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Abstract

This thesis addresses problems in the generation and detection of gravitational waves
from two types of sources: inspiraling compact binaries and rapidly rotating young
neutron stars.

Chapters 2 and 3 estimate the computational costs of a basic matched filtering
strategy to search for inspiraling compact binaries. Chapter 2 (written in 1995) sets
up the machinery for calculating costs and makes a rough estimate based on the
waveforms and noise spectra available at the time. It also systematizes previously
published methods of choosing the filters. Chapter 3 (written with B. S. Sathyapra-
kash in 1998) fine-tunes the machinery and updates the estimates of Chapter 2 using
more current waveforms and noise spectra.

Chapter 4 (written with Hideyuki Tagoshi and Akira Ohashi) concerns the post-
Newtonian generation of gravitational waveforms from inspiraling compact binaries
whose component objects spin about their own axes. It lays out a method of cal-
culating post-Newtonian spin effects and calculates the lowest-order such effect not
previously known (the second-post-Newtonian spin-orbit contribution to the wave-
forms in the absence of precession).

Chapters 5 and 6 concern the Chandrasekhar-Friedman-Schutz (CFS) gravita-
tional radiation instability as it applies to the r-modes of rapidly rotating young
neutron stars. Chapter 5 (written with Lee Lindblom and Sharon M. Morsink) com-
putes the viscous damping and gravitational radiation timescales of the r-modes and
shows that viscosity does not suppress the CFS instability in hot young neutron stars.
Chapter 6 (written with Lee Lindblom, Curt Cutler, Bernard F. Schutz, Alberto Vec-
chio, and Nils Andersson) computes approximate gravitational waveforms from young
neutron stars spinning down due to the r-mode instability and estimates that these
gravitational waves can be detected by the “enhanced” LIGO interferometers if a

suitable data analysis strategy is developed.
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Chapters 2—6 of this thesis consist of five papers, each of which has been published,

submitted for publication, or will be submitted for publication in Physical Review D
(except for Chapter 5, which will appear in Physical Review Letters). I am the sole
author of Chapter 2. Chapters 3—-6 are collaborative efforts to which I contributed
at least equally with my collaborators. I was a major contributor to all substantive
aspects of the research in all of these chapters, except for the template placement
algorithm in Section IV of Chapter 3 and for the calculation of stochastic background
radiation in Section IV B of Chapter 6 (due mainly to Curt Cutler; I merely checked
the numbers). The prose in these chapters is largely my own except for Chapter 5,
where Lee Lindblom wrote more than I did, and Chapter 6, where he wrote as much
as I did.

Each of these papers was written for experts in the field. This Introduction pro-
vides background information on the problems addressed and gives a nontechnical
overview of each paper suitable for physicists in other fields.

Chapters 2—4 concern the generation and detection of gravitational waves from
inspiraling compact binaries. Chapters 2 and 3 deal with the data analysis involved
in the detection of inspiraling compact binaries, particularly the computational costs
of a matched filtering search. Chapter 4 deals with high-order post-Newtonian calcu-
lations of waveforms from binaries composed of spinning bodies.

Chapters 5 and 6 concern gravitational waves from the Chandrasekhar-Friedman-
Schutz instability acting on the r-modes of rotating neutron stars. Chapter 5 shows
that this instability is not suppressed by viscosity in hot young neutron stars. In fact
a rapidly rotating young neutron star radiates most of its rotational energy as grav-
itational waves within the first year after the supernova. Chapter 6 computes grav-
itational waveforms from the r-mode instability and concludes that the waves from
single neutron stars in the Virgo cluster of galaxies will be detectable by “enhanced”

LIGO interferometers [1], if a suitable data analysis strategy can be developed. A
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stochastic background (from approximately 25 Hz to more than 1 kHz) made up of

many weaker r-mode signals from neutron stars out to cosmological distances will be

detectable by “advanced” LIGO [2].

I. MATCHED FILTERING SEARCH FOR INSPIRALING COMPACT

BINARIES
A. Background

Inspiraling compact binaries such as the Hulse-Taylor pulsar have long been
considered a staple source of gravitational waves for laser interferometers such as
LIGO [3]. They are known to exist (although in uncertain numbers) [4] and to have
fairly clean dynamics—i.e., waveforms which can be modeled with great precision—
up to the final stages of their inspiral due to gravitational radiation reaction. However
the signal strengths are expected to be so weak as to be undetectable in the presence
of interferometer noise without extensive data analysis. Because the waveforms can
be precisely modeled, the obvious data analysis technique to use (both to search for
signals and to estimate parameters of signals once detected) is matched filtering.

Matched filtering, introduced by Wiener in the 1940s and frequently used in radar
and sonar applications [5], entails cross-correlating the data stream with a set of
template waveforms. If one of the templates is proportional to the signal, the cross-
correlation increases the signal-to-noise ratio to the maximum value possible for any
linear filtering method. In practice, of course, it is highly unlikely that any of the
templates will be exactly proportional to the signal, so the goal is to make sure that at
least one template resembles the signal closely enough to extract most of the optimal
signal-to-noise ratio.

There are two main problems to be solved before achieving this goal. First, one

must construct the right class of templates. In the case of inspiraling compact binaries,
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this translates to knowing what order is needed in the post-Newtonian expansion used
to generate the waveforms and then carrying out the calculations up through that
order. Once the right class of templates is in hand, an algorithm is needed to place
a discrete set of actual templates in the parameter space so as to assure that a signal
at an arbitrary point in parameter space will be close enough to at least one template
to have a sufficiently high cross-correlation with it.

The problem of finding a sufficient post-Newtonian order is now under control.
Apostolatos [6] has defined the fitting factor F'F as (effectively) the fraction of opti-
mal signal-to-noise ratio retained when using an approximate family of templates, e.g.
templates computed only up to some finite post-Newtonian order. Recently Droz and
Poisson [7] have computed fitting factors for binary inspiral waveforms in the test-
mass limit where the exact waveforms can be calculated from black-hole perturbation
theory and then compared to post-Newtonian expansions at various orders. Droz and
Poisson [7] thereby concluded that the the standard second post-Newtonian wave-
forms [8,9] satisfy the criterion F'F' > 90%. Damour, Iyer, and Sathyaprakash [10]
introduced a new class of waveforms, taking advantage of physical insight to rephrase
the standard post-Newtonian expansion of the waveforms’ phase evolution in a better
way (similar to the way Padé approximants do better than Taylor series by including
poles in the complex plane). Their version of the second post-Newtonian expansion
has FF > 95%.

The above fitting factors were computed neglecting the effects of the bodies’ spins
about their own axes. Most data analysis papers (and post-Newtonian wave gener-
ation papers, see Section II) neglect spin effects because (i) evolutionary models of
known binary pulsars indicate that near the end of inspiral the spins will be small
(spin/mass? < 1 in geometrized units) [11] and (ii) Apostolatos [6] found at post!->-
Newtonian order that if the spins are parallel to the orbital angular momentum (so

that the plane of the orbit does not precess), spinless templates have FF > 98%.
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He also found that if the orbit does precess, spinless templates have F'F' > 90% over
most of the parameter space. However, for binaries composed of a rapidly spinning
black hole (spin~mass?) and a less massive object such as a neutron star in an orbit
inclined by more than about 30 degrees to the black hole’s spin, precession modulates
the amplitude and phase of the waveforms so much that spinless templates are all
but useless. Again, because of the small spins of known binary pulsars it is expected
that few binaries live in this fairly small region of parameter space, but the gravita-
tional waves from those that do will carry a great deal of interesting astrophysical
information. The desirability of detecting such binaries motivates the work described
in Section II; but now let us return to the discussion of matched filtering issues for
non-precessing binaries.

The first attempt at solving the parameter-space problem was made in a series
of papers by Sathyaprakash and Dhurandhar [12]. They considered at first a simple
one-parameter family of waveforms. These “Newtonian” waveforms (see Section II)
are described by one mass parameter, a symmetric combination of the masses of the
two objects called the binary’s chirp mass. For such waveforms, the parameter space
is simply the number line and the technique for choosing the actual templates is
quite simple: Place templates along the number line so that a signal at an arbitrary
location along the line has a cross-correlation with the closest template that exceeds
a designated minimum value (fixed by the acceptable loss of event rate).

It was clear that the techniques used by Sathyaprakash and Dhurandhar could be
generalized in some way to higher-dimensional parameter spaces (which were needed
since the one-parameter Newtonian waveforms were known to be inadequate [6]).
But it was not clear how (for example) to deal with covariances between parame-
ters. Such covariances were the source of a certain amount of confusion, seeming to
make the template spacing depend on waveform parametrization. Also, using then-

available techniques, the entire calculation had to be redone numerically and ab initio
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for different noise curves, with no scaling laws. The early estimates of numbers of
templates and computing power were somewhat chancy since they typically consid-
ered primitive noise spectra such as white noise. With the prospect of operational
LIGO interferometers only a few years away it was desirable to have a systematic way
of placing templates and estimating computational costs for general waveforms and

noise spectra. Chapter 2 of this thesis solved this problem.

B. A geometric approach

Chapter 2 introduces a geometric approach to solving parameter-space problems.
Specifically, in this chapter I define a metric on the template parameter space which
quantitatively relates distance in that space to the signal-to-noise ratio obtained using
a template with the wrong parameter values. The main benefits of this geometric
approach are (i) one can easily compute how many templates are needed (and thence
the computational cost) for any family of waveforms, noise spectrum, and coverage
level; and (ii) one can place the templates in parameter space in the most efficient way
possible, taking advantage of covariances between parameters to reduce the template
spacing.

In Chapter 2, I use this geometric approach to calculate the numbers of templates
needed, and thereby infer the computational power needed to filter the data in real
time assuming (i) the “first” and “advanced” LIGO noise spectra [2], (ii) a two-
parameter template family (the stars’ two masses) that neglects the effects of spins
(see Section II below), (iii) a search based on making a single pass through the data,
(iv) template spacings that lose no more than 10% of the event rate due to coarseness
of the template grid, (v) a search over masses ranging from much more than 1My
down to the minimum mass of a neutron star, 0.2M. In Chapter 2, I also present
the (approximate) scalings of the number of templates and computational power with

the parameters of the noise spectrum and the parameters of the search strategy.
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My conclusions, for the above parameters, are that the first LIGO interferometers
will require some tens of gigaflops (floating point operations per second) to perform
data analysis at the same rate as data acquisition. This computational cost is feasible
but not cheap, and therefore the real LIGO data analysis will probably use something
along the lines of a hierarchical search, for instance as described by Mohanty and Dhu-
randhar [113] A hierarchical search (by contrast with the single-pass search assumed
above) involves using a loosely-spaced set of templates to perform a first pass through
the data (at a reduced threshold signal-to-noise ratio), then following up promising
candidates from the first pass with a more closely-spaced set of templates (and higher
threshold to weed out false alarms). Because the geometric formalism of Chapter 2
is based on the limit of close template spacing (appropriate for a simple one-pass
search), it might not be adequately accurate for the first pass of a hierarchical search.

My goal in Chapter 2 was to estimate the number of templates and computational
power required to within about a factor of three. The numbers in Chapter 2 are rough
estimates because I used two-parameter waveforms which are now known (and even
then were suspected) to be inadequate for a real search. I used the “first post-
Newtonian” waveforms (see Section II) because they were the simplest possible two-
parameter family. My primary goal was to set forth the method of calculation, and
secondarily to get rough estimates of the actual numbers. Because the approximate
waveforms used were already a source of uncertainty at the factor-of-three level, I
made several other simplifying assumptions that could cause errors of somewhat less
than that.

Chapter 3 of this thesis (written with B. S. Sathyaprakash) refines the rough
estimates of Chapter 2 by incorporating more up-to-date waveforms and noise spectra.
We use the two-parameter (two masses), second post-Newtonian waveforms given,
for example, in Reference [9]. We also use more up-to-date noise spectra for the four

large- and intermediate-scale interferometers LIGO, VIRGO, GEO, and TAMA, and
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correct several small factors neglected in the analysis of Chapter 2. We find that the
computational power required is about five times that estimated in Chapter 2. Most
of the change can be attributed to our using second post-Newtonian waveforms and
a higher sampling rate than assumed in Chapter 2.

The geometric approach to template placement and estimating computational
requirements, which I introduced and developed in Chapter 2, has since been used
in computational cost estimates for searches for other sources of gravitational waves
such as pulsars [14] and the quasinormal modes of black holes excited after a binary

black-hole merger [15].

II. POST-NEWTONIAN SPIN EFFECTS IN COMPACT BINARIES

A. Background

The calculation of gravitational waveforms from inspiraling compact binaries is
complicated by the fact that there is no exact solution to the field equations of general
relativity for two arbitrary bodies. However, the equations of general relativity can
be expanded in a “post-Newtonian” series to approximate weak-field, slow-motion
effects. The lowest-order terms in the post-Newtonian series have been known for
decades, but for the most part workers in the field felt that the enormous complexity
of obtaining higher-order terms (comparable to the precise calculations of the gyro-
magnetic ratio of the electron in quantum electrodynamics) made the project not
worth pursuing in the absence of experimental comparison. The situation changed
with the advent of the LIGO project. Because matched filtering requires precise
template waveforms, LIGO will not detect most inspiral events unless the templates
include very high post-Newtonian orders [6]. Typical inspiral signals will spend of
order 10* cycles in the LIGO frequency band, and in order to detect a signal the

phase evolution of a template waveform must track the phase of the signal to well
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within one cycle over that band. (To estimate parameters without bias, the tracking
must be somewhat better.) Thus there has been in recent years a great deal of effort
expended on pushing the post-Newtonian approximation to very high order.

Although post-Newtonian calculations tend to be quite complicated, the under-
lying physical and mathematical concepts are quite simple. Currently the two main
approaches are those of Blanchet, Damour, and Iyer (BDI) [8] and of Will and Wise-
man (WW) [9]. The BDI approach is a formal use of matched asymptotic expansions.
There is one expansion (in orbital velocity v/c) which is good asymptotically close to
the source and another (in deviations from a flat metric) which is good asymptotically
far away. When the orbital velocity is small compared to the speed of light (v/c < 1),
the domains of validity of the two expansions overlap; therefore the expansion coef-
ficients can be matched in the overlap zone. The WW approach is more intuitive.
It entails a direct integration of a retardation expansion of the Einstein equations
in a particularly convenient gauge, very similar to a Green’s function calculation of
electromagnetic waves from a charge distribution.

Both approaches require very involved calculations (single expressions can take up
nearly a full page in Physical Review D) even when using the simplest possible matter
source, a pair of d-functions representing point masses. Therefore, many experts have
been wary of including finite-body effects such as spins which would seem to require
a more complicated matter source. The first derivation of spin effects in the post-
Newtonian expansion was given by Kidder, Will, and Wiseman [16]. They used a
fluid ball description of the bodies to derive the lowest-order spin-orbit and spin-
spin effects in the simplest case (when both spins are parallel to the orbital angular
momentum so there is no precession). Precession was investigated to lowest order
by Apostolatos et al. [17] and by Kidder [18]. Although the spinless post-Newtonian
expansion has been pushed to much higher order in the years since (in the interest of

producing accurate templates for matched filtering), there has been no comparable
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work on spin effects. The reason is the additional complexity of fluid ball calculations,
which were thought necessary to approximate spinning bodies.

In parallel to the “full post-Newtonian” expansion described above, there has been
much work [19] on obtaining post-Newtonian waveforms valid to much higher orders,
but only in the test-mass limit 1 < M. This is done by perturbing known solutions
of the Einstein equations—most especially the Kerr spacetime, taken to represent a
rotating black hole of mass M with a small mass u in orbit around it. At leading
order in p/M, the post-Newtonian expansion has been pushed to much higher order
in v/c than has been done for the full post-Newtonian expansion (1 ~ M). This
has been possible because the calculations for 4 < M are somewhat more tractable
(though still quite involved). By perturbing the Kerr spacetime using the traditional
point-mass source for the test body, one can of course obtain spin effects due to the
central body but one cannot obtain spin-spin effects or the spin-orbit contribution
due to the spin of the test body. And of course one cannot thereby obtain the
finite-mass contributions to any effects, which based on the known terms in the full

post-Newtonian expansion are expected to be comparable to the test-mass effects.

B. “Spinning point mass” approach

Recently Mino, Shibata, and Tanaka [20] introduced a form of the stress-energy
tensor (hereafter called the MST tensor) which incorporates spin effects while being
formally represented as a d-function for ease of computation. This stress-energy
tensor, based on the work of Dixon in the 1970s [21], was used to extend the Kerr
perturbation work to obtain higher-order spin-orbit and spin-spin effects on the phase
evolution of gravitational waveforms.

Chapter 4 of this thesis (written with Hideyuki Tagoshi and Akira Ohashi) is
the first use of the MST “spinning-particle” stress-energy tensor in the full post-

Newtonian theory, i.e. valid for arbitrary mass ratios. In this chapter we present an
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integral expression which allows one to obtain from the MST stress-energy tensor a
post-Newtonian expansion of the spin-orbit contributions to any radiative multipole
that enters into the post-Newtonian waveforms and luminosities. We then use this
expression to calculate the lowest order spin effect that was previously unkown: a
second post-Newtonian spin-orbit contribution to the amplitude (but not phase) evo-
lution of the waveforms for spins parallel to the orbital angular momentum. We find
that, as expected, the finite-mass contributions to this term are comparable to the
test-mass contributions. Because the phase evolution of the waveforms is more im-
portant for data analysis than the amplitude evolution, the main value of this chapter
is not its derivation of the new contribution to the wave amplitude, but rather the
relatively easy methods of computation that it introduces.* These new methods will
find their real payoff in future computations of spin contributions to the waves’ phase.

As I write this, Tagoshi and I are discussing how to obtain the 5/2 post-Newtonian
[order (v/c)®] spin-orbit term in the phase evolution (in the absence of precession).
This requires as a first step obtaining the equation of motion to comparable order,
which we think we can do by extending the methods of Chapter 4. The next step,
which needs to be completed before LIGO begins taking data, will be to compute
all the higher-order precession effects that can show up in signal detection and in-
formation extraction for the few but extremely interesting binaries that have strong

precessional modulation.

*For me, personally, there was a second major payoff from the work described in Chapter 4:
It showed me that spin contributions are generally stronger in the radiative current multi-
poles than in the radiative mass multipoles. This disruption of the standard progression of
post-Newtonian orders triggered my suspicion that the r-modes of neutron stars might be

more interesting than people had thought (see Section III).
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III. GRAVITATIONAL RADIATION INSTABILITY IN HOT YOUNG

RAPIDLY ROTATING NEUTRON STARS
A. Background

The Chandrasekhar-Friedman-Schutz (CFS) gravitational radiation instability has
been of interest to relativists since the 1970s [22]. In this instability, certain normal
modes of rapidly rotating stars self-excite through gravitational radiation reaction.
Sadly, for all modes of neutron stars investigated prior to this thesis, viscous damping
has turned out to suppress the instability except in the most rapidly rotating young
neutron stars (those that are on the verge of being torn apart by the centrifugal force
anyway).

In Chapter 5 of this thesis (written with Lee Lindblom and Sharon M. Morsink)
we show that for one set of modes (“r-modes”) the CFS instability is very much an
astrophysical reality, even in fairly slowly rotating young neutron stars. In fact it
appears that the CFS instability in r-modes is responsible not only for giving young
neutron stars their relatively slow rotation rates but for emitting copious amounts of
gravitational radiation (of order 1072Myc? during the first year after a supernova).

The CFS instability is one of a broad class of dissipation-driven instabilities (two-
stream instabilities such as the Kelvin-Helmholtz instability) which arise because of
disagreements between observers as to which way a disturbance propagates. In this
case the disagreement is between observers in a spinning star’s co-rotating frame
(where the internal viscosity of the neutron star lives) and in an inertial reference
frame far from the star (where the emitted gravitational radiation lives). The unstable
modes are those that propagate retrograde as seen by a co-rotating observer but
prograde as seen by a distant, inertial observer. Because the mode is retrograde in the
co-rotating frame, it is a negative perturbation of the star’s angular momentum and of

its energy as measured by distant inertial observers; but it is a positive perturbation
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of the energy as seen by co-rotating observers. The emitted gravitational radiation
lives in the distant inertial frame and, because the mode is prograde in that frame,
carries off angular momentum that is positive as seen by all observers and energy
that is positive as seen by the distant inertial observers but negative as seen by the
co-rotating observers. Therefore, as seen by everybody, conservation of energy and
angular momentum requires that radiation reaction increase the absolute values of
the mode’s energy and angular momentum, driving rather than damping the mode.
The condition for this CFS instability is that the mode propagate in the retrograde
direction on the star, but be dragged prograde by the star’s rotation as seen by
distant inertial observers; this happens when the mode’s pattern speed (mode angular
frequency w divided by azimuthal wave number m) in the inertial frame is less than
the angular velocity of the star : w/m < Q.

The CFS instability in neutron stars has long been of interest to relativists as
a potential source of gravitational waves [23]. Unlike other hypothesized sources,
rotating neutron stars are very common, and any mechanism of self-exciting such a
star’s deviations from axisymmetry has been viewed as a potentially good candidate
for observations by LIGO. The CFS instability has also been considered potentially
astrophysically interesting because it could (by radiating away energy and angular
momentum) naturally set an upper limit on the angular velocities (i.e., a lower limit on
the periods) of young neutron stars [24]. This comes from the fact that gravitational
radiation is much stronger at higher angular velocities, and thus a star would spin
down to the point where viscosity suppresses the instability.

Unfortunately, for the past twenty years almost all neutron-star modes which were
found to be formally susceptible to the CFS instability turned out to be stabilized
by viscosity [25]. The sole exception was a group of f-modes (fundamental pulsation
modes) with high azimuthal wave number, where the instability survived only at very

high angular velocities (over 90% of the breakup value). Thus the minimum neutron-
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star period set by the f-modes was not much greater than the Kepler period at which
the star loses material due to centrifugal force, and the instability was still not very
interesting astrophysically—though gravitational-wave theorists did hope to find a
small population of young neutron stars spinning down and radiating gravitational
waves via the f-modes. Part of the trouble was that the modes people studied had
frequencies (in the inertial frame) much greater than the angular velocity of the star,
which meant that very high wave numbers m were needed for the mode to be formally
unstable. However, modes with high wave numbers are much more strongly sheared

and thus more subject to viscous damping.

B. The r-modes and their influence on the evolution of a young neutron star

The r-modes are so designated because they have nonzero frequency only in rotat-
ing stars. The restoring force on the r-modes is the Coriolis force, so their frequencies
are in fact proportional to (and comparable to) the angular velocity of the star. Some-
times the r-modes are called axial modes, because in the slow rotation limit the fluid
displacement is an axial vector (proportional to a magnetic-type vector spherical har-
monic) rather than a polar vector as for other modes. The r-modes are unlike other
stellar normal modes not only because of their parity and their relatively low fre-
quencies, but also because they move fluid elements around nearly on equipotential
surfaces with little change in density (analogous to large-scale Rossby waves in the
Earth’s oceans and atmosphere).

In 1997 while cataloguing all the modes of neutron stars, Nils Andersson discov-
ered that in the absence of viscosity all of the 7-modes of all rotating neutron stars
are subject to the CFS instability [26]. That is, modes which are retrograde in the
corotating frame but prograde in an inertial frame can be found for all azimuthal wave
numbers at all angular velocities. Although throughout 1997 no one had computed

the viscous timescales—and, it turned out, no one had properly computed the gravi-
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tational radiation timescales—Andersson’s discovery generated considerable interest
by itself. The fact that the r-mode instability persists even at low wave numbers
(where shear viscosity is less important) led the experts to suspect that it might be
damped less than the instabilities of other modes. The instability of the r-modes
even in the limit of slow rotation also led the experts to suspect that the r-modes
might be slightly more effective at spinning down young neutron stars than the other
modes previously investigated. Both suspicions proved correct—much more so than
anyone expected.

Throughout 1997 interest in the r-modes was widespread but not very intense,
and experts in the field were slow to properly calculate the gravitational radiation
and viscous timescales. There were two reasons. First, the fact that all the neutron-
star modes investigated for twenty years had proved stable in the presence of viscosity
(with the modest exception of the f-modes) led the experts to be pessimistic that any
modes would prove unstable enough to be astrophysically interesting. Thus, although
the tools for doing the simple viscosity calculation were available, the experts put off
the r-mode problem to work on other projects. Second, the experts roughly estimated
the time scale for the 7-modes to grow, making the standard assumption that mass-
multipole waves are dominant, and obtained timescales discouragingly long because
the r-modes have very small density perturbations. It was known that in principle the
current multipoles would also radiate and produce radiation reaction. However, cal-
culations of such effects had been confined to the specialized post-Newtonian binary
literature (e.g. [8]), where decades of relativity lore taught that they were high-order
corrections to the mass multipole radiation. Due to the believed low payoff of a
current-multipole calculation for the r-modes and the perception by the broader rela-
tivity community of the post-Newtonian literature as opaque and obscure, the current
multipoles were neglected.

I was lucky enough to walk into this problem with the one missing piece, the
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ability to calculate current multipoles. On the first night of the GR15 meeting (in

Pune, India, December 1997) when most of the experts in the relativistic stellar
pulsation community were gathered at dinner to talk about the r-modes, I happened
to sit at the same table. Over dinner, Bernard Schutz speculated that for the r-
modes, because their density perturbations were small compared to their velocity
perturbations, current multipoles might prove as important as the mass multipoles.
He urged the experts to overcome their fears of the impenetrable post-Newtonian
literature and investigate further, going so far as to goad Nils Andersson with a bet.
At the time I was certainly no expert on the r-modes—I knew very little about fluid
dynamics or stellar pulsations, and most of the talk went over my head. But I was
lucky enough to have the one missing piece—fortuitously, I had recently finished a
calculation (Chapter 4 of this thesis) of post-Newtonian effects in spinning binaries
which had involved current multipoles, and therefore they held no fear or mystery
for me. Knowing little about r-modes but something about current multipoles, I did
my first calculation (of which mode numbers would contribute to which multipoles,
knowing only the angular dependences of the perturbations) at the dinner table while
the speculation and debate went on around me. When I returned to Caltech and had
the chance to look up the r-mode literature and learn the dependence of the density
and velocity perturbations on the star’s angular velocity, I refined that calculation.
I found that the current multipoles were in fact the dominant effect and that the
gravitational radiation was stronger than previously suspected by several orders of
magnitude. Fortunately Lee Lindblom, one of the dinner guests at GR15 and an
expert on stellar pulsations for over twenty years, had just arrived at Caltech for
his annual four-month stay, so I could benefit from his wealth of expertise on the
subject. I showed him my gravitational radiation results and he quickly calculated
viscous timescales. Thus we launched a very fruitful collaboration.

Chapter 5 of this thesis (written with Lee Lindblom and Sharon M. Morsink) is
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the first computation of viscous timescales and the first proper computation of grav-
itational radiation timescales for the r-modes. We demonstrate that for a reasonable
model of a young neutron star the gravitational radiation timescale is orders of mag-
nitude shorter than the viscous timescales—and thus the modes are unstable in fact
as well as in principle—even at angular velocities a small fraction of the Kepler an-
gular velocity (at which the star breaks up due to centrifugal force). The instability
persists for about a year after the formation of the neutron star, until it has spun
down to a fraction of its angular velocity and cooled to the superfluid transition tem-
perature. We find, using the viscosity of hot neutron fluid, that the minimum period
for stability of the r-modes is about 13 times the Kepler period at the star’s surface
(about 13 x 1.5 = 17ms). However, this number should not be believed to more than
about a factor of two due to several approximations we made (see below).

The viscous damping mechanisms considered in Chapter 5 are the standard bulk
and shear viscous processes for hot neutron fluid (see the references in Chapter 5
for further discussion). The bulk viscosity comes from the disturbance in the (-
equilibrium of a fluid element subjected to a density perturbation. That is, some
of the protons and electrons are combined to neutrons in the compression phase and
vice versa in the rarefaction phase. Neutrinos are produced in the process and quickly
escape from the star, thereby taking energy out of the mode. (Presumably at very
high temperatures the neutrinos scatter several times before escaping, heating the
star with some of their energy, but the net result is still to take energy out of the
mode.) This process dominates the viscosity at very high temperatures such as those
found in the first few minutes after a supernova. The temperature dependence of the
bulk viscosity is very steep, and as the star cools below 10'°K the lower-temperature
shear viscosity due to neutron-neutron scattering becomes important. As the hot
neutron fluid cools to about 10°K, it becomes a superconducting superfluid, and the

main viscous damping mechanism is believed to become mutual friction [27], whereby
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electrons scatter off of ordinary neutron fluid vortices containing strong magnetic
fields due to proton supercurrents. No calculation for mutual-friction damping of the
r-modes has yet been done, but based on previous experience with other modes it
is expected to completely suppress the CFS instability at temperatures below the
superfluid transition temperature T, ~ 1 x 10°K. This is consistent with the known
rapid rotation rates of old, cold millisecond pulsars.

There are several important effects neglected or given short shrift in Chapter 5.
Much of this neglect is due to space limitations (Chapter 5 will appear in Physical
Review Letters). Here I shall give brief descriptions of some of the effects left out,
and make hand-waving arguments as to why they should not qualitatively change
our picture of the instability (although they will certainly quantitatively change the
timescales somewhat).

Two obvious viscous mechanisms mentioned but given little discussion in Chap-
ter 5 are magnetic fields and crust formation. The r-modes do not wrap magnetic
fields around the star in the same way as the post-supernova collapse and boil; they
simply shake the fluid and its embedded field lines back and forth at frequencies up
to about 1 kHz. Any shaking of the field lines due to a shear mode could in principle
carry off a lot of energy by coupling to the magnetosphere. However, the magneto-
sphere plasma frequencies are typically 10 kHz or more, even using the corotation
charge density as a lower limit [28]. Therefore the transmission coefficient for 1 kHz
oscillations of the stellar matter to get out into the magnetosphere is quite low [29].

Crust formation seems a bit more difficult to treat. A crust should begin forming
near the surface of the star when the core fluid cools to approximately 10'°K [30],
which is about the same temperature at which the quadrupolar r-mode becomes
unstable. Prior to submitting Chapter 5 for publication, we tried one simple test:
we simply turned the mode off in the outer layers, i.e. at densities low enough for

the crust to form, and found that this had little effect on the instability. Since then



19

I have done slightly better. The maximum elastic energy in a well-established crust
is of order 10*ergs [29] at a breaking strain of order 1072, and while the crust is
forming the power being fed into the r-mode by gravitational radiation reaction is of
order 10%%rg/s. Therefore the r-mode should easily shear away any incipient crust,
presumably melting the material in the process. Since the power being fed into the
r-mode in this regime is greater than the neutrino luminosity by which the entire
neutron star cools (see Figure 6.3), converting even a small fraction of the mode’s
power into heat should be sufficient to re-melt the outer layers without overcoming
the mode’s instability.

In quickly performing the calculations that became Chapter 5, we also neglected
a number of non-dissipative effects such as rapid rotation, nonlinear hydrodynamics,
and relativistic gravity (beyond what was needed to generate gravitational radiation).
We naively expect full general relativity to change the results by a factor of order the
gravitational redshift—i.e., about unity. More important are the rapid rotation and
nonlinear hydrodynamics issues, which are coupled at some level. The expressions
and symmetries we use for the 7-modes are valid only in the slow-rotation limit. They
are also valid only as long as the mode is a small perturbation of the rigidly rotating
equilibrium configuration. At some point, the star is no longer describable as a linear
superposition of an r-mode and a rigidly rotating equilibrium fluid, and nonlinear
hydrodynamics is needed. For instance, it is possible that the growing mode causes
the star to evolve into some highly nonspherical fluid configuration analogous to
the Maclaurin spheroids. We make a crude attempt at describing such a situation in
Chapter 6 (see below). Again, this would be an interesting research problem which we
expect to quantitatively modify but not qualitatively negate the results of Chapter 5.

The biggest challenge (so far) to the results obtained in Chapter 5 is the discovery
of a very fast young pulsar in the Large Magellanic Cloud [31]. This pulsar has a

16ms period and an apparent age of 5000 years. Its braking index has not yet been
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measured, but assuming a value comparable to that in other young pulsars, one can
deduce an initial period of about 7ms. If true, the 7ms period certainly modifies the
simple model given in Chapter 5 but does not completely invalidate the result. It
could indicate that some other damping mechanism comes into play before the star
cools to 10°K; for instance, if the critical temperature T, for superfluidity is about
2 x 10°K rather than 10°K and mutual friction suppresses the instability below 7,
that would change the minimum period to 7ms. Several other effects neglected in
Chapter 5 could be significant in this regime because the star has spun down by a
large factor and thus the gravitational radiation (which depends strongly on angular
velocity) has become much weaker. However our r-mode spindown result is very
robust, and still interesting even if the minimum period is 7ms rather than the 17ms

that we estimated for 7, = 1 x 10°K.

C. Gravitational waves from the r-modes

Chapter 6 of this thesis (written with Lee Lindblom, Curt Cutler, Bernard F.
Schutz, Alberto Vecchio, and Nils Andersson) computes gravitational waveforms and
wave strengths from young neutron stars spinning down due to the r-mode instabil-
ity and discusses the detectability of the waves by ground-based interferometers. We
conclude that the r-mode instability could be detectable by enhanced LIGO interfer-
ometers out to the Virgo cluster if suitable data analysis techniques can be devised. It
could also be detected by advanced LIGO interferometers as a stochastic background
made up of many weaker signals from neutron stars out to cosmological distances.

In chapter 6, we construct a simple phenomenological model for the evolution
of a small initial 7-mode perturbation under the influence of gravitational radiation
and viscous damping, and examine the effect of the r-mode evolution on the total
angular momentum of the star for various phenomenological parameters. We model

the star as an r-mode with a certain amplitude, linearly superposed on a rigidly
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rotating equilibrium configuration with some angular velocity (and simple polytropic
equation of state). We evolve the r-mode amplitude and stellar angular velocity by
imposing conservation of energy and angular momentum. Of course once the mode
grows too large it can no longer be treated as a small perturbation on a rigidly rotating
equilibrium. We expect, based on the example of Maclaurin spheroids, that nonlinear
hydrodynamical effects cause the mode to saturate at some amplitude of order unity,
which we include (along with the initial r-mode amplitude) as a phenomenological
parameter. Nonlinear effects should also change the mode frequencies to some extent,
but we have not modeled this.

We find that the gravitational waveforms from a neutron star in the Virgo cluster
rise quickly (on a timescale of minutes) to a strain of about 10~2* independent of
the size of the inital perturbation. Thereafter the waves decrease in amplitude and
frequency for about a year until effects not included in our simple model (such as
superfluidity) presumably damp the r-mode. This happens after it has dwindled to a
gravitational-wave strain of less than 10726 at a gravitational-wave frequency of about
120 Hz. The gravitational-wave signal is long-lived and highly monochromatic in two
senses: (i) the “spindown age” f dt/df is longer than the duration of the signal, and
more importantly (ii) the signal is coherent and lasts long enough to be significantly
affected by the Doppler shift due to the Earth’s daily (and other) motions. Such
signals are logical candidates for the data analysis techniques long used by radio
astronomers to look for pulsars and analyzed in the context of gravitational waves by
Brady et al. [14]. These pulsar search techniques center around the simple method
of Fourier transforming long stretches of data (after some significant corrections) and
looking for peaks.

There are several serious complications to such a Fourier transform search. To
begin with, any integration time longer than a substantial fraction of a day must

take into account the time-varying Doppler shift of the signal induced by the rotation
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(and other motions) of the Earth. This Doppler shift depends on the position of the

source on the sky. If the position is not known (an “all-sky search”) the data must be
corrected (barycentered) for a large number of points on the sky. This requires a great
deal of computational power [14]. In addition, the Fourier transform must correct for
the (unknown) spin-induced frequency evolution of the source itself in the frame of
the solar system barycenter. Both types of frequency shifts must be compensated for
in the data so that the power of the signal is not spread across several frequency bins
in the Fourier transform (thereby degrading the signal-to-noise ratio).

If the position of the r-mode source is known, as it likely will be due to electro-
magnetic observations of the supernova, one still must search over the star’s spindown
parameters (a “directed spindown search”). This search may be daunting due to the
rapidity of the spindown (spindown age about six times the actual age, which in turn
is less than one year compared to 40 years or longer in all such gravitational-wave
searches previously contemplated [14]). The low spindown age necessitates a large
number of spindown parameter values, which in turn sets a limit on the coherent
integration time possible as well as on the number of points in parameter space which
can be tested (analogous to the matched filtering issues discussed in Section I). Un-
fortunately, even with a computing budget of teraflops it is impossible for a directed
search to achieve more than a fairly small fraction—at most of order 10%—of the
optimal signal-to-noise ratio [32]. This number is obtained by optimizing the search
sensitivity for a fixed computational budget, varying the total integration time and
varying the stacking strategy (in which one incoherently adds the power spectra of
shorter Fourier transforms to gain integration time at the cost of lesser sensitivity).
Some kind of hierarchical search (see Section I) is possible, but not expected to gain
much. Since we calculate the optimal signal-to-noise ratio at the Virgo cluster to be
about 7 for enhanced LIGO, it is necessary to develop data analysis techniques that

can do better than those currently in the literature in order to detect this interesting
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source of gravitational waves.

The r-mode instability is an interesting source of gravitational waves not only as
well-defined, relatively strong signals, but as a stochastic background of weak con-
tributions from objects out to cosmological distances. The data analysis involved in
searching for stochastic backgrounds (typically believed to arise from fluctuations in
the early universe) amounts to cross-correlating the “noise” between two interferome-
ters and is computationally quite inexpensive [33]. The detectable gravitational-wave
energy density is determined by the noise in the two interferometers and the separa-
tion between them. For the two 4-km advanced LIGO interferometers at Livingston
and Hanford, the detectable signal at 95% confidence (5% false alarm probability)
corresponds to a gravitational-wave energy density, in a bandwidth equal to frequency
f ~ 70Hz, a few times 107 of that needed to close the universe (g, ~ few x 10719).
(Allen [33] used a slightly bad fit to the advanced LIGO noise spectrum thereby
obtaining a different estimate of the detectable €2g,.) In Chapter 6 we find that
the r-mode background energy density will be about 10~% times closure in the band
around 70Hz, making it detectable by advanced LIGO with 95% confidence. For en-
hanced LIGO interferometers there is as yet no careful estimate of the detectable (2,
but we crudely estimate it to be about 15 times the advanced LIGO value, making

the r-mode background undetectable by enhanced interferometers.
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Gravitational waves from inspiraling, compact binaries will be
searched for in the output of the LIGO/VIRGO interferometric net-
work by the method of “matched filtering”—i.e., by correlating the noisy
output of each interferometer with a set of theoretical waveform tem-
plates. These search templates will be a discrete subset of a continuous,
multiparameter family, each of which approximates a possible signal.
The search might be performed hierarchically, with a first pass through
the data using a low threshold and a coarsely-spaced, few-parameter
template set, followed by a second pass on threshold-exceeding data
segments, with a higher threshold and a more finely spaced template
set that might have a larger number of parameters. Alternatively, the
search might involve a single pass through the data using the larger
threshold and finer template set. This paper extends and generalizes
the Sathyaprakash-Dhurandhar (S-D) formalism for choosing the dis-
crete, finely-spaced template set used in the final (or sole) pass through
the data, based on the analysis of a single interferometer. The S-D for-
malism is rephrased in geometric language by introducing a metric on
the continuous template space from which the discrete template set is
drawn. This template metric is used to compute the loss of signal-to-
noise ratio and reduction of event rate which result from the coarseness
of the template grid. Correspondingly, the template spacing and total
number N of templates are expressed, via the metric, as functions of the
reduction in event rate. The theory is developed for a template family
of arbitrary dimensionality (whereas the original S-D formalism was re-
stricted to a single nontrivial dimension). The theory is then applied to

a simple post'-Newtonian template family with two nontrivial dimen-
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sions. For this family, the number of templates A in the finely-spaced
grid is related to the spacing-induced fractional loss £ of event rate and
to the minimum mass My, of the least massive star in the binaries
for which one searches by N’ ~ 2 x 10%(0.1/£)(0.2 Mg /Min)*" for the
first LIGO interferometers and by N ~ 8 x 105(0.1/L£)(0.2 Mg /Mupin)?"
for advanced LIGO interferometers. This is several orders of magnitude
greater than one might have expected based on Sathyaprakash’s discov-
ery of a near degeneracy in the parameter space, the discrepancy being
due to this paper’s lower choice of My, and more stringent choice of L.
The computational power P required to process the steady stream of
incoming data from a single interferometer through the closely-spaced
set of templates is given in floating-point operations per second by
P ~ 3 x 1019(0.1/L)(0.2 Mg/Mmin)*" for the first LIGO interferom-
eters and by P ~ 4 x 1011(0.1/£)(0.2 Mg /Muin)?" for advanced LIGO
interferometers. This will be within the capabilities of LIGO-era com-
puters, but a hierarchical search may still be desirable to reduce the

required computing power.

I. INTRODUCTION

Compact binary star systems are likely to be an important source of gravitational
waves for the broadband laser interferometric detectors now under construction [1], as
they are the best understood of the various types of postulated gravity wave sources
in the detectable frequency band and their waves should carry a large amount of
information. Within our own galaxy, there are three known neutron star binaries
whose orbits will decay completely under the influence of gravitational radiation re-
action within less than one Hubble time, and it is almost certain that there are many

more as yet undiscovered. Current estimates of the rate of neutron star/neutron star
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(NS/NS) binary coalescences [2,3] based on these (very few) known systems project
an event rate of three per year within a distance of roughly 200 Mpc; and estimates
based on the evolution of progenitor, main-sequence binaries [4] suggest a distance
of as small as roughly 70 Mpc for three events per year. These distances correspond
to a signal strength which is within the target sensitivities of the LIGO and VIRGO
interferometers [5,6]. However, to find the signals within the noisy LIGO/VIRGO
data will require a careful filtering of the interferometer outputs. Because the pre-
dicted signal strengths lie so close to the level of the noise, it will be necessary to
filter the interferometer data streams in order to detect the inspiral events against
the background of spurious events generated by random noise.

The gravitational waveform generated by an inspiraling compact binary has been
calculated using a combination of post-Newtonian and post-Minkowskian expan-
sions [7,8] to post?-Newtonian order by the consortium of Blanchet, Damour, Iyer,
Will, and Wiseman [9], and will be calculated to post®-Newtonian order long before
the LIGO and VIRGO interferometers come on-line (c. 2000). Because the functional
form of the expected signal is so well-known, it is an ideal candidate for matched filter-
ing, a venerable and widely known technique which is laid out in detail elsewhere [10]
and briefly summarized here.

The matched filtering strategy is to compute a cross-correlation between the inter-
ferometer output and a template waveform, weighted inversely by the noise spectrum
of the detector. The signal-to-noise ratio is defined as the value of the cross-correlation
of the template with a particular stretch of data divided by the rms value of the
cross-correlation of the template with pure detector noise. If the signal-to-noise ratio
exceeds a certain threshold, which is set primarily to control the rate of false alarms
due to fluctuations of the noise, a detection is registered. If the functional form of
the template is identical to that of the signal, the mean signal-to-noise ratio in the

presence of a signal is the highest possible for any linear data processing technique,
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which is why matched filtering is also known as optimal filtering.

In practice, however, the template waveforms will differ somewhat from the signals.
True gravitational-wave signals from inspiraling binaries will be exact solutions to the
Einstein equations for two bodies of non-negligible mass, while the templates used
to search for these signals will be, at best, finite-order approximations to the exact
solutions. Also, true signals will be characterized by many parameters (e.g. the
masses of the two objects, their spins, the eccentricity and orientation of the orbit...),
some of which might be neglected in construction of the search templates. Thus, the
true signals will lie somewhat outside the submanifold formed by the search templates
in the full manifold of all possible detector outputs (see Fig. 2.1).

Apostolatos [11] has defined the “fitting factor” F'F' to quantitatively describe the
closeness of the true signals to the template manifold in terms of the reduction of the
signal-to-noise ratio due to cross-correlating a signal lying outside the manifold with
all the templates lying inside the manifold. If the fitting factor of a template family
is unity, the signal lies in the template manifold. If the fitting factor is less than
unity, the signal lies outside the manifold, and the fitting factor represents the cross-
correlation between the signal and the template nearest it in the template manifold.

Even if the signal were to lie within the template manifold, it would not in general
correspond to any of the actual templates used to search the data. The parameters de-
scribing the search templates (masses, spins, etc.) can vary continuously throughout a
finite range of values. The set of templates characterized by the continuously varying
parameters is of course infinite, so the interferometer output must be cross-correlated
with a finite subset of the templates whose parameter values vary in discrete steps
from one template to the next. This subset (the “discrete template family”) has
measure zero on the manifold of the full set of possible templates (the “continuous
template family” ), so the template which most closely matches a signal will generally

lie in between members of the discrete template family (again, see Fig. 2.1). The mis-
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FIG. 2.1. A schematic depiction of the manifold formed by the continuous template
family, here represented as a two-dimensional surface lying within a three-dimensional space.
The discrete template family, shown by the dots, resides within this manifold. The X
indicates the location of an actual signal, which because it is an exact solution to the
Einstein equations does not lie within the manifold. The 4+ marks the spot in the manifold

which is closest to (has the highest inner product with) the signal. In general, this location

falls in between the actual discrete templates.
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match between the signal and the nearest of the discrete templates will cause some
reduction in the signal-to-noise ratio and therefore in the observed event rate, as
some signals which would lie above the threshold if cross-correlated with a perfectly
matched filter are driven below the threshold by the mismatch. Thus the spacing
between members of the discrete template family must be chosen so as to render ac-
ceptable the loss in event rate, without requiring a prohibitive amount of computing
power to numerically perform the cross-correlations of the data stream with all of the
discrete templates.

The high computational demands of a laser interferometric detector may in fact
make it desirable to perform a hierarchical search. In a hierarchical search, each
stretch of data is first filtered by a set of templates which rather sparsely populates the
manifold, and stretches which fail to exceed a relatively low signal-to-noise threshold
are discarded. The surviving stretches of data are filtered by a larger set of templates
which more densely populates the manifold, and are subjected to a higher threshold.
The sparseness of the first-pass template set insures that most of the data need only
be filtered by a small number of templates, while the high threshold of the final pass
reduces the false alarm rate to an acceptable level.

Theoretical foundations for choosing the discrete set of templates from the con-
tinuous family were laid by Sathyaprakash and Dhurandhar for the case of white
noise in Ref. [12], and for (colored) power-recycling interferometer noise in Ref. [13].
Both papers used a simplified (so-called “Newtonian”) version of the waveform which
can be characterized by a single parameter, the binary’s “chirp mass” M. Recently,
Sathyaprakash [14] began consideration of an improved, “post-Newtonian” set of tem-
plates characterized by two mass parameters. He found that, by a judicious choice
of the two parameters, the spacing between templates can be made constant in both
dimensions of the intrinsic parameter space. Sathyaprakash’s parameters also make

it obvious (by producing a very large spacing in one of the dimensions) that a two-
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parameter set of templates can be constructed which, if it does not populate the
manifold too densely, need not be much more numerous than the one-parameter set
of templates used in Refs. [12,13].

In this paper I shall recast the S-D formalism in geometric language which, I be-
lieve, simplifies and clarifies the key ideas. I shall also generalize the S-D formalism
to an arbitrary spectrum of detector noise and to a set of template shapes charac-
terized by more than one parameter. This is necessary because, as Apostolatos [11]
has shown, no one-parameter set of templates can be used to filter a post-Newtonian
signal without causing an unacceptably large loss of signal-to-noise ratio.

In one respect, my analysis will be more specialized than that of the S-D formal-
ism. My geometric analysis requires that the templates of the discrete set be spaced
very finely in order that certain analytical approximations may be made, while the nu-
merical methods of Sathyaprakash and Dhurandhar are valid even for a large spacing
between templates (as would be the case in the early stages of a hierarchical search).
The small spacing approximation is justified on the grounds that at some point, even
in a hierarchical search, the data must be filtered by many closely spaced templates in
order to detect a reasonable fraction (of order unity) of the binary inspirals occurring
in the universe within range of the LIGO/VIRGO network.

The rest of this paper is organized as follows: In Sec. II, I develop my gener-
alized, geometric variant of the S-D formalism. I then apply this formalism to the
general problem of detection of gravitational waves from inspiraling binaries, and
develop general formulas for choosing a discrete template family from a given con-
tinuous template family. In Sec. III, I detail an example of the use of my formal-
ism, choosing discrete templates from a continuous template family which describes
nonspinning, circularized binaries to post!-Newtonian order in the evolution of the
waveform’s phase. I also estimate the computing power required for a single-pass

(non-hierarchical) search using this discrete template family, and compare to the pre-
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vious work of Sathyaprakash [14]. Finally, in Sec. IV, I summarize my results and

suggest future directions for research on the choice of discrete search templates.

II. THEORY OF MISMATCHED FILTERING

In this section, a geometric, multiparameter variant of the S-D formalism is devel-
oped. Unless otherwise stated, the following conventions and definitions are assumed:
Following Cutler and Flanagan [15], we define the inner product between two

functions of time a(t) and b(¢) (which may be templates or interferometer output) as

)b(f ) (H)b*(f)

(alb) —2/ L ”;
— 4R V gL 0) ] (2.2.1)

Here a(f) is the Fourier transform of a(t),
= / dt e ftg(t), (2.2.2)
—00

and Si(f) is the detector’s noise spectrum, defined below.

The interferometer output o(t) consists of noise n(t) plus a signal As(t), where
A is a dimensionless, time-independent amplitude and s(t) is normalized such that
(s|sy = 1. Thus, A describes the strength of a signal and s(t) describes its shape.

Waveform templates are denoted by u(t; p, A), where A is the vector of “intrinsic”
r “dynamical” parameters characterizing the template shape and p is the vector
of “extrinsic” or “kinematical” parameters describing the offsets of the waveform’s
endpoint. Examples of intrinsic parameters \* are the masses and spins of the two
objects in a compact binary; examples of extrinsic parameters u* are the time of a
compact binary’s final coalescence t;, and the phase of the waveform at coalescence
D.

Templates are assumed to be normalized such that (u(w@, A)|u(p, A)) = 1 for all

p and A.
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Expectation values of various quantities over an infinite ensemble of realizations
of the noise are denoted by E[ |.
The interferometer’s strain spectral noise density S, (f) is the one-sided spectral

density, defined by

BlA(A)7" ()] = 50(h — f)Su() (223)

for positive frequencies and undefined for negative frequencies. The noise is assumed
to have a Gaussian probability distribution.

Newton’s gravitational constant G and the speed of light ¢ are set equal to one.

A. Formalism

In developing our formalism, we begin by defining the signal-to-noise ratio. For
any single template u(t) of unit norm, the cross-correlation with pure noise (n|u) is
a random variable with mean zero and variance unity (cf. Sec. IL.B. of Ref. [15],
wherein it is shown that E[(n|a)(n|b)] = (a|b)). The signal-to-noise ratio of a given

stretch of data o(t), after filtering by u(t), is defined to be

ow)
P= e oy = ol (2.2.4)

This ratio is the statistic which is compared to a predetermined threshold to decide
if a signal is present.
If the template u is the same as the signal s, it optimally filters the signal, and

the corresponding (mean) optimal signal-to-noise ratio is
E[p] = E[(n + Au|u)] = A. (2.2.5)

If the template u used to filter the data is not exactly the same as the signal s, the

mean signal-to-noise ratio is decreased somewhat from its optimal value:

Elp] = E[(n + As|u)] = A(s|u). (2.2.6)
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The inner product (s|u), which is bounded between zero and one, is the fraction of
the optimal E[p] retained in the mismatched filtering case, and as such is a logical
measure of the effectiveness of the template u in searching for the signal shape s.

Now suppose that we search for the signal with a family of templates specified by
an extrinsic parameter vector p and an intrinsic parameter vector A. Let us denote
the values of the parameters of the actual templates by (ge(x), Ax)). For example, u%k)
might be the value of the time t; of coalescence for the kth template in the family,
and u%k) might be the phase of the kth template waveform at coalescence.

The search entails computing, via fast Fourier transforms (FFT’s), all the inner
products (o|u(pky, Awy)) for £ =1,2,... In these numerical computations, the key
distinction between the extrinsic parameters g and the intrinsic parameters A is
this: One explores the whole range of values of pu very quickly, automatically, and
efficiently for a fixed value of A; but one must do these explorations separately for
each of the A). In this sense, dealing with the extrinsic parameters is far easier and
more automatic than dealing with the intrinsic ones [16].

As an example (for further detail see Sec. 16.2.2 of Schutz [17]), for a given stretch
of data one explores all values of the time of coalescence (ty = u') of a compact binary
simultaneously (for fixed values of the other template parameters) via a single FFT.
If we write the Fourier transform (for notational simplicity) as a continuous integral

rather than a discrete sum, we get

) 127 fto
Olulppw, A)) = [ df S0 (F)alf; other pgey, A)- (2.2.7)
0 Sn(f)

The discrete FFT yields the discrete analog of the function of ¢; as shown above, an
array of numbers containing the values of the Fourier transform for all values of g.
Because, for fixed Ay, the extrinsic parameters p are dealt with so simply and
quickly in the search, throughout this paper we shall focus primarily on a template
family’s intrinsic parameters A, which govern the shape of the template. Corre-

spondingly, we shall adopt the following quantity as our measure of the effectiveness
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with which a particular template shape—i.e. a particular vector Ay of the intrinsic
parameters—matches the incoming signal:
max (s|u(p, Ax)))- (2.2.8)
"
Here the maximization is over all continuously varying values of the extrinsic param-
eters. Then the logical measure of the effectiveness of the entire discrete family of

templates in searching for the signal shape is

ml?x [ m:mx (slu(pe, Ary))], (2.2.9)

which is simply (2.2.8) maximized over all the discrete template shapes.

In order to focus on the issue of discretization of the template parameters rather
than on the inadequacy of the continuous template family, let us assume that the sig-
nal shape s is identical to some template. The discussion of the preceding paragraphs
suggests that in discussing the discretization of the template parameters we will want
to make use of the match between two templates a(f; p, A) and @(f; p+ Ap, A+ AN)
which we will define as

M, AN) = T (w(p, A)|u(pe + Ap, X+ AN)). (2.2.10)
A
This quantity, which is known in the theory of hypothesis testing as the ambiguity
function, is the fraction of the optimal signal-to-noise ratio obtained by using a tem-
plate with intrinsic parameters A to filter a signal identical in shape to a template
with intrinsic parameters A + AA.

Using the match (2.2.10) it is possible to quantify our intuitive notion of how
“close” two template shapes are to each other. Since the match clearly has a maximum
value of unity at AX = 0, we can expand in a power series about AX = 0 to obtain
1 ( 0*M

~ —\ = AN, 2.
M\, AN ~ 1+ amiama) o AXAN (2.2.11)

This suggests the definition of a metric
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1 0*M

so that the mismatch 1 — M between two nearby templates is equal to the square of

the proper distance between them:
1— M = g;; ANAN. (2.2.13)

Having defined a metric on the intrinsic parameter space, we can now use it
to calculate the spacing of the discrete template family required to retain a given
fraction of the ideal event rate. Schematically, we can think of the templates as
forming a lattice in the N-dimensional intrinsic parameter space whose unit cell is
an N-dimensional hypercube with sides of proper length dl. The worst possible case
(lowest E[p]) occurs if the point A describing the signal is exactly in the middle of
one of the hypercubes. If the templates are closely spaced, i.e. dl < 1, such a signal

has a squared proper distance
g AN AN = N(dl/2)? (2.2.14)

from the templates at the corners of the hypercube.

We define the minimal match M M to be the match between the signal and the
nearest templates in this worst possible case, i.e. the fraction of the optimal signal-
to-noise ratio retained by a discrete template family when the signal falls exactly
“in between” the nearest templates. This minimal match is the same quantity that
Dhurandhar and Sathyaprakash in Ref. [13] denote as k™!; but since it is the central
quantity governing template spacing it deserves some recognition in the form of its
own name. Our choice of name closely parallels the term “fitting factor” F'F', which
Apostolatos introduced in Ref. [11] to measure the similarity between actual signals
and a continuous template family.

The minimal match, which is chosen by the experimenter based upon what he or

she considers to be an acceptable loss of ideal event rate, will determine our choice"
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of spacing of the discrete template parameters and therefore the number of discrete
templates in the family. More specifically, the experimenter will choose some desired
value of the minimal match MM; and then will achieve this MM by selecting the

templates to reside at the corners of hypercubes with edge dl given by
MM =1- N(dl/2)% (2.2.15)

The number of templates in the resulting discrete template family will be the proper

volume of parameter space divided by the proper volume per template di”, i.e.

N ;5
J AV /det ||g;;]| (2.2.16)

B (2/0=2m)/N)"

B. Inspiraling Binaries Detected by LIGO

The formalism above applies to the detection of any set of signals which have
a functional form that depends on a set of parameters which varies continuously
over some range. We now develop a more explicit formula for the metric, given an
analytical approximation to the LIGO noise curve and a particular class of inspiraling
binary signals.

We approximate the “initial” and “advanced” benchmark LIGO noise curves by

the following analytical fit to Fig. 7 of Ref. [5]:

5,05y = | FSHUTII 2+ LRPD, S > 1, o1

o0, f<f57

where fo is the “knee frequency” or frequency at which the interferometer is most
sensitive (which is determined by the reflectivities of the mirrors and is set by the
experimenters to the frequency where photon shot noise begins to dominate the spec-
trum) and Sp is a constant whose value is not important for our purposes. This

spectrum describes photon shot noise in the “standard recycling” configuration of
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the interferometer (second term) superposed on thermal noise in the suspension of
the test masses (first term), and it approximates seismic noise by setting ) infinite
at frequencies below the “seismic-cutoff frequency” f.

Throughout the rest of this paper, the “first LIGO noise curve” will refer to
(2.2.17) with f; = 40 Hz and f; = 200 Hz, and the “advanced LIGO noise curve” will
refer to (2.2.17) with fs = 10 Hz and fo = 70 Hz. These numbers are chosen to closely
fit Fig. 7 of Ref. [5] for the first LIGO interferometers and for the advanced LIGO
benchmark. In this paper, when various quantities (such as the number of discrete
templates) are given including a scaling with fy, this indicates how the quantity
changes while fy is varied but f;/fy is held fixed.

At this point it is useful to define the moments of the noise curve (2.2.17), following

Poisson and Will [18], as

fc/fO m—q/s
I(g) =5 dz——
(9) = Su(fo) /f S dng
felfo 5r—4/3
st s TR (2.2.18a)
Ja) = Ha)/I(7). (2.2.18b)

The upper limit of integration f. denotes the coalescence frequency or high-frequency
cutoff of whatever template we are dealing with, which very roughly corresponds to the
last stable circular orbit of a test particle in a non-spinning black hole’s Schwarzschild
geometry.

For both first and advanced LIGO noise curves, the majority of inspiraling binary
search templates will occupy regions of parameter space for which f. is many times
fo. Because we will always be dealing with I(q) for ¢ > 0, and because the noise
term in the denominator of the integrand in Eq. (IIB) rises as f2 for f > f;, we can
simplify later calculations by approximating f. = oo in the definition of the moments.

To illustrate the metric formalism, we shall use templates based on a somewhat

simplified version of the post-Newtonian expansion. Since the inner product (2.2.1)
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has negligible contributions from frequencies at which the integrand oscillates rapidly,
it is far more important to get the phase of @(f) right than it is to get the ampli-
tude dependence. Therefore, we adopt templates based on the “restricted” post-
Newtonian approximation in which one discards all multipolar components except
the quadrupole, but keeps fairly accurate track of the quadrupole component’s phase
(for more details see Secs. II.C. and III.A. of Ref. [15]). Applying the stationary phase

approximation to that quadrupolar waveform, we obtain
W(fi 0 1) = F P exp i |~ — B+ 2mfto + (Fi M) (2.2.19)

up to a multiplicative constant which is set by the condition (u|u) =1 [19].
The function W, describing the phase evolution in (2.2.19), is currently known
to post?-Newtonian order for the case of two nonspinning point masses in a circular

orbit about each other as

3 00 743 11
W(fi ) = oo ) [+ 2 s sem(at)
3058673 5420 617 ,
10 M F)4/3 299
+10(576062 + 1008”7 + 122" ) (M) 12.2.20)

(cf. Eq. (3.6) of Ref. [18]). Here the mass parameters have been chosen to be M, the
total mass of the system, and 7, the ratio of the reduced mass to the total mass.
The actual amplitude A of a waveform is proportional to 1/R,