a) < () =0 (t1 <t t2)

(5.13b) P () = )Pty + ) «0 (0 48451).

Theoarem 5,14 If g and Y are distinct distributions

having the same first n moments then '-, - ¥ has at least



T

n sign changes.
Proof by contradiction. If ¥ - ¥ has sign changes
nt
at (3 =1,0e.,nen) let Qt) = T7 (t-t, ;)+ Then
t 3=

P(t) = fQ(t)dt

is a polynomial of degree n at most, hence

[ 2wace-w) =o.
O-
Integrating by parts and using the fact that (Y -¥)(0-) =0,

o=f rat-p = rag-w f P d(§-¥)
(5.1ka) .
= (P-¥)(A)*P(A) - juf ¥) Q at + ]P iy -¥).
Given €3> 0 there eJCLSt A1 and C such that AP A1 implies
P(A) < CA". Also, since § has n moments, there exists A,

such that A '>A2 implies
A" [ -\f(A)]:-. f 0 ag (1) & S
A

(the first inequality holds for any A)., Similarly there exists

A3 such that A >A3 implies

An U = T(A)lcﬁ'e' .
Hence if A > Ays Ay, .5.3
|(g-wrwrrw] = |1 -y -1 +pw] - |rfeif ol =2

Also if A 1is sufficiently large

o«

{ Pd(Y-¥)

A
But I (f-¥) Q dt] is positive and non decreasing as A

0
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increases, because ‘f - Y% 0, and ‘f - V¥ and Q have
sign changes at the same points, hence their product is
always nonpositive or nonnegative, Thus a contradiction to
(5.14a) is obtained.

Lemma 5,15 If M€ int D2m the roots t, of P_and

et ————————— j m
the roots u.j of P interlock according to the pattern
(5.153,) O"to" u-I‘. [ ] * ‘tm‘um‘

If M€ int D2m-‘l the roots of P_and p_, interlock

according to

(5.15Db) 0 €tyewy s . ,eu 4t .

Proof, That the roots are all distinct, real and posi-
tive is a consequence of the geometrical interpretation of
polynomials as supporting planes, If n = 2mn let _\t and
Y be distributions corresponding to the points (Mryseee,
Mon1s #Zm) and (}l1,...,f-2m, #-2m+1)‘ Since B (’&) =mn
and ;Qt) =m+1, _‘f and _‘t‘_ have altogether 2m + 1 saltus
points, (O, tj
where. By Theorem 5.13 _\L-— _\I_’_ must have 2m - 1 sign

3 uj) (j =150..,m) and are constant else-

changes. O 1is not a sign change since P (0-) =L(O—) = 03
nor is the greatest point in the set (O, tj’ uj), say v, a
sign change since ‘P (v+) = W (v+) =1. Hence all the

other saltus points must be sign
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changes, therefore the t. and the uj must alternate and

J
since§ (0+) =0 and Y (0+) > O the smallest saltus point

is t4. Hence the tj and u, satisfy the inequalities (5.715a).
The points x(tj) and the points x(0) and x(uj) are

involved in the unique representations of # and /L re-
spectively, hence by Theorem 5.11 Pn and Py vanish precisely
at t';] and u:j respectively. The second part of the theorem

is proved similarly,

Theorem 5,16 If n = 2m there exists a 1: 1 : 1

continuous correspondence between the interior points of the
space Dzm, the ordered pairs of polynomials (P, n?P m} and the
open simplex of strictly interlocking roots

0= uot.t14 L BRI ct.mcum.
If n=2m -1 there exists a 1: 1 : 1 correspondence between
the interior points of the space D2m'1 , the ordered pairs of
polynomials (Pm, Pp.1) and the open simplex of strictly inter-
locking roots

0= u04t1<.111<...- ‘um—‘]étm'

Proof: If n = 2m, by Lemma 5.14 the point M determines

uniquely the interlocking sets tj, and u,, and by the

J

representation theorem it determines uniquely the positive

numbers lj (3 =1,00e,m) and X

m
- i
(5.16a) M, = j‘z‘_.‘ Ayt o=

; (3 = 0yees,m) such that
1

i
1j u' (i = 0,...,2!11—1),

M=

m
. LR
/‘Zn—.;éo 753 uy
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Conversely it will be shown that given any interlocking
sets t;j and u._j the point M is uniquely determined and
satisfies (5.16a). In order that the sets t’j ) Uy represent

a point ,u. the conditions

(5.16b) Z lt Z). = 0 (i=0,e.e,2m-1)
mst hold, where uQ = Oo =1, Letting
t
(5.16¢) dzj = lj’ d2j-1 = - )\j, Wpy =Usy Wos g = t
(5.16b) becomes
2m
(5.16d) 2. &, w- =0 (1 = 0ye00,2n-1) &
o J J
The 2m x 2m +1 matrix of the coefficients of (5.16d) is
1 1 1 anw 1
0 t1 Wy e e e Uy
2m-1 2m-1 2m=1
O t1 111 * @ L] um L

All the minors of order 2m of this matrix are #0 since
they are Vandermondians with distinct elements. Hence the
roots o 3 of (5.16c) are proportional to these minors
taken with alternating signs. The condition 21 A g =
fixes the proportionality constant and (5.160) implies that

the 1 j and the A 5 are positive. Thus there exists a
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unique solution for the A 52 1; and hence a unique point
which satisfies (5.16a)., This proves that the correspondence
between int D2m and the simplex of interlocking roots is 1:1.
That the correspondence between D2m and the ordered pairs
(Pm, pm) is 1:1 is obvious from Definition 5,10, The
continuity of the correspondence between D2m and the pairs
(Pm, pm) is also an immediate consequence of Definition 5,10,
and the continuity of the correspondence between the pairs
(Pm, pm) and the simplex of the roots is obvious., The proof
for n =2m -1 is obtained by a similar argument.,
Geometrically if n = 2m the point M. may be inter-
preted as the unique intersection in D2m of the convex
simplex spanned by the points x(u j) and the projection from
the point at infinity in the Xom direction of the convex
simplex spanned by the points x(t :j)' The u~-simplex determines

2m+1
Toat (Mpseees Mo B oong)

while the t—simplex determines the unique supporting plane to

Dzm at (}‘.1’.?",‘2111—1’ #2!11).

Lemma 5,14 and Theorem L.5 imply that the extreme points of

the unique supporting plane to D

the space sz are, except for the normalization constant, the

polynomials Pi (0 €gi<€m) and tpi (0 i<« m=1) corre-

sponding to M € int D2m-1 s and the extreme points of the

space sz":l are the polynomial sz_(o ¢1<m) and tpi (0 &iem)

corresponding to € int D2m. This fact may be used to prove
M
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the following

Theorem 5,17 There exists a homeomorphism between the

interior of the space sz and the interior of D2m such
that polynomials of the form

2
(5.172)  ARZ+(1-A) tp

- (0 « AN 1),

where Pm and P, 1 are fixed, correspond to moment points

having the same first 2m-1 moments. A similar correspondence

2m+1 2m+1

exists between P and D .

The proof is given for the case n = 2m. To a pair

(Pm, pm_1) there may be associated on one hand the straight

line segment (5.17a) consisting of interior points of sz,

on the other hand the half line consisting of interior points

of Dzln ObtaiHEd by' tak‘ing the pOint ( F‘I g0eey )‘2711—1 ) €int D2nl_1

3

corresponding to (Pm’ pm_,l) and letting #2:11 < Mo <

To obtain a pointwise correspondence let l.l denote the line

through sz
Ap 2 4 (1=A)t . Aarbitr
m Pp1 s s
and 12 the line through DZm

r1 0 e ,Pan_1 -fixed, P 2“1 arbitral'y-.

To a point P on ZL1 interior to sz there corresponds a
* o1r DT:‘m is normalized by a condition which makes it bounded

the half line in question becomes also a straight line
segment,
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plane exterior to D2m and not parallel to the xzm—axis

which intersects l2 in a point.pL'. The harmonic conjugate
M of ' with respect to J and the point at infinity
of 12 is the point interior to D2m corresponding to P,
An alternate way of obtaining M 1s to take first the
harmonic conjugate P' of P with respect to Pi and
tp§_1, which is exterior to sz and represents a plane
through D2m whose intersection with l2 gives pa o Still

another way consists in considering the points (;41,...,

MPon1» }ﬁem) and (,61,..., Mo 2 ») as supporting planes

to sz at sz ad t p§P1 respectively, then taking the

plane through their intersection and through the point P and
finally constructing its harmonic conjugate with respect to
the two supporting planes; the plane thus constructed corre-
sponds to the point M € int D2m. All these procedures are
equivalent since the cross ratio is invariant under stellar
duality as well as under projections and sections, They are
also reversible, hence the mapping is 1:1, Furthermore the
mapping is clearly exhaustive and continuous both ways.
Case (=w,m)
Many of the results just proved can be extended to the

case (-w,w)s The theorems will be stated here but the proof

will be omitted or only sketched.
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The proof of Theorem 3.12 is the case (—w,«) is obtained

by considering only the polynomials of the form
3
iy 2 n
(S a th) R | 1
i=0 - £

and the corresponding quadratic form
1

Z a.a PR
1,3=0 i j)‘i'ﬁ]
Theorem 5.11A still holds and the same proof is valid.
Theorem 5,12 may be restated thus: given M= (/LO,...,
}*Zm) and a distribution '-r(t) such that () =4,
the polynomials Pi(t) (0 €i ¢m) form an orthogonal system
over the interval (-w,=) with respect to d ¢ (t). The
normalizing constant of Pi is J KiKi a°
Theorem 5.714 still holds but the proof is modified by

setting b
P(t) = [ Q(t) dt
a

where a & ru%n tj .

Lemma 5.75 and Theorem 5.16 are modified in a very
important respect, since the Pp do not play any role in the
present case, Lemma 5,5 becomes: if M € int D2m-1 the
roots t;j of Pm and the roots u‘j of 1‘-’111._1 interlock

according to the pattern

t., <y <t2<. i @ cum_1ctm.
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The proof makes use of the distributions _\f_ and W giving

I‘ise tO the pOiTltS (F1,.0.,an-3’ Azm_z) and (/u1,..0,
Mot ,&Zm) and of the fact that @ - ¥ mst have at

least 2m-3 sign changes.,

Theorem 5,16 becomes: there exists a 1:1:1 continuous

correspondence between the interior points of the space i 5

the ordered pairs of polynomials (Pm, P and the simplexes

m—1)

of strictly interlocking roots

LR R R WL

Theorem 5.17 becomes: there exists a homeomorphism between

2m

the interior of Pall and the interior of D such that poly-

nomials of the form

AR 4 (1-A) B2, (0<hel),

M=

where Pm and P are fixed, correspond to moment points

having the same first 2m-1 moments.
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CHAPTER VI

SOME PROPERTIES OF THE POLYNOMIALS Pn AND P, »

Several properties of the polynomials Pn and p, may
be derived from the theorems proved in the previous chapter.

Theorem 6,1 let ‘¢ be any distribution associated
with a point Me int DEH1 [O,w) and let 9 be the distri-
bution associated with M and tj (3 =15e00,m) the saltus
points of ., Then

Proof: By Theorem 5,14 the number of sign changes of

:r_ - ‘f is 2m-1, GSince \f is nondecreasing and since
\f_(t) =0 for t <t, and i(t) =1 for & a_t.m, one sign
change must occur at each % 3 and one between any two

consecutive t.. Hence (6.1a) must hold.

J
Remark. A similar statement holds for M e g2 (o,=)
2m+]

and forpue D" (~m,w).

Theorem 6.2 If L? is any distribution associated with
M€ int D% and the Christoffel numbers are defined (cf. [3)
p. U7) by

(6.2a) §. = J ~ultl 4 (4
3 TRy (4 ()
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where tj are the roots of P , and if the weights of \_.g_
are denoted by kj, then Ej = )\j (3 =1,000,8)
Proof: TFor any polynomial P(t) of degree < 2m-]

—

the Gauss-Jacobi guadrature formula gives
m
(6.2b) fP(t)dﬁr(t) =2 §.p(t) .
3=1 J J

Since )-Li(\r) = }Li(i) (1 =15000,2m1), (6.2b) still
holds if \r is replaced by P . Hence

P
. JOY F— A (t) = P (t,+4) -@(t.=) = A, .

An immediate consequence of Theorems 6,1 and 6,2 is the

separation theorem for Christoffel numbers:
Theorem 6.3 Given any distribution ¢ associated with

'LeintD there exist numbers Xy (t <x < t 1) such that
wct)c«r(x)-z 5,29ty

It may be shown that the polynomials P and p; are

related by means of certain recursion formulas:

Theorem 6.l If m € int D2m—‘| Oyo) and 1 sigm
then

(6la) Py = oy Py + Py Py

(6.Lb) tp, 4 = P‘ZIL-‘! Py +;1-; P; 1
where

(6skeo) °‘1=TKi" ’ Bi= i+1 ’

Proof: Let TIT 5 denote an unspecified polynomial of
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degree i, If

K
“ =_..E'.....
a i Ki,
then n=-1
P. -e&,p, =T, , = 2. b Pi o
i i*i i1 j=0 J 53
Therefore if h ¢i - 2
® 11 %
i (tph(Pi ~Mspy) A= Z bj[ tpPyd
0 =0 T4

and since Kh‘I#O and Kh+‘l1’é0’ b, =0,
2 3

If h=1i-1

[ b py_q(Py —olypy)d
0

I

i
31,1 f Ehd
0

L ERERRE
hence

Ki +

P . =b =
which proves (6.La).

(6.Lb) is proved similarly:

f]
1 i
tp, 4 = P, =TT = 2 a,P,
1-1 P i-1 i i-1 j=o J J
Therefore if h<€ i - 2
® i1

0

= oy K g

hence ah = 0,

Oa[Ph(‘bpi_al-P—:-T Pi)d(f =Z a.jIP
j=0 0

=0y K1,

Kj-1,1%4

h Py d Y
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If h=1=«1

f B, (tp, 4=
5 i-1 Iy |

=Rafa=Bahal
e K
IIC ai__.} __K;__— —a—; .

An extremal property of the polynomials p, may be proved

oo

1 - [ i
i U Sl R IR LI R LY ¢

by a simple argument:
Theorem 6.5 Let P be a distribution associated with a
moment point M & int D2m LO,m). Among all polynomials

P = E:'o aitl ¢ p L 0,=) for which
i I

(6.5a) (Pdkr =1 .

P(0) = max £8r P=:p2 .

Proof: Me int pet [0y=) implies that M , i )"j 3

(1 = 04000,2m) where t =0° =1, Hence (6.5a) gives

2m
1=‘Zai Zial)\jtj Z_'}\ Za
i=0

m m
ji=o ?\j P(t,) = lop(o) +j2=’1 Xj P(t5).

Since the A are fixed and positive, max P(0) is reached

J

for the nonnegative polynomial which vanishes at t;j s Which is

precisely pnz1 .
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CHAPTER VII

RELATIONS BETWEEN D" [0,a] , D" [0,0) AND D"(=w,=).

Tt is possible to obtain the spaces D" [0,),

2m-1 (==y) by means of a passage to the

p?! [(0,») and D
limit from D°® [0,a] , poot [0,a] and e [-a,a]
respectively. This limiting process preserves certain
properties of e [o,a) , D2m-‘| [0,a] and D&n—‘l [-a,a)
in a sense which will now be explained., The results will be
stated and proved only for the case D2m_1 LO,a] although
similar results are valid in the other cases as well.

It is shom in [1] +that if ()‘1""'/“2;11-1)
€ int D2 [0,1] and if P (t) is defined as in
Definition 5.10 and Bm—‘l (t) is defined by
A-po Ko B3 e Ppg Pp ]
- qu"fg, N =Py X o T

Pel (t) =

@ & & & & & & ¢ B & 2 e+ 4 & & s 4 s » s s

Polud M Poee oo Moo on

then P_(t) and ﬁm_ll (t) are the m-th and (m=1)-th orthogonal

tm-‘l

polynomial over [O,‘I] with respect to d and
t(1-t)d 9 'respectively, where T is any distribution over
[0,1] associated with ,l» o Furthermore it is shown (cf. Theorem

5.16) that there exists a 1:1:1 continuous correspondence between
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the points of int D2m—1 , the ordered pairs of polynomials

(°_,5

m-1) and the open simplex

0 <t1< Wy e.t2<... < Wm-‘lc tm¢.1

there t, are the roots of P and w. those of P_,.
J m J -1
Also the unique supporting planes at # = (/‘1""’/‘21@1’/&2111)
and F = (/"1’”"/"'2111-1 ’72111) are the polynomials Pzi and
(1=t )51?1—1 respectively,
These results may be extended to an interval ]:O,a] with

a »0., In fact define

Mo Pn
M1 - -E— LN ] Fm—‘] - ;é- 1
3 m+1
_ Mg=5= we B s ¥
pxn-1(t;a) = . . . . . . - . L] L . . . . L] . L
HAmn+l f‘2m—1 m-1
Pm sttt Popd ™ v

and let \fa(t) be a distribution such that P a(O—) = 0,
‘fa(a) =1 and (P00, h, q)€int i [0,2] . then
"fa(-;) = 'f1('t) is a distribution over [0,1] and
—'%—1—,..., %t;:‘ ) €int D2m-1 [0,11. The unique supporting

a : o
planes to pn-1 (0,1} at (:i-) and (=) are
a

-7
2 a
Mo eer THT
M1 Mo
e s e t
a
JAm Aon-1 .
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and
/‘1 M2 Mu-1 _ Mn 1 2
= " N il P | ;ﬁ_
M2 _ M3 Mo Pad %
2 3 *EE TN —m+
Mn Ao Mon-2 Mo o=
a—m—“am+ T azm_z-azﬁ

respectively. Hence the supporting planes to DE!ll Lo,a] at

# and F, obtained by setting T = at and then factoring

out the powers =(1+2+i..+40) = (14240.040=1) = -m® and

2
~(142+see4m=1) = (14244, .4m=1) = m(m=1) of a, are i Pm(t)
and aR(m-1 )-1’0(1 - g) -ﬁm-1 (t3;a) respectively. The variable

used is of course immaterial to the positions of the planes,
So are the constant factors, which are important only for the
computation of the normalization constants.
2 t (=2
If a-» o the planes Pm(t) and t(1 - = )pm_,l(t,a)
approach the planes Pi(t) and tp§_1(t) (the former in fact

does not change). Hence the homeomorphism between int DZm-J (o,

a],
(B (%), 3m-1 (t;a)) and the open simplex
0 4t.1 €W Seeeld W 4 ¢ tm < a
approaches the homeomorphism between 1int D2m-1 tO,m),
(Pm(t), P (t)) and the open simplex
0 ct.1 eW Lo cu g < t.m(. o .

Using the representation theorem this may be stated more
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precisely as follows:

Theorem 7,1 Given M = (Mby,..o, b, ,)eint priel

0ye)

there exists A > 0 such that for a > A € int D2m—1 fo0,a) .
)y M ’

M determines uniquely:

1) the roots

0 ¢tycuy <o <t SA

of the supporting planes to DZI11 [O,m) at (/*1"“’f"2m-1’

Mon) ad (Rseeey oy )

2) for any given a > A, the root

0 <ty < w,r(a) € sos <wm_1(a)<. t,=A

of the supporting planes to D2m EO,aJ at (H seees Mo 10
Bog) and (Byseee, po g5 Fpy)e Then

lia w.(a) =1, (3 =1,000,m=1) ,
a-» o J
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CHAPTER VIII

SOME RELATIONS BETWEEN THE MOMENTS,

THE WEIGHT'S AND THE ROOTS.

An inequality relating the moments of a distribution with
the weights and the roots of the associated polynomials is
obtained by considering the following problem: given (}-‘1 geesy
M1)€ int pZ-]

is possible to assign a root to = t(()m+1) and a weight

(=ey») determine under what conditions it

'Xo =;\c()m+1) (0< Zo <. 1) such that there exists a point

; 2m+1
(Pqseees Pon s Pogs Pop ) €10t D
convex representation uses the point x(to) with weight A o*

(=wye) whose unique

This problem may be solved by obtaining a solution of the
2m+2 equations -

(8.1a) M, =Z X 3% (L = 0y00n,2md)
3=0

in the 2m+2 unknowns }j’ tj (3 =1,00e,m), ,"2m and J, 4.
However if it is possible to obtain ,‘2m and /‘Zm+1 from
U“!""’f'an-‘l)’ )\o and t_, then the existence of a solution
for Rj and by (3 =140ee,m) is assured by the unique
representation theorem.

The point t  1is a root of P ,, hence it must be

different from the roots u._j of Pm, which are uniquely de-
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termined by A4 1 ""’/u2m-1’ because the roots of P

P must interlock.

m+1

RE to

associated with the point

Pm+1 (t) Pm(t)
t - to

(#

/

a9(t)

is a root of Pm+1

and

and ?(t) is a distribution
1,.-.,F2m+1), then

K. f o T P (t)dy(t)

2
K412

and by the mechanical quadrature formula

-]

|

1:‘m+‘! (t) Pm(t)

Z)\

dY(t) =
J T, b j to
_ 3 (m41)
= A P (8) B(t),
since the t 3 are the roots of Pm+1' Hence
2 2
'k(m+‘l) _ m+1 _ Kot
o - 1 - 1 1
1:'m-ifi(to) Pm(to) P:n+‘l (to)Pm(to) - Pm+‘l (to)Pm(t'o)

which by [3] eq. (3.2.L)

reduces to

(m41) _ 1
(8.1%) 10 S g
iYe
i=0 KKy 4
where Ko =1, Let w =f"2m - M oo Then the only term

in the denominator in (8.1b) which contains

v

is
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f"o P‘l cee My P M er e Mot 0
p-’ F e P 1 P1 F [N ] O
Ko = 2 mil | 2 Mmn =K v.
Mo Poa o Mon Mo Moa oo Pop v
Hence
1 1 1
(8.10) Agm_l— ) =m_1 % (t ) ) (t ) = 1 2(t )
P, P P
i‘o m'o + JLL_..Q__
=TT 7 )\(m) K< o
i=0 "iMiH K, v 0 m
which gives
m+1 2
(8.1d) V = d o xt() ) where u = Pm(to) .
A(1.'x1+'l ) m K?
g Do m
(m)
Ao
lgm) is a known function of M,,..., Moo and t , and
2
L, B R
= >1 s
lo 1= KiKi
if to # uj the equal sign holds only if m =1, Furthermore
ol > O and the inequality is strict if b £u j e Hence,

if o¢k£“””< Ag‘“

v

b ama tofé Uy, (8.1d) gives

o m

= 0
(m+1) (m-+1)\2 ’
d')\o Ao
AZmS
, o
therefore 4  1is a monoton increasing function of lgm":])
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which takes all the values between 0 and e« as 7\ c()m+1)
varies between 0 and A (()m). If 7«(’3“'1) > A(’g) then ¥ < 0,
hence (My,.00, }lzm) is not a moment sequence. If t  equals
one of the u, then ¥ is not defined and (8.1c) shows
that PA (()m+1) does not depend on VY and equals P\gm).
These results are illustrated in Figure 8,1, which shows a
to -V-A (()m+1) diagram,

The value of ﬂ- omyl AV be obtained from the fact that

M e B 1

B eee Mpyg b

1:’m+1 (to) L nm+‘l(to)",‘2m+1pm(to) = 05

> L] L] . L L . L L L

m+1
Pog oce May %

where l'l’m+1(t0) is a polynomial whose coefficient do not

depend on Ak oml* Solving for M om4l this gives

(t,)
(8.1¢) }"2m+1=% .

The graph of ’sz+1 as a function of to is shown in
Figure 8.2, In fact for any given value of Mons

“m-o-'l (t,) - Moni Pm(to) has m+! simple roots which inter-

lock with those of P _(t). Hence Mol (to) has simple poles
at the points u 4° Furthermore the leading coefficients of
TTm+1 and P~ are K ., and K respectively, which are both

positive,
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These results may be summarized in the following

2m=1 sk

Theorem 8,1 Given (M4,e.o M, 4)€int D
any number to define '

1

A AL (e i 1) -

3Pt (b
Z. 1'o
1=0 KK, 4

i*iH
Denote the roots of Pm by uj. Then there exist numbers

M, and M, . such that (P‘I""’I‘2m+1) is a point of

int D2m+1 having a root at to of given weight R(()mﬂ) if
and only if t_ # uy and 0< A gm+1 Je N gm). The values
of F2m=-'&&n+v and M-, 1 are then uniquely

detemmined by (8.1d) and (8.1e).
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Figure 8.2
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