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ABSTRACT 

Various geometrical properties of the finite dimensional 

moment spaces generated by normalized distribution functions 

over (o,~) and (-m,~) are investigated. The moment spaces 

are found to be dual to the polynomial spaces. The structure 

of t he latter is studied by means of this duality and of a 

representation theorem for positive polynomials. The extreme 

points of the polynomial spaces are associated with po~­

nomials orthogonal with respect to the distributions generating 

the moment spaces. This correspondence is used in order to 

derive several properti es of orthogonal polynomials. 
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CHAPTER I 

DISTRIBUI'I ON FUNCTIONS AND MOMENT SPACES 

Def inition 1 • 1 'f = 'f ( t) is a distribution function 

over (o, ... ), symbolically 'fi e [.o, ... ), if Cf takes the 

real line into itself and 

(1. 1 a) t1 <. t2 implies \f (t1) ~ ~ (t2) 

(1. 1 b) t <. 0 implies 'f(t). =O 

(1 .1 c) lim 'f (t) = 1 
t-+ CD 

(1.1 d) for a ll t ~ (t + 0) = Cf (t) • 

Definition 1. 2 'f = 'f (t) is a distribution f unction 

over (-co.co), symbolically lfE 9(-co,ao) if 'f takes the real 

line into its elf and 

(1.2a) same as (1.1a) 

( 1 • 2b) lim ~ ( t) = 0 
t ..... -

(1.2c) same as (1.1c) 

(1. 2d) same as (1.1 d) • 

Definition 1.3 The sp ectrum G' ( 'f) of the distribution 

tf is the set of poi nts t such that 



2 

~ (t + & ) - "(t - s ) ;JI 0 

for every ~ ~ O. If the number of points of G ( <f ) is 

f i nite, it is denoted by b ( cp ) . 

Definition 1.4 A distribution 'f is said to have a step 

at t of weight A > 0 if 
0 

The unique distribution having a step of weight 1 at t is 
0 

denoted by It • 
0 

Def ini ti on 1 • 5 A distribution 'f is called arithmetic 

if it has a finite spectrum. The degree of \f , denoted by 

b( 'f) 1 is then defined as follov1s: 

if Cf E e (o, ... ) b( 'f) = total number of steps, less ~ if 

<f has a step at 0. 

if 'f € 8(-... , ... ) b( ~) = o ('f) =total number of steps. 

Definition 1 • 6 The n-th moment f4 n of 'f is 

... 
1-4 0 ('f) = J-0 t

0 
d'f(t) if 'f • e lo,.) 

00 

,,.. n( 'f) = f t
0 

d'f {t) if 'f " e(-,-). 

In both cases J-'-o( 'f) = 1. 
n . 

Definiti on 1. 7 The n-th moment space D (o, ... ), respectively 

Dn( ..... , ... ), is the set of points x = (x1) = (~ 1 ••• ,xn) in Ff 
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whose coordinates are the moments }Ai- 1 ( "f ) , ••• , }'- n ( 'f) of 

at least one distribution function ~E. 9(0,co), respectively 

~' e (-00,00). 

Defi nition 1 • 8 x is an extreme point of a set D c. En 

if x is not a convex combination of any two other points of D. 

Definition 1 • 9 A pair ( a(. , oL), where °' is a number 
0 0 

and Cl a set of n numbers not all zero, is a separating 

olane between x • 0 and D if 0( + OI. •X 
0 

is non-positive for 

x = x
0 

and non-negative for all x 6 D. If x
0

E. D then (al. 
0

,c:at ) 

is called a supporting plane to D at x. 
0 

Definition 1.10 en (O,oo) will denote the curve in En 

0 ~t< 00 (i = 1,2, ••• ,n). 

Cn(-,oo) wi 11 denote the curve in i1 

x. 
]. 

=ti 

Clearly en [o,oo) c: 

and Cn(-co,oo) c 
n 

sine e f' n ( It) = t • 

- c:.t<. 00 (i = 1,2, ••• ,n). 

Dn (O,oo) 

n D (-,oo), 

Dn (O,co) and n D (-,co) are convex regions. 

Definition 1.11 Let ~n (O,co) denote the boundary of 

x" ~n (o,oo) 

exists a supporting plane to 

similarly. 

if x 4 Dn (O,oo) 

Dn (O,co) at x. 

and there 
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Remark . When clarity permits the notation Dn will be 

used instead of either Dn (01 m) or Dn( ..... ,m). Similarly for 

en and Bn. 

Theorem 1.1 2 All extreme points of Dn are in ~. 

Proof by contradiction. Let x E Dn - en and let 'f be 

a distribution such that 

Then the spectrum of \f contains at least two points, say 

t 1 < t
2

• If a is chosen so that t 1 <. a <. t 2 then 0 <.'f (a) < 1. 

Let 

'f (t) 

~ 1(t) = Y (a) 

(t ~a) 

1 (t >a) I 

'f 2(t) ={ 0 
Cf(t) -'f (a) 

1 -'f (a) 

(t ~ a) 

(t > a) . 

Then tf 1 and Cf 2 are distributions and 

a m 

x1 = J t
1
d'f + J t 1

d 'f ='f(a)•)"1('f 1l + [1 -'fCall·)4 1C'f 2l 
...., a 

is a convex combination of points of Dn, hence it i~ not an 

extreme point of Dn. 
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Theorem 1.13 If n n ~ 2 all points of C are extreme 

points. 

Proof: Let x = x(t ). 
0 0 

The plane 

f ~:-~ t~ 
~ ~ (-2 t

0
, 1, o, o, ••• , O) 

contains x
0 

but leaves all other points of en on the same 

side and at a positive distance. Hence x
0 

cannot be a convex 

combination of points of en. 

Theorem 1.14 Every point x' Bn is representable as a 

convex combination of points of en in a unique wa:y, and the 

corresponding distribution is arithmetic. 

Proof: n 
Given x ' ~ take any tp such that 

(i=1, ••• ,n). 

x is then a convex combination of points of en. Since x is 

· th b da f Dn rt · l (..., , ... , ) to Dn in e oun ry o , every suppo ing pane .. 
0 

-

at x must contain every point (ti) of en such that t 6. ~( 'f )• 

The polynomial in t 

has at most n 

n 

~ 
0 

+ " • x( t) = ~ O(. ti 
i=O 1 

distinct roots tj in the interval under 

consideration. But t
0 

4 6' (If) implies ol 
0 

+ 0(. •x(t
0

) = o, 

hence t
0

' f tj} • Hence G ( 'f ) contains at most n points, 
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which do not depend on "f • Theref ore 'f is an arithmetic 

distribution of degree n at most, with weights " j which 

satisfy 
m 

(1=1, ••• ,n; m=b('f)~ n) • 

The detenninant of the coefficients is a Vandermonde determinant, 

hence it is not zero, hence the system has at most one solution. 

However it must have one solution with positive ~ j whose sum 

is 1. Hence Cf is uniquely detennined and x is uniquely 

representable by 
m 

x = ~ A j x( tJ. ) 
j=1 

(m ~ n) • 

Definition 1 • 1 5 n Co(C ) is the set of all points which are 

finite convex combinations of points of rf1. 

Theorem 1 • 1 6 Every point x ' Dn is representable as a 

finite convex combination of points of en. 

Proof: By Theorem 1.14 bdDnc:. Co(Cn), hence it is suf­

ficient to shaw that int Dn c:. Co (en) • 

It will first be shown that Co(Cn) ~ Dn, where the bar 

denotes closure. In fact if there existed an xt such that 

xt ' Dn and x• f Co(Cn), there would exist a separating plane 

(al i) such that 

ol .x' = r < 0 
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and a distribut ion \.f' such that 

x~ = r ti d 'f' 
For all t, i:ot i ti~ o, hence 

[ 2. ct it i d 'f' ~ o. 

J 
. ' ' r But I°' i t 1 

d Cf1 = i: °' i xi = ol. •x = d<: O. Hence a contra-

diction. To show that int Dn C Co(Cn) assume this statement 

false. Then for some x, x ' int Dn, x f Co(Cn). By the 

previous result x E Co(Cn) n hence x • bd Co(C ). But since 

x ~ int Dn a full neighborhood of x is in Dn, hence in 

Co(Cn), which contradicts x ~ bd Co(Cn). 

Theorem 1.17 Any set of k distinct points of Cn(k!: n) 

is linearly independent. 

Proof: i 
Let (t.) (i = 1, ••• ,n; j = 1, ••• ,k) denote the 

J 
coordinates of the k points. Any determinant of order k 

from the matrix is a Vandermonde determinant, hence it 

is ~ 0 and the points are linearly independent. 

Theorem 1.18 Dn - Bn is non-empty. 

Proof: The moment of any non-arithmetic distribution 

defines an interior point of Dn. For example in the case 

[ -t ' o,tl>) choose d<f (t) = e dt whose moments are 1'-i = i. 
Theorem 1 • 19 If x ~ Dn - Bn then x can be represented 

i n i nfinitely many ways as a f inite convex combination of 

n points of C • 
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Proof: Let x~ Dn - Bn. Choose an arbitrary point 

x(t) E- en and draw a line through it and x. Since x is 

interior there exists a point y ~ Dn ~ng on this line so 

that x is between y and x(t). But by Theorem 1.16 y 

is a finite canbination of points of en, hence so is x. By 

varying t one obtains infinitely many different representations. 
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CHAPTER II 

COMPONENTS OF THE BOUNDARIES OF THE MOMENT SPACES 

Definition 2.1 Let L(x) denote the conunon intersection 

of all separating planes between x and the closure Dn of 

If there are no separating planes define 

Let a(x) denote the dL~ension of L(x). 

n 
L(x) = E • 

The empty set is defined to have dimension -1; hence 

J, -n x l D gives a(x) = -1. 

Definition 2.2 Let c(x) denote the dimension of 
....n 

L(x)(\ D • 

Definition 2.3 If x c Dn let b(x), o(x) denote the 

minima of b( 'f ) , o( 'f ) over all 'f whose first n moments 

are gi. v en by x. 

By the finite representation theorem these minima are 

well defined. Thus o(x) represents the minimum number of 

points of en which are used in a convex representation of x. 

Clearly if b is an integer o = b1 if b is a half integer 

1 
o=b+~· 

Case [01 co). 

Theorem 2.4 x6. Bn if and only if b(x) ~ ~ • 

Proof: Assume b{x)~ ~ and let x be representable 

* nn will denote the closure of Dn. However the upper 
bar will not, in general, denote closure (cf. Definition 2.8). 
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convexly by means of the points x(tj) where tj have the 

foll~Ning values: 

1. if b is an integer 0 ~ t 1 <. t 2 <.. ••• .:: tb 

2. if b is a half intege~ 0 = t 1 ~ t 2 •• •<..to • 

In case 1 the polynomial ~ = n ( t - tj) 2 
1 and in case 2 

0 j=1 2 
the polynomial R2 = t n ( t - tj) 1 represents a plane i n Jif1, 

j=2 
since each polynomial is of degree ~ n. In each case the 

polynomial in question contains the points x(tj) but leaves 

all other points of n C on the same side. Hence ~ 

represents a supporting plane to rf1 containing x, therefore 

x ~ Bn. Conversely, if x E ~n Theoran 1.14 assures the existence 

of a unique convex representation of x by a finite number of 

points x(tj). Every supporting plane at x must contain these 

points, hence the polynomial corresponding to this plane, which 

is of degree ~ n, must vanish at t. and be positive for all 
J 

other values of t. Therefore this polynomial has at most 7 
roots, the possible root at 0 being counted;. Hence b(x) ~ ~ • 

Lemma 2.5 If x ~ Bn then a(x) = 2b(x) - 1 • 

Proof: 

plane at x. 

and vanishes 

Let x ~ Bn and let ( cl. 1 ol. ) be any supporting 
n o 

Then P(t) • ~ °' . ti is non-negative over Co,°') 
i=O l. 

at the points t. (j = 1, ••• ,o) used in the unique 
J 

representation of x. Therefore P(t) has the form 
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P(t) = Q(t) 11c(t) 

where I\:(t) is one of the polynomials of Theorem 2.4, depending 

on the values tj. In each case the degree of 11c(t) is exactly 

2b(x), hence the degree of Q(t) is at most n - 2b(x). By 

definition a(x) is the dimension of L(x), the intersection of 

all supporting planes at x, hence n - a(x) of these may be 

chosen linearly independent. Since the coefficients of the 

corresponding polynomials Q(t) must also be independent, at 

least one of the Q(t), say Q
0
(t), must be of degree n-a(x)-1 

or higher. Hence 

n-a(x)-1 ~ degree Q/t) ~ n-2b(x) 

a(x) ~ 2b(x)-1. 

On the other hand it is possible to choose n-2b(x) + 1 linearly 

independent values for Q(t), for example 1,t,t2, ••• ,tn-2b(x), 

such that the corresponding polynomials Q(t)Rk(t) represent 

linearly independent supporting planes at x. However, no more 

than n-a(x) linearly independent supporting planes can be 

chosen through x. Hence n-2b(x) + 1 ~ n-a(x) or a(x) ~ 2b(x)-1. 

Combining with the previous inequality this gives 

a(x) = 2b(x) - 1. 
n Definition 2.6 Given a non-negative integer a ~ n, A -a 

denotes the set of all points x ~ Dn for which a(x) = a. 
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Note that a(x) = n if and only if 

An is the interior of Dn. 

x ~int Dn. Hence 

-n 

If a ~ n, by Definition 2. 1 there is at least one support­

ing plane at each point of An , hence An c Bn • By Theorem 
-a -a 

2.4 and Laiuna 2.5 every point of Bn is in one of the sets An -a· 

Each ~ is arcwise connected, since any two points 
t 

x, x of 

An are convex combinations of o points -a of en of the fonn 

b 0 
,i 

2:' i ' 2: A.' x= >-jtj I x = t , 
j=1 j=1 j j 

a + 1 where b = 2 and, as usual, if b is a half integer 

t 1 = t~ = 0; these two points can be joined by varying the A j 

and the tj 
n continuously and without leaving A • 

-a The nwnber 

of independent parameters used in the representation of a point 

x ~An is precisely a. In fact the ~j are connected by the 
-a "5' 

relation 'E, A j = 1 , hence o - 1 of them are independent. If 
j=1 

a is odd, b = o is an integer and the number of variable t. 
J 

is b, hence the total number of independent parameters is 

2b - 1 = a. 1 If a is even b = o - 2 is a half integer and 

only o - 1 of the tj are variable, hence the total number of 

independent parameters is 2o - 2 == 2b - 1 = a. Thus a is 

n the dimension of A • 
-a 

following . 

These results may be summarized in the 
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Theorem 2.7 Bn is the union of a collection of arci'lise 

connected and mutually disjoint boundary components . 

dimension a (a= o,1, ••• ,n-1). 
n Besides these proper boundary components, D has a set of 

improper boundary components whose nature will now be 

investigated. 

8 -n l':'n n Definition 2. Let B = u - D • 

Theoran 2.9 If n "7 1 -n B is not empty; in fact there 

n exist simplexes of points x which are not in D , but such 

that in every neighborhood of x there are points of Dn. 

Proof: Consider a set of b = n ; 1 distinct values tj. 

As usual, if b is an integer this means t. F o, if b is 
J 

1 
a half integer t 1 = o, tj F 0 (j = 2, ••• ,b +' ). Let K 

denote the simplex of all convex combinations of all the points 

x(tj). By Theorem 2.4 K is interior to Dn. Now if all the 

tj except 'to are made to approach finite and distinct values tj 

and to' is made to approach infinity, K will approach a 

' simplex K which extends to infinity and is parallel to the 

xn- axis. The polynomial ~ defined in Theorem 2.4 is of degree 

. n~ n~ n + 1 and represents a plane in E which supports D along 

a simplex whose projection on En is K. As to-+ oo ~ becomes 

' a polynomial of degree n - 1, Rk, hence it represents a support-

ing plane to Dn which is parallel to the xn-axis and contains K'. 
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Therefore the points of 
I n 

K cannot belong to D , since the 

only points of ~ which belong to Dn are convex combinations 

n-1 of at most the first b - 1 =~point tj, i.e. the points 

of the closure of !~_2• 

The simplex K
1 

has dimension one higher than !~_2 and 

will be denoted by A? 1• A similar construction can be carried n-
out by letting several of the tj approach infinity or by 

letting several of them approach the same values t .. This 
J 

construction yields a set of simplexes I~ (a = 1, ••• ,n-2) 

which together with i? 1 are contained in Bn. The number a n-
den o te s the dimension of In. It will be shown later (Theorem 

a -
2.12) that Bn is •ctually the union of the~ (a= 1, ••• ,n-1). 

1 n-1 
Theorem 2. 0 If ( ~ 1 , ••• , )'-n-1 ) & int D and 

t ' and if f > ~ , then f- = (f 1' ••• , 
n I n 

Proof: 
t 

It is sufficient to show that /A- has positive 

distance from every supporting plane to Dn, for if JJ.1 
were not 

interior to rf1 it would have non-positive distance from at 

' least one supporting plane. The distance of JA- from the support-

ing plane (cL
0

,ot 1, ••• , et ) is given, up to a positive factor, 
n ' 

by 0( 0 +fl.1,,.1 + ••• +ten f'n• If ctn = O this distance is 

the same as that of}A, which is positive since()'- 1 , ••• , 

U.. 1)' int Dn-1• If cl /: 01 d. must be positive, since the r-n- n n 
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n 

polynomial ~ o<. • ti must be positive for t-+ ... Hence from 
. 1 
J:O 

oL 0 +d1 /A1 + ••• + OI. n rn ~ 0 it follows that oL 0 +QI 1f 1 + 
I 

+ • • • + ol n f" n 7 o. 

Theorem 2. 11 If x (int Dn then x is representable in 

a unique way as a convex combination of ~ points of en. 

Proof: Let x = ( f 1 , •• •f- n) " int Dn. Then by Theorem 1 • 16 

x ~ eo(en) and there exists T such that x is a finite convex 

combination of x(tj) with tj ~ T. By (1 l , there are two 

representations of x involving ~ points of en with tj<. T. 

However in (1] one of the representations involves the point 

x(T), which is given weight ; instead of 1 as it would in the 

present case. This representation must be ruled out, hence 

there is left exactly one representation involving ~ points 

of en with tj' T. To prove that it is unique and independent 

of T, let it be given by 

b 

c::::- ' ti (b = ~ i 1 ) /41 =£. "j j c. ' = , ••• ,n 
j=1 

and let 'f be a distribution having these moments. Setting 
0 

f n+1 = 'E, }.j t~+1 , the point ()Ap ••• , fn+1 ) is in !~+1 
j=1 

since its representation involves ~ points of en+1• If 

there existed another representation of x involving ~ points 

of en, there should exist a distribution 'fl having the same 
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first n moments as ~ and with ( f-1' .•. , /An' I'" n+1 ( 't')) 

L !nn+1. di c: For this representation to be · fferent from the 

one previously obtained, the condition 1"-n+1 ( 'f') '/: f n+1 ( <f) 

must be satisfied, since any point of ~+1 has a unique 

representation. However, if f'-n+1 ( '.f') ~ P-n+1 (If ) it can be 

easily seen by considering the supporting plane at (j"-1, ••• ,/l'n' 

1""n+1 ('f )) that (f1, ••• , l'"n'f"n+1 ('f )) would lie outside Dn+
1

, 

while if f- n+1 ( 'f) > )'- n+1 ( 'f), by Theorem 2.9 the point 

( )>' 1 '• • • 'fn' f-n+1 ('II)) would be interior to Dn+
1

• Both 

assumptions lead to a contradiction, hence the representation 

of x in tern of ¥ points of en is unique. 

Theorems 1.14, 1.19, 2.4 and 2.11 show that while a point 

of Bn admits only one convex representation in terms of points 

of en and this representation i nvolves at most~ points of en, 

a point of int Dn admits infinitely many representations, but 

only one minimal one, i.e. one involving¥ points of en. 

Theorem 2. 12 ']jn is the union of the simplexes An( a = 11 a 

••• ,n-1 ) • 

Proof: Let x ~ rrn be the limit of a sequence x(k)(k=1,2, ••• ) 

of points of Dn and let 
b 

xi (k) = L" ~ j(k) t~ (k) 
j=1 

be the minimal convex representations of the points x(k). 

Although the numbers >. . (k) and t. (k) need not approach 
J J 
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unique limits as k -+ ... , there exists a subsequence ks such 

that all the A .(k ) and tj(k ) approach unique limits Aj, 
J s s 

t j as s -+ .... Some of the t j may have the value .... If all 

the tj are finite then x 'Dn. If some have the value ... , it 

may be seen by Theorem 2.9 that the sequence of si mplexes 

spanned by the t.(k ) 
J s 

approaches one of the simplexes 

hence the point x lies in one of the ~· 

Using Theorem 2.11 it is possible to extend Lemma 2.5 to 

all points of Dn and state 

Theorem 2.13 If x t Dn then a(x) = 2b(x) - 1. 

Proof: For x 6 ~n the proof is given in Lemma 2. 5. For 

xEint Dn, a(x) = n by Definition 2.1 and b(x) = ~ by 

Theoran 2. 11. 

Theorem 2.14 If xc ~n then c(x) = o(x) - 1. 

Proof: Given x, the polynomial 11c defined in Theorem 

2.4 represents a supporting plane at x which contains exactly 

those points of en which are used in the convex representation 

of x. The convex set S(x) in which this plane intersects Dn 

has dimension b(x) - 1, since it is spanned by the o(x ) 

linearly independent points x(t.). But since every supporting 
J 

plane at x must contain S(x), c(x) is by definition the 

dimension of S(x). Hence c(x) = b(x) - 1. 

The indices b(x), b(x) have so far been defined only for 

x EDn. If x « ir1 there is no distribution having x as its 
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moment point, hence it would not make sense to define b(x) as 

min b( "f). However, the definition could be extended by consider­

ing the points of Bn as convex combinations of some (finite) 

points of en and the point at infinity of en, and taking for 

b(x) the number of points used in this convex representation of 

1 
x, counting the origin as well as the point at infinity as "2'" 

o(x) would simply be defined as the number of points used in 

the representation of x, each counted with weight 1. With these 

definitions the formulas contained in Theorems 2.13 and 2.14 

can be proved also for points of Bn. 

Case (-..., oo) 

The essential difference between the previous case and the 

present one is that now there is no point which plays the 

special role played by the origin in the case [o, ... ). In other 

words all the points used in a convex representation are given 

weight 1, hence b(x) is always an integer and b(x) = b(x). 

This involves several modifications in the statements and the 

proofs of the theorems which are valid in the previous case. 

Theorem 2. 4 still holds, but only case 1 may occur, hence 

the statement may be sharpened to read: x 6 Bn if and only il' 

b(x) ~ L~l · 
If x ' Bn the statement a(x) = 2b(x) - 1 of Laruna 2.5 

holds if n is even, the proof being the srune as in the case 
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(O,m). If n is odd then a(x) = 2b(x), because in this 

case Q(t) must be positive over (-...,m), hence it must be of 

even degree, hence its degree must be ~ n - 2b - 1, therefore 

it is possible t o choose only n - 2b(x) linearly independent 

values for Q(t). 

The simplexes An may be defined as in Definition 2.6. 
-a 

However, for the discussion of the boundary components the cases 

when n is even or odd must be treated separately. 

If n is even and x ~ "'E_n, a(x) must be odd, since 

a(x) = 2b(x) - 1. Furthermore since x is represented in terms 
b 

of the 2b - 1 independent parameters t., "A . ( E 'A . = 1 ) , it 
J J j=1 J 

follows that An is a simplex of dimension a. Hence the -a 

boundary components of If1 are odd dimensional. A'3 for the 

improper boundaries, they can be obtained as in the case [O,m). 

Since n is even, as some of the tj approach ~ m the points 

approach the + • direction of the x -e.xi.s. Hence the 
n 

improper boundaries are, as before, ruled surf aces containing 

half lines. Since the improper boundary components are pro-

jections, from the point at infinity of n C , of proper boundaries 

of odd dimension mich are not parallel to the xn-axis, they are 

even dimensional. 

If n is odd the final results are the same but the 

argument is slightly diff erent. In fact if x '"'E_n, a( x) must 
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now be even because a(x) = 2b(x). 
n However A is now a 

-;.a 

combination of 2b - 1 = a - 1 independent parameters, hence 

An has dimension a - 1. Since in this case all the supporting 
-a 

n planes to D are parallel to the x -axis, the linear manifold n 

L(x) will contain, in add.i tion to the simplex of convex combi-

nations of the points x(tj) used in representing x, the 

entire lines projecting the points of this simplex from the 

point at infinity of en. In each of these lines only the 

point of intersection with the simplex of the x(tj) belongs 

n n to D , in fact to !a_; the other points of each line belong 

to an improper boundary component which has dimension a. Hence 

when n is odd 'ff1 has a set of odd dimensional proper 

boundary components and a set of even dimensional improper 

boundary components. 

Theorem 2.10 holds again if n is even, the proof being 

the same as for the case [o,~). If n is odd a stronger 

result holds, because then for any supporting plane ( 0/ 
0

, ot 1 , 

••• , fl.. ) the coefficient cl. nnist vanish, hence given n n 

(}Ap• •• , f"n-1 ) & int Dn and any f" n' (f- 1,. •• , r n) € int Dn. 

Theorem 2.11 holds if n is odd and may be proved by 

applying the results of ( 1] to an interval [-T, T) , since 

the representation there given does not involve the end points 

of the interval . If n is even Theorem 2.11 does not hold, 

because in this case it is possible, given (f-p•••'f'n)t int Dn, 
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to choose p.. n+1 arbitrarily and, by the statement above, to 

n+1 determine a unique representation of (f-1, ••• '/An+1 ) ~int D 

n+2 n+1 in terms of ~ points of C , which gives also a represen-

tation of ()Ap• •• '}'-n) in terms of ¥ points of <fl. Since 

p. n+1 is arbitrary and different points of Dn+1 have different 

representations, there is a one-parameter family of represen-

tations for ( fp ••. , JAn). 

Theorem 2.13 holds, for x int Dn, only if n is odd, 

n+1 in which case a(x) = n and b(x) = 2 , hence a = 2b - 1. If 

. n n+2 n is even and x ~ int D , then a(x) = n and b(x) = ~ , hence 

a = 2b - 2. Combining this with the remark about Lermna 2.5, the 

following four cases are obtained 

n odd n even 

a= 2b a=2b-1 

a=2b-1 a = 2b - 2 

Theorem 2.14 still holds, with the same proof as in the 

case [O,oo). 

If the index b(x) is defined for x in the improper 

boundary as the nwnber of points used in its convex represen-

tation, counting also the point at infinity, then the formulas 

a(x) • 2b(x) (n odd), a(x) = 2b(x) - 1 (n even) and . 

c(x) = b(x) - 1 may be easily verified also for improper 

boundary points. 
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Examples to Chapters I and II 

It is convenient at ti.mes to introduce the moment cone Dn 

which is defined as the set in Jf+1 of all points whose 

coordinates are the moments ()401fA 1, ••• ,f'n) of some distri­

bution ~ (t) satisfying all the conditions of Definitions 1.1 

and 1. 2 except ( 1. 1 c) or (1. 2c) instead of which only }A 
0 
> 0 

is required. The moment space Dn may then be considered as the 

section obtained by cutting the moment cone with the plane }A-
0 

= 1, 

and the moment cone as the projection of the moment space from 

t he . . f En+1 origin o • (The same notation is used for the moment 

cone and t he moment space; the context will always be such as 

to avoid ambiguity.) The advantage of this point of view lies 

in the fact that it is possible to impose other normalizing 

conditions than }A 
0 

= 1, which give rise to a simpler gr aphical 

representation of the moment space. In fact while in the plane 

}A- = 1 the moment space is a region which ext ends t o infinity, 
0 • 

it will be shown later that it is often possible to choose a 

normalizing plane such that its section of the moment cone lies 

in a bounded region. 

Figure 2.1 represents the moment cone 1 D (O,co) and shows 

that while the section }A 
0 

= 1 is a half line, the section 

}4 
0 

+ f!. 1 = 1 is a line segment (including one extreme). 

2 Figures 2. 2 and 2.J show the moment space D (O,co) and the 

section obtained by normalizing the moment cone with JA
0 

+ }J- 2 = 1. 



23 

Figures 2.4 and 2.5 show the same sections in the case 

(-.,.,co). In the case ( 0, co) the moment cone is bounded by 

the surf ace 

{

fo =u 

JJ-1 = ut 2 

)J-2 = ut 

u ~o 

t ~ 0 

and )J- 1 = o, in the case (-ao,oo) by the surface 

u ~ 0 • 

The surfaces ( ;~ ) and ( iH~) are the same as 

respectively. Using the transformation 

f'.o + f" 2 = 2 ~ 

-f-o +/Ji- 2 = 2'\ - 1 

it can be seen that the plane JA-
0 

+p.2 = 1 cuts these 

surf aces along the curves 
2 . 1 2 1 

µ.1 + ( '\ - ~) = 4 
2 1 2 1 

>'1 + ( " - ~) = 4 

JA1 ~ 0 

r espectively. 

Figure 2. 6 represents the space n3 [O,ao). According to 
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the previous discussion the proper boundary ~, consists of 

~, !? , and~ where !~ is obtained by j oining the 

origin with the points of the curve c3 , !r is the curve c3 

itself and AJ is the origin. The improper boundary 133 
-0 

consists of A~ and Af where A~ is obtained by joining the 

points of CJ with the point at infinity' of c3 and Af by 

joining the origin with the point at infinity of c3. In the 

figure !~ is marked by heavy lines and A~ by dashed lines. 

Figure 2.7 represents n3(-m1 m). This space consists of 

the points which lie "inside" the surface fA- 2 = f" f, i.e. the 

points for which }A- 2>µ.i, plus the points of c3. The curve 

c3 lies on the surface in question. The dashed line denotes 

the intersection of this surface with the plane }A-
3 

= o. 

Fi gure 2.1 Figure 2. 2 
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CHAPTER III 

DETERMINANT CRITERIA FOR MOMENT SEQUENCES 

Definition J.1 Let 

fAo 1'-1 • • • }J. i-1 

/"1 Y.2 •• ·~1 

• • • • • • • • • • • 

f i-1 JA 1 ••• ~ 2i-2 

and 

l'-1 fA1+1 • • • >'-1-1 +l 

Y-1+1 l'-1+2· • • l'-i+l 
H2. 2 l= K. l= 

l.- ' l.' • • • . . • • • • • • • 

fi-1 +lfi+l· • • r 2i-2+1 

Let also H - H 21-1, 1 - 2i-2,1+1 

The latter statement defines H 1 when m is odd. It m, 
is convenient in particular because it permits to denote the 

sequence K1, ~ 1, K
2

, K2 1, K
3

, ••• , by the simpler ex­
' , 

pression Hm (m = 0,1, ••• ). 

Note that given a sequence 

defined for 2i+l ~ n+2, while H is defined for m + 1 ~ n. m,l 
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Definition 3. 2 Let 

1 1 • • • 1 

t1 t2 • • . ti 
vi ( tp ••• , ti) = 

• . • • . • • • • 

ti-1 ti-1 t~-1 
1 2 1 

0 
Theorem 3.3 If µ. = ~ A. tjs (s = o, 1, ••• ,n) 

s j=1 J 
then for 2i + l~ n + 2 

K. 1 = 1, 

where 

0 

L 
(j1' ••• ,ji) 

t~ • [v.(t. , ••• ,tj ~ 2 

Ji 1 J1 i 

i'o .... 

is the sum taken when (j1 , ••• ,j1 ) varies 

over all combinations of the numbers (1, ••• ,b) taken i at a 

time. 

Proof: By Definition 3 .1 

C"" \ tl+1 c:::- \ tl+i-1 
'- ~j j ••• c..~j j 

K. l = 1, 
. . . . . . . . . . . . . . . . . . . . 
~ ).j tl+i-1 "£. }.j tt+i • • • l: ~j t~+2i-2 

which is equal to the sum of the cf- determinants of the form 

A. t~ " t:+1 . • • 
A t1+1-1 

J1 1 j2 J2 ji ji 

• . . • • • • . . • • • • • . • . 
A tl+i-1 A. t~+i 

j1 j1 J 2 J 2 
• . . ). tl+2i-2 

ji ji 
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where the set (j1 , ••• ,j1 ) is made to vary over all disposi tions 

with repetition of the nwnbers (1, •.• ,o) taken i at a time. 

If i > b all dispositions (j1, ••• ,j1 ) involve some repetition. 

Since any repetition in the set (j1, ••• ,ji) would cause the 

corresponding Vi(t., ••• ,t. ) to vanish, if i > b all t he Vi 
Ji Ji 

vanish hence K. 1= o. If i~ b it suffices to extend the 
1, 

summation to the dispositions without repetition. All these 

dispositions may be obtained by first varying (j1, ••• ,j1) over 

al l combinations of (1,2, ••• ,b) taken i at a time and then 

taking with each combination all the pennutation of its elements. 

Let ( s1, ••• ,s1 ] denote a permutation of ( j 1, ••• 1 ji), let p 

denote its parity and observe that a permutation of the quanti-

ties (tj
1

, ••• ,tj
1

) affects only the algebraic sign of 

Vi ( t. , •.• , t. ) . Then 
J1 Ji 

K. l = 
l., 

•V1(t , ••• ,t
8 

) 
81 i 

• 
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The inside summation is nothing but the expansion of V.(t. , ••• ,t. ) 
1 J1 Ji 

hence 

Ki, 1 = . L . ~ j ••• "j t ~ ••• t ~ • [ vi ( t j , ••• , t j . ) 1 2• 
(Jp .. .,Ji) 1 i 1 i 1 ). 

Case ( o,..,) 

Theorem 3.4 If }4.' Dn and b(f-) = b 2 then 

(3. 4a) H1 > 0 ( 1 = 0, 1 , ••• , 2b-1 ) 

(3.4b) H2b,m = O (m = 0,1, ••• ,n-2b) • 

Remarks. By Theorems 2.4 and 2.11, if fA- ' Dn then 

b(JJ- )' ~. If b = ~ the second set of conditions is 

vacuous. 

Proof: Stated in terms of K. the conclusion of the i,m 

theorem reads: 

if b is an integer 

(3.4c) 

(3.4d) K. 1 '> 0 
1, 

(3.4e) ~+1 ,m = 0 

(i = 1, ••• , b) 

(i = 1, ••• , b) 

(m = o, ••• ,n-2b) , 
if b is a half integer 

(3.4c) 

(3. 4f) 

(3.4g) K~ 1 = 0 u,m+ 

(i=1, ••• ,b) 

(i = 1, ••• ,b'-1) 

(m = o, ••• ,n-2b) • 

By Theorem 3.3 Ki 1 = 0 for 1 > b. , Hence in particular (3.4e) 

-holds. If i ~ b, then 

• 
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v. c tj , ••• , t . ) = II c tj - t . ) -F o 
1 1 Ji r < s r Js 

- ~2 hencel V. (t. , ••• , t. ~ O. All the hJ. are positive. If 
l. J1 Ji 

furthennore b is an integer al l the tj are positive, hence 

K. 1 ? 0 being a sum of positive terms. In particular (3.4c) 
1, 

and (3.4d) are true. 

If b is a half integer t 1 = o, tj ?O(j/;1 ). 

then K1 1 ";> 0 if 1 = o, hence (J.4c) is vali d. , 
if i < b', because then some of the combinations 

If i~ n 
Also K. 1> 0 

1, 

(t. , ••• ,t. ) 
J1 Ji 

do not contain t 1 , hence some of the terms in the sum are 

positive; hence (3.4f). However if 1 I 0 and i = b', then the 

sum giving ~ 1 consists of only one term and this term , 
contains the factor t 1 = O. 

(3. 4g) follOi'IS. 

Hence in this case K0 1 = O and , 

Theorem J.5 (Converse of J.4). If /It.= ( fA
0

, ••• 1f-n) is 

any sequence, if b is an integer or a half-integer (~ ~ b ~ ~) 

and if (3.5a) H1 '> 0 (1 = o, 1, ••• , 2b-1) 

(J. 5b) H2b rn = 0 (m = 0,1, ••• ,n-2b) , 
n 

then J4iD and b(JJ-) = b. 

Proof: n+1 The theorem will be proved first for b = ~ , then 

n for b = ~,finally for b arbitrary. 

The proof for b = ~ is by induction on n. .By Chapter II, 

p. & int Dn if and only if )A c Dn and b( 14) = ~ • Hence 

it is sufficient to show that H1 >0 (1 = o, ••• ,n) 
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implies )A. ~ int Dn. Clearly if H
0 

:= ~ 
0

? 0 and H1 ::: )J. 1 > 0 

then ( f""o' r 1 ) £.int D 
1

• Let now s ~ 2 and assume 

a) H1 ::> o (1 = o, •.. ,s-1) implies ( f°o'· •• ,r 
8

_ 1 ) €int Ds-
1 

b ) H
1 

";;:> 0 ( 1 = 0, ••• , s ) • 

By the induction assumption a) 

'5 

and according to Theorem 2. 11 

/A". = z: )\. t~ 
1 j=1 J J 

( i = 0, ••• , s-1 ; b = ~). 

Let 
o 

#-s = .f:1 ).j t; 
s 

and let ~ = ( ~0, ... , f-s-1'~ 8 ). Then b~) = ~ and by 

Theoren J.4, H
8
(#-) = o. Since H

8
_ 2 '> o, H

5
:: H

8
(f) > H

8
(f-:) 

implies }> s> ~ s• By Theorem 2.4 and Lemma 2.5, f-:. E ~-1 ' hence 

by Theorem 2.10 µ. s> ~ s implies ()'- 0 , ••• 'f-s) f int D
8

• 

Proof for b =~. By the previous part, (f"
0

, ••• ,,,..n_1 ) 

E int Dn-1 , hence 

0 
u... = r ~.t1j· 
r 1 j=1 J 

( i = O, ••• , n-1 ; b = ~) • 

The conditi on Hn = 0 is a linear equation in fAn' the 

coefficient of u. being H 2, which is by assumption '/= 0 r-n n-

(except if b = ~' in which case the truth of the statement to 

be p roved may be verified directly). 

unique solution. But by Theorem J.4 
0 

;;. = '2: ). . t~ 
n j =1 J J 

Hence H = 0 admits a n 
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is a solution. Hence }J- n must have this value, theref ore 

n n JAi: D and b(~) = '2. 
n The proof for bC:. ~ is by induction. The statement 

"H1 >0 (1 = 0, ••• , 2b-1) and H2b = 0 (m = O, ••• ,k) i mply o ,m 
f"i = j~ ~j t~ (i = o, ••. , 2b-fk)" has just been proved for 

k = o. Asswne that it holds f or a given value of k and that 

H1 "7 0 ( 1 = 0, ••• , 2b-1 ) 

H2b,m= 0 (m = o, •.• ,k+1). 

It will then be shown that 
0 

~i = ~ ).j t~ (i = o, .•• ,2b + k + 1). 

Consider in fact the condit ion H2b,k+1 = O. 

integer it reads 

If b is an 

f"k+1 ••••• )Ac,-fk+1 

H2b,k+1 - . . . . . . . . =O 

~ b.fk+1 •••• f'2bofk+1 

while if b is a half i nteger i t reads 

JJ-k+2 • • • • • f o-fk+1 

• • • • • • • • • • • = 0 

JA b+k+1 • • • · • · • r 2b.fk+1 

I n both cases it is a linear equation in }"- 2b-fk+1 in which 

the coefficient of this quantity has the value H2(b-1 ) ,k+1 • 

The order of the latter determinant is b and b - 1 

• 
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respectively hence, by t he argument given in the proof of 

Theorem 3.4, this determinant is ~ O. Thus H2b,k+1 = 0 must 

have a solution inf- 2b-fk+1' but by Theorem J.4 

b 
u. - 2:. )..j tj2bofk+1 
r-2bik+1 - j=1 

is the solution. This ccmpletes the induction proof. 

Theorems J.4 and 3.5 give a complete characterization of 

the proper boundary components An (a= O, ••• ,n-1) of Dn. -a , 

and of An;: int Dn. In fact by Theorem 2.13 b is constant ...;n 

a+1 for all the points in the same component and b = 2 . 

The classical conditions that an infinite sequence 

( J>-
0

,14 1 , ••• ) be a moment sequence are usually stated in the form 

K.~ O, 
1 

and do not involve the detenninants 

(i=1,2, ••• ) 

* K. (m;>1 ). It will be 1,m 

shown next that a finite number of these conditions are suf-

n ficient to assure that ()4
0

, ••• ,p..n) be in D • The conditions 

that will be obtained have the disadvantage, over those given 

in Theorem 3.5, that when they are written down they seem to 

involve moments of order higher than n. It will be apparent 

from the proofs, however, that they do not actually involve such 

moments, since the coITesponding cofactors in the determinants 

are always vanishing. 

* See [ 2 ] p. 6. 
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Lemma 3.6 Given a sequence a
0

, a1, ••• , a2n let 

• • • 

. . . 
• . . . . . . . . . . . 

Then if A - A - 0 all the minors of order n not con--~+1 - n -

taining a
2
n must vanish. 

This is a well !mown result (see ( 4] p.J70) which holds 

in fact for atzy" symmetric determinant. 

Lemma 3. 7 Let 

• • • ai+l 

• • • ai+l+1 
A. 1 1 = • l.+ , • • • • • • • • • • • • • • • 

• • • 

If An+1 =An= ••• = An+1-k = 0 then An+1-k,l = 0 (1 = 0,1, ••• ,k). 

Proof by induction. Lemma 3.6 gives in particular that 

A = A 1 = O. n,o n, 
The statement to be proved is clearly true for 

k = o, (and by Lemma J.6 also for k = 1). Assume that it holds 

for a fixed value of k and that A 1 = A = • • • = A k = O. n+ n n-

By t he induction assumption A 1 k 1 = O. By Lenma 3.6 
n+ - , 

A 1 k = 0 and A l = 0 imply A l 1 = O; A 1 k 1 = 0 n+ - ,o n-c,o n-c, n+ - , 

and A k 1 = 0 imply A k 2 = 0; etc.; n- , n- , A =O and n+1-k,k 
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An-k,k = 0 imply An-k,k+1 = o. Hence the statement holds 

f or k + 1 and the induction proof is completed. 

Lemma 3. 8 If H 1 = H 2 1 = 0 then H 1 1 = O. 
·in, m- , m- , 

Proof: If m = 2i the lemma states t hat i f 

K. 1 1 = Ki 1 = 0 then K. 1 1 = O. This follows immediately 1+ , , 1, + 

from Lemma 3.6 since K. 1 1 is a minor of order i of 
1, + 

Ki +1 , 1 not containing µ. 2i +l • If l = 21-1 the lemma 

states that if K. 1 1 = K. 1 1 1 = 0 then K. 1 = o. This 
1, + l.- , + 1, 

follows also from Lemma 3.6. I n fact if Ki ,l+1 = Ki- 1 , 1+1 = O, 

Lemma 3.6 implies that all the minors of order i - 1 of K. 
1 1 1, + 

not containing the last row of K. 
1 1 must vanish. But these 

1, + 

minors are identi cal with those obtained from the last i - 1 

rows of K. 1• 
1, 

Lemma 3.9 

minor of order 

Since they vanish, K. 1 = O. 
o ~' 

Let JJ- 1 = ~ ~j tj and let Li be any 

i from the nJtbix of H • Then if i > b, 
n 

Li = o. If b is a half integer and if 1b does not contain 

IA-o' 1b = o. 
The proof is similar to part of t hat of Theorem 3.3 and 

is omitted. 

Theorem J.10 If )A = ( )1-
0

1 • • •, )A n) 
n 

D and b( ,M ) = b 

then 

(3.10a) 

(3.1 Ob) 

(O ~ 1 ~ 2b-1) 

( 2b ~ l ~ 2n-2b) • 
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{If b = ~ the second set of conditions is vacuous.) 

Proof: The conditions (J.10a) are the same as (J.4a) 

which were proved previously. The conditions (J.10b) are 

equivalent to the following two statements: 

A) The principal minors of order i (b + 1 ~ i ~ n - b + 1 ) 

obtained by deleting the last n - b + 1 - i rows and columns 

of the matrix 

µ.o f'" 1 • • • f- n-b 

1""1 .f 2 • • • }A n-b+1 . . . . . . . . . . . . 
fA n-b f'-n-b+1 • 14 2n-2b 

are equal to zero. 

B) The principal minors of order i (b + 1 ~ i ~ n - b) 

obtained by deleting the last n - b + 1 - i rows and columns 

of the matrix 

/J-1 

1"2 

• • 

• • 

• /4n-b 

• f n-b+1 

. . . . . . . . . . . . . . . 
J-Ln-b+1 fA-n-b+2 • • • µ2n-2b 

are equal to zero, and if b is a half integer also the ones 

of order b and n - b + 1 are equal to zero. 

Proof of A}. By t emma 3.9 and the assumption that 
'5 

M . = ~ Ajt~ (i = o, ..• ,n) 
/l. j=1 J 
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all the minors of order b + 1 formed from t he first b + 1 

rows vanish. Hence the result follows i mmediately. 

Proof of B). The first part of the statement follows by the 

same argument, since the minors of order b + 1 fonned from 

the first b + 1 rows of the matrix obtained from (3.1 Od) by 

canceling the last row and column involve only the first n 

moments . If b is a half integer, by Lemma 3.9 the minors of 

order o obtained f rom the f irst b rows of (3.10d) vani sh, 

hence the principal minor of order o and t hat of order 

n - b + 1 (i.e. the detenninant of the matrix (3. 1 Od)) also 

vanish. 

Theorem 3.11 If }> = (JJ-
0

, ••• ,JA-n) is any sequence of 

numbers and if for some integer or half integer b (; ~ b' ~) 

(3.11a) H1 > 0 

(3.11b) H2b = 0 

(0 !=i 1 ~ 2b-1) 

provided b '-~ 
and either set of conditions 

(3.11c) H1 = 0 ( 2b ~ 1 ~ 2n - 2b, 1 odd) 

(3.11d) H1 = 0 ( 2b c:: 1 ~ 2n - 2b, 1 even) 

then /A-' Dn, b(JA.) = b and the other set also holds. (Note 

that if b =~ conditiors(3.11b, c, d) are vacuous. If 

n b = ~ then (J.11c, d) are vacuous.) 

Proof: The third part of t he conclusion follows from 

Theorem 3.10 once the first two have been established. If b 
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is an integer, (3.11b) and (3.11d) become 

H
1 

= O (l = 2b, 2b+2, 2b4, ••• , 2n- 2b) 

and (3.11c) becomes 

H
1 

= 0 ( 1 = 2b+1 , 2b+3, ••• , 2n-2b-1 ) 

hence, by Lemma 3.8, (3.11b) and (3.11d) i mply (J.11c). It 

may be seen similarly that if b is a half integer then (3.11b) 

and (J.11c) imply (J.11d). Hence it suffices to prove the 

theorem under asswnptions (3.11 a, b,c) if b is an integer and 

(3.11 a,b,d) if b is a half integer. In either case if 

n n+1 b =~ or ~ the statement of the theorem coincides with 

that of Theorem 3. 5. If b< ~ then (3.11 a) stil l coincides 

with (J.5a). Hence it is suffi cient to prove the following two 

n statements for b < ~ : 

I. If b is an integer, (J.11 b,c) imply (J.5b). 

II. If b is a half integer (J.11b,d) imply (3.5b). 

Proof of I. 

becomes: 

(3. 11 e) 

implies 

(3.11f) 

Restated in terms of the K. 1 this proposition 
l., 

=O 

~+1 ::: 0 

Kb+1,m 

- ... ::: Kn-b 1 = O , 

(m = 1, ••• , n-2b) • 
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By Lemma 3.7 (3.11e) implies (3.11f). 

Proof of II. In this case the proposition becomes: 

K..___ = 0 ·-u-' 1 

Kb+1 = ~+2 
implies 

Ko 1 = 0 , 
KL"" = 0 o,m 

= ••• =K '!:9 1 =0 n-u+ 

(m = 1, ••• ,n-2b+1 ). 

This follovrs again from Lemma 3. 7. 

A simple necessary and sufficient condition may be obtained 

if fA is assUllled to be a moment point: 

n Theorem 3.12 If )A= (f
0

, ••• ,f-n)ED then b(f) =b 

if and only if 

(1 = o, ••• ,2b-1), 

(1 = 2b, ••• ,n). 

Proof: The necessity of the condition is proved in 

Theorem 3.1 O. The sufficiency follows from the fact that the 

determinant conditions stated are, for different values of b, 

mutually exclusive. 

Implied in the proof of the above theorems is that of the 

following. 

n-1 Theorem 3.13 If ()4
0

, ... ,P.n-1)' int D , then the 

minimum value which JJ- n can assume if ( p
0

, ••• ,p n) E. Dn is 

obtained by solving f\.i = 0 for JI- n• 
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Case (-...,oc) 

Of the two necessary and sufficient conditions that a fini te 

sequence be a moment sequence (Theorems 3.4 and 3.5 and Theorems 

J.10 and 3.11) only the latter may be extended by analogy to the 

present case. 

The following necessary condition, which is the analogue 

of Theorem 3.4, is valid and may be easi ly prov~d by means of 

Theorem 3. J. 
n 

If }4 E. D and b ( f>' ) = b then 

Ki > 0 ( i = 1 , ••• , b ) , 

J<b+1,m = 0 (m = o, •.. ,n-2b). 

This condition however is not sufficient in general ( e€,. n = 3, 

b = 1 , JA 
0 

= 1 , p-1 = /"' 2 = 0, JA 
3 

-/= 0 is not a moment point). 

Using t he methods of the previous proofs it is possible 

to prove t he following necessary and sufficient conditions: 

,JA- ' Dn and b( I'-) = b if and only if 

Ki > 0 ( i = 1 , ••• , b) 

• • • !'-b-+m 

• • • }A b+1 -+m = 0 (m = o, •.. ,n-2b). 

• • • }'" 2b-ff!l 

(the second part is vacuous if b = ( ~] + 1). 

The analogue of Theorems 3.10 and 3.11 may be stated thus: 
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µ. ~ Dn and b( 14) = b if and only if 

Ki ~ 0 (i =1 , ••• ,b) 

K. = 0 
l. 

( i = b + 1 , ••• , n-b+1 ) • 

The necessity of these conditions is eaf!Y to verify. The 

proof of their sufficiency is more complicated and is here 

omitted. 

The analogue of Theorem 3.12 is: 

If }4' Dn then b(fA) = b if and only if 

K. > 0 ( i = 1 , ••• , b), 
l. 

K. = 0 
l. 

(i = b+1, ••• , [~J ). 
Theorem 3.13 is still valid when n is even. If n is 

odd cf. remark about Theorem 2.10. 
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CHAPTER IV 

THE POLYNOMIAL SPACES 

It has been pointed out in Chapters I and II that to any 

plane in ~ (or, equivalently, to any plane in ~+1 pass-

ing through the origin) there may be associated a polynomial 

of degree ~ n. This fact has been used in the proofs of 

some of the theorems stated in those chapters. To investigate 

some of the consequences of this correspondence between planes 

and polynomials, the polynomial spaces will now be defined and 

studied both in themselves and in their relations to the 

moment spaces. 

Definition 4.1 The set of points (a, a.., ••• , a) of 
0 I n 

1 n i 
En+ such that ~ a

1
. t ~ 0 for 0 ~ t <= ... (or -4't.c. ... ) 

i=O 
is called the n-th polynomial cone over [o, ... ) (or (-..., ... )) 

and is denoted by Pn [01 ao) (or Pn(-°", ... )). If the coordinates 

ai are subject to the normalizing condition 

n 
~ i! a1 = 1 

i=O 

the region obtained is called the n-th polynomial space and 

is also denoted by Pn [o, ... ) (or F11(-ao,°")). 

The n-th polynomial cone is clearly an (n+1 )-dimensional 

region while the n-th polynomial space is an n-dimensional 

region. It is easy to verify that the polynomial space is 
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convex and, by comparison with the space Pn [O, 1] , that it 

is bounded. 

Extreme points of the polynomial space. 

To say that a polynomial of degree n has k roots at ... 

shal l mean that its degree is n-k. To say that it has no 

roots at ... shall mean that its degree is exactly n. 

Theorem 4.2 A point of the space Pn [o, ... ) (i.e. a 

normalized polynomial positive over [o, ... )) is: 

A) an extreme point if and only if it has n roots in [o, ... J 

B) a boundary point if and only if it has some roots in (o, ... j 

C) an interior point if and only if it has no roots in (o, ... ] 

A similar result holds for Pn(-... , ... ). 

Proof of A) Assume P(t) has degree n and all its roots 

in [ 0, ... ) • Then either P( t) = QI. t 9 ( t - t j ) 
2 

or P(t) = ~ Tjl (t - tj)
2 

• 

Assume P(t) is not extreme. Then P(t) = AQ(t) + (1 -A)R(t) 

( 0 c:. ~ < 1 ) and Q ':t R. Q and R must have as roots all the 

roots of P. Hence, 

Q(t) = P(t) ~ (t) 

R(t) = P(t) ~ (t) 

By a theoran of Lukircs (see (3 l p. 4) 

2 2 2 2 
Q1 ( t) = q1 + q2 + t( q3 + q4) 

~(t)~ 0 (O~ t ~ ..,) 

~ (t) ~ 0 (0 £ t c:.. ... ) • 

2 2 2 2 • 
~(t) =r1 +r2 +t(r3 +r4) 

(4. 2a) 
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Now the relation f. ~ + (1 - ).) ~ = 1 must hold; but this 

is impossible if ~, ~ have the form (4.2a) unless ~ = 1, 

~ = 1 , in which case Q = R. The contradiction implies that 

P is indeed extreme. 

Conversely, if P(t) has a negative root t then 
0 

P(t) = (t - t
0

) P1 (t) = (t - t
0 

- a) P1 (t) +a P1 (t) 

P1 (t) ~ 0 (0 ~ t c, oo) 

and if 0 <.a~ - t, P(t) is represented as a convex combi­o 

nation of two points of Pn [ 01 00), hence it is not extreme. 

If P(t) has a pair of canplex roots then 

P(t) = (t - a - ib)(-a + ib) P1 (t) = (t - a) 2 P1 (t) + b 2 P1 (t) 

P1 (t)~O (O~t,oo). 

Proof of B) and C) If P(t) is strictly positive over 

(O,oo) and of exact degree n, any small perturbation of the 

coefficients, in particular any one satisfying the normalization 

condition, leads to a small variation of the roots, which are 

all complex or negative, hence it leads to a polynomial which 

is again strictly po si ti ve. If P( t) has some roots in [ 0, oo] 

and if sane of them are finite, a small displacement of one 

of them while the others are kept fixed leads to a polynomial 

which is negative over the interval of displacement. If some 

of the roots are infinite, i.e. if P(t) is of degree < n, 

then the addition of a term - t tn leads to a polynomial 
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which is negative for large values of t. In either case there 

are points in the neighborhood of P(t) which are not in 

Pn to,oo). Since both the hypotheses and the conclusions of B 

and C are mutually exclusive, the proof is complete. 

In the case (-=,oo) the proofs follow the same arguments. 

In part A the representation 

is used. 

It is noteworthy that when n is odd, since every poly­

n nomial in P (-=,oo) has at least one infinite root, the space 

Pn(-m1 m) has no interior points. 

Representation theorems for positive polynomials. 

The polynomials to be studied are assumed positive over 

to,oo) and (-~,m) respectively. All these polynomials have 

positive leading coefficients which shall be normalized to 

have the value 1. 

Lemma 4.3 Given P2n(t) ?" 0 in (O,oo) 

t > 0, there exists a unique polynomial P 2 
n n 

and any number 
n 

= D<t - t.)
2 

j=1 J 
(0 < t 1 <. tt· .. <- tn) and a number a > 0 for which 

P2 (t)~ .!. P2(t) (0 ~ t E tn) with equality holding at t = 0 n a n 

and once in each interval (tj, tj+1 ). 

The proof of both existence and uniqueness is exactly the 

same as that given in ( 1] for a polynomial positive over 

[o,1), although in this case the extreme tn is a double 

root of Quan ti ties a. 
J 

can be defined by 
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(j = o, ••• ,n-1; to = 0) 

and it can be shown that there exists a unique set (t1, ••• ,tn_1) 

such that aj = a (j = o, ..• ,n-1 ). This set t. and the 
J 

number a obviously satisfy the lemma. 

Lemma 4.4 a is a continuous increasing function of tn, 

and for t sufficiently large a becomes arbitrarily large. 
n 

Proof of continuity. The following propositions will 

first be proved: 

A) If tn ~ T, there exists C such that a ~ C; 

B) If tn ~ T, there exists c such t hat a ~ c. 

To prove A): let t ~ T 
n and let p = min P2n(t). Then 

0 ~t~ T 1 2 
aj ~ - t ma~ t P ( t) • 

p j • t~ j+1 n 

By varying the t. over the 
J 

each a. 
J 

To prove 

assumes a maxirrru.m value Aj. 

B): let p ' = max P2n(t). 
O~t~ T 

T 
t . 1 - tj ;> - ,· J+• ..- n 

hence 

Take c = max Aj. 
j 

For at least one j, 

n p 2 
n 

aj = t.~ ~t. 1 P2n 
1 

~ -, 
p 

max li=T (t-tj) 2 

tj "t~ tj+1 J J+ 

• 

Hence 
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rt will be proved next that all the tj (j = o, ••. , n-1) 

of Lemma 4.3 are continuous functions of tn. Assume the 

contrary. There would then exist a sequence 

( k = 1 , 2, ••• ) such that at least one of the corresponding 

sequences t~ defined by Lenuna 3.3 does not converge to t .• 
J J 

Then a subsequence t~ coul d be selected such that all the 
n 

subsequences tlqJ'' converge to values t ~ with t '. '/= t. for 
J J J 

ki I at least one j, and the sequence a ~ a > o. The poly-
2 n 2 

nomial ( p I ) = n ( t - t ~) and the number a I WOUld then 
n j=1 J 

satisfy the same conditions as the polynomial P 2 and the n 

number a of Lemma 4.3, which contradicts the uniqueness of Pn2
• 

Now if tn is changed by a small amount, the tj change also 

by a small amount, and so does a which is the common value 

of the a . • 
J 

Proof that a~ oo as t ~ °"• n 
Let C > 0 be g:i. ven and 

assume that there exist arbitrarily large values of t for 
n 

which a c:. c. For these values 

for 0 ~ t : t , in particular 
n 

(4.4a) (i = 1,2, ••• ,n+1). 

But if t is arbitrarily large, the values of P 2 at points n n 

other than its r oots become also arbitrari ly large, thus contra-

dieting (4.4a). 
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Proof of monotonicity. Consider a as a function of tn 
f f 

and assume a(t ) = a(t ) for t F t • Then the poly-n n 
2 

n n 
1 2 1 ' nomials - P and - P have 2n common roots; and their a n a n 

differ ence, which is a polynomial of degree 2n - 1 with 2n 

roots , must vanish identi cally. 

Theorem 4.5 There exists a unique representation of a 

polynomial P2n( t) ..,.. 0 (0 ~ t' ao) as a sum 

n n-1 
p 2n ( t) = n ( t - tj ) 

2 + ot t rT ( t - t. ) 2 
j~ j~ J 

By Lemma 4. 4, since a -+ 0 as tn -+ O, there exists tn such 

that a(t ) = 1. Hence the corresponding unique polynomial 
n 

2 n 2 2 
P = fT (t - tj) is such that the difference P2n- Pn 
n j=1 

is a polynomial of degree 2n - 1. By Lemma 4.J this difference 

polynomial is non-negative for 0 ~ t ~ t and vanishes at 0 
n 

and at values tj (tj <. tj c::. tj+1 ). Hence this polynomial is 

of the form 
n 

cl t Tl (t - t.) 2 
'j =1 J 

By a similar argument it is possible to obtain the follow-

i ng 

Theorem 4. 6 Given a polynomial P 2n+1 ( t) there exists 

a unique r epresentation 
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n n 

P 2n+1 ( t) = t rr ( t - t.) 
2 

+ OL n ( t - t.) 2 

j=1 J j=1 J 
°' > 0 

(0 4'. t 1 c. t 1 <.. t 2 c. ••• <. tn c:: tn). 

Lem.a 4. 7 Given any polynomial P 2n ( t) > 0 

any t 1 , ther e exists a unique polynomial 

n 

p 
2 
< t) = n ct - tj > 2 

n j=1 

for ·which 

with equality holding once in each interval (tj, tj +1). 

The proof is similar to that of Lemmas 4.J and 4.4 and 

Theorem 4.6, after transferring the origin to the point t 1, 

the only difference being that the left hand point t 1 of 

the interval under consideration is also a double root of P 2• 
n 

Lemma 4.8 tj (j = 2, ••• , n) as determined by Lanma 

4.7 are continuous functions of t 1• Also tn is a monoton 

increasing function of t 1• 

Proof of monotonicity. After defining aj as above, it 

can be shown like in Leruna 4.4 that for any fixed t 1, 

is a continuous increasing function of t • n 

Similarly for any fixed t a is a continuous decreasing 
n 

function of t 1• Conversely by the continuity and monotonicity 

t is a continuous increasing function of a. Now assuming n 

a(t1 , tn) = 1, if t 1 is given an increment • "> o, 

for some f > O. Hence 
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a(t1 + ~, tn +W\) = 1 can have a solution only for ~> O. 

But by the existence theorem such '\ does exist. 

Proof of continuity. It can be easi~ seen that if t 1 

varies in a closed bounded interval, so does tj. If tj were 

not a contirruous function of t 1 , there would exist a sequence 

t 1k such that the corresponding 
ki 

k 
tj does not converge to tj. 

A subsequence t j would then converge to ' ' t j with t j I= t j 

for at least one j. But then the uniqueness of the poly­
n 

nomial p 2 = n ( t - t . ) would be contradicted. 
n j=1 J 

Theorem 4.9 Given any P2n(t) ::> 0 (-=,=) there exists 

a unique representation 

(4.9a) 
n-1 

+ "' \T ( t - tJ. ) 
j=1 

( ol.,. O; t 1 <. t 1 <. t 2 <. t 2 c::.... ~ tn_1 <::.. tn) • 

2 Proof of uniqueness. The polynomial Pn (t) of Lemma 4.7 

depends on the choice of t 1• If for a certain choice of t 1 , 

2 P2 - P ,_.O for all t and (4.9a) holds, then (4.9a) holds n n 

for a unique o< ::> 0 

could be chosen with 

' and a unique set tj. If t 1 
I 2 

P2n - Pn > o, the polynomial 

would have 2n - 1 zeros. In fact assume for simplicity that 

the t. 
J 

' 

I 
and the t. are all distinct and that 

J 

and tj are also all distinct. Then 
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2 r 2 
Pn (tj) = O <::..Pn (tj) (j = 1, 2, ••• , n) 

P n 2 ( t j ) = p 2n ( t j ) > p n 2 ( t j ) ( j = 1 , 2, ••• , n-1 ) 

P 2(t') <. P2 (t
1 

) = P12
(t

1
) since bv Lemma 4.8 n n n n n n J tn <. tri • 

Hence P 2 - P 
2 would have 2n - 1 sign changes, therefore n n 

r 
2n - 1 zeros. If some of the tj and t j coincided, or if 

' and tj coincided, the number of zeros would some of the t. 
J 

decrease, but their multiplicity would increase, and it can be 

easily seen that the total nwnber of zeros of pn2 - p~2 , 

counting multiplicity, would still be 2n - 1. Hence the poly-
n-1 -

nomials °' ~ (t - t. )
2 

j=1 J 

n-1 -
and °' ' n ( t - t ~ ) 2 

would 
j=1 J 

also cross 2n - 1 times. But then these polynomials of degree 

2 12 2n - 2 would be identically equal, and so would P and P • 
n n 

This establishes the uniqueness of the representation. 

~ prove ~ existence construct a t 1 such that for the 

corresponding p 2 
n 

for all t. 

If the latter relation did not hold, in addition to the roots 

tj of combined multiplicity 2n - 2, the polynomial 2 
p2 - p n n 

would have only one simple root, say t *. Either t* > t or 
n 

* I. 2 t <.. t 1 • Since by Lemma 4-8 Pn depends continuously on 

and since the root t* is simple, the set t 1 * such that t 

exists is open. Furthermore it can be easily seen that by 
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choosing t 1 sufficiently small t * exists and 
~< 

t " t > n' 

while by choosing t 1 * lar ge , t c::::. t1. Since the set of t 1 

such that t* t ::> n and the set of t1 such that t * <::.. t 1 are 

disjoint and each is open, there must exist a point T between 

them. Choosing t 1 = T we have P - P 2 o. In other words 2n n 

define 

T = sup t 1 such that 

and 

~(-

t exists 
~< 

t " t . 
'> n' 

the set i s non- void and bounded above, hence T exists . 

The representation theorems are susceptible of a simple 

geometrical interpretation i n terms of the normalized poly-

. al Pn. nonu spaces By varying the r oots of an extremal poly-

nomial of the form Q' ( t - t j ) 
2 or t Tj1' ( t - t j ) 2 and 

if necessary by letting some of them approach m it is possible 

to connect arcwise any two extr emal polynomials by means of 

extr emal polynomials if and only if they are both of even degree 

or both of odd degree. Hence if n ~ 1 the space Pn ( O, m) 

has two disjoint extremal components such that any point of 

Pn (o,~) is a convex combination of one point of each 

component . 

The space has only one extremal component. 
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CHAPI'ER V 

RELATIONS BETWEEN THE MO:MENT SPACES 

AND THE POLYNOMIAL SPACES 

The notion of conjugate convex cones has been investigated 

in [ 1] • Some of the pertinent definitions and theorems will 

be listed here. 

The following statements are valid whether C is a closed 

set or not: 

(5. oa) Define t he convex cone c c: E°+1 as the set of 

(x , • • • , x) ' points x= such that x , x E c implies o n 

i\ x i\' ' + x E C for all positive i\, A' . 

(5.0b) f * De i ne the conjugate cone C to a given C as 

the set of points y such that 
n 

~ x. y . = (x,y) ~ O 
i=O l. l. 

(5. 0c) c* is closed and convex. 

for all x E C 

(5.0d) c* is the set of planes of support to c. A 

plane which supports along an element of C other than the 

origin is a point in the boundary of 

not true if C is not closed) . 

* c • (The converse is 

( 5. Oe) Any t wo non-zero points in the same line t hrough 

the origin represent the same plane. If C is pr oper, i.e. 

it does not contain a compl ete line through the origin, it is 

possible to normalize its non- zero points by means of a plane 
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parallel to an interior point of c*. The resulting cross 

section, K, is a bounded convex set. 

(5.0f) 
-!~ 

Let K, K be bounded cross sections of proper 

* cones c, C • Then 

interior points of K are planes not meeting 

boundary points of * K are planes of support to K , 

exterior points of K are planes cutting through K*. 

(5.0g) If x is in the boundary of a cone C and if y 

is interior to the convex set of points i n ¥hich * x meets C , 

then y is said to be conjugate to x. 

(5. Oh) If x E C is conjugate to y t. c* and if y is 

conjugate to any z ' c, then y is conjugate to x. 

(5.0i) The indices a(x), c(x) of a point ~ng in a 

proper, (n+1 )-dimensional cone C are defined in the plane of 

any bounded n-dimensional cross section containing x as in 

Definitions 2.1 and 2.2. They are independent of the cross 

section used. 

( 5.0j) * If y € C is conjugate to x ~ C then 

a(x) + c(y) = n - 1. 

If C is closed then C is conjugate to * C , hence c 

* and C are dual to each other. In this case the following 

additional statements hold. 

(5.0k) 

(5.0l) The converse of the second statement in (5.0d) 
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C~~ holds, i.e. a point is in the boundary of if and only if 

it is a supporting plane to C at a non-zero point. 

(5.0m) If x EC is conjugate to yE c* or if y is 

conjugate to x then 

a(x) + c(y) = n - 1 • 

In connection with (5.0j) and (5.0m) it is to be noted 

that if x ~ c, then every supporting plane to C at x is a 

supporting plane to C at x and vice versa. Hence if x ~ C 

is conjugate to y ~ c* with respect to C it is also conjugate 

with respect to c, although if x is conjugate to y with 

respect to C it need not be conjugate with respect to C. 

Thus ac(x) = a .Jx) although c
0

(x) and c _(x) need not be equal. 
c c 

The moment cone Dn introduced in Chapter II, its closure 

D1'1 and the polynomial cone ~ are obviously convex cones. 

Theorem 5.1 The cone Pn is conjugate to the cone Dn. 

The cones ¥1 and If1 are mutually conjugate. 

Proof: Let ( °" ,.a. ) denote a plane not intersecting Dn. 
0 

Then for all ,.._ = ( 1'-i ) 

( ot,}4) ~ o. 

In particular for ~ i = ti (i = o, 1, ••• ,n) 
n 

P(t) =Ld.· ti~ o, 
. 1 
i=o 

hence ( ol 
0

, 0( ) is an element of ~. 

Conversely let ( o{
0

,ot ) denote a polynomial n 
P ~o. Then 
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is in Co(Cn) and since ~ct. ti~ o, 
1 

(~ ,f-) ~ o. 

The second part of the theorem follows from (5.0k) and the 

fact that Dn is closed. 

The first part of the theorem together with (5.0c) implies 

that Pn is closed. 

As far as Pn (-m,m) is concerned, the following dis-

cussion will be limited to the case of n even, which is the 

most interesting since p2m+1 (-,m) = P2m(-m,m). 
b 

Lemma 5.2 P is conjugate to x = 2:: 'A.x(t.) if and 
j=1 J J 

only if the only roots of P in ( O,ml (or l-m,col ) are 

roots of minimal order at t., i.e. double roots except for 
J 

a simple root at t 1 if t 1 = 0 in the case ( 0, m.] 

Proof: By the definition of conjugateness P is con-

jugate to x if and only if P is a plane interior to the 

set of supporting planes to Dn at x. The planes of this 

set have the form 
'5 

P(t) =Q(t) n (t-t.) 2 

j=1 J 

where Q(t) is any polynomial non-negative in the interval 

under consideration. For this it is necessary and sufficient 

(cf. Theorem 4.2c) that Q(t) be exactly of degree n - 2b(x) 

and strictly positive. But this is the case if and only if 

the only roots of P are roots of minimal order at tj. 
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Theorem 5.J Let P~ bd i1. 
A) If P is conjugate to x' Dn then x is conjugate 

to P. 

B) If P is not conjugate to any x~ Dn then P has 

roots of order greater than the minimal or roots at m. 

Proof of A.1 By Lenma 5. 2 the only roots of P are at the 

points tj used in the convex representation of x. Hence 

the set of points which the supporti ng plane P has in common 

is precisely n L(x) ('\ D • Since x is interior to 

this set x is conjugate to P. 

Proof of B) Since P • bd Pn, by Theorem 4. 2B P must have 

some real roots (infinity being considered a real root). The 

result follows then from LEJ!lrna 5.2 by contradiction. 

Theorem 5. 4 If x e Dn is conjugate to P then just one 

of two alternatives holds: 

1 • P is conjugate to x 

2. P has multiple roots or roots at m. 

Proof: By ( 5. Oh) and Theorem 5.JB. 

Theorem 5. 5 If P E Pn is conjugate to x 'Dn, or vice 

versa, then P(tj) = 0 if and only if x(tj) is used in the 

unique representation of x. 

Proof: By Theorem 5.JB it is sufficient to prove the 

statement under the assumption that x is conjugate to P. 
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Since x is interior t o the simplex which P has in common 

with Dn and since the representation of x io unique, all 

the vertices of the simplex are used. These vertices 

correspond precisely to the roots of P(t) in the fundamental 

interval. 

The results stated so far illustrate the relations between 

Dn and Pn. To study the geometry of p11 it is convenient to 

investigate the relations between Dn and Pn. The points of 

i5n - Dn are convex combinations of points of en and the 

point at infinity of rf in the sense explained in Chapter II. 

If x is such a point, any supporting plane P at x is 

parallel to the xn-axis, hence it is a polynomial of degree 

n-1 at most. Hence the set of roots of minimal order of 

Lemma 5.2 must be extended to include a possible simple root 

at in the case ( O,co) and a possible doubl e root in the 

case (-co,co). If x A.oltj' denotes the fact that x is a 

convex combination of the t. (j = 1, ••• , b), where possibly 
J 

t = co1 then Lemma 5.2 may be restated as follows: P is 
0 

conjugate to x - { tj) if and only if the only roots of P in 

[o,co] (or (-001 00] ) are roots of minimal order at tj. 

Theorem 5.J, 5.4 and 5.5 hold also for xt Dn with the proviso 

that a simple root at co in the case [O,co] and a double r oot 

at co in the case (-co1 co) are to be considered of minimal order. 

The proofs are similar to those given above. 
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Definition 5.6 Let b(P) denote the number of distinct 

roots of P6Pn in (O,CIDl (or (--,CIDl) and let b(P) denote 

the same except for a half count given to the roots at 0 or 

CID in the case of Pn [O,CID). 

Theorem 5. 7 If P ~ Pn is conjugate to x t.Dn, or vice 

versa, then 

(5.7a) b(P) = b(x) 

(5.7b) b(P) = b(x) 

(5.7c) 2b(P)= n - c(P) 

(5.7d) b(P) = n - a(P) • 

Proof: The first two relations f ollow f rom Theorem 5.5. 

(5.7c) is proved by means of Theorems 2.1), (5.0m) and (5.7a): 

2b(P) = 2b(x) = a(x) + 1 = n - c (P). 

(5.7d) is proved by meaJ!llS of Theorems 2.14, (5.0m) and (5.7b). 

Theorem 5. 8 A) For every Pc bd Pn there exists an 

x E bd Dn which is conjugate to it. (This statement is true 

for cl osed convex cones in general.) 

B) Every point x is conjugate to some P. 

C) All points conjugate to a given P are in the same 

boundary component of D11. 

Proof of A) Given x ~ bd TI'n choose a plane P 

interior to the set of planes supporting Dn at x. Then P 

is conjugate to x. 
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It follows from part A and Theorem S.JA. Proof of B~ 

Proof of c) 
t 

If x and x are both conjugate to P, 

Theorem S.S implies that they are both combinations of the 

same points tj, hence the statement follows inunediately. 

Theorem 5.9 The boundary of Pn (o, ... ) may be partitioned 

".:n into disjoint, individually connected components Qc , Q n 
- c 

-n 
(c = o, 1, ••• ,n-1) such that c(P) = c if P ~Q or c 

Qn and 
..;;c 

such that the upper bar denotes a root at ... and the lower 

bar denotes no r oots at .... The closures of Q11 and Qn are 
0 ~ 

the extremal components of Y1. Moreover a(P) is constant 

over each component and satisfies the relati on 

n + c(P) -2 ~ 2?(P) ~ n + c(P). 

Proof: Let for c = o, 1, ••• , n - 1 
-n 
Q c 

ct c 

= { P\ 3 x t. A n 1 ; n- -c x conjugate 

= t Pl 3 x~ An ; 
-n-1-c 

x conjugate 

Then Theorems 2.7, 2.1 2 and 5.8 imply that the partition of 

the boundary of Pn is exhaustive and that the components are 

mutually disjoint. That they are individually connected follows 

from t he connectedness 

p ~ °Q12 or Qn follows 
c ..;;c 

f h -An An • That c ( P) = c o eac a' a 

from the definition of ~ and Qn c ..;;c 

if 

and 

from (5.0m). That t he upper bar denotes a r oot of P at .., 

and the lower bar denotes no roots at ... follo"s from 

Theorem S.5 and f rom the fact t hat the representation of x 
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involves or not the point at m according as x lies in 

-n 
some A or in some a 

An • According to Chapter IV the 
-a 

extreme points of pn are positive polynomials of degrees 

n and n-1 having n and n-1 roots respectively in 

(o, ... ] • These polynomials are limits of polynomials having 

n and n-1 roots respectively in [o, ... ), b of the roots being 

di . b n d n-1 . , u stinct, with = ~ an ~ respective......,. The latter poly-

nomials have as their conjugates the points of ~ ~-1 and 

n 
A n-1 respectively, hence they lie in Q n and Qn respective-

- 0 0 

ly. The fact that a(P) is constant in each boundary com­

ponent of Pn follows from (5.0m) and from the fact that c(x) 

is constant in each boundary component of nn. Finally the 

relation 

n + c(P) - 2 ~ 2a(P) ~ n + c(P) 

is deduced from Theorems 2.13, 2. 14 and 5. 7 and from the 

relation 

b(x) ~ b(x) ~ b(x) + 1. 

In the case of Pn(-..., ... ) it must be noted that the point 

at infinity does not play a special part as far as the boundary 

-n n components of D are concerned. In fact if D is nonnalized 

by setting r 0 + fJ-n = 1, the curve en is given para­

metrically by 

which is a closed curve regular at t = .... Hence the improper 
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boundary component !,2b_2 of Dn, which is obtained by joining 

all convex combinations of b-1 points of en with its point 

at °" becomes part of the proper boundary component n 
!2b-1 

obtained by taking all convex combinations of b points of en. 

Thus all boundaI"'J components of i)n are odd dimensional. Hence 

Theorem 5.9 becomes: 

The boundary of Pn(-m,oo) may be partitioned into disjoint, 

individually connected components Qn (c = 01 21 ••• ,n-2) such c 

that c(P) = c if Pt. Q~ • The closure of Q~ is the 

extremal component of Pn( ...... 1 m). Moreover a(P) is constant 

on each component and 2a(P) = n + c(P). 

The proof is similar to that for the case 01 oo) 1 with 

x conjugate 

The fact that the greatest value of c is n-2 means 

n that the boundary of P ( -...1 00) does not contain any "flat" 

pieces, i.e. any linear simplexes of dimension n-1. 

Examples of polynomial spaces. 

The extreme points of P2 (O,oo) are of the form 

P(t) = oL (t-u) 2 where 0 ~ u ~ °" and P(t) = pt. The 

nonnalizing condition ~ iJ a. 
l. 

= 1 gives 

ol 
1 = 

2u + 2u2 
I 

1 - ~ = 1. 

Making the orthogonal transf onnation 
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ro-~ 
= 1 +x 

ao + a1 - a2 = 1 +y 

a
0 

+ ~ + 2a2 = z 

the points of Q~ are given, in the nonnalizing plane z = 1, 

by the parametric equations 

4u - 2 x-------
- 2u2 - 2u + 1 

(O~U< -) • 
y - -3 

- 2u2 - 2u + 1 

Qg consists of the point (2,0). 

Similarly the extreme points of P2 (-...,co) are of the 

2 
form P(t) = " (t-u) vhere -oo ~ u ~ °'• In the plane z = 1 

Q
2 is given by the same equations as before with -oo ~ u ~ co. 
0 

Figure 5.1 shows schematically the three spaces 

P2(-«>1 co) c: P2 (o,ClD) c:. P2 [o, 1]. The polynomials shown in 

the fi gure have been written without the normalizing constants. 

Figure 5.2 represents the spaces D 2 (o,ClD) normalized by 

J-A-
0 

+ f 2 = 1 (cf. Figure 2.J) and P2 lo,co). The polynomials 

1 and t
2 are not conjugate to arv point of n2 since they have 

double roots at ClD and 0 respectively. The polynomial t is 

not conjugate to arv point of n2 since it has a root at ClD 
-2 2 2 

but it is conjugate to the point A
0 

C. D • The point A
0 

is 

- ::"2 
conjugate to t with respect to n2 but not with respect to D • 
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Figure 5.3 represents the space p3 (O,m). Its extreme 

points have the form 

1) °' ( t-u) 
2 

2) (lt( t-u) 2 

Set 1) has already been discussed. Set 2) is dealt with by 

means of the orthogonal transformation 

a 
0 - ~ = 1 + x 

a 
0 + a1 - a2 = 1 + y 

a 
0 +~ + 2a2 - a3 = 1 + z 

a + a1 + 2a2 + 6a3 0 = w ' 

which gives 

x= 
u

2 - 4u + 6 

y= 
2 -u - 2u 

2 u -4u+6 

2 -u + 4u - 1 
z -------

- u2 - 4u + 6 

w = 1 (normalization) • 

The boundaly component Sf is obtained by joining points of 

~ and ~ corresponding to the same values of u. 
0 ..;o 
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FiGUXe 5. 1 

-A! -'l 
Q. 

A' I A' _, 

A1. -· Figure 5. 2 

Figure 5.J 
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The fact that Pn is conjugate to Dn may be used to 

obtain a new proof of Theorem 3.12. In fact the statement 

that Pn is conjugate to Dn may be reworded as follows: 

if ~ = <14
0

, ••• 'rn) is a reduced moment sequence then 

implies 

n 
P(t)E ~ 

i=o 

n 

( f-,P)S ~ ail""i ~ 0 • 
i=o 

The condition "P' p11 implies ( f",P)~ 0" is equivalent to 

the same condition applied to a subset of Pn containing all 

the extreme points of p11. 

case (o, ... ). 

The subset chosen in this case is that of the polynomials 

of the form 

1 
i 2 ( '2: a1t ) 1 = [,] 

i=o 

and 
1 

i 2 
t(~ ait ) 1 = t~1 ; 

i=o 
n this set contains all the extreme points of P • The condition 

( 14,P) ~ 0 applied to these polynomials becomes 

1 

~ 
i,j=o 

a.a. /.A. • • ~ 0 
i J I i+J 1 = [~ J 
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and 

1 =[~] 

respectively and these conditions in turn are equivalent to 

and 

K. ~ 0 
J. 

(i = 1, ••• , l ~ l ) 
(i = 1, ••• , [ ~] ) 

which may be written together as 

(l=O, ••• ,n). 

If now b(f4) = b is an integer, arry supporting plane 

at /A- must contain the points t. used in the representation 
J 

of }J- , hence 1 t must have degree 2b at least. For any 

supporting p of degree ~ 2b, ( ~,P) > o, therefore 

b-1 b-1 

2: -
aiaj f'-i+j and z_ aiajr i+j+1 

i,j=o i,j=o 

are positive definite, while 

b 

L ai aj f- i+j 
i,j=o 

is positive semidefinite and there exists a set (a
0

, ••• ,~), 

unique up to a positive multiple, such that 
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Hence 

Ki ::> 0 (i = 1, ••• ,b), Ki =O ( i = b+1 , ••• , ( ¥ 1 ) , 
K. 1::>0 (i = 1, ••• ,b), K. 1= 0 
i, i, 

. f n-11 ( i = b+1 , ••• , LT ) . 

If b is a half integer it is found similarly that 

b-1 

L aiaj f'- i+j 
i,j=o 

b-2 

and 2: ai aj ~ i+j +1 
i,j=o 

are positive definite while 

b-1 

'2:_ aiaj ~ i+j+1 
i,j=o 

is positive semidefinite. Hence 

Ki > 0 ( i = 1 , ••• , b), Ki = 0 ( i = b+1 , ••• , [ ~ ] ) , 

Ki 1 > 0 ( i = 1 , ... , b-1 ) , Ki 1 = 0 ( i = b, •.. , ( nz 1 J ) . , , 
These results coincide with Theorem 3.12 • 

Definition .5. 10 Let 

/Ao/'-1 • • • fl n- 1 1 

1r2 • • • }An t 
p (t) = n • • • • . • . • . . . . • • 

/J-nfn+1 • • • f°2n-1 
tn 

JA1 f-2 •• • fAn 1 

f-2 f-3 • • • /A" n+1 t 

and p (t) = • . n • • • • • • • • • • • • • • 

f'-n+1 /"4n+2• • }> 2n tn 
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lt:-n = min f- n for 

u J4 ) Then: r-n-1 '.,..--n • 

69 

n-1 
Let ( f-

0
, ••• , f'-n-1 ) ~ int D , 

(f'-o,•••'f'-n) Dn, and./!:.= (~01•••, 

A) If n = 2m the unique supporting plane at~ is (Pm(t)l 
2 

and the spectrum of the unique distribution ,,t. whose moment 

point is ~ consists of the roots of Pm(t). 

B) If n = 2m + 1 the unique supporting plane at #:-- is 

t (pm(t)] 2 and the spectrum of .!_ consists of 0 and the 

roots of pm(t). 

Proof: In case A since b(~ .. ) = m, 

(i=1, ••• ,m), K ... =O 
""hi+• 

hence the system of equations 

n 

~ (j = o, ••• ,n) 
i=o 

· has a solution. Since K .,.. O the ma tru of the system has m 

rank m, therefore the roots are proportional to the cofactors 

of the last column of l\n+1• Hence 

to P (t) and the first part of the m 

m 
'2: ai ti is proportional 
i=o 

statement follows. Since 

the supporting plane at ~ vanishes precisely at the points 

used in the representation of ~' these points and no others 

belong to the spectrum of !:l...· The proof of B is carried out 

similarly. 

Theoren 5.12 Given }A- = <ro' ... 'J'-n) and a distribution 

'f ( t) such that /4 ( 'f ) = , the polynomials Pi ( t) ( o ~ i ~(~ l ) 
and pi (t) (0 ~ i ~ [ ~) ) form orthogonal systems over the 
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interval [o,CD) with respect to d'f(t) and tdf (t) 

respectively. The normalization constants of Pi and pi 

are V Ki Ki+1 and \,hi, 1 Ki+1 , 1 respectively. 

Proof: If O ~ j c: i ~[~] then 

CD r tj pi (t)d'f (t) = 
0 

. . . . 

••• 1'-i-1 f'j 
· · ·ri rj+1 

• • • • • • • • • • 
o, 

/A'i !"-i+1 ••• J""2i-1 /"-j +i 

since two columns of the determinant are equal. Furthermore 

CD CD 

f P~ (t) d•(t) = K. f tiPi(t)d 'f (t) 
0 1 ) 1 0 

/Ab l'-1 • • • f'i-1 /Ai 

}Ai, JA2 • • • J'1 Jli+1 
= K. = KiKi+1' 1 • • • . • . . • • . .. . . . • 

11. 1'i+1 • • • r 21-1 1"2i 

hence the normalizing constant of P. is' Ki K1+1 • The part 
1 

of the theorem concerning pi is proved similarly. 

Definition 5.13 A function of bounded variation t.f (t) 

is said to have a sign change at t 2 if there exist numbers 

t 1 and t 2 (t1 = t 2) and a number f 1 > 0 such that 

(5.1Ja) ~ (t) = O (t1 ' t~ t 2) 

c 5. 13b) 'f ( t 1 - ) • "f ( t 2 + ) , o < o ~ s~ r 1 ) • 

Theorem 5.14 If 'f and 'fl are distinct distributions 

having the same first n moments then 1 - '/' has at least 
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n sign changes. 

Proof by contradiction. If 'f - 'Y has sign changes 

' a t tj(j = 1, ••• ,n c::. n) let Q(t) = 
t 

P(t) = f Q(t)dt 

0 

n' n ct - t.) . 
j=1 J 

is a polynomial of degree n at most, hence 
co 

J P(t)d('f-'f) = o. 
0-

Then 

Integrating by parts and using the fact that ('f-'f')(O-) = o, 
co A co 

a = J p d( t- "') = I p d( r- .,,) + f p d(" -'I') 
0- 0- A 

(5.14a) A co 

= ('f-'f)(A)•P(A) - f (1-f) Q dt + f P d('f-'f'). 
0 A 

Given £ > 0 there ex:i. st A1 and C such that A > A1 implies 

P(A ) <::. CA n. Also, since 1 has n moments, there ex:i. sts A2 

such that A ? A2 implies 
... 

An [1 -'f (A~~ f t n d'f (t) C:. ~ 
A 

(the first inequalit y holds for any A). Similarly there exists 

A
3 

such that A > AJ implies 

An LJ - 'f (A)l' ~ • 

Hence if A > A1 , A2, AJ 

lcf-t)(A) •P(A) I = f1 -\f'(A) -1 +f (A)j • l P(A~< ~A: CAn = 2 i • 

Also if A is sufficiently large 

I I p d(" - "' ) I <: " • 

is positive and non decreasing as A 
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increases, because ~ - 'f' f o, and 'j - 'I' and Q have 

sign changes at the srune points , hence their product is 

always nonpositive or nonnegative. Thus a contradiction to 

(5.14a) is obtained. 

Lemma 5.1 5 If }'- 6 int D2m the roots tj of P and 
m 

the roots u. of p interlock according to the pattern 
J m 

(.5.1 5a) 't .::.. u • m m 

2m-1 If JA- E: int D the r oots of P and p 1 interlock m m-

according to 

Proof. That the roots are all distinct, real and posi-

tive is a consequence of the geometrical interpretation of 

polynomials as supporting planes. If n = 2m let ~ and 

~ be distributions corresponding to the points ( )'-1 , ••• , 

1"-2m-'}_' ~2rn) and ( f 1 , ••• , f 2m' ~2rn+1 ) • Since '5 ~) = m 

and b(~) = m + 1, ~ and 'f' have altogether 2m + 1 saltus 

points, (O, t., u.) (j = 1, ••• ,m) and are constant else­
J J 

where. By Theorem 5.1 J 1_ - \II must have 2m - 1 sign 

changes. 0 is not a sign change since ~(0-) = ~(0-) = O; 

nor is the greatest point in the set (O, tj, uj), say v, a 

sign change since :!_ (v+) = ~ (v+) = 1. Hence all the 

other saltus points must be sign 
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changes, therefore the tj and the uj must alternate and 

since "f ( O+) = 0 and 'V ( O+) :::::> 0 the smallest sal tus point 

Hence the t. and u. satisfy the inequalities (5.15a). 
J J 

The points x(tj) and the points x(O) and x(uj) are 

involved in the unique representations of ~ and/'- re­

spectively, hence by Theorem 5.11 P and p vanish precisely n n 

at respectively. The second part of t he theorem 

is proved similarly. 

Theorem 5. 16 If n = 2m there exists a 1 : 1 : 1 

continuous correspondence between the interior points of the 

2m space D , the ordered pairs of polynomials (Pm,pm) and the 

open simplex of strictly interlocking roots 

If n = 2m - 1 there exists a 1: 1 : 1 coITespondence between 

2m-1 the interior points of the space D , the ordered pairs of 

polynomials (Pm' Pm_1 ) and the open simplex of stri ctly inter­

locking roots 

c:..u 1'-t· m- m 

Proof : If n = 2m, by Lanma 5. 1 4 the point JA- detennines 

uniquely the interlocking sets tj, and uj, and by the 

representation theorem it detennines uniquely the positive 

~j ' numbers (j =1, ••• ,m) and ). j (j = o, ••• ,m) such that 
m m ' 

(5.16a) "i = ~ Aj t~ ~ ~j i 
( i = 0, ••• , 2m-1 ) , = u. 

j=1 J j=O J 
m 

fan= Z: ). ' an 
j uj • 

j=O 



74 

Conversely it will be shown that given any interlocking 

sets 

satisfies (5.16a). 

the point fA- is uniquely determined and 

In order that the sets t., u. represent 
J J 

a point )A. the conditions 
m m 

c:;- }. i .-:;- ' i ( 5. 1 6b) £_ • tj - £_ ~ • u j = 0 
j=1 J j=O J 

( i = 0, ••• , 2m-1 ) 

0 0 
nrust hold, where u = 0 = 1. Letting 

0 

' ( 5.16c) o. 2j = ).j' oL2j_1 = - ~j' w2j = uj, w2j_1 = tj 
( 5. 1 6b) becomes 

2m 

(5.16d) ~ «j w~ = o (i = o, ••• ,2m-1). 
j=O J 

The 2m x 2m + 1 matrix of the coefficients of (5.16d) is 

1 1 1 . • • 1 

0 t1 ~ .. • • um 

• • • • • . • . . . . . • • • • 

0 t2m-1 2m-1 u2m-1 
1 ~ • • • m • 

All the minors of order 2m of this matrix are -/: 0 since 

they are Vandermondians w:i_ th distinct elements. Hence the 

roots Cl j of (5.16c) are proportional to these minors 
m 

taken with alternating signs. The condition '2: ). j = 1 
j=1 

fixes the proportionality constant and (5.16c) implies that 

the A j and the A ; are positive. Thus there exists a 
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"\ "' ' unique soluti on f or the I\ ., ,... and hence a unique point 
J j 

which satisfies (5.1 6a). This proves that t he correspondence 

between int D2m and the simplex of interlocking roots is 1 :1. 

That the correspondence between D2m and the ordered pairs 

(P p) is 1:1 is obvious from Definition 5.10. The 
m' m 

continuity of the correspondence between D2m and the pairs 

(Pm' pm) is also an immediate consequence of Def inition 5.10, 

and the continuity of the correspondence between the pairs 

(Pm' pm) and the simplex of the roots is obvious. The proof 

for n = 2m - 1 is obtained by a similar argument. 

Geometrically if n = 2m the point /A- may be inter-

preted as the unique intersection in D2m of the convex 

simplex spanned by the points x(u.) 
J 

and the projection from 

the point at infinity in the x2m direction of the convex 

simplex spanned by the points x( t . ) • The u-simplex determines 
J 

t he unique supporting plane to D2m+
1 

at (j'-1, ••• , f- 2m' ~ 2m+1 ) 

while the t-simplex determines the unique supporting plane to 

D 2m at ( /A-p •.• , 1'-2m-1' }A-Zm.). 

Lemma 5.14 and Theorem 4.5 i mply that the extreme points of 

2m the space P are, except for the normalization constant, the 

2 polynomials Pi (0 ~i ~ m) and tpi (0 ~ i 4:. m-1) corre-

sponding to )A- & int D2m-1, and the extreme points of the 

space p2m+
1 

are the polynomial Pi(o '- i ~ m) and tp~ (0 ~ i~m) 
corresponding to )A- ( int D2m. This fact may be used to prove 
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the following . 

Theorem 5.17 There exists a homeomorphism between the 

interior of the space P2m and the interior of D2m such 

that polynomials of the form 

(5.17a) ~p 2 + (1 - ~) 
m ( 0 c:. °)\<. 1 ) ' 

where Pm and pm-1 are fixed, correspond to moment points 

having the same first 2m-1 moments. A similar correspondence 

exists between p2m+1 and D2m+1• 

The proof is given for the case n = 2m. To a pair 

(Pm' pm-1 ) there may be associated on one hand the straight 

line segment (5.17a) consisting of interior points of P2m, 

on the other hand the half line consisting of interior points 

of D2m obtained by tald.ng the point ( 141,. •• , f"2m-1 ) 6 int n2m-
1 

corresponding to (Pm' pm_ 1 ) and letting ~2m < 1'-2m <:. co. ~~ 

To obtain a pointwise correspondence let 11 denote the line 

t hr ough P2m 

AP 2 + (1 - A) 2 
tpm-1 m 

and 12 the line through D2m 

r1 '· • ·, P21n-1 fixed, 

To a point P on 11 interior to 

, ).arbitrary 

)'- 2m arbitrary. 

2m P there corresponds a 

* If D2Iii is normalized by a condition which makes it bounded 
the half line in question becomes also a straight line 
segment. 
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plane exterior to D2rn and not parallel to the x2m-axis 

' which intersects 12 in a point !A- • The hannonic conjugate 

' /J- of )'- with respect to /!:. and the point at infinity 

of 12 is the point interior to n2m corresponding to P. 

An alternate way of obtaining I'- is to take first the 

harmonic conjugate P
1 

of P with respect to P2 and 
m 

2 2rn tpm-1, which is exterior to P and represents a plane 

2rn through D whose intersection with 12 gives }'- • Still 

another way consists in considering the points (JA1, ••• , 

JA-2rre-1, /!-2rn) and (f 1 , ••• , 1"2m-1, CD) as supporting planes 

to P
2
m at Prn2 arrl t p!_1 respectively, then taking the 

plane through their intersection and through the point P and 

finally constructing its harmonic conjugate with respect to 

the tW> supporting planes; the plane thus constructed corre­

sponds to the point ~ E int D2m. All these procedures are 

equivalent since the cross ratio is invariant under stellar 

duality as \vell as under projections and sections. They are 

also reversibl e, hence the mapping is 1 : 1 • Furthermore the 

mapping is clearly exhaustive and continuous both ways. 

Case (-... ,oo) 

Many of the results just proved can be extended to the 

case (-=,..,). The theorems will be stated here but the proof 

will be omitted or only sketched. 
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The proof of Theorem J.12 is the case (-..o,oo) is obtained 

by considering only the polynomials of the form 

1 
(~ a. ti)2 l= r~1 
i=O 1 t:: 

and the corresponding quadratic form 

1 

~ · a1aj AA. •• 
i,j=O I i+J 

• 

Theorem 5.11A still holds and the same proof is valid. 

Theorem 5.12 may be restated thus: given /""" = (j-l
0

, ••• , 

}A2m) and a distribution 'f ( t) such that !'- (er) =,.. ' 
the polynomials Pi ( t) ( 0 ~ i ~ m) f onn an orthogonal system 

over the interval (-00,00) with respect to d 'f' (t). The 

normalizing constant of Pi is 

Theorem S.14 still holds but the proof is modified by 

setting t 

P(t) = [ Q(t) dt 

where a c. 4-n tj • 

Lemma 5.1S and Theorem 5.16 are modified in a very 

important respect, since the p do not play any role in the 
m 

present case. Lerruna S. p becomes: if )A. 6 int D2m-1 the 

roots tj of Pm and the roots uj of Pm-1 interlock 

according to the pattern 
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The proof makes use of the distributions l. and ~giving 

rise to the points (/A1, ••• ,~_3 , /!-2m-2) and (J'-1,•••, 

~m-1 ' /l:.2m) and of the fact that i.- ~ must have at 

least 2m-J sign changes. 

Theorem 5.16 becomes: there exists a 1 :1:1 continuous 

2m-1 correspondence between the interior points of the space D , 

the ordered pairs of polynomials (Pm' pm-1 ) and the simplexes 

of strictly interlocking roots 

t 1 ~ ~ c:: t 2< ••• 4um_1 L tm • 

Theorem 5.17 becooies: there exists a homeomorphism between 

the interior of P2m and the interior of D2m such that poly-

nomials of the form 

2 
~p + (1 - ~) m 

where Pm and Pm-1 are fixed, correspond to moment points 

having the same first 2m-1 moments. 
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CHAPTER VI 

SOME PROPERTIES OF THE POLYNOMIALS Pn AND pn • 

Several properties of the polynomials P and p may n n 

be derived from the theorems proved in the previous chapter. 

Theorem 6.1 Let \f be any distribution associated 

with a point )A. l int D2m [o, ... ) and let 'f be the distri­

bution associated with JL and t. (j = 1, ••• ,m) the saltus 
1-=- J 

points of ~· Then 

(6.1a) ~(tj-) ' 'f (tj-) ~ 'f (tj+)' i_(tj+) • 

Proof: By Theorem 5.14 the number of sign changes of 

j_ - '1 is 2m-1. Since '-f is nondecreasing and since 

'.f_(t) = 0 for t 't1 and ~(t) = 1 for t ;t. t , one sign 
m 

change must occur at each t . and one between any two 
J 

consecutive tj. Hence (6.1a) must hold. 

Remark. A similar statement holds for )A f. D2m+1 (.o,..,) 

2m+1. 
and for )4 It D ( -..., oo). 

Theorem 6. 2 If Cf is any distribution associated with 

P..' int D2m and the Christoffel numbers are defined (cf'. [3) 

p. h7) by 

(6 . 2a) 
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where tj are the roots of Pm' and if the weights of '!. 
are denoted by A., then ~. =A. (j = 1, ••• ,m). 

J J J 

Proof: For any polynomial P(t) of degree ~ 2m-1 

the Gauss-Jacobi quadrature formula gives 
m 

(6.2b) f P(t)d'f(t) = ~ l .P(t.) • 
j=1 J J 

Since }A- i ( 'f) = µ.1 (::J_) (i = 1, ••• , 2m-1), ( 6. 2b ) still 

holds if "f is replaced by ~· Hence 

~ j = r , Pm d ~<t> = 'f...<tj+) - i_(t .-) = 'Aj 
P m(tj )(t-tj) J 

• 

An immediate consequence of Theorems 6.1 and 6.2 is the 

separation theorem for Christoffel numbers: 

Theorem 6.3 Given any distribution 'if associated with 

}A- t int D2m there exist jumbers xj (tj ~ xj ~ tj+1 ) such that 

U> (t.) <:.. <f (xj) = ~ 'i < <.f (t. 1 ) • 
I J i~ J+ 

It may be shown that the polynomials Pi and pi are 

related by means of certain recursion formulas: 

then 

where 

2m-1 
Theorem 6.4 If }'- ~ int D O,ao) and 1 SL i ~ m 

(6.4a) 

(6.4b) 

(6.4c) 

Proof: Let 

o(. i pi + ~i pi-1 

1 1 
tp1·-1 = -- P. + - P. 1 

B. 1 1 a . 1-1-1- J. 

rT . denote an unspecified polynomial of 
1 



degree i . If 

t hen 

K. 
oJ. =~ 

i K. 1 l. , 
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n- 1 
~ 

pi -OC. ipi = " 1-1 = ~ b j pj • 

Therefore if h ~ i - 2 
CD i~ 

0 = f tph(Pi - er.ipi) d 'f = ~ 
0 J 

and since ~' 1 '/: 0 and ~+1 , 1 

If h = i - 1 
CD 

f t pi-1(Pi -oiipi)d f = Ki- 1 , 1 
0 

= b. 1 Ki-1, 1 l.-

henc e 

f5 i = bi- 1 
K. 1 l.+ 

= 1r"1 
l.' 

which proves ( 6. 4a) . 

(6. 4b) is proved similarly: 

1 i-1 
tp. 1 - pi = n i-1 = ~ l.- p i-1 j=O 

Therefore if h ~ i- 2 

CD i-1 

0 = { Ph(tpi- 1 - Jl :-1 Pi) d 'f = 2. 
j=O 

= ~ ~ ~+1 
hence ~ = o. 

K. 1 
l., 

aj Pj 

CD 

aj f 
0 

, 

• 

Ph Pj d 'f 
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If h = i - 1 

... 
{ 

hence 

An extremal property of the polynomials p may be proved 
m 

by a simple argument: 

Theorem 6.S Let 'f be a distribution associated with a 

moment point 14 6 int n2m [o,O?). Among all polynomials 
an . 2m 
- 1 ( p = ~ a . t ~ p o, ... ) for which 
i::O 1 ... 

(6.5a) ( p d'f =1' 

P(O) =max fBr P = p 2 • 
m m 

Proof: 2m )At int D (o, ... ) implies that AL • = 'Z:. A. • t~ 
I - l. j::O J J 

(i = o, ••• ,2m) where t~ = o0 = 1. Hence (6.5a) gives 

2m 2m m m 2m 

1 = ~ a1 "i = Z: Z. a. '>..tji = 2... ~j ~ a
1
. t

1
J'. 

i ::() I i ::() j ::() 1 J j ::() i ::() 

m m 

= '2:. ~ . P(t.) = ). P(O) + ~ ~ . P(t.). 
j::O J J 0 j=1 J J 

Since the ). j are fixed and po si ti ve, max P( 0) is reached 

for the nonnegative polynomial which vanishes at tj'· which is 

precisely p 2 • 
m 
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CHAPTER VII 

It is possible to obtain the spaces D2m [O,m), 

2rn-1 ( ) 2m-1 ( ) D O,m and D -m,m by means of a passage to the 

limit from D2m l o,a] , D2m-1 (o,a] and D2rn-1 L-a,a] 

respectively. This limiting process preserves certain 

properties of D2m [o,a) , n2~1 (O,al and D2rn-1 (-a,a1 

in a sense which will now be explained. The results will be 

stated and proved only for the case n2m-1 [o,a] although 

similar results are valid in the other cases as well. 

rt is shown in ( 1 l that if <r1, ... , 1'2m-1) 

E int n2m-1 [o,1] and if P (t) is defined as in 
m 

Definition 5.10 and pm-1 (t) is defined by 

•• • P.m-1 -fm 

•••fm -fm+1 

1 

t 

. . . . . . . . . . . . . . . . . . . . . . 

then Pm(t) and Pm_1(t) 

polynomial over [ O, 1 J 
are them-th and (m-1)-th orthogonal 

with respect to d 'f and 

t(1-t)d '1 respectively, where 'f is aey distribution over 

f 0, 1 l associated with /A' • Furthennore it is shown (cf. Theorem 

5.16) that there exists a 1 :1 :1 continuous correspondence between 
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the points of int n2m-1, the ordered pairs of polynomials 

(Pm,pm-1 ) and the open simplex 

O < t 1 < w1 c::.. t 2 c:::. • • • c::. w m-
1 

c:::. tm c::. 1 

there t. are the roots of P and w. those of p 1• 
J m J m-

Also the unique supporting planes at ~ = ()'-1 , •. •, p.2m-1 'fe..2m) 

and )A. = ()Ap••• ' /'- 2rn-1'f 2m) are the polynomials P~ and 

t(1-t)p2 
1 respectively. 

m-

Th es e results may be extended to an interval [ o,a) with 

a > o. In fact define 

fiA1 
P. 2 

/J-m-1 
f-m 1 -- ••• a a 

}'- - /43 f'm 
14m+1 t 2 a ••• a 

p 1(t;a) = m- • . • • • • . . • . . • . . • • . 
Pm -

J'm+1 JA2m-1 t m-1 ••• f' 2m-2 -a a 

and let 'f a(t) be a distribution such that 'f a(O-) = o, 

'f a (a) = 1 and ( /Ap ... , Jl 2m-1) ~ int n2
m-

1 
( O,a] • '!'hen 

1 a(~): 'f 1 (-c) is a distribution over ~ o,1 ] and 

I-' 1 J'2m-1 . 2m-1 r , (7 , ... , ~) ~ int D 1,. 0 ,1.J. The unique supporting 
a 2m 1 }4 · -m-

planes to D - ( o, 1) at (--!) and (~) are 
1 1 a a 

,.m-1 2 
m-1 1 

a 
!A o • • • 

Jl-1 
a 

~m 
t m a 

••• 

• • • • • . . . • . 
/'-m >'2m-1 tm 
m ... 2iii-1 a a 



and 

t(1-t ) 

/A2 p3 
2- T 
a a 

. . . . . . 
m a 

.Pm+1 
m+1 a 
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• • • 

• • • 

1 Pm-1 _Pm 
m-i m 

2 

a a 

P m /A m+1 
m - -m+r t 

a a 

. . . . . . . . 
hn-2 fl 2m-1 

2m-2 - 2m-1 
a a 

tm-1 

respectively . Hence the supporting planes to D2ml o,a] at 

f:. and }Ao, obtained by setting 'C = at and then factoring 

2 out the powers - (1+2+ ••• -+m) - (1+2+ •• • -+m-1) = - m and 
- m2 

- (1 +2+ ••• -Hn-1 ) - (1+2+ •• • -+m-1 ) = m(m-1 ) of a , are a Pm('C) 
2 

and am(m- 1 )- 1t(1 - ~) p 
1

(t;a) r espectively. 
a m-

The variable 

used is of course immaterial to the positions of the planes. 

So ar e t he constant fact ors , which ar e important only for the 

computat ion of the normalization constants. 

If a_. m the planes P2(t) arrl t (1 - ~ )p2 
1(t;a) 

m a m-
2 2 approach the pl anes Pm(t) and tpm_1(t) (the f ormer i n fact 

does not change) . Hence the homeomorphism between int D2m-1 [0,a), 

(Pm( t), pm-1(t; a ) ) and the open simplex 

0 ~ t 1 ~ w.1 c. • •• <. wm_1 ' tm ' a 

2m- 1 C" ) approaches the homeomorphism between int D ~01m , 

(Pm(t), pm-1(t ) ) and the open simplex 

0 <. t1 c:. w1 ~ ••• ' um-1 <. tm <. m • 

Using the representation theorem this may be stated more 
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precisely as foll01vs: 

Theorem 7.1 Given !"- = (~p•••i}'-an,_1 )E. int D
2
m-

1 
01 co) 

2m-1 [ 1 there exists A > O such that for a .- A, J'-• int D o,a • 

}A- detennines uniquely: 

1) the roots 

0 <.t1 '- ~ c:.. ••• c:.. um_1 <. tm ~ A 

of the supporting planes to n2
m (o, ... ) at (J"-p•••i/'-2m-1' 

.jh.2m) and (J-11• • • 1,!:2u~1) 

2) for any given a~ A, the root 

0 '-t1 <- w1 (a) c:: ••• <. wm_1 (a) c:. tm s A 

of the supporting planes to D2m (o,aJ at (J4p··· 1 JA 2m-1' 

~'2m) and (,.1' ••• , f- 2m- 1' )" 2m) . Then 

lim w. (a) = uJ. ( j = 1 , ••• , m- 1 ) • 
a..+ co J 
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CHAPrER VIII 

SOME RELATIONS BETWEEN THE MOMENTS, 

THE WEIGHI'S AND THE ROOTS. 

An inequality relating the moments of a distribution with 

the weights and the roots of the associated polynomials is 

obtained by considering the following problem: given (~ 1 , ••• , 

~-1 ) E: int D2m-1 
( ..... ,..,) detennine under what conditions it 

is possible t o assign a root t ::: t (m+1 ) and a weight 
0 0 

A ::: A (m+1 ) (0 ~ A c:.. 1) such that there exists a point 
0 0 0 

( /"1 '• • • 'f'-2m-1, f 'an.' 1"2m+1 ) E". int D2m+
1 

(-ao,ao) whose unique 

convex representation uses the point x(t
0

) with weight ).
0

• 

This problem may be solved by obtaining a solution of the 

2m+2 equations 
m 

( 8. 1 a) - i 
µ.i ::: ~). jtj (i == o, ••• ,2m+1) 

in the 2m+2 unknowns ). j, tj ( j = 1, ••• ,m), f 2m and )A- 2m+1 • 

However if it is possible to obtain JJ. 2m and 1'4'2In.+1 from 

(JAp•••'l'Jri.-1), >.
0 

and t
0

, then the existence of a solution 

for A j and tj (j ::: 1, ••• ,m) is assured by the unique 

representation theorem. 

The point t
0 

is a root of Pm+1 ' hence it must be 

different from the roots u. of P , which are uniquely de-
J m 
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termined by ,JJ. 1 , ••• , f2m-1 , because the roots of Pm and 

P m+1 must interlock. 

If t
0 

is a root of Pm+1 and f (t) is a distribution 

associated with the point 

f"" pm+1 (t) Pm(t) 
t - t d 'f(t) 

0 

GO 

= Kn+1 [ (tm + ••• ) Pm(t)df(t) 

-
2 

= i<:;+1' 

and by the mechanical quadrature formula 

[
"" Pm+1 ( t) Pm( t) ; P ( t . ) p ( t ) 

·• d ~ (t) = L. A m+1 J m j 
t - t 0 1 j:{) j tj - t 0 

since the tj are the roots of Pm+1• Hence 

2 
~ (m+1) = Km+1 

o p~+1 (to) Pm(to) 

which by (3] eq. (3. 2.4) reduces to 

( 8. 1 b) 

where K
0 

= 1. Let ti = /A-2m - .JA 2m• Then the only tenn 

in the denominator in (8.1b) which contains 11 is 
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!'-o l"-1 ••• JJ'm JAo 1'1 • • • l'm-1 0 

••• 0 /.J1 /1'2 }J. m+1 !'*1 ~2 •••I'm 
~+1 = + = K ti• m 

• • • • . . • . • . . . • • • • • • • • . • • 

/Am fm+1 ••• )!.2m Pm JAm+1 ••• /A2m-1 11 

Hence 

1 

which gives 

( 8. 1 d) where • 

if t
0 

-/: uj the equal sign holds only if m = 1. Furthermore 

eL m ~ 0 and the inequality is strict if t
0 

-/: uj • Hence, 

if O-'A(m+1 )<. A(m) and t -/: uj' (8.1d) gives 
0 0 0 

d~ ----= d). {m+1) ( 
0 1 -

0 , 

therefore is a monoton increasing function of A (m+1) 
0 
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which takes all the values between O and oo as 'A, (m+1 ) 
0 

varies between O and A (m). 
0 

If >.~+1) ~(m) 
0 .. "0 then 1' c::. 0, 

hence (/Ap•••' )A2m) is not a moment sequence. If t
0 

equals 

one of the u. 
J 

that A (m+1 ) 
0 

then 11 is not defined and (8.1c) shows 

does not depend on 11 and equals A (m). 
0 

These results are illustrated in Figure 8.1 , which shows a 

t - 11 - A ( m+1 ) diagram. 
0 0 

The value of U. may be obtained from the fact that r 2m+1 

)1-0 ••• P.m 1 

~1 ••• µ.m+1 to 

Pm+1 (to) :n m+1 (to)-f'2m+1Pm(to) = o • • • • • . . . • . • 
/Am+1 ••• P2m+1 

tm+1 
0 

where rr (t ) is a polynomial whose coefficient do not m+1 o 

depend on )'- 2m+1• Solving for )J. 2m+1 this gives 

(8.1e) 

The graph of 

n m+1 (to) 
)4 2m+1 = Pm(t

0
) • 

;' 2m+1 as a function of t is shown in 
0 

Figure 8. 2. In fact for any given value of µ 2m+1 ' 

n m+1 (to) - )" 2m+1 p m<to) 

lock with those of Pm(t). 

has m+1 simple roots which inter­
TT m+1 (to) 

Hence p ( t ) has simple poles 
m o 

at the points uj. Furthermore the leading coefficients of 

TI 1 and P are K 1 and K respectively, which are both m+ m m+ -111 

positive. 
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These results may be summarized in the following 

Theorem 8. 1 Given (JA 1 , ••• , /4 2m-1 ) £ int n2
m-

1 
and 

any number t define 
0 

1 
-m--p-~-(-t_)_ • 
2: 1 0 

i~ KiKi+1 

Denote t he roots of P 
m 

by uj. Then there exist numbers 

)A-2m and }I- 2m+1 such that 

int D2m+1 having a root at 

( JA1, ••• , JA2m+1) is a point of 

t of given weight 'A (m+1 ) if 
0 0 

and only if t
0 

'/:. uj and 0 ~ ~ ~m+1 ) L 1' ~m). The values 

of ,U. 2m = ~ an + 11 and )'- 2m+1 are then uniquely 

detennined by (8.1d) and (8.1e). 
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